WorldWideScience

Sample records for singlet oxygen 1o2

  1. The Generation of Singlet Oxygen (1O2) by the Nitrodiphenyl Ether Herbicide Oxyfluorfen Is Independent of Photosynthesis

    Science.gov (United States)

    Haworth, Phil; Hess, F. Dan

    1988-01-01

    The mechanism of action of the p-nitrodiphenyl ether herbicides has remained ambiguous because of conflicting reports in the literature. The diphenyl ether herbicide oxyfluorfen causes a light induced consumption of oxygen which resembles the electron acceptor reaction of paraquat. However, this reaction is not linked to the transport of electrons through photosystem I. This conclusion is based on the observation that the rate of oxygen consumption, in the presence of oxyfluorfen, does not demonstrate a first order rate dependence on light intensity. Using the bleaching of N,N-dimethyl p-nitrosoaniline as a specific detector of singlet oxygen, we demonstrate that oxyfluorfen is a potent generator of this toxic radical. The production of singlet oxygen occurs in the presence of inhibitors of photosynthetic electron transport (oxyfluorfen at 10−4 molar and paraquat) and also under temperature conditions (3°C) which prevent electron transport. This light induced reaction results in oxygen consumption and is the primary cause of lethality for oxyfluorfen. The production of singlet oxygen occurs rapidly and at low herbicide concentrations (10−9 molar). The reaction occurs without photosynthetic electron transport but does require an intact thylakoid membrane. PMID:16665968

  2. Influence of singlet oxygen (1O2) generated by a lipophilic photosensitizer (Pyropheophorbide-a, PPa) on membrane and firing properties of cultured hippocampus neurons

    DEFF Research Database (Denmark)

    Breitenbach, Thomas; Ogilby, Peter Remsen; Lambert, John D. C.

    2008-01-01

    During Photodynamic Therapy (PDT) of cancer, cells are killed by 1O2, which is generated in a photosensitized process. A photosensitizer (PS) is applied to the tissue and irradiated with light to form an exited molecule. This generates 1O2 from ground state oxygen, which then induce processes...

  3. Effect of extracellular generation of the reactive oxygen species, singlet oxygen (1O2), on the electrophysiological properties of cultured cortical neurons

    DEFF Research Database (Denmark)

    Breitenbach, Thomas; Sinks, Louise, E.; Vionogradov, Sergej A.

    Several models to mimic oxidative stress of cells have been reported. However, these models are often limited to known ROS (e.g. H2O2) or exposure times, which may exceed the pathophysiological stimulation. We have previously investigated neuronal functioning following controlled production of 1O2...... (ABM) were made from cultured rat cortical neurons to provide insight into the events following extracellular generation of 1O2. Membrane resistance (Rm), capacitance (Cm), holding current (Ihold), and firing properties were monitored throughout. The V/I relationship was investigated with 1 s duration...... current steps of 0.1 nA (-0.4 - 1 nA). The PS, dissolved in ABM (10 µM), was administered by local application directly to the neuron monitored. The intensity of the applied light at 455 nm was adjusted by neutral density filters. Phosphorescence at 700 nm proved the presence of the PS, which was absent...

  4. Singlet oxygen-mediated protein oxidation

    DEFF Research Database (Denmark)

    Wright, Adam; Bubb, William A; Hawkins, Clare Louise

    2002-01-01

    Singlet oxygen (1O2) is generated by a number of enzymes as well as by UV or visible light in the presence of a sensitizer and has been proposed as a damaging agent in a number of pathologies including cataract, sunburn, and skin cancers. Proteins, and Cys, Met, Trp, Tyr and His side chains in pa...

  5. A Comparison of Singlet Oxygen Explicit Dosimetry (SOED and Singlet Oxygen Luminescence Dosimetry (SOLD for Photofrin-Mediated Photodynamic Therapy

    Directory of Open Access Journals (Sweden)

    Michele M. Kim

    2016-12-01

    Full Text Available Accurate photodynamic therapy (PDT dosimetry is critical for the use of PDT in the treatment of malignant and nonmalignant localized diseases. A singlet oxygen explicit dosimetry (SOED model has been developed for in vivo purposes. It involves the measurement of the key components in PDT—light fluence (rate, photosensitizer concentration, and ground-state oxygen concentration ([3O2]—to calculate the amount of reacted singlet oxygen ([1O2]rx, the main cytotoxic component in type II PDT. Experiments were performed in phantoms with the photosensitizer Photofrin and in solution using phosphorescence-based singlet oxygen luminescence dosimetry (SOLD to validate the SOED model. Oxygen concentration and photosensitizer photobleaching versus time were measured during PDT, along with direct SOLD measurements of singlet oxygen and triplet state lifetime (τΔ and τt, for various photosensitizer concentrations to determine necessary photophysical parameters. SOLD-determined cumulative [1O2]rx was compared to SOED-calculated [1O2]rx for various photosensitizer concentrations to show a clear correlation between the two methods. This illustrates that explicit dosimetry can be used when phosphorescence-based dosimetry is not feasible. Using SOED modeling, we have also shown evidence that SOLD-measured [1O2]rx using a 523 nm pulsed laser can be used to correlate to singlet oxygen generated by a 630 nm laser during a clinical malignant pleural mesothelioma (MPM PDT protocol by using a conversion formula.

  6. Glow discharge in singlet oxygen

    International Nuclear Information System (INIS)

    Vagin, N.P.; Ionin, A.A.; Klimachev, Yu.M.; Sinitsyn, D.V.; Yuryshev, N.N.; Kochetov, I.V.; Napartovich, A.P.

    2003-01-01

    Currently, there is no experimental data on the plasma balance in gas mixtures with a high content of singlet delta oxygen O 2 ( 1 Δ g ). These data can be obtained by studying the parameters of an electric discharge in singlet oxygen produced by a chemical generator. The O 2 ( 1 Δ g ) molecules significantly change the kinetics of electrons and negative ions in plasma. Hence, the discharge conditions at low and high O 2 ( 1 Δ g ) concentrations are very different. Here, the parameters of the positive column of a glow discharge in a gas flow from a chemical singlet-oxygen generator are studied. It is experimentally shown that, at an O 2 ( 1 Δ g ) concentration of 50% and at pressures of 1.5 and 2 torr, the electric field required to sustain the discharge is considerably lower than in the case when all of the oxygen molecules are in the ground state. A theoretical model of the glow discharge is proposed whose predictions are in good agreement with the experimental data

  7. Singlet oxygen: photosensitized generation, detection and reaction with organic molecules

    International Nuclear Information System (INIS)

    Barik, Atanu; Indira Priyadarsini, K.; Hari Mohan; Bajaj, P.N.; Sapre, A.V.; Mittal, J.P.; Mukherjee, T.

    2006-10-01

    Singlet molecular oxygen ( 1 O 2 ) is an excited state of molecular oxygen, having antiparallel spin in the same π antibonding orbital. The study of singlet oxygen production and reactivity has emerged as a rich and diverse area, with implication in diverse fields, such as synthetic chemistry, polymer chemistry, photodynamic therapy, etc. There are several known methods to produce singlet oxygen, and also various techniques employed to detect it. Out of these, photosensitization method is the most popular one. In this article, photosensitized production of singlet oxygen from triplet oxygen and photosensitizers in presence of light, and its detection by the infrared luminescence at 1270 nm have been presented. Further, some results using different types of photosensitizers, effect of solvent on singlet oxygen quantum yields and lifetime have been discussed. The quenching rate constants of singlet oxygen have been determined with different types of organic molecules such as derivatives of thiourea and its analogues, hydroxy indoles and antioxidants and the results have been presented. (author)

  8. Singlet molecular oxygen on natural snow and ice

    Science.gov (United States)

    Bower, J. P.; Anastasio, C.

    2010-12-01

    Singlet molecular oxygen (1O2*) is a reactive intermediate formed when a chromophore absorbs light and subsequently transfers energy to dissolved oxygen. As an oxidant, 1O2* reacts rapidly with a number of electron-rich environmental pollutants. In our work, we show enhanced kinetics for 1O2* in frozen solutions, where its rate of formation (Rf) and steady state concentration ([1O2*]) can be many orders of magnitude higher than found in the same unfrozen solution. Our goal here is to identify the contribution of 1O2* to the decay of pollutants on snow and ice. We conducted experiments in laboratory solutions made to simulate the concentrations and characteristics of natural snow, as well as in natural snow collected in the Sierra Nevada mountains of California and at Summit, Greenland. Natural snow contains a mixture of inorganic salts and organic species that can function as sources and/or sinks for oxidants, as well as contribute colligative control on the volume of quasi-liquid layers that occur at the surface and grain boundaries of ice. In our experiments, solutions typically contained up to five components: (1) Furfuryl alcohol (FFA), a commonly used probe for 1O2*, (2) Rose Bengal (RB), a 1O2* sensitizer, (3) HOOH, a photochemical precursor for hydroxyl radical (●OH), (4) glycerol to simulate unknown, naturally occurring sinks for ●OH, and (5) sodium sulfate to control the total concentration of solutes. We illuminated samples in a temperature-controlled solar simulator and subsequently measured the loss of FFA using high performance liquid chromatography. To differentiate reactions of 1O2* from other sinks (e.g. ●OH), selective sink species were added to determine the fraction of FFA loss due to direct photolysis, reaction with 1O2*, and reaction with ●OH. We verified reactions of 1O2* with FFA by two methods. First, we utilized the kinetic solvent isotope effect, where an enhancement of FFA loss in a mixture of D2O/water is indicative 1O2* since [1

  9. Singlet oxygen quenching by oxygen in tetraphenyl-porphyrin solutions

    International Nuclear Information System (INIS)

    Dedic, Roman; Korinek, Miloslav; Molnar, Alexander; Svoboda, Antonin; Hala, Jan

    2006-01-01

    Time-resolved measurement of singlet oxygen infrared phosphorescence is a powerful tool for determination of quantum yields and kinetics of its photosensitization. This technique was employed to investigate in detail the previously observed effect of singlet oxygen quenching by oxygen. The question whether the singlet oxygen is quenched by oxygen in ground or in excited state was addressed by study of two complementary dependencies of singlet oxygen lifetimes: on dissolved oxygen concentration and on excitation intensity. Oxygen concentration dependence study of meso-tetra(4-sulphonato)phenylporphyrin (TPPS 4 ) phosphorescence kinetics showed linearity of the dependence of TPPS 4 triplet state rate-constant. Corresponding bimolecular quenching constant of (1.5±0.1)x10 9 l/mol s was obtained. On the other hand, rate constants of singlet oxygen depopulation exhibit nonlinear dependence on oxygen concentration. Comparison of zero oxygen concentration-extrapolated value of singlet oxygen lifetime of (6.5±0.4) μs to (3.7±0.1) μs observed under air-saturated conditions indicates importance of the effect of quenching of singlet oxygen by oxygen. Upward-sloping dependencies of singlet oxygen depopulation rate-constant on excitation intensity evidence that singlet oxygen is predominantly quenched by oxygen in excited singlet state

  10. Singlet oxygen-mediated protein oxidation

    DEFF Research Database (Denmark)

    Wright, Adam; Bubb, William A; Hawkins, Clare Louise

    2002-01-01

    Singlet oxygen (1O2) is generated by a number of enzymes as well as by UV or visible light in the presence of a sensitizer and has been proposed as a damaging agent in a number of pathologies including cataract, sunburn, and skin cancers. Proteins, and Cys, Met, Trp, Tyr and His side chains...... methods. The yield of these species is significantly enhanced in D2O and decreased by azide. Nuclear magnetic resonance and mass spectroscopic analysis of reaction mixtures, or materials separated by high-performance liquid chromatography, are consistent with the initial formation of an (undetected......-hydroxy-6-oxo-2,3,3a,6,7,7a-hexahydro-1H-indole-2-carboxylic acid. Hydroperoxides that lack a free alpha-amino group (e.g. those formed on 3-(4-hydroxyphenyl)propionic acid, N-Ac-Tyr and Tyr-containing peptides) are longer-lived, with half-lives of hours to days. These species undergo slow decay at low...

  11. PHOTOGENERATION OF SINGLET OXYGEN AND FREE RADICALS IN DISSOLVED ORGANIC MATTER ISOLATED FROM THE MISSISSIPPI AND ATCHAFALAYA RIVER PLUMES

    Science.gov (United States)

    The photoreactivity to UV light of ultrafiltered dissolved organic matter (DOM) collected during cruises along salinity transects in the Mississippi and Atchafalaya River plumes was examined by measuring photogenerated free radicals and singlet molecular oxygen (1O2) photosensiti...

  12. Synthesis of Pyridylanthracenes and Their Reversible Reaction with Singlet Oxygen to Endoperoxides.

    Science.gov (United States)

    Fudickar, Werner; Linker, Torsten

    2017-09-01

    The ortho, meta, and para isomers of 9,10-dipyridylanthracene 1 have been synthesized and converted into their endoperoxides 1-O 2 upon oxidation with singlet oxygen. The kinetics of this reaction can be controlled by the substitution pattern and the solvent: in highly polar solvents, the meta isomer is the most reactive, whereas the ortho isomer is oxidized fastest in nonpolar solvents. Heating of the endoperoxides affords the parent anthracenes by release of singlet oxygen.

  13. Holographic monitoring of spatial distributions of singlet oxygen in water

    Science.gov (United States)

    Belashov, A. V.; Bel'tyukova, D. M.; Vasyutinskii, O. S.; Petrov, N. V.; Semenova, I. V.; Chupov, A. S.

    2014-12-01

    A method for monitoring spatial distributions of singlet oxygen in biological media has been developed. Singlet oxygen was generated using Radachlorin® photosensitizer, while thermal disturbances caused by nonradiative deactivation of singlet oxygen were detected by the holographic interferometry technique. Processing of interferograms yields temperature maps that characterize the deactivation process and show the distribution of singlet oxygen species.

  14. Singlet Oxygen Detection Using Red Wine Extracts as Photosensitizers.

    Science.gov (United States)

    Lagunes, Irene; Vázquez-Ortega, Fernanda; Trigos, Ángel

    2017-09-01

    Moderate consumption of red wine provides beneficial effects to health. This is attributed to polyphenol compounds present in wine such as resveratrol, quercetin, gallic acid, rutin, and vanillic acid. The amount of these antioxidants is variable; nevertheless, the main beneficial effects of red wine are attributed to resveratrol. However, it has been found that resveratrol and quercetin are able to photosensitize singlet oxygen generation and conversely, gallic acid acts as quencher. Therefore, and since resveratrol and quercetin are some of the most important antioxidants reported in red wines, the aim of this research was to evaluate the photosensitizing ability of 12 red wine extracts through photo-oxidation of ergosterol. The presence of 1 O 2 was detected by ergosterol conversion into peroxide of ergosterol through 1 H NMR analysis. Our results showed that 10 wine extracts were able to act as photosensitizers in the generation of singlet oxygen. The presence of 1 O 2 can damage other compounds of red wine and cause possible organoleptic alterations. Finally, although the reaction conditions employed in this research do not resemble the inherent conditions in wine making processing or storing, or even during its consumption, this knowledge could be useful to prevent possible pro-oxidant effects and avoid detrimental effects in red wines. © 2017 Institute of Food Technologists®.

  15. Singlet-Oxygen Generation From Individual Semiconducting and Metallic Nanostructures During Near-Infrared Laser Trapping

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Bennett E.; Roder, Paden B.; Hanson, Jennifer L.; Manandhar, Sandeep; Devaraj, Arun; Perea, Daniel E.; Kim, Woo-Joong; Kilcoyne, Arthur L.; Pauzauskie, Peter J.

    2015-03-13

    Photodynamic therapy has been used for several decades in the treatment of solid tumors through the generation of reactive singlet-oxygen species (1O2). Recently, nanoscale metallic and semiconducting materials have been reported to act as photosensitizing agents with additional diagnostic and therapeutic functionality. To date there have been no reports of observing the generation of singlet-oxygen at the level of single nanostructures, particularly at near infrared (NIR) wavelengths. Here we demonstrate that NIR laser-tweezers can be used to observe the formation of singlet-oxygen produced from individual silicon and gold nanowires via use of a commercially available reporting dye. The laser trap also induces 2-photon photoexcitation of the dye following a chemical reaction with singlet oxygen. Corresponding 2-photon emission spectra confirms the generation of singlet oxygen from individual silicon nanowires at room temperature (30°C), suggesting a range of applications in understanding the impact of 1O2 on individual cancer cells.

  16. Singlet - oxygen therapy. 'MIT-S' apparatus

    International Nuclear Information System (INIS)

    Samosyuk, I.Z.; Chukhraev, N.V.; Pisanko, O.I.

    2003-01-01

    The described method is based on using singlet-oxygen mixture with antioxiding properties. This mixture is produced by photochemical sensibilization of air or water vapour in MIT-S apparatus. Technical parameters of MIT-S are presented. The method is used for therapy of different organs, for prophylactics, treatment and rehabilitation of a series of diseases (bronchial asthma, cardio-vascular, neurologic, sugar diabet, immune diseases)

  17. High-power generator of singlet oxygen

    Czech Academy of Sciences Publication Activity Database

    Jirásek, Vít; Čenský, Miroslav; Špalek, Otomar; Kodymová, Jarmila

    2013-01-01

    Roč. 36, č. 10 (2013), s. 1755-1763 ISSN 0930-7516 Grant - others:Laser Science and Technology Centre(IN) LASTEC/FE/RKT/54/10-11 Institutional research plan: CEZ:AV0Z10100523 Keywords : high-pressure singlet oxygen generator * spray generator * centrifugal separation Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.175, year: 2013

  18. The Contribution of Singlet Oxygen to Insulin Resistance

    Directory of Open Access Journals (Sweden)

    Arnold N. Onyango

    2017-01-01

    Full Text Available Insulin resistance contributes to the development of diabetes and cardiovascular dysfunctions. Recent studies showed that elevated singlet oxygen-mediated lipid peroxidation precedes and predicts diet-induced insulin resistance (IR, and neutrophils were suggested to be responsible for such singlet oxygen production. This review highlights literature suggesting that insulin-responsive cells such as endothelial cells, hepatocytes, adipocytes, and myocytes also produce singlet oxygen, which contributes to insulin resistance, for example, by generating bioactive aldehydes, inducing endoplasmic reticulum (ER stress, and modifying mitochondrial DNA. In these cells, nutrient overload leads to the activation of Toll-like receptor 4 and other receptors, leading to the production of both peroxynitrite and hydrogen peroxide, which react to produce singlet oxygen. Cytochrome P450 2E1 and cytochrome c also contribute to singlet oxygen formation in the ER and mitochondria, respectively. Endothelial cell-derived singlet oxygen is suggested to mediate the formation of oxidized low-density lipoprotein which perpetuates IR, partly through neutrophil recruitment to adipose tissue. New singlet oxygen-involving pathways for the formation of IR-inducing bioactive aldehydes such as 4-hydroperoxy-(or hydroxy or oxo-2-nonenal, malondialdehyde, and cholesterol secosterol A are proposed. Strategies against IR should target the singlet oxygen-producing pathways, singlet oxygen quenching, and singlet oxygen-induced cellular responses.

  19. Fluorescent proteins as singlet oxygen photosensitizers: mechanistic studies in photodynamic inactivation of bacteria

    Science.gov (United States)

    Ruiz-González, Rubén.; White, John H.; Cortajarena, Aitziber L.; Agut, Montserrat; Nonell, Santi; Flors, Cristina

    2013-02-01

    Antimicrobial photodynamic therapy (aPDT) combines a photosensitizer, light and oxygen to produce reactive oxygen species (ROS), mainly singlet oxygen (1O2), to photo-oxidize important biomolecules and induce cell death. aPDT is a promising alternative to standard antimicrobial strategies, but its mechanisms of action are not well understood. One of the reasons for that is the lack of control of the photosensitizing drugs location. Here we report the use of geneticallyencoded fluorescent proteins that are also 1O2 photosensitizers to address the latter issue. First, we have chosen the red fluorescent protein TagRFP as a photosensitizer, which unlike other fluorescent proteins such as KillerRed, is able to produce 1O2 but not other ROS. TagRFP photosensitizes 1O2 with a small, but not negligible, quantum yield. In addition, we have used miniSOG, a more efficient 1O2 photosensitizing fluorescent flavoprotein that has been recently engineered from phototropin 2. We have genetically incorporated these two photosensitizers into the cytosol of E. coli and demonstrated that intracellular 1O2 is sufficient to kill bacteria. Additional assays have provided further insight into the mechanism of cell death. Photodamage seems to occur primarily in the inner membrane, and extends to the outer membrane if the photosensitizer's efficiency is high enough. These observations are markedly different to those reported for external photosensitizers, suggesting that the site where 1O2 is primarily generated proves crucial for inflicting different types of cell damage.

  20. The development of efficient two-photon singlet oxygen sensitizers

    DEFF Research Database (Denmark)

    Nielsen, Christian Benedikt

    the singlet oxygen yield and the two-photon absorption cross section, where it was revealed that a careful balancing of the amount of charge transfer present in theexcited state of the sensitizer is necessary to obtain both a high singlet oxygen quantum yield and a high two-photon cross section. An increasing...... amount of charge-transfer is beneficial for high two-photon absorption cross sections but iscounter-productive for singlet oxygen generation. The design principles obtained from the studies in lipophilic solvents were applied to synthesize water-soluble twophoton singlet oxygen sensitizers......The development of efficient two-photon singlet oxygen sensitizers is addressed focusing on organic synthesis. Photophysical measurements were carried out on new lipophilic molecules, where two-photon absorption cross sections and singlet oxygen quantumyields were measured. Design principles...

  1. Lysozyme oxidation by singlet molecular oxygen: Peptide characterization using [18 O]-labeling oxygen and nLC-MS/MS.

    Science.gov (United States)

    Marques, Emerson Finco; Medeiros, Marisa H G; Di Mascio, Paolo

    2017-11-01

    Singlet molecular oxygen ( 1 O 2 ) is generated in biological systems and reacts with different biomolecules. Proteins are a major target for 1 O 2 , and His, Tyr, Met, Cys, and Trp are oxidized at physiological pH. In the present study, the modification of lysozyme protein by 1 O 2 was investigated using mass spectrometry approaches. The experimental findings showed methionine, histidine, and tryptophan oxidation. The experiments were achieved using [ 18 O]-labeled 1 O 2 released from thermolabile endoperoxides in association with nano-scale liquid chromatography coupled to electrospray ionization mass spectrometry. The structural characterization by nLC-MS/MS of the amino acids in the tryptic peptides of the proteins showed addition of [ 18 O]-labeling atoms in different amino acids. Copyright © 2017 John Wiley & Sons, Ltd.

  2. Optical detection of singlet oxygen from single cells

    DEFF Research Database (Denmark)

    Snyder, John; Skovsen, Esben; Lambert, John D. C.

    2006-01-01

    The lowest excited electronic state of molecular oxygen, singlet molecular oxygen, O2(a 1g), is a reactive species involved in many chemical and biological processes. To better understand the roles played by singlet oxygen in biological systems, particularly at the sub-cellular level, optical tools...

  3. In vivo outcome study of BPD-mediated PDT using a macroscopic singlet oxygen model

    Science.gov (United States)

    Kim, Michele M.; Penjweini, Rozhin; Zhu, Timothy C.

    2015-03-01

    Macroscopic modeling of the apparent reacted singlet oxygen concentration ([1O2]rx) for use with photodynamic therapy (PDT) has been developed and studied for benzoporphryin derivative monoacid ring A (BPD), a common photosensitizer. The four photophysical parameters (ξ, σ, β, δ) and threshold singlet oxygen dose ([1O2]rx, sh) have been investigated and determined using the RIF model of murine fibrosarcomas and interstitial treatment delivery. These parameters are examined and verified further by monitoring tumor growth post-PDT. BPD was administered at 1 mg/kg, and mice were treated 3 hours later with fluence rates ranging between 75 - 150 mW/cm2 and total fluences of 100 - 350 J/cm2. Treatment was delivered superficially using a collimated beam. Changes in tumor volume were tracked following treatment. The tumor growth rate was fitted for each treatment condition group and compared using dose metrics including total light dose, PDT dose, and reacted singlet oxygen. Initial data showing the correlation between outcomes and various dose metrics indicate that reacted singlet oxygen serves as a good dosimetric quantity for predicting PDT outcome.

  4. Explicit macroscopic singlet oxygen modeling for benzoporphyrin derivative monoacid ring A (BPD)-mediated photodynamic therapy.

    Science.gov (United States)

    Kim, Michele M; Penjweini, Rozhin; Liang, Xing; Zhu, Timothy C

    2016-11-01

    Photodynamic therapy (PDT) is an effective non-ionizing treatment modality that is currently being used for various malignant and non-malignant diseases. In type II PDT with photosensitizers such as benzoporphyrin monoacid ring A (BPD), cell death is based on the creation of singlet oxygen ( 1 O 2 ). With a previously proposed empirical five-parameter macroscopic model, the threshold dose of singlet oxygen ([ 1 O 2 ] rx,sh ]) to cause tissue necrosis in tumors treated with PDT was determined along with a range of the magnitude of the relevant photochemical parameters: the photochemical oxygen consumption rate per light fluence rate and photosensitizer concentration (ξ), the probability ratio of 1 O 2 to react with ground state photosensitizer compared to a cellular target (σ), the ratio of the monomolecular decay rate of the triplet state photosensitizer (β), the low photosensitizer concentration correction factor (δ), and the macroscopic maximum oxygen supply rate (g). Mice bearing radiation-induced fibrosarcoma (RIF) tumors were treated interstitially with a linear light source at 690nm with total energy released per unit length of 22.5-135J/cm and source power per unit length of 12-150mW/cm to induce different radii of necrosis. A fitting algorithm was developed to determine the photochemical parameters by minimizing the error function involving the range between the calculated reacted singlet oxygen ([ 1 O 2 ] rx ) at necrosis radius and the [ 1 O 2 ] rx,sh . [ 1 O 2 ] rx was calculated based on explicit dosimetry of the light fluence distribution, the tissue optical properties, and the BPD concentration. The initial ground state oxygen concentration ([ 3 O 2 ] 0 ) was set to be 40μM in this study. The photochemical parameters were found to be ξ=(55±40)×10 -3 cm 2 mW -1 s -1 , σ=(1.8±3)×10 -5 μM -1 , and g=1.7±0.7μMs -1 . We have taken the literature values for δ=33μM, and β=11.9μM. [ 1 O 2 ] rx has shown promise to be a more effective

  5. Key players of singlet oxygen-induced cell death in plants.

    Science.gov (United States)

    Laloi, Christophe; Havaux, Michel

    2015-01-01

    The production of reactive oxygen species (ROS) is an unavoidable consequence of oxygenic photosynthesis. Singlet oxygen ((1)O2) is a highly reactive species to which has been attributed a major destructive role during the execution of ROS-induced cell death in photosynthetic tissues exposed to excess light. The study of the specific biological activity of (1)O2 in plants has been hindered by its high reactivity and short lifetime, the concurrent production of other ROS under photooxidative stress, and limited in vivo detection methods. However, during the last 15 years, the isolation and characterization of two (1)O2-overproducing mutants in Arabidopsis thaliana, flu and ch1, has allowed the identification of genetically controlled (1)O2 cell death pathways and a (1)O2 acclimation pathway that are triggered at sub-cytotoxic concentrations of (1)O2. The study of flu has revealed the control of cell death by the plastid proteins EXECUTER (EX)1 and EX2. In ch1, oxidized derivatives of β-carotene, such as β-cyclocitral and dihydroactinidiolide, have been identified as important upstream messengers in the (1)O2 signaling pathway that leads to stress acclimation. In both the flu and ch1 mutants, phytohormones act as important promoters or inhibitors of cell death. In particular, jasmonate has emerged as a key player in the decision between acclimation and cell death in response to (1)O2. Although the flu and ch1 mutants show many similarities, especially regarding their gene expression profiles, key differences, such as EXECUTER-independent cell death in ch1, have also been observed and will need further investigation to be fully understood.

  6. A graphene quantum dot photodynamic therapy agent with high singlet oxygen generation.

    Science.gov (United States)

    Ge, Jiechao; Lan, Minhuan; Zhou, Bingjiang; Liu, Weimin; Guo, Liang; Wang, Hui; Jia, Qingyan; Niu, Guangle; Huang, Xing; Zhou, Hangyue; Meng, Xiangmin; Wang, Pengfei; Lee, Chun-Sing; Zhang, Wenjun; Han, Xiaodong

    2014-08-08

    Clinical applications of current photodynamic therapy (PDT) agents are often limited by their low singlet oxygen ((1)O2) quantum yields, as well as by photobleaching and poor biocompatibility. Here we present a new PDT agent based on graphene quantum dots (GQDs) that can produce (1)O2 via a multistate sensitization process, resulting in a quantum yield of ~1.3, the highest reported for PDT agents. The GQDs also exhibit a broad absorption band spanning the UV region and the entire visible region and a strong deep-red emission. Through in vitro and in vivo studies, we demonstrate that GQDs can be used as PDT agents, simultaneously allowing imaging and providing a highly efficient cancer therapy. The present work may lead to a new generation of carbon-based nanomaterial PDT agents with overall performance superior to conventional agents in terms of (1)O2 quantum yield, water dispersibility, photo- and pH-stability, and biocompatibility.

  7. Targeted oxidation of Torpedo californica acetylcholinesterase by singlet oxygen.

    Science.gov (United States)

    Weiner, Lev; Roth, Esther; Silman, Israel

    2011-01-01

    The photosensitizer, methylene blue (MB), is a strong reversible inhibitor of Torpedo californica acetylcholinesterase (AChE) in the dark. Under illumination it causes irreversible inactivation. Loss of fluorescence of the singlet oxygen ((1)O(2)) trap, 9,10-dimethylanthracene, was retarded in the presence of AChE, and the rate of photo-inactivation was increased in the presence of D(2)O, indicating that inactivation was due to (1)O(2) generated by the photosensitizer. CD revealed slightly reduced far-UV ellipticity, and slightly enhanced binding of an amphiphilic probe, indicating limited unfolding of the photo-oxidized AChE. However, both near-UV ellipticity and intrinsic fluorescence were markedly reduced, suggesting photo-oxidative damage to tryptophans, (Trp) supported by appearance of novel emission peaks ascribed to N'-formylkynurenine and/or kynurenine. Like other partially unfolded forms, the photo-oxidized AChE was sensitive to proteolysis. Photosensitized inactivation produced exclusively chemically cross-linked dimers, whereas irradiation of a partially unfolded state generated higher-order oligomers. The active-site gorge of AChE contains Trp in inhibitor-binding sites that might be targets for photo-oxidation. Indeed, reversible inhibitors retard photo-inactivation, and photo-inactivation destroys their binding sites. An excess of AChE protects paraoxonase from photo-inactivation by sequestering the photosensitizer. Affinity photo-oxidation of AChE by MB thus provides a valuable model for studying site-specific photo-inactivation of enzymes in both fundamental and clinical contexts. © 2010 The Authors. Photochemistry and Photobiology © 2010 The American Society of Photobiology.

  8. Generation and suppression of singlet oxygen in hair by photosensitization of melanin.

    Science.gov (United States)

    Chiarelli-Neto, Orlando; Pavani, Christiane; Ferreira, Alan S; Uchoa, Adjaci F; Severino, Divinomar; Baptista, Maurício S

    2011-09-15

    We have studied the spectroscopic properties of hair (white, blond, red, brown, and black) under illumination with visible light, giving special emphasis to the photoinduced generation of singlet oxygen ((1)O(2)). Irradiation of hair shafts (λ(ex)>400 nm) changed their properties by degrading the melanin. Formation of C3 hydroperoxides in the melanin indol groups was proven by (1)H NMR. After 532-nm excitation, all hair shafts presented the characteristic (1)O(2) emission (λ(em)=1270 nm), whose intensity varied inversely with the melanin content. (1)O(2) lifetime was also shown to vary with hair type, being five times shorter in black hair than in blond hair, indicating the role of melanin as a (1)O(2) suppressor. Lifetime ranged from tenths of a nanosecond to a few microseconds, which is much shorter than the lifetime expected for (1)O(2) in the solvents in which the hair shafts were suspended, indicating that (1)O(2) is generated and suppressed inside the hair structure. Both eumelanin and pheomelanin were shown to produce and to suppress (1)O(2), with similar efficiencies. The higher amount of (1)O(2) generated in blond hair and its longer lifetime is compatible with the stronger damage that light exposure causes in blond hair. We propose a model to explain the formation and suppression of (1)O(2) in hair by photosensitization of melanin with visible light and the deleterious effects that an excess of visible light may cause in hair and skin. Copyright © 2011. Published by Elsevier Inc.

  9. Singlet Oxygen-Mediated Oxidation during UVA Radiation Alters the Dynamic of Genomic DNA Replication.

    Directory of Open Access Journals (Sweden)

    Dany Graindorge

    Full Text Available UVA radiation (320-400 nm is a major environmental agent that can exert its deleterious action on living organisms through absorption of the UVA photons by endogenous or exogenous photosensitizers. This leads to the production of reactive oxygen species (ROS, such as singlet oxygen (1O2 and hydrogen peroxide (H2O2, which in turn can modify reversibly or irreversibly biomolecules, such as lipids, proteins and nucleic acids. We have previously reported that UVA-induced ROS strongly inhibit DNA replication in a dose-dependent manner, but independently of the cell cycle checkpoints activation. Here, we report that the production of 1O2 by UVA radiation leads to a transient inhibition of replication fork velocity, a transient decrease in the dNTP pool, a quickly reversible GSH-dependent oxidation of the RRM1 subunit of ribonucleotide reductase and sustained inhibition of origin firing. The time of recovery post irradiation for each of these events can last from few minutes (reduction of oxidized RRM1 to several hours (replication fork velocity and origin firing. The quenching of 1O2 by sodium azide prevents the delay of DNA replication, the decrease in the dNTP pool and the oxidation of RRM1, while inhibition of Chk1 does not prevent the inhibition of origin firing. Although the molecular mechanism remains elusive, our data demonstrate that the dynamic of replication is altered by UVA photosensitization of vitamins via the production of singlet oxygen.

  10. BODIPY-pyrene and perylene dyads as heavy atom-free singlet oxygen sensitizers

    KAUST Repository

    Filatov, Mikhail A.

    2018-02-23

    Dyads combining BODIPY as an electron acceptor and pyrene or perylene as electron donor subunits were prepared and studied their photophysical properties studied by steady-state and transient spectroscopy. Depending on the structure of the subunits and polarity of the media, the dyads show either bright fluorescence or photo-induced electron transfer (PeT) in solution. Charge-transfer (CT) states formed as a result of PeT and were found to yield triplet excited states of the BODIPY. In the presence of molecular oxygen, the dyads sensitize singlet oxygen (1O2) with quantum yields of up to 0.75.

  11. Singlet-oxygen therapy. Scientific and methodological materials

    OpenAIRE

    Chukhraiev, N.; Chukhraieva, E.; Gun'ko, M.; Kurik, L.; Lomeiko, S.; Marushko, Y.; Samosyuk, N.; Tkalina, A.; Vladimirov, A.; Unichenko, A.; Zavorotnaya, R.; Zukow, W.

    2018-01-01

    Radomska Szkoła Wyższa w Radomiu MEDICAL INNOVATIVE TECHNOLOGIES SINGLET-OXYGEN THERAPY Scientific and methodological materials 2018 This edition had extended and translated from ukrainian Edited by Chukhraiev N., Vladimirov A., Zukow W. Radom, Kyiv Radomska Szkoła Wyższa w Radomiu MEDICAL INNOVATIVE TECHNOLOGIES SINGLET-OXYGEN THERAPY Scientific and methodological materials 2018 This edition had extended and translated from ukrainian Edited by ...

  12. Effect of oxygen concentration on singlet oxygen luminescence detection

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Longchao; Lin, Lisheng; Li, Yirong; Lin, Huiyun; Qiu, Zhihai [MOE Key Laboratory of OptoElectronic Science and Technology for Medicine, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou 350007 (China); Gu, Ying [Department of Laser Medicine, Chinese PLA General Hospital, Beijing 100853 (China); Li, Buhong, E-mail: bhli@fjnu.edu.cn [MOE Key Laboratory of OptoElectronic Science and Technology for Medicine, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou 350007 (China)

    2014-08-01

    Singlet oxygen ({sup 1}O{sub 2}) is a major phototoxic component in photodynamic therapy (PDT) and its generation is dependent on the availability of tissue oxygen. To examine the effect of oxygen concentration on {sup 1}O{sub 2} detection, two hydrophilic photosensitizer (PS), rose bengal (RB) and meso-metra (N-methyl-4-pyridyl) porphine tetra tosylate (TMPyP) were used as model PS. Irradiation was carried out using 523 nm under hypoxic (2%, 13%), normoxic (21%) and hyperoxic (65%) conditions. The spectral and spatial resolved {sup 1}O{sub 2} luminescence was measured by near-infrared (NIR) photomultiplier tube (PMT) and camera, respectively. Upon the irradiation, the emission signal mainly consisted of background scattering light, PS fluorescence and phosphorescence, and {sup 1}O{sub 2} luminescence. The PS phosphorescence was evidently dependent on the oxygen concentration and PS type, which resulted in the change of emission profile of {sup 1}O{sub 2} luminescence. This change was further demonstrated on {sup 1}O{sub 2} luminescence image. The present study suggests that the low oxygen concentration could affect {sup 1}O{sub 2} luminescence detection. - Highlights: • Both spectral and spatial resolved {sup 1}O{sub 2} luminescence measurements were performed. • Effect of oxygen concentration on {sup 1}O{sub 2} generation was quantitatively evaluated. • Low oxygen concentration could affect {sup 1}O{sub 2} luminescence detection.

  13. Monitoring of singlet oxygen luminescence and mitochondrial autofluorescence after illumination of hypericin/mitochondria complex

    DEFF Research Database (Denmark)

    Petrovajova, D; Jancura, D; Miskovsky, P

    2013-01-01

    and mitochondria was studied by steady-state and time-resolved UV–vis absorption and fluorescence spectroscopy. A high concentration of Hyp leads to the aggregation of this compound inside the mitochondria and the relative population of the monomeric (biologically active) form of Hyp decreases concomitantly......A study of hypericin (Hyp) interaction with mitochondria isolated from U-87 MG glioma cells as well as the time-resolved measurement of singlet oxygen (1O2) formation and annihilation after illumination of the Hyp/mitochondria complex is presented in this work. Interaction between Hyp...

  14. Singlet oxygen explicit dosimetry to predict local tumor control for HPPH-mediated photodynamic therapy

    Science.gov (United States)

    Penjweini, Rozhin; Kim, Michele M.; Ong, Yi Hong; Zhu, Timothy C.

    2017-02-01

    This preclinical study examines four dosimetric quantities (light fluence, photosensitizer photobleaching ratio, PDT dose, and reacted singlet oxygen ([1O2]rx)) to predict local control rate (LCR) for 2-(1-Hexyloxyethyl)-2-devinyl pyropheophorbide (HPPH)-mediated photodynamic therapy (PDT). Mice bearing radiation-induced fibrosarcoma (RIF) tumors were treated with different in-air fluences (135, 250 and 350 J/cm2) and in-air fluence rates (50, 75 and 150 mW/cm2) at 0.25 mg/kg HPPH and a drug-light interval of 24 hours using a 1 cm diameter collimated laser beam at 665 nm wavelength. A macroscopic model was used to calculate ([1O2]rx)) based on in vivo explicit dosimetry of the initial tissue oxygenation, photosensitizer concentration, and tissue optical properties. PDT dose was defined as a temporal integral of drug concentration and fluence rate (φ) at a 3 mm tumor depth. Light fluence rate was calculated throughout the treatment volume based on Monte-Carlo simulation and measured tissue optical properties. The tumor volume of each mouse was tracked for 30 days after PDT and Kaplan-Meier analyses for LCR were performed based on a tumor volume <=100 mm3, for four dose metrics: fluence, HPPH photobleaching rate, PDT dose, and ([1O2]rx)). The results of this study showed that ([1O2]rx)) is the best dosimetric quantity that can predict tumor response and correlate with LCR.

  15. Stability of O/W Emulsion with Synthetic Perfumes Oxidized by Singlet Oxygen

    Directory of Open Access Journals (Sweden)

    Naoki Watabe

    2013-01-01

    Full Text Available We prepared O/W emulsion composed of a synthetic perfume, n-dodecane, protoporphyrin IX disodium salt (PpIX-2Na, sodium dodecyl sulfate, and water and investigated oxidative decomposition of the synthetic perfume in the emulsion and change in the stability of the emulsion by singlet oxygen (1O2 generated by photosensitization of PpIX-2Na. We used eugenol, linalool, benzyl acetate, α-ionone, α-hexylcinnamaldehyde, and d-limonene as a synthetic perfume. The stability of the O/W emulation including eugenol and linalool significantly decreased with increasing light irradiation time. The decrease in the emulsion stability may be attributable to oxidative decomposition of eugenol and linalool by 1O2 and enlargement of the oil droplet size.

  16. Efficiencies of singlet oxygen production and rate constants for oxygen quenching in the S1 state of dicyanonaphthalenes and related compounds.

    Science.gov (United States)

    Tanaka, Fujio; Tsumura, Kazuyuki; Furuta, Tomoaki; Iwamoto, Kenichi; Okamoto, Masami

    2008-01-01

    The quantum yield of singlet oxygen ((1)O(2) ((1)Delta(g))) production (Phi(Delta)) in the oxygen quenching of photoexcited states for 1,2-dicyanonaphthalene (1,2-DCNN), 1,4-dicyanonaphthalene (1,4-DCNN) and 2,3-dicyanonaphthalene (2,3-DCNN) in cyclohexane, benzene, and acetonitrile was measured using a time-resolved thermal lens (TRTL) technique, in order to determine the efficiency of singlet oxygen ((1)Delta(g)) production in the first excited singlet state (S(1)), (f(Delta)(S)). The efficiencies of singlet oxygen ((1)Delta(g)) production from the lowest triplet state (T(1)), (f(Delta)(T)), were nearly unity for all DCNNs in all the solvents. The values of f(Delta)(S) were fairly large for 1,2-DCNN (0.33-0.57) and 1,4-DCNN (0.33-0.66), but were close to zero for 2,3-DCNN. Rate constants for oxygen quenching in the S(1) state (k(q)(S)) obtained for these compounds were significantly smaller than diffusion-controlled rate constants. The kinetics for processes leading to production and no production of singlet oxygen is discussed on the basis of the values of f(Delta)(S) and k(q)(S). The results obtained regarding phenanthrene (PH), 9-cyanophenanthrene (9-CNPH), pyrene (PY) and 1-cyanopyrene (1-CNPY) are also discussed.

  17. Developments in PDT Sensitizers for Increased Selectivity and Singlet Oxygen Production

    Directory of Open Access Journals (Sweden)

    Nahid Mehraban

    2015-07-01

    Full Text Available Photodynamic therapy (PDT is a minimally-invasive procedure that has been clinically approved for treating certain types of cancers. This procedure takes advantage of the cytotoxic activity of singlet oxygen (1O2 and other reactive oxygen species (ROS produced by visible and NIR light irradiation of dye sensitizers following their accumulation in malignant cells. The main two concerns associated with certain clinically-used PDT sensitizers that have been influencing research in this arena are low selectivity toward malignant cells and low levels of 1O2 production in aqueous media. Solving the selectivity issue would compensate for photosensitizer concerns such as dark toxicity and aggregation in aqueous media. One main approach to enhancing dye selectivity involves taking advantage of key methods used in pharmaceutical drug delivery. This approach lies at the heart of the recent developments in PDT research and is a point of emphasis in the present review. Of particular interest has been the development of polymeric micelles as nanoparticles for delivering hydrophobic (lipophilic and amphiphilic photosensitizers to the target cells. This review also covers methods employed to increase 1O2 production efficiency, including the design of two-photon absorbing sensitizers and triplet forming cyclometalated Ir(III complexes.

  18. Singlet Oxygen Generation Mediated By Silicon Nanocrystal Assemblies

    Science.gov (United States)

    2011-01-01

    efficient red-orange emission under illumination by ultraviolet light appeared. Increase of the etching time results in significant increase of the...in the singlet oxygen-mediated oxidation of organic compounds K. Loponov, B. Goller, A. Moskalenko, D. Kovalev, A. Lapkin Journal of Photochemistry

  19. Singlet oxygen reactions with flavonoids. A theoretical-experimental study.

    Directory of Open Access Journals (Sweden)

    Javier Morales

    Full Text Available Detection of singlet oxygen emission, λ(max = 1270 nm, following laser excitation and steady-state methods were employed to measure the total reaction rate constant, k(T, and the reactive reaction rate constant, k(r, for the reaction between singlet oxygen and several flavonoids. Values of k(T determined in deuterated water, ranging from 2.4×10(7 M(-1 s(-1 to 13.4×10(7 M(-1 s(-1, for rutin and morin, respectively, and the values measured for k(r, ranging from 2.8×10(5 M(-1 s(-1 to 65.7×10(5 M(-1 s(-1 for kaempferol and morin, respectively, being epicatechin and catechin chemically unreactive. These results indicate that all the studied flavonoids are good quenchers of singlet oxygen and could be valuable antioxidants in systems under oxidative stress, in particular if a flavonoid-rich diet was previously consumed. Analysis of the dependence of rate constant values with molecular structure in terms of global descriptors and condensed Fukui functions, resulting from electronic structure calculations, supports the formation of a charge transfer exciplex in all studied reactions. The fraction of exciplex giving reaction products evolves through a hydroperoxide and/or an endoperoxide intermediate produced by singlet oxygen attack on the double bond of the ring C of the flavonoid.

  20. Singlet oxygen reactions with flavonoids. A theoretical-experimental study.

    Science.gov (United States)

    Morales, Javier; Günther, Germán; Zanocco, Antonio L; Lemp, Else

    2012-01-01

    Detection of singlet oxygen emission, λ(max) = 1270 nm, following laser excitation and steady-state methods were employed to measure the total reaction rate constant, k(T), and the reactive reaction rate constant, k(r), for the reaction between singlet oxygen and several flavonoids. Values of k(T) determined in deuterated water, ranging from 2.4×10(7) M(-1) s(-1) to 13.4×10(7) M(-1) s(-1), for rutin and morin, respectively, and the values measured for k(r), ranging from 2.8×10(5) M(-1) s(-1) to 65.7×10(5) M(-1) s(-1) for kaempferol and morin, respectively, being epicatechin and catechin chemically unreactive. These results indicate that all the studied flavonoids are good quenchers of singlet oxygen and could be valuable antioxidants in systems under oxidative stress, in particular if a flavonoid-rich diet was previously consumed. Analysis of the dependence of rate constant values with molecular structure in terms of global descriptors and condensed Fukui functions, resulting from electronic structure calculations, supports the formation of a charge transfer exciplex in all studied reactions. The fraction of exciplex giving reaction products evolves through a hydroperoxide and/or an endoperoxide intermediate produced by singlet oxygen attack on the double bond of the ring C of the flavonoid.

  1. Label-free electrochemical detection of singlet oxygen protein damage

    Czech Academy of Sciences Publication Activity Database

    Vargová, Veronika; Gimenez, R.E.; Černocká, Hana; Trujillo, D.C.; Tulli, F.; Zanini, V.I.P.; Paleček, Emil; Borsarelli, C.D.; Ostatná, Veronika

    2016-01-01

    Roč. 187, JAN 2016 (2016), s. 662-669 ISSN 0013-4686 R&D Projects: GA ČR GA13-00956S Institutional support: RVO:68081707 Keywords : singlet oxygen protein damage * surface-attached protein stability * mercury and carbon electrodes Subject RIV: BO - Biophysics Impact factor: 4.798, year: 2016

  2. Reversible Photochemical Control of Singlet Oxygen Generation Using Diarylethene Photochromic Switches

    NARCIS (Netherlands)

    Hou, Lili; Zhang, Xiaoyan; Pijper, Thomas C.; Browne, Wesley R.; Feringa, Bernard

    2014-01-01

    Reversible noninvasive control over the generation of singlet oxygen is demonstrated in a bicomponent system comprising a diarylethene photochromic switch and a porphyrin photosensitizer by selective irradiation at distinct wavelengths. The efficient generation of singlet oxygen by the

  3. Photorelease of triplet and singlet oxygen from dioxygen complexes

    Czech Academy of Sciences Publication Activity Database

    Wagnerová, Dana Marie; Lang, Kamil

    2011-01-01

    Roč. 255, 23-24 (2011), s. 2904-2911 ISSN 0010-8545 R&D Projects: GA ČR GAP207/10/1447; GA ČR GAP208/10/1678 Institutional research plan: CEZ:AV0Z40320502 Keywords : singlet oxygen * triplet oxygen * photochemical elimination * photorelease * Dioxygen complex Subject RIV: CA - Inorganic Chemistry Impact factor: 12.110, year: 2011

  4. Spray generator of singlet oxygen for a chemical oxygen-iodine laser

    Czech Academy of Sciences Publication Activity Database

    Jirásek, Vít; Hrubý, Jan; Špalek, Otomar; Čenský, Miroslav; Kodymová, Jarmila

    2010-01-01

    Roč. 100, č. 4 (2010), s. 779-791 ISSN 0946-2171 Grant - others:European Office of Aerospace R&D(US) FA8655-09-1-3091 Institutional research plan: CEZ:AV0Z10100523; CEZ:AV0Z20760514 Keywords : spray generator of singlet oxygen * singlet oxygen * chemical oxygen-iodine laser Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.239, year: 2010

  5. Effects of pulse width and repetition rate of pulsed laser on kinetics and production of singlet oxygen luminescence

    Directory of Open Access Journals (Sweden)

    Defu Chen

    2016-11-01

    Full Text Available Pulsed and continuous-wave (CW lasers have been widely used as the light sources for photodynamic therapy (PDT treatment. Singlet oxygen (1O2 is known to be a major cytotoxic agent in type-II PDT and can be directly detected by its near-infrared luminescence at 1270nm. As compared to CW laser excitation, the effects of pulse width and repetition rate of pulsed laser on the kinetics and production of 1O2 luminescence were quantitatively studied during photosensitization of Rose Bengal. Significant difference in kinetics of 1O2 luminescence was found under the excitation with various pulse widths of nanosecond, microsecond and CW irradiation with power of 20mW. The peak intensity and duration of 1O2 production varied with the pulse widths for pulsed laser excitation, while the 1O2 was generated continuously and its production reached a steady state with CW excitation. However, no significant difference (P>0.05 in integral 1O2 production was observed. The results suggest that the PDT efficacy using pulsed laser may be identical to the CW laser with the same wavelength and the same average fluence rate below a threshold in solution.

  6. Parameter determination for singlet oxygen modeling of BPD-mediated PDT

    Science.gov (United States)

    McMillan, Dayton D.; Chen, Daniel; Kim, Michele M.; Liang, Xing; Zhu, Timothy C.

    2013-03-01

    Photodynamic therapy (PDT) offers a cancer treatment modality capable of providing minimally invasive localized tumor necrosis. To accurately predict PDT treatment outcome based on pre-treatment patient specific parameters, an explicit dosimetry model is used to calculate apparent reacted 1O2 concentration ([1O2]rx) at varied radial distances from the activating light source inserted into tumor tissue and apparent singlet oxygen threshold concentration for necrosis ([1O2]rx, sd) for type-II PDT photosensitizers. Inputs into the model include a number of photosensitizer independent parameters as well as photosensitizer specific photochemical parameters ξ σ, and β. To determine the specific photochemical parameters of benzoporphyrin derivative monoacid A (BPD), mice were treated with BPDPDT with varied light source strengths and treatment times. All photosensitizer independent inputs were assessed pre-treatment and average necrotic radius in treated tissue was determined post-treatment. Using the explicit dosimetry model, BPD specific ξ σ, and β photochemical parameters were determined which estimated necrotic radii similar to those observed in initial BPD-PDT treated mice using an optimization algorithm that minimizes the difference between the model and that of the measurements. Photochemical parameters for BPD are compared with those of other known photosensitizers, such as Photofrin. The determination of these BPD specific photochemical parameters provides necessary data for predictive treatment outcome in clinical BPD-PDT using the explicit dosimetry model.

  7. Singlet oxygen-mediated damage to proteins and its consequences

    DEFF Research Database (Denmark)

    Davies, Michael Jonathan

    2003-01-01

    as radical termination reactions. This paper reviews the data available on singlet oxygen-mediated protein oxidation and concentrates primarily on the mechanisms by which this excited state species brings about changes to both the side-chains and backbone of amino acids, peptides, and proteins. Recent work...... to other biological targets, and may play a significant role in bystander damage, or dark reactions, in systems where proteins are subjected to oxidation....

  8. Single Cell Responses to Spatially Controlled Photosensitized Production of Extracellular Singlet Oxygen

    DEFF Research Database (Denmark)

    Pedersen, Brian Wett; Sinks, Louise E.; Breitenbach, Thomas

    2011-01-01

    The response of individual HeLa cells to extracellularly produced singlet oxygen was examined. The spatial domain of singlet oxygen production was controlled using the combination of a membrane-impermeable Pd porphyrin-dendrimer, which served as a photosensitizer, and a focused laser, which served...... to localize the sensitized production of singlet oxygen. Cells in close proximity to the domain of singlet oxygen production showed morphological changes commonly associated with necrotic cell death. The elapsed post-irradiation “waiting period” before necrosis became apparent depended on (a) the distance...... between the cell membrane and the domain irradiated, (b) the incident laser fluence and, as such, the initial concentration of singlet oxygen produced, and (c) the lifetime of singlet oxygen. The data imply that singlet oxygen plays a key role in this process of light-induced cell death. The approach...

  9. Singlet oxygen explicit dosimetry to predict long-term local tumor control for Photofrin-mediated photodynamic therapy

    Science.gov (United States)

    Penjweini, Rozhin; Kim, Michele M.; Ong, Yi Hong; Zhu, Timothy C.

    2017-02-01

    Although photodynamic therapy (PDT) is an established modality for the treatment of cancer, current dosimetric quantities do not account for the variations in PDT oxygen consumption for different fluence rates (φ). In this study we examine the efficacy of reacted singlet oxygen concentration ([1O2]rx) to predict long-term local control rate (LCR) for Photofrin-mediated PDT. Radiation-induced fibrosarcoma (RIF) tumors in the right shoulders of female C3H mice are treated with different in-air fluences of 225-540 J/cm2 and in-air fluence rate (φair) of 50 and 75 mW/cm2 at 5 mg/kg Photofrin and a drug-light interval of 24 hours using a 1 cm diameter collimated laser beam at 630 nm wavelength. [1O2]rx is calculated by using a macroscopic model based on explicit dosimetry of Photofrin concentration, tissue optical properties, tissue oxygenation and blood flow changes during PDT. The tumor volume of each mouse is tracked for 90 days after PDT and Kaplan-Meier analyses for LCR are performed based on a tumor volume <=100 mm3, for the four dose metrics light fluence, photosensitizer photobleaching rate, PDT dose and [1O2]rx. PDT dose is defined as a temporal integral of photosensitizer concentration and Φ at a 3 mm tumor depth. φ is calculated throughout the treatment volume based on Monte-Carlo simulation and measured tissue optical properties. Our preliminary studies show that [1O2]rx is the best dosimetric quantity that can predict tumor response and correlate with LCR. Moreover, [1O2]rx calculated using the blood flow changes was in agreement with [1O2]rx calculated based on the actual tissue oxygenation.

  10. High-sensitivity imaging method of singlet oxygen and superoxide anion in photodynamic and sonodynamic actions

    Science.gov (United States)

    Xing, Da; He, Yonghong; Hao, Min; Chen, Qun

    2004-07-01

    A novel method of photodynamic diagnosis (PDD) of cancer mediated by chemiluminescence (CL) probe is presented. The mechanism for photodynamic therapy (PDT) involves reactive oxygen species (ROS), such as singlet oxygen (1O2) and superoxide (O2-), generated by during the photochemical process. Both 1O2 and O2- can react with Cypridina luciferin analogue (FCLA), a highly selective CL probe for detecting the ROS. Chemiluminescence from the reaction of FCLA with the ROS, at about 530 nm, was detected by a highly sensitive ICCD system. The CL was markedly inhibited by the addition of 10 mmol/L sodium azide (NaN3) in a sample solution. Similar phenomena, with lesser extents of changes, were observed at the additions of 10 μmol/L superoxide dismutase (SOD), 10 mmol/L mannitol, and 100 μg/mL catalase, respectively. This indicates that the detected CL signals were mainly from ROS generated during the photosensitization reactions. Also, the chemiluminescence method was used to detect the ROS during sonodynamic action, both in vitro and in vivo. ROS formation during sonosensitizations of HpD and ATX-70 were detected using our newly-developed imaging technique, in real time, on tumor bearing animals. This method can provide a new means in clinics for tumor diagnosis.

  11. Singlet oxygen treatment of tumor cells triggers extracellular singlet oxygen generation, catalase inactivation and reactivation of intercellular apoptosis-inducing signaling.

    Science.gov (United States)

    Riethmüller, Michaela; Burger, Nils; Bauer, Georg

    2015-12-01

    Intracellular singlet oxygen generation in photofrin-loaded cells caused cell death without discrimination between nonmalignant and malignant cells. In contrast, extracellular singlet oxygen generation caused apoptosis induction selectively in tumor cells through singlet oxygen-mediated inactivation of tumor cell protective catalase and subsequent reactivation of intercellular ROS-mediated apoptosis signaling through the HOCl and the NO/peroxynitrite signaling pathway. Singlet oxygen generation by extracellular photofrin alone was, however, not sufficient for optimal direct inactivation of catalase, but needed to trigger the generation of cell-derived extracellular singlet oxygen through the interaction between H2O2 and peroxynitrite. Thereby, formation of peroxynitrous acid, generation of hydroxyl radicals and formation of perhydroxyl radicals (HO2(.)) through hydroxyl radical/H2O2 interaction seemed to be required as intermediate steps. This amplificatory mechanism led to the formation of singlet oxygen at a sufficiently high concentration for optimal inactivation of membrane-associated catalase. At low initial concentrations of singlet oxygen, an additional amplification step needed to be activated. It depended on singlet oxygen-dependent activation of the FAS receptor and caspase-8, followed by caspase-8-mediated enhancement of NOX activity. The biochemical mechanisms described here might be considered as promising principle for the development of novel approaches in tumor therapy that specifically direct membrane-associated catalase of tumor cells and thus utilize tumor cell-specific apoptosis-inducing ROS signaling. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  12. Singlet oxygen treatment of tumor cells triggers extracellular singlet oxygen generation, catalase inactivation and reactivation of intercellular apoptosis-inducing signaling☆

    Science.gov (United States)

    Riethmüller, Michaela; Burger, Nils; Bauer, Georg

    2015-01-01

    Intracellular singlet oxygen generation in photofrin-loaded cells caused cell death without discrimination between nonmalignant and malignant cells. In contrast, extracellular singlet oxygen generation caused apoptosis induction selectively in tumor cells through singlet oxygen-mediated inactivation of tumor cell protective catalase and subsequent reactivation of intercellular ROS-mediated apoptosis signaling through the HOCl and the NO/peroxynitrite signaling pathway. Singlet oxygen generation by extracellular photofrin alone was, however, not sufficient for optimal direct inactivation of catalase, but needed to trigger the generation of cell-derived extracellular singlet oxygen through the interaction between H2O2 and peroxynitrite. Thereby, formation of peroxynitrous acid, generation of hydroxyl radicals and formation of perhydroxyl radicals (HO2.) through hydroxyl radical/H2O2 interaction seemed to be required as intermediate steps. This amplificatory mechanism led to the formation of singlet oxygen at a sufficiently high concentration for optimal inactivation of membrane-associated catalase. At low initial concentrations of singlet oxygen, an additional amplification step needed to be activated. It depended on singlet oxygen-dependent activation of the FAS receptor and caspase-8, followed by caspase-8-mediated enhancement of NOX activity. The biochemical mechanisms described here might be considered as promising principle for the development of novel approaches in tumor therapy that specifically direct membrane-associated catalase of tumor cells and thus utilize tumor cell-specific apoptosis-inducing ROS signaling. PMID:26225731

  13. New strategies to produce and detect singlet oxygen in a cell

    DEFF Research Database (Denmark)

    Gollmer, Anita

    2012-01-01

    product of the reaction between SOSG and singlet oxygen is itself an efficient singlet oxygen sensitizer and, second, that despite published claims to the contrary, SOSG can, in fact, be incorporated into living mammalian cells. Further, a new fluorescent probe for singlet oxygen called “Aarhus Green...... to achieve a reproducible assessment of cell response to a controlled dose of singlet oxygen produced in a spatially-localized two-photon sensitized experiment. Different assays were used to visualize cell response. In this dissertation, various aspects of fluorescence imaging and two-photon excitation......Singlet oxygen, the first excited electronic state of molecular oxygen, plays a major role in oxygen-dependent photo-induced cell death. In such systems, singlet oxygen is generally produced in a photosensitized process wherein light is absorbed by a molecule (the so-called sensitizer) which...

  14. Singlet oxygen-mediated formation of protein peroxides within cells

    International Nuclear Information System (INIS)

    Wright, A.; Policarpio, V.

    2003-01-01

    Full text: Singlet oxygen is generated by a number of cellular, enzymatic and chemical reactions as well as by exposure to UV, or visible light in the presence of a sensitizer; as a consequence this oxidant has been proposed as a damaging agent in a number of pathologies including photo-aging and skin cancer. Proteins are major targets for singlet oxygen as a result of their abundance and high rate constants for reaction. In this study it is shown that illumination of viable, sensitizer-loaded, THP-1 (human monocyte-like) cells with visible light gives rise to intra-cellular protein-derived peroxides. The peroxide yield increases with illumination time, requires the presence of the sensitizer, is enhanced in D 2 O, and decreased by azide; these data are consistent with the mediation of singlet oxygen. The concentration of peroxides detected, which is not affected by glucose or ascorbate loading of the cells, corresponds to ca. 1.5 nmoles peroxide per 10 6 cells using rose bengal as sensitizer, or 10 nmoles per mg cell protein and account for up to ca. 15% of the O 2 consumed by the cells. Similar peroxides have been detected on isolated cellular proteins exposed to light in the presence of rose bengal and oxygen. After cessation of illumination, the cellular protein peroxide levels decreases with t 1/2 ca. 4 hrs at 37 deg C, and this is associated with increased cell lysis. Decomposition of protein peroxides formed within cells, or on isolated cellular proteins, by metal ions, gives rise to radicals as detected by EPR spin trapping. These protein peroxides, and radicals derived from them, can inactivate key cellular enzymes (including caspases, GAPDH and glutathione reductase) and induce DNA base oxidation, strand breaks and DNA-protein cross-links. These studies demonstrate that exposure of intact cells to visible light in the presence of a sensitizer gives rise to novel long-lived, but reactive, intra-cellular protein peroxides via singlet oxygen

  15. Singlet Oxygen Sensor Green: Photochemical Behavior in Solution and in a Mammalian Cell

    DEFF Research Database (Denmark)

    Gollmer, Anita; Arnbjerg, Jacob; Blaikie, Frances Helen

    2011-01-01

    The development of efficient and selective luminescent probes for reactive oxygen species, particularly for singlet molecular oxygen, is currently of great importance. In this study, the photochemical behavior of Singlet Oxygen Sensor Green® (SOSG), a commercially available fluorescent probe...... of the reaction between SOSG and singlet oxygen is, itself, an efficient singlet oxygen photosensitizer. Second, SOSG appears to efficiently bind to proteins which, in turn, can influence uptake by a cell as well as behavior in the cell. As such, incorrect use of SOSG can yield misleading data on yields...

  16. Mitochondria Targetable Time-Gated Luminescence Probe for Singlet Oxygen Based on a β-Diketonate-Europium Complex.

    Science.gov (United States)

    Sun, Jingyan; Song, Bo; Ye, Zhiqiang; Yuan, Jingli

    2015-12-21

    Singlet oxygen ((1)O2) plays a key role in the photodynamic therapy (PDT) technique of neoplastic diseases. In this work, by using a 9,10-dimethyl-2-anthryl-containing β-diketone, 1,1,1,2,2-pentafluoro-5-(9',10'-dimethyl-2'-anthryl)-3,5-pentanedione (Hpfdap), as a (1)O2-recognition ligand, a novel β-diketonate-europium(III) complex that can act as a luminescence probe for (1)O2, [Eu(pfdap)3(tpy)] (tpy = 2,2',2″-terpyridine), has been designed and synthesized for the time-gated luminescence detection of (1)O2 in living cells. The complex is weakly luminescent due to the quenching effect of 9,10-dimethyl-2-anthryl groups. After reaction with (1)O2, accompanied by the formation of endoperoxides of 9,10-dimethyl-2-anthryl groups, the luminescence quenching disappears, so that the long-lived luminescence of the europium(III) complex is switched on. The complex showed highly selective luminescence response to (1)O2 with a remarkable luminescence enhancement. Combined with the time-gated luminescence imaging technique, the complex was successfully used as a luminescent probe for the monitoring of the time-dependent generation of (1)O2 in 5-aminolevulinic acid (a PDT drug) loaded HepG2 cells during the photodynamic process. In addition, by coloading the complex and a mitochondrial indicator, Mito-Tracker Green, into HepG2 cells, the specific localization of [Eu(pfdap)3(tpy)] molecules in mitochondria of HepG2 cells was demonstrated by confocal fluorescence imaging measurements.

  17. Direct spectroscopic observation of singlet oxygen quenching and kinetic studies of physical and chemical singlet oxygen quenching rate constants of synthetic antioxidants (BHA, BHT, and TBHQ) in methanol.

    Science.gov (United States)

    Lee, Jun Hyun; Jung, Mun Yhung

    2010-08-01

    Singlet oxygen quenching by synthetic antioxidants (BHA, BHT, and TBHQ) was directly observed by spectroscopic monitoring of luminescence at 1268 nm. The luminescence data showed unambiguous evidence of singlet oxygen quenching by synthetic phenolic antioxidants with the highest activity for TBHQ, followed by BHA and BHT. The protective activities of these synthetic antioxidants on alpha-terpinene oxidation with chemically-induced singlet oxygen under dark further confirmed their singlet oxygen quenching abilities. Total singlet oxygen quenching rate constants (k(r) + k(q)) of BHA, BHT, and TBHQ were determined in a system containing alpha-terpinene (as a singlet oxygen trap) and methylene blue (as a sensitizer) during light irradiation, and the values were 5.14 x 10(7), 3.41 x 10(6), and 1.99 x 10(8) M(-1)s(-1), respectively. After the k(r) value of alpha-terpinene was first determined, the k(r) values of the synthetic antioxidants were calculated by measuring their relative reaction rates with singlet oxygen to that of alpha-terpinene under the identical conditions. The k(r) values of the BHA, BHT, and TBHQ were 3.90 x 10(5), 1.23 x 10(5), and 2.93 x 10(6), M(-1)s(-1). The percent partition of chemical quenching over total singlet oxygen quenching (k(r) x 100)/(k(r) + k(q)) for BHA, BHT, and TBHQ were 0.76%, 3.61%, and 1.47%, respectively. The results showed that the synthetic antioxidants quench singlet oxygen almost exclusively through the mechanism of physical quenching. This represents the first report on the singlet oxygen quenching mechanism of these synthetic antioxidants. Practical Application: The synthetic antioxidants, especially TBHQ, have been found to have a strong singlet oxygen quenching ability. This article also clearly showed that singlet oxygen quenching by synthetic antioxidants was mainly by the physical quenching mechanism. The results suggested that these synthetic antioxidants, especially TBHQ, could be used practically for the protection

  18. Mechanism of singlet oxygen deactivation in an electric discharge oxygen - iodine laser

    Science.gov (United States)

    Azyazov, V. N.; Mikheyev, P. A.; Pershin, A. A.; Torbin, A. P.; Heaven, M. C.

    2014-12-01

    We have determined the influence of the reaction of molecular singlet oxygen with a vibrationally excited ozone molecule O2(a 1Δ) + O3(ν) → 2O2 + O on the removal rate of O2(a 1Δ) in an electric-discharge-driven oxygen - iodine laser. This reaction has been shown to be a major channel of O2(a 1Δ) loss at the output of an electric-discharge singlet oxygen generator. In addition, it can also contribute significantly to the loss of O2(a 1Δ) in the discharge region of the generator.

  19. Efficient and selective oxidation of sulfur mustard using singlet oxygen generated by a pyrene-based metal-organic framework.

    Science.gov (United States)

    Liu, Yangyang; Buru, Cassandra T; Howarth, Ashlee J; Mahle, John J; Buchanan, James H; DeCoste, Jared B; Hupp, Joseph T; Farha, Omar K

    2016-01-01

    A pyrene-based metal-organic framework (MOF) NU-1000 was used as a heterogeneous photocatalyst for the degradation of a sulfur mustard simulant, 2-chloroethyl ethyl sulfide (CEES). Using irradiation from a commercially available and inexpensive ultraviolet (UV) light-emitting diode (LED), singlet oxygen ( 1 O 2 ) is generated by NU-1000 and selectively oxidizes CEES to the nontoxic product 2-chloroethyl ethyl sulfoxide (CEESO). More importantly, this method was tested on the warfare agent sulfur mustard (HD) for the first time using 1 O 2 and a MOF catalyst, and this method proved to be effective in oxidizing sulfur mustard to nontoxic products without forming the toxic sulfone by-product.

  20. Ultraweak bioluminescence dynamics and singlet oxygen correlations during injury repair in sweet potato

    Science.gov (United States)

    Hossu, Marius; Ma, Lun; Chen, Wei

    2011-03-01

    Ultraweak bioluminescence at the level of hundreds of photons per second per square centimeter after cutting injury of sweet potato was investigated. A small emission peak immediate after cutting and a later and higher peak were observed. Selective singlet oxygen inhibitors and sensors have been use to study the contribution of singlet oxygen during the curing process, demonstrating increased presence of singlet oxygen during and after the late bioemission peak. It was confirmed that singlet oxygen has direct contribution to ultraweak bioluminescence but also induces the formation of other exited luminescent species that are responsible for the recorded bioluminescence.

  1. Singlet oxygen explicit dosimetry to predict long-term local tumor control for BPD-mediated photodynamic therapy

    Science.gov (United States)

    Kim, Michele M.; Penjweini, Rozhin; Ong, Yi Hong; Zhu, Timothy C.

    2017-02-01

    Photodynamic therapy (PDT) is a well-established treatment modality for cancer and other malignant diseases; however, quantities such as light fluence, photosensitizer photobleaching rate, and PDT dose do not fully account for all of the dynamic interactions between the key components involved. In particular, fluence rate (Φ) effects are not accounted for, which has a large effect on the oxygen consumption rate. In this preclinical study, reacted singlet oxygen [1O2]rx was investigated as a dosimetric quantity for PDT outcome. The ability of [1O2]rx to predict the long-term local tumor control rate (LCR) for BPD-mediated PDT was examined. Mice bearing radioactivelyinduced fibrosarcoma (RIF) tumors were treated with different in-air fluences (250, 300, and 350 J/cm2) and in-air ϕ (75, 100, and150 mW/cm2) with a BPD dose of 1 mg/kg and a drug-light interval of 3 hours. Treatment was delivered with a collimated laser beam of 1 cm diameter at 690 nm. Explicit dosimetry of initial tissue oxygen concentration, tissue optical properties, and BPD concentration was used to calculate [1O2]rx. Φ was calculated for the treatment volume based on Monte-Carlo simulations and measured tissue optical properties. Kaplan-Meier analyses for LCR were done for an endpoint of tumor volume <= 100 mm3 using four dose metrics: light fluence, photosensitizer photobleaching rate, PDT dose, and [1O2]rx. PDT dose was defined as the product of the timeintegral of photosensitizer concentration and Φ at a 3 mm tumor depth. Preliminary studies show that [1O2]rx better correlates with LCR and is an effective dosimetric quantity that can predict treatment outcome.

  2. Non-self-sustained electric discharge in oxygen gas mixtures: singlet delta oxygen production

    CERN Document Server

    Ionin, A A; Kotkov, A A; Kochetov, I V; Napartovich, A P; Seleznev, L V; Sinitsyn, D V; Hager, G D

    2003-01-01

    The possibility of obtaining a high specific input energy in an electron-beam sustained discharge ignited in oxygen gas mixtures O sub 2 : Ar : CO (or H sub 2) at the total gas pressures of 10-100 Torr was experimentally demonstrated. The specific input energy per molecular component exceeded approx 6 kJ l sup - sup 1 atm sup - sup 1 (150 kJ mol sup - sup 1) as a small amount of carbon monoxide was added into a gas mixture of oxygen and argon. It was theoretically demonstrated that one might expect to obtain a singlet delta oxygen yield of 25% exceeding its threshold value needed for an oxygen-iodine laser operation at room temperature, when maintaining a non-self-sustained discharge in oxygen gas mixtures with molecular additives CO, H sub 2 or D sub 2. The efficiency of singlet delta oxygen production can be as high as 40%.

  3. Characterization and singlet oxygen quenching capacity of spray-dried microcapsules of edible biopolymers containing antioxidant molecules.

    Science.gov (United States)

    Faria, Adelia F; Mignone, Ricardo A; Montenegro, Mariana A; Mercadante, Adriana Z; Borsarelli, Claudio D

    2010-07-14

    Microcapsules of gum arabic or maltodextrin 20DE containing antioxidant molecules (AOx), for example, carotenoids and tocopherol derivatives, were prepared by the spray-drying technique. The properties of these microcapsules were evaluated by several techniques, such as dynamic light scattering, scanning electronic microscopy, and steady-state and time-resolved fluorescence spectroscopy of microencapsulated pyrene. The quenching of photochemically generated singlet molecular oxygen ((1)O(2)) by the AOx in homogeneous solvents as well as in microcapsule solutions was evaluated using time-resolved phosphorescence detection of (1)O(2). The quenching rate constant of the process, k(Q)(AOx), was strongly dependent on the type of the AOx. These results are explained by compartmentalization effects of the AOx in the core of the microcapsules and the accessibility of (1)O(2). The contribution of the biopolymer as quencher of (1)O(2) was also investigated. The present results can be applied to the design of edible antioxidant microcapsules within the food and cosmetic industries.

  4. Influence of pulse-height discrimination threshold for photon counting on the accuracy of singlet oxygen luminescence measurement

    International Nuclear Information System (INIS)

    Lin, Huiyun; Chen, Defu; Wang, Min; Lin, Juqiang; Li, Buhong; Xie, Shusen

    2011-01-01

    Direct measurement of near-infrared (NIR) luminescence around 1270 nm is the golden standard of singlet oxygen ( 1 O 2 ) identification. In this study, the influence of pulse-height discrimination threshold on measurement accuracy of the 1 O 2 luminescence that is generated from the photoirradiation of meso-tetra (N-methyl-4-pyridyl) morphine tetra-tosylate (TMPyP) in aqueous solution was investigated by using our custom-developed detection system. Our results indicate that the discrimination threshold has a significant influence on the absolute 1 O 2 luminescence counts, and the optimal threshold for our detection system is found to be about − 41.2 mV for signal discrimination. After optimization, the derived triplet-state and 1 O 2 lifetimes of TMPyP in aqueous solution are found to be 1.73 ± 0.03 and 3.70 ± 0.04 µs, respectively, and the accuracy of measurement was further independently demonstrated using the laser flash photolysis technique

  5. Influence of pulse-height discrimination threshold for photon counting on the accuracy of singlet oxygen luminescence measurement

    Science.gov (United States)

    Lin, Huiyun; Chen, Defu; Wang, Min; Lin, Juqiang; Li, Buhong; Xie, Shusen

    2011-12-01

    Direct measurement of near-infrared (NIR) luminescence around 1270 nm is the golden standard of singlet oxygen (1O2) identification. In this study, the influence of pulse-height discrimination threshold on measurement accuracy of the 1O2 luminescence that is generated from the photoirradiation of meso-tetra (N-methyl-4-pyridyl) morphine tetra-tosylate (TMPyP) in aqueous solution was investigated by using our custom-developed detection system. Our results indicate that the discrimination threshold has a significant influence on the absolute 1O2 luminescence counts, and the optimal threshold for our detection system is found to be about - 41.2 mV for signal discrimination. After optimization, the derived triplet-state and 1O2 lifetimes of TMPyP in aqueous solution are found to be 1.73 ± 0.03 and 3.70 ± 0.04 µs, respectively, and the accuracy of measurement was further independently demonstrated using the laser flash photolysis technique.

  6. Generation of Triplet Excited States via Photoinduced Electron Transfer in meso-anthra-BODIPY: Fluorogenic Response toward Singlet Oxygen in Solution and in Vitro

    KAUST Repository

    Filatov, Mikhail A.

    2017-04-14

    Heavy atom-free BODIPY-anthracene dyads (BADs) generate locally excited triplet states by way of photoinduced electron transfer (PeT), followed by recombination of the resulting charge-separated states (CSS). Subsequent quenching of the triplet states by molecular oxygen produces singlet oxygen (1O2), which reacts with the anthracene moiety yielding highly fluorescent species. The steric demand of the alkyl substituents in the BODIPY subunit defines the site of 1O2 addition. Novel bis- and tetraepoxides and bicyclic acetal products, arising from rearrangements of anthracene endoperoxides were isolated and characterized. 1O2 generation by BADs in living cells enables visualization of the dyads distribution, promising new imaging applications.

  7. Kinetics of oxygen species in an electrically driven singlet oxygen generator

    Science.gov (United States)

    Azyazov, V. N.; Torbin, A. P.; Pershin, A. A.; Mikheyev, P. A.; Heaven, M. C.

    2015-12-01

    The kinetics of oxygen species in the gaseous medium of a discharge singlet oxygen generator has been revisited. Vibrationally excited ozone O3(υ) formed in O + O2 recombination is thought to be a significant agent in the deactivation of singlet oxygen O2(a1Δ), oxygen atom removal and ozone formation. It is shown that the process O3(υ ⩾ 2) + O2(a1Δ) → 2O2 + O is the main O2(a1Δ) deactivation channel in the post-discharge zone. If no measures are taken to decrease the oxygen atom concentration, the contribution of this process to the overall O2(a1Δ) removal is significant, even in the discharge zone. A simplified model for the kinetics of vibrationally excited ozone is proposed. Calculations based on this model yield results that are in good agreement with the experimental data.

  8. Thiocyanate potentiates antimicrobial photodynamic therapy: In situ generation of the sulfur trioxide radical anion by singlet oxygen

    Science.gov (United States)

    St Denis, Tyler G.; Vecchio, Daniela; Zadlo, Andrzej; Rineh, Ardeshir; Sadasivam, Magesh; Avci, Pinar; Huang, Liyi; Kozinska, Anna; Chandran, Rakkiyappan; Sarna, Tadeusz; Hamblin, Michael R.

    2013-01-01

    Antimicrobial photodynamic therapy (PDT) is used for the eradication of pathogenic microbial cells and involves the light excitation of dyes in the presence of O2, yielding reactive oxygen species including the hydroxyl radical (•OH) and singlet oxygen (1O2). In order to chemically enhance PDT by the formation of longer-lived radical species, we asked whether thiocyanate (SCN−) could potentiate the methylene blue (MB) and light-mediated killing of the gram-positive Staphylococcus aureus and the gram-negative Escherichia coli. SCN− enhanced PDT (10 μM MB, 5J/cm2 660 nm hv) killing in a concentration-dependent manner of S. aureus by 2.5 log10 to a maximum of 4.2 log10 at 10 mM (P < 0.001) and increased killing of E. coli by 3.6 log10 to a maximum of 5.0 log10 at 10 mM (P < 0.01). We determined that SCN− rapidly depleted O2 from an irradiated MB system, reacting exclusively with 1O2, without quenching the MB excited triplet state. SCN− reacted with 1O2, producing a sulfur trioxide radical anion (a sulfur-centered radical demonstrated by EPR spin trapping). We found that MB-PDT of SCN− in solution produced both sulfite and cyanide anions, and that addition of each of these salts separately enhanced MB-PDT killing of bacteria. We were unable to detect EPR signals of •OH, which, together with kinetic data, strongly suggests that MB, known to produce •OH and 1O2, may, under the conditions used, preferentially form 1O2. PMID:23969112

  9. Cross-talk between singlet oxygen- and hydrogen peroxide-dependent signaling of stress responses in Arabidopsis thaliana

    Science.gov (United States)

    Laloi, Christophe; Stachowiak, Monika; Pers-Kamczyc, Emilia; Warzych, Ewelina; Murgia, Irene; Apel, Klaus

    2007-01-01

    Upon a dark-to-light shift, the conditional fluorescent (flu) mutant of Arabidopsis releases singlet oxygen (1O2) within the plastid compartment. Distinct sets of nuclear genes are activated that are different from those induced by superoxide (O2•−) and/or hydrogen peroxide (H2O2), suggesting that different types of reactive oxygen species activate distinct signaling pathways. It is not known whether the pathways operate separately or interact with each other. We have addressed this problem by modulating noninvasively the level of H2O2 in plastids by means of a transgenic line that overexpresses the thylakoid-bound ascorbate peroxidase (tAPX). The overexpression of the H2O2-specific scavenger reduced strongly the activation of nuclear genes in plants treated with the herbicide paraquat that in the light leads to the enhanced generation of O2•− and H2O2. In the flu mutant overexpressing tAPX, the intensity of 1O2-mediated cell death and growth inhibition was increased when compared with the flu parental line. Also, the expression of most of the nuclear genes that were rapidly activated after the release of 1O2 was significantly higher in flu plants overexpressing tAPX, whereas in wild-type plants, overexpression of tAPX did not lead to visible stress responses and had only a very minor impact on nuclear gene expression. The results suggest that H2O2 antagonizes the 1O2-mediated signaling of stress responses as seen in the flu mutant. This cross-talk between H2O2- and 1O2-dependent signaling pathways might contribute to the overall stability and robustness of wild-type plants exposed to adverse environmental stress conditions. PMID:17197417

  10. In-vitro singlet oxygen threshold dose at PDT with Radachlorin photosensitizer

    Science.gov (United States)

    Klimenko, V. V.; Shmakov, S. V.; Kaydanov, N. E.; Knyazev, N. A.; Kazakov, N. V.; Rusanov, A. A.; Bogdanov, A. A.; Dubina, M. V.

    2017-07-01

    In this present study we investigate the Radachlorin photosensitizer accumulation in K562 cells and Hela cells and determined the cell viability after PDT. Using the macroscopic singlet oxygen modeling and cellular photosensitizer concentration the singlet oxygen threshold doses for K562 cells and Hela cells were calculated.

  11. Singlet oxygen-based electrosensing by molecular photosensitizers

    Science.gov (United States)

    Trashin, Stanislav; Rahemi, Vanoushe; Ramji, Karpagavalli; Neven, Liselotte; Gorun, Sergiu M.; de Wael, Karolien

    2017-07-01

    Enzyme-based electrochemical biosensors are an inspiration for the development of (bio)analytical techniques. However, the instability and reproducibility of the reactivity of enzymes, combined with the need for chemical reagents for sensing remain challenges for the construction of useful devices. Here we present a sensing strategy inspired by the advantages of enzymes and photoelectrochemical sensing, namely the integration of aerobic photocatalysis and electrochemical analysis. The photosensitizer, a bioinspired perfluorinated Zn phthalocyanine, generates singlet-oxygen from air under visible light illumination and oxidizes analytes, yielding electrochemically-detectable products while resisting the oxidizing species it produces. Compared with enzymatic detection methods, the proposed strategy uses air instead of internally added reactive reagents, features intrinsic baseline correction via on/off light switching and shows C-F bonds-type enhanced stability. It also affords selectivity imparted by the catalytic process and nano-level detection, such as 20 nM amoxicillin in μl sample volumes.

  12. Singlet oxygen luminescence as an in vivo photodynamic therapy dose metric: validation in normal mouse skin with topical amino-levulinic acid

    Science.gov (United States)

    Niedre, M J; Yu, C S; Patterson, M S; Wilson, B C

    2005-01-01

    Although singlet oxygen (1O2) has long been proposed as the primary reactive oxygen species in photodynamic therapy (PDT), it has only recently been possible to detect it in biological systems by its luminescence at 1270 nm. Having previously demonstrated this in vitro and in vivo, we showed that cell survival was strongly correlated to the 1O2 luminescence in cell suspensions over a wide range of treatment parameters. Here, we extend this to test the hypothesis that the photobiological response in vivo is also correlated with 1O2 generation, independent of individual treatment parameters. The normal skin of SKH1-HR hairless mice was sensitised with 20% amino-levulinic acid-induced protoporophyrin IX and exposed to 5, 11, 22 or 50 J cm−2 of pulsed 523 nm light at 50 mW cm−2, or to 50 J cm−2 at 15 or 150 mW cm−2. 1O2 luminescence was measured during treatment and the photodynamic response of the skin was scored daily for 2 weeks after treatment. As observed by other authors, a strong irradiance dependence of the PDT effect was observed. However, in all cases the responses increased with the 1O2 luminescence, independent of the irradiance, demonstrating for the first time in vivo an unequivocal mechanistic link between 1O2 generation and photobiological response. PMID:15655542

  13. Singlet oxygen triggers chloroplast rupture and cell death in the zeaxanthin epoxidase defective mutant aba1 of Arabidopsis thaliana under high light stress.

    Science.gov (United States)

    Sánchez-Corrionero, Álvaro; Sánchez-Vicente, Inmaculada; González-Pérez, Sergio; Corrales, Ascensión; Krieger-Liszkay, Anja; Lorenzo, Óscar; Arellano, Juan B

    2017-09-01

    The two Arabidopsis thaliana mutants, aba1 and max4, were previously identified as sharing a number of co-regulated genes with both the flu mutant and Arabidopsis cell suspension cultures exposed to high light (HL). On this basis, we investigated whether aba1 and max4 were generating high amounts of singlet oxygen ( 1 O 2 ) and activating 1 O 2 -mediated cell death. Thylakoids of aba1 produced twice as much 1 O 2 as thylakoids of max4 and wild type (WT) plants when illuminated with strong red light. 1 O 2 was measured using the spin probe 2,2,6,6-tetramethyl-4-piperidone hydrochloride. 77-K chlorophyll fluorescence emission spectra of thylakoids revealed lower aggregation of the light harvesting complex II in aba1. This was rationalized as a loss of connectivity between photosystem II (PSII) units and as the main cause for the high yield of 1 O 2 generation in aba1. Up-regulation of the 1 O 2 responsive gene AAA-ATPase was only observed with statistical significant in aba1 under HL. Two early jasmonate (JA)-responsive genes, JAZ1 and JAZ5, encoding for two repressor proteins involved in the negative feedback regulation of JA signalling, were not up-regulated to the WT plant levels. Chloroplast aggregation followed by chloroplast rupture and eventual cell death was observed by confocal imaging of the fluorescence emission of leaf cells of transgenic aba1 plants expressing the chimeric fusion protein SSU-GFP. Cell death was not associated with direct 1 O 2 cytotoxicity in aba1, but rather with a delayed stress response. In contrast, max4 did not show evidence of 1 O 2 -mediated cell death. In conclusion, aba1 may serve as an alternative model to other 1 O 2 -overproducing mutants of Arabidopsis for investigating 1 O 2 -mediated cell death. Copyright © 2017 Elsevier GmbH. All rights reserved.

  14. Determination of singlet oxygen quenching and protection of biological systems by various extracts from seed of Rumex crispus L.

    Science.gov (United States)

    Suh, Hwa-Jin; Lee, Kyung-Seok; Kim, Seong-Ryul; Shin, Myoung-Ho; Park, Sanggyu; Park, Shin

    2011-02-07

    The 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging effect and total phenolic contents were evaluated for the screening of singlet oxygen ((1)O(2)) quenching efficacy of various seed extracts from Rumex crispus L. The butanol and ethyl-acetate extracts displayed remarkable effect of DPPH as compared to positive control ascorbic acid. The concentrations (QC(50)) of butanol and ethyl-acetate extracts required to exert 50% reducing effect on (1)O(2) were found to be 116 and 82 μg mL(-1), respectively. Both extracts were also found to protect the in vitro biological system from the detrimental effect of (1)O(2) on type II photosensitization in Escherichia coli, red blood cell, lactate dehydrogenase and histidine. Among all the tested extracts, the ethyl-acetate and butanol extracts contained higher amount of total phenolic contents. The results suggest that our study may contribute to the development of new bioactive products with potential applications to reduce photo-produced oxidative stress involving reactive oxygen species in living organisms. Copyright © 2010 Elsevier B.V. All rights reserved.

  15. Singlet oxygen in the low-temperature plasma of an electron-beam-sustained discharge

    International Nuclear Information System (INIS)

    Vagin, N. P.; Ionin, A. A.; Klimachev, Yu. M.; Kotkov, A. A.; Kochetov, I. V.; Napartovich, A. P.; Podmar'kov, Yu. P.; Rulev, O. A.; Seleznev, L. V.; Sinitsyn, D. V.; Frolov, M. P.; Yuryshev, N. N.

    2006-01-01

    Results are presented from experimental and theoretical studies of the production of singlet delta oxygen in a pulsed electron-beam-sustained discharge ignited in a large (∼18-1) volume at a total gas mixture pressure of up to 210 Torr. The measured yield of singlet oxygen reaches 10.5%. It is found that varying the reduced electric field from ∼2 to ∼11 kV/(cm atm) slightly affects singlet oxygen production. It is shown experimentally that an increase in the gas mixture pressure or the specific input energy reduces the duration of singlet oxygen luminescence. The calculated time evolution of the singlet oxygen concentration is compared with experimental results

  16. Centrifugal spray generator of singlet oxygen for a chemical oxygen-iodine laser

    Czech Academy of Sciences Publication Activity Database

    Špalek, Otomar; Hrubý, Jan; Čenský, Miroslav; Jirásek, Vít; Kodymová, Jarmila

    2010-01-01

    Roč. 100, č. 4 (2010), s. 793-802 ISSN 0946-2171 Grant - others:European Office of Aerospace R&D(US) FA8655-09-1-3091 Institutional research plan: CEZ:AV0Z10100523; CEZ:AV0Z20760514 Keywords : centrifugal generator of singlet oxygen * chemical oxygen-iodine laser Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.239, year: 2010

  17. Photo-excitation of carotenoids causes cytotoxicity via singlet oxygen production

    International Nuclear Information System (INIS)

    Yoshii, Hiroshi; Yoshii, Yukie; Asai, Tatsuya; Furukawa, Takako; Takaichi, Shinichi; Fujibayashi, Yasuhisa

    2012-01-01

    Highlights: ► Some photo-excited carotenoids have photosensitizing ability. ► They are able to produce ROS. ► Photo-excited fucoxanthin can produce singlet oxygen through energy transfer. -- Abstract: Carotenoids, natural pigments widely distributed in algae and plants, have a conjugated double bond system. Their excitation energies are correlated with conjugation length. We hypothesized that carotenoids whose energy states are above the singlet excited state of oxygen (singlet oxygen) would possess photosensitizing properties. Here, we demonstrated that human skin melanoma (A375) cells are damaged through the photo-excitation of several carotenoids (neoxanthin, fucoxanthin and siphonaxanthin). In contrast, photo-excitation of carotenoids that possess energy states below that of singlet oxygen, such as β-carotene, lutein, loroxanthin and violaxanthin, did not enhance cell death. Production of reactive oxygen species (ROS) by photo-excited fucoxanthin or neoxanthin was confirmed using a reporter assay for ROS production with HeLa Hyper cells, which express a fluorescent indicator protein for intracellular ROS. Fucoxanthin and neoxanthin also showed high cellular penetration and retention. Electron spin resonance spectra using 2,2,6,6-tetramethil-4-piperidone as a singlet oxygen trapping agent demonstrated that singlet oxygen was produced via energy transfer from photo-excited fucoxanthin to oxygen molecules. These results suggest that carotenoids such as fucoxanthin, which are capable of singlet oxygen production through photo-excitation and show good penetration and retention in target cells, are useful as photosensitizers in photodynamic therapy for skin disease.

  18. Involvement of Singlet Oxygen in 5-Aminolevulinic Acid-Induced Photodynamic Damage of Cucumber (Cucumis sativus L.) Chloroplasts 1

    Science.gov (United States)

    Chakraborty, Niranjan; Tripathy, Baishnab Charan

    1992-01-01

    Cucumber (Cucumis sativus L., cv Poinsette) plants were sprayed with 20 millimolar 5-aminolevulinic acid and then incubated in the dark for 14 hours. The intact chloroplasts were isolated from the above plants in the dark and were exposed to weak light (250 micromoles per square meter per second). Within 30 minutes, photosystem II activity was reduced by 50%. The singlet oxygen (1O2) scavengers, histidine and sodium azide (NaN3) significantly protected against the damage caused to photosystem II. The hydroxyl radical scavenger formate failed to protect the thylakoid membranes. The production of 1O2 monitored as N,N-dimethyl p-nitrosoaniline bleaching increased as a function of light exposure time of treated chloroplasts and was abolished by the 1O2 quencher, NaN3. Membrane lipid peroxidation monitored as malondialdehyde production was also significantly reduced when chloroplasts were illuminated in the presence of NaN3 and histidine. Protochlorophyllide was the most abundant pigment accumulated in intact chloroplasts isolated from 5-aminolevulinic acid-treated plants and was probably acting as type II photosensitizer. PMID:16668650

  19. Correlation of in vivo tumor response and singlet oxygen luminescence detection in mTHPC-mediated photodynamic therapy

    Directory of Open Access Journals (Sweden)

    Brian C. Wilson

    2015-01-01

    Full Text Available Excited-state singlet oxygen (1O2, generated during photodynamic therapy (PDT, is believed to be the primary cytotoxic agent with a number of clinically approved photosensitizers. Its relative concentration in cells or tissues can be measured directly through its near-infrared (NIR luminescence emission, which has correlated well with in vitro cell and in vivo normal skin treatment responses. Here, its correlation with the response of tumor tissue in vivo is examined, using the photosensitizer meso-tetrahydroxyphenylchlorin (mTHPC in an animal model comprising luciferase- and green fluorescent protein (GFP-transduced gliosarcoma grown in a dorsal window chamber. The change in the bioluminescence signal, imaged pretreatment and at 2, 5 and 9 d post treatment, was used as a quantitative measure of the tumor response, which was classified in individual tumors as "non", "moderate" and "strong" in order to reduce the variance in the data. Plotting the bioluminescence-based response vs the 1O2 counts demonstrated clear correlation, indicating that 1O2 luminescence provides a valid dosimetric technique for PDT in tumor tissue.

  20. Singlet oxygen mediated DNA degradation by copper nanoparticles: potential towards cytotoxic effect on cancer cells

    OpenAIRE

    Sengupta Tapas K; Mandal Swadhin K; Santra Subhankar; Jose Gregor P

    2011-01-01

    Abstract The DNA degradation potential and anti-cancer activities of copper nanoparticles of 4-5 nm size are reported. A dose dependent degradation of isolated DNA molecules by copper nanoparticles through generation of singlet oxygen was observed. Singlet oxygen scavengers such as sodium azide and Tris [hydroxyl methyl] amino methane were able to prevent the DNA degradation action of copper nanoparticles confirming the involvement of activated oxygen species in the degradation process. Addit...

  1. Pallidol, a resveratrol dimer from red wine, is a selective singlet oxygen quencher

    International Nuclear Information System (INIS)

    He Shan; Jiang Liyan; Wu Bin; Pan Yuanjiang; Sun Cuirong

    2009-01-01

    Pallidol is a naturally occurring resveratrol dimer from red wine with antioxidant and antifungal activities. In this report, with the use of the EPR spin-trapping technique, the scavenging and quenching effects of pallidol on reactive oxygen species (ROS) were investigated. The results demonstrated that pallidol showed strong quenching effects on singlet oxygen at very low concentrations, but it was ineffective to scavenge hydroxyl radicals or superoxide anions. Further kinetic study revealed that the reaction of pallidol with singlet oxygen had an extremely high rate constant (k a = 1.71 x 10 10 ). Therefore, pallidol is a potent and selective singlet oxygen quencher in aqueous systems. It may be used in singlet oxygen-mediated diseases as a pharmacological agent, which may contribute to the health beneficial effects of red wine.

  2. Towards photodynamic therapy with ionizing radiation: nanoparticle-mediated singlet oxygen generation (Conference Presentation)

    Science.gov (United States)

    Clement, Sandhya; Deng, Wei; Camilleri, Elizabeth; Wilson, Brian; Goldys, Ewa

    2016-03-01

    Photodynamic therapy (PDT) is a clinically approved method for the treatment of cancer by using singlet oxygen, a highly reactive oxygen generated from a photosensitizer drug upon photoactivation. Limited light penetration depth into to the tissue means that PDT is unsuitable for deep tissue cancer treatments. This can be overcome by using X-ray /gamma rays activated nanoparticles able to trigger the photosensitizer drug and generate singlet oxygen. Additionally, inorganic nanoparticles interact more strongly with X and/or gamma rays than the tissue, allowing to concentrate the effects of radiation near nanoparticle surface and they can also be molecularly targeted to cancer cells. In this work we synthesized and characterized CeF3 nanoparticles, a well-known scintillator material. The nanoparticles were conjugated with Verteporfin, a photosensitizer drug by electrostatic interaction. We assessed the performance of CeF3 and the conjugates to generate singlet oxygen exposed to X-ray radiation. The X-ray singlet oxygen quantum yield of the nanoparticle-photosensitizer system was accurately quantified for the first time. This provided realistic estimates of the singlet oxygen dose taking into consideration the dose partition of the radiation between CeF3 and the tissue. Furthermore, we investigated gold nanoparticle-photosensitizer systems. We confirmed that pure gold nanoparticles itself generate singlet oxygen which is attributed to plasmonic effects. We found enhanced singlet oxygen generation from gold-Rose Bengal conjugates and gold nanorod-verteporfin conjugates. These singlet-oxygen-generating nanomaterials add a new dimension to radiation-assisted PDT.

  3. Kinetics of oxygen species in an electrically driven singlet oxygen generator

    International Nuclear Information System (INIS)

    Azyazov, V.N.; Torbin, A.P.; Pershin, A.A.; Mikheyev, P.A.; Heaven, M.C.

    2015-01-01

    Highlights: • Vibrational excitation of O 3 increases the rate constant for O 3 + O 2 (a) → 2O 2 (X) + O. • Vibrationally excited O 3 is produced by the O + O 2 (X) + M → O 3 + M reaction. • Ozone concentrations are impacted by the reactions of vibrationally excited O 3 . • Relevant to ozone concentrations in oxygen discharges and the upper atmosphere. - Abstract: The kinetics of oxygen species in the gaseous medium of a discharge singlet oxygen generator has been revisited. Vibrationally excited ozone O 3 (υ) formed in O + O 2 recombination is thought to be a significant agent in the deactivation of singlet oxygen O 2 (a 1 Δ), oxygen atom removal and ozone formation. It is shown that the process O 3 (υ ⩾ 2) + O 2 (a 1 Δ) → 2O 2 + O is the main O 2 (a 1 Δ) deactivation channel in the post-discharge zone. If no measures are taken to decrease the oxygen atom concentration, the contribution of this process to the overall O 2 (a 1 Δ) removal is significant, even in the discharge zone. A simplified model for the kinetics of vibrationally excited ozone is proposed. Calculations based on this model yield results that are in good agreement with the experimental data.

  4. Singlet Delta Oxygen: A Quantitative Analysis Using Off-Axis Integrated-Cavity-Output-Spectroscopy (ICOS)

    National Research Council Canada - National Science Library

    Gallagher, Jeffrey E

    2006-01-01

    .... The method is based on off-axis integrated-cavity-output spectroscopy (ICOS). The primary goal for this research effort is to utilize the ICOS technique and demonstrate its ability to provide quantitative data of singlet delta oxygen...

  5. Interaction of plasmalogens and their diacyl analogs with singlet oxygen in selected model systems

    Science.gov (United States)

    Broniec, Agnieszka; Klosinski, Radoslaw; Pawlak, Anna; Wrona-Krol, Marta; Thompson, David; Sarna, Tadeusz

    2011-01-01

    Plasmalogens (Plg) are phospholipids containing vinyl ether linkage at the sn-1 position of the glycerophospholipid backbone. In spite of being quite abundant in humans, the biological role of plasmalogens remains speculative. It has been postulated that plasmalogens are physiological antioxidants with the vinyl ether functionality serving as sacrificial trap for free radicals and singlet oxygen. However, no quantitative data on the efficiency of plasmalogens to scavenge these reactive species are available. In this study, rate constants of quenching of singlet oxygen, generated by photosensitized energy transfer, by several plasmalogens and, for comparison, by their diacyl analogs, were determined by time-resolved detection of phosphorescence at 1270 nm. Relative rates of the interaction of singlet oxygen, with plasmalogens and other lipids in solution and liposomal membranes were measured by electron paramagnetic resonance oximetry and product analysis, employing HPLC-EC detection of cholesterol hydroperoxides and iodometric assay of lipid hydroperoxides. Results show that singlet oxygen interacts with plasmalogens significantly faster than with the other lipids, with he corresponding rate constants being by one-two orders of magnitude greater. The quenching of singlet oxygen by plasmalogens is mostly reactive in nature and results from its preferential interaction with the vinyl ether bond. The data suggest that plasmalogens could protect unsaturated membrane lipids against oxidation induced by singlet oxygen, providing that the oxidation products are not excessively cytotoxic. PMID:21236336

  6. Exposure of vitamins to UVB and UVA radiation generates singlet oxygen.

    Science.gov (United States)

    Knak, Alena; Regensburger, Johannes; Maisch, Tim; Bäumler, Wolfgang

    2014-05-01

    Deleterious effects of UV radiation in tissue are usually attributed to different mechanisms. Absorption of UVB radiation in cell constituents like DNA causes photochemical reactions. Absorption of UVA radiation in endogenous photosensitizers like vitamins generates singlet oxygen via photosensitized reactions. We investigated two further mechanisms that might be involved in UV mediated cell tissue damage. Firstly, UVB radiation and vitamins also generate singlet oxygen. Secondly, UVB radiation may change the chemical structure of vitamins that may change the role of such endogenous photosensitizers in UVA mediated mechanisms. Vitamins were irradiated in solution using monochromatic UVB (308 nm) or UVA (330, 355, or 370 nm) radiation. Singlet oxygen was directly detected and quantified by its luminescence at 1270 nm. All investigated molecules generated singlet oxygen with a quantum yield ranging from 0.007 (vitamin D3) to 0.64 (nicotinamide) independent of the excitation wavelength. Moreover, pre-irradiation of vitamins with UVB changed their absorption in the UVB and UVA spectral range. Subsequently, molecules such as vitamin E and vitamin K1, which normally exhibit no singlet oxygen generation in the UVA, now produce singlet oxygen when exposed to UVA at 355 nm. This interplay of different UV sources is inevitable when applying serial or parallel irradiation with UVA and UVB in experiments in vitro. These results should be of particular importance for parallel irradiation with UVA and UVB in vivo, e.g. when exposing the skin to solar radiation.

  7. Aqueous singlet oxygen reaction kinetics of furfuryl alcohol: effect of temperature, pH, and salt content.

    Science.gov (United States)

    Appiani, Elena; Ossola, Rachele; Latch, Douglas E; Erickson, Paul R; McNeill, Kristopher

    2017-04-19

    The rate constant for the reaction between furfuryl alcohol (FFA) and singlet oxygen ( 1 O 2 ) in aqueous solution was measured as a function of temperature, pH and salt content employing both steady-state photolysis (β value determination) and time-resolved singlet oxygen phosphorescence methods. The latter provided more precise and reproducible data. The reaction rate constant, k rxn,FFA , had a relatively small temperature dependence, no pH dependence and showed a small increase in the presence of high salt concentrations (+19% with 1 M NaCl). A critical review of the available literature suggested that the widely used value of 1.2 × 10 8 M -1 s -1 is likely overestimated. Therefore, we recommend the use of 1.00 × 10 8 M -1 s -1 for reactions performed in low ionic strength aqueous solutions (freshwater) at 22 °C. Furthermore, corrections are provided that should be applied when working at higher or lower temperatures, and/or at high salt concentrations (seawater).

  8. Photo-excitation of carotenoids causes cytotoxicity via singlet oxygen production

    Energy Technology Data Exchange (ETDEWEB)

    Yoshii, Hiroshi, E-mail: yoshii@nirs.go.jp [Research Center for Radiation Emergency Medicine, National Institute of Radiological Science, Chiba 263-8555 (Japan); Faculty of Medical Sciences, University of Fukui, Eiheiji, Fukui 910-1193 (Japan); Yoshii, Yukie, E-mail: yukiey@nirs.go.jp [Molecular Imaging Center, National Institute of Radiological Science, Chiba 263-8555 (Japan); Biomedical Imaging Research Center, University of Fukui, Eiheiji, Fukui 910-1193 (Japan); Asai, Tatsuya [Biomedical Imaging Research Center, University of Fukui, Eiheiji, Fukui 910-1193 (Japan); Faculty of Engineering, University of Fukui, Fukui 910-8507 (Japan); Furukawa, Takako [Molecular Imaging Center, National Institute of Radiological Science, Chiba 263-8555 (Japan); Biomedical Imaging Research Center, University of Fukui, Eiheiji, Fukui 910-1193 (Japan); Takaichi, Shinichi [Department of Biology, Nippon Medical School, Kawasaki, Kanagawa 211-0063 (Japan); Fujibayashi, Yasuhisa [Molecular Imaging Center, National Institute of Radiological Science, Chiba 263-8555 (Japan); Biomedical Imaging Research Center, University of Fukui, Eiheiji, Fukui 910-1193 (Japan)

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer Some photo-excited carotenoids have photosensitizing ability. Black-Right-Pointing-Pointer They are able to produce ROS. Black-Right-Pointing-Pointer Photo-excited fucoxanthin can produce singlet oxygen through energy transfer. -- Abstract: Carotenoids, natural pigments widely distributed in algae and plants, have a conjugated double bond system. Their excitation energies are correlated with conjugation length. We hypothesized that carotenoids whose energy states are above the singlet excited state of oxygen (singlet oxygen) would possess photosensitizing properties. Here, we demonstrated that human skin melanoma (A375) cells are damaged through the photo-excitation of several carotenoids (neoxanthin, fucoxanthin and siphonaxanthin). In contrast, photo-excitation of carotenoids that possess energy states below that of singlet oxygen, such as {beta}-carotene, lutein, loroxanthin and violaxanthin, did not enhance cell death. Production of reactive oxygen species (ROS) by photo-excited fucoxanthin or neoxanthin was confirmed using a reporter assay for ROS production with HeLa Hyper cells, which express a fluorescent indicator protein for intracellular ROS. Fucoxanthin and neoxanthin also showed high cellular penetration and retention. Electron spin resonance spectra using 2,2,6,6-tetramethil-4-piperidone as a singlet oxygen trapping agent demonstrated that singlet oxygen was produced via energy transfer from photo-excited fucoxanthin to oxygen molecules. These results suggest that carotenoids such as fucoxanthin, which are capable of singlet oxygen production through photo-excitation and show good penetration and retention in target cells, are useful as photosensitizers in photodynamic therapy for skin disease.

  9. Light absorption and the photoformation of hydroxyl radical and singlet oxygen in fog waters

    Science.gov (United States)

    Kaur, R.; Anastasio, C.

    2017-09-01

    The atmospheric aqueous-phase is a rich medium for chemical transformations of organic compounds, in part via photooxidants generated within the drops. Here we measure light absorption, photoformation rates and steady-state concentrations of two photooxidants - hydroxyl radical (•OH) and singlet molecular oxygen (1O2*) - in 8 illuminated fog waters from Davis, California and Baton Rouge, Louisiana. Mass absorption coefficients for dissolved organic compounds (MACDOC) in the samples are large, with typical values of 10,000-15,000 cm2 g-C-1 at 300 nm, and absorption extends to wavelengths as long as 450-600 nm. While nitrite and nitrate together account for an average of only 1% of light absorption, they account for an average of 70% of •OH photoproduction. Mean •OH photoproduction rates in fogs at the two locations are very similar, with an overall mean of 1.2 (±0.7) μM h-1 under Davis winter sunlight. The mean (±1σ) lifetime of •OH is 1.6 (±0.6) μs, likely controlled by dissolved organic compounds. Including calculated gas-to-drop partitioning of •OH, the average aqueous concentration of •OH is approximately 2 × 10-15 M (midday during Davis winter), with aqueous reactions providing approximately one-third of the hydroxyl radical source. At this concentration, calculated lifetimes of aqueous organics are on the order of 10 h for compounds with •OH rate constants of 1 × 1010 M-1 s-1 or higher (e.g., substituted phenols such as syringol (6.4 h) and guaiacol (8.4 h)), and on the order of 100 h for compounds with rate constants near 1 × 109 M-1 s-1 (e.g., isoprene oxidation products such as glyoxal (152 h), glyoxylic acid (58 h), and pyruvic acid (239 h)). Steady-state concentrations of 1O2* are approximately 100 times higher than those of •OH, in the range of (0.1-3.0) × 10-13 M. Since 1O2* is a more selective oxidant than •OH, it will only react appreciably with electron-rich species such as dimethyl furan (lifetime of 2.0 h) and

  10. Aerobic photoreactivity of synthetic eumelanins and pheomelanins: generation of singlet oxygen and superoxide anion.

    Science.gov (United States)

    Szewczyk, Grzegorz; Zadlo, Andrzej; Sarna, Michal; Ito, Shosuke; Wakamatsu, Kazumasa; Sarna, Tadeusz

    2016-11-01

    In this work, we examined photoreactivity of synthetic eumelanins, formed by autooxidation of DOPA, or enzymatic oxidation of 5,6-dihydroxyindole-2-carboxylic acid and synthetic pheomelanins obtained by enzymatic oxidation of 5-S-cysteinyldopa or 1:1 mixture of DOPA and cysteine. Electron paramagnetic resonance oximetry and spin trapping were used to measure oxygen consumption and formation of superoxide anion induced by irradiation of melanin with blue light, and time-resolved near-infrared luminescence was employed to determine the photoformation of singlet oxygen between 300 and 600 nm. Both superoxide anion and singlet oxygen were photogenerated by the synthetic melanins albeit with different efficiency. At 450-nm, quantum yield of singlet oxygen was very low (~10 -4 ) but it strongly increased in the UV region. The melanins quenched singlet oxygen efficiently, indicating that photogeneration and quenching of singlet oxygen may play an important role in aerobic photochemistry of melanin pigments and could contribute to their photodegradation and photoaging. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Endogenous Generation of Singlet Oxygen and Ozone in Human and Animal Tissues: Mechanisms, Biological Significance, and Influence of Dietary Components

    Directory of Open Access Journals (Sweden)

    Arnold N. Onyango

    2016-01-01

    Full Text Available Recent studies have shown that exposing antibodies or amino acids to singlet oxygen results in the formation of ozone (or an ozone-like oxidant and hydrogen peroxide and that human neutrophils produce both singlet oxygen and ozone during bacterial killing. There is also mounting evidence that endogenous singlet oxygen production may be a common occurrence in cells through various mechanisms. Thus, the ozone-producing combination of singlet oxygen and amino acids might be a common cellular occurrence. This paper reviews the potential pathways of formation of singlet oxygen and ozone in vivo and also proposes some new pathways for singlet oxygen formation. Physiological consequences of the endogenous formation of these oxidants in human tissues are discussed, as well as examples of how dietary factors may promote or inhibit their generation and activity.

  12. Modulation of the Singlet Oxygen Generation from the Double Strand DNA-SYBR Green I Complex Mediated by T-Melamine-T Mismatch for Visual Detection of Melamine.

    Science.gov (United States)

    Hu, Hao; Zhang, Jinyi; Ding, Yu; Zhang, Xinfeng; Xu, Kailai; Hou, Xiandeng; Wu, Peng

    2017-05-02

    Singlet oxygen ( 1 O 2 ), generated via photosensitization, has been proved to oxidize chromogenic substrates with neither H 2 O 2 oxidation nor enzyme (horseradish peroxidase, HRP) catalysis. Of the various methods for modulation of the 1 O 2 generation, DNA-controlled photosensitization received great attention. Therefore, integration of the formation/deformation DNA structures with DNA-controlled photosensitization will be extremely appealing in visual biosensor developments. Here, the stable melamine-thymine complex was explored in combination with DNA-controlled photosensitization for visual detection of melamine. A T-rich single stand DNA was utilized as the recognition unit. Upon the formation of the T-M-T complex, double stand DNA was formed, which was ready for the binding of SYBR Green I and activated the photosensitization. Subsequent oxidation of TMB allowed visual detection of melamine in dairy products, with spike-recoveries ranging from 94% to 106%.

  13. Parabanic acid is the singlet oxygen specific oxidation product of uric acid.

    Science.gov (United States)

    Iida, Sayaka; Ohkubo, Yuki; Yamamoto, Yorihiro; Fujisawa, Akio

    2017-11-01

    Uric acid quenches singlet oxygen physically or reacts with it, but the oxidation product has not been previously characterized. The present study determined that the product is parabanic acid, which was confirmed by LC/TOFMS analysis. Parabanic acid was stable at acidic pH (acid at neutral or alkaline pH. The total yields of parabanic acid and oxaluric acid based on consumed uric acid were ~100% in clean singlet oxygen production systems such as UVA irradiation of Rose Bengal and thermal decomposition of 3-(1,4-dihydro-1,4-epidioxy-4-methyl-1-naphthyl)propionic acid. However, the ratio of the amount of uric acid consumed to the total amount of singlet oxygen generated was less than 1/180, indicating that most of the singlet oxygen was physically quenched. The total yields of parabanic acid and oxaluric acid were high in the uric acid oxidation systems with hydrogen peroxide plus hypochlorite or peroxynitrite. They became less than a few percent in peroxyl radical-, hypochlorite- or peroxynitrite-induced oxidation of uric acid. These results suggest that parabanic acid could be an in vivo probe of singlet oxygen formation because of the wide distribution of uric acid in human tissues and extracellular spaces. In fact, sunlight exposure significantly increased human skin levels of parabanic acid.

  14. Photosensitized production of singlet oxygen: spatially-resolved optical studies in single cells

    DEFF Research Database (Denmark)

    Breitenbach, Thomas; Kuimova, Marina; Gbur, Peter

    2009-01-01

    be monitored using viability assays. Time- and spatially-resolved optical measurements of both singlet oxygen and its precursor, the excited state sensitizer, reflect the complex and dynamic morphology of the cell. These experiments help elucidate photoinduced, oxygen-dependent events that compromise cell...

  15. Singlet Oxygen Generation as a Major Cause for Parasitic Reactions during Cycling of Aprotic Lithium-Oxygen Batteries

    OpenAIRE

    Mahne, Nika; Schafzahl, Bettina; Leypold, Christian; Leypold, Mario; Grumm, Sandra; Leitgeb, Anita; Strohmeier, Gernot A.; Wilkening, Martin; Fontaine, Olivier; Kramer, Denis; Slugovc, Christian; Borisov, Sergey M.; Freunberger, Stefan A.

    2017-01-01

    Non-aqueous metal-oxygen batteries depend critically on the reversible formation/decomposition of metal oxides on cycling. Irreversible parasitic reactions cause poor rechargeability, efficiency, and cycle life and have predominantly been ascribed to the reactivity of reduced oxygen species with cell components. These species, however, cannot fully explain the side reactions. Here we show that singlet oxygen forms at the cathode of a lithium-oxygen cell during discharge and from the onset of ...

  16. Reactivity differences of combined and free amino acids: quantifying the relationship between three-dimensional protein structure and singlet oxygen reaction rates.

    Science.gov (United States)

    Lundeen, Rachel A; McNeill, Kristopher

    2013-12-17

    It has long been appreciated that the photooxidation kinetics of amino acid (AA) residues in an intact protein differ from those of free AAs due to differences in the local steric microenvironment, such as its location in the three-dimensional structure. Yet there are only a few studies that have quantified the effect of protein structure on the photochemical reactivity of its residues. This is important for predicting phototransformation rates of AAs in aquatic environments where AAs in combined forms (e.g., oligopeptides and proteins) are more abundant than free AAs. In this work, the photochemical reactivity differences between free and combined AAs were assessed. Singlet oxygen ((1)O2) reaction kinetics of individual photooxidizable residues in the protein glyceraldehyde-3-phosphate dehydrogenase (GAPDH) were examined. The results suggest that the (1)O2 accessibility of residues in intact GAPDH has a profound effect on their photodegradation kinetics and for histidine residues can explain most of the variation in (1)O2 reactivity. Additionally, (1)O2-accessibile surface area values of residues calculated from protein crystal structure data are useful in predicting their reaction rates in GAPDH. This work illustrates a new approach to assess the differential photochemical reactivity of AA-based biomolecules in natural environments or engineered applications.

  17. Molecular Tuning of Phenylene-Vinylene Derivatives for Two-Photon Photosensitized Singlet Oxygen Production

    DEFF Research Database (Denmark)

    Nielsen, Christian B.; Arnbjerg, Jacob; Johnsen, Mette

    2009-01-01

    that can deviate from the norm, a full investigation of the photophysical properties of the system is generally required. For example, it is acknowledged that the introduction of a ketone moiety to the sensitizer chromophore often results in more efficient production of singlet oxygen. However, we show...... here that the introduction of a carbonyl into a given phenylene-vinylene can, rather, have adverse effects on the yield of singlet oxygen produced. Using these molecules, we show that care must also be exercised when using qualitative symmetry-derived arguments to predict the relationship between one...

  18. Inactivation of Neurospora crassa conidia by singlet molecular oxygen generated by a photosensitized reaction

    International Nuclear Information System (INIS)

    Shimizu, M.; Egashira, T.; Takahama, U.

    1979-01-01

    Photodynamic damage of Neurospora crassa conidia was studied in the presence of the photosensitizing dye, toluidine blue O. Conidia which germinated to form colonies decreased in number as irradiation time became longer. The photoinactivation of conidia was suppressed by azide, bovine serum albumin, and histidine, and was stimulated in deuterium oxide. Wild-type conidia were less sensitive to the irradiation that albino conidia. In the wild type, carotenoid-enriched conidia were more resistant against the lethal damage than the conidia which contained small amounts of carotenoids. These results suggest that singlet molecular oxygen causes photodynamic lethal damage to N. crassa conidia and that singlet molecular oxygen is quenched by endogenous carotenoids

  19. Reactive species formed on proteins exposed to singlet oxygen

    DEFF Research Database (Denmark)

    Davies, Michael Jonathan

    2004-01-01

    hydroperoxides, which can be reduced to the corresponding alcohols; other products arising from radical intermediates can also be generated, particularly in the presence of UV light and metal ions. With His side-chains, poorly characterised peroxides are also formed. Reaction with Met and Cys has been proposed...... to occur via zwitterionic peroxy intermediates. Peroxides are also generated on isolated proteins, and protein within intact cells, via(1)O(2)-mediated reactions. The peroxides formed on Trp, Tyr, and His peptides, as well as on proteins, have been shown to induce damage to other targets, with molecular...... oxidation of thiol residues an important reaction. This can result in the inactivation of cellular enzymes and the oxidation of other biological targets. Protein cross-linking and aggregation can also be induced by reactive species formed on photo-oxidised proteins, though the nature of the species...

  20. Optical monitoring of singlet oxygen generation during photodynamic treatment of tumors

    International Nuclear Information System (INIS)

    Optical detection of singlet oxygen production accompanying continuous-wave (CW) laser irradiation of subcutaneous murine tumors at 630 nm following prior intraperitoneal injection of a Photofrin II sensitizer has been demonstrated. In order to separate the spectrally discrete, time-delayed, singlet oxygen emission from the dominant, spectrally diffuse, coherent background provided by the combination of sensitizer infrared fluorescence and tissue-related autofluorescence, chopping of the incident laser beam was required. Using the infrared fluorescence to provide a reference, the singlet oxygen emission is shown to be given directly by the frequency-dependent quadrature component of the detector output. Maximum detector quadrature output for the in vivo case was obtained for a chopping frequency between 10 and 20 kHz. The spectral variation of the emission from the tumor was obtained and identified as that characteristic of singlet oxygen. This demonstration provides the rationale for the development of a clinically useful electro-optical system to provide a realistic means for monitoring treatment effectiveness during the photodynamic therapy of tumors as well as the establishment of much-needed dosimetry standards. It is expected that, in the future, development of this capbility will provide an analytical, quantitative means to remove some of the mysteries now impeding progress in this important area of medicine

  1. Laser-induced generation of singlet oxygen and its role in the cerebrovascular physiology

    Science.gov (United States)

    Semyachkina-Glushkovskaya, O. V.; Sokolovski, S. G.; Goltsov, A.; Gekaluyk, A. S.; Saranceva, E. I.; Bragina, O. A.; Tuchin, V. V.; Rafailov, E. U.

    2017-09-01

    For over 55 years, laser technology has expanded from laboratory research to widespread fields, for example telecommunication and data storage amongst others. Recently application of lasers in biology and medicine presents itself as one of the emerging areas. In this review, we will outline the recent advances in using lasers for the generation of singlet oxygen, traditionally used to kill tumour cells or induce thrombotic stroke model due to damage vascular effects. Over the last two decade, completely new results on cerebrovascular effects of singlet oxygen generated during photodynamic therapy (PDT) have been shown alongside promising applications for delivery of drugs and nanoparticles into the brain for therapy of brain cancer. Furthermore, a ;gold key; has been found to overcome the limitations of PDT, such as low light penetration and high toxicity of photosensitizers, by direct generation of singlet oxygen using quantum-dot laser diodes emitting in the near infrared (NIR) spectral range. It is our motivation to highlight these pioneering results in this review, to improve understanding of the biological role of singlet oxygen and to provide new perspectives for improving clinical application of laser based therapy in further research.

  2. Voltage-sensitive styryl dyes as singlet oxygen targets on the surface of bilayer lipid membrane.

    Science.gov (United States)

    Sokolov, V S; Gavrilchik, A N; Kulagina, A O; Meshkov, I N; Pohl, P; Gorbunova, Yu G

    2016-08-01

    Photosensitizers are widely used as photodynamic therapeutic agents killing cancer cells by photooxidation of their components. Development of new effective photosensitive molecules requires profound knowledge of possible targets for reactive oxygen species, especially for its singlet form. Here we studied photooxidation of voltage-sensitive styryl dyes (di-4-ANEPPS, di-8-ANEPPS, RH-421 and RH-237) by singlet oxygen on the surface of bilayer lipid membranes commonly used as cell membrane models. Oxidation was induced by irradiation of a photosensitizer (aluminum phthalocyanine tetrasulfonate) and monitored by the change of dipole potential on the surface of the membrane. We studied the drop of the dipole potential both in the case when the dye molecules were adsorbed on the same side of the lipid bilayer as the photosensitizer (cis-configuration) and in the case when they were adsorbed on the opposite side (trans-configuration). Based on a simple model, we determined the rate of oxidation of the dyes from the kinetics of change of the potential during and after irradiation. This rate is proportional to steady-state concentration of singlet oxygen in the membrane under irradiation. Comparison of the oxidation rates of various dyes reveals that compounds of ANEPPS series are more sensitive to singlet oxygen than RH type dyes, indicating that naphthalene group is primarily responsible for their oxidation. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Graphene oxide functionalized with methylene blue and its performance in singlet oxygen generation

    Energy Technology Data Exchange (ETDEWEB)

    Wojtoniszak, M., E-mail: mwojtoniszak@zut.edu.pl [West Pomeranian University of Technology in Szczecin, Institute of Chemical and Environment Engineering, Pulaskiego 10, 70-322 Szczecin (Poland); Rogińska, D.; Machaliński, B. [Pomeranian Medical University, Department of General Pathology, Powstańców Wlkp. 72, 70-111 Szczecin (Poland); Drozdzik, M. [Pomeranian Medical University, Department of Pharmacology, Powstańców Wlkp. 72, 70-111 Szczecin (Poland); Mijowska, E. [West Pomeranian University of Technology in Szczecin, Institute of Chemical and Environment Engineering, Pulaskiego 10, 70-322 Szczecin (Poland)

    2013-07-15

    Graphical abstract: - Highlights: • Adsorption of methylene blue (MB) on graphene oxide (GO). • Characterization of graphene oxide–methylene blue nanocomposite (MB–GO). • Examination of MB–GO efficiency in singlet oxygen generation (SOG). • MB–GO performs higher SOG efficiency than pristine MB. - Abstract: Due to unique electronic, mechanical, optical and structural properties, graphene has shown promising applications in many fields, including biomedicine. One of them is noninvasive anticancer therapy – photodynamic therapy (PDT), where singlet oxygen (SO), generated under the irradiation of light with appropriate wavelengths, kills cancer cells. In this study, authors report graphene oxide (GO) noncovalent functionalization with methylene blue (MB). MB molecules underwent adsorption on the surface of GO. Detailed characterization of the obtained material was carried out with UV–vis spectroscopy, Raman spectroscopy, FT-IR spectroscopy, and confocal laser scanning microscopy. Furthermore, its performance in singlet oxygen generation (SOG) under irradiation of laser with excitation wavelengths of 785 nm was investigated. Interestingly, GO functionalized with MB (MB–GO) showed enhanced efficiency in singlet oxygen generation compared to pristine MB. The efficiency in SOG was detected by photobleaching of 9,10-anthracenediyl-bis(methylene)dimalonic acid (ABMDMA). These results indicate the material is promising in PDT anticancer therapy and further in vitro and in vivo studies are required.

  4. Phosphorescence dynamics of singlet oxygen and Radachlorin photosensitizer in aqueous solution

    Science.gov (United States)

    Belik, V. P.; Beltukova, D. M.; Gadzhiev, I. M.; Semenova, I. V.; Vasyutinskii, O. S.

    2017-07-01

    The luminescence spectrum of aqueous solution of Radachlorin photosensitizer in the near IR spectral range (950-1350 nm) has been determined at the excitation in both the Soret and Q absorption bands. Major sources of the recorded luminescence were analyzed. Kinetics of photosensitizer and singlet oxygen phosphorescence signals were studied by means of time-resolved spectroscopy. The corresponding characteristic lifetimes were determined.

  5. Impact of photosensitized oxidation and singlet oxygen on degradation of stabilized polymers

    Czech Academy of Sciences Publication Activity Database

    Pospíšil, Jan; Nešpůrek, Stanislav; Pilař, Jan

    2008-01-01

    Roč. 93, č. 9 (2008), s. 1681-1688 ISSN 0141-3910 R&D Projects: GA AV ČR IAA100100622; GA AV ČR KAN400720701; GA AV ČR IAA400500804 Institutional research plan: CEZ:AV0Z40500505 Keywords : photosensitized oxidation * singlet molecular oxygen * oxygenation Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.320, year: 2008

  6. CHEMICAL OXYGEN-IODINE LASER BASED ON HIGH PRESSURE SINGLET GENERATOR

    OpenAIRE

    Zagidullin, M.; Nikolaev, V.; Kurov, A.; Svistun, M.; Yerasov, N.

    1991-01-01

    The singlet oxygen generator based on the injection of jets of the base hydrogen peroxide solution into chlorine flow has been developed. The optimal parameters of the jet generator were found to achieve efficient chlorine uti1ization and high [MATH] yield up to the pressures of 30 torr. The chemical oxygen-iodine laser performance without water vapor trap up to 30 torr of the generator pressure has been attained.

  7. Scavenging or Quenching Effect of Melanin on Superoxide Anion and Singlet Oxygen

    Science.gov (United States)

    Tada, Mika; Kohno, Masahiro; Niwano, Yoshimi

    2010-01-01

    Although photoprotective properties of skin melanin have been well documented, a few studies on the effect of melanin on reactive oxygen species (ROS) generated by ultraviolet (UV) irradiation have been reported. To study the interaction of melanin with ROS, scavenging or quenching effect of melanin on O2•− and 1O2 was examined by electron spin resonance (ESR)-spin trapping methods and a spectrophotometric method, respectively. Melanin potently interacted with O2•− generated in a hypoxanthine (HPX)-xanthine oxidase (XOD) reaction, and with 1O2 generated from a peroxidase, H2O2, and halide system. In the HPX-XOD reaction, it was proved that melanin doses not interfere with the enzyme reaction. It is confirmed that one of the mechanisms by which melanin protects UV-induced skin damage is likely scavenging or quenching activity against ROS such as O2•− and 1O2. PMID:20490317

  8. Volume 1: The Solid-Gas Singlet Delta Oxygen Generator

    National Research Council Canada - National Science Library

    Alfano, Angelo

    2004-01-01

    ...: a) construction of a Raman diagnostic system for the simultaneous measurement of excited and ground state oxygen in gas-solid reactions between solid peroxides and hydrogen halides or chlorine gas, b...

  9. Singlet oxygen mediated DNA degradation by copper nanoparticles: potential towards cytotoxic effect on cancer cells

    Directory of Open Access Journals (Sweden)

    Sengupta Tapas K

    2011-03-01

    Full Text Available Abstract The DNA degradation potential and anti-cancer activities of copper nanoparticles of 4-5 nm size are reported. A dose dependent degradation of isolated DNA molecules by copper nanoparticles through generation of singlet oxygen was observed. Singlet oxygen scavengers such as sodium azide and Tris [hydroxyl methyl] amino methane were able to prevent the DNA degradation action of copper nanoparticles confirming the involvement of activated oxygen species in the degradation process. Additionally, it was observed that the copper nanoparticles are able to exert cytotoxic effect towards U937 and Hela cells of human histiocytic lymphoma and human cervical cancer origins, respectively by inducing apoptosis. The growth characteristics of U937 and Hela cells were studied applying various concentrations of the copper nanoparticles.

  10. Singlet oxygen mediated DNA degradation by copper nanoparticles: potential towards cytotoxic effect on cancer cells.

    Science.gov (United States)

    Jose, Gregor P; Santra, Subhankar; Mandal, Swadhin K; Sengupta, Tapas K

    2011-03-25

    The DNA degradation potential and anti-cancer activities of copper nanoparticles of 4-5 nm size are reported. A dose dependent degradation of isolated DNA molecules by copper nanoparticles through generation of singlet oxygen was observed. Singlet oxygen scavengers such as sodium azide and Tris [hydroxyl methyl] amino methane were able to prevent the DNA degradation action of copper nanoparticles confirming the involvement of activated oxygen species in the degradation process. Additionally, it was observed that the copper nanoparticles are able to exert cytotoxic effect towards U937 and Hela cells of human histiocytic lymphoma and human cervical cancer origins, respectively by inducing apoptosis. The growth characteristics of U937 and Hela cells were studied applying various concentrations of the copper nanoparticles.

  11. Production of Singlet Oxygen in a Non-Self-Sustained Discharge

    International Nuclear Information System (INIS)

    Vasil'eva, A.N.; Klopovskii, K.S.; Kovalev, A.S.; Lopaev, D.V.; Mankelevich, Yu.A.; Popov, N.A.; Rakhimov, A.T.; Rakhimova, T.V.

    2005-01-01

    The production of O 2 (a 1 Δ g ) singlet oxygen in non-self-sustained discharges in pure oxygen and mixtures of oxygen with noble gases (Ar or He) was studied experimentally. It is shown that the energy efficiency of O 2 (a 1 Δ g ) production can be optimized with respect to the reduced electric field E/N. It is shown that the optimal E/N values correspond to electron temperatures of 1.2-1.4 eV. At these E/N values, a decrease in the oxygen percentage in the mixture leads to an increase in the excitation rate of singlet oxygen because of the increase in the specific energy deposition per O 2 molecule. The onset of discharge instabilities not only greatly reduces the energy efficiency of singlet oxygen production but also makes it impossible to achieve high energy deposition in a non-self-sustained discharge. A model of a non-self-sustained discharge in pure oxygen is developed. It is shown that good agreement between the experimental and computed results for a discharge in oxygen over a wide range of reduced electric fields can be achieved only by taking into account the ion component of the discharge current. The cross section for the electron-impact excitation of O 2 (a 1 Δ g ) and the kinetic scheme of the discharge processes with the participation of singlet oxygen are verified by comparing the experimental and computed data on the energy efficiency of the production of O 2 (a 1 Δ g ) and the dynamics of its concentration. It is shown that, in the dynamics of O 2 (a 1 Δ g ) molecules in the discharge afterglow, an important role is played by their deexcitation in a three-body reaction with the participation of O( 3 P) atoms. At high energy depositions in a non-self-sustained discharge, this reaction can reduce the maximal attainable concentration of singlet oxygen. The effect of a hydrogen additive to an Ar : O 2 mixture is analyzed based on the results obtained using the model developed. It is shown that, for actual electron beam current densities, a

  12. Marked improvement in photoinduced cell death by a new tris-heteroleptic complex with dual action: singlet oxygen sensitization and ligand dissociation.

    Science.gov (United States)

    Albani, Bryan A; Peña, Bruno; Leed, Nicholas A; de Paula, Nataly A B G; Pavani, Christiane; Baptista, Mauricio S; Dunbar, Kim R; Turro, Claudia

    2014-12-10

    The new tris-heteroleptic complex [Ru(bpy)(dppn)(CH3CN)2](2+) (3, bpy = 2,2'-bipyridine, dppn = benzo[i]dipyrido[3,2-a;2',3'-c]phenazine) was synthesized and characterized in an effort to generate a molecule capable of both singlet oxygen ((1)O2) production and ligand exchange upon irradiation. Such dual reactivity has the potential to be useful for increasing the efficacy of photochemotherapy drugs by acting via two different mechanisms simultaneously. The photochemical properties and photoinduced cytotoxicity of 3 were compared to those of [Ru(bpy)2(dppn)](2+) (1) and [Ru(bpy)2(CH3CN)2](2+) (2), since 1 sensitizes the production of (1)O2 and 2 undergoes ligand exchange of the monodentate CH3CN ligands with solvent when irradiated. The quantum yield of (1)O2 production was measured to be 0.72(2) for 3 in methanol, which is slightly lower than that of 1, Φ = 0.88(2), in the same solvent (λirr = 460 nm). Complex 3 also undergoes photoinduced ligand exchange when irradiated in H2O (λirr = 400 nm), but with a low quantum efficiency (action complex is more photoactive toward cells in spite of its low ligand exchange quantum yield.

  13. Singlet oxygen production by combining erythrosine and halogen light for photodynamic inactivation of Streptococcus mutans.

    Science.gov (United States)

    Fracalossi, Camila; Nagata, Juliana Yuri; Pellosi, Diogo Silva; Terada, Raquel Sano Suga; Hioka, Noboru; Baesso, Mauro Luciano; Sato, Francielle; Rosalen, Pedro Luiz; Caetano, Wilker; Fujimaki, Mitsue

    2016-09-01

    Photodynamic inactivation of microorganisms is based on a photosensitizing substance which, in the presence of light and molecular oxygen, produces singlet oxygen, a toxic agent to microorganisms and tumor cells. This study aimed to evaluate singlet oxygen quantum yield of erythrosine solutions illuminated with a halogen light source in comparison to a LED array (control), and the photodynamic effect of erythrosine dye in association with the halogen light source on Streptococcus mutans. Singlet oxygen quantum yield of erythrosine solutions was quantified using uric acid as a chemical-probe in an aqueous solution. The in vitro effect of the photodynamic antimicrobial activity of erythrosine in association with the halogen photopolimerizing light on Streptococcus mutans (UA 159) was assessed during one minute. Bacterial cultures treated with erythrosine alone served as negative control. Singlet oxygen with 24% and 2.8% degradation of uric acid in one minute and a quantum yield of 0.59 and 0.63 was obtained for the erythrosine samples illuminated with the halogen light and the LED array, respectively. The bacterial cultures with erythrosine illuminated with the halogen light presented a decreased number of CFU mL(-1) in comparison with the negative control, with minimal inhibitory concentrations between 0.312 and 0.156mgmL(-1). The photodynamic response of erythrosine induced by the halogen light was capable of killing S. mutans. Clinical trials should be conducted to better ascertain the use of erythrosine in association with halogen light source for the treatment of dental caries. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Bactericidal nanofabrics based on photoproduction of singlet oxygen

    Czech Academy of Sciences Publication Activity Database

    Mosinger, Jiří; Jirsák, O.; Kubát, Pavel; Lang, Kamil; Mosinger, B.

    2007-01-01

    Roč. 17, č. 2 (2007), s. 164-166 ISSN 0959-9428 R&D Projects: GA ČR GA203/04/0426; GA ČR(CZ) GA203/06/1244 Institutional research plan: CEZ:AV0Z40320502; CEZ:AV0Z40400503 Keywords : molecular-oxygen * nanofibers * porphyrin Subject RIV: CA - Inorganic Chemistry Impact factor: 4.339, year: 2007

  15. Singlet Oxygen Imaging in Polymeric Nanofibers by Delayed Fluorescence

    Czech Academy of Sciences Publication Activity Database

    Mosinger, J.; Lang, Kamil; Hostomský, Jiří; Franc, Jiří; Sýkora, Jan; Hof, Martin; Kubát, Pavel

    2010-01-01

    Roč. 114, č. 48 (2010), s. 15773-15779 ISSN 1520-6106 R&D Projects: GA ČR GA203/08/0831; GA ČR GAP208/10/1678 Institutional research plan: CEZ:AV0Z40320502; CEZ:AV0Z40400503 Keywords : molecular-oxygen * meso-tetralylporphyrins * photodynamic therapy Subject RIV: CA - Inorganic Chemistry Impact factor: 3.603, year: 2010

  16. Functionalizing carbon nitride with heavy atom-free spin converters for enhanced 1 O 2 generation

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Wenting; Han, Congcong; Zhang, Qinhua; Zhang, Qinggang; Li, Zhongtao; Gosztola, David J.; Wiederrecht, Gary P.; Wu, Mingbo

    2018-05-01

    advanced photosensitizers for singlet oxygen (1O2) generation. However, the intersystem crossing (ISC) process is quite insufficient in carbon nitride, limiting the 1O2 generation. Here, we report a facile and general strategy to confined benzophenone as a heavy atom-free spin converter dopant in carbon nitride via the facile copolymerization. With proper energy level matching between the heavy atom-free spin converter and various ligands based on carbon nitride precursors, the proper combination can decrease the singlet-triplet energy gap (DEST) and hence generate 1O2 effectively. Due to its significant and selectivity for 1O2 generation, the as-prepared carbon nitride-based photosensitizer shows a high selective photooxidation activity for 1,5-dihydroxy-naphthalene (1,5-DHN). The product yield reached 71.8% after irradiation for 60 min, which was higher than that of cyclometalated PtII complexes (53.6%) in homogeneous photooxidation. This study can broaden the application of carbon nitride in the field of selective heterogeneous photooxidation due to simple operation, low cost, and high efficiency, making it a strong candidate for future industrialization.

  17. Inhibition of glyceraldehyde-3-phosphate dehydrogenase by peptide and protein peroxides generated by singlet oxygen attack

    DEFF Research Database (Denmark)

    Morgan, Philip E; Dean, Roger T; Davies, Michael Jonathan

    2002-01-01

    Reaction of certain peptides and proteins with singlet oxygen (generated by visible light in the presence of rose bengal dye) yields long-lived peptide and protein peroxides. Incubation of these peroxides with glyceraldehyde-3-phosphate dehydrogenase, in the absence of added metal ions, results......, with a stoichiometry of two thiols lost per peroxide consumed. Blocking the thiol residues prevents reaction with the peroxide. This stoichiometry, the lack of metal-ion dependence, and the absence of electron paramagnetic resonance (EPR)-detectable species, is consistent with a molecular (nonradical) reaction between...... inhibited by these peroxides in the absence of added Fe2+-EDTA. The presence of this metal-ion complex enhanced the inhibition observed with these enzymes consistent with the occurrence of radical-mediated reactions. Overall, these studies demonstrate that singlet oxygen-mediated damage to an initial target...

  18. Lycopene inhibits the isomerization of β-carotene during quenching of singlet oxygen and free radicals.

    Science.gov (United States)

    Heymann, Thomas; Heinz, Philipp; Glomb, Marcus A

    2015-04-01

    The present study aimed to investigate the influence of singlet oxygen and radical species on the isomerization of carotenoids. On the one hand, lycopene and β-carotene standards were incubated with 1,4-dimethylnaphthalene-1,4-endoperoxide that produced singlet oxygen in situ. (13Z)- and (15Z)-β-carotene were preferentially generated at low concentrations of singlet oxygen, while high concentrations resulted in formation of (9Z)-β-carotene. The addition of different concentrations of lycopene led to the same isomerization progress of β-carotene, but resulted in a decreased formation of (9Z)-β-carotene and retarded degradation of (all-E)-β-carotene. On the other hand, isomerization of β-carotene and lycopene was induced by ABTS-radicals, too. As expected from the literature, chemical quenching was observed especially for lycopene, while physical quenching was preferred for β-carotene. Mixtures of β-carotene and lycopene resulted in a different isomerization progress compared to the separate β-carotene model. As long as lycopene was present, almost no isomerization of β-carotene was triggered; after that, strong formation of (13Z)-, (9Z)-, and (15Z)-β-carotene was initiated. In summary, lycopene protected β-carotene against isomerization during reactions with singlet oxygen and radicals. These findings can explain the pattern of carotenoid isomers analyzed in fruits and vegetables, where lycopene containing samples showed higher (all-E)/(9Z)-β-carotene ratios, and also in in vivo samples such as human blood plasma.

  19. Time and spectral resolved phosphorescence of singlet oxygen and pigments in photosystem II particles

    Czech Academy of Sciences Publication Activity Database

    Dědic, R.; Svoboda, A.; Pšenčík, J.; Lupínková, Lenka; Komenda, Josef; Hála, J.

    2003-01-01

    Roč. 102, - (2003), s. 313-317 ISSN 0022-2313 R&D Projects: GA ČR GA203/00/1257; GA MŠk LN00A141 Grant - others:GA ČR(CZ) GP202/01/D100 Institutional research plan: CEZ:MSM 113200001 Keywords : singlet oxygen phosphorescence * triplet kinetics Subject RIV: BO - Biophysics Impact factor: 1.314, year: 2003

  20. Roles of singlet oxygen and triplet excited state of dissolved organic matter formed by different organic matters in bacteriophage MS2 inactivation

    KAUST Repository

    Rosado-Lausell, Sahid L.

    2013-09-01

    Inactivation of bacteriophage MS2 by reactive oxygen species (ROS) and triplet excited state of dissolved organic matter (3DOM*) produced by irradiation of natural and synthetic sensitizers with simulated sunlight of wavelengths greater than 320nm was investigated. Natural sensitizers included purified DOM isolates obtained from wastewater and river waters, and water samples collected from Singapore River, Stamford Canal, and Marina Bay Reservoir in Singapore. Linear correlations were found between MS2 inactivation rate constants (kobs) and the photo-induced reaction rate constants of 2,4,6-trimethylphenol (TMP), a probe compound shown to react mainly with 3DOM*. Linear correlations between MS2 kobs and singlet oxygen (1O2) concentrations were also found for both purified DOM isolates and natural water samples. These correlations, along with data from quenching experiments and experiments with synthetic sensitizers, Rose Bengal (RB), 3\\'-methoxyacetophenone (3\\'-MAP), and nitrite (NO2-), suggest that 1O2, 3DOM*, and hydroxyl radicals (•OH) could inactivate bacteriophage MS2. Linear correlations between MS2 kobs and Specific Ultraviolet Absorption determined at 254nm (SUVA254) were also found for both purified DOM isolates and natural samples. These results suggest the potential use of TMP as a chemical probe and SUVA254 as an indicator for virus inactivation in natural and purified DOM water samples. © 2013 Elsevier Ltd.

  1. Bovine Serum Albulmin Protein-Templated Silver Nanocluster (BSA-Ag13): An Effective Singlet Oxygen Generator for Photodynamic Cancer Therapy.

    Science.gov (United States)

    Yu, Yong; Geng, Junlong; Ong, Edward Yong Xi; Chellappan, Vijila; Tan, Yen Nee

    2016-10-01

    This paper reports a novel synthesis approach of bovine serum albumin (BSA) protein-templated ultrasmall (BSA-Ag 13 NC (i.e., 13 Ag atoms per cluster) is successfully synthesized for the first time by using NaOH-dissolved NaBH 4 solution as the controlling reducing agent. The ubiquitous size of BSA-Ag 13 NC results in unique behaviors of its photoexcited states as characterized by the ultrafast laser spectroscopy using time-correlated single photon counting and transient absorption techniques. In particular, triply excited states can be largely present in the excited BSA-Ag 13 NC and readily sensitized molecular oxygen to produce singlet oxygen ( 1 O 2 ) with a high quantum efficiency (≈1.26 using Rose Bengal as a standard). This value is much higher than its Au analogue (i.e., ≈0.07 for BSA-Au 25 NC) and the commonly available photosensitizers. Due to the good cellular uptake and inherent biocompatibility imparted by the surface protein, BSA-Ag 13 NC can be applied as an effective PDT agent in generating 1 O 2 to kill cancer cell as demonstrated in this study. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Singlet oxygen generation during the oxidation of L-tyrosine and L-dopa with mushroom tyrosinase

    Energy Technology Data Exchange (ETDEWEB)

    Miyaji, Akimitsu [Department of Environmental Chemistry and Engineering, Tokyo Institute of Technology, 4259-G1-14, Nagatsuta-cho, Midori-ku, Yokohama 226-8502 (Japan); Kohno, Masahiro [Department of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259-G1-25 Nagatsuta-cho, Midori-ku, Yokohama 226-8502 (Japan); Inoue, Yoshihiro [Showa Pharmaceutical University, 3-3165 Higashi-tamagawagakuen, Machida, Tokyo 194-8543 (Japan); Baba, Toshihide, E-mail: tbaba@chemenv.titech.ac.jp [Department of Environmental Chemistry and Engineering, Tokyo Institute of Technology, 4259-G1-14, Nagatsuta-cho, Midori-ku, Yokohama 226-8502 (Japan)

    2016-03-18

    The generation of singlet oxygen during the oxidation of tyrosine and L-dopa using mushroom tyrosinase in a phosphate buffer (pH 7.4), the model of melanin synthesis in melanocytes, was examined. The reaction was performed in the presence of 2,2,6,6-tetramethyl-4-piperidone (4-oxo-TEMP), an acceptor of singlet oxygen and the electron spin resonance (ESR) of the spin adduct, 4-oxo-2,2,6,6-tetramethyl-1-piperidinyloxy (4-oxo-TEMPO), was measured. An increase in the ESR signal attributable to 4-oxo-TEMPO was observed during the oxidation of tyrosine and L-dopa with tyrosinase, indicating the generation of singlet oxygen. The results suggest that {sup 1}O{sub 2} generation via tyrosinase-catalyzed melanin synthesis occurs in melanocyte. - Highlights: • Generation of singlet oxygen was observed during tyrosinase-catalyzed tyrosine oxidation. • The singlet oxygen generated when tyrosine was converted into dopachrome. • The amount of singlet oxygen is not sufficient for cell toxicity. • It decreased when the hydroxyl radicals and/or superoxide anions were trapped.

  3. Pulsed electron-beam-sustained discharge in oxygen-containing gas mixtures: electrical characteristics, spectroscopy,and singlet oxygen yield

    International Nuclear Information System (INIS)

    Vagin, Nikolai P; Ionin, Andrei A; Klimachev, Yu M; Kotkov, A A; Podmar'kov, Yu P; Seleznev, L V; Sinitsyn, D V; Frolov, M P; Yuryshev, Nikolai N; Kochetov, Igor' V; Napartovich, A P; Hager, G D

    2004-01-01

    The electrical and spectroscopic characteristics of electron-beam-sustained discharge (EBSD) in oxygen and oxygen-containing gas mixtures are studied experimentally under gas pressures up to 100 Torr in a large excitation volume (∼18 L). It is shown that the EBSD in pure oxygen and its mixtures with inert gases is unstable and is characterised by a small specific energy contribution. The addition of small amounts (∼1%-10%) of carbon monoxide or hydrogen to oxygen or its mixtures with inert gases considerably improves the stability of the discharge, while the specific energy contribution W increases by more then an order of magnitude, achieving ∼6.5 kJ L -1 atm -1 per molecular component of the gas mixture. A part of the energy supplied to the EBSD is spent to excite vibrational levels of molecular additives. This was demonstrated experimentally by the initiation of a CO laser based on the O 2 : Ar : CO = 1 : 1 : 0.1 mixture. Experimental results on spectroscopy of the excited electronic states O 2 (a 1 Δ g ) and O 2 (b 1 Σ g + ), of oxygen formed in the EBSD are presented. A technique was worked out for measuring the concentration of singlet oxygen in the O 2 (a 1 Δ g ) state in the afterglow of the pulsed EBSD by comparing with the radiation intensity of singlet oxygen of a given concentration produced in a chemical generator. Preliminary measurements of the singlet-oxygen yield in the EBSD show that its value ∼3% for W ∼ 1.0 kJ L -1 atm -1 is in agreement with the theoretical estimate. Theoretical calculations performed for W ∼ 6.5 kJ L -1 atm -1 at a fixed temperature show that the singlet-oxygen yield may be ∼20%, which is higher than the value required to achieve the lasing threshold in an oxygen-iodine laser at room temperature. (laser applications and other topics in quantum electronics)

  4. Efficiency factors of singlet oxygen generation from core-modified expanded porphyrin: tetrathiarubyrin in ethanol

    CERN Document Server

    Ha, J H; Kim, Y R; Jung, G Y; Lee, Y H; Shin, K

    2001-01-01

    The photophysical properties and the singlet oxygen generation efficiency of tetrathiarubyrin have been investigated to elucidate the possibility of its use as a photodynamic therapy (PDT) photosensitizer by steady-state and time-resolved spectroscopic methods. The observed photophysical properties were affected by various molecular aspects, such as extended pi conjugation, structural distortion, and internal heavy atom. The steady-state electronic absorption spectrum was red-shifted due to the extended pi-conjugation, and the spin orbital coupling was enhanced by the structural distortion and the internal heavy atom effect. As a result of the enhanced spin orbital coupling, the triplet quantum yield increased to 0.90 +- 0.10 and the triplet state lifetime was shortened to 7.0 +- 1.2 mu s. Since the triplet state decays at a relatively faster rate, the efficiency of the oxygen quenching of the triplet state decreases. The singlet oxygen quantum yield was estimated to be 0.52 +- 0.02, which is somewhat lower t...

  5. Photodynamic biofilm inactivation by SAPYR--an exclusive singlet oxygen photosensitizer.

    Science.gov (United States)

    Cieplik, Fabian; Späth, Andreas; Regensburger, Johannes; Gollmer, Anita; Tabenski, Laura; Hiller, Karl-Anton; Bäumler, Wolfgang; Maisch, Tim; Schmalz, Gottfried

    2013-12-01

    Prevention and control of biofilm-growing microorganisms are serious problems in public health due to increasing resistances of some pathogens against antimicrobial drugs and the potential of these microorganisms to cause severe infections in patients. Therefore, alternative approaches that are capable of killing pathogens are needed to supplement standard treatment modalities. One alternative is the photodynamic inactivation of bacteria (PIB). The lethal effect of PIB is based on the principle that visible light activates a photosensitizer, leading to the formation of reactive oxygen species, e.g., singlet oxygen, which induces phototoxicity immediately during illumination. SAPYR is a new generation of photosensitizers. Based on a 7-perinaphthenone structure, it shows a singlet oxygen quantum yield ΦΔ of 99% and is water soluble and photostable. Moreover, it contains a positive charge for good adherence to cell walls of pathogens. In this study, the PIB properties of SAPYR were investigated against monospecies and polyspecies biofilms formed in vitro by oral key pathogens. SAPYR showed a dual mechanism of action against biofilms: (I) it disrupts the structure of the biofilm even without illumination; (II) when irradiated, it inactivates bacteria in a polymicrobial biofilm after one single treatment with an efficacy of ≥ 99.99%. These results encourage further investigation on the potential of PIB using SAPYR for the treatment of localized infectious diseases. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Deletion of CGLD1 Impairs PSII and Increases Singlet Oxygen Tolerance of Green Alga Chlamydomonas reinhardtii

    Directory of Open Access Journals (Sweden)

    Jiale Xing

    2017-12-01

    Full Text Available The green alga Chlamydomonas reinhardtii is a key model organism for studying photosynthesis and oxidative stress in unicellular eukaryotes. Using a forward genetics approach, we have identified and characterized a mutant x32, which lacks a predicted protein named CGLD1 (Conserved in Green Lineage and Diatom 1 in GreenCut2, under normal and stress conditions. We show that loss of CGLD1 resulted in minimal photoautotrophic growth and PSII activity in the organism. We observed reduced amount of PSII complex and core subunits in the x32 mutant based on blue-native (BN/PAGE and immunoblot analysis. Moreover, x32 exhibited increased sensitivity to high-light stress and altered tolerance to different reactive oxygenic species (ROS stress treatments, i.e., decreased resistance to H2O2/or tert-Butyl hydroperoxide (t-BOOH and increased tolerance to neutral red (NR and rose bengal (RB that induce the formation of singlet oxygen, respectively. Further analysis via quantitative real-time PCR (qRT-PCR indicated that the increased singlet-oxygen tolerance of x32 was largely correlated with up-regulated gene expression of glutathione-S-transferases (GST. The phenotypical and physiological implications revealed from our experiments highlight the important roles of CGLD1 in maintaining structure and function of PSII as well as in protection of Chlamydomonas under photo-oxidative stress conditions.

  7. Single Molecule Atomic Force Microscopy Studies of Photosensitized Singlet Oxygen Behavior on a DNA Origami Template

    DEFF Research Database (Denmark)

    Helmig, Sarah Wendelboe; Rotaru, Alexandru; Arian, Dumitru

    2010-01-01

    DNA origami, the folding of a long single-stranded DNA sequence (scaffold strand) by hundreds of short synthetic oligonucleotides (staple strands) into parallel aligned helices, is a highly efficient method to form advanced self-assembled DNA-architectures. Since molecules and various materials can...... be conjugated to each of the short staple strands, the origami method offers a unique possibility of arranging molecules and materials in well-defined positions on a structured surface. Here we combine the action of light with AFM and DNA nanostructures to study the production of singlet oxygen from a single...

  8. The participation of singlet oxygen in a photocitotoxicity of extract from amazon plant to cancer cells

    Science.gov (United States)

    Tcibulnikova, Anna V.; Degterev, Igor A.; Bryukhanov, Valery V.; Roberto, Mantuanelly M.; Campos Pereira, F. D.; Marin-Morales, M. A.; Slezhkin, Vasily A.; Samusev, Ilya G.

    2018-01-01

    We have been searching for new photosensitizers (PS) for photodynamic therapy (PDT) of cancer based on extracts from Amazonian plants since 2009. In this paper, we demonstrate that, under certain conditions, the extract from fruits of the Amazonian palm Euterpe oleraceae (popular name Açaí) can serve as a PS for PDT treatment of murine breast cancer cells (4T1 cell line). We have been first to show directly that the photodynamic effect of plant PS is due to singlet oxygen.

  9. Singlet oxygen-induced mutations in M13 lacZ phage DNA.

    OpenAIRE

    Decuyper-Debergh, D; Piette, J; Van de Vorst, A

    1987-01-01

    The mutagenic consequences of damages to M13 mp19 RF DNA produced by singlet oxygen have been determined in a forward mutational system capable of detecting all classes of mutagenic events. When the damaged M13 mp19 RF DNA is used to transfect competent E. coli JM105 cells, a 16.6-fold increase in mutation frequency is observed at 5% survivors when measured as a loss of alpha-complementation. The enhanced mutagenicity is largely due to single-nucleotide substitutions, frameshift events and do...

  10. Enhanced red emission of 808 nm excited upconversion nanoparticles by optimizing the composition of shell for efficient generation of singlet oxygen

    Science.gov (United States)

    Liu, Jinxue; Zhang, Tingbin; Song, Xiaoyan; Xing, Jinfeng

    2018-01-01

    With the aim to enhance the upconversion luminescence (UCL) intensity, much attention was paid to reduce the energy-back transfer from Er3+ ions to Nd3+ ions by constructing various kinds of multilayer upconversion nanoparticles (UCNPs). However, the energy-back transfer was difficult to be completely eliminated. Also, the thick shell of multilayer UCNPs is not favourable for effective Förster resonance energy transfer (FRET) in photodynamic therapy (PDT) system. Herein, an effective and facile method was applied to prepare UCNPs by optimizing the composition to largely enhance the red emission (at 660 nm) for efficient generation of singlet oxygen (1O2). In detail, the concentrations of Nd3+ ions and Yb3+ ions doped in the sensitizing shell were systematically researched to balance the energy back-transfer and the light harvest ability. The optimal emission and a relatively high Red/Green (R/G) ratio of NaYF4:Yb,Er,Nd@NaYF4:Yb0.1Nd0.2 UCNPs were obtained simultaneously. Furthermore, the emission under 980 nm excitation demonstrated the energy back-transfer from Er3+ to Yb3+ ions was also notable which was largely ignored previously. Then, UCNPs were encapsulated into mesoporous silica shell, and the photosensitizer Chlorin e6 (Ce6) was covalently conjugated to form a non-leaking nanoplatform. The efficiency of 1O2 generation obviously increased with the enhanced emission of UCNPs.

  11. The role of Cercospora zeae-maydis homologs of Rhodobacter sphaeroides 1O2-resistance genes in resistance to the photoactivated toxin cercosporin.

    Science.gov (United States)

    Beseli, Aydin; Goulart da Silva, Marilia; Daub, Margaret E

    2015-01-01

    The photosynthetic bacterium Rhodobacter sphaeroides and plant pathogenic fungus Cercospora nicotianae have been used as models for understanding resistance to singlet oxygen ((1)O(2)), a highly toxic reactive oxygen species. In Rhodobacter and Cercospora, (1)O(2) is derived, respectively, from photosynthesis and from the (1)O(2)-generating toxin cercosporin which the fungus produces to parasitize plants. We identified common genes recovered in transcriptome studies of putative (1)O(2)-resistance genes in these two systems, suggesting common (1)O(2)-resistance mechanisms. To determine if the Cercospora homologs of R. sphaeroides (1)O(2)-resistance genes are involved in resistance to cercosporin, we expressed the genes in the cercosporin-sensitive fungus Neurospora crassa and assayed for increases in cercosporin resistance. Neurospora crassa transformants expressing genes encoding aldo/keto reductase, succinyl-CoA ligase, O-acetylhomoserine (thiol) lyase, peptide methionine sulphoxide reductase and glutathione S-transferase did not have elevated levels of cercosporin resistance. Several transformants expressing aldehyde dehydrogenase were significantly more resistant to cercosporin. Expression of the transgene and enzyme activity did not correlate with resistance, however. We conclude that although the genes tested in this study are important in (1)O(2) resistance in R. sphaeroides, their Cercospora homologs are not involved in resistance to (1)O(2) generated from cercosporin. © FEMS 2014. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Influence of nitrogen oxides NO and NO2 on singlet delta oxygen production in pulsed discharge

    International Nuclear Information System (INIS)

    Ionin, A A; Klimachev, Yu M; Kozlov, A Yu; Kotkov, A A; Rulev, O A; Seleznev, L V; Sinitsyn, D V; Vagin, N P; Yuryshev, N N; Kochetov, I V; Napartovich, A P

    2009-01-01

    The influence of nitrogen oxides NO and NO 2 on the specific input energy (SIE) and the time behaviour of singlet delta oxygen (SDO) luminescence excited by a pulsed e-beam sustained discharge in oxygen were experimentally and theoretically studied. NO and NO 2 addition into oxygen results in a small increase and decrease in the SIE, respectively, the latter being connected with a large energy of electron affinity to NO 2 . The addition of 0.1-0.3% nitrogen oxides was experimentally and theoretically demonstrated to result in a notable enhancement of the SDO lifetime, which is related to a decrease in the atomic oxygen concentration in afterglow. It was experimentally demonstrated that to get a high SDO concentration at the gas pressure 30-60 Torr for a time interval of less than ∼0.5 s one needs to add not less than 0.2% nitrogen oxides into oxygen. The temperature dependence of the relaxation constant for SDO quenching by unexcited oxygen was estimated by using experimental data on the time behaviour of SDO luminescence.

  13. UVA Photoirradiation of Oxygenated Benz[a]anthracene and 3-Methylcholanthene - Generation of Singlet Oxygen and Induction of Lipid Peroxidation

    Directory of Open Access Journals (Sweden)

    Diógenes Herreño Sáenz

    2008-03-01

    Full Text Available Polycyclic aromatic hydrocarbons (PAHs are widespread genotoxic environmental pollutants and potentially pose a health risk to humans. Although the biological and toxicological activities, including metabolism, mutagenicity, and carcinogenicity, of PAHs have been thoroughly studied, their phototoxicity and photo-induced biological activity have not been well examined. We have long been interested in phototoxicity of PAHs and their derivatives induced by irradiation with UV light. In this paper we report the photoirradiation of a series of oxygenated benz[a]anthracene (BA and 3-methylcholanthene (3-MC by UVA light in the presence of a lipid, methyl linoleate. The studied PAHs include 2-hydroxy-BA (2-OH-BA, 3-hydroxy-BA (3-OH-BA, 5-hydroxymethyl-BA (5-CH2OH-BA, 7-hydroxymethyl-BA (7-CH2OH-BA, 12-hydroxymethyl-BA (12-CH2OH-BA, 7-hydroxymethyl-12-methyl-BA (7-CH2OH-12-MBA, 5-formyl-BA (5-CHO-BA, BA 5,6-cis-dihydrodiol (BA 5,6-cis-diol, 1-hydroxy-3- methylcholanthene (1-OH-3-MC, 1-keto-3-methylcholanthene (1-keto-3-MC, and 3-MC 1,2-diol. The results indicate that upon photoirradiation by UVA at 7 and 21 J/cm2, respectively all these compounds induced lipid peroxidation and exhibited a relationship between the dose of the light and the level of lipid peroxidation induced. To determine whether or not photoirradiation of these compounds by UVA light produces ROS, an ESR spin-trap technique was employed to provide direct evidence. Photoirradiation of 3-keto-3-MC by UVA (at 389 nm in the presence of 2,2,6,6-tetramethylpiperidine (TEMP, a specific probe for singlet oxygen, resulted in the formation of TEMPO, indicating that singlet oxygen was generated. These overall results suggest that UVA photoirradiation of oxygenated BA and 3-methylcholanthrene generates singlet oxygen, one of the reactive oxygen species (ROS, which induce lipid peroxidation.

  14. Influence of clay minerals on curcumin properties: Stability and singlet oxygen generation

    Science.gov (United States)

    Gonçalves, Joyce L. S.; Valandro, Silvano R.; Poli, Alessandra L.; Schmitt, Carla C.

    2017-09-01

    Curcumin (CUR) has showed promising photophysical properties regarding to biological and chemical sciences. However, the main barrier for those applications are their low solubility and stability in aqueous solution. The effects of two different clay minerals, the montmorillonite (SWy-2) and the Laponite RD (Lap) nanoclay, on the stabilization of Curcumin were investigated. Their effects were compared with two well-established environments (acidic and neutral aqueous media). CUR/clay hybrids were prepared using a simple and fast method, where CUR solution was added into clay suspensions, to obtain well dispersed hybrids in water. The degradation process of CUR and CUR/clays hybrids was investigated using UV-Vis spectroscopic. For both studied hybrids, the CUR degradation process was suppressed by the presence of the clay particles. Furthermore, the Lap showed a great stabilization effect than SWy-2. This behavior was due to the smaller particle size and higher exfoliation ability of Lap, providing a large surface for CUR adsorption compared to SWy-2. The degradation process of CUR solutions and CUR/clay hybrids was also studied in the presence of light. CUR photodegradation process was faster not only in the aqueous solution but also in the clay suspension compared to those studied in the dark. The presence of clay particles accelerated the photodegradation of CUR due to the products formation in the reactions between CUR and oxygen radicals. Our results showed that the singlet oxygen quantum yield (ΦΔ) of CUR were about 59% higher in the clay suspensions than CUR in aqueous solution. Therefore, the formation of CUR/clay hybrids, in particularly with Lap, suppressed the degradation in absence light of CUR and increased the singlet oxygen generation, which makes this hybrids of CUR/clay a promising material to enlarge the application of CUR in the biological sciences.

  15. A Reactive 1O2 - Responsive Combined Treatment System of Photodynamic and Chemotherapy for Cancer

    Science.gov (United States)

    Wang, Xiaojun; Meng, Guoqing; Zhang, Song; Liu, Xinli

    2016-07-01

    The development of reactive oxygen species (ROS)-responsive drug delivery and drug release has gradually attracted much attention in recent years as a promising therapeutic strategy. Singlet oxygen (1O2) as the major ROS species is widely used in photodynamic therapy (PDT) of cancer. In the present study, we introduce a combined treatment using ROS-sensitive thioketal (TK) linkage as a linker between upconversion nanoparticles (UNs)-based PDT and doxorubicin (DOX)-based chemotherapy. UNs can not only play a role in PDT, but can also be used as a nanocarrier for drug delivery of DOX. Moreover, the products of 1O2 during PDT are able to cleave TK linker inducing the release of DOX which can further achieve the goal of chemotherapy. By using this 1O2-responsive nanocarrier delivery system, DOX can easily reach the tumor site and be accumulated in the nuclei to effectively kill the cancer cells, and therefore decreasing the side effects of chemotherapy on the body. Thus, PDT also has the function of controlling drug release in this combination treatment strategy. Compared with monotherapy, the combination of PDT with chemotherapy also possesses excellent drug loading capability and anticancer efficiency.

  16. Gold nanoring-enhanced generation of singlet oxygen: an intricate correlation with surface plasmon resonance and polyelectrolyte bilayers

    Czech Academy of Sciences Publication Activity Database

    Hu, Y.; Kaňka, Jiří; Liu, K.; Yang, Y.; Wang, H.; Du, H.

    2016-01-01

    Roč. 6, č. 106 (2016), s. 104819-104826 ISSN 2046-2069 R&D Projects: GA ČR(CZ) GBP205/12/G118 Institutional support: RVO:67985882 Keywords : Singlet oxygen * Fluorescence * Gold nanorings Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 3.108, year: 2016

  17. The generation of singlet oxygen (o(2)) by the nitrodiphenyl ether herbicide oxyfluorfen is independent of photosynthesis.

    Science.gov (United States)

    Haworth, P; Hess, F D

    1988-03-01

    The mechanism of action of the p-nitrodiphenyl ether herbicides has remained ambiguous because of conflicting reports in the literature. The diphenyl ether herbicide oxyfluorfen causes a light induced consumption of oxygen which resembles the electron acceptor reaction of paraquat. However, this reaction is not linked to the transport of electrons through photosystem I. This conclusion is based on the observation that the rate of oxygen consumption, in the presence of oxyfluorfen, does not demonstrate a first order rate dependence on light intensity. Using the bleaching of N,N-dimethyl p-nitrosoaniline as a specific detector of singlet oxygen, we demonstrate that oxyfluorfen is a potent generator of this toxic radical. The production of singlet oxygen occurs in the presence of inhibitors of photosynthetic electron transport (oxyfluorfen at 10(-4) molar and paraquat) and also under temperature conditions (3 degrees C) which prevent electron transport. This light induced reaction results in oxygen consumption and is the primary cause of lethality for oxyfluorfen. The production of singlet oxygen occurs rapidly and at low herbicide concentrations (10(-9) molar). The reaction occurs without photosynthetic electron transport but does require an intact thylakoid membrane.

  18. Enhanced photocatalytic performance of N-nitrosodimethylamine on TiO2 nanotube based on the role of singlet oxygen.

    Science.gov (United States)

    Guo, Xiaoyan; Li, Qilin; Zhang, Man; Long, Mingce; Kong, Lulu; Zhou, Qixing; Shao, Huaiqi; Hu, Wanli; Wei, Tingting

    2015-02-01

    N-nitrosodimethylamine (NDMA) photocatalytic degradation performance and mechanism were investigated on the TiO2 nanotube prepared from anatase TiO2 nanopowder in terms of the production of reactive oxygen species including hydroxyl radical, singlet oxygen and superoxide radical. Significantly higher NDMA degradation efficiency was obtained on anatase TiO2 nanotube rather than anatase TiO2 nanopowder. The tubular morphology may be responsible for almost 100% NDMA removal on TiO2 nanotube, presumably due to its confinement effect leading to NDMA molecules within the nanotube being attacked by reactive oxygen species such as hydroxyl radical and singlet oxygen, and initiating reaction inside the nanotube. In particular, the ability of the nanotubular structure of TiO2 nanotube to promote a singlet oxygen oxidation pathway contributes much to the enhanced NDMA degradation efficiency and favors the formation of dimethylamine and NO3(-). Such function originating from nanotube morphology could bring new insights for the photocatalytic degradation of organic pollutants. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Activation of transcription factor AP-2 mediates UVA radiation- and singlet oxygen-induced expression of the human intercellular adhesion molecule 1 gene

    International Nuclear Information System (INIS)

    Grether-Beck, S.; Olaizola-Horn, S.; Schmitt, H.; Grewe, M.

    1996-01-01

    UVA radiation is the major component of the UV solar spectrum that reaches the earth, and the therapeutic application of UVA radiation is increasing in medicine. Analysis of the cellular effects of UVA radiation has revealed that exposure of human cells to UVA radiation at physiological doses leads to increased gene expression and that this UVA response is primarily mediated through the generation of singlet oxygen. In this study, the mechanisms by which UVA radiation induces transcriptional activation of the human intercellular adhesion molecule 1 (ICAM-1) were examined. UVA radiation was capable of inducing activation of the human ICAM-1 promoter and increasing OCAM-1 mRNA and protein expression. These UVA radiation effects were inhibited by singlet oxygen quenchers, augmented by enhancement of singlet oxygen life-time, and mimicked in unirradiated cells by a singlet oxygen-generating system. UVA radiation as well as singlet oxygen-induced ICAM-1 promoter activation required activation of the transcription factor AP-2. Accordingly, both stimuli activated AP-2, and deletion of the putative AP-2-binding site abrogated ICAM-1 promoter activation in this system. This study identified the AP-2 site as the UVA radiation- and singlet oxygen-responsive element of the human ICAM-1 gene. The capacity of UVA radiation and/or singlet oxygen to induce human gene expression through activation of AP-2 indicates a previously unrecognized role of this transcription factor in the mammalian stress response. 38 refs., 3 figs., 3 tabs

  20. Singlet oxygen generation in a high pressure non-self-sustained electric discharge

    International Nuclear Information System (INIS)

    Hicks, Adam; Norberg, Seth; Shawcross, Paul; Lempert, Walter R; Rich, J William; Adamovich, Igor V

    2005-01-01

    This paper presents results of singlet oxygen generation experiments in a high-pressure, non-self-sustained crossed discharge. The discharge consists of a high-voltage, short pulse duration, high repetition rate pulsed discharge, which produces ionization in the flow, and a low-voltage dc discharge which sustains current in a decaying plasma between the pulses. The sustainer voltage can be independently varied to maximize the energy input into electron impact excitation of singlet delta oxygen (SDO). The results demonstrate operation of a stable and diffuse crossed discharge in O 2 -He mixtures at static pressures of at least up to P 0 = 380 Torr and sustainer discharge powers of at least up to 1200 W, achieved at P 0 = 120 Torr. The reduced electric field in the positive column of the sustainer discharge varies from E/N = 0.3 x 10 -16 to 0.65 X 10 -16 V cm 2 , which is significantly lower than E/N in self-sustained discharges and close to the theoretically predicted optimum value for O 2 (a 1 Δ) excitation. Measurements of visible emission spectra O 2 (b 1 Σ → X 3 Σ) in the discharge afterglow show the O 2 (b 1 Σ) concentration to increase with the sustainer discharge power and to decrease as the O 2 fraction in the flow is increased. Rotational temperatures inferred from these spectra in 10% O 2 -90% He flows at P 0 = 120 Torr and mass flow rates of m-dot = 2.2 are 365-465 K. SDO yield at these conditions, 1.7% to 4.4%, was inferred from the integrated intensity of the (0, 0) band of the O 2 (a 1 Δ → X 3 Σ) infrared emission spectra calibrated using a blackbody source. The yield remains nearly constant in the discharge afterglow, up to at least 15 cm distance from the discharge. Kinetic modelling calculations using a quasi-one-dimensional nonequilibrium pulser-sustainer discharge model coupled with the Boltzmann equation for plasma electrons predict gas temperature rise in the discharge in satisfactory agreement with the experimental measurements

  1. Fluorescent polyurethane nanofabrics: A source of singlet oxygen and oxygen sensing

    Czech Academy of Sciences Publication Activity Database

    Mosinger, J.; Lang, Kamil; Plištil, L.; Jesenská, S.; Hostomský, Jiří; Zelinger, Zdeněk; Kubát, Pavel

    2010-01-01

    Roč. 26, č. 12 (2010), s. 10050-10056 ISSN 0743-7463 R&D Projects: GA ČR GA203/08/0831; GA ČR GAP208/10/1678; GA ČR GAP207/10/1447 Institutional research plan: CEZ:AV0Z40320502; CEZ:AV0Z40400503 Keywords : sensitized delayed fluorescence * molecular-oxygen * photophysical properties Subject RIV: CA - Inorganic Chemistry Impact factor: 4.269, year: 2010

  2. Postsynthetic Incorporation of a Singlet Oxygen Photosensitizer in a Metal-Organic Framework for Fast and Selective Oxidative Detoxification of Sulfur Mustard.

    Science.gov (United States)

    Howarth, Ashlee J; Buru, Cassandra T; Liu, Yangyang; Ploskonka, Ann M; Hartlieb, Karel J; McEntee, Monica; Mahle, John J; Buchanan, James H; Durke, Erin M; Al-Juaid, Salih S; Stoddart, J Fraser; DeCoste, Jared B; Hupp, Joseph T; Farha, Omar K

    2017-01-01

    A fullerene-based photosensitizer is incorporated postsynthetically into a Zr 6 -based MOF, NU-1000, for enhanced singlet oxygen production. The structural organic linkers in the MOF platform also act as photosensitizers which contribute to the overall generation of singlet oxygen from the material under UV irradiation. The singlet oxygen generated by the MOF/fullerene material is shown to oxidize sulfur mustard selectively to the less toxic bis(2-chloroethyl)sulfoxide with a half-life of only 11 min. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Photochemical Oxidation of Thioketones by Singlet Molecular Oxygen Revisited: Insights into Photoproducts, Kinetics, and Reaction Mechanism.

    Science.gov (United States)

    Sánchez-Arroyo, Antonio J; Pardo, Zulay D; Moreno-Jiménez, Florencio; Herrera, Antonio; Martín, Nazario; García-Fresnadillo, David

    2015-11-06

    Photosensitized oxidation of trimethyl[2.2.1]bicycloheptane thioketones by (1)O2 can yield more photoproducts than exclusively ketones and sulfines. Moreover, the ketone/sulfine ratio can be reversed when protic conditions and high thioketone concentrations are used, conversely to earlier results reporting ketones as the main photoproducts. A new mechanistic proposal for sulfine formation is suggested following intermolecular oxygen transfer from a peroxythiocarbonyl intermediate to a second thioketone molecule. Reaction quantum yields (10(-5)-10(-2)) depend on the reaction conditions and time. Sulfine production reaches a maximum at short irradiation times, whereas decomposition to the corresponding ketone is observed at long reaction times. When the thioketone substrate has a hydrogen atom at the α position a peroxyvinylsulfenic acid intermediate can be formed by proton transfer. Reaction of this intermediate with another thioketone molecule can yield more sulfine and its tautomeric vinylsulfenic acid, which dimerizes in situ to the thiosulfinate. The hydroperoxyl group of the peroxyvinylsulfenic acid can also rearrange to the α position, and by reaction with the starting thioketone, α-hydroxy thioketone and additional sulfine can be formed, while dehydration yields the α-oxo thioketone. In situ [2 + 2] and [4 + 2] self-cycloaddition of the α-oxo thioketone yields significant amounts of the corresponding adducts at prolonged irradiation times.

  4. Flavonoids in Microheterogeneous Media, Relationship between Their Relative Location and Their Reactivity towards Singlet Oxygen

    Science.gov (United States)

    Günther, Germán; Berríos, Eduardo; Pizarro, Nancy; Valdés, Karina; Montero, Guillermo; Arriagada, Francisco; Morales, Javier

    2015-01-01

    In this work, the relationship between the molecular structure of three flavonoids (kaempferol, quercetin and morin), their relative location in microheterogeneous media (liposomes and erythrocyte membranes) and their reactivity against singlet oxygen was studied. The changes observed in membrane fluidity induced by the presence of these flavonoids and the influence of their lipophilicity/hydrophilicity on the antioxidant activity in lipid membranes were evaluated by means of fluorescent probes such as Laurdan and diphenylhexatriene (DPH). The small differences observed for the value of generalized polarization of Laurdan (GP) curves in function of the concentration of flavonoids, indicate that these three compounds promote similar alterations in liposomes and erythrocyte membranes. In addition, these compounds do not produce changes in fluorescence anisotropy of DPH, discarding their location in deeper regions of the lipid bilayer. The determined chemical reactivity sequence is similar in all the studied media (kaempferol < quercetin < morin). Morin is approximately 10 times more reactive than quercetin and 20 to 30 times greater than kaempferol, depending on the medium. PMID:26098745

  5. Fluorescence behavior and singlet oxygen generating abilities of aluminum phthalocyanine in the presence of anisotropic gold nanoparticles

    International Nuclear Information System (INIS)

    Mthethwa, Thandekile; Nyokong, Tebello

    2015-01-01

    Gold nanoparticles (spheres, rods and bipyramids) were synthesized. The nanocrystals were characterized by UV–visible spectrometry, transmission electron microscopy (TEM) and X-ray diffractometry (XRD). The as prepared gold nanoparticles were then conjugated to a quaternized 2,(3)-tetra [2-(dimethylamino) ethanethio] substituted Al(OH) phthalocyanine (complex 1). The conjugation of phthalocyanines with gold nanoparticles resulted in a decrease in the fluorescence quantum yields and lifetimes. Conversely, an increase in the singlet oxygen quantum yields was observed for the conjugated complex 1 in the presence of AuNPs. - Highlights: • Gold nanoparticles (spheres, rods and bipyramids) were synthesized. • Gold nanoparticles were then conjugated to a quaternized ClAl phthalocyanine. • Conjugation of phthalocyanines with gold nanoparticles resulted in a decrease in the fluorescence quantum yields. • An increase in the singlet oxygen quantum yields was observed for the phthalocyanine in the presence of nanoparticles

  6. One-Pot Synthesis of (+)-Nootkatone via Dark Singlet Oxygenation of Valencene: The Triple Role of the Amphiphilic Molybdate Catalyst

    OpenAIRE

    Bing Hong; Raphaël Lebeuf; Stéphanie Delbaere; Paul L. Alsters; Véronique Nardello-Rataj

    2016-01-01

    Efficient one-pot catalytic synthesis of (+)-nootkatone was performed from (+)-valencene using only hydrogen peroxide and amphiphilic molybdate ions. The process required no solvent and proceeded in three cascade reactions: (i) singlet oxygenation of valencene according to the ene reaction; (ii) Schenck rearrangement of one hydroperoxide into the secondary β-hydroperoxide; and (iii) dehydration of the hydroperoxide into the desired (+)-nootkatone. The solvent effect on the hydroperoxide rearr...

  7. Oxidative damage of U937 human leukemic cells caused by hydroxyl radical results in singlet oxygen formation.

    Directory of Open Access Journals (Sweden)

    Marek Rác

    Full Text Available The exposure of human cells to oxidative stress leads to the oxidation of biomolecules such as lipids, proteins and nuclei acids. In this study, the oxidation of lipids, proteins and DNA was studied after the addition of hydrogen peroxide and Fenton reagent to cell suspension containing human leukemic monocyte lymphoma cell line U937. EPR spin-trapping data showed that the addition of hydrogen peroxide to the cell suspension formed hydroxyl radical via Fenton reaction mediated by endogenous metals. The malondialdehyde HPLC analysis showed no lipid peroxidation after the addition of hydrogen peroxide, whereas the Fenton reagent caused significant lipid peroxidation. The formation of protein carbonyls monitored by dot blot immunoassay and the DNA fragmentation measured by comet assay occurred after the addition of both hydrogen peroxide and Fenton reagent. Oxidative damage of biomolecules leads to the formation of singlet oxygen as conformed by EPR spin-trapping spectroscopy and the green fluorescence of singlet oxygen sensor green detected by confocal laser scanning microscopy. It is proposed here that singlet oxygen is formed by the decomposition of high-energy intermediates such as dioxetane or tetroxide formed by oxidative damage of biomolecules.

  8. Comparison of killing of gram-negative and gram-positive bacteria by pure singlet oxygen. [Salmonella typhimurium; Escherichia coli; Sarcina lutea; Staphylococcus aureus; Streptococcus lactis; Streptococcus faecalis

    Energy Technology Data Exchange (ETDEWEB)

    Dahl, T.A.; Midden, W.R. (Bowling Green State Univ., OH (USA)); Hartman, P.E. (Johns Hopkins Univ., Baltimore, MD (USA))

    1989-04-01

    Gram-negative and gram-positive bacteria were found to display different sensitivities to pure singlet oxygen generated outside of cells. Killing curves for Salmonella typhimurium and Escherichia coli strains were indicative of multihit killing, whereas curves for Sarcina lutea, Staphylococcus aureus, Streptococcus lactis, and Streptococcus faecalis exhibited single-hit kinetics. The S. typhimurium deep rough strain TA1975, which lacks nearly all of the cell wall lipopolysaccharide coat and manifests concomitant enhancement of penetration by some exogenous substances, responded to singlet oxygen with initially faster inactivation than did the S. typhimurium wild-type strain, although the maximum rates of killing appeared to be quite similar. The structure of the cell wall thus plays an important role in susceptibility to singlet oxygen. The outer membrane-lipopolysaccharide portion of the gram-negative cell wall initially protects the bacteria from extracellular singlet oxygen, although it may also serve as a source for secondary reaction products which accentuate the rates of cell killing. S. typhimurium and E. coli strains lacking the cellular antioxidant, glutathione, showed no difference from strains containing glutathione in response to the toxic effects of singlet oxygen. Strains of Sarcina lutea and Staphylococcus aureus that contained carotenoids, however, were far more resistant to singlet oxygen lethality than were both carotenoidless mutants of the same species and other gram-positive species lacking high levels of protective carotenoids.

  9. Singlet Oxygen Photophysics in Liquid Solvents: Converging on a Unified Picture.

    Science.gov (United States)

    Bregnhøj, Mikkel; Westberg, Michael; Minaev, Boris F; Ogilby, Peter R

    2017-08-15

    Singlet oxygen, O 2 (a 1 Δ g ), the lowest excited electronic state of molecular oxygen, is an omnipresent part of life on earth. It is readily formed through a variety of chemical and photochemical processes, and its unique reactions are important not just as a tool in chemical syntheses but also in processes that range from polymer degradation to signaling in biological cells. For these reasons, O 2 (a 1 Δ g ) has been the subject of intense activity in a broad distribution of scientific fields for the past ∼50 years. The characteristic reactions of O 2 (a 1 Δ g ) kinetically compete with processes that deactivate this excited state to the ground state of oxygen, O 2 (X 3 Σ g - ). Moreover, O 2 (a 1 Δ g ) is ideally monitored using one of these deactivation channels: O 2 (a 1 Δ g ) → O 2 (X 3 Σ g - ) phosphorescence at 1270 nm. Thus, there is ample justification to study and control these competing processes, including those mediated by solvents, and the chemistry community has likewise actively tackled this issue. In themselves, the solvent-mediated radiative and nonradiative transitions between the three lowest-lying electronic states of oxygen [O 2 (X 3 Σ g - ), O 2 (a 1 Δ g ), and O 2 (b 1 Σ g + )] are relevant to issues at the core of modern chemistry. In the isolated oxygen molecule, these transitions are forbidden by quantum-mechanical selection rules. However, solvent molecules perturb oxygen in such a way as to make these transitions more probable. Most interestingly, the effect of a series of solvents on the O 2 (X 3 Σ g - )-O 2 (b 1 Σ g + ) transition, for example, can be totally different from the effect of the same series of solvents on the O 2 (X 3 Σ g - )-O 2 (a 1 Δ g ) transition. Moreover, a given solvent that appreciably increases the probability of a radiative transition generally does not provide a correspondingly viable pathway for nonradiative energy loss, and vice versa. The ∼50 years of experimental work leading to

  10. A mechanistic study on the phototoxicity of atorvastatin: singlet oxygen generation by a phenanthrene-like photoproduct.

    Science.gov (United States)

    Montanaro, Sara; Lhiaubet-Vallet, Virginie; Iesce, MariaRosaria Iesce; Previtera, Lucio; Miranda, Miguel Angel

    2009-01-01

    Atorvastatin calcium (ATV) is one of the most frequently prescribed drugs worldwide. Among the adverse effects observed for this lipid-lowering agent, clinical cases of cutaneous adverse reactions have been reported and associated with photosensitivity disorders. Previous work dealing with ATV photochemistry has shown that exposure to natural sunlight in aqueous solution leads to photoproducts resulting from oxidation of the pyrrole ring and from cyclization to a phenanthrene derivative. Laser flash photolysis of ATV, at both 266 and 308 nm, led to a transient spectrum with two maxima at lambda= 360 and lambda= 580 nm (tau= 41 micro), which was assigned to the primary intermediate of the stilbene-like photocyclization. On the basis of the absence of a triplet-triplet absorption, the role of the parent drug as singlet oxygen photosensitizer can be discarded. By contrast, a stable phenanthrene-like photoproduct would be a good candidate to play this role. Laser flash photolysis of this compound showed a triplet-triplet transient absorption at lambdamax = 460 nm with a lifetime of 26 micro, which was efficiently quenched by oxygen (kq = 3 (+/-0.2) x 10(9) M(-1) s(-1)). Its potential to photosensitize formation of singlet oxygen was confirmed by spin trapping experiments, through conversion of TEMP to the stable free radical TEMPO. The photoreactivity of the phenanthrene-like photoproduct was investigated using Trp as a marker. The disappearance of the amino acid fluorescence (lambdamax = 340 nm) after increasing irradiation times at 355 nm was taken as a measurement of photodynamic oxidation. To confirm the involvement of a type II mechanism, the same experiment was also performed in D2O; this resulted in a significant enhancement of the reaction rate. On the basis of the obtained photophysical and photochemical results, the phototoxicity of atorvastatin can be attributed to singlet oxygen formation with the phenanthrene-like photoproduct as a photosensitizer.

  11. Time-resolved EPR study of singlet oxygen in the gas phase.

    Science.gov (United States)

    Ruzzi, Marco; Sartori, Elena; Moscatelli, Alberto; Khudyakov, Igor V; Turro, Nicholas J

    2013-06-27

    X-band EPR spectra of singlet O2((1)Δg) and triplet O2((3)Σg(-)) were observed in the gas phase under low molecular-oxygen pressures PO2 = 0.175-0.625 Torr, T = 293-323 K. O2((1)Δg) was produced by quenching of photogenerated triplet sensitizers naphthalene C8H10, perdeuterated naphthalene, and perfluoronaphthalene in the gas phase. The EPR spectrum of O2((1)Δg) was also observed under microwave discharge. Integrated intensities and line widths of individual components of the EPR spectrum of O2((3)Σg(-)) were used as internal standards for estimating the concentration of O2 species and PO2 in the EPR cavity. Time-resolved (TR) EPR experiments of C8H10 were the main focus of this Article. Pulsed irradiation of C8H10 in the presence of O2((3)Σg(-)) allowed us to determine the kinetics of formation and decay for each of the four components of the O2((1)Δg) EPR signal, which lasted for only a few seconds. We found that the kinetics of EPR-component decay fit nicely to a biexponential kinetics law. The TR EPR 2D spectrum of the third component of the O2((1)Δg) EPR spectrum was examined in experiments using C8H10. This spectrum vividly presents the time evolution of an EPR component. The largest EPR signal and the longest lifetime of O2((1)Δg), τ = 0.4 s, were observed at medium pressure PO2 = 0.4 Torr, T = 293 K. The mechanism of O2((1)Δg) decay in the presence of photosensitizers is discussed. EPR spectra of O2((1)Δg) evidence that the spin-rotational states of O2((1)Δg) are populated according to Boltzmann distribution in the studied time range of 10-100 ms. We believe that this is the first report dealing with the dependence of O2((1)Δg) EPR line width on PO2 and T.

  12. Water vapor concentration measurement in singlet oxygen generator by using emission spectroscopy method and absorption at 1392nm

    Science.gov (United States)

    Zhao, Weili; Wang, Zengqiang; Fang, Benjie; Li, Qingwei; Jin, Yuqi; Sang, Fengting

    2005-12-01

    By using emission spectroscopy method and absorption at 1392nm, partial water pressure at the exit of a square pipe-array jet-type singlet oxygen generator (SPJSOG) for chemical oxygen-iodine laser (COIL) was measured. The water vapor fraction was calculated from the partial water pressure in the diagnostic cell when we assumed the water vapor fraction in the diagnostic cell is the same as that in the generator. The results from the two methods showed that the water vapor concentration is less than 0.08 in this SPJSOG during normal operation. The water vapor fraction decreases with the increasing of the pressure in the generator and rises with the increasing of buffer gas flow rate and the basic hydrogen peroxide (BHP) temperature in the case of constant chlorine flow rate. Measurements showed that the change of water vapor fraction due to BHP temperature could be ignored during normal operation. It is indicated that the gas flow velocity is the main reason that affects on the water vapor fraction in COIL. It is proved that the emission spectroscopy method is one of the simple and convenient ways to measure the water vapor concentration in singlet oxygen generator (SOG), especially in real time measurements. But absorption spectroscopy method, as a direct measurement, can give the more factual results of the water concentration.

  13. Irradiation- and Sensitizer-Dependent Changes in the Lifetime of Intracellular Singlet Oxygen Produced in a Photosensitized Process

    DEFF Research Database (Denmark)

    Silva, Elsa; Pedersen, Brian Wett; Breitenbach, Thomas

    2012-01-01

    Singlet oxygen, O2(a1Δg), was produced upon pulsed-laser irradiation of an intracellular photosensitizer and detected by its 1275 nm O2(a1Δg) →O2(X3Σg-) phosphorescence in time-resolved experiments using (1) individual mammalian cells on the stage of a microscope and (2) suspensions of mammalian...... appreciably as the cell progresses towards death. The results obtained from cell suspensions reflect key features that differentiate cell ensemble from single cell experiments (e.g., the ensemble experiment is more susceptible to the effects of sensitizer that has leaked out of the cell). Overall, the data...

  14. Study of the metastable singlet of molecular nitrogen and of oxygen atoms in discharges and post-discharges

    International Nuclear Information System (INIS)

    Magne, Lionel

    1991-01-01

    Whereas discharges in nitrogen, in oxygen and in their mixtures are used in many different industrial processes (surface treatment, nitridation, oxidation, and so on), in order to get a better knowledge on nitrogen electronic states, this research thesis reports the study of the metastable singlet state of molecular nitrogen, and of oxygen atoms in their fundamental state. The molecular metastable has been observed by far-UV optical emission spectroscopy, in the positive column of a continuous discharge and in time post-discharge. As far as continuous discharge is concerned, the author measured the vibrational distribution of this state. A kinetic model has been developed, and calculated vibrational distributions are in good agreement with measurements. The density of oxygen atoms in fundamental state in time post-discharge has been measured by far-UV absorption optical spectroscopy. The probability of atom re-association of glass walls is deduced from the obtained results [fr

  15. Photogeneration of singlet oxygen by the phenothiazine derivatives covalently bound to the surface-modified glassy carbon

    Energy Technology Data Exchange (ETDEWEB)

    Blacha-Grzechnik, Agata, E-mail: agata.blacha@polsl.pl [Faculty of Chemistry, Silesian University of Technology, Strzody 9, 44-100 Gliwice (Poland); Piwowar, Katarzyna; Krukiewicz, Katarzyna [Faculty of Chemistry, Silesian University of Technology, Strzody 9, 44-100 Gliwice (Poland); Koscielniak, Piotr; Szuber, Jacek [Institute of Electronics, Silesian University of Technology, Akademicka 16, 44-100 Gliwice (Poland); Zak, Jerzy K. [Faculty of Chemistry, Silesian University of Technology, Strzody 9, 44-100 Gliwice (Poland)

    2016-05-15

    Highlights: • The selected group of four NH{sub 2}-derivatives of phenothiazine was grafted to Glassy Carbon (GC) surface. • The grafted phenothiazines are able to generate {sup 1}O{sub 2} when activated by the radiation. • Such modified solid surfaces may find their application in the wastewater treatment. - Abstract: The selected group of four amine-derivatives of phenothiazine was covalently grafted to the glassy carbon surface in the four-step procedure consisting of the electrochemical reduction of the diazonium salt followed by the electrochemical and chemical post-modification steps. The proposed strategy involves the bonding of linker molecule to which the photosensitizer is attached. The synthesized organic layers were characterized by means of cyclic voltammetry, XPS and Raman Spectroscopy. It was shown that the phenothiazines immobilized via proposed strategy retain their photochemical properties and are able to generate {sup 1}O{sub 2} when activated by the laser radiation. The effectiveness of in situ singlet oxygen generation by those new solid photoactive materials was determined by means of UVVis spectroscopy. The reported, covalently modified solid surfaces may find their application as the singlet oxygen photogenerators in the fine chemicals’ synthesis or in the wastewater treatment.

  16. Influence of chemically produced singlet delta oxygen molecules on thermal ignition of O2-H2 mixtures

    Science.gov (United States)

    Vagin, N. P.; Kochetov, I. V.; Napartovich, A. P.; Yuryshev, N. N.

    2016-02-01

    Thermal ignition of the H2-O2 mixture with O2(a 1Δ g ) addition is studied experimentally and theoretically. The singlet delta oxygen was produced in a chemical generator. In this way, the competing chemical processes involving plasma produced chemically active O atoms and ozone (O3) were excluded. A satisfactory agreement is achieved between experimentally observed and numerically predicted values of the ignition time at the initial gas temperature (900-950) K and gas pressure (9-10) Torr. The percentage of the reactive channel in the binary collisions O2(a 1Δg) H is evaluated on the level (10-20)% for the H2-O2 mixture.

  17. One-Pot Synthesis of (+-Nootkatone via Dark Singlet Oxygenation of Valencene: The Triple Role of the Amphiphilic Molybdate Catalyst

    Directory of Open Access Journals (Sweden)

    Bing Hong

    2016-11-01

    Full Text Available Efficient one-pot catalytic synthesis of (+-nootkatone was performed from (+-valencene using only hydrogen peroxide and amphiphilic molybdate ions. The process required no solvent and proceeded in three cascade reactions: (i singlet oxygenation of valencene according to the ene reaction; (ii Schenck rearrangement of one hydroperoxide into the secondary β-hydroperoxide; and (iii dehydration of the hydroperoxide into the desired (+-nootkatone. The solvent effect on the hydroperoxide rearrangement is herein discussed. The amphiphilic dimethyldioctyl ammonium molybdate, which is also a balanced surfactant, played a triple role in this process, as molybdate ions catalyzed at both Step 1 and Step 3 and it allowed the rapid formation of a three-phase microemulsion system that highly facilitates product recovery. Preparative synthesis of the high added value (+-nootkatone was thus performed at room temperature with an isolated yield of 46.5%. This is also the first example of a conversion of allylic hydroperoxides into ketones catalyzed by molybdate ions.

  18. Two-Photon Irradiation of an Intracellular Singlet Oxygen Photosensitizer: Achieving Localized Sub-Cellular Excitation in Spatially-Resolved Experiments

    DEFF Research Database (Denmark)

    Pedersen, Brian Wett; Breitenbach, Thomas; Redmond, Robert W.

    2010-01-01

    The response of a given cell to spatially-resolved sub-cellular irradiation of a singlet oxygen photosensitizer (protoporphyrin IX, PpIX) using a focused laser was assessed. In these experiments, incident light was scattered over a volume greater than that defi ned by the dimensions of the laser...

  19. Preliminary study on singlet oxygen production using CeF.sub.3./sub.:Tb.sup.3+./sup.@SiO.sub.2./sub.-PpIX

    Czech Academy of Sciences Publication Activity Database

    Popovich, K.; Procházková, L.; Pelikánová, I.T.; Vlk, M.; Palkovský, M.; Jarý, Vítězslav; Nikl, Martin; Múčka, V.; Mihóková, Eva; Čuba, V.

    2016-01-01

    Roč. 90, Jul (2016), s. 325-328 ISSN 1350-4487 R&D Projects: GA ČR GA13-09876S; GA ČR GA13-28721S Institutional support: RVO:68378271 Keywords : singlet oxygen * cerium fluoride * photodynamic therapy * biofunctionalization * scintillator Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.442, year: 2016

  20. Evaluation of singlet oxygen explicit dosimetry for predicting treatment outcomes of benzoporphyrin derivative monoacid ring A-mediated photodynamic therapy

    Science.gov (United States)

    Kim, Michele M.; Penjweini, Rozhin; Zhu, Timothy C.

    2017-02-01

    Existing dosimetric quantities do not fully account for the dynamic interactions between the key components of photodynamic therapy (PDT) or the varying PDT oxygen consumption rates for different fluence rates. Using a macroscopic model, reacted singlet oxygen ([) was calculated and evaluated for its effectiveness as a dosimetric metric for PDT outcome. Mice bearing radiation-induced fibrosarcoma tumors were treated with benzoporphyrin derivative monoacid ring A (BPD) at a drug-light interval of 3 h with various in-air fluences (30 to 350 J/cm2) and in-air fluence rates (50 to 150 mW/cm2). Explicit measurements of BPD concentration and tissue optical properties were performed and used to calculate [, photobleaching ratio, and PDT dose. For four mice, in situ measurements of O23 and BPD concentration were monitored in real time and used to validate the in-vivo photochemical parameters. Changes in tumor volume following treatment were used to determine the cure index, CI=1-k/kctr, where k and kctr are the tumor regrowth rates with PDT and without PDT, respectively. The correlation between CI and the dose metrics showed that the calculated [ at 3 mm is an effective dosimetric quantity for predicting treatment outcome and a clinically relevant tumor regrowth endpoint.

  1. X-ray Inducible Luminescence and Singlet Oxygen Sensitization by an Octahedral Molybdenum Cluster Compound: A New Class of Nanoscintillators.

    Science.gov (United States)

    Kirakci, Kaplan; Kubát, Pavel; Fejfarová, Karla; Martinčík, Jiří; Nikl, Martin; Lang, Kamil

    2016-01-19

    Newly synthesized octahedral molybdenum cluster compound (n-Bu4N)2[Mo6I8(OOC-1-adamantane)6] revealed uncharted features applicable for the development of X-ray inducible luminescent materials and sensitizers of singlet oxygen, O2((1)Δg). The compound exhibits a red-NIR luminescence in the solid state and in solution (e.g., quantum yield of 0.76 in tetrahydrofuran) upon excitation by UV-vis light. The luminescence originating from the excited triplet states is quenched by molecular oxygen to produce O2((1)Δg) with a high quantum yield. Irradiation of the compound by X-rays generated a radioluminescence with the same emission spectrum as that obtained by UV-vis excitation. It proves the formation of the same excited triplet states regardless of the excitation source. By virtue of the described behavior, the compound is suggested as an efficient sensitizer of O2((1)Δg) upon X-ray excitation. The luminescence and radioluminescence properties were maintained upon embedding the compound in polystyrene films. In addition, polystyrene induced an enhancement of the radioluminescence intensity via energy transfer from the scintillating polymeric matrix. Sulfonated polystyrene nanofibers were used for the preparation of nanoparticles which form stable dispersions in water, while keeping intact the luminescence properties of the embedded compound over a long time period. Due to their small size and high oxygen diffusivity, these nanoparticles are suitable carriers of sensitizers of O2((1)Δg). The presented results define a new class of nanoscintillators with promising properties for X-ray inducible photodynamic therapy.

  2. Synthesis, singlet-oxygen photogeneration, two-photon absorption, photo-induced DNA cleavage and cytotoxic properties of an amphiphilic β-Schiff-base linked Ru(II) polypyridyl–porphyrin conjugate

    International Nuclear Information System (INIS)

    Ke, Hanzhong; Ma, Wanpeng; Wang, Hongda; Cheng, Guoe; Yuan, Han; Wong, Wai-Kwok; Kwong, Daniel W.J.; Tam, Hoi-Lam; Cheah, Kok-Wai; Chan, Chi-Fai; Wong, Ka-Leung

    2014-01-01

    A novel porphyrin–polypyridyl ruthenium(II) conjugate (TPP–Ru), in which the ruthenium(II) polypyridyl moiety is linked to the β-position of the tetraphenylporphyrin via a Schiff base linkage, has been synthesized and characterized by 1 H NMR, HRMS and UV–visible spectroscopy. The relative singlet oxygen quantum yield and two-photon absorption cross-section of this conjugate, together with its photo-induced DNA cleavage and cytotoxic activities were measured. The results show that the amphiphilic ruthenium(II) polypyridyl–porphyrin conjugate is an effective DNA photocleavage agent, with potential application in one- and two-photon absorption anti-cancer photodynamic therapy. - Highlights: • New porphyrin–ruthenium(II) polypyridyl complexes (TTP–Ru) have been synthesized. • The TTP–Ru shows substantial two-photon absorption cross-section (σ 2 =391 GM). • The TTP–Ru exhibits a substantial 1 O 2 quantum yield (0.64±0.13). • The TTP–Ru exhibits a strong DNA cleavage activity upon photo-excitation. • The TTP–Ru is available for in vitro imaging and as a photodynamic therapy agent

  3. Antibacterial nitric oxide- and singlet oxygen-releasing polystyrene nanoparticles responsive to light and temperature triggers

    Czech Academy of Sciences Publication Activity Database

    Dolanský, Jiří; Henke, P.; Malá, Z.; Žárská, L.; Kubát, Pavel; Mosinger, Jiří

    2018-01-01

    Roč. 10, č. 5 (2018), s. 2639-2648 ISSN 2040-3364 R&D Projects: GA ČR(CZ) GA16-15020S Institutional support: RVO:61388980 ; RVO:61388955 Keywords : nanofiber materials * porphyrin photosensitizers * photophysical properties * reactive oxygen Subject RIV: CA - Inorganic Chemistry ; CF - Physical ; Theoretical Chemistry (UFCH-W) OBOR OECD: Inorganic and nuclear chemistry ; Physical chemistry (UFCH-W) Impact factor: 7.367, year: 2016

  4. Influence of gamma radiation and singlet oxygen on nucleic acid constituents

    International Nuclear Information System (INIS)

    Balland, Alain.

    1979-10-01

    The action of single oxygen on nucleosides proved to be extremely specific of deoxy-2' guanosine. The use of high performance liquid chromatography and spectrometric techniques (IR, mass and NMR) made it possible to isolate and characterise five main products of degradation. Ionizing radiations act mainly through radical species resulting from the radiolysis of water. The effects of the presence of DNA nucleosides in irradiated aqueous solutions of thymidine were investigated. It would appear, in these conditions, that the change in radio-sensitivity of thymidine in oxygenated solution can be explained essentially in terms of the competition of hydroxyl radicals. A study of the action of gamma rays on aqueous solutions of deoxy-2' guanilyl thymidine was carried out in the absence and presence of oxygen. The significant action of neutral radical species on the 'osidic' fragment explaining the break in the phosphodiester bond was noticed. The radio-induced modifications on the substrate were characterised indirectly by enzime hydrolysis (phosphodiesterasis). In an aerated aqueous solution, the monophosphate dinucleosides modified on the thymidine motive were identified by comparison with the substances obtained by synthesis. The characterisation of new substances and the study of synthetic ones required the use of NMR. Hence the configuration study of modified nucleosides was given much room [fr

  5. Polymeric micelles of zinc protoporphyrin for tumor targeted delivery based on EPR effect and singlet oxygen generation.

    Science.gov (United States)

    Iyer, Arun K; Greish, Khaled; Seki, Takahiro; Okazaki, Shoko; Fang, Jun; Takeshita, Keizo; Maeda, Hiroshi

    2007-01-01

    Polymeric micelles of zinc protoporphyrin (ZnPP) with water soluble biocompatible and amphiphilic polymer, polyethylene glycol (PEG) demonstrated unique characteristics to target tumor tissues selectively based on the enhanced permeability and retention (EPR) effect. The micellar macromolecular drug of ZnPP (SMA-ZnPP and PEG-ZnPP) previously showed notable anticancer activity as a consequence of selective tumor targeting ability and its potent HO-1 inhibitory potential, resulting in suppressed biliverdin/bilirubin production in tumors thereby leading to oxystress induced tumor cell killing. Furthermore, recent findings also showed that ZnPP efficiently generated reactive singlet oxygen under illumination of visible light, laser, or xenon light source, which could augment its oxystress induced cell killing abilities. In the present paper, we report the synergistic effects of light induced photosensitizing capabilities and HO-1 inhibitory potentials of these unique micelles when tested in vitro and in vivo on tumor models under localized, mild illumination conditions using a tungsten-xenon light source. The results indicate that these water soluble polymeric micelles of ZnPP portend to be promising candidates for targeted chemotherapy as well as photodynamic therapy against superficial tumors as well as solid tumors located at light penetrable depths.

  6. Ultrasound-assisted interaction between chlorin-e6 and human serum albumin: pH dependence, singlet oxygen production, and formulation effect

    Science.gov (United States)

    Mocanu, Mihaela N.; Yan, Fei

    2018-02-01

    The interaction between chlorin e6 (Ce6) and human serum albumin (HSA) in the presence and absence of ultrasound have been investigated by ultraviolet-visible absorption spectroscopy and fluorescence spectroscopy. Ce6 is found to bind strongly to HSA at or near physiological pH conditions, but the strength of the binding is significantly weakened at lower pHs. The intrinsic fluorescence of HSA is incrementally quenched with increasing concentration of Ce6, and the quenching is enhanced after exposure to high-frequency ultrasound. Our experimental results suggest that Ce6-induced sonodynamic oxidation of HSA is mainly mediated by singlet oxygen. The formulation of Ce6 by high molecular weight polyvinylpyrrolidone (PVP) increased its stability in aqueous solutions and its quantum yield of singlet oxygen under ultrasound irradiation.

  7. Preliminary study on singlet oxygen production using CeF.sub.3./sub.:Tb.sup.3+./sup.@SiO.sub.2./sub.-PpIX.

    Czech Academy of Sciences Publication Activity Database

    Popovich, K.; Procházková, L.; Pelikánová, I.T.; Vlk, M.; Palkovský, M.; Jarý, Vítězslav; Nikl, Martin; Múčka, V.; Mihóková, Eva; Čuba, V.

    2016-01-01

    Roč. 90, Jul (2016), s. 325-328 ISSN 1350-4487. [International Conference on Luminescent Detectors and Transformers of Ionizing Radiation (LUMDETR). Tartu (Estonsko), 20.09.2015-25.09.2015] R&D Projects: GA ČR GA13-09876S; GA ČR GA13-28721S Institutional support: RVO:68378271 Keywords : singlet oxygen * cerium fluoride * photodynamic therapy * biofunctionalization * scintillator Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.442, year: 2016

  8. A Possible Role for Singlet Oxygen in the Degradation of Various Antioxidants. A Meta-Analysis and Review of Literature Data.

    Science.gov (United States)

    Petrou, Athinoula L; Petrou, Petros L; Ntanos, Theodoros; Liapis, Antonis

    2018-02-27

    The thermodynamic parameters E act , ΔH ≠ , ΔS ≠ , and ΔG ≠ for various processes involving antioxidants were calculated using literature kinetic data (k, T). The ΔG ≠ values of the antioxidants' processes vary in the range 91.27-116.46 kJmol -1 at 310 K. The similarity of the ΔG ≠ values (for all of the antioxidants studied) is supported to be an indication that a common mechanism in the above antioxidant processes may be taking place. A value of about 10-30 kJmol -1 is the activation energy for the diffusion of reactants depending on the reaction and the medium. The energy 92 kJmol -1 is needed for the excitation of O₂ from the ground to the first excited state (¹Δ g , singlet oxygen). We suggest the same role of the oxidative stress and specifically of singlet oxygen to the processes of antioxidants as in the processes of proteinaceous diseases. We therefore suggest a competition between the various antioxidants and the proteins of proteinaceous diseases in capturing singlet oxygen's empty π* orbital. The concentration of the antioxidants could be a crucial factor for the competition. Also, the structures of the antioxidant molecules play a significant role since the various structures have a different number of regions of high electron density.

  9. In situ H(+)-mediated formation of singlet oxygen from NaBiO3 for oxidative degradation of bisphenol A without light irradiation: Efficiency, kinetics, and mechanism.

    Science.gov (United States)

    Ding, Yaobin; Xia, Xiangli; Ruan, Yufeng; Tang, Heqing

    2015-12-01

    Bisphenol A (BPA) is a ubiquitous environmental contaminant with endocrine disruption potential. This study explored the efficiency, kinetics, and mechanism of BPA removal from weakly acidic solutions by using NaBiO3 as a source of singlet oxygen. It was observed that the use of NaBiO3 (1gL(-1)) could eliminate almost all (more than 97%) of the added BPA (0.1mmolL(-1)) in solutions at pH 5.0 in 60min. The degradation of BPA followed pseudo-first-order kinetics over the pH range from 3 to 9, and the pseudo-first-order rate constant (k) was dependent on pH, NaBiO3 concentration and the coexisting compounds. As solution pH was decreased from 9 to 3 or NaBiO3 concentration was increased from 0.5 to 2gL(-1), the k value was increased logarithmically. Humic acid and Fe(3+) showed little effect on the BPA removal, but Mn(2+) exhibited exceptionally enhancing effect on the degradation of BPA. The involved reactive species were identified as singlet oxygen by using radical scavenger probes and ESR measurement, and the generated singlet oxygen was confirmed to be generated from the decomposition of NaBiO3 mediated by H(+) ions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. High-pressure gravity-independent singlet oxygen generator, laser nozzle, and iodine injection system for the chemical oxygen-iodine laser

    Science.gov (United States)

    Emanuel, George

    2004-09-01

    A novel approach is outlined for a singlet oxygen generator (SOG), a laser minimum length nozzle (MLN), and an iodine injector system for a chemical oxygen-iodine laser (COIL). A unified approach, referred to as a SOG/MLN/I2 system, is partly based on past experimental work. For instance, the SOG concept stems from sparger technology and a KSY fesibility experiment. A MLN with a curved sonic line is used for the laser nozzle, and slender struts are used for the injection, in the downstream direction, of iodine/helium vapor. The heated struts are located downstream of the nozzle's throat. The engineering logic behind the approach is discussed; it has a diversity of potential system benefits relative to current technology. These include a compact, scalable laser that can operate in space. The SOG operates at a significantly higher pressure with a high O2(1Δ) yield. In addition, basic hydrogen peroxide reconditioning is not required, a water vapor removal system is not required, and diluent may be unnecessary, although useful for pressure recovery. The impact on a COIL system in terms of power, efficiency, and pressure recovery is briefly assessed.

  11. BODIPY-doped silica nanoparticles with reduced dye leakage and enhanced singlet oxygen generation.

    Science.gov (United States)

    Wang, Zhuyuan; Hong, Xuehua; Zong, Shenfei; Tang, Changquan; Cui, Yiping; Zheng, Qingdong

    2015-07-27

    Photodynamic therapy (PDT) is a promising modality for cancer treatment. The essential element in PDT is the photosensitizer, which can be excited by light of a specific wavelength to generate cytotoxic oxygen species (ROS) capable of killing tumor cells. The effectiveness of PDT is limited in part by the low yield of ROS from existing photosensitizers and the unwanted side effects induced by the photosensitizers toward normal cells. Thus the design of nanoplatforms with enhanced PDT is highly desirable but remains challenging. Here, we developed a heavy atom (I) containing dipyrromethene boron difluoride (BODIPY) dye with a silylated functional group, which can be covalently incorporated into a silica matrix to form dye-doped nanoparticles. The incorporated heavy atoms can enhance the generation efficiency of ROS. Meanwhile, the covalently dye-encapsulated nanoparticles can significantly reduce dye leakage and subsequently reduce unwanted side effects. The nanoparticles were successfully taken up by various tumor cells and showed salient phototoxicity against these cells upon light irradiation, demonstrating promising applications in PDT. Moreover, the incorporated iodine atom can be replaced by a radiolabeled iodine atom (e.g., I-124, I-125). The resulting nanoparticles will be good contrast agents for positron emission tomography (PET) imaging with their PDT functionality retained.

  12. Oxygen evolution on nanocrystalline RuO2 and Ru0.9Ni0.1O2−δ electrodes – DEMS approach to reaction mechanism determination

    Czech Academy of Sciences Publication Activity Database

    Macounová, Kateřina; Makarova, Marina; Krtil, Petr

    2009-01-01

    Roč. 11, č. 10 (2009), s. 1865-1868 ISSN 1388-2481 R&D Projects: GA AV ČR KAN100400702; GA AV ČR IAA400400906 Institutional research plan: CEZ:AV0Z40400503 Keywords : oxygen evolution * DEMS * ruthenium dioxide * electrocatalysis Subject RIV: CG - Electrochemistry Impact factor: 4.243, year: 2009

  13. Experimental and theoretical studies of nuclear generation of ozone and its photolysis into singlet delta oxygen

    International Nuclear Information System (INIS)

    Elsayed-Ali, H.E.

    1985-01-01

    A series of measurements of O 3 yield in nuclear induced O 2 and O 2 -SF 6 discharges created by bombardment with energetic particles from the 10 B(n,α) 7 Li reaction are reported. Continuous irradiation at dose ratios of 10 15 -10 17 eV.cm -3 .s -1 and pulsed irradiation (approx.10 ms FWHM) at a peak dose rate of approx.10 20 eV.cm -3 .s -1 were conducted. At the lower dose rates, SF 6 addition generally increased the ozone yield, which at the high dose rates, SF 6 addition decreased the observed ozone concentration. A numerical model was developed and applied to experimental conditions. The steady-state ozone concentration was found to be limited by the reaction O 3 - + O 3 → 2O 2 + O 2 - . A simplified analytical model of steady-state conditions was used to predict model sensitivity to various parameters. In addition to dose rate effects, pressure and temperature effect on ozone production were discussed. The present study was extended to noble gas (He, Ne, and Ar)-O 2 and noble gas - O 2 -SF 6 mixtures. Without SF 6 , steady-state ozone concentrations were found to be about an order of magnitude lower than that observed for oxygen at similar dose rates. Addition of SF 6 was found to significantly increase the steady-state ozone concentration (3-6 times) in noble gas-O 2 mixtures. The developed models were amended to study noble gas-O 2 discharges. A detailed computer model of ultraviolet irradiation of O 3 -O 2 -noble gas mixtures was presented. Dependence of O 2 (a 1 Δ/sub g/) yield on various parameters was investigated. Conditions needed to create O 2 (a 1 Δ/sub g/) concentrations sufficient for pumping an atomic iodine laser were identified. The model was tested by applying it to date on quantum yield of ozone decomposition for various mixtures and by observation of the absolute O 2 (a 1 Δ/sub g/) concentration generated under various conditions

  14. Ion-induced stacking of photosensitizer molecules can remarkably affect the luminescence detection of singlet oxygen in Candida albicans cells

    Science.gov (United States)

    Felgenträger, Ariane; Gonzales, Fernanda Pereira; Maisch, Tim; Bäumler, Wolfgang

    2013-04-01

    Singlet oxygen (O21) is an important reactive intermediate in photodynamic reactions, particularly in antimicrobial PDT (aPDT). The detection of O21 luminescence is frequently used to elucidate the role of O21 in various environments, particularly in microorganisms and human cells. When incubating the fungus, Candida albicans, with porphyrins XF73 (5,15-bis-[4-(3-Trimethylammonio-propyloxy)-phenyl]-porphyrin) or TMPyP (5,10,15,20-Tetrakis(1-methyl-4-pyridinio)-porphyrin tetra(p-toluenesulfonate)), the O21 luminescence signals were excellent for TMPyP. In case of XF73, the signals showed strange rise and decay times. Thus, O21 generation of XF73 was investigated and compared with TMPyP. Absorption spectroscopy of XF73 showed a change in absorption cross section when there was a change in the concentration from 1×10-6 M to 1×10-3 M indicating an aggregation process. The addition of phosphate buffered saline (PBS) substantially changed O21 luminescence in XF73 solution. Detailed experiments provided evidence that the PBS constituents NaCl and KCl caused the change of O21 luminescence. The results also indicate that Cl- ions may cause aggregation of XF73 molecules, which in turn enhances self-quenching of O21 via photosensitizer molecules. These results show that some ions, e.g., those present in cells in vitro or added by PBS, can considerably affect the detection and the interpretation of time-resolved luminescence signals of O21, particularly in in vitro and in vivo. These effects should be considered for any other photosensitizer used in photodynamic processes.

  15. A Possible Role for Singlet Oxygen in the Degradation of Various Antioxidants. A Meta-Analysis and Review of Literature Data

    Science.gov (United States)

    Petrou, Athinoula L.; Petrou, Petros L.; Ntanos, Theodoros; Liapis, Antonis

    2018-01-01

    The thermodynamic parameters Eact, ΔH≠, ΔS≠, and ΔG≠ for various processes involving antioxidants were calculated using literature kinetic data (k, T). The ΔG≠ values of the antioxidants’ processes vary in the range 91.27–116.46 kJmol−1 at 310 K. The similarity of the ΔG≠ values (for all of the antioxidants studied) is supported to be an indication that a common mechanism in the above antioxidant processes may be taking place. A value of about 10–30 kJmol−1 is the activation energy for the diffusion of reactants depending on the reaction and the medium. The energy 92 kJmol−1 is needed for the excitation of O2 from the ground to the first excited state (1Δg, singlet oxygen). We suggest the same role of the oxidative stress and specifically of singlet oxygen to the processes of antioxidants as in the processes of proteinaceous diseases. We therefore suggest a competition between the various antioxidants and the proteins of proteinaceous diseases in capturing singlet oxygen’s empty π* orbital. The concentration of the antioxidants could be a crucial factor for the competition. Also, the structures of the antioxidant molecules play a significant role since the various structures have a different number of regions of high electron density. PMID:29495515

  16. Singlet oxygen generation in O2 flow excited by RF discharge: I. Homogeneous discharge mode: α-mode

    International Nuclear Information System (INIS)

    Braginskiy, O V; Vasilieva, A N; Klopovskiy, K S; Kovalev, A S; Lopaev, D V; Proshina, O V; Rakhimova, T V; Rakhimov, A T

    2005-01-01

    The production and transport dynamics of O 2 (a 1 Δ g ) and O 2 (b 1 Σ g + ) molecules as well as O( 3 P) atoms has been studied in an O 2 flow excited by a 13.56 MHz RF discharge in a quartz tube at pressures of 1-20 Torr. It has been shown that the densities of O 2 (a 1 Δ g ) and O( 3 P) are saturated with increasing energy input into the discharge. The maximum yield of singlet oxygen (SO) and the O 2 dissociation degree drops with pressure. It is demonstrated that depending on the energy input the RF discharge can exist in three modes: I-in the spatially homogeneous mode or α-mode; III-in the substantially inhomogeneous mode, when plasma jets are present outside the discharge; and II-in the transient mode between modes I and III. In this paper only the homogeneous mode of RF discharge in the O 2 flow is considered in detail. A self-consistent model of the α-mode is developed, that allows us to analyse elementary processes responsible for the production and loss of O 2 (a 1 Δ g ) and O 2 (b 1 Σ g + ) molecules as well as O( 3 P) atoms in detail. To verify both the kinetic scheme of the model and the conclusions, some experiments have been carried out at lower flow velocities and higher pressures (≥10 Torr), when the stationary densities of O 2 (a 1 Δ g ), O 2 (b 1 Σ g + ) and O( 3 P) in the discharge area were established not by the escape of particles but by the losses due to the volumetric and surface reactions. The O 2 (b 1 Σ g + ) density under these conditions is determined by the balance of O 2 (b 1 Σ g + ) production by both direct electron impact and electronic excitation transfer from metastable O( 1 D) atoms and deactivation by oxygen atoms and tube walls, including quenching by ozone in the afterglow. The O( 3 P) density is determined by the balance between the production through O 2 dissociation by electron impact and heterogeneous loss at the wall recombination. The stationary density of O 2 (a 1 Δ g ) is provided by the processes of O

  17. Relationship between symmetry of porphyrinic pi-conjugated systems and singlet oxygen (1Delta g) yields: low-symmetry tetraazaporphyrin derivatives.

    Science.gov (United States)

    Ishii, Kazuyuki; Itoya, Hatsumi; Miwa, Hideya; Fujitsuka, Mamoru; Ito, Osamu; Kobayashi, Nagao

    2005-07-07

    We have investigated the excited-state properties and singlet oxygen ((1)Delta(g)) generation mechanism in phthalocyanines (4M; M = H(2), Mg, or Zn) and in low-symmetry metal-free, magnesium, and zinc tetraazaporphyrins (TAPs), that is, monobenzo-substituted (1M), adjacently dibenzo-substituted (2AdM), oppositely dibenzo-substituted (2OpM), and tribenzo-substituted (3M) TAP derivatives, whose pi conjugated systems were altered by fusing benzo rings. The S(1)(x) and S(1)(y) states (these lowest excited singlet states are degenerate in D(4)(h) symmetry) split in the low-symmetry TAP derivatives. The excited-state energies were quantitatively determined from the electronic absorption spectra. The lowest excited triplet (T(1)(x)) energies were also determined from phosphorescence spectra, while the second lowest excited triplet (T(1)(y)) states were evaluated by using the energy splitting between the T(1)(x) and T(1)(y) states previously reported (Miwa, H.; Ishii, K.; Kobayashi, N. Chem. Eur. J. 2004, 10, 4422-4435). The singlet oxygen quantum yields (Phi(Delta)) are strongly dependent on the pi conjugated system. In particular, while the Phi(Delta) value of 2AdH(2) is smallest in our system, that of 2OpH(2), an isomer of 2AdH(2), is larger than that of 4Zn, in contrast to the heavy atom effect. The relationship between the molecular structure and Phi(Delta) values can be transformed into a relationship between the S(1)(x) --> T(1)(y) intersystem crossing rate constant (k(ISC)) and the energy difference between the S(1)(x) and T(1)(y) states (DeltaE(S)(x)(T)(y)). In each of the Zn, Mg, and metal-free compounds, the Phi(Delta)/tau(F) values (tau(F): fluorescence lifetime), which are related to the k(ISC) values, are proportional to exp(-DeltaE(S)(x)(T)(y)), indicating that singlet oxygen ((1)Delta(g)) is produced via the T(1)(y) state and that the S(1)(x) --> T(1)(y) ISC process follows the energy-gap law. From the viewpoint of photodynamic therapy, our methodology

  18. Poly(D, L-lactide-co-glycolide) nanoparticles as delivery agents for photodynamic therapy: enhancing singlet oxygen release and photototoxicity by surface PEG coating.

    Science.gov (United States)

    Boix-Garriga, Ester; Acedo, Pilar; Casadó, Ana; Villanueva, Angeles; Stockert, Juan Carlos; Cañete, Magdalena; Mora, Margarita; Sagristá, Maria Lluïsa; Nonell, Santi

    2015-09-11

    Poly(D, L-lactide-co-glycolide) (PLGA) nanoparticles (NPs) are being considered as nanodelivery systems for photodynamic therapy. The physico-chemical and biological aspects of their use remain largely unknown. Herein we report the results of a study of PLGA NPs for the delivery of the model hydrophobic photosensitizer ZnTPP to HeLa cells. ZnTPP was encapsulated in PLGA with high efficiency and the NPs showed negative zeta potentials and diameters close to 110 nm. Poly(ethylene glycol) (PEG) coating, introduced to prevent opsonization and clearance by macrophages, decreased the size and zeta potential of the NPs by roughly a factor of two and improved their stability in the presence of serum proteins. Photophysical studies revealed two and three populations of ZnTPP and singlet oxygen in uncoated and PEGylated NPs, respectively. Singlet oxygen is confined within the NPs in bare PLGA while it is more easily released into the external medium after PEG coating, which contributes to a higher photocytotoxicity towards HeLa cells in vitro. PLGA NPs are internalized by endocytosis, deliver their cargo to lysosomes and induce cell death by apoptosis upon exposure to light. In conclusion, PLGA NPs coated with PEG show high potential as delivery systems for photodynamic applications.

  19. Investigation of the singlet delta oxygen and ozone yields from the pulsed radiolysis of oxygen and oxygen-noble gas mixtures

    International Nuclear Information System (INIS)

    Zediker, M.S.

    1984-01-01

    The experiments discussed herein were performed with a flowing gas apparatus coupled to the University of Illinois TRIGA reactor. The detectors (lambda = 1.27 μ 634 nm) were calibrated with a novel NO 2 titration scheme and the absorbed dose was estimated from the ozone concentrations measured in pure oxygen. The results of these experiments revealed an O 2 (a 1 Δ) production efficiency of 0.14% for direct nuclear pumping in an argon-oxygen mixture. Extensive modeling of the oxygen and argon-oxygen mixtures were benchmarked against these and other experiments. However, good agreement over a broad absorbed dose range was only possible if the O 4 + + O 4 - neutralization reaction was assumed to be nondissociative. In a second set of experiments with a nuclear sustained electrical discharge (low E/N), the O 2 (a 1 Δ) production efficiency was approx.0.40% for the electrical power densities examined. In addition, the O 2 (a 1 Δ) was observed to scale with the square root of the electrical power deposition but was independent of the oxygen concentration. A simple analytic model was developed which explains this behavior as a characteristic of an externally sustained discharge involving an electron attaching gas such as oxygen. The results of these experiments and the modeling of the chemical kinetics are discussed with an emphasis on optimizing the O 2 (a 1 Δ) and O 3 yields

  20. Singlet Fission

    Czech Academy of Sciences Publication Activity Database

    Smith, M. B.; Michl, Josef

    2010-01-01

    Roč. 110, č. 11 (2010), s. 6891-6936 ISSN 0009-2665 Grant - others:Department of Energy(US) DE- FG36 -08GO18017 Institutional research plan: CEZ:AV0Z40550506 Keywords : solar energy conversion * photovoltaics * singlet fission Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 33.033, year: 2010

  1. Isomer distribution of hydroxyoctadecadienoates (HODE) and hydroxyeicosatetraenoates (HETE) produced in the plasma oxidation mediated by peroxyl radical, peroxynitrite, hypochlorite, 15-lipoxygenase, and singlet oxygen.

    Science.gov (United States)

    Umeno, Aya; Morita, Mayuko; Yoshida, Yasukazu; Naito, Yuji; Niki, Etsuo

    2017-12-01

    Free and ester forms of unsaturated fatty acids and cholesterol are oxidized in vivo by multiple oxidants to give diverse products. Some lipid oxidation is mediated by enzymes to selectively give specific products, while others proceed randomly to produce mixtures of many kinds of regioisomers and stereoisomers. The efficacy of antioxidants against lipid oxidation depends on the nature of the oxidants and therefore the identification of oxidant is important for understanding the roles and effects of lipid oxidation and antioxidants in vivo. In the present study, the isomer distribution of hydro(pero)xyoctadecadienoates (H(p)ODEs) and hydro(pero)xyeicosatetraenoates (H(p)ETEs), the most abundant lipid oxidation products found in human plasma, produced in the oxidation of plasma by peroxyl radicals, peroxynitrite, hypochlorite, 15-lipoxygenase, and singlet oxygen were examined. It was shown that 9- and 13-(E,E)-HODEs, 13(S)-(Z,E)-HODE, and 10- and 12-(Z,E)-HODEs were specific lipid oxidation products by free radical, 15-lipoxygenase, and singlet oxygen, respectively. The isomer distribution of HODEs produced by peroxynitrite was similar to that by peroxyl radical, suggesting that the peroxynitrite mediated lipid oxidation proceeds by free radical mechanisms. The production of HODEs and HETEs by hypochlorite was very small. HODEs may be a better biomarker than HETEs since linoleates are oxidized by simpler mechanisms than arachidonates and all the HODEs isomers can be quantified more easily. These products may be used as specific biomarkers for the identification of responsible oxidants and for the assessment of oxidant-specific lipid oxidation levels and effects of antioxidants in vivo. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. C60 and Sc3N@C80(TMB-PPO derivatives as constituents of singlet oxygen generating, thiol-ene polymer nanocomposites

    Directory of Open Access Journals (Sweden)

    Ashli R. Toles

    2016-07-01

    Full Text Available Numerous functionalization methods have been employed to increase the solubility, and therefore, the processability of fullerenes in composite structures, and of these radical addition reactions continue to be an important methodology. C60 and Sc3N@C80 derivatives were prepared via radical addition of the photodecomposition products from the commercial photoinitiator TMB-PPO, yielding C60(TMB-PPO5 and Sc3N@C80(TMB-PPO3 as preferred soluble derivatives obtained in high yields. Characterization of the mixture of isomers using standard techniques suggests an overall 1PPO:6TMB ratio of addends, reflecting the increased reactivity of the carbon radical. Although, a higher percentage of PPO is observed in the Sc3N@C80(TMB-PPO3 population, perhaps due to reverse electronic requirements of the substrate. Visually dispersed thiol-ene nanocomposites with low extractables were prepared using two monomer compositions (PETMP:TTT and TMPMP:TMPDE with increasing fullerene derivative loading to probe network structure-property relationships. Thermal stability of the derivatives and the resulting networks decreased with increased functionality and at high fullerene loadings, respectively. TMPMP:TMPDE composite networks show well-dispersed derivatives via TEM imaging, and increasing Tg’s with fullerene loading, as expected for the incorporation of a more rigid network component. PETMP:TTT composites show phase separation in TEM, which is supported by the observed Tg’s. Singlet oxygen generation of the derivatives decreases with increased functionality; however, this is compensated for by the tremendous increase in solubility in organic solvents and miscibility with monomers. Most importantly, singlet oxygen generation from the composites increased with fullerene derivative loading, with good photostability of the networks.

  3. Calculation of singlet oxygen dose using explicit and implicit dose metrics during benzoporphyrin derivative monoacid ring A (BPD-MA)-PDT in vitro and correlation with MLL cell survival.

    Science.gov (United States)

    Weston, Mark A; Patterson, Michael S

    2011-01-01

    Photodynamic therapy (PDT) oxygen consumption, clonogenic cell survival, fluorescence photobleaching and photoproduct formation were investigated during benzoporphyrin derivative monoacid (BPD-MA)-PDT of MAT-LyLu cells in vitro. Cells were incubated with BPD-MA concentrations of 0.1, 0.5 or 2.5 μg mL(-1) for 2 h and then treated with 405 nm light under oxygenated and hypoxic conditions. Fluorescence spectra were acquired during treatment, and photobleaching and photoproduct generation were quantified using singular value decomposition of the spectra. Cell survival was measured at set times during the treatment using a colony-forming assay. The amount of oxygen consumed by PDT per photon absorbed decreased with BPD-MA intracellular concentration. Survival was correlated with the total amount of oxygen consumed by PDT per unit volume, which is assumed to be equivalent to the amount of singlet oxygen that reacted. A photobleaching-based singlet oxygen dose metric was also found to predict survival independent of intracellular BPD-MA concentration. The BPD-MA photoproduct was bleached during the treatment. Two singlet oxygen dose metrics based on photoproduct kinetics could not be correlated with cell survival over the full range of intracellular BPD-MA concentrations used. © 2011 The Authors. Photochemistry and Photobiology © 2011 The American Society of Photobiology.

  4. Reversible operation of microtubular solid oxide cells using La0.6Sr0.4Co0.2Fe0.8O3-δ-Ce0.9Gd0.1O2oxygen electrodes

    Science.gov (United States)

    López-Robledo, M. J.; Laguna-Bercero, M. A.; Larrea, A.; Orera, V. M.

    2018-02-01

    Yttria stabilized zirconia (YSZ) based microtubular solid oxide fuel cells (mT-SOFCs) using La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) and Ce0.9Gd0.1O2-δ (GDC) as the oxygen electrode, along with a porous GDC electrolyte-electrode barrier layer, were fabricated and characterized in both fuel cell (SOFC) and electrolysis (SOEC) operation modes. The cells were anode-supported, the NiO-YSZ microtubular supports being made by Powder Extrusion Moulding (PEM). The cells showed power densities of 695 mW cm-2 at 800 °C and 0.7 V in SOFC mode, and of 845 mA cm-2 at 800 °C and 1.3 V in SOEC mode. AC impedance experiments performed under different potential loads demonstrated the reversibility of the cells. These results showed that these cells, prepared with a method suitable for using on an industrial scale, are highly reproducible and reliable, as well as very competitive as reversible SOFC-SOEC devices operating at intermediate temperatures.

  5. Interaction of singlet oxygen with bovine serum albumin and the role of the protein nano-compartmentalization

    Czech Academy of Sciences Publication Activity Database

    Gimenez, R.E.; Vargová, Veronika; Rey, V.; Turbay, M.B.E.; Abatedaga, I.; Vieyra, F.E.M.; Zanini, V.I.P.; Ortiz, J.H.M.; Katz, N. E.; Ostatná, Veronika; Borsarelli, C.D.

    2016-01-01

    Roč. 94, MAY2016 (2016), s. 99-109 ISSN 0891-5849 R&D Projects: GA ČR GBP206/12/G151 Institutional support: RVO:68081707 Keywords : oxidative stress * molecular-oxygen * amino-acids Subject RIV: BO - Biophysics Impact factor: 5.606, year: 2016

  6. Singlet molecular oxygen generation by light-activated DHN-melanin of the fungal pathogen Mycosphaerella fijiensis in black Sigatoka disease of bananas.

    Directory of Open Access Journals (Sweden)

    Miguel J Beltrán-García

    Full Text Available In pathogenic fungi, melanin contributes to virulence, allowing tissue invasion and inactivation of the plant defence system, but has never been implicated as a factor for host cell death, or as a light-activated phytotoxin. Our research shows that melanin synthesized by the fungal banana pathogen Mycosphaerella fijiensis acts as a virulence factor through the photogeneration of singlet molecular oxygen O2 (1Δg. Using analytical tools, including elemental analysis, ultraviolet/infrared absorption spectrophometry and MALDI-TOF mass spectrometry analysis, we characterized both pigment content in mycelia and secreted to the culture media as 1,8-dihydroxynaphthalene (DHN-melanin type compound. This is sole melanin-type in M. fijiensis. Isolated melanins irradiated with a Nd:YAG laser at 532 nm produced monomol light emission at 1270 nm, confirming generation of O2 (1Δg, a highly reactive oxygen specie (ROS that causes cellular death by reacting with all cellular macromolecules. Intermediary polyketides accumulated in culture media by using tricyclazole and pyroquilon (two inhibitors of DHN-melanin synthesis were identified by ESI-HPLC-MS/MS. Additionally, irradiation at 532 nm of that mixture of compounds and whole melanized mycelium also generated O2 (1Δg. A pigmented-strain generated more O2 (1Δg than a strain with low melanin content. Banana leaves of cultivar Cavendish, naturally infected with different stages of black Sigatoka disease, were collected from field. Direct staining of the naturally infected leaf tissues showed the presence of melanin that was positively correlated to the disease stage. We also found hydrogen peroxide (H2O2 but we cannot distinguish the source. Our results suggest that O2 (1Δg photogenerated by DHN-melanin may be involved in the destructive effects of Mycosphaerella fijiensis on banana leaf tissues. Further studies are needed to fully evaluate contributions of melanin-mediated ROS to microbial pathogenesis.

  7. Singlet molecular oxygen generation by light-activated DHN-melanin of the fungal pathogen Mycosphaerella fijiensis in black Sigatoka disease of bananas.

    Science.gov (United States)

    Beltrán-García, Miguel J; Prado, Fernanda M; Oliveira, Marilene S; Ortiz-Mendoza, David; Scalfo, Alexsandra C; Pessoa, Adalberto; Medeiros, Marisa H G; White, James F; Di Mascio, Paolo

    2014-01-01

    In pathogenic fungi, melanin contributes to virulence, allowing tissue invasion and inactivation of the plant defence system, but has never been implicated as a factor for host cell death, or as a light-activated phytotoxin. Our research shows that melanin synthesized by the fungal banana pathogen Mycosphaerella fijiensis acts as a virulence factor through the photogeneration of singlet molecular oxygen O2 (1Δg). Using analytical tools, including elemental analysis, ultraviolet/infrared absorption spectrophometry and MALDI-TOF mass spectrometry analysis, we characterized both pigment content in mycelia and secreted to the culture media as 1,8-dihydroxynaphthalene (DHN)-melanin type compound. This is sole melanin-type in M. fijiensis. Isolated melanins irradiated with a Nd:YAG laser at 532 nm produced monomol light emission at 1270 nm, confirming generation of O2 (1Δg), a highly reactive oxygen specie (ROS) that causes cellular death by reacting with all cellular macromolecules. Intermediary polyketides accumulated in culture media by using tricyclazole and pyroquilon (two inhibitors of DHN-melanin synthesis) were identified by ESI-HPLC-MS/MS. Additionally, irradiation at 532 nm of that mixture of compounds and whole melanized mycelium also generated O2 (1Δg). A pigmented-strain generated more O2 (1Δg) than a strain with low melanin content. Banana leaves of cultivar Cavendish, naturally infected with different stages of black Sigatoka disease, were collected from field. Direct staining of the naturally infected leaf tissues showed the presence of melanin that was positively correlated to the disease stage. We also found hydrogen peroxide (H2O2) but we cannot distinguish the source. Our results suggest that O2 (1Δg) photogenerated by DHN-melanin may be involved in the destructive effects of Mycosphaerella fijiensis on banana leaf tissues. Further studies are needed to fully evaluate contributions of melanin-mediated ROS to microbial pathogenesis.

  8. Threshold ionization mass spectrometry study of singlet molecular oxygen in the deposition of SnO2 by PACVD

    Science.gov (United States)

    Pulpytel, J.; Arefi-Khonsari, F.; Morscheidt, W.

    2005-05-01

    Threshold ionization mass spectrometry (TIMS) has been used to measure the excited molecular oxygen states O2 (1Δg) and O_{2 }(^{1}\\!\\Sigma _g^{+}) during plasma-assisted chemical vapour deposition of tin oxide (SnO2) thin films. The latter, composed of nanosized features, was deposited by feeding in a mixture of Ar, O2 and tetramethyltin (Sn(CH3)4 or TMT) in a capacitively coupled RF discharge reactor. Langmuir probe measurements were performed along with TIMS to measure the electron temperature and density. The correlations between these two diagnostic methods have been investigated. The observed densities of O2 (1Δg) and O_{2 }(^{1}\\!\\Sigma _g^{+}) in the γ mode of the discharge are maximum at a low electron temperature and high density. Furthermore, these results have been shown to be correlated to the trend of the electronic conductivity of the deposited SnO2 thin films.

  9. Oxidação de proteínas por oxigênio singlete: mecanismos de dano, estratégias para detecção e implicações biológicas Singlet oxygen-mediated protein oxidation: damage mechanisms, detection techniques and biological implication

    Directory of Open Access Journals (Sweden)

    Graziella E. Ronsein

    2006-06-01

    Full Text Available Proteins are potential targets for singlet molecular oxygen (¹O2 oxidation. Damages occur only at tryptophan, tyrosine, histidine, methionine, and cysteine residues at physiological pH, generating oxidized compounds such as hydroperoxides. Therefore, it is important to understand the mechanisms by which ¹O2, hydroperoxides and other oxidized products can trigger further damage. The improvement and development of new tools, such as clean sources of ¹O2 and isotopic labeling approaches in association with HPLC/mass spectrometry detection will allow one to elucidate mechanistic features involving ¹O2-mediated protein oxidation.

  10. Influence of an intermolecular charge-transfer state on excited-state relaxation dynamics: solvent effect on the methylnaphthalene-oxygen system and its significance for singlet oxygen production.

    Science.gov (United States)

    Jensen, Poul-Gudmund; Arnbjerg, Jacob; Tolbod, Lars Poulsen; Toftegaard, Rasmus; Ogilby, Peter R

    2009-09-17

    The extent to which an intermolecular charge-transfer (CT) state can influence excited-state relaxation dynamics is examined for the system wherein 1-methylnaphthalene (MN) interacts with molecular oxygen. The MN-O2 system is ideally suited for such a study because excited states can be independently accessed by (i) irradiation into the discrete MN-O2 CT absorption band, (ii) direct irradiation of MN, and (iii) the photosensitized production of triplet state MN. Changing the solvent in which the MN-O2 system is dissolved influences the MN-dependent photoinduced production of singlet oxygen, O2(a1Delta(g)), which, in turn, yields information about fundamental concepts of state mixing. Results of experiments conducted in the polar solvent acetonitrile differ substantially from those obtained from the nonpolar solvent cyclohexane. The data reflect differences in the energy and behavior of the solvent-equilibrated MN-O2 CT state, CT(SE), and the extent to which this state couples to other states of the MN-O2 system. In particular, the data are consistent with a model where both the MN triplet state and the MN-O2 CT(SE) state are immediate precursors of O2(a1Delta(g)). Although the work reported herein is of direct and practical significance for the wide variety of systems in which O2(a1Delta(g)) can be produced upon irradiation, it also serves as an accessible model for a study of general issues pertinent to state mixing and the solvent-dependent dynamics of CT-mediated excited-state relaxation.

  11. Temperature stimulates charge carriers in Ce0.90Fe0.1O2 for semiconductor to metal phase

    Science.gov (United States)

    Parveen, Mubeena; Saravanan, G.; Asvini, V.; Ravichandran, K.; Kalaiselvi, D.

    2018-04-01

    Ce0.90Fe0.1O2, cubic structure exhibits interesting electrical property-due to the effects of oxygen vacancies. Electrical response of nanocrystalline Ce0.90Fe0.1O2 material as a function of temperature was investigated using impedance spectroscopy. A change was observed in Nyquist plot for the temperature 903k, which has been analysed in terms of localized and delocalized electrons. An interesting behaviour of temperature stimulate semiconductor to metal like transition was observed in frequency dependent dielectric constant (ɛ') and frequency dependent dielectric loss(tan δ). Frequency dependence on the real and imaginary part of impedence with respect to temperature aids the presences of semiconductor to metal like transition in Ce0.90Fe0.1O2.

  12. A prototype of an electric-discharge gas flow oxygen−iodine laser: I. Modeling of the processes of singlet oxygen generation in a transverse cryogenic slab RF discharge

    International Nuclear Information System (INIS)

    Vagin, N. P.; Ionin, A. A.; Kochetov, I. V.; Napartovich, A. P.; Sinitsyn, D. V.; Yuryshev, N. N.

    2017-01-01

    The existing kinetic model describing self-sustained and electroionization discharges in mixtures enriched with singlet oxygen has been modified to calculate the characteristics of a flow RF discharge in molecular oxygen and its mixtures with helium. The simulations were performed in the gas plug-flow approximation, i.e., the evolution of the plasma components during their motion along the channel was represented as their evolution in time. The calculations were carried out for the O 2 : He = 1: 0, 1: 1, 1: 2, and 1: 3 mixtures at an oxygen partial pressure of 7.5 Torr. It is shown that, under these conditions, volumetric gas heating in a discharge in pure molecular oxygen prevails over gas cooling via heat conduction even at an electrode temperature as low as ~100 K. When molecular oxygen is diluted with helium, the behavior of the gas temperature changes substantially: heat removal begins to prevail over volumetric gas heating, and the gas temperature at the outlet of the discharge zone drops to ~220–230 K at room gas temperature at the inlet, which is very important in the context of achieving the generation threshold in an electric-discharge oxygen−iodine laser based on a slab cryogenic RF discharge.

  13. New Ru(II) complexes for dual photoreactivity: ligand exchange and (1)O2 generation.

    Science.gov (United States)

    Knoll, Jessica D; Albani, Bryan A; Turro, Claudia

    2015-08-18

    low-lying, long-lived dppn/Me2dppn (3)ππ* excited states that generate (1)O2. Similar to [Ru(bpy)2(CH3CN)2](2+), photodissociation of CH3CN occurs upon irradiation of [Ru(bpy)(dppn)(CH3CN)2](2+), although with lower efficiency because of the presence of the (3)ππ* state. The steric bulk in [Ru(tpy)(Me2dppn)(py)](2+) is critical in facilitating the photoinduced py dissociation, as the analogous complex [Ru(tpy)(dppn)(py)](2+) produces (1)O2 with near-unit efficiency. The ability to tune the relative energies of the excited states provides a means to design potentially more active drugs for photochemotherapy because the photorelease of drugs can be coupled to the therapeutic action of reactive oxygen species, effecting cell death via two different mechanisms. The lessons learned about tuning of the excited-state properties can be applied to the use of Ru(II)-polypyridyl compounds in a variety of applications, such as solar energy conversion, sensors and switches, and molecular machines.

  14. New Ru(II) Complexes for Dual Photoreactivity: Ligand Exchange and 1O2 Generation

    Science.gov (United States)

    Knoll, Jessica D.; Albani, Bryan A.; Turro, Claudia

    2016-01-01

    -c]phenazine) introduces low-lying, long-lived dppn/Me2dppn 3ππ* excited states that generate 1O2. Similar to [Ru(bpy)2(CH3CN)2]2+, photodissociation of CH3CN occurs upon irradiation of [Ru(bpy)(dppn)(CH3CN)2]2+, although with lower efficiency because of the presence of the 3ππ* state. The steric bulk in [Ru(tpy)(Me2dppn)(py)]2+ is critical in facilitating the photoinduced py dissociation, as the analogous complex [Ru(tpy)(dppn)(py)]2+ produces 1O2 with near-unit efficiency. The ability to tune the relative energies of the excited states provides a means to design potentially more active drugs for photochemotherapy because the photorelease of drugs can be coupled to the therapeutic action of reactive oxygen species, effecting cell death via two different mechanisms. The lessons learned about tuning of the excited-state properties can be applied to the use of Ru(II)–polypyridyl compounds in a variety of applications, such as solar energy conversion, sensors and switches, and molecular machines. PMID:26186416

  15. Effective photo-enhancement of cellular activity of fluorophore-octaarginine antisense PNA conjugates correlates with singlet oxygen formation, endosomal escape and chromophore lipophilicity

    DEFF Research Database (Denmark)

    Yarani, Reza; Shiraishi, Takehiko; Nielsen, Peter E.

    2018-01-01

    Photochemical internalization (PCI) is a cellular drug delivery method based on the generation of light-induced reactive oxygen species (ROS) causing damage to the endosomal membrane and thereby resulting in drug release to the cytoplasm. In our study a series of antisense fluorophore octaarginine...

  16. Singlet Oxygen Production and Biological Activity of Hexanuclear Chalcocyanide Rhenium Cluster Complexes [{Re(6)Q(8)}(CN)(6)](4-) (Q = S, Se, Te)

    Czech Academy of Sciences Publication Activity Database

    Solovieva, A.O.; Kirakci, Kaplan; Ivanov, A.; Kubát, Pavel; Pozmogova, T.N.; Miroshnichenko, S.M.; Vorontsova, E.V.; Chechushkov, A.V.; Trifonova, K.E.; Fufaeva, M.S.; Kretov, E.I.; Mironov, Y.V.; Poveshchenko, A.F.; Lang, Kamil; Shestopalov, M.A.

    2017-01-01

    Roč. 56, č. 21 (2017), s. 13491-13499 ISSN 0020-1669 R&D Projects: GA ČR(CZ) GA16-15020S Institutional support: RVO:61388980 ; RVO:61388955 Keywords : photophysical properties * silica nanoparticles * molecular-oxygen * iodide cluster * luminescence Subject RIV: CA - Inorganic Chemistry; CF - Physical ; Theoretical Chemistry (UFCH-W) OBOR OECD: Inorganic and nuclear chemistry; Physical chemistry (UFCH-W) Impact factor: 4.857, year: 2016

  17. Small CAB-like proteins prevent formation of singlet oxygen in the damaged photosystem II complex of the cyanobacterium Synechocystis sp PCC 6803

    Czech Academy of Sciences Publication Activity Database

    Sinha, R. K.; Komenda, Josef; Knoppová, Jana; Sedlářová, M.; Pospíšil, P.

    2012-01-01

    Roč. 35, č. 4 (2012), s. 806-818 ISSN 0140-7791 R&D Projects: GA MŠk(CZ) ED2.1.00/03.0110; GA ČR(CZ) GAP501/11/0377 Institutional research plan: CEZ:AV0Z50200510 Keywords : oxidative stress * photoinhibition * reactive oxygen species Subject RIV: EE - Microbiology, Virology Impact factor: 5.135, year: 2012

  18. Synthesis, singlet-oxygen photogeneration, two-photon absorption, photo-induced DNA cleavage and cytotoxic properties of an amphiphilic β-Schiff-base linked Ru(II) polypyridyl–porphyrin conjugate

    Energy Technology Data Exchange (ETDEWEB)

    Ke, Hanzhong, E-mail: kehanz@163.com [Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan, Hubei 430074 (China); Ma, Wanpeng; Wang, Hongda; Cheng, Guoe [Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan, Hubei 430074 (China); Yuan, Han [Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR (China); Wong, Wai-Kwok, E-mail: wkwong@hkbu.edu.hk [Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR (China); Institute of Advanced Materials, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR (China); Kwong, Daniel W.J. [Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR (China); Tam, Hoi-Lam; Cheah, Kok-Wai [Department of Physics, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR (China); Institute of Advanced Materials, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR (China); Chan, Chi-Fai; Wong, Ka-Leung [Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR (China)

    2014-10-15

    A novel porphyrin–polypyridyl ruthenium(II) conjugate (TPP–Ru), in which the ruthenium(II) polypyridyl moiety is linked to the β-position of the tetraphenylporphyrin via a Schiff base linkage, has been synthesized and characterized by {sup 1}H NMR, HRMS and UV–visible spectroscopy. The relative singlet oxygen quantum yield and two-photon absorption cross-section of this conjugate, together with its photo-induced DNA cleavage and cytotoxic activities were measured. The results show that the amphiphilic ruthenium(II) polypyridyl–porphyrin conjugate is an effective DNA photocleavage agent, with potential application in one- and two-photon absorption anti-cancer photodynamic therapy. - Highlights: • New porphyrin–ruthenium(II) polypyridyl complexes (TTP–Ru) have been synthesized. • The TTP–Ru shows substantial two-photon absorption cross-section (σ{sub 2}=391 GM). • The TTP–Ru exhibits a substantial {sup 1}O{sub 2} quantum yield (0.64±0.13). • The TTP–Ru exhibits a strong DNA cleavage activity upon photo-excitation. • The TTP–Ru is available for in vitro imaging and as a photodynamic therapy agent.

  19. Photosensitized Oxygenations of Hexamethylbenzene in Phase Contact Enhanced Microreactor

    International Nuclear Information System (INIS)

    Park, Chan Yi; Park, Jeong Hyeon; Lim Hyo Jin; Hwang, Geumsook; Park, Chan Pil

    2014-01-01

    Activated singlet oxygen ( 1 O 2 ) has successfully been utilized in production of various compounds including fragrances, pharmaceuticals, and fine chemicals. However, the traditional reaction required a prolonged reaction time due to the difficulty of introducing adequate light and oxygen into the solution. Low contact probability between four species of oxygen, photosensitizer, light, and reagent is an inherent drawback of the traditional photoreaction. Molecular diffusion distance is the most important factor in the heterogeneous reactions including gas-liquid, gassolid, liquid-solid, and immiscible liquid-liquid. Therefore, rates of reaction are closely depended on the distance. Microreactor has provided a distinct advantage in the short molecular diffusion distance due to the high surface-to-volume ratio driven by narrow fluidic channels

  20. Singlet Ground State Magnetism:

    DEFF Research Database (Denmark)

    Loidl, A.; Knorr, K.; Kjems, Jørgen

    1979-01-01

    The magneticGamma 1 –Gamma 4 exciton of the singlet ground state system TbP has been studied by inelastic neutron scattering above the antiferromagnetic ordering temperature. Considerable dispersion and a pronounced splitting was found in the [100] and [110] directions. Both the band width...... and the splitting increased rapidly as the transition temperature was approached in accordance with the predictions of the RPA-theory. The dispersion is analysed in terms of a phenomenological model using interactions up to the fourth nearest neighbour....

  1. Senescence, Stress, and Reactive Oxygen Species

    Directory of Open Access Journals (Sweden)

    Ivan Jajic

    2015-07-01

    Full Text Available Generation of reactive oxygen species (ROS is one of the earliest responses of plant cells to various biotic and abiotic stresses. ROS are capable of inducing cellular damage by oxidation of proteins, inactivation of enzymes, alterations in the gene expression, and decomposition of biomembranes. On the other hand, they also have a signaling role and changes in production of ROS can act as signals that change the transcription of genes that favor the acclimation of plants to abiotic stresses. Among the ROS, it is believed that H2O2 causes the largest changes in the levels of gene expression in plants. A wide range of plant responses has been found to be triggered by H2O2 such as acclimation to drought, photooxidative stress, and induction of senescence. Our knowledge on signaling roles of singlet oxygen (1O2 has been limited by its short lifetime, but recent experiments with a flu mutant demonstrated that singlet oxygen does not act primarily as a toxin but rather as a signal that activates several stress-response pathways. In this review we summarize the latest progress on the signaling roles of ROS during senescence and abiotic stresses and we give a short overview of the methods that can be used for their assessment.

  2. Senescence, Stress, and Reactive Oxygen Species

    Science.gov (United States)

    Jajic, Ivan; Sarna, Tadeusz; Strzalka, Kazimierz

    2015-01-01

    Generation of reactive oxygen species (ROS) is one of the earliest responses of plant cells to various biotic and abiotic stresses. ROS are capable of inducing cellular damage by oxidation of proteins, inactivation of enzymes, alterations in the gene expression, and decomposition of biomembranes. On the other hand, they also have a signaling role and changes in production of ROS can act as signals that change the transcription of genes that favor the acclimation of plants to abiotic stresses. Among the ROS, it is believed that H2O2 causes the largest changes in the levels of gene expression in plants. A wide range of plant responses has been found to be triggered by H2O2 such as acclimation to drought, photooxidative stress, and induction of senescence. Our knowledge on signaling roles of singlet oxygen (1O2) has been limited by its short lifetime, but recent experiments with a flu mutant demonstrated that singlet oxygen does not act primarily as a toxin but rather as a signal that activates several stress-response pathways. In this review we summarize the latest progress on the signaling roles of ROS during senescence and abiotic stresses and we give a short overview of the methods that can be used for their assessment. PMID:27135335

  3. pH-responsive silica nanoparticles for controllable 1O2 generation

    International Nuclear Information System (INIS)

    Li Zhaobo; Wang Jianguang; Chen Jingrong; Lei Wanhua; Wang Xuesong; Zhang Baowen

    2010-01-01

    pH-responsive 1 O 2 photosensitizing systems may serve as selective photodynamic therapy (PDT) agents by targeting the acidic interstitial fluid of many kinds of tumors. In this work, we present a pH-responsive nanoparticle-based platform for controllable 1 O 2 generation, in which a hydrophobic 1 O 2 photosensitizer (meso-tetraphenylporphyrin, TPP) and a pH indicator (Bromocresol Purple, BCP, or Bromothymol Blue, BTB) are simultaneously encapsulated in organically modified silica nanoparticles (OSNP). In basic conditions, the pH indicator absorbs light competitively and thus restricts sensitizer excitation. In acidic solution, the blue shifted absorption of the pH indicator allows the efficient excitation of the sensitizer. The pH indicator serves as an 'inner filter' to modulate effectively the excitation of the sensitizer and thus the 1 O 2 generation efficiency.

  4. Singlets of fermionic gauge symmetries

    NARCIS (Netherlands)

    Bergshoeff, E.A.; Kallosh, R.E.; Rahmanov, M.A.

    1989-01-01

    We investigate under which conditions singlets of fermionic gauge symmetries which are "square roots of gravity" can exist. Their existence is non-trivial because there are no fields neutral in gravity. We tabulate several examples of singlets of global and local supersymmetry and κ-symmetry and

  5. Gaugino Mass without Singlets

    CERN Document Server

    Giudice, Gian Francesco; Murayama, H; Rattazzi, Riccardo; Giudice, Gian F.; Luty, Markus A.; Murayama, Hitoshi; Rattazzi, Riccardo

    1998-01-01

    In models with dynamical supersymmetry breaking in the hidden sector, the gaugino masses in the observable sector have been believed to be extremely suppressed (below 1 keV), unless there is a gauge singlet in the hidden sector with specific couplings to the observable sector gauge multiplets. We point out that there is a pure supergravity contribution to gaugino masses at the quantum level arising from the superconformal anomaly. Our results are valid to all orders in perturbation theory and are related to the `exact' beta functions for soft terms. There is also an anomaly contribution to the A terms proportional to the beta function of the corresponding Yukawa coupling. The gaugino masses are proportional to the corresponding gauge beta functions, and so do not satisfy the usual GUT relations.

  6. Search for Singlet Fission Chromophores

    Energy Technology Data Exchange (ETDEWEB)

    Havlas, Z.; Akdag, A.; Smith, M. B.; Dron, P.; Johnson, J. C.; Nozik, A. J.; Michl, J.

    2012-01-01

    Singlet fission, in which a singlet excited chromophore shares its energy with a ground-state neighbor and both end up in their triplet states, is of potential interest for solar cells. Only a handful of compounds, mostly alternant hydrocarbons, are known to perform efficiently. In view of the large number of conditions that a successful candidate for a practical cell has to meet, it appears desirable to extend the present list of high performers to additional classes of compounds. We have (i) identified design rules for new singlet fission chromophores and for their coupling to covalent dimers, (ii) synthesized them, and (iii) evaluated their performance as neat solids or covalent dimers.

  7. Antimicrobial strategies centered around reactive oxygen species - bactericidal antibiotics, photodynamic therapy and beyond

    Science.gov (United States)

    Vatansever, Fatma; de Melo, Wanessa C.M.A.; Avci, Pinar; Vecchio, Daniela; Sadasivam, Magesh; Gupta, Asheesh; Chandran, Rakkiyappan; Karimi, Mahdi; Parizotto, Nivaldo A; Yin, Rui; Tegos, George P; Hamblin, Michael R

    2013-01-01

    Reactive oxygen species (ROS) can attack a diverse range of targets to exert antimicrobial activity, which accounts for their versatility in mediating host defense against a broad range of pathogens. Most ROS are formed by the partial reduction of molecular oxygen. Four major ROS are recognized comprising: superoxide (O2•−), hydrogen peroxide (H2O2), hydroxyl radical (•OH), and singlet oxygen (1O2), but they display very different kinetics and levels of activity. The effects of O2•− and H2O2 are less acute than those of •OH and 1O2, since the former are much less reactive and can be detoxified by endogenous antioxidants (both enzymatic and non-enzymatic) that are induced by oxidative stress. In contrast, no enzyme can detoxify •OH or 1O2, making them extremely toxic and acutely lethal. The present review will highlight the various methods of ROS formation and their mechanism of action. Antioxidant defenses against ROS in microbial cells and the use of ROS by antimicrobial host defense systems are covered. Antimicrobial approaches primarily utilizing ROS comprise both bactericidal antibiotics, and non-pharmacological methods such as photodynamic therapy, titanium dioxide photocatalysis, cold plasma and medicinal honey. A brief final section covers, reactive nitrogen species, and related therapeutics, such as acidified nitrite and nitric oxide releasing nanoparticles. PMID:23802986

  8. Reactive oxygen species and transcript analysis upon excess light treatment in wild-type Arabidopsis thaliana vs a photosensitive mutant lacking zeaxanthin and lutein

    Directory of Open Access Journals (Sweden)

    Roncaglia Enrica

    2011-04-01

    Full Text Available Abstract Background Reactive oxygen species (ROS are unavoidable by-products of oxygenic photosynthesis, causing progressive oxidative damage and ultimately cell death. Despite their destructive activity they are also signalling molecules, priming the acclimatory response to stress stimuli. Results To investigate this role further, we exposed wild type Arabidopsis thaliana plants and the double mutant npq1lut2 to excess light. The mutant does not produce the xanthophylls lutein and zeaxanthin, whose key roles include ROS scavenging and prevention of ROS synthesis. Biochemical analysis revealed that singlet oxygen (1O2 accumulated to higher levels in the mutant while other ROS were unaffected, allowing to define the transcriptomic signature of the acclimatory response mediated by 1O2 which is enhanced by the lack of these xanthophylls species. The group of genes differentially regulated in npq1lut2 is enriched in sequences encoding chloroplast proteins involved in cell protection against the damaging effect of ROS. Among the early fine-tuned components, are proteins involved in tetrapyrrole biosynthesis, chlorophyll catabolism, protein import, folding and turnover, synthesis and membrane insertion of photosynthetic subunits. Up to now, the flu mutant was the only biological system adopted to define the regulation of gene expression by 1O2. In this work, we propose the use of mutants accumulating 1O2 by mechanisms different from those activated in flu to better identify ROS signalling. Conclusions We propose that the lack of zeaxanthin and lutein leads to 1O2 accumulation and this represents a signalling pathway in the early stages of stress acclimation, beside the response to ADP/ATP ratio and to the redox state of both plastoquinone pool. Chloroplasts respond to 1O2 accumulation by undergoing a significant change in composition and function towards a fast acclimatory response. The physiological implications of this signalling specificity are

  9. New Ru(II) Complexes for Dual Photoreactivity: Ligand Exchange and 1O2 Generation

    OpenAIRE

    Knoll, Jessica D.; Albani, Bryan A.; Turro, Claudia

    2015-01-01

    Uncovering the factors that govern the electronic structure of Ru(II)–polypyridyl complexes is critical in designing new compounds for desired photochemical reactions, and strategies to tune excited states for ligand dissociation and 1O2 production are discussed herein. The generally accepted mechanism for photoinduced ligand dissociation proposes that population of the dissociative triplet ligand field (3LF) state proceeds through thermal population from the vibrationally cooled triplet meta...

  10. Targeted oxidation of Torpedo californica acetylcholinesterase by singlet oxygen: identification of N-formylkynurenine tryptophan derivatives within the active-site gorge of its complex with the photosensitizer methylene blue.

    Science.gov (United States)

    Triquigneaux, Mathilde M; Ehrenshaft, Marilyn; Roth, Esther; Silman, Israel; Ashani, Yakov; Mason, Ronald P; Weiner, Lev; Deterding, Leesa J

    2012-11-15

    The principal role of AChE (acetylcholinesterase) is termination of impulse transmission at cholinergic synapses by rapid hydrolysis of the neurotransmitter acetylcholine. The active site of AChE is near the bottom of a long and narrow gorge lined with aromatic residues. It contains a CAS (catalytic 'anionic' subsite) and a second PAS (peripheral 'anionic' site), the gorge mouth, both of which bind acetylcholine via π-cation interactions, primarily with two conserved tryptophan residues. It was shown previously that generation of (1)O(2) by illumination of MB (Methylene Blue) causes irreversible inactivation of TcAChE (Torpedo californica AChE), and suggested that photo-oxidation of tryptophan residues might be responsible. In the present study, structural modification of the TcAChE tryptophan residues induced by MB-sensitized oxidation was investigated using anti-N-formylkynurenine antibodies and MS. From these analyses, we determined that N-formylkynurenine derivatives were specifically produced from Trp(84) and Trp(279), present at the CAS and PAS respectively. Peptides containing these two oxidized tryptophan residues were not detected when the competitive inhibitors, edrophonium and propidium (which should displace MB from the gorge) were present during illumination, in agreement with their efficient protection against the MB-induced photo-inactivation. Thus the bound MB elicited selective action of (1)O(2) on the tryptophan residues facing on to the water-filled active-site gorge. The findings of the present study thus demonstrate the localized action and high specificity of MB-sensitized photo-oxidation of TcAChE, as well as the value of this enzyme as a model system for studying the mechanism of action and specificity of photosensitizing agents.

  11. Targeted oxidation of Torpedo californica acetylcholinesterase by singlet oxygen: Identification of N-formylkynurenine tryptophan derivatives within the active-site gorge of its complex with the photosensitizer methylene blue

    Science.gov (United States)

    Triquigneaux, Mathilde M.; Ehrenshaft, Marilyn; Roth, Esther; Silman, Israel; Ashani, Yakov; Mason, Ronald P.; Weiner, Lev; Deterding, Leesa J.

    2013-01-01

    Synopsis The principal role of acetylcholinesterase (AChE) is termination of impulse transmission at cholinergic synapses by rapid hydrolysis of the neurotransmitter acetylcholine. The active site of AChE is near the bottom of a long and narrow gorge lined with aromatic residues. It contains a catalytic ‘anionic’ subsite (CAS) and a second peripheral ‘anionic’ site (PAS), the gorge mouth, both of which bind acetylcholine via π-cation interactions, primarily with two conserved tryptophans (Trps). It was earlier shown that generation of 1O2 by illumination of methylene blue (MB) causes irreversible inactivation of Torpedo californica AChE (TcAChE), and suggested that photo-oxidation of Trps might be responsible. In the present study, structural modification of the TcAChE Trps induced by MB-sensitized oxidation was investigated using anti-N-formylkynurenine antibodies and mass spectrometry. From these analyses, we determined that N-formylkynurenine derivatives were specifically produced from Trp 84 and Trp 279 – present at the CAS and PAS, respectively. Peptides containing these two oxidized Trp residues were not detected when the competitive inhibitors, edrophonium and propidium (which should displace MB from the gorge) were present during illumination, in agreement with their efficient protection against the MB-induced photo-inactivation. Thus, the bound MB elicited selective action of 1O2 on Trp residues facing onto the water-filled active-site gorge. Our findings thus demonstrate the localized action and high specificity of MB-sensitized photo-oxidation of TcAChE, as well as the value of this enzyme as a model system for studying the mechanism of action and specificity of photosensitizing agents. PMID:22888904

  12. Singlet-triplet annihilation in single LHCII complexes.

    Science.gov (United States)

    Gruber, J Michael; Chmeliov, Jevgenij; Krüger, Tjaart P J; Valkunas, Leonas; van Grondelle, Rienk

    2015-08-14

    In light harvesting complex II (LHCII) of higher plants and green algae, carotenoids (Cars) have an important function to quench chlorophyll (Chl) triplet states and therefore avoid the production of harmful singlet oxygen. The resulting Car triplet states lead to a non-linear self-quenching mechanism called singlet-triplet (S-T) annihilation that strongly depends on the excitation density. In this work we investigated the fluorescence decay kinetics of single immobilized LHCIIs at room temperature and found a two-exponential decay with a slow (3.5 ns) and a fast (35 ps) component. The relative amplitude fraction of the fast component increases with increasing excitation intensity, and the resulting decrease in the fluorescence quantum yield suggests annihilation effects. Modulation of the excitation pattern by means of an acousto-optic modulator (AOM) furthermore allowed us to resolve the time-dependent accumulation and decay rate (∼7 μs) of the quenching species. Inspired by singlet-singlet (S-S) annihilation studies, we developed a stochastic model and then successfully applied it to describe and explain all the experimentally observed steady-state and time-dependent kinetics. That allowed us to distinctively identify the quenching mechanism as S-T annihilation. Quantitative fitting resulted in a conclusive set of parameters validating our interpretation of the experimental results. The obtained stochastic model can be generalized to describe S-T annihilation in small molecular aggregates where the equilibration time of excitations is much faster than the annihilation-free singlet excited state lifetime.

  13. The role of reactive oxygen species in the degradation of lignin derived dissolved organic matter

    Science.gov (United States)

    Waggoner, Derek C.; Wozniak, Andrew S.; Cory, Rose M.; Hatcher, Patrick G.

    2017-07-01

    Evidence suggests that reactive oxygen species (ROS) are important in transforming the chemical composition of the large pool of terrestrially-derived dissolved organic matter (DOM) exported from land to water annually. However, due to the challenges inherent in isolating the effects of individual ROS on DOM composition, the role of ROS in the photochemical alteration of DOM remains poorly characterized. In this work, terrestrial DOM was independently exposed to singlet oxygen (1O2), and superoxide (O2-rad under controlled laboratory conditions). Using ultra-high resolution mass spectrometry to track molecular level alterations of DOM by ROS, these findings suggest exposure to 1O2 (generated using Rose Bengal and visible light) removed formulas with an O/C > 0.3, and primarily resulted in DOM comprised of formulas with higher oxygen content, while O2-rad exposure (from KO2 in DMSO) removed formulas with O/C 1.5). Comparison of DOM altered by ROS in this study to riverine and coastal DOM showed that (20-80%) overlap in formulas, providing evidence for the role of ROS in shaping the composition of DOM exported from rivers to oceans.

  14. Reactive oxygen species at phospholipid bilayers: distribution, mobility and permeation.

    Science.gov (United States)

    Cordeiro, Rodrigo M

    2014-01-01

    Reactive oxygen species (ROS) are involved in biochemical processes such as redox signaling, aging, carcinogenesis and neurodegeneration. Although biomembranes are targets for reactive oxygen species attack, little is known about the role of their specific interactions. Here, molecular dynamics simulations were employed to determine the distribution, mobility and residence times of various reactive oxygen species at the membrane-water interface. Simulations showed that molecular oxygen (O2) accumulated at the membrane interior. The applicability of this result to singlet oxygen ((1)O2) was discussed. Conversely, superoxide (O2(-)) radicals and hydrogen peroxide (H2O2) remained at the aqueous phase. Both hydroxyl (HO) and hydroperoxyl (HO2) radicals were able to penetrate deep into the lipid headgroups region. Due to membrane fluidity and disorder, these radicals had access to potential peroxidation sites along the lipid hydrocarbon chains, without having to overcome the permeation free energy barrier. Strikingly, HO2 radicals were an order of magnitude more concentrated in the headgroups region than in water, implying a large shift in the acid-base equilibrium between HO2 and O2(-). In comparison with O2, both HO and HO2 radicals had lower lateral mobility at the membrane. Simulations revealed that there were intermittent interruptions in the H-bond network around the HO radicals at the headgroups region. This effect is expected to be unfavorable for the H-transfer mechanism involved in HO diffusion. The implications for lipid peroxidation and for the effectiveness of membrane antioxidants were evaluated. © 2013.

  15. Exploration of the Singlet O2 Oxidation of 8-Oxoguanine by Guided-Ion Beam Scattering and Density Functional Theory: Changes of Reaction Intermediates, Energetics, and Kinetics upon Protonation/Deprotonation and Hydration.

    Science.gov (United States)

    Sun, Yan; Lu, Wenchao; Liu, Jianbo

    2017-02-09

    8-Oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo) is one of the most common DNA lesions resulting from reactive oxygen species and ionizing radiation, and is involved in mutagenesis, carcinogenesis, and cell death. Notably, 8-oxodGuo is more reactive toward singlet (a 1 Δ g ) O 2 than the undamaged guanosine, and the lesions arising from the secondary oxidation of 8-oxodGuo are more mutagenic. Herein the 1 O 2 oxidation of free base 8-oxoguanine (8-oxoG) was investigated at different initial conditions including protonated [8-oxoG + H] + , deprotonated [8-oxoG - H] - , and their monohydrates. Experiment was carried out on a guided-ion beam scattering tandem mass spectrometer. Measurements include the effects of collision energy (E col ) on reaction cross sections over a center-of-mass E col range from 0.1 to 0.5 eV. The aim of this study is to quantitatively probe the sensitivity of the early stage of 8-oxoG oxidation to ionization and hydration. Density functional theory and Rice-Ramsperger-Kassel-Marcus calculations were performed to identify the intermediates and the products along reaction pathways and locate accessible reaction potential energy surfaces, and to rationalize reaction outcomes from energetic and kinetic points of view. No product was observed for the reaction of [8-oxoG + H] + ·W 0,1 (W = H 2 O) because insurmountable barriers block the addition of 1 O 2 to reactant ions. Neither was [8-oxoG - H] - reactive with 1 O 2 , in this case due to the rapid decay of transient intermediates to starting reactants. However, the nonreactivity of [8-oxoG - H] - was inverted by hydration; as a result, 4,5-dioxetane of [8-oxoG - H] - was captured as the main oxidation product. Reaction cross section for [8-oxoG - H] - ·W + 1 O 2 decreases with increasing E col and becomes negligible above 0.3 eV, indicating that the reaction is exothermic and has no barriers above reactants. The contrasting oxidation behaviors of [8-oxoG + H] + ·W 0,1 and [8-oxoG - H] - ·W 0

  16. Total inhibition of (1)O2-induced oxidative damage to guanine bases of DNA/RNA by turmeric extracts.

    Science.gov (United States)

    Joshi, Prakash C; Li, Hsin H; Merchant, Monique; Keane, Thomas C

    2014-09-26

    The guanine base of nucleic acids is known to be very reactive towards degradation by (1)O2-induced oxidative stress. Oxidative reactions of DNA are linked to many human diseases including cancer. Among the various forms of reactive O2 species (OH, (1)O2 or O2(-)), the oxidative stress caused by (1)O2 is of particular physiologic importance because of its selectively long life in aqueous medium and its ability to diffuse through a cell membrane. In this study we investigated the degradation of a model compound guanosine (Guo) by (1)O2, which was generated by riboflavin-induced photosensitization and by molybdate ion catalyzed disproportionation of H2O2. We observed the remarkable ability of an aqueous and alcoholic extracts of Turmeric (Curcuma longa) as an extraordinary scavenger of (1)O2 to completely inhibit the degradation of Guo. The alcoholic extracts were more effective in their antioxidant activity than the corresponding water extract. This naturally occurring antioxidant offers a most economical supplement to protect biologically significant molecules from the oxidative stress induced by (1)O2. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Supersymmetric singlet majorons and cosmology

    International Nuclear Information System (INIS)

    Chun, E.J.; Kim, H.B.; Lukas, A.

    1994-02-01

    We examine cosmological constraints on the lepton number breaking scale in super-symmetric singlet majoron models. Special attention is drawn to the model dependence arising from the particular choice of a certain majoron extension and a cosmological scenario. We find that the bounds on the symmetry breaking scale can vary substantially. Large values of this scale can be allowed if the decoupling temperature of majoron and majorino exceeds the reheating temperature of inflation. In the opposite case an upper bound depending on the majoron model can be obtained which, however, is unlikely to be much larger than 10 10 GeV. (author). 13 refs, 2 figs

  18. Colour singlets in perturbative QCD

    International Nuclear Information System (INIS)

    Bassetto, A.

    1979-01-01

    In the axial gauge and at the leading log level, a definite and consistent picture seems to emerge of a parton decay into states in which many partons are found just before confinement should take place. They are grouped into colourless clusters in a number sufficient to exhaust the ''final'' state, still possessing a finite average mass. This result is peculiar of QCD, in particular of its non-abelian nature. Large transverse momenta or more generally average invariant quantities of partons are mainly due to the multiplicities involved in the branching processes. If eventually confinement would convert these clusters into hadrons (and this is of course the main issue which has still to be proven) without a large rearrangement of the colour lines, the picture we have found for colour singlets could apply to the real hadronic world. (author)

  19. Singlet and triplet instability theorems

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Tomonori; Hirata, So, E-mail: sohirata@illinois.edu [Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801 (United States); CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012 (Japan)

    2015-09-21

    A useful definition of orbital degeneracy—form-degeneracy—is introduced, which is distinct from the usual energy-degeneracy: Two canonical spatial orbitals are form-degenerate when the energy expectation value in the restricted Hartree–Fock (RHF) wave function is unaltered upon a two-electron excitation from one of these orbitals to the other. Form-degenerate orbitals tend to have isomorphic electron densities and occur in the highest-occupied and lowest-unoccupied molecular orbitals (HOMOs and LUMOs) of strongly correlated systems. Here, we present a mathematical proof of the existence of a triplet instability in a real or complex RHF wave function of a finite system in the space of real or complex unrestricted Hartree–Fock wave functions when HOMO and LUMO are energy- or form-degenerate. We also show that a singlet instability always exists in a real RHF wave function of a finite system in the space of complex RHF wave functions, when HOMO and LUMO are form-degenerate, but have nonidentical electron densities, or are energy-degenerate. These theorems provide Hartree–Fock-theory-based explanations of Hund’s rule, a singlet instability in Jahn–Teller systems, biradicaloid electronic structures, and a triplet instability during some covalent bond breaking. They also suggest (but not guarantee) the spontaneous formation of a spin density wave (SDW) in a metallic solid. The stability theory underlying these theorems extended to a continuous orbital-energy spectrum proves the existence of an oscillating (nonspiral) SDW instability in one- and three-dimensional homogeneous electron gases, but only at low densities or for strong interactions.

  20. Electronic structure of Rh-based CuRh0.9Mg0.1O2 oxide thermoelectrics

    Science.gov (United States)

    Vilmercati, P.; Martin, E.; Cheney, C. Parks; Bondino, F.; Magnano, E.; Parmigiani, F.; Sasagawa, T.; Mannella, N.

    2013-03-01

    The electronic structure of the Rh-based CuRh0.9Mg0.1O2 oxide thermoelectric compound has been studied with a multitechnique approach consisting of photoemission, x-ray absorption, and x-ray emission spectroscopies. The data indicate that the region of the valence band in the proximity of the Fermi level is dominated by Rh-derived states. These findings outline the importance of the electronic structure of the Rh ions for the large thermoelectric power in CuRh0.9Mg0.1O2 at high temperature.

  1. Involvement of Cytochrome P450 in Reactive Oxygen Species Formation and Cancer.

    Science.gov (United States)

    Hrycay, Eugene G; Bandiera, Stelvio M

    2015-01-01

    This review examines the involvement of cytochrome P450 (CYP) enzymes in the formation of reactive oxygen species in biological systems and discusses the possible involvement of reactive oxygen species and CYP enzymes in cancer. Reactive oxygen species are formed in biological systems as byproducts of the reduction of molecular oxygen and include the superoxide radical anion (∙O2-), hydrogen peroxide (H2O2), hydroxyl radical (∙OH), hydroperoxyl radical (HOO∙), singlet oxygen ((1)O2), and peroxyl radical (ROO∙). Two endogenous sources of reactive oxygen species are the mammalian CYP-dependent microsomal electron transport system and the mitochondrial electron transport chain. CYP enzymes catalyze the oxygenation of an organic substrate and the simultaneous reduction of molecular oxygen. If the transfer of oxygen to a substrate is not tightly controlled, uncoupling occurs and leads to the formation of reactive oxygen species. Reactive oxygen species are capable of causing oxidative damage to cellular membranes and macromolecules that can lead to the development of human diseases such as cancer. In normal cells, intracellular levels of reactive oxygen species are maintained in balance with intracellular biochemical antioxidants to prevent cellular damage. Oxidative stress occurs when this critical balance is disrupted. Topics covered in this review include the role of reactive oxygen species in intracellular cell signaling and the relationship between CYP enzymes and cancer. Outlines of CYP expression in neoplastic tissues, CYP enzyme polymorphism and cancer risk, CYP enzymes in cancer therapy and the metabolic activation of chemical procarcinogens by CYP enzymes are also provided. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Novel foamy origin for singlet fermion masses

    Science.gov (United States)

    Ellis, John; Mavromatos, Nick E.; Nanopoulos, Dimitri V.

    2017-10-01

    We show how masses for singlet fermions can be generated by interactions with a D-particle model of space-time foam inspired by brane theory. It has been shown previously by one of the authors (N. E. M.) that such interactions may generate dynamically small masses for charged fermions via the recoils of D-particle defects interacting with photons. In this work we consider the direct interactions of D-particle with uncharged singlet fermions such as right-handed neutrinos. Quantum fluctuations of the lattice of D-particles have massless vector (spin-one) excitations that are analogues of phonons. These mediate forces with the singlet fermions, generating large dynamical masses that may be communicated to light neutrinos via the seesaw mechanism.

  3. Production and Consumption of Reactive Oxygen Species by Fullerenes

    Science.gov (United States)

    Reactive oxygen species (ROS) are one of the most important intermediates in chemical, photochemical, and biological processes. To understand the environmental exposure and toxicity of fullerenes better, the production and consumption of ROS (singlet oxygen, superoxide, hydrogen ...

  4. Non-diagonal processes of singlet and ordinary quark production

    International Nuclear Information System (INIS)

    Bejlin, V.A.; Vereshkov, G.M.; Kuksa, V.I.

    1995-01-01

    Non-diagonal processes of singlet and ordinary quark production are analyzed in the model where the down singlet quark mixes with the ordinary ones. The possibility of experimental selection of h-quark effects is demonstrated

  5. Recycling and imaging of nuclear singlet hyperpolarization

    DEFF Research Database (Denmark)

    Pileio, Giuseppe; Bowen, Sean; Laustsen, Christoffer

    2013-01-01

    observation of the same batch of polarized nuclei over a period of 30 min and more. We report a recycling protocol in which the enhanced nuclear polarization achieved by dissolution-DNP is observed with full intensity and then returned to singlet order. MRI experiments may be run on a portion of the available...

  6. Virucidal Nanofiber Textiles Based on Photosensitized Production of Singlet Oxygen

    Science.gov (United States)

    Lhotáková, Yveta; Plíštil, Lukáš; Morávková, Alena; Kubát, Pavel; Lang, Kamil; Forstová, Jitka; Mosinger, Jiří

    2012-01-01

    Novel biomaterials based on hydrophilic polycaprolactone and polyurethane (Tecophilic®) nanofibers with an encapsulated 5,10,5,20-tetraphenylporphyrin photosensitizer were prepared by electrospinning. The doped nanofiber textiles efficiently photo-generate O2(1Δg), which oxidize external chemical and biological substrates/targets. Strong photo-virucidal effects toward non-enveloped polyomaviruses and enveloped baculoviruses were observed on the surface of these textiles. The photo-virucidal effect was confirmed by a decrease in virus infectivity. In contrast, no virucidal effect was detected in the absence of light and/or the encapsulated photosensitizer. PMID:23139839

  7. Virucidal Nanofiber Textiles Based on Photosensitized Production of Singlet Oxygen

    Czech Academy of Sciences Publication Activity Database

    Lhotáková, Y.; Plištil, L.; Morávková, A.; Kubát, Pavel; Lang, Kamil; Forstová, J.; Mosinger, J.

    2012-01-01

    Roč. 7, č. 11 (2012), e49226 E-ISSN 1932-6203 R&D Projects: GA ČR GAP208/10/1678 Institutional support: RVO:61388955 ; RVO:61388980 Keywords : photosynthesis * biomaterials * nanofiber textiles Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.730, year: 2012

  8. Singlet Glueballs In Klebanov-Strassler Theory

    Science.gov (United States)

    Gordeli, Ivan

    In this thesis we complete the singlet glueball sector analysis of the N = 1 super-symmetric Klebanov-Strassler gauge theory. Employing the string theory holographic approach we come up with a prediction of the spectrum of lightest glueballs in SU(N) N = 1 supersymmetric Yang-Mills theory at large N. Interestingly the spectrum of some of the glueballs is consistent with the lattice results for QCD glueballs.

  9. Magnetic properties of singlet ground state systems

    International Nuclear Information System (INIS)

    Diederix, K.M.

    1979-01-01

    Experiments are described determining the properties of a magnetic system consisting of a singlet ground state. Cu(NO 3 ) 2 .2 1/2H 2 O has been studied which is a system of S = 1/2 alternating antiferromagnetic Heisenberg chains. The static properties, spin lattice relaxation time and field-induced antiferromagnetically ordered state measurements are presented. Susceptibility and magnetic cooling measurements of other compounds are summarised. (Auth.)

  10. FD&C Yellow No. 5 (tartrazine) degradation via reactive oxygen species triggered by TiO2 and Au/TiO2 nanoparticles exposed to simulated sunlight.

    Science.gov (United States)

    Li, Meng; He, Weiwei; Liu, Yi; Wu, Haohao; Wamer, Wayne G; Lo, Y Martin; Yin, Jun-Jie

    2014-12-10

    When exposed to light, TiO2 nanoparticles (NPs) become photoactivated and create electron/hole pairs as well as reactive oxygen species (ROS). We examined the ROS production and degradation of a widely used azo dye, FD&C Yellow No. 5 (tartrazine), triggered by photoactivated TiO2 NPs. Degradation was found to follow pseudo-first order reaction kinetics where the rate constant increased with TiO2 NP concentration. Depositing Au on the surface of TiO2 largely enhanced electron transfer and ROS generation, which consequently accelerated dye degradation. Alkaline conditions promoted ROS generation and dye degradation. Results from electron spin resonance spin-trap spectroscopy suggested that at pH 7.4, both hydroxyl radical (•OH) and singlet oxygen ((1)O2) were responsible for dye discoloration, whereas at pH 5, the consumption of (1)O2 became dominant. Implications for dye degradation in foods and other consumer products that contain both TiO2 and FD&C Yellow No. 5 as ingredients are discussed.

  11. Probing color-singlet exchange at D0

    International Nuclear Information System (INIS)

    Abbott, B.; Abolins, M.; Acharya, B.S.

    1997-07-01

    We present latest preliminary results on hard color-singlet exchange in proton-antiproton collisions. The fraction of dijet events produced via color-singlet exchange is measured as a function of jet transverse energy, dijet pseudorapidity separation, and proton-antiproton center-of-mass energy. These results are qualitatively consistent with a color-singlet fraction that increases with increasing quark-initiated processes

  12. Growth and physicochemical properties of organometallic (DL)-trithioureatartrato-O1,O2,O3-cadmium(II) single crystals

    Science.gov (United States)

    Sathyamoorthy, K.; Vinothkumar, P.; Irshad Ahamed, J.; Murali Manohar, P.; Priya, M.; Liu, Jinghe

    2018-04-01

    Single crystals of organometallic (DL)-trithioureatartrato-O1,O2,O3-cadmium(II) (TUDLC) have been grown from methanol solution by using the slow evaporation of solvent growth technique. The lattice structure and crystalline perfection have been determined by carrying out single crystal X-ray diffraction and high resolution X-ray diffraction measurements. The grown crystal was characterized thermally and mechanically by carrying out thermo-gravimetric and micro hardness measurements. The linear and nonlinear optical characterizations were made by carrying out optical transmittance, surface laser damage threshold, particle size-dependent second harmonic generation (SHG) efficiency and photo conductivity measurements. The grown crystal was electrically characterized by carrying out frequency-dependent dielectric measurements. Chemical etching study was also carried out and the dislocation density was estimated. Results obtained in the present study indicate that the grown TUDLC crystal is optically transparent with lower cut-off wavelength 304 nm, mechanically soft, thermally stable up to 101 °C and NLO active with SHG efficiency 2.13 (in KDP unit). The grown crystal is found to have considerably large size, good crystalline perfection, large specific heat capacity, higher surface laser damage threshold and negative photoconductivity.

  13. Role of oxygen and DOM in sunlight induced photodegradation of organophosphorous flame retardants in river water.

    Science.gov (United States)

    Cristale, Joyce; Dantas, Renato F; De Luca, Antonella; Sans, Carmen; Esplugas, Santiago; Lacorte, Silvia

    2017-02-05

    The wide use of organophosphorous flame retardants (OPFR) and plasticizers causes a continuous release of large quantities into natural waters. One of the main contributors to micropollutants depletion in surface water is sunlight induced phototransformations. This study aims to elucidate whether alkyl, chloroalkyl and aryl organophosphorus flame retardants undergo phototransformations in river water. To perform the experiments, nine OPFR were subjected to natural sunlight, Xe lamp (simulated sunlight) and UV-C irradiations in ultra-pure Milli-Q water, Milli-Q water with humic acid and river water. Experiments demonstrated that OPFR achieve an important degree of photodegradation noticeable at long irradiation time, although direct photolysis did not account as the main photodegration mechanism. Results indicated that sunlight absorbing OPFR exhibited photosensitizing activity. The presence of azide in ultra- pure water inhibited some OPFR photodegration by singlet oxygen ( 1 O 2 ) scavenging, and the absence of dissolved oxygen significantly depleted most of OPFR removal. In the conditions studied, humic acid inhibited OPFR phototransformations, while river water enhanced their removal. Results from this study point out the need to further investigate the role of some OPFR as photosensitizers, which are important for fate and ecological risk assessment of flame retardants and other micropollutants in water. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Stability of singlet and triplet trions in carbon nanotubes

    International Nuclear Information System (INIS)

    Ronnow, Troels F.; Pedersen, Thomas G.; Cornean, Horia D.

    2009-01-01

    We investigate singlet and triplet trion states in semiconducting carbon nanotubes using a one-dimensional model. It is concluded that singlet trion states in bind up to 13.6% stronger than exciton states, and that they lower the optical transition energy with up to 50% of the tight binding band gap energy.

  15. Stability of singlet and triplet trions in carbon nanotubes

    DEFF Research Database (Denmark)

    Rønnow, Troels Frimodt; Pedersen, Thomas Garm; Cornean, Horia

    2009-01-01

    We investigate singlet and triplet trion states in semiconducting carbon nanotubes using a one-dimensional model. It is concluded that singlet trion states in bind up to 13.5% stronger than exciton states, and that they lower the optical transition energy with up to 50% of the tight binding band...

  16. Magnetism of singlet - singlet ions interacting with an electron gas: application to PrAl2

    International Nuclear Information System (INIS)

    Palermo, L.

    1986-01-01

    Various magnetic quantities are investigated for a system consisting of singlet-singlet ions interacting with an electron gas. In obtaining the magnetic state equations, the molecular field approximation is used. At T=0, an onset magnetic order condition in function of crystal field and exchange parameters and eletronic density of states at Fermi level is derived. A parametric study of the model is performed numerically. Main results are shown on diagrams. From the experimental data existent in the literature for magnetisation, susceptibility and magnetic specific heat of the PrAl 2 , a fitting with the model predictions is obtained using the following parameters: exchange interaction: 611meV; crystal field parameters: 2,5 meV; band with: 10 eV (of a rectangular density of states with 0,8 el/atom). (author) [pt

  17. Complex singlet extension of the standard model

    International Nuclear Information System (INIS)

    Barger, V.; Langacker, P.; McCaskey, M.; Ramsey-Musolf, M.; Shaughnessy, G.

    2009-01-01

    We analyze a simple extension of the standard model (SM) obtained by adding a complex singlet to the scalar sector (cxSM). We show that the cxSM can contain one or two viable cold dark matter candidates and analyze the conditions on the parameters of the scalar potential that yield the observed relic density. When the cxSM potential contains a global U(1) symmetry that is both softly and spontaneously broken, it contains both a viable dark matter candidate and the ingredients necessary for a strong first order electroweak phase transition as needed for electroweak baryogenesis. We also study the implications of the model for discovery of a Higgs boson at the Large Hadron Collider

  18. Is π-Stacking Prone To Accelerate Singlet-Singlet Energy Transfers?

    Science.gov (United States)

    Gao, Di; Aly, Shawkat M; Karsenti, Paul-Ludovic; Harvey, Pierre D

    2018-03-23

    π-Stacking is the most common structural feature that dictates the optical and electronic properties of chromophores in the solid state. Herein, a unidirectional singlet-singlet energy-transfer dyad has been designed to test the effect of π-stacking of zinc(II) porphyrin, [Zn 2 ], as a slipped dimer acceptor using a BODIPY unit, [bod], as the donor, bridged by the linker C 6 H 4 C≡CC 6 H 4 . The rate of singlet energy transfer, k ET (S 1 ), at 298 K ( k ET (S 1 ) = 4.5 × 10 10 s -1 ) extracted through the change in fluorescence lifetime, τ F , of [bod] in the presence (27.1 ps) and the absence of [Zn 2 ] (4.61 ns) from Streak camera measurements, and the rise time of the acceptor signal in femtosecond transient absorption spectra (22.0 ps), is faster than most literature cases where no π-stacking effect exists (i.e., monoporphyrin units). At 77 K, the τ F of [bod] increases to 45.3 ps, indicating that k ET (S 1 ) decreases by 2-fold (2.2 × 10 10 s -1 ), a value similar to most values reported in the literature, thus suggesting that the higher value at 298 K is thermally promoted at a higher temperature.

  19. Factors controlling the microstructure of Ce0.9Gd0.1O2-δ films in pulsed laser deposition process

    DEFF Research Database (Denmark)

    Rodrigo, Katarzyna Agnieszka; Heiroth, S.; Döbeli, M.

    2010-01-01

    Films of Ce0.9Gd0.1O2-delta (CGO10) are prepared at a range of conditions by pulsed laser deposition (PLD) on a single crystal Si (100) and MgO (100), and on a polycrystalline Pt/MgO (100) substrate. The relationship between the film microstructure, crystallography, chemical composition and PLD p...

  20. The electroweak phase transition in models with gauge singlets

    International Nuclear Information System (INIS)

    Ahriche, A.

    2007-01-01

    A strong first order phase transition is needed for generating the baryon asymmetry; and also to save it during the electroweak phase transition (EWPT). However this condition is not fulfilled within the Standard Model (SM), but in its extensions. It is widely believed that the existence of singlet scalars in some Standard Model extensions can easily make the EWPT strongly first order. In this work, we will examine the strength of the EWPT in the simplest extension of the SM with a real gauge singlet using the sphaleron energy at the critical temperature. We find that the phase transition is stronger by adding a singlet; and also that the criterion for a strong phase transition Ω(T c )/T c >or similar 1, where Ω = (v 2 + (x - x 0 ) 2 ) ( 1)/(2) and x(x 0 ) is the singlet vacuum expectation value in the broken (symmetric) phase, is not valid for models containing singlets, even though often used in the literature. The usual condition v c /T c >or similar 1 is more meaningful, and it is satisfied for the major part of the parameter space for physically allowed Higgs masses. Then it is convenient to study the EWPT in models with singlets that couple only to the Higgs doublets, by replacing the singlets by their vevs. (orig.)

  1. The electroweak phase transition in models with gauge singlets

    Energy Technology Data Exchange (ETDEWEB)

    Ahriche, A.

    2007-04-18

    A strong first order phase transition is needed for generating the baryon asymmetry; and also to save it during the electroweak phase transition (EWPT). However this condition is not fulfilled within the Standard Model (SM), but in its extensions. It is widely believed that the existence of singlet scalars in some Standard Model extensions can easily make the EWPT strongly first order. In this work, we will examine the strength of the EWPT in the simplest extension of the SM with a real gauge singlet using the sphaleron energy at the critical temperature. We find that the phase transition is stronger by adding a singlet; and also that the criterion for a strong phase transition {omega}(T{sub c})/T{sub c} >or similar 1, where {omega} = (v{sup 2} + (x - x{sub 0}){sup 2}){sup (}1)/(2) and x(x{sub 0}) is the singlet vacuum expectation value in the broken (symmetric) phase, is not valid for models containing singlets, even though often used in the literature. The usual condition v{sub c}/T{sub c} >or similar 1 is more meaningful, and it is satisfied for the major part of the parameter space for physically allowed Higgs masses. Then it is convenient to study the EWPT in models with singlets that couple only to the Higgs doublets, by replacing the singlets by their vevs. (orig.)

  2. Fructose as a novel photosensitizer: Characterization of reactive oxygen species and an application in degradation of diuron and chlorpyrifos.

    Science.gov (United States)

    Nayak, Shaila; Muniz, Juan; Sales, Christopher M; Tikekar, Rohan V

    2016-02-01

    The objective of this study was to identify reactive oxygen species (ROS) generated from the exposure of fructose solution to the 254 nm ultraviolet (UV) light and evaluate whether fructose can be used as a photosensitizer for accelerated photo-degradation of diuron and chlorpyrifos. We demonstrated that hydrogen peroxide, singlet oxygen ((1)O2) and acidic photolysis products were generated upon UV exposure of fructose. Consistent with these findings, UV induced degradation of chlorpyrifos and diuron was accelerated by the presence of 500 mM fructose. The average first order photo-degradation rate constants in the absence and presence of 500 mM fructose were 0.92 and 2.07 min(-1) respectively for diuron and 0.04 and 0.07 min(-1) for chlorpyrifos. The quantum yields (ɸ) for direct photo-degradation of diuron and chlorpyrifos were 0.003 and 0.001 respectively. In the presence of 500 mM fructose, these values increased to 0.006 and 0.002 respectively. Thus, fructose may be an effective photosensitizer. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. SHORT COMMUNICATION SINGLET-TRIPLET GAP STUDIES ON ...

    African Journals Online (AJOL)

    Preferred Customer

    2009-02-10

    yahoo.com. SHORT COMMUNICATION. SINGLET-TRIPLET GAP STUDIES ON ARYL-CYCLOPENTADIENYLIDENES: INDIRECT ELECTRONIC EFFECTS. E. Vessally*. Payame Noor University (PNU), Zanjan, Iran. (Received February 10, 2009; ...

  4. Flavor-singlet hidden charm pentaquark

    Science.gov (United States)

    Irie, Yoya; Oka, Makoto; Yasui, Shigehiro

    2018-02-01

    One type of hidden charm pentaquark Pc s with quark content c c ¯u d s in light-flavor singlet state is studied in the quark model. This state is analogous to the Pc with c c ¯u u d in light-flavor octet, which was observed in LHC in 2015. Considering various combinations of color, spin, and light flavor as internal quantum numbers in Pc s, we investigate the mass ordering of the Pc s's by adopting both the one-gluon exchange interaction and the instanton-induced interaction in the quark model. The most stable configuration of Pc s is identified to be total spin 1 /2 in which the c c ¯ is combined to be color octet and spin 1, while the u d s cluster is in a color octet state. The other color octet configurations, the total spin 1 /2 state with the c c ¯ spin 0, and the state with total spin 3 /2 and c c ¯ spin 1, are found as excited states. We also discuss possible decay modes of these hidden charm pentaquarks.

  5. Singlet Fission in Rubrene Derivatives: Impact of Molecular Packing

    KAUST Repository

    Sutton, Christopher

    2017-03-13

    We examine the properties of six recently synthesized rubrene derivatives (with substitutions on the side phenyl rings) that show vastly different crystal structures. In order to understand how packing in the solid state affects the excited states and couplings relevant for singlet fission, the lowest excited singlet (S), triplet (T), multiexciton (TT), and charge-transfer (CT) states of the rubrene derivatives are compared to known singlet fission materials [tetracene, pentacene, 5,12-diphenyltetracene (DPT), and rubrene itself]. While a small difference of less than 0.2 eV is calculated for the S and TT energies, a range of 0.50 to 1.2 eV in the CT energies and nearly 3 orders of magnitude in the electronic couplings are computed for the rubrene derivatives in their crystalline packings, which strongly affects the role of the CT state in facilitating SF. To rationalize experimental observations of singlet fission occurring in amorphous phases of rubrene, DPT, and tetracene, we use molecular dynamics (MD) simulations to assess the impact of molecular packing and orientations and to gain a better understanding of the parameters that control singlet fission in amorphous films compared to crystalline packings. The MD simulations point to a crystalline-like packing for thin films of tetracene; on the other hand, DPT, rubrene, and the rubrene derivatives all show various degrees of disorder with a number of sites that have larger electronic couplings than in the crystal, which can facilitate singlet fission in such thin films. Our analysis underlines the potential of these materials as promising candidates for singlet fission and helps understand how various structural motifs affect the critical parameters that control the ability of a system to undergo singlet fission.

  6. Sonochemical degradation of methyl orange in the presence of Bi2WO6: Effect of operating parameters and the generated reactive oxygen species.

    Science.gov (United States)

    He, Ling-Ling; Liu, Xian-Ping; Wang, Yong-Xia; Wang, Zhi-Xin; Yang, Yan-Jie; Gao, Yan-Ping; Liu, Bin; Wang, Xin

    2016-11-01

    The Bi2WO6 was prepared by the hydrothermal method and its sonocatalytic activity was studied in the degradation of methyl orange (MO) solutions. The effects of catalytic activity of Bi2WO6 on dye were inspected by the change in absorbance of dye with UV-vis spectrometer. The influences of operational parameters such as the addition amount of Bi2WO6, pH, the initial concentration of dyes, ultrasonic power and irradiation time on the degradation ratio were investigated. In addition, the obtained results indicated that the kinetics of sonochemical reactions of MO were consistent with the pseudo first-order kinetics and Bi2WO6 had excellent reusability and stability during the sonochemical degradation processes. The generation and kinds of reactive oxygen species (ROS) and their influence on the sonochemical degradation of MO were determined by the methods of oxidation-extraction spectrophotometry and ROS scavengers. The results indicate that the degradation of MO in the presence of Bi2WO6 under ultrasonic irradiation is related to the generation of ROS, in which both singlet molecular oxygen ((1)O2) and hydroxyl radical (OH) play important roles in the sonochemical degradation of MO. These experimental results provide a sound foundation for the further development of Bi2WO6 as a sonocatalyst in wastewater treatment. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Enhanced conductivity in pulsed laser deposited Ce0.9Gd0.1O2−δ/SrTiO3 heterostructures

    DEFF Research Database (Denmark)

    Kant, K. Mohan; Esposito, Vincenzo; Pryds, Nini

    2010-01-01

    Significant enhancement in the electrical conductivity of Ce0.9Gd0.1O2−δ (CGO) thin films (250 and 500 nm) deposited on MgO(001) substrate is observed by introducing ∼ 50 nm thin SrTiO3 buffer layer film. Introduction of the buffer layer is found to form epitaxial films, leading to minimal grain...... boundary network that results in a free conduction path with near-zero blocking effects perpendicular to current flow. The in-plane conductivity measurements confirm increase in conductivity with increase in compressive strain on CGO films. © 2010 American Institute of Physics...

  8. Study of the Polarization Behavior of Ce0.9Gd0.1O2-δ Single Crystals below 350°C to Room Temperature

    DEFF Research Database (Denmark)

    Neuhaus, K.; Bernemann, M.; Hansen, Karin Vels

    2016-01-01

    was investigated by mapping the introduced defect gradient and its decay with time using Kelvin probe force microscopy. The generated surface potential gradients were found to have a diameter of up to 1 μm, which is explained by the local ionization of defect associates by the applied high electric field....... Measurements were performed at room temperature and 50°C. The polarization behavior of the Ce0.9Gd0.1O2-δ single crystals was compared to cyclovoltammetry and polarization-relaxation experiments at T ≤ 350°C and in dry air or nitrogen which were performed using a specially suited AFM (Controlled Atmosphere...

  9. Recoil detection of the lightest neutralino in MSSM singlet extensions

    International Nuclear Information System (INIS)

    Barger, Vernon; Lewis, Ian; McCaskey, Mat; Shaughnessy, Gabe; Yencho, Brian; Langacker, Paul

    2007-01-01

    We investigate the correlated predictions of singlet extended MSSM models for direct detection and the cosmological relic density of the lightest neutralino. To illustrate the general effects of the singlet, we take heavy sleptons and squarks. We apply CERN LEP (g-2) μ , and perturbativity constraints. We find that the WMAP upper bound on the cold dark matter density limits much of the parameter space to regions where the lightest neutralino can be discovered in recoil experiments. The results for the next-to-minimal supersymmetric standard model and U(1) ' -extended minimal supersymmetric standard model are typically similar to the MSSM since their light neutralinos have similar compositions and masses. In the nearly minimal supersymmetric standard model the neutralino is often very light and its recoil detection is within the reach of the CDMS II experiment. In general, most points in the parameter spaces of the singlet models we consider are accessible to the WARP experiment

  10. Impurities near an antiferromagnetic-singlet quantum critical point

    International Nuclear Information System (INIS)

    Mendes-Santos, T.; Costa, N. C.; Batrouni, G.

    2017-01-01

    Heavy-fermion systems and other strongly correlated electron materials often exhibit a competition between antiferromagnetic (AF) and singlet ground states. We examine the effect of impurities in the vicinity of such an AF-singlet quantum critical point (QCP), through an appropriately defined “impurity susceptibility” χimp, using exact quantum Monte Carlo simulations. Our key finding is a connection within a single calculational framework between AF domains induced on the singlet side of the transition and the behavior of the nuclear magnetic resonance (NMR) relaxation rate 1/T1. Furthermore, we show that local NMR measurements provide a diagnostic for the location of the QCP, which agrees remarkably well with the vanishing of the AF order parameter and large values of χimp.

  11. Gamma rays from the annihilation of singlet scalar dark matter

    Science.gov (United States)

    Yaguna, Carlos E.

    2009-03-01

    We consider an extension of the Standard Model by a singlet scalar that accounts for the dark matter of the Universe. Within this model we compute the expected gamma ray flux from the annihilation of dark matter particles in a consistent way. To do so, an updated analysis of the parameter space of the model is first presented. By enforcing the relic density constraint from the very beginning, the viable parameter space gets reduced to just two variables: the singlet mass and the higgs mass. Current direct detection constraints are then found to require a singlet mass larger than 50 GeV. Finally, we compute the gamma ray flux and annihilation cross section and show that a large fraction of the viable parameter space lies within the sensitivity of Fermi-GLAST.

  12. Gamma rays from the annihilation of singlet scalar dark matter

    International Nuclear Information System (INIS)

    Yaguna, Carlos E.

    2009-01-01

    We consider an extension of the Standard Model by a singlet scalar that accounts for the dark matter of the Universe. Within this model we compute the expected gamma ray flux from the annihilation of dark matter particles in a consistent way. To do so, an updated analysis of the parameter space of the model is first presented. By enforcing the relic density constraint from the very beginning, the viable parameter space gets reduced to just two variables: the singlet mass and the higgs mass. Current direct detection constraints are then found to require a singlet mass larger than 50 GeV. Finally, we compute the gamma ray flux and annihilation cross section and show that a large fraction of the viable parameter space lies within the sensitivity of Fermi-GLAST

  13. Singlet fission efficiency in tetracene-based organic solar cells

    International Nuclear Information System (INIS)

    Wu, Tony C.; Thompson, Nicholas J.; Congreve, Daniel N.; Hontz, Eric; Yost, Shane R.; Van Voorhis, Troy; Baldo, Marc A.

    2014-01-01

    Singlet exciton fission splits one singlet exciton into two triplet excitons. Using a joint analysis of photocurrent and fluorescence modulation under a magnetic field, we determine that the triplet yield within optimized tetracene organic photovoltaic devices is 153% ± 5% for a tetracene film thickness of 20 nm. The corresponding internal quantum efficiency is 127% ± 18%. These results are used to prove the effectiveness of a simplified triplet yield measurement that relies only on the magnetic field modulation of fluorescence. Despite its relatively slow rate of singlet fission, the measured triplet yields confirm that tetracene is presently the best candidate for use with silicon solar cells

  14. Oxygen diffusion in bilayer polymer films

    DEFF Research Database (Denmark)

    Poulsen, Lars; Zebger, Ingo; Tofte, Jannik Pentti

    2004-01-01

    through the film of poly(ethylene-co-norbornene) and into the polystyrene film was monitored using the phosphorescence of singlet oxygen as a spectroscopic probe. To analyze the data, it was necessary to solve Fick's second law of diffusion for both polymer films. Tractable analytical and numerical...

  15. Advances in the development of Chemical Oxygen-Iodine Laser

    Czech Academy of Sciences Publication Activity Database

    Kodymová, Jarmila; Špalek, Otomar; Jirásek, Vít; Čenský, Miroslav

    2004-01-01

    Roč. 54, č. 5 (2004), s. 561-574 ISSN 0011-4626 Institutional research plan: CEZ:AV0Z4032918; CEZ:AV0Z1010921 Keywords : chemical Oxygen-Iodine Laser * COIL * singlet oxygen Subject RIV: CA - Inorganic Chemistry Impact factor: 0.292, year: 2004

  16. The effect of oxygen exposure on pentacene electronic structure

    NARCIS (Netherlands)

    Vollmer, A; Jurchescu, OD; Arfaoui, [No Value; Salzmann, [No Value; Palstra, TTM; Rudolf, P; Niemax, J; Pflaum, J; Rabe, JP; Koch, N; Arfaoui, I.; Salzmann, I.

    We use ultraviolet photoelectron spectroscopy to investigate the effect of oxygen and air exposure on the electronic structure of pentacene single crystals and thin films. it is found that O-2 and water do not react noticeably with pentacene, whereas singlet oxygen/ozone readily oxidize the organic

  17. Inactivation of normal and mutant Neurospora crassa conidia by visible light and near-UV: role of 1O2, carotenoid composition and sensitizer location

    International Nuclear Information System (INIS)

    Thomas, S.A.; Sargent, M.L.; Tuveson, R.W.

    1981-01-01

    Inactivation of Neurospora crassa conidia from wild-type and mutant strains by visible and near-ultraviolet light was investigated in the presence and absence of photosensitizing dyes. Inactivation by near-UV was virtually unchanged by the presence of deuterium oxide or azide suggesting that, contrary to the situation with visible light and photosensitizing dyes, 1 O 2 is not involved in any substantial way in the formation of lethal lesions. Carotenoid deficient strains were similar to wild-type strains in sensitivity to near-UV inactivation which is consistent with 1 O 2 not being involved. Photodynamic inactivation of conidia by visible light occurred in the presence of methylene blue (MB), toluidine blue O (TB), or acridine orange (AO). Carotenoid deficient strains were more sensitive to such inactivation only when MB and TB were used. This suggests that MB and TB mediated damage involves the cell membrane where carotenoids are available for quenching, whereas AO mediated damage occurs in the nucleus sequestered from the protective influence of carotenoids. A newly isolated, lemon-yellow mutant exhibited sensitivities to photodynamic inactivation similar to other pure-white mutants. The sensitivity of this pigmented mutant is apparently related to insufficient unsaturation of the two coloured carotenoids produced by the mutant. (author)

  18. First principles electronic structure investigation of order of singlet and triplet states of oxyhemoglobin and analysis of possible influence of muon trapping

    International Nuclear Information System (INIS)

    Badu, S. R.; Pink, R. H.; Scheicher, R. H.; Dubey, Archana; Sahoo, N.; Nagamine, K.; Das, T. P.

    2010-01-01

    Interest in the possibility of magnetic character for oxyhemoglobin (OxyHb) has been recently stimulated by the observations of muon spin-lattice relaxation effects studied (Nagamine et al., Proc Jpn Acad Ser B Phys Biol Sci 83:120–126, 2007) with the muon-spin rotation (μSR) technique. In view of this, we have carried out first-principles electronic structure investigations involving Hartree–Fock theory combined with many body perturbation effects for the singlet and triplet states of OxyHb. Our results indicate that using two recent x-ray structural data (Paoli et al., J Mol Biol 256:775, 1996; Park et al., J Mol Biol 360:690, 2006) for OxyHb, for only Hartree–Fock theory without many-body effects included, the singlet state lies above the triplet state by energies of about 0.08 and 0.13 a.u. for the two structures in Paoli et al. (J Mol Biol 256:775, 1996) and Park et al. (J Mol Biol 360:690, 2006). Incorporation of many-body effects by the perturbation method reverses the order, with the triplet state located 0.18 and 0.14 a.u. above the singlet state for the structures in Paoli et al. (J Mol Biol 256:775, 1996) and Park et al. (J Mol Biol 360:690, 2006). Physical reasons for these relative orderings of the singlet and triplet states will be discussed. It is clear that OxyHb by itself would be in a singlet state at room temperature or below, since from our calculation, the triplet state lies about KT above the singlet state with T having the value of 44,098 K and 56,449 K for the two structural data in Paoli et al. (J Mol Biol 256:775, 1996) and Park et al. (J Mol Biol 360:690, 2006). As regards the muon spin-lattice relaxation effects obtained by recent μSR measurements (by Nagamine et al., Proc Jpn Acad Ser B Phys Biol Sci 83:120–126, 2007) at room temperature, the sensitive dependence of the singlet-triplet separation on many-body effects in our investigation suggests that it is possible that the singlet-triplet separation could be reversed or

  19. Assessment of the roles of reactive oxygen species in the UV and visible light photocatalytic degradation of cyanotoxins and water taste and odor compounds using C-TiO2.

    Science.gov (United States)

    Fotiou, Theodora; Triantis, Theodoros M; Kaloudis, Triantafyllos; O'Shea, Kevin E; Dionysiou, Dionysios D; Hiskia, Anastasia

    2016-03-01

    Visible light (VIS) photocatalysis has large potential as a sustainable water treatment process, however the reaction pathways and degradation processes of organic pollutants are not yet clearly defined. The presence of cyanobacteria cause water quality problems since several genera can produce potent cyanotoxins, harmful to human health. In addition, cyanobacteria produce taste and odor compounds, which pose serious aesthetic problems in drinking water. Although photocatalytic degradation of cyanotoxins and taste and odor compounds have been reported under UV-A light in the presence of TiO2, limited studies have been reported on their degradation pathways by VIS photocatalysis of these problematic compounds. The main objectives of this work were to study the VIS photocatalytic degradation process, define the reactive oxygen species (ROS) involved and elucidate the reaction mechanisms. We report carbon doped TiO2 (C-TiO2) under VIS leads to the slow degradation of cyanotoxins, microcystin-LR (MC-LR) and cylindrospermopsin (CYN), while taste and odor compounds, geosmin and 2-methylisoborneol, were not appreciably degraded. Further studies were carried-out employing several specific radical scavengers (potassium bromide, isopropyl alcohol, sodium azide, superoxide dismutase and catalase) and probes (coumarin) to assess the role of different ROS (hydroxyl radical OH, singlet oxygen (1)O2, superoxide radical anion [Formula: see text] ) in the degradation processes. Reaction pathways of MC-LR and CYN were defined through identification and monitoring of intermediates using liquid chromatography tandem mass spectrometry (LC-MS/MS) for VIS in comparison with UV-A photocatalytic treatment. The effects of scavengers and probes on the degradation process under VIS, as well as the differences in product distributions under VIS and UV-A, suggested that the main species in VIS photocatalysis is [Formula: see text] , with OH and (1)O2 playing minor roles in the degradation

  20. Flavor-singlet spectrum in multi-flavor QCD

    Energy Technology Data Exchange (ETDEWEB)

    Aoki, Yasamichi; Rinaldi, Enrico

    2017-06-18

    Studying SU(3) gauge theories with increasing number of light fermions is relevant both for understanding the strong dynamics of QCD and for constructing strongly interacting extensions of the Standard Model (e.g. UV completions of composite Higgs models). In order to contrast these many-flavors strongly interacting theories with QCD, we study the flavor-singlet spectrum as an interesting probe. In fact, some composite Higgs models require the Higgs boson to be the lightest flavor-singlet scalar in the spectrum of a strongly interacting new sector with a well defined hierarchy with the rest of the states. Moreover, introducing many light flavors at fixed number of colors can influence the dynamics of the lightest flavor-singlet pseudoscalar. We present the on-going study of these flavor-singlet channels using multiple interpolating operators on high-statistics ensembles generated by the LatKMI collaboration and we compare results with available data obtained by the Lattice Strong Dynamics collaboration. For the theory with 8 flavors, the two collaborations have generated configurations that complement each others with the aim to tackle the massless limit using the largest possible volumes.

  1. Guidance for Mutual Disposition of Chromophores for Singlet Fission

    Czech Academy of Sciences Publication Activity Database

    Havlas, Zdeněk; Michl, Josef

    2016-01-01

    Roč. 56, č. 1 (2016), s. 96-106 ISSN 0021-2148 R&D Projects: GA ČR GA15-19143S Institutional support: RVO:61388963 Keywords : chromophores * energy transfer * photophysics * singlet fission * theory Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.455, year: 2016

  2. Status of the scalar singlet dark matter model

    Science.gov (United States)

    Athron, Peter; Balázs, Csaba; Bringmann, Torsten; Buckley, Andy; Chrząszcz, Marcin; Conrad, Jan; Cornell, Jonathan M.; Dal, Lars A.; Edsjö, Joakim; Farmer, Ben; Jackson, Paul; Kahlhoefer, Felix; Krislock, Abram; Kvellestad, Anders; McKay, James; Mahmoudi, Farvah; Martinez, Gregory D.; Putze, Antje; Raklev, Are; Rogan, Christopher; Saavedra, Aldo; Savage, Christopher; Scott, Pat; Serra, Nicola; Weniger, Christoph; White, Martin

    2017-08-01

    One of the simplest viable models for dark matter is an additional neutral scalar, stabilised by a Z_2 symmetry. Using the GAMBIT package and combining results from four independent samplers, we present Bayesian and frequentist global fits of this model. We vary the singlet mass and coupling along with 13 nuisance parameters, including nuclear uncertainties relevant for direct detection, the local dark matter density, and selected quark masses and couplings. We include the dark matter relic density measured by Planck, direct searches with LUX, PandaX, SuperCDMS and XENON100, limits on invisible Higgs decays from the Large Hadron Collider, searches for high-energy neutrinos from dark matter annihilation in the Sun with IceCube, and searches for gamma rays from annihilation in dwarf galaxies with the Fermi-LAT. Viable solutions remain at couplings of order unity, for singlet masses between the Higgs mass and about 300 GeV, and at masses above ˜ 1 TeV. Only in the latter case can the scalar singlet constitute all of dark matter. Frequentist analysis shows that the low-mass resonance region, where the singlet is about half the mass of the Higgs, can also account for all of dark matter, and remains viable. However, Bayesian considerations show this region to be rather fine-tuned.

  3. Atmospheric and Solar Neutrinos with a Heavy Singlet

    CERN Document Server

    King, S F

    1998-01-01

    We follow a minimalistic approach to neutrino masses, by introducing a single heavy singlet $N$ into the standard model (or supersymmetric standard model) with a heavy Majorana mass $M$, which couples as a single right-handed neutrino in a Dirac fashion to leptons, and induces a single light see-saw mass $m_{\

  4. Bounds on neutrino mixing with exotic singlet neutrinos E

    Indian Academy of Sciences (India)

    This allows us to neglect the masses of light (known) neutrinos. In the SM the process occurs at tree level via light neutrino exchange in t- and u-channels. The neu- trino mixing in special cases (e.g. mixing of exotic and/or singlets), induces non-diagonal light–heavy neutrino neutral currents and additional contribution to the ...

  5. Real gauge singlet scalar extension of the Standard Model: A ...

    Indian Academy of Sciences (India)

    2013-03-05

    Mar 5, 2013 ... Abstract. The simplest extension of Standard Model (SM) is considered in which a real SM gauge singlet scalar with an additional discrete symmetry Z2 is introduced to SM. This additional scalar can be a viable candidate of cold dark matter (CDM) since the stability of S is achieved by the application of Z2 ...

  6. Explorative computational study of the singlet fission process

    NARCIS (Netherlands)

    Havenith, Remco W. A.; de Gier, Hilde D.; Broer, Ria

    2012-01-01

    Different ab initio methods, namely multi-reference and nonorthogonal configuration interaction techniques, are explored for their applicability in studying the singlet fission problem. It has been shown for 2-methyl-1,5-hexadiene that the (TT)-T-1 state can be identified using multi-reference

  7. 1,3-Diphenylisobenzofuran: a Model Chromophore for Singlet Fission

    Czech Academy of Sciences Publication Activity Database

    Johnson, J. C.; Michl, Josef

    2017-01-01

    Roč. 375, č. 5 (2017), č. článku 80. ISSN 2365-0869 R&D Projects: GA ČR GA15-19143S Institutional support: RVO:61388963 Keywords : 1,3-diphenylisobenzofuran * photophysics * solar energy * singlet fission * covalent dimers Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 4.033, year: 2016

  8. Status of the scalar singlet dark matter model

    Energy Technology Data Exchange (ETDEWEB)

    Athron, Peter; Balazs, Csaba [Monash University, School of Physics and Astronomy, Melbourne, VIC (Australia); Australian Research Council Centre of Excellence for Particle Physics at the Tera-scale (Australia); Bringmann, Torsten; Dal, Lars A.; Krislock, Abram; Raklev, Are [University of Oslo, Department of Physics, Oslo (Norway); Buckley, Andy [University of Glasgow, SUPA, School of Physics and Astronomy, Glasgow (United Kingdom); Chrzaszcz, Marcin [Universitaet Zuerich, Physik-Institut, Zurich (Switzerland); Polish Academy of Sciences, H. Niewodniczanski Institute of Nuclear Physics, Krakow (Poland); Conrad, Jan; Edsjoe, Joakim; Farmer, Ben [AlbaNova University Centre, Oskar Klein Centre for Cosmoparticle Physics, Stockholm (Sweden); Stockholm University, Department of Physics, Stockholm (Sweden); Cornell, Jonathan M. [McGill University, Department of Physics, Montreal, QC (Canada); Jackson, Paul; White, Martin [Australian Research Council Centre of Excellence for Particle Physics at the Tera-scale (Australia); University of Adelaide, Department of Physics, Adelaide, SA (Australia); Kahlhoefer, Felix [DESY, Hamburg (Germany); Kvellestad, Anders; Savage, Christopher [NORDITA, Stockholm (Sweden); McKay, James; Scott, Pat [Imperial College London, Department of Physics, Blackett Laboratory, London (United Kingdom); Mahmoudi, Farvah [Univ. Lyon, Univ. Lyon 1, ENS de Lyon, CNRS, Centre de Recherche Astrophysique de Lyon UMR5574, Saint-Genis-Laval (France); CERN, Theoretical Physics Department, Geneva (Switzerland); Martinez, Gregory D. [University of California, Physics and Astronomy Department, Los Angeles, CA (United States); Putze, Antje [LAPTh, Universite de Savoie, CNRS, Annecy-le-Vieux (France); Rogan, Christopher [Harvard University, Department of Physics, Cambridge, MA (United States); Saavedra, Aldo [Australian Research Council Centre of Excellence for Particle Physics at the Tera-scale (Australia); The University of Sydney, Centre for Translational Data Science, Faculty of Engineering and Information Technologies, School of Physics, Sydney, NSW (Australia); Serra, Nicola [Universitaet Zuerich, Physik-Institut, Zurich (Switzerland); Weniger, Christoph [University of Amsterdam, GRAPPA, Institute of Physics, Amsterdam (Netherlands); Collaboration: The GAMBIT Collaboration

    2017-08-15

    One of the simplest viable models for dark matter is an additional neutral scalar, stabilised by a Z{sub 2} symmetry. Using the GAMBIT package and combining results from four independent samplers, we present Bayesian and frequentist global fits of this model. We vary the singlet mass and coupling along with 13 nuisance parameters, including nuclear uncertainties relevant for direct detection, the local dark matter density, and selected quark masses and couplings. We include the dark matter relic density measured by Planck, direct searches with LUX, PandaX, SuperCDMS and XENON100, limits on invisible Higgs decays from the Large Hadron Collider, searches for high-energy neutrinos from dark matter annihilation in the Sun with IceCube, and searches for gamma rays from annihilation in dwarf galaxies with the Fermi-LAT. Viable solutions remain at couplings of order unity, for singlet masses between the Higgs mass and about 300 GeV, and at masses above ∝ 1 TeV. Only in the latter case can the scalar singlet constitute all of dark matter. Frequentist analysis shows that the low-mass resonance region, where the singlet is about half the mass of the Higgs, can also account for all of dark matter, and remains viable. However, Bayesian considerations show this region to be rather fine-tuned. (orig.)

  9. Status of the scalar singlet dark matter model

    International Nuclear Information System (INIS)

    Athron, Peter; Balazs, Csaba; Bringmann, Torsten; Dal, Lars A.; Krislock, Abram; Raklev, Are; Buckley, Andy; Chrzaszcz, Marcin; Conrad, Jan; Edsjoe, Joakim; Farmer, Ben; Cornell, Jonathan M.; Jackson, Paul; White, Martin; Kahlhoefer, Felix; Kvellestad, Anders; Savage, Christopher; McKay, James; Scott, Pat; Mahmoudi, Farvah; Martinez, Gregory D.; Putze, Antje; Rogan, Christopher; Saavedra, Aldo; Serra, Nicola; Weniger, Christoph

    2017-01-01

    One of the simplest viable models for dark matter is an additional neutral scalar, stabilised by a Z 2 symmetry. Using the GAMBIT package and combining results from four independent samplers, we present Bayesian and frequentist global fits of this model. We vary the singlet mass and coupling along with 13 nuisance parameters, including nuclear uncertainties relevant for direct detection, the local dark matter density, and selected quark masses and couplings. We include the dark matter relic density measured by Planck, direct searches with LUX, PandaX, SuperCDMS and XENON100, limits on invisible Higgs decays from the Large Hadron Collider, searches for high-energy neutrinos from dark matter annihilation in the Sun with IceCube, and searches for gamma rays from annihilation in dwarf galaxies with the Fermi-LAT. Viable solutions remain at couplings of order unity, for singlet masses between the Higgs mass and about 300 GeV, and at masses above ∝ 1 TeV. Only in the latter case can the scalar singlet constitute all of dark matter. Frequentist analysis shows that the low-mass resonance region, where the singlet is about half the mass of the Higgs, can also account for all of dark matter, and remains viable. However, Bayesian considerations show this region to be rather fine-tuned. (orig.)

  10. Flavor-singlet spectrum in multi-flavor QCD

    Science.gov (United States)

    Aoki, Yasumichi; Aoyama, Tatsumi; Bennett, Ed; Kurachi, Masafumi; Maskawa, Toshihide; Miura, Kohtaroh; Nagai, Kei-ichi; Ohki, Hiroshi; Rinaldi, Enrico; Shibata, Akihiro; Yamawaki, Koichi; Yamazaki, Takeshi

    2018-03-01

    Studying SU(3) gauge theories with increasing number of light fermions is relevant both for understanding the strong dynamics of QCD and for constructing strongly interacting extensions of the Standard Model (e.g. UV completions of composite Higgs models). In order to contrast these many-flavors strongly interacting theories with QCD, we study the flavor-singlet spectrum as an interesting probe. In fact, some composite Higgs models require the Higgs boson to be the lightest flavor-singlet scalar in the spectrum of a strongly interacting new sector with a well defined hierarchy with the rest of the states. Moreover, introducing many light flavors at fixed number of colors can influence the dynamics of the lightest flavor-singlet pseudoscalar. We present the on-going study of these flavor-singlet channels using multiple interpolating operators on high-statistics ensembles generated by the LatKMI collaboration and we compare results with available data obtained by the Lattice Strong Dynamics collaboration. For the theory with 8 flavors, the two collaborations have generated configurations that complement each others with the aim to tackle the massless limit using the largest possible volumes.

  11. Delayed fluorescence from upper excited singlet states of aromatic ketones

    International Nuclear Information System (INIS)

    Nickel, B.; Roden, G.

    1980-01-01

    With liquid solutions of the aromatic ketones anthraquinone and xanthone, a P-type delayed fluorescence from upper excited singlet states, resulting from triplet-triplet annihilation, has been observed. Some peculiarities of the triplet-triplet annihilation of aromatic ketones are discussed. (orig.)

  12. Morphological Tuning of the Energetics in Singlet Fission Organic Solar Cells

    NARCIS (Netherlands)

    Lin, Yun Hui L; Fusella, Michael A.; Kozlov, Oleg V.; Lin, Xin; Kahn, Antoine; Pshenichnikov, Maxim S.; Rand, Barry P.

    2016-01-01

    Effective singlet fission solar cells require both fast and efficient singlet fission as well as favorable energetics for harvesting the resulting triplet excitons. Notable progress has been made to engineer materials with rapid and efficient singlet fission, but the ability to control the

  13. Sea quark matrix elements and flavor singlet spectroscopy on the lattice

    International Nuclear Information System (INIS)

    Lagae, J.F.

    1996-01-01

    I summarize the results of three recent lattice studies which use stochastic estimator techniques in order to investigate the flavor singlet dynamics in QCD. These include a measurement of the pion-nucleon σ-term, the computation of the flavor singlet axial coupling constant of the nucleon and a determination of flavor singlet meson screening lengths in finite temperature QCD

  14. Effects of Intermolecular Coupling on Excimer Formation and Singlet Fission

    Science.gov (United States)

    Mauck, Catherine McKay

    The development of organic photovoltaic devices benefits from understanding the fundamental processes underlying charge generation in thin films of organic semiconductors. This dissertation exploits model systems of pi-stacked chromophores such as perylene-3,4:9,10-bis(dicarboximide) (PDI) and 3,6-bis(aryl)diketopyrrolopyrrole (DPP) to study these processes using ultrafast electronic and vibrational spectroscopy. In particular, the characterization of covalent molecular dimers, thin films, and solution aggregates can reveal how supramolecular order affects photophysical properties. PDI and DPP are organic semiconductors that have been widely studied in organic photovoltaics, due to their strong visible absorption and excellent chemical stability. As solution-phase monomers, they are highly fluorescent, but in the thin film environment of photovoltaic devices these planar aromatic molecules couple to one another, stacking largely through pi-pi interactions. In self-assembled stacks of PDI, strong interchromophore coupling may disrupt charge separation through the formation of excimer states, preventing the generation of free carriers. By studying molecular dimers of PDI with different pi-stacked geometry, femtosecond visible pump mid-infrared probe spectroscopy allows direct observation of the structural dynamics associated with excimer state relaxation, showing that this low-energy state is primarily coupled to the core modes that shift as planarization and rotation lead to the most stable excimer geometry. PDI is also able to undergo singlet fission in thin films and aggregates. Singlet fission is the process in which a singlet excited state is downconverted into two triplet excitons, when the energy of its first singlet excited state is at least twice the energy of the lowest triplet state in an appropriately coupled molecular system. This spin-allowed, ultrafast process enables a theoretical yield of two charge carriers per incident photon, making it a

  15. Development of new systems of nano-disperse Pt-(2%Pt-Ce0.9W0.1O2)/C electrocatalysts tolerant to carbon monoxide (CO) for PEMFC anodes

    NARCIS (Netherlands)

    Nandenha, J.; Isidoro, R.A.; Dresch, M.A.; Fernandes, V.C.; Aricó, B.; Santiago, E.I.; Rothenberg, G.; Oliveira, W.S.; Linardi, M.

    2012-01-01

    The nanophase material (powder) of Ce0.9W0.1O2 was synthesized via coprecipitation of oxalates of cerium (IV) and tungsten cations. Pt-Ce0.9W0.1O2 (2 wt% Pt) was prepared by an alcohol-reduction process using H2PtCl6.6H2O as source of Pt, Ce0.9W0.1O2 as support and ethylene glycol as solvent and

  16. The effect of forming stresses on the sintering of ultra-fine Ce0.9Gd0.1O2-δ powders

    DEFF Research Database (Denmark)

    Glasscock, Julie; Esposito, Vincenzo; Foghmoes, Søren Preben Vagn

    2013-01-01

    formed with techniques that apply low levels of stress had a particle arrangement which significantly enhanced sintering at low temperature, compared to those prepared by high stress techniques. The sample geometry, heat treatment for organic removal and the initial density of the green body had......The effect of particle and pore arrangement on sintering and densification of ultra-fine (∼130nm) Ce0.9Gd0.1O2-δ powder was evaluated. The common understanding that higher initial density of a ceramic network leads to a higher sintered density is not valid for fine powders, which have extremely...... good sinterability when there is a favourable particle packing. The effect of the applied stresses during forming (which produce different particle packing arrangements) was investigated by forging green bodies by different shaping techniques, including casting, and cold isostatic pressing. Samples...

  17. Electroweak baryogenesis and dark matter from a singlet Higgs

    Energy Technology Data Exchange (ETDEWEB)

    Cline, James M. [Department of Physics, McGill University, 3600 Rue University, Montréal, Québec, H3A 2T8 Canada (Canada); Kainulainen, Kimmo, E-mail: jcline@physics.mcgill.ca, E-mail: kimmo.kainulainen@jyu.fi [Department of Physics, University of Jyväskylä, P.O. Box 35 (YFL), FI-40014 Jyväskylä (Finland)

    2013-01-01

    If the Higgs boson H couples to a singlet scalar S via λ{sub m}|H|{sup 2}S{sup 2}, a strong electroweak phase transition can be induced through a large potential barrier that exists already at zero temperature. In this case properties of the phase transition can be computed analytically. We show that electroweak baryogenesis can be achieved using CP violation from a dimension-6 operator that couples S to the top-quark mass, suppressed by a new physics scale that can be well above 1 TeV. Moreover the singlet is a dark matter candidate whose relic density is ∼<3% of the total dark matter density, but which nevertheless interacts strongly enough with nuclei (through Higgs exchange) to be just below the current XENON100 limits. The DM mass is predicted to be in the range 80–160 GeV.

  18. Confinement sensitivity in quantum dot singlet-triplet relaxation

    Science.gov (United States)

    Wesslén, C. J.; Lindroth, E.

    2017-11-01

    Spin-orbit mediated phonon relaxation in a two-dimensional quantum dot is investigated using different confining potentials. Elliptical harmonic oscillator and cylindrical well results are compared to each other in the case of a two-electron GaAs quantum dot subjected to a tilted magnetic field. The lowest energy set of two-body singlet and triplet states are calculated including spin-orbit and magnetic effects. These are used to calculate the phonon induced transition rate from the excited triplet to the ground state singlet for magnetic fields up to where the states cross. The roll of the cubic Dresselhaus effect, which is found to be much more important than previously assumed, and the positioning of ‘spin hot-spots’ are discussed and relaxation rates for a few different systems are exhibited.

  19. Mixing of Singlet and Triplet Pairing for Surface Superconductivity

    Science.gov (United States)

    Gor'kov, L. P.; Rashba, E. I.

    2002-07-01

    We consider structure of the Cooper wave function for superconductivity in a surface layer. Broken space inversion at the surface results in lifted spin degeneracy and in two branches of the gapped energy spectrum as caused by the spin-orbit interaction. The pair wave function consists of a mixture of both singlet and triplet components. Anisotropy of the Knight shift measurable in the NMR experiments is calculated in the whole temperature regime. Implications for a few known experimental situations is briefly discussed.

  20. Generation of deviation parameters for amino acid singlets, doublets ...

    Indian Academy of Sciences (India)

    consecutive amino acids (ABC) for triplets in the selected dataset, Ni (X) = number of counts for X in the ith protein, Yi. = Ti for singlets, Ti-1 for doublets, Ti-2 for triplets where Ti is the total number of amino acids in the ith protein, i varies from 1 to n and n = total number of proteins considered (in this case, 408). Based on the ...

  1. Singlet-paired coupled cluster theory for open shells

    International Nuclear Information System (INIS)

    Gomez, John A.; Henderson, Thomas M.; Scuseria, Gustavo E.

    2016-01-01

    Restricted single-reference coupled cluster theory truncated to single and double excitations accurately describes weakly correlated systems, but often breaks down in the presence of static or strong correlation. Good coupled cluster energies in the presence of degeneracies can be obtained by using a symmetry-broken reference, such as unrestricted Hartree-Fock, but at the cost of good quantum numbers. A large body of work has shown that modifying the coupled cluster ansatz allows for the treatment of strong correlation within a single-reference, symmetry-adapted framework. The recently introduced singlet-paired coupled cluster doubles (CCD0) method is one such model, which recovers correct behavior for strong correlation without requiring symmetry breaking in the reference. Here, we extend singlet-paired coupled cluster for application to open shells via restricted open-shell singlet-paired coupled cluster singles and doubles (ROCCSD0). The ROCCSD0 approach retains the benefits of standard coupled cluster theory and recovers correct behavior for strongly correlated, open-shell systems using a spin-preserving ROHF reference.

  2. IDMS: inert dark matter model with a complex singlet

    Science.gov (United States)

    Bonilla, Cesar; Sokolowska, Dorota; Darvishi, Neda; Diaz-Cruz, J. Lorenzo; Krawczyk, Maria

    2016-06-01

    We study an extension of the inert doublet model (IDM) that includes an extra complex singlet of the scalars fields, which we call the IDMS. In this model there are three Higgs particles, among them a SM-like Higgs particle, and the lightest neutral scalar, from the inert sector, remains a viable dark matter (DM) candidate. We assume a non-zero complex vacuum expectation value for the singlet, so that the visible sector can introduce extra sources of CP violation. We construct the scalar potential of IDMS, assuming an exact Z 2 symmetry, with the new singlet being Z 2-even, as well as a softly broken U(1) symmetry, which allows a reduced number of free parameters in the potential. In this paper we explore the foundations of the model, in particular the masses and interactions of scalar particles for a few benchmark scenarios. Constraints from collider physics, in particular from the Higgs signal observed at the Large Hadron Collider with {M}h≈ 125 {{GeV}}, as well as constraints from the DM experiments, such as relic density measurements and direct detection limits, are included in the analysis. We observe significant differences with respect to the IDM in relic density values from additional annihilation channels, interference and resonance effects due to the extended Higgs sector.

  3. NLO electroweak corrections in general scalar singlet models

    Science.gov (United States)

    Costa, Raul; Sampaio, Marco O. P.; Santos, Rui

    2017-07-01

    If no new physics signals are found, in the coming years, at the Large Hadron Collider Run-2, an increase in precision of the Higgs couplings measurements will shift the discussion to the effects of higher order corrections. In Beyond the Standard Model (BSM) theories this may become the only tool to probe new physics. Extensions of the Standard Model (SM) with several scalar singlets may address several of its problems, namely to explain dark matter, the matter-antimatter asymmetry, or to improve the stability of the SM up to the Planck scale. In this work we propose a general framework to calculate one loop-corrections to the propagators and to the scalar field vacuum expectation values of BSM models with an arbitrary number of scalar singlets. We then apply our method to a real and to a complex scalar singlet models. We assess the importance of the one-loop radiative corrections first by computing them for a tree level mixing sum constraint, and then for the main Higgs production process gg → H. We conclude that, for the currently allowed parameter space of these models, the corrections can be at most a few percent. Notably, a non-zero correction can survive when dark matter is present, in the SM-like limit of the Higgs couplings to other SM particles.

  4. Quantification of reactive oxygen species for photodynamic therapy

    Science.gov (United States)

    Tan, Zou; Zhang, Jinde; Lin, Lisheng; Li, Buhong

    2016-10-01

    Photodynamic therapy (PDT) is an effective therapeutic modality that uses a light source to activate light-sensitive photosensitizers to treat both oncologic and nononcological indications. Photosensitizers are excited to the long-lived triplet state, and they react with biomolecules via type I or II mechanism resulted in cell death and tumor necrosis. Free radicals and radical ions are formed by electron transfer reactions (type I), which rapidly react with oxygen leading to the production of reactive oxygen species (ROS), including superoxide ions, hydroxyl radicals and hydrogen peroxide. Singlet molecular oxygen is produced in a Type II reaction, in which the excited singlet state of the photosensitizer generated upon photon absorption by the ground-state photosensitizer molecule undergoes intersystem crossing to a long-lived triplet state. In this talk, the fundmental mechanisms and detection techniques for ROS generation in PDT will be introduced. In particular, the quantification of singlet oxygen generation for pre-clinical application will be highlighted, which plays an essential role in the establishment of robust singlet oxygen-mediated PDT dosimetry.

  5. Lithium-Oxygen Batteries: At a Crossroads?

    DEFF Research Database (Denmark)

    Vegge, Tejs; García Lastra, Juan Maria; Siegel, Donald Jason

    2017-01-01

    In this current opinion, we critically review and discuss some of the most important recent findings in the field of rechargeable lithium-oxygen batteries. We discuss recent discoveries like the evolution of reactive singlet oxygen and the use of organic additives to bypass reactive LiO2 reaction...... intermediates, and their possible implications on the potential for commercialization of lithium-oxygen batteries. Finally, we perform a critical assessment of lithium-superoxide batteries and the reversibility of lithium-hydroxide batteries....

  6. Singlet Fission of Non-polycyclic Aromatic Molecules in Organic Photovoltaics.

    Science.gov (United States)

    Kawata, So; Pu, Yong-Jin; Saito, Ayaka; Kurashige, Yuki; Beppu, Teruo; Katagiri, Hiroshi; Hada, Masaki; Kido, Junji

    2016-02-24

    Singlet fission of thienoquinoid compounds in organic photovoltaics is demonstrated. The escalation of the thienoquinoid length of the compounds realizes a suitable packing structure and energy levels for singlet fission. The magnetic-field dependence of the photocurrent and the external quantum efficiency of the devices reveal singlet fission of the compounds and dissociation of triplet excitons into charges. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. MEKANISME DAN KINETIKA QUENCHING OKSIGEN SINGLET DARI SENYAWA FENOLIK DAUN CENGKEH TERHADAP FOTOKSIDASI YANG DISENSITASI OLEH ERITROSIN

    Directory of Open Access Journals (Sweden)

    Edi Suryanto

    2012-02-01

    isolate phenolic compound of clove leaves and to study the mechanism and kinetic of singlet oxygen quenching. Clove leaves was extracted by steam distillation using water for 6 hours. Crude clove leaves oil was purifi ed by distillation under reduced pressure. Isolated fractions were determined its structure by infrared (IR, nuclear magnetic resonance (1H-NMR, and mass spectrometry (MS techniques. The effects of 0, 500, 1000 and 1500 ppm isolated compound on the photooxidation of linoleic acid (0,03M containing 15 ppm erythrosine in ethanol were studied by measuring peroxide value of the oil. The quenching mechanism and kinetics of eugenol were studied by the steady-state kinetic method. Samples of 0; 0,06 x 10-4; 0,12 x 10-4; 0,24 x 10-4 dan 0,48x 10-4 mM eugenol prepared in water contained 0; 17,05 x10-4; 34,10 x 10-4; 68,19 x 10-4 and 136,39 x 10-4 mM of erythrosine stored under fl uorescent light (4000 lux at room temperature for 15 hours. The result indicated that eugenol content of clove oil, F1, F2, F3 and F4 were 49.68; 54.32; 87.16 and 73.65%, respectively. The structure of F3 was identifi ed by IR spectrometry which shows strong absorption at 3448 cm-1 indicating hydroxyl group from the phenolic compound and the 1H NMR spectra showed that the number of proton ring was 3 hydrogen while the mass spectrometry showed the molecular ion peak at m/e = 164 as base peak and the absence of peak at (M-41+ as the indicator of eugenol. The result showed that eugenol had antiphotooxidation activity on erythrosine sensitized photooxidation of oil. The mechanism of singlet oxygen quenching on erythrosine photodegradation showed that eugenol only quenched singlet oxygen. The total quenching rate constant of eugenol was 4,42 x 108/M/s. Keywords: Clove leave, eugenol, quencher, erythrosine, singlet oxygen

  8. Toward Singlet-Triplet Bistable Nonalternant Kekulé Hydrocarbons: Azulene-to-Naphthalene Rearrangement.

    Science.gov (United States)

    Das, Soumyajit; Wu, Jishan

    2015-12-04

    Recent developments of open-shell singlet diradicaloids motivated the search for stable singlet-triplet bistable nonalternant polycyclic hydrocarbons. During the synthesis of this type of molecule, such as the dibenzo-cyclohepta[def]fluorene 3, an unexpected azulene-to-naphthalene rearrangement was observed at room temperature, which resulted in new nonalternant hydrocarbons 8a/8b with a closed-shell singlet ground state. These studies provided insight into the unique chemistry of azulene and challenges for the synthesis of singlet-triplet bistable polycyclic hydrocarbons.

  9. Entanglement and Metrology with Singlet-Triplet Qubits

    Science.gov (United States)

    Shulman, Michael Dean

    Electron spins confined in semiconductor quantum dots are emerging as a promising system to study quantum information science and to perform sensitive metrology. Their weak interaction with the environment leads to long coherence times and robust storage for quantum information, and the intrinsic tunability of semiconductors allows for controllable operations, initialization, and readout of their quantum state. These spin qubits are also promising candidates for the building block for a scalable quantum information processor due to their prospects for scalability and miniaturization. However, several obstacles limit the performance of quantum information experiments in these systems. For example, the weak coupling to the environment makes inter-qubit operations challenging, and a fluctuating nuclear magnetic field limits the performance of single-qubit operations. The focus of this thesis will be several experiments which address some of the outstanding problems in semiconductor spin qubits, in particular, singlet-triplet (S-T0) qubits. We use these qubits to probe both the electric field and magnetic field noise that limit the performance of these qubits. The magnetic noise bath is probed with high bandwidth and precision using novel techniques borrowed from the field of Hamiltonian learning, which are effective due to the rapid control and readout available in S-T 0 qubits. These findings allow us to effectively undo the undesired effects of the fluctuating nuclear magnetic field by tracking them in real-time, and we demonstrate a 30-fold improvement in the coherence time T2*. We probe the voltage noise environment of the qubit using coherent qubit oscillations, which is partially enabled by control of the nuclear magnetic field. We find that the voltage noise bath is frequency-dependent, even at frequencies as high as 1MHz, and it shows surprising and, as of yet, unexplained temperature dependence. We leverage this knowledge of the voltage noise environment, the

  10. Color-singlet instantaneous potential in the coulomb gauge QCD

    International Nuclear Information System (INIS)

    Nakagawa, Yoshiyuki; Toki, Hiroshi; Nakamura, Atsushi; Saito, Takuya

    2007-01-01

    We study the Coulomb gauge confinement mechanism in the quenched lattice QCD simulations. It is found that the color-Coulomb instantaneous potential in the color-singlet channel between two quarks grows linearly at large distances; namely, the color-Coulomb interaction is a source of color confinement. However, the linearity of this potential remains even in the quark-gluon plasma phase. We discuss the relation between this thermal Coulomb-string tension and a magnetic scaling introduced as an infrared cutoff of the thermal QCD theory. (author)

  11. Reactive oxygen species produced by irradiation of some phthalocyanine derivatives

    Czech Academy of Sciences Publication Activity Database

    Černý, J.; Karásková, M.; Rakušan, J.; Nešpůrek, Stanislav

    2010-01-01

    Roč. 210, č. 1 (2010), s. 82-88 ISSN 1010-6030 R&D Projects: GA AV ČR KAN400720701 Institutional research plan: CEZ:AV0Z40500505 Keywords : singlet oxygen * photosensitizer * phthalocyanine Subject RIV: CG - Electrochemistry Impact factor: 2.243, year: 2010

  12. Natural NMSSM with a light singlet Higgs and singlino LSP

    International Nuclear Information System (INIS)

    Potter, C.T.

    2016-01-01

    Supersymmetry (SUSY) is an attractive extension of the Standard Model (SM) of particle physics which solves the SM hierarchy problem. Motivated by the theoretical μ-term problem of the Minimal Supersymmetric Model (MSSM), the Next-to MSSM (NMSSM) can also account for experimental deviations from the SM like the anomalous muon magnetic moment and the dark matter relic density. Natural SUSY, motivated by naturalness considerations, exhibits small fine tuning and a characteristic phenomenology with light higgsinos, stops, and gluinos. We describe a scan in NMSSM parameter space motivated by Natural SUSY and guided by the phenomenology of an NMSSM with a slightly broken Peccei-Quinn symmetry and a lightly coupled singlet. We identify a scenario which survives experimental constraints with a light singlet Higgs and a singlino lightest SUSY particle. We then discuss how the scenario is not presently excluded by searches at the Large Hadron Collider (LHC) and which channels are promising for discovery at the LHC and International Linear Collider. (orig.)

  13. An XML file format for exchanging singlet lens specifications

    Science.gov (United States)

    Gay, Shawn C.; Gangadhara, Sanjay

    2015-10-01

    Zemax has developed an XML schema for the distribution of singlet lens specifications based on the ISO 10110 standard. In OpticStudio 15, this kind of XML data can be exported from the ISO Element Drawing analysis. The data file is then used in a feature that automates exchange of lens data between designer and manufacturer, the Cost Estimator. This Cost Estimator feature submits the XML data to various manufacturers to obtain cost estimates for prototype lens production. The workflow centered on the XML data exchange facilitates rapid cost estimate retrieval and eliminates the need for redundant manual data entry. The XML Schema Definition (XSD) for the XML format can be used with Microsoft developer tools to automatically create .NET classes to serialize and deserialize the singlet lens data to/from XML files. The format provides flexible unit specification for most parameters. Choosing XML as the basis for the file format has provided several benefits, such as the above mentioned automated serialization capabilities in .NET, a human-readable text-based format, and ready support for consumption by web services.

  14. Discrete R symmetries for the MSSM and its singlet extensions

    CERN Document Server

    Lee, Hyun Min; Ratz, Michael; Ross, Graham G; Schieren, Roland; Schmidt-Hoberg, Kai; Vaudrevange, Patrick K S

    2011-01-01

    We determine the anomaly free discrete R symmetries, consistent with the MSSM, that commute with SU(5) and suppress the $\\mu$ parameter and nucleon decay. We show that the order M of such $Z_M^R$ symmetries has to divide 24 and identify 5 viable symmetries. The simplest possibility is a $Z_4^R$ symmetry which commutes with SO(10). We present a string-derived model with this $Z_4^R$ symmetry and the exact MSSM spectrum below the GUT scale; in this model $Z_4^R$ originates from the Lorentz symmetry of compactified dimensions. We extend the discussion to include the singlet extensions of the MSSM and find $Z_4^R$ and $Z_8^R$ are the only possible symmetries capable of solving the $\\mu$ problem in the NMSSM. We also show that a singlet extension of the MSSM based on a $Z_{24}^R$ symmetry can provide a simultaneous solution to the $\\mu$ and strong CP problem with the axion coupling in the favoured window.

  15. Efficient singlet-singlet energy transfer in a novel host-guest assembly composed of an organic cavitand, aromatic molecules, and a clay nanosheet.

    Science.gov (United States)

    Ishida, Yohei; Kulasekharan, Revathy; Shimada, Tetsuya; Takagi, Shinsuke; Ramamurthy, V

    2013-02-12

    A supramolecular host-guest assembly composed of a cationic organic cavitand (host), neutral aromatic molecules (guests), and an anionic clay nanosheet has been prepared and demonstrated that in this arrangement efficient singlet-singlet energy transfer could take place. The novelty of this system is the use of a cationic organic cavitand that enabled neutral organic molecules to be placed on an anionic saponite nanosheet. Efficient singlet-singlet energy transfer between neutral pyrene and 2-acetylanthracene enclosed within a cationic organic cavitand (octa amine) arranged on a saponite nanosheet was demonstrated through steady-state and time-resolved emission studies. The high efficiency was realized from the suppression of aggregation, segregation, and self-fluorescence quenching. We believe that the studies presented here using a novel supramolecular assembly have expanded the types of molecules that could serve as candidates for efficient energy-transfer systems, such as in an artificial light-harvesting system.

  16. Search for Colour Singlet and Colour Reconnection Effects in Hadronic Z Decays at LEP

    CERN Document Server

    Achard, P; Aguilar-Benítez, M; Alcaraz, J; Alemanni, G; Allaby, James V; Aloisio, A; Alviggi, M G; Anderhub, H; Andreev, V P; Anselmo, F; Arefev, A; Azemoon, T; Aziz, T; Bagnaia, P; Bajo, A; Baksay, G; Baksay, L; Baldew, S V; Banerjee, S; Banerjee, Sw; Barczyk, A; Barillère, R; Bartalini, P; Basile, M; Batalova, N; Battiston, R; Bay, A; Becattini, F; Becker, U; Behner, F; Bellucci, L; Berbeco, R; Berdugo, J; Berges, P; Bertucci, B; Betev, B L; Biasini, M; Biglietti, M; Biland, A; Blaising, J J; Blyth, S C; Bobbink, Gerjan J; Böhm, A; Boldizsar, L; Borgia, B; Bottai, S; Bourilkov, D; Bourquin, Maurice; Braccini, S; Branson, J G; Brochu, F; Burger, J D; Burger, W J; Cai, X D; Capell, M; Cara Romeo, G; Carlino, G; Cartacci, A M; Casaus, J; Cavallari, F; Cavallo, N; Cecchi, C; Cerrada, M; Chamizo-Llatas, M; Chang, Y H; Chemarin, M; Chen, A; Chen, G; Chen, G M; Chen, H F; Chen, H S; Chiefari, G; Cifarelli, Luisa; Cindolo, F; Clare, I; Clare, R; Coignet, G; Colino, N; Costantini, S; de la Cruz, B; Cucciarelli, S; van Dalen, J A; De Asmundis, R; Déglon, P L; Debreczeni, J; Degré, A; Dehmelt, K; Deiters, K; Della Volpe, D; Delmeire, E; Denes, P; De Notaristefani, F; De Salvo, A; Diemoz, M; Dierckxsens, M; Dionisi, C; Dittmar, M; Doria, A; Dova, M T; Duchesneau, D; Duda, M; Echenard, B; Eline, A; El-Hage, A; El-Mamouni, H; Engler, A; Eppling, F J; Extermann, P; Falagán, M A; Falciano, S; Favara, A; Fay, J; Fedin, O; Felcini, M; Ferguson, T; Fesefeldt, H S; Fiandrini, E; Field, J H; Filthaut, F; Fisher, P H; Fisher, W; Fisk, I; Forconi, G; Freudenreich, Klaus; Furetta, C; Galaktionov, Yu; Ganguli, S N; García-Abia, P; Gataullin, M; Gentile, S; Giagu, S; Gong, Z F; Grenier, G; Grimm, O; Grünewald, M W; Guida, M; van Gulik, R; Gupta, V K; Gurtu, A; Gutay, L J; Haas, D; Hatzifotiadou, D; Hebbeker, T; Hervé, A; Hirschfelder, J; Hofer, H; Hohlmann, M; Holzner, G; Hou, S R; Hu, Y; Jin, B N; Jones, L W; de Jong, P; Josa-Mutuberria, I; Käfer, D; Kaur, M; Kienzle-Focacci, M N; Kim, J K; Kirkby, Jasper; Kittel, E W; Klimentov, A; König, A C; Kopal, M; Koutsenko, V F; Kräber, M H; Krämer, R W; Krüger, A; Kunin, A; Ladrón de Guevara, P; Laktineh, I; Landi, G; Lebeau, M; Lebedev, A; Lebrun, P; Lecomte, P; Lecoq, P; Le Coultre, P; Le Goff, J M; Leiste, R; Levtchenko, M; Levchenko, P M; Li, C; Likhoded, S; Lin, C H; Lin, W T; Linde, Frank L; Lista, L; Liu, Z A; Lohmann, W; Longo, E; Lü, Y S; Luci, C; Luminari, L; Lustermann, W; Ma Wen Gan; Malgeri, L; Malinin, A; Maña, C; Mans, J; Martin, J P; Marzano, F; Mazumdar, K; McNeil, R R; Mele, S; Merola, L; Meschini, M; Metzger, W J; Mihul, A; Milcent, H; Mirabelli, G; Mnich, J; Mohanty, G B; Muanza, G S; Muijs, A J M; Musicar, B; Musy, M; Nagy, S; Natale, S; Napolitano, M; Nessi-Tedaldi, F; Newman, H; Nisati, A; Novák, T; Nowak, H; Ofierzynski, R A; Organtini, G; Pal, I; Palomares, C; Paolucci, P; Paramatti, R; Passaleva, G; Patricelli, S; Paul, T; Pauluzzi, M; Paus, C; Pauss, Felicitas; Pedace, M; Pensotti, S; Perret-Gallix, D; Petersen, B; Piccolo, D; Pierella, F; Pioppi, M; Piroué, P A; Pistolesi, E; Plyaskin, V; Pohl, M; Pozhidaev, V; Pothier, J; Prokofev, D; Prokofiev, D O; Quartieri, J; Rahal-Callot, G; Rahaman, M A; Raics, P; Raja, N; Ramelli, R; Rancoita, P G; Ranieri, R; Raspereza, A V; Razis, P A; Ren, D; Rescigno, M; Reucroft, S; Riemann, S; Riles, K; Roe, B P; Romero, L; Rosca, A; Rosier-Lees, S; Roth, S; Rosenbleck, C; Rubio, J A; Ruggiero, G; Rykaczewski, H; Sakharov, A; Saremi, S; Sarkar, S; Salicio, J; Sánchez, E; Schäfer, C; Shchegelskii, V; Schopper, Herwig Franz; Schotanus, D J; Sciacca, C; Servoli, L; Shevchenko, S; Shivarov, N; Shoutko, V; Shumilov, E; Shvorob, A V; Son, D; Souga, C; Spillantini, P; Steuer, M; Stickland, D P; Stoyanov, B; Strässner, A; Sudhakar, K; Sultanov, G G; Sun, L Z; Sushkov, S; Suter, H; Swain, J D; Szillási, Z; Tang, X W; Tarjan, P; Tauscher, Ludwig; Taylor, L; Tellili, B; Teyssier, D; Timmermans, C; Ting, Samuel C C; Ting, S M; Tonwar, S C; Tóth, J; Tully, C; Tung, K L; Ulbricht, J; Valente, E; Van de Walle, R T; Vásquez, R; Veszpremi, V; Vesztergombi, G; Vetlitskii, I; Vicinanza, D; Viertel, Gert M; Villa, S; Vivargent, M; Vlachos, S; Vodopyanov, I; Vogel, H; Vogt, H; Vorobev, I; Vorobyov, A A; Wadhwa, M; Wang, Q; Wang, X L; Wang, Z M; Weber, M; Wienemann, P; Wilkens, H; Wynhoff, S; Xia, L; Xu, Z Z; Yamamoto, J; Yang, B Z; Yang, C G; Yang, H J; Yang, M; Yeh, S C; Zalite, A; Zalite, Yu; Zhang, Z P; Zhao, J; Zhu, G Y; Zhu, R Y; Zhuang, H L; Zichichi, A; Zimmermann, B; Zöller, M

    2004-01-01

    A search is performed in symmetric 3-jet hadronic Z decay events for evidence of colour singlet production or colour reconnection effects. Asymmetries in the angular separation of particles are found to be sensitive indicators of such effects. Upper limits on the level of colour singlet production and colour reconnection effects are established for a variety of models.

  17. Advances in the development of chemical oxygen-iodine laser

    Czech Academy of Sciences Publication Activity Database

    Kodymová, Jarmila; Špalek, Otomar; Jirásek, Vít; Čenský, Miroslav

    2004-01-01

    Roč. 54, č. 5 (2004), s. 561-574 ISSN 0011-4626 R&D Projects: GA MŠk LN00A100 Grant - others:EOARD(XE) USAF Institutional research plan: CEZ:AV0Z1010921 Keywords : chemical oxygen-iodine laser * COIL * singlet oxygen * atomic iodine Subject RIV: BH - Optics, Masers, Lasers Impact factor: 0.292, year: 2004

  18. Study on advanced Ce0.9La0.1O2/Gd2Zr2O7 buffer layers architecture towards all chemical solution processed coated conductors

    DEFF Research Database (Denmark)

    Yue, Zhao; Ma, L.; Wu, W.

    2015-01-01

    the global texture retains a sharp biaxial orientation, as determined by conventional X-ray diffraction. We paid particular attention to improving the surface quality in terms of crystallographic orientation and local flatness after depositing a Ce0.9La0.1O2 thin film as a cap layer. From a comprehensive...

  19. Oxygen negative glow: reactive species and emissivity

    International Nuclear Information System (INIS)

    Sahli, Khaled

    1991-01-01

    This research thesis addresses the study of a specific type of oxygen plasma created by electron beams (1 keV, 20 mA/cm 2 ), negative glow of a luminescent discharge in abnormal regime. The objective is to test the qualities of this plasma as source of two 'active' species of oxygen (singlet molecular oxygen and atomic oxygen) which are useful in applications. The experiment mainly bears on the use of VUV (120 to 150 nm) absorption spectroscopy measurements of concentrations of these both species, and on the recording of plasma emissivity space profiles in the visible region (450 to 850 nm). It appears that low concentrations of singlet oxygen definitely exclude this type of discharge for iodine laser applications. On the contrary, concentrations measured for atomic oxygen show it is a good candidate for the oxidation of large surfaces by sheets of beams. The satisfying comparison of emissivity results with a published model confirm the prevailing role of fast electrons, and gives evidence of an important effect of temperature: temperature can reach 1000 K, and this is in agreement with the presented measurement [fr

  20. Controlling Long-Lived Triplet Generation from Intramolecular Singlet Fission in the Solid State

    KAUST Repository

    Pace, Natalie A.

    2017-11-30

    The conjugated polymer poly(benzothiophene dioxide) (PBTDO1) has recently been shown to exhibit efficient intramolecular singlet fission in solution. In this paper, we investigate the role of intermolecular interactions in triplet separation dynamics after singlet fission. We use transient absorption spectroscopy to determine the singlet fission rate and triplet yield in two polymers differing only by side chain motif in both solution and the solid state. Whereas solid-state films show singlet fission rates identical to those measured in solution, the average lifetime of the triplet population increases dramatically, and is strongly dependent on side-chain identity. These results show that it may be necessary to carefully engineer the solid-state microstructure of these “singlet fission polymers” in order to produce the long-lived triplets needed to realize efficient photovoltaic devices.

  1. [Studying the influence of some reactive oxygen species on physical and chemical parameters of blood].

    Science.gov (United States)

    Martusevich, A K; Martusevich, A A; Solov'eva, A G; Peretyagin, S P

    2014-01-01

    The aim of this work was to estimate the dynamics of blood physical and chemical parameters when blood specimens were processed by singlet oxygen in vitro. Our experiments were executed with whole blood specimens of healthy people (n=10). Each specimen was divided into five separate portions of 5 ml. The first portion was a control (without any exposures). The second one was processed by an oxygen-ozone mixture (at ozone concentration of 500 mcg/l, the third portion--by oxygen, and the fourth and fifth ones were processed by a gas mixture with singlet oxygen (50 and 100% of generator power). In blood samples after processing we studied the activity of lactate dehydrogenase, aldehyde dehydrogenase and superoxide dismutase, erythrocyte and plasma levels of glucose and lactate, acid-base balance and the partial pressure of gases in blood. It was found out, that blood processing by singlet oxygen leads to optimization of energy, detoxication and antioxidant enzymes functioning with changes in plasma and erythrocyte level of glucose and lactate, normalization of blood gases level and acid-base balance. Our results show, that the effect of singlet oxygen on enzyme activity is more pronounced than exposure to an oxygen-ozone gas mixture.

  2. Singlet-triplet interaction in linear triatomic molecules

    Science.gov (United States)

    Osherov, V. I.; Osherov, M. V.; Poluyanov, L. V.

    2018-01-01

    We present here two-electronic model, which describes singlet-triplet interaction 1 π -3Σ+ in linear triatomic molecules. The analysis takes into account spin-orbital coupling terms in electronic Hamiltonian, as well as its symmetry properties. We give the symmetry operators of electronic Hamiltonian including space operators (acting on electronic coordinates) and matrix operators (acting on electronic spin). We consider only deformation π -modes and our resulting 5 × 5 vibronic matrix describes actual relativistic pseudo-Renner effect (1 π -3 Σ) × π . The eigenvalues of vibronic matrix (i.e. potential energy surfaces) have axial symmetry and represented by analytical expressions, include five electrostatic and three spin-orbital parameters.

  3. Evolution of truncated moments of singlet parton distributions

    International Nuclear Information System (INIS)

    Forte, S.; Magnea, L.; Piccione, A.; Ridolfi, G.

    2001-01-01

    We define truncated Mellin moments of parton distributions by restricting the integration range over the Bjorken variable to the experimentally accessible subset x 0 ≤x≤1 of the allowed kinematic range 0≤x≤1. We derive the evolution equations satisfied by truncated moments in the general (singlet) case in terms of an infinite triangular matrix of anomalous dimensions which couple each truncated moment to all higher moments with orders differing by integers. We show that the evolution of any moment can be determined to arbitrarily good accuracy by truncating the system of coupled moments to a sufficiently large but finite size, and show how the equations can be solved in a way suitable for numerical applications. We discuss in detail the accuracy of the method in view of applications to precision phenomenology

  4. Generation of macroscopic singlet states in atomic ensembles

    Science.gov (United States)

    Tóth, Géza; Mitchell, Morgan W.

    2010-05-01

    We study squeezing of the spin uncertainties by quantum non-demolition (QND) measurement in non-polarized spin ensembles. Unlike the case of polarized ensembles, the QND measurements can be performed with negligible back-action, which allows, in principle, perfect spin squeezing as quantified by Tóth et al (2007 Phys. Rev. Lett. 99 250405). The generated spin states approach many-body singlet states and contain a macroscopic number of entangled particles even when individual spin is large. We introduce the Gaussian treatment of unpolarized spin states and use it to estimate the achievable spin squeezing for realistic experimental parameters. Our proposal might have applications for magnetometry with a high spatial resolution or quantum memories storing information in decoherence free subspaces.

  5. Two-singlet model for light cold dark matter

    International Nuclear Information System (INIS)

    Abada, Abdessamad; Ghaffor, Djamal; Nasri, Salah

    2011-01-01

    We extend the standard model by adding two gauge-singlet Z 2 -symmetric scalar fields that interact with visible matter only through the Higgs particle. One is a stable dark matter WIMP, and the other one undergoes a spontaneous breaking of the symmetry that opens new channels for the dark matter annihilation, hence lowering the mass of the WIMP. We study the effects of the observed dark matter relic abundance on the WIMP annihilation cross section and find that in most regions of the parameters' space, light dark matter is viable. We also compare the elastic-scattering cross section of our dark matter candidate off a nucleus with existing (CDMSII and XENON100) and projected (SuperCDMS and XENON1T) experimental exclusion bounds. We find that most of the allowed mass range for light dark matter will be probed by the projected sensitivity of the XENON1T experiment.

  6. Signal for a light singlet scalar at the LHC

    Science.gov (United States)

    Chang, We-Fu; Modak, Tanmoy; Ng, John N.

    2018-03-01

    In the general Higgs portal-like models, the extra neutral scalar, S , can mix with the Standard Model (SM) Higgs boson, H . We perform an exploratory study focusing on the direct search for such a light singlet S at the Large Hadron Collider (LHC). After careful study of the SM background, we find the process p p →t t ¯ S followed by S →b b ¯ can be used to investigate S with mass in the 20 Higgs factories. With similar luminosity, the current Large Electron-Positron Collider (LEP) limits on the mixing between S and H can be improved by at least one or two order of magnitudes.

  7. Seeking small molecules for singlet fission: a heteroatom substitution strategy.

    Science.gov (United States)

    Zeng, Tao; Ananth, Nandini; Hoffmann, Roald

    2014-09-10

    We design theoretically small molecule candidates for singlet fission chromophores, aiming to achieve a balance between sufficient diradical character and kinetic persistence. We develop a perturbation strategy based on the captodative effect to introduce diradical character into small π-systems. Specifically, this can be accomplished by replacing pairs of not necessarily adjacent C atoms with isoelectronic and isosteric pairs of B and N atoms. Three rules of thumb emerge from our studies to aid further design: (i) Lewis structures provide insight into likely diradical character; (ii) formal radical centers of the diradical must be well-separated; (iii) stabilization of radical centers by a donor (N) and an acceptor (B) is essential. Following the rules, we propose candidate molecules. Employing reliable multireference calculations for excited states, we identify three likely candidate molecules for SF chromophores. These include a benzene, a napthalene, and an azulene, where four C atoms are replaced by a pair of B and a pair of N atoms.

  8. Resummation of singlet parton evolution at small x

    CERN Document Server

    Altarelli, Guido; Forte, Stefano; Altarelli, Guido; Ball, Richard D.; Forte, Stefano

    2000-01-01

    We propose an improvement of the splitting functions at small x which overcomes the apparent problems encountered by the BFKL approach. We obtain a stable expansion for the x-evolution function chi(M) near M=0 by including in it a sequence of terms derived from the one- and two-loop anomalous dimension gamma. The requirement of momentum conservation is always satisfied. The residual ambiguity on the splitting functions is effectively parameterized in terms of the value of lambda, which fixes the small x asymptotic behaviour x^-lambda of the singlet parton distributions. We derive from this improved evolution function an expansion of the splitting function which leads to good apparent convergence, and to a description of scaling violations valid both at large and small x.

  9. Oxygen Therapy

    Science.gov (United States)

    ... best for you. Oxygen is usually delivered through nasal prongs (an oxygen cannula) or a face mask. Oxygen equipment can attach to other medical equipment such as CPAP machines and ventilators. Oxygen therapy can help you ...

  10. Ultrafast intramolecular charge transfer in tetrapyrazinoporphyrazines controls the quantum yields of fluorescence and singlet oxygen

    Czech Academy of Sciences Publication Activity Database

    Nováková, V.; Zimčík, P.; Miletín, M.; Váchová, L.; Kopecký, K.; Lang, Kamil; Chábera, P.; Polívka, T.

    2010-01-01

    Roč. 12, č. 11 (2010), s. 2555-2563 ISSN 1463-9076 R&D Projects: GA ČR GA203/07/1424 Institutional research plan: CEZ:AV0Z40320502 Keywords : photoinduced electron-transfer * phthalocyanine -fullerene ensembles * nonlinear-optical properties Subject RIV: CA - Inorganic Chemistry Impact factor: 3.454, year: 2010

  11. Protective mechanisms against peptide and protein peroxides generated by singlet oxygen

    DEFF Research Database (Denmark)

    Morgan, Philip E; Dean, Roger T; Davies, Michael Jonathan

    2004-01-01

    or detoxify such peroxides. It is shown that catalase, horseradish peroxidase, and Cu/Zn superoxide dismutase do not react rapidly with these peroxides. Oxymyoglobin and oxyhemoglobin, but not the met (Fe3+) forms of these proteins, react with peptide but not protein, peroxides with oxidation of the heme iron...

  12. Magnetic field protects plants against high light by slowing down production of singlet oxygen

    Czech Academy of Sciences Publication Activity Database

    Hakala-Yatkin, M.; Sarvikas, P.; Paturi, P.; Mattila, H.; Tyystjärvi, T.; Nedbal, Ladislav; Tyystjärvi, E.

    2011-01-01

    Roč. 142, č. 1 (2011), s. 26-34 ISSN 0031-9317 Institutional research plan: CEZ:AV0Z60870520 Keywords : photosynthetic reaction-center * Photosystem-II * alpha-tocopherol * environmental-stress * manganese complex * evolving complex * oxidative stress Subject RIV: EH - Ecology, Behaviour Impact factor: 3.112, year: 2011

  13. Design of porphyrin-based conjugated microporous polymers with enhanced singlet oxygen productivity

    Czech Academy of Sciences Publication Activity Database

    Hynek, Jan; Rathouský, Jiří; Demel, Jan; Lang, Kamil

    2016-01-01

    Roč. 6, č. 50 (2016), s. 44279-44287 ISSN 2046-2069 R&D Projects: GA ČR(CZ) GA16-15020S Institutional support: RVO:61388980 ; RVO:61388955 Keywords : Conjugated microporous polymers * Crystalline materials * Metal organic framework * biomimetic catalysis Subject RIV: CA - Inorganic Chemistry; CF - Physical ; Theoretical Chemistry (UFCH-W) Impact factor: 3.108, year: 2016

  14. A Gas-Solid Singlet Delta Oxygen Generator for the Chemical Iodine Laser

    National Research Council Canada - National Science Library

    Alfano, Angelo

    2002-01-01

    ... at 1.27 microns by passing chlorine gas through aqueous, basic hydrogen peroxide (H2O2/OH). Unfortunately, the process of nonradiative relaxation used in COIL results in the creation of undesired heat and not the desired light emission...

  15. Plasmachemical generation of atomic iodine for iodine lasers pumped by singlet oxygen

    Czech Academy of Sciences Publication Activity Database

    Jirásek, Vít; Schmiedberger, Josef; Čenský, Miroslav; Picková, Irena; Kodymová, Jarmila; Špalek, Otomar

    2008-01-01

    Roč. 102, č. 16 (2008), s. 1327-1331 ISSN 0009-2770 Grant - others:US Air Force EOARD(US) FA8655-06-1-3034 Institutional research plan: CEZ:AV0Z10100523 Keywords : COIL * chemical laser * atomic iodine * RF discharge Subject RIV: BH - Optics, Masers, Laser s Impact factor: 0.593, year: 2008 http://chemicke-listy.cz/docs/full/2008_16_s1327-s1331.pdf

  16. Evaluation of phototoxicity of dendritic porphyrin-based phosphorescent oxygen probes: an in vitro study†

    Science.gov (United States)

    Lebedev, Artem Y.; Marchi, Enrico; Yuan, Min; Esipova, Tatiana V.; Bergamini, Giacomo; Wilson, David F.

    2013-01-01

    Biological oxygen measurements by phosphorescence quenching make use of exogenous phosphorescent probes, which are introduced directly into the medium of interest (e.g. blood or interstitial fluid) where they serve as molecular sensors for oxygen. The byproduct of the quenching reaction is singlet oxygen, a highly reactive species capable of damaging biological tissue. Consequently, potential probe phototoxicity is a concern for biological applications. Herein, we compared the ability of polyethyleneglycol (PEG)-coated Pd tetrabenzoporphyrin (PdTBP)-based dendritic nanoprobes of three successive generations to sensitize singlet oxygen. It was found that the size of the dendrimer has practically no effect on the singlet oxygen sensitization efficiency in spite of the strong attenuation of the triplet quenching rate with an increase in the dendrimer generation. This unexpected result is due to the fact that the lifetime of the PdTBP triplet state in the absence of oxygen increases with dendritic generation, thus compensating for the concomitant decrease in the rate of quenching. Nevertheless, in spite of their ability to sensitize singlet oxygen, the phosphorescent probes were found to be non-phototoxic when compared with the commonly used photodynamic drug Photofrin in a standard cell-survival assay. The lack of phototoxicity is presumably due to the inability of PEGylated probes to associate with cell surfaces and/or penetrate cellular membranes. In contrast, conventional photosensitizers bind to cell components and act by generating singlet oxygen inside or in the immediate vicinity of cellular organelles. Therefore, PEGylated dendritic probes are safe to use for tissue oxygen measurements as long as the light doses are less than or equal to those commonly employed in photodynamic therapy. PMID:21409208

  17. Epitaxial growth of YBa2Cu3O7−x films on Ce0.9La0.1O2−y buffered yttria-stabilized zirconia substrates by an all-chemical-solution route

    DEFF Research Database (Denmark)

    Yue, Zhao; Wu, Wei; Tang, Xiao

    2014-01-01

    In view of high rate fabrication of coated conductors at low-cost, YBa2Cu3O7 (YBCO) films on Ce0.9La0.1O2−y buffered yttria-stabilized zirconia substrates were deposited by means of a novel low-fluorine metal–organic solution route. A high critical current density of 3 MA cm−2 (77 K, self field...

  18. Stability of La0.6Sr0.4Co0.2Fe0.8O3/Ce0.9Gd0.1O2 cathodes during sintering and solid oxide fuel cell operation

    DEFF Research Database (Denmark)

    Kiebach, Ragnar; Zhang, Weiwei; Zhang, Wei

    2015-01-01

    Degradation phenomena of La0.58Sr0.4Co0.2Fe0.8O3/Ce0.9Gd0.1O2 (LSCF/CGO) cathodes were investigated via post-mortem analyses of an experimental solid oxide fuel cell (SOFC) stack tested at 700 °C for 2000 h using advanced electron microscopy (SEM-EDS, HR-TEM-EDS) and time-of-flight secondary ion...

  19. Development of an allele-specific PCR assay for simultaneous sero-typing of avian pathogenic Escherichia coli predominant O1, O2, O18 and O78 strains.

    Science.gov (United States)

    Wang, Shaohui; Meng, Qingmei; Dai, Jianjun; Han, Xiangan; Han, Yue; Ding, Chan; Liu, Haiwen; Yu, Shengqing

    2014-01-01

    Systemic infections by avian pathogenic Escherichia coli (APEC) are economically devastating to poultry industries worldwide. E. coli strains belonging to serotypes O1, O2, O18 and O78 are preferentially associated with avian colibacillosis. The rfb gene cluster controlling O antigen synthesis is usually various among different E. coli serotypes. In present study, the rfb gene clusters of E. coli serotypes O1, O2, O18 and O78 were characterized and compared. Based on the serotype-specific genes in rfb gene cluster, an allele-specific polymerase chain reaction (PCR) assay was developed. This PCR assay was highly specific and reliable for sero-typing of APEC O1, O2, O18 and O78 strains. The sensitivity of the assay was determined as 10 pg DNA or 10 colony forming units (CFUs) bacteria for serotypes O2 and O18 strains, and 500 pg DNA or 1,000 CFUs bacteria for serotypes O1 and O78 strains. Using this PCR system, APEC isolates and the infected tissue samples were categorized successfully. Furthermore, it was able to differentiate the serotypes for the samples with multi-agglutination in the traditional serum agglutination assay. Therefore, the allele-specific PCR is more simple, rapid and accurate assay for APEC diagnosis, epidemiologic study and vaccine development.

  20. Development of an allele-specific PCR assay for simultaneous sero-typing of avian pathogenic Escherichia coli predominant O1, O2, O18 and O78 strains.

    Directory of Open Access Journals (Sweden)

    Shaohui Wang

    Full Text Available Systemic infections by avian pathogenic Escherichia coli (APEC are economically devastating to poultry industries worldwide. E. coli strains belonging to serotypes O1, O2, O18 and O78 are preferentially associated with avian colibacillosis. The rfb gene cluster controlling O antigen synthesis is usually various among different E. coli serotypes. In present study, the rfb gene clusters of E. coli serotypes O1, O2, O18 and O78 were characterized and compared. Based on the serotype-specific genes in rfb gene cluster, an allele-specific polymerase chain reaction (PCR assay was developed. This PCR assay was highly specific and reliable for sero-typing of APEC O1, O2, O18 and O78 strains. The sensitivity of the assay was determined as 10 pg DNA or 10 colony forming units (CFUs bacteria for serotypes O2 and O18 strains, and 500 pg DNA or 1,000 CFUs bacteria for serotypes O1 and O78 strains. Using this PCR system, APEC isolates and the infected tissue samples were categorized successfully. Furthermore, it was able to differentiate the serotypes for the samples with multi-agglutination in the traditional serum agglutination assay. Therefore, the allele-specific PCR is more simple, rapid and accurate assay for APEC diagnosis, epidemiologic study and vaccine development.

  1. Spin-singlet quantum Hall states and Jack polynomials with a prescribed symmetry

    International Nuclear Information System (INIS)

    Estienne, Benoit; Bernevig, B. Andrei

    2012-01-01

    We show that a large class of bosonic spin-singlet Fractional Quantum Hall model wavefunctions and their quasihole excitations can be written in terms of Jack polynomials with a prescribed symmetry. Our approach describes new spin-singlet quantum Hall states at filling fraction ν=(2k)/(2r-1) and generalizes the (k,r) spin-polarized Jack polynomial states. The NASS and Halperin spin-singlet states emerge as specific cases of our construction. The polynomials express many-body states which contain configurations obtained from a root partition through a generalized squeezing procedure involving spin and orbital degrees of freedom. The corresponding generalized Pauli principle for root partitions is obtained, allowing for counting of the quasihole states. We also extract the central charge and quasihole scaling dimension, and propose a conjecture for the underlying CFT of the (k,r) spin-singlet Jack states.

  2. A two-component dark matter model with real singlet scalars ...

    Indian Academy of Sciences (India)

    2016-01-05

    component dark matter model with real singlet scalars confronting GeV -ray excess from galactic centre and Fermi bubble. Debasish Majumdar Kamakshya Prasad Modak Subhendu Rakshit. Special: Cosmology Volume 86 Issue ...

  3. Decreasing Li/Ni Disorder and Improving the Electrochemical Performances of Ni-Rich LiNi0.8Co0.1Mn0.1O2 by Ca Doping.

    Science.gov (United States)

    Chen, Minmin; Zhao, Enyue; Chen, Dongfeng; Wu, Meimei; Han, Songbai; Huang, Qingzhen; Yang, Limei; Xiao, Xiaoling; Hu, Zhongbo

    2017-07-17

    Decreasing Li/Ni disorder has been a challenging problem for layered oxide materials, where disorder seriously restricts their electrochemical performances for lithium-ion batteries (LIBs). Element doping is a great strategy that has been widely used to stabilize the structure of the cathode material of an LIB and improve its electrochemical performance. On the basis of the results of previous studies, we hypothesized that the element of Ca, which has a lower valence state and larger radius compared to Ni 2+ , would be an ideal doping element to decrease the Li/Ni disorder of LiMO 2 materials and enhance their electrochemical performances. A Ni-rich LiNi 0.8 Mn 0.1 Co 0.1 O 2 cathode material was selected as the bare material, which usually shows severe Li/Ni disorder and serious capacity attenuation at a high cutoff voltage. So, a series of Ca-doped LiNi 0.8(1-x) Co 0.1 Mn 0.1 Ca 0.8x O 2 (x = 0-8%) samples were synthesized by a traditional solid-state method. As hypothesized, neutron diffraction showed that Ca-doped LiNi 0.8 Co 0.1 Mn 0.1 O 2 possessed a lower degree of Li/Ni disorder, and potentiostatic intermittent titration results showed a faster diffusion coefficient of Li + compared with that of LiNi 0.8 Mn 0.1 Co 0.1 O 2 . The Ca-doped LiNi 0.8 Mn 0.1 Co 0.1 O 2 samples exhibited higher discharge capacities and better cycle stabilities and rate capabilities, especially under a high cutoff voltage with 4.5 V. In addition, the problems of polarization and voltage reduction of LiNi 0.8 Mn 0.1 Co 0.1 O 2 were also alleviated by doping with Ca. More importantly, we infer that it is crucial to choose an appropriate doping element and our findings will help in the research of other layered oxide materials.

  4. The nature of singlet excitons in oligoacene molecular crystals

    KAUST Repository

    Yamagata, H.

    2011-01-01

    A theory for polarized absorption in crystalline oligoacenes is presented, which includes Frenkel exciton coupling, the coupling between Frenkel and charge-transfer (CT) excitons, and the coupling of all neutral and ionic excited states to the dominant ring-breathing vibrational mode. For tetracene, spectra calculated using all Frenkel couplings among the five lowest energy molecular singlet states predict a Davydov splitting (DS) of the lowest energy (0-0) vibronic band of only -32cm-1, far smaller than the measured value of 631cm-1 and of the wrong sign-a negative sign indicating that the polarizations of the lower and upper Davydov components are reversed from experiment. Inclusion of Frenkel-CT coupling dramatically improves the agreement with experiment, yielding a 0-0 DS of 601cm-1 and a nearly quantitative reproduction of the relative spectral intensities of the 0-n vibronic components. Our analysis also shows that CT mixing increases with the size of the oligoacenes. We discuss the implications of these results on exciton dissociation and transport. © 2011 American Institute of Physics.

  5. Photochemical hydrogen-deuterium exchange reaction of tryptophan: the role in nonradiative decay of singlet tryptophan

    International Nuclear Information System (INIS)

    Saito, I.; Sugiyama, H.; Yamamoto, A.; Muramatsu, S.; Matsuura, T.

    1984-01-01

    The mechanism of nonradiative decay of singlet excited tryptophan (Trp) in aqueous solution was investigated by a highly selective photosubstitution of the C-4 hydrogen of Trp with deuterium of solvent D 2 O. It was concluded that intramolecular proton transfer from the α-ammonia group giving rise to formation of a protonated species plays an important role in the nonradiative decay of singlet Trp at neutral pH. 11 references, 1 figure

  6. Nuclear spin singlet states as a contrast mechanism for NMR spectroscopy.

    Science.gov (United States)

    Devience, Stephen J; Walsworth, Ronald L; Rosen, Matthew S

    2013-10-01

    Nuclear magnetic resonance (NMR) spectra of complex chemical mixtures often contain unresolved or hidden spectral components, especially when strong background signals overlap weaker peaks. In this article we demonstrate a quantum filter utilizing nuclear spin singlet states, which allows undesired NMR spectral background to be removed and target spectral peaks to be uncovered. The quantum filter is implemented by creating a nuclear spin singlet state with spin quantum numbers j = 0, mz  = 0 in a target molecule, applying a continuous RF field to both preserve the singlet state and saturate the magnetization of undesired molecules and then mapping the target molecule singlet state back into an NMR observable state so that its spectrum can be read out unambiguously. The preparation of the target singlet state can be carefully controlled with pulse sequence parameters, so that spectral contrast can be achieved between molecules with very similar structures. We name this NMR contrast mechanism 'Suppression of Undesired Chemicals using Contrast-Enhancing Singlet States' (SUCCESS) and we demonstrate it in vitro for three target molecules relevant to neuroscience: aspartate, threonine and glutamine. Copyright © 2013 John Wiley & Sons, Ltd.

  7. Dynamics of Singlet Fission and Electron Injection in Self-Assembled Acene Monolayers on Titanium Dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Justin C [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Pace, Natalie A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Arias, Dylan H [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Christensen, Steven T [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Granger, Devin B. [University of Kentucky; Anthony, John E. [University of Kentucky

    2018-02-26

    We employ a combination of linear spectroscopy, electrochemistry, and transient absorption spectroscopy to characterize the interplay between electron transfer and singlet fission dynamics in polyacene-based dyes attached to nanostructured TiO2. For triisopropyl silylethynyl (TIPS)-pentacene, we find that the singlet fission time constant increases to 6.5 ps on a nanostructured TiO2 surface relative to a thin film time constant of 150 fs, and that triplets do not dissociate after they are formed. In contrast, TIPS-tetracene singlets quickly dissociate in 2 ps at the molecule/TiO2 interface, and this dissociation outcompetes the relatively slow singlet fission process. The addition of an alumina layer slows down electron injection, allowing the formation of triplets from singlet fission in 40 ps. However, the triplets do not inject electrons, which is likely due to a lack of sufficient driving force for triplet dissociation. These results point to the critical balance required between efficient singlet fission and appropriate energetics for interfacial charge transfer.

  8. Lignin Contribution to the Global Carbon Pool: Investigating the Abiotic Modification of Lignin by Reactive Oxygen Species

    Science.gov (United States)

    Waggoner, Derek Charles

    Evidence suggests that reactive oxygen species (ROS), largely generated through photochemical processes, are important in transforming the chemical composition of the large pool of terrestrially-derived dissolved organic matter (DOM) exported from land to water annually. However, due to the challenges inherent in isolating the effects of individual ROS on DOM composition, the role of ROS in the photochemical alteration of DOM remains poorly characterized. The main focus of the studies within this dissertation aim to more thoroughly characterize the alterations to lignin, used as an analog for terrestrial DOM, resulting from reactions with ROS. To investigate the possibility that the alteration of lignin, through reactions involving ROS, could lead to the production of compounds not recognized as having terrestrial origin, lignin-derived DOM was prepared from a sample of Atlantic white cedar (Chamaecyparis thyoides) and used for a number of studies. Lignin-derived DOM was independently exposed to hydroxyl radical (•OH) generated by Fenton reaction, singlet oxygen (1O2) produced using the photosensitizer Rose Bengal, and superoxide (O2-•) via stable potassium superoxide solution, under controlled laboratory conditions to accentuate how each ROS is responsible for the alteration of lignin. Advanced analytical techniques including high performance liquid chromatography (HPLC), nuclear magnetic resonance (NMR), and Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS), were employed to characterize alteration to lignin taking place following various ROS treatments. Results of these studies have shown distinct differences in the types of new compounds observed from exposure to each ROS as well as ROS reactivity. The alteration of lignin to compounds not typically associated with terrestrial DOM has been demonstrated upon exposure to ROS. It is also suggested that ROS could selectively react with different fractions of lignin like compounds based

  9. Oxygen, nitric oxide and articular cartilage

    Directory of Open Access Journals (Sweden)

    B Fermor

    2007-04-01

    Full Text Available Molecular oxygen is required for the production of nitric oxide (NO, a pro-inflammatory mediator that is associated with osteoarthritis and rheumatoid arthritis. To date there has been little consideration of the role of oxygen tension in the regulation of nitric oxide production associated with arthritis. Oxygen tension may be particularly relevant to articular cartilage since it is avascular and therefore exists at a reduced oxygen tension. The superficial zone exists at approximately 6% O2, while the deep zone exists at less than 1% O2. Furthermore, oxygen tension can alter matrix synthesis, and the material properties of articular cartilage in vitro.The increase in nitric oxide associated with arthritis can be caused by pro-inflammatory cytokines and mechanical stress. Oxygen tension significantly alters endogenous NO production in articular cartilage, as well as the stimulation of NO in response to both mechanical loading and pro-inflammatory cytokines. Mechanical loading and pro-inflammatory cytokines also increase the production of prostaglandin E2 (PGE2. There is a complex interaction between NO and PGE2, and oxygen tension can alter this interaction. These findings suggest that the relatively low levels of oxygen within the joint may have significant influences on the metabolic activity, and inflammatory response of cartilage as compared to ambient levels. A better understanding of the role of oxygen in the production of inflammatory mediators in response to mechanical loading, or pro-inflammatory cytokines, may aid in the development of strategies for therapeutic intervention in arthritis.

  10. Topological spin-singlet superconductors with underlying sublattice structure

    Science.gov (United States)

    Dutreix, C.

    2017-07-01

    Majorana boundary quasiparticles may naturally emerge in a spin-singlet superconductor with Rashba spin-orbit interactions when a Zeeman magnetic field breaks time-reversal symmetry. Their existence and robustness against adiabatic changes is deeply related, via a bulk-edge correspondence, to topological properties of the band structure. The present paper shows that the spin-orbit may be responsible for topological transitions when the superconducting system has an underlying sublattice structure, as it appears in a dimerized Peierls chain, graphene, and phosphorene. These systems, which belong to the Bogoliubov-de Gennes class D, are found to have an extra symmetry that plays the role of the parity. It enables the characterization of the topology of the particle-hole symmetric band structure in terms of band inversions. The topological phase diagrams this leads to are then obtained analytically and exactly. They reveal that, because of the underlying sublattice structure, the existence of topological superconducting phases requires a minimum doping fixed by the strength of the Rashba spin orbit. Majorana boundary quasiparticles are finally predicted to emerge when the Fermi level lies in the vicinity of the bottom (top) of the conduction (valence) band in semiconductors such as the dimerized Peierls chain and phosphorene. In a two-dimensional topological superconductor based on (stretched) graphene, which is semimetallic, Majorana quasiparticles cannot emerge at zero and low doping, that is, when the Fermi level is close to the Dirac points. Nevertheless, they are likely to appear in the vicinity of the van Hove singularities.

  11. Water-soluble fullerene materials for bioapplications: photoinduced reactive oxygen species generation

    Science.gov (United States)

    The photoinduced reactive oxygen species (ROS) generation from several water-soluble fullerenes was examined. Macromolecular or small molecular water-soluble fullerene complexes/derivatives were prepared and their 1O2 and O2•- generation abilities were evaluated by EPR spin-trapping methods. As a r...

  12. Origins of Singlet Fission in Solid Pentacene from an ab initio Green's Function Approach

    Science.gov (United States)

    Refaely-Abramson, Sivan; da Jornada, Felipe H.; Louie, Steven G.; Neaton, Jeffrey B.

    2017-12-01

    We develop a new first-principles approach to predict and understand rates of singlet fission with an ab initio Green's-function formalism based on many-body perturbation theory. Starting with singlet and triplet excitons computed from a G W plus Bethe-Salpeter equation approach, we calculate the exciton-biexciton coupling to lowest order in the Coulomb interaction, assuming a final state consisting of two noninteracting spin-correlated triplets with finite center-of-mass momentum. For crystalline pentacene, symmetries dictate that the only purely Coulombic fission decay process from a bright singlet state requires a final state consisting of two inequivalent nearly degenerate triplets of nonzero, equal and opposite, center-of-mass momenta. For such a process, we predict a singlet lifetime of 30-70 fs, in very good agreement with experimental data, indicating that this process can dominate singlet fission in crystalline pentacene. Our approach is general and provides a framework for predicting and understanding multiexciton interactions in solids.

  13. Comportamiento dinámico de la conductividad térmica de material cerámico de estructura (Al2O3(ZnO/SnO2+Ti0,1O2

    Directory of Open Access Journals (Sweden)

    Omar, Rodríguez P.

    2013-06-01

    Full Text Available Not availableEn este trabajo, se presentan los resultados del comportamiento simulado y la medición experimental de la conductividad térmica σT de material cerámico crudo de fases (Al2O3(ZnO/SnO2+Ti0,1O2, utilizado en la fabricación de sensores de radiación térmica para el control de procesos industriales. Los resultados anteriores se obtuvieron teniendo en cuenta la aplicación de un modelo matemático de radiación de cuerpo negro, como una función no lineal dependiente de: la temperatura, permitividad eléctrica relativa y variables como humedad relativa y voltaje medidos con un dispositivo electrónico desarrollado por el grupo ESSOPTO de la Universidad Central. Por otro lado, se calculó y se simuló el comportamiento térmico del potencial químico responsable de la propagación de la energía en la estructura del compuesto (Al2O3(ZnO/SnO2+Ti0,1O2, dependiendo del tipo de distribución del tipo de portador (n y (p del material.

  14. Diradical character dependences of the first and second hyperpolarizabilities of asymmetric open-shell singlet systems.

    Science.gov (United States)

    Nakano, Masayoshi; Champagne, Benoît

    2013-06-28

    The static first and second hyperpolarizabilities (referred to as β and γ, respectively) of asymmetric open-shell singlet systems have been investigated using the asymmetric two-site diradical model within the valence configuration interaction level of theory in order to reveal the effect of the asymmetric electron distribution on the diradical character and subsequently on β and γ. It is found that the increase of the asymmetric electron distribution causes remarkable changes in the amplitude and the sign of β and γ, and that their variations are intensified with the increase of the diradical character. These results demonstrate that the asymmetric open-shell singlet systems with intermediate diradical characters can exhibit further enhancements of β and γ as compared to conventional asymmetric closed-shell systems and also to symmetric open-shell singlet systems with intermediate diradical characters.

  15. Singlet-to-triplet intermediates and triplet exciton dynamics in pentacene thinfilms

    Science.gov (United States)

    Thorsmolle, Verner; Korber, Michael; Obergfell, Emanuel; Kuhlman, Thomas; Campbell, Ian; Crone, Brian; Taylor, Antoinette; Averitt, Richard; Demsar, Jure

    Singlet-to-triplet fission in organic semiconductors is a spin-conserving multiexciton process in which one spin-zero singlet excitation is converted into two spin-one triplet excitations on an ultrafast timescale. Current scientific interest into this carrier multiplication process is largely driven by prospects of enhancing the efficiency in photovoltaic applications by generating two long-lived triplet excitons by one photon. The fission process is known to involve intermediate states, known as correlated triplet pairs, with an overall singlet character, before being interchanged into uncorrelated triplets. Here we use broadband femtosecond real-time spectroscopy to study the excited state dynamics in pentacene thin films, elucidating the fission process and the role of intermediate triplet states. VKT and AJT acknowledge support by the LDRD program at Los Alamos National Laboratory and the Department of Energy, Grant No. DE-FG02-04ER118. MK, MO and JD acknowledge support by the Alexander von Humboldt Foundation.

  16. Interplay between singlet and triplet excited states in a conformationally locked donor–acceptor dyad

    KAUST Repository

    Filatov, Mikhail A.

    2015-10-13

    The synthesis and photophysical characterization of a palladium(II) porphyrin – anthracene dyad bridged via short and conformationally rigid bicyclo[2.2.2]octadiene spacer were achieved. A spectroscopic investigation of the prepared molecule in solution has been undertaken to study electronic energy transfer in excited singlet and triplet states between the anthracene and porphyrin units. By using steady-state and time-resolved photoluminescence spectroscopy it was shown that excitation of the singlet excited state of the anthracene leads to energy transfer to the lower-lying singlet state of porphyrin. Alternatively, excitation of the porphyrin followed by intersystem crossing to the triplet state leads to very fast energy transfer to the triplet state of anthracene. The rate of this energy transfer has been determined by transient absorption spectroscopy. Comparative studies of the dynamics of triplet excited states of the dyad and reference palladium octaethylporphyrin (PdOEP) have been performed.

  17. Oxygen Therapy

    Science.gov (United States)

    ... oxygen at very high altitudes (like in the mountains or in an airplane) even if you do ... an arterial blood gas (ABG) measurement. The ABG measures your oxygen level directly from your blood and ...

  18. Antibacterial, Antiviral, and Oxygen-Sensing Nanoparticles Prepared from Electrospun Materials

    Czech Academy of Sciences Publication Activity Database

    Henke, P.; Kirakci, Kaplan; Kubát, Pavel; Fraiberk, M.; Forstová, J.; Mosinger, Jiří

    2016-01-01

    Roč. 8, č. 38 (2016), s. 25127-25136 ISSN 1944-8244 R&D Projects: GA ČR(CZ) GA16-15020S; GA MŠk(CZ) LM2015073 Institutional support: RVO:61388980 ; RVO:61388955 Keywords : antibacterial * antiviral * nanoparticles * oxygen-sensing * singlet oxygen Subject RIV: CA - Inorganic Chemistry; CF - Physical ; Theoretical Chemistry (UFCH-W) Impact factor: 7.504, year: 2016

  19. Baryogenesis in the two doublet and inert singlet extension of the Standard Model

    DEFF Research Database (Denmark)

    Alanne, Tommi; Kainulainen, Kimmo; Tuominen, Kimmo

    2016-01-01

    We investigate an extension of the Standard Model containing two Higgs doublets and a singlet scalar field (2HDSM). We show that the model can have a strongly first-order phase transition and give rise to the observed baryon asymmetry of the Universe, consistent with all experimental constraints...... with the critical temperature, Tn Tc, which can significantly alter the usual phase-transition pattern in 2HD models with Tn ≈ Tc. Furthermore, the singlet field can be the dark matter particle. However, in models with a strong first-order transition its abundance is typically but a thousandth of the observed dark...... matter abundance....

  20. On colour non-singlet representations of the quark-gluon system at finite temperature

    International Nuclear Information System (INIS)

    Abbas, A.; Paria, L.

    2000-01-01

    We use a group theoretical technique to project out the partition function for a system of quarks, antiquarks and gluons onto a particular representation of the internal symmetry group SU(3): the colour singlet, colour octet and colour 27-plet, at finite temperature. We do this to calculate the thermodynamic quantities for those representations. We also calculate the change in free energy of the plasma droplet formed from the hot hadronic gas. We find that the size of the droplet in the colour-octet representation is smaller than that in the colour-singlet representations at different temperatures in the vicinity of the critical temperatures of the phase transitions. (orig.)

  1. Coherent dynamics of singlet fission controlled by nonlocal electron-phonon coupling

    Science.gov (United States)

    Yao, Yao

    2016-03-01

    Based on the Frenkel and charge transfer mixing model of singlet fission (SF), we incorporate both the local and nonlocal phonon baths into the Hamiltonian and adopt the algorithm of the time-dependent density matrix renormalization group to simulate the SF process in tetracene and pentacene. The endergonic SF is found to be facilitated by the robust quantum coherence, which concurrently gives rise to a notable quantum beating effect. Being controlled by the nonlocal electron-phonon coupling, the SF process is accelerated and the triplet yield manifests a nonlinear relationship with the singlet density.

  2. Research on chemical and discharge oxygen-iodine lasers

    Czech Academy of Sciences Publication Activity Database

    Kodymová, Jarmila; Jirásek, Vít; Schmiedberger, Josef; Špalek, Otomar; Čenský, Miroslav

    2009-01-01

    Roč. 107, č. 5 (2009), s. 816-825 ISSN 0030-400X R&D Projects: GA ČR GA202/07/0323; GA ČR GA202/09/0310; GA MŠk ME 833 Grant - others:US Air Force EOARD(US) FA8655-09-1-3091 Institutional research plan: CEZ:AV0Z10100523 Keywords : oxygen-iodine laser * COIL * DOIL * ElectricOIL * singlet oxygen * atomic iodine Subject RIV: BH - Optics, Masers, Lasers Impact factor: 0.505, year: 2009

  3. Harnessing singlet exciton fission to break the Shockley-Queisser limit

    Science.gov (United States)

    Rao, Akshay; Friend, Richard H.

    2017-11-01

    Singlet exciton fission is a carrier multiplication process in organic semiconductors that generates two electron-hole pairs for each photon absorbed. Singlet fission occurs on sub-100 fs timescales with yields of up to 200%, and photovoltaic devices based on singlet fission have achieved external quantum efficiencies above 100%. The major challenge for the field is to use singlet fission to improve the efficiency of conventional inorganic solar cells, such as silicon, and to break the Shockley-Queisser limit on the efficiency of single-junction photovoltaics. Achieving this goal requires a broader and more collaborative effort than the one used at present. Synthetic chemists, spectroscopists, theorists, materials scientists, device physicists and engineers will need to work together. In this Review, we critically assess the current status of the field, highlight the key results and identify the challenges ahead. In doing so, we seek to open the field to new expertise and ideas, which will in turn promote both fundamental science and device applications.

  4. Toward Designed Singlet Fission: Electronic States and Photophysics of 1,3-Diphenylisobenzofuran

    Czech Academy of Sciences Publication Activity Database

    Schwerin, A. F.; Johnson, J. C.; Smith, M. B.; Sreearunothai, P.; Popovič, D.; Černý, Jiří; Havlas, Zdeněk; Paci, I.; Akdag, A.; MacLeod, M. K.; Chen, X.; David, D. E.; Ratner, M. A.; Miller, J. R.; Nozik, A. J.; Michl, Josef

    2010-01-01

    Roč. 114, č. 3 (2010), s. 1457-1473 ISSN 1089-5639 R&D Projects: GA MŠk ME09114 Grant - others:NSF(US) OISE-0532040 Institutional research plan: CEZ:AV0Z40550506 Keywords : photophysics * singlet fission * DFT Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.732, year: 2010

  5. Photocurrent Enhanced by Singlet Fission in a Dye-Sensitized Solar Cell

    Czech Academy of Sciences Publication Activity Database

    Schrauben, J. N.; Zhao, Y.; Mercado, C.; Dron, P. I.; Ryerson, J. L.; Michl, Josef; Zhu, K.; Johnson, J. C.

    2015-01-01

    Roč. 7, č. 4 (2015), s. 2286-2293 ISSN 1944-8244 Institutional support: RVO:61388963 Keywords : photovoltaics * singlet fission * triplet * spectroscopy * charge transfer * photocurrent Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 7.145, year: 2015

  6. Dynamic zero modes of Dirac fermions and competing singlet phases of antiferromagnetic order

    Science.gov (United States)

    Goswami, Pallab; Si, Qimiao

    2017-06-01

    In quantum spin systems, singlet phases often develop in the vicinity of an antiferromagnetic order. Typical settings for such problems arise when itinerant fermions are also present. In this paper, we develop a theoretical framework for addressing such competing orders in an itinerant system, described by Dirac fermions strongly coupled to an O(3) nonlinear sigma model. We focus on two spatial dimensions, where upon disordering the antiferromagnetic order by quantum fluctuations the singular tunneling events also known as (anti)hedgehogs can nucleate competing singlet orders in the paramagnetic phase. In the presence of an isolated hedgehog configuration of the nonlinear sigma model field, we show that the fermion determinant vanishes as the dynamic Euclidean Dirac operator supports fermion zero modes of definite chirality. This provides a topological mechanism for suppressing the tunneling events. Using the methodology of quantum chromodynamics, we evaluate the fermion determinant in the close proximity of magnetic quantum phase transition, when the antiferromagnetic order-parameter field can be described by a dilute gas of hedgehogs and antihedgehogs. We show how the precise nature of emergent singlet order is determined by the overlap between dynamic fermion zero modes of opposite chirality, localized on the hedgehogs and antihedgehogs. For a Kondo-Heisenberg model on the honeycomb lattice, we demonstrate the competition between spin Peierls order and Kondo singlet formation, thereby elucidating its global phase diagram. We also discuss other physical problems that can be addressed within this general framework.

  7. An operator basis for the Standard Model with an added scalar singlet

    Energy Technology Data Exchange (ETDEWEB)

    Gripaios, Ben [Cavendish Laboratory, J.J. Thomson Avenue, Cambridge (United Kingdom); Sutherland, Dave [Cavendish Laboratory, J.J. Thomson Avenue, Cambridge (United Kingdom); Kavli Institute for Theoretical Physics, UCSB Kohn Hall, Santa Barbara CA (United States)

    2016-08-17

    Motivated by the possible di-gamma resonance at 750 GeV, we present a basis of effective operators for the Standard Model plus a scalar singlet at dimensions 5, 6, and 7. We point out that an earlier list at dimensions 5 and 6 contains two redundant operators at dimension 5.

  8. A two-component dark matter model with real singlet scalars ...

    Indian Academy of Sciences (India)

    2016-01-05

    Jan 5, 2016 ... We propose a two-component dark matter (DM) model, each component of which is a real singlet scalar, to explain results from both direct and indirect detection experiments. We put the constraints on the model parameters from theoretical bounds, PLANCK relic density results and direct DM experiments.

  9. Regge-like initial input and evolution of non-singlet structure ...

    Indian Academy of Sciences (India)

    The non-singlet structure functions, evolved in accordance with DGLAP evolution equations up to next-next-to-leading order are studied phenomenologically in comparison with the available experimental and parametrization results taken from NMC, CCFR, NuTeV, CORUS, CDHSW, NNPDF and MSTW Collaborations and ...

  10. The singlet-triplet energy gap in divalent three, five and seven ...

    African Journals Online (AJOL)

    The singlet-triplet energy gap in divalent three, five and seven-membered cyclic C2H2M, C4H4M and C6H6M (M = C, Si, Ge, Sn AND Pb) ... Nuclear independent chemical shifts (NICS) calculations were carried out for determination of aromatic character. The geometrical parameters are calculated and discussed.

  11. Singlet fission/silicon solar cell exceeding 100% EQE (Conference Presentation)

    Science.gov (United States)

    Pazos, Luis M.; Lee, Jumin; Kirch, Anton; Tabachnyk, Maxim; Friend, Richard H.; Ehrler, Bruno

    2016-09-01

    Current matching limits the commercialization of tandem solar cells due to their instability over spectral changes, leading to the need of using solar concentrators and trackers to keep the spectrum stable. We demonstrate that voltage-matched systems show far higher performance over spectral changes; caused by clouds, dust and other variations in atmospheric conditions. Singlet fission is a process in organic semiconductors which has shown very efficient, 200%, down-conversion yield and the generated excitations are long-lived, ideal for solar cells. As a result, the number of publications has grown exponentially in the past 5 years. Yet, so far no one has achieved to combine singlet fission with most low bandgap semiconductors, including crystalline silicon, the dominating solar cell material with a 90% share of the PV Market. Here we show that singlet fission can facilitate the fabrication of voltage-matched systems, opening a simple design route for the effective implementation of down-conversion in commercially available photovoltaic technologies, with no modification of the electronic circuitry of such. The implemention of singlet fission is achieved simply by decoupling the fabrication of the individual subcells. For this demonstration we used an ITO/PEDOT/P3HT/Pentacene/C60/Ag wide-bandgap subcell, and a commercial silicon solar cell as the low-bandgap component. We show that the combination of the two leads to the first tandem silicon solar cell which exceeds 100% external quantum efficiency.

  12. Photocurrent enhanced by singlet fission in a dye-sensitized solar cell.

    Science.gov (United States)

    Schrauben, Joel N; Zhao, Yixin; Mercado, Candy; Dron, Paul I; Ryerson, Joseph L; Michl, Josef; Zhu, Kai; Johnson, Justin C

    2015-02-04

    Investigations of singlet fission have accelerated recently because of its potential utility in solar photoconversion, although only a few reports definitively identify the role of singlet fission in a complete solar cell. Evidence of the influence of singlet fission in a dye-sensitized solar cell using 1,3-diphenylisobenzofuran (DPIBF, 1) as the sensitizer is reported here. Self-assembly of the blue-absorbing 1 with co-adsorbed oxidation products on mesoporous TiO2 yields a cell with a peak internal quantum efficiency of ∼70% and a power conversion efficiency of ∼1.1%. Introducing a ZrO2 spacer layer of thickness varying from 2 to 20 Å modulates the short-circuit photocurrent such that it is initially reduced as thickness increases but 1 with 10-15 Å of added ZrO2. This rise can be explained as being due to a reduced rate of injection of electrons from the S1 state of 1 such that singlet fission, known to occur with a 30 ps time constant in polycrystalline films, has the opportunity to proceed efficiently and produce two T1 states per absorbed photon that can subsequently inject electrons into TiO2. Transient spectroscopy and kinetic simulations confirm this novel mode of dye-sensitized solar cell operation and its potential utility for enhanced solar photoconversion.

  13. Singlet Ground State Magnetism: III Magnetic Excitons in Antiferromagnetic TbP

    DEFF Research Database (Denmark)

    Knorr, K.; Loidl, A.; Kjems, Jørgen

    1981-01-01

    The dispersion of the lowest magnetic excitations of the singlet ground state system TbP has been studied in the antiferromagnetic phase by inelastic neutron scattering. The magnetic exchange interaction and the magnetic and the rhombohedral molecular fields have been determined....

  14. Optimal free will on one side in reproducing the singlet correlation

    International Nuclear Information System (INIS)

    Banik, Manik; Gazi, MD. Rajjak; Das, Subhadipa; Rai, Ashutosh; Kunkri, Samir

    2012-01-01

    Bell’s theorem teaches us that there are quantum correlations that cannot be simulated by just shared randomness (local hidden variable). There are some recent results which simulate the singlet correlation by using either 1 bit or a binary (no-signaling) correlation which violates Bell’s inequality maximally. But there is one more possible way to simulate quantum correlation by relaxing the condition of independency of measurement on shared randomness. Recently, Hall showed that the statistics of a singlet state can be generated by sacrificing measurement independence where underlying distribution of hidden variables depends on measurement directions of both parties (Hall 2010 Phys. Rev. Lett. 105 250404). He also proved that for any model of singlet correlation, 86% measurement independence is optimal. In this paper, we show that 59% measurement independence is optimal for simulating the singlet correlation when the underlying distribution of hidden variables depends only on the measurements of one party. We also show that a distribution corresponding to this optimal lack of free will already exists in the literature which first appeared in the context of detection efficiency loophole (Gisin and Gisin 1999 Phys. Lett. A 323–7). (paper)

  15. General Approach to the Evolution of Singlet Nanoparticles from a Rapidly Quenched Point Source

    NARCIS (Netherlands)

    Feng, J.; Huang, Luyi; Ludvigsson, Linus; Messing, Maria; Maiser, A.; Biskos, G.; Schmidt-Ott, A.

    2016-01-01

    Among the numerous point vapor sources, microsecond-pulsed spark ablation at atmospheric pressure is a versatile and environmentally friendly method for producing ultrapure inorganic nanoparticles ranging from singlets having sizes smaller than 1 nm to larger agglomerated structures. Due to its fast

  16. Soluble and stable heptazethrenebis(dicarboximide) with a singlet open-shell ground state

    KAUST Repository

    Sun, Zhe

    2011-08-10

    A soluble and stable heptazethrene derivative was synthesized and characterized for the first time. This molecule exhibits a singlet biradical character in the ground state, which is the first case among zethrene homologue series. Exceptional stability of this heptazethrenebis(dicarboximide) raises the likelihood of its practical applications in materials science. © 2011 American Chemical Society.

  17. Singlet Exciton Lifetimes in Conjugated Polymer Films for Organic Solar Cells

    KAUST Repository

    Dimitrov, Stoichko

    2016-01-13

    The lifetime of singlet excitons in conjugated polymer films is a key factor taken into account during organic solar cell device optimization. It determines the singlet exciton diffusion lengths in polymer films and has a direct impact on the photocurrent generation by organic solar cell devices. However, very little is known about the material properties controlling the lifetimes of singlet excitons, with most of our knowledge originating from studies of small organic molecules. Herein, we provide a brief summary of the nature of the excited states in conjugated polymer films and then present an analysis of the singlet exciton lifetimes of 16 semiconducting polymers. The exciton lifetimes of seven of the studied polymers were measured using ultrafast transient absorption spectroscopy and compared to the lifetimes of seven of the most common photoactive polymers found in the literature. A plot of the logarithm of the rate of exciton decay vs. the polymer optical bandgap reveals a medium correlation between lifetime and bandgap, thus suggesting that the Energy Gap Law may be valid for these systems. This therefore suggests that small bandgap polymers can suffer from short exciton lifetimes, which may limit their performance in organic solar cell devices. In addition, the impact of film crystallinity on the exciton lifetime was assessed for a small bandgap diketopyrrolopyrrole co-polymer. It is observed that the increase of polymer film crystallinity leads to reduction in exciton lifetime and optical bandgap again in agreement with the Energy Gap Law.

  18. Isotopic probing of molecular oxygen activation at copper(I) sites.

    Science.gov (United States)

    Lanci, Michael P; Smirnov, Valeriy V; Cramer, Christopher J; Gauchenova, Ekaterina V; Sundermeyer, Jörg; Roth, Justine P

    2007-11-28

    Copper-dioxygen (CuO2) adducts are frequently proposed as intermediates in enzymes, yet their electronic and vibrational structures have not always been understood. [Cu(eta1-O2)TMG3tren]+ (TMG3tren = 1,1,1-tris{2-[N2-(1,1,3,3-tetramethylguanidino)]ethyl}amine) features end-on (eta1) O2 coordination in the solid state. Described here is an investigation of the compound's solution properties by nuclear magnetic resonance spectroscopy, density functional calculations, and oxygen isotope effects. The study yields two major findings. First, [Cu(eta1-O2)TMG3tren]+ is paramagnetic due to a triplet electronic structure; this is in contrast to other copper compounds where O2 is bound in a side-on manner. Second, the oxygen equilibrium isotope effect upon O2 binding to copper(I) (18O EIE [triple bond] K(16O16O)/K(16O18O) = 1.0148 +/- 0.0012) is significantly larger than those determined for iron and cobalt eta1-O2 adducts. This result is suggested to reflect greater ionic (CuII-O2-I) character within the valence bond description. A revised interpretation of the physical origins of the 18O EIEs upon O2 binding to redox metals is also advanced along with experimental data that should be used as benchmarks for interpreting 18O kinetic isotope effects upon enzyme reactions.

  19. Photophysical characterization and time-resolved spectroscopy of a anthradithiophene dimer: exploring the role of conformation in singlet fission

    KAUST Repository

    Dean, Jacob C.

    2017-08-18

    Quantitative singlet fission has been observed for a variety of acene derivatives such as tetracene and pentacene, and efforts to extend the library of singlet fission compounds is of current interest. Preliminary calculations suggest anthradithiophenes exhibit significant exothermicity between the first optically-allowed singlet state, S1, and 2 × T1 with an energy difference of >5000 cm−1. Given the fulfillment of this ingredient for singlet fission, here we investigate the singlet fission capability of a difluorinated anthradithiophene dimer (2ADT) covalently linked by a (dimethylsilyl)ethane bridge and derivatized by triisobutylsilylethynyl (TIBS) groups. Photophysical characterization of 2ADT and the single functionalized ADT monomer were carried out in toluene and acetone solution via absorption and fluorescence spectroscopy, and their photo-initiated dynamics were investigated with time-resolved fluorescence (TRF) and transient absorption (TA) spectroscopy. In accordance with computational predictions, two conformers of 2ADT were observed via fluorescence spectroscopy and were assigned to structures with the ADT cores trans or cis to one another about the covalent bridge. The two conformers exhibited markedly different excited state deactivation mechanisms, with the minor trans population being representative of the ADT monomer showing primarily radiative decay, while the dominant cis population underwent relaxation into an excimer geometry before internally converting to the ground state. The excimer formation kinetics were found to be solvent dependent, yielding time constants of ∼1.75 ns in toluene, and ∼600 ps in acetone. While the difference in rates elicits a role for the solvent in stabilizing the excimer structure, the rate is still decidedly long compared to most singlet fission rates of analogous dimers, suggesting that the excimer is neither a kinetic nor a thermodynamic trap, yet singlet fission was still not observed. The result

  20. Synergistic effect of 3D electrode architecture and fluorine doping of Li1.2Ni0.15Mn0.55Co0.1O2 for high energy density lithium-ion batteries

    Science.gov (United States)

    Krishna Kumar, S.; Ghosh, Sourav; Ghosal, Partha; Martha, Surendra K.

    2017-07-01

    Li1.2Ni0.15Mn0.55Co0.1O2 (LMR NMC) is synthesized by solution combustion method followed by LiF coating onto LMR NMC by solid state synthesis. The electrochemical performance of the pristine LMR NMC and corresponding F-doped samples as cathodes for Lithium ion Batteries (LIBs) are investigated by galvanostatic charge-discharge cycling and impedance spectroscopy. The fluorine doped cathodes deliver high capacity of ∼300 mAh g-1 at C/10 rate (10-20% greater than the pristine LMR NMC cathodes), have high discharge voltage plateau (>0.25 V) and low charge voltage plateau (0.2-0.4 V) compared to pristine LMR NMC cathodes. Beside, irreversible capacity, voltage fade, capacity loss are significantly reduced in-relation to the pristine LMR NMC electrodes. LiF coating onto LMR NMC, partially replaces Msbnd O bonds of the material by Msbnd F bonds, thus increasing the interfacial and structural stability. Besides, the manuscript describes possible replacement of aluminium current collector with 3D carbon fiber current collector which delivers high capacity of >200 mAh g-1 at 1C rate, good capacity retentions for over 200 cycles. The study opens a possibility for LMR NMC cathode material which has almost double the capacity of currently used cathodes, can be a possible substitute cathode for LIBs used in electric vehicles.

  1. A new LaCo0.71(1)V0.29(1)O2.97(3) perovskite containing vanadium in octahedral sites: synthesis and structural and magnetic characterization.

    Science.gov (United States)

    Fuertes, V C; Blanco, M C; Franco, D G; Ceppi, S; Sánchez, R D; Fernández-Díaz, M T; Tirao, G; Carbonio, R E

    2015-06-21

    In the course of an investigation to prepare the hypothetic new double perovskite La(3)Co(2)VO(9) with Co(2+) and V(5+) in octahedral sites, we obtained the new simple perovskite LaCo(0.71(1))V(0.29(1))O(2.97(3)) as the main phase. The pure compound was then synthesized by the citrate decomposition method. The crystal structure was studied by X-ray (PXRD) and powder neutron diffraction (PND). Physical properties were characterized by X-ray absorption spectroscopy (XAS), X-ray emission spectroscopy (XES) and thermogravimetric analysis (TGA). Rietveld refinements were performed in the orthorhombic space group Pnma (#62). Refined cell parameters were a = 5.4762(2) Å, b = 7.7609(2) Å and c = 5.5122(1) Å. Magnetization measurements showed that this perovskite is an antiferromagnet with a Neel temperature of 15 K. At high T the magnetization follows the Curie-Weiss law corrected by temperature independent paramagnetism (TIP) showing an effective magnetic moment of 3.03μ(B) well described by the contribution of Co(2+) (HS), Co(3+) (IS), V(3+) and V(4+) ions. The crystallographic formula was refined by PND and oxidation state distribution was determined by the combination of PND, XAS, TGA and magnetic measurements.

  2. Ligands of low electronegativity in the vsepr model: the structures of singlet carbenes

    Science.gov (United States)

    Cuthbertson, Alastair F.; Glidewell, Christopher

    Equilibrium structures and force constants for skeletal bending from linearity have been calculated, in the MNDO approximation, for twenty five singlet carbenes CX 2. When the substituent X bears neither vacant orbitais nor lone pairs, the force constant becomes steadily more negative as the electronegativity of X increases; when X bears vacant orbitais, the C-X π bond order and the force constant both increase with the electronegativity of X. When X bears lone pairs, the force constant parallels the HOMO-LUMO gap at linearity. Previous discussions of the structures of singlet carbenes are shown to be inadequate: the reported results support the interpretation in terms of the second-order Jahn-Teller effect of the observed stereochemical inactivity of lone pairs in the presence of ligands of low electronegativity.

  3. Simulations of Cold Electroweak Baryogenesis: quench from portal coupling to new singlet field

    Science.gov (United States)

    Mou, Zong-Gang; Saffin, Paul M.; Tranberg, Anders

    2018-01-01

    We compute the baryon asymmetry generated from Cold Electroweak Baryogenesis, when a dynamical Beyond-the-Standard-Model scalar singlet field triggers the spinodal transition. Using a simple potential for this additional field, we match the speed of the quench to earlier simulations with a "by-hand" mass flip. We find that for the parameter subspace most similar to a by-hand transition, the final baryon asymmetry shows a similar dependence on quench time and is of the same magnitude. For more general parameter choices the Higgs-singlet dynamics can be very complicated, resulting in an enhancement of the final baryon asymmetry. Our results validate and generalise results of simulations in the literature and open up the Cold Electroweak Baryogenesis scenario to further model building.

  4. Thermal right-handed sneutrino dark matter with a singlet Higgs

    International Nuclear Information System (INIS)

    Cerdeno, David G.

    2009-01-01

    We report on a model in which the right-handed sneutrino is a viable WIMP dark matter candidate. It consists on an extension of the MSSM with a singlet S with coupling SH 1 H 2 in order to solve the μ problem as in the NMSSM, and right-handed neutrinos N with couplings SNN in order to generate dynamically electroweak-scale Majorana masses. Through the direct coupling to the singlet, the sneutrino can not only be thermally produced in the right amount but also have a large enough scattering cross section with nuclei to detect it directly in near future, in contrast with most of other right-handed sneutrino dark matter models.

  5. Nature of the singlet and triplet excitations mediating thermally activated delayed fluorescence

    Science.gov (United States)

    Olivier, Y.; Yurash, B.; Muccioli, L.; D'Avino, G.; Mikhnenko, O.; Sancho-García, J. C.; Adachi, C.; Nguyen, T.-Q.; Beljonne, D.

    2017-12-01

    Despite significant efforts, a complete mechanistic understanding of thermally activated delayed fluorescence (TADF) materials has not yet been fully uncovered. Part of the complexity arises from the apparent dichotomy between the need for close energy resonance and for a significant spin-orbit coupling between alike charge-transfer singlet and triplet excitations. Here we show, in the case of reference carbazole derivatives, that this dichotomy can be resolved in a fully atomistic model accounting for thermal fluctuations of the molecular conformations and microscopic electronic polarization effects in amorphous films. These effects yield electronic excitations with a dynamically mixed charge-transfer and localized character, resulting in thermally averaged singlet-triplet energy differences and interconversion rates in excellent agreement with careful spectroscopic studies.

  6. Transient photocurrent in molecular junctions: singlet switching on and triplet blocking.

    Science.gov (United States)

    Petrov, E G; Leonov, V O; Snitsarev, V

    2013-05-14

    The kinetic approach adapted to describe charge transmission in molecular junctions, is used for the analysis of the photocurrent under conditions of moderate light intensity of the photochromic molecule. In the framework of the HOMO-LUMO model for the single electron molecular states, the analytic expressions describing the temporary behavior of the transient and steady state sequential (hopping) as well as direct (tunnel) current components have been derived. The conditions at which the current components achieve their maximal values are indicated. It is shown that if the rates of charge transmission in the unbiased molecular diode are much lower than the intramolecular singlet-singlet excitation/de-excitation rate, and the threefold degenerated triplet excited state of the molecule behaves like a trap blocking the charge transmission, a possibility of a large peak-like transient switch-on photocurrent arises.

  7. Prediction of Tetraoxygen Reaction Mechanism with Sulfur Atom on the Singlet Potential Energy Surface

    Directory of Open Access Journals (Sweden)

    Ashraf Khademzadeh

    2014-01-01

    Full Text Available The mechanism of S+O4 (D2h reaction has been investigated at the B3LYP/6-311+G(3df and CCSD levels on the singlet potential energy surface. One stable complex has been found for the S+O4 (D2h reaction, IN1, on the singlet potential energy surface. For the title reaction, we obtained four kinds of products at the B3LYP level, which have enough thermodynamic stability. The results reveal that the product P3 is spontaneous and exothermic with −188.042 and −179.147 kcal/mol in Gibbs free energy and enthalpy of reaction, respectively. Because P1 adduct is produced after passing two low energy level transition states, kinetically, it is the most favorable adduct in the 1S+1O4 (D2h atmospheric reactions.

  8. A novel approach to nonperturbative renormalization of singlet and nonsinglet lattice operators

    Directory of Open Access Journals (Sweden)

    A.J. Chambers

    2015-01-01

    Full Text Available A novel method for nonperturbative renormalization of lattice operators is introduced, which lends itself to the calculation of renormalization factors for nonsinglet as well as singlet operators. The method is based on the Feynman–Hellmann relation, and involves computing two-point correlators in the presence of generalized background fields arising from introducing additional operators into the action. As a first application, and test of the method, we compute the renormalization factors of the axial vector current Aμ and the scalar density S for both nonsinglet and singlet operators for Nf=3 flavors of SLiNC fermions. For nonsinglet operators, where a meaningful comparison is possible, perfect agreement with recent calculations using standard three-point function techniques is found.

  9. Singlet Fission and Excimer Formation in Disordered Solids of Alkyl-Substituted 1,3-Diphenylisobenzofurans.

    Science.gov (United States)

    Dron, Paul I; Michl, Josef; Johnson, Justin C

    2017-11-16

    We describe the preparation and excited state dynamics of three alkyl derivatives of 1,3-diphenylisobenzofuran (1) in both solutions and thin films. The substitutions are intended to disrupt the slip-stacked packing observed in crystals of 1 while maintaining the favorable energies of singlet and triplet for singlet fission (SF). All substitutions result in films that are largely amorphous as judged by the absence of strong X-ray diffraction peaks. The films of 1 carrying a methyl in the para position of one phenyl ring undergo SF relatively efficiently (≥75% triplet yield, Φ T ) but more slowly than thin films of 1. When the methyl is replaced with a t-butyl, kinetic competition in the excited state favors excimer formation rather than SF (Φ T = 55%). When t-Bu groups are placed in both meta positions of the phenyl substituent, SF is slowed further and Φ T = 35%.

  10. Singlet-triplet splittings from the virial theorem and single-particle excitation energies

    Science.gov (United States)

    Becke, Axel D.

    2018-01-01

    The zeroth-order (uncorrelated) singlet-triplet energy difference in single-particle excited configurations is 2Kif, where Kif is the Coulomb self-energy of the product of the transition orbitals. Here we present a non-empirical, virial-theorem argument that the correlated singlet-triplet energy difference should be half of this, namely, Kif. This incredibly simple result gives vertical HOMO-LUMO excitation energies in small-molecule benchmarks as good as the popular TD-B3LYP time-dependent approach to excited states. For linear acenes and nonlinear polycyclic aromatic hydrocarbons, the performance is significantly better than TD-B3LYP. In addition to the virial theorem, the derivation borrows intuitive pair-density concepts from density-functional theory.

  11. Excitonic singlet-triplet ratios in molecular and polymeric organic materials

    Science.gov (United States)

    Baldo, Marc; Agashe, Shashank; Forrest, Stephen

    2002-03-01

    A simple technique is described for the determination of the internal efficiency and excitonic singlet-triplet formation statistics of electroluminescent organic thin films. The internal efficiency is measured by optically exciting a luminescent film within an electroluminescent device under reverse bias. This gives minimum singlet fractions of (0.20+/-0.03) and (0.19+/-0.04) for tris(8-hydroxyquinoline) aluminum (Alq3) and poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV), respectively. These results are discussed in terms of the current understanding of exciton formation within organic materials. We also present measurements of the out-coupling fraction, or the fraction of photons emitted in the forward direction, as a function of the position of the emitting layer within a microcavity.

  12. Spin singlet formation in MgTi2O4: evidence of a helical dimerization pattern.

    Science.gov (United States)

    Schmidt, M; Ratcliff, W; Radaelli, P G; Refson, K; Harrison, N M; Cheong, S W

    2004-02-06

    The transition-metal spinel MgTi2O4 undergoes a metal-insulator (M-I) transition on cooling below T(M-I)=260 K. A sharp reduction of the magnetic susceptibility below T(M-I) suggests the onset of a magnetic singlet state. Using high-resolution synchrotron and neutron powder diffraction, we have solved the low-temperature crystal structure of MgTi2O4, which is found to contain dimers with short Ti-Ti distances (the locations of the spin singlets) alternating with long bonds to form helices. Band structure calculations based on hybrid exchange density functional theory show that, at low temperatures, MgTi2O4 is an orbitally ordered band insulator.

  13. Transport and noise properties of a normal metal-superconductor-normal metal junction with mixed singlet and chiral triplet pairings

    Science.gov (United States)

    Paul, Ganesh C.; Dutta, Paramita; Saha, Arijit

    2017-01-01

    We study transport and zero frequency shot noise properties of a normal metal-superconductor-normal metal (NSN) junction, with the superconductor having mixed singlet and chiral triplet pairings. We show that in the subgapped regime when the chiral triplet pairing amplitude dominates over that of the singlet, a resonance phenomena emerges out at zero energy where all the quantum mechanical scattering probabilities acquire a value of 0.25. At the resonance, crossed Andreev reflection mediating through such junction, acquires a zero energy peak. This reflects as a zero energy peak in the conductance as well depending on the doping concentration. We also investigate shot noise for this system and show that shot noise cross-correlation is negative in the subgapped regime when the triplet pairing dominates over the singlet one. The latter is in sharp contrast to the positive shot noise obtained when the singlet pairing is the dominating one.

  14. Oxygen discharge and post-discharge kinetics experiments and modeling for the electric oxygen-iodine laser system.

    Science.gov (United States)

    Palla, A D; Zimmerman, J W; Woodard, B S; Carroll, D L; Verdeyen, J T; Lim, T C; Solomon, W C

    2007-07-26

    Laser oscillation at 1315 nm on the I(2P1/2)-->I(2P3/2) transition of atomic iodine has been obtained by a near resonant energy transfer from O2(a1Delta) produced using a low-pressure oxygen/helium/nitric oxide discharge. In the electric discharge oxygen-iodine laser (ElectricOIL) the discharge production of atomic oxygen, ozone, and other excited species adds levels of complexity to the singlet oxygen generator (SOG) kinetics which are not encountered in a classic purely chemical O2(a1Delta) generation system. The advanced model BLAZE-IV has been introduced to study the energy-transfer laser system dynamics and kinetics. Levels of singlet oxygen, oxygen atoms, and ozone are measured experimentally and compared with calculations. The new BLAZE-IV model is in reasonable agreement with O3, O atom, and gas temperature measurements but is under-predicting the increase in O2(a1Delta) concentration resulting from the presence of NO in the discharge and under-predicting the O2(b1Sigma) concentrations. A key conclusion is that the removal of oxygen atoms by NOX species leads to a significant increase in O2(a1Delta) concentrations downstream of the discharge in part via a recycling process; however, there are still some important processes related to the NOX discharge kinetics that are missing from the present modeling. Further, the removal of oxygen atoms dramatically inhibits the production of ozone in the downstream kinetics.

  15. Dibenzoheptazethrene isomers with different biradical characters: An exercise of clar's aromatic sextet rule in singlet biradicaloids

    KAUST Repository

    Sun, Zhe

    2013-12-04

    Clar\\'s aromatic sextet rule has been widely used for the prediction of the reactivity and stability of polycyclic aromatic hydrocarbons with a closed-shell electronic configuration. Recent advances in open-shell biradicaloids have shown that the number of aromatic sextet rings plays an important role in determination of their ground states. In order to test the validity of this rule in singlet biradicaloids, the two soluble and stable dibenzoheptazethrene isomers DBHZ1 and DBHZ2 were prepared by different synthetic approaches and isolated in crystalline form. These two molecules have different numbers of aromatic sextet rings in their respective biradical resonance forms and thus are expected to exhibit varied singlet biradical character. This assumption was verified by different experimental methods, including nuclear magnetic resonance (NMR), electron spin resonance (ESR), superconducting quantum interference device (SQUID), steady-state and transient absorption spectroscopy (TA), and X-ray crystallographic analysis, assisted by unrestricted symmetry-broken density functional theory (DFT) calculations. DBHZ2, with more aromatic sextet rings in the biradical form, was demonstrated to possess greater biradical character than DBHZ1; as a result, DBHZ2 exhibited an intense one-photon absorption (OPA) in the near-infrared region (λabs max = 804 nm) and a large two-photon absorption (TPA) cross-section (σ(2)max = 2800 GM at 1600 nm). This investigation together with previous studies indicates that Clar\\'s aromatic sextet rule can be further extended to the singlet biradicaloids to predict their ground states and singlet biradical characters. © 2013 American Chemical Society.

  16. Singlet extensions of the standard model at LHC Run 2: benchmarks and comparison with the NMSSM

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Raul [Centro de Física Teórica e Computacional, Faculdade de Ciências,Universidade de Lisboa, Campo Grande, Edifício C8 1749-016 Lisboa (Portugal); Departamento de Física da Universidade de Aveiro,Campus de Santiago, 3810-183 Aveiro (Portugal); Mühlleitner, Margarete [Institute for Theoretical Physics, Karlsruhe Institute of Technology,76128 Karlsruhe (Germany); Sampaio, Marco O.P. [Departamento de Física da Universidade de Aveiro,Campus de Santiago, 3810-183 Aveiro (Portugal); CIDMA - Center for Research Development in Mathematics and Applications,Campus de Santiago, 3810-183 Aveiro (Portugal); Santos, Rui [Centro de Física Teórica e Computacional, Faculdade de Ciências,Universidade de Lisboa, Campo Grande, Edifício C8 1749-016 Lisboa (Portugal); ISEL - Instituto Superior de Engenharia de Lisboa,Instituto Politécnico de Lisboa, 1959-007 Lisboa (Portugal)

    2016-06-07

    The Complex singlet extension of the Standard Model (CxSM) is the simplest extension that provides scenarios for Higgs pair production with different masses. The model has two interesting phases: the dark matter phase, with a Standard Model-like Higgs boson, a new scalar and a dark matter candidate; and the broken phase, with all three neutral scalars mixing. In the latter phase Higgs decays into a pair of two different Higgs bosons are possible. In this study we analyse Higgs-to-Higgs decays in the framework of singlet extensions of the Standard Model (SM), with focus on the CxSM. After demonstrating that scenarios with large rates for such chain decays are possible we perform a comparison between the NMSSM and the CxSM. We find that, based on Higgs-to-Higgs decays, the only possibility to distinguish the two models at the LHC run 2 is through final states with two different scalars. This conclusion builds a strong case for searches for final states with two different scalars at the LHC run 2. Finally, we propose a set of benchmark points for the real and complex singlet extensions to be tested at the LHC run 2. They have been chosen such that the discovery prospects of the involved scalars are maximised and they fulfil the dark matter constraints. Furthermore, for some of the points the theory is stable up to high energy scales. For the computation of the decay widths and branching ratios we developed the Fortran code sHDECAY, which is based on the implementation of the real and complex singlet extensions of the SM in HDECAY.

  17. High Triplet Yield from Singlet Fission in a Thin Film of 1,3-Diphenylisobenzofuran

    Czech Academy of Sciences Publication Activity Database

    Johnson, J. C.; Nozik, A. J.; Michl, Josef

    2010-01-01

    Roč. 132, č. 46 (2010), s. 16302-16303 ISSN 0002-7863 Grant - others:Department of Energy(US) XAT-5-33636-01; Department of Energy(US) DE- FG36 -08GO18017 Institutional research plan: CEZ:AV0Z40550506 Keywords : singlet fission * thin solid films * heterocycles Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 9.019, year: 2010

  18. Covalent Dimers of 1,3-Diphenylisobenzofuran for Singlet Fission: Synthesis and Electrochemistry

    Czech Academy of Sciences Publication Activity Database

    Akdag, Akin; Wahab, Abdul; Beran, Pavel; Rulíšek, Lubomír; Dron, P. I.; Ludvík, Jiří; Michl, Josef

    2015-01-01

    Roč. 80, č. 1 (2015), s. 80-89 ISSN 0022-3263 R&D Projects: GA ČR GA13-21704S; GA ČR(CZ) GA14-31419S Institutional support: RVO:61388963 ; RVO:61388955 Keywords : singlet fission * reduction potentials * electrochemistry * theoretical calculations Subject RIV: CC - Organic Chemistry; CG - Electrochemistry (UFCH-W) Impact factor: 4.785, year: 2015

  19. Observations of the singlets of higher modes based on the OSE

    Science.gov (United States)

    Zeng, Shiyu; Shen, Wen-Bin

    2016-04-01

    In this study, we select 18 SG (superconducting gravimeter) records from 15 GGP stations (http://www.eas.slu.edu/GGP/ggphome.html) and 99 radial, 69 transverse components of IRIS broadband seismograms (http://ds.iris.edu/ds/nodes/dmc/) during 2004 Sumatra Earthquake to detect the splitting of higher Earth's free oscillations modes (0S4, 0S7~0S10, 2S4, 1S5, 2S5, 1S6) and 13 inner-core sensitive modes (25S2, 27S2, 6S3, 9S3, 13S3, 15S3, 11S4, 18S4, 8S5, 11S5, 23S5, 16S6, 21S6) by using OSE (optimal sequence estimation) method. Results indicate that OSE can completely isolate singlets of high-degree modes in time-domain, and significantly reduce the possibility of mode mixing and end effect, so that OSE could improve some signals' SNR (signal-to-noise ratio). We also compare the results of SG records with seismic data sets, and it shows that the number of SG records is limited to observe all of the singlets of higher modes. Hence we mainly select seismograms of IRIS to observe the mutiplets of higher modes. This study demonstrates that OSE is effective in isolating singlets of Earth's free oscillations modes. We estimate frequencies of the singlets using AR method (Chao & Gilbert, 1980) and following Häfner & Widmer-Schnidrig (2013) we obtain the error bars through the bootstrap method (Efron & Tibshirani, 1986). Finally we compared the observations with the predictions of PREM model (Dziewonski & Anderson, 1981) and 1066A model (Dahlen & Sailor, 1979). Our experimental results may provide constraints to the construction of 3D Earth model. This study is supported by National 973 Project China (grant No. 2013CB733305), NSFC (grant Nos. 41174011, 41429401, 41210006, 41128003, 41021061).

  20. External quantum efficiency exceeding 100% in a singlet-exciton-fission-based solar cell

    Science.gov (United States)

    Baldo, Marc

    2013-03-01

    Singlet exciton fission can be used to split a molecular excited state in two. In solar cells, it promises to double the photocurrent from high energy photons, thereby breaking the single junction efficiency limit. We demonstrate organic solar cells that exploit singlet exciton fission in pentacene to generate more than one electron per incident photon in the visible spectrum. Using a fullerene acceptor, a poly(3-hexylthiophene) exciton confinement layer, and a conventional optical trapping scheme, the peak external quantum efficiency is (109 +/-1)% at λ = 670 nm for a 15-nm-thick pentacene film. The corresponding internal quantum efficiency is (160 +/-10)%. Independent confirmation of the high internal efficiency is obtained by analysis of the magnetic field effect on photocurrent, which determines that the triplet yield approaches 200% for pentacene films thicker than 5 nm. To our knowledge, this is the first solar cell to generate quantum efficiencies above 100% in the visible spectrum. Alternative multiple exciton generation approaches have been demonstrated previously in the ultraviolet, where there is relatively little sunlight. Singlet exciton fission differs from these other mechanisms because spin conservation disallows the usual dominant loss process: a thermal relaxation of the high-energy exciton into a single low-energy exciton. Consequently, pentacene is efficient in the visible spectrum at λ = 670 nm because only the collapse of the singlet exciton into twotriplets is spin-allowed. Supported as part of the Center for Excitonics, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001088.

  1. Coherent dynamics of singlet fission controlled by nonlocal electron-phonon coupling

    OpenAIRE

    Yao, Yao

    2015-01-01

    Based on the Frenkel-charge transfer (CT) mixing model of singlet fission (SF), we incorporate both the local and nonlocal phonon baths in the Hamiltonian and adopt the algorithm of time-dependent density matrix renormalization group to simulate the fission process in tetracene. The endergonic SF is found to be facilitated by the robust quantum coherence, which concurrently gives rise to a notable quantum beating effect. Controlled by the nonlocal electron-phonon coupling, the density of trip...

  2. Extraction, Identification and Photo-Physical Characterization of Persimmon (Diospyros kaki L. Carotenoids

    Directory of Open Access Journals (Sweden)

    Khalil Zaghdoudi

    2017-01-01

    Full Text Available Carotenoid pigments were extracted and purified from persimmon fruits using accelerated solvent extraction (ASE. Eleven pigments were isolated and five of them were clearly identified as all-trans-violaxanthine, all-trans-lutein, all-trans-zeaxanthin all-trans-cryptoxanthin and all-trans-β-carotene. Absorption and fluorescence spectra were recorded. To evaluate the potential of 1O2 quenching of the purified carotenoids, we used a monocarboxylic porphyrin (P1COOH as the photosensitizer to produce 1O2. The rate constants of singlet oxygen quenching (Kq were determined by monitoring the near-infrared (1270 nm luminescence of 1O2 produced by photosensitizer excitation. The lifetime of singlet oxygen was measured in the presence of increasing concentrations of carotenoids in hexane. Recorded Kq values show that all-trans-β-cryptoxanthin, all-trans-β-carotene, all-trans-lycopene and all-trans-zeaxanthin quench singlet oxygen in hexane efficiently (associated Kq values of 1.6 × 109, 1.3 × 109, 1.1 × 109 and 1.1 × 109 M−1·s−1, respectively. The efficiency of singlet oxygen quenching of β-cryptoxanthin can thus change the consideration that β-carotene and lycopene are the most efficient singlet oxygen quenchers acting as catalysts for deactivation of the harmful 1O2.

  3. Time-resolved CIDEP study of the photogenerated camphorquinone radical anion: a case of dual singlet and triplet precursors

    Energy Technology Data Exchange (ETDEWEB)

    Depew, M.C.; Wan, J.K.S.

    1986-12-04

    Photoreduction of camphorquinone in 2-propanol produced electron spin polarized camphorquinone radical anions. The time-resolved electron spin resonance spectra of the spin-polarized radical anions provided the first evidence of dual singlet and triplet precursors in the CIDEP phenomenon. With the results from fluorescence quenching experiments, the time dependence of the CIDEP spectra can be accounted for qualitatively by the changes of the relative contributions to the polarization among the singlet pair, F and triplet pairs, and the triplet mechanisms.

  4. Predicting singlet-triplet energy splittings with projected Hartree-Fock methods.

    Science.gov (United States)

    Rivero, Pablo; Jiménez-Hoyos, Carlos A; Scuseria, Gustavo E

    2013-08-22

    Hartree-Fock (HF) and density functional theory (DFT) methods are known for having problems in predicting singlet-triplet energy splittings when the system displays significant diradical character. Multireference methods are traditionally advocated to deal with the spin-contamination problem inherent in broken-symmetry mean-field methods. In the present work, spin-contamination is rigorously eliminated by means of a symmetry projection approach, carried out in a variation-after-projection fashion, recently implemented in our research group. We here explore the performance of a variety of projected Hartree-Fock (PHF) approaches (SUHF, KSUHF, SGHF, and KSGHF) in predicting singlet-triplet energy gaps in a broad set of diradical systems: small diatomic molecules, carbenes and silenes, and a few larger molecules (trimethylenemethane and benzyne isomers). For most of these systems, accurate experimental data is available in the literature. Additionally, we assess the quality of the geometrical parameters obtained in SUHF-based optimizations for some of the systems considered. Our results indicate that PHF methods yield high-quality multireference wave functions, providing a good description of the ground state potential surface as well as an accurate singlet-triplet splitting gap, all within a modest mean-field computational cost.

  5. Probability of color singlet chain states in e+e- annihilation

    International Nuclear Information System (INIS)

    Wang, Qun; Gustafson, Gosta; Jin, Yi; Xie, Qu-bing

    2001-01-01

    We use the method of the color effective Hamiltonian to study the structure of color singlet chain states in N c =3 and in the large N c limit. In order to obtain their total fraction when N c is finite, we illustrate how to orthogonalize these nonorthogonal states. We give numerical results for the fraction of orthogonalized states in e + e - ->q bar qgg. With the help of a diagram technique, we derive their fraction up to O(1/N c 2 ) for the general multigluon process. For large N c the singlet chain states correspond to well-defined color topologies. Therefore we may expect that the fraction of non-color-singlet-chain states is an estimate of the fraction of events where color reconnection is possible. In the case of soft gluon bremsstrahlung, we give an explicit form for the color effective Hamiltonian which leads to the dipole cascade formulation for parton showering in leading order in N c . The next-to-leading order corrections are also given for e + e - ->qbar qg 1 g 2 and e + e - ->qbar qg 1 g 2 g 3

  6. Decamethylytterbocene complexes of bipyridines and diazabutadines: multiconfigurational ground states and open-shell singlet formation

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, Eric D [Los Alamos National Laboratory; Booth, C H [LBNL; Walter, M D [LBNL; Kazhdan, D [LBNL; Hu, Y - J [LBNL; Lukens, Wayne [LBNL; Maron, Laurent [INSA TOULOUSE; Eisentein, Odile [UNIV MONTPELLIER 2; Anderson, Richard [LBNL

    2009-01-01

    Partial ytterbium f-orbital occupancy (i.e. intermediate valence) and open-shell singlet Draft 12/formation are established for a variety of bipyridine and diazabutadiene adducts to decamethylytterbocene, (C{sub 5}Me{sub 5}){sub 2}Yb or Cp*{sub 2}Yb. Data used to support this claim includes ytterbium valence measurements using Yb Lm-edge x-ray absorption near-edge structure (XANES) spectroscopy, magnetic susceptibility and Complete Active Space Self-Consistent Field (CASSCF) multi configurational calculations, as well as structural measurements compared to density-functional theory (DFT) calculations. The CASSCF calculations indicate that the intermediate valence is the result of a multiconfigurational ground state wave function that has both an open-shell singlet f{sup 13} and a closed-shell singlet f{sup 14} component. A number of other competing theories for the unusual magnetism in these materials are ruled out by the presence of intermediate valence and its lack of any significant temperature dependence. These results have implications for understanding chemical bonding not only in organolanthanide complexes, but also for organometallic chemistry in general, as well as understanding magnetic interactions in nanopartic1es and devices.

  7. Global potential energy surface of ground state singlet spin O4

    Science.gov (United States)

    Mankodi, Tapan K.; Bhandarkar, Upendra V.; Puranik, Bhalchandra P.

    2018-02-01

    A new global potential energy for the singlet spin state O4 system is reported using CASPT2/aug-cc-pVTZ ab initio calculations. The geometries for the six-dimensional surface are constructed using a novel point generation scheme that employs randomly generated configurations based on the beta distribution. The advantage of this scheme is apparent in the reduction of the number of required geometries for a reasonably accurate potential energy surface (PES) and the consequent decrease in the overall computational effort. The reported surface matches well with the recently published singlet surface by Paukku et al. [J. Chem. Phys. 147, 034301 (2017)]. In addition to the O4 PES, the ground state N4 PES is also constructed using the point generation scheme and compared with the existing PES [Y. Paukku et al., J. Chem. Phys. 139, 044309 (2013)]. The singlet surface is constructed with the aim of studying high energy O2-O2 collisions and predicting collision induced dissociation cross section to be used in simulating non-equilibrium aerothermodynamic flows.

  8. Zethrenes, Extended p -Quinodimethanes, and Periacenes with a Singlet Biradical Ground State

    KAUST Repository

    Sun, Zhe

    2014-08-19

    ConspectusResearchers have studied polycyclic aromatic hydrocarbons (PAHs) for more than 100 years, and most PAHs in the neutral state reported so far have a closed-shell electronic configuration in the ground state. However, recent studies have revealed that specific types of polycyclic hydrocarbons (PHs) could have a singlet biradical ground state and exhibit unique electronic, optical, and magnetic activities. With the appropriate stabilization, these new compounds could prove useful as molecular materials for organic electronics, nonlinear optics, organic spintronics, organic photovoltaics, and energy storage devices. However, before researchers can use these materials to design new devices, they need better methods to synthesize these molecules and a better understanding of the fundamental relationship between the structure and biradical character of these compounds and their physical properties. Their biradical character makes these compounds difficult to synthesize. These compounds are also challenging to physically characterize and require the use of various experimental techniques and theoretic methods to comprehensively describe their unique properties.In this Account, we will discuss the chemistry and physics of three types of PHs with a significant singlet biradical character, primarily developed in our group. These structures are zethrenes, Z-shaped quinoidal hydrocarbons; hydrocarbons that include a proaromatic extended p-quinodimethane unit; and periacenes, acenes fused in a peri-Arrangement. We used a variety of synthetic methods to prepare these compounds and stabilized them using both thermodynamic and kinetic approaches. We probed their ground-state structures by electronic absorption, NMR, ESR, SQUID, Raman spectroscopy, and X-ray crystallography and also performed density functional theory calculations. We investigated the physical properties of these PHs using various experimental methods such as one-photon absorption, two-photon absorption

  9. Wipes coated with a singlet-oxygen-producing photosensitizer are effective against human influenza virus but not against norovirus

    NARCIS (Netherlands)

    Verhaelen, Katharina; Bouwknegt, Martijn; Rutjes, Saskia; de Roda Husman, Ana Maria; Duizer, Erwin

    2014-01-01

    Transmission of enteric and respiratory viruses, including human norovirus (hNoV) and human influenza virus, may involve surfaces. In food preparation and health care settings, surfaces are cleaned with wipes; however, wiping may not efficiently reduce contamination or may even spread viruses,

  10. Identification of singlet oxygen photosensitizes in lambs drinking water in an alveld risk area in West Norway

    DEFF Research Database (Denmark)

    Tønnesen, Hanne Hjorth; Mysterud, Ivar; Karlsen, Jan

    2013-01-01

    Alveld is a hepatogenous photosensitivity disorder in lambs. Although alveld has been known in Norway for more than 100years, there are still questions related to the cause of the disease. Phytoporphyrin has long been incriminated as the photosensitizer in hepatogenous photosensitivity diseases....... Meteorological data indicate a warm and wet May with a high radiation exposure leading up to a colder and wet June with an even higher solar irradiance. The seasonal variation in the amount of photosensitizers in lamb's drinking water combined meteorological data can be important to predict the outbreak...

  11. X-ray Inducible Luminescence and Singlet Oxygen Sensitization by an Octahedral Molybdenum Cluster Compound: A New Class of Nanoscintillators

    Czech Academy of Sciences Publication Activity Database

    Kirakci, Kaplan; Kubát, Pavel; Fejfarová, Karla; Martinčík, Jiří; Nikl, Martin; Lang, Kamil

    2016-01-01

    Roč. 55, č. 2 (2016), s. 803-809 ISSN 0020-1669 R&D Projects: GA ČR GA13-05114S Institutional support: RVO:61388980 ; RVO:61388955 ; RVO:68378271 Keywords : photodynamic therapy * nanoparticles * cancer-treatment Subject RIV: CA - Inorganic Chemistry; CF - Physical ; Theoretical Chemistry (FZU-D); CF - Physical ; Theoretical Chemistry (UFCH-W) Impact factor: 4.857, year: 2016

  12. The role of oxygen in photochemical transformations of the anthraquinone solutions

    International Nuclear Information System (INIS)

    Akylbaev, Zh.S.; Karitskaya, S.G.; Kobzev, G.I.

    2001-01-01

    The analysis of possible spin conditions of reaction key product reagents proceeding in anthraquinone solution has been conducted. It is shown that photoproduct molecules of anthraquinone with excited electrons appear in the solution as a result of interaction of triplet anthraquinone molecules with alcohol molecules. The considerable influence of singlet oxygen on quenching the photoproduct luminescence and its ability to reduce anthraquinone solution into the triplet condition are shown. (author)

  13. Oxygen safety

    Science.gov (United States)

    ... sure you have working smoke detectors and a working fire extinguisher in your home. If you move around the house with your oxygen, you may need more than one fire extinguisher in different locations. Smoking can be very dangerous. No one should smoke ...

  14. Photosensitized Oxygenations of Hexamethylbenzene in Phase Contact Enhanced Microreactor

    Energy Technology Data Exchange (ETDEWEB)

    Park, Chan Yi; Park, Jeong Hyeon; Lim Hyo Jin; Hwang, Geumsook; Park, Chan Pil [Chungnam National Univ., Daejeon (Korea, Republic of)

    2014-04-15

    Activated singlet oxygen ({sup 1}O{sub 2}) has successfully been utilized in production of various compounds including fragrances, pharmaceuticals, and fine chemicals. However, the traditional reaction required a prolonged reaction time due to the difficulty of introducing adequate light and oxygen into the solution. Low contact probability between four species of oxygen, photosensitizer, light, and reagent is an inherent drawback of the traditional photoreaction. Molecular diffusion distance is the most important factor in the heterogeneous reactions including gas-liquid, gassolid, liquid-solid, and immiscible liquid-liquid. Therefore, rates of reaction are closely depended on the distance. Microreactor has provided a distinct advantage in the short molecular diffusion distance due to the high surface-to-volume ratio driven by narrow fluidic channels.

  15. One-loop radiative correction to the triple Higgs coupling in the Higgs singlet model

    Directory of Open Access Journals (Sweden)

    Shi-Ping He

    2017-01-01

    Full Text Available Though the 125 GeV Higgs boson is consistent with the standard model (SM prediction until now, the triple Higgs coupling can deviate from the SM value in the physics beyond the SM (BSM. In this paper, the radiative correction to the triple Higgs coupling is calculated in the minimal extension of the SM by adding a real gauge singlet scalar. In this model there are two scalars h and H and both of them are mixing states of the doublet and singlet. Provided that the mixing angle is set to be zero, namely the SM limit, h is the pure left-over of the doublet and its behavior is the same as that of the SM at the tree level. However the loop corrections can alter h-related couplings. In this SM limit case, the effect of the singlet H may show up in the h-related couplings, especially the triple h coupling. Our numerical results show that the deviation is sizable. For λΦS=1 (see text for the parameter definition, the deviation δhhh(1 can be 40%. For λΦS=1.5, the δhhh(1 can reach 140%. The sizable radiative correction is mainly caused by three reasons: the magnitude of the coupling λΦS, light mass of the additional scalar and the threshold enhancement. The radiative corrections for the hVV, hff couplings are from the counter-terms, which are the universal correction in this model and always at O(1%. The hZZ coupling, which can be precisely measured, may be a complementarity to the triple h coupling to search for the BSM. In the optimal case, the triple h coupling is very sensitive to the BSM physics, and this model can be tested at future high luminosity hadron colliders and electron–positron colliders.

  16. Direct Detection of the Open-Shell Singlet Phenyloxenium Ion: An Atom-Centered Diradical Reacts as an Electrophile.

    Science.gov (United States)

    Du, Lili; Qiu, Yunfan; Lan, Xin; Zhu, Ruixue; Phillips, David Lee; Li, Ming-De; Dutton, Andrew S; Winter, Arthur H

    2017-10-25

    A new photoprecursor to the phenyloxenium ion, 4-methoxyphenoxypyridinium tetrafluoroborate, was investigated using trapping studies, product analysis, computational investigations, and laser flash photolysis experiments ranging from the femtosecond to the millisecond time scale. These experiments allowed us to trace the complete arc of the photophysics and photochemistry of this photoprecursor beginning with the initially populated excited states to its sequential formation of transient intermediates and ultimate formation of stable photoproducts. We find that the excited state of the photoprecursor undergoes heterolysis to generate the phenyloxenium ion in ∼2 ps but surprisingly generates the ion in its open-shell singlet diradical configuration ( 1 A 2 ), permitting an unexpected look at the reactivity of an atom-centered open-shell singlet diradical. The open-shell phenyloxenium ion ( 1 A 2 ) has a much shorter lifetime (τ ∼ 0.2 ns) in acetonitrile than the previously observed closed-shell singlet ( 1 A 1 ) phenyloxenium ion (τ ∼ 5 ns). Remarkably, despite possessing no empty valence orbitals, this open-shell singlet oxenium ion behaves as an even more powerful electrophile than the closed-shell singlet oxenium ion, undergoing solvent trapping by weakly nucleophilic solvents such as water and acetonitrile or externally added nucleophiles (e.g., azide) rather than engaging in typical diradical chemistry, such as H atom abstraction, which we have previously observed for a triplet oxenium ion. In acetonitrile, the open-shell singlet oxenium ion is trapped to generate ortho and para Ritter intermediates, one of which (para) is directly observed as a longer-lived species (τ ∼ 0.1 ms) in time-resolved resonance Raman experiments. The Ritter intermediates are ultimately trapped by either the 4-methoxypyridine leaving group (in the case of para addition) or trapped internally via an essentially barrierless rearrangement (in the case of ortho addition) to

  17. A Direct Mechanism of Ultrafast Intramolecular Singlet Fission in Pentacene Dimers

    Science.gov (United States)

    2016-08-24

    Phys. Chem. B 2015, 119, 7644−7650. (17) Zirzlmeier, J.; Lehnherr, D.; Coto, P. B.; Chernick, E. T.; Casillas, R.; Basel , B. S.; Thoss, M.; Tykwinski...Arago,́ J.; Serrano-Perez, J. J.; Ortí, E.; Loṕez Navarrete, J. T.; Takimiya, K.; Casanova, D.; Casado, J.; Goodson, T., III High Yield Ultrafast...theory of singlet exciton fission. III . Crystalline pentacene. J. Chem. Phys. 2014, 141, 074705. (32) Zeng, T.; Hoffmann, R.; Ananth, N. The Low-Lying

  18. Long-range corrected density functional theory study on static second hyperpolarizabilities of singlet diradical systems.

    Science.gov (United States)

    Kishi, Ryohei; Bonness, Sean; Yoneda, Kyohei; Takahashi, Hideaki; Nakano, Masayoshi; Botek, Edith; Champagne, Benoît; Kubo, Takashi; Kamada, Kenji; Ohta, Koji; Tsuneda, Takao

    2010-03-07

    Within the spin-unrestricted density functional theory (DFT) the long-range correction (LC) scheme combined with the Becke-Lee-Yang-Parr exchange-correlation functional, referred to as LC-UBLYP method, has been applied to the calculation of the second hyperpolarizability (gamma) of open-shell singlet diradical systems of increasing complexity and has demonstrated good performance: (i) for the simplest H(2) dissociation model, the gamma values calculated by the LC-UBLYP method significantly overshoot the full configuration interaction result but reproduce qualitatively the evolution of gamma as a function of the diradical character, (ii) for small singlet diradical 1,3-dipole systems, the diradical character dependence of gamma determined by the UCCSD and UCCSD(T) reference methods is reproduced semiquantitatively by the LC-UBLYP method except in the small diradical character region, where the spin-unrestricted solutions coincide with spin-restricted solutions, (iii) the LC-UBLYP method also closely reproduces the UCCSD(T) results on the diradical character dependence of gamma of the p-quinodimethane model system, particularly in the intermediate and large diradical character regions, whereas it shows an abrupt change for a diradical character (y) close to 0.2 originating from the triplet instability, (iv) the reliability of LC-UBLYP to reproduce reference coupled cluster results on open-shell singlet systems with intermediate and large diradical characters has also been substantiated in the case of gamma of 1,4-bis-(imidazol-2-ylidene)-cyclohexa-2,5-diene (BI2Y), then (v), for real systems built from a pair of phenalenyl radicals separated by a conjugated linker, the LC-UBLYP results have been found to closely match the UBHandHLYP values-which, for small systems are in good agreement with those obtained using correlated molecular orbital methods-whereas the UB3LYP results can be much different. These results are not only important from the viewpoint of an efficient

  19. Hybrid spin and valley quantum computing with singlet-triplet qubits.

    Science.gov (United States)

    Rohling, Niklas; Russ, Maximilian; Burkard, Guido

    2014-10-24

    The valley degree of freedom in the electronic band structure of silicon, graphene, and other materials is often considered to be an obstacle for quantum computing (QC) based on electron spins in quantum dots. Here we show that control over the valley state opens new possibilities for quantum information processing. Combining qubits encoded in the singlet-triplet subspace of spin and valley states allows for universal QC using a universal two-qubit gate directly provided by the exchange interaction. We show how spin and valley qubits can be separated in order to allow for single-qubit rotations.

  20. Storage of magnetization as singlet order by optimal control designed pulses

    DEFF Research Database (Denmark)

    Laustsen, Christoffer; Bowen, Sean; Vinding, Mads Sloth

    2014-01-01

    . With this aim, optimal control theory was applied to create pulses that for near‐equivalent spins accomplish transfers in and out of the singlet state with maximum efficiency while ensuring robustness toward variations in the nuclear spin system Hamiltonian (chemical shift, J‐couplings, B1 and B magnetic field...... inhomogeneity). The pulses are designed to accomplish efficient transfer with low B1 amplitude, essential for applications on preclinical and clinical MR scanners. It is demonstrated that significantly improved efficiency and robustness can be obtained within the limitations of typical MR scanner performance...

  1. Non-anticommutative N=2 super-Yang-Mills theory with singlet deformation

    CERN Document Server

    Ferrara, Sergio; Ferrara, Sergio; Sokatchev, Emery; 10.1016/j.physletb.2003.10.093

    2004-01-01

    We consider a non-anticommutative N=2 superspace with an SU(2) singlet and Lorentz scalar deformation parameter, $\\{\\theta^{\\alpha i}, \\theta^{\\beta j}\\}_\\star = -2iP \\epsilon^{\\alpha\\beta}\\epsilon^{ij}$. We exploit this unique feature of the N=2 case to construct a deformation of the rank-one super-Yang-Mills theory which preserves the full N=2 supersymmetry together with the SU(2) R symmetry and Lorentz invariance. The resulting action describes a kind of "heterotic special geometry" with antiholomorphic prepotential $\\bar(\\bar\\phi) = \\bar\\phi^2 (1+P\\bar\\phi)^{-2}$.

  2. Standard model extended by a heavy singlet: Linear vs. nonlinear EFT

    Energy Technology Data Exchange (ETDEWEB)

    Buchalla, G., E-mail: gerhard.buchalla@lmu.de; Catà, O.; Celis, A.; Krause, C.

    2017-04-15

    We consider the Standard Model extended by a heavy scalar singlet in different regions of parameter space and construct the appropriate low-energy effective field theories up to first nontrivial order. This top-down exercise in effective field theory is meant primarily to illustrate with a simple example the systematics of the linear and nonlinear electroweak effective Lagrangians and to clarify the relation between them. We discuss power-counting aspects and the transition between both effective theories on the basis of the model, confirming in all cases the rules and procedures derived in previous works from a bottom-up approach.

  3. Superconducting 2D system with lifted spin degeneracy: mixed singlet-triplet state.

    Science.gov (United States)

    Gor'kov, L P; Rashba, E I

    2001-07-16

    Motivated by recent experimental findings, we have developed a theory of the superconducting state for 2D metals without inversion symmetry modeling the geometry of a surface superconducting layer in a field-effect transistor or near the boundary doped by adsorbed ions. In such systems the twofold spin degeneracy is lifted by spin-orbit interaction, and singlet and triplet pairings are mixed in the wave function of the Cooper pairs. As a result, spin magnetic susceptibility becomes anisotropic and Knight shift retains finite and rather high value at T = 0.

  4. Superconducting 2D System with Lifted Spin Degeneracy: Mixed Singlet-Triplet State

    Energy Technology Data Exchange (ETDEWEB)

    Gor' kov, Lev P.; Rashba, Emmanuel I.

    2001-07-16

    Motivated by recent experimental findings, we have developed a theory of the superconducting state for 2D metals without inversion symmetry modeling the geometry of a surface superconducting layer in a field-effect transistor or near the boundary doped by adsorbed ions. In such systems the twofold spin degeneracy is lifted by spin-orbit interaction, and singlet and triplet pairings are mixed in the wave function of the Cooper pairs. As a result, spin magnetic susceptibility becomes anisotropic and Knight shift retains finite and rather high value at T=0 .

  5. The two-mass contribution to the three-loop pure singlet operator matrix element

    Science.gov (United States)

    Ablinger, J.; Blümlein, J.; De Freitas, A.; Schneider, C.; Schönwald, K.

    2018-02-01

    We present the two-mass QCD contributions to the pure singlet operator matrix element at three loop order in x-space. These terms are relevant for calculating the structure function F2 (x ,Q2) at O (αs3) as well as for the matching relations in the variable flavor number scheme and the heavy quark distribution functions at the same order. The result for the operator matrix element is given in terms of generalized iterated integrals that include square root letters in the alphabet, depending also on the mass ratio through the main argument. Numerical results are presented.

  6. Excitonic singlet-triplet ratio in a semiconducting organic thin film

    Science.gov (United States)

    Baldo, M. A.; O'brien, D. F.; Thompson, M. E.; Forrest, S. R.

    1999-11-01

    A technique is presented to determine the spin statistics of excitons formed by electrical injection in a semiconducting organic thin film. With the aid of selective addition of luminescent dyes, we generate either fluorescence or phosphorescence from the archetype organic host material aluminum tris (8-hydroxyquinoline) (Alq3). Spin statistics are calculated from the ratio of fluorescence to phosphorescence in the films under electrical excitation. After accounting for varying photoluminescent efficiencies, we find a singlet fraction of excitons in Alq3 of (22+/-3)%.

  7. The two-mass contribution to the three-loop pure singlet operator matrix element

    Energy Technology Data Exchange (ETDEWEB)

    Ablinger, J.; Schneider, C. [Johannes Kepler Univ., Linz (Austria). Research Inst. for Symbolic Computation (RISC); Bluemlein, J.; Freitas, A. de; Schoenwald, K. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)

    2017-11-15

    We present the two-mass QCD contributions to the pure singlet operator matrix element at three loop order in x-space. These terms are relevant for calculating the structure function F{sub 2}(x,Q{sup 2}) at O(α{sup 3}{sub s}) as well as for the matching relations in the variable flavor number scheme and the heavy quark distribution functions at the same order. The result for the operator matrix element is given in terms of generalized iterated integrals that include square root letters in the alphabet, depending also on the mass ratio through the main argument. Numerical results are presented.

  8. Theoretical rationalization of the singlet-triplet gap in OLEDs materials: impact of charge-transfer character.

    Science.gov (United States)

    Moral, M; Muccioli, L; Son, W-J; Olivier, Y; Sancho-García, J C

    2015-01-13

    New materials for OLED applications with low singlet-triplet energy splitting have been recently synthesized in order to allow for the conversion of triplet into singlet excitons (emitting light) via a Thermally Activated Delayed Fluorescence (TADF) process, which involves excited-states with a non-negligible amount of Charge-Transfer (CT). The accurate modeling of these states with Time-Dependent Density Functional Theory (TD-DFT), the most used method so far because of the favorable trade-off between accuracy and computational cost, is however particularly challenging. We carefully address this issue here by considering materials with small (high) singlet-triplet gap acting as emitter (host) in OLEDs and by comparing the accuracy of TD-DFT and the corresponding Tamm-Dancoff Approximation (TDA), which is found to greatly reduce error bars with respect to experiments thanks to better estimates for the lowest singlet-triplet transition. Finally, we quantitatively correlate the singlet-triplet splitting values with the extent of CT, using for it a simple metric extracted from calculations with double-hybrid functionals, that might be applied in further molecular engineering studies.

  9. Nitrogen transformation of reclaimed wastewater in a pipeline by oxygen injection.

    Science.gov (United States)

    Rodríguez-Gómez, L E; Alvarez, M; Rodríguez-Sevilla, J; Marrero, M C; Hernández, A

    2009-06-01

    A study of oxygen injection was performed in a completely filled gravity pipe, which is part of the South Tenerife reclaimed wastewater reuse scheme (Spain), in order to inhibit the appearance of anaerobic conditions by a nitrification-denitrification process. The pipe was 0.6 m in diameter and 62 km long and made of cast iron with a concrete inner coating, A high-pressure oxygen injection system was installed at 16 km from the pipe inlet, where severe anaerobic conditions appear. Experiments on oxygen injection were carried out with three different concentrations (7, 15 and 30 mg l(-1) O2). In all experiments, oxygen dissolved properly after injection, and no gas escapes were detected during water transportation. Most oxygen was consumed in the nitrification process, due to the low COD/NH4-N ratio, leading to a maximum production of oxidized nitrogen compounds of 7.5 mg l(-1) NO(x)-N with the 30 mg l(-1) O2 dose. Nitrification occured with nitrite accumulation, attributed to the presence of free ammonia within the range 1.2-1.4 mg l(-). Once the oxygen had been consumed, an apparent half-order denitrification took place, with limitation of biodegradable organic matter. The anoxic conditions led to a complete inhibition of sulphide generation.

  10. Singlet-to-triplet ratio in the deuteron breakup reaction pd → pnp at 585 MeV

    International Nuclear Information System (INIS)

    Uzikov, Yu.N.; Komarov, V.I.; Rathmann, F.; Seyfarth, H.

    2001-01-01

    Available experimental data on the exclusive pd → pnp reaction at 585 MeV show a narrow peak in the proton-neutron final-state interaction region. It was supposed previously, on the basis of a phenomenological analysis of the shape of this peak, that the final spin-singlet pn state provided about one third of the observed cross section. By comparing the absolute value of the measured cross section with that of pd elastic scattering using the Faeldt-Wilkin extrapolation theorem, it is shown here that the pd → pnp data can be explained mainly by the spin-triplet final state with a singlet admixture of a few percent. The smallness of the singlet contribution is compatible with existing pN → pNπ data and the one-pion exchange mechanism of the pd → pnp reaction

  11. Forbidden singlet exciton transitions induced by localization in polymer light-emitting diodes in a strong electric field.

    Science.gov (United States)

    Sun, Zheng; Xu, Yuan-Ping; Li, Sheng; George, Thomas F

    2011-02-10

    Through combining the electron transition process and dipole moment evolution as well as electron-phonon coupling, molecular dynamics calculations show that the radiative decay of singlet excitons in a conjugated polymer, such as a polymer light-emitting diode (PLED), is largely determined by the evolution of the dipole moment. Without an electric field, the decay life of a singlet exciton is about 1 ns. Once an electric field is applied and exceeds a critical value, with electron-phonon coupling, the original lattice structure evolves into two new localized lattice distortions, consistent with the experimental results. Owing to the new lattice structure and self-trapping, the dipole moment rapidly decreases to zero within 5 fs, eliminating the radiative decay of the singlet exciton.

  12. Reaction of paraquat radical cations with oxygen. A pulse radiolysis and laser photolysis study

    International Nuclear Information System (INIS)

    Patterson, L.K.; Small, R.D. Jr.; Scaiano, J.C.

    1977-01-01

    The reaction of paraquat radical cations, PQ + , with oxygen has been examined in methanol-water mixtures and in a number of other alcohols. The oxidation of PQ + by oxygen follows the kinetic expression k 1 [O 2 ][PQ + ], supporting the idea that the superoxide anion is an important intermediary in the biological behavior of paraquat and related herbicides. Changes in k 1 with variations in the methanol-water solvent mixtures were found to be largely consistent with the behavior predicted by a simple electrostatic model relating rate constants of ionization to solvent dielectric constant

  13. Absence of Intramolecular Singlet Fission in Pentacene-Perylenediimide Heterodimers: The Role of Charge Transfer State.

    Science.gov (United States)

    Wang, Long; Wu, Yishi; Chen, Jianwei; Wang, Lanfen; Liu, Yanping; Yu, Zhenyi; Yao, Jiannian; Fu, Hongbing

    2017-11-16

    A new class of donor-acceptor heterodimers based on two singlet fission (SF)-active chromophores, i.e., pentacene (Pc) and perylenediimide (PDI), was developed to investigate the role of charge transfer (CT) state on the excitonic dynamics. The CT state is efficiently generated upon photoexcitation. However, the resulting CT state decays to different energy states depending on the energy levels of the CT state. It undergoes extremely rapid deactivation to the ground state in polar CH 2 Cl 2 , whereas it undergoes transformation to a Pc triplet in nonpolar toluene. The efficient triplet generation in toluene is not due to SF but CT-mediated intersystem crossing. In light of the energy landscape, it is suggested that the deep energy level of the CT state relative to that of the triplet pair state makes the CT state actually serve as a trap state that cannot undergoes an intramolecular singlet fission process. These results provide guidance for the design of SF materials and highlight the requisite for more widely applicable design principles.

  14. Enhanced Higgs associated production with a top quark pair in the NMSSM with light singlets

    Energy Technology Data Exchange (ETDEWEB)

    Badziak, Marcin [Institute of Theoretical Physics, Faculty of Physics, University of Warsaw,ul. Pasteura 5, PL-02-093 Warsaw (Poland); Berkeley Center for Theoretical Physics, Department of Physics andTheoretical Physics Group, Lawrence Berkeley National Laboratory, University of California,Berkeley, CA 94720 (United States); Wagner, Carlos E.M. [Enrico Fermi Institute, University of Chicago,Chicago, IL 60637 (United States); High Energy Physics Division, Argonne National Laboratory,Argonne, IL 60439 (United States); Kavli Institute for Cosmological Physics, University of Chicago,Chicago, IL 60637 (United States)

    2017-02-09

    Precision measurements of the 125 GeV Higgs resonance recently discovered at the LHC have determined that its properties are similar to the ones of the Standard Model (SM) Higgs boson. However, the current uncertainties in the determination of the Higgs boson couplings leave room for significant deviations from the SM expectations. In fact, if one assumes no correlation between the top-quark and gluon couplings to the Higgs, the current global fit to the Higgs data lead to central values of the Higgs couplings to the bottom-quark and the top-quark that are about 2 σ away from the SM predictions. In a previous work, we showed that such a scenario could be realized in the Next to Minimal Supersymmetric extension of the SM (NMSSM), for heavy singlets and light MSSM-like Higgs bosons and scalar top quarks, but for couplings that ruined the perturbative consistency of the theory up to the GUT scale. In this work we show that a perturbative consistent scenario, for somewhat heavier stops, may be obtained in the presence of light singlets. An interesting bonus of this scenario is the possibility of explaining an excess of events observed in CP-even Higgs searches at LEP2.

  15. Correlated Pair States Formed by Singlet Fission and Exciton-Exciton Annihilation.

    Science.gov (United States)

    Scholes, Gregory D

    2015-12-24

    Singlet fission to form a pair of triplet excitations on two neighboring molecules and the reverse process, triplet-triplet annihilation to upconvert excitation, have been extensively studied. Comparatively little work has sought to examine the properties of the intermediate state in both of these processes-the bimolecular pair state. Here, the eigenstates constituting the manifold of 16 bimolecular pair excitations and their relative energies in the weak-coupling regime are reported. The lowest-energy states obtained from the branching diagram method are the triplet pairs with overall singlet spin |X1⟩ ≈ (1)[TT] and quintet spin |Q⟩ ≈ (5)[TT]. It is shown that triplet pair states can be separated by a triplet-triplet energy-transfer mechanism to give a separated, yet entangled triplet pair (1)[T···T]. Independent triplets are produced by decoherence of the separated triplet pair. Recombination of independent triplets by exciton-exciton annihilation to form the correlated triplet pair (i.e., nongeminate recombination) happens with 1/3 of the rate of either triplet migration or recombination of the separated correlated triplet pair (geminate recombination).

  16. Role of N2 molecules in pulse discharge production of I atoms for a pulsed chemical oxygen-iodine laser

    International Nuclear Information System (INIS)

    Kochetov, I V; Napartovich, A P; Vagin, N P; Yuryshev, N N

    2011-01-01

    A pulsed electric discharge is the most effective means to turn chemical oxygen-iodine laser (COIL) operation into the pulse mode by fast production of iodine atoms. Experimental studies and numerical simulations are performed on a pulsed COIL initiated by an electric discharge in a mixture CF 3 I : N 2 : O 2 ( 3 X) : O 2 (a 1 Δ g ) flowing out of a chemical singlet oxygen generator. A transverse pulsed discharge is realized at various iodide pressures. The model comprises a system of kinetic equations for neutral and charged species, the electric circuit equation, the gas thermal balance equation and the photon balance equation. Reaction rate coefficients for processes involving electrons are repeatedly re-calculated by the electron Boltzmann equation solver when the plasma parameters are changed. The processes accounted for in the Boltzmann equation include direct and stepwise excitation and ionization of atoms and molecules, dissociation of molecules, electron attachment processes, electron-ion recombination, electron-electron collisions and second-kind collisions. The last processes are particularly important because of a high singlet oxygen concentration in gas flow from the singlet oxygen chemical generator. A conclusion is drawn about satisfactory agreement between the theory and the experiment.

  17. Effect of oxygen and iodine on the optical and magnetic properties of fullerite C60

    Science.gov (United States)

    Bagrov, I. V.; Belousova, I. M.; Ermakov, A. V.; Kiselev, V. M.; Kislyakov, I. M.; Sosnov, E. N.

    2009-04-01

    The effect of oxygen and iodine on the optical and magnetic properties of fullerite C60 is studied by luminescence and EPR spectroscopy within widely varied experimental conditions (temperature of the medium, oxygen or buffer gas pressure, concentration of iodine vapor). It is demonstrated that the efficiency of the singlet oxygen formation when a fullerene sample is irradiated by a neodymium laser at a wavelength of 532 nm and the amplitude of the EPR signal emitted from the unirradiated sample are strongly affected by the concentrations of both oxygen and iodine vapor sorbed by the fullerene sample, as well as by its surface temperature. The spin-spin and spin-lattice relaxation times of paramagnetic centers in fullerite samples studied in the presence of molecular oxygen are determined by the method of microwave radiation absorption saturation.

  18. Elucidation of the Oxygen Surface Kinetics in a Coated Dual-Phase Membrane for Enhancing Oxygen Permeation Flux.

    Science.gov (United States)

    Na, Beom Tak; Park, Jeong Hwan; Park, Jong Hyuk; Yu, Ji Haeng; Joo, Jong Hoon

    2017-06-14

    The dual-phase membrane has received much attention as the solution to the instability of the oxygen permeation membrane. It has been reported that the oxygen flux of the dual-phase membrane is greatly enhanced by the active coating layer. However, there has been little discussion about the enhancement mechanism by surface coating in the dual-phase membrane. This study investigates the oxygen flux of the Ce 0.9 Gd 0.1 O 2-δ -La 0.7 Sr 0.3 MnO 3±δ (GDC 80 vol %/LSM 20 vol %) composite membrane depending on the oxygen partial pressure (P O 2 ) to elucidate the mechanism of enhanced oxygen flux by the surface modification in the fluorite-rich phase dual-phase membrane. The oxygen permeation resistances were obtained from the oxygen flux as a function of P O 2 using the oxygen permeation model. The surface exchange coefficient (k) and the bulk diffusion coefficient (D) were calculated from these resistances. According to the calculated k and D values, we concluded that the active coating layer (La 0.6 Sr 0.4 CoO 3-δ ) significantly increased the k value of the membrane. Furthermore, the surface exchange reaction on the permeate side was more sluggish than that at the feed side under operating conditions (feed: 0.21 atm/permeate side: 4.7 × 10 -4 atm). Therefore, the enhancement of the oxygen surface exchange kinetics at the permeate side is more important in improving the oxygen permeation flux of the thin film-based fluorite-rich dual-phase membrane. These results provide new insight about the function of the surface coating to enhance the oxygen permeation flux of the dual-phase membrane.

  19. Direct Detection of a Chemical Equilibrium between a Localized Singlet Diradical and Its σ-Bonded Species by Time-Resolved UV/Vis and IR Spectroscopy.

    Science.gov (United States)

    Yoshidomi, Shohei; Mishima, Megumi; Seyama, Shin; Abe, Manabu; Fujiwara, Yoshihisa; Ishibashi, Taka-Aki

    2017-03-06

    Localized singlet diradicals are key intermediates in bond homolyses. The singlet diradicals are energetically much less stable than the σ-bonded species. In general, only one-way reactions from diradicals to σ-bonded species are observed. In this study, a thermal equilibrium between a singlet 1,2-diazacyclopentane-3,5-diyl diradical and the corresponding σ-bonded species was directly observed. The singlet diradical was more stable than the σ-bonded species. The solvent effect clarified key features, such as the zwitterionic character of the singlet diradical. The effect of the nitrogen atoms is discussed in detail. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Focal point analysis of the singlet-triplet energy gap of octacene and larger acenes.

    Science.gov (United States)

    Hajgató, Balázs; Huzak, Matija; Deleuze, Michael S

    2011-08-25

    A benchmark theoretical study of the electronic ground state and of the vertical and adiabatic singlet-triplet (ST) excitation energies of n-acenes (C(4n+2)H(2n+4)) ranging from octacene (n = 8) to undecacene (n = 11) is presented. The T1 diagnostics of coupled cluster theory and further energy-based criteria demonstrate that all investigated systems exhibit predominantly a (1)A(g) singlet closed-shell electronic ground state. Singlet-triplet (S(0)-T(1)) energy gaps can therefore be very accurately determined by applying the principle of a focal point analysis (FPA) onto the results of a series of single-point and symmetry-restricted calculations employing correlation consistent cc-pVXZ basis sets (X = D, T, Q, 5) and single-reference methods [HF, MP2, MP3, MP4SDQ, CCSD, and CCSD(T)] of improving quality. According to our best estimates, which amount to a dual extrapolation of energy differences to the level of coupled cluster theory including single, double, and perturbative estimates of connected triple excitations [CCSD(T)] in the limit of an asymptotically complete basis set (cc-pV∞Z), the S(0)-T(1) vertical (adiabatic) excitation energies of these compounds amount to 13.40 (8.21), 10.72 (6.05), 8.05 (3.67), and 7.10 (2.58) kcal/mol, respectively. In line with the absence of Peierls distortions (bond length alternations), extrapolations of results obtained at this level for benzene (n = 1) and all studied n-acenes so far (n = 2-11) indicate a vanishing S(0)-T(1) energy gap, in the limit of an infinitely large polyacene, within an uncertainty of 1.5 kcal/mol (0.06 eV). Lacking experimental values for the S(0)-T(1) energy gaps of n-acenes larger than hexacene, comparison is made with recent optical and electrochemical determinations of the HOMO-LUMO band gap. Further issues such as scalar relativistic, core correlation, and diagonal Born-Oppenheimer corrections (DBOCs) are tentatively examined. © 2011 American Chemical Society

  1. Dissociation kinetics of iodine in oxygen-containing electrical discharge plasmas

    International Nuclear Information System (INIS)

    Zakharov, A.I.; Klopovskii, K.S.; Rakhimova, T.V.; Samorodov, V.A.

    1993-01-01

    Studies of the kinetics of gaseous media containing oxygen and iodine molecules have been stimulated to a substantial degree by the search for ways of improving iodine-oxygen lasers and by the need for information on loss processes for atmospheric ozone. Results are presented from an experimental study and numerical simulations of the kinetics of the dissociation of iodine in self-sustained volume discharges in high-pressure O 2 :Ar:I 2 mixtures. It is shown that the well-studied mechanism for dissociation based on excitation of iodine molecules in successive collisions with singlet oxygen and excited iodine atoms is supplanted by a substantially different mechanism involving the creation and loss of 10 radicals when the densities of atomic oxygen and ozone are high enough. It is also shown that iodine fractions as low as ∼10 -3 in the mixture lead to rapid loss of ozone molecules while less than 18% of the discharge energy is expended in the production of singlet oxygen

  2. Singlet and triplet state transitions of carotenoids in the antenna complexes of higher-plant photosystem I

    NARCIS (Netherlands)

    Croce, Roberta; Mozzo, Milena; Morosinotto, Tomas; Romeo, Alessandro; Hienerwadel, Rainer; Bassi, Roberta

    2007-01-01

    In this work, the spectroscopic characteristics of carotenoids associated with the antenna complexes of Photosystem I have been studied. Pigment composition, absorption spectra, and laser-induced triplet-minus-singlet (T-S) spectra were determined for native LHCI from the wild type (WT) and lut2

  3. Thermal transport in topological-insulator-based superconducting hybrid structures with mixed singlet and triplet pairing states.

    Science.gov (United States)

    Li, Hai; Zhao, Yuan Yuan

    2017-11-22

    In the framework of the Bogoliubov-de Gennes equation, we investigate the thermal transport properties in topological-insulator-based superconducting hybrid structures with mixed spin-singlet and spin-triplet pairing states, and emphasize the different manifestations of the spin-singlet and spin-triplet pairing states in the thermal transport signatures. It is revealed that the temperature-dependent differential thermal conductance strongly depends on the components of the pairing state, and the negative differential thermal conductance only occurs in the spin-singlet pairing state dominated regime. It is also found that the thermal conductance is profoundly sensitive to the components of the pairing state. In the spin-singlet pairing state controlled regime, the thermal conductance obviously oscillates with the phase difference and junction length. With increasing the proportion of the spin-triplet pairing state, the oscillating characteristic of the thermal conductance fades out distinctly. These results suggest an alternative route for distinguishing the components of pairing states in topological-insulator-based superconducting hybrid structures.

  4. Tunneling Conductance in Ferromagnetic Metal/Normal Metal/Spin-Singlet -Wave Ferromagnetic Superconductor Junctions

    Directory of Open Access Journals (Sweden)

    Hamidreza Emamipour

    2013-01-01

    Full Text Available In the framework of scattering theory, we study the tunneling conductance in a system including two junctions, ferromagnetic metal/normal metal/ferromagnetic superconductor, where ferromagnetic superconductor is in spin-singlet -wave pairing state. The non-magnetic normal metal is placed in the intermediate layer with the thickness ( which varies from 1 nm to 10000 nm. The interesting result which we have found is the existence of oscillations in conductance curves. The period of oscillations is independent of FS and FN exchange field while it depends on . The obtained results can serve as a useful tool to determine the kind of pairing symmetry in ferromagnetic superconductors.

  5. Liquid direct correlation function, singlet densities and the theory of freezing

    International Nuclear Information System (INIS)

    March, N.H.; Tosi, M.P.

    1981-04-01

    We have examined the solutions for the singlet density rho(r) in the hierarchical equation connecting rho(r) with the liquid direct correlation function c(r). In addition to the homogeneous solution rho(r)=rhosub(liquid), we exhibit a periodic solution which can co-exist with the liquid solution. If the defining equation for this is linearized, we recover the bifurcation condition of Lovett and Buff. We stress the difference between the two treatments as that between first and second-order transitions. It turns out that the treatment presented here leads to the same periodic density as that derived, using the hypernetted chain approximation, by Ramakrishnan and Yussouff in their theory of freezing. Invoking that approximation is shown thereby to be inessential. (author)

  6. Thermal transport properties of graphene-based ferromagnetic/singlet superconductor/ferromagnetic junctions

    Science.gov (United States)

    Salehi, Morteza; Alidoust, Mohammad; Rahnavard, Yousef; Rashedi, Gholamreza

    2010-06-01

    We present an investigation of heat transport in gapless graphene-based ferromagnetic/singlet superconductor/ferromagnetic junctions. We find that unlike the uniform increase in the thermal conductance versus temperature, the thermal conductance exhibits intensive oscillatory behavior versus width of sandwiched s-wave superconducting region between the two ferromagnetic layers. This oscillatory form rises from interference of the massless Dirac fermions in graphene. Also we find that thermal conductance versus exchange field h displays a minimal value at h /Ef≃1 within the low temperature regime where this finding demonstrates that propagating modes of the Dirac fermions in this value reach to their minimum numbers and verify the previous results for electronic conductance. We find that for thin widths of superconducting region, the thermal conductance versus temperature shows linear increment, i.e., Γ ∝T. At last we propose an experimental setup to detect our predicted effects.

  7. Planck scale boundary conditions in the standard model with singlet scalar dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Haba, Naoyuki [Graduate School of Science and Engineering, Shimane University, Matsue, Shimane 690-8504 (Japan); Kaneta, Kunio [Kavli IPMU (WPI), The University of Tokyo, Kashiwa, Chiba 277-8568 (Japan); Takahashi, Ryo [Graduate School of Science and Engineering, Shimane University, Matsue, Shimane 690-8504 (Japan)

    2014-04-04

    We investigate Planck scale boundary conditions on the Higgs sector of the standard model with a gauge singlet scalar dark matter. We will find that vanishing self-coupling and Veltman condition at the Planck scale are realized with the 126 GeV Higgs mass and top pole mass, 172 GeV≲M{sub t}≲173.5 GeV, where a correct abundance of scalar dark matter is obtained with mass of 300 GeV≲m{sub S}≲1 TeV. It means that the Higgs potential is flat at the Planck scale, and this situation can not be realized in the standard model with the top pole mass.

  8. Vibrational dynamics of aniline (N2)1 clusters in their first excited singlet state

    Science.gov (United States)

    Hineman, M. F.; Kim, S. K.; Bernstein, E. R.; Kelley, D. F.

    1992-04-01

    The first excited singlet state S1 vibrational dynamics of aniline(N2)1 clusters are studied and compared to previous results on aniline(CH4)1 and aniline(Ar)1. Intramolecular vibrational energy redistribution (IVR) and vibrational predissociation (VP) rates fall between the two extremes of the CH4 (fast IVR, slow VP) and Ar (slow IVR, fast VP) cluster results as is predicted by a serial IVR/VP model using Fermi's golden rule to describe IVR processes and a restricted Rice-Ramsperger-Kassel-Marcus (RRKM) theory to describe unimolecular VP rates. The density of states is the most important factor determining the rates. Two product states, 00 and 10b1, of bare aniline and one intermediate state ˜(00) in the overall IVR/VP process are observed and time resolved measurements are obtained for the 000 and ˜(000) transitions. The results are modeled with the serial mechanism described above.

  9. Properties of pseudoscalar flavour-singlet mesons from 2+1+1 twisted mass lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Cichy, Krzysztof [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Poznan Univ. (Poland). Faculty of Physics; Drach, Vincent; Garcia Ramos, Elena; Jansen, Karl [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Michael, Chris [Liverpool Univ. (United Kingdom). Dept. of Mathematical Sciences; Ottnad, Konstantin; Urbach, Carsten; Zimmermann, Falk [Bonn Univ. (Germany). Inst. fuer Strahlen- und Kernphysik

    2012-11-15

    We study properties of pseudoscalar flavour-singlet mesons from Wilson twisted mass lattice QCD with N{sub f}=2+1+1 dynamical quark flavors. Results for masses are presented at three values of the lattice spacing and light quark masses corresponding to values of the pion mass from 230 MeV to 500 MeV. We briefly discuss scaling effects and the light and strange quark mass dependence of M{sub {eta}}. In addition we present an exploratory study using Osterwalder-Seiler type strange and charm valence quarks. This approach avoids some of the complications of the twisted mass heavy doublet. We present first results for matching valence and unitary actions and a comparison of statistical uncertainties.

  10. Next-to-next-to-leading order evolution of non-singlet fragmentation functions

    International Nuclear Information System (INIS)

    Mitov, A.; Moch, S.; Vogt, A.

    2006-04-01

    We have investigated the next-to-next-to-leading order (NNLO) corrections to inclusive hadron production in e + e - annihilation and the related parton fragmentation distributions, the 'time-like' counterparts of the 'space-like' deep-inelastic structure functions and parton densities. We have re-derived the corresponding second-order coefficient functions in massless perturbative QCD, which so far had been calculated only by one group. Moreover we present, for the first time, the third-order splitting functions governing the NNLO evolution of flavour non-singlet fragmentation distributions. These results have been obtained by two independent methods relating time-like quantities to calculations performed in deep-inelastic scattering. We briefly illustrate the numerical size of the NNLO corrections, and make a prediction for the difference of the yet unknown time-like and space-like splitting functions at the fourth order in the strong coupling constant. (Orig.)

  11. Covalent dimers of 1,3-diphenylisobenzofuran for singlet fission: synthesis and electrochemistry.

    Science.gov (United States)

    Akdag, Akin; Wahab, Abdul; Beran, Pavel; Rulíšek, Lubomír; Dron, Paul I; Ludvík, Jiří; Michl, Josef

    2015-01-02

    The synthesis of covalent dimers in which two 1,3-diphenylisobenzofuran units are connected through one phenyl substituent on each is reported. In three of the dimers, the subunits are linked directly, and in three others, they are linked via an alkane chain. A seventh new compound in which two 1,3-diphenylisobenzofuran units share a phenyl substituent is also described. These materials are needed for investigations of the singlet fission process, which promises to increase the efficiency of solar cells. The electrochemical oxidation and reduction of the monomer, two previously known dimers, and the seven new compounds have been examined, and reversible redox potentials have been compared with results obtained from density functional theory. Although the overall agreement is satisfactory, some discrepancies are noted and discussed.

  12. Universal doublet-singlet Higgs couplings and phenomenology at the CERN Large Hadron Collider

    CERN Document Server

    Bhattacharyya, Gautam; Nandi, S

    2008-01-01

    We consider a minimal extension of the Standard Model where a real, gauge singlet scalar field is added to the standard spectrum. Introducing the Ansatz of universality of scalar couplings, we are led to a scenario which has a set of very distinctive and testable predictions: (i) the mixing between the SM Higgs and the new state is near maximal, (ii) the ratio of the two Higgs mass eigenstates is fixed ($\\sim \\sqrt{3}$), (iii) the decay modes of each of the two eigenstates are Standard Model like. We also study how electroweak precision tests constrain this scenario. We predict the lighter Higgs to lie in the range of 114 and 145 GeV, and hence the heavier one between 198 and 250 GeV. The predictions of the model can be tested at the upcoming LHC.

  13. Effect of CP violation in the singlet-doublet dark matter model

    Directory of Open Access Journals (Sweden)

    Tomohiro Abe

    2017-08-01

    Full Text Available We revisit the singlet-doublet dark matter model with a special emphasis on the effect of CP violation on the dark matter phenomenology. The CP violation in the dark sector induces a pseudoscalar interaction of a fermionic dark matter candidate with the SM Higgs boson. The pseudoscalar interaction helps the dark matter candidate evade the strong constraints from the dark matter direct detection experiments. We show that the model can explain the measured value of the dark matter density even if dark matter direct detection experiments do not observe any signal. We also show that the electron electric dipole moment is an important complement to the direct detection for testing this model. Its value is smaller than the current upper bound but within the reach of future experiments.

  14. LHC benchmark scenarios for the real Higgs singlet extension of the standard model

    International Nuclear Information System (INIS)

    Robens, Tania; Stefaniak, Tim

    2016-01-01

    We present benchmark scenarios for searches for an additional Higgs state in the real Higgs singlet extension of the Standard Model in Run 2 of the LHC. The scenarios are selected such that they fulfill all relevant current theoretical and experimental constraints, but can potentially be discovered at the current LHC run. We take into account the results presented in earlier work and update the experimental constraints from relevant LHC Higgs searches and signal rate measurements. The benchmark scenarios are given separately for the low-mass and high-mass region, i.e. the mass range where the additional Higgs state is lighter or heavier than the discovered Higgs state at around 125 GeV. They have also been presented in the framework of the LHC Higgs Cross Section Working Group. (orig.)

  15. Photophysics of trioxatriangulenium ion. Electrophilic reactivity in the ground state and excited singlet state

    DEFF Research Database (Denmark)

    Reynisson, J.; Wilbrandt, R.; Brinck, V.

    2002-01-01

    . The physical and chemical properties of the excited singlet state of the trioxatriangulenium (TOTA(+)) carbenium ion are investigated by experimental and Computational means. The degeneracy of the lowest excited states is counteracted by Jahn-Teller-type distortion, which leads to vibronic broadening...... of the long wavelength absorption band. A strong fluorescence is observed at 520 nm (tau(n) = 14.6 ns, phi(n) = 0.12 in deaerated acetonitrile). The fluorescence is quenched by 10 aromatic electron donors predominantly via a dynamic charge transfer mechanism, but ground state complexation is shown...... triphenylenes is studied separately. Phosphorescence spectra, triplet lifetimes, and triplet-triplet absorption spectra are provided. In the discussion, TOTA(+) is compared to the unsubstituted xanthenium ion and its 9-phenyl derivative with respect to the excited state properties....

  16. Induced quadrupolar singlet ground state of praseodymium in a modulated pyrochlore

    Science.gov (United States)

    van Duijn, J.; Kim, K. H.; Hur, N.; Ruiz-Bustos, R.; Adroja, D. T.; Bridges, F.; Daoud-Aladine, A.; Fernandez-Alonso, F.; Wen, J. J.; Kearney, V.; Huang, Q. Z.; Cheong, S.-W.; Perring, T. G.; Broholm, C.

    2017-09-01

    The complex structure and magnetism of Pr2 -xBixRu2O7 was investigated by neutron scattering and extended x-ray absorption fine structure. Pr has an approximate doublet ground state and the first excited state is a singlet. While the B -site (Ru) is well ordered throughout, this is not the case for the A -site (Pr/Bi). A broadened distribution for the Pr-O2 bond length at low temperature indicates the Pr environment varies from site to site even for x =0 . The environment about the Bi site is highly disordered ostensibly due to the 6 s lone pairs on Bi3 +. Correspondingly, we find that the non-Kramers doublet ground-state degeneracy, otherwise anticipated for Pr in the pyrochlore structure, is lifted so as to produce a quadrupolar singlet ground state with a spatially varying energy gap. For x =0 , below TN, the Ru sublattice orders antiferromagnetically, with propagation vector k =(0 ,0 ,0 ) as for Y2Ru2O7 . No ordering associated with the Pr sublattice is observed down to 100 mK. The low-energy magnetic response of Pr2 -xBixRu2O7 features a broad spectrum of magnetic excitations associated with inhomogeneous splitting of the Pr quasidoublet ground state. For x =0 (x =0.97 ), the spectrum is temperature dependent (independent). It appears disorder associated with Bi alloying enhances the inhomogeneous Pr crystal-field level splitting so that intersite interactions become irrelevant for x =0.97 . The structural complexity for the A -site may be reflected in the hysteretic uniform magnetization of B -site ruthenium in the Néel phase.

  17. Conformal complex singlet extension of the Standard Model: scenario for dark matter and a second Higgs boson

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhi-Wei; Steele, T.G. [Department of Physics and Engineering Physics, University of Saskatchewan,116 Science Place, Saskatoon, SK, S7N 5E2 (Canada); Hanif, T. [Department of Theoretical Physics, University of Dhaka,Dhaka-1000 (Bangladesh); Mann, R.B. [Department of Physics, University of Waterloo,Waterloo, ON, N2L 3G1 (Canada)

    2016-08-09

    We consider a conformal complex singlet extension of the Standard Model with a Higgs portal interaction. The global U(1) symmetry of the complex singlet can be either broken or unbroken and we study each scenario. In the unbroken case, the global U(1) symmetry protects the complex singlet from decaying, leading to an ideal cold dark matter candidate with approximately 100 GeV mass along with a significant proportion of thermal relic dark matter abundance. In the broken case, we have developed a renormalization-scale optimization technique to significantly narrow the parameter space and in some situations, provide unique predictions for all the model’s couplings and masses. We have found there exists a second Higgs boson with a mass of approximately 550 GeV that mixes with the known 125 GeV Higgs with a large mixing angle sin θ≈0.47 consistent with current experimental limits. The imaginary part of the complex singlet in the broken case could provide axion dark matter for a wide range of models. Upon including interactions of the complex scalar with an additional vector-like fermion, we explore the possibility of a diphoton excess in both the unbroken and the broken cases. In the unbroken case, the model can provide a natural explanation for diphoton excess if extra terms are introduced providing extra contributions to the singlet mass. In the broken case, we find a set of coupling solutions that yield a second Higgs boson of mass 720 GeV and an 830 GeV extra vector-like fermion F, which is able to address the 750 GeV LHC diphoton excess. We also provide criteria to determine the symmetry breaking pattern in both the Higgs and hidden sectors.

  18. Determination of reactive oxygen species from ZnO micro-nano structures with shape-dependent photocatalytic activity

    International Nuclear Information System (INIS)

    He, Weiwei; Zhao, Hongxiao; Jia, Huimin; Yin, Jun-Jie; Zheng, Zhi

    2014-01-01

    Graphical abstract: ZnO micro/nano structures with shape dependent photocatalytic activity were prepared by hydrothermal reaction. The generations of hydroxyl radical, superoxide and singlet oxygen from irradiated ZnO were identified precisely by electron spin resonance spectroscopy. The type of reactive oxygen species was determined by band gap structure of ZnO. - Highlights: • ZnO micro/nano structures with different morphologies were prepared by solvothermal reaction. • Multi-pod like ZnO structures exhibited superior photocatalytic activity. • The generations of hydroxyl radical, superoxide and singlet oxygen from irradiated ZnO were characterized precisely by electron spin resonance spectroscopy. • The type of reactive oxygen species was determined by band gap structure of ZnO. - Abstract: ZnO micro/nano structures with different morphologies have been prepared by the changing solvents used during their synthesis by solvothermal reaction. Three typical shapes of ZnO structures including hexagonal, bell bottom like and multi-pod formed and were characterized by scanning electron microscopy and X-ray diffraction. Multi pod like ZnO structures exhibited the highest photocatalytic activity toward degradation of methyl orange. Using electron spin resonance spectroscopy coupled with spin trapping techniques, we demonstrate an effective way to identify precisely the generation of hydroxyl radicals, superoxide and singlet oxygen from the irradiated ZnO multi pod structures. The type of reactive oxygen species formed was predictable from the band gap structure of ZnO. These results indicate that the shape of micro-nano structures significantly affects the photocatalytic activity of ZnO, and demonstrate the value of electron spin resonance spectroscopy for characterizing the type of reactive oxygen species formed during photoexcitation of semiconductors

  19. Hypoxia switches episodic breathing to singlet breathing in red-eared slider turtles (Trachemys scripta) via a tropisetron-sensitive mechanism

    OpenAIRE

    Johnson, Stephen M.; Krisp, Ashley R.; Bartman, Michelle E.

    2014-01-01

    Hypoxia-induced changes in the chelonian breathing pattern are poorly understood. Thus, breathing was measured in freely swimming adult red-eared slider turtles breathing air prior to breathing nitrogen for 4 h. Ventilation increased 10-fold within 10 min due to increased breath frequency and tidal volume. Breaths/episode decreased by ~50% within after 1 h of hypoxia while the number of singlet breaths increased from 3.1 ± 1.6 singlets/h to a maximum of 66.1 ± 23.5 singlets/h. Expiratory and ...

  20. Crosstalk error correction through dynamical decoupling of single-qubit gates in capacitively coupled singlet-triplet semiconductor spin qubits

    Science.gov (United States)

    Buterakos, Donovan; Throckmorton, Robert E.; Das Sarma, S.

    2018-01-01

    In addition to magnetic field and electric charge noise adversely affecting spin-qubit operations, performing single-qubit gates on one of multiple coupled singlet-triplet qubits presents a new challenge: crosstalk, which is inevitable (and must be minimized) in any multiqubit quantum computing architecture. We develop a set of dynamically corrected pulse sequences that are designed to cancel the effects of both types of noise (i.e., field and charge) as well as crosstalk to leading order, and provide parameters for these corrected sequences for all 24 of the single-qubit Clifford gates. We then provide an estimate of the error as a function of the noise and capacitive coupling to compare the fidelity of our corrected gates to their uncorrected versions. Dynamical error correction protocols presented in this work are important for the next generation of singlet-triplet qubit devices where coupling among many qubits will become relevant.

  1. Color anomaly and flavor-singlet axial charge of the proton in the chiral bag: the Cheshire Cat revisited

    International Nuclear Information System (INIS)

    Rho, M.; Vento, V.

    1997-01-01

    Quantum effects inside the chiral bag induce a color anomaly which requires a compensating surface term to prevent breakdown of color gauge invariance. We show that the presence of this surface term first discovered several years ago allows one to derive in a gauge-invariant way a chiral-bag version of the Shore-Veneziano two-component formula for the flavor-singlet axial charge of the proton. This has relevance to what is referred to as the ''proton spin problem'' on the one hand and to the Cheshire-Cat phenomenon in hadron structure on the other. We show that when calculated to the leading order in the color gauge coupling and for a specific color electric monopole configuration in the bag, one can obtain a striking Cheshire-Cat phenomenon with a negligibly small singlet axial charge. (orig.)

  2. High-efficiency fluorescent organic light-emitting devices using sensitizing hosts with a small singlet-triplet exchange energy.

    Science.gov (United States)

    Zhang, Dongdong; Duan, Lian; Li, Chen; Li, Yilang; Li, Haoyuan; Zhang, Deqiang; Qiu, Yong

    2014-08-06

    Materials with small singlet-triplet splits (ΔEST s) are introduced as sensitizing hosts to excite fluorescent dopants, breaking the trade-off between small ΔEST and high radiative decay rates. A highly efficient orange-fluorescent organic light-emitting diode (OLED) is prepared, showing a maximum external quantum efficiency of 12.2%. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. A next-to-leading determination of the singlet axial charge and the polarized gluon content of the nucleon

    CERN Document Server

    Ball, R D; Ridolfi, G

    1996-01-01

    We perform a full next-to-leading analysis of the the available experimental data on the polarized structure function g_1 of the nucleon, and give a precise determination of its singlet axial charge together with a thorough assessment of the theoretical uncertainties. We find that the data are now sufficient to separately determine first moments of the polarized quark and gluon distributions and show in particular that the gluon contribution is large and positive.

  4. A Singlet Extension of the Minimal Supersymmetric Standard Model: Towards a More Natural Solution to the Little Hierarchy Problem

    Energy Technology Data Exchange (ETDEWEB)

    de la Puente, Alejandro [Univ. of Notre Dame, IN (United States)

    2012-05-01

    In this work, I present a generalization of the Next-to-Minimal Supersymmetric Standard Model (NMSSM), with an explicit μ-term and a supersymmetric mass for the singlet superfield, as a route to alleviating the little hierarchy problem of the Minimal Supersymmetric Standard Model (MSSM). I analyze two limiting cases of the model, characterized by the size of the supersymmetric mass for the singlet superfield. The small and large limits of this mass parameter are studied, and I find that I can generate masses for the lightest neutral Higgs boson up to 140 GeV with top squarks below the TeV scale, all couplings perturbative up to the gauge unification scale, and with no need to fine tune parameters in the scalar potential. This model, which I call the S-MSSM is also embedded in a gauge-mediated supersymmetry breaking scheme. I find that even with a minimal embedding of the S-MSSM into a gauge mediated scheme, the mass for the lightest Higgs boson can easily be above 114 GeV, while keeping the top squarks below the TeV scale. Furthermore, I also study the forward-backward asymmetry in the t¯t system within the framework of the S-MSSM. For this purpose, non-renormalizable couplings between the first and third generation of quarks to scalars are introduced. The two limiting cases of the S-MSSM, characterized by the size of the supersymmetric mass for the singlet superfield is analyzed, and I find that in the region of small singlet supersymmetric mass a large asymmetry can be obtained while being consistent with constraints arising from flavor physics, quark masses and top quark decays.

  5. Singlet Diradical Complexes of Ruthenium and Osmium: Geometrical and Electronic Structures and their Unexpected Changes on Oxidation

    Czech Academy of Sciences Publication Activity Database

    Samanta, S.; Singh, P.; Fiedler, Jan; Záliš, Stanislav; Kaim, W.; Goswami, S.

    2008-01-01

    Roč. 47, č. 5 (2008), s. 1625-1633 ISSN 0020-1669 R&D Projects: GA AV ČR KAN100400702; GA MŠk OC 139; GA MŠk OC 140 Institutional research plan: CEZ:AV0Z40400503 Keywords : singlet diradical complexes * ruthenium complexes * electronic structure Subject RIV: CG - Electrochemistry Impact factor: 4.147, year: 2008

  6. Effects of fermionic singlet neutrinos on high- and low-energy observables

    International Nuclear Information System (INIS)

    Weiland, C.

    2013-01-01

    In this doctoral thesis, we study both low- and high-energy observables related to massive neutrinos. Neutrino oscillations have provided indisputable evidence in favour of non-zero neutrino masses and mixings. However, the original formulation of the standard model cannot account for these observations, which calls for the introduction of new physics. Among many possibilities, we focus here on the inverse seesaw, a neutrino mass generation mechanism in which the standard model is extended with fermionic gauge singlets. This model offers an attractive alternative to the usual seesaw realisations since it can potentially have natural Yukawa couplings (O(1)) while keeping the new physics scale at energies within the reach of the LHC. Among the many possible effects, this scenario can lead to deviations from lepton flavour universality. We have investigated these signatures and found that the ratios R K and R π provide new, additional constraints on the inverse seesaw. We have also considered the embedding of the inverse seesaw in supersymmetric models. This leads to increased rates for various lepton flavour violating processes, due to enhanced contributions from penguin diagrams mediated by the Higgs and Z 0 bosons. Finally, we also found that the new invisible decay channels associated with the sterile neutrinos present in the super-symmetric inverse seesaw could significantly weaken the constraints on the mass and couplings of a light CP-odd Higgs boson. (author)

  7. Strong Electroweak Phase Transitions in the Standard Model with a Singlet

    CERN Document Server

    Espinosa, Jose R; Riva, Francesco

    2012-01-01

    It is well known that the electroweak phase transition (EWPhT) in extensions of the Standard Model with one real scalar singlet can be first-order for realistic values of the Higgs mass. We revisit this scenario with the most general renormalizable scalar potential systematically identifying all regions in parameter space that develop, due to tree-level dynamics, a potential barrier at the critical temperature that is strong enough to avoid sphaleron wash-out of the baryon asymmetry. Such strong EWPhTs allow for a simple mean-field approximation and an analytic treatment of the free-energy that leads to very good theoretical control and understanding of the different mechanisms that can make the transition strong. We identify a new realization of such mechanism, based on a flat direction developing at the critical temperature, which could operate in other models. Finally, we discuss in detail some special cases of the model performing a numerical calculation of the one-loop free-energy that improves over the ...

  8. Thermally Generated Gauge Singlet Scalars as Self-Interacting Dark Matter

    CERN Document Server

    McDonald, J

    2002-01-01

    We show that a gauge singlet scalar S with a coupling to the Higgs doublet of the form lambda_{S} S^{\\dagger}S H^{\\dagger}H and with the S mass entirely generated by the Higgs expectation value has a thermally generated relic density Omega_{S} \\approx 0.3 if m_{S} \\approx (2.9-10.5)(Omega_{S}/0.3)^{1/5}(h/0.7)^{2/5} MeV for Higgs boson masses in the range 115 GeV to 1 TeV. Remarkably, this is very similar to the range (m_{S} = (6.6-15.4)\\eta^{2/3} MeV) required in order for the self-interaction (\\eta/4)(S^{\\dagger}S)^{2} to account for self-interacting dark matter when \\eta is about 1. The corresponding coupling is lambda_{S} \\approx (2.7 \\times 10^{-10} - 3.6 \\times 10^{-9})(Omega_{S}/0.3)^{2/5}(h/0.7)^{4/5}, implying that such scalars are very weakly coupled to the Standard Model sector. More generally, for the case where the S mass is at least partially due to a bare mass term, if m_{S} \\approx 10 \\eta^{2/3} MeV, corresponding to self-interacting dark matter, then in order not to overpopulate the Universe ...

  9. One-loop effective Lagrangian for a standard model with a heavy charged scalar singlet

    CERN Document Server

    Bilenky, S M; Bilenky, Mikhail; Santamaria, Arcadi

    1994-01-01

    We study several problems related to the construction and the use of effective Lagrangians by considering an extension of the standard model that includes a heavy scalar singlet coupled to the leptonic doublet. Starting from the full renormalizable model, we build an effective field theory by integrating out the heavy scalar. A local effective Lagrangian (up to operators of dimension six) is obtained by expanding the one-loop effective action in inverse powers of the heavy mass. This is done by matching some Green functions calculated with both the full and the effective theories. Using this simple example we study the renormalization of effective Lagrangians in general and discuss how they can be used to bound new physics. We also discuss the effective Lagrangian after spontaneous symmetry breaking, and the use of the standard model classical equations of motion to rewrite it in different forms. The final effective Lagrangian in the physical basis is well suited to the study of the phenomenology of the model...

  10. The off-shell nucleon-nucleon interaction in the singlet s-state

    International Nuclear Information System (INIS)

    Groot, H. de

    1975-01-01

    This thesis studies the off-shell behaviour of the neutron-proton interaction in the singlet state. To generate phase-shift-equivalent potentials a particular type of inversion problem is solved. It requires the potential to contain a non-local, separable part which is supposed to describe part of the short-range interaction. A special solution of the general inversion problem that produces potentials consisting of two separable terms is studied. Criteria to accept or reject particular inversion solutions are discussed. Neutron-proton potentials in the 1 S 0 partial wave which form part of the input for the general inversion procedure are defined. Different local potential tails are chosen, as well as varying short-range interactions, both local and non-local. The input phase shifts are discussed including three extrapolations of the phase shifts at high energy. The half-shell transition matrix for the potentials defined is studied. Some problems introduced by the additional electromagnetic interaction in the proton-proton system is investigated. (Auth.)

  11. Nonuniversal anomaly-free U(1) model with three Higgs doublets and one singlet scalar field

    Science.gov (United States)

    Mantilla, S. F.; Martinez, R.

    2017-11-01

    The flavor problem, neutrino physics, and the fermion mass hierarchy are important motivations to extend the Standard Model to the TeV scale. A new family nonuniversal extension is presented with three Higgs doublets, one Higgs singlet, and one scalar dark matter candidate. Exotic fermions are included in order to cancel chiral anomalies and to allow family nonuniversal U(1 ) X charges. By implementing an additional Z2 symmetry, the Yukawa coupling terms are suited in such a way that the fermion mass hierarchy is obtained without fine-tuning. The neutrino sector includes Majorana fermions to implement the inverse seesaw mechanism. The effective mass matrix for Standard Model neutrinos is fitted to current neutrino oscillation data to check the consistency of the model with experimental evidence, obtaining that the normal-ordering scheme is preferred over the inverse ones, and the values of the neutrino Yukawa coupling constants are shown. Finally, the h →τ μ lepton-flavor-violation process is addressed with the rotation matrices of the C P -even scalars, left- and right-handed charged leptons, yielding definite regions where the model is consistent with CMS reports of BR (h →τ μ ).

  12. Low energy gamma ray excess confronting a singlet scalar extended inert doublet dark matter model

    Directory of Open Access Journals (Sweden)

    Amit Dutta Banik

    2015-04-01

    Full Text Available Recent study of gamma rays originating from the region of galactic centre has confirmed an anomalous γ-ray excess within the energy range 1–3 GeV. This can be explained as the consequence of pair annihilation of a 31–40 GeV dark matter into bb¯ with thermal annihilation cross-section σv∼1.4–2.0×10−26 cm3/s. In this work we revisit the Inert Doublet Model (IDM in order to explain this gamma ray excess. Taking the lightest inert particle (LIP as a stable DM candidate we show that a 31–40 GeV dark matter derived from IDM will fail to satisfy experimental limits on dark matter direct detection cross-section obtained from ongoing direct detection experiments and is also inconsistent with LHC findings. We show that a singlet extended inert doublet model can easily explain the reported γ-ray excess which is as well in agreement with Higgs search results at LHC and other observed results like DM relic density and direct detection constraints.

  13. Efficient singlet exciton fission in pentacene prepared from a soluble precursor

    Directory of Open Access Journals (Sweden)

    Maxim Tabachnyk

    2016-11-01

    Full Text Available Carrier multiplication using singlet exciton fission (SF to generate a pair of spin-triplet excitons from a single optical excitation has been highlighted as a promising approach to boost the photocurrent in photovoltaics (PVs thereby allowing PV operation beyond the Shockley-Queisser limit. The applicability of many efficient fission materials, however, is limited due to their poor solubility. For instance, while acene-based organics such as pentacene (Pc show high SF yields (up to200%, the plain acene backbone renders the organic molecule insoluble in common organic solvents. Previous approaches adding solubilizing side groups such as bis(tri-iso-propylsilylethynyl to the Pc core resulted in low vertical carrier mobilities due to reduction of the transfer integrals via steric hindrance, which prevented high efficiencies in PVs. Here we show how to achieve good solubility while retaining the advantages of molecular Pc by using a soluble precursor route. The precursor fully converts into molecular Pc through thermal removal of the solubilizing side groups upon annealing above 150 °C in the solid state. The annealed precursor shows small differences in the crystallinity compared to evaporated thin films of Pc, indicating that the Pc adopts the bulk rather than surface polytype. Furthermore, we identify identical SF properties such as sub-100 fs fission time and equally long triplet lifetimes in both samples.

  14. Intermolecular Singlet and Triplet Exciton Transfer Integrals from Many-Body Green's Functions Theory.

    Science.gov (United States)

    Wehner, Jens; Baumeier, Björn

    2017-04-11

    A general approach to determine orientation and distance-dependent effective intermolecular exciton transfer integrals from many-body Green's functions theory is presented. On the basis of the GW approximation and the Bethe-Salpeter equation (BSE), a projection technique is employed to obtain the excitonic coupling by forming the expectation value of a supramolecular BSE Hamiltonian with electron-hole wave functions for excitations localized on two separated chromophores. Within this approach, accounting for the effects of coupling mediated by intermolecular charge transfer (CT) excitations is possible via perturbation theory or a reduction technique. Application to model configurations of pyrene dimers shows an accurate description of short-range exchange and long-range Coulomb interactions for the coupling of singlet and triplet excitons. Computational parameters, such as the choice of the exchange-correlation functional in the density-functional theory (DFT) calculations that underly the GW-BSE steps and the convergence with the number of included CT excitations, are scrutinized. Finally, an optimal strategy is derived for simulations of full large-scale morphologies by benchmarking various approximations using pairs of dicyanovinyl end-capped oligothiophenes (DCV5T), which are used as donor material in state-of-the-art organic solar cells.

  15. Correlation-enhanced odd-parity inter-orbital singlet pairing in LiFeAs

    Science.gov (United States)

    Nourafkan, Reza; Kotliar, Gabi; Tremblay, A.-M. S.

    The rich variety of iron-based superconductors and their complex electronic structure lead to a wide range of possibilities for gap symmetry and pairing components. We solved, in the two-Fe Brillouin zone, the full frequency-dependent linearized Eliashberg equations to investigate spin-fluctuations mediated Cooper pairing for LiFeAs . The magnetic excitations were calculated with the random phase approximation on a correlated electronic structure obtained with density functional theory and dynamical mean field theory. The interaction between electrons through Hund's coupling promotes both the intra-orbital dxz (yz) and the inter-orbital magnetic susceptibility. As a consequence, the leading pairing channel, conventional s+-, acquires sizeable inter-orbital dxy -dxz (yz) singlet pairing with odd parity under glide-plane symmetry. The combination of intra- and inter-orbital components makes the results consistent with available experiments on the angular dependence of the gaps observed on the different Fermi surfaces. We also explain the difference in pairing symmetry between LiFeAs and LiFeP.

  16. Spin Singlet Quantum Hall Effect and nonabelian Landau-Ginzburg theory

    International Nuclear Information System (INIS)

    Balatsky, A.

    1991-01-01

    In this paper we present a theory of Singlet Quantum Hall Effect (SQHE). We show that the Halperin-Haldane SQHE wave function can be written in the form of a product of a wave function for charged semions in a magnetic field and a wave function for the Chiral Spin Liquid of neutral spin-1/2 semions. We introduce field-theoretic model in which the electron operators are factorized in terms of charged spinless semions (holons) and neutral spin-1/2 semions (spinons). Broken time reversal symmetry and short ranged spin correlations lead to Su(2) κ=1 Chern-Simons term in Landau-Ginzburg action for SQHE phase. We construct appropriate coherent states for SQHE phase and show the existence of SU(2) valued gauge potential. This potential appears as a result of ''spin rigidity'' of the ground state against any displacements of nodes of wave function from positions of the particles and reflects the nontrivial monodromy in the presence of these displacenmants. We argue that topological structure of Su(2) κ=1 Chern-Simons theory unambiguously dictates semion statistics of spinons. 19 refs

  17. Two component WIMP-FImP dark matter model with singlet fermion, scalar and pseudo scalar

    Energy Technology Data Exchange (ETDEWEB)

    Dutta Banik, Amit; Pandey, Madhurima; Majumdar, Debasish [Saha Institute of Nuclear Physics, HBNI, Astroparticle Physics and Cosmology Division, Kolkata (India); Biswas, Anirban [Harish Chandra Research Institute, Allahabad (India)

    2017-10-15

    We explore a two component dark matter model with a fermion and a scalar. In this scenario the Standard Model (SM) is extended by a fermion, a scalar and an additional pseudo scalar. The fermionic component is assumed to have a global U(1){sub DM} and interacts with the pseudo scalar via Yukawa interaction while a Z{sub 2} symmetry is imposed on the other component - the scalar. These ensure the stability of both dark matter components. Although the Lagrangian of the present model is CP conserving, the CP symmetry breaks spontaneously when the pseudo scalar acquires a vacuum expectation value (VEV). The scalar component of the dark matter in the present model also develops a VEV on spontaneous breaking of the Z{sub 2} symmetry. Thus the various interactions of the dark sector and the SM sector occur through the mixing of the SM like Higgs boson, the pseudo scalar Higgs like boson and the singlet scalar boson. We show that the observed gamma ray excess from the Galactic Centre as well as the 3.55 keV X-ray line from Perseus, Andromeda etc. can be simultaneously explained in the present two component dark matter model and the dark matter self interaction is found to be an order of magnitude smaller than the upper limit estimated from the observational results. (orig.)

  18. Preorganized Chromophores Facilitate Triplet Energy Migration, Annihilation and Upconverted Singlet Energy Collection.

    Science.gov (United States)

    Mahato, Prasenjit; Yanai, Nobuhiro; Sindoro, Melinda; Granick, Steve; Kimizuka, Nobuo

    2016-05-25

    Photon upconversion (UC) based on triplet-triplet annihilation (TTA) has the potential to enhance significantly photovoltaic and photocatalytic efficiencies by harnessing sub-bandgap photons, but the progress of this field is held back by the chemistry problem of how to preorganize multiple chromophores for efficient UC under weak solar irradiance. Recently, the first maximization of UC quantum yield at solar irradiance was achieved using fast triplet energy migration (TEM) in metal-organic frameworks (MOFs) with ordered acceptor arrays, but at the same time, a trade-off between fast TEM and high fluorescence efficiency was also found. Here, we provide a solution for this trade-off issue by developing a new strategy, triplet energy migration, annihilation and upconverted singlet energy collection (TEM-UPCON). The porous structure of acceptor-based MOF crystals allows triplet donor molecules to be accommodated without aggregation. The surface of donor-doped MOF nanocrystals is modified with highly fluorescent energy collectors through coordination bond formation. Thanks to the higher fluorescence quantum yield of surface-bound collectors than parent MOFs, the implementation of the energy collector greatly improves the total UC quantum yield. The UC quantum yield maximization behavior at ultralow excitation intensity was retained because the TTA events take place only in the MOF acceptors. The TEM-UPCON concept may be generalized to collectors with various functions and would lead to quantitative harvesting of upconverted energy, which is difficult to achieve in common molecular diffusion-based systems.

  19. Antiaromatic bisindeno-[n]thienoacenes with small singlet biradical characters: Syntheses, structures and chain length dependent physical properties

    KAUST Repository

    Shi, Xueliang

    2014-01-01

    Recent studies demonstrated that aromaticity and biradical character play important roles in determining the ground-state structures and physical properties of quinoidal polycyclic hydrocarbons and oligothiophenes, a kind of molecular materials showing promising applications for organic electronics, photonics and spintronics. In this work, we designed and synthesized a new type of hybrid system, the so-called bisindeno-[n]thienoacenes (n = 1-4), by annulation of quinoidal fused α-oligothiophenes with two indene units. The obtained molecules can be regarded as antiaromatic systems containing 4n π electrons with small singlet biradical character (y0). Their ground-state geometry and electronic structures were studied by X-ray crystallographic analysis, NMR, ESR and Raman spectroscopy, assisted by density functional theory calculations. With extension of the chain length, the molecules showed a gradual increase of the singlet biradical character accompanied by decreased antiaromaticity, finally leading to a highly reactive bisindeno[4]thienoacene (S4-TIPS) which has a singlet biradical ground state (y0= 0.202). Their optical and electronic properties in the neutral and charged states were systematically investigated by one-photon absorption, two-photon absorption, transient absorption spectroscopy, cyclic voltammetry and spectroelectrochemistry, which could be correlated to the chain length dependent antiaromaticity and biradical character. Our detailed studies revealed a clear structure-aromaticity-biradical character-physical properties-reactivity relationship, which is of importance for tailored material design in the future. This journal is

  20. Impact of Dielectric Constant on the Singlet-Triplet Gap in Thermally Activated Delayed Fluorescence (TADF) Materials

    KAUST Repository

    Sun, Haitao

    2017-04-28

    Thermally activated delayed fluorescence (TADF) relies on the presence of a very small energy gap, ΔEST, between the lowest singlet and triplet excited states. ΔEST is thus a key factor in the molecular design of more efficient materials. However, its accurate theoretical estimation remains challenging, especially in the solid state due to the influence of polarization effects. We have quantitatively studied ΔEST as a function of dielectric constant, ε, for four representative organic molecules using the methodology we recently proposed at the Tamm-Dancoff approximation ωB97X level of theory, where the range-separation parameter ω is optimized with the polarizable continuum model. The results are found to be in very good agreement with experimental data. Importantly, the polarization effects can lead to a marked reduction in the ΔEST value, which is favorable for TADF applications. This ΔEST decrease in the solid state is related to the hybrid characters of the lowest singlet and triplet excited states, whose dominant contribution switches to charge-transfer-like with increasing ε. The present work provides a theoretical understanding on the influence of polarization effect on the singlet-triplet gap and confirms our methodology to be a reliable tool for the prediction and development of novel TADF materials.

  1. Tb3+ in TbCo3B2, a Singlet Ground State System, Studied by Inelastic Neutron Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Rivin, Oleg [Nuclear Research Centre-Negev, Israel; and Ben-Gurion University, Israel; Osborn, Raymond [Argonne National Laboratory (ANL); Kolesnikov, Alexander I [ORNL; Caspi, El' ad N. [Nuclear Research Centre-Negev, Israel; Shaked, Hagai [Ben Gurion University of the Negev

    2008-01-01

    The results of inelastic neutron scattering on the hexagonal compounds TbCo3B2 and Tb0.75Y0.25Co3B2, at several temperatures are reported. The crystal field level scheme of Tb3+ ions in the paramagnetic phase is determined. This scheme contains a non-magnetic singlet (G1) as ground state. Inelastic neutron scattering at low temperature (10 K), leads to a different energy level scheme, where the singlet ground state is ferromagnetic with # 0. This is a "self induced" ferromagnetism on the Tb sub-lattice, resulting from the admixture of higher crystal field levels into the singlet ground state by the exchange field. The resulting magnitudes of these ground state magnetic moments are 5.6(3) and 3(1) muB for TbCo3B2 and Tb0.75Y0.25Co3B2, respectively. These values are much smaller than the free ion value of 9 muB and are in agreement with previously observed values. Such large reductions are characteristic of the "self induced" ferromagnetism. The temperature dependence of the magnetic moment, magnetic anisotropy, Tb sub-lattice dilution and magnetic susceptibility are discussed.

  2. Topological quantum phase transitions in the spin–singlet superconductor with Rashba and Dresselhaus (110) spin–orbit couplings

    Energy Technology Data Exchange (ETDEWEB)

    You, Jia-Bin, E-mail: jiabinyou@gmail.com [Centre for Quantum Technologies, National University of Singapore, 117543 (Singapore); Chan, A.H. [Department of Physics, National University of Singapore, 117542 (Singapore); Oh, C.H., E-mail: phyohch@nus.edu.sg [Centre for Quantum Technologies, National University of Singapore, 117543 (Singapore); Department of Physics, National University of Singapore, 117542 (Singapore); Vedral, Vlatko [Centre for Quantum Technologies, National University of Singapore, 117543 (Singapore); Department of Physics, National University of Singapore, 117542 (Singapore); Department of Physics, University of Oxford, Clarendon Laboratory, Oxford, OX1 3PU (United Kingdom)

    2014-10-15

    We examine the topological properties of a spin–singlet superconductor with Rashba and Dresselhaus (110) spin–orbit couplings. We demonstrate that there are several topological invariants in the Bogoliubov–de Gennes (BdG) Hamiltonian by symmetry analysis. In particular, the Pfaffian invariant P for the particle–hole symmetry can be used to demonstrate all the possible phase diagrams of the BdG Hamiltonian. We find that the edge spectrum is either Dirac cone or flat band which supports the emergence of the Majorana fermion in this system. For the Majorana flat bands, an edge index, namely the Pfaffian invariant P(k{sub y}) or the winding number W(k{sub y}), is needed to make them topologically stable. These edge indices can also be used in determining the location of the Majorana flat bands. - Highlights: • Majorana fermion can emerge in the spin–orbit coupled singlet superconductor. • Pfaffian invariant and 1D winding number can be used to identify the nontrivial topological phase where Majorana flat band exists. • All the possible phase diagrams in the spin–orbit coupled singlet superconductor are demonstrated. • Majorana flat band only exists in the y direction in our model. • Majorana flat band has a significant experimental signature in the tunneling conductance measurement.

  3. Viable dark matter via radiative symmetry breaking in a scalar singlet Higgs portal extension of the standard model.

    Science.gov (United States)

    Steele, T G; Wang, Zhi-Wei; Contreras, D; Mann, R B

    2014-05-02

    We consider the generation of dark matter mass via radiative electroweak symmetry breaking in an extension of the conformal standard model containing a singlet scalar field with a Higgs portal interaction. Generating the mass from a sequential process of radiative electroweak symmetry breaking followed by a conventional Higgs mechanism can account for less than 35% of the cosmological dark matter abundance for dark matter mass M(s)>80 GeV. However, in a dynamical approach where both Higgs and scalar singlet masses are generated via radiative electroweak symmetry breaking, we obtain much higher levels of dark matter abundance. At one-loop level we find abundances of 10%-100% with 106 GeVdark matter mass. The dynamical approach also predicts a small scalar-singlet self-coupling, providing a natural explanation for the astrophysical observations that place upper bounds on dark matter self-interaction. The predictions in all three approaches are within the M(s)>80 GeV detection region of the next generation XENON experiment.

  4. Roles of binding energy and diffusion length of singlet and triplet excitons in organic heterojunction solar cells

    International Nuclear Information System (INIS)

    Narayan, Monishka Rita; Singh, Jai

    2012-01-01

    The influence of binding energy and diffusion length on the dissociation of excitons in organic solids is studied. The binding energy and excitonic Bohr radius of singlet and triplet excitons are calculated and compared using the dissociation energy of 0.3 eV, which is provided by the lowest unoccupied molecular orbital offset in heterojunction organic solar cells. A relation between the diffusion coefficient and diffusion length of singlet and triplet excitons is derived using the Foerster and Dexter transfer processes and are plotted as a function of the donor-acceptor separation. The diffusion length reduces nearly to a zero if the distance between donor and acceptor is increased to more than 1.5 nm. It is found that the donor-acceptor separation needs to be ≤ 1.5 nm for easy dissociation on singlet excitons leading to better conversion efficiency in heterojunction organic solar cells. (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  5. Fragile singlet ground-state magnetism in the pyrochlore osmates R2Os2O7 (R =Y and Ho)

    Science.gov (United States)

    Zhao, Z. Y.; Calder, S.; Aczel, A. A.; McGuire, M. A.; Sales, B. C.; Mandrus, D. G.; Chen, G.; Trivedi, N.; Zhou, H. D.; Yan, J.-Q.

    2016-04-01

    The singlet ground-state magnetism in pyrochlore osmates Y2Os2O7 and Ho2Os2O7 is studied by dc and ac susceptibility, specific heat, and neutron powder diffraction measurements. Despite the expected nonmagnetic singlet in the strong spin-orbit coupling (SOC) limit for Os4 + (5 d4 ), Y2Os2O7 exhibits a spin-glass ground state below 4 K with weak magnetism, suggesting possible proximity to a quantum phase transition between the nonmagnetic state in the strong SOC limit and a magnetic state in the strong superexchange limit. Ho2Os2O7 has the same structural distortion as in Y2Os2O7 ; however, the Os sublattice in Ho2Os2O7 shows long-range magnetic ordering below 36 K. The sharp difference of the magnetic ground state between Y2Os2O7 and Ho2Os2O7 signals that the singlet ground-state magnetism in R2Os2O7 is fragile and can be disturbed by the weak 4 f -5 d interactions.

  6. Roles of binding energy and diffusion length of singlet and triplet excitons in organic heterojunction solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Narayan, Monishka Rita [Centre for Renewable Energy and Low Emission Technology, Charles Darwin University, Darwin, NT 0909 (Australia); Singh, Jai [School of Engineering and IT, Charles Darwin University, Darwin, NT 0909 (Australia)

    2012-12-15

    The influence of binding energy and diffusion length on the dissociation of excitons in organic solids is studied. The binding energy and excitonic Bohr radius of singlet and triplet excitons are calculated and compared using the dissociation energy of 0.3 eV, which is provided by the lowest unoccupied molecular orbital offset in heterojunction organic solar cells. A relation between the diffusion coefficient and diffusion length of singlet and triplet excitons is derived using the Foerster and Dexter transfer processes and are plotted as a function of the donor-acceptor separation. The diffusion length reduces nearly to a zero if the distance between donor and acceptor is increased to more than 1.5 nm. It is found that the donor-acceptor separation needs to be {<=} 1.5 nm for easy dissociation on singlet excitons leading to better conversion efficiency in heterojunction organic solar cells. (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  7. Artificial oxygen transport protein

    Science.gov (United States)

    Dutton, P. Leslie

    2014-09-30

    This invention provides heme-containing peptides capable of binding molecular oxygen at room temperature. These compounds may be useful in the absorption of molecular oxygen from molecular oxygen-containing atmospheres. Also included in the invention are methods for treating an oxygen transport deficiency in a mammal.

  8. Reliable Prediction with Tuned Range-Separated Functionals of the Singlet-Triplet Gap in Organic Emitters for Thermally Activated Delayed Fluorescence (TADF)

    KAUST Repository

    Sun, Haitao

    2015-07-09

    The thermally activated delayed fluorescence (TADF) mechanism has recently attracted much interest in the field of organic light-emitting diodes (OLEDs). TADF relies on the presence of a very small energy gap between the lowest singlet and triplet excited states. Here, we demonstrate that time-dependent density functional theory (TD-DFT) in the Tamm-Dancoff Approximation can be very successful in the calculations of the lowest singlet and triplet excitation energies and the corresponding singlet-triplet gap when using nonempirically tuned range-separated functionals. Such functionals provide very good estimates in a series of 17 molecules used in TADF-based OLED devices, with mean absolute deviations of 0.15 eV for the vertical singlet excitation energies and 0.09 eV [0.07 eV] for the adiabatic [vertical] singlet-triplet energy gaps as well as low relative errors and high correlation coefficients compared to the corresponding experimental values. They significantly outperform conventional functionals, a feature which is rationalized on the basis of the amount of exact-exchange included and the delocalization error. The present work provides a reliable theoretical tool for the prediction and development of novel TADF-based materials with low singlet-triplet energetic splittings.

  9. Oxygen-enhanced combustion

    CERN Document Server

    Baukal, Charles E

    2013-01-01

    Combustion technology has traditionally been dominated by air/fuel combustion. However, two developments have increased the significance of oxygen-enhanced combustion-new technologies that produce oxygen less expensively and the increased importance of environmental regulations. Advantages of oxygen-enhanced combustion include less pollutant emissions as well as increased energy efficiency and productivity. Oxygen-Enhanced Combustion, Second Edition compiles information about using oxygen to enhance industrial heating and melting processes. It integrates fundamental principles, applications, a

  10. Blinking fluorescence of single donor-acceptor pairs: important role of "dark'' states in resonance energy transfer via singlet levels.

    Science.gov (United States)

    Osad'ko, I S; Shchukina, A L

    2012-06-01

    The influence of triplet levels on Förster resonance energy transfer via singlet levels in donor-acceptor (D-A) pairs is studied. Four types of D-A pair are considered: (i) two-level donor and two-level acceptor, (ii) three-level donor and two-level acceptor, (iii) two-level donor and three-level acceptor, and (iv) three-level donor and three-level acceptor. If singlet-triplet transitions in a three-level acceptor molecule are ineffective, the energy transfer efficiency E=I_{A}/(I_{A}+I_{D}), where I_{D} and I_{A} are the average intensities of donor and acceptor fluorescence, can be described by the simple theoretical equation E(F)=FT_{D}/(1+FT_{D}). Here F is the rate of energy transfer, and T_{D} is the donor fluorescence lifetime. In accordance with the last equation, 100% of the donor electronic energy can be transferred to an acceptor molecule at FT_{D}≫1. However, if singlet-triplet transitions in a three-level acceptor molecule are effective, the energy transfer efficiency is described by another theoretical equation, E(F)=F[over ¯](F)T_{D}/[1+F[over ¯](F)T_{D}]. Here F[over ¯](F) is a function of F depending on singlet-triplet transitions in both donor and acceptor molecules. Expressions for the functions F[over ¯](F) are derived. In this case the energy transfer efficiency will be far from 100% even at FT_{D}≫1. The character of the intensity fluctuations of donor and acceptor fluorescence indicates which of the two equations for E(F) should be used to find the value of the rate F. Therefore, random time instants of photon emission in both donor and acceptor fluorescence are calculated by the Monte Carlo method for all four types of D-A pair. Theoretical expressions for start-stop correlators (waiting time distributions) in donor and acceptor fluorescence are derived. The probabilities w_{N}^{D}(t) and w_{N}^{A}(t) of finding N photons of donor and acceptor fluorescence in the time interval t are calculated for various values of the energy

  11. Generation of Oxygen Free Radicals by Proflavine: Implication in Protein Degradation

    Directory of Open Access Journals (Sweden)

    Mansour K.M. Gatasheh

    2017-07-01

    Full Text Available Proflavine, an acridine dye, is a known DNA intercalating agent. In the present study, we show that proflavine alone on photoillumination can generate reactive oxygen species (ROS. These proflavine-derived ROS cause damage to proteins, and this effect is enhanced when the divalent metal ion Cu (II is included in the reaction. Bathocuproine, a specific Cu (I sequestering agent, when present in the reaction mixture containing Cu (II, was found to inhibit the protein degradation, showing that Cu (I is an essential intermediate in the reaction. The effect of several scavengers of ROS such as superoxide dismutase, sodium azide, potassium iodide, and thiourea were examined on the protein damaging reaction. Potassium iodide was found to be the most effective in inhibiting protein damage followed by sodium azide and thiourea. Our results indicate the involvement of superoxide, singlet oxygen, triplet oxygen, and hydroxyl radicals in proflavine-induced damage to proteins.

  12. Reactive oxygen and nitrogen species in patients with rheumatoid arthritis as potential biomarkers for disease activity and the role of antioxidants.

    Science.gov (United States)

    Khojah, Hani M; Ahmed, Sameh; Abdel-Rahman, Mahran S; Hamza, Al-Badr

    2016-08-01

    Reactive oxygen species (ROS) and reactive nitrogen species (RNS) have distinct contribution to the destructive, proliferative synovitis of rheumatoid arthritis (RA) and play a prominent role in cell-signaling events. However, few studies had clarified the role of individual ROS and RNS in the etiopathogenesis of RA. To date, most of the studies were concerned with the measurement of the total oxidative and nitrative stress levels in RA. The aim of this study was to monitor the levels of individual ROS and RNS to emphasize the role that each plays in the pathogenesis of RA and their usefulness as possible biomarkers for the disease activity. In addition, the effect of an antioxidant (ascorbic acid), added to the treatment regimen, on the levels of ROS, RNS and disease activity has been evaluated. Forty-two Saudi RA patients and 40 healthy controls of both genders were included in this study. Serum levels of six different ROS and three different RNS were measured using specific fluorescent probes. The ROS included the hydroxyl radical ((•)OH), the superoxide anion (O2(•-)), hydrogen peroxide (H2O2), the singlet oxygen ((1)O2), the hypochlorite radical (OHCl(•)), and the peroxyl radical (ROO(•)). The RNS included nitric oxide (NO(•)), nitrogen dioxide (ONO-) and peroxynitrite (ONOO-). The main clinical and biochemical markers for disease activity were assessed and correlated with ROS and RNS levels. The clinical markers included the 28 swollen joint count (SJC-28), the 28-tender joint count (TJC-28), morning stiffness and symmetric arthritis, in addition to the disease activity score assessing 28 joints with erythrocyte sedimentation rate (DAS28-ESR). The biochemical markers included undercarboxylated osteocalcin (ucOC), matrix metalloproteinase (MMP-3), ESR, C-reactive protein (CRP), rheumatoid factor (RF) and anticyclic citrullinated polypeptide (Anti-CCP). Ascorbic acid (1mg/day) was added as an antioxidant to the regular treatment regimen of RA patients

  13. The hydroxypyridinone iron chelator CP94 increases methyl-aminolevulinate-based photodynamic cell killing by increasing the generation of reactive oxygen species

    Directory of Open Access Journals (Sweden)

    Yuktee Dogra

    2016-10-01

    Full Text Available Methyl-aminolevulinate-based photodynamic therapy (MAL-PDT is utilised clinically for the treatment of non-melanoma skin cancers and pre-cancers and the hydroxypyridinone iron chelator, CP94, has successfully been demonstrated to increase MAL-PDT efficacy in an initial clinical pilot study. However, the biochemical and photochemical processes leading to CP94-enhanced photodynamic cell death, beyond the well-documented increases in accumulation of the photosensitiser protoporphyrin IX (PpIX, have not yet been fully elucidated. This investigation demonstrated that MAL-based photodynamic cell killing of cultured human squamous carcinoma cells (A431 occurred in a predominantly necrotic manner following the generation of singlet oxygen and ROS. Augmenting MAL-based photodynamic cell killing with CP94 co-treatment resulted in increased PpIX accumulation, MitoSOX-detectable ROS generation (probably of mitochondrial origin and necrotic cell death, but did not affect singlet oxygen generation. We also report (to our knowledge, for the first time the detection of intracellular PpIX-generated singlet oxygen in whole cells via electron paramagnetic resonance spectroscopy in conjunction with a spin trap.

  14. Diurnal Variations of Emissions of O2 singlet Delta Near Mars' Northern Summer Solstice

    Science.gov (United States)

    Nosowitz, Jonathon; Ziobron, Elijah; Novak, Robert E.

    2017-10-01

    We are presenting results of O2 singlet Delta emission, a tracer for ozone, in the Martian atmosphere for observations taken before Mars’ Northern summer solstice (Ls = 88o, February 10, 2014 ). The data were taken using CSHELL on the NASA-IRTF telescope located on Mauna Kea in Hawaii. The slit was positioned east-west on Mars and we observed diurnal variations at 20o N and 60o N. Spectral/spatial images were taken with a spectral resolution above 38,000. Mars’ relative velocity of -16 km/s enabled us to separate the Martian emission lines from the telluric absorption lines. Raw images were cleaned by removing dead and hot pixels. The images were then adjusted so that the spatial dimension was perpendicular to the spectral dimension. Extracts at 0.6 arcsec spatial resolution were taken which allowed us to measure Martian emission peaks. The Martian data were calibrated by taking similar observations from a standard star (HR4689) using the temperature, wavelength, and intensity of the star to calibrate the flux density. A Boltzmann analysis was performed on the observed emission peaks to obtain the rotational temperature of the excited O2. From this, the total emission rates were obtained. We found that at both latitudinal locations, the greatest emissions occured between 12:00- 13:00 local time on Mars. The emission intensity increases during the morning hours and then decreases towards sunset. We thank the administration and staff of the NASA-IRTF for observation time and for their assistance during operations of the telescope. We also thank Drs. M. Mumma and G. Villanueva of the NASA Goddard Space Flight Center with whom we collaborate.

  15. Properties of reactive oxygen species by quantum Monte Carlo.

    Science.gov (United States)

    Zen, Andrea; Trout, Bernhardt L; Guidoni, Leonardo

    2014-07-07

    The electronic properties of the oxygen molecule, in its singlet and triplet states, and of many small oxygen-containing radicals and anions have important roles in different fields of chemistry, biology, and atmospheric science. Nevertheless, the electronic structure of such species is a challenge for ab initio computational approaches because of the difficulties to correctly describe the statical and dynamical correlation effects in presence of one or more unpaired electrons. Only the highest-level quantum chemical approaches can yield reliable characterizations of their molecular properties, such as binding energies, equilibrium structures, molecular vibrations, charge distribution, and polarizabilities. In this work we use the variational Monte Carlo (VMC) and the lattice regularized Monte Carlo (LRDMC) methods to investigate the equilibrium geometries and molecular properties of oxygen and oxygen reactive species. Quantum Monte Carlo methods are used in combination with the Jastrow Antisymmetrized Geminal Power (JAGP) wave function ansatz, which has been recently shown to effectively describe the statical and dynamical correlation of different molecular systems. In particular, we have studied the oxygen molecule, the superoxide anion, the nitric oxide radical and anion, the hydroxyl and hydroperoxyl radicals and their corresponding anions, and the hydrotrioxyl radical. Overall, the methodology was able to correctly describe the geometrical and electronic properties of these systems, through compact but fully-optimised basis sets and with a computational cost which scales as N(3) - N(4), where N is the number of electrons. This work is therefore opening the way to the accurate study of the energetics and of the reactivity of large and complex oxygen species by first principles.

  16. Composition Directed Generation of Reactive Oxygen Species in Irradiated Mixed Metal Sulfides Correlated with Their Photocatalytic Activities.

    Science.gov (United States)

    He, Weiwei; Jia, Huimin; Yang, Dongfang; Xiao, Pin; Fan, Xiaoli; Zheng, Zhi; Kim, Hyun-Kyung; Wamer, Wayne G; Yin, Jun-Jie

    2015-08-05

    The ability of nanostructures to facilitate the generation of reactive oxygen species and charge carriers underlies many of their chemical and biological activities. Elucidating which factors are essential and how these influence the production of various active intermediates is fundamental to understanding potential applications of these nanostructures, as well as potential risks. Using electron spin resonance spectroscopy coupled with spin trapping and spin labeling techniques, we assessed 3 mixed metal sulfides of varying compositions for their abilities to generate reactive oxygen species, photogenerate electrons, and consume oxygen during photoirradiation. We found these irradiated mixed metal sulfides exhibited composition dependent generation of ROS: ZnIn2S4 can generate (•)OH, O2(-•) and (1)O2; CdIn2S4 can produce O2(-•) and (1)O2, while AgInS2 only produces O2(-•). Our characterizations of the reactivity of the photogenerated electrons and consumption of dissolved oxygen, performed using spin labeling, showed the same trend in activity: ZnIn2S4 > CdIn2S4 > AgInS2. These intrinsic abilities to generate ROS and the reactivity of charge carriers correlated closely with the photocatalytic degradation and photoassisted antibacterial activities of these nanomaterials.

  17. Oxygen transport membrane

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention relates to a novel composite oxygen transport membrane as well as its preparation and uses thereof.......The present invention relates to a novel composite oxygen transport membrane as well as its preparation and uses thereof....

  18. Miniature oxygen resuscitator

    Science.gov (United States)

    Johnson, G.; Teegen, J. T.; Waddell, H.

    1969-01-01

    Miniature, portable resuscitation system is used during evacuation of patients to medical facilities. A carrying case contains a modified resuscitator head, cylinder of oxygen, two-stage oxygen regulator, low pressure tube, and a mask for mouth and nose.

  19. Cryptococcus neoformans and oxygen

    OpenAIRE

    Vladislav,Raclavsky

    2006-01-01

    Oxygen is essential to life of all organisms except for obligate anaerobic species, because it is necessary for energy generation and also for some biosynthetic pathways. However, sensitivity to low oxygen levels can vary widely in different organisms and cell types. The pathogenic yeast species Cryptococcus neoformans is known to love oxygen. In response to the lack of oxygen (hypoxia), this yeast delays budding without resigning DNA replication, which eventually results in unique cell cycle...

  20. Proterozoic atmospheric oxygen

    DEFF Research Database (Denmark)

    Canfield, Donald Eugene

    2014-01-01

    This article is concerned with the evolution of atmospheric oxygen concentrations through the Proterozoic Eon. In particular, this article will seek to place the history of atmospheric oxygenation through the Proterozoic Eon in the context of the evolving physical environment including the history...... of continental growth and volcanic outgassing, as well as biogeochemical processing of elements within the oceans. The author will seek to explore constraints on the history of oxygenation and understand which processes have regulated oxygen through this eon....

  1. Oxygen evolution reaction catalysis

    Science.gov (United States)

    Haber, Joel A.; Jin, Jian; Xiang, Chengxiang; Gregoire, John M.; Jones, Ryan J.; Guevarra, Dan W.; Shinde, Aniketa A.

    2016-09-06

    An Oxygen Evolution Reaction (OER) catalyst includes a metal oxide that includes oxygen, cerium, and one or more second metals. In some instances, the cerium is 10 to 80 molar % of the metals in the metal oxide and/or the catalyst includes two or more second metals. The OER catalyst can be included in or on an electrode. The electrode can be arranged in an oxygen evolution system such that the Oxygen Evolution Reaction occurs at the electrode.

  2. [Domiciliary oxygen therapy].

    Science.gov (United States)

    Abdel Kafi, S

    2010-09-01

    In Belgium, oxygen therapy is becoming more and more accessible. When oxygen is needed for short periods or for special indications as palliative care, an agreement between mutual insurance companies and pharmacists allows the practitioner the home installation of gazeous oxygen cylinder or of oxygen concentrator. When long term oxygen therapy (LTOT) is indicated for patients with respiratory insufficiency, the pneumologist must first ask the INAMI the authorization to install one of the following modalities: oxygen concentrator with or without demand oxygen delivery cylinder and liquid oxygen. The goal of LTOT is to increase survival and quality of life. The principal and well accepted indication for LTOT is severe hypoxemia. The beneficial effects of oxygen therapy limited at night or on exertion are controversial. In order to increase patient's autonomy, oxygen can be prescribed for ambulation, respecting prescription's rules. At each step of oxygen therapy implementing (indication, choice of the device and follow-up) the patient under oxygen may benefit from a joint approach between the general practitioner and the chest specialist.

  3. Oxygen sensitive microwells.

    Science.gov (United States)

    Sinkala, Elly; Eddington, David T

    2010-12-07

    Oxygen tension is critical in a number of cell pathways but is often overlooked in cell culture. One reason for this is the difficulty in modulating and assessing oxygen tensions without disturbing the culture conditions. Toward this end, a simple method to generate oxygen-sensitive microwells was developed through embossing polystyrene (PS) and platinum(ii) octaethylporphyrin ketone (PtOEPK) thin films. In addition to monitoring the oxygen tension, microwells were employed in order to isolate uniform clusters of cells in microwells. The depth and width of the microwells can be adapted to different experimental parameters easily by altering the thin film processing or embossing stamp geometries. The thin oxygen sensitive microwell substrate is also compatible with high magnification modalities such as confocal imaging. The incorporation of the oxygen sensor into the microwells produces measurements of the oxygen tension near the cell surface. The oxygen sensitive microwells were calibrated and used to monitor oxygen tensions of Madin-Darby Canine Kidney Cells (MDCKs) cultured at high and low densities as a proof of concept. Wells 500 µm in diameter seeded with an average of 330 cells exhibited an oxygen level of 12.6% whereas wells seeded with an average of 20 cells per well exhibited an oxygen level of 19.5%, a 35.7% difference. This platform represents a new tool for culturing cells in microwells in a format amenable to high magnification imaging while monitoring the oxygen state of the culture media.

  4. Nanoparticle Toxicity Mechanisms: Genotoxicity

    Science.gov (United States)

    Botta, Alain; Benameur, Laı̈la

    Despite the relatively small amount of convincing experimental data, the potentially genotoxic nature of certain nanoparticles seems plausible, owing in particular to the presence of reactive oxygen species (ROS) such as the superoxide anion O2 • - , the hydroxyl radical • OH, and singlet oxygen 1O2, and reactive nitrogen species (RNS) such as nitrogen monoxide NO, the peroxynitrite anion ONOO - , the peroxynitrite radical ONOO • , and dinitrogen trioxide N2O3, a powerful nitration agent.

  5. Gravitational waves from the first order electroweak phase transition in the Z3 symmetric singlet scalar model

    Science.gov (United States)

    Matsui, Toshinori

    2018-01-01

    Among various scenarios of baryon asymmetry of the Universe, electroweak baryogenesis is directly connected with physics of the Higgs sector. We discuss spectra of gravitational waves which are originated by the strongly first order phase transition at the electroweak symmetry breaking, which is required for a successful scenario of electroweak baryogenesis. In the Z3 symmetric singlet scalar model, the significant gravitational waves are caused by the multi-step phase transition. We show that the model can be tested by measuring the characteristic spectra of the gravitational waves at future interferometers such as LISA and DECIGO.

  6. Vibronic singlet and triplet steady-state interplay emissions in phenazine-based 1,2,3-triazole films

    Science.gov (United States)

    Costa, Bárbara B. A.; Souza, Paula D. C.; Gontijo, Rafael N.; Jardim, Guilherme A. M.; Moreira, Roberto L.; da Silva, Eufrânio N.; Cury, Luiz A.

    2018-03-01

    Photoluminescence and phosphorescence emissions of solid-state phenazine films were investigated in steady-state experimental conditions. Important discrepancies were observed for blended films where a host optically inert matrix was introduced to disperse the probe molecules. A vibronic spin-orbit phosphorescent emission clearly appeared, while for the films solely composed by the probe molecules, the phosphorescence broadened and presented a structureless shape, shifted to longer wavelengths. Further Arrhenius behavior analysis on the photoluminescent and phosphorescent emissions on temperature, corroborated the direct and reverse intersystem crossing interplay between singlet and triplet states. Molecular aggregation is responsible for the deterioration of non-blended triazole films phosphorescence.

  7. Singlet Diradical Complexes of Chromium, Molybdenum, and Tungsten with Azo Anion Radical Ligands from M(CO)6 Precursors

    Czech Academy of Sciences Publication Activity Database

    Sanyal, A.; Chatterjee, S.; Castineiras, A.; Sarkar, B.; Singh, P.; Fiedler, Jan; Záliš, Stanislav; Kaim, W.; Goswami, S.

    2007-01-01

    Roč. 46, č. 21 (2007), s. 8584-8593 ISSN 0020-1669 R&D Projects: GA ČR GA203/03/0822; GA MŠk OC 139; GA MŠk OC D15.10 Grant - others:Deutsche Forschungsgemeinschaft(DE) SR/S1/IC-24/2006 Institutional research plan: CEZ:AV0Z40400503 Source of funding: R - rámcový projekt EK Keywords : singlet diradical complexes * chromium * molybdenum * tungsten Subject RIV: CG - Electrochemistry Impact factor: 4.123, year: 2007

  8. Nuclear magnetic resonance in high magnetic fields: Study of singlet-ground-state due to 1-D quantum spin effect

    Science.gov (United States)

    Chiba, Meiro; Ajiro, Yoshitami; Satoh, Eiji; Kubo, Takeji

    1996-02-01

    In one-dimensional (1-D) magnets the singlet-ground-state (SGS) due to the quantum spin effect is one of the most interesting phenomena. The temperature and the field dependences of the proton spin-lattice relaxation under magnetic fields up to 15 T have been observed for SGS materials, namely, NENP (Haldane system) and CuCI 2(γ-picoline) 2 (alternating antiferromagnetic chain). The results clearly show the excitation of SGS with a characteristic energy gap in the magnetic excited state. The observed relaxation rate is discussed in terms of the number of magnetic excitons in focussing on the dissimilarity between two systems.

  9. Mechanisms of group A Streptococcus resistance to reactive oxygen species

    Science.gov (United States)

    Henningham, Anna; Döhrmann, Simon; Nizet, Victor; Cole, Jason N.

    2015-01-01

    Streptococcus pyogenes, also known as group A Streptococcus (GAS), is an exclusively human Gram-positive bacterial pathogen ranked among the ‘top 10’ causes of infection-related deaths worldwide. GAS commonly causes benign and self-limiting epithelial infections (pharyngitis and impetigo), and less frequent severe invasive diseases (bacteremia, toxic shock syndrome and necrotizing fasciitis). Annually, GAS causes 700 million infections, including 1.8 million invasive infections with a mortality rate of 25%. In order to establish an infection, GAS must counteract the oxidative stress conditions generated by the release of reactive oxygen species (ROS) at the infection site by host immune cells such as neutrophils and monocytes. ROS are the highly reactive and toxic byproducts of oxygen metabolism, including hydrogen peroxide (H2O2), superoxide anion (O2•−), hydroxyl radicals (OH•) and singlet oxygen (O2*), which can damage bacterial nucleic acids, proteins and cell membranes. This review summarizes the enzymatic and regulatory mechanisms utilized by GAS to thwart ROS and survive under conditions of oxidative stress. PMID:25670736

  10. Mechanisms of group A Streptococcus resistance to reactive oxygen species.

    Science.gov (United States)

    Henningham, Anna; Döhrmann, Simon; Nizet, Victor; Cole, Jason N

    2015-07-01

    Streptococcus pyogenes, also known as group A Streptococcus (GAS), is an exclusively human Gram-positive bacterial pathogen ranked among the 'top 10' causes of infection-related deaths worldwide. GAS commonly causes benign and self-limiting epithelial infections (pharyngitis and impetigo), and less frequent severe invasive diseases (bacteremia, toxic shock syndrome and necrotizing fasciitis). Annually, GAS causes 700 million infections, including 1.8 million invasive infections with a mortality rate of 25%. In order to establish an infection, GAS must counteract the oxidative stress conditions generated by the release of reactive oxygen species (ROS) at the infection site by host immune cells such as neutrophils and monocytes. ROS are the highly reactive and toxic byproducts of oxygen metabolism, including hydrogen peroxide (H2O2), superoxide anion (O2•(-)), hydroxyl radicals (OH•) and singlet oxygen (O2*), which can damage bacterial nucleic acids, proteins and cell membranes. This review summarizes the enzymatic and regulatory mechanisms utilized by GAS to thwart ROS and survive under conditions of oxidative stress. © FEMS 2015.

  11. Hypoxia switches episodic breathing to singlet breathing in red-eared slider turtles (Trachemys scripta) via a tropisetron-sensitive mechanism.

    Science.gov (United States)

    Johnson, Stephen M; Krisp, Ashley R; Bartman, Michelle E

    2015-02-01

    Hypoxia-induced changes in the chelonian breathing pattern are poorly understood. Thus, breathing was measured in freely swimming adult red-eared slider turtles breathing air prior to breathing nitrogen for 4h. Ventilation increased 10-fold within 10min due to increased breath frequency and tidal volume. Breaths/episode decreased by ∼50% within after 1h of hypoxia while the number of singlet breaths increased from 3.1±1.6singlets/h to a maximum of 66.1±23.5singlets/h. Expiratory and inspiratory duration increased during hypoxia. For doublet and triplet breaths, expiratory duration increased during the first breath only, while inspiratory duration increased for all breaths. Tropisetron (5-HT3 receptor antagonist, 5mg/kg) administration prior to hypoxia attenuated the hypoxia-induced increase in singlet breath frequency. Along with results from previous in vitro studies, this study suggests that 5-HT3 receptor activation may be required for the hypoxia-induced increase in singlet breathing pattern in red-eared slider turtles. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Hypoxia switches episodic breathing to singlet breathing in red-eared slider turtles (Trachemys scripta) via a tropisetron-sensitive mechanism

    Science.gov (United States)

    Johnson, Stephen M.; Krisp, Ashley R.; Bartman, Michelle E.

    2015-01-01

    Hypoxia-induced changes in the chelonian breathing pattern are poorly understood. Thus, breathing was measured in freely swimming adult red-eared slider turtles breathing air prior to breathing nitrogen for 4 h. Ventilation increased 10-fold within 10 min due to increased breath frequency and tidal volume. Breaths/episode decreased by ~50% within after 1 h of hypoxia while the number of singlet breaths increased from 3.1 ± 1.6 singlets/h to a maximum of 66.1 ± 23.5 singlets/h. Expiratory and inspiratory duration increased during hypoxia. For doublet and triplet breaths, expiratory duration increased during the first breath only, while inspiratory duration increased for all breaths. Tropisetron (5-HT3 receptor antagonist, 5 mg/kg) administration prior to hypoxia attenuated the hypoxia-induced increase in singlet breath frequency. Along with results from previous in vitro studies, this study suggests that 5-HT3 receptor activation may be required for the hypoxia-induced increase in singlet breathing pattern in red-eared slider turtles. PMID:25543027

  13. Dosimetry study of PHOTOFRIN-mediated photodynamic therapy in a mouse tumor model

    Science.gov (United States)

    Qiu, Haixia; Kim, Michele M.; Penjweini, Rozhin; Zhu, Timothy C.

    2016-03-01

    It is well known in photodynamic therapy (PDT) that there is a large variability between PDT light dose and therapeutic outcomes. An explicit dosimetry model using apparent reacted 1O2 concentration [1O2]rx has been developed as a PDT dosimetric quantity to improve the accuracy of the predicted ability of therapeutic efficacy. In this study, this explicit macroscopic singlet oxygen model was adopted to establish the correlation between calculated reacted [1O2]rx and the tumor growth using Photofrin-mediated PDT in a mouse tumor model. Mice with radiation-induced fibrosarcoma (RIF) tumors were injected with Photofrin at a dose of 5 mg/kg. PDT was performed 24h later with different fluence rates (50, 75 and 150 mW/cm2) and different fluences (50 and 135 J/cm2) using a collimated light applicator coupled to a 630nm laser. The tumor volume was monitored daily after PDT and correlated with the total light fluence and [1O2]rx. Photophysical parameters as well as the singlet oxygen threshold dose for this sensitizer and the RIF tumor model were determined previously. The result showed that tumor growth rate varied greatly with light fluence for different fluence rates while [1O2]rx had a good correlation with the PDT-induced tumor growth rate. This preliminary study indicated that [1O2]rx could serve as a better dosimetric predictor for predicting PDT outcome than PDT light dose.

  14. The origin for increase of magnetic moment of Co in Co-doped SnO{sub 2} with oxygen vacancies

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hongxia; Zong, Zhaocun; Li, Peng [College of Mathematics, Physics, and Information Science, Zhejiang Ocean University, Zhoushan (China); Yan, Yu [State Key Laboratory of Superhard Materials, Department of Physics, Jilin University, Changchun (China)

    2011-12-15

    In Co-doped SnO{sub 2} fivefold degenerate Co-3d states split into five singlet states. The magnetic moment of Co is mainly contributed by the spin polarization of Co-d{sub xy} states. The introduction of oxygen vacancies largely increases the magnetic moment of Co. The increase of Co magnetic moment is caused by the conversion of spin-spin coupling between Co and its neighboring O atoms from antiparallel to parallel, which attributes to the hybridization and electrons transfer between oxygen vacancy impurity states and Co-3d states. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Equal-Spin Andreev Reflection on Junctions of Spin-Resolved Quantum Hall Bulk State and Spin-Singlet Superconductor.

    Science.gov (United States)

    Matsuo, Sadashige; Ueda, Kento; Baba, Shoji; Kamata, Hiroshi; Tateno, Mizuki; Shabani, Javad; Palmstrøm, Christopher J; Tarucha, Seigo

    2018-02-22

    The recent development of superconducting spintronics has revealed the spin-triplet superconducting proximity effect from a spin-singlet superconductor into a spin-polarized normal metal. In addition recently superconducting junctions using semiconductors are in demand for highly controlled experiments to engineer topological superconductivity. Here we report experimental observation of Andreev reflection in junctions of spin-resolved quantum Hall (QH) states in an InAs quantum well and the spin-singlet superconductor NbTi. The measured conductance indicates a sub-gap feature and two peaks on the outer side of the sub-gap feature in the QH plateau-transition regime increases. The observed structures can be explained by considering transport with Andreev reflection from two channels, one originating from equal-spin Andreev reflection intermediated by spin-flip processes and second arising from normal Andreev reflection. This result indicates the possibility to induce the superconducting proximity gap in the the QH bulk state, and the possibility for the development of superconducting spintronics in semiconductor devices.

  16. Singlet and Triplet Excitation Management in a Bichromophoric Near-Infrared-Phosphorescent BODIPY-Benzoporphyrin Platinum Complex

    KAUST Repository

    Whited, Matthew T.

    2011-01-12

    Multichromophoric arrays provide one strategy for assembling molecules with intense absorptions across the visible spectrum but are generally focused on systems that efficiently produce and manipulate singlet excitations and therefore are burdened by the restrictions of (a) unidirectional energy transfer and (b) limited tunability of the lowest molecular excited state. In contrast, we present here a multichromophoric array based on four boron dipyrrins (BODIPY) bound to a platinum benzoporphyrin scaffold that exhibits intense panchromatic absorption and efficiently generates triplets. The spectral complementarity of the BODIPY and porphryin units allows the direct observation of fast bidirectional singlet and triplet energy transfer processes (k ST(1BDP→1Por) = 7.8×1011 s-1, kTT(3Por→3BDP) = 1.0×1010 s-1, kTT(3BDP→ 3Por) = 1.6×1010 s-1), leading to a long-lived equilibrated [3BDP][Por]=[BDP][3Por] state. This equilibrated state contains approximately isoenergetic porphyrin and BODIPY triplets and exhibits efficient near-infrared phosphorescence (λem = 772 nm, φ = 0.26). Taken together, these studies show that appropriately designed triplet-utilizing arrays may overcome fundamental limitations typically associated with core-shell chromophores by tunable redistribution of energy from the core back onto the antennae. © 2010 American Chemical Society.

  17. Direct and indirect singlet scalar dark matter detection in the lepton-specific two-Higgs-doublet model

    International Nuclear Information System (INIS)

    Boucenna, M. S.; Profumo, S.

    2011-01-01

    A recent study of gamma-ray data from the Galactic center motivates the investigation of light (∼7-10 GeV) particle dark matter models featuring tau-lepton pairs as dominant annihilation final state. The lepton-specific two-Higgs-doublet model provides a natural framework where light, singlet scalar dark matter can pair-annihilate dominantly into tau leptons. We calculate the nucleon-dark matter cross section for singlet scalar dark matter within the lepton-specific two-Higgs-doublet model framework, and compare with recent results from direct detection experiments. We study how direct dark matter searches can be used to constrain the dark matter interpretation of gamma-ray observations, for different dominant annihilation final states. We show that models exist with the correct thermal relic abundance that could fit the claimed gamma-ray excess from the Galactic center region and have direct detection cross sections of the order of what is needed to interpret recent anomalous events reported by direct detection experiments.

  18. The 3-loop pure singlet heavy flavor contributions to the structure function F2(x,Q2 and the anomalous dimension

    Directory of Open Access Journals (Sweden)

    J. Ablinger

    2015-01-01

    Full Text Available The pure singlet asymptotic heavy flavor corrections to 3-loop order for the deep-inelastic scattering structure function F2(x,Q2 and the corresponding transition matrix element AQq(3,PS in the variable flavor number scheme are computed. In Mellin-N space these inclusive quantities depend on generalized harmonic sums. We also recalculate the complete 3-loop pure singlet anomalous dimension for the first time. Numerical results for the Wilson coefficients, the operator matrix element and the contribution to the structure function F2(x,Q2 are presented.

  19. Theory of singlet-ground-state magnetism. Application to field-induced transitions in CsFeCl3 and CsFeBr3

    DEFF Research Database (Denmark)

    Lindgård, P.-A.; Schmid, B.

    1993-01-01

    In the singlet ground-state systems CsFeCl3 and CsFeBr3 a large single-ion anisotropy causes a singlet ground state and a doubly degenerate doublet as the first excited states of the Fe2+ ion. In addition the magneteic interaction is anisotropic being much larger along the z axis than perpendicular...... to it. Therefore, these quasi-one-dimensional magnetic model systems are ideal to demonstrate unique correlation effects. Within the framework of the correlation theory we derive the expressions for the excitation spectrum. When a magnetic field is applied parallel to the z axis both substances have...

  20. Ambient oxygen promotes tumorigenesis.

    Directory of Open Access Journals (Sweden)

    Ho Joong Sung

    2011-05-01

    Full Text Available Oxygen serves as an essential factor for oxidative stress, and it has been shown to be a mutagen in bacteria. While it is well established that ambient oxygen can also cause genomic instability in cultured mammalian cells, its effect on de novo tumorigenesis at the organismal level is unclear. Herein, by decreasing ambient oxygen exposure, we report a ∼50% increase in the median tumor-free survival time of p53-/- mice. In the thymus, reducing oxygen exposure decreased the levels of oxidative DNA damage and RAG recombinase, both of which are known to promote lymphomagenesis in p53-/- mice. Oxygen is further shown to be associated with genomic instability in two additional cancer models involving the APC tumor suppressor gene and chemical carcinogenesis. Together, these observations represent the first report directly testing the effect of ambient oxygen on de novo tumorigenesis and provide important physiologic evidence demonstrating its critical role in increasing genomic instability in vivo.