Sample records for single-structure array presents

  1. Positions priming in briefly presented search arrays

    DEFF Research Database (Denmark)

    Asgeirsson, Arni Gunnar; Kristjánsson, Árni; Kyllingsbæk, Søren


    Repetition priming in visual search has been a topic of extensive research since Maljkovic & Nakayama [1994, Memory & Cognition, 22, 657-672] presented the first detailed studies of such effects. Their results showed large reductions in reaction times when target color was repeated on consecutive...... the targets are oddly colored alphanumeric characters. The effects arise at very low exposure durations and benefit accuracy at all exposure durations towards the subjects’ ceiling. We conclude that temporally constricted experimental conditions can add to our understanding priming in visual search...... pop-out search trials. Such repetition effects have since been generalized to a multitude of target attributes. Priming has primarily been investigated using self-terminating visual search paradigms, comparing differences in response times. Response accuracy has predominantly served as a control...

  2. Uncooled Terahertz real-time imaging 2D arrays developed at LETI: present status and perspectives (United States)

    Simoens, François; Meilhan, Jérôme; Dussopt, Laurent; Nicolas, Jean-Alain; Monnier, Nicolas; Sicard, Gilles; Siligaris, Alexandre; Hiberty, Bruno


    As for other imaging sensor markets, whatever is the technology, the commercial spread of terahertz (THz) cameras has to fulfil simultaneously the criteria of high sensitivity and low cost and SWAP (size, weight and power). Monolithic silicon-based 2D sensors integrated in uncooled THz real-time cameras are good candidates to meet these requirements. Over the past decade, LETI has been studying and developing such arrays with two complimentary technological approaches, i.e. antenna-coupled silicon bolometers and CMOS Field Effect Transistors (FET), both being compatible to standard silicon microelectronics processes. LETI has leveraged its know-how in thermal infrared bolometer sensors in developing a proprietary architecture for THz sensing. High technological maturity has been achieved as illustrated by the demonstration of fast scanning of large field of view and the recent birth of a commercial camera. In the FET-based THz field, recent works have been focused on innovative CMOS read-out-integrated circuit designs. The studied architectures take advantage of the large pixel pitch to enhance the flexibility and the sensitivity: an embedded in-pixel configurable signal processing chain dramatically reduces the noise. Video sequences at 100 frames per second using our 31x31 pixels 2D Focal Plane Arrays (FPA) have been achieved. The authors describe the present status of these developments and perspectives of performance evolutions are discussed. Several experimental imaging tests are also presented in order to illustrate the capabilities of these arrays to address industrial applications such as non-destructive testing (NDT), security or quality control of food.

  3. Wave path calculation for phased array imaging to evaluate weld zone of elbow pipes (Conference Presentation) (United States)

    Park, Choon-Su; Park, Jin Kyu; Choi, Wonjae; Cho, Seunghyun; Kim, Dong-Yeol; Han, Ki Hyung


    It has long been non-destructively evaluated on weld joints of various pipes which are indispensable to most of industrial structures. Ultrasound evaluation has been used to detect flaws in welding joints, but some technical deficiencies still remain. Especially, ultrasound imaging on weld of elbow pipes has many challenging issues due to varying surface along circumferential direction. Conventional ultrasound imaging has particularly focused on ultrasonic wave propagation based on ray theory. This confines the incident angle and the position of an array transducer as well. Total focusing method (TFM), however, can provide not only high resolution images but also flexibility that enables to use ultrasonic waves to every direction that they can reach. This leads us to develop a method to get images of weld zone from an elbow part that curves. It is inevitable of each ultrasonic wave from the array transducer to transmit through different media and to be reflected from the boundary with angles along the curved surface. To form a correct PA image, careful calculation is made to ensure that time delay of receive-after-transmit is correctly shifted and summed even under non-planar boundary condition. Here, a method to calculate wave paths for the zone of interest at weld joint of an elbow pipe is presented. Numerical simulations of wave propagation on an elbow pipe are made to verify the proposed method. It is also experimentally demonstrated that the proposed method is well applied to various actual pipes that contains artificial flaws with a flexible wedge.

  4. Ordering and thermal excitations in dipolar coupled single domain magnet arrays (Presentation Recording) (United States)

    Östman, Erik; Arnalds, Unnar; Kapaklis, Vassilios; Hjörvarsson, Björgvin


    For a small island of a magnetic material the magnetic state of the island is mainly determined by the exchange interaction and the shape anisotropy. Two or more islands placed in close proximity will interact through dipolar interactions. The state of a large system will thus be dictated by interactions at both these length scales. Enabling internal thermal fluctuations, e.g. by the choice of material, of the individual islands allows for the study of thermal ordering in extended nano-patterned magnetic arrays [1,2]. As a result nano-magnetic arrays represent an ideal playground for the study of physical model systems. Here we present three different studies all having used magneto-optical imaging techniques to observe, in real space, the order of the systems. The first study is done on a square lattice of circular islands. The remanent magnetic state of each island is a magnetic vortex structure and we can study the temperature dependence of the vortex nucleation and annihilation fields [3]. The second are long chains of dipolar coupled elongated islands where the magnetization direction in each island only can point in one of two possible directions. This creates a system which in many ways mimics the Ising model [4] and we can relate the correlation length to the temperature. The third one is a spin ice system where elongated islands are placed in a square lattice. Thermal excitations in such systems resemble magnetic monopoles [2] and we can investigate their properties as a function of temperature and lattice parameters. [1] V. Kapaklis et al., New J. Phys. 14, 035009 (2012) [2] V. Kapaklis et al., Nature Nanotech 9, 514(2014) [3] E. Östman et al.,New J. Phys. 16, 053002 (2014) [4] E. Östman et al.,Thermal ordering in mesoscopic Ising chains, In manuscript.

  5. Stimulus induced high frequency oscillations are present in neuronal networks on microelectrode arrays.

    Directory of Open Access Journals (Sweden)

    Chadwick M Hales


    Full Text Available Pathological high frequency oscillations (250-600Hz are present in the brains of epileptic animals and humans. The etiology of these oscillations and how they contribute to the diseased state remains unclear. This work identifies the presence of microstimulation-evoked high frequency oscillations (250-400Hz in dissociated neuronal networks cultured on microelectrode arrays (MEAs. Oscillations are more apparent with higher stimulus voltages. As with in vivo studies, activity is isolated to a single electrode, however the MEA provides improved spatial resolution with no spread of the oscillation to adjacent electrodes 200µm away. Oscillations develop across 4 weeks in vitro. Oscillations still occur in the presence of tetrodotoxin and synaptic blockers, and they cause no apparent disruption in the ability of oscillation-presenting electrodes to elicit directly evoked action potentials (dAPs or promote the spread of synaptic activity throughout the culture. Chelating calcium with ethylene glycol tetraacetic acid (EGTA causes a temporal prolongation of the oscillation. Finally, carbenoxolone significantly reduces or eliminates the high frequency oscillations. Gap junctions may play a significant role in maintaining the oscillation given the inhibitory effect of carbenoxolone, the propagating effect of reduced calcium conditions and the isolated nature of the activity as demonstrated in previous studies. This is the first demonstration of stimulus evoked high frequency oscillations in dissociated cultures. Unlike current models that rely on complex in vivo recording conditions, this work presents a simple controllable model in neuronal cultures on MEAs to further investigate how the oscillations occur at the molecular level and how they may contribute to the pathophysiology of disease.

  6. A force sensor using nanowire arrays to understand biofilm formation (Conference Presentation) (United States)

    Sahoo, Prasana K.; Cavalli, Alessandro; Pelegati, Vitor B.; Murillo, Duber M.; Souza, Alessandra A.; Cesar, Carlos L.; Bakkers, Erik P. A. M.; Cotta, Monica A.


    Understanding the cellular signaling and function at the nano-bio interface can pave the way towards developing next-generation smart diagnostic tools. From this perspective, limited reports detail so far the cellular and subcellular forces exerted by bacterial cells during the interaction with abiotic materials. Nanowire arrays with high aspect ratio have been used to detect such small forces. In this regard, live force measurements were performed ex-vivo during the interaction of Xylella fastidiosa bacterial cells with InP nanowire arrays. The influence of nanowire array topography and surface chemistry on the response and motion of bacterial cells was studied in detail. The nanowire arrays were also functionalized with different cell adhesive promoters, such as amines and XadA1, an afimbrial protein of X.fastidiosa. By employing the well-defined InP nanowire arrays platform, and single cell confocal imaging system, we were able to trace the bacterial growth pattern, and show that their initial attachment locations are strongly influenced by the surface chemistry and nanoscale surface topography. In addition, we measure the cellular forces down to few nanonewton range using these nanowire arrays. In case of nanowire functionalized with XadA1, the force exerted by vertically and horizontally attached single bacteria on the nanowire is in average 14% and 26% higher than for the pristine array, respectively. These results provide an excellent basis for live-cell force measurements as well as unravel the range of forces involved during the early stages of bacterial adhesion and biofilm formation.

  7. Optical meta-films of alumina nanowire arrays for solar evaporation and optoelectronic devices (Conference Presentation) (United States)

    Kim, Kyoungsik; Bae, Kyuyoung; Kang, Gumin; Baek, Seunghwa


    Nanowires with metallic or dielectric materials have received considerable interest in many research fields for optical and optoelectronic devices. Metal nanowires have been extensively studied due to the high optical and electrical properties and dielectric nanowires are also investigated owing to the multiple scattering of light. In this research, we report optical meta-films of alumina nanowire arrays with nanometer scale diameters by fabrication method of self-aggregate process. The aluminum oxide nanowires are transparent from ultraviolet to near infrared wavelength regions and array structures have strong diffusive light scattering. We integrate those optical properties from the material and structure, and produce efficient an optical haze meta-film which has high transparency and transmission haze at the same time. The film enhances efficiencies of optical devices by applying on complete products, such as organic solar cells and LEDs, because of an expanded optical path length and light trapping in active layers maintaining high transparency. On the other hands, the meta-film also produces solar steam by sputtering metal on the aluminum oxide nanowire arrays. The nanowire array film with metal coating exhibits ultrabroadband light absorption from ultraviolet to mid-infrared range which is caused by nanofocusing of plasmons. The meta-film efficiently produces water steam under the solar light by metal-coated alumina arrays which have high light-to-heat conversion efficiency. The design, fabrication, and evaluation of our light management platforms and their applications of the meta-films will be introduced.

  8. Array-CGH analysis in Rwandan patients presenting development delay/intellectual disability with multiple congenital anomalies. (United States)

    Uwineza, Annette; Caberg, Jean-Hubert; Hitayezu, Janvier; Hellin, Anne Cecile; Jamar, Mauricette; Dideberg, Vinciane; Rusingiza, Emmanuel K; Bours, Vincent; Mutesa, Leon


    Array-CGH is considered as the first-tier investigation used to identify copy number variations. Right now, there is no available data about the genetic etiology of patients with development delay/intellectual disability and congenital malformation in East Africa. Array comparative genomic hybridization was performed in 50 Rwandan patients with development delay/intellectual disability and multiple congenital abnormalities, using the Agilent's 180 K microarray platform. Fourteen patients (28%) had a global development delay whereas 36 (72%) patients presented intellectual disability. All patients presented multiple congenital abnormalities. Clinically significant copy number variations were found in 13 patients (26%). Size of CNVs ranged from 0,9 Mb to 34 Mb. Six patients had CNVs associated with known syndromes, whereas 7 patients presented rare genomic imbalances. This study showed that CNVs are present in African population and show the importance to implement genetic testing in East-African countries.

  9. Reconfigurable laser arrays with capillary fill microfluidics for chip-based flow cytometry (Conference Presentation) (United States)

    Thomas, Robert


    Low cost, portable chip based flow cytometry has great potential for applications in resource poor and point of care settings. Typical approaches utilise low cost silicon or glass substrates with light emission and detection performed either off-chip using external equipment or incorporated on-chip using `pick and place' diode lasers and photo-detectors. The former approach adds cost and limits portability while the sub-micron alignment tolerances imposed by the application make the latter impractical for all but the simplest of systems. Use of an optically active semiconductor substrate, on the other hand, overcomes these limitations by allowing multiple laser/detector arrays to be formed in the substrate itself using high resolution lithographic techniques. The capacity for multiple emitters and detectors on a single chip not only enables parallel measurement for increased throughput but also allows multiple measurements to be performed on each cell as it passes through the system. Several different experiments can be performed simultaneously and throughput demand can be reduced with the facility for error checking. Furthermore, the fast switching times inherent with semiconductor lasers allows the active sections of the device to be reconfigured on a sub-microsecond time scale providing additional functionality. This is demonstrated here in a capillary fill system using pairs of laser/detectors that are operated in pulsed mode and alternated between lasing and detecting in an interleaved manner. Passing cells are alternately interrogated from opposing directions providing information that can be used to correct for differences in lateral cell position and ultimately differentiate blood cell type.

  10. Array-CGH analysis in Rwandan patients presenting development delay/intellectual disability with multiple congenital anomalies (United States)


    Background Array-CGH is considered as the first-tier investigation used to identify copy number variations. Right now, there is no available data about the genetic etiology of patients with development delay/intellectual disability and congenital malformation in East Africa. Methods Array comparative genomic hybridization was performed in 50 Rwandan patients with development delay/intellectual disability and multiple congenital abnormalities, using the Agilent’s 180 K microarray platform. Results Fourteen patients (28%) had a global development delay whereas 36 (72%) patients presented intellectual disability. All patients presented multiple congenital abnormalities. Clinically significant copy number variations were found in 13 patients (26%). Size of CNVs ranged from 0,9 Mb to 34 Mb. Six patients had CNVs associated with known syndromes, whereas 7 patients presented rare genomic imbalances. Conclusion This study showed that CNVs are present in African population and show the importance to implement genetic testing in East-African countries. PMID:25016475

  11. Scalable, epitaxy-free fabrication of super-absorbing sparse III-V nanowire arrays for photovoltaic applications (Conference Presentation) (United States)

    Cheng, Wen-Hui; Fountaine, Katherine T.; Bukowsky, Colton R.; Atwater, Harry A.


    III-V compound semiconductor nanowire arrays are promising candidates for photovoltaics applications due to their high volumetric absorption. Uniform nanowire arrays exhibit high absorption at certain wavelengths due to strong coupling into lossy waveguide modes. Previously, simulations predicted near-unity, broadband absorption in sparse semiconductor nanowire arrays (Polymer-embedded wires are removed from the bulk InP substrate by a mechanical method that facilitates extensive reuse of a single bulk InP wafer to synthesize many polymer-embedded nanowire array thin films. Arrays containing multiple nanowire radii and tapered nanowires were successfully fabricated. For both designs, the polymer-embedded arrays achieved 90% broadband absorption (λ=400-900 nm) in less than 100 nm planar equivalence of InP. The addition of a silver back reflector increased this broadband absorption to 95%. The repeatable process of imprinting, etching and peeling to obtain many nanowire arrays from one single wafer represents an economical manufacturing route for high efficiency III-V photovoltaics. [1] K.T. Fountaine, C.G. Kendall, Harry A. Atwater, "Near-unity broadband absorption designs for semiconducting nanowire arrays via localized radial mode excitation," Opt. Exp. (2014).

  12. Single nucleotide polymorphism array lesions, TET2, DNMT3A, ASXL1 and CBL mutations are present in systemic mastocytosis.

    Directory of Open Access Journals (Sweden)

    Fabiola Traina

    Full Text Available We hypothesized that analysis of single nucleotide polymorphism arrays (SNP-A and new molecular defects may provide new insight in the pathogenesis of systemic mastocytosis (SM. SNP-A karyotyping was applied to identify recurrent areas of loss of heterozygosity and bidirectional sequencing was performed to evaluate the mutational status of TET2, DNMT3A, ASXL1, EZH2, IDH1/IDH2 and the CBL gene family. Overall survival (OS was analyzed using the Kaplan-Meier method. We studied a total of 26 patients with SM. In 67% of SM patients, SNP-A karyotyping showed new chromosomal abnormalities including uniparental disomy of 4q and 2p spanning TET2/KIT and DNMT3A. Mutations in TET2, DNMT3A, ASXL1 and CBL were found in 23%, 12%, 12%, and 4% of SM patients, respectively. No mutations were observed in EZH2 and IDH1/IDH2. Significant differences in OS were observed for SM mutated patients grouped based on the presence of combined TET2/DNMT3A/ASXL1 mutations independent of KIT (P = 0.04 and sole TET2 mutations (P<0.001. In conclusion, TET2, DNMT3A and ASXL1 mutations are also present in mastocytosis and these mutations may affect prognosis, as demonstrated by worse OS in mutated patients.

  13. Multi-view Hilbert transformation in full-ring-transducer-array based photoacoustic computed tomography (Conference Presentation) (United States)

    Li, Lei; Li, Guo; Zhu, Liren; Xia, Jun; Wang, Lihong V.


    Photoacoustic tomography (PAT) exploits optical contrast and ultrasonic detection principles to form images of absorbed optical energy density within tissue. Based on the photoacoustic effect, PAT directly and quantitatively measures specific optical absorption. A full-ring ultrasonic transducer array based photoacoustic computed tomography (PACT) system was recently developed for small animal whole-body imaging with a full-view detection angle and high in-plane resolution (100 µm). However, due to the band-pass frequency response of the piezoelectric transducer elements, the reconstructed images present bipolar (both positive and negative) pixel values, which is artificial and counterintuitive for physicians and biologists seeking to interpret the image. Moreover, bipolar pixel values hinder quantification of physiological parameters, such as oxygen saturation and blood flow speed. Unipolar images can be obtained by deconvolving the raw channel data with the transducer's electrical impulse response and applying non-negativity during iteration, but this process requires complex transducer modeling and time-consuming computation. Here, we present a multi-view Hilbert transformation method to recover the unipolar initial pressure for full-ring PACT. Multi-view Hilbert transformation along the acoustic wave propagation direction minimizes reconstruction artifacts during envelope extraction and maintains the signal-to-noise ratio of the reconstructed images. The in-plane isotropic spatial resolution of this method was quantified to 168 μm within a 20 × 20 mm2 field of view. The effectiveness of the proposed algorithm was first validated by numerical simulations and then demonstrated with ex-vivo mouse brain structural imaging and in-vivo mouse wholebody imaging.

  14. Diabetes Insipidus as an Initial Presentation of Myelodysplastic Syndrome: Diagnosis with Single-Nucleotide Polymorphism Array-Based Karyotyping. (United States)

    Sun, Ruixue; Wang, Chun; Zhong, Xushu; Wu, Yu


    Myelodysplastic syndrome (MDS) is a group of clonal hematopoietic diseases characterized by cytopenia, dysplasia and increased risk of development to acute myeloid leukemia (AML). Unfavorable cytogenetic changes such as complex karyotypes or chromosome 7 anomalies are predictive of the progression to AML and poor prognosis. Central diabetes insipidus (CDI) is the result of a deficiency of arginine vasopressin, and its major causes are idiopathic, primary or secondary tumors, neurosurgery and trauma. Importantly, CDI is a rare complication of MDS. To date, only 5 cases of MDS co-occurring with CDI have been reported; 3 of 5 had cytogenetic abnormalities uncovered by metaphase cytogenetics and 3 of 5 evolved to AML. Here, we describe a 74-year-old woman who presented with CDI as her initial symptom of MDS and eventually progressed to AML. The metaphase cytogenetics, combined with the single-nucleotide polymorphism array (SNP-A)-based karyotyping, with superiority in resolution and detecting copy number variation, revealed a complex karyotype that included monosomy of chromosome 7, deletion of 20q, and absence of heterogeneity (AOH) in more than one chromosome. To the best of our knowledge, this is the first case report of MDS co-occurring with CDI with numerous cytogenetic abnormalities revealed by the SNP-A-based karyotyping. Our case supports that the cytogenetic abnormalities may be associated with the clinical features and the prognosis of MDS co-occurring with CDI. The SNP-A-based karyotyping is helpful in revealing more subtle cytogenetic abnormalities and unveiling their roles in the pathogenesis of MDS.

  15. Presentations

    International Nuclear Information System (INIS)


    The presented materials consist of presentations of international workshop which held in Warsaw from 4 to 5 October 2007. Main subject of the meeting was progress in manufacturing as well as research program development for neutron detector which is planned to be placed at GANIL laboratory and will be used in nuclear spectroscopy research

  16. Presentations

    International Nuclear Information System (INIS)


    The PARIS meeting held in Cracow, Poland from 14 to 15 May 2007. The main subjects discussed during this meeting were the status of international project dedicated to gamma spectroscopy research. The scientific research program includes investigations of giant dipole resonance, probe of hot nuclei induced in heavy reactions, Jacobi shape transitions, isospin mixing and nuclear multifragmentation. The mentioned programme needs Rand D development such as new scintillations materials as lanthanum chlorides and bromides as well as new photo detection sensors as avalanche photodiodes - such subjects are also subjects of discussion. Additionally results of computerized simulations of scintillation detectors properties by means of GEANT- 4 code are presented

  17. Presentation

    Directory of Open Access Journals (Sweden)

    Eduardo Vicente


    Full Text Available In the present edition of Significação – Scientific Journal for Audiovisual Culture and in the others to follow something new is brought: the presence of thematic dossiers which are to be organized by invited scholars. The appointed subject for the very first one of them was Radio and the invited scholar, Eduardo Vicente, professor at the Graduate Course in Audiovisual and at the Postgraduate Program in Audiovisual Media and Processes of the School of Communication and Arts of the University of São Paulo (ECA-USP. Entitled Radio Beyond Borders the dossier gathers six articles and the intention of reuniting works on the perspectives of usage of such media as much as on the new possibilities of aesthetical experimenting being build up for it, especially considering the new digital technologies and technological convergences. It also intends to present works with original theoretical approach and original reflections able to reset the way we look at what is today already a centennial media. Having broadened the meaning of “beyond borders”, four foreign authors were invited to join the dossier. This is the first time they are being published in this country and so, in all cases, the articles where either written or translated into Portuguese.The dossier begins with “Radio is dead…Long live to the sound”, which is the transcription of a thought provoking lecture given by Armand Balsebre (Autonomous University of Barcelona – one of the most influential authors in the world on the Radio study field. It addresses the challenges such media is to face so that it can become “a new sound media, in the context of a new soundscape or sound-sphere, for the new listeners”. Andrew Dubber (Birmingham City University regarding the challenges posed by a Digital Era argues for a theoretical approach in radio studies which can consider a Media Ecology. The author understands the form and discourse of radio as a negotiation of affordances and

  18. Array capabilities and future arrays

    International Nuclear Information System (INIS)

    Radford, D.


    Early results from the new third-generation instruments GAMMASPHERE and EUROGAM are confirming the expectation that such arrays will have a revolutionary effect on the field of high-spin nuclear structure. When completed, GAMMASHPERE will have a resolving power am order of magnitude greater that of the best second-generation arrays. When combined with other instruments such as particle-detector arrays and fragment mass analysers, the capabilites of the arrays for the study of more exotic nuclei will be further enhanced. In order to better understand the limitations of these instruments, and to design improved future detector systems, it is important to have some intelligible and reliable calculation for the relative resolving power of different instrument designs. The derivation of such a figure of merit will be briefly presented, and the relative sensitivities of arrays currently proposed or under construction presented. The design of TRIGAM, a new third-generation array proposed for Chalk River, will also be discussed. It is instructive to consider how far arrays of Compton-suppressed Ge detectors could be taken. For example, it will be shown that an idealised open-quote perfectclose quotes third-generation array of 1000 detectors has a sensitivity an order of magnitude higher again than that of GAMMASPHERE. Less conventional options for new arrays will also be explored

  19. Coupling in reflector arrays

    DEFF Research Database (Denmark)

    Appel-Hansen, Jørgen


    In order to reduce the space occupied by a reflector array, it is desirable to arrange the array antennas as close to each other as possible; however, in this case coupling between the array antennas will reduce the reflecting properties of the reflector array. The purpose of the present communic......In order to reduce the space occupied by a reflector array, it is desirable to arrange the array antennas as close to each other as possible; however, in this case coupling between the array antennas will reduce the reflecting properties of the reflector array. The purpose of the present...

  20. Modal Analysis of a Single-Structure Multiaxis MEMS Gyroscope

    Directory of Open Access Journals (Sweden)

    Muhammad Ali Shah


    Full Text Available This paper reports on designing a single-structure triaxes MEMS capacitive gyroscope which is capable of measuring the three angular velocities on a single drive. A Z-shaped beam for the support of folded coupling spring has been applied to suppress the unwanted mode and decrease the stress effect at the spring ends. The unique coupling spring has changed the driving motion, due to which slide film damping in the driving mode has been reduced. This reduction can lead to higher performance of the sensor with less requirements on vacuum level which decreases the cost of fabrication. Simulation analysis has been performed in COMSOL Multiphysics and Matlab Simulink to finalize the design for fabrication. After finite element analysis, the driving, x-sensing, z-sensing, and y-sensing are, respectively, found to be 13.30 KHz, 13.40 KHz, 13.47 KHz, and 13.51 KHz.

  1. Filter arrays

    Energy Technology Data Exchange (ETDEWEB)

    Page, Ralph H.; Doty, Patrick F.


    The various technologies presented herein relate to a tiled filter array that can be used in connection with performance of spatial sampling of optical signals. The filter array comprises filter tiles, wherein a first plurality of filter tiles are formed from a first material, the first material being configured such that only photons having wavelengths in a first wavelength band pass therethrough. A second plurality of filter tiles is formed from a second material, the second material being configured such that only photons having wavelengths in a second wavelength band pass therethrough. The first plurality of filter tiles and the second plurality of filter tiles can be interspersed to form the filter array comprising an alternating arrangement of first filter tiles and second filter tiles.

  2. Microneedle arrays coated with charge reversal pH-sensitive copolymers improve antigen presenting cells-homing DNA vaccine delivery and immune responses. (United States)

    Duong, Huu Thuy Trang; Kim, Nak Won; Thambi, Thavasyappan; Giang Phan, V H; Lee, Min Sang; Yin, Yue; Jeong, Ji Hoon; Lee, Doo Sung


    Successful delivery of a DNA vaccine to antigen-presenting cells and their subsequent stimulation of CD4 + and CD8 + T cell immunity remains an inefficient process. In general, the delivery of prophylactic vaccines is mainly mired by low transfection efficacy, poor immunogenicity, and safety issues from the materials employed. Currently, several strategies have been exploited to improve immunogenicity, but an effective strategy for safe and pain-free delivery of DNA vaccines is complicated. Herein, we report the rapid delivery of polyplex-based DNA vaccines using microneedle arrays coated with a polyelectrolyte multilayer assembly of charge reversal pH-responsive copolymer and heparin. The charge reversal pH-responsive copolymer, composed of oligo(sulfamethazine)-b-poly(ethylene glycol)-b-poly(amino urethane) (OSM-b-PEG-b-PAEU), was used as a triggering layer in the polyelectrolyte multilayer assembly on microneedles. Charge reversal characteristics of this copolymer, that is, the OSM-b-PEG-b-PAEU copolymer exhibit, positive charge at low pH (pH4.03) and becoming negative charge when exposed to physiological pH conditions (pH7.4), allowing the facile assembly and disassembly of polyelectrolyte multilayers. The electrostatic repulsion between heparin and OSM-b-PEG-b-PAEU charge reversal copolymer triggered the release of DNA vaccines. DNA vaccines laden on microneedles are effectively transfected into RAW 264.7 macrophage cells in vitro. Vaccination of BALB/c mice by DNA vaccine-loaded microneedle arrays coated with a polyelectrolyte multilayer generated antigen-specific robust immune responses. These findings provide potential strategy of charge reversal pH-responsive copolymers coated microneedles for DNA vaccine delivery. Copyright © 2017. Published by Elsevier B.V.

  3. Magnetic arrays (United States)

    Trumper, D.L.; Kim, W.; Williams, M.E.


    Electromagnet arrays are disclosed which can provide selected field patterns in either two or three dimensions, and in particular, which can provide single-sided field patterns in two or three dimensions. These features are achieved by providing arrays which have current densities that vary in the windings both parallel to the array and in the direction of array thickness. 12 figs.

  4. Magnetic arrays

    Energy Technology Data Exchange (ETDEWEB)

    Trumper, David L. (Plaistow, NH); Kim, Won-jong (Cambridge, MA); Williams, Mark E. (Pelham, NH)


    Electromagnet arrays which can provide selected field patterns in either two or three dimensions, and in particular, which can provide single-sided field patterns in two or three dimensions. These features are achieved by providing arrays which have current densities that vary in the windings both parallel to the array and in the direction of array thickness.

  5. Do Dyslexic Individuals Present a Reduced Visual Attention Span? Evidence from Visual Recognition Tasks of Non-Verbal Multi-Character Arrays (United States)

    Yeari, Menahem; Isser, Michal; Schiff, Rachel


    A controversy has recently developed regarding the hypothesis that developmental dyslexia may be caused, in some cases, by a reduced visual attention span (VAS). To examine this hypothesis, independent of phonological abilities, researchers tested the ability of dyslexic participants to recognize arrays of unfamiliar visual characters. Employing…

  6. Testing of focal plane arrays

    International Nuclear Information System (INIS)

    Merriam, J.D.


    Problems associated with the testing of focal plane arrays are briefly examined with reference to the instrumentation and measurement procedures. In particular, the approach and instrumentation used as the Naval Ocean Systems Center is presented. Most of the measurements are made with flooded illumination on the focal plane array. The array is treated as an ensemble of individual pixels, data being taken on each pixel and array averages and standard deviations computed for the entire array. Data maps are generated, showing the pixel data in the proper spatial position on the array and the array statistics

  7. Carbon nanotube nanoelectrode arrays (United States)

    Ren, Zhifeng; Lin, Yuehe; Yantasee, Wassana; Liu, Guodong; Lu, Fang; Tu, Yi


    The present invention relates to microelectode arrays (MEAs), and more particularly to carbon nanotube nanoelectrode arrays (CNT-NEAs) for chemical and biological sensing, and methods of use. A nanoelectrode array includes a carbon nanotube material comprising an array of substantially linear carbon nanotubes each having a proximal end and a distal end, the proximal end of the carbon nanotubes are attached to a catalyst substrate material so as to form the array with a pre-determined site density, wherein the carbon nanotubes are aligned with respect to one another within the array; an electrically insulating layer on the surface of the carbon nanotube material, whereby the distal end of the carbon nanotubes extend beyond the electrically insulating layer; a second adhesive electrically insulating layer on the surface of the electrically insulating layer, whereby the distal end of the carbon nanotubes extend beyond the second adhesive electrically insulating layer; and a metal wire attached to the catalyst substrate material.

  8. Integrated avalanche photodiode arrays (United States)

    Harmon, Eric S.


    The present disclosure includes devices for detecting photons, including avalanche photon detectors, arrays of such detectors, and circuits including such arrays. In some aspects, the detectors and arrays include a virtual beveled edge mesa structure surrounded by resistive material damaged by ion implantation and having side wall profiles that taper inwardly towards the top of the mesa structures, or towards the direction from which the ion implantation occurred. Other aspects are directed to masking and multiple implantation and/or annealing steps. Furthermore, methods for fabricating and using such devices, circuits and arrays are disclosed.

  9. Cover array string reconstruction


    Crochemore, Maxime; S. Iliopoulos, Costas; P. Pissis, Solon; Tischler, German


    International audience; A proper factor u of a string y is a cover of y if every letter of y is within some occurrence of u in y. The concept generalises the notion of periods of a string. An integer array C is the minimal-cover (resp. maximal-cover) array of y if C[i] is the minimal (resp. maximal) length of covers of y[0.. i], or zero if no cover exists. In this paper, we present a constructive algorithm checking the validity of an array as a minimal-cover or maximal-cover array of some str...

  10. Triggering the GRANDE array

    International Nuclear Information System (INIS)

    Wilson, C.L.; Bratton, C.B.; Gurr, J.; Kropp, W.; Nelson, M.; Sobel, H.; Svoboda, R.; Yodh, G.; Burnett, T.; Chaloupka, V.; Wilkes, R.J.; Cherry, M.; Ellison, S.B.; Guzik, T.G.; Wefel, J.; Gaidos, J.; Loeffler, F.; Sembroski, G.; Goodman, J.; Haines, T.J.; Kielczewska, D.; Lane, C.; Steinberg, R.; Lieber, M.; Nagle, D.; Potter, M.; Tripp, R.


    A brief description of the Gamma Ray And Neutrino Detector Experiment (GRANDE) is presented. The detector elements and electronics are described. The trigger logic for the array is then examined. The triggers for the Gamma Ray and the Neutrino portions of the array are treated separately. (orig.)

  11. On the Mesh Array for Matrix Multiplication


    Kak, Subhash


    This article presents new properties of the mesh array for matrix multiplication. In contrast to the standard array that requires 3n-2 steps to complete its computation, the mesh array requires only 2n-1 steps. Symmetries of the mesh array computed values are presented which enhance the efficiency of the array for specific applications. In multiplying symmetric matrices, the results are obtained in 3n/2+1 steps. The mesh array is examined for its application as a scrambling system.

  12. SNP Arrays

    Directory of Open Access Journals (Sweden)

    Jari Louhelainen


    Full Text Available The papers published in this Special Issue “SNP arrays” (Single Nucleotide Polymorphism Arrays focus on several perspectives associated with arrays of this type. The range of papers vary from a case report to reviews, thereby targeting wider audiences working in this field. The research focus of SNP arrays is often human cancers but this Issue expands that focus to include areas such as rare conditions, animal breeding and bioinformatics tools. Given the limited scope, the spectrum of papers is nothing short of remarkable and even from a technical point of view these papers will contribute to the field at a general level. Three of the papers published in this Special Issue focus on the use of various SNP array approaches in the analysis of three different cancer types. Two of the papers concentrate on two very different rare conditions, applying the SNP arrays slightly differently. Finally, two other papers evaluate the use of the SNP arrays in the context of genetic analysis of livestock. The findings reported in these papers help to close gaps in the current literature and also to give guidelines for future applications of SNP arrays.

  13. Fracture behavior of single-structure fiber-reinforced composite restorations. (United States)

    Nagata, Kohji; Garoushi, Sufyan K; Vallittu, Pekka K; Wakabayashi, Noriyuki; Takahashi, Hidekazu; Lassila, Lippo V J


    Objective: The applications of single-structure fiber-reinforced composite (FRC) in restorative dentistry have not been well reported. This study aimed to clarify the static mechanical properties of anterior crown restorations prepared using two types of single-structure FRC. Materials and methods : An experimental crown restoration was designed for an upper anterior incisor. The restorations were made from IPS Empress CAD for CEREC (Emp), IPS e.max ® CAD (eMx), experimental single-structure all-FRC (a-FRC), Filtek™ Supreme XTE (XTE), and commercially available single-structure short-FRC (everX Posterior™) ( n = 8 for each material) (s-FRC). The a-FRC restorations were prepared from an experimental FRC blank using a computer-aided design and manufacturing (CAD/CAM) device. A fracture test was performed to assess the fracture load, toughness, and failure mode. The fracture loads were vertically applied on the restorations. The surface micromorphology of the FRC restorations was observed by scanning electron microscopy (SEM). The data were analyzed by analysis of variance ( p = .05) followed by Tukey's test. Results : s-FRC showed the highest mean fracture load (1145.0 ± 89.6 N) and toughness (26.2 ± 5.8 Ncm) among all the groups tested. With regard to the micromorphology of the prosthetic surface, local crushing of the fiberglass was observed in s-FRC, whereas chopped fiberglass was observed in a-FRC. Conclusions : The restorations made of short-FRC showed a higher load-bearing capacity than those made of the experimental all-FRC blanks for CAD/CAM. The brittle-like fractures were exhibited in the recent dental esthetic materials, while local crushing fractures were shown for single-structure FRC restorations.

  14. Piezoelectric transducer array microspeaker

    KAUST Repository

    Carreno, Armando Arpys Arevalo


    In this paper we present the fabrication and characterization of a piezoelectric micro-speaker. The speaker is an array of micro-machined piezoelectric membranes, fabricated on silicon wafer using advanced micro-machining techniques. Each array contains 2n piezoelectric transducer membranes, where “n” is the bit number. Every element of the array has a circular shape structure. The membrane is made out four layers: 300nm of platinum for the bottom electrode, 250nm or lead zirconate titanate (PZT), a top electrode of 300nm and a structural layer of 50

  15. A diverse array of creatine kinase and arginine kinase isoform genes is present in the starlet sea anemone Nematostella vectensis, a cnidarian model system for studying developmental evolution. (United States)

    Uda, Kouji; Ellington, W Ross; Suzuki, Tomohiko


    Phosphagen (guanidino) kinases (PK) constitute a family of homologous phosphotransferases catalyzing the reversible transfer of the high-energy phosphoryl group of ATP to naturally occurring guanidine compounds. Prior work has shown that PKs can be phylogenetically separated into two distinct groups- an arginine kinase (AK) subfamily and a creatine kinase (CK) subfamily. The latter includes three CK isoforms- cytoplasmic CK (CyCK), mitochondrial CK (MiCK) and three-domain flagellar CK (fCK). In the present study we identified six unique PK genes from the draft genome sequence of the starlet sea anemone Nematostella vectensis, a well-known model organism for understanding metazoan developmental evolution. Using reverse transcription polymerase chain reaction (RTPCR) methods, full length cDNAs were amplified for all of these PKs. These cDNAs were cloned and expressed in Escherichia coli as 6x His-tagged fusion proteins. The six PKs were identified as the three typical CK isoforms (CyCK, MiCK and fCK), two unusual AKs (a two-domain AK (2DAK) and a three-domain AK (3DAK)) and a PK which phosphorylated arginine. The latter enzyme had a very low AK activity (its apparent V(max) value being less than 0.2% that of 3DAK), lacks several key residues necessary for AK enzyme activity, and was tentatively designated as AK1. As far as we know, this constitutes the first report of an AK with the three fused AK domains. The Bayesian tree suggested that the third domain of 3DAK likely evolved from the gene for domain 2 of typical two-domain AK found widely in cnidarians. Construction of phylogenetic trees and comparison of exon-intron organizations of their respective genes indicated that the N. vectensis three-domain fCK and 3DAK evolved independently, and both enzymes are likely to be targeted to cell membranes since they have a myristoylation signal at their respective N-termini. These results complement prior work on other basal invertebrates showing that multiple CK and AK

  16. Tomographic array

    International Nuclear Information System (INIS)


    The configuration of a tomographic array in which the object can rotate about its axis is described. The X-ray detector is a cylindrical screen perpendicular to the axis of rotation. The X-ray source has a line-shaped focus coinciding with the axis of rotation. The beam is fan-shaped with one side of this fan lying along the axis of rotation. The detector screen is placed inside an X-ray image multiplier tube

  17. Tomographic array

    International Nuclear Information System (INIS)


    A tomographic array with the following characteristics is described. An X-ray screen serving as detector is placed before a photomultiplier tube which itself is placed in front of a television camera connected to a set of image processors. The detector is concave towards the source and is replacable. Different images of the object are obtained simultaneously. Optical fibers and lenses are used for transmission within the system

  18. Photovoltaic array reliability optimization (United States)

    Ross, R. G., Jr.


    An overview of the photovoltaic array reliability problem is presented, and a high reliability/minimum cost approach to this problem is presented. Design areas covered are cell failure, interconnect fatigue, and electrical insulation breakdown, and three solution strategies are discussed. The first involves controlling component failures in the solar cell (cell cracking, cell interconnects) and at the module level (must be statistically treated). Second, a fault tolerant circuit is designed which reduces array degradation, improves module yield losses, and controls hot-spot heating. Third, cost optimum module replacement strategies are also effective in reducing array degradation. This can be achieved by minimizing the life-cycle energy cost of the photovoltaic system. The integration of these solutions is aimed at reducing the 0.01% failure rate.

  19. Micromachined droplet ejector arrays (United States)

    Perçin, Gökhan; Yaralioglu, Göksenin G.; Khuri-Yakub, Butrus T.


    In this article we present a micromachined flextensional droplet ejector array used to eject liquids. By placing a fluid behind one face of a vibrating circular plate that has an orifice at its center, we achieve continuous ejection of the fluid. We present results of ejection of water and isopropanol. The ejector is harmless to sensitive fluids and can be used to eject fuels, organic polymers, photoresists, low-k dielectrics, adhesives, and chemical and biological samples. Micromachined two-dimensional array flextensional droplet ejectors were realized using planar silicon micromachining techniques. Typical resonant frequency of the micromachined device ranges from 400 kHz to 4.5 MHz. The ejections of water through a 4 μm diameter orifice at 3.45 MHz and a 10 μm diameter orifice at 2.15 MHz were demonstrated by using the developed micromachined two-dimensional array ejectors.

  20. Array Theory and Nial

    DEFF Research Database (Denmark)

    Falster, Peter; Jenkins, Michael


    This report is the result of collaboration between the authors during the first 8 months of 1999 when M. Jenkins was visiting professor at DTU. The report documents the development of a tool for the investigation of array theory concepts and in particular presents various approaches to choose...

  1. Interferometric optical vortex array generator. (United States)

    Vyas, Sunil; Senthilkumaran, P


    Two new interferometric configurations for optical vortex array generation are presented. These interferometers are different from the conventional interferometers in that they are capable of producing a large number of isolated zeros of intensity, and all of them contain optical vortices. Simulation and theory for optical vortex array generation using three-plane-wave interference is presented. The vortex dipole array produced this way is noninteracting, as there are no attraction or repulsion forces between them, leading to annihilation or creation of vortex pairs.

  2. Digital electrostatic acoustic transducer array

    KAUST Repository

    Carreno, Armando Arpys Arevalo


    In this paper we present the fabrication and characterization of an array of electrostatic acoustic transducers. The array is micromachined on a silicon wafer using standard micro-machining techniques. Each array contains 2n electrostatic transducer membranes, where “n” is the bit number. Every element of the array has a hexagonal membrane shape structure, which is separated from the substrate by 3µm air gap. The membrane is made out 5µm thick polyimide layer that has a bottom gold electrode on the substrate and a gold top electrode on top of the membrane (250nm). The wafer layout design was diced in nine chips with different array configurations, with variation of the membrane dimensions. The device was tested with 90 V giving and sound output level as high as 35dB, while actuating all the elements at the same time.

  3. Lectin-Array Blotting. (United States)

    Pazos, Raquel; Echevarria, Juan; Hernandez, Alvaro; Reichardt, Niels-Christian


    Aberrant protein glycosylation is a hallmark of cancer, infectious diseases, and autoimmune or neurodegenerative disorders. Unlocking the potential of glycans as disease markers will require rapid and unbiased glycoproteomics methods for glycan biomarker discovery. The present method is a facile and rapid protocol for qualitative analysis of protein glycosylation in complex biological mixtures. While traditional lectin arrays only provide an average signal for the glycans in the mixture, which is usually dominated by the most abundant proteins, our method provides individual lectin binding profiles for all proteins separated in the gel electrophoresis step. Proteins do not have to be excised from the gel for subsequent analysis via the lectin array but are transferred by contact diffusion from the gel to a glass slide presenting multiple copies of printed lectin arrays. Fluorescently marked glycoproteins are trapped by the printed lectins via specific carbohydrate-lectin interactions and after a washing step their binding profile with up to 20 lectin probes is analyzed with a fluorescent scanner. The method produces the equivalent of 20 lectin blots in a single experiment, giving detailed insight into the binding epitopes present in the fractionated proteins. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  4. Antenna arrays a computational approach

    CERN Document Server

    Haupt, Randy L


    This book covers a wide range of antenna array topics that are becoming increasingly important in wireless applications, particularly in design and computer modeling. Signal processing and numerical modeling algorithms are explored, and MATLAB computer codes are provided for many of the design examples. Pictures of antenna arrays and components provided by industry and government sources are presented with explanations of how they work. Antenna Arrays is a valuable reference for practicing engineers and scientists in wireless communications, radar, and remote sensing, and an excellent textbook for advanced antenna courses.

  5. Conformal array design on arbitrary polygon surface with transformation optics

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Li, E-mail:; Hong, Weijun, E-mail:; Zhu, Jianfeng; Peng, Biao; Li, Shufang [Beijing Key Laboratory of Network System Architecture and Convergence, School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, 100876 Beijing (China); Wu, Yongle, E-mail: [Beijing Key Laboratory of Work Safety Intelligent Monitoring, School of Electronic Engineering, Beijing University of Posts and Telecommunications, 100876 Beijing (China)


    A transformation-optics based method to design a conformal antenna array on an arbitrary polygon surface is proposed and demonstrated in this paper. This conformal antenna array can be adjusted to behave equivalently as a uniformly spaced linear array by applying an appropriate transformation medium. An typical example of general arbitrary polygon conformal arrays, not limited to circular array, is presented, verifying the proposed approach. In summary, the novel arbitrary polygon surface conformal array can be utilized in array synthesis and beam-forming, maintaining all benefits of linear array.

  6. Acoustic array systems theory, implementation, and application

    CERN Document Server

    Bai, Mingsian R; Benesty, Jacob


    Presents a unified framework of far-field and near-field array techniques for noise source identification and sound field visualization, from theory to application. Acoustic Array Systems: Theory, Implementation, and Application provides an overview of microphone array technology with applications in noise source identification and sound field visualization. In the comprehensive treatment of microphone arrays, the topics covered include an introduction to the theory, far-field and near-field array signal processing algorithms, practical implementations, and common applic

  7. ESPRIT And Uniform Linear Arrays (United States)

    Roy, R. H.; Goldburg, M.; Ottersten, B. E.; Swindlehurst, A. L.; Viberg, M.; Kailath, T.


    Abstract ¬â€?ESPRIT is a recently developed and patented technique for high-resolution estimation of signal parameters. It exploits an invariance structure designed into the sensor array to achieve a reduction in computational requirements of many orders of magnitude over previous techniques such as MUSIC, Burg's MEM, and Capon's ML, and in addition achieves performance improvement as measured by parameter estimate error variance. It is also manifestly more robust with respect to sensor errors (e.g. gain, phase, and location errors) than other methods as well. Whereas ESPRIT only requires that the sensor array possess a single invariance best visualized by considering two identical but other-wise arbitrary arrays of sensors displaced (but not rotated) with respect to each other, many arrays currently in use in various applications are uniform linear arrays of identical sensor elements. Phased array radars are commonplace in high-resolution direction finding systems, and uniform tapped delay lines (i.e., constant rate A/D converters) are the rule rather than the exception in digital signal processing systems. Such arrays possess many invariances, and are amenable to other types of analysis, which is one of the main reasons such structures are so prevalent. Recent developments in high-resolution algorithms of the signal/noise subspace genre including total least squares (TLS) ESPRIT applied to uniform linear arrays are summarized. ESPRIT is also shown to be a generalization of the root-MUSIC algorithm (applicable only to the case of uniform linear arrays of omni-directional sensors and unimodular cisoids). Comparisons with various estimator bounds, including CramerRao bounds, are presented.

  8. Fundamentals of spherical array processing

    CERN Document Server

    Rafaely, Boaz


    This book provides a comprehensive introduction to the theory and practice of spherical microphone arrays. It is written for graduate students, researchers and engineers who work with spherical microphone arrays in a wide range of applications.   The first two chapters provide the reader with the necessary mathematical and physical background, including an introduction to the spherical Fourier transform and the formulation of plane-wave sound fields in the spherical harmonic domain. The third chapter covers the theory of spatial sampling, employed when selecting the positions of microphones to sample sound pressure functions in space. Subsequent chapters present various spherical array configurations, including the popular rigid-sphere-based configuration. Beamforming (spatial filtering) in the spherical harmonics domain, including axis-symmetric beamforming, and the performance measures of directivity index and white noise gain are introduced, and a range of optimal beamformers for spherical arrays, includi...

  9. Design of circular differential microphone arrays

    CERN Document Server

    Benesty, Jacob; Cohen, Israel


    Recently, we proposed a completely novel and efficient way to design differential beamforming algorithms for linear microphone arrays. Thanks to this very flexible approach, any order of differential arrays can be designed. Moreover, they can be made robust against white noise amplification, which is the main inconvenience in these types of arrays. The other well-known problem with linear arrays is that electronic steering is not really feasible.  In this book, we extend all these fundamental ideas to circular microphone arrays and show that we can design small and compact differential arrays of any order that can be electronically steered in many different directions and offer a good degree of control of the white noise amplification problem, high directional gain, and frequency-independent response. We also present a number of practical examples, demonstrating that differential beamforming with circular microphone arrays is likely one of the best candidates for applications involving speech enhancement (i....

  10. Coupling Between Waveguide-Fed Slot Arrays (United States)

    Rengarajan, Sembiam


    Coupling between two waveguide-fed planar slot arrays has been investigated using full-wave analysis. The analysis employs the method-of-moments solution to the pertinent coupled integral equations for the aperture electric field of all slots. In order to compute coupling between two arrays, the input port of the first array is excited with a TE(sub 10) mode wave while the second one is match-terminated. After solving the moment method matrix equations, the aperture fields of all slots are obtained and thereby the TE(sub 10) mode wave received at the input port of the second array is determined. Coupling between two arrays is the ratio of the wave amplitude arriving in the second array port to the incident wave amplitude at the first array port. The coupling mechanism has been studied as a function of spacing between arrays in different directions, e.g. the electric field plane, the magnetic field plane, and the diagonal plane. Computed coupling values are presented for different array geometries. This work is novel since it provides a good understanding of coupling between waveguide-fed slot arrays as a function of spacing and orientation for different aperture distributions and array architectures. This serves as a useful tool for antenna design engineers and system engineers.

  11. SoAx: A generic C++ Structure of Arrays for handling particles in HPC codes (United States)

    Homann, Holger; Laenen, Francois


    The numerical study of physical problems often require integrating the dynamics of a large number of particles evolving according to a given set of equations. Particles are characterized by the information they are carrying such as an identity, a position other. There are generally speaking two different possibilities for handling particles in high performance computing (HPC) codes. The concept of an Array of Structures (AoS) is in the spirit of the object-oriented programming (OOP) paradigm in that the particle information is implemented as a structure. Here, an object (realization of the structure) represents one particle and a set of many particles is stored in an array. In contrast, using the concept of a Structure of Arrays (SoA), a single structure holds several arrays each representing one property (such as the identity) of the whole set of particles. The AoS approach is often implemented in HPC codes due to its handiness and flexibility. For a class of problems, however, it is known that the performance of SoA is much better than that of AoS. We confirm this observation for our particle problem. Using a benchmark we show that on modern Intel Xeon processors the SoA implementation is typically several times faster than the AoS one. On Intel's MIC co-processors the performance gap even attains a factor of ten. The same is true for GPU computing, using both computational and multi-purpose GPUs. Combining performance and handiness, we present the library SoAx that has optimal performance (on CPUs, MICs, and GPUs) while providing the same handiness as AoS. For this, SoAx uses modern C++ design techniques such template meta programming that allows to automatically generate code for user defined heterogeneous data structures.

  12. A Review of Structure Construction of Silk Fibroin Biomaterials from Single Structures to Multi-Level Structures

    Directory of Open Access Journals (Sweden)

    Yu Qi


    Full Text Available The biological performance of artificial biomaterials is closely related to their structure characteristics. Cell adhesion, migration, proliferation, and differentiation are all strongly affected by the different scale structures of biomaterials. Silk fibroin (SF, extracted mainly from silkworms, has become a popular biomaterial due to its excellent biocompatibility, exceptional mechanical properties, tunable degradation, ease of processing, and sufficient supply. As a material with excellent processability, SF can be processed into various forms with different structures, including particulate, fiber, film, and three-dimensional (3D porous scaffolds. This review discusses and summarizes the various constructions of SF-based materials, from single structures to multi-level structures, and their applications. In combination with single structures, new techniques for creating special multi-level structures of SF-based materials, such as micropatterning and 3D-printing, are also briefly addressed.

  13. Fiber Laser Array

    National Research Council Canada - National Science Library

    Simpson, Thomas


    ...., field-dependent, loss within the coupled laser array. During this program, Jaycor focused on the construction and use of an experimental apparatus that can be used to investigate the coherent combination of an array of fiber lasers...

  14. Halbach arrays in precision motion control

    Energy Technology Data Exchange (ETDEWEB)

    Trumper, D.L.; Williams, M.E. [Massachusetts Institute of Technology, Cambridge, MA (United States)


    The Halbach array was developed for use as an optical element in particle accelerators. Following up on a suggestion from Klaus Halbach, the authors have investigated the utility of such arrays as the permanent magnet structure for synchronous machines in cartesian, polar, and cylindrical geometries. Their work has focused on the design of a novel Halbach array linear motor for use in a magnetic suspension stage for photolithography. This paper presents the details of the motor design and its force and power characteristics.

  15. Axiom turkey genotyping array (United States)

    The Axiom®Turkey Genotyping Array interrogates 643,845 probesets on the array, covering 643,845 SNPs. The array development was led by Dr. Julie Long of the USDA-ARS Beltsville Agricultural Research Center under a public-private partnership with Hendrix Genetics, Aviagen, and Affymetrix. The Turk...

  16. Photovoltaic array space power plus diagnostics experiment (United States)

    Guidice, Donald A.


    The objective of the Photovoltaic Array Space Power Plus Diagnostics (PASP Plus) experiment is to measure the effects of the interaction of the low- to mid-altitude space environment on the performance of a diverse set of small solar-cell arrays (planar and concentrator, representative of present and future military technologies) under differing conditions of velocity-vector orientation and simulated (by biasing) high-voltage operation. Solar arrays to be tested include Si and GaAs planar arrays and several types of GaAs concentrator arrays. Diagnostics (a Langmuir probe and a pressure gauge) and a transient pulse monitor (to measure radiated and conducted EMI during arcing) will be used to determine the impact of the environment on array operation to help verify various interactions models. Results from a successful PASP Plus flight will furnish answers to important interactions questions and provide inputs for design and test standards for photovoltaic space-power subsystems.

  17. Generating Milton Babbitt's all-partition arrays

    DEFF Research Database (Denmark)

    Bemman, Brian; Meredith, David


    In most of Milton Babbitt's (1916–2011) works written since the early 1960s, both the pitch and rhythmic content is organized according to a highly constrained structure known as the all-partition array. The all-partition array provides a framework that ensures that as many different forms...... backtracking algorithm for generating a particular type of all-partition array found in Babbitt’s works, known as a Smalley array. Constructing such an array is a difficult task, and we present two heuristics for helping to generate this type of structure. We provide the parameter values required...... by this algorithm to generate the specific all-partition arrays used in three of Babbitt’s works. Finally, we evaluate the algorithm and the heuristics in terms of how well they predict the sequences of integer partitions used in two of Babbitt’s works. We also explore the effect of the heuristics...

  18. Large scale biomimetic membrane arrays

    DEFF Research Database (Denmark)

    Hansen, Jesper Søndergaard; Perry, Mark; Vogel, Jörg


    To establish planar biomimetic membranes across large scale partition aperture arrays, we created a disposable single-use horizontal chamber design that supports combined optical-electrical measurements. Functional lipid bilayers could easily and efficiently be established across CO2 laser micro...... peptides and proteins. Next, we tested the scalability of the biomimetic membrane design by establishing lipid bilayers in rectangular 24 x 24 and hexagonal 24 x 27 aperture arrays, respectively. The results presented show that the design is suitable for further developments of sensitive biosensor assays...

  19. Micromolding for ceramic microneedle arrays

    NARCIS (Netherlands)

    van Nieuwkasteele-Bystrova, Svetlana Nikolajevna; Lüttge, Regina


    The fabrication process of ceramic microneedle arrays (MNAs) is presented. This includes the manufacturing of an SU-8/Si-master, its double replication resulting in a PDMS mold for production by micromolding and ceramic sintering. The robustness of the replicated structures was tested by means of

  20. Innovations in IR projector arrays (United States)

    Cole, Barry E.; Higashi, B.; Ridley, Jeff A.; Holmen, J.; Newstrom, K.; Zins, C.; Nguyen, K.; Weeres, Steven R.; Johnson, Burgess R.; Stockbridge, Robert G.; Murrer, Robert Lee; Olson, Eric M.; Bergin, Thomas P.; Kircher, James R.; Flynn, David S.


    In the past year, Honeywell has developed a 512 X 512 snapshot scene projector containing pixels with very high radiance efficiency. The array can operate in both snapshot and raster mode. The array pixels have near black body characteristics, high radiance outputs, broad band performance, and high speed. IR measurements and performance of these pixels will be described. In addition, a vacuum probe station that makes it possible to select the best die for packaging and delivery based on wafer level radiance screening, has been developed and is in operation. This system, as well as other improvements, will be described. Finally, a review of the status of the present projectors and plans for future arrays is included.

  1. Thin, Flexible IMM Solar Array (United States)

    Walmsley, Nicholas


    NASA needs solar arrays that are thin, flexible, and highly efficient; package compactly for launch; and deploy into large, structurally stable high-power generators. Inverted metamorphic multijunction (IMM) solar cells can enable these arrays, but integration of this thin crystalline cell technology presents certain challenges. The Thin Hybrid Interconnected Solar Array (THINS) technology allows robust and reliable integration of IMM cells into a flexible blanket comprising standardized modules engineered for easy production. The modules support the IMM cell by using multifunctional materials for structural stability, shielding, coefficient of thermal expansion (CTE) stress relief, and integrated thermal and electrical functions. The design approach includes total encapsulation, which benefits high voltage as well as electrostatic performance.

  2. Spherical Horn Array for Wideband Propagation Measurements

    DEFF Research Database (Denmark)

    Franek, Ondrej; Pedersen, Gert Frølund


    properties and coupling between the elements are investigated via measurements and numerical simulations. Radiation patterns and sum beams of the array on selected frequencies throughout the band are also presented. Based on the obtained results it is concluded that the array is a good candidate...

  3. Smile: a computer program for partitioning of programmed logic arrays

    Energy Technology Data Exchange (ETDEWEB)

    De Micheli, G.; Santomauro, M.


    This paper presents a new approach to optimal topological design of PLAs (programmed logic arrays). In particular the authors address the array partitioning problem and the implementation of partitioned arrays as block folded or parallel connected PLAs. They present a graph theoretic interpretation of the problem and an efficient heuristic algorithm. A computer program, SMILE, is described and experimental results are reported. 24 references.

  4. Array signal processing in the NASA Deep Space Network (United States)

    Pham, Timothy T.; Jongeling, Andre P.


    In this paper, we will describe the benefits of arraying and past as well as expected future use of this application. The signal processing aspects of array system are described. Field measurements via actual tracking spacecraft are also presented.

  5. Phased-array radars (United States)

    Brookner, E.


    The operating principles, technology, and applications of phased-array radars are reviewed and illustrated with diagrams and photographs. Consideration is given to the antenna elements, circuitry for time delays, phase shifters, pulse coding and compression, and hybrid radars combining phased arrays with lenses to alter the beam characteristics. The capabilities and typical hardware of phased arrays are shown using the US military systems COBRA DANE and PAVE PAWS as examples.

  6. Wind loads on flat plate photovoltaic array fields (United States)

    Miller, R. D.; Zimmerman, D. K.


    The results of an experimental analysis (boundary layer wind tunnel test) of the aerodynamic forces resulting from winds acting on flat plate photovoltaic arrays are presented. Local pressure coefficient distributions and normal force coefficients on the arrays are shown and compared to theoretical results. Parameters that were varied when determining the aerodynamic forces included tilt angle, array separation, ground clearance, protective wind barriers, and the effect of the wind velocity profile. Recommended design wind forces and pressures are presented, which envelop the test results for winds perpendicular to the array's longitudinal axis. This wind direction produces the maximum wind loads on the arrays except at the array edge where oblique winds produce larger edge pressure loads. The arrays located at the outer boundary of an array field have a protective influence on the interior arrays of the field. A significant decrease of the array wind loads were recorded in the wind tunnel test on array panels located behind a fence and/or interior to the array field compared to the arrays on the boundary and unprotected from the wind. The magnitude of this decrease was the same whether caused by a fence or upwind arrays.

  7. Storage array reflection considerations

    International Nuclear Information System (INIS)

    Haire, M.J.; Jordan, W.C.; Taylor, R.G.


    The assumptions used for reflection conditions of single containers are fairly well established and consistently applied throughout the industry in nuclear criticality safety evaluations. Containers are usually considered to be either fully water reflected (i.e., surrounded by 6 to 12 in. of water) for safety calculations or reflected by 1 in. of water for nominal (structural material and air) conditions. Tables and figures are usually available for performing comparative evaluations of containers under various loading conditions. Reflection considerations used for evaluating the safety of storage arrays of fissile material are not as well established. When evaluating arrays, it has become more common for analysts to use calculations to demonstrate the safety of the array configuration. In performing these calculations, the analyst has considerable freedom concerning the assumptions made for modeling the reflection of the array. Considerations are given for the physical layout of the array with little or no discussion (or demonstration) of what conditions are bounded by the assumed reflection conditions. For example, an array may be generically evaluated by placing it in a corner of a room in which the opposing walls are far away. Typically, it is believed that complete flooding of the room is incredible, so the array is evaluated for various levels of water mist interspersed among array containers. This paper discusses some assumptions that are made regarding storage array reflection

  8. Array Technology for Terahertz Imaging (United States)

    Reck, Theodore; Siles, Jose; Jung, Cecile; Gill, John; Lee, Choonsup; Chattopadhyay, Goutam; Mehdi, Imran; Cooper, Ken


    Heterodyne terahertz (0.3 - 3THz) imaging systems are currently limited to single or a low number of pixels. Drastic improvements in imaging sensitivity and speed can be achieved by replacing single pixel systems with an array of detectors. This paper presents an array topology that is being developed at the Jet Propulsion Laboratory based on the micromachining of silicon. This technique fabricates the array's package and waveguide components by plasma etching of silicon, resulting in devices with precision surpassing that of current metal machining techniques. Using silicon increases the versatility of the packaging, enabling a variety of orientations of circuitry within the device which increases circuit density and design options. The design of a two-pixel transceiver utilizing a stacked architecture is presented that achieves a pixel spacing of 10mm. By only allowing coupling from the top and bottom of the package the design can readily be arrayed in two dimensions with a spacing of 10mm x 18mm.

  9. Solar array stepping to minimize array excitation (United States)

    Bhat, Mahabaleshwar K. P. (Inventor); Liu, Tung Y. (Inventor); Plescia, Carl T. (Inventor)


    Mechanical oscillations of a mechanism containing a stepper motor, such as a solar-array powered spacecraft, are reduced and minimized by the execution of step movements in pairs of steps, the period between steps being equal to one-half of the period of torsional oscillation of the mechanism. Each pair of steps is repeated at needed intervals to maintain desired continuous movement of the portion of elements to be moved, such as the solar array of a spacecraft. In order to account for uncertainty as well as slow change in the period of torsional oscillation, a command unit may be provided for varying the interval between steps in a pair.

  10. Focal plane array with modular pixel array components for scalability (United States)

    Kay, Randolph R; Campbell, David V; Shinde, Subhash L; Rienstra, Jeffrey L; Serkland, Darwin K; Holmes, Michael L


    A modular, scalable focal plane array is provided as an array of integrated circuit dice, wherein each die includes a given amount of modular pixel array circuitry. The array of dice effectively multiplies the amount of modular pixel array circuitry to produce a larger pixel array without increasing die size. Desired pixel pitch across the enlarged pixel array is preserved by forming die stacks with each pixel array circuitry die stacked on a separate die that contains the corresponding signal processing circuitry. Techniques for die stack interconnections and die stack placement are implemented to ensure that the desired pixel pitch is preserved across the enlarged pixel array.

  11. Study of Plasma Flow Modes in Imploding Nested Arrays (United States)

    Mitrofanov, K. N.; Aleksandrov, V. V.; Gritsuk, A. N.; Branitsky, A. V.; Frolov, I. N.; Grabovski, E. V.; Sasorov, P. V.; Ol'khovskaya, O. G.; Zaitsev, V. I.


    Results from experimental studies of implosion of nested wire and fiber arrays at currents of up to 4 MA at the Angara-5-1 facility are presented. Depending on the ratio between the radii of the inner and outer arrays, different modes of the plasma flow in the space between the inner and outer arrays were implemented: the sub-Alfvénic ( V r V A ) modes and a mode with the formation of the transition shock wave (SW) region between the cascades. By varying the material of the outer array (tungsten wires or kapron fibers), it is shown that the plasma flow mode between the inner and outer arrays depends on the ratio between the plasma production rates ṁ in / ṁ out in the inner and outer arrays. The obtained experimental results are compared with the results of one-dimensional MHD simulation of the plasma flow between the arrays. Stable implosion of the inner array plasma was observed in experiments with combined nested arrays consisting of a fiber outer array and a tungsten inner array. The growth rates of magnetic Rayleigh-Taylor (MRT) instability in the inner array plasma at different numbers of fibers in the outer array and different ratios between the radii of the inner and outer arrays are compared. Suppression of MRT instability during the implosion of the inner array plasma results in the formation of a stable compact Z-pinch and generation of a soft X-ray pulse. A possible scenario of interaction between the plasmas of the inner and outer arrays is offered. The stability of the inner array plasma in the stage of final compression depends on the character of interaction of plasma jets from the outer array with the magnetic field of the inner array.

  12. Micromirror array for protein micro array fabrication (United States)

    Lee, Kook-Nyung; Shin, Dong-Sik; Lee, Yoon-Sik; Kim, Yong-Kweon


    We have designed, fabricated and characterized a micromirror array for protein microarray fabrication that has a simple structure, and the straightforward fabrication process for the mirror will allow the use of low-cost mirrors in protein pattern applications. The characteristics of an exposure system utilizing the micromirror array have been demonstrated by means of an experiment employing a photoresist that is in general use in the semiconductor industry. The micromirror dimensions were 54 × 54 mum2, with a 30 mum separation between mirrors, and a 5.5 mum gap from the bottom electrode so that the mirror had an approximately 10° deflection angle. The size and separation of the mirror were designed in consideration of the protein pattern size and pitch, in contrast with the commercial Texas Instruments Digital Light Processor, which is utilized in the components of projection display systems. The exposure system combined with the micromirror has been used in the photochemical synthesis of chemical ligands via protein immobilization on a chip. Several photosynthesis experiments for peptide array synthesis have been carried out using the micromirror array. Parallel experiments on photochemical ligand synthesis on a chip can easily be performed in the laboratory using this exposure system.

  13. Micromachined electrode array (United States)

    Okandan, Murat; Wessendorf, Kurt O.


    An electrode array is disclosed which has applications for neural stimulation and sensing. The electrode array, in certain embodiments, can include a plurality of electrodes each of which is flexibly attached to a common substrate using a plurality of springs to allow the electrodes to move independently. In other embodiments of the electrode array, the electrodes can be fixed to the substrate. The electrode array can be formed from a combination of bulk and surface micromachining, and can include electrode tips having an electroplated metal (e.g. platinum, iridium, gold or titanium) or a metal oxide (e.g. iridium oxide) for biocompatibility. The electrode array can be used to form a part of a neural prosthesis, and is particularly well adapted for use in an implantable retinal prosthesis.

  14. Analysis of measurements on wind turbine arrays. Vol. 1

    International Nuclear Information System (INIS)

    Hoeg, E.


    In 1989 a Danish electric power company initiated an analysis of eight wind turbine arrays. Data from this project is presented together with the explained results of the analyses and the output variations for individual arrays and for systems within the arrays. The models for prognosis are compared and evaluated in order to find that which is most effective. (AB)

  15. Imaging spectroscopy using embedded diffractive optical arrays (United States)

    Hinnrichs, Michele; Hinnrichs, Bradford


    Pacific Advanced Technology (PAT) has developed an infrared hyperspectral camera based on diffractive optic arrays. This approach to hyperspectral imaging has been demonstrated in all three infrared bands SWIR, MWIR and LWIR. The hyperspectral optical system has been integrated into the cold-shield of the sensor enabling the small size and weight of this infrared hyperspectral sensor. This new and innovative approach to an infrared hyperspectral imaging spectrometer uses micro-optics that are made up of an area array of diffractive optical elements where each element is tuned to image a different spectral region on a common focal plane array. The lenslet array is embedded in the cold-shield of the sensor and actuated with a miniature piezo-electric motor. This approach enables rapid infrared spectral imaging with multiple spectral images collected and processed simultaneously each frame of the camera. This paper will present our optical mechanical design approach which results in an infrared hyper-spectral imaging system that is small enough for a payload on a small satellite, mini-UAV, commercial quadcopter or man portable. Also, an application of how this spectral imaging technology can easily be used to quantify the mass and volume flow rates of hydrocarbon gases. The diffractive optical elements used in the lenslet array are blazed gratings where each lenslet is tuned for a different spectral bandpass. The lenslets are configured in an area array placed a few millimeters above the focal plane and embedded in the cold-shield to reduce the background signal normally associated with the optics. The detector array is divided into sub-images covered by each lenslet. We have developed various systems using a different number of lenslets in the area array. Depending on the size of the focal plane and the diameter of the lenslet array will determine the number of simultaneous different spectral images collected each frame of the camera. A 2 x 2 lenslet array will image

  16. Array processors based on Gaussian fraction-free method

    Energy Technology Data Exchange (ETDEWEB)

    Peng, S.; Sedukhin, S. [Aizu Univ., Aizuwakamatsu, Fukushima (Japan); Sedukhin, I.


    The design of algorithmic array processors for solving linear systems of equations using fraction-free Gaussian elimination method is presented. The design is based on a formal approach which constructs a family of planar array processors systematically. These array processors are synthesized and analyzed. It is shown that some array processors are optimal in the framework of linear allocation of computations and in terms of number of processing elements and computing time. (author)

  17. Sensor array signal processing

    CERN Document Server

    Naidu, Prabhakar S


    Chapter One: An Overview of Wavefields 1.1 Types of Wavefields and the Governing Equations 1.2 Wavefield in open space 1.3 Wavefield in bounded space 1.4 Stochastic wavefield 1.5 Multipath propagation 1.6 Propagation through random medium 1.7 ExercisesChapter Two: Sensor Array Systems 2.1 Uniform linear array (ULA) 2.2 Planar array 2.3 Distributed sensor array 2.4 Broadband sensor array 2.5 Source and sensor arrays 2.6 Multi-component sensor array2.7 ExercisesChapter Three: Frequency Wavenumber Processing 3.1 Digital filters in the w-k domain 3.2 Mapping of 1D into 2D filters 3.3 Multichannel Wiener filters 3.4 Wiener filters for ULA and UCA 3.5 Predictive noise cancellation 3.6 Exercises Chapter Four: Source Localization: Frequency Wavenumber Spectrum4.1 Frequency wavenumber spectrum 4.2 Beamformation 4.3 Capon's w-k spectrum 4.4 Maximum entropy w-k spectrum 4.5 Doppler-Azimuth Processing4.6 ExercisesChapter Five: Source Localization: Subspace Methods 5.1 Subspace methods (Narrowband) 5.2 Subspace methods (B...

  18. Introduction to adaptive arrays

    CERN Document Server

    Monzingo, Bob; Haupt, Randy


    This second edition is an extensive modernization of the bestselling introduction to the subject of adaptive array sensor systems. With the number of applications of adaptive array sensor systems growing each year, this look at the principles and fundamental techniques that are critical to these systems is more important than ever before. Introduction to Adaptive Arrays, 2nd Edition is organized as a tutorial, taking the reader by the hand and leading them through the maze of jargon that often surrounds this highly technical subject. It is easy to read and easy to follow as fundamental concept

  19. Coated carbon nanotube array electrodes (United States)

    Ren, Zhifeng [Newton, MA; Wen, Jian [Newton, MA; Chen, Jinghua [Chestnut Hill, MA; Huang, Zhongping [Belmont, MA; Wang, Dezhi [Wellesley, MA


    The present invention provides conductive carbon nanotube (CNT) electrode materials comprising aligned CNT substrates coated with an electrically conducting polymer, and the fabrication of electrodes for use in high performance electrical energy storage devices. In particular, the present invention provides conductive CNTs electrode material whose electrical properties render them especially suitable for use in high efficiency rechargeable batteries. The present invention also provides methods for obtaining surface modified conductive CNT electrode materials comprising an array of individual linear, aligned CNTs having a uniform surface coating of an electrically conductive polymer such as polypyrrole, and their use in electrical energy storage devices.

  20. Photovoltaic Array Space Power flight experiment plus diagnostics (PASP+) modules

    International Nuclear Information System (INIS)

    Cooley, W.T.; Adams, S.F.; Reinhardt, K.C.; Piszczor, M.F.


    The Photovoltaic Array Space Power Plus Diagnostics flight experiment (PASP+) subsumes twelve solar array modules which represent the state of the art in the space photovoltaic array industry. Each of the twelve modules individually feature specific photovoltaic technologies such as advanced semiconductor materials, multi-bandgap structures, lightweight array designs, advanced interconnect technologies, or concentrator array designs. This paper will describe each module in detail including the configuration, components, materials, anticipated on orbit performance, and some of the aspects of each array technology. The layout of each module and the photovoltaic cell or array cross section will be presented graphically. A discussion on the environmental constraints and materials selection will be included as well as a delineation of the differences between the modules and the baseline array configuration in its intended application

  1. Photovoltaic Array Space Power flight experiment plus diagnostics (PASP+) modules (United States)

    Cooley, William T.; Adams, Steven F.; Reinhardt, Kitt C.; Piszczor, Michael F.


    The Photovoltaic Array Space Power Plus Diagnostics flight experiment (PASP+) subsumes twelve solar array modules which represent the state of the art in the space photovoltaic array industry. Each of the twelve modules individually feature specific photovoltaic technologies such as advanced semiconductor materials, multi-bandgap structures, lightweight array designs, advanced interconnect technologies, or concentrator array designs. This paper will describe each module in detail including the configuration, components, materials, anticipated on orbit performance, and some of the aspects of each array technology. The layout of each module and the photovoltaic cells or array cross section will be presented graphically. A discussion on the environmental constraints and materials selection will be included as well as a delineation of the differences between the modules and the baseline array configuration in its intended application.

  2. Photonic Crystal Nanocavity Arrays

    National Research Council Canada - National Science Library

    Altug, Hatice; Vuckovic, Jelena


    We recently proposed two-dimensional coupled photonic crystal nanocavity arrays as a route to achieve a slow-group velocity of light in all crystal directions, thereby enabling numerous applications...

  3. Flexible retinal electrode array (United States)

    Okandan, Murat [Albuquerque, NM; Wessendorf, Kurt O [Albuquerque, NM; Christenson, Todd R [Albuquerque, NM


    An electrode array which has applications for neural stimulation and sensing. The electrode array can include a large number of electrodes each of which is flexibly attached to a common substrate using a plurality of springs to allow the electrodes to move independently. The electrode array can be formed from a combination of bulk and surface micromachining, with electrode tips that can include an electroplated metal (e.g. platinum, iridium, gold or titanium) or a metal oxide (e.g. iridium oxide) for biocompatibility. The electrode array can be used to form a part of a neural prosthesis, and is particularly well adapted for use in an implantable retinal prosthesis where the electrodes can be tailored to provide a uniform gentle contact pressure with optional sensing of this contact pressure at one or more of the electrodes.

  4. Protein Functionalized Nanodiamond Arrays

    Directory of Open Access Journals (Sweden)

    Liu YL


    Full Text Available Abstract Various nanoscale elements are currently being explored for bio-applications, such as in bio-images, bio-detection, and bio-sensors. Among them, nanodiamonds possess remarkable features such as low bio-cytotoxicity, good optical property in fluorescent and Raman spectra, and good photostability for bio-applications. In this work, we devise techniques to position functionalized nanodiamonds on self-assembled monolayer (SAMs arrays adsorbed on silicon and ITO substrates surface using electron beam lithography techniques. The nanodiamond arrays were functionalized with lysozyme to target a certain biomolecule or protein specifically. The optical properties of the nanodiamond-protein complex arrays were characterized by a high throughput confocal microscope. The synthesized nanodiamond-lysozyme complex arrays were found to still retain their functionality in interacting with E. coli.

  5. Expandable LED array interconnect (United States)

    Yuan, Thomas Cheng-Hsin; Keller, Bernd


    A light emitting device that can function as an array element in an expandable array of such devices. The light emitting device comprises a substrate that has a top surface and a plurality of edges. Input and output terminals are mounted to the top surface of the substrate. Both terminals comprise a plurality of contact pads disposed proximate to the edges of the substrate, allowing for easy access to both terminals from multiple edges of the substrate. A lighting element is mounted to the top surface of the substrate. The lighting element is connected between the input and output terminals. The contact pads provide multiple access points to the terminals which allow for greater flexibility in design when the devices are used as array elements in an expandable array.

  6. Flat-plate photovoltaic array design optimization (United States)

    Ross, R. G., Jr.


    An analysis is presented which integrates the results of specific studies in the areas of photovoltaic structural design optimization, optimization of array series/parallel circuit design, thermal design optimization, and optimization of environmental protection features. The analysis is based on minimizing the total photovoltaic system life-cycle energy cost including repair and replacement of failed cells and modules. This approach is shown to be a useful technique for array optimization, particularly when time-dependent parameters such as array degradation and maintenance are involved.

  7. Miniaturized Retrodirective Arrays for a Nanosatellite Platform (United States)


    Miniaturized Retrodirective Arrays for a Nanosatellite Platform NIA Sb. GRANT NUMBER N00014-1 0-1-0056 Sc. PROGRAM ELEMENT NUMBER . NIA 6. AUTHOR(S) Sd...into a mobile platfonn, such as a nanosatellite , presents unique challenges due to the platform’s restrictions in terms of size, weight, and power...of power detection and null scanning. 1S. SUBJECT TERMS Retrodirective Array, Nanosatellite 16. SECURITY CLASSIFICATION OF: a. REPORT b. ABSTRACT

  8. DNA electrophoresis through microlithographic arrays

    International Nuclear Information System (INIS)

    Sevick, E.M.; Williams, D.R.M.


    Electrophoresis is one of the most widely used techniques in biochemistry and genetics for size-separating charged molecular chains such as DNA or synthetic polyelectrolytes. The separation is achieved by driving the chains through a gel with an external electric field. As a result of the field and the obstacles that the medium provides, the chains have different mobilities and are physically separated after a given process time. The macroscopically observed mobility scales inversely with chain size: small molecules move through the medium quickly while larger molecules move more slowly. However, electrophoresis remains a tool that has yet to be optimised for most efficient size separation of polyelectrolytes, particularly large polyelectrolytes, e.g. DNA in excess of 30-50 kbp. Microlithographic arrays etched with an ordered pattern of obstacles provide an attractive alternative to gel media and provide wider avenues for size separation of polyelectrolytes and promote a better understanding of the separation process. Its advantages over gels are (1) the ordered array is durable and can be re-used, (2) the array morphology is ordered and can be standardized for specific separation, and (3) calibration with a marker polyelectrolyte is not required as the array is reproduced to high precision. Most importantly, the array geometry can be graduated along the chip so as to expand the size-dependent regime over larger chain lengths and postpone saturation. In order to predict the effect of obstacles upon the chain-length dependence in mobility and hence, size separation, we study the dynamics of single chains using theory and simulation. We present recent work describing: 1) the release kinetics of a single DNA molecule hooked around a point, frictionless obstacle and in both weak and strong field limits, 2) the mobility of a chain impinging upon point obstacles in an ordered array of obstacles, demonstrating the wide range of interactions possible between the chain and

  9. LOFAR, the low frequency array (United States)

    Vermeulen, R. C.


    LOFAR, the Low Frequency Array, is a next-generation radio telescope designed by ASTRON, with antenna stations concentrated in the north of the Netherlands and currently spread into Germany, France, Sweden and the United Kingdom; plans for more LOFAR stations exist in several other countries. Utilizing a novel, phased-array design, LOFAR is optimized for the largely unexplored low frequency range between 30 and 240 MHz. Digital beam-forming techniques make the LOFAR system agile and allow for rapid re-pointing of the telescopes as well as the potential for multiple simultaneous observations. Processing (e.g. cross-correlation) takes place in the LOFAR BlueGene/P supercomputer, and associated post-processing facilities. With its dense core (inner few km) array and long (more than 1000 km) interferometric baselines, LOFAR reaches unparalleled sensitivity and resolution in the low frequency radio regime. The International LOFAR Telescope (ILT) is now issuing its first call for observing projects that will be peer reviewed and selected for observing starting in December. Part of the allocations will be made on the basis of a fully Open Skies policy; there are also reserved fractions assigned by national consortia in return for contributions from their country to the ILT. In this invited talk, the gradually expanding complement of operationally verified observing modes and capabilities are reviewed, and some of the exciting first astronomical results are presented.

  10. The mini-dome lens space concentrator array - Recent component test results and current array development status (United States)

    O'Neill, M. J.; Mcdanal, A. J.; Perry, J. L.; Flood, D. J.; Piszczor, M. F.; Swartz, C. K.


    The development of a high-performance, lightweight space photovoltaic concentrator array is described. The array is the first space photovoltaic concentrator system to use a refractive optical concentrator in the form of a dome-shaped, point-focus, Fresnel lens. In addition, it is the first such concentrator system to utilize prismatic cell covers to eliminate gridline obscuration losses. By combining these array features with state-of-the-art gallium arsenide cell technology, array areal power values (in watts per square meter) well in excess of present space power system levels are anticipated. In addition, the array has the potential for extremely high specific power values (in watts per kilogram).

  11. Geochemical Arrays at Woolsey Mound Seafloor Observatory (United States)

    Sleeper, K.; Wilson, R. M.; Chanton, J.; Lapham, L.; Farr, N.; Camilli, R.; Martens, C. S.; Pontbriand, C.


    incorporated into the Benthic Boundary Layer Array for high-speed, wireless data transmission. Combining this system with a cabled observatory will allow real-time monitoring of gas hydrates in the natural environment. The arrays have each been deployed at the Woolsey Mound Seafloor Observatory for extended durations. Woolsey Mound is at a depth of approximately 900m on the continental slope of the northern Gulf of Mexico in Mississippi Canyon Federal Lease Block 118. The Observatory is a multi-component facility that will have geophysical and microbial components in addition to the geochemical arrays described here. The goal of the Observatory is to develop a facility to evaluate the formation and stability of gas hydrates in a natural system. Specific areas of interest include geohazards, alternative energy resources, climate change and unique, deep- marine habitats. The poster presents the major geochemical arrays at Woolsey Mound Seafloor Observatory, including their design, sensor specifications, deployment and installation platforms, and scientific relevance.

  12. Coaxial phased array antenna (United States)

    Ellis, H., Jr.


    A coaxial antenna array for communicating circularly polarized electromagnetic radiation is disclosed. A pair of open ended antenna cavities is coaxially constructed and operates by excitation of linear radiation elements arranged within each of the cavities. A pair of crossed dipole radiation devices is centered within the inner cavity and operated by means of a phase shifting network circuit to transmit as well as receive circularly polarized radiation. Four monopole radiation devices are symmetrically arranged to operate in the outer cavity in phase quadrature by means of the phase shifting network circuit to both transmit and receive circularly polarized electromagnetic radiation. Combined operation of the two antenna cavities with a 180 deg phase differential between the fields related to the two antenna cavities provides a broad beam, relatively wide frequency bandwidth communication capability. Particular embodiments disclosed feature a generally square cavity array as well as a circular cavity array.

  13. Ferrite LTCC based phased array antennas

    KAUST Repository

    Ghaffar, Farhan A.


    Two phased array antennas realized in multilayer ferrite LTCC technology are presented in this paper. The use of embedded bias windings in these designs allows the negation of external magnets which are conventionally employed with bulk ferrite medium. This reduces the required magnetostatic field strength by 90% as compared to the traditional designs. The phase shifters are implemented using the SIW technology. One of the designs is operated in the half mode waveguide topology while the other design is based on standard full mode waveguide operation. The two phase shifter designs are integrated with two element patch antenna array and slotted SIW array respectively. The array designs demonstrate a beam steering of 30° and ±19° respectively for a current excitation of 200 mA. The designs, due to their small factor can be easily integrated in modern communication systems which is not possible in the case of bulk ferrite based designs.

  14. Applications of the phased array technique

    International Nuclear Information System (INIS)

    Erhard, A.; Schenk, G.; Hauser, Th.; Voelz, U.


    The application of the phased array technique was limited to heavy and thick wall components as present in the nuclear industry. With the improvement of the equipment and probes other application areas are now open for the phased array technique, e.g. the inspection of the turbine blade root, weld inspection in a wall thickness range between 12 and 40 mm, inspection of aircraft components, inspection of spot welds or inspection of concretes. The aim of the use of phased array techniques has not been changed related to the first applications, i.e. the adaptation of the sound beam to the geometry by steering the angel of incidence or the skewing angle as well as the focussing of sound fields. Due to the fact, that the new applications of the phased array techniques in some cases don't leave the laboratories for the time being, the examples of this contribution will focus applications with practical background. (orig.)

  15. Wire Array Photovoltaics (United States)

    Turner-Evans, Dan

    Over the past five years, the cost of solar panels has dropped drastically and, in concert, the number of installed modules has risen exponentially. However, solar electricity is still more than twice as expensive as electricity from a natural gas plant. Fortunately, wire array solar cells have emerged as a promising technology for further lowering the cost of solar. Si wire array solar cells are formed with a unique, low cost growth method and use 100 times less material than conventional Si cells. The wires can be embedded in a transparent, flexible polymer to create a free-standing array that can be rolled up for easy installation in a variety of form factors. Furthermore, by incorporating multijunctions into the wire morphology, higher efficiencies can be achieved while taking advantage of the unique defect relaxation pathways afforded by the 3D wire geometry. The work in this thesis shepherded Si wires from undoped arrays to flexible, functional large area devices and laid the groundwork for multijunction wire array cells. Fabrication techniques were developed to turn intrinsic Si wires into full p-n junctions and the wires were passivated with a-Si:H and a-SiNx:H. Single wire devices yielded open circuit voltages of 600 mV and efficiencies of 9%. The arrays were then embedded in a polymer and contacted with a transparent, flexible, Ni nanoparticle and Ag nanowire top contact. The contact connected >99% of the wires in parallel and yielded flexible, substrate free solar cells featuring hundreds of thousands of wires. Building on the success of the Si wire arrays, GaP was epitaxially grown on the material to create heterostructures for photoelectrochemistry. These cells were limited by low absorption in the GaP due to its indirect bandgap, and poor current collection due to a diffusion length of only 80 nm. However, GaAsP on SiGe offers a superior combination of materials, and wire architectures based on these semiconductors were investigated for multijunction

  16. Mass accretion and nested array dynamics from Ni-Clad Ti-Al wire array Z pinches

    International Nuclear Information System (INIS)

    Jones, Brent Manley; Jennings, Christopher A.; Coverdale, Christine Anne; Cuneo, Michael Edward; Maron, Yitzhak; LePell, Paul David; Deeney, Christopher


    Analysis of 50 mm diameter wire arrays at the Z Accelerator has shown experimentally the accretion of mass in a stagnating z pinch and provided insight into details of the radiating plasma species and plasma conditions. This analysis focused on nested wire arrays with a 2:1 (outeninner) mass, radius, and wire number ratio where Al wires were fielded on the outer array and Ni-clad Ti wires were fielded on the inner array.In this presentation, we will present analysis of data from other mixed Al/Ni-clad Ti configurations to further evaluate nested wire array dynamics and mass accretion. These additional configurations include the opposite configuration to that described above (Ni-clad Ti wires on the outer array, with Al wires on the inner array) as well as higher wire number Al configurations fielded to vary the interaction of the two arrays. These same variations were also assessed for a smaller diameter nested array configuration (40 mm). Variations in the emitted radiation and plasma conditions will be presented, along with a discussion of what the results indicate about the nested array dynamics. Additional evidence for mass accretion will also be presented.


    Directory of Open Access Journals (Sweden)

    M. B. Stolbov


    Full Text Available Application of microphone arrays and beamforming techniques for speech information collection has significant advantages compared to systems operating with a single microphone. This paper presents a brief overview of microphone array systems for collecting distant speech information. The paper is based on an analysis of publications on the use of microphone arrays for speech information collection tasks, as well as on the author’s experience in the development and practical application of planar microphone arrays. The paper describes the main stages of the development of systems for remote capture of audio information. It provides a review of the main applications of microphone arrays, the basic types of microphone arrays and their features. The bulk of the paper deals with planar microphone arrays. We analyze the work of microphone arrays in different acoustic environments. The paper contains the basic equations for calculating the parameters of equidistant planar microphone arrays. Some methods of designing non-equidistant arrays are also mentioned (a list of references is included. We also provide a list of basic digital signal processing algorithms for planar microphone arrays, as well as a list of references on processing algorithms in the frequency domain. The paper includes a list of foreign companies offering systems based on microphone arrays for a wide range of tasks associated with the processing of speech and audio signals. We describe some state-of-the-art speech information collection systems based on microphone arrays. Some promising directions for the development of speech information collection systems using microphone arrays are described in conclusion. The material of the review is usable in designing of microphone arrays for specific practical applications.

  18. A review of array radars (United States)

    Brookner, E.


    Achievements in the area of array radars are illustrated by such activities as the operational deployment of the large high-power, high-range-resolution Cobra Dane; the operational deployment of two all-solid-state high-power, large UHF Pave Paws radars; and the development of the SAM multifunction Patriot radar. This paper reviews the following topics: array radars steered in azimuth and elevation by phase shifting (phase-phase steered arrays); arrays steered + or - 60 deg, limited scan arrays, hemispherical coverage, and omnidirectional coverage arrays; array radars steering electronically in only one dimension, either by frequency or by phase steering; and array radar antennas which use no electronic scanning but instead use array antennas for achieving low antenna sidelobes.

  19. Delivery presentations (United States)

    Pregnancy - delivery presentation; Labor - delivery presentation; Occiput posterior; Occiput anterior; Brow presentation ... The mother can walk, rock, and try different delivery positions during labor to help encourage the baby ...


    Directory of Open Access Journals (Sweden)

    Chia Seet Chin


    Full Text Available The photovoltaic (PV array controlled by Maximum Power Point Tracking (MPPT method for optimum PV power generation, particularly when the PV array is under partially shaded condition is presented in this paper. The system modelling is carried out in MATLAB-SIMULINK where the PV array is formed by five series connected identical PV modules. Under uniform solar irradiance conditions, the PV module and the PV array present nonlinear P-V characteristic but the maximum power point (MPP can be easily identified. However, when the PV array is under shaded conditions, the P-V characteristic becomes more complex with the present of multiple MPP. While the PV array operated at local MPP, the generated power is limited. Thus, the investigation on MPPT approach is carried out to maximize the PV generated power even when the PV array is under partially shaded conditions (PSC. Fuzzy logic is adopted into the conventional MPPT to form fuzzy logic based MPPT (FMPPT for better performance. The developed MPPT and FMPPT are compared, particularly the performances on the transient response and the steady state response when the array is under various shaded conditions. FMPPT shows better performance where the simulation results demonstrate FMPPT is able to facilitate the PV array to reach the MPP faster while it helps the PV array to produce a more stable output power.

  1. High-resolution SNP array analysis of patients with developmental disorder and normal array CGH results

    Directory of Open Access Journals (Sweden)

    Siggberg Linda


    Full Text Available Abstract Background Diagnostic analysis of patients with developmental disorders has improved over recent years largely due to the use of microarray technology. Array methods that facilitate copy number analysis have enabled the diagnosis of up to 20% more patients with previously normal karyotyping results. A substantial number of patients remain undiagnosed, however. Methods and Results Using the Genome-Wide Human SNP array 6.0, we analyzed 35 patients with a developmental disorder of unknown cause and normal array comparative genomic hybridization (array CGH results, in order to characterize previously undefined genomic aberrations. We detected no seemingly pathogenic copy number aberrations. Most of the vast amount of data produced by the array was polymorphic and non-informative. Filtering of this data, based on copy number variant (CNV population frequencies as well as phenotypically relevant genes, enabled pinpointing regions of allelic homozygosity that included candidate genes correlating to the phenotypic features in four patients, but results could not be confirmed. Conclusions In this study, the use of an ultra high-resolution SNP array did not contribute to further diagnose patients with developmental disorders of unknown cause. The statistical power of these results is limited by the small size of the patient cohort, and interpretation of these negative results can only be applied to the patients studied here. We present the results of our study and the recurrence of clustered allelic homozygosity present in this material, as detected by the SNP 6.0 array.

  2. Thermophotovoltaic Arrays for Electrical Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    Sarnoff Corporation


    Sarnoff has designed an integrated array of thermophotovoltaic (TPV) cells based on the In(Al)GaAsSb/GaSb materials system. These arrays will be used in a system to generate electrical power from a radioisotope heat source that radiates at temperatures from 700 to 1000 C. Two arrays sandwich the slab heat source and will be connected in series to build voltage. Between the arrays and the heat source is a spectral control filter that transmits above-bandgap radiation and reflects below-bandgap radiation. The goal is to generate 5 mW of electrical power at 3 V from a 700 C radiant source. Sarnoff is a leader in antimonide-based TPV cell development. InGaAsSb cells with a bandgap of 0.53 eV have operated at system conversion efficiencies greater than 17%. The system included a front-surface filter, and a 905 C radiation source. The cells were grown via organo-metallic vapor-phase epitaxy. Sarnoff will bring this experience to bear on the proposed project. The authors first describe array and cell architecture. They then present calculated results showing that about 80 mW of power can be obtained from a 700 C radiator. Using a conservative array design, a 5-V output is possible.

  3. 2D array based on fermat spiral (United States)

    Martínez, O.; Martín, C. J.; Godoy, G.; Ullate, L. G.


    The main challenge faced by 3D ultrasonic imaging with 2D array transducer is the large number of elements required to achieve an acceptable level of quality in the images. Therefore, the optimization of the array layout to reduce the number of active elements in the aperture has been a research topic in the last years. Nowadays, CMUT array technology has made viable the production of 2D arrays with larger flexibility on elements size, shape and position. This is opening new options in 2D array design, allowing to revise as viable alternatives others layouts that had been studied in the past, like circular and Archimedes spiral layout. In this work the problem of designing an imaging system array with a diameter of 60 λ and a limited number of elements using the Fermat spiral layout has been studied. This study has been done for two different numbers of electronic channels (N = 128 and N = 256). As summary, a general discussion of the results and the most interesting cases are presented.

  4. Tunable nanoparticle arrays at charged interfaces. (United States)

    Srivastava, Sunita; Nykypanchuk, Dmytro; Fukuto, Masafumi; Gang, Oleg


    Structurally tunable two-dimensional (2D) arrays of nanoscale objects are important for modulating functional responses of thin films. We demonstrate that such tunable and ordered nanoparticles (NP) arrays can be assembled at charged air-water interfaces from nanoparticles coated with polyelectrolyte chains, DNA. The electrostatic attraction between the negatively charged nonhybridizing DNA-coated gold NPs and a positively charged lipid layer at the interface facilitates the formation of a 2D hexagonally closed packed (HCP) nanoparticle lattice. We observed about 4-fold change of the monolayer nanoparticle density by varying the ionic strength of the subphase. The tunable NP arrays retain their structure reasonably well when transferred to a solid support. The influence of particle's DNA corona and lipid layer composition on the salt-induced in-plane and normal structural evolution of NP arrays was studied in detail using a combination of synchrotron-based in situ surface scattering methods, grazing incidence X-ray scattering (GISAXS), and X-ray reflectivity (XRR). Comparative analysis of the interparticle distances as a function of ionic strength reveals the difference between the studied 2D nanoparticle arrays and analogous bulk polyelectrolyte star polymers systems, typically described by Daoud-Cotton model and power law scaling. The observed behavior of the 2D nanoparticle array manifests a nonuniform deformation of the nanoparticle DNA corona due to its electrostatically induced confinement at the lipid interface. The present study provides insight on the interfacial properties of the NPs coated with charged soft shells.

  5. The Fuge Tube Diode Array Spectrophotometer (United States)

    Arneson, B. T.; Long, S. R.; Stewart, K. K.; Lagowski, J. J.


    We present the details for adapting a diode array UV-vis spectrophotometer to incorporate the use of polypropylene microcentrifuge tubes--fuge tubes--as cuvettes. Optical data are presented validating that the polyethylene fuge tubes are equivalent to the standard square cross section polystyrene or glass cuvettes generally used in…

  6. 24-71 GHz PCB Array for 5G ISM (United States)

    Novak, Markus H.; Volakis, John L.; Miranda, Felix A.


    Millimeter-wave 5G mobile architectures need to consolidate disparate frequency bands into a single, multifunctional array. Existing arrays are either narrow-band, prohibitively expensive or cannot be scaled to these frequencies. In this paper, we present the first ultra-wideband millimeter wave array to operate across six 5G and ISM bands spanning 24-71 GHz. Importantly, the array is realized using low-cost PCB. The paper presents the design and optimized layout, and discusses fabrication and measurements.

  7. Gamma-spectrometry with Compton suppressed detectors arrays

    International Nuclear Information System (INIS)

    Schueck, C.; Hannachi, F.; Chapman, R.


    Recent results of experiments performed with two different Compton-suppressed detectors arrays in Daresbury and Berkeley (/sup 163,164/Yb and 154 Er, respectively), are presented together with a brief description of the national French array presently under construction in Strasbourg. 25 refs., 15 figs

  8. Acoustic Array Development for Wind Turbine Noise Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Buck, S.; Roadman, J.; Moriarty, P.; Palo, S.


    This report discusses the design and use of a multi-arm, logarithmic spiral acoustic array by the National Renewable Energy Laboratory (NREL) for measurement and characterization of wind turbine-generated noise. The array was developed in collaboration with a team from the University of Colorado Boulder. This design process is a continuation of the elliptical array design work done by Simley. A description of the array system design process is presented, including array shape design, mechanical design, design of electronics and the data acquisition system, and development of post-processing software. System testing and calibration methods are detailed. Results from the initial data acquisition campaign are offered and discussed. Issues faced during this initial deployment of the array are presented and potential remedies discussed.

  9. Delivery presentations (United States)

    ... is delivered under the pubic bone. After the shoulder, the rest of the body is usually delivered without a problem. Alternative Names Shoulder presentation; Malpresentations; Breech birth; Cephalic presentation; Fetal lie; ...

  10. Sorting white blood cells in microfabricated arrays (United States)

    Castelino, Judith Andrea Rose

    Fractionating white cells in microfabricated arrays presents the potential for detecting cells with abnormal adhesive or deformation properties. A possible application is separating nucleated fetal red blood cells from maternal blood. Since fetal cells are nucleated, it is possible to extract genetic information about the fetus from them. Separating fetal cells from maternal blood would provide a low cost noninvasive prenatal diagnosis for genetic defects, which is not currently available. We present results showing that fetal cells penetrate further into our microfabricated arrays than adult cells, and that it is possible to enrich the fetal cell fraction using the arrays. We discuss modifications to the array which would result in further enrichment. Fetal cells are less adhesive and more deformable than adult white cells. To determine which properties limit penetration, we compared the penetration of granulocytes and lymphocytes in arrays with different etch depths, constriction size, constriction frequency, and with different amounts of metabolic activity. The penetration of lymphocytes and granulocytes into constrained and unconstrained arrays differed qualitatively. In constrained arrays, the cells were activated by repeated shearing, and the number of cells stuck as a function of distance fell superexponentially. In unconstrained arrays the number of cells stuck fell slower than an exponential. We attribute this result to different subpopulations of cells with different sticking parameters. We determined that penetration in unconstrained arrays was limited by metabolic processes, and that when metabolic activity was reduced penetration was limited by deformability. Fetal cells also contain a different form of hemoglobin with a higher oxygen affinity than adult hemoglobin. Deoxygenated cells are paramagnetic and are attracted to high magnetic field gradients. We describe a device which can separate cells using 10 μm magnetic wires to deflect the paramagnetic

  11. Joint Use of Constant Modulus and Least Squares Criteria in Linearly-Constrained Communication Arrays

    Directory of Open Access Journals (Sweden)

    V. I. Djigan


    Full Text Available This paper considers the application of the linear constraints and RLS inverse QR decomposition in adaptive arrays based on constant modulus criterion. The computational procedures of adaptive algorithms are presented. Linearly constrained least squares adaptive arrays, constant modulus adaptive arrays and linearly constrained constant modulus adaptive arrays are compared via simulation. It is demonstrated, that a constant phase shift in the array output signal, caused by desired signal orientation and array weights, is compensated in a simple way in linearly constrained constant modulus adaptive arrays.

  12. Radar techniques using array antennas

    CERN Document Server

    Wirth, Wulf-Dieter


    Radar Techniques Using Array Antennas is a thorough introduction to the possibilities of radar technology based on electronic steerable and active array antennas. Topics covered include array signal processing, array calibration, adaptive digital beamforming, adaptive monopulse, superresolution, pulse compression, sequential detection, target detection with long pulse series, space-time adaptive processing (STAP), moving target detection using synthetic aperture radar (SAR), target imaging, energy management and system parameter relations. The discussed methods are confirmed by simulation stud

  13. Timed arrays wideband and time varying antenna arrays

    CERN Document Server

    Haupt, Randy L


    Introduces timed arrays and design approaches to meet the new high performance standards The author concentrates on any aspect of an antenna array that must be viewed from a time perspective. The first chapters briefly introduce antenna arrays and explain the difference between phased and timed arrays. Since timed arrays are designed for realistic time-varying signals and scenarios, the book also reviews wideband signals, baseband and passband RF signals, polarization and signal bandwidth. Other topics covered include time domain, mutual coupling, wideband elements, and dispersion. The auth

  14. Seismometer array station processors

    International Nuclear Information System (INIS)

    Key, F.A.; Lea, T.G.; Douglas, A.


    A description is given of the design, construction and initial testing of two types of Seismometer Array Station Processor (SASP), one to work with data stored on magnetic tape in analogue form, the other with data in digital form. The purpose of a SASP is to detect the short period P waves recorded by a UK-type array of 20 seismometers and to edit these on to a a digital library tape or disc. The edited data are then processed to obtain a rough location for the source and to produce seismograms (after optimum processing) for analysis by a seismologist. SASPs are an important component in the scheme for monitoring underground explosions advocated by the UK in the Conference of the Committee on Disarmament. With digital input a SASP can operate at 30 times real time using a linear detection process and at 20 times real time using the log detector of Weichert. Although the log detector is slower, it has the advantage over the linear detector that signals with lower signal-to-noise ratio can be detected and spurious large amplitudes are less likely to produce a detection. It is recommended, therefore, that where possible array data should be recorded in digital form for input to a SASP and that the log detector of Weichert be used. Trial runs show that a SASP is capable of detecting signals down to signal-to-noise ratios of about two with very few false detections, and at mid-continental array sites it should be capable of detecting most, if not all, the signals with magnitude above msub(b) 4.5; the UK argues that, given a suitable network, it is realistic to hope that sources of this magnitude and above can be detected and identified by seismological means alone. (author)

  15. Solar collector array (United States)

    Hall, John Champlin; Martins, Guy Lawrence


    A method and apparatus for efficient manufacture, assembly and production of solar energy. In one aspect, the apparatus may include a number of modular solar receiver assemblies that may be separately manufactured, assembled and individually inserted into a solar collector array housing shaped to receive a plurality of solar receivers. The housing may include optical elements for focusing light onto the individual receivers, and a circuit for electrically connecting the solar receivers.

  16. Lead chalcogenides based IR photosensitive array detectors with coordinate addressing (United States)

    Agranov, G. A.; Novoselov, S. K.; Stepanov, R. M.; Doon, A. Z.; Pashkevich, A. V.; Ivanov, A. I.; Nemchuk, I. K.; Nesterov, V. K.; Skoriukin, V. E.


    Coordinate addressed photodetector arrays based on thin films of lead chalcogenides and operating in different wavebands of the infrared spectral regions are described. The arrays feature high sensitivity, close to BLIP mode, wide dynamic range, and low heat dissipation. Their advantages include random access, element block selection, image scaling, and on chip data encoding. Different design configurations with elements from 128 by 128 to 512 by 512 are discussed and experimental parameters and characteristics of the experimental arrays are presented.

  17. Introduction to parallel algorithms and architectures arrays, trees, hypercubes

    CERN Document Server

    Leighton, F Thomson


    Introduction to Parallel Algorithms and Architectures: Arrays Trees Hypercubes provides an introduction to the expanding field of parallel algorithms and architectures. This book focuses on parallel computation involving the most popular network architectures, namely, arrays, trees, hypercubes, and some closely related networks.Organized into three chapters, this book begins with an overview of the simplest architectures of arrays and trees. This text then presents the structures and relationships between the dominant network architectures, as well as the most efficient parallel algorithms for

  18. Array processor architecture (United States)

    Barnes, George H. (Inventor); Lundstrom, Stephen F. (Inventor); Shafer, Philip E. (Inventor)


    A high speed parallel array data processing architecture fashioned under a computational envelope approach includes a data base memory for secondary storage of programs and data, and a plurality of memory modules interconnected to a plurality of processing modules by a connection network of the Omega gender. Programs and data are fed from the data base memory to the plurality of memory modules and from hence the programs are fed through the connection network to the array of processors (one copy of each program for each processor). Execution of the programs occur with the processors operating normally quite independently of each other in a multiprocessing fashion. For data dependent operations and other suitable operations, all processors are instructed to finish one given task or program branch before all are instructed to proceed in parallel processing fashion on the next instruction. Even when functioning in the parallel processing mode however, the processors are not locked-step but execute their own copy of the program individually unless or until another overall processor array synchronization instruction is issued.

  19. Spaceborne Processor Array (United States)

    Chow, Edward T.; Schatzel, Donald V.; Whitaker, William D.; Sterling, Thomas


    A Spaceborne Processor Array in Multifunctional Structure (SPAMS) can lower the total mass of the electronic and structural overhead of spacecraft, resulting in reduced launch costs, while increasing the science return through dynamic onboard computing. SPAMS integrates the multifunctional structure (MFS) and the Gilgamesh Memory, Intelligence, and Network Device (MIND) multi-core in-memory computer architecture into a single-system super-architecture. This transforms every inch of a spacecraft into a sharable, interconnected, smart computing element to increase computing performance while simultaneously reducing mass. The MIND in-memory architecture provides a foundation for high-performance, low-power, and fault-tolerant computing. The MIND chip has an internal structure that includes memory, processing, and communication functionality. The Gilgamesh is a scalable system comprising multiple MIND chips interconnected to operate as a single, tightly coupled, parallel computer. The array of MIND components shares a global, virtual name space for program variables and tasks that are allocated at run time to the distributed physical memory and processing resources. Individual processor- memory nodes can be activated or powered down at run time to provide active power management and to configure around faults. A SPAMS system is comprised of a distributed Gilgamesh array built into MFS, interfaces into instrument and communication subsystems, a mass storage interface, and a radiation-hardened flight computer.


    DEFF Research Database (Denmark)

    Eriksen, Kaare; Tollestrup, Christian; Ovesen, Nis


    An important competence for designers is the ability to communicate and present ideas and proposals for customers, partners, investors and colleagues. The Pecha Kucha principle, developed by Astrid Klein and Mark Dytham, has become a widely used and easy format for the presentation of new concepts...... their proposals at the final examination of their project work. The authors conclude that Pecha Kucha is suitable for this type of presentations, although the flow of such presentations should be considered if used in connection with formal examination....

  1. rasdaman Array Database: current status (United States)

    Merticariu, George; Toader, Alexandru


    rasdaman (Raster Data Manager) is a Free Open Source Array Database Management System which provides functionality for storing and processing massive amounts of raster data in the form of multidimensional arrays. The user can access, process and delete the data using SQL. The key features of rasdaman are: flexibility (datasets of any dimensionality can be processed with the help of SQL queries), scalability (rasdaman's distributed architecture enables it to seamlessly run on cloud infrastructures while offering an increase in performance with the increase of computation resources), performance (real-time access, processing, mixing and filtering of arrays of any dimensionality) and reliability (legacy communication protocol replaced with a new one based on cutting edge technology - Google Protocol Buffers and ZeroMQ). Among the data with which the system works, we can count 1D time series, 2D remote sensing imagery, 3D image time series, 3D geophysical data, and 4D atmospheric and climate data. Most of these representations cannot be stored only in the form of raw arrays, as the location information of the contents is also important for having a correct geoposition on Earth. This is defined by ISO 19123 as coverage data. rasdaman provides coverage data support through the Petascope service. Extensions were added on top of rasdaman in order to provide support for the Geoscience community. The following OGC standards are currently supported: Web Map Service (WMS), Web Coverage Service (WCS), and Web Coverage Processing Service (WCPS). The Web Map Service is an extension which provides zoom and pan navigation over images provided by a map server. Starting with version 9.1, rasdaman supports WMS version 1.3. The Web Coverage Service provides capabilities for downloading multi-dimensional coverage data. Support is also provided for several extensions of this service: Subsetting Extension, Scaling Extension, and, starting with version 9.1, Transaction Extension, which

  2. Array abstractions for GPU programming

    DEFF Research Database (Denmark)

    Dybdal, Martin

    The shift towards massively parallel hardware platforms for highperformance computing tasks has introduced a need for improved programming models that facilitate ease of reasoning for both users and compiler optimization. A promising direction is the field of functional data-parallel programming......, for which functional invariants can be utilized by optimizing compilers to perform large program transformations automatically. However, the previous work in this area allow users only limited ability to reason about the performance of algorithms. For this reason, such languages have yet to see wide...... industrial adoption. We present two programming languages that attempt at both supporting industrial applications and providing reasoning tools for hierarchical data-parallel architectures, such as GPUs. First, we present TAIL, an array based intermediate language and compiler framework for compiling a large...

  3. Workshop presentations

    International Nuclear Information System (INIS)

    Sanden, Per-Olof; Edland, Anne; Reiersen, Craig; Mullins, Peter; Ingemarsson, Karl-Fredrik; Bouchard, Andre; Watts, Germaine; Johnstone, John; Hollnagel, Erik; Ramberg, Patric; Reiman, Teemu


    An important part of the workshop was a series of invited presentations. The presentations were intended to both provide the participants with an understanding of various organisational approaches and activities as well as to stimulate the exchange of ideas during the small group discussion sessions. The presentation subjects ranged from current organisational regulations and licensee activities to new organisational research and the benefits of viewing organisations from a different perspective. There were more than a dozen invited presentations. The initial set of presentations gave the participants an overview of the background, structure, and aims of the workshop. This included a short presentation on the results from the regulatory responses to the pre-workshop survey. Representatives from four countries (Sweden, Canada, Finland, and the United Kingdom) expanded upon their survey responses with detailed presentations on both regulatory and licensee safety-related organisational activities in their countries. There were also presentations on new research concerning how to evaluate safety critical organisations and on a resilience engineering perspective to safety critical organisations. Below is the list of the presentations, the slides of which being available in Appendix 2: 1 - Workshop Welcome (Per-Olof Sanden); 2 - CSNI Working Group on Human and Organisational Factors (Craig Reiersen); 3 - Regulatory expectations on justification of suitability of licensee organisational structures, resources and competencies (Anne Edland); 4 - Justifying the suitability of licensee organisational structures, resources and competencies (Karl-Fredrik Ingemarsson); 5 - Nuclear Organisational Suitability in Canada (Andre Bouchard); 6 - Designing and Resourcing for Safety and Effectiveness (Germaine Watts); 7 - Organisational Suitability - What do you need and how do you know that you've got it? (Craig Reiersen); 8 - Suitability of Organisations - UK Regulator's View

  4. CERN presentations

    CERN Multimedia

    CERN. Geneva


    Presentation by CERN (10 minutes each) Rolf Landua - Education and Outreach Salvatore Mele - Open Access Jean-Yves Le Meur - Digital Library in Africa Francois Fluckiger - Open Source/Standards (tbc) Tim Smith - Open Data for Science Tullio Basiglia - tbc

  5. Jammed-array wideband sawtooth filter. (United States)

    Tan, Zhongwei; Wang, Chao; Goda, Keisuke; Malik, Omer; Jalali, Bahram


    We present an all-optical passive low-cost spectral filter that exhibits a high-resolution periodic sawtooth spectral pattern without the need for active optoelectronic components. The principle of the filter is the partial masking of a phased array of virtual light sources with multiply jammed diffraction orders. We utilize the filter's periodic linear map between frequency and intensity to demonstrate fast sensitive interrogation of fiber Bragg grating sensor arrays and ultrahigh-frequency electrical sawtooth waveform generation. © 2011 Optical Society of America

  6. Microfabricated hollow microneedle array using ICP etcher (United States)

    Ji, Jing; Tay, Francis E. H.; Miao, Jianmin


    This paper presents a developed process for fabrication of hollow silicon microneedle arrays. The inner hollow hole and the fluidic reservoir are fabricated in deep reactive ion etching. The profile of outside needles is achieved by the developed fabrication process, which combined isotropic etching and anisotropic etching with inductively coupled plasma (ICP) etcher. Using the combination of SF6/O2 isotropic etching chemistry and Bosch process, the high aspect ratio 3D and high density microneedle arrays are fabricated. The generated needle external geometry can be controlled by etching variables in the isotropic and anisotropic cases.

  7. Microfabricated hollow microneedle array using ICP etcher

    International Nuclear Information System (INIS)

    Ji Jing; Tay, Francis E H; Miao Jianmin


    This paper presents a developed process for fabrication of hollow silicon microneedle arrays. The inner hollow hole and the fluidic reservoir are fabricated in deep reactive ion etching. The profile of outside needles is achieved by the developed fabrication process, which combined isotropic etching and anisotropic etching with inductively coupled plasma (ICP) etcher. Using the combination of SF 6 /O 2 isotropic etching chemistry and Bosch process, the high aspect ratio 3D and high density microneedle arrays are fabricated. The generated needle external geometry can be controlled by etching variables in the isotropic and anisotropic cases

  8. Microfabricated hollow microneedle array using ICP etcher

    Energy Technology Data Exchange (ETDEWEB)

    Ji Jing [Mechanical Engineering National University of Singapore, 119260, Singapore (Singapore); Tay, Francis E H [Mechanical Engineering National University of Singapore, 119260, Singapore (Singapore); Miao Jianmin [MicroMachines Center, School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 (Singapore)


    This paper presents a developed process for fabrication of hollow silicon microneedle arrays. The inner hollow hole and the fluidic reservoir are fabricated in deep reactive ion etching. The profile of outside needles is achieved by the developed fabrication process, which combined isotropic etching and anisotropic etching with inductively coupled plasma (ICP) etcher. Using the combination of SF{sub 6}/O{sub 2} isotropic etching chemistry and Bosch process, the high aspect ratio 3D and high density microneedle arrays are fabricated. The generated needle external geometry can be controlled by etching variables in the isotropic and anisotropic cases.

  9. An LTCC 94 GHz Antenna Array

    Energy Technology Data Exchange (ETDEWEB)

    Aguirre, J; Pao, H; Lin, H; Garland, P; O' Neill, D; Horton, K


    An antenna array is designed in low-temperature cofired ceramic (LTCC) Ferro A6M{trademark} for a mm-wave application. The antenna is designed to operate at 94 GHz with a few percent bandwidth. A key manufacturing technology is the use of 3 mil diameter vias on a 6 mil pitch to construct the laminated waveguides that form the beamforming network and radiating elements. Measurements for loss in the laminated waveguide are presented. The slot-fed cavity-radiating element is designed to account for extremely tight mutual coupling between elements. The array incorporates a slot-fed multi-layer beamforming network.

  10. Cell Proliferation Tracking Using Graphene Sensor Arrays

    Directory of Open Access Journals (Sweden)

    Ronan Daly


    Full Text Available The development of a novel label-free graphene sensor array is presented. Detection is based on modification of graphene FET devices and specifically monitoring the change in composition of the nutritive components in culturing medium. Micro-dispensing of Escherichia coli in medium shows feasibility of accurate positioning over each sensor while still allowing cell proliferation. Graphene FET device fabrication, sample dosing, and initial electrical characterisation have been completed and show a promising approach to reducing the sample size and lead time for diagnostic and drug development protocols through a label-free and reusable sensor array fabricated with standard and scalable microfabrication technologies.

  11. Eigenbeamforming array systems for sound source localization

    DEFF Research Database (Denmark)

    Tiana Roig, Elisabet

    Microphone array technology has been widely used for the localization of sound sources. In particular, beamforming is a well-established signal processing method that maps the position of acoustic sources by steering the array transducers toward different directions electronically. The present Ph...... scatterer is recommended instead. A better visualization in the entire frequency range can be achieved with deconvo- lution methods, as they allow the recovery of the sound source distribution from a given beamformed map. Three efficient methods based on spectral procedures, originally conceived for planar...

  12. Nanoparticle sorting in silicon waveguide arrays (United States)

    Zhao, H. T.; Zhang, Y.; Chin, L. K.; Yap, P. H.; Wang, K.; Ser, W.; Liu, A. Q.


    This paper presents the optical fractionation of nanoparticles in silicon waveguide arrays. The optical lattice is generated by evanescent coupling in silicon waveguide arrays. The hotspot size is tunable by changing the refractive index of surrounding liquids. In the experiment, 0.2-μm and 0.5-μm particles are separated with a recovery rate of 95.76%. This near-field approach is a promising candidate for manipulating nanoscale biomolecules and is anticipated to benefit the biomedical applications such as exosome purification, DNA optical mapping, cell-cell interaction, etc.

  13. Microneedle Array Interface to CE on Chip

    NARCIS (Netherlands)

    Lüttge, Regina; Gardeniers, Johannes G.E.; Vrouwe, E.X.; van den Berg, Albert; Northrup, M.A.; Jensen, K.F; Harrison, D.J.


    This paper presents a microneedle array sampler interfaced to a capillary electrophoresis (CE) glass chip with integrated conductivity detection electrodes. A solution of alkali ions was electrokinetically loaded through the microneedles onto the chip and separation was demonstrated compared to a

  14. Designing Flat-Plate Photovoltaic Arrays (United States)

    Ross, R. G., Jr.


    Report presents overview of state of art in design techniques for flat-plate solar photovoltaic modules and arrays. Paper discusses design requirements, design analyses, and test methods identified and developed for this technology over past several years in effort to reduce cost and improve utility and reliability for broad spectrum of terrestrial applications.

  15. Brazilian Decimetric Array (BDA) project - Phase II (United States)

    Faria, C.; Stephany, S.; Sawant, H. S.; Cecatto, J. R.; Fernandes, F. C. R.


    The configuration of the second phase of the Brazilian Decimetric Array (BDA), installed at Cachoeira Paulista, Brazil (Longitude 45° 0‧ 20″ W and Latitude 22° 41‧ 19″ S), is a T-shaped array where 21 antennas are being added to existing 5 antennas of the first phase. In the third phase, in each arm of the T array, four more antennas will be added and baselines will be increased to 2.5 × 1.25 km in east-west and south directions, respectively. The antennas will be equally spaced at the distances of 250 meters from the central antenna of the T-array. Also, the frequency range will be increased to 1.2-1.7, 2.8 and 5.6 GHz. The Second phase of the BDA should be operational by the middle of 2010 and will operate in the frequency range of (1.2-1.7) GHz for solar and non solar observations. Here, we present the characteristics of the second phase of the BDA project, details of the array configuration, the u-v coverage, the synthesized beam obtained for the proposed configuration.

  16. All-Electrical Graphene DNA Sensor Array. (United States)

    Abbott, Jeffrey; Ham, Donhee; Xu, Guangyu


    Electrical sensing of biomolecules has been an important pursuit due to the label-free operation and chip-scale construct such sensing modality can enable. In particular, electrical biomolecular sensors based on nanomaterials such as semiconductor nanowires, carbon nanotubes, and graphene have demonstrated high sensitivity, which in the case of nanowires and carbon nanotubes can surpass typical optical detection sensitivity. Among these nanomaterials, graphene is well suited for a practical candidate for implementing a large-scale array of biomolecular sensors, as its two-dimensional morphology is readily compatible with industry standard top-down fabrication techniques. In our recent work published in 2014 Nature Communications, we demonstrated these benefits by creating DNA sensor arrays from chemical vapor deposition (CVD) graphene. The present chapter, which is a review of this recent work, outlines procedures demonstrating the use of individual graphene sites of the array in dual roles--electrophoretic electrodes for site specific probe DNA immobilization and field effect transistor (FET) sensors for detection of target DNA hybridization. The 100 fM detection sensitivity achieved in 7 out of 8 graphene FET sensors in the array combined with the alternative use of the graphene channels as electrophoretic electrodes for probe deposition represent steps toward creating an all-electrical multiplexed DNA array.

  17. Radiation from waveguide arrays

    International Nuclear Information System (INIS)

    Brambilla, M.


    The theory of phased waveguide arrays (the 'Grill'), developed in view of Lower Hybrid Heating of toroidal plasmas, is applied to two simple cases, in order to gain insight on field distributions and power flow. First, the far-field radiation pattern of the Grill towards an empty half-space is evaluated. Next, the excitation of a passive waveguide by a Grill mounted in a T configuration is considered. These results constitue two examples of exact solutions of Maxwell's equations in relatively complex geometry

  18. Molecular logic gate arrays. (United States)

    de Silva, A Prasanna


    Chemists are now able to emulate the ideas and instruments of mathematics and computer science with molecules. The integration of molecular logic gates into small arrays has been a growth area during the last few years. The design principles underlying a collection of these cases are examined. Some of these computing molecules are applicable in medical- and biotechnologies. Cases of blood diagnostics, 'lab-on-a-molecule' systems, and molecular computational identification of small objects are included. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Systems and methods of manufacturing microchannel arrays

    Energy Technology Data Exchange (ETDEWEB)

    Paul, Brian K.; Brannon, Samuel T.


    The present application relates to apparatus and methods of reducing the cost of microchannel array production and operation. In a representative embodiment, a microchannel array can comprise a first lamina having one or more flanges and a plurality of elongated bosses. The one or more flanges can extend along a perimeter of the first lamina, the plurality of elongated bosses can at least partially define a plurality of first flow paths, and the first lamina can define at least one opening. The microchannel array can also comprise a second lamina having a plurality of second flow paths, and can define at least one opening. The second lamina can be disposed above the first lamina such that the second lamina encloses the first flow paths of the first lamina and the at least one opening of the first lamina is coaxial with the at least one opening of the second lamina.

  20. Stochastic synaptic plasticity with memristor crossbar arrays

    KAUST Repository

    Naous, Rawan


    Memristive devices have been shown to exhibit slow and stochastic resistive switching behavior under low-voltage, low-current operating conditions. Here we explore such mechanisms to emulate stochastic plasticity in memristor crossbar synapse arrays. Interfaced with integrate-and-fire spiking neurons, the memristive synapse arrays are capable of implementing stochastic forms of spike-timing dependent plasticity which parallel mean-rate models of stochastic learning with binary synapses. We present theory and experiments with spike-based stochastic learning in memristor crossbar arrays, including simplified modeling as well as detailed physical simulation of memristor stochastic resistive switching characteristics due to voltage and current induced filament formation and collapse. © 2016 IEEE.

  1. Theory and applications of spherical microphone array processing

    CERN Document Server

    Jarrett, Daniel P; Naylor, Patrick A


    This book presents the signal processing algorithms that have been developed to process the signals acquired by a spherical microphone array. Spherical microphone arrays can be used to capture the sound field in three dimensions and have received significant interest from researchers and audio engineers. Algorithms for spherical array processing are different to corresponding algorithms already known in the literature of linear and planar arrays because the spherical geometry can be exploited to great beneficial effect. The authors aim to advance the field of spherical array processing by helping those new to the field to study it efficiently and from a single source, as well as by offering a way for more experienced researchers and engineers to consolidate their understanding, adding either or both of breadth and depth. The level of the presentation corresponds to graduate studies at MSc and PhD level. This book begins with a presentation of some of the essential mathematical and physical theory relevant to ...

  2. Dense Focal Plane Arrays for Pushbroom Satellite Radiometers

    DEFF Research Database (Denmark)

    Iupikov, O. A.; Ivashina, M. V.; Pontoppidan, K.


    Performance of a dense focal plane array feeding an offset toroidal reflector antenna system is studied and discussed in the context of a potential application in multi-beam radiometers for ocean surveillance. We present a preliminary design of the array feed for the 5-m diameter antenna at X...

  3. Design of an active array filtenna for radar applications

    NARCIS (Netherlands)

    Cifola, L.; Gerini, G.; Berg, S. van den; Water, F. van de


    A novel design of an S-band active array antenna with enhanced frequency selectivity properties, for radar applications, is presented. The array unit cell consists of a stacked-patch radiator, characterized by an operational bandwidth of [2.8 - 3.4] GHz. A microstrip two-pole band pass filter is

  4. Microfabricated Silicon Microneedle Array for Transdermal Drug Delivery

    International Nuclear Information System (INIS)

    Ji, J; Tay, F E; Miao Jianmin; Iliescu, C


    This paper presents developed processes for silicon microneedle arrays microfabrication. Three types of microneedles structures were achieved by isotropic etching in inductively coupled plasma (ICP) using SF 6 /O 2 gases, combination of isotropic etching with deep etching, and wet etching, respectively. A microneedle array with biodegradable porous tips was further developed based on the fabricated microneedles

  5. Microfabricated Silicon Microneedle Array for Transdermal Drug Delivery

    Energy Technology Data Exchange (ETDEWEB)

    Ji, J [Mechanical Engineering National University of Singapore, 119260, Singapore (Singapore); Tay, F E [Mechanical Engineering National University of Singapore, 119260, Singapore (Singapore); Miao Jianmin [MicroMachines Center, School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 (Singapore); Iliescu, C [Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, Nanos, 04-01, 138669 (Singapore)


    This paper presents developed processes for silicon microneedle arrays microfabrication. Three types of microneedles structures were achieved by isotropic etching in inductively coupled plasma (ICP) using SF{sub 6}/O{sub 2} gases, combination of isotropic etching with deep etching, and wet etching, respectively. A microneedle array with biodegradable porous tips was further developed based on the fabricated microneedles.

  6. Presentation Technique

    International Nuclear Information System (INIS)

    Froejmark, M.


    The report presents a wide, easily understandable description of presentation technique and man-machine communication. General fundamentals for the man-machine interface are illustrated, and the factors that affect the interface are described. A model is presented for describing the operators work situation, based on three different levels in the operators behaviour. The operator reacts routinely in the face of simple, known problems, and reacts in accordance with predetermined plans in the face of more complex, recognizable problems. Deep fundamental knowledge is necessary for truly complex questions. Today's technical status and future development have been studied. In the future, the operator interface will be based on standard software. Functions such as zooming, integration of video pictures, and sound reproduction will become common. Video walls may be expected to come into use in situations in which several persons simultaneously need access to the same information. A summary of the fundamental rules for the design of good picture ergonomics and design requirements for control rooms are included in the report. In conclusion, the report describes a presentation technique within the Distribution Automation and Demand Side Management area and analyses the know-how requirements within Vattenfall. If different systems are integrated, such as geographical information systems and operation monitoring systems, strict demands are made on the expertise of the users for achieving a user-friendly technique which is matched to the needs of the human being. (3 figs.)

  7. Lecture Presentations

    International Nuclear Information System (INIS)


    The Symposium on Physics of Elementary Interactions in the LHC Era held in Warsaw from 21 to 22 April 2008. The main subject of the workshop was to present the progress in CERN LHC collider project. Additionally some satellite activities in field of education, knowledge and technology transfer in the frame of CERN - Poland cooperation were shown

  8. Voting Present

    Directory of Open Access Journals (Sweden)

    James Lo


    Full Text Available During his time as a state senator in Illinois, Barack Obama voted “Present” 129 times, a deliberate act of nonvoting that subsequently became an important campaign issue during the 2008 presidential elections. In this article, I examine the use of Present votes in the Illinois state senate. I find evidence that Present votes can largely be characterized as protest votes used as a legislative tool by the minority party. Incorporating information from Present votes into a Bayesian polytomous item-response model, I find that this information increases the efficiency of ideal point estimates by approximately 35%. There is little evidence of significant moderation by Obama when Present votes are accounted for, though my results suggest that Obama’s voting record may have moderated significantly before his subsequent election to the U.S. Senate. My results also suggest that because legislative nonvoting may occur for a variety of reasons, naive inclusion of nonvoting behavior into vote choice models may lead to biased results.

  9. The Long Wavelength Array (United States)

    Pihlström, Ylva

    The Long Wavelength Array (LWA) will be a new, open-skies, user-oriented aperture synthesis instrument dedicated to explore frequencies between 20 and 80 MHz. The LWA will provide high temporal (millisecond or better) and high spatial resolution (arcsecond) and mJy-level sensitivity. The LWA key science areas include acceleration, propagation, and turbulence in the ISM; the high-redshift Universe; planetary, solar and space science; and the transient universe at radio wavelengths. In addition, key goals of the LWA are as a training ground for the next generation of radio astronomers and to re-invigorate radio astronomy in the US at the university level. The LWA will be operated by the University of New Mexico on behalf of the South West Consortium (SWC), thereby providing opportunities for students within the fields of astronomy, computer science and electrical engineering. Currently, in its first year of construction funding, the LWA team is now bringing up the first station near the Very Large Array site in the southwest US.

  10. Selecting Sums in Arrays

    DEFF Research Database (Denmark)

    Brodal, Gerth Stølting; Jørgensen, Allan Grønlund


    In an array of n numbers each of the \\binomn2+nUnknown control sequence '\\binom' contiguous subarrays define a sum. In this paper we focus on algorithms for selecting and reporting maximal sums from an array of numbers. First, we consider the problem of reporting k subarrays inducing the k largest...... sums among all subarrays of length at least l and at most u. For this problem we design an optimal O(n + k) time algorithm. Secondly, we consider the problem of selecting a subarray storing the k’th largest sum. For this problem we prove a time bound of Θ(n · max {1,log(k/n)}) by describing...... an algorithm with this running time and by proving a matching lower bound. Finally, we combine the ideas and obtain an O(n· max {1,log(k/n)}) time algorithm that selects a subarray storing the k’th largest sum among all subarrays of length at least l and at most u....

  11. Electromagnetically Clean Solar Arrays (United States)

    Stem, Theodore G.; Kenniston, Anthony E.


    The term 'electromagnetically clean solar array' ('EMCSA') refers to a panel that contains a planar array of solar photovoltaic cells and that, in comparison with a functionally equivalent solar-array panel of a type heretofore used on spacecraft, (1) exhibits less electromagnetic interferences to and from other nearby electrical and electronic equipment and (2) can be manufactured at lower cost. The reduction of electromagnetic interferences is effected through a combination of (1) electrically conductive, electrically grounded shielding and (2) reduction of areas of current loops (in order to reduce magnetic moments). The reduction of cost is effected by designing the array to be fabricated as a more nearly unitary structure, using fewer components and fewer process steps. Although EMCSAs were conceived primarily for use on spacecraft they are also potentially advantageous for terrestrial applications in which there are requirements to limit electromagnetic interference. In a conventional solar panel of the type meant to be supplanted by an EMCSA panel, the wiring is normally located on the back side, separated from the cells, thereby giving rise to current loops having significant areas and, consequently, significant magnetic moments. Current-loop geometries are chosen in an effort to balance opposing magnetic moments to limit far-0field magnetic interactions, but the relatively large distances separating current loops makes full cancellation of magnetic fields problematic. The panel is assembled from bare photovoltaic cells by means of multiple sensitive process steps that contribute significantly to cost, especially if electomagnetic cleanliness is desired. The steps include applying a cover glass and electrical-interconnect-cell (CIC) sub-assemble, connecting the CIC subassemblies into strings of series-connected cells, laying down and adhesively bonding the strings onto a panel structure that has been made in a separate multi-step process, and mounting the

  12. Technical presentation

    CERN Multimedia

    FI Department


    RADIOSPARES, the leading catalogue distributor of components (electronic, electrical, automation, etc.) and industrial supplies will be at CERN on Friday 3 October 2008 (Main Building, Room B, from 9.00 a.m. to 3.00 p.m.) to introduce its new 2008/2009 catalogue. This will be the opportunity for us to present our complete range of products in more detail: 400 000 part numbers available on our web site (Radiospares France, RS International, extended range of components from other manufacturers); our new services: quotations, search for products not included in the catalogue, SBP products (Small Batch Production: packaging in quantities adapted to customers’ requirements); partnership with our focus manufacturers; demonstration of the on-line purchasing tool implemented on our web site in conjunction with CERN. RADIOSPARES will be accompanied by representatives of FLUKE and TYCO ELECTRONICS, who will make presentations, demonstrate materials and answer any technical questio...

  13. Gigapixel imaging with microlens arrays (United States)

    Orth, Antony; Schonbrun, Ethan


    A crucial part of the drug discovery process involves imaging the response of thousands of cell cultures to candidate drugs. Quantitative parameters from these "high content screens", such as protein expression and cell morphology, are extracted from fluorescence and brightfield micrographs. Due to the sheer number of cells that need to imaged for adequate statistics, the imaging time itself is a major bottleneck. Automated microscopes image small fields-of-view (FOVs) serially, which are then stitched together to form gigapixel-scale mosaics. We have developed a microscopy architecture that reduces mechanical overhead of traditional large field-of-view by parallelizing the image capture process. Instead of a single objective lens imaging FOVs one by one, we employ a microlens array for continuous photon capture, resulting in a 3-fold throughput increase. In this contribution, we present the design and imaging results of this microscopy architecture in three different contrast modes: multichannel fluorescence, hyperspectral fluorescence and brightfield.

  14. A Portable Diode Array Spectrophotometer. (United States)

    Stephenson, David


    A cheap portable visible light spectrometer is presented. The spectrometer uses readily sourced items and could be constructed by anyone with a knowledge of electronics. The spectrometer covers the wavelength range 450-725 nm with a resolution better than 5 nm. The spectrometer uses a diffraction grating to separate wavelengths, which are detected using a 128-element diode array, the output of which is analyzed using a microprocessor. The spectrum is displayed on a small liquid crystal display screen and can be saved to a micro SD card for later analysis. Battery life (2 × AAA) is estimated to be 200 hours. The overall dimensions of the unit are 120 × 65 × 60 mm, and it weighs about 200 g. © The Author(s) 2016.

  15. Conformable eddy current array delivery (United States)

    Summan, Rahul; Pierce, Gareth; Macleod, Charles; Mineo, Carmelo; Riise, Jonathan; Morozov, Maxim; Dobie, Gordon; Bolton, Gary; Raude, Angélique; Dalpé, Colombe; Braumann, Johannes


    The external surface of stainless steel containers used for the interim storage of nuclear material may be subject to Atmospherically Induced Stress Corrosion Cracking (AISCC). The inspection of such containers poses a significant challenge due to the large quantities involved; therefore, automating the inspection process is of considerable interest. This paper reports upon a proof-of-concept project concerning the automated NDT of a set of test containers containing artificially generated AISCCs. An Eddy current array probe with a conformable padded surface from Eddyfi was used as the NDT sensor and end effector on a KUKA KR5 arc HW robot. A kinematically valid cylindrical raster scan path was designed using the KUKA|PRC path planning software. Custom software was then written to interface measurement acquisition from the Eddyfi hardware with the motion control of the robot. Preliminary results and analysis are presented from scanning two canisters.

  16. Terahertz superconducting plasmonic hole array


    Tian, Zhen; Singh, Ranjan; Han, Jiaguang; Gu, Jianqiang; Xing, Qirong; Zhang, Weili


    We demonstrate thermally tunable superconductor hole array with active control over their resonant transmission induced by surface plasmon polaritons . The array was lithographically fabricated on high temperature YBCO superconductor and characterized by terahertz-time domain spectroscopy. We observe a clear transition from the virtual excitation of the surface plasmon mode to the real surface plasmon mode. The highly tunable superconducting plasmonic hole arrays may have promising applicatio...

  17. Combinatorial aspects of covering arrays

    Directory of Open Access Journals (Sweden)

    Charles J. Colbourn


    Full Text Available Covering arrays generalize orthogonal arrays by requiring that t -tuples be covered, but not requiring that the appearance of t -tuples be balanced.Their uses in screening experiments has found application in software testing, hardware testing, and a variety of fields in which interactions among factors are to be identified. Here a combinatorial view of covering arrays is adopted, encompassing basic bounds, direct constructions, recursive constructions, algorithmic methods, and applications.

  18. Recognition of Simple Gestures Using a PIR Sensor Array

    Directory of Open Access Journals (Sweden)

    Piotr Wojtczuk


    Full Text Available We present an approach that is intended for simple gesture control using a relatively inexpensive pyroelectric array detector. The detector is manufactured using standard wafer processing techniques. It consists of a 16 element passive infrared sensor array that responds to changing infrared signals, such as are generated by a hand moving at a distance of some tens of centimetres in front of the array. There is quite a large variation in the responsivity of the pixels within the array, but despite that it is relatively easy to use differential signals from the array or to apply a simplified version of an image processing algorithm to track movement in front of the detector. We have developed a prototype system that can recognise hand movements in different directions in front of the detector. This has allowed us to develop a demonstrator system that can be used to control, for instance, a PowerPoint presentation by gesture.

  19. Wind loads on flat plate photovoltaic array fields (nonsteady winds) (United States)

    Miller, R. D.; Zimmerman, D. K.


    Techniques to predict the dynamic response and the structural dynamic loads of flat plate photovoltaic arrays due to wind turbulence were analyzed. Guidelines for use in predicting the turbulent portion of the wind loading on future similar arrays are presented. The dynamic response and the loads dynamic magnification factor of the two array configurations are similar. The magnification factors at a mid chord and outer chord location on the array illustrated and at four points on the chord are shown. The wind tunnel test experimental rms pressure coefficient on which magnification factors are based is shown. It is found that the largest response and dynamic magnification factor occur at a mid chord location on an array and near the trailing edge. A technique employing these magnification factors and the wind tunnel test rms fluctuating pressure coefficients to calculate design pressure loads due to wind turbulence is presented.

  20. APRON: A Cellular Processor Array Simulation and Hardware Design Tool

    Directory of Open Access Journals (Sweden)

    David R. W. Barr


    Full Text Available We present a software environment for the efficient simulation of cellular processor arrays (CPAs. This software (APRON is used to explore algorithms that are designed for massively parallel fine-grained processor arrays, topographic multilayer neural networks, vision chips with SIMD processor arrays, and related architectures. The software uses a highly optimised core combined with a flexible compiler to provide the user with tools for the design of new processor array hardware architectures and the emulation of existing devices. We present performance benchmarks for the software processor array implemented on standard commodity microprocessors. APRON can be configured to use additional processing hardware if necessary and can be used as a complete graphical user interface and development environment for new or existing CPA systems, allowing more users to develop algorithms for CPA systems.

  1. Efficient array design for sonotherapy

    International Nuclear Information System (INIS)

    Stephens, Douglas N; Kruse, Dustin E; Ferrara, Katherine W; Ergun, Arif S; Barnes, Stephen; Lu, X Ming


    New linear multi-row, multi-frequency arrays have been designed, constructed and tested as fully operational ultrasound probes to produce confocal imaging and therapeutic acoustic intensities with a standard commercial ultrasound imaging system. The triple-array probes and imaging system produce high quality B-mode images with a center row imaging array at 5.3 MHz and sufficient acoustic power with dual therapeutic arrays to produce mild hyperthermia at 1.54 MHz. The therapeutic array pair in the first probe design (termed G3) utilizes a high bandwidth and peak pressure, suitable for mechanical therapies. The second multi-array design (termed G4) has a redesigned therapeutic array pair which is optimized for a high time-averaged power output suitable for mild hyperthermia applications. The 'thermal therapy' design produces more than 4 W of acoustic power from the low-frequency arrays with only a 10.5 deg. C internal rise in temperature after 100 s of continuous use with an unmodified conventional imaging system or substantially longer operation at lower acoustic power. The low-frequency arrays in both probe designs were examined and contrasted for real power transfer efficiency with a KLM model which includes all lossy contributions in the power delivery path from system transmitters to the tissue load. Laboratory verification was successfully performed for the KLM-derived estimates of transducer parallel model acoustic resistance and dissipation resistance, which are the critical design factors for acoustic power output and undesired internal heating, respectively

  2. Compact dynamic microfluidic iris array (United States)

    Kimmle, Christina; Doering, Christoph; Steuer, Anna; Fouckhardt, Henning


    A dynamic microfluidic iris is realized. Light attenuation is achieved by absorption of an opaque liquid (e.g. black ink). The adjustment of the iris diameter is achieved by fluid displacement via a transparent elastomer (silicone) half-sphere. This silicone calotte is hydraulically pressed against a polymethylmethacrylate (PMMA) substrate as the bottom window, such that the opaque liquid is squeezed away, this way opening the iris. With this approach a dynamic range of more than 60 dB can be achieved with response times in the ms to s regime. The design allows the realization of a single iris as well as an iris array. So far the master for the molded silicone structure was fabricated by precision mechanics. The aperture diameter was changed continuously from 0 to 8 mm for a single iris and 0 to 4 mm in case of a 3 x 3 iris array. Moreover, an iris array was combined with a PMMA lens array into a compact module, the distance of both arrays equaling the focal length of the lenses. This way e.g. spatial frequency filter arrays can be realized. The possibility to extend the iris array concept to an array with many elements is demonstrated. Such arrays could be applied e.g. in light-field cameras.

  3. Nanoelectrode array for electrochemical analysis

    Energy Technology Data Exchange (ETDEWEB)

    Yelton, William G [Sandia Park, NM; Siegal, Michael P [Albuquerque, NM


    A nanoelectrode array comprises a plurality of nanoelectrodes wherein the geometric dimensions of the electrode controls the electrochemical response, and the current density is independent of time. By combining a massive array of nanoelectrodes in parallel, the current signal can be amplified while still retaining the beneficial geometric advantages of nanoelectrodes. Such nanoelectrode arrays can be used in a sensor system for rapid, non-contaminating field analysis. For example, an array of suitably functionalized nanoelectrodes can be incorporated into a small, integrated sensor system that can identify many species rapidly and simultaneously under field conditions in high-resistivity water, without the need for chemical addition to increase conductivity.

  4. Technical presentation

    CERN Multimedia

    FP Department


    07 April 2009 Technical presentation by Leuze Electronics: 14.00 – 15.00, Main Building, Room 61-1-017 (Room A) Photoelectric sensors, data identification and transmission systems, image processing systems. We at Leuze Electronics are "the sensor people": we have been specialising in optoelectronic sensors and safety technology for accident prevention for over 40 years. Our dedicated staff are all highly customer oriented. Customers of Leuze Electronics can always rely on one thing – on us! •\tFounded in 1963 •\t740 employees •\t115 MEUR turnover •\t20 subsidiaries •\t3 production facilities in southern Germany Product groups: •\tPhotoelectric sensors •\tIdentification and measurements •\tSafety devices

  5. Printed glycan array

    DEFF Research Database (Denmark)

    Shilova, Nadezhda; Navakouski, Maxim; Khasbiullina, Nailya


    Using printed glycan array (PGA) we compared the results of antibody profiling in undiluted, moderately (1:15) and highly (1:100) diluted human blood serum. Undiluted serum is suitable for studying blood as a tissue in its native state, whereas to study the serum of newborns or small animals one...... usually has to dilute the starting material in order to have sufficient volume for PGA experimentation. The PGA used in this study allows for the use of whole serum without modifications to the protocol, and the background is surprisingly low. Antibodies profiles observed in undiluted serum versus 1......:15 dilution were similar, with only a limited number of new signals identified in the undiluted serum. However, unexpected irregularities were found when IgG and IgM are measured separately, namely, at a 1:15 dilution more intensive IgG signals for many glycans are observed. We believe that in conditions...

  6. Scintillator detector array

    International Nuclear Information System (INIS)

    Cusano, D.A.; Dibianca, F.A.


    This patent application relates to a scintillator detector array for use in computerized tomography and comprises a housing including a plurality of chambers, the said housing having a front wall transmissive to x-rays and side walls opaque to x-rays, such as of tungsten and tantalum, a liquid scintillation medium including a soluble fluor, the solvent for the fluor being disposed in the chambers. The solvent comprises either an intrinsically high Z solvent or a solvent which has dissolved therein a high Z compound e.g. iodo or bromonaphthalene; or toluene, xylene or trimethylbenzene with a lead or tin alkyl dissolved therein. Also disposed about the chambers are a plurality of photoelectric devices. (author)

  7. Cascading Constrained 2-D Arrays using Periodic Merging Arrays

    DEFF Research Database (Denmark)

    Forchhammer, Søren; Laursen, Torben Vaarby


    We consider a method for designing 2-D constrained codes by cascading finite width arrays using predefined finite width periodic merging arrays. This provides a constructive lower bound on the capacity of the 2-D constrained code. Examples include symmetric RLL and density constrained codes...

  8. On the interference rejection capabilities of triangular antenna array for cellular base stations

    KAUST Repository

    Atat, Rachad


    In this paper, we present the performance analysis of the triangular antenna arrays in terms of the interference rejection capability. In this context, we derive an expression to calculate the spatial interference suppression coefficient for the triangular antenna array with variable number of antenna elements. The performance of the triangular antenna array has been compared with the circular antenna array with respect to interference suppression performance, steering beam pattern, beamwidth and directivity. Simulation results show that the triangular array with large number of elements produces a sharper beamwidth and better interference suppression performance than the circular antenna array. © 2012 IEEE.

  9. The OncoArray Consortium

    DEFF Research Database (Denmark)

    Amos, Christopher I; Dennis, Joe; Wang, Zhaoming


    BACKGROUND: Common cancers develop through a multistep process often including inherited susceptibility. Collaboration among multiple institutions, and funding from multiple sources, has allowed the development of an inexpensive genotyping microarray, the OncoArray. The array includes a genome-wi...

  10. Submillimeter heterodyne arrays for APEX

    NARCIS (Netherlands)

    Güsten, R.; Baryshev, A.; Bell, A.; Belloche, A.; Graf, U.; Hafok, H.; Heyminck, S.; Hochgürtel, S.; Honingh, C. E.; Jacobs, K.; Kasemann, C.; Klein, B.; Klein, T.; Korn, A.; Krämer, I.; Leinz, C.; Lundgren, A.; Menten, K. M.; Meyer, K.; Muders, D.; Pacek, F.; Rabanus, D.; Schäfer, F.; Schilke, P.; Schneider, G.; Stutzki, J.; Wieching, G.; Wunsch, A.; Wyrowski, F.


    We report on developments of submillimeter heterodyne arrays for high resolution spectroscopy with APEX. Shortly, we will operate state-of-the-art instruments in all major atmospheric windows accessible from Llano de Chajnantor. CHAMP+, a dual-color 2×7 element heterodyne array for operation in the

  11. Study of Implosion of Twisted Nested Arrays at the Angara-5-1 Facility (United States)

    Mitrofanov, K. N.; Zukakishvili, G. G.; Aleksandrov, V. V.; Grabovski, E. V.; Frolov, I. N.; Gribov, A. N.


    Results are presented from experimental studies of the implosion of twisted nested arrays in which the wires of the outer and inner arrays are twisted about the array axis in opposite directions (clockwise and counterclockwise). Experiments with twisted arrays were carried out at the Angara-5-1 facility at currents of up to 4 MA. The currents through the arrays were switched either simultaneously or the current pulse through the outer array was delayed by 10-15 ns with the help of an anode spark gap. It is shown that, in such arrays, the currents flow along the inclined wires and, accordingly, there are both the azimuthal and axial components of the discharge current. The process of plasma implosion in twisted arrays depends substantially on the value of the axial (longitudinal) magnetic field generated inside the array by the azimuthal currents. Two-dimensional simulations of the magnetic field in twisted nested arrays were performed in the ( r, z) geometry with allowance for the skin effect in the discharge electrodes. It is shown that, depending on the geometry of the discharge electrodes, different configurations of the magnetic field can be implemented inside twisted nested arrays. The calculated magnetic configurations are compared with the results of measurements of the magnetic field inside such arrays. It is shown that the configuration of the axial magnetic field inside a twisted nested array depends substantially on the distribution of the azimuthal currents between the inner and outer arrays.

  12. Chunking of Large Multidimensional Arrays

    Energy Technology Data Exchange (ETDEWEB)

    Rotem, Doron; Otoo, Ekow J.; Seshadri, Sridhar


    Data intensive scientific computations as well on-lineanalytical processing applications as are done on very large datasetsthat are modeled as k-dimensional arrays. The storage organization ofsuch arrays on disks is done by partitioning the large global array intofixed size hyper-rectangular sub-arrays called chunks or tiles that formthe units of data transfer between disk and memory. Typical queriesinvolve the retrieval of sub-arrays in a manner that accesses all chunksthat overlap the query results. An important metric of the storageefficiency is the expected number of chunks retrieved over all suchqueries. The question that immediately arises is "what shapes of arraychunks give the minimum expected number of chunks over a query workload?"In this paper we develop two probabilistic mathematical models of theproblem and provide exact solutions using steepest descent and geometricprogramming methods. Experimental results, using synthetic workloads onreal life data sets, show that our chunking is much more efficient thanthe existing approximate solutions.

  13. Micromachined two dimensional resistor arrays for determination of gas parameters

    NARCIS (Netherlands)

    van Baar, J.J.J.; Verwey, Willem B.; Dijkstra, Mindert; Dijkstra, Marcel; Wiegerink, Remco J.; Lammerink, Theodorus S.J.; Krijnen, Gijsbertus J.M.; Elwenspoek, Michael Curt

    A resistive sensor array is presented for two dimensional temperature distribution measurements in a micromachined flow channel. This allows simultaneous measurement of flow velocity and fluid parameters, like thermal conductivity, diffusion coefficient and viscosity. More general advantages of

  14. Integration of spintronic interface for nanomagnetic arrays

    Directory of Open Access Journals (Sweden)

    Andrew Lyle


    Full Text Available An experimental demonstration utilizing a spintronic input/output (I/O interface for arrays of closely spaced nanomagnets is presented. The free layers of magnetic tunnel junctions (MTJs form dipole coupled nanomagnet arrays which can be applied to different contexts including Magnetic Quantum Cellular Automata (MQCA for logic applications and self-biased devices for field sensing applications. Dipole coupled nanomagnet arrays demonstrate adaptability to a variety of contexts due to the ability for tuning of magnetic response. Spintronics allows individual nanomagnets to be manipulated with spin transfer torque and monitored with magnetoresistance. This facilitates measurement of the magnetic coupling which is important for (yet to be demonstrated data propagation reliability studies. In addition, the same magnetic coupling can be tuned to reduce coercivity for field sensing. Dipole coupled nanomagnet arrays have the potential to be thousands of times more energy efficient than CMOS technology for logic applications, and they also have the potential to form multi-axis field sensors.

  15. Optimized low-cost-array field designs for photovoltaic systems (United States)

    Post, H. N.; Carmichael, D. C.; Castle, J. A.

    A comprehensive program to define and develop array field subsystems which can achieve the lowest possible lifecycle costs is discussed. The major activity of this program is described, namely, the design and development of optimized, modular array fields for photovoltaic (PV) systems. As part of this activity, design criteria and performance requirements for specific array subsystems including support structures, foundations, intermodule connections, field wiring, lightning protection, system grounding, site preparation, and monitoring and control were defined and evaluated. Similarly, fully integrated flat-panel array field designs, optimized for lowest lifecycle costs, were developed for system sizes ranging from 20 to 500 kW sub p. Key features, subsystem requirements, and projected costs for these array field designs are presented and discussed.

  16. DFB laser array driver circuit controlled by adjustable signal (United States)

    Du, Weikang; Du, Yinchao; Guo, Yu; Li, Wei; Wang, Hao


    In order to achieve the intelligent controlling of DFB laser array, this paper presents the design of an intelligence and high precision numerical controlling electric circuit. The system takes MCU and FPGA as the main control chip, with compact, high-efficiency, no impact, switching protection characteristics. The output of the DFB laser array can be determined by an external adjustable signal. The system transforms the analog control model into a digital control model, which improves the performance of the driver. The system can monitor the temperature and current of DFB laser array in real time. The output precision of the current can reach ± 0.1mA, which ensures the stable and reliable operation of the DFB laser array. Such a driver can benefit the flexible usage of the DFB laser array.

  17. Ordered Pinning Arrays with Tunable Geometry via Thermal Effects (United States)

    Trastoy, Juan; Bernard, Rozenn; Briatico, Javier; Villegas, Javier E.; Malnou, Maxime; Bergeal, Nicolas; Lesueur, Jerome; Ulysse, Christian; Faini, Giancarlo


    We have used geometrically frustrated pinning arrays to create artificial vortex-ice. The pinning arrays are fabricated via ion irradiation of high-Tc superconducting films. These arrays present a very unique characteristic: the frustration can be reversibly switched on/off using temperature as a control knob, which allows stabilizing either a vortex-ice or a square vortex lattice. We have further investigated the thermal switching mechanism by studying the matching of the flux lattice to arrays that are incrementally deformed upon fabrication by introducing minute variations of the distance between pins. The array deformation exacerbates the thermal effects, leading to dramatic variations of the vortex distribution as a function of temperature. These results illustrate the strength of the temperature-induced reconfiguration effects, which may constitute a novel knob in fluxtronic devices based on vortex manipulation. Work supported by the French ANR MASTHER, the COST Action NanoSC, the Ville de Paris and the Galician Fundacion Barrie.

  18. Analysis of the modal behavior of an antiguide diode laser array with Talbot filter

    NARCIS (Netherlands)

    van Eijk, P.D.; van Eijk, Pieter D.; Reglat, Muriel; Vassilief, Georges; Krijnen, Gijsbertus J.M.; Driessen, A.; Mouthaan, A.J.

    An analysis of the filtering of the array modes in a resonant optical waveguide (ROW) array of antiguides by a diffractive spatial filter (a Talbot filter) is presented. A dispersion relation is derived for the array modes, allowing the calculation of the field distribution. The filtering is

  19. Planning a Global Array of Broadband Seismic Arrays (United States)

    Koper, Keith D.; Ammon, Charles J.


    A diverse group of more than 70 seismologists met for 2 days in Raleigh, N.C., to report on recent innovations in seismic array methods and to discuss the future of seismic arrays in global seismology. The workshop was sponsored by the Incorporated Research Institutions for Seismology (IRIS), with U.S. National Science Foundation funding. Participants included representatives of existing array research groups in Australia, Canada, Germany, Japan, Norway, and the United States, with individuals from academia, government, and industry. The workshop was organized by the authors of this meeting report, Pablo Ampeuro (California Institute of Technology), and Colleen Dalton (Boston University), along with IRIS staff support.

  20. Daytime Solar Heating of Photovoltaic Arrays in Low Density Plasmas (United States)

    Galofaro, J.; Vayner, B.; Ferguson, D.


    The purpose of the current work is to determine the out-gassing rate of H2O molecules for a solar array placed under daytime solar heating (full sunlight) conditions typically encountered in a Low Earth Orbital (LEO) environment. Arc rates are established for individual arrays held at 14 C and are used as a baseline for future comparisons. Radiated thermal solar flux incident to the array is simulated by mounting a stainless steel panel equipped with resistive heating elements several centimeters behind the array. A thermal plot of the heater plate temperature and the array temperature as a function of heating time is then obtained. A mass spectrometer is used to record the levels of partial pressure of water vapor in the test chamber after each of the 5 heating/cooling cycles. Each of the heating cycles was set to time duration of 40 minutes to simulate the daytime solar heat flux to the array over a single orbit. Finally the array is cooled back to ambient temperature after 5 complete cycles and the arc rates of the solar arrays is retested. A comparison of the various data is presented with rather some unexpected results.

  1. Spectral measurements of a 2D cyclotron-resonance maser array with two electron beams (United States)

    Lei, Li; Jerby, Eli


    The cyclotron resonance maser (CRM) array was proposed recently by our group as a compact high-power microwave source operating at low-voltages. In this paper, we present a CRM array experiment with two electron beams, in a 2D array periodic-waveguide. Spectral measurements are displayed for fast- and slow-wave interactions. This two- beam experiment leads to the construction of a multi-beam CRM array at Tel Aviv University.

  2. Structural design and analysis of a solar array substrate for a GEO satellite


    Safak, Omer


    The aim of this thesis is the design of solar array substrate for a geostationary satellite. The design of deployable solar array substrate is realized based on the requirements which are provided by BILUZAY (Bilkent University Space Technologies Research Centre). This array is going to empower a telecommunication satellite which will be operating in a geostationary orbit during 15 years. The main work presented in this thesis consists of two principal directions: solar cell array area dimens...

  3. Dependently typed array programs don't go wrong

    NARCIS (Netherlands)

    Trojahner, K.; Grelck, C.


    The array programming paradigm adopts multidimensional arrays as the fundamental data structures of computation. Array operations process entire arrays instead of just single elements. This makes array programs highly expressive and introduces data parallelism in a natural way. Array programming

  4. Dependently typed array programs don’t go wrong

    NARCIS (Netherlands)

    Trojahner, K.; Grelck, C.


    The array programming paradigm adopts multidimensional arrays as the fundamental data structures of computation. Array operations process entire arrays instead of just single elements. This makes array programs highly expressive and introduces data parallelism in a natural way. Array programming

  5. All optical programmable logic array (PLA) (United States)

    Hiluf, Dawit


    A programmable logic array (PLA) is an integrated circuit (IC) logic device that can be reconfigured to implement various kinds of combinational logic circuits. The device has a number of AND and OR gates which are linked together to give output or further combined with more gates or logic circuits. This work presents the realization of PLAs via the physics of a three level system interacting with light. A programmable logic array is designed such that a number of different logical functions can be combined as a sum-of-product or product-of-sum form. We present an all optical PLAs with the aid of laser light and observables of quantum systems, where encoded information can be considered as memory chip. The dynamics of the physical system is investigated using Lie algebra approach.

  6. Array processing for seismic surface waves

    International Nuclear Information System (INIS)

    Marano, S.


    This dissertation submitted to the Swiss Federal Institute of Technology ETH in Zurich takes a look at the analysis of surface wave properties which allows geophysicists to gain insight into the structure of the subsoil, thus avoiding more expensive invasive techniques such as borehole drilling. This thesis aims at improving signal processing techniques for the analysis of surface waves in various directions. One main contribution of this work is the development of a method for the analysis of seismic surface waves. The method also deals with the simultaneous presence of multiple waves. Several computational approaches to minimize costs are presented and compared. Finally, numerical experiments that verify the effectiveness of the proposed cost function and resulting array geometry designs are presented. These lead to greatly improved estimation performance in comparison to arbitrary array geometries

  7. Replica amplification of nucleic acid arrays (United States)

    Church, George M.; Mitra, Robi D.


    Disclosed are improved methods of making and using immobilized arrays of nucleic acids, particularly methods for producing replicas of such arrays. Included are methods for producing high density arrays of nucleic acids and replicas of such arrays, as well as methods for preserving the resolution of arrays through rounds of replication. Also included are methods which take advantage of the availability of replicas of arrays for increased sensitivity in detection of sequences on arrays. Improved methods of sequencing nucleic acids immobilized on arrays utilizing single copies of arrays and methods taking further advantage of the availability of replicas of arrays are disclosed. The improvements lead to higher fidelity and longer read lengths of sequences immobilized on arrays. Methods are also disclosed which improve the efficiency of multiplex PCR using arrays of immobilized nucleic acids.

  8. Fundamentals of ultrasonic phased arrays

    CERN Document Server

    Schmerr, Lester W


    This book describes in detail the physical and mathematical foundations of ultrasonic phased array measurements.?The book uses linear systems theory to develop a comprehensive model of the signals and images that can be formed with phased arrays. Engineers working in the field of ultrasonic nondestructive evaluation (NDE) will find in this approach a wealth of information on how to design, optimize and interpret ultrasonic inspections with phased arrays. The fundamentals and models described in the book will also be of significant interest to other fields, including the medical ultrasound and

  9. A Concept of Dark Age Interferometric Array (DAIA) (United States)

    Yan, Jingye

    After the epoch of recombination the Universe remained in neutral state until the large scale formation of galaxies released a sufficient number of ionizing photons to lightning the universe. In this period, the only emission is from the 21cm wavelength neutral hydrogen that may be observed today at 0.5-30MHz after the red shift. However, due to the ionosphere block and human/industrial RFI in this band, to observe the space from ground and also in the LOE is not possible. The concept of Dark Age Interferometric Array (DAIA) is aimed to place a linear array of nano-satellite with low noise receivers at the 10-1000m wavelength band in a lunar orbit. The distances between the nano-satellites are designed to form 1D uniformly distributed base lines in the uv-plane. A full coverage is then obtained after half rotation of the array in the orbit. The measurements are taken in the far side of the moon in order to have the lowest RFI from the earth. The thinned synthetic aperture linear array composed of ~15 elements (one small mother satellite and 14 nano daughter satellites) with the longest baseline over 100km. There are 3 dipoles antennas on each satellite in perpendicular to each other. Each of the antenna connected with a low-noise and periodically calibrated digital receiver. The received signals from each element are all sent to the mother satellite and processed onboard to generate the visibility functions for image processing. The mission composed of a mother satellite and 14 daughter satellites. The mass of the mother is ~110kg, and the mass of each daughter is <10kg. The complete set may be launched by CZ-2D carrier plus an upper stage or Vega. The mother satellite and 14 daughter satellites are bound onto a single structure during launch. When they arrive at the lunar orbit, the mother will release the daughters one by one according to the designs of the element spacing of the array with a controlled period of time. During the operation, daughters receive

  10. Control of magnonic spectra in cobalt nanohole arrays: the effects of density, symmetry and defects

    International Nuclear Information System (INIS)

    Barman, Anjan


    Magnetic nanohole arrays are important systems for propagation of magnetic excitations and are among the potential candidates for magnonic crystals. A thorough investigation of magnonic band structures and the effect of the geometry of the array on them are important. Here, we present a systematic micromagnetic simulation study of magnonic modes in cobalt nanohole (antidot) arrays. In particular, we investigate the effects of the areal density and symmetry of the array and defects introduced in the array. The magnonic modes are strongly dependent on the density and the symmetry of the array but are weakly dependent on the defects. We have further investigated the modes in a tailored array consisting of equally wide hexagonal arrays with varying density. The magnonic spectrum of the tailored array contains additional modes above the modes of the constituent arrays due to the appearance of irregular domain structures at the regions joining arrays of two different types. This opens up the possibility of tuning the magnonic bands in magnetic nanohole arrays by careful design of the structure of the array.

  11. Next Generation Microshutter Arrays Project (United States)

    National Aeronautics and Space Administration — We propose to develop the next generation MicroShutter Array (MSA) as a multi-object field selector for missions anticipated in the next two decades. For many...

  12. Thermopile Area Array Readout Project (United States)

    National Aeronautics and Space Administration — NASA/JPL thermopile detector linear arrays, wire bonded to Black Forest Engineering (BFE) CMOS readout integrated circuits (ROICs), have been utilized in NASA...

  13. The Applicability of Incoherent Array Processing to IMS Seismic Arrays (United States)

    Gibbons, Steven J.


    The seismic arrays of the International Monitoring System (IMS) for the Comprehensive Nuclear-Test-Ban Treaty (CTBT) are highly diverse in size and configuration, with apertures ranging from under 1 km to over 60 km. Large and medium aperture arrays with large inter-site spacings complicate the detection and estimation of high-frequency phases lacking coherence between sensors. Pipeline detection algorithms often miss such phases, since they only consider frequencies low enough to allow coherent array processing, and phases that are detected are often attributed qualitatively incorrect backazimuth and slowness estimates. This can result in missed events, due to either a lack of contributing phases or by corruption of event hypotheses by spurious detections. It has been demonstrated previously that continuous spectral estimation can both detect and estimate phases on the largest aperture arrays, with arrivals identified as local maxima on beams of transformed spectrograms. The estimation procedure in effect measures group velocity rather than phase velocity, as is the case for classical f-k analysis, and the ability to estimate slowness vectors requires sufficiently large inter-sensor distances to resolve time-delays between pulses with a period of the order 4-5 s. Spectrogram beampacking works well on five IMS arrays with apertures over 20 km (NOA, AKASG, YKA, WRA, and KURK) without additional post-processing. Seven arrays with 10-20 km aperture (MJAR, ESDC, ILAR, KSRS, CMAR, ASAR, and EKA) can provide robust parameter estimates subject to a smoothing of the resulting slowness grids, most effectively achieved by convolving the measured slowness grids with the array response function for a 4 or 5 s period signal. Even for medium aperture arrays which can provide high-quality coherent slowness estimates, a complementary spectrogram beampacking procedure could act as a quality control by providing non-aliased estimates when the coherent slowness grids display

  14. A Transient UWB Antenna Array Used with Complex Impedance Surfaces

    Directory of Open Access Journals (Sweden)

    A. Godard


    Full Text Available The conception of a novel Ultra-Wideband (UWB antenna array, designed especially for transient radar applications through the frequency band (300 MHz–3 GHz, is proposed in this paper. For these applications, the elementary antenna must be compact and nondispersive, and the array must be able to steer in two dimensions. The geometry of the elementary antenna and its radiation characteristics are presented. The array beam steering is analyzed and a technique making the increase of the transient front-to-back ratio possible is described.

  15. Probe design for expression arrays using OligoWiz

    DEFF Research Database (Denmark)

    Wernersson, Rasmus


    Since all measurements from a DNA microarray is dependant on the probes used, a good choice of probes is of vital importa nce when designing custom micro-arrays. This chapter describes how to de sign expression arrays using the “ OligoWiz ” software suite. The general desired features of good...... probes and the issues which probe design must address are introduced and a conceptual (rather than mathematical) description of how OligoWiz scores the quality of th e potential probes is presented. This is followed by a detailed step-by-step guide to designing expression arrays with OligoWiz....

  16. Flexible eddy current coil arrays

    International Nuclear Information System (INIS)

    Krampfner, Y.; Johnson, D.P.


    A novel approach was devised to overcome certain limitations of conventional eddy current testing. The typical single-element hand-wound probe was replaced with a two dimensional array of spirally wound probe elements deposited on a thin, flexible polyimide substrate. This provides full and reliable coverage of the test area and eliminates the need for scanning. The flexible substrate construction of the array allows the probes to conform to irregular part geometries, such as turbine blades and tubing, thereby eliminating the need for specialized probes for each geometry. Additionally, the batch manufacturing process of the array can yield highly uniform and reproducible coil geometries. The array is driven by a portable computer-based eddy current instrument, smartEDDY/sup TM/, capable of two-frequency operation, and offers a great deal of versatility and flexibility due to its software-based architecture. The array is coupled to the instrument via an 80-switch multiplexer that can be configured to address up to 1600 probes. The individual array elements may be addressed in any desired sequence, as defined by the software

  17. Calibration of a microprobe array

    International Nuclear Information System (INIS)

    Schrader, Christian; Tutsch, Rainer


    Conventional coordinate measurement machines are not well adapted to the specific needs for the measurement of mechanical microstructures that are made in a highly parallel production process. In particular, the increase of the measurement speed is addressed by using an array of microprobes to measure a number of objects in parallel. It consists of multiple microprobes that are etched into the same silicon substrate. The styli are glued onto a boss structure in the middle of a silicon membrane. To facilitate the alignment of an array and the underlying wafer, the array is mounted on three stacked rotational stages. Due to the production tolerances, the positions of the touching balls of the probes relative to their pivot have to be calibrated. The probe sensitivity is another field of calibration. This paper describes an efficient calibration procedure of the probe array which is usable for arrays with a large number of probes and different array layouts. The validation method of this procedure is explained and calibration results are discussed (paper)

  18. Integrated residential photovoltaic array development (United States)

    Royal, G. C., III


    Sixteen conceptual designs of residential photovoltaic arrays are described. Each design concept was evaluated by an industry advisory panel using a comprehensive set of technical, economic and institutional criteria. Key electrical and mechanical concerns that effect further array subsystem development are also discussed. Three integrated array design concepts were selected by the advisory panel for further optimization and development. From these concepts a single one will be selected for detailed analysis and prototype fabrication. The three concepts selected are: (1) An array of frameless panels/modules sealed in a T shaped zipper locking neoprene gasket grid pressure fitted into an extruded aluminum channel grid fastened across the rafters. (2) An array of frameless modules pressure fitted in a series of zipper locking EPDM rubber extrusions adhesively bonded to the roof. Series string voltage is developed using a set of integral tongue connectors and positioning blocks. (3) An array of frameless modules sealed by a silicone adhesive in a prefabricated grid of rigid tape and sheet metal attached to the roof.

  19. CCD and IR array controllers (United States)

    Leach, Robert W.; Low, Frank J.


    A family of controllers has bene developed that is powerful and flexible enough to operate a wide range of CCD and IR focal plane arrays in a variety of ground-based applications. These include fast readout of small CCD and IR arrays for adaptive optics applications, slow readout of large CCD and IR mosaics, and single CCD and IR array operation at low background/low noise regimes as well as high background/high speed regimes. The CCD and IR controllers have a common digital core based on user- programmable digital signal processors that are used to generate the array clocking and signal processing signals customized for each application. A fiber optic link passes image data and commands to VME or PCI interface boards resident in a host computer to the controller. CCD signal processing is done with a dual slope integrator operating at speeds of up to one Megapixel per second per channel. Signal processing of IR arrays is done either with a dual channel video processor or a four channel video processor that has built-in image memory and a coadder to 32-bit precision for operating high background arrays. Recent developments underway include the implementation of a fast fiber optic data link operating at a speed of 12.5 Megapixels per second for fast image transfer from the controller to the host computer, and supporting image acquisition software and device drivers for the PCI interface board for the Sun Solaris, Linux and Windows 2000 operating systems.

  20. The Athens Acropolis Strong Motion Array (United States)

    Kalogeras, I. S.; Evangelidis, C. P.; Melis, N. S.; Boukouras, K.


    During the last decades, extensive restoration works through a dedicated "Acropolis Restoration Service" (YSMA) take place in the Acropolis, the greatest sanctuary of ancient Athens. Since 2008, a permanent strong motion array was deployed by the Institute of Geodynamics, National Observatory of Athens (NOA-IG) in collaboration with YSMA. Free field installations were decided at sites showing various characteristics, aiming to investigate differences in geotechnical properties as well as the structure response of Parthenon itself. The installation phase is presented, with the techniques used to overcome difficulties (i.e. extreme weather conditions, power and communication limitations, restoration works and visitors) and the special care taken for the specific archaeological site. Furthermore, indicative examples of seismic events recorded by the array are analyzed and the complexity of the hill and the monument is made apparent. Among them, the long distance events of Tohoku, Japan 2010 and Van, Turkey 2011, some regional moderate earthquakes in Greece and some weak earthquakes from the vicinity. Continuous ambient noise monitoring using PQLX software gives some first indicative results, showing a variety of characteristics at installation sites. Finally, further developments and future steps are presented such as: the extension of the array, the integration of seismic data within the GIS platform of YSMA at the site and the use of strong motion records, in conjunction with data from other monitoring systems operating in Acropolis for the study of specific monuments.

  1. GMR biosensor arrays: a system perspective. (United States)

    Hall, D A; Gaster, R S; Lin, T; Osterfeld, S J; Han, S; Murmann, B; Wang, S X


    Giant magnetoresistive biosensors are becoming more prevalent for sensitive, quantifiable biomolecular detection. However, in order for magnetic biosensing to become competitive with current optical protein microarray technology, there is a need to increase the number of sensors while maintaining the high sensitivity and fast readout time characteristic of smaller arrays (1-8 sensors). In this paper, we present a circuit architecture scalable for larger sensor arrays (64 individually addressable sensors) while maintaining a high readout rate (scanning the entire array in less than 4s). The system utilizes both time domain multiplexing and frequency domain multiplexing in order to achieve this scan rate. For the implementation, we propose a new circuit architecture that does not use a classical Wheatstone bridge to measure the small change in resistance of the sensor. Instead, an architecture designed around a transimpedance amplifier is employed. A detailed analysis of this architecture including the noise, distortion, and potential sources of errors is presented, followed by a global optimization strategy for the entire system comprising the magnetic tags, sensors, and interface electronics. To demonstrate the sensitivity, quantifiable detection of two blindly spiked samples of unknown concentrations has been performed at concentrations below the limit of detection for the enzyme-linked immunosorbent assay. Lastly, the multiplexing capability and reproducibility of the system was demonstrated by simultaneously monitoring sensors functionalized with three unique proteins at different concentrations in real-time. 2010 Elsevier B.V. All rights reserved.

  2. Transducers and arrays for underwater sound

    CERN Document Server

    Butler, John L


    This improved and updated second edition covers the theory, development, and design of electro-acoustic transducers for underwater applications. This highly regarded text discusses the basics of piezoelectric and magnetostrictive transducers that are currently being used as well as promising new designs. It presents the basic acoustics as well as the specific acoustics data needed in transducer design and evaluation. A broad range of designs of projectors and hydrophones are described in detail along with methods of modeling, evaluation, and measurement. Analysis of projector and hydrophone transducer arrays, including the effects of mutual radiation impedance and numerical models for elements and arrays, are also covered. The book includes new advances in transducer design and transducer materials and has been completely reorganized to be suitable for use as a textbook, as well as a reference or handbook. The new edition contains updates to the first edition, end-of-chapter exercises, and solutions to select...

  3. Rail weld inspection using phased array ultrasonics (United States)

    Namboodiri, Girish N.; Balasubramaniam, Krishnan; Balasubramanian, T.; James, Jerry; Sriharsha


    Inspection of rail welds has always been a challenge to the Railways. The conventional ultrasonic methods which are employed now for the detection of defects are not found to be good enough for defects that exist in different parts of the weld. Phased Array Ultrasonics which performs sectorial scanning could be used effectively for detection of defects in rail welds. The analysis of phased array images basically concentrates on defects that are volumetric in rail. The feasibility studies conducted in parts of rail other than welds were promising. Defect indications were seen very much separately from its surroundings. Accurate positioning of the defect is possible. Close lying defects can be seen separately which assures better resolution. Linear normal scans were very much suitable to detect cracks of complex geometries, as it gives a specific indication pattern each time when it is present.

  4. Sensor Arrays and Electronic Tongue Systems

    Directory of Open Access Journals (Sweden)

    Manel del Valle


    Full Text Available This paper describes recent work performed with electronic tongue systems utilizing electrochemical sensors. The electronic tongues concept is a new trend in sensors that uses arrays of sensors together with chemometric tools to unravel the complex information generated. Initial contributions and also the most used variant employ conventional ion selective electrodes, in which it is named potentiometric electronic tongue. The second important variant is the one that employs voltammetry for its operation. As chemometric processing tool, the use of artificial neural networks as the preferred data processing variant will be described. The use of the sensor arrays inserted in flow injection or sequential injection systems will exemplify attempts made to automate the operation of electronic tongues. Significant use of biosensors, mainly enzyme-based, to form what is already named bioelectronic tongue will be also presented. Application examples will be illustrated with selected study cases from the Sensors and Biosensors Group at the Autonomous University of Barcelona.

  5. Battling memory requirements of array programming through streaming

    DEFF Research Database (Denmark)

    Kristensen, Mads Ruben Burgdorff; Avery, James Emil; Blum, Troels


    A barrier to efficient array programming, for example in Python/NumPy, is that algorithms written as pure array operations completely without loops, while most efficient on small input, can lead to explosions in memory use. The present paper presents a solution to this problem using array streaming......, implemented in the automatic parallelization high-performance framework Bohrium. This makes it possible to use array programming in Python/NumPy code directly, even when the apparent memory requirement exceeds the machine capacity, since the automatic streaming eliminates the temporary memory overhead...... streaming, yielding corresponding improvements in speed and utilization of GPGPU-cores. The streaming-enabled Bohrium effortlessly runs programs on input sizes much beyond sizes that crash on pure NumPy due to exhausting system memory....

  6. An integral field spectrograph utilizing mirrorlet arrays (United States)

    Chamberlin, Phillip C.; Gong, Qian


    An integral field spectrograph (IFS) has been developed that utilizes a new and novel optical design to observe two spatial dimensions simultaneously with one spectral dimension. This design employs an optical 2-D array of reflecting and focusing mirrorlets. This mirrorlet array is placed at the imaging plane of the front-end telescope to generate a 2-D array of tiny spots replacing what would be the slit in a traditional slit spectrometer design. After the mirrorlet in the optical path, a grating on a concave mirror surface will image the spot array and provide high-resolution spectrum for each spatial element at the same time; therefore, the IFS simultaneously obtains the 3-D data cube of two spatial and one spectral dimensions. The new mirrorlet technology is currently in-house and undergoing laboratory testing at NASA Goddard Space Flight Center. Section 1 describes traditional classes of instruments that are used in Heliophysics missions and a quick introduction to the new IFS design. Section 2 discusses the details of the most generic mirrorlet IFS, while section 3 presents test results of a lab-based instrument. An example application to a Heliophysics mission to study solar eruptive events in extreme ultraviolet wavelengths is presented in section 4 that has high spatial resolution (0.5 arc sec pixels) in the two spatial dimensions and high spectral resolution (66 mÅ) across a 15 Å spectral window. Section 4 also concludes with some other optical variations that could be employed on the more basic IFS for further capabilities of this type of instrument.

  7. An Integral Field Spectrograph Utilizing Mirrorlet Arrays (United States)

    Chamberlin, Phillip C.; Gong, Qian


    An integral field spectrograph (IFS) has been developed that utilizes a new and novel optical design to observe two spatial dimensions simultaneously with one spectral dimension. This design employs an optical 2-D array of reflecting and focusing mirrorlets. This mirrorlet array is placed at the imaging plane of the front-end telescope to generate a 2-D array of tiny spots replacing what would be the slit in a traditional slit spectrometer design. After the mirrorlet in the optical path, a grating on a concave mirror surface will image the spot array and provide high-resolution spectrum for each spatial element at the same time; therefore, the IFS simultaneously obtains the 3-D data cube of two spatial and one spectral dimensions. The new mirrorlet technology is currently in-house and undergoing laboratory testing at NASA Goddard Space Flight Center. Section 1 describes traditional classes of instruments that are used in Heliophysics missions and a quick introduction to the new IFS design. Section 2 discusses the details of the most generic mirrorlet IFS, while section 3 presents test results of a lab-based instrument. An example application to a Heliophysics mission to study solar eruptive events in extreme ultraviolet wavelengths is presented in section 4 that has high spatial resolution (0.5 arc sec pixels) in the two spatial dimensions and high spectral resolution (66 m) across a 15 spectral window. Section 4 also concludes with some other optical variations that could be employed on the more basic IFS for further capabilities of this type of instrument.

  8. Development of nanowire arrays for neural probe (United States)

    Abraham, Jose K.; Xie, Jining; Varadan, Vijay K.


    It is already established that functional electrical stimulation is an effective way to restore many functions of the brain in disabled individuals. The electrical stimulation can be done by using an array of electrodes. Neural probes stimulate or sense the biopotentials mainly through the exposed metal sites. These sites should be smaller relative to the spatial potential distribution so that any potential averaging in the sensing area can be avoided. At the same time, the decrease in size of these sensing sites is limited due to the increase in impedance levels and the thermal noise while decreasing its size. It is known that current density in a planar electrode is not uniform and a higher current density can be observer around the perimeter of the electrodes. Electrical measurements conducted on many nanotubes and nanowires have already proved that it could be possible to use for current density applications and the drawbacks of the present design in neural probes can be overcome by incorporating many nanotechnology solutions. In this paper we present the design and development of nanowire arrays for the neural probe for the multisite contact which has the ability to collect and analyze isolated single unit activity. An array of vertically grown nanowires is used as contact site and many of such arrays can be used for stimulating as well as recording sites. The nanolevel interaction and wireless communication solution can extend to applications involving the treatment of many neurological disorders including Parkinson"s disease, Alzheimer"s disease, spinal injuries and the treatment of blindness and paralyzed patients with minimal or no invasive surgical procedures.

  9. Measurement of blockage in deformed LWR multi-rod arrays

    International Nuclear Information System (INIS)

    Hindle, E.D.; Jones, C.; Whitty, S.


    This paper critically reviews the current methods used for measuring blockage in multi-rod arrays and discusses their application. A new definition which overcomes the deficiencies of the previous methods is proposed. Also examples of the application of automatic computerised techniques to directly measure rod strain, blockage, sub-channel blockage and perimeter changes from photographs of sections through deformed arrays are presented. (author)

  10. Antenna-coupled bolometer arrays using transition-edgesensors

    Energy Technology Data Exchange (ETDEWEB)

    Myers, Michael J.; Ade, Peter; Engargiola, Greg; Holzapfel,William; Lee,Adrian T.; O' Brient, Roger; Richards, Paul L.; Smith, Andy; Spieler, Helmuth; Tran, Huan


    We describe the development of an antenna-coupled bolometer array for use in a Cosmic Microwave Background polarization experiment. Prototype single pixels using double-slot dipole antennas and integrated microstrip band defining filters have been built and tested. Preliminary results of optical testing and simulations are presented. A bolometer array design based on this pixel will also be shown and future plans for application of the technology will be discussed.

  11. Dielectrophoresis device and method having nonuniform arrays for manipulating particles (United States)

    Cummings, Eric B.; Fintschenko, Yolanda; Simmons, Blake A.


    Microfluidic devices according to embodiments of the present invention include an inlet port, an outlet port, and a channel or chamber having a non-uniform array of insulating features on one or more surfaces. Electrodes are provided for generation of a spatially non-uniform electric field across the array. A voltage source, which may be an A.C. and/or a D.C. voltage source may be coupled to the electrodes for the generation of the electric field.

  12. Linear complexity for multidimensional arrays - a numerical invariant

    DEFF Research Database (Denmark)

    Gomez-Perez, Domingo; Høholdt, Tom; Moreno, Oscar


    Linear complexity is a measure of how complex a one dimensional sequence can be. In this paper we extend the concept of linear complexity to multiple dimensions and present a definition that is invariant under well-orderings of the arrays. As a result we find that our new definition for the proce...... introduced in the patent titled “Digital Watermarking” produces arrays with good asymptotic properties....

  13. Coded aperture imaging with uniformly redundant arrays

    International Nuclear Information System (INIS)

    Fenimore, E.E.; Cannon, T.M.


    A system is described which uses uniformly redundant arrays to image non-focusable radiation. The array is used in conjunction with a balanced correlation technique to provide a system with no artifacts so that virtually limitless signal-to-noise ratio is obtained with high transmission characteristics. The array is mosaicked to reduce required detector size over conventional array detectors. 15 claims

  14. Infrared detectors and arrays; Proceedings of the Meeting, Orlando, FL, Apr. 6, 7, 1988

    International Nuclear Information System (INIS)

    Dereniak, E.L.


    The papers contained in this volume provide an overview of recent advances in theoretical and experimental research related to IR detector materials and arrays. The major subject areas covered include IR Schottky barrier silicide arrays, HdCdTe developments, SPRITE technology, superlattice or bandgap-engineered devices, extrinsic silicon technology, indium antimonide technology, and pyroelectric arrays. Papers are presented on time division multiplexed time delay integration, spatial noise in staring IR focal plane arrays, pyroelectrics in a harsh environment, and testing of focal plane arrays

  15. Miniaturized ultrasound imaging probes enabled by CMUT arrays with integrated frontend electronic circuits. (United States)

    Khuri-Yakub, B T; Oralkan, Omer; Nikoozadeh, Amin; Wygant, Ira O; Zhuang, Steve; Gencel, Mustafa; Choe, Jung Woo; Stephens, Douglas N; de la Rama, Alan; Chen, Peter; Lin, Feng; Dentinger, Aaron; Wildes, Douglas; Thomenius, Kai; Shivkumar, Kalyanam; Mahajan, Aman; Seo, Chi Hyung; O'Donnell, Matthew; Truong, Uyen; Sahn, David J


    Capacitive micromachined ultrasonic transducer (CMUT) arrays are conveniently integrated with frontend integrated circuits either monolithically or in a hybrid multichip form. This integration helps with reducing the number of active data processing channels for 2D arrays. This approach also preserves the signal integrity for arrays with small elements. Therefore CMUT arrays integrated with electronic circuits are most suitable to implement miniaturized probes required for many intravascular, intracardiac, and endoscopic applications. This paper presents examples of miniaturized CMUT probes utilizing 1D, 2D, and ring arrays with integrated electronics.

  16. Volumetric ultrasound imaging using 2-D CMUT arrays. (United States)

    Oralkan, Omer; Ergun, A Sanli; Cheng, Ching-Hsiang; Johnson, Jeremy A; Karaman, Mustafa; Lee, Thomas H; Khuri-Yakub, Butrus T


    Recently, capacitive micromachined ultrasonic transducers (CMUTs) have emerged as a candidate to overcome the difficulties in the realization of 2-D arrays for real-time 3-D imaging. In this paper, we present the first volumetric images obtained using a 2-D CMUT array. We have fabricated a 128 x 128-element 2-D CMUT array with through-wafer via interconnects and a 420-microm element pitch. As an experimental prototype, a 32 x 64-element portion of the 128 x 128-element array was diced and flip-chip bonded onto a glass fanout chip. This chip provides individual leads from a central 16 x 16-element portion of the array to surrounding bondpads. An 8 x 16-element portion of the array was used in the experiments along with a 128-channel data acquisition system. For imaging phantoms, we used a 2.37-mm diameter steel sphere located 10 mm from the array center and two 12-mm-thick Plexiglas plates located 20 mm and 60 mm from the array. A 4 x 4 group of elements in the middle of the 8 x 16-element array was used in transmit, and the remaining elements were used to receive the echo signals. The echo signal obtained from the spherical target presented a frequency spectrum centered at 4.37 MHz with a 100% fractional bandwidth, whereas the frequency spectrum for the echo signal from the parallel plate phantom was centered at 3.44 MHz with a 91% fractional bandwidth. The images were reconstructed by using RF beamforming and synthetic phased array approaches and visualized by surface rendering and multiplanar slicing techniques. The image of the spherical target has been used to approximate the point spread function of the system and is compared with theoretical expectations. This study experimentally demonstrates that 2-D CMUT arrays can be fabricated with high yield using silicon IC-fabrication processes, individual electrical connections can be provided using through-wafer vias, and flip-chip bonding can be used to integrate these dense 2-D arrays with electronic circuits for

  17. Simulating the Sky as Seen by the Square Kilometer Array using the MIT Array Performance Simulator (MAPS) (United States)

    Matthews, Lynn D.; Cappallo, R. J.; Doeleman, S. S.; Fish, V. L.; Lonsdale, C. J.; Oberoi, D.; Wayth, R. B.


    The Square Kilometer Array (SKA) is a proposed next-generation radio telescope that will operate at frequencies of 0.1-30 GHz and be 50-100 times more sensitive than existing radio arrays. Meeting the performance goals of this instrument will require innovative new hardware and software developments, a variety of which are now under consideration. Key to evaluating the performance characteristics of proposed SKA designs and testing the feasibility of new data calibration and processing algorithms is the ability to carry out realistic simulations of radio wavelength arrays under a variety of observing conditions. The MIT Array Performance Simulator (MAPS) ( is an observations simulation package designed to achieve this goal. MAPS accepts an input source list or sky model and generates a model visibility set for a user-defined "virtual observatory'', incorporating such factors as array geometry, primary beam shape, field-of-view, and time and frequency resolution. Optionally, effects such as thermal noise, out-of-beam sources, variable station beams, and time/location-dependent ionospheric effects can be included. We will showcase current capabilities of MAPS for SKA applications by presenting results from an analysis of the effects of realistic sky backgrounds on the achievable image fidelity and dynamic range of SKA-like arrays comprising large numbers of small-diameter antennas.

  18. Retrieval of Mir Solar Array (United States)

    Rutledge, Sharon K.; deGroh, Kim K.


    A Russian solar array panel removed in November 1997 from the non-articulating photovoltaic array on the Mir core module was returned to Earth on STS-89 in January 1998. The panel had been exposed to low Earth orbit (LEO) for 10 years prior to retrieval. The retrieval provided a unique opportunity to study the effects of the LEO environment on a functional solar array. To take advantage of this opportunity, a team composed of members from RSC-Energia (Russia), the Boeing Company, and the following NASA Centers--Johnson Space Center, Kennedy Space Center, Langley Research Center, Marshall Space Flight Center, and Lewis Research Center--was put together to analyze the array. After post-retrieval inspections at the Spacehab Facility at Kennedy in Florida, the array was shipped to Lewis in Cleveland for electrical performance tests, closeup photodocumentation, and removal of selected solar cells and blanket material. With approval from RSC-Energia, five cell pairs and their accompanying blanket and mesh material, and samples of painted handrail materials were selected for removal on the basis of their ability to provide degradation information. Sites were selected that provided different sizes and shapes of micrometeoroid impacts and different levels of surface contamination. These materials were then distributed among the team for round robin testing.

  19. Cantilever arrays with self-aligned nanotips of uniform height

    International Nuclear Information System (INIS)

    Koelmans, W W; Peters, T; Berenschot, E; De Boer, M J; Siekman, M H; Abelmann, L


    Cantilever arrays are employed to increase the throughput of imaging and manipulation at the nanoscale. We present a fabrication process to construct cantilever arrays with nanotips that show a uniform tip–sample distance. Such uniformity is crucial, because in many applications the cantilevers do not feature individual tip–sample spacing control. Uniform cantilever arrays lead to very similar tip–sample interaction within an array, enable non-contact modes for arrays and give better control over the load force in contact modes. The developed process flow uses a single mask to define both tips and cantilevers. An additional mask is required for the back side etch. The tips are self-aligned in the convex corner at the free end of each cantilever. Although we use standard optical contact lithography, we show that the convex corner can be sharpened to a nanometre scale radius by an isotropic underetch step. The process is robust and wafer-scale. The resonance frequencies of the cantilevers within an array are shown to be highly uniform with a relative standard error of 0.26% or lower. The tip–sample distance within an array of up to ten cantilevers is measured to have a standard error around 10 nm. An imaging demonstration using the AFM shows that all cantilevers in the array have a sharp tip with a radius below 10 nm. The process flow for the cantilever arrays finds application in probe-based nanolithography, probe-based data storage, nanomanufacturing and parallel scanning probe microscopy. (paper)

  20. Rayleigh-Bloch waves in CMUT arrays. (United States)

    Atalar, Abdullah; Köymen, Hayrettin; Oğuz, H Kağan


    Using the small-signal electrical equivalent circuit of a capacitive micromachined ultrasonic transducer (CMUT) cell, along with the self and mutual radiation impedances of such cells, we present a computationally efficient method to predict the frequency response of a large CMUT element or array. The simulations show spurious resonances, which may degrade the performance of the array. We show that these unwanted resonances are due to dispersive Rayleigh-Bloch waves excited on the CMUT surface-liquid interface. We derive the dispersion relation of these waves for the purpose of predicting the resonance frequencies. The waves form standing waves at frequencies where the reflections from the edges of the element or the array result in a Fabry-Pérot resonator. High-order resonances are eliminated by a small loss in the individual cells, but low-order resonances remain even in the presence of significant loss. These resonances are reduced to tolerable levels when CMUT cells are built from larger and thicker plates at the expense of reduced bandwidth.

  1. Fast Neutron Spectroscopy using a CLYC array (United States)

    Doucet, Emery; Brown, T.; Chowdhury, P.; Lister, C. J.; Wilson, G. L.; Devlin, M.; Mosby, S.


    A new inorganic scintillator, Cs2LiYCl6, or CLYC, has recently shown great promise as a dual gamma-neutron detector, where neutron-gamma discrimination is achieved through digital pulse shape processing. The 35Cl(n,p) reaction allows fast neutrons to be measured with an energy resolution of ~10 %. Following initial tests with natural Li, 6Li-depleted crystals were chosen to reduce the strong thermal capture response of 6Li. A 16-element array of 1'' x 1'' 6Li-depleted CLYC crystals is being tested in a variety of applications. A VME-based digital DAQ is used for pulse shape discrimination and extracting energies. The array was deployed at the LANSCE WNR facility, to measure elastic and inelastic scattering cross sections of neutrons on 56Fe and 238U. The data acquisition and analysis software were originally based on Python. The sorting codes were re-written in C, which sped up the analysis by two orders of magnitude. Most of the sorting code is within the framework of the CERN-ROOT software. Details of the detector array and the analysis will be presented. Supported by NNSA-SSAA program through DOE Grant DE-NA00013008.

  2. Integrated chemiresistor array for small sensor platforms

    Energy Technology Data Exchange (ETDEWEB)



    Chemiresistors are fabricated from materials that change their electrical resistance when exposed to certain chemical species. Composites of soluble polymers with metallic particles have shown remarkable sensitivity to many volatile organic chemicals, depending on the ability of the analyte molecules to swell the polymer matrix. These sensors can be made extremely small (< 100 square microns), operate at ambient temperatures, and require almost no power to read-out. However, the chemiresistor itself is only a part of a more complex sensor system that delivers chemical information to a user who can act on the information. The authors present the design, fabrication and performance of a chemiresistor array chip with four different chemiresistor materials, heaters and a temperature sensor. They also show the design and fabrication of an integrated chemiresistor array, where the electronics to read-out the chemiresistors is on the same chip with the electrodes for the chemiresistors. The circuit was designed to perform several functions to make the sensor data more useful. This low-power, integrated chemiresistor array is small enough to be deployed on a Sandia-developed microrobot platform.

  3. Fast Dynamic Arrays

    DEFF Research Database (Denmark)

    Bille, Philip; Christiansen, Anders Roy; Ettienne, Mikko Berggren


    We present a highly optimized implementation of tiered vectors, a data structure for maintaining a sequence of n elements supporting access in time O(1) and insertion and deletion in time O(n) for > 0 while using o(n) extra space. We consider several different implementation optimizations in C++ ...

  4. Technique for Extension of Small Antenna Array Mutual-Coupling Data to Larger Antenna Arrays (United States)

    Bailey, M. C.


    A technique is presented whereby the mutual interaction between a small number of elements in a planar array can be interpolated and extrapolated to accurately predict the combined interactions in a much larger array of many elements. An approximate series expression is developed, based upon knowledge of the analytical characteristic behavior of the mutual admittance between small aperture antenna elements in a conducting ground plane. This expression is utilized to analytically extend known values for a few spacings and orientations to other element configurations, thus eliminating the need to numerically integrate a large number of highly oscillating and slowly converging functions. This paper shows that the technique can predict very accurately the mutual coupling between elements in a very large planar array with a knowledge of the self-admittance of an isolated element and the coupling between only two-elements arranged in eight different pair combinations. These eight pair combinations do not necessarily have to correspond to pairs in the large array, although all of the individual elements must be identical.

  5. X-ray detector array

    International Nuclear Information System (INIS)

    Houston, J.M.


    The object of the invention (an ionization chamber X-ray detector array for use with high speed computerised tomographic imaging apparatus) is to reduce the time required to produce a tomographic image. The detector array described determines the distribution of X-ray intensities in one or more flat, coplanar X-ray beams. It comprises three flat anode sheets parallel to the X-ray beam, a plurality of rod-like cathodes between the anodes, a detector gas between the electrodes and a means for applying a potential between the electrodes. Each of the X-ray sources is collimated to give a narrow, planar section of X-ray photons. Sets of X-ray sources in the array are pulsed simultaneously to obtain X-ray transmission data for tomographic image reconstruction. (U.K.)

  6. DOA Estimation of Cylindrical Conformal Array Based on Geometric Algebra

    Directory of Open Access Journals (Sweden)

    Minjie Wu


    Full Text Available Due to the variable curvature of the conformal carrier, the pattern of each element has a different direction. The traditional method of analyzing the conformal array is to use the Euler rotation angle and its matrix representation. However, it is computationally demanding especially for irregular array structures. In this paper, we present a novel algorithm by combining the geometric algebra with Multiple Signal Classification (MUSIC, termed as GA-MUSIC, to solve the direction of arrival (DOA for cylindrical conformal array. And on this basis, we derive the pattern and array manifold. Compared with the existing algorithms, our proposed one avoids the cumbersome matrix transformations and largely decreases the computational complexity. The simulation results verify the effectiveness of the proposed method.

  7. A lunar far-side very low frequency array (United States)

    Burns, Jack O. (Editor); Duric, Nebojsa (Editor); Johnson, Stewart (Editor); Taylor, G. Jeffrey (Editor)


    Papers were presented to consider very low frequency (VLF) radio astronomical observations from the moon. In part 1, the environment in which a lunar VLF radio array would function is described. Part 2 is a review of previous and proposed low-frequency observatories. The science that could be conducted with a lunar VLF array is described in part 3. The design of a lunar VLF array and site selection criteria are considered, respectively, in parts 4 and 5. Part 6 is a proposal for precursor lunar VLF observations. Finally, part 7 is a summary and statement of conclusions, with suggestions for future science and engineering studies. The workshop concluded with a general consensus on the scientific goals and preliminary design for a lunar VLF array.

  8. Optical analogue of relativistic Dirac solitons in binary waveguide arrays

    Energy Technology Data Exchange (ETDEWEB)

    Tran, Truong X., E-mail: [Department of Physics, Le Quy Don University, 236 Hoang Quoc Viet str., 10000 Hanoi (Viet Nam); Max Planck Institute for the Science of Light, Günther-Scharowsky str. 1, 91058 Erlangen (Germany); Longhi, Stefano [Department of Physics, Politecnico di Milano and Istituto di Fotonica e Nanotecnologie del Consiglio Nazionale delle Ricerche, Piazza L. da Vinci 32, I-20133 Milano (Italy); Biancalana, Fabio [Max Planck Institute for the Science of Light, Günther-Scharowsky str. 1, 91058 Erlangen (Germany); School of Engineering and Physical Sciences, Heriot-Watt University, EH14 4AS Edinburgh (United Kingdom)


    We study analytically and numerically an optical analogue of Dirac solitons in binary waveguide arrays in the presence of Kerr nonlinearity. Pseudo-relativistic soliton solutions of the coupled-mode equations describing dynamics in the array are analytically derived. We demonstrate that with the found soliton solutions, the coupled mode equations can be converted into the nonlinear relativistic 1D Dirac equation. This paves the way for using binary waveguide arrays as a classical simulator of quantum nonlinear effects arising from the Dirac equation, something that is thought to be impossible to achieve in conventional (i.e. linear) quantum field theory. -- Highlights: •An optical analogue of Dirac solitons in nonlinear binary waveguide arrays is suggested. •Analytical solutions to pseudo-relativistic solitons are presented. •A correspondence of optical coupled-mode equations with the nonlinear relativistic Dirac equation is established.

  9. Linear antenna array optimization using flower pollination algorithm. (United States)

    Saxena, Prerna; Kothari, Ashwin


    Flower pollination algorithm (FPA) is a new nature-inspired evolutionary algorithm used to solve multi-objective optimization problems. The aim of this paper is to introduce FPA to the electromagnetics and antenna community for the optimization of linear antenna arrays. FPA is applied for the first time to linear array so as to obtain optimized antenna positions in order to achieve an array pattern with minimum side lobe level along with placement of deep nulls in desired directions. Various design examples are presented that illustrate the use of FPA for linear antenna array optimization, and subsequently the results are validated by benchmarking along with results obtained using other state-of-the-art, nature-inspired evolutionary algorithms such as particle swarm optimization, ant colony optimization and cat swarm optimization. The results suggest that in most cases, FPA outperforms the other evolutionary algorithms and at times it yields a similar performance.

  10. Microchannel heatsinks for high-average-power laser diode arrays (United States)

    Benett, William J.; Freitas, Barry L.; Beach, Raymond J.; Ciarlo, Dino R.; Sperry, Verry; Comaskey, Brian J.; Emanuel, Mark A.; Solarz, Richard W.; Mundinger, David C.


    Detailed performance results and fabrication techniques for an efficient and low thermal impedance laser diode array heatsink are presented. High duty factor or even CW operation of fully filled laser diode arrays is enabled at high average power. Low thermal impedance is achieved using a liquid coolant and laminar flow through microchannels. The microchannels are fabricated in silicon using a photolithographic pattern definition procedure followed by anisotropic chemical etching. A modular rack-and-stack architecture is adopted for the heatsink design allowing arbitrarily large two-dimensional arrays to be fabricated and easily maintained. The excellent thermal control of the microchannel cooled heatsinks is ideally suited to pump array requirements for high average power crystalline lasers because of the stringent temperature demands that result from coupling the diode light to several nanometers wide absorption features characteristic of lasing ions in crystals.

  11. Arrayed beam steering device for advanced 3D displays (United States)

    Bae, Jungmok; Choi, Yoon-Sun; Choi, Kyuhwan; Kim, Yunhee; Kwon, Yongjoo; Song, Hoon; Kim, Eoksu; Choi, Seungyeol; Lee, Junghoon; Lee, Sangyoon


    An arrayed beam steering device enables much simplified system architectures for high quality multiview 3D displays by adapting time multiplexing and eye tracking scheme. An array device consisting of microscale liquid prisms is presented, where the prism surface between two immiscible liquids is electrically controlled to steer light beams by the principle of electrowetting. An array prototype with 280×280μm pixels was fabricated and demonstrated of its full optical performances. The maximum tilting angle of each prism was measured to be 22.5° in average, with a tracking resolution of less than 0.04°. In this paper, we report a design and fabrication of eletrowetting based prism array, opto-fluidic simulations, optical characterizations, as well as applications to achieve low fatigue 3D displays.

  12. Phased-array vector velocity estimation using transverse oscillations

    DEFF Research Database (Denmark)

    Pihl, Michael Johannes; Marcher, Jønne; Jensen, Jørgen Arendt


    A method for estimating the 2-D vector velocity of blood using a phased-array transducer is presented. The approach is based on the transverse oscillation (TO) method. The purposes of this work are to expand the TO method to a phased-array geometry and to broaden the potential clinical applicabil......A method for estimating the 2-D vector velocity of blood using a phased-array transducer is presented. The approach is based on the transverse oscillation (TO) method. The purposes of this work are to expand the TO method to a phased-array geometry and to broaden the potential clinical...... of the TO method using a phased-array transducer for vector velocity estimation is evaluated through simulation and flow-rig measurements are acquired using an experimental scanner. The vast number of calculations needed to perform flow simulations makes the optimization of the TO fields a cumbersome process......, but with a poorer performance compared with a 128-element transducer. The simulation and experimental results demonstrate that the TO method is suitable for use in conjunction with a phased-array transducer, and that 2-D vector velocity estimation is possible down to a depth of 15 cm....

  13. Design Considerations for Array CGH to OligonucleotideArrays

    Energy Technology Data Exchange (ETDEWEB)

    Baldocchi, R.A.; Glynne, R.J.; Chin, K.; Kowbel, D.; Collins, C.; Mack, D.H.; Gray, J.W.


    Background: Representational oligonucleotide microarray analysis has been developed for detection of single nucleotide polymorphisms and/or for genome copy number changes. In this process, the intensity of hybridization to oligonucleotides arrays is increased by hybridizing a polymerase chain reaction (PCR)-amplified representation of reduced genomic complexity. However, hybridization to some oligonucleotides is not sufficiently high to allow precise analysis of that portion of the genome. Methods: In an effort to identify aspects of oligonucleotide hybridization affecting signal intensity, we explored the importance of the PCR product strand to which each oligonucleotide is homologous and the sequence of the array oligonucleotides. We accomplished this by hybridizing multiple PCR-amplified products to oligonucleotide arrays carrying two sense and two antisense 50-mer oligonucleotides for each PCR amplicon. Results: In some cases, hybridization intensity depended more strongly on the PCR amplicon strand (i.e., sense vs. antisense) than on the detection oligonucleotide sequence. In other cases, the oligonucleotide sequence seemed to dominate. Conclusion: Oligonucleotide arrays for analysis of DNA copy number or for single nucleotide polymorphism content should be designed to carry probes to sense and antisense strands of each PCR amplicon to ensure sufficient hybridization and signal intensity.

  14. Broadband acoustic phased array with subwavelength active tube array (United States)

    Li, Xiao-Yan; Yang, Zhang-Zhao; Zhu, Yi-Fan; Zou, Xin-Ye; Cheng, Jian-Chun


    Acoustic metasurfaces provide a way to manipulate wavefronts at anomalous reflection or refraction angles through subwavelength structures. Here, based on the generalized Snell's refraction law for acoustic metasurfaces and the classical acoustic phased array (PA) theory, a broadband acoustic PA with a subwavelength active tube array has been proposed to form a special acoustic beam and to determine the directivity characteristics of the acoustic source. Theoretical analysis shows that the dispersionless wavefront manipulation can be realized by the gradient model of the active tube array, and a wide working frequency band can be obtained in practical applications from the simulated and experimental results. The numerical results of forming a special acoustic beam and establishing an acoustic focus model with an arbitrary focal position are consistent with the theoretical predictions. The experimental results agree well with the simulated results in the model of forming the acoustic beam of 45 ° . By combining acoustic metamaterials and conventional acoustic PA, the model of the active tube array paves a way to design a composite acoustic PA with high radiation efficiency and system robustness without the need for any complex circuit control system. This design concept is expected to be used in the design of ultrasonic therapy devices and high-efficiency transducers.

  15. Phased arrays: inline flow line hub inspection using phased arrays

    NARCIS (Netherlands)

    Bloom, J.G.P.; Chougrani, K.; Rundberg, H.; Oldenziel, G.; Deleye, X.; Martina, Q.


    The feasibility of the inspection of flow line hubs using the phased array technique was investigated to determine the surface area of the seal area degraded by corrosion. A clean model of the hub was simulated to gain insight into the geometrical echoes and to determine the area covered by the

  16. Terahertz superconducting plasmonic hole array. (United States)

    Tian, Zhen; Singh, Ranjan; Han, Jiaguang; Gu, Jianqiang; Xing, Qirong; Wu, Judy; Zhang, Weili


    We demonstrate a superconductor array of subwavelength holes with active thermal control over the resonant transmission induced by surface plasmon polaritons. The array was lithographically fabricated on a high-temperature yttrium barium copper oxide superconductor and characterized by terahertz time-domain spectroscopy. We observe a clear transition from a virtual excitation of the surface plasmon mode to a real surface plasmon mode. The highly controllable superconducting plasmonic crystals may find promising applications in the design of low-loss, large- dynamic-range amplitude modulation and surface-plasmon-based terahertz devices.

  17. Hybrid Arrays for Chemical Sensing (United States)

    Kramer, Kirsten E.; Rose-Pehrsson, Susan L.; Johnson, Kevin J.; Minor, Christian P.

    In recent years, multisensory approaches to environment monitoring for chemical detection as well as other forms of situational awareness have become increasingly popular. A hybrid sensor is a multimodal system that incorporates several sensing elements and thus produces data that are multivariate in nature and may be significantly increased in complexity compared to data provided by single-sensor systems. Though a hybrid sensor is itself an array, hybrid sensors are often organized into more complex sensing systems through an assortment of network topologies. Part of the reason for the shift to hybrid sensors is due to advancements in sensor technology and computational power available for processing larger amounts of data. There is also ample evidence to support the claim that a multivariate analytical approach is generally superior to univariate measurements because it provides additional redundant and complementary information (Hall, D. L.; Linas, J., Eds., Handbook of Multisensor Data Fusion, CRC, Boca Raton, FL, 2001). However, the benefits of a multisensory approach are not automatically achieved. Interpretation of data from hybrid arrays of sensors requires the analyst to develop an application-specific methodology to optimally fuse the disparate sources of data generated by the hybrid array into useful information characterizing the sample or environment being observed. Consequently, multivariate data analysis techniques such as those employed in the field of chemometrics have become more important in analyzing sensor array data. Depending on the nature of the acquired data, a number of chemometric algorithms may prove useful in the analysis and interpretation of data from hybrid sensor arrays. It is important to note, however, that the challenges posed by the analysis of hybrid sensor array data are not unique to the field of chemical sensing. Applications in electrical and process engineering, remote sensing, medicine, and of course, artificial

  18. Wire Array Solar Cells: Fabrication and Photoelectrochemical Studies (United States)

    Spurgeon, Joshua Michael

    /polymer composite films showed that their energy-conversion properties were comparable to those of an array attached to the growth substrate. High quantum efficiencies were observed relative to the packing density of the wires, particularly with illumination at high angles of incidence. The results indicate that an inexpensive, solid-state Si wire array solar cell is possible, and a plan is presented to develop one.

  19. Small aperture seismic arrays for studying planetary interiors and seismicity (United States)

    Schmerr, N. C.; Lekic, V.; Fouch, M. J.; Panning, M. P.; Siegler, M.; Weber, R. C.


    Seismic arrays are a powerful tool for understanding the interior structure and seismicity across objects in the Solar System. Given the operational constraints of ground-based lander investigations, a small aperture seismic array can provide many of the benefits of a larger-scale network, but does not necessitate a global deployment of instrumentation. Here we define a small aperture array as a deployment of multiple seismometers, with a separation between instruments of 1-1000 meters. For example, small aperture seismic arrays have been deployed on the Moon during the Apollo program, the Active Seismic Experiments of Apollo 14 and 16, and the Lunar Seismic Profiling Experiment deployed by the Apollo 17 astronauts. Both were high frequency geophone arrays with spacing of 50 meters that provided information on the layering and velocity structure of the uppermost kilometer of the lunar crust. Ideally such arrays would consist of instruments that are 3-axis short period or broadband seismometers. The instruments must have a sampling rate and frequency range sensitivity capable of distinguishing between waves arriving at each station in the array. Both terrestrial analogs and the data retrieved from the Apollo arrays demonstrate the efficacy of this approach. Future opportunities exist for deployment of seismic arrays on Europa, asteroids, and other objects throughout the Solar System. Here we will present both observational data and 3-D synthetic modeling results that reveal the sensing requirements and the primary advantages of a small aperture seismic array over single station approach. For example, at the smallest apertures of < 1 m, we constrain that sampling rates must exceed 500 Hz and instrument sensitivity must extend to 100 Hz or greater. Such advantages include the improved ability to resolve the location of the sources near the array through detection of backazimuth and differential timing between stations, determination of the small-scale structure


    International Nuclear Information System (INIS)

    Bhat, N. D. R.; Chengalur, J. N.; Gupta, Y.; Prasad, J.; Roy, J.; Kudale, S. S.; Cox, P. J.; Bailes, M.; Burke-Spolaor, S.; Van Straten, W.


    Next-generation radio arrays, including the Square Kilometre Array (SKA) and its pathfinders, will open up new avenues for exciting transient science at radio wavelengths. Their innovative designs, comprising a large number of small elements, pose several challenges in digital processing and optimal observing strategies. The Giant Metre-wave Radio Telescope (GMRT) presents an excellent test-bed for developing and validating suitable observing modes and strategies for transient experiments with future arrays. Here we describe the first phase of the ongoing development of a transient detection system for GMRT that is planned to eventually function in a commensal mode with other observing programs. It capitalizes on the GMRT's interferometric and sub-array capabilities, and the versatility of a new software backend. We outline considerations in the plan and design of transient exploration programs with interferometric arrays, and describe a pilot survey that was undertaken to aid in the development of algorithms and associated analysis software. This survey was conducted at 325 and 610 MHz, and covered 360 deg 2 of the sky with short dwell times. It provides large volumes of real data that can be used to test the efficacies of various algorithms and observing strategies applicable for transient detection. We present examples that illustrate the methodologies of detecting short-duration transients, including the use of sub-arrays for higher resilience to spurious events of terrestrial origin, localization of candidate events via imaging, and the use of a phased array for improved signal detection and confirmation. In addition to demonstrating applications of interferometric arrays for fast transient exploration, our efforts mark important steps in the roadmap toward SKA-era science.

  1. Detection of Fast Transients with Radio Interferometric Arrays (United States)

    Bhat, N. D. R.; Chengalur, J. N.; Cox, P. J.; Gupta, Y.; Prasad, J.; Roy, J.; Bailes, M.; Burke-Spolaor, S.; Kudale, S. S.; van Straten, W.


    Next-generation radio arrays, including the Square Kilometre Array (SKA) and its pathfinders, will open up new avenues for exciting transient science at radio wavelengths. Their innovative designs, comprising a large number of small elements, pose several challenges in digital processing and optimal observing strategies. The Giant Metre-wave Radio Telescope (GMRT) presents an excellent test-bed for developing and validating suitable observing modes and strategies for transient experiments with future arrays. Here we describe the first phase of the ongoing development of a transient detection system for GMRT that is planned to eventually function in a commensal mode with other observing programs. It capitalizes on the GMRT's interferometric and sub-array capabilities, and the versatility of a new software backend. We outline considerations in the plan and design of transient exploration programs with interferometric arrays, and describe a pilot survey that was undertaken to aid in the development of algorithms and associated analysis software. This survey was conducted at 325 and 610 MHz, and covered 360 deg2 of the sky with short dwell times. It provides large volumes of real data that can be used to test the efficacies of various algorithms and observing strategies applicable for transient detection. We present examples that illustrate the methodologies of detecting short-duration transients, including the use of sub-arrays for higher resilience to spurious events of terrestrial origin, localization of candidate events via imaging, and the use of a phased array for improved signal detection and confirmation. In addition to demonstrating applications of interferometric arrays for fast transient exploration, our efforts mark important steps in the roadmap toward SKA-era science.

  2. Development of an unattended ground sensor array using piezoresistive sensors (United States)

    Lee, Kelly; Gupta, Neelam; Sartain, Ronald B.


    This paper discusses the development of an Unattended Ground Sensor based on an array of pressure sensors designed to be buried in the ground. This sensor array, along with the required software (still under development), will have the ability to distinguish between humans and animals based on the size and shape of the foot print. The technology may also be applied to determine the weight and type of vehicle traveling on a road. The sensor array consists of pressure sensitive resistors (piezoresistors) on 0.8 inch centers printed on a sheet of polyimide film. Although very large arrays might one day be screen printed, the arrays for this study have been printed using a syringe dispenser and a precision x-y computer controlled table. For the preliminary development, the array has been sized to 8X10 inches. The piezoresistive properties of the sensors are discussed and preliminary test data is presented. It is shown that the piezoresistive gauge factor (ΔR/R/ΔL/L) is roughly 10 times that of conventional metal strain gauges. Because the change in resistance is large compared to metal strain gauges, lower cost electronics can be used. The small net size and low mass enables sensing elements with fast response time. The fact that these piezoresistive elements are directly printed, as opposed to being adhesively attached to a surface, eliminates many of the issues associated with bonded discrete sensors. It is anticipated that the piezoresistive sensor approach presented in this paper will be well suited to extremely rugged environmental conditions compared to the commercially available sensor arrays which rely on surface contact resistance or capacitive sensors which can be easily destroyed by moisture. Environmental testing will be done in a future phase of the project. The final system, which is still under development, will consist of a sensor array, information processing, and RF signal transmission. The system is anticipated to be low cost and environmentally

  3. Tests of operating conditions for metrological application of HTS Josephson arrays

    International Nuclear Information System (INIS)

    Sosso, A; Lacquaniti, V; Andreone, D; Cerri, R; Klushin, A M


    We report on an experimental study of metrological properties of High Temperature Superconductor arrays, made of shunted bicrystal YBCO Josephson junctions, to assess their accuracy. A detailed analysis of measurement errors is presented, mainly based on a direct comparison of an HTS array against a low temperature array. Owing to the high sensitivity of the comparison, we were able to measure the changes in the HTS array voltage on a step at nanovolt level. A precise estimate of the dependence of the HTS array step width on operating conditions was obtained. Differences were observed with respect to the results provided by the usual, low sensitivity, techniques, confirming that the method we adopted is necessary in the study of HTS arrays for metrology. The high sensitivity analysis was applied in the derivation of the temperature dependence of the critical current as well, providing some insights on the behaviour of the HTS array

  4. Pattern Synthesis of Dual-band Shared Aperture Interleaved Linear Antenna Arrays

    Directory of Open Access Journals (Sweden)

    H. Guo


    Full Text Available This paper presents an approach to improve the efficiency of an array aperture by interleaving two different arrays in the same aperture area. Two sub-arrays working at different frequencies are interleaved in the same linear aperture area. The available aperture area is efficiently used. The element positions of antenna array are optimized by using Invasive Weed Optimization (IWO to reduce the peak side lobe level (PSLL of the radiation pattern. To overcome the shortness of traditional methods which can only fulfill the design of shared aperture antenna array working at the same frequency, this method can achieve the design of dual-band antenna array with wide working frequency range. Simulation results show that the proposed method is feasible and efficient in the synthesis of dual-band shared aperture antenna array.

  5. The phase array technology: concepts, sensors and applications; La technology Phase array: concepts, capteurs et applications

    Energy Technology Data Exchange (ETDEWEB)

    Poguet, J.; Marguet, J.; Pichonnat, F.; Chupin, L. [Imasonic SA, 25 - Besancon (France)


    The piezo-composite materials allowed, since many years, the development of a new technology for the ultrasonic sensors adapted to the nondestructive testing: the phase array sensors. These sensors are designed with a great number of elementary sensors. The different concepts with their associated advantages and performance are presented in this paper. Many applications using this technology are also proposed and discussed in the domains of the nuclear industry, the aeronautic industry and the on-line control. (A.L.B.)

  6. Parallelism and array processing

    International Nuclear Information System (INIS)

    Zacharov, V.


    Modern computing, as well as the historical development of computing, has been dominated by sequential monoprocessing. Yet there is the alternative of parallelism, where several processes may be in concurrent execution. This alternative is discussed in a series of lectures, in which the main developments involving parallelism are considered, both from the standpoint of computing systems and that of applications that can exploit such systems. The lectures seek to discuss parallelism in a historical context, and to identify all the main aspects of concurrency in computation right up to the present time. Included will be consideration of the important question as to what use parallelism might be in the field of data processing. (orig.)

  7. Development of a Tactile Sensor Array

    DEFF Research Database (Denmark)

    Marian, Nicolae; Drimus, Alin; Bilberg, Arne


    . The paper describes the related research work we have developed for sensor design, exploration and control for a robot gripping system, in order to analyze normal forces applied on the tactile pixels for gripping force control and generate tactile images for gripping positioning and object recognition....... Section 1 gives an introduction of principles and technologies in tactile sensing for robot grippers. Section 2 presents the sensor cell (taxel) and array design and characterization. Section 3 introduces object recognition and shape analysis ideas showing a few preliminary examples, where geometrical...

  8. Abductive Inference using Array-Based Logic

    DEFF Research Database (Denmark)

    Frisvad, Jeppe Revall; Falster, Peter; Møller, Gert L.

    employed in array-based logic we embrace abduction in a simple structural operation. We argue that a theory of abduction on this form allows for an implementation which, at runtime, can perform abductive inference quite efficiently on arbitrary rules of logic representing knowledge of finite domains.......The notion of abduction has found its usage within a wide variety of AI fields. Computing abductive solutions has, however, shown to be highly intractable in logic programming. To avoid this intractability we present a new approach to logicbased abduction; through the geometrical view of data...

  9. Multiwall carbon nanotube microcavity arrays

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Rajib; Butt, Haider, E-mail: [Nanotechnology Laboratory, School of Mechanical Engineering, University of Birmingham, Birmingham B15 2TT (United Kingdom); Rifat, Ahmmed A. [Integrated Lightwave Research Group, Department of Electrical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603 (Malaysia); Yetisen, Ali K.; Yun, Seok Hyun [Harvard Medical School and Wellman Center for Photomedicine, Massachusetts General Hospital, 65 Landsdowne Street, Cambridge, Massachusetts 02139 (United States); Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Dai, Qing [National Center for Nanoscience and Technology, Beijing 100190 (China)


    Periodic highly dense multi-wall carbon nanotube (MWCNT) arrays can act as photonic materials exhibiting band gaps in the visible regime and beyond terahertz range. MWCNT arrays in square arrangement for nanoscale lattice constants can be configured as a microcavity with predictable resonance frequencies. Here, computational analyses of compact square microcavities (≈0.8 × 0.8 μm{sup 2}) in MWCNT arrays were demonstrated to obtain enhanced quality factors (≈170–180) and narrow-band resonance peaks. Cavity resonances were rationally designed and optimized (nanotube geometry and cavity size) with finite element method. Series (1 × 2 and 1 × 3) and parallel (2 × 1 and 3 × 1) combinations of microcavities were modeled and resonance modes were analyzed. Higher order MWCNT microcavities showed enhanced resonance modes, which were red shifted with increasing Q-factors. Parallel microcavity geometries were also optimized to obtain narrow-band tunable filtering in low-loss communication windows (810, 1336, and 1558 nm). Compact series and parallel MWCNT microcavity arrays may have applications in optical filters and miniaturized optical communication devices.

  10. Gamma-ray array physics

    International Nuclear Information System (INIS)

    Lister, C. J.


    In this contribution I am going to discuss the development of large arrays of Compton Suppressed, High Purity Germanium (HpGe) detectors and the physics that has been, that is being, and that will be done with them. These arrays and their science have dominated low-energy nuclear structure research for the last twenty years and will continue to do so in the foreseeable future. John Sharpey Schafer played a visionary role in convincing a skeptical world that the development of these arrays would lead to a path of enlightenment. The extent to which he succeeded can be seen both through the world-wide propagation of ever more sophisticated devices, and through the world-wide propagation of his students. I, personally, would not be working in research if it were not for Johns inspirational leadership. I am eternally grateful to him. Many excellent reviews of array physics have been made in the past which can provide detailed background reading. The review by Paul Nolan, another ex-Sharpey Schafer student, is particularly comprehensive and clear

  11. Photoelectrochemistry of Semiconductor Nanowire Arrays

    Energy Technology Data Exchange (ETDEWEB)

    Mallouk, Thomas E; Redwing, Joan M


    This project supported research on the growth and photoelectrochemical characterization of semiconductor nanowire arrays, and on the development of catalytic materials for visible light water splitting to produce hydrogen and oxygen. Silicon nanowires were grown in the pores of anodic aluminum oxide films by the vapor-liquid-solid technique and were characterized electrochemically. Because adventitious doping from the membrane led to high dark currents, silicon nanowire arrays were then grown on silicon substrates. The dependence of the dark current and photovoltage on preparation techniques, wire diameter, and defect density was studied for both p-silicon and p-indium phosphide nanowire arrays. The open circuit photovoltage of liquid junction cells increased with increasing wire diameter, reaching 350 mV for micron-diameter silicon wires. Liquid junction and radial p-n junction solar cells were fabricated from silicon nano- and microwire arrays and tested. Iridium oxide cluster catalysts stabilized by bidentate malonate and succinate ligands were also made and studied for the water oxidation reaction. Highlights of this project included the first papers on silicon and indium phosphide nanowire solar cells, and a new procedure for making ligand-stabilized water oxidation catalysts that can be covalently linked to molecular photosensitizers or electrode surfaces.

  12. LOFAR- The Low Frequency Array

    NARCIS (Netherlands)

    Falcke, H.D.E.


    LOFAR is an innovative radio telescope in the frequency range of 10-240 MHz, realized as a phased array. It will become the largest radio telescope in the world in the time frame 2006-2010, located in Northern Europe. LOFAR is being implemented as a Wide Area Sensor Network which connects thousands

  13. Light weight digital array SAR

    NARCIS (Netherlands)

    Otten, M.; Maas, N.; Bolt, R.; Anitori, L.


    A light weight SAR has been designed, suitable for short range tactical UAVs, consisting of a fully digital receive array, and a very compact active transmit antenna. The weight of the complete RF front is expected to be below 3 kg, with a power consumption below 30 W. This X-band system can provide

  14. Solar array manufacturing industry simulation (United States)

    Chamberlain, R. G.; Firnett, P. J.; Kleine, B.


    Solar Array Manufacturing Industry Simulation (SAMIS) program is a standardized model of industry to manufacture silicon solar modules for use in electricity generation. Model is used to develop financial reports that detail requirements, including amounts and prices for materials, labor, facilities, and equipment required by companies.

  15. Directivity of basic linear arrays

    DEFF Research Database (Denmark)

    Bach, Henning


    For a linear uniform array ofnelements, an expression is derived for the directivity as a function of the spacing and the phase constants. The cases of isotropic elements, collinear short dipoles, and parallel short dipoles are included. The formula obtained is discussed in some detail and contour...

  16. Solar array flight dynamic experiment (United States)

    Schock, Richard W.


    The purpose of the Solar Array Flight Dynamic Experiment (SAFDE) is to demonstrate the feasibility of on-orbit measurement and ground processing of large space structures' dynamic characteristics. Test definition or verification provides the dynamic characteristic accuracy required for control systems use. An illumination/measurement system was developed to fly on space shuttle flight STS-41D. The system was designed to dynamically evaluate a large solar array called the Solar Array Flight Experiment (SAFE) that had been scheduled for this flight. The SAFDE system consisted of a set of laser diode illuminators, retroreflective targets, an intelligent star tracker receiver and the associated equipment to power, condition, and record the results. In six tests on STS-41D, data was successfully acquired from 18 retroreflector targets and ground processed, post flight, to define the solar array's dynamic characteristic. The flight experiment proved the viability of on-orbit test definition of large space structures dynamic characteristics. Future large space structures controllability should be greatly enhanced by this capability.

  17. PHARUS : PHased ARray Universal SAR

    NARCIS (Netherlands)

    Paquay, M.H.A.; Vermeulen, B.C.B.; Koomen, P.J.; Hoogeboom, P.; Snoeij, P.; Pouwels, H.


    In the Netherlands, a polarimetric C-band aircraft SAR (Synthetic Aperture Radar) has been developed. The project is called PHARUS, an acronm for PHased ARray Universal SAR. This instrument serves remote sensing applications. The antenna system contains 48 active modules (expandable to 96). A module

  18. Singulation for imaging ring arrays of capacitive micromachined ultrasonic transducers

    International Nuclear Information System (INIS)

    Chang, Chienliu; Moini, Azadeh; Nikoozadeh, Amin; Sarioglu, Ali Fatih; Apte, Nikhil; Zhuang, Xuefeng; Khuri-Yakub, Butrus T


    Singulation of MEMS is a critical step in the transition from wafer-level to die-level devices. As is the case for capacitive micromachined ultrasound transducer (CMUT) ring arrays, an ideal singulation must protect the fragile membranes from the processing environment while maintaining a ring array geometry. The singulation process presented in this paper involves bonding a trench-patterned CMUT wafer onto a support wafer, deep reactive ion etching (DRIE) of the trenches, separating the CMUT wafer from the support wafer and de-tethering the CMUT device from the CMUT wafer. The CMUT arrays fabricated and singulated in this process were ring-shaped arrays, with inner and outer diameters of 5 mm and 10 mm, respectively. The fabricated CMUT ring arrays demonstrate the ability of this method to successfully and safely singulate the ring arrays and is applicable to any arbitrary 2D shaped MEMS device with uspended microstructures, taking advantage of the inherent planar attributes of DRIE. (technical note)

  19. Volumetric real-time imaging using a CMUT ring array. (United States)

    Choe, Jung Woo; Oralkan, Ömer; Nikoozadeh, Amin; Gencel, Mustafa; Stephens, Douglas N; O'Donnell, Matthew; Sahn, David J; Khuri-Yakub, Butrus T


    A ring array provides a very suitable geometry for forward-looking volumetric intracardiac and intravascular ultrasound imaging. We fabricated an annular 64-element capacitive micromachined ultrasonic transducer (CMUT) array featuring a 10-MHz operating frequency and a 1.27-mm outer radius. A custom software suite was developed to run on a PC-based imaging system for real-time imaging using this device. This paper presents simulated and experimental imaging results for the described CMUT ring array. Three different imaging methods--flash, classic phased array (CPA), and synthetic phased array (SPA)--were used in the study. For SPA imaging, two techniques to improve the image quality--Hadamard coding and aperture weighting--were also applied. The results show that SPA with Hadamard coding and aperture weighting is a good option for ring-array imaging. Compared with CPA, it achieves better image resolution and comparable signal-to-noise ratio at a much faster image acquisition rate. Using this method, a fast frame rate of up to 463 volumes per second is achievable if limited only by the ultrasound time of flight; with the described system we reconstructed three cross-sectional images in real-time at 10 frames per second, which was limited by the computation time in synthetic beamforming.

  20. Singulation for imaging ring arrays of capacitive micromachined ultrasonic transducers (United States)

    Chang, Chienliu; Moini, Azadeh; Nikoozadeh, Amin; Sarioglu, Ali Fatih; Apte, Nikhil; Zhuang, Xuefeng; Khuri-Yakub, Butrus T.


    Singulation of MEMS is a critical step in the transition from wafer-level to die-level devices. As is the case for capacitive micromachined ultrasound transducer (CMUT) ring arrays, an ideal singulation must protect the fragile membranes from the processing environment while maintaining a ring array geometry. The singulation process presented in this paper involves bonding a trench-patterned CMUT wafer onto a support wafer, deep reactive ion etching (DRIE) of the trenches, separating the CMUT wafer from the support wafer and de-tethering the CMUT device from the CMUT wafer. The CMUT arrays fabricated and singulated in this process were ring-shaped arrays, with inner and outer diameters of 5 mm and 10 mm, respectively. The fabricated CMUT ring arrays demonstrate the ability of this method to successfully and safely singulate the ring arrays and is applicable to any arbitrary 2D shaped MEMS device with uspended microstructures, taking advantage of the inherent planar attributes of DRIE.

  1. Development of impedance matching technologies for ICRF antenna arrays

    Energy Technology Data Exchange (ETDEWEB)

    Pinsker, R.I.


    All high power ICRF heating systems include devices for matching the input impedance of the antenna array to the generator output impedance. For most types of antennas used, the input impedance is strongly time-dependent on timescales as rapid as 10-4 s, while the rf generators used are capable of producing full power only into a stationary load impedance. Hence, the dynamic response of the matching method is of great practical importance. In this paper, world-wide developments in this field over the past decade are reviewed. These techniques may be divided into several classes. The edge plasma parameters that determine the antenna array`s input impedance may be controlled to maintain a fixed load impedance. The frequency of the rf source can be feedback controlled to compensate for changes in the edge plasma conditions, or fast variable tuning elements in the transmission line between the generator output and the antenna input connections can provide the necessary time-varying impedance transformation. In lossy passive schemes, reflected power due to the time-varying impedance of the antenna array is diverted to a dummy load. Each of these techniques can be applied to a pre-existing antenna system. If a new antenna is to be designed, recent advances allow the antenna array to have the intrinsic property of presenting a constant load to the feeding transmission lines despite the varying load seen by each antenna in the array.

  2. A novel microneedle array for the treatment of hydrocephalus. (United States)

    Oh, Jonghyun; Liu, Kewei; Medina, Tim; Kralick, Francis; Noh, Hongseok Moses


    We present a microfabricated 10 by 10 array of microneedles for the treatment of a neurological disease called communicating hydrocephalus. Together with the previously reported microvalve array, the current implantable microneedle array completes the microfabricated arachnoid granulations (MAGs) that mimic the function of normal arachnoid granulations (AGs). The microneedle array was designed to enable the fixation of the MAGs through dura mater membrane in the brain and thus provide a conduit for the flow of cerebrospinal fluid (CSF). Cone-shaped microneedles with hollow channels were fabricated using a series of microfabrication techniques: SU-8 photolithography for tapered geometry, reactive ion etching for sharpening the microneedles, 248 nm deep UV excimer laser machining for creating through-hole inside the microneedles, and metal sputtering for improved rigidity. Puncture tests were conducted using porcine dura mater and the results showed that the fabricated microneedle array is strong enough to pierce the dura mater. The in-vitro biocompatibility test result showed that none of the 100 outlets of the microneedles exposed to the bloodstream were clogged significantly by blood cells. We believe that these test results demonstrate the potential use of the microneedle array as a new treatment of hydrocephalus.

  3. Thermal Conduction in Vertically Aligned Copper Nanowire Arrays and Composites. (United States)

    Barako, Michael T; Roy-Panzer, Shilpi; English, Timothy S; Kodama, Takashi; Asheghi, Mehdi; Kenny, Thomas W; Goodson, Kenneth E


    The ability to efficiently and reliably transfer heat between sources and sinks is often a bottleneck in the thermal management of modern energy conversion technologies ranging from microelectronics to thermoelectric power generation. These interfaces contribute parasitic thermal resistances that reduce device performance and are subjected to thermomechanical stresses that degrade device lifetime. Dense arrays of vertically aligned metal nanowires (NWs) offer the unique combination of thermal conductance from the constituent metal and mechanical compliance from the high aspect ratio geometry to increase interfacial heat transfer and device reliability. In the present work, we synthesize copper NW arrays directly onto substrates via templated electrodeposition and extend this technique through the use of a sacrificial overplating layer to achieve improved uniformity. Furthermore, we infiltrate the array with an organic phase change material and demonstrate the preservation of thermal properties. We use the 3ω method to measure the axial thermal conductivity of freestanding copper NW arrays to be as high as 70 W m(-1) K(-1), which is more than an order of magnitude larger than most commercial interface materials and enhanced-conductivity nanocomposites reported in the literature. These arrays are highly anisotropic, and the lateral thermal conductivity is found to be only 1-2 W m(-1) K(-1). We use these measured properties to elucidate the governing array-scale transport mechanisms, which include the effects of morphology and energy carrier scattering from size effects and grain boundaries.

  4. Low profile conformal antenna arrays on high impedance substrate

    CERN Document Server

    Singh, Hema; Jha, Rakesh Mohan


    This book presents electromagnetic (EM) design and analysis of dipole antenna array over high impedance substrate (HIS). HIS is a preferred substrate for low-profile antenna design, owing to its unique boundary conditions. Such substrates permit radiating elements to be printed on them without any disturbance in the radiation characteristics. Moreover HIS provides improved impedance matching, enhanced bandwidth, and increased broadside directivity owing to total reflection from the reactive surface and high input impedance. This book considers different configurations of HIS for array design on planar and non-planar high-impedance surfaces. Results are presented for cylindrical dipole, printed dipole, and folded dipole over single- and double-layered square-patch-based HIS and dogbone-based HIS. The performance of antenna arrays is analyzed in terms of performance parameters such as return loss and radiation pattern. The design presented shows acceptable return loss and mainlobe gain of radiation pattern. Thi...

  5. Factors affecting the performance of large-aperture microphone arrays (United States)

    Silverman, Harvey F.; Patterson, William R.; Sachar, Joshua


    Large arrays of microphones have been proposed and studied as a possible means of acquiring data in offices, conference rooms, and auditoria without requiring close-talking microphones. When such an array essentially surrounds all possible sources, it is said to have a large aperture. Large-aperture arrays have attractive properties of spatial resolution and signal-to-noise enhancement. This paper presents a careful comparison of theoretical and measured performance for an array of 256 microphones using simple delay-and-sum beamforming. This is the largest currently functional, all digital-signal-processing array that we know of. The array is wall-mounted in the moderately adverse environment of a general-purpose laboratory (8 m×8 m×3 m). The room has a T60 reverberation time of 550 ms. Reverberation effects in this room severely impact the array's performance. However, the width of the main lobe remains comparable to that of a simplified prediction. Broadband spatial resolution shows a single central peak with 10 dB gain about 0.4 m in diameter at the -3 dB level. Away from that peak, the response is approximately flat over most of the room. Optimal weighting for signal-to-noise enhancement degrades the spatial resolution minimally. Experimentally, we verify that signal-to-noise gain is less than proportional to the square root of the number of microphones probably due to the partial correlation of the noise between channels, to variation of signal intensity with polar angle about the source, and to imperfect correlation of the signal over the array caused by reverberations. We show measurements of the relative importance of each effect in our environment.

  6. Efficient oligonucleotide probe selection for pan-genomic tiling arrays

    Directory of Open Access Journals (Sweden)

    Zhang Wei


    Full Text Available Abstract Background Array comparative genomic hybridization is a fast and cost-effective method for detecting, genotyping, and comparing the genomic sequence of unknown bacterial isolates. This method, as with all microarray applications, requires adequate coverage of probes targeting the regions of interest. An unbiased tiling of probes across the entire length of the genome is the most flexible design approach. However, such a whole-genome tiling requires that the genome sequence is known in advance. For the accurate analysis of uncharacterized bacteria, an array must query a fully representative set of sequences from the species' pan-genome. Prior microarrays have included only a single strain per array or the conserved sequences of gene families. These arrays omit potentially important genes and sequence variants from the pan-genome. Results This paper presents a new probe selection algorithm (PanArray that can tile multiple whole genomes using a minimal number of probes. Unlike arrays built on clustered gene families, PanArray uses an unbiased, probe-centric approach that does not rely on annotations, gene clustering, or multi-alignments. Instead, probes are evenly tiled across all sequences of the pan-genome at a consistent level of coverage. To minimize the required number of probes, probes conserved across multiple strains in the pan-genome are selected first, and additional probes are used only where necessary to span polymorphic regions of the genome. The viability of the algorithm is demonstrated by array designs for seven different bacterial pan-genomes and, in particular, the design of a 385,000 probe array that fully tiles the genomes of 20 different Listeria monocytogenes strains with overlapping probes at greater than twofold coverage. Conclusion PanArray is an oligonucleotide probe selection algorithm for tiling multiple genome sequences using a minimal number of probes. It is capable of fully tiling all genomes of a species on

  7. Plasma dynamics in aluminium wire array Z-pinch implosions

    International Nuclear Information System (INIS)

    Bland, S.N.


    The wire array Z-pinch is the world's most powerful laboratory X-ray source. An achieved power of ∼280TW has generated great interest in the use of these devices as a source of hohlraum heating for inertial confinement fusion experiments. However, the physics underlying how wire array Z-pinches implode is not well understood. This thesis presents the first detailed measurements of plasma dynamics in wire array experiments. The MAGPIE generator, with currents of up to 1.4MA, 150ns 10-90% rise-time, was used to implode arrays of 16mm diameter typically containing between 8 and 64 15μm aluminium wires. Diagnostics included: end and side-on laser probing with interferometry, schlieren and shadowgraphy channels; radial and axial streak photography; gated X-ray imaging; XUV and hard X-ray spectrometry; filtered XRDs and diamond PCDs; and a novel X-ray backlighting system to probe high density plasma. It was found that the plasma formed from the wires consisted of cold, dense cores, which ablated producing hot, low density coronal plasma. After an initial acceleration around the cores, coronal plasma streams flowed force-free towards the axis, with an instability wavelength determined by the core size. At ∼50% of the implosion time, the streams collided on axis forming a precursor plasma which appeared to be uniform, stable, and inertially confined. The existence of core-corona structure significantly affected implosion dynamics. For arrays with <64 wires, the wire cores remained in their original positions until ∼80% of the implosion time before accelerating rapidly. At 64 wires a transition in implosion trajectories to 0-D like occurred indicating a possible merger of current carrying plasma close to the cores - the cores themselves did not merge. During implosion, the cores initially developed uncorrelated instabilities that then transformed into a longer wavelength global mode of instability. The study of nested arrays (2 concentric arrays, one inside the other

  8. Phased Array of Phased Arrays (PAPA) Laser Systems Architecture (United States)

    McManamon, P. A. U. L. F.; Thompson, William

    This paper introduces and analyzes revolutionary laser system architecture capable of dramatically reducing the complexity of laser systems while simultaneously increasing capability. The architecture includes three major subsystems. The first is a phased array of laser sources. In this article, we discuss diode-pumped fiber lasers as the elements of the phased array, although other waveguide lasers can also be considered. The second provides wavefront control and electronics beam steering, as described in an IEEE Proceedings article on "Optical Phased Array Technology" [1]. The third is subaperture receiver technology. Combining these three technologies into a new laser systems architecture results in a system that has graceful degradation, can steer to as wide an angle as individual optical phased array subapertures, and can be scaled to high power and large apertures through phasing of a number of subapertures. Diode-pumped fiber lasers are appealing as laser sources because they are electrically pumped, efficient, relatively simple, and scalable to significant power levels (over 100 Watts has been demonstrated from a single diode-pumped fiber laser) [2]. The fiber laser design also lends itself to integration into a phased array. Fiber lasers have been phased. Initial phasing demonstrations have been at low power and were conducted by taking a single source, dividing it into multiple fibers, then phasing them together. To develop this technology further we need to use independent fiber lasers or fiber amplifiers, seeded by a common source, and to increase laser power. As we increase laser power, we will have to learn to cope with nonlinearities in the laser amplifiers. Optical Phased Array technology has demonstrated steering over a 90-degree field of regard [4], although this approach used additional optical components. If we use straightforward optical phased array beam steering without additional optics we can steer with high efficiency to about one-third

  9. Acoustical cross-talk in row–column addressed 2-D transducer arrays for ultrasound imaging

    DEFF Research Database (Denmark)

    Christiansen, Thomas Lehrmann; Jensen, Jørgen Arendt; Thomsen, Erik Vilain


    The acoustical cross-talk in row–column addressed 2-D transducer arrays for volumetric ultrasound imaging is investigated. Experimental results from a 2.7 MHz, λ/2-pitch capacitive micromachined ultrasonic transducer (CMUT) array with 62 rows and 62 columns are presented and analyzed in the frequ......The acoustical cross-talk in row–column addressed 2-D transducer arrays for volumetric ultrasound imaging is investigated. Experimental results from a 2.7 MHz, λ/2-pitch capacitive micromachined ultrasonic transducer (CMUT) array with 62 rows and 62 columns are presented and analyzed...

  10. Bondwire array modeling for the design of hybrid high power amplifiers above C-band

    DEFF Research Database (Denmark)

    Hernández, Carlos Cilla; Jónasson, Sævar Þór; Hanberg, Jesper


    This paper presents a bondwire array model obtained using a software based on the finite elements method and validated up to 15 GHz by measurements over a purpose-build array structure. This work addresses the limits of the inductor-based bondwire model when used at frequencies above C-band to si......This paper presents a bondwire array model obtained using a software based on the finite elements method and validated up to 15 GHz by measurements over a purpose-build array structure. This work addresses the limits of the inductor-based bondwire model when used at frequencies above C...

  11. Alternative Optimizations of X-ray TES Arrays: Soft X-rays, High Count Rates, and Mixed-Pixel Arrays (United States)

    Kilbourne, C. A.; Bandler, S. R.; Brown, A.-D.; Chervenak, J. A.; Figueroa-Feliciano, E.; Finkbeiner, F. M.; Iyomoto, N.; Kelley, R. L.; Porter, F. S.; Smith, S. J.


    We are developing arrays of superconducting transition-edge sensors (TES) for imaging spectroscopy telescopes such as the XMS on Constellation-X. While our primary focus has been on arrays that meet the XMS requirements (of which, foremost, is an energy resolution of 2.5 eV at 6 keV and a bandpass from approx. 0.3 keV to 12 keV), we have also investigated other optimizations that might be used to extend the XMS capabilities. In one of these optimizations, improved resolution below 1 keV is achieved by reducing the heat capacity. Such pixels can be based on our XMS-style TES's with the separate absorbers omitted. These pixels can added to an array with broadband response either as a separate array or interspersed, depending on other factors that include telescope design and science requirements. In one version of this approach, we have designed and fabricated a composite array of low-energy and broad-band pixels to provide high spectral resolving power over a broader energy bandpass than could be obtained with a single TES design. The array consists of alternating pixels with and without overhanging absorbers. To explore optimizations for higher count rates, we are also optimizing the design and operating temperature of pixels that are coupled to a solid substrate. We will present the performance of these variations and discuss other optimizations that could be used to enhance the XMS or enable other astrophysics experiments.

  12. Flexible Multi-Electrode Array for Medical Applications

    Directory of Open Access Journals (Sweden)

    Nadine Winkin


    Full Text Available A flexible multi-electrode array (MEA with an embedded silicon chip for electrical stimulation of neurons or for recording action potentials has been manufactured and characterized. Possible improvements for medical applications using this novel approach are presented. By connecting and addressing several of these MEAs via a bus system, the number and the density of electrodes can be increased significantly. This is interesting for medical applications such as retinal implants and cochlear implants, and also for deep brain stimulators. Design and fabrication techniques for the multi-electrode array are presented. Finally, first results of mechanical stress tests are shown.

  13. Low Power Systolic Array Based Digital Filter for DSP Applications

    Directory of Open Access Journals (Sweden)

    S. Karthick


    Full Text Available Main concepts in DSP include filtering, averaging, modulating, and correlating the signals in digital form to estimate characteristic parameter of a signal into a desirable form. This paper presents a brief concept of low power datapath impact for Digital Signal Processing (DSP based biomedical application. Systolic array based digital filter used in signal processing of electrocardiogram analysis is presented with datapath architectural innovations in low power consumption perspective. Implementation was done with ASIC design methodology using TSMC 65 nm technological library node. The proposed systolic array filter has reduced leakage power up to 8.5% than the existing filter architectures.

  14. Simple and Efficient Decoupling of Compact Arrays With Parasitic Scatterers

    DEFF Research Database (Denmark)

    Lau, B.K.; Andersen, Jørgen Bach


    Compact arrays such as multiple antennas on a mobile terminal suffer from low efficiency and high correlation between antenna signals. In the present paper, a simple and rigorous procedure for decoupling two closely coupled antennas with a parasitic scatterer is proposed. The parasitic scatterer...... for other decoupling methods as well. Simulation and experimental results are used to substantiate the effectiveness of the proposed design approach on a two-monopole array with an antenna spacing of 0.1 wavelength. Finally, several practical considerations of the proposal are also presented, including...

  15. Design of 3x3 Focusing Array for Heavy Ion Driver Final Report on CRADA TC-02082-04

    Energy Technology Data Exchange (ETDEWEB)

    Martovetsky, N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)


    This memo presents a design of a 3x3 quadrupole array for HIF. It contains 3 D magnetic field computations of the array build with racetrack coils with and without different shields. It is shown that it is possible to have a low error magnetic field in the cells and shield the stray fields to acceptable levels. The array design seems to be a practical solution to any size array for future multi-beam heavy ion fusion drivers.

  16. Monte Carlo Techniques for Calculations of Charge Deposition and Displacement Damage from Protons in Visible and Infrared Sensor Arrays (United States)

    Marshall, Paul; Reed, Robert; Fodness, Bryan; Jordan, Tom; Pickel, Jim; Xapsos, Michael; Burke, Ed


    This slide presentation examines motivation for Monte Carlo methods, charge deposition in sensor arrays, displacement damage calculations, and future work. The discussion of charge deposition sensor arrays includes Si active pixel sensor APS arrays and LWIR HgCdTe FPAs. The discussion of displacement damage calculations includes nonionizing energy loss (NIEL), HgCdTe NIEL calculation results including variance, and implications for damage in HgCdTe detector arrays.

  17. Circularly Polarized Antenna Array Fed by Air-Bridge Free CPW-Slotline Network

    Directory of Open Access Journals (Sweden)

    Yilin Liu


    Full Text Available A novel design of 1×2 and 2×2 circularly polarized (CP microstrip patch antenna arrays is presented in this paper. The two CP antenna arrays are fed by sequentially rotated coplanar waveguide (CPW to slotline networks and are processed on 1 mm thick single-layer FR4 substrates. Both of the two arrays are low-profile and lightweight. An air-bridge free CPW-slotline power splitter is appropriately designed to form the feeding networks and realize the two CP antenna arrays. The mechanism of circular polarization in this design is explained. The simulated and measured impedance bandwidths as well as the 3 dB axial ratio bandwidths and the radiation patterns of the two proposed antenna arrays are presented. This proposed design can be easily extended to form a larger plane array with good performance owing to its simple structure.

  18. Large Format Uncooled Focal Plane Array Project (United States)

    National Aeronautics and Space Administration — Uncooled focal plane arrays have improved dramatically and array sizes of 320x240 elements in a 50-?m pitch are commercially available at affordable cost. Black...

  19. Radiometric Testing of Magnesium Diboride Array (MDA) (United States)

    National Aeronautics and Space Administration — The objective is to develop a 2-Dimensional Far Infra-Red Magnesium Diboride Array (2D FIR MDA) to use in NASA's future planetary exploration instruments. The array...

  20. Microfabricated Multianalyte Sensor Arrays for Metabolic Monitoring

    National Research Council Canada - National Science Library

    Pishko, Michael V


    ...(ethylene glycol) diacrylate or PEG-DA on the array electrodes. The fabricated microarray sensors were individually addressable and with no cross-talk between adjacent array elements as assessed using cyclic voltammetry...

  1. Microfabricated Multianalyte Sensor Arrays for Metabolic Monitoring

    National Research Council Canada - National Science Library

    Pishko, Michael V


    ...(ethylene glycol) diacrylate or PEG-DA on the array electrodes. The fabricated microarray sensors were individually addressable and with no cross-talk between adjacent array elements as assessed using cyclic voltammetry...

  2. Leakage analysis of crossbar memristor arrays

    KAUST Repository

    Zidan, Mohammed A.


    Crossbar memristor arrays provide a promising high density alternative for the current memory and storage technologies. These arrays suffer from parasitic current components that significantly increase the power consumption, and could ruin the readout operation. In this work we study the trade-off between the crossbar array density and the power consumption required for its readout. Our analysis is based on simulating full memristor arrays on a SPICE platform.

  3. Method to fabricate hollow microneedle arrays

    Energy Technology Data Exchange (ETDEWEB)

    Kravitz, Stanley H [Placitas, NM; Ingersoll, David [Albuquerque, NM; Schmidt, Carrie [Los Lunas, NM; Flemming, Jeb [Albuquerque, NM


    An inexpensive and rapid method for fabricating arrays of hollow microneedles uses a photoetchable glass. Furthermore, the glass hollow microneedle array can be used to form a negative mold for replicating microneedles in biocompatible polymers or metals. These microneedle arrays can be used to extract fluids from plants or animals. Glucose transport through these hollow microneedles arrays has been found to be orders of magnitude more rapid than natural diffusion.

  4. Exergetic Optimization of a Solar Photovoltaic Array


    Sarhaddi, Faramarz; Farahat, Said; Ajam, Hossein; Behzadmehr, Amin


    An exergetic optimization is developed to determine the optimal performance and design parameters of a solar photovoltaic (PV) array. A detailed energy and exergy analysis is carried out to evaluate the electrical performance, exergy destruction components, and exergy efficiency of a typical PV array. The exergy efficiency of a PV array obtained in this paper is a function of climatic, operating, and design parameters such as ambient temperature, solar radiation intensity, PV array temperatur...

  5. Safety System for a Towed Array (United States)


    300196 1 of 13 SAFETY SYSTEM FOR A TOWED SOURCE STATEMENT OF GOVERNMENT INTEREST [0001] The invention described herein may be manufactured...invention is a towed array safety system and method of use that prevents the loss of a towed array cable and towed array handling system in the event of a...tension surge while retaining required safety features of the towed array handling system . (2) Description of the Prior Art [0004] There have

  6. High voltage load resistor array (United States)

    Lehmann, Monty Ray [Smithfield, VA


    A high voltage resistor comprising an array of a plurality of parallel electrically connected resistor elements each containing a resistive solution, attached at each end thereof to an end plate, and about the circumference of each of the end plates, a corona reduction ring. Each of the resistor elements comprises an insulating tube having an electrode inserted into each end thereof and held in position by one or more hose clamps about the outer periphery of the insulating tube. According to a preferred embodiment, the electrode is fabricated from stainless steel and has a mushroom shape at one end, that inserted into the tube, and a flat end for engagement with the end plates that provides connection of the resistor array and with a load.

  7. Antenna Arrays and Automotive Applications

    CERN Document Server

    Rabinovich, Victor


    This book throws a lifeline to designers wading through mounds of antenna array patents looking for the most suitable systems for their projects. Drastically reducing the research time required to locate solutions to the latest challenges in automotive communications, it sorts and systematizes material on cutting-edge antenna arrays that feature multi-element communication systems with enormous potential for the automotive industry. These new systems promise to make driving safer and more efficient, opening up myriad applications, including vehicle-to-vehicle traffic that prevents collisions, automatic toll collection, vehicle location and fine-tuning for cruise control systems. This book’s exhaustive coverage begins with currently deployed systems, frequency ranges and key parameters. It proceeds to examine system geometry, analog and digital beam steering technology (including "smart" beams formed in noisy environments), maximizing signal-to-noise ratios, miniaturization, and base station technology that ...

  8. Invasive tightly coupled processor arrays

    CERN Document Server



    This book introduces new massively parallel computer (MPSoC) architectures called invasive tightly coupled processor arrays. It proposes strategies, architecture designs, and programming interfaces for invasive TCPAs that allow invading and subsequently executing loop programs with strict requirements or guarantees of non-functional execution qualities such as performance, power consumption, and reliability. For the first time, such a configurable processor array architecture consisting of locally interconnected VLIW processing elements can be claimed by programs, either in full or in part, using the principle of invasive computing. Invasive TCPAs provide unprecedented energy efficiency for the parallel execution of nested loop programs by avoiding any global memory access such as GPUs and may even support loops with complex dependencies such as loop-carried dependencies that are not amenable to parallel execution on GPUs. For this purpose, the book proposes different invasion strategies for claiming a desire...

  9. Subwavelength micropillar array terahertz lasers. (United States)

    Krall, Michael; Brandstetter, Martin; Deutsch, Christoph; Detz, Hermann; Andrews, Aaron Maxwell; Schrenk, Werner; Strasser, Gottfried; Unterrainer, Karl


    We report on micropillar-based terahertz lasers with active pillars that are much smaller than the emission wavelength. These micropillar array lasers correspond to scaled-down band-edge photonic crystal lasers forming an active photonic metamaterial. In contrast to photonic crystal lasers which use significantly larger pillar structures, lasing emission is not observed close to high-symmetry points in the photonic band diagram, but in the effective medium regime. We measure stimulated emission at 4 THz for micropillar array lasers with pillar diameters of 5 µm. Our results not only demonstrate the integration of active subwavelength optics in a terahertz laser, but are also an important step towards the realization of nanowire-based terahertz lasers.

  10. NOTE: A dynamic optical imaging phantom based on an array of semiconductor diodes (United States)

    Hebden, Jeremy C.; Correia, Teresa; Khakoo, Imran; Gibson, Adam P.; Everdell, N. L.


    An electrically-activated phantom for evaluating diffuse optical imaging systems has been designed based on an array of semiconductor diodes which are used to heat a thermochromic dye embedded in a solidified polyester resin with tissue-like optical properties. The array allows individual diodes to be addressed sequentially, thus simulating the movement of a small volume of contrasting optical absorption. Two designs of diode-array phantom are described and results of imaging experiments are presented.

  11. A dynamic optical imaging phantom based on an array of semiconductor diodes

    Energy Technology Data Exchange (ETDEWEB)

    Hebden, Jeremy C; Correia, Teresa; Khakoo, Imran; Gibson, Adam P; Everdell, N L [Department of Medical Physics and Bioengineering, University College London, Gower Street, London WC1E 6BT (United Kingdom)


    An electrically-activated phantom for evaluating diffuse optical imaging systems has been designed based on an array of semiconductor diodes which are used to heat a thermochromic dye embedded in a solidified polyester resin with tissue-like optical properties. The array allows individual diodes to be addressed sequentially, thus simulating the movement of a small volume of contrasting optical absorption. Two designs of diode-array phantom are described and results of imaging experiments are presented. (note)

  12. Array Optimization for Tidal Energy Extraction in a Tidal Channel – A Numerical Modeling Analysis


    Yang, Zhaoqing; Wang, Taiping; Copping, Andrea


    This paper presents an application of a hydrodynamic model to simulate tidal energy extraction in a tidal dominated estuary in the Pacific Northwest coast. A series of numerical experiments were carried out to simulate tidal energy extraction with different turbine array configurations, including location, spacing and array size. Preliminary model results suggest that array optimization for tidal energy extraction in a real-world site is a very complex process that requires consideration of m...

  13. Highlighting the history of Japanese radio astronomy. 5: The 1950 Osaka solar grating array proposal (United States)

    Wendt, Harry; Orchiston, Wayne; Ishiguro, Masato; Nakamura, Tsuko


    In November 1950, a paper was presented at the 5th Annual Assembly of the Physical Society of Japan that outlined the plan for a radio frequency grating array, designed to provide high-resolution observations of solar radio emission at 3.3 GHz. This short paper provides details of the invention of this array, which occurred independently of W.N. Christiansen's invention of the solar grating array in Australia at almost the same time.

  14. Maskless, parallel patterning with zone-plate array lithography

    International Nuclear Information System (INIS)

    Carter, D. J. D.; Gil, Dario; Menon, Rajesh; Mondol, Mark K.; Smith, Henry I.; Anderson, Erik H.


    Zone-plate array lithography (ZPAL) is a maskless lithography scheme that uses an array of shuttered zone plates to print arbitrary patterns on a substrate. An experimental ultraviolet ZPAL system has been constructed and used to simultaneously expose nine different patterns with a 3x3 array of zone plates in a quasidot-matrix fashion. We present exposed patterns, describe the system design and construction, and discuss issues essential to a functional ZPAL system. We also discuss another ZPAL system which operates with 4.5 nm x radiation from a point source. We present simulations which show that, with our existing x-ray zone plates and this system, we should be able to achieve 55 nm resolution. (c) 1999 American Vacuum Society

  15. Microneedle array electrode for human EEG recording.

    NARCIS (Netherlands)

    Lüttge, Regina; van Nieuwkasteele-Bystrova, Svetlana Nikolajevna; van Putten, Michel Johannes Antonius Maria; Vander Sloten, Jos; Verdonck, Pascal; Nyssen, Marc; Haueisen, Jens


    Microneedle array electrodes for EEG significantly reduce the mounting time, particularly by circumvention of the need for skin preparation by scrubbing. We designed a new replication process for numerous types of microneedle arrays. Here, polymer microneedle array electrodes with 64 microneedles,

  16. Ferroelectric transistor memory arrays on flexible foils

    NARCIS (Netherlands)

    Breemen, A. van; Kam, B.; Cobb, B.; Rodriguez, F.G.; Heck, G. van; Myny, K.; Marrani, A.; Vinciguerra, V.; Gelinck, G.H.


    In this paper, we successfully fabricated and operated passive matrix P(VDF-TrFE) transistor arrays, i.e. memory arrays in which no pass-transistors or other additional electronic components are used. Because of the smaller cell, a higher integration density is possible. We demonstrate arrays up to

  17. Towards Hybrid Array Types in SAC

    NARCIS (Netherlands)

    Grelck, C.; Tang, F.


    Array programming is characterised by a formal calculus of (regular, dense) multidimensional arrays that defines the relationships between structural properties like rank and shape as well as data set sizes. Operations in the array calculus often impose certain constraints on the relationships of

  18. Arrays of magnetic nanoparticles capped with alkylamines

    Indian Academy of Sciences (India)

    While there has been reasonable success in preparing arrays of metal and semiconducting chalcoginide nanoparticles, arrays of metal oxides are relatively unknown. [12,13]. We considered it important to prepare arrays of metal oxide particles with use- ful magnetic properties, particularly in view of their stability under ...

  19. Calibration strategies for the Cherenkov Telescope Array

    NARCIS (Netherlands)

    Gaug, M.; Berge, D.; Daniel, M.; Doro, M.; Förster, A.; Hofmann, W.; Maccarone, M.C.; Parsons, D.; de los Reyes Lopez, R.; van Eldik, C.


    The Central Calibration Facilities workpackage of the Cherenkov Telescope Array (CTA) observatory for very high energy gamma ray astronomy defines the overall calibration strategy of the array, develops dedicated hardware and software for the overall array calibration and coordinates the calibration

  20. Si Microwire Array Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Putnam, Morgan C.; Boettcher, Shannon W.; Kelzenberg, Michael D.; Turner-Evans, Daniel B.; Spurgeon, Joshua M.; Warren, Emily L.; Briggs, Ryan M.; Lewis, Nathan S.; Atwater, Harry A.


    Si microwire-array solar cells with Air Mass 1.5 Global conversion efficiencies of up to 7.9% have been fabricated using an active volume of Si equivalent to a 4 μm thick Si wafer. These solar cells exhibited open-circuit voltages of 500 mV, short-circuit current densities (J{sub sc}) of up to 24 mA cm{sup -2}, and fill factors >65% and employed Al{sub 2}O{sub 3} dielectric particles that scattered light incident in the space between the wires, a Ag back reflector that prevented the escape of incident illumination from the back surface of the solar cell, and an a-SiN{sub x}:H passivation/anti-reflection layer. Wire-array solar cells without some or all of these design features were also fabricated to demonstrate the importance of the light-trapping elements in achieving a high J{sub sc}. Scanning photocurrent microscopy images of the microwire-array solar cells revealed that the higher J{sub sc} of the most advanced cell design resulted from an increased absorption of light incident in the space between the wires. Spectral response measurements further revealed that solar cells with light-trapping elements exhibited improved red and infrared response, as compared to solar cells without light-trapping elements.

  1. Fan array wind tunnel: a multifunctional, complex environmental flow manipulator (United States)

    Dougherty, Christopher; Veismann, Marcel; Gharib, Morteza


    The recent emergence of small unmanned aerial vehicles (UAVs) has reshaped the aerospace testing environment. Traditional closed-loop wind tunnels are not particularly suited nor easily retrofit to take advantage of these coordinated, controls-based rotorcraft. As such, a highly configurable, novel wind tunnel aimed at addressing the unmet technical challenges associated with single or formation flight performance of autonomous drone systems is presented. The open-loop fan array wind tunnel features 1296 individually controllable DC fans arranged in a 2.88m x 2.88m array. The fan array can operate with and without a tunnel enclosure and is able to rotate between horizontal and vertical testing configurations. In addition to standard variable speed uniform flow, the fan array can generate both unsteady and shear flows. Through the aid of smaller side fan array units, vortex flows are also possible. Conceptual design, fabrication, and validation of the tunnel performance will be presented, including theoretical and computational predictions of flow speed and turbulence intensity. Validation of these parameters is accomplished through standard pitot-static and hot-wire techniques. Particle image velocimetry (PIV) of various complex flows will also be shown. This material is based upon work supported by the Center for Autonomous Systems and Technologies (CAST) at the Graduate Aerospace Laboratories of the California Institute of Technology (GALCIT).

  2. Code-modulated interferometric imaging system using phased arrays (United States)

    Chauhan, Vikas; Greene, Kevin; Floyd, Brian


    Millimeter-wave (mm-wave) imaging provides compelling capabilities for security screening, navigation, and bio- medical applications. Traditional scanned or focal-plane mm-wave imagers are bulky and costly. In contrast, phased-array hardware developed for mass-market wireless communications and automotive radar promise to be extremely low cost. In this work, we present techniques which can allow low-cost phased-array receivers to be reconfigured or re-purposed as interferometric imagers, removing the need for custom hardware and thereby reducing cost. Since traditional phased arrays power combine incoming signals prior to digitization, orthogonal code-modulation is applied to each incoming signal using phase shifters within each front-end and two-bit codes. These code-modulated signals can then be combined and processed coherently through a shared hardware path. Once digitized, visibility functions can be recovered through squaring and code-demultiplexing operations. Pro- vided that codes are selected such that the product of two orthogonal codes is a third unique and orthogonal code, it is possible to demultiplex complex visibility functions directly. As such, the proposed system modulates incoming signals but demodulates desired correlations. In this work, we present the operation of the system, a validation of its operation using behavioral models of a traditional phased array, and a benchmarking of the code-modulated interferometer against traditional interferometer and focal-plane arrays.

  3. Highly Flexible Silicone Coated Neural Array for Intracochlear Electrical Stimulation

    Directory of Open Access Journals (Sweden)

    P. Bhatti


    Full Text Available We present an effective method for tailoring the flexibility of a commercial thin-film polymer electrode array for intracochlear electrical stimulation. Using a pneumatically driven dispensing system, an average 232±64 μm (mean ± SD thickness layer of silicone adhesive coating was applied to stiffen the underside of polyimide multisite arrays. Additional silicone was applied to the tip to protect neural tissue during insertion and along the array to improve surgical handling. Each array supported 20 platinum sites (180 μm dia., 250 μm pitch, spanning nearly 28 mm in length and 400 μm in width. We report an average intracochlear stimulating current threshold of 170±93 μA to evoke an auditory brainstem response in 7 acutely deafened felines. A total of 10 arrays were each inserted through a round window approach into the cochlea’s basal turn of eight felines with one delamination occurring upon insertion (preliminary results of the in vivo data presented at the 48th Annual Meeting American Neurotology Society, Orlando, FL, April 2013, and reported in Van Beek-King 2014. Using microcomputed tomography imaging (50 μm resolution, distances ranging from 100 to 565 μm from the cochlea’s central modiolus were measured. Our method combines the utility of readily available commercial devices with a straightforward postprocessing step on the order of 24 hours.

  4. Synchronization in an array of coupled Boolean networks

    International Nuclear Information System (INIS)

    Li, Rui; Chu, Tianguang


    This Letter presents an analytical study of synchronization in an array of coupled deterministic Boolean networks. A necessary and sufficient criterion for synchronization is established based on algebraic representations of logical dynamics in terms of the semi-tensor product of matrices. Some basic properties of a synchronized array of Boolean networks are then derived for the existence of transient states and the upper bound of the number of fixed points. Particularly, an interesting consequence indicates that a “large” mismatch between two coupled Boolean networks in the array may result in loss of synchrony in the entire system. Examples, including the Boolean model of coupled oscillations in the cell cycle, are given to illustrate the present results. -- Highlights: ► We analytically study synchronization in an array of coupled Boolean networks. ► The study is based on the algebraic representations of logical dynamics. ► A necessary and sufficient algebraic criterion for synchronization is established. ► It reveals some basic properties of a synchronized array of Boolean networks. ► A large mismatch between two coupled networks may result in the loss of synchrony.

  5. Solar observations with the prototype of the Brazilian Decimetric Array (United States)

    Sawant, H. S.; Ramesh, R.; Faria, C.; Cecatto, J. R.; Fernandes, F. C. R.; Madsen, F. H. R.; Subramanian, K. R.; Sundararajan, M. S.

    The prototype of the Brazilian Decimetric Array BDA consists of 5 element alt-az mounted parabolic mesh type dishes of 4-meter diameter having base lines up to 220 meters in the E--W direction The array was put into regular operation at Cachoeira Paulista Brazil longitude 45 r 00 20 W and latitude 22 r 41 19 S This array operates in the frequency range of 1 2 -- 1 7 GHz Solar observations are carried at sim 1 4 GHz in transit and tracking modes Spatial fine structures superimposed on the one dimensional brightness map of the sun associated with active regions and or with solar activity and their time evolution will be presented In the second phase of the project the frequency range will be increased to 1 2 - 1 7 2 8 and 5 6 GHz Central part of the array will consist of 26 antennas with 4-meter diameter laid out randomically in the square of 256 by 256 meter with minimum and maximum base lines of 8 and 256 meters respectively Details of this array with imaging capabilities in snap shot mode for solar observations and procedure of the phase and amplitude calibrations will be presented The development of instrument will be completed by the beginning of 2008

  6. Robust Centered Element Concentric Circular Antenna Array with Low Side Lobe Using Variable Loading and Tapering Windows in the Presence of Array Imperfections

    Directory of Open Access Journals (Sweden)

    M. F. Reza


    Full Text Available This paper presents centered element concentric circular antenna array (CECCAA using variable diagonal loading (VDL technique and different filtering windows. The different filtering windows are modified to apply in the CECCAA system. The modified novel technique not only is able to reduce the side lobe level (SLL but also has the ability to detect and highly attenuate the directional interferences. However, the performance of CECCAA system is degraded in the presence of array imperfections. This performance degradation problem due to array imperfections can be improved by using robust techniques. The proposed technique is also robust against array imperfections and improves the performance. Moreover, the performance of the proposed structure is better than a concentric circular antenna array (CCAA. Several examples are presented to analyze the performance of proposed beamformer by using different tapering windows.

  7. The Colorado Lightning Mapping Array (United States)

    Rison, W.; Krehbiel, P. R.; Thomas, R. J.; Rodeheffer, D.; Fuchs, B.


    A fifteen station Lightning Mapping Array (LMA) was installed in northern Colorado in the spring of 2012. While the driving force for the array was to produce 3-dimensional lightning data to support the Deep Convective Clouds and Chemistry (DC3) Experiment (Barth, this conference), data from the array are being used for several other projects. These include: electrification studies in conjunction with the CSU CHILL radar (Lang et al, this conference); observations of the parent lightning discharges of sprites (Lyons et al, this conference); trying to detect upward discharges triggered by wind turbines, characterizing conditions in which aircraft flying through clouds produce discharges which can be detected by the LMA, and other opportunities, such as observations of lightning in pyrocumulus clouds produced by the High Park Fire west of Fort Collins, CO. All the COLMA stations are solar-powered, and use broadband cellular modems for data communications. This makes the stations completely self-contained and autonomous, allowing a station to be installed anywhere a cellular signal is available. Because most of the stations were installed well away from anthropogenic noise sources, the COLMA is very sensitive. This is evidenced by the numerous plane tracks detected in its the vicinity. The diameter, D, of the COLMA is about 100 km, significantly larger than other LMAs. Because the error in the radial distance r is proportional to (r/D)2, and the error in the altitude z is proportional to (z/D)2, the larger array diameter greatly expands the usable range of the COLMA. The COLMA is able to detect and characterize lighting flashes to a distance of about 350 km from the array center. In addition to a web-based display (, geo-referenced images are produced and updated at one-minute intervals. These geo-referenced images can be used to overlay the real-time lightning data on Google Earth and other mapping software. These displays were used by the DC3

  8. Planetary and deep space requirements for photovoltaic solar arrays (United States)

    Bankston, C. P.; Bennett, R. B.; Stella, P. M.


    In the past 25 years, the majority of interplanetary spacecraft have been powered by nuclear sources. However, as the emphasis on smaller, low cost missions gains momentum, the majority of missions now being planned will use photovoltaic solar arrays. This will present challenges to the solar array builders, inasmuch as planetary requirements usually differ from earth orbital requirements. In addition, these requirements often differ greatly, depending on the specific mission; for example, inner planets vs. outer planets, orbiters vs. flybys, spacecraft vs. landers, and so on. Also, the likelihood of electric propulsion missions will influence the requirements placed on solar array developers. The paper will discuss representative requirements for a range of planetary missions now in the planning stages. Insofar as inner planets are concerned, a Mercury orbiter is being studied with many special requirements. Solar arrays would be exposed to high temperatures and a potentially high radiation environment, and will need to be increasingly pointed off sun as the vehicle approaches Mercury. Identification and development of cell materials and arrays at high incidence angles will be critical to the design. Missions to the outer solar system that have been studied include a Galilean orbiter and a flight to the Kuiper belt. While onboard power requirements would be small (as low as 10 watts), the solar intensity will require relatively large array areas. As a result, such missions will demand extremely compact packaging and low mass structures to conform to launch vehicle constraints. In turn, the large are, low mass designs will impact allowable spacecraft loads. Inflatable array structures, with and without concentration, and multiband gap cells will be considered if available. In general, the highest efficiency cell technologies operable under low intensity, low temperature conditions are needed. Solar arrays will power missions requiring as little as approximately 100

  9. A 400 KHz line rate 2048-pixel stitched SWIR linear array (United States)

    Anchlia, Ankur; Vinella, Rosa M.; Gielen, Daphne; Wouters, Kristof; Vervenne, Vincent; Hooylaerts, Peter; Deroo, Pieter; Ruythooren, Wouter; De Gaspari, Danny; Das, Jo; Merken, Patrick


    Xenics has developed a family of stitched SWIR long linear arrays that operate up to 400 KHz of line rate. These arrays serve medical and industrial applications that require high line rates as well as space applications that require long linear arrays. The arrays are based on a modular ROIC design concept: modules of 512 pixels are stitched during fabrication to achieve 512, 1024 and 2048 pixel arrays. Each 512-pixel module has its own on-chip digital sequencer, analog readout chain and 4 output buffers. This modular concept enables a long array to run at a high line rates irrespective of the array length, which limits the line rate in a traditional linear array. The ROIC is flip-chipped with InGaAs detector arrays. The FPA has a pixel pitch of 12.5μm and has two pixel flavors: square (12.5μm) and rectangular (250μm). The frontend circuit is based on Capacitive Trans-impedance Amplifier (CTIA) to attain stable detector bias, and good linearity and signal integrity, especially at high speeds. The CTIA has an input auto-zero mechanism that allows to have low detector bias (clock rate of 60MHz and a minimum integration time of 1.4μs, achieves the highest line rate of 400 KHz. In this paper, design details and measurements results are presented in order to demonstrate the array performance.

  10. X-Ray Calorimeter Arrays for Astrophysics (United States)

    Kilbourne, Caroline A.


    High-resolution x-ray spectroscopy is a powerful tool for studying the evolving universe. The grating spectrometers on the XMM and Chandra satellites started a new era in x-ray astronomy, but there remains a need for instrumentation that can provide higher spectral resolution with high throughput in the Fe-K band (around 6 keV) and can enable imaging spectroscopy of extended sources, such as supernova remnants and galaxy clusters. The instrumentation needed is a broad-band imaging spectrometer - basically an x-ray camera that can distinguish tens of thousands of x-ray colors. The potential benefits to astrophysics of using a low-temperature calorimeter to determine the energy of an incident x-ray photon via measurement of a small change in temperature was first articulated by S. H. Moseley over two decades ago. In the time since, technological progress has been steady, though full realization in an orbiting x-ray telescope is still awaited. A low-temperature calorimeter can be characterized by the type of thermometer it uses, and three types presently dominate the field. The first two types are temperature-sensitive resistors - semiconductors in the metal-insulator transition and superconductors operated in the superconducting-normal transition. The third type uses a paramagnetic thermometer. These types can be considered the three generations of x-ray calorimeters; by now each has demonstrated a resolving power of 2000 at 6 keV, but only a semiconductor calorimeter system has been developed to spaceflight readiness. The Soft X-ray Spectrometer on Astro-H, expected to launch in 2013, will use an array of silicon thermistors with I-IgTe x-ray absorbers that will operate at 50 mK. Both the semiconductor and superconductor calorimeters have been implemented in small arrays, kilo-pixel arrays of the superconducting calorimeters are just now being produced, and it is anticipated that much larger arrays will require the non-dissipative advantage of magnetic thermometers.

  11. Status of wake and array loss research

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, D.L.


    In recent years, many projects have evaluated wind turbine wake effects and resultant array losses in both Europe and the United States. This paper examines the status of current knowledge about wake effects and array losses and suggests future research. Single-turbine wake characteristics have been studied extensively and are generally described well by existing theoretical models. Field measurements of wake effects in wind turbine arrays are largely limited to small arrays, with 2 to 4 rows of turbines. Few data have been published on wake effects within large arrays. Measurements of wake deficits downwind of large arrays that deficits are substantially larger and extend farther downwind than expected. Although array design models have been developed, these models have been tested and verified using only limited data from a few rows of wind turbines in complex terrain, whereas some of the largest arrays have more than 40 rows of wind turbines. Planned cooperative efforts with the wind industry will obtain existing data relevant to analyzing energy deficits within large arrays and identifying data sets for potential use in array model verification efforts. Future research being considered include a cooperative research experiment to obtain more definitive data on wake deficits and turbulence within and downwind of large arrays. 16 refs., 9 figs., 1 tab.

  12. Locating noise sources with a microphone array

    International Nuclear Information System (INIS)

    Bale, A.; Johnson, D.


    Noise pollution is one of the contributors to the public opposition of wind farms. Most of the noise produced by turbines is caused by the aerodynamic interactions between the turbine blades and the surrounding air. This poster presentation discussed a series of aeroacoustic tests conducted to account for the different in vortical structures caused by the rotation of the blades. Microphone arrays were used measure and locate the source of noise. A beam forming technique was used to measure the noise using an algorithm that identified a scanning grid on a plane where the source was thought to be located. It delayed each microphone's signal by the length of time required for the sound to travel from the scan position to each microphone, and accounted for the amplitudes according to the distance from the scan position to each microphone. Demonstration test cases were conducted using piezo buzzers attached to aluminum bars and mounted to the shaft of a DC motor that produced a rotational diameter of 0.95 meter. The buzzers were placed 1 meter from the array. Multiple sound sources at the same frequency were identified, and the moving sources were accurately measured and located. tabs., figs.

  13. The Giant Radio Array for Neutrino Detection (United States)

    Kotera, K.; GRAND Collaboration


    The Giant Radio Array for Neutrino Detection (GRAND) project aims at detecting ultrahigh-energy neutrinos and cosmic rays with a ˜10^5 radio antenna array over 200'000 km^2 in mountainous regions in China, in order to solve the mystery of the origin of these two linked particles. Its strategy is to detect extensive air showers of the highest energies, above 10^{17} eV, that are triggered by the interaction of high-energy particles in the atmosphere or underground. In its first stages, GRAND will be competitive to detect the first cosmogenic neutrinos for favorable source scenarios. Ultimately, GRAND aims at reaching a sensitivity and angular resolution that should launch neutrino astronomy, and that will ensure the detection of these neutrinos, even in the most pessimistic cases. We present preliminary results of our simulations, plans for the ongoing, staged approach to the construction of GRAND, and the rich research program made possible by the design of GRAND.

  14. A SNP Genotyping Array for Hexaploid Oat

    Directory of Open Access Journals (Sweden)

    Nicholas A. Tinker


    Full Text Available Recognizing a need in cultivated hexaploid oat ( L. for a reliable set of reference single nucleotide polymorphisms (SNPs, we have developed a 6000 (6K BeadChip design containing 257 Infinium I and 5486 Infinium II designs corresponding to 5743 SNPs. Of those, 4975 SNPs yielded successful assays after array manufacturing. These SNPs were discovered based on a variety of bioinformatics pipelines in complementary DNA (cDNA and genomic DNA originating from 20 or more diverse oat cultivars. The array was validated in 1100 samples from six recombinant inbred line (RIL mapping populations and sets of diverse oat cultivars and breeding lines, and provided approximately 3500 discernible Mendelian polymorphisms. Here, we present an annotation of these SNPs, including methods of discovery, gene identification and orthology, population-genetic characteristics, and tentative positions on an oat consensus map. We also evaluate a new cluster-based method of calling SNPs. The SNP design sequences are made publicly available, and the full SNP genotyping platform is available for commercial purchase from an independent third party.

  15. Underground research laboratory room 209 instrument array

    International Nuclear Information System (INIS)

    Lang, P.A.; Everitt, R.A.; Kozak, E.T.; Davison, C.C.


    An in situ excavation response test was conducted at the Canadian Underground Research Laboratory (URL) in conjunction with excavation of a tunnel (Room 209) through a near-vertical water-bearing fracture oriented almost perpendicular to the tunnel axis. Encountering a fracture with such desirable characteristics provided a unique opportunity during construction of the URL to try out instrumentation and analytical methods for use in the Excavation Response Experiment (ERE), one of the major URL experiments. This is the first of four reports that cover the excavation response test. This report contains the information provided to the numerical modelling groups before the start of excavation. It includes survey information of the excavations within 30 m of the instrument array; the layout of the instrument array; details of the geology, rock properties, joint characteristics, in situ stresses, and in situ rock temperature distribution; the results of hydrogeological testing and monitoring; the planned excavation sequence; and the format for the modellers to present their results to facilitate easy comparison with the measured responses. Includes 13 excavation charts in back pocket

  16. Nanobiosensing with Arrays and Ensembles of Nanoelectrodes

    Directory of Open Access Journals (Sweden)

    Najmeh Karimian


    Full Text Available Since the first reports dating back to the mid-1990s, ensembles and arrays of nanoelectrodes (NEEs and NEAs, respectively have gained an important role as advanced electroanalytical tools thank to their unique characteristics which include, among others, dramatically improved signal/noise ratios, enhanced mass transport and suitability for extreme miniaturization. From the year 2000 onward, these properties have been exploited to develop electrochemical biosensors in which the surfaces of NEEs/NEAs have been functionalized with biorecognition layers using immobilization modes able to take the maximum advantage from the special morphology and composite nature of their surface. This paper presents an updated overview of this field. It consists of two parts. In the first, we discuss nanofabrication methods and the principles of functioning of NEEs/NEAs, focusing, in particular, on those features which are important for the development of highly sensitive and miniaturized biosensors. In the second part, we review literature references dealing the bioanalytical and biosensing applications of sensors based on biofunctionalized arrays/ensembles of nanoelectrodes, focusing our attention on the most recent advances, published in the last five years. The goal of this review is both to furnish fundamental knowledge to researchers starting their activity in this field and provide critical information on recent achievements which can stimulate new ideas for future developments to experienced scientists.


    International Nuclear Information System (INIS)

    Hunter, A. J.; Drinkwater, B. W.; Wilcox, P. D.


    In previous work, we have presented the maximum contrast autofocus algorithm for estimating unknown imaging parameters, e.g., for imaging through complicated surfaces using a flexible ultrasonic array. This paper details recent improvements to the algorithm. The algorithm operates by maximizing the image contrast metric with respect to the imaging parameters. For a flexible array, the relative positions of the array elements are parameterized using a cubic spline function and the spline control points are estimated by iterative maximisation of the image contrast via simulated annealing. The resultant spline gives an estimate of the array geometry and the profile of the surface that it has conformed to, allowing the generation of a well-focused image. A pre-processing step is introduced to obtain an initial estimate of the array geometry, reducing the time taken for the algorithm to convergence. Experimental results are demonstrated using a flexible array prototype.

  18. Design of an ultrasonic micro-array for near field sensing during retinal microsurgery. (United States)

    Clarke, Clyde; Etienne-Cummings, Ralph


    A method for obtaining the optimal and specific sensor parameters for a tool-tip mountable ultrasonic transducer micro-array is presented. The ultrasonic transducer array sensor parameters, such as frequency of operation, element size, inter-element spacing, number of elements and transducer geometry are obtained using a quadratic programming method to obtain a maximum directivity while being constrained to a total array size of 4 mm2 and the required resolution for retinal imaging. The technique is used to design a uniformly spaced NxN transducer array that is capable of resolving structures in the retina that are as small as 2 microm from a distance of 100 microm. The resultant 37x37 array of 16 microm transducers with 26 microm spacing will be realized as a Capacitive Micromachined Ultrasonic Transducer (CMUT) array and used for imaging and robotic guidance during retinal microsurgery.

  19. Performance Improvement of Partially Shaded Photovoltaic Arrays under Moving Shadow Conditions through Shade Dispersion (United States)

    Vijayalekshmy, S.; Bindu, G. R.; Rama Iyer, S.


    Photovoltaic arrays, which are prone to partial shading (PS) reduce the output power than the real power rating of the array. This paper presents the comparative analyses on the electrical characteristics and power losses of a conventional totally cross tied (TCT) configuration, and rearranged TCT (RTCT) in which the modules are physically rearranged in such a way that there is an improvement of power output of array under moving illumination condition (moving cloud). In RTCT, the physical position of the modules is organized based on the Sudoku puzzle pattern so as to scatter the shading effect over the entire array. The rearrangement of modules is performed without varying the electrical connection of the modules in the array. It is validated that the power generation of array under amoving shadow condition is enhanced and the various PS losses are reduced in rearranged configuration.

  20. Physicochemical characteristics and droplet impact dynamics of superhydrophobic carbon nanotube arrays. (United States)

    Aria, Adrianus I; Gharib, Morteza


    The physicochemical and droplet impact dynamics of superhydrophobic carbon nanotube arrays are investigated. These superhydrophobic arrays are fabricated simply by exposing the as-grown carbon nanotube arrays to a vacuum annealing treatment at a moderate temperature. This treatment, which allows a significant removal of oxygen adsorbates, leads to a dramatic change in wettability of the arrays, from mildly hydrophobic to superhydrophobic. Such change in wettability is also accompanied by a substantial change in surface charge and electrochemical properties. Here, the droplet impact dynamics are characterized in terms of critical Weber number, coefficient of restitution, spreading factor, and contact time. Based on these characteristics, it is found that superhydrophobic carbon nanotube arrays are among the best water-repellent surfaces ever reported. The results presented herein may pave a way for the utilization of superhydrophobic carbon nanotube arrays in numerous industrial and practical applications, including inkjet printing, direct injection engines, steam turbines, and microelectronic fabrication.

  1. Static and dynamic magnetic properties of densely packed magnetic nanowire arrays

    DEFF Research Database (Denmark)

    Dmytriiev, O.; Al-Jarah, U.A.S.; Gangmei, P.


    between experimental and simulated spectra are observed when the field is applied perpendicular to the nanowire axes. The dependence of the magnetic excitation spectra upon the array packing density is explored, and dispersion curves for spin waves propagating within the array parallel to the nanowire...... axis are presented. Finally, a tunneling of end modes through the middle region of the nanowires was observed. The tunneling is more efficient for wires forming densely packed arrays, as a result of the extended penetration of the dynamic demagnetizing fields into the middle of the wires and due...... to the lowering of the tunneling barrier by the static demagnetizing field of the array....

  2. Design of Multilevel Sequential Rotation Feeding Networks Used for Circularly Polarized Microstrip Antenna Arrays

    Directory of Open Access Journals (Sweden)

    Aixin Chen


    Full Text Available Sequential rotation feeding networks can significantly improve performance of the circularly polarized microstrip antenna array. In this paper, single, double, and multiple series-parallel sequential rotation feeding networks are examined. Compared with conventional parallel feeding structures, these multilevel feeding techniques present reduction of loss, increase of bandwidth, and improvement of radiation pattern and polarization purity. By using corner-truncated square patch as the array element and adopting appropriate level of sequential rotation series-parallel feeding structures as feeding networks, microstrip arrays can generate excellent circular polarization (CP over a relatively wide frequency band. They can find wide applications in phased array radar and satellite communication systems.

  3. Cost competitiveness of a solar cell array power source for ATS-6 educational TV terminal (United States)

    Masters, R. M.


    A cost comparison is made between a terrestrial solar cell array power system and a variety of other power sources for the ATS-6 Satellite Instructional Television Experiment (SITE) TV terminals in India. The solar array system was sized for a typical Indian location, Lahore. Based on present capital and fuel costs, the solar cell array power system is a close competitor to the least expensive alternate power system. A feasibility demonstration of a terrestrial solar cell array system powering an ATS-6 receiver terminal at Cleveland, Ohio is described.

  4. Reducing fiber cross-talk in mineral fiber arrays


    Daniel Lee Stark


    Monocentric optics replace current systems with diffraction limited performance. The fiber arrays have been the issue. Commercial expensive fiber arrays are available, but enhanced mineral fiber arrays offer very inexpensive fiber arrays.

  5. Applications of field-programmable gate arrays in scientific research

    CERN Document Server

    Sadrozinski, Hartmut F W


    Focusing on resource awareness in field-programmable gate array (FPGA) design, Applications of Field-Programmable Gate Arrays in Scientific Research covers the principle of FPGAs and their functionality. It explores a host of applications, ranging from small one-chip laboratory systems to large-scale applications in ""big science."" The book first describes various FPGA resources, including logic elements, RAM, multipliers, microprocessors, and content-addressable memory. It then presents principles and methods for controlling resources, such as process sequencing, location constraints, and in

  6. Head Mounted Display with a Roof Mirror Array Fold (United States)

    Olczak, Eugene (Inventor)


    The present invention includes a head mounted display (HMD) worn by a user. The HMD includes a display projecting an image through an optical lens. The HMD also includes a one-dimensional retro reflective array receiving the image through the optical lens at a first angle with respect to the display and deflecting the image at a second angle different than the first angle with respect to the display. The one-dimensional retro reflective array reflects the image in order to project the image onto an eye of the user.

  7. Nanostructure arrays in free-space: optical properties and applications

    International Nuclear Information System (INIS)

    Collin, Stéphane


    Dielectric and metallic gratings have been studied for more than a century. Nevertheless, novel optical phenomena and fabrication techniques have emerged recently and have opened new perspectives for applications in the visible and infrared domains. Here, we review the design rules and the resonant mechanisms that can lead to very efficient light–matter interactions in sub-wavelength nanostructure arrays. We emphasize the role of symmetries and free-space coupling of resonant structures. We present the different scenarios for perfect optical absorption, transmission or reflection of plane waves in resonant nanostructures. We discuss the fabrication issues, experimental achievements and emerging applications of resonant nanostructure arrays. (review article)

  8. A Novel Robot of Manufacturing Space Solar Cell Arrays

    Directory of Open Access Journals (Sweden)

    Wu Yuexin


    Full Text Available This paper presents a novel robot employed to manufacture space solar cell arrays. First of all including the mechanical configuration and control system, the architecture of the robot is described. Then the flow velocity field of adhesive in the dispensing needles is acquired based on hydrodynamics. The accurate section form model of adhesive dispensed on the solar cells is obtained, which is essential for the robot to control the uniformity of dispensing adhesive. Finally the experiment validates the feasibility and reliability of the robot system. The application of robots instead of manual work in manufacturing space solar cell arrays will enhance the development of space industry.

  9. Colorimetric plasmon resonance microfluidics on nanohole array sensors


    Hsiao, Austin; Gartia, Manas Ranjan; Chang, Te-Wei; Wang, Xinhao; Khumwan, Pakapreud; Liu, Gang Logan


    We present the label-free colorimetric visualization in microfluidics using plasmon resonance on a large-area and over a wide field-of-view (>100 mm2) nanohole array device called nanoLycurgus Cup Array (nanoLCA). We demonstrate the spectral detection and colorimetric sensing of static solutions of different concentrations of glycerol–water confined in parallel microfluidic channels integrated with nanoLCA. Taking advantage of the large sensor area and the colorimetric sensing capability of n...

  10. SAMBA: Superconducting antenna-coupled, multi-frequency, bolometric array (United States)

    Goldin, Alexey; Bock, James J.; Hunt, Cynthia; Lange, Andrew E.; Leduc, Henry; Vayonakis, Anastasios; Zmuidzinas, Jonas


    We present a design for a multipixel, multiband (100 GHz, 200 GHz and 400 GHz) submillimeter instrument: SAMBA (Superconducting Antenna-coupled, Multi-frequency, Bolometric Array). SAMBA uses slot antenna coupled bolometers and microstrip filters. The concept allows for a much more compact, multiband imager compared to a comparable feedhorn-coupled bolometric system. SAMBA incorporates an array of slot antennas, superconducting transmission lines, a wide band multiplexer and superconducting transition edge bolometers. The transition-edge film measures the millimeter-wave power deposited in the resistor that terminates the transmission line. .

  11. Monitoring of cell cultures with LTCC microelectrode array. (United States)

    Ciosek, P; Zawadzki, K; Łopacińska, J; Skolimowski, M; Bembnowicz, P; Golonka, L J; Brzózka, Z; Wróblewski, W


    Monitoring of cell cultures in microbioreactors is a crucial task in cell bioassays and toxicological tests. In this work a novel tool based on a miniaturized sensor array fabricated using low-temperature cofired ceramics (LTCC) technology is presented. The developed device is applied to the monitoring of cell-culture media change, detection of the growth of various species, and in toxicological studies performed with the use of cells. Noninvasive monitoring performed with the LTCC microelectrode array can be applied for future cell-engineering purposes.

  12. A Novel Robot of Manufacturing Space Solar Cell Arrays

    Directory of Open Access Journals (Sweden)

    Wu Yuexin


    Full Text Available This paper presents a novel robot employed to manufacture space solar cell arrays. First of all including the mechanical configuration and control system, the architecture of the robot is described. Then the flow velocity field of adhesive in the dispensing needles is acquired based on hydrodynamics. The accurate section form model of adhesive dispensed on the solar cells is obtained, which is essential for the robot to control the uniformity of dispensing adhesive. Finally the experiment validates the feasibility and reliability of the robot system. The application of robots instead of manual work in manufacturing space solar cell arrays will enhance the development of space industry.

  13. 'DIAMANT': A 4 π light charged particle detector array

    International Nuclear Information System (INIS)

    Scheurer, J.N.; Aleonard, M.M.; Barreau, G.; Bourgine, F.; Chemin, J.F.; Doan, T.P.; Sellam, D.


    4π γ-spectrometers allow precise determination of weak transitions. A 4π light charged particle detector array of 54 detectors called DIAMANT is described as applied for triggering γ-spectrometers. The multidetector system allows channel selection, increases the sensitivity of the spectrometer, and can give additional information on the exit channel and the path leading to the final nucleus studied by its γ emission. The characteristics and first measured performance of the DIAMANT multidetector array are presented. (R.P.) 2 refs

  14. Narrowband direction of arrival estimation for antenna arrays

    CERN Document Server

    Foutz, Jeffrey


    This book provides an introduction to narrowband array signal processing, classical and subspace-based direction of arrival (DOA) estimation with an extensive discussion on adaptive direction of arrival algorithms. The book begins with a presentation of the basic theory, equations, and data models of narrowband arrays. It then discusses basic beamforming methods and describes how they relate to DOA estimation. Several of the most common classical and subspace-based direction of arrival methods are discussed. The book concludes with an introduction to subspace tracking and shows how subspace tr

  15. Application of optical processing to adaptive phased array radar (United States)

    Carroll, C. W.; Vijaya Kumar, B. V. K.


    The results of the investigation of the applicability of optical processing to Adaptive Phased Array Radar (APAR) data processing will be summarized. Subjects that are covered include: (1) new iterative Fourier transform based technique to determine the array antenna weight vector such that the resulting antenna pattern has nulls at desired locations; (2) obtaining the solution of the optimal Wiener weight vector by both iterative and direct methods on two laboratory Optical Linear Algebra Processing (OLAP) systems; and (3) an investigation of the effects of errors present in OLAP systems on the solution vectors.

  16. Scanning Performance of Wide Band Connected Arrays of Dipoles

    NARCIS (Netherlands)

    Cavallo, D; Neto, A.; Gerini, G.; Toso, G.


    A prototype array of dual polarized connected dipoles has been manufactured. The feed structure is composed by two orthogonal 8×8 elements for each polarization (128). The operational frequency ranges from 6 to 9 Ghz (40% relative bandwidth). Preliminary measurement results are presented. The

  17. Application Specific MMICs for Advanced Active Phased-Array Antenna's

    NARCIS (Netherlands)

    Bogaart, F.L.M. van den


    Some application specific MMIC solutions, developed at TNO-FEL, are presented. These MMICs address the needs for future phased-array architectures. Among the MMICs are: a wide-band high-efficiency power amplifier in a MESFET technology, integrated tuneable microwave filters and multifunction RF

  18. Silicon PIN diode array hybrids for charged particle detection

    International Nuclear Information System (INIS)

    Shapiro, S.L.; Dunwoodie, W.M.; Arens, J.F.; Jernigan, J.G.; Gaalema, S.


    We report on the design of silicon PIN diode array hybrids for use as charged particle detectors. A brief summary of the need for vertex detectors is presented. Circuitry, block diagrams and device specifications are included. 8 refs., 7 figs., 1 tab

  19. Source arrays for directional and non-directional sound generation

    NARCIS (Netherlands)

    Berkhoff, A.P.; Genechten, B. Van


    In this paper, methods are presented to design an acoustic source array for both directional sound generation and non-directional sound generation. The methods are based on measured transfer functions to be able to take into account different source sensitivities, to use extended sources that cannot

  20. Resonant Dipole Nanoantenna Arrays for Enhanced Terahertz Spectroscopy

    KAUST Repository

    Toma, A.


    Our recent studies on dipole nanoantenna arrays resonating in the terahertz frequency range (0.1 – 10 THz) will be presented. The main near- and far-field properties of these nanostructures will be shown and their application in enhanced terahertz spectroscopy of tiny quantities of nanomaterials will be discussed.

  1. Response Surface Model Building Using Orthogonal Arrays for Computer Experiments (United States)

    Unal, Resit; Braun, Robert D.; Moore, Arlene A.; Lepsch, Roger A.


    This study investigates response surface methods for computer experiments and discusses some of the approaches available. Orthogonal arrays constructed for computer experiments are studied and an example application to a technology selection and optimization study for a reusable launch vehicle is presented.

  2. Simulations for the charged particle detector array at VECC

    International Nuclear Information System (INIS)

    Gupta, D. .; Bhattacharya, S.; Mukherjee, G.; Bhattacharya, C.; Banerjee, K.; Ghosh, T.K.; Kundu, S.; Meena, J.K.; Rana, T.K.; Dey, A.


    The present work reports the simulations to study the response of the charged particle detector array (CPDA) at VECC. Here the simulations for 40 Ca + 40 Ca reaction at 50 MeV/A for one million events have been reported

  3. Dual-band dual-polarized array for WLAN applications

    CSIR Research Space (South Africa)

    Steyn, JM


    Full Text Available Paper presents a dual-band dual-polarized antenna array design for WLAN applications. Four double-dipole elements are orthogonally interleaved to facilitate operation in both the standard WLAN frequency bands (IEEE 802.11b and IEEE 802.11a...

  4. Flexible NAND-Like Organic Ferroelectric Memory Array

    NARCIS (Netherlands)

    Kam, B.; Ke, T.H.; Chasin, A.; Tyagi, M.; Cristoferi, C.; Tempelaars, K.; Breemen, A.J.J.M. van; Myny, K.; Schols, S.; Genoe, J.; Gelinck, G.H.; Heremans, P.


    We present a memory array of organic ferroelectric field-effect transistors (OFeFETs) on flexible substrates. The OFeFETs are connected serially, similar to the NAND architecture of flash memory, which offers the highest memory density of transistor memories. We demonstrate a reliable addressing

  5. Biomimetic Hair Sensor Arrays: From Inspiration To Implementation

    NARCIS (Netherlands)

    Jaganatharaja, R.K.; Bruinink, C.M.; Kolster, M.L.; Lammerink, Theodorus S.J.; Wiegerink, Remco J.; Krijnen, Gijsbertus J.M.


    In this work, we report on the successful implementation of highly sensitive artificial hair-based flow-sensor arrays for sensing low-frequency air flows. Artificial hair sensors are bio-inspired from crickets’ cercal filiform hairs, one of nature’s best in sensing small air flows. The presented

  6. Array calibration technique for a coherent MIMO radar

    NARCIS (Netherlands)

    Belfiori, F.; Rossum, W. van; Hoogeboom, P.


    In this paper we present a technique to estimate the calibration coefficients of a coherent Multiple-Input Multiple-Output (MIMO) array radar built on a printed circuit board (PCB). Due to the integrated structure and the MIMO nature of the system, a direct measurement of each antenna element

  7. Rapid prenatal diagnosis of cytogenetic abnormalities by array CGH analysis (United States)

    Array CGH analysis has been shown to be highly accurate for rapid detection of chromosomal aneuploidies and submicroscopic deletions or duplications on fetal DNA samples in a clinical prenatal diagnostic setting. The objective of this study is to present our "post-validation phase" experience with ...

  8. Experimental Charging Behavior of Orion UltraFlex Array Designs (United States)

    Golofaro, Joel T.; Vayner, Boris V.; Hillard, Grover B.


    The present ground based investigations give the first definitive look describing the charging behavior of Orion UltraFlex arrays in both the Low Earth Orbital (LEO) and geosynchronous (GEO) environments. Note the LEO charging environment also applies to the International Space Station (ISS). The GEO charging environment includes the bounding case for all lunar mission environments. The UltraFlex photovoltaic array technology is targeted to become the sole power system for life support and on-orbit power for the manned Orion Crew Exploration Vehicle (CEV). The purpose of the experimental tests is to gain an understanding of the complex charging behavior to answer some of the basic performance and survivability issues to ascertain if a single UltraFlex array design will be able to cope with the projected worst case LEO and GEO charging environments. Stage 1 LEO plasma testing revealed that all four arrays successfully passed arc threshold bias tests down to -240 V. Stage 2 GEO electron gun charging tests revealed that only the front side area of indium tin oxide coated array designs successfully passed the arc frequency tests

  9. Experimental demonstration of 3D accelerating beam arrays. (United States)

    Yu, Xianghua; Li, Runze; Yan, Shaohui; Yao, Baoli; Gao, Peng; Han, Guoxia; Lei, Ming


    Accelerating beams have attracted much attention in the frontiers of optical physics and technology owing to their unique propagation dynamics of nondiffracting, self-healing, and freely accelerating along curved trajectories. Such behaviors essentially arise from the particular phase factor occurring in their spatial frequency spectrum, e.g., the cubic phase associated to the spectrum of Airy beam. In this paper, we theoretically and experimentally demonstrate a sort of accelerating beam arrays, which are composed of spatially separated accelerating beams. By superimposing kinoforms of multifocal patterns into the spatial frequency spectrum of accelerating beams, different types of beam arrays, e.g., Airy beam arrays and two-main-lobe accelerating beam arrays, are generated and measured by scanning a reflection mirror near the focal region along the optical axis. The 3D intensity patterns reconstructed from the experimental data present good agreement with the theoretical counterparts. The combination of accelerating beams with optical beam arrays proposed here may find potential applications in various fields such as optical microscopes, optical micromachining, optical trapping, and so on.

  10. Characterization of Kilopixel TES detector arrays for PIPER (United States)

    Datta, Rahul; Ade, Peter; Benford, Dominic; Bennett, Charles; Chuss, David; Costen, Nicholas; Coughlin, Kevin; Dotson, Jessie; Eimer, Joseph; Fixsen, Dale; Gandilo, Natalie; Halpern, Mark; Essinger-Hileman, Thomas; Hilton, Gene; Hinshaw, Gary; Irwin, Kent; Jhabvala, Christine; Kimball, Mark; Kogut, Al; Lazear, Justin; Lowe, Luke; Manos, George; McMahon, Jeff; Miller, Timothy; Mirel, Paul; Moseley, Samuel Harvey; Pawlyk, Samuel; Rodriguez, Samelys; Sharp, Elmer; Shirron, Peter; Staguhn, Johannes G.; Sullivan, Dan; Switzer, Eric; Taraschi, Peter; Tucker, Carole; Walts, Alexander; Wollack, Edward


    The Primordial Inflation Polarization ExploreR (PIPER) is a balloon-borne instrument optimized to measure the polarization of the Cosmic Microwave Background (CMB) at large angular scales. It will map 85% of the sky in four frequency bands centered at 200, 270, 350, and 600 GHz to characterize dust foregrounds and constrain the tensor-to-scalar ratio, r. The sky is imaged on to 32x40 pixel arrays of time-domain multiplexed Transition-Edge Sensor (TES) bolometers operating at a bath temperature of 100 mK to achieve background-limited sensitivity. Each kilopixel array is indium-bump-bonded to a 2D superconducting quantum interference device (SQUID) time-domain multiplexer (MUX) chip and read out by warm electronics. Each pixel measures total incident power over a frequency band defined by bandpass filters in front of the array, while polarization sensitivity is provided by the upstream Variable-delay Polarization Modulators (VPMs) and analyzer grids. We present measurements of the detector parameters from the laboratory characterization of the first kilopixel science array for PIPER including transition temperature, saturation power, thermal conductivity, time constant, and noise performance. We also describe the testing of the 2D MUX chips, optimization of the integrated readout parameters, and the overall pixel yield of the array. The first PIPER science flight is planned for June 2018 from Palestine, Texas.

  11. EUROGAM: A high efficiency escape suppressed spectrometer array

    International Nuclear Information System (INIS)

    Nolan, P.J.


    EUROGAM is a UK-France collaboration to develop and build a high efficiency escape suppressed spectrometer array. The project has involved the development of both germanium (Ge) and bismuth germanate (BGO) detectors to produce crystals which are both bigger and have a more complex geometry. As a major investment for the future, the collaboration has developed a new electronics and data acquisition system based on the VXI and VME standards. The array will start its experimental programme in mid 1992 at the Nuclear Structure Facility at Daresbury, U.K. At this stage it will have a total photopeak efficiency (for 1.33 MeV gamma-rays) of ∼ 4.5%. This will give an improvement in sensitivity (relative to presently operating arrays) of a factor of about 10. When EUROGAM moves to France in mid 1993 its photopeak efficiency will have increased to about 8.5% which will result in an increase in sensitivity of a further factor of about 10. In this article I will concentrate on the array which will operate at Daresbury in 1992 and only briefly cover the developments which will take place for the full array before it is used in France in 1993. (author). 13 refs., 2 tabs., 10 figs

  12. Hierarchical sinuous-antenna phased array for millimeter wavelengths (United States)

    Cukierman, Ari; Lee, Adrian T.; Raum, Christopher; Suzuki, Aritoki; Westbrook, Benjamin


    We present the design, fabrication, and measured performance of a hierarchical sinuous-antenna phased array coupled to superconducting transition-edge-sensor (TES) bolometers for millimeter wavelengths. The architecture allows for dual-polarization wideband sensitivity with a beam width that is approximately frequency-independent. We report on measurements of a prototype device, which uses three levels of triangular phased arrays to synthesize beams that are approximately constant in width across three frequency bands covering a 3:1 bandwidth. The array element is a lens-coupled sinuous antenna. The device consists of an array of hemispherical lenses coupled to a lithographed wafer, which integrates TESs, planar sinuous antennas, and microwave circuitry including band-defining filters. The approximately frequency-independent beam widths improve coupling to telescope optics and keep the sensitivity of an experiment close to optimal across a broad frequency range. The design can be straightforwardly modified for use with non-TES lithographed cryogenic detectors such as kinetic inductance detectors. Additionally, we report on the design and measurements of a broadband 180° hybrid that can simplify the design of future multichroic focal planes including but not limited to hierarchical phased arrays.

  13. A Ferrite LTCC-Based Monolithic SIW Phased Antenna Array

    KAUST Repository

    Nafe, Ahmed


    In this work, we present a novel configuration for realizing monolithic SIW-based phased antenna arrays using Ferrite LTCC technology. Unlike the current common schemes for realizing SIW phased arrays that rely on surface-mount component (p-i-n diodes, etc) for controlling the phase of the individual antenna elements, here the phase is tuned by biasing of the ferrite filling of the SIW. This approach eliminates the need for mounting of any additional RF components and enables seamless monolithic integration of phase shifters and antennas in SIW technology. As a proof of concept, a two-element slotted SIW-based phased array is designed, fabricated and measured. The prototype exhibits a gain of 4.9 dBi at 13.2 GHz and a maximum E-plane beam-scanning of 28 degrees using external windings for biasing the phase shifters. Moreover, the array can achieve a maximum beam-scanning of 19 degrees when biased with small windings that are embedded in the package. This demonstration marks the first time a fully monolithic SIW-based phased array is realized in Ferrite LTCC technology and paves the way for future larger-size implementations.

  14. The FPGA Pixel Array Detector

    International Nuclear Information System (INIS)

    Hromalik, Marianne S.; Green, Katherine S.; Philipp, Hugh T.; Tate, Mark W.; Gruner, Sol M.


    A proposed design for a reconfigurable x-ray Pixel Array Detector (PAD) is described. It operates by integrating a high-end commercial field programmable gate array (FPGA) into a 3-layer device along with a high-resistivity diode detection layer and a custom, application-specific integrated circuit (ASIC) layer. The ASIC layer contains an energy-discriminating photon-counting front end with photon hits streamed directly to the FPGA via a massively parallel, high-speed data connection. FPGA resources can be allocated to perform user defined tasks on the pixel data streams, including the implementation of a direct time autocorrelation function (ACF) with time resolution down to 100 ns. Using the FPGA at the front end to calculate the ACF reduces the required data transfer rate by several orders of magnitude when compared to a fast framing detector. The FPGA-ASIC high-speed interface, as well as the in-FPGA implementation of a real-time ACF for x-ray photon correlation spectroscopy experiments has been designed and simulated. A 16×16 pixel prototype of the ASIC has been fabricated and is being tested. -- Highlights: ► We describe the novelty and need for the FPGA Pixel Array Detector. ► We describe the specifications and design of the Diode, ASIC and FPGA layers. ► We highlight the Autocorrelation Function (ACF) for speckle as an example application. ► Simulated FPGA output calculates the ACF for different input bitstreams to 100 ns. ► Reduced data transfer rate by 640× and sped up real-time ACF by 100× other methods.

  15. Space-Based Radar Array System Simulation and Validation. (United States)


    external field RBCA (NBFA,3), Array of position vectors R pointing to the center of RBC(NBF,3) ’ array a or array b element current segments from center of array a RBCA (NBFA,3) element current segments from array a element feedpoint TSXB, TSYB Array b phase factors YDEL Skew parameter for...Number of feedback modes used in mutual coupling calcu- lation (POLX, POLY, POLZ) Polarization vector of external field RBCA (NBFA,3), Array of position

  16. Conformal Antenna Array Design Handbook (United States)


    PLOTI-e2#Yo2) AsYSCL*(J-1 )-YSL CALL N~IE(7.*L ,-LH2tH~oto4HF4.0) GO TO 10 11 CALL PLOT(-oltY92) 10 YuY ..Y DX. XM/NX NNX=NX+1 DO 20 K-19NNX CALL PLUT...polynomial. Then the coefficients are determined from the Chebyshev polynomial (Taylor, 1952; Tseng and Cheng , 1968). As in the case of linear arrays, a...used ( Cheng and Tseng, 1967). Difference pattern parameters such as slope (Powers, 1967) or directivity (Bayliss, 1968) can also be maximized at the

  17. Simulation of Fano factor at HAWC-30 array (United States)

    Castillo, M. A.; Salazar, H.; Tepe, A.; Villaseñor, L. M.; HAWC Collaboration


    The High Altitude Water Cherenkov detector is a gamma-ray observatory which is able to scan the sky in energy from 100 GeV to 100 TeV and will be localized at Sierra La Negra volcano at 4100 m a.s.l. near to Puebla, México. In 2011 an engineering array called VAMOS was installed and in 2012, it will start the deployment of HAWC first step, the HAWC-30 array, with 30 water Cherenkov detectors. In this work it is presented the results of simulations where the goal is to get Fano factor in order to simulate the HAWC-30 array sensibility to gamma-ray bursts using the single particle technique.

  18. Removing Background Noise with Phased Array Signal Processing (United States)

    Podboy, Gary; Stephens, David


    Preliminary results are presented from a test conducted to determine how well microphone phased array processing software could pull an acoustic signal out of background noise. The array consisted of 24 microphones in an aerodynamic fairing designed to be mounted in-flow. The processing was conducted using Functional Beam forming software developed by Optinav combined with cross spectral matrix subtraction. The test was conducted in the free-jet of the Nozzle Acoustic Test Rig at NASA GRC. The background noise was produced by the interaction of the free-jet flow with the solid surfaces in the flow. The acoustic signals were produced by acoustic drivers. The results show that the phased array processing was able to pull the acoustic signal out of the background noise provided the signal was no more than 20 dB below the background noise level measured using a conventional single microphone equipped with an aerodynamic forebody.

  19. Radio-interferometric Neutrino Reconstruction for the Askaryan Radio Array

    Directory of Open Access Journals (Sweden)

    Lu Ming-Yuan


    Full Text Available The Askaryan Radio Array (ARA is a neutrino telescope array under phased deployment near the South Pole. The array aims to discover and determine the ultra-high energy neutrino flux via detection of the Askaryan signal from neutrino-induced showers. This novel detection channel makes ARA the most cost-effective neutrino observatory in probing the neutrino flux from 1017eV – 1019eV. This contribution will discuss an interferometric vertex reconstruction technique developed for ARA, taking into account the curved paths traveled by EM radiation in inhomogeneous ice. Preliminary results on the directional reconstruction of an in situ calibration pulser as well as simulated neutrino vertices will be presented.

  20. Collective Quantum Phase-Slip Dynamics in Superconducting Nanowire Arrays (United States)

    Skacel, Sebastian T.; Voss, Jan N.; Bier, Tobias; Radke, Lucas; Weides, Martin; Rotzinger, Hannes; Mooij, Hans E.; Ustinov, Alexey V.


    Superconducting nanowire arrays exhibit quantum phase-slip (QPS) phenomenon if the superconductor has a very high normal-state sheet resistance. We experimentally study QPS effects in arrays of nanowires embedded in a resonant circuit at GHz frequencies. We probe this circuit at ultra-low microwave power, applied flux and mK temperatures. The nanowires are fabricated utilizing aluminium grown in a precisely-controlled oxygen atmosphere. In this way, we aim to control the QPS rate for a given wire width. The wires are defined with conventional electron beam lithography down to a width of 20 nm. We will present the fabrication of the nanowire arrays and first microwave measurements at mK temperatures. Center for Functional Nanostructures, Karlsruhe Institute of Technology, D-76128 Karlsruhe, Germany.

  1. Angular dependence of the coercivity in arrays of ferromagnetic nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Holanda, J. [Departamento de Física, Universidade Federal de Pernambuco, Recife 50670-901, PE (Brazil); Silva, D.B.O. [Pós-Graduação em Ciência de Materiais, Universidade Federal de Pernambuco, Recife 50670-901, PE (Brazil); Padrón-Hernández, E., E-mail: [Departamento de Física, Universidade Federal de Pernambuco, Recife 50670-901, PE (Brazil); Pós-Graduação em Ciência de Materiais, Universidade Federal de Pernambuco, Recife 50670-901, PE (Brazil)


    We present a new magnetic model for polycrystalline nanowires arrays in porous anodic aluminum oxide. The principal consideration here is the crystalline structure and the morphology of the wires and them the dipolar interactions between the crystals into the wire. Other aspect here is the direct calculation of the dipolar energy for the interaction of one wire with the others in the array. The free energy density was formulated for polycrystalline nanowires arrays in order to determinate the anisotropy effective field. It was using the microstructure study by scanning and transmission electron microscopy for the estimation of the real structure of the wires. After the structural analysis we used the angular dependences for the coercivity field and for the remnant magnetization to determine the properties of the wires. All analysis were made by the theory treatment proposed by Stoner and Wohlfarth.

  2. Design considerations for large roof-integrated photovoltaic arrays

    Energy Technology Data Exchange (ETDEWEB)

    Ropp, M.E.; Begovic, M.; Rohatgi, A. [Georgia Inst. of Tech., Atlanta, GA (United States); Long, R. [Georgia Institute of Technology, Atlanta (United States). Office of Facilities


    This paper describes calculations and modeling used in the design of the photovoltaic (PV) array built on the roof of the Georgia Tech Aquatic Center, the aquatic sports venue for the 1996 Olympic and Paralympic Games. The software package PVFORM (version 3.3) was extensively utilized; because of its importance to this work, it is thoroughly reviewed here. Procedures required to adapt PVFORM to this particular installation are described. The expected behavior and performance of the system, including maximum power output, annual energy output and maximum expected temperature, are then presented, and the use of this information in making informed design decisions is described. Finally, since the orientation of the PV array is not optimal, the effect of the unoptimized array orientation on the system`s performance is quantified. (author)

  3. A Study of Array Direction HDPE Fiber Reinforced Mortar (United States)

    Kamsuwan, Trithos


    This paper presents the effect of array direction HDPE fiber using as the reinforced material in cement mortar. The experimental data were created reference to the efficiency of using HDPE fiber reinforced on the tensile properties of cement mortar with different high drawn ratio of HDPE fibers. The fiber with the different drawn ratio 25x (d25 with E xx), and 35x (d35 with E xx) fiber volume fraction (0%, 1.0%, 1.5%) and fiber length 20 mm. were used to compare between random direction and array direction of HDPE fibers and the stress – strain displacement relationship behavior of HDPE short fiber reinforced cement mortar were investigated. It was found that the array direction with HDPE fibers show more improved in tensile strength and toughness when reinforced in cement mortar.

  4. Design of robust differential microphone arrays with orthogonal polynomials. (United States)

    Pan, Chao; Benesty, Jacob; Chen, Jingdong


    Differential microphone arrays have the potential to be widely deployed in hands-free communication systems thanks to their frequency-invariant beampatterns, high directivity factors, and small apertures. Traditionally, they are designed and implemented in a multistage way with uniform linear geometries. This paper presents an approach to the design of differential microphone arrays with orthogonal polynomials, more specifically with Jacobi polynomials. It first shows how to express the beampatterns as a function of orthogonal polynomials. Then several differential beamformers are derived and their performance depends on the parameters of the Jacobi polynomials. Simulations show the great flexibility of the proposed method in terms of designing any order differential microphone arrays with different beampatterns and controlling white noise gain.

  5. Linear micromechanical stepping drive for pinhole array positioning

    International Nuclear Information System (INIS)

    Endrödy, Csaba; Mehner, Hannes; Hoffmann, Martin; Grewe, Adrian


    A compact linear micromechanical stepping drive for positioning a 7 × 5.5 mm 2 optical pinhole array is presented. The system features a step size of 13.2 µm and a full displacement range of 200 µm. The electrostatic inch-worm stepping mechanism shows a compact design capable of positioning a payload 50% of its own weight. The stepping drive movement, step sizes and position accuracy are characterized. The actuated pinhole array is integrated in a confocal chromatic hyperspectral imaging system, where coverage of the object plane, and therefore the useful picture data, can be multiplied by 14 in contrast to a non-actuated array. (paper)

  6. Gas Composition Sensing Using Carbon Nanotube Arrays (United States)

    Li, Jing; Meyyappan, Meyya


    This innovation is a lightweight, small sensor for inert gases that consumes a relatively small amount of power and provides measurements that are as accurate as conventional approaches. The sensing approach is based on generating an electrical discharge and measuring the specific gas breakdown voltage associated with each gas present in a sample. An array of carbon nanotubes (CNTs) in a substrate is connected to a variable-pulse voltage source. The CNT tips are spaced appropriately from the second electrode maintained at a constant voltage. A sequence of voltage pulses is applied and a pulse discharge breakdown threshold voltage is estimated for one or more gas components, from an analysis of the current-voltage characteristics. Each estimated pulse discharge breakdown threshold voltage is compared with known threshold voltages for candidate gas components to estimate whether at least one candidate gas component is present in the gas. The procedure can be repeated at higher pulse voltages to estimate a pulse discharge breakdown threshold voltage for a second component present in the gas. The CNTs in the gas sensor have a sharp (low radius of curvature) tip; they are preferably multi-wall carbon nanotubes (MWCNTs) or carbon nanofibers (CNFs), to generate high-strength electrical fields adjacent to the tips for breakdown of the gas components with lower voltage application and generation of high current. The sensor system can provide a high-sensitivity, low-power-consumption tool that is very specific for identification of one or more gas components. The sensor can be multiplexed to measure current from multiple CNT arrays for simultaneous detection of several gas components.

  7. Highly integrated application specific MMICs for active phased array radar applications

    NARCIS (Netherlands)

    Bogaart, F.L.M. van den


    Application specific MMIC solutions for active array radar, developed at TNO-FEL, are presented. The use and application of these MMICs in their respective radar systems will be shown. These MMICs address the needs for current and future phased-array topologies as for example the concept of "smart

  8. Micromachined filter-chamber array with passive valves for biochemical assays on beads

    NARCIS (Netherlands)

    Lichtenberg, Jan; Verpoorte, Elisabeth; De Rooij, Nico F.


    The filter-chamber array presented here enables a real-time parallel analysis of three different samples on beads in a volume of 3 nL, on a 1 cm2chip. The filter-chamber array is a system containing three filter-chambers, three passive valves at the inlet channels and a common outlet. The design

  9. 2-D Row-Column CMUT Arrays with an Open-Grid Support Structure

    DEFF Research Database (Denmark)

    Christiansen, Thomas Lehrmann; Dahl-Petersen, Christian; Jensen, Jørgen Arendt


    Fabrication and characterization of 64 + 64 2-D row-column addressed CMUT arrays with 250 μm element pitch and 4.4 MHz center frequency in air incorporating a new design approach is presented. The arrays are comprised of two wafer bonded, structured silicon-on-insulator wafers featuring an opengr...

  10. Characterization of a Dual-Polarized Connected-Dipole Array for Ku-Band Mobile Terminals

    NARCIS (Netherlands)

    Bolt, R.J.; Cavallo, D.; Gerini, G.; Deurloo, D.; Grooters, R.; Neto, A.; Toso, G.


    In this paper, we present the characterization of a Ku-band connected-dipole array for mobile Satcom application. The prototype array consists of 2 × 256 dipole radiators arranged in a square grid, to form 16 × 16 dual-polarized cells. It has been designed to operate over a wideband ranging from

  11. New bi-dimensional SPAD arrays for time resolved single photon imaging

    Energy Technology Data Exchange (ETDEWEB)

    Grasso, R. [INFN-Laboratori Nazionali del Sud and Sez., INFN di Catania, Via S. Sofia 62, 95125 Catania (Italy); Dipartimento di Fisica ed Astronomia, Università di Catania, Via S. Sofia 64, 95123 Catania (Italy); Centro Siciliano di Fisica Nucleare e Struttura della Materia, Viale A. Doria 6, 95125 Catania (Italy); Tudisco, S., E-mail: [INFN-Laboratori Nazionali del Sud and Sez., INFN di Catania, Via S. Sofia 62, 95125 Catania (Italy); Centro Siciliano di Fisica Nucleare e Struttura della Materia, Viale A. Doria 6, 95125 Catania (Italy); Piemonte, C. [FBK-Fondazione Bruno Kessler, Via S. Croce 77, 38122 Trento (Italy); Lo Presti, D. [INFN-Laboratori Nazionali del Sud and Sez., INFN di Catania, Via S. Sofia 62, 95125 Catania (Italy); Dipartimento di Fisica ed Astronomia, Università di Catania, Via S. Sofia 64, 95123 Catania (Italy); Anzalone, A. [INFN-Laboratori Nazionali del Sud and Sez., INFN di Catania, Via S. Sofia 62, 95125 Catania (Italy); Musumeci, F.; Scordino, A. [INFN-Laboratori Nazionali del Sud and Sez., INFN di Catania, Via S. Sofia 62, 95125 Catania (Italy); Dipartimento di Fisica ed Astronomia, Università di Catania, Via S. Sofia 64, 95123 Catania (Italy); Serra, N.; Zorzi, N. [FBK-Fondazione Bruno Kessler, Via S. Croce 77, 38122 Trento (Italy)


    Some of the first results concerning the electrical and optical performances of new bi-dimensional single photon avalanche diodes arrays for imaging applications are briefly presented. The planned arrays were realized at the Fondazione Bruno Kessler—Trento and tested at LNS–INFN. The proposed new solution, utilizing a new architecture with integrated quenching resistors, allows to simplify the electronic readout.

  12. New bi-dimensional SPAD arrays for time resolved single photon imaging

    International Nuclear Information System (INIS)

    Grasso, R.; Tudisco, S.; Piemonte, C.; Lo Presti, D.; Anzalone, A.; Musumeci, F.; Scordino, A.; Serra, N.; Zorzi, N.


    Some of the first results concerning the electrical and optical performances of new bi-dimensional single photon avalanche diodes arrays for imaging applications are briefly presented. The planned arrays were realized at the Fondazione Bruno Kessler—Trento and tested at LNS–INFN. The proposed new solution, utilizing a new architecture with integrated quenching resistors, allows to simplify the electronic readout

  13. Highly Integrated Application Specific MMICS for Active Phased Array Radar Applications

    NARCIS (Netherlands)

    Bogaart, F.L.M. van den


    Application specific MMIC solutions for active array radar, developed at TNO-FEL. are presented. The use and application of these MMICs in their respective radar systems will be shown. These MMICs address the needs for current and future phased-array topologies as for example the concept of "smart

  14. Real Time Photovoltaic Array Simulator for Testing Grid-Connected PV Inverters

    DEFF Research Database (Denmark)

    Sera, Dezso; Valentini, Massimo; Raducu, Alin


    In this paper a real time flexible PV array simulator is presented. It is a system that can simulate different PV panel arrays in specific environmental conditions. To evaluate performance of the Maximum Power Point Tracking (MPPT) of grid-connected Photovoltaic (PV) inverters only measurements...

  15. Experimental investigation on the effect of user's hand proximity on a compact ultrawideband MIMO antenna array

    DEFF Research Database (Denmark)

    Zhekov, Stanislav Stefanov; Tatomirescu, Alexandru; Foroozanfard, Ehsan


    An experimental study of the interaction between user's hand and an ultrawideband multiple-input multiple-output (MIMO) antenna array is presented for mobile terminals. The dual-element array covers the frequency ranges 698-990 MHz and 1710-5530 MHz with a good efficiency in free space. Depending...

  16. Truncation effects in connected arrays: Analytical models to describe the edge-induced wave phenomena

    NARCIS (Netherlands)

    Neto, A.; Cavallo, D.; Gerini, G.


    This paper presents a Green's function based procedure to assess edge effects in finite wideband connected arrays. Truncation effects are more severe in broadband arrays, since the inter-element mutual coupling facilitates the propagation of edge-born waves that can become dominant over large

  17. Near field phased array DOA and range estimation of UHF RFID tags

    NARCIS (Netherlands)

    Huiting, J.; Kokkeler, Andre B.J.; Smit, Gerardus Johannes Maria


    This paper presents a near field localization system based on a phased array for UHF RFID tags. To estimate angle and range the system uses a two-dimensional MUSIC algorithm. A four channel phased array is used to experimentally verify the estimation of angle and range for an EPC gen2 tag. The

  18. Wideband Dual-Polarization Microstrip Patch Antenna Array for Airborne Ice Sounder

    DEFF Research Database (Denmark)

    Vazquez-Roy, Jose Luis; Krozer, Viktor; Dall, Jørgen


    We present the design and realization of an antenna array based on cavity-backed microstrip patch antenna elements, with a relative operating bandwidth exceeding 20% at a return-loss level better than 15 dB. The antenna array of four elements did not show any compromise in bandwidth. It exhibited...

  19. Layout Of Antennas And Cables In A Large Array (United States)

    Logan, Ronald T., Jr.


    Layout devised to minimize total land area occupied by large phased array of antennas and to minimize total length of cables in array. In original intended application, array expanded version of array of paraboloidal-dish microwave communication antennas of Deep Space Network. Layout also advantageous for other phased arrays of antennas and antenna elements, including notably printed-circuit microwave antenna arrays.

  20. Phased Array Radar Network Experiment for Severe Weather (United States)

    Ushio, T.; Kikuchi, H.; Mega, T.; Yoshikawa, E.; Mizutani, F.; Takahashi, N.


    Phased Array Weather Radar (PAWR) was firstly developed in 2012 by Osaka University and Toshiba under a grant of NICT using the Digital Beamforming Technique, and showed a impressive thunderstorm behavior with 30 second resolution. After that development, second PAWR was installed in Kobe city about 60 km away from the first PAWR site, and Tokyo Metropolitan University, Osaka Univeristy, Toshiba and the Osaka Local Government started a new project to develop the Osaka Urban Demonstration Network. The main sensor of the Osaka Network is a 2-node Phased Array Radar Network and lightning location system. Data products that are created both in local high performance computer and Toshiba Computer Cloud, include single and multi-radar data, vector wind, quantitative precipitation estimation, VIL, nowcasting, lightning location and analysis. Each radar node is calibarated by the baloon measurement and through the comparison with the GPM (Global Precipitation Measurement)/ DPR (Dual Frequency Space borne Radar) within 1 dB. The attenuated radar reflectivities obtained by the Phased Array Radar Network at X band are corrected based on the bayesian scheme proposed in Shimamura et al. [2016]. The obtained high resolution (every 30 seconds/ 100 elevation angles) 3D reflectivity and rain rate fields are used to nowcast the surface rain rate up to 30 minutes ahead. These new products are transferred to Osaka Local Government in operational mode and evaluated by several section in Osaka Prefecture. Furthermore, a new Phased Array Radar with polarimetric function has been developed in 2017, and will be operated in the fiscal year of 2017. In this presentation, Phased Array Radar, network architecuture, processing algorithm, evalution of the social experiment and first Multi-Prameter Phased Array Radar experiment are presented.

  1. ArrayBridge: Interweaving declarative array processing with high-performance computing

    Energy Technology Data Exchange (ETDEWEB)

    Xing, Haoyuan [The Ohio State Univ., Columbus, OH (United States); Floratos, Sofoklis [The Ohio State Univ., Columbus, OH (United States); Blanas, Spyros [The Ohio State Univ., Columbus, OH (United States); Byna, Suren [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Prabhat, Prabhat [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Wu, Kesheng [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Brown, Paul [Paradigm4, Inc., Waltham, MA (United States)


    Scientists are increasingly turning to datacenter-scale computers to produce and analyze massive arrays. Despite decades of database research that extols the virtues of declarative query processing, scientists still write, debug and parallelize imperative HPC kernels even for the most mundane queries. This impedance mismatch has been partly attributed to the cumbersome data loading process; in response, the database community has proposed in situ mechanisms to access data in scientific file formats. Scientists, however, desire more than a passive access method that reads arrays from files. This paper describes ArrayBridge, a bi-directional array view mechanism for scientific file formats, that aims to make declarative array manipulations interoperable with imperative file-centric analyses. Our prototype implementation of ArrayBridge uses HDF5 as the underlying array storage library and seamlessly integrates into the SciDB open-source array database system. In addition to fast querying over external array objects, ArrayBridge produces arrays in the HDF5 file format just as easily as it can read from it. ArrayBridge also supports time travel queries from imperative kernels through the unmodified HDF5 API, and automatically deduplicates between array versions for space efficiency. Our extensive performance evaluation in NERSC, a large-scale scientific computing facility, shows that ArrayBridge exhibits statistically indistinguishable performance and I/O scalability to the native SciDB storage engine.

  2. The kilopixel array pathfinder project (KAPPa), a 16-pixel integrated heterodyne focal plane array: characterization of the single pixel prototype (United States)

    Wheeler, Caleb H.; Groppi, Christopher E.; Mani, Hamdi; McGarey, Patrick; Kuenzi, Linda; Weinreb, Sander; Russell, Damon S.; Kooi, Jacob W.; Lichtenberger, Arthur W.; Walker, Christopher K.; Kulesa, Craig


    We report on the laboratory testing of KAPPa, a 16-pixel proof-of-concept array to enable the creation THz imaging spectrometer with ~1000 pixels. Creating an array an order of magnitude larger than the existing state of the art of 64 pixels requires a simple and robust design as well as improvements to mixer selection, testing, and assembly. Our testing employs a single pixel test bench where a novel 2D array architecture is tested. The minimum size of the footprint is dictated by the diameter of the drilled feedhorn aperture. In the adjoining detector block, a 6mm × 6mm footprint houses the SIS mixer, LNA, matching and bias networks, and permanent magnet. We present an initial characterization of the single pixel prototype using a computer controlled test bench to determine Y-factors for a parameter space of LO power, LO frequency, IF bandwidth, magnet field strength, and SIS bias voltage. To reduce the need to replace poorly preforming pixels that are already mounted in a large format array, we show techniques to improve SIS mixer selection prior to mounting in the detector block. The 2D integrated 16-pixel array design has been evolved as we investigate the properties of the single pixel prototype. Carful design of the prototype has allowed for rapid translation of single pixel design improvements to be easily incorporated into the 16-pixel model.

  3. Micromirror arrays for object selection (United States)

    Waldis, Severin; Zamkotsian, Frederic; Clerc, Pierre-Andre; Zickar, Michael; Noell, Wilfried; de Rooij, Nico


    We report on micromirror arrays being developed for object selection in Multi Object Spectrographs for astronomical applications. The micromirrors are etched in bulk single crystal silicon whereas the cantilever type suspension is realized by surface micromachining. One micromirror element is 100μm × 200μm in size. The micromirrors are actuated electrostatically by electrodes located on a second chip. The use of silicon on insulator (SOI) wafers for both mirror and electrode chip ensures thermal compatibility for cryogenic operation. A system of multiple landing beams has been developed, which passively locks the mirror at a well defined tilt angle when actuated. The mechanical tilt angle obtained is 20° at a pull-in voltage of 90V. Measurements with an optical profiler showed that the tilt angle of the actuated and locked mirror is stable with a precision of one arc minute over a range of 15V. This locking system makes the tilt angle merely independent from process variations across the wafer and thus provides uniform tilt angle over the whole array. The precision on tilt angle from mirror to mirror measured is one arc minute. The surface quality of the mirrors in actuated state is better than 10nm peak-to-valley and the local roughness is around 1nm RMS. Preliminary cryogenic tests showed that the micromirror device sustains 120K without any structural damage.

  4. Handbook of solar energy data for south-facing surfaces in the United States. Volume 1: An insolation, array shadowing, and reflector augmentation model (United States)

    Smith, J. H.


    A quick reference for obtaining estimates of available solar insolation for numerous locations and array angles is presented. A model and a computer program are provided which considered the effects of array shadowing reflector augmentation as design variables.

  5. Microneedles array with biodegradable tips for transdermal drug delivery (United States)

    Iliescu, Ciprian; Chen, Bangtao; Wei, Jiashen; Tay, Francis E. H.


    The paper presented an enhancement solution for transdermal drug delivery using microneedles array with biodegradable tips. The microneedles array was fabricated by using deep reactive ion etching (DRIE) and the biodegradable tips were made to be porous by electrochemical etching process. The porous silicon microneedle tips can greatly enhance the transdermal drug delivery in a minimum invasion, painless, and convenient manner, at the same time; they are breakable and biodegradable. Basically, the main problem of the silicon microneedles consists of broken microneedles tips during the insertion. The solution proposed is to fabricate the microneedle tip from a biodegradable material - porous silicon. The silicon microneedles are fabricated using DRIE notching effect of reflected charges on mask. The process overcomes the difficulty in the undercut control of the tips during the classical isotropic silicon etching process. When the silicon tips were formed, the porous tips were then generated using a classical electrochemical anodization process in MeCN/HF/H2O solution. The paper presents the experimental results of in vitro release of calcein and BSA with animal skins using a microneedle array with biodegradable tips. Compared to the transdermal drug delivery without any enhancer, the microneedle array had presented significant enhancement of drug release.

  6. A cadmium-zinc-telluride crystal array spectrometer

    International Nuclear Information System (INIS)

    McHugh, H. R.; Quam, W.; DeVore, T.; Vogle, R.; Weslowski, J.


    This paper describes a gamma detector employing an array of eight cadmium-zinc-telluride (CZT) crystals configured as a high resolution gamma ray spectrometer. This detector is part of a more complex instrument that identifies the isotope,displays this information, and records the gamma spectrum. Various alarms and other operator features are incorporated in this battery operated rugged instrument. The CZT detector is the key component of this instrument and will be described in detail in this paper. We have made extensive spectral measurements of the usual laboratory gamma sources, common medical isotopes, and various Special Nuclear Materials (SNM) with this detector. Some of these data will be presented as spectra. We will also present energy resolution and detection efficiency for the basic 8-crystal array. Additional data will also be presented for a 32-crystal array. The basic 8-crystal array development was completed two years ago, and the system electronic design has been imp roved recently. This has resulted in significantly improved noise performance. We expect to have a much smaller detector package, using 8 crystals, in a few months. This package will use flip-chip packaging to reduce the electronics physical size by a factor of 5

  7. Applications of Josephson junction squids and arrays (United States)

    Silver, A. H.


    This report covers the period from 1 October 1982 to 28 February 1983 following the period covered by the last annual progress report. This period included the preparation and submission of the draft of the annual report, presentation of the paper SQUID Voltage-Controlled-Oscillator to the 1982 Applied Superconductivity Conference, continued fabrication and measurement of the 9GHz SQUID VCO, and design of the DC SQUID and SQUID array configuration. In addition, a number of important additions and modifications were made in the basic laboratory facilities. Work has continued on fabrication and measurements of the single resistive SQUID VCO with the 50/1 transformer ratio operating near 9GHz. Four chips are fabricated on a wafer, with different damping resistors for each one of the four devices.


    International Nuclear Information System (INIS)

    Landon, Jonathan; Elmer, Michael; Waldron, Jacob; Jones, David; Stemmons, Alan; Jeffs, Brian D.; Warnick, Karl F.; Richard Fisher, J.; Norrod, Roger D.


    Phased array feeds (PAFs) for reflector antennas offer the potential for increased reflector field of view and faster survey speeds. To address some of the development challenges that remain for scientifically useful PAFs, including calibration and beamforming algorithms, sensitivity optimization, and demonstration of wide field of view imaging, we report experimental results from a 19 element room temperature L-band PAF mounted on the Green Bank 20 Meter Telescope. Formed beams achieved an aperture efficiency of 69% and a system noise temperature of 66 K. Radio camera images of several sky regions are presented. We investigate the noise performance and sensitivity of the system as a function of elevation angle with statistically optimal beamforming and demonstrate cancelation of radio frequency interference sources with adaptive spatial filtering.

  9. Hybrid analysis for the Telescope Array

    Directory of Open Access Journals (Sweden)

    Stokes B.T.


    Full Text Available The Telescope Array (TA experiment is the largest Ultra-High Energy Cosmic Ray (UHECR hybrid detector which consists of three stations of Fluorescence Detectors (FDs and 507 Surface Detectors (SDs. The coincidence events which observed both by FD and SD is referred as hybrid event. The geometry and energy of each extensive air shower observed by hybrid mode are reconstructed with much more accurate resolution than monocular reconstruction alone. The hybrid event candidates were searched for by comparison of the trigger times between FD and SD in the good weather days from May 2008 to September 2010. By this search, we found 1306 hybrid events for BR, 1051 events for LR and 905 events for MD. In this paper, the performance of the hybrid technique and the energy spectra measured by using hybrid events are presented.

  10. Alignment method for solar collector arrays (United States)

    Driver, Jr., Richard B


    The present invention is directed to an improved method for establishing camera fixture location for aligning mirrors on a solar collector array (SCA) comprising multiple mirror modules. The method aligns the mirrors on a module by comparing the location of the receiver image in photographs with the predicted theoretical receiver image location. To accurately align an entire SCA, a common reference is used for all of the individual module images within the SCA. The improved method can use relative pixel location information in digital photographs along with alignment fixture inclinometer data to calculate relative locations of the fixture between modules. The absolute locations are determined by minimizing alignment asymmetry for the SCA. The method inherently aligns all of the mirrors in an SCA to the receiver, even with receiver position and module-to-module alignment errors.

  11. Biochemical Sensors Using Carbon Nanotube Arrays (United States)

    Li, Jun (Inventor); Meyyappan, Meyya (Inventor); Cassell, Alan M. (Inventor)


    Method and system for detecting presence of biomolecules in a selected subset, or in each of several selected subsets, in a fluid. Each of an array of two or more carbon nanotubes ("CNTs") is connected at a first CNT end to one or more electronics devices, each of which senses a selected electrochemical signal that is generated when a target biomolecule in the selected subset becomes attached to a functionalized second end of the CNT, which is covalently bonded with a probe molecule. This approach indicates when target biomolecules in the selected subset are present and indicates presence or absence of target biomolecules in two or more selected subsets. Alternatively, presence of absence of an analyte can be detected.

  12. Optical networks for wideband sensor array (United States)

    Sheng, Lin Horng


    This thesis presents the realization of novel systems for optical sensing networks with an array of long-period grating (LPG) sensors. As a launching point of the thesis, the motivation to implement optical sensing network in precisely catering LPG sensors is presented. It highlights the flexibility of the sensing network to act as the foundation in order to boost the application of the various LPG sensor design in biological and chemical sensing. After the thorough study on the various optical sensing networks, sub-carrier multiplexing (SCM) and optical time division multiplexing (OTDM) schemes are adopted in conjunction with tunable laser source (TLS) to facilitate simultaneous interrogation of the LPG sensors array. In fact, these systems are distinct to have the capability to accommodate wideband optical sensors. Specifically, the LPG sensors which is in 20nm bandwidth are identified to operate in these systems. The working principles of the systems are comprehensively elucidated in this thesis. It highlights the mathematical approach to quantify the experimental setup of the optical sensing network. Additionally, the system components of the designs are identified and methodically characterized so that the components well operate in the designed environment. A mockup has been setup to demonstrate the application in sensing of various liquid indices and analyse the response of the LPG sensors in order to evaluate the performance of the systems. Eventually, the resemblance of the demultiplexed spectral response to the pristine spectral response are quantified to have excellent agreement. Finally, the promising result consistency of the systems is verified through repeatability test.

  13. Light Trapping with Silicon Light Funnel Arrays. (United States)

    Prajapati, Ashish; Nissan, Yuval; Gabay, Tamir; Shalev, Gil


    Silicon light funnels are three-dimensional subwavelength structures in the shape of inverted cones with respect to the incoming illumination. Light funnel (LF) arrays can serve as efficient absorbing layers on account of their light trapping capabilities, which are associated with the presence of high-density complex Mie modes. Specifically, light funnel arrays exhibit broadband absorption enhancement of the solar spectrum. In the current study, we numerically explore the optical coupling between surface light funnel arrays and the underlying substrates. We show that the absorption in the LF array-substrate complex is higher than the absorption in LF arrays of the same height (~10% increase). This, we suggest, implies that a LF array serves as an efficient surface element that imparts additional momentum components to the impinging illumination, and hence optically excites the substrate by near-field light concentration, excitation of traveling guided modes in the substrate, and mode hybridization.

  14. Light Trapping with Silicon Light Funnel Arrays

    Directory of Open Access Journals (Sweden)

    Ashish Prajapati


    Full Text Available Silicon light funnels are three-dimensional subwavelength structures in the shape of inverted cones with respect to the incoming illumination. Light funnel (LF arrays can serve as efficient absorbing layers on account of their light trapping capabilities, which are associated with the presence of high-density complex Mie modes. Specifically, light funnel arrays exhibit broadband absorption enhancement of the solar spectrum. In the current study, we numerically explore the optical coupling between surface light funnel arrays and the underlying substrates. We show that the absorption in the LF array-substrate complex is higher than the absorption in LF arrays of the same height (~10% increase. This, we suggest, implies that a LF array serves as an efficient surface element that imparts additional momentum components to the impinging illumination, and hence optically excites the substrate by near-field light concentration, excitation of traveling guided modes in the substrate, and mode hybridization.

  15. Space and power efficient hybrid counters array (United States)

    Gara, Alan G [Mount Kisco, NY; Salapura, Valentina [Chappaqua, NY


    A hybrid counter array device for counting events. The hybrid counter array includes a first counter portion comprising N counter devices, each counter device for receiving signals representing occurrences of events from an event source and providing a first count value corresponding to a lower order bits of the hybrid counter array. The hybrid counter array includes a second counter portion comprising a memory array device having N addressable memory locations in correspondence with the N counter devices, each addressable memory location for storing a second count value representing higher order bits of the hybrid counter array. A control device monitors each of the N counter devices of the first counter portion and initiates updating a value of a corresponding second count value stored at the corresponding addressable memory location in the second counter portion. Thus, a combination of the first and second count values provide an instantaneous measure of number of events received.

  16. A row-column addressed micromachined ultrasonic transducer array for surface scanning applications. (United States)

    Wong, Lawrence L P; Chen, Albert I H; Li, Zhenhao; Logan, Andrew S; Yeow, John T W


    Row-column addressed arrays for ultrasonic non-destructive testing (NDT) applications are analyzed and demonstrated in this paper. Simulation and experimental results of a row-column addressed 32 by 32 capacitive micromachined ultrasonic transducer (CMUT) array are presented. The CMUT array, which was designed for medical imaging applications, has a center frequency of 5.3MHz. The CMUT array was used to perform C-scans on test objects with holes that have diameters of 1.0mm and 0.5mm. The array transducer has an aperture size of 4.8mm by 4.8mm, and it was used to scan an area of 4.0mm by 4.0mm. Compared to an N by N fully addressed 2-D array, a row-column addressed array of the same number of elements requires fewer (N instead of N(2)) pairs of interconnection and supporting electronic components such as pulsers and amplifiers. Even though the resulting field of view is limit by the aperture size, row-column addressed arrays and the row-column addressing scheme can be an alternative option of 2-D arrays for NDT applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Mechanical Design and Development of TES Bolometer Detector Arrays for the Advanced ACTPol Experiment (United States)

    Ward, Jonathan T.; Austermann, Jason; Beall, James A.; Choi, Steve K.; Crowley, Kevin T.; Devlin, Mark J.; Duff, Shannon M.; Gallardo, Patricio M.; Henderson, Shawn W.; Ho, Shuay-Pwu Patty; hide


    The next generation Advanced ACTPol (AdvACT) experiment is currently underway and will consist of four Transition Edge Sensor (TES) bolometer arrays, with three operating together, totaling 5800 detectors on the sky. Building on experience gained with the ACTPol detector arrays, AdvACT will utilize various new technologies, including 150 mm detector wafers equipped with multichroic pixels, allowing for a more densely packed focal plane. Each set of detectors includes a feedhorn array of stacked silicon wafers which form a spline pro le leading to each pixel. This is then followed by a waveguide interface plate, detector wafer, back short cavity plate, and backshort cap. Each array is housed in a custom designed structure manufactured from high purity copper and then gold plated. In addition to the detector array assembly, the array package also encloses cryogenic readout electronics. We present the full mechanical design of the AdvACT high frequency (HF) detector array package along with a detailed look at the detector array stack assemblies. This experiment will also make use of extensive hardware and software previously developed for ACT, which will be modi ed to incorporate the new AdvACT instruments. Therefore, we discuss the integration of all AdvACT arrays with pre-existing ACTPol infrastructure.

  18. Mapping Electrical Crosstalk in Pixelated Sensor Arrays (United States)

    Seshadri, Suresh (Inventor); Cole, David (Inventor); Smith, Roger M. (Inventor); Hancock, Bruce R. (Inventor)


    The effects of inter pixel capacitance in a pixilated array may be measured by first resetting all pixels in the array to a first voltage, where a first image is read out, followed by resetting only a subset of pixels in the array to a second voltage, where a second image is read out, where the difference in the first and second images provide information about the inter pixel capacitance. Other embodiments are described and claimed.

  19. Big Data Challenges for Large Radio Arrays (United States)

    Jones, Dayton L.; Wagstaff, Kiri; Thompson, David; D'Addario, Larry; Navarro, Robert; Mattmann, Chris; Majid, Walid; Lazio, Joseph; Preston, Robert; Rebbapragada, Umaa


    Future large radio astronomy arrays, particularly the Square Kilometre Array (SKA), will be able to generate data at rates far higher than can be analyzed or stored affordably with current practices. This is, by definition, a "big data" problem, and requires an end-to-end solution if future radio arrays are to reach their full scientific potential. Similar data processing, transport, storage, and management challenges face next-generation facilities in many other fields.

  20. Multi-Channel Capacitive Sensor Arrays


    Wang, Bingnan; Long, Jiang; Teo, Koon Hoo


    In this paper, multi-channel capacitive sensor arrays based on microstrip band-stop filters are studied. The sensor arrays can be used to detect the proximity of objects at different positions and directions. Each capacitive sensing structure in the array is connected to an inductive element to form resonance at different frequencies. The resonances are designed to be isolated in the frequency spectrum, such that the change in one channel does not affect resonances at other channels. The indu...

  1. Magnetic remanence of Josephson junction arrays


    Passos, W. A. C.; Araujo-Moreira, F. M.; Ortiz, W. A.


    In this work we study the magnetic remanence exhibited by Josephson junction arrays in response to an excitation with an AC magnetic field. The effect, predicted by numerical simulations to occur in a range of temperatures, is clearly seen in our tridimensional disordered arrays. We also discuss the influence of the critical current distribution on the temperature interval within which the array develops a magnetic remanence. This effect can be used to determine the critical current distribut...

  2. Photolithographic Synthesis of High-Density DNA and RNA Arrays on Flexible, Transparent, and Easily Subdivided Plastic Substrates. (United States)

    Holden, Matthew T; Carter, Matthew C D; Wu, Cheng-Hsien; Wolfer, Jamison; Codner, Eric; Sussman, Michael R; Lynn, David M; Smith, Lloyd M


    The photolithographic fabrication of high-density DNA and RNA arrays on flexible and transparent plastic substrates is reported. The substrates are thin sheets of poly(ethylene terephthalate) (PET) coated with cross-linked polymer multilayers that present hydroxyl groups suitable for conventional phosphoramidite-based nucleic acid synthesis. We demonstrate that by modifying array synthesis procedures to accommodate the physical and chemical properties of these materials, it is possible to synthesize plastic-backed oligonucleotide arrays with feature sizes as small as 14 μm × 14 μm and feature densities in excess of 125 000/cm(2), similar to specifications attainable using rigid substrates such as glass or glassy carbon. These plastic-backed arrays are tolerant to a wide range of hybridization temperatures, and improved synthetic procedures are described that enable the fabrication of arrays with sequences up to 50 nucleotides in length. These arrays hybridize with S/N ratios comparable to those fabricated on otherwise identical arrays prepared on glass or glassy carbon. This platform supports the enzymatic synthesis of RNA arrays and proof-of-concept experiments are presented showing that the arrays can be readily subdivided into smaller arrays (or "millichips") using common laboratory-scale laser cutting tools. These results expand the utility of oligonucleotide arrays fabricated on plastic substrates and open the door to new applications for these important bioanalytical tools.

  3. Processes and Materials for Flexible PV Arrays

    National Research Council Canada - National Science Library

    Gierow, Paul


    .... A parallel incentive for development of flexible PV arrays are the possibilities of synergistic advantages for certain types of spacecraft, in particular the Solar Thermal Propulsion (STP) Vehicle...

  4. Large Format Uncooled Focal Plane Array Project (United States)

    National Aeronautics and Space Administration — Black Forest Engineering has identified innovative modifications in uncooled focal plane array (UFPA) architecture and processing that allows development of large...

  5. Artificial ice using superconducting vortices (Conference Presentation) (United States)

    Trastoy Quintela, Juan; Malnou, Maxime; Ulysse, Christian; Bernard, Rozenn; Bergeal, Nicolas; Faini, Giancarlo; Lesueur, Jerome; Briatico, Javier; Villegas, Javier E.


    We use magnetic flux quanta (superconducting vortices) on artificial energy landscapes (pinning arrays) to create a new type of artificial ice. This vortex ice shows unusual temperature effects that offer new possibilities in the study of ice systems. We have investigated the matching of the flux lattice to pinning arrays that present geometrical frustration. The pinning arrays are fabricated on YBCO films using masked O+ ion irradiation. The details of the magneto-resistance imply that the flux lattice organizes into a vortex ice. The absence of history-dependent effects suggests that the vortex ice is highly ordered. Due to the technique used for the artificial energy landscape fabrication, we have the ability to change the pinning array geometry using temperature as a control knob. In particular we can switch the geometrical frustration on and off, which opens the door to performing a new type of annealing absent in other artificial ice systems. * Work supported by the French ANR "MASTHER", and the Fundación Barrié (Galicia, Spain)

  6. Array Databases: Agile Analytics (not just) for the Earth Sciences (United States)

    Baumann, P.; Misev, D.


    Gridded data, such as images, image timeseries, and climate datacubes, today are managed separately from the metadata, and with different, restricted retrieval capabilities. While databases are good at metadata modelled in tables, XML hierarchies, or RDF graphs, they traditionally do not support multi-dimensional arrays.This gap is being closed by Array Databases, pioneered by the scalable rasdaman ("raster data manager") array engine. Its declarative query language, rasql, extends SQL with array operators which are optimized and parallelized on server side. Installations can easily be mashed up securely, thereby enabling large-scale location-transparent query processing in federations. Domain experts value the integration with their commonly used tools leading to a quick learning curve.Earth, Space, and Life sciences, but also Social sciences as well as business have massive amounts of data and complex analysis challenges that are answered by rasdaman. As of today, rasdaman is mature and in operational use on hundreds of Terabytes of timeseries datacubes, with transparent query distribution across more than 1,000 nodes. Additionally, its concepts have shaped international Big Data standards in the field, including the forthcoming array extension to ISO SQL, many of which are supported by both open-source and commercial systems meantime. In the geo field, rasdaman is reference implementation for the Open Geospatial Consortium (OGC) Big Data standard, WCS, now also under adoption by ISO. Further, rasdaman is in the final stage of OSGeo incubation.In this contribution we present array queries a la rasdaman, describe the architecture and novel optimization and parallelization techniques introduced in 2015, and put this in context of the intercontinental EarthServer initiative which utilizes rasdaman for enabling agile analytics on Petascale datacubes.

  7. Solar Array at Very High Temperatures: Ground Tests (United States)

    Vayner, Boris


    Solar array design for any spacecraft is determined by the orbit parameters. For example, operational voltage for spacecraft in Low Earth Orbit (LEO) is limited by significant differential charging due to interactions with low temperature plasma. In order to avoid arcing in LEO, solar array is designed to generate electrical power at comparatively low voltages (below 100 volts) or to operate at higher voltages with encapsulation of all suspected discharge locations. In Geosynchronous Orbit (GEO) differential charging is caused by energetic electrons that produce differential potential between the coverglass and the conductive spacecraft body in a kilovolt range. In such a case, the weakly conductive layer over coverglass, indium tin oxide (ITO) is one of the possible measures to eliminate dangerous discharges on array surface. Temperature variations for solar arrays in both orbits are measured and documented within the range of minus150 degrees Centigrade to plus 1100 degrees Centigrade. This wide interval of operational temperatures is regularly reproduced in ground tests with radiative heating and cooling inside a shroud with flowing liquid nitrogen. The requirements to solar array design and tests turn out to be more complicated when planned trajectory crosses these two orbits and goes closer to the Sun. The conductive layer over coverglass causes a sharp increase in parasitic current collected from LEO plasma, high temperature may cause cracks in encapsulating (Room Temperature Vulcanizing (RTV) material; radiative heating of a coupon in vacuum chamber becomes practically impossible above 1500 degrees Centigrade; conductivities of glass and adhesive go up with temperature that decrease array efficiency; and mechanical stresses grow up to critical magnitudes. A few test arrangements and respective results are presented in current paper. Coupons were tested against arcing in simulated LEO and GEO environments under elevated temperatures up to 2000 degrees

  8. Protein kinase substrate identification on functional protein arrays

    Directory of Open Access Journals (Sweden)

    Zhou Fang


    Full Text Available Abstract Background Over the last decade, kinases have emerged as attractive therapeutic targets for a number of different diseases, and numerous high throughput screening efforts in the pharmaceutical community are directed towards discovery of compounds that regulate kinase function. The emerging utility of systems biology approaches has necessitated the development of multiplex tools suitable for proteomic-scale experiments to replace lower throughput technologies such as mass spectroscopy for the study of protein phosphorylation. Recently, a new approach for identifying substrates of protein kinases has applied the miniaturized format of functional protein arrays to characterize phosphorylation for thousands of candidate protein substrates in a single experiment. This method involves the addition of protein kinases in solution to arrays of immobilized proteins to identify substrates using highly sensitive radioactive detection and hit identification algorithms. Results To date, the factors required for optimal performance of protein array-based kinase substrate identification have not been described. In the current study, we have carried out a detailed characterization of the protein array-based method for kinase substrate identification, including an examination of the effects of time, buffer compositions, and protein concentration on the results. The protein array approach was compared to standard solution-based assays for assessing substrate phosphorylation, and a correlation of greater than 80% was observed. The results presented here demonstrate how novel substrates for protein kinases can be quickly identified from arrays containing thousands of human proteins to provide new clues to protein kinase function. In addition, a pooling-deconvolution strategy was developed and applied that enhances characterization of specific kinase-substrate relationships and decreases reagent consumption. Conclusion Functional protein microarrays are an

  9. Array Metasurfaces for Biomedical Sensing at Infra-Red Wavelengths


    De La Rue, Richard M.; Mbomson, Ifeoma G.; Paul, Jharna; Tabor, Sean; Lahiri, Basudev; Sharp, Graham J.; Vilhena, Henrique; McMeekin, Scott G.; Johnson, Nigel P.


    Detection and identification of biomedically significant molecules is an important application in infra-red (IR) spectroscopy. This presentation will consider some of the significant features of the different alternative building-block elements that can be used in array metasurfaces for enhanced detection sensitivity. The presentation will also address techniques and issues associated with the deposition and localisation of biological and organic chemical molecular material for detection and ...

  10. Scanning strategies for imaging arrays (United States)

    Kovács, Attila


    Large-format (sub)millimeter wavelength imaging arrays are best operated in scanning observing modes rather than traditional position-switched (chopped) modes. The choice of observing mode is critical for isolating source signals from various types of noise interference, especially for ground-based instrumentation operating under a bright atmosphere. Ideal observing strategies can combat 1/f noise, resist instrumental defects, sensitively recover emission on large scales, and provide an even field coverage - all under feasible requirements of telescope movement. This work aims to guide the design of observing patterns that maximize scientific returns. It also compares some of the popular choices of observing modes for (sub)millimeter imaging, such as random, Lissajous, billiard, spiral, On-The-Fly (OTF), DREAM, chopped and stare patterns. Many of the conclusions are also applicable other imaging applications and imaging in one dimension (e.g. spectroscopic observations).

  11. NECTAr: New electronics for the Cherenkov Telescope Array

    Energy Technology Data Exchange (ETDEWEB)

    Vorobiov, S., E-mail: vorobiov@lpta.in2p3.f [LPTA, Universite Montpellier II and IN2P3/CNRS, Montpellier (France); Bolmont, J.; Corona, P. [LPNHE, Universite Paris VI and IN2P3/CNRS, Paris (France); Delagnes, E. [IRFU/DSM/CEA, Saclay, Gif-sur-Yvette (France); Feinstein, F. [LPTA, Universite Montpellier II and IN2P3/CNRS, Montpellier (France); Gascon, D. [ICC-UB, Universitat Barcelona, Barcelona (Spain); Glicenstein, J.-F. [IRFU/DSM/CEA, Saclay, Gif-sur-Yvette (France); Naumann, C.L.; Nayman, P. [LPNHE, Universite Paris VI and IN2P3/CNRS, Paris (France); Sanuy, A. [ICC-UB, Universitat Barcelona, Barcelona (Spain); Toussenel, F.; Vincent, P. [LPNHE, Universite Paris VI and IN2P3/CNRS, Paris (France)


    The European astroparticle physics community aims to design and build the next generation array of Imaging Atmospheric Cherenkov Telescopes (IACTs), that will benefit from the experience of the existing H.E.S.S. and MAGIC detectors, and further expand the very-high energy astronomy domain. In order to gain an order of magnitude in sensitivity in the 10 GeV to >100TeV range, the Cherenkov Telescope Array (CTA) will employ 50-100 mirrors of various sizes equipped with 1000-4000 channels per camera, to be compared with the 6000 channels of the final H.E.S.S. array. A 3-year program, started in 2009, aims to build and test a demonstrator module of a generic CTA camera. We present here the NECTAr design of front-end electronics for the CTA, adapted to the trigger and data acquisition of a large IACTs array, with simple production and maintenance. Cost and camera performances are optimized by maximizing integration of the front-end electronics (amplifiers, fast analog samplers, ADCs) in an ASIC, achieving several GS/s and a few {mu}s readout dead-time. We present preliminary results and extrapolated performances from Monte Carlo simulations.

  12. Conformal transistor arrays based on solution-processed organic crystals. (United States)

    Zhao, Xiaoli; Zhang, Bing; Tang, Qingxin; Ding, Xueyan; Wang, Shuya; Zhou, Yuying; Tong, Yanhong; Liu, Yichun


    Conformal transistor array based on solution-processed organic crystals, which can provide sensory and scanning features for monitoring, biofeedback, and tracking of physiological function, presents one of the most promising technologies for future large-scale low-cost wearable and implantable electronics. However, it is still a huge challenge for the integration of solution-processed organic crystals into conformal FETs owing to a generally existing swelling phenomenon of the elastic materials and the lack of the corresponding device fabrication technology. Here, we present a promising route to fabricate a conformal field-effect transistor (FET) array based on solution-processed TIPS-pentacene single-crystal micro/nanowire array. By simply drop-casting the organic solution on an anti-solvent photolithography-compatible electrode with bottom-contact coplanar configuration, the transistor array can be formed and can conform onto uneven objects. Excellent electrical properties with device yield as high as 100%, field-effect mobility up to 0.79 cm 2 V -1 s -1 , low threshold voltage, and good device uniformity are demonstrated. The results open up the capability of solution-processed organic crystals for conformal electronics, suggesting their substantial promise for next-generation wearable and implantable electronics.

  13. The Next-Generation Very Large Array: Technical Overview (United States)

    McKinnon, Mark; Selina, Rob


    As part of its mandate as a national observatory, the NRAO is looking toward the long range future of radio astronomy and fostering the long term growth of the US astronomical community. NRAO has sponsored a series of science and technical community meetings to consider the science mission and design of a next-generation Very Large Array (ngVLA), building on the legacies of the Atacama Large Millimeter/submillimeter Array (ALMA) and the Very Large Array (VLA).The basic ngVLA design emerging from these discussions is an interferometric array with approximately ten times the sensitivity and ten times higher spatial resolution than the VLA and ALMA radio telescopes, optimized for operation in the wavelength range 0.3cm to 3cm. The ngVLA would open a new window on the Universe through ultra-sensitive imaging of thermal line and continuum emission down to milli-arcsecond resolution, as well as unprecedented broadband continuum polarimetric imaging of non-thermal processes. The specifications and concepts for major ngVLA system elements are rapidly converging.We will provide an overview of the current system design of the ngVLA. The concepts for major system elements such as the antenna, receiving electronics, and central signal processing will be presented. We will also describe the major development activities that are presently underway to advance the design.

  14. Simulation tools for industrial applications of phased array inspection techniques

    International Nuclear Information System (INIS)

    Mahaut, St.; Roy, O.; Chatillon, S.; Calmon, P.


    Ultrasonic phased arrays techniques have been developed at the French Atomic Energy Commission in order to improve defects characterization and adaptability to various inspection configuration (complex geometry specimen). Such transducers allow 'standard' techniques - adjustable beam-steering and focusing -, or more 'advanced' techniques - self-focusing on defects for instance -. To estimate the performances of those techniques, models have been developed, which allows to compute the ultrasonic field radiated by an arbitrary phased array transducer through any complex specimen, and to predict the ultrasonic response of various defects inspected with a known beam. Both modeling applications are gathered in the Civa software, dedicated to NDT expertise. The use of those complementary models allows to evaluate the ability of a phased array to steer and focus the ultrasonic beam, and therefore its relevancy to detect and characterize defects. These models are specifically developed to give accurate solutions to realistic inspection applications. This paper briefly describes the CIVA models, and presents some applications dedicated to the inspection of complex specimen containing various defects with a phased array used to steer and focus the beam. Defect detection and characterization performances are discussed for the various configurations. Some experimental validation of both models are also presented. (authors)

  15. LOFAR- The Low Frequency Array (United States)

    Falcke, H. D. E.


    LOFAR is an innovative radio telescope in the frequency range of 10-240 MHz, realized as a phased array. It will become the largest radio telescope in the world in the time frame 2006-2010, located in Northern Europe. LOFAR is being implemented as a Wide Area Sensor Network which connects thousands of cheap sensors spread throughout the country to a central super computer using an ultra-broadband, synchronized data network. As the central processor IBM has provided its Blue Gene/L supercomputer. It will process streaming data with about 0.5 Terabit per second. Many simple radio antennas connected to the network turn it into a huge radio telescope for cosmological studies. In addition, geophones will turn LOFAR into an earthquake monitoring system and infrasound and meteorology sensors will turn LOFAR into a real-time weather monitoring array for agricultural applications. LOFAR is the first radio telescopes that can listen to radio signals from the entire sky overhead, on all time scales, at a large range of frequencies, and even look back in time for a couple of seconds. The main strength of LOFAR are surveys. One goal is to detect the first generation of black holes and galaxies in the universe during the epoch of reionization and study hydrogen formed after the big bang. LOFAR is also an ideal system to discover transient and sporadic radio signals. Likely transient sources to be discovered with LOFAR are bursting stars and Jupiter-like planets, gamma-ray bursts, radio outbursts from black holes, but also lightning on Earth and even radio flashes from ultra-high energy cosmic particles hitting the Earth atmosphere. Some LOFAR prototypes have recently been built. They have produced the first instantaneous all-sky maps and discovered the radio emission from cosmic particle air showers.

  16. Array data extractor (ADE): a LabVIEW program to extract and merge gene array data. (United States)

    Kurtenbach, Stefan; Kurtenbach, Sarah; Zoidl, Georg


    Large data sets from gene expression array studies are publicly available offering information highly valuable for research across many disciplines ranging from fundamental to clinical research. Highly advanced bioinformatics tools have been made available to researchers, but a demand for user-friendly software allowing researchers to quickly extract expression information for multiple genes from multiple studies persists. Here, we present a user-friendly LabVIEW program to automatically extract gene expression data for a list of genes from multiple normalized microarray datasets. Functionality was tested for 288 class A G protein-coupled receptors (GPCRs) and expression data from 12 studies comparing normal and diseased human hearts. Results confirmed known regulation of a beta 1 adrenergic receptor and further indicate novel research targets. Although existing software allows for complex data analyses, the LabVIEW based program presented here, "Array Data Extractor (ADE)", provides users with a tool to retrieve meaningful information from multiple normalized gene expression datasets in a fast and easy way. Further, the graphical programming language used in LabVIEW allows applying changes to the program without the need of advanced programming knowledge.

  17. Test and evaluation of IR detectors and arrays II; Proceedings of the Meeting, Orlando, FL, Apr. 22, 23, 1992 (United States)

    Hoke, Forney M.

    The present conference discusses a radiometric calibration system for IR cameras, a methodology for testing IR focal-plane arrays in simulated nuclear radiation environments, process optimization for Si:As In-bumped focal-plane arrays, precise MTF measurements for focal-plane arrays, and IR focal-plane array crosstalk measurement. Also discussed are an imaging metric for IR focal-plane arrays, optical stimuli for high-volume automated testing of 2D HgCdTe focal-plane arrays, the evaluation of a solid-state photomultiplier focal-plane array for SDI, spectral effects on bulk photoconductors operated at cryogenic temperatures, and a novel technique for measuring the ionizing radiation effects in MOS transistors.

  18. Simultaneous Synthesis and Biotinylation of Proteins Using Puromycin-Based Labeling Technology for Fabrication of Protein Array Chip (United States)

    Kumal, Subhashini Raj; Biyani, Manish; Ueno, Shingo; Akagi, Takanori; Ichiki, Takanori


    Protein arrays represent a class of devices that are of growing importance in the field of proteomics. These arrays enable screening of a large amount of proteins in a short time and at a lower cost. Here we present a method to fabricate protein array using biotin-conjugated puromycin to simultaneously synthesize and label proteins followed by immobilization onto streptavidin-functionalized surface based on the noncovalent biotin-streptavidin interaction. This method demonstrates the fabrication of protein array based on cell-free transcription/translation system using unmodified DNA as a starting genetic material. As a consequence, the procedure of protein arraying has been greatly simplified over the conventional approaches that require tedious and multi-step reactions. Further, an integrated approach of micro reactor array technology makes this method very simple and robust for achieving high-density protein arrays.

  19. Micromirror Array Control of a Phase-Locked Laser Diode Array (United States)


    mirror. These mirrors were invented by Larry Hornbeck of Texas Instruments approximately 15 years ago. Two dimensional arrays of micromirrors are...AFIT/GAP/ENP/95D-2 MICROMIRROR ARRAY CONTROL OF A PHASE-LOCKED LASER DIODE ARRAY THESIS Carl J. Christensen, Captain, USAF AFIT/GAP/ENP/95D-2...Approved for public release; distribution unlimited. /99 (;/ Ig M 5 -5 DTiC QUALITY IITSYEGTED AFIT/GAP/ENP/95D-2 MICROMIRROR ARRAY CONTROL OF A PHASE-LOCKED

  20. Gecko-Inspired Electrospun Flexible Fiber Arrays for Adhesion (United States)

    Najem, Johnny F.

    The ability of geckos to adhere to vertical solid surfaces comes from their remarkable feet with millions of projections terminating in nanometer spatulae. We present a simple yet robust method for fabricating directionally sensitive dry adhesives. By using electrospun nylon 6 nanofiber arrays, we create gecko-inspired dry adhesives, that are electrically insulating, and that show shear adhesion strength of 27 N/cm2 on a glass slide. This measured value is 270% that reported of gecko feet and 97-fold above normal adhesion strength of the same arrays. The data indicate a strong shear binding-on and easy normal lifting-off. This anisotropic strength distribution is attributed to an enhanced shear adhesion strength with decreasing fiber diameter (d) and an optimum performance of nanofiber arrays in the shear direction over a specific range of thicknesses. With use of electrospinning, we report the fabrication of nylon 6 nanofiber arrays that show a friction coefficient (mu) of 11.5. These arrays possess significant shear adhesion strength and low normal adhesion strength. Increasing the applied normal load considerably enhances the shear adhesion strength and mu, irrespective of d and fiber arrays thickness (T). Fiber bending stiffness and fiber surface roughness are considerably decreased with diminishing d while fiber packing density is noticeably increased. These enhancements are proposed to considerably upsurge the shear adhesion strength between nanofiber arrays and a glass slide. The latter upsurge is mainly attributed to a sizeable proliferation in van der Waals (vdW) forces. These nanofiber arrays can be alternatively bound-on and lifted-off over a glass slide with a trivial decrease in the initial mu and adhesion strength. By using selective coating technique, we have also created hierarchical structures having closely packed nanofibers with d of 50 nm. We determine the effects of applied normal load, fiber surface roughness, loading angle, d, T, and repeated

  1. From nonfinite to finite 1D arrays of origami tiles. (United States)

    Wu, Tsai Chin; Rahman, Masudur; Norton, Michael L


    CONSPECTUS: DNA based nanotechnology provides a basis for high-resolution fabrication of objects almost without physical size limitations. However, the pathway to large-scale production of large objects is currently unclear. Operationally, one method forward is to use high information content, large building blocks, which can be generated with high yield and reproducibility. Although flat DNA origami naturally invites comparison to pixels in zero, one, and two dimensions and voxels in three dimensions and has provided an excellent mechanism for generating blocks of significant size and complexity and a multitude of shapes, the field is young enough that a single "brick" has not become the standard platform used by the majority of researchers in the field. In this Account, we highlight factors we considered that led to our adoption of a cross-shaped, non-space-filling origami species, designed by Dr. Liu of the Seeman laboratory, as the building block ideal for use in the fabrication of finite one-dimensional arrays. Three approaches that can be employed for uniquely coding origami-origami linkages are presented. Such coding not only provides the energetics for tethering the species but also uniquely designates the relative orientation of the origami building blocks. The strength of the coding approach implemented in our laboratory is demonstrated using examples of oligomers ranging from finite multimers composed of four, six, and eight origami structures to semi-infinite polymers (100mers). Two approaches to finite array design and the series of assembly steps that each requires are discussed. The process of AFM observation for array characterization is presented as a critical case study. For these soft species, the array images do not simply present the solution phase geometry projected onto a two-dimensional surface. There are additional perturbations associated with fluidic forces associated with sample preparation. At this time, reconstruction of the "true" or

  2. Parametrically Optimized Carbon Nanotube-Coated Cold Cathode Spindt Arrays

    Directory of Open Access Journals (Sweden)

    Xuesong Yuan


    Full Text Available Here, we investigate, through parametrically optimized macroscale simulations, the field electron emission from arrays of carbon nanotube (CNT-coated Spindts towards the development of an emerging class of novel vacuum electron devices. The present study builds on empirical data gleaned from our recent experimental findings on the room temperature electron emission from large area CNT electron sources. We determine the field emission current of the present microstructures directly using particle in cell (PIC software and present a new CNT cold cathode array variant which has been geometrically optimized to provide maximal emission current density, with current densities of up to 11.5 A/cm2 at low operational electric fields of 5.0 V/μm.

  3. Making your presentation fun: creative presentation techniques

    Energy Technology Data Exchange (ETDEWEB)



    What possesses someone to volunteer and go through hoops and red tape to make a presentation at a conference? For that matter, why does anyone ever present anything to anyone? Actually, presentations are a fact of life and there are many reasons for doing a presentation and doing it well. New and existing staff need training and orientation to the way things are done here. Handing all of them a manual and hoping they read it is pretty much a waste of paper. On the other hand, an effective, entertaining and upbeat presentation on the relevant topics is more likely to stick with those people. They will even have a name and face to remember and seek out when they have an issue on or with that topic. This can be a very effective beginning for networking with new peers. The presenter is seen as knowledgeable, as a source of information on company topics and possibly evaluated as a potential mentor or future manager. Project staff and/or peers benefit from clear, concise, presentations of topical knowledge. This is one way that a group working on various aspects of the same project or program can stay in touch and in step with each other. Most importantly, presentations may be the best or only door into the minds (and budgets) of management and customers. These presentations are a wonderful opportunity to address legal and compliance issues, budget, staffing, and services. Here is a chance, maybe the only one, to demonstrate and explain the wonderfulness of a program and the benefit they get by using the services offered most effectively. An interactive presentation on legal and compliance issues can be an effective tool in helping customers and/or management make good risk management decisions.

  4. Dynamic array of dark optical traps

    DEFF Research Database (Denmark)

    Daria, V.R.; Rodrigo, P.J.; Glückstad, J.


    A dynamic array of dark optical traps is generated for simultaneous trapping and arbitrary manipulation of multiple low-index microstructures. The dynamic intensity patterns forming the dark optical trap arrays are generated using a nearly loss-less phase-to-intensity conversion of a phase-encode...

  5. Stochastic Beamforming via Compact Antenna Arrays

    DEFF Research Database (Denmark)

    Alrabadi, Osama; Pedersen, Gert Frølund


    The paper investigates the average beamforming (BF) gain of compact antenna arrays when statistical channel knowledge is available. The optimal excitation (precoding vector) and impedance termination that maximize the average BF gain are a compromise between the ones that maximize the array...

  6. Adaptive motion compensation in sonar array processing

    NARCIS (Netherlands)

    Groen, J.


    In recent years, sonar performance has mainly improved via a significant increase in array ap-erture, signal bandwidth and computational power. This thesis aims at improving sonar array processing techniques based on these three steps forward. In applications such as anti-submarine warfare and mine

  7. Element sharing in interleaved antenna arrays

    CSIR Research Space (South Africa)

    Du Plessis, WP


    Full Text Available The effect of allowing shared elements in interleaved thinned arrays is investigated. The sidelobe level (SLL) as a function of the number of shared elements mirrors the SLL of thinned arrays as a function of filling factor because the number...

  8. Refracting surface plasmon polaritons with nanoparticle arrays

    DEFF Research Database (Denmark)

    Radko, I.P.; Evlyukhin, A.B.; Boltasseva, Alexandra


    Refraction of surface plasmon polaritons (SPPs) by various structures formed by a 100-nm-period square lattice of gold nanoparticles on top of a gold film is studied by leakage radiation microscopy. SPP refraction by a triangular-shaped nanoparticle array indicates that the SPP effective refractive...... to design nanoparticle arrays for specific applications requiring in-plane SPP manipulation....

  9. Dumand-array data-acquisition system

    International Nuclear Information System (INIS)

    Brenner, A.E.; Theriot, D.; Dau, W.D.; Geelhood, B.D.; Harris, F.; Learned, J.G.; Stenger, V.; March, R.; Roos, C.; Shumard, E.


    An overall data acquisition approach for DUMAND is described. The scheme assumes one array to shore optical fiber transmission line for each string of the array. The basic event sampling period is approx. 13 μsec. All potentially interesting data is transmitted to shore where the major processing is performed

  10. The lofar phased array telescope system

    NARCIS (Netherlands)

    Gunst, André W.; Bentum, Marinus Jan


    The Low Frequency Array (LOFAR) is the largest telescope in the world operating at a frequency range from 30 to 240 MHz. LOFAR is the first radio telescope of its size which uses phased array principles to detect radio signals. More than 10,000 antennas are installed in the field. The antennas are

  11. Antennas for Frequency Reconfigurable Phased Arrays

    NARCIS (Netherlands)

    Haider, S.N.


    Sensors such as phased array radars play a crucial role in public safety. They are unavoidable for surveillance, threat identification and post-disaster management. However, different scenarios impose immensely diverse requirements for these systems. Phased array systems occupy a large space. In

  12. Overview arraying techniques for deep space communications (United States)

    Mileant, A.; Hinedi, S.


    Four different arraying schemes applicable to deep space communications are discussed and analyzed. These include symbol stream combining (SSC), baseband combining (BC), carrier arraying (CA) and full spectrum combining (FSC). Complexity versus performance is traded off throughout the paper and benefits to the reception of existing spacecraft signals are discussed.

  13. Diagnostics of the BIOMASS feed array prototype

    DEFF Research Database (Denmark)

    Cappellin, Cecilia; Pivnenko, Sergey; Pontoppidan, Kennie Nybo


    The 3D reconstruction algorithm is applied to the prototype feed array of the BIOMASS synthetic aperture radar, recently measured at the DTU-ESA Spherical Near-Field Antenna Test Facility in Denmark. Careful analysis of the measured feed array data has shown that the test support structure...

  14. ALMA - the Atacama Large Millimeter Array

    NARCIS (Netherlands)

    Wild, W.; Cunningham, C.


    The Atacama Large Millimeter Array (ALMA) is a major ground based project for millimeter and submillimeter astronomy to be realized during this decade. It comprises an array of 64 telescopes of 12 meter diameter, each equipped with 10 receivers bands covering the atmospheric windows from 30 GHz to

  15. Maximum gain of Yagi-Uda arrays

    DEFF Research Database (Denmark)

    Bojsen, J.H.; Schjær-Jacobsen, Hans; Nilsson, E.


    Numerical optimisation techniques have been used to find the maximum gain of some specific parasitic arrays. The gain of an array of infinitely thin, equispaced dipoles loaded with arbitrary reactances has been optimised. The results show that standard travelling-wave design methods are not optimum...

  16. Law of substitution for mixed arrays

    International Nuclear Information System (INIS)

    Koudelka, A.J.


    The nuclear safety justification of a mixed array of dissimilar fissile units of metal units and dilute solution units, according to Clayton, has been a persistent and nagging problem. Dissimilar uranium metal or dissimilar uranium solution units in a mixed array can also create a modeling nightmare for the nuclear criticality safety engineer. Now, a calculational method known as the Law of Substitution has been developed to ensure that the k/sub eff/ of an array of uranium metal and uranium solution units will satisfy any k/sub eff/ limit set by the nuclear safety engineer. The nuclear criticality safety engineer can utilize the Law of Substitution to safely mix or substitute different uranium metal units, different uranium solution units, and more importantly, uranium metal and dilute UO 2 solution units in an array. The Law of Substitution is as follows: (1) calculate the k/sub eff/ of each unit type in its own infinite planar array. (2) Determine the edge-to-edge spacing of the infinite planar array of each type of unit to satisfy a desired k/sub eff/. (3) Select the largest edge-to-edge spacing from among the similar units in their infinite planar arrays and use that spacing for the finite or infinite planar array of mixed units

  17. The Astronomical Low-Frequency Array (United States)

    Jones, D. L.; Allen, R. J.; Blume, W. H.; Desch, M. M.; Erickson, W. C.; Kaiser, M. L.; Kassim, N. E.; Kuiper, T. B. H.; Mahoney, M. J.; Marsh, K. A.; hide


    An array of satellites is proposed to make astronomic observations in the low frequency range of a few tens of MHz down to roughly 100 kHz, a range that cannot be observed through the ionosphere. The array would be in a solar orbit to avoid radio interference from Earth and to simplify trajectory tracking and control.

  18. Vortex dynamics in Josephson junctions arrays

    International Nuclear Information System (INIS)

    Shalom, Diego Edgar


    In this work we study the dynamics of vortices in two-dimensional overdamped Josephson Junctions Arrays (JJA) driven by dc current in a wide range of conditions varying magnetic field and temperature using experiments, numerical simulations and analytic studies.We develop the Fixed Phase method, a variation of numeric relaxation techniques in which we fix and control the phase of some islands, adjacent to the vortex center, while allowing all other phases in the system to relax.In this way we are able to pull and push the vortex uphill, as we are forcing the center of rotation of the vortex currents to be in a defined location, allowing us to calculate the potential energy of a vortex located in any arbitrary position.We use this method to study the potential energy of a vortex in a variety of situations in homogeneous and non-homogeneous JJA, such as arrays with defects, channel arrays and ratchets.We study the finite size effects in JJA by means of analytic and numerical tools.We implement the rings model, in which we replace the two-dimensional square array by a series of square, concentric, uncoupled rings. This is equivalent to disregarding the radial junctions that couple consecutive rings.In spite of its extreme simplicity, this model holds the main ingredients of the magnetic dependence of the energy.We combine this model with other terms that take into account the dependence in the position of the vortex to obtain a general expression for the potential energy of a vortex in a finite JJA with applied magnetic field.We also present an expression for the first critical field, corresponding to the value of the magnetic field in which the entrance of the first vortex becomes energetically favorable.We build and study JJA modulated to form periodic and asymmetrical potentials for the vortices, named ratchet potentials.The experimental results clearly show the existence of a rectification in the motion of vortices in these potentials.Under certain conditions we

  19. The Expanded Very Large Array Project (United States)

    Perley, Rick


    The Expanded Very Large Array Project, begun in 2001, is now completed -- on time, on budget, and ``on spec.'' The major goal of the project was to multiply the key observational capabilities of the Very Large Array -- the world's most powerful, versatile, and productive radio telescope -- by a factor of at least an order of magnitude by implementation of modern technologies. The result of the project is an operationally new telescope -- renamed the Jansky Very Large Array -- which is capable of new science unimagined in 1980, when the original VLA was completed. In this talk, I will review the goals of the project, and describe the new capabilities of the Jansky Very Large Array. Already, the array is providing fabulous new insights into the physics of the universe,and I will spend the majority of the time describing examples of new results.

  20. Analyzing Array Manipulating Programs by Program Transformation (United States)

    Cornish, J. Robert M.; Gange, Graeme; Navas, Jorge A.; Schachte, Peter; Sondergaard, Harald; Stuckey, Peter J.


    We explore a transformational approach to the problem of verifying simple array-manipulating programs. Traditionally, verification of such programs requires intricate analysis machinery to reason with universally quantified statements about symbolic array segments, such as "every data item stored in the segment A[i] to A[j] is equal to the corresponding item stored in the segment B[i] to B[j]." We define a simple abstract machine which allows for set-valued variables and we show how to translate programs with array operations to array-free code for this machine. For the purpose of program analysis, the translated program remains faithful to the semantics of array manipulation. Based on our implementation in LLVM, we evaluate the approach with respect to its ability to extract useful invariants and the cost in terms of code size.

  1. Milliarcsecond Astronomy with the CHARA Array (United States)

    Schaefer, Gail; ten Brummelaar, Theo; Gies, Douglas; Jones, Jeremy; Farrington, Christopher


    The Center for High Angular Resolution Astronomy offers 50 nights per year of open access time at the CHARA Array. The Array consists of six telescopes linked together as an interferometer, providing sub-milliarcsecond resolution in the optical and near-infrared. The Array enables a variety of scientific studies, including measuring stellar angular diameters, imaging stellar shapes and surface features, mapping the orbits of close binary companions, and resolving circumstellar environments. The open access time is part of an NSF/MSIP funded program to open the CHARA Array to the broader astronomical community. As part of the program, we will build a searchable database for the CHARA data archive and run a series of one-day community workshops at different locations across the country to expand the user base for stellar interferometry and encourage new scientific investigations with the CHARA Array.

  2. A nonlinear lumped model for ultrasound systems using CMUT arrays. (United States)

    Satir, Sarp; Degertekin, F Levent


    We present a nonlinear lumped model that predicts the electrical input-output behavior of an ultrasonic system using CMUTs with arbitrary array/membrane/electrode geometry in different transmit-receive configurations and drive signals. The receive-only operation, where the electrical output signal of the CMUT array in response to incident pressure field is calculated, is included by modifying the boundary elementbased vibroacoustic formulation for a CMUT array in rigid baffle. Along with the accurate large signal transmit model, this formulation covers pitch-catch and pulse-echo operation when transmit and receive signals can be separated in time. In cases when this separation is not valid, such as CMUTs used in continuous wave transmit-receive mode, pulse-echo mode with a nearby hard or soft wall or in a bounded space such as in a microfluidic channel, an efficient formulation based on the method of images is used. Some of these particular applications and the overall modeling approach have been validated through comparison with finite element analysis on specific examples including CMUTs with multiple electrodes. To further demonstrate the capability of the model for imaging applications, the two-way response of a partial dual-ring intravascular ultrasound array is simulated using a parallel computing cluster, where the output currents of individual array elements are calculated for given input pulse and compared with experimental results. With its versatility, the presented model can be a useful tool for rapid iterative CMUT-based system design and simulation for a broad range of ultrasonic applications.

  3. A simple, rigorous method for sizing the array of a PV hybrid system

    Energy Technology Data Exchange (ETDEWEB)

    Ross, M.M.D. [RER Renewable Energy Research, Montreal, PQ (Canada)


    Although computerized simulation tools are often used to size photovoltaic (PV) arrays, they can often hide errors that are difficult to correct. This paper provided details of a simplified sizing method for PV arrays. The method was used to indicate whether a PV-hybrid system was more cost-effective than a genset-battery system, as well as to identify the most cost-effective array sizing. Monthly solar data in tabular form was used. Array costs and genset costs were combined to determine overall cost. The per unit cost of generating electricity with the PV array was calculated. The per unit cost of generating electricity with the genset was then calculated. The array was then sized so that if another unit of PV array capacity was added, the fraction of the additional unit's output would be wasted over the course of the year. The estimate was then adjusted to account for financing costs such as debt service payments. The present value of the future stream of debt payments was added to the equity portion of the installed cost of the array and divided by the size of the array. The useful energy produced by each unit of array capacity over the project lifetime was determined by multiplying the project duration by the annual output of a unit of array capacity reduced by losses in the battery, wiring, and any other power conversion equipment. A case study of a PV installation at a house in Manitoba was provided to demonstrate the method. 4 refs., 2 tabs., 1 fig.

  4. Monte Carlo Simulations For The Cherenkov Telescope Array Observatory Using Pl-Grid E-Infrastructure

    Directory of Open Access Journals (Sweden)

    Anna Barnacka


    Full Text Available The paper presents Monte Carlo simulations carried out during the preparatory phase of the Cherenkov Telescope Array project. The aim of the project is to build the next generation observatory of very high energy gamma rays. During the preparatory phase there is a need to optimize and verify design concepts for various elements of the array. In this paper we describe the main components of the software being used for that purpose, their functions and requirements. Preliminary results of the optimization of the small telescope – one of the several kinds intended for the array, are presented.

  5. Analog 65/130 nm CMOS 5 GHz Sub-Arrays with ROACH-2 FPGA Beamformers for Hybrid Aperture-Array Receivers (United States)


    allow the best of both worlds [2], [3]. This paper presents our progress with the design , imple- mentation and test of a reconfigurable and software...for several frequency and beam direction combinations. Introduction Wideband optimal array processing [1] is an important requirement in wireless...size, weight, reliability and cost. In general, a fully digital array having a dedicated receiver chain and data converter for every element offers

  6. Combined finite difference-lumped modelling of fluid loaded Cmut arrays (United States)

    Meynier, Cyril; Teston, Franck; Jeanne, Edgard; Bernard, Jean Edouard; Certon, Dominique


    This paper describes a model based on mixed finite-difference - lumped modeling to compute the frequency response of cMUTs in array element. Electrical impedance and laser interferometry measurements are presented and compared with theory.

  7. Performance of a thermal imager employing a hybrid pyroelectric detector array with MOSFET readout

    International Nuclear Information System (INIS)

    Watton, R.; Mansi, M.V.


    A thermal imager employing a two-dimensional hybrid array of pyroelectric detectors with MOSFET readout has been built. The design and theoretical performance of the detector are discussed, and the results of performance measurements are presented. 8 references

  8. Spatial normalization of array-CGH data

    Directory of Open Access Journals (Sweden)

    Brennetot Caroline


    Full Text Available Abstract Background Array-based comparative genomic hybridization (array-CGH is a recently developed technique for analyzing changes in DNA copy number. As in all microarray analyses, normalization is required to correct for experimental artifacts while preserving the true biological signal. We investigated various sources of systematic variation in array-CGH data and identified two distinct types of spatial effect of no biological relevance as the predominant experimental artifacts: continuous spatial gradients and local spatial bias. Local spatial bias affects a large proportion of arrays, and has not previously been considered in array-CGH experiments. Results We show that existing normalization techniques do not correct these spatial effects properly. We therefore developed an automatic method for the spatial normalization of array-CGH data. This method makes it possible to delineate and to eliminate and/or correct areas affected by spatial bias. It is based on the combination of a spatial segmentation algorithm called NEM (Neighborhood Expectation Maximization and spatial trend estimation. We defined quality criteria for array-CGH data, demonstrating significant improvements in data quality with our method for three data sets coming from two different platforms (198, 175 and 26 BAC-arrays. Conclusion We have designed an automatic algorithm for the spatial normalization of BAC CGH-array data, preventing the misinterpretation of experimental artifacts as biologically relevant outliers in the genomic profile. This algorithm is implemented in the R package MANOR (Micro-Array NORmalization, which is described at and available from the Bioconductor site It can also be tested on the CAPweb bioinformatics platform at

  9. Acoustical Direction Finding with Time-Modulated Arrays

    Directory of Open Access Journals (Sweden)

    Ben Clark


    Full Text Available Time-Modulated Linear Arrays (TMLAs offer useful efficiency savings over conventional phased arrays when applied in parameter estimation applications. The present paper considers the application of TMLAs to acoustic systems and proposes an algorithm for efficiently deriving the arrival angle of a signal. The proposed technique is applied in the frequency domain, where the signal and harmonic content is captured. Using a weighted average method on harmonic amplitudes and their respective main beam angles, it is possible to determine an estimate for the signal’s direction of arrival. The method is demonstrated and evaluated using results from both numerical and practical implementations and performance data is provided. The use of Micro-Electromechanical Systems (MEMS sensors allows time-modulation techniques to be applied at ultrasonic frequencies. Theoretical predictions for an array of five isotropic elements with half-wavelength spacing and 1000 data samples suggest an accuracy of ± 1 ∘ within an angular range of approximately ± 50 ∘ . In experiments of a 40 kHz five-element microphone array, a Direction of Arrival (DoA estimation within ± 2 . 5 ∘ of the target signal is readily achieved inside a ± 45 ∘ range using a single switched input stage and a simple hardware setup.

  10. Modiolus-Hugging Intracochlear Electrode Array with Shape Memory Alloy

    Directory of Open Access Journals (Sweden)

    Kyou Sik Min


    Full Text Available In the cochlear implant system, the distance between spiral ganglia and the electrodes within the volume of the scala tympani cavity significantly affects the efficiency of the electrical stimulation in terms of the threshold current level and spatial selectivity. Because the spiral ganglia are situated inside the modiolus, the central axis of the cochlea, it is desirable that the electrode array hugs the modiolus to minimize the distance between the electrodes and the ganglia. In the present study, we propose a shape-memory-alloy-(SMA- embedded intracochlear electrode which gives a straight electrode a curved modiolus-hugging shape using the restoration force of the SMA as triggered by resistive heating after insertion into the cochlea. An eight-channel ball-type electrode array is fabricated with an embedded titanium-nickel SMA backbone wire. It is demonstrated that the electrode array changes its shape in a transparent plastic human cochlear model. To verify the safe insertion of the electrode array into the human cochlea, the contact pressures during insertion at the electrode tip and the contact pressures over the electrode length after insertion were calculated using a 3D finite element analysis. The results indicate that the SMA-embedded electrode is functionally and mechanically feasible for clinical applications.

  11. Static corrections for enhanced signal detection at IMS seismic arrays (United States)

    Wilkins, Neil; Wookey, James; Selby, Neil


    Seismic monitoring forms an important part of the International Monitoring System (IMS) for verifying the Comprehensive nuclear Test Ban Treaty (CTBT). Analysis of seismic data can be used to discriminate between nuclear explosions and the tens of thousands of natural earthquakes of similar magnitude that occur every year. This is known as "forensic seismology", and techniques include measuring the P-to-S wave amplitude ratio, the body-to-surface wave magnitude ratio (mb/Ms), and source depth. Measurement of these seismic discriminants requires very high signal-to-noise ratio (SNR) data, and this has led to the development and deployment of seismic arrays as part of the IMS. Array processing methodologies such as stacking can be used, but optimum SNR improvement needs an accurate estimate of the arrival time of the particular seismic phase. To enhance the imaging capability of IMS arrays, we aim to develop site-specific static corrections to the arrival time as a function of frequency, slowness and backazimuth. Here, we present initial results for the IMS TORD array in Niger. Vespagrams are calculated for various events using the F-statistic to clearly identify seismic phases and measure their arrival times. Observed arrival times are compared with those predicted by 1D and 3D velocity models, and residuals are calculated for a range of backazimuths and slownesses. Finally, we demonstrate the improvement in signal fidelity provided by these corrections.

  12. Spatial Signature Estimation with an Uncalibrated Uniform Linear Array

    Directory of Open Access Journals (Sweden)

    Xiang Cao


    Full Text Available In this paper, the problem of spatial signature estimation using a uniform linear array (ULA with unknown sensor gain and phase errors is considered. As is well known, the directions-of-arrival (DOAs can only be determined within an unknown rotational angle in this array model. However, the phase ambiguity has no impact on the identification of the spatial signature. Two auto-calibration methods are presented for spatial signature estimation. In our methods, the rotational DOAs and model error parameters are firstly obtained, and the spatial signature is subsequently calculated. The first method extracts two subarrays from the ULA to construct an estimator, and the elements of the array can be used several times in one subarray. The other fully exploits multiple invariances in the interior of the sensor array, and a multidimensional nonlinear problem is formulated. A Gauss–Newton iterative algorithm is applied for solving it. The first method can provide excellent initial inputs for the second one. The effectiveness of the proposed algorithms is demonstrated by several simulation results.

  13. Taming hurricanes with arrays of offshore wind turbines (United States)

    Jacobson, Mark Z.; Archer, Cristina L.; Kempton, Willett


    Hurricanes are causing increasing damage to many coastal regions worldwide. Offshore wind turbines can provide substantial clean electricity year-round, but can they also mitigate hurricane damage while avoiding damage to themselves? This study uses an advanced climate-weather computer model that correctly treats the energy extraction of wind turbines to examine this question. It finds that large turbine arrays (300+ GW installed capacity) may diminish peak near-surface hurricane wind speeds by 25-41 m s-1 (56-92 mph) and storm surge by 6-79%. Benefits occur whether turbine arrays are placed immediately upstream of a city or along an expanse of coastline. The reduction in wind speed due to large arrays increases the probability of survival of even present turbine designs. The net cost of turbine arrays (capital plus operation cost less cost reduction from electricity generation and from health, climate, and hurricane damage avoidance) is estimated to be less than today’s fossil fuel electricity generation net cost in these regions and less than the net cost of sea walls used solely to avoid storm surge damage.

  14. Advanced Data Mining of Leukemia Cells Micro-Arrays

    Directory of Open Access Journals (Sweden)

    Ryan M. Pierce


    Full Text Available This paper provides continuation and extensions of previous research by Segall and Pierce (2009a that discussed data mining for micro-array databases of Leukemia cells for primarily self-organized maps (SOM. As Segall and Pierce (2009a and Segall and Pierce (2009b the results of applying data mining are shown and discussed for the data categories of microarray databases of HL60, Jurkat, NB4 and U937 Leukemia cells that are also described in this article. First, a background section is provided on the work of others pertaining to the applications of data mining to micro-array databases of Leukemia cells and micro-array databases in general. As noted in predecessor article by Segall and Pierce (2009a, micro-array databases are one of the most popular functional genomics tools in use today. This research in this paper is intended to use advanced data mining technologies for better interpretations and knowledge discovery as generated by the patterns of gene expressions of HL60, Jurkat, NB4 and U937 Leukemia cells. The advanced data mining performed entailed using other data mining tools such as cubic clustering criterion, variable importance rankings, decision trees, and more detailed examinations of data mining statistics and study of other self-organized maps (SOM clustering regions of workspace as generated by SAS Enterprise Miner version 4. Conclusions and future directions of the research are also presented.

  15. Design of nested Halbach cylinder arrays for magnetic refrigeration applications

    Energy Technology Data Exchange (ETDEWEB)

    Trevizoli, Paulo V., E-mail:; Lozano, Jaime A.; Peixer, Guilherme F.; Barbosa Jr, Jader R.


    We present an experimentally validated analytical procedure to design nested Halbach cylinder arrays for magnetic cooling applications. The procedure aims at maximizing the magnetic flux density variation in the core of the array for a given set of design parameters, namely the inner diameter of the internal magnet, the air gap between the magnet cylinders, the number of segments of each magnet and the remanent flux density of the Nd{sub 2}Fe{sub 14}B magnet grade. The design procedure was assisted and verified by 3-D numerical modeling using a commercial software package. An important aspect of the optimal design is to maintain an uniform axial distribution of the magnetic flux density in the region of the inner gap occupied by the active magnetocaloric regenerator. An optimal nested Halbach cylinder array was manufactured and experimentally evaluated for the magnetic flux density in the inner gap. The analytically calculated magnetic flux density variation agreed to within 5.6% with the experimental value for the center point of the magnet gap. - Highlights: • An analytical procedure to design nested Halbach cylinder arrays is proposed. • An optimal magnet configuration was built based on the analytical procedure. • The procedure was validated with 3D COMSOL simulations and experimental data.

  16. Highly Uniform Epitaxial ZnO Nanorod Arrays for Nanopiezotronics

    Directory of Open Access Journals (Sweden)

    Nagata T


    Full Text Available Abstract Highly uniform and c-axis-aligned ZnO nanorod arrays were fabricated in predefined patterns by a low temperature homoepitaxial aqueous chemical method. The nucleation seed patterns were realized in polymer and in metal thin films, resulting in, all-ZnO and bottom-contacted structures, respectively. Both of them show excellent geometrical uniformity: the cross-sectional uniformity according to the scanning electron micrographs across the array is lower than 2%. The diameter of the hexagonal prism-shaped nanorods can be set in the range of 90–170 nm while their typical length achievable is 0.5–2.3 μm. The effect of the surface polarity was also examined, however, no significant difference was found between the arrays grown on Zn-terminated and on O-terminated face of the ZnO single crystal. The transmission electron microscopy observation revealed the single crystalline nature of the nanorods. The current–voltage characteristics taken on an individual nanorod contacted by a Au-coated atomic force microscope tip reflected Schottky-type behavior. The geometrical uniformity, the designable pattern, and the electrical properties make the presented nanorod arrays ideal candidates to be used in ZnO-based DC nanogenerator and in next-generation integrated piezoelectric nano-electromechanical systems (NEMS.

  17. Aircraft components structural health monitoring using flexible ultrasonic transducer arrays (United States)

    Liu, W.-L.; Jen, C.-K.; Kobayashi, M.; Mrad, N.


    A damage detection capability based on a flexible ultrasonic transducer (FUT) array bonded onto a planar and a curved surface is presented. The FUT array was fabricated on a 75 μm titanium substrate using sol-gel spray technique. Room temperature curable adhesive is used as the bonding agent and ultrasonic couplant between the transducer and the test article. The bonding agent was successfully tested for aircraft environmental temperatures between -80 °C and 100 °C. For a planar test article, selected FUT arrays were able to detect fasteners damage within a planar distance of 176 mm, when used in the pulse-echo mode. Such results illustrate the effectiveness of the developed FUT transducer as compared to commercial 10MHz ultrasonic transducer (UT). These FUT arrays were further demonstrated on a curved test article. Pulse-echo measurements confirmed the reflected echoes from the specimen. Such measurement was not possible with commercial UTs due to the curved nature of the test article and its accessibility, thus demonstrating the suitability and superiority of the developed flexible ultrasonic transducer capability.

  18. Hybrid Information Flow Analysis for Programs with Arrays

    Directory of Open Access Journals (Sweden)

    Gergö Barany


    Full Text Available Information flow analysis checks whether certain pieces of (confidential data may affect the results of computations in unwanted ways and thus leak information. Dynamic information flow analysis adds instrumentation code to the target software to track flows at run time and raise alarms if a flow policy is violated; hybrid analyses combine this with preliminary static analysis. Using a subset of C as the target language, we extend previous work on hybrid information flow analysis that handled pointers to scalars. Our extended formulation handles arrays, pointers to array elements, and pointer arithmetic. Information flow through arrays of pointers is tracked precisely while arrays of non-pointer types are summarized efficiently. A prototype of our approach is implemented using the Frama-C program analysis and transformation framework. Work on a full machine-checked proof of the correctness of our approach using Isabelle/HOL is well underway; we present the existing parts and sketch the rest of the correctness argument.

  19. SAR Experiments Using a Conformal Antenna Array Radar Demonstrator

    Directory of Open Access Journals (Sweden)

    Peter Knott


    Full Text Available Conformal antenna arrays have been studied for several years but only few examples of applications in modern radar or communication systems may be found up to date due to technological difficulties. The objective of the “Electronic Radar with Conformal Array Antenna” (ERAKO demonstrator system which has been developed at the Fraunhofer Institute for High Frequency Physics and Radar Techniques (FHR is to demonstrate the feasibility of an active electronically scanned antenna for conformal integration into small and medium sized airborne platforms. For practical trials the antenna has been adapted for operation with the Phased Array Multifunctional Imaging Radar (PAMIR system developed at the institute. The antenna in combination with the PAMIR front-end needed to undergo a special calibration procedure for beam forming and imaging post-processing. The present paper describes the design and development of the conformal antenna array of the demonstrator system, its connection to the PAMIR system and results of recently conducted synthetic aperture radar (SAR experiments.

  20. Thermally-Induced Structural Disturbances of Rigid Panel Solar Arrays (United States)

    Johnston, John D.; Thornton, Earl A.


    The performance of a significant number of spacecraft has been impacted negatively by attitude disturbances resulting from thermally-induced motions of flexible structures. Recent examples of spacecraft affected by these disturbances include the Hubble Space Telescope (HST) and the Upper Atmosphere Research Satellite (UARS). Thermally-induced structural disturbances occur as the result of rapid changes in thermal loading typically initiated as a satellite exits or enters the Earth's shadow. Temperature differences in flexible appendages give rise to structural deformations, which in turn result in disturbance torques reacting back on the spacecraft. Structures which have proven susceptible to these disturbances include deployable booms and solar arrays. This paper investigates disturbances resulting from thermally-induced deformations of rigid panel solar arrays. An analytical model for the thermal-structural response of the solar array and the corresponding disturbance torque are presented. The effect of these disturbances on the attitude dynamics of a simple spacecraft is then investigated using a coupled system of governing equations which includes the effects of thermally-induced deformations. Numerical results demonstrate the effect of varying solar array geometry on the dynamic response of the system.

  1. Comparison of candidate solar array maximum power utilization approaches. [for spacecraft propulsion (United States)

    Costogue, E. N.; Lindena, S.


    A study was made of five potential approaches that can be utilized to detect the maximum power point of a solar array while sustaining operations at or near maximum power and without endangering stability or causing array voltage collapse. The approaches studied included: (1) dynamic impedance comparator, (2) reference array measurement, (3) onset of solar array voltage collapse detection, (4) parallel tracker, and (5) direct measurement. The study analyzed the feasibility and adaptability of these approaches to a future solar electric propulsion (SEP) mission, and, specifically, to a comet rendezvous mission. Such missions presented the most challenging requirements to a spacecraft power subsystem in terms of power management over large solar intensity ranges of 1.0 to 3.5 AU. The dynamic impedance approach was found to have the highest figure of merit, and the reference array approach followed closely behind. The results are applicable to terrestrial solar power systems as well as to other than SEP space missions.

  2. Characterization of the electrical output of flat-plate photovoltaic arrays (United States)

    Gonzalez, C. C.; Hill, G. M.; Ross, R. G., Jr.


    The electric output of flat-plate photovoltaic arrays changes constantly, due primarily to changes in cell temperature and irradiance level. As a result, array loads such as direct-current to alternating-current power conditioners must be able to accommodate widely varying input levels, while maintaining operation at or near the array maximum power point.The results of an extensive computer simulation study that was used to define the parameters necessary for the systematic design of array/power-conditioner interfaces are presented as normalized ratios of power-conditioner parameters to array parameters, to make the results universally applicable to a wide variety of system sizes, sites, and operating modes. The advantages of maximum power tracking and a technique for computing average annual power-conditioner efficiency are discussed.

  3. Synthesis of unequally spaced linear antenna arrays | Hassen ...

    African Journals Online (AJOL)

    Synthesis of unequally spaced linear antenna arrays. MR Hassen, W Woldemariam ... Also the method needs fewer number of array elements to synthesize an array exhibiting the same (or better) level of directivity and sidelobe level in comparison with uniform arrays. Reduction in number of array elements has a positive ...

  4. Nanoscale photonic crystal sensor arrays on monolithic substrates using side-coupled resonant cavity arrays. (United States)

    Yang, Daquan; Tian, Huiping; Ji, Yuefeng


    We present nanoscale photonic crystal sensor arrays (NPhCSAs) on monolithic substrates. The NPhCSAs can be used as an opto-fluidic architecture for performing highly parallel, label-free detection of biochemical interactions in aqueous environments. The architecture consists of arrays of lattice-shifted resonant cavities side-coupled to a single PhC waveguide. Each resonant cavity has slightly different cavity spacing and is shown to independently shift its resonant peak (a single and narrow drop) in response to the changes in refractive index. The extinction ratio of well-defined single drop exceeds 20 dB. With three-dimensional finite-difference time-domain (3D-FDTD) technique, we demonstrate that the refractive index sensitivity of 115.60 nm/RIU (refractive index unit) is achieved and a refractive index detection limit is approximately of 8.65×10-5 for this device. In addition, the sensitivity can be adjusted from 84.39 nm/RIU to 161.25 nm/RIU by changing the number of functionalized holes.

  5. AGATA - Advanced GAmma Tracking Array

    Energy Technology Data Exchange (ETDEWEB)

    Akkoyun, S. [Department of Physics, Faculty of Science, Ankara University, 06100 Tandogan, Ankara (Turkey); Algora, A. [IFIC, CSIC-Universitat de Valencia, E-46980 Paterna (Spain); Alikhani, B. [IKP, TU Darmstadt, Schlossgartenstrasse 9, D-64289 Darmstadt (Germany); Ameil, F. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, D-64291 Darmstadt (Germany); Angelis, G. de [INFN Laboratori Nazionali di Legnaro, IT-35020 Padova (Italy); Arnold, L. [Universite de Strasbourg, IPHC, 23 rue du Loess, 67037 Strasbourg (France); CNRS, UMR 7178, 67037 Strasbourg (France); Astier, A. [CSNSM, CNRS, IN2P3, Universite Paris-Sud, F-91405 Orsay (France); Atac, A. [Department of Physics, Faculty of Science, Ankara University, 06100 Tandogan, Ankara (Turkey); Department of Physics and Astronomy, Uppsala University, Uppsala (Sweden); Royal Institute of Technology, SE-10691 Stockholm (Sweden); Aubert, Y. [IPNO, CNRS/IN2P3, Universite Paris-Sud, F-91406 Orsay (France); Aufranc, C. [Universite de Lyon, Universite Lyon 1, CNRS-IN2P3, Institut de Physique Nucleaire de Lyon, F-69622 Villeurbanne (France); Austin, A. [STFC Daresbury Laboratory, Daresbury, Warrington WA4 4AD (United Kingdom); Aydin, S. [INFN Sezione di Padova, IT-35131 Padova (Italy); Azaiez, F. [IPNO, CNRS/IN2P3, Universite Paris-Sud, F-91406 Orsay (France); Badoer, S. [INFN Laboratori Nazionali di Legnaro, IT-35020 Padova (Italy); Balabanski, D.L. [Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Sofia (Bulgaria); Barrientos, D. [IFIC, CSIC-Universitat de Valencia, E-46980 Paterna (Spain); and others


    The Advanced GAmma Tracking Array (AGATA) is a European project to develop and operate the next generation {gamma}-ray spectrometer. AGATA is based on the technique of {gamma}-ray energy tracking in electrically segmented high-purity germanium crystals. This technique requires the accurate determination of the energy, time and position of every interaction as a {gamma} ray deposits its energy within the detector volume. Reconstruction of the full interaction path results in a detector with very high efficiency and excellent spectral response. The realisation of {gamma}-ray tracking and AGATA is a result of many technical advances. These include the development of encapsulated highly segmented germanium detectors assembled in a triple cluster detector cryostat, an electronics system with fast digital sampling and a data acquisition system to process the data at a high rate. The full characterisation of the crystals was measured and compared with detector-response simulations. This enabled pulse-shape analysis algorithms, to extract energy, time and position, to be employed. In addition, tracking algorithms for event reconstruction were developed. The first phase of AGATA is now complete and operational in its first physics campaign. In the future AGATA will be moved between laboratories in Europe and operated in a series of campaigns to take advantage of the different beams and facilities available to maximise its science output. The paper reviews all the achievements made in the AGATA project including all the necessary infrastructure to operate and support the spectrometer.

  6. Handheld ultrasound array imaging device (United States)

    Hwang, Juin-Jet; Quistgaard, Jens


    A handheld ultrasound imaging device, one that weighs less than five pounds, has been developed for diagnosing trauma in the combat battlefield as well as a variety of commercial mobile diagnostic applications. This handheld device consists of four component ASICs, each is designed using the state of the art microelectronics technologies. These ASICs are integrated with a convex array transducer to allow high quality imaging of soft tissues and blood flow in real time. The device is designed to be battery driven or ac powered with built-in image storage and cineloop playback capability. Design methodologies of a handheld device are fundamentally different to those of a cart-based system. As system architecture, signal and image processing algorithm as well as image control circuit and software in this device is deigned suitably for large-scale integration, the image performance of this device is designed to be adequate to the intent applications. To elongate the battery life, low power design rules and power management circuits are incorporated in the design of each component ASIC. The performance of the prototype device is currently being evaluated for various applications such as a primary image screening tool, fetal imaging in Obstetrics, foreign object detection and wound assessment for emergency care, etc.

  7. Redundant arrays of IDE drives

    Energy Technology Data Exchange (ETDEWEB)

    D.A. Sanders et al.


    The authors report tests of redundant arrays of IDE disk drives for use in offline high energy physics data analysis. Parts costs of total systems using commodity EIDE disks are now at the $4000 per Terabyte level. Disk storage prices have now decreased to the point where they equal the cost per Terabyte of Storage Technology tape silos. The disks, however, offer far better granularity; even small institutions can afford to deploy systems. The tests include reports on software RAID-5 systems running under Linux 2.4 using Promise Ultra 100{trademark} disk controllers. RAID-5 protects data in case of a single disk failure by providing parity bits. Tape backup is not required. Journaling file systems are used to allow rapid recovery from crashes. The data analysis strategy is to encapsulate data and CPU processing power. Analysis for a particular part of a data set takes place on the PC where the data resides. The network is only used to put results together. They explore three methods of moving data between sites; internet transfers, not pluggable IDE disks in FireWire cases, and DVD-R disks.

  8. Slow and fast light in SOA-EA structures for phased-array antennas

    DEFF Research Database (Denmark)

    Sales, S.; Öhman, Filip; Bermejo, A.

    We present an SOA-EA structure for controlling the phase and amplitude of optically fed phased-array antennas. Phase shifts of 40 degrees are obtained through slow and fast light effects by changing only the reverse voltage.......We present an SOA-EA structure for controlling the phase and amplitude of optically fed phased-array antennas. Phase shifts of 40 degrees are obtained through slow and fast light effects by changing only the reverse voltage....

  9. Arrayed primer extension in the "array of arrays" format: a rational approach for microarray-based SNP genotyping

    DEFF Research Database (Denmark)

    Klitø, Niels G F; Tan, Qihua; Nyegaard, Mette


    This study provides a new version of the arrayed primer extension (APEX) protocol adapted to the 'array of arrays' platform using an instrumental setup for microarray processing not previously described. The primary aim of the study is to implement a system for rational cost-efficient genotyping...... where multiple singlenucleotide polymorphisms (SNPs) and individuals are genotyped on each microarray slide. Genotyping results are collected across 185 healthy Danish subjects and 76 SNPs on chromosome 3q13.31, because linkage to atopic disease phenotypes have been suggested in the Danish population...

  10. The First Multichroic Polarimeter Array on the Atacama Cosmology Telescope: Characterization and Performance (United States)

    Ho, S. P.; Pappas, C. G.; Austermann, J.; Beall, J. A.; Becker, D.; Choi, S. K.; Datta, R.; Duff, S. M.; Gallardo, P. A.; Grace, E.; hide


    The Atacama Cosmology Telescope Polarimeter (ACTPol) is a polarization sensitive receiver for the 6-meter Atacama Cosmology Telescope (ACT) and measures the small angular scale polarization anisotropies in the cosmic microwave background (CMB). The full focal plane is composed of three detector arrays, containing over 3000 transition edge sensors (TES detectors) in total. The first two detector arrays, observing at 146 gigahertz, were deployed in 2013 and 2014, respectively. The third and final array is composed of multichroic pixels sensitive to both 90 and 146 gigahertz and saw first light in February 2015. Fabricated at NIST, this dichroic array consists of 255 pixels, with a total of 1020 polarization sensitive bolometers and is coupled to the telescope with a monolithic array of broad-band silicon feedhorns. The detectors are read out using time-division SQUID multiplexing and cooled by a dilution refrigerator at 110 meter Kelvins. We present an overview of the assembly and characterization of this multichroic array in the lab, and the initial detector performance in Chile. The detector array has a TES detector electrical yield of 85 percent, a total array sensitivity of less than 10 microns Kelvin root mean square speed, and detector time constants and saturation powers suitable for ACT CMB observations.

  11. On-line monitoring system of PV array based on internet of things technology (United States)

    Li, Y. F.; Lin, P. J.; Zhou, H. F.; Chen, Z. C.; Wu, L. J.; Cheng, S. Y.; Su, F. P.


    The Internet of Things (IoT) Technology is used to inspect photovoltaic (PV) array which can greatly improve the monitoring, performance and maintenance of the PV array. In order to efficiently realize the remote monitoring of PV operating environment, an on-line monitoring system of PV array based on IoT is designed in this paper. The system includes data acquisition, data gateway and PV monitoring centre (PVMC) website. Firstly, the DSP-TMS320F28335 is applied to collect indicators of PV array using sensors, then the data are transmitted to data gateway through ZigBee network. Secondly, the data gateway receives the data from data acquisition part, obtains geographic information via GPS module, and captures the scenes around PV array via USB camera, then uploads them to PVMC website. Finally, the PVMC website based on Laravel framework receives all data from data gateway and displays them with abundant charts. Moreover, a fault diagnosis approach for PV array based on Extreme Learning Machine (ELM) is applied in PVMC. Once fault occurs, a user alert can be sent via E-mail. The designed system enables users to browse the operating conditions of PV array on PVMC website, including electrical, environmental parameters and video. Experimental results show that the presented monitoring system can efficiently real-time monitor the PV array, and the fault diagnosis approach reaches a high accuracy of 97.5%.

  12. Natural convection heat transfer for a staggered array of heated, horizontal cylinders within a rectangular enclosure

    Energy Technology Data Exchange (ETDEWEB)

    Triplett, C.E.


    This thesis presents the results of an experimental investigation of natural convection heat transfer in a staggered array of heated cylinders, oriented horizontally within a rectangular enclosure. The main purpose of this research was to extend the knowledge of heat transfer within enclosed bundles of spent nuclear fuel rods sealed within a shipping or storage container. This research extends Canaan`s investigation of an aligned array of heated cylinders that thermally simulated a boiling water reactor (BWR) spent fuel assembly sealed within a shipping or storage cask. The results are presented in terms of piecewise Nusselt-Rayleigh number correlations of the form Nu = C(Ra){sup n}, where C and n are constants. Correlations are presented both for individual rods within the array and for the array as a whole. The correlations are based only on the convective component of the heat transfer. The radiative component was calculated with a finite-element code that used measured surface temperatures, rod array geometry, and measured surface emissivities as inputs. The correlation results are compared to Canaan`s aligned array results and to other studies of natural convection in horizontal tube arrays.

  13. Natural convection heat transfer for a staggered array of heated, horizontal cylinders within a rectangular enclosure

    International Nuclear Information System (INIS)

    Triplett, C.E.


    This thesis presents the results of an experimental investigation of natural convection heat transfer in a staggered array of heated cylinders, oriented horizontally within a rectangular enclosure. The main purpose of this research was to extend the knowledge of heat transfer within enclosed bundles of spent nuclear fuel rods sealed within a shipping or storage container. This research extends Canaan's investigation of an aligned array of heated cylinders that thermally simulated a boiling water reactor (BWR) spent fuel assembly sealed within a shipping or storage cask. The results are presented in terms of piecewise Nusselt-Rayleigh number correlations of the form Nu = C(Ra) n , where C and n are constants. Correlations are presented both for individual rods within the array and for the array as a whole. The correlations are based only on the convective component of the heat transfer. The radiative component was calculated with a finite-element code that used measured surface temperatures, rod array geometry, and measured surface emissivities as inputs. The correlation results are compared to Canaan's aligned array results and to other studies of natural convection in horizontal tube arrays

  14. Receiver function analysis using AlpArray stations in Hungary (United States)

    Dániel, Kalmár; Bálint, Süle; István, Bondár


    The AlpArray temporary seismic network, together with the permanent stations of the Hungarian National Seismological Network provid an unprecedented density and resolution to study the Eastern Alps - Pannonian basin transition zone. Previous receiver functions studies .(Hetényi et al., 2007, 2015) in the region used a much smaller station density and shorter time period than the present paper. In the analysis we used data from 48 permanent and temporary AlpArray stations in Hungary and neighbouring countries. We present our methodology (P-wave receiver function analysis, H-K grid search and cross-correlation matrix methods), the pitfalls in processing, and finally our result, the detailed Moho map of the region.

  15. Error modelling of quantum Hall array resistance standards (United States)

    Marzano, Martina; Oe, Takehiko; Ortolano, Massimo; Callegaro, Luca; Kaneko, Nobu-Hisa


    Quantum Hall array resistance standards (QHARSs) are integrated circuits composed of interconnected quantum Hall effect elements that allow the realization of virtually arbitrary resistance values. In recent years, techniques were presented to efficiently design QHARS networks. An open problem is that of the evaluation of the accuracy of a QHARS, which is affected by contact and wire resistances. In this work, we present a general and systematic procedure for the error modelling of QHARSs, which is based on modern circuit analysis techniques and Monte Carlo evaluation of the uncertainty. As a practical example, this method of analysis is applied to the characterization of a 1 MΩ QHARS developed by the National Metrology Institute of Japan. Software tools are provided to apply the procedure to other arrays.

  16. Sharp tipped plastic hollow microneedle array by microinjection moulding (United States)

    Yung, K. L.; Xu, Yan; Kang, Chunlei; Liu, H.; Tam, K. F.; Ko, S. M.; Kwan, F. Y.; Lee, Thomas M. H.


    A method of producing sharp tipped plastic hollow microneedle arrays using microinjection moulding is presented in this paper. Unlike traditional approaches, three mould inserts were used to create the sharp tips of the microneedles. Mould inserts with low surface roughness were fabricated using a picosecond laser machine. Sharp tipped plastic hollow microneedles 500 µm in height were fabricated using a microinjection moulding machine developed by the authors’ group. In addition, the strength of the microneedle was studied by simulation and penetration experiments. Results show that the microneedles can penetrate into skin, delivering liquid successfully without any breakage or severe deformation. Techniques presented in this paper can be used to fabricate sharp tipped plastic hollow microneedle arrays massively with low cost.

  17. Sharp tipped plastic hollow microneedle array by microinjection moulding

    International Nuclear Information System (INIS)

    Yung, K L; Xu, Yan; Kang, Chunlei; Liu, H; Tam, K F; Ko, S M; Kwan, F Y; Lee, Thomas M H


    A method of producing sharp tipped plastic hollow microneedle arrays using microinjection moulding is presented in this paper. Unlike traditional approaches, three mould inserts were used to create the sharp tips of the microneedles. Mould inserts with low surface roughness were fabricated using a picosecond laser machine. Sharp tipped plastic hollow microneedles 500 µm in height were fabricated using a microinjection moulding machine developed by the authors’ group. In addition, the strength of the microneedle was studied by simulation and penetration experiments. Results show that the microneedles can penetrate into skin, delivering liquid successfully without any breakage or severe deformation. Techniques presented in this paper can be used to fabricate sharp tipped plastic hollow microneedle arrays massively with low cost. (paper)

  18. Multi-electrode array technologies for neuroscience and cardiology (United States)

    Spira, Micha E.; Hai, Aviad


    At present, the prime methodology for studying neuronal circuit-connectivity, physiology and pathology under in vitro or in vivo conditions is by using substrate-integrated microelectrode arrays. Although this methodology permits simultaneous, cell-non-invasive, long-term recordings of extracellular field potentials generated by action potentials, it is 'blind' to subthreshold synaptic potentials generated by single cells. On the other hand, intracellular recordings of the full electrophysiological repertoire (subthreshold synaptic potentials, membrane oscillations and action potentials) are, at present, obtained only by sharp or patch microelectrodes. These, however, are limited to single cells at a time and for short durations. Recently a number of laboratories began to merge the advantages of extracellular microelectrode arrays and intracellular microelectrodes. This Review describes the novel approaches, identifying their strengths and limitations from the point of view of the end users -- with the intention to help steer the bioengineering efforts towards the needs of brain-circuit research.

  19. Tubular fluoropolymer arrays with high piezoelectric response (United States)

    Zhukov, Sergey; Eder-Goy, Dagmar; Biethan, Corinna; Fedosov, Sergey; Xu, Bai-Xiang; von Seggern, Heinz


    Polymers with electrically charged internal air cavities called ferroelectrets exhibit a pronounced piezoelectric effect and are regarded as soft functional materials suitable for sensor and actuator applications. In this work, a simple method for fabricating piezoelectret arrays with open-tubular channels is introduced. A set of individual fluoroethylenepropylene (FEP) tubes is compressed between two heated metal plates. The squeezed FEP tubes are melted together at +270 °C. The resulting structure is a uniform, multi-tubular, flat array that reveals a strong piezoelectric response after a poling step. The fabricated arrays have a high ratio between piezoelectrically active and non-active areas. The optimal charging voltage and stability of the piezoelectric coefficients with pressures and frequency were experimentally investigated for two specific array structures with wall thickness of 50 and 120 μm. The array fabricated from 50 μm thick FEP tubes reveals a stable and high piezoelectric coefficient of {d}33 = 120-160 pC N-1 with a flat frequency response between 0.1 Hz and 10 kHz for pressures between 1 and 100 kPa. An increase of wall thickness to 120 μm is accompanied by a more than twofold decrease in the piezoelectric coefficient as a result of a simultaneously higher effective array stiffness and lower remanent polarization. The obtained experimental results can be used to optimize the array design with regard to the electromechanical performance.

  20. The Very Large Array Data Processing Pipeline (United States)

    Kent, Brian R.; Masters, Joseph S.; Chandler, Claire J.; Davis, Lindsey E.; Kern, Jeffrey S.; Ott, Juergen; Schinzel, Frank K.; Medlin, Drew; Muders, Dirk; Williams, Stewart; Geers, Vincent C.; Momjian, Emmanuel; Butler, Bryan J.; Nakazato, Takeshi; Sugimoto, Kanako


    We present the VLA Pipeline, software that is part of the larger pipeline processing framework used for the Karl G. Jansky Very Large Array (VLA), and Atacama Large Millimeter/sub-millimeter Array (ALMA) for both interferometric and single dish observations.Through a collection of base code jointly used by the VLA and ALMA, the pipeline builds a hierarchy of classes to execute individual atomic pipeline tasks within the Common Astronomy Software Applications (CASA) package. Each pipeline task contains heuristics designed by the team to actively decide the best processing path and execution parameters for calibration and imaging. The pipeline code is developed and written in Python and uses a "context" structure for tracking the heuristic decisions and processing results. The pipeline "weblog" acts as the user interface in verifying the quality assurance of each calibration and imaging stage. The majority of VLA scheduling blocks above 1 GHz are now processed with the standard continuum recipe of the pipeline and offer a calibrated measurement set as a basic data product to observatory users. In addition, the pipeline is used for processing data from the VLA Sky Survey (VLASS), a seven year community-driven endeavor started in September 2017 to survey the entire sky down to a declination of -40 degrees at S-band (2-4 GHz). This 5500 hour next-generation large radio survey will explore the time and spectral domains, relying on pipeline processing to generate calibrated measurement sets, polarimetry, and imaging data products that are available to the astronomical community with no proprietary period. Here we present an overview of the pipeline design philosophy, heuristics, and calibration and imaging results produced by the pipeline. Future development will include the testing of spectral line recipes, low signal-to-noise heuristics, and serving as a testing platform for science ready data products.The pipeline is developed as part of the CASA software package by an

  1. Technique investigation on large area neutron scintillation detector array

    International Nuclear Information System (INIS)

    Chen Jiabin


    The detailed project for developing Large Area Neutron Scintillation Detector Array (LaNSA) to be used for measuring fusion fuel area density on Shenguang III prototype is presented, including experimental principle, detector working principle, electronics system design and the needs for target chamber etc. The detailed parameters for parts are given and the main causes affecting the system function are analyzed. The realization path is introduced. (authors)

  2. First data of the Colombia Lightning Mapping Array - COLMA


    López Trujillo, Jesús Alberto; Montañá Puig, Juan; Van der Velde, Oscar Arnoud; Romero Durán, David; Aranguren Fino, Harby Daniel; Torres Sanchez, Horacio; Taborda, John; Martínez, Joaquin


    The first data set of VHF lightning mapping using a Lightning Mapping Array system - LMA in a tropical region is presented in this paper. Six sensors were installed at the north of Colombia near Santa Marta city. Since the installation of the LMA network in 2015, up to 7000 intra-cloud (IC) discharges from September to November 2015 have been analyzed. The data suggests that, the electrical charge distribution in tropical thunderstorms shows higher vertical development re...

  3. Ordered arrays of Ni magnetic nanowires: Synthesis and investigation (United States)

    Napolskii, K. S.; Eliseev, A. A.; Yesin, N. V.; Lukashin, A. V.; Tretyakov, Yu. D.; Grigorieva, N. A.; Grigoriev, S. V.; Eckerlebe, H.


    The present study is focused on the synthesis and investigation of anodic aluminum oxide (AAO) films and magnetic nanocomposites Ni/AAO obtained by Ni electrodeposition into porous matrix. AAO membranes and magnetic nanocomposites were investigated by HRSEM, EDX microanalysis, XRD, nitrogen capillary adsorption method, SQUID magnetometry, and polarized small-angle neutron scattering (SANS). The influence of synthesis conditions and form factor effect on the magnetic properties of nanowire arrays is reported.

  4. Visible array waveguide gratings for applications of optical neural probes (United States)

    Segev, Eran; Fowler, Trevor; Faraon, Andrei; Roukes, Michael L.


    In this paper we propose using Array Waveguide Gratings (AWGs), working in the visible range, in order to implement the technique of Wavelength-Division-(de)Multiplexing for multi-point stimulation of deep-brain neurons. We've developed a CMOS compatible fabrication process and fabricated two sets of AWGs, working in the red and blue wavelengths. Experimental data demonstrating the functionality of these AWGs is presented.

  5. Memory states in small arrays of Josephson junctions

    Energy Technology Data Exchange (ETDEWEB)

    Braiman, Yehuda [ORNLOak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Computer Science and Mathematics Division, Computing and Computational Science Directorate; Univ. of Tennessee, Knoxville, TN (United States). Dept. of Mechanical, Aerospace, and Biomedical Engineering; Neschke, Brendan [ORNLOak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Computer Science and Mathematics Division, Computing and Computational Science Directorate; Univ. of Tennessee, Knoxville, TN (United States). Dept. of Mechanical, Aerospace, and Biomedical Engineering; Nair, Niketh S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Computer Science and Mathematics Division, Computing and Computational Science Directorate; Univ. of Tennessee, Knoxville, TN (United States). Dept. of Mechanical, Aerospace, and Biomedical Engineering; Imam, Neena [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Computing and Computational Science Directorat; Glowinski, R. [Univ. of Houston, TX (United States). Dept. of Mathematics


    Here, we study memory states of a circuit consisting of a small inductively coupled Josephson junction array and introduce basic (write, read, and reset) memory operations logics of the circuit. The presented memory operation paradigm is fundamentally different from conventional single quantum flux operation logics. We calculate stability diagrams of the zero-voltage states and outline memory states of the circuit. We also calculate access times and access energies for basic memory operations.

  6. Initial solar observations with Prototype Brazilian Decimetric Array (United States)

    Fernandes, F. C. R.; Ramesh, R.; Cecatto, J. R.; Faria, C.; Andrade, M. C.; Subramanian, K. R.; Rajan, M. S. Sundara; Sawant, H. S.

    The Prototype Brazilian Decimetre Array (PBDA) consists of 5 element alt-azimuth mounted parabolic dishes of 4-m diameter, having baselines up to 216 m in East-West direction. We present initial solar observations carried out with the PBDA during the period 22nd November to 11th December, 2004. The frequency of observation was 1.6 GHz. The temporal and spatial resolution were 100 ms and 3 arcmin, respectively.

  7. Large-scale nanophotonic phased array. (United States)

    Sun, Jie; Timurdogan, Erman; Yaacobi, Ami; Hosseini, Ehsan Shah; Watts, Michael R


    Electromagnetic phased arrays at radio frequencies are well known and have enabled applications ranging from communications to radar, broadcasting and astronomy. The ability to generate arbitrary radiation patterns with large-scale phased arrays has long been pursued. Although it is extremely expensive and cumbersome to deploy large-scale radiofrequency phased arrays, optical phased arrays have a unique advantage in that the much shorter optical wavelength holds promise for large-scale integration. However, the short optical wavelength also imposes stringent requirements on fabrication. As a consequence, although optical phased arrays have been studied with various platforms and recently with chip-scale nanophotonics, all of the demonstrations so far are restricted to one-dimensional or small-scale two-dimensional arrays. Here we report the demonstration of a large-scale two-dimensional nanophotonic phased array (NPA), in which 64 × 64 (4,096) optical nanoantennas are densely integrated on a silicon chip within a footprint of 576 μm × 576 μm with all of the nanoantennas precisely balanced in power and aligned in phase to generate a designed, sophisticated radiation pattern in the far field. We also show that active phase tunability can be realized in the proposed NPA by demonstrating dynamic beam steering and shaping with an 8 × 8 array. This work demonstrates that a robust design, together with state-of-the-art complementary metal-oxide-semiconductor technology, allows large-scale NPAs to be implemented on compact and inexpensive nanophotonic chips. In turn, this enables arbitrary radiation pattern generation using NPAs and therefore extends the functionalities of phased arrays beyond conventional beam focusing and steering, opening up possibilities for large-scale deployment in applications such as communication, laser detection and ranging, three-dimensional holography and biomedical sciences, to name just a few.

  8. Kinome profiling of Arabidopsis using arrays of kinase consensus substrates

    Directory of Open Access Journals (Sweden)

    Pieterse Corné MJ


    Full Text Available Abstract Background Kinome profiling aims at the parallel analysis of kinase activities in a cell. Novel developed arrays containing consensus substrates for kinases are used to assess those kinase activities. The arrays described in this paper were already used to determine kinase activities in mammalian systems, but since substrates from many organisms are present we decided to test these arrays for the determination of kinase activities in the model plant species Arabidopsis thaliana. Results Kinome profiling using Arabidopsis cell extracts resulted in the labelling of many consensus peptides by kinases from the plant, indicating the usefulness of this kinome profiling tool for plants. Method development showed that fresh and frozen plant material could be used to make cell lysates containing active kinases. Dilution of the plant extract increased the signal to noise ratio and non-radioactive ATP enhances full development of spot intensities. Upon infection of Arabidopsis with an avirulent strain of the bacterial pathogen Pseudomonas syringae pv. tomato, we could detect differential kinase activities by measuring phosphorylation of consensus peptides. Conclusion We show that kinome profiling on arrays with consensus substrates can be used to monitor kinase activities in plants. In a case study we show that upon infection with avirulent P. syringae differential kinase activities can be found. The PepChip can for example be used to purify (unknown kinases that play a role in P. syringae infection. This paper shows that kinome profiling using arrays of consensus peptides is a valuable new tool to study signal-transduction in plants. It complements the available methods for genomics and proteomics research.

  9. Performance Analysis of Digital loudspeaker Arrays

    DEFF Research Database (Denmark)

    Pedersen, Bo Rohde; Kontomichos, Fotios; Mourjopoulos, John


    An analysis of digital loudspeaker arrays shows that the ways in which bits are mapped to the drivers influence the quality of the audio result. Specifically, a "bit-summed" rather than the traditional "bit-mapped" strategy greatly reduces the number of times drivers make binary transitions per...... period of the input frequency. Detailed simulations compare the results for a 32-loudspeaker array with a similar configuration with analog excitation of the drivers. Ideally, drivers in digital arrays should be very small and span a small area, but that sets limits on the low-frequency response...

  10. Arrays: The Heart and Soul of SIRTIF (United States)

    Werner, Michael W.; Eisenhardt, Peter R.


    This paper describes the status of NASA's Space Infrared Telescope Facility (SIRTF) program. SIRTF will be a cryogenically cooled observatory for infrared astronomy from space and is planned for launch early in the next decade. It will be the first cryogenic observatory to make extensive use of the powerful infrared detector array technology discussed at this conference. We summarize a newly developed SIRTF mission concept and show how the availability of detector arrays has shaped the scientific rationale for SIRTF, and how the arrays themselves have become part of the definition of the SIRTF mission.

  11. Arrays: The heart and soul of SIRTF (United States)

    Werner, Michael W.; Eisenhardt, Peter R.


    This pape describes the status of NASA's Space Infrared Telescope Facility (SIRTF) program. SIRTF will be a cryogenically cooled observatory for infrared astronomy from space and is planned for launch early in the next decade. It will be the first cryogenic space observatory to make extensive use of the powerful infrared detector array technology discussed at this conference. We summarize a newly developed SIRTF mission concept and show how the availability of detector arrays has shaped the scientific rationale for SIRTF, and how the arrays themselves have become part of the definition of the SIRTF mission.

  12. Fluid jet-array parallel machining of optical microstructure array surfaces. (United States)

    Wang, Chunjin; Cheung, Chi Fai; Liu, Mingyu; Lee, Wing Bun


    Optical microstructure array surfaces such as micro-lens array surface, micro-groove array surface etc., are being used in more and more optical products, depending on its ability to produce a unique or particular performance. The geometrical complexity of the optical microstructures array surfaces makes them difficult to be fabricated. In this paper, a novel method named fluid jet-array parallel machining (FJAPM) is proposed to provide a new way to generate the microstructure array surfaces with high productivity. In this process, an array of abrasive water jets is pumped out of a nozzle, and each fluid jet simultaneously impinges the target surface to implement material removal independently. The jet-array nozzle was optimally designed firstly to diminish the effect of jet interference based on the experimental investigation on the 2-Jet nozzles with different jet intervals. The material removal and surface generation models were built and validated through the comparison of simulation and experimental results of the generation of several kinds of microstructure array surfaces. Following that, the effect of some factors in the process was discussed, including the fluid pressure, nozzle geometry, tool path, and dwell time. The experimental results and analysis prove that FJAPM process is an effective way to fabricate the optical microstructure array surface together with high productivity.

  13. A high frequency amplitude-steered array for real-time volumetric imaging (United States)

    Frazier, Catherine H.; Hughes, W. Jack; O'Brien, William D.


    Real-time three-dimensional acoustic imaging is difficult in water or tissue because of the slow speed of sound in these media. Conventional pulse-echo data collection, which uses at least one transmit pulse per line in the image, does not allow for the real-time update of a volume of data at practical ranges. Recently, a linear amplitude-steered array was presented that allows the collection of a plane of data with a single transmit pulse by spatially separating frequencies in the lateral direction. Later, by using a linear array with frequency separation in the vertical direction and rotating the array in the horizontal direction, volumetric data were collected with a small number of transmit pulses. By expanding the linear array to a two-dimensional array, data can now be collected for volumetric imaging in real time. In this study, the amplitude-steered array at the heart of a real-time volumetric sonar imaging system is described, giving the design of the array and describing how data are collected and processed to form images. An analysis of lateral resolution in the vertical and horizontal directions shows that resolution is improved in the direction of frequency separation over systems that use a broad transmit beam. Images from simulated data are presented.

  14. Preliminary experimental results of tungsten wire-array Z-pinches on primary test stand (United States)

    Huang, Xian-Bin; Zhou, Shao-Tong; Dan, Jia-Kun; Ren, Xiao-Dong; Wang, Kun-Lun; Zhang, Si-Qun; Li, Jing; Xu, Qiang; Cai, Hong-Chun; Duan, Shu-Chao; Ouyang, Kai; Chen, Guang-Hua; Ji, Ce; Wei, Bing; Feng, Shu-Ping; Wang, Meng; Xie, Wei-Ping; Deng, Jian-Jun; Zhou, Xiu-Wen; Yang, Yi


    The Primary Test Stand (PTS) developed at the China Academy of Engineering Physics is a 20 TW pulsed power driver, which can deliver a ˜10 MA, 70 ns rise-time (10%-90%) current to a short-circuit load and has important applications in Z-pinch driven inertial confinement fusion and high energy density physics. Preliminary results of tungsten wire-array Z-pinch experiments on PTS are presented. The load geometries investigated include 15-mm-tall cylindrical single and nested arrays with diameter ranging from 13 mm to 30 mm, consisting of 132-300 tungsten wires with 5-10 μm in diameter. Multiple diagnostics were fielded to characterize the x-ray radiation from wire-array Z pinches. The x-ray peak power (˜50 TW) and total radiated energy (˜500 kJ) were obtained from a single 20-mm-diam array with 80-ns stagnation time. The highest x-ray peak power up to 80 TW with 2.4 ns FWHM was achieved by using a nested array with 20-mm outer diameter, and the total x-ray energy from the nested array is comparable to that of single array. Implosion velocity estimated from the time-resolved image measurement exceeds 30 cm/μs. The detailed experimental results and other findings are presented and discussed.

  15. Experimental Investigation on Heat Transfer Characteristics of Different Metallic Fin Arrays (United States)

    Sangewar, Ravi Kumar


    The reliability of electronic equipment depends on the reliability of the system. For small applications natural convection cooling is sufficient, but for the electronic equipment having number of heat generating components, forced convection cooling is essential. In number of cases, pin fin arrangement is preferred for augmentation of heat transfer. Here, the performance of pin fin array of copper and aluminum material with in-line, as well as staggered arrangement over a flat plate is studied. Constant heat input was given to the inline, staggered arrangement of copper as well as aluminium pin fin arrays. In the present experimental study, heat input and airflow rates are the variables. It was found that the heat transfer coefficient for staggered array is 15% more than that of the in-line array, at the same time pressure drop across the staggered array is more by 10% than the in-line array. The pressure drop was observed to be increasing with increase in flow rate as expected. Endeavor of the present work is to find the optimum spacing between the fins in an array for maximum heat transfer rate, by investigating the heat transfer characteristics.

  16. A MATLAB-based planar array design assistant package with applications to meteor radar systems (United States)

    Kang, C.; Palo, S.

    Interferometric techniques are commonly used in all-sky meteor radar systems for meteor location determination Essentially interferometric techniques use the phase information recorded from different receiving antennas to estimate the elevation and azimuth of the meteors Prior efforts have been made to determine an antenna geometry that improves the performance of meteor radar systems For example Hocking and Thayaparan 1997 used four antennas typically spaced by 1 5 to 3 wavelengths to locate the meteors Jones 1992 and Hocking 1997 presented an antenna geometry using a 5 element array with minimum antenna spacing of 2 wavelengths to estimate the direction of arrival DOA of the meteors By spacing the antennas more than 2 wavelength apart these array geometries were successful in reducing the electromagnetic coupling effect between the antennas which can introduce errors in the estimation of meteor locations Without a clear metric for performance it is difficult to compare geometries In this work a MATLAB planar antenna array package mainly designed for visualization of the direction of arrival DOA estimation performance of arbitrary user designed antenna array is presented Performance comparisons of nominal array geometries are also provided Several metrics are available in this package in an effort to provide the user with a comprehensive examination of an array s performance The metrics are the Cramer-Rao bound CRB which is the minimum variance that can be obtained for any unbiased estimator the co-array the

  17. Detection of streptomycin and quinolone resistance in Mycobacterium tuberculosis by a low-density DNA array. (United States)

    Moure, Raquel; Tudó, Griselda; Medina, Rebeca; Vicente, Eva; Caldito, José María; Codina, Maria Gemma; Coll, Pere; Español, Montserrat; Gonzalez-Martin, Julian; Rey-Jurado, Emma; Salvadó, Margarita; Tórtola, Maria Teresa; Alcaide, Fernando


    In cases of multidrug-resistant tuberculosis, it is crucial to rule out resistance to second-line antituberculous (anti-TB) agents. In the present study, a low-cost low-density DNA array including four genetic regions (rrs 530 loop, rrs 1400, rpsL and gyrA) was designed for the rapid detection of the most important mutations related to anti-TB injectable drugs (mainly streptomycin) and fluoroquinolone resistance (LD-SQ array). A total of 108 streptomycin- and/or ofloxacin-resistant and 20 streptomycin- and ofloxacin-susceptible Mycobacterium tuberculosis clinical isolates were analysed with the array. The results obtained were compared with sequencing data and phenotypic susceptibility pattern. The LD-SQ array offered a good sensitivity compared to sequencing, especially among resistant strains: 92.5% (37/40) for streptomycin and 87.5% (7/8) for fluoroquinolones. Therefore, this array could be considered a good approach for the rapid detection of mutations related to streptomycin and fluoroquinolone resistance. On the other hand, there were discordant results in 16 resistant strains and six susceptible isolates, mostly concerning the gyrA region, in which the existence of polymorphisms next to informative positions might cause cross-hybridization. These discrepancies were caused by some technical limitations; consequently, the present array should be considered as a first-step prior to a forthcoming optimized version of the array. © 2013 Published by Elsevier Ltd.

  18. Professional presentations made simple. (United States)

    Starver, Kelly D; Shellenbarger, Teresa


    One way clinical nurse specialists (CNS) influence nursing practice and share professional expertise is by making presentations. This article presents strategies that clinical nurse specialists can use to enhance the effectiveness of oral presentations. Included are tips for analyzing the audience, developing content and materials, selecting presentation methods, and delivering an effective presentation.

  19. Develop your presentation skills

    CERN Document Server

    Theobald, Theo


    Going beyond handling nerves and presenting PowerPoint slides, the third edition of "Develop Your Presentation Skills "offers practical advice on developing a captivating presentation, constructing compelling content, and boosting self-confidence. The book includes three new chapters on delivering a "stripped down"presentation, using new media to engage with the audience, and handling being asked to present on short notice."

  20. Volumetric ultrasound image-forming using fully controllable 2-D CMUT-on-ASIC arrays (United States)

    Kim, Bae-Hyung; Song, Jongkeun; Lee, Seunghun; Cho, Kyungil; Kim, Youngil; Jeon, Taeho


    In real-time 3-D ultrasound imaging using 2-D array transducers, a large number of the 2-D array elements pose challenges in fabricating and transferring signals from/into the system. This fabrication problem has been solved by using a silicon micromachining process for capacitive micromachined ultrasonic transducer (CMUT) arrays. For realtime 3-D ultrasound imaging, manipulating massive ultrasound data acquired from a large number of system channels is a challenge as is fabricating and interconnecting hundreds or thousands of elements of 2-D array with the imaging system's front-end (FE) electronics. Minimizing the number of transmitting and receiving elements and the firing events without degrading the image quality is one of the solutions to reduce the overall system complexity and improve the frame rate. We have been developing a real-time 3-D volumetric ultrasound imaging system using 2-D CMUT arrays by integrating FE electronics with a large number of 2-D array elements. Here, we explore a configuration method to design a scalable 2-D CMUT array and a new volumetric image-formation method to provide higher information rate of a volume image. In this paper, we present the 2-D CMUT-on-ASIC arrays designed to reduce the overall system complexity, and a new volume scanning and image-forming method for real-time 3-D volumetric ultrasonic imaging using 2-D CMUT-on-ASIC arrays. To evaluate our works, we performed from theoretical studies for point spread functions of the array configuration to phantom experiments with off-the-line images.