WorldWideScience

Sample records for single-strand telomeric dna

  1. POT1-independent single-strand telomeric DNA binding activities in Brassicaceae.

    Science.gov (United States)

    Shakirov, Eugene V; McKnight, Thomas D; Shippen, Dorothy E

    2009-06-01

    Telomeres define the ends of linear eukaryotic chromosomes and are required for genome maintenance and continued cell proliferation. The extreme ends of telomeres terminate in a single-strand protrusion, termed the G-overhang, which, in vertebrates and fission yeast, is bound by evolutionarily conserved members of the POT1 (protection of telomeres) protein family. Unlike most other model organisms, the flowering plant Arabidopsis thaliana encodes two divergent POT1-like proteins. Here we show that the single-strand telomeric DNA binding activity present in A. thaliana nuclear extracts is not dependent on POT1a or POT1b proteins. Furthermore, in contrast to POT1 proteins from yeast and vertebrates, recombinant POT1a and POT1b proteins from A. thaliana, and from two additional Brassicaceae species, Arabidopsis lyrata and Brassica oleracea (cauliflower), fail to bind single-strand telomeric DNA in vitro under the conditions tested. Finally, although we detected four single-strand telomeric DNA binding activities in nuclear extracts from B. oleracea, partial purification and DNA cross-linking analysis of these complexes identified proteins that are smaller than the predicted sizes of BoPOT1a or BoPOT1b. Taken together, these data suggest that POT1 proteins are not the major single-strand telomeric DNA binding activities in A. thaliana and its close relatives, underscoring the remarkable functional divergence of POT1 proteins from plants and other eukaryotes.

  2. Leishmania replication protein A-1 binds in vivo single-stranded telomeric DNA

    International Nuclear Information System (INIS)

    Neto, J.L. Siqueira; Lira, C.B.B.; Giardini, M.A.; Khater, L.; Perez, A.M.; Peroni, L.A.; Reis, J.R.R. dos; Freitas-Junior, L.H.; Ramos, C.H.I.; Cano, M.I.N.

    2007-01-01

    Replication protein A (RPA) is a highly conserved heterotrimeric single-stranded DNA-binding protein involved in different events of DNA metabolism. In yeast, subunits 1 (RPA-1) and 2 (RPA-2) work also as telomerase recruiters and, in humans, the complex unfolds G-quartet structures formed by the 3' G-rich telomeric strand. In most eukaryotes, RPA-1 and RPA-2 bind DNA using multiple OB fold domains. In trypanosomatids, including Leishmania, RPA-1 has a canonical OB fold and a truncated RFA-1 structural domain. In Leishmania amazonensis, RPA-1 alone can form a complex in vitro with the telomeric G-rich strand. In this work, we show that LaRPA-1 is a nuclear protein that associates in vivo with Leishmania telomeres. We mapped the boundaries of the OB fold DNA-binding domain using deletion mutants. Since Leishmania and other trypanosomatids lack homologues of known telomere end binding proteins, our results raise questions about the function of RPA-1 in parasite telomeres

  3. TERRA and hnRNPA1 orchestrate an RPA-to-POT1 switch on telomeric single-stranded DNA.

    Science.gov (United States)

    Flynn, Rachel Litman; Centore, Richard C; O'Sullivan, Roderick J; Rai, Rekha; Tse, Alice; Songyang, Zhou; Chang, Sandy; Karlseder, Jan; Zou, Lee

    2011-03-24

    Maintenance of telomeres requires both DNA replication and telomere 'capping' by shelterin. These two processes use two single-stranded DNA (ssDNA)-binding proteins, replication protein A (RPA) and protection of telomeres 1 (POT1). Although RPA and POT1 each have a critical role at telomeres, how they function in concert is not clear. POT1 ablation leads to activation of the ataxia telangiectasia and Rad3-related (ATR) checkpoint kinase at telomeres, suggesting that POT1 antagonizes RPA binding to telomeric ssDNA. Unexpectedly, we found that purified POT1 and its functional partner TPP1 are unable to prevent RPA binding to telomeric ssDNA efficiently. In cell extracts, we identified a novel activity that specifically displaces RPA, but not POT1, from telomeric ssDNA. Using purified protein, here we show that the heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1) recapitulates the RPA displacing activity. The RPA displacing activity is inhibited by the telomeric repeat-containing RNA (TERRA) in early S phase, but is then unleashed in late S phase when TERRA levels decline at telomeres. Interestingly, TERRA also promotes POT1 binding to telomeric ssDNA by removing hnRNPA1, suggesting that the re-accumulation of TERRA after S phase helps to complete the RPA-to-POT1 switch on telomeric ssDNA. Together, our data suggest that hnRNPA1, TERRA and POT1 act in concert to displace RPA from telomeric ssDNA after DNA replication, and promote telomere capping to preserve genomic integrity.

  4. Single--stranded DNA mycoplasmaviruses

    Energy Technology Data Exchange (ETDEWEB)

    Maniloff, J.; Das, J.; Nowak, J.A.

    1978-01-01

    Two general types of single--stranded DNA bacteriophases have been described, icosahedral virions (e.g., 0X174) and filamentous virions (e.g., M13). Mycoplasmavirus MVL51 appears to represent another type of single--stranded DNA phage, with a genome size close to that of 0X174 and a nonlytic mode of infection like that of filamentous phages. The bullet shaped MVL51 morphology is unlike that of other known phages.

  5. Effects of single-stranded DNA binding proteins on primer extension by telomerase.

    Science.gov (United States)

    Cohen, Shlomit; Jacob, Eyal; Manor, Haim

    2004-08-12

    We present a biochemical analysis of the effects of three single-stranded DNA binding proteins on extension of oligonucleotide primers by the Tetrahymena telomerase. One of them, a human protein designated translin, which was shown to specifically bind the G-rich Tetrahymena and human telomeric repeats, slightly stimulated the primer extension reactions at molar ratios of translin/primer of primers, rather than by a direct interaction of this protein with telomerase. A second protein, the general human single-stranded DNA binding protein Replication Protein A (RPA), similarly affected the primer extension by telomerase, even though its mode of binding to DNA differs from that of translin. A third protein, the E. coli single-stranded DNA binding protein (SSB), whose binding to DNA is highly cooperative, caused more substantial stimulation and inhibition at the lower and the higher molar ratios of SSB/primer, respectively. Both telomere-specific and general single-stranded DNA binding proteins are found in living cells in telomeric complexes. Based on our data, we propose that these proteins may exert either stimulatory or inhibitory effects on intracellular telomerases, depending on their local concentrations. Copyright 2004 Elsevier B.V.

  6. DNA replication of single-stranded Escherichia coli DNA phages

    NARCIS (Netherlands)

    Baas, P.D.

    1985-01-01

    Research on single-stranded DNA phages has contributed tremendously to our knowledge of several fundamental life-processes. The small size of their genomes and the fast rate at which they multiply in their host, Escherichia coil, made them attractive candidates for various studies. There

  7. Improved single-strand DNA sizing accuracy in capillary electrophoresis.

    OpenAIRE

    Rosenblum, B B; Oaks, F; Menchen, S; Johnson, B

    1997-01-01

    Interpolation algorithms can be developed to size unknown single-stranded (ss) DNA fragments based on their electrophoretic mobilities, when they are compared with the mobilities of standard fragments of known sizes; however, sequence-specific anomalous electrophoretic migration can affect the accuracy and precision of the called sizes of the fragments. We used the anomalous migration of ssDNA fragments to optimize denaturation conditions for capillary electrophoresis. The capillary electroph...

  8. Single-strand DNA molecule translocation through nanoelectrode gaps

    International Nuclear Information System (INIS)

    Zhao Xiongce; Payne, Christina M; Cummings, Peter T; Lee, James W

    2007-01-01

    Molecular dynamics simulations were performed to investigate the translocation of single-strand DNA through nanoscale electrode gaps under the action of a constant driving force. The application behind this theoretical study is a proposal to use nanoelectrodes as a screening gap as part of a rapid genomic sequencing device. Preliminary results from a series of simulations using various gap widths and driving forces suggest that the narrowest electrode gap that a single-strand DNA can pass is ∼1.5 nm. The minimum force required to initiate the translocation within nanoseconds is ∼0.3 nN. Simulations using DNA segments of various lengths indicate that the minimum initiation force is insensitive to the length of DNA. However, the average threading velocity of DNA varies appreciably from short to long DNA segments. We attribute such variation to the different nature of drag force experienced by the short and long DNA segments in the environment. It is found that DNA molecules deform significantly to fit in the shape of the nanogap during the translocation

  9. Programmable autonomous synthesis of single-stranded DNA

    Science.gov (United States)

    Kishi, Jocelyn Y.; Schaus, Thomas E.; Gopalkrishnan, Nikhil; Xuan, Feng; Yin, Peng

    2018-02-01

    DNA performs diverse functional roles in biology, nanotechnology and biotechnology, but current methods for autonomously synthesizing arbitrary single-stranded DNA are limited. Here, we introduce the concept of primer exchange reaction (PER) cascades, which grow nascent single-stranded DNA with user-specified sequences following prescribed reaction pathways. PER synthesis happens in a programmable, autonomous, in situ and environmentally responsive fashion, providing a platform for engineering molecular circuits and devices with a wide range of sensing, monitoring, recording, signal-processing and actuation capabilities. We experimentally demonstrate a nanodevice that transduces the detection of a trigger RNA into the production of a DNAzyme that degrades an independent RNA substrate, a signal amplifier that conditionally synthesizes long fluorescent strands only in the presence of a particular RNA signal, molecular computing circuits that evaluate logic (AND, OR, NOT) combinations of RNA inputs, and a temporal molecular event recorder that records in the PER transcript the order in which distinct RNA inputs are sequentially detected.

  10. Single-stranded DNA library preparation from highly degraded DNA using T4 DNA ligase.

    Science.gov (United States)

    Gansauge, Marie-Theres; Gerber, Tobias; Glocke, Isabelle; Korlevic, Petra; Lippik, Laurin; Nagel, Sarah; Riehl, Lara Maria; Schmidt, Anna; Meyer, Matthias

    2017-06-02

    DNA library preparation for high-throughput sequencing of genomic DNA usually involves ligation of adapters to double-stranded DNA fragments. However, for highly degraded DNA, especially ancient DNA, library preparation has been found to be more efficient if each of the two DNA strands are converted into library molecules separately. We present a new method for single-stranded library preparation, ssDNA2.0, which is based on single-stranded DNA ligation with T4 DNA ligase utilizing a splinter oligonucleotide with a stretch of random bases hybridized to a 3΄ biotinylated donor oligonucleotide. A thorough evaluation of this ligation scheme shows that single-stranded DNA can be ligated to adapter oligonucleotides in higher concentration than with CircLigase (an RNA ligase that was previously chosen for end-to-end ligation in single-stranded library preparation) and that biases in ligation can be minimized when choosing splinters with 7 or 8 random nucleotides. We show that ssDNA2.0 tolerates higher quantities of input DNA than CircLigase-based library preparation, is less costly and better compatible with automation. We also provide an in-depth comparison of library preparation methods on degraded DNA from various sources. Most strikingly, we find that single-stranded library preparation increases library yields from tissues stored in formalin for many years by several orders of magnitude. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  11. Telomerase suppresses formation of ALT-associated single-stranded telomeric C-circles.

    Science.gov (United States)

    Plantinga, Matthew J; Pascarelli, Kara M; Merkel, Anna S; Lazar, Alexander J; von Mehren, Margaret; Lev, Dina; Broccoli, Dominique

    2013-06-01

    Telomere maintenance is an essential characteristic of cancer cells, most commonly achieved by activation of telomerase. Telomeres can also be maintained by a recombination-based mechanism, alternative lengthening of telomeres (ALT). Cells using ALT are characterized by the presence of ALT-associated promyelocytic leukemia (PML) bodies (APB), long, heterogeneously sized telomeres, extrachromosomal telomeric circular DNA, and elevated telomeric recombination. Consistent with other reports, we found that liposarcomas containing APBs, but lacking telomerase expression, always contained C-rich circles (C-circles), and these C-circles were never present in the absence of APBs, indicating a tight link between these features in ALT cells. However, a rare subgroup of tumors showing evidence of telomere maintenance by both telomerase and ALT did not contain C-circles. To test the hypothesis that telomerase expression disrupts the tight link between APBs and C-circles, we used ALT cell lines that were engineered to express telomerase. Introduction of telomerase activity in these ALT cells resulted in, on average, shorter telomeres with retention of APBs. However, at high passage, the level of C-circles was significantly reduced, which was paralleled by a switch from C-strand overhangs to G-strand overhangs. We propose that by extending critically short telomeres in these cells, telomerase is disrupting a key step in the ALT pathway necessary for production and/or maintenance of C-circles. ©2013 AACR.

  12. Sulforaphane induces DNA single strand breaks in cultured human cells

    Energy Technology Data Exchange (ETDEWEB)

    Sestili, Piero, E-mail: piero.sestili@uniurb.it [Dipartimento di Scienze Biomolecolari, Via Maggetti, 21, Universita degli Studi di Urbino ' Carlo Bo' , 61029 Urbino, PU (Italy); Paolillo, Marco [Dipartimento di Scienze Biomolecolari, Via Maggetti, 21, Universita degli Studi di Urbino ' Carlo Bo' , 61029 Urbino, PU (Italy); Lenzi, Monia [Dipartimento di Farmacologia, Universita degli Studi di Bologna, Via Irnerio 48, 40126 Bologna (Italy); Colombo, Evelin; Vallorani, Luciana; Casadei, Lucia; Martinelli, Chiara [Dipartimento di Scienze Biomolecolari, Via Maggetti, 21, Universita degli Studi di Urbino ' Carlo Bo' , 61029 Urbino, PU (Italy); Fimognari, Carmela [Dipartimento di Farmacologia, Universita degli Studi di Bologna, Via Irnerio 48, 40126 Bologna (Italy)

    2010-07-07

    Sulforaphane (SFR), an isothiocyanate from cruciferous vegetables, possesses growth-inhibiting and apoptosis-inducing activities in cancer cell lines. Recently, SFR has been shown to promote the mitochondrial formation of reactive oxygen species (ROS) in human cancer cell lines. The present study was undertaken to see whether SFR-derived ROS might cause DNA damage in cultured human cells, namely T limphoblastoid Jurkat and human umbilical vein endothelial cells (HUVEC). 1-3 h treatments with 10-30 {mu}M SFR elicited intracellular ROS formation (as assayed with dihydrorhodamine, DHR, oxidation) as well as DNA breakage (as assessed with fast halo assay, FHA). These effects lacked cell-type specificity, since could be observed in both Jurkat and HUVEC. Differential-pH FHA analysis of damaged DNA showed that SFR causes frank DNA single strand breaks (SSBs); no DNA double strand breaks (DSBs) were found within the considered treatment times (up to 3 h). SFR-derived ROS were formed at the mitochondrial respiratory chain (MRC) level: indeed rotenone or myxothiazol (MRC Complex I and III inhibitors, respectively) abrogated ROS formation. Furthermore ROS were not formed in Jurkat cells pharmacologically depleted of respiring mitochondria (MRC-/Jurkat). Formation of ROS was causally linked to the induction of SSBs: indeed all the experimental conditions capable of preventing ROS formation also prevented the damage of nuclear DNA from SFR-intoxicated cells. As to the toxicological relevance of SSBs, we found that their prevention slightly but significantly attenuated SFR cytotoxicity, suggesting that high-dose SFR toxicity is the result of a complex series of events among which GSH depletion seems to play a pivotal role. In conclusion, the present study identifies a novel mechanism contributing to SFR toxicity which - since DNA damage is a prominent mechanism underlying the cytotoxic activity of established antineoplastic agents - might help to exploit the therapeutic value

  13. Sulforaphane induces DNA single strand breaks in cultured human cells

    International Nuclear Information System (INIS)

    Sestili, Piero; Paolillo, Marco; Lenzi, Monia; Colombo, Evelin; Vallorani, Luciana; Casadei, Lucia; Martinelli, Chiara; Fimognari, Carmela

    2010-01-01

    Sulforaphane (SFR), an isothiocyanate from cruciferous vegetables, possesses growth-inhibiting and apoptosis-inducing activities in cancer cell lines. Recently, SFR has been shown to promote the mitochondrial formation of reactive oxygen species (ROS) in human cancer cell lines. The present study was undertaken to see whether SFR-derived ROS might cause DNA damage in cultured human cells, namely T limphoblastoid Jurkat and human umbilical vein endothelial cells (HUVEC). 1-3 h treatments with 10-30 μM SFR elicited intracellular ROS formation (as assayed with dihydrorhodamine, DHR, oxidation) as well as DNA breakage (as assessed with fast halo assay, FHA). These effects lacked cell-type specificity, since could be observed in both Jurkat and HUVEC. Differential-pH FHA analysis of damaged DNA showed that SFR causes frank DNA single strand breaks (SSBs); no DNA double strand breaks (DSBs) were found within the considered treatment times (up to 3 h). SFR-derived ROS were formed at the mitochondrial respiratory chain (MRC) level: indeed rotenone or myxothiazol (MRC Complex I and III inhibitors, respectively) abrogated ROS formation. Furthermore ROS were not formed in Jurkat cells pharmacologically depleted of respiring mitochondria (MRC-/Jurkat). Formation of ROS was causally linked to the induction of SSBs: indeed all the experimental conditions capable of preventing ROS formation also prevented the damage of nuclear DNA from SFR-intoxicated cells. As to the toxicological relevance of SSBs, we found that their prevention slightly but significantly attenuated SFR cytotoxicity, suggesting that high-dose SFR toxicity is the result of a complex series of events among which GSH depletion seems to play a pivotal role. In conclusion, the present study identifies a novel mechanism contributing to SFR toxicity which - since DNA damage is a prominent mechanism underlying the cytotoxic activity of established antineoplastic agents - might help to exploit the therapeutic value of

  14. Molecular investigation of evaporation of biodroplets containing single-strand DNA on graphene surface.

    Science.gov (United States)

    Akbari, Fahimeh; Foroutan, Masumeh

    2018-02-14

    In this study, the water droplet behaviour of four different types of single-strand DNA with homogeneous base sequence on a graphene substrate during evaporation of the droplet was investigated using molecular dynamics (MD) simulation. The simulation results indicated that the evaporation depended on the DNA sequence. The observed changes can be divided into four parts: (i) vaporization mode, (ii) evaporation flux, (iii) mechanism of single-strand placement on the surface, and (iv) consideration of remaining single strands after evaporation. Our simulation observations indicated different evaporation modes for thymine biodroplets as compared to those for other biodroplets. The evaporation of the thymine biodroplets occurred with an increase in the contact angle, while that of the other biodroplets occur in a constant contact angle mode. Moreover, thymine biodroplets generate the lowest contact line compared to other single strands, and it is always placed far away from the centre of the droplets during evaporation. Investigating variations in the evaporation flux shows that thymine has the highest evaporation flux and guanine has the lowest. Moreover, during initial evaporation, the flux of evaporation increases at the triple point of the biodroplets containing thymine single strands, while it decreases in the other biodroplets. The following observation was obtained from the study of the placement of single strands on the substrate: guanine and thymine interacted slower than other single strands during evaporation with graphene, adenine single strand had a higher folding during evaporation, and guanine single strand showed the lowest end-to-end distance. The investigation of single-strand DNA after evaporation shows that adenine produces the most stable structure at the end of evaporation. In addition, cytosine is the most stretched single-strand DNA due to its lack of internal π-π stacking and hydrogen bonding. Therefore, cytosine single strand is more

  15. Regions of incompatibility in single-stranded DNA bacteriophages phi X174 and G4

    NARCIS (Netherlands)

    van der Avoort, H. G.; van der Ende, A.; van Arkel, G. A.; Weisbeek, P. J.

    1984-01-01

    The intracellular presence of a recombinant plasmid containing the intercistronic region between the genes H and A of bacteriophage phi X174 strongly inhibits the conversion of infecting single-stranded phi X DNA to parental replicative-form DNA. Also, transfection with single-stranded or

  16. Viral single-strand DNA induces p53-dependent apoptosis in human embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Matthew L Hirsch

    Full Text Available Human embryonic stem cells (hESCs are primed for rapid apoptosis following mild forms of genotoxic stress. A natural form of such cellular stress occurs in response to recombinant adeno-associated virus (rAAV single-strand DNA genomes, which exploit the host DNA damage response for replication and genome persistence. Herein, we discovered a unique DNA damage response induced by rAAV transduction specific to pluripotent hESCs. Within hours following rAAV transduction, host DNA damage signaling was elicited as measured by increased gamma-H2AX, ser15-p53 phosphorylation, and subsequent p53-dependent transcriptional activation. Nucleotide incorporation assays demonstrated that rAAV transduced cells accumulated in early S-phase followed by the induction of apoptosis. This lethal signaling sequalae required p53 in a manner independent of transcriptional induction of Puma, Bax and Bcl-2 and was not evident in cells differentiated towards a neural lineage. Consistent with a lethal DNA damage response induced upon rAAV transduction of hESCs, empty AAV protein capsids demonstrated no toxicity. In contrast, DNA microinjections demonstrated that the minimal AAV origin of replication and, in particular, a 40 nucleotide G-rich tetrad repeat sequence, was sufficient for hESC apoptosis. Our data support a model in which rAAV transduction of hESCs induces a p53-dependent lethal response that is elicited by a telomeric sequence within the AAV origin of replication.

  17. Initiation signals for complementary strand DNA synthesis on single-stranded plasmid DNA

    NARCIS (Netherlands)

    van der Ende, A.; Teertstra, R.; van der Avoort, H. G.; Weisbeek, P. J.

    1983-01-01

    The bacteriophage 0X174 origin for (+) strand DNA synthesis, when inserted in a plasmid, is in vivo a substrate for the initiator A protein, that is produced by infecting phages. The result of this interaction is the packaging of single-stranded plasmid DNA into preformed phage coats. These plasmid

  18. New insights on single-stranded versus double-stranded DNA library preparation for ancient DNA

    DEFF Research Database (Denmark)

    Wales, Nathan; Carøe, Christian; Sandoval-Velasco, Marcela

    2015-01-01

    An innovative single-stranded DNA (ssDNA) library preparation method has sparked great interest among ancient DNA (aDNA) researchers, especially after reports of endogenous DNA content increases >20-fold in some samples. To investigate the behavior of this method, we generated ssDNA...... and conventional double-stranded DNA (dsDNA) libraries from 23 ancient and historic plant and animal specimens. We found ssDNA library preparation substantially increased endogenous content when dsDNA libraries contained...

  19. Genetic transformation of Streptococcus pneumoniae by DNA cloned into the single-stranded bacteriophage f1.

    OpenAIRE

    Barany, F; Boeke, J D

    1983-01-01

    A Staphylococcus aureus plasmid derivative, pFB9, coding for erythromycin and chloramphenicol resistance was cloned into the filamentous Escherichia coli phage f1. Recombinant phage-plasmid hybrids, designated plasmids, were isolated from E. coli and purified by transformation into Streptococcus pneumoniae. Single-stranded DNA was prepared from E. coli cells infected with two different plasmids, fBB101 and fBB103. Introduction of fully or partially single-stranded DNA into Streptococcus pneum...

  20. Adenovirus DNA replication in vitro: Duplication of single-stranded DNA containing a panhandle structure

    NARCIS (Netherlands)

    Leegwater, P.A.J.; Rombouts, R.F.A.; Vliet, P.C. van der

    1988-01-01

    Adenovirus DNA replicates by displacement of one of the parental strands followed by duplication of the displaced parental single strand (complementary strand synthesis). Displacement synthesis has been performed in a reconstituted system composed of viral and cellular proteins, employing either the

  1. Dynamics of RecA filaments on single-stranded DNA

    NARCIS (Netherlands)

    Van Loenhout, M.T.J.; Van der Heijden, T.; Kanaar, R.; Wyman, C.; Dekker, C.

    2009-01-01

    RecA, the key protein in homologous recombination, performs its actions as a helical filament on single-stranded DNA (ssDNA). ATP hydrolysis makes the RecA–ssDNA filament dynamic and is essential for successful recombination. RecA has been studied extensively by single-molecule techniques on

  2. Ion assisted structural collapse of a single stranded DNA: A molecular dynamics approach

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Soumadwip; Dixit, Himanshu; Chakrabarti, Rajarshi, E-mail: rajarshi@chem.iitb.ac.in

    2015-09-28

    Highlights: • The dynamics of a single-stranded DNA in presence of different concentrations of Mg{sup 2+} is investigated. • The initial DNA chain collapse is characterized by the formation of non-sequentially stacked base pairs. • The DNA chain re-swells at high concentrations of Mg{sup 2+} as a consequence of overcharging. - Abstract: The structure and dynamics of negatively charged nucleic acids strongly correlate with the concentration and charge of the oppositely charged counterions. It is well known that the structural collapse of DNA is favoured in the presence of additional salt, a source of excess oppositely charged ions. Under such conditions single stranded DNA adopts a collapsed coil like conformation, typically characterized by stacking base pairs. Using atomistic molecular dynamics simulation, we demonstrate that in the presence of additional divalent salt (MgCl{sub 2}) single stranded DNA with base sequence 5′-CGCGAATTCGCG-3′ (Dickerson Drew dodecamer) initially collapses and then expands with increasing salt concentration. This is due to the overcharging induced DNA chain swelling, a dominant factor at a higher divalent salt concentration. In a nutshell, our simulations show how in the presence of divalent salt, non-sequential base stacking and overcharging competes and affect single stranded DNA dynamics unlike a monovalent salt.

  3. Acheta domesticus Volvovirus, a Novel Single-Stranded Circular DNA Virus of the House Cricket.

    Science.gov (United States)

    Pham, Hanh T; Bergoin, Max; Tijssen, Peter

    2013-03-14

    The genome of a novel virus of the house cricket consists of a 2,517-nucleotide (nt) circular single-stranded DNA (ssDNA) molecule with 4 open reading frames (ORFs). One ORF had a low identity to circovirus nucleotide sequences (NS). The unique properties of this volvovirus suggested that it belongs to a new virus family or genus.

  4. Acheta domesticus Volvovirus, a Novel Single-Stranded Circular DNA Virus of the House Cricket

    OpenAIRE

    Pham, Hanh T.; Bergoin, Max; Tijssen, Peter

    2013-01-01

    International audience; The genome of a novel virus of the house cricket consists of a 2,517-nucleotide (nt) circular single-stranded DNA (ssDNA) molecule with 4 open reading frames (ORFs). One ORF had a low identity to circovirus nucleotide sequences (NS). The unique properties of this volvovirus suggested that it belongs to a new virus family or genus.

  5. Base damage within single-strand DNA underlies in vivo hypermutability induced by a ubiquitous environmental agent.

    Directory of Open Access Journals (Sweden)

    Kin Chan

    Full Text Available Chromosomal DNA must be in single-strand form for important transactions such as replication, transcription, and recombination to occur. The single-strand DNA (ssDNA is more prone to damage than double-strand DNA (dsDNA, due to greater exposure of chemically reactive moieties in the nitrogenous bases. Thus, there can be agents that damage regions of ssDNA in vivo while being inert toward dsDNA. To assess the potential hazard posed by such agents, we devised an ssDNA-specific mutagenesis reporter system in budding yeast. The reporter strains bear the cdc13-1 temperature-sensitive mutation, such that shifting to 37°C results in telomere uncapping and ensuing 5' to 3' enzymatic resection. This exposes the reporter region, containing three closely-spaced reporter genes, as a long 3' ssDNA overhang. We validated the ability of the system to detect mutagenic damage within ssDNA by expressing a modified human single-strand specific cytosine deaminase, APOBEC3G. APOBEC3G induced a high density of substitutions at cytosines in the ssDNA overhang strand, resulting in frequent, simultaneous inactivation of two reporter genes. We then examined the mutagenicity of sulfites, a class of reactive sulfur oxides to which humans are exposed frequently via respiration and food intake. Sulfites, at a concentration similar to that found in some foods, induced a high density of mutations, almost always as substitutions at cytosines in the ssDNA overhang strand, resulting in simultaneous inactivation of at least two reporter genes. Furthermore, sulfites formed a long-lived adducted 2'-deoxyuracil intermediate in DNA that was resistant to excision by uracil-DNA N-glycosylase. This intermediate was bypassed by error-prone translesion DNA synthesis, frequently involving Pol ζ, during repair synthesis. Our results suggest that sulfite-induced lesions in DNA can be particularly deleterious, since cells might not possess the means to repair or bypass such lesions

  6. Stretching and controlled motion of single-stranded DNA in locally heated solid-state nanopores.

    Science.gov (United States)

    Belkin, Maxim; Maffeo, Christopher; Wells, David B; Aksimentiev, Aleksei

    2013-08-27

    Practical applications of solid-state nanopores for DNA detection and sequencing require the electrophoretic motion of DNA through the nanopores to be precisely controlled. Controlling the motion of single-stranded DNA presents a particular challenge, in part because of the multitude of conformations that a DNA strand can adopt in a nanopore. Through continuum, coarse-grained and atomistic modeling, we demonstrate that local heating of the nanopore volume can be used to alter the electrophoretic mobility and conformation of single-stranded DNA. In the nanopore systems considered, the temperature near the nanopore is modulated via a nanometer-size heater element that can be radiatively switched on and off. The local enhancement of temperature produces considerable stretching of the DNA fragment confined within the nanopore. Such stretching is reversible, so that the conformation of DNA can be toggled between compact (local heating is off) and extended (local heating is on) states. The effective thermophoretic force acting on single-stranded DNA in the vicinity of the nanopore is found to be sufficiently large (4-8 pN) to affect such changes in the DNA conformation. The local heating of the nanopore volume is observed to promote single-file translocation of DNA strands at transmembrane biases as low as 10 mV, which opens new avenues for using solid-state nanopores for detection and sequencing of DNA.

  7. Phylogenetic and functional analysis of the bacteriophage P1 single-stranded DNA-binding protein

    DEFF Research Database (Denmark)

    Bendtsen, Jannick Dyrløv; Nilsson, A.S.; Lehnherr, H.

    2002-01-01

    Bacteriophage P1 encodes a single-stranded DNA-binding protein (SSB-P1), which shows 66% amino acid sequence identity to the SSB protein of the host bacterium Escherichia coli. A phylogenetic analysis indicated that the P1 ssb gene coexists with its E. coli counterpart as an independent unit...

  8. Bacterial single-stranded DNA-binding proteins are phosphorylated on tyrosine

    DEFF Research Database (Denmark)

    Mijakovic, Ivan; Petranovic, Dina; Macek, B

    2006-01-01

    by kinase YwqD and phosphatase YwqE. Phosphorylation of B.subtilis SSB increased binding almost 200-fold to single-stranded DNA in vitro. Tyrosine phosphorylation of B.subtilis, S.coelicolor and Escherichia coli SSBs occured while they were expressed in E.coli, indicating that tyrosine phosphorylation...

  9. Sites of termination of in vitro DNA synthesis on psoralen phototreated single-stranded templates

    International Nuclear Information System (INIS)

    Piette, J.; Hearst, J.

    1985-01-01

    Single-stranded DNA has been photochemically induced to react with 4'-hydroxymethyl-4,5',8-trimethylpsoralen (HMT) and used as substrate for DNA replication with E. coli DNA polymerase I large fragment. By using the dideoxy sequencing procedure, it is possible to map the termination sites on the template photoreacted with HMT. These sites occur at the nucleotides preceding each thymine residue (and a few cytosine residues), emphasizing the fact that in a single-stranded stretch of DNA, HMT reacts with each thymine residue without any specificity regarding the flanking base sequence of the thymine residues. In addition, termination of DNA synthesis due to psoralen-adducted thymine is not influenced by the efficiency of the 3'-5' exonuclease proof-reading activity of the DNA polymerase. (author)

  10. Method of preparing and applying single stranded DNA probes to double stranded target DNAs in situ

    Science.gov (United States)

    Gray, J.W.; Pinkel, D.

    1991-07-02

    A method is provided for producing single stranded non-self-complementary nucleic acid probes, and for treating target DNA for use therewith. The probe is constructed by treating DNA with a restriction enzyme and an exonuclease to form template/primers for a DNA polymerase. The digested strand is resynthesized in the presence of labeled nucleoside triphosphate precursor. Labeled single stranded fragments are separated from the resynthesized fragments to form the probe. Target DNA is treated with the same restriction enzyme used to construct the probe, and is treated with an exonuclease before application of the probe. The method significantly increases the efficiency and specificity of hybridization mixtures by increasing effective probe concentration by eliminating self-hybridization between both probe and target DNAs, and by reducing the amount of target DNA available for mismatched hybridizations. No Drawings

  11. Single-Stranded DNA Aptamers against Pathogens and Toxins: Identification and Biosensing Applications

    Science.gov (United States)

    Hong, Ka Lok

    2015-01-01

    Molecular recognition elements (MREs) can be short sequences of single-stranded DNA, RNA, small peptides, or antibody fragments. They can bind to user-defined targets with high affinity and specificity. There has been an increasing interest in the identification and application of nucleic acid molecular recognition elements, commonly known as aptamers, since they were first described in 1990 by the Gold and Szostak laboratories. A large number of target specific nucleic acids MREs and their applications are currently in the literature. This review first describes the general methodologies used in identifying single-stranded DNA (ssDNA) aptamers. It then summarizes advancements in the identification and biosensing application of ssDNA aptamers specific for bacteria, viruses, their associated molecules, and selected chemical toxins. Lastly, an overview of the basic principles of ssDNA aptamer-based biosensors is discussed. PMID:26199940

  12. Genetic and biochemical identification of a novel single-stranded DNA binding complex in Haloferax volcanii

    Directory of Open Access Journals (Sweden)

    Amy eStroud

    2012-06-01

    Full Text Available Single-stranded DNA binding proteins play an essential role in DNA replication and repair. They use oligosaccharide-binding folds, a five-stranded ß-sheet coiled into a closed barrel, to bind to single-stranded DNA thereby protecting and stabilizing the DNA. In eukaryotes the single-stranded DNA binding protein is known as replication protein A (RPA and consists of three distinct subunits that function as a heterotrimer. The bacterial homolog is termed single-stranded DNA-binding protein (SSB and functions as a homotetramer. In the archaeon Haloferax volcanii there are three genes encoding homologs of RPA. Two of the rpa genes (rpa1 and rpa3 exist in operons with a novel gene specific to Euryarchaeota, this gene encodes a protein that we have termed rpa-associated protein (RPAP. The rpap genes encode proteins belonging to COG3390 group and feature oligosaccharide-binding folds, suggesting that they might cooperate with RPA in binding to single-stranded DNA. Our genetic analysis showed that rpa1 and rpa3 deletion mutants have differing phenotypes; only ∆rpa3 strains are hypersensitive to DNA damaging agents. Deletion of the rpa3-associated gene rpap3 led to similar levels of DNA damage sensitivity, as did deletion of the rpa3 operon, suggesting that RPA3 and RPAP3 function in the same pathway. Protein pull-downs involving recombinant hexahistidine-tagged RPAs showed that RPA3 co-purifies with RPAP3, and RPA1 co-purifies with RPAP1. This indicates that the RPAs interact only with their respective associated proteins; this was corroborated by the inability to construct rpa1 rpap3 and rpa3 rpap1 double mutants. This is the first report investigating the individual function of the archaeal COG3390 RPA-associated proteins. We have shown genetically and biochemically that the RPAPs interact with their respective RPAs, and have uncovered a novel single-stranded DNA binding complex that is unique to Euryarchaeota.

  13. RNaseH1 regulates TERRA-telomeric DNA hybrids and telomere maintenance in ALT tumour cells.

    Science.gov (United States)

    Arora, Rajika; Lee, Yongwoo; Wischnewski, Harry; Brun, Catherine M; Schwarz, Tobias; Azzalin, Claus M

    2014-10-21

    A fraction of cancer cells maintain telomeres through the telomerase-independent, 'Alternative Lengthening of Telomeres' (ALT) pathway. ALT relies on homologous recombination (HR) between telomeric sequences; yet, what makes ALT telomeres recombinogenic remains unclear. Here we show that the RNA endonuclease RNaseH1 regulates the levels of RNA-DNA hybrids between telomeric DNA and the long noncoding RNA TERRA, and is a key mediator of telomere maintenance in ALT cells. RNaseH1 associated to telomeres specifically in ALT cells and its depletion led to telomeric hybrid accumulation, exposure of single-stranded telomeric DNA, activation of replication protein A at telomeres and abrupt telomere excision. Conversely, overexpression of RNaseH1 weakened the recombinogenic nature of ALT telomeres and led to telomere shortening. Altering cellular RNaseH1 levels did not perturb telomere homoeostasis in telomerase-positive cells. RNaseH1 maintains regulated levels of telomeric RNA-DNA hybrids at ALT telomeres to trigger HR without compromising telomere integrity too severely.

  14. A neutral glyoxal gel electrophoresis method for the detection and semi-quantitation of DNA single-strand breaks.

    Science.gov (United States)

    Pachkowski, Brian; Nakamura, Jun

    2013-01-01

    Single-strand breaks are among the most prevalent lesions found in DNA. Traditional electrophoretic methods (e.g., the Comet assay) used for investigating these lesions rely on alkaline conditions to denature DNA prior to electrophoresis. However, the presence of alkali-labile sites in DNA can result in the introduction of additional single-strand breaks upon alkali treatment during DNA sample processing. Herein, we describe a neutral glyoxal gel electrophoresis assay which is based on alkali-free DNA denaturation and is suitable for qualitative and semi-quantitative analyses of single-strand breaks in DNA isolated from different organisms.

  15. The bacterial DnaA-trio replication origin element specifies single-stranded DNA initiator binding.

    Science.gov (United States)

    Richardson, Tomas T; Harran, Omar; Murray, Heath

    2016-06-16

    DNA replication is tightly controlled to ensure accurate inheritance of genetic information. In all organisms, initiator proteins possessing AAA+ (ATPases associated with various cellular activities) domains bind replication origins to license new rounds of DNA synthesis. In bacteria the master initiator protein, DnaA, is highly conserved and has two crucial DNA binding activities. DnaA monomers recognize the replication origin (oriC) by binding double-stranded DNA sequences (DnaA-boxes); subsequently, DnaA filaments assemble and promote duplex unwinding by engaging and stretching a single DNA strand. While the specificity for duplex DnaA-boxes by DnaA has been appreciated for over 30 years, the sequence specificity for single-strand DNA binding has remained unknown. Here we identify a new indispensable bacterial replication origin element composed of a repeating trinucleotide motif that we term the DnaA-trio. We show that the function of the DnaA-trio is to stabilize DnaA filaments on a single DNA strand, thus providing essential precision to this binding mechanism. Bioinformatic analysis detects DnaA-trios in replication origins throughout the bacterial kingdom, indicating that this element is part of the core oriC structure. The discovery and characterization of the novel DnaA-trio extends our fundamental understanding of bacterial DNA replication initiation, and because of the conserved structure of AAA+ initiator proteins these findings raise the possibility of specific recognition motifs within replication origins of higher organisms.

  16. Cultivated single stranded DNA phages that infect marine Bacteroidetes prove difficult to detect with DNA binding stains

    DEFF Research Database (Denmark)

    Holmfeldt, Karin; Odic, Dusko; Sullivan, Matthew B.

    2012-01-01

    This is the first description of cultivated icosahedral single stranded DNA (ssDNA) phages isolated on heterotrophic marine bacterioplankton and with Bacteroidetes hosts. None of the 8 phages stained well with DNA binding stains, suggesting that in situ abundances of ssDNA phages are drastically...

  17. Characterization of a mitochondrially targeted single-stranded DNA-binding protein in Arabidopsis thaliana.

    Science.gov (United States)

    Edmondson, Andrew C; Song, Daqing; Alvarez, Luis A; Wall, Melisa K; Almond, David; McClellan, David A; Maxwell, Anthony; Nielsen, Brent L

    2005-04-01

    A gene encoding a predicted mitochondrially targeted single-stranded DNA binding protein (mtSSB) was identified in the Arabidopsis thaliana genome sequence. This gene (At4g11060) codes for a protein of 201 amino acids, including a 28-residue putative mitochondrial targeting transit peptide. Protein sequence alignment shows high similarity between the mtSSB protein and single-stranded DNA binding proteins (SSB) from bacteria, including residues conserved for SSB function. Phylogenetic analysis indicates a close relationship between this protein and other mitochondrially targeted SSB proteins. The predicted targeting sequence was fused with the GFP coding region, and the organellar localization of the expressed fusion protein was determined. Specific targeting to mitochondria was observed in in-vitro import experiments and by transient expression of a GFP fusion construct in Arabidopsis leaves after microprojectile bombardment. The mature mtSSB coding region was overexpressed in Escherichia coli and the protein was purified for biochemical characterization. The purified protein binds single-stranded, but not double-stranded, DNA. MtSSB stimulates the homologous strand-exchange activity of E. coli RecA. These results indicate that mtSSB is a functional homologue of the E. coli SSB, and that it may play a role in mitochondrial DNA recombination.

  18. RNaseH1 regulates TERRA-telomeric DNA hybrids and telomere maintenance in ALT tumour cells

    Science.gov (United States)

    Arora, Rajika; Lee, Yongwoo; Wischnewski, Harry; Brun, Catherine M.; Schwarz, Tobias; Azzalin, Claus M.

    2014-01-01

    A fraction of cancer cells maintain telomeres through the telomerase-independent, ‘Alternative Lengthening of Telomeres’ (ALT) pathway. ALT relies on homologous recombination (HR) between telomeric sequences; yet, what makes ALT telomeres recombinogenic remains unclear. Here we show that the RNA endonuclease RNaseH1 regulates the levels of RNA–DNA hybrids between telomeric DNA and the long noncoding RNA TERRA, and is a key mediator of telomere maintenance in ALT cells. RNaseH1 associated to telomeres specifically in ALT cells and its depletion led to telomeric hybrid accumulation, exposure of single-stranded telomeric DNA, activation of replication protein A at telomeres and abrupt telomere excision. Conversely, overexpression of RNaseH1 weakened the recombinogenic nature of ALT telomeres and led to telomere shortening. Altering cellular RNaseH1 levels did not perturb telomere homoeostasis in telomerase-positive cells. RNaseH1 maintains regulated levels of telomeric RNA–DNA hybrids at ALT telomeres to trigger HR without compromising telomere integrity too severely. PMID:25330849

  19. Two highly thermostable paralogous single-stranded DNA-binding proteins from Thermoanaerobacter tengcongensis.

    Science.gov (United States)

    Olszewski, Marcin; Mickiewicz, Małgorzata; Kur, Józef

    2008-07-01

    The thermophilic bacterium Thermoanaerobacter tengcongensis has two single-stranded DNA-binding (SSB) proteins, designated TteSSB2 and TteSSB3. In a SSB complementation assay in Escherichia coli, only TteSSB3 took over the in vivo function of EcoSSB. We have cloned the ssb genes obtained by PCR and have developed E. coli overexpression systems. The TteSSB2 and TteSSB3 consist of 153 and 150 amino acids with a calculated molecular mass of 17.29 and 16.96 kDa, respectively. They are the smallest known bacterial SSB proteins. The homology between amino acid sequences of these proteins is 40% identity and 53% similarity. They are functional as homotetramers, with each monomer encoding one single-stranded DNA binding domain (OB-fold). In fluorescence titrations with poly(dT), both proteins bind single-stranded DNA with a binding site size of about 40 nt per homotetramer. Thermostability with half-life of about 30 s at 95 degrees C makes TteSSB3 similar to the known SSB of Thermus aquaticus (TaqSSB). The TteSSB2 was fully active even after 6 h incubation at 100 degrees C. Here, we show for the first time paralogous thermostable homotetrameric SSBs, which could be an attractive alternative for known homodimeric thermostable SSB proteins in their applications for molecular biology methods and analytical purposes.

  20. Mapping meiotic single-strand DNA reveals a new landscape of DNA double-strand breaks in Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Cyril Buhler

    2007-12-01

    Full Text Available DNA double-strand breaks (DSBs, which are formed by the Spo11 protein, initiate meiotic recombination. Previous DSB-mapping studies have used rad50S or sae2Delta mutants, which are defective in break processing, to accumulate Spo11-linked DSBs, and report large (> or = 50 kb "DSB-hot" regions that are separated by "DSB-cold" domains of similar size. Substantial recombination occurs in some DSB-cold regions, suggesting that DSB patterns are not normal in rad50S or sae2Delta mutants. We therefore developed a novel method to map genome-wide, single-strand DNA (ssDNA-associated DSBs that accumulate in processing-capable, repair-defective dmc1Delta and dmc1Delta rad51Delta mutants. DSBs were observed at known hot spots, but also in most previously identified "DSB-cold" regions, including near centromeres and telomeres. Although approximately 40% of the genome is DSB-cold in rad50S mutants, analysis of meiotic ssDNA from dmc1Delta shows that most of these regions have substantial DSB activity. Southern blot assays of DSBs in selected regions in dmc1Delta, rad50S, and wild-type cells confirm these findings. Thus, DSBs are distributed much more uniformly than was previously believed. Comparisons of DSB signals in dmc1, dmc1 rad51, and dmc1 spo11 mutant strains identify Dmc1 as a critical strand-exchange activity genome-wide, and confirm previous conclusions that Spo11-induced lesions initiate all meiotic recombination.

  1. Towards quantitative viromics for both double-stranded and single-stranded DNA viruses

    Directory of Open Access Journals (Sweden)

    Simon Roux

    2016-12-01

    Full Text Available Background Viruses strongly influence microbial population dynamics and ecosystem functions. However, our ability to quantitatively evaluate those viral impacts is limited to the few cultivated viruses and double-stranded DNA (dsDNA viral genomes captured in quantitative viral metagenomes (viromes. This leaves the ecology of non-dsDNA viruses nearly unknown, including single-stranded DNA (ssDNA viruses that have been frequently observed in viromes, but not quantified due to amplification biases in sequencing library preparations (Multiple Displacement Amplification, Linker Amplification or Tagmentation. Methods Here we designed mock viral communities including both ssDNA and dsDNA viruses to evaluate the capability of a sequencing library preparation approach including an Adaptase step prior to Linker Amplification for quantitative amplification of both dsDNA and ssDNA templates. We then surveyed aquatic samples to provide first estimates of the abundance of ssDNA viruses. Results Mock community experiments confirmed the biased nature of existing library preparation methods for ssDNA templates (either largely enriched or selected against and showed that the protocol using Adaptase plus Linker Amplification yielded viromes that were ±1.8-fold quantitative for ssDNA and dsDNA viruses. Application of this protocol to community virus DNA from three freshwater and three marine samples revealed that ssDNA viruses as a whole represent only a minor fraction (<5% of DNA virus communities, though individual ssDNA genomes, both eukaryote-infecting Circular Rep-Encoding Single-Stranded DNA (CRESS-DNA viruses and bacteriophages from the Microviridae family, can be among the most abundant viral genomes in a sample. Discussion Together these findings provide empirical data for a new virome library preparation protocol, and a first estimate of ssDNA virus abundance in aquatic systems.

  2. The impact of base stacking on the conformations and electrostatics of single-stranded DNA.

    Science.gov (United States)

    Plumridge, Alex; Meisburger, Steve P; Andresen, Kurt; Pollack, Lois

    2017-04-20

    Single-stranded DNA (ssDNA) is notable for its interactions with ssDNA binding proteins (SSBs) during fundamentally important biological processes including DNA repair and replication. Previous work has begun to characterize the conformational and electrostatic properties of ssDNA in association with SSBs. However, the conformational distributions of free ssDNA have been difficult to determine. To capture the vast array of ssDNA conformations in solution, we pair small angle X-ray scattering with novel ensemble fitting methods, obtaining key parameters such as the size, shape and stacking character of strands with different sequences. Complementary ion counting measurements using inductively coupled plasma atomic emission spectroscopy are employed to determine the composition of the ion atmosphere at physiological ionic strength. Applying this combined approach to poly dA and poly dT, we find that the global properties of these sequences are very similar, despite having vastly different propensities for single-stranded helical stacking. These results suggest that a relatively simple mechanism for the binding of ssDNA to non-specific SSBs may be at play, which explains the disparity in binding affinities observed for these systems. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  3. The binding of in vitro synthesized adenovirus DNA binding protein to single-stranded DNA is stimulated by zinc ions

    NARCIS (Netherlands)

    Vos, H.L.; Lee, F.M. van der; Sussenbach, J.S.

    1988-01-01

    We have synthesized wild type DNA binding protein (DBP) of adenovirus type 5 (Ad5) and several truncated forms of this protein by a combination of in vitro transcription and translation. The proteins obtained were tested for binding to a single-stranded DNA-cellulose column. It could be shown that

  4. In Vitro Selection of a Single-Stranded DNA Molecular Recognition Element Specific for Bromacil

    Directory of Open Access Journals (Sweden)

    Ryan M. Williams

    2014-01-01

    Full Text Available Bromacil is a widely used herbicide that is known to contaminate environmental systems. Due to the hazards it presents and inefficient detection methods, it is necessary to create a rapid and efficient sensing device. Towards this end, we have utilized a stringent in vitro selection method to identify single-stranded DNA molecular recognition elements (MRE specific for bromacil. We have identified one MRE with high affinity (Kd=9.6 nM and specificity for bromacil compared to negative targets of selection and other pesticides. The selected ssDNA MRE will be useful as the sensing element in a field-deployable bromacil detection device.

  5. Detection of antibodies to single-stranded DNA in naturally acquired and experimentally induced viral hepatitis

    Energy Technology Data Exchange (ETDEWEB)

    Gust, I.D.; Feinstone, S.M.; Purcell, R.H.; Alter, H.J.

    1980-01-01

    A sensitive ''Farr'' assay, utilizing /sup 125/I-labelled DNA was developed for detecting antibody to single-stranded DNA (anti-ssDNA). The test was shown to be specific and as sensitive as assays using /sup 14/C-labelled DNA, for the detection of antibody in patients with connective tissue diseases. Groups of sera from patients with naturally acquired viral hepatitis and experimentally infected chimpanzees were tested for anti-ssDNA by the /sup 125/I assay and by counterimmunoelectrophoresis (CIEP). No consistent pattern was observed with either technique, indicating the elevated levels of this antibody are not as reliable markers of parenchymal liver damage as had been previously suggested.

  6. Biophysical characterization of the association of histones with single-stranded DNA.

    Science.gov (United States)

    Wang, Ying; van Merwyk, Luis; Tönsing, Katja; Walhorn, Volker; Anselmetti, Dario; Fernàndez-Busquets, Xavier

    2017-11-01

    Despite the profound current knowledge of the architecture and dynamics of nucleosomes, little is known about the structures generated by the interaction of histones with single-stranded DNA (ssDNA), which is widely present during replication and transcription. Non-denaturing gel electrophoresis, transmission electron microscopy, atomic force microscopy, magnetic tweezers. Histones have a high affinity for ssDNA in 0.15M NaCl ionic strength, with an apparent binding constant similar to that calculated for their association with double-stranded DNA (dsDNA). The length of DNA (number of nucleotides in ssDNA or base pairs in dsDNA) associated with a fixed core histone mass is the same for both ssDNA and dsDNA. Although histone-ssDNA complexes show a high tendency to aggregate, nucleosome-like structures are formed at physiological salt concentrations. Core histones are able to protect ssDNA from digestion by micrococcal nuclease, and a shortening of ssDNA occurs upon its interaction with histones. The purified (+) strand of a cloned DNA fragment of nucleosomal origin has a higher affinity for histones than the purified complementary (-) strand. At physiological ionic strength histones have high affinity for ssDNA, possibly associating with it into nucleosome-like structures. In the cell nucleus histones may spontaneously interact with ssDNA to facilitate their participation in the replication and transcription of chromatin. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Self-assembly of complex two-dimensional shapes from single-stranded DNA tiles.

    Science.gov (United States)

    Wei, Bryan; Vhudzijena, Michelle K; Robaszewski, Joanna; Yin, Peng

    2015-05-08

    Current methods in DNA nano-architecture have successfully engineered a variety of 2D and 3D structures using principles of self-assembly. In this article, we describe detailed protocols on how to fabricate sophisticated 2D shapes through the self-assembly of uniquely addressable single-stranded DNA tiles which act as molecular pixels on a molecular canvas. Each single-stranded tile (SST) is a 42-nucleotide DNA strand composed of four concatenated modular domains which bind to four neighbors during self-assembly. The molecular canvas is a rectangle structure self-assembled from SSTs. A prescribed complex 2D shape is formed by selecting the constituent molecular pixels (SSTs) from a 310-pixel molecular canvas and then subjecting the corresponding strands to one-pot annealing. Due to the modular nature of the SST approach we demonstrate the scalability, versatility and robustness of this method. Compared with alternative methods, the SST method enables a wider selection of information polymers and sequences through the use of de novo designed and synthesized short DNA strands.

  8. On the Formation of Thymine Photodimers in Thymine Single Strands and Calf Thymus DNA

    DEFF Research Database (Denmark)

    Baggesen, Lisbeth Munksgård; Hoffmann, S.V.; Nielsen, Steen Brøndsted

    2014-01-01

    a principal component analysis of the CD spectra, we extract fingerprint spectra of both the cyclobutane pyrimidine dimer (CPD) and the pyrimidine (6-4) pyrimidone photoadduct (64PP). Extending the CD measurements to the vacuum ultraviolet region in combination with systematic examinations of size effects...... of terminal thymines, i.e., the reaction does not occur preferentially at the extremities of the single strands as previously stated. It is even possible to form two dimers with only two bridging thymines. Finally, experiments conducted on calf thymus DNA provided a similar signature of the photodimer...

  9. Single-strand-conformation polymorphism of ribosomal DNA for rapid species differentiation in genus Phytophthora.

    Science.gov (United States)

    Kong, Ping; Hong, Chuanxue; Richardson, Patricia A; Gallegly, Mannon E

    2003-08-01

    Single-strand-conformation polymorphism (SSCP) of ribosomal DNA of 29 species (282 isolates) of Phytophthora was characterized in this study. Phytophthora boehmeriae, Phytophthora botryosa, Phytophthora cactorum, Phytophthora cambivora, Phytophthora capsici, Phytophthora cinnamomi, Phytophthora colocasiae, Phytophthora fragariae, Phytophthora heveae, Phytophthora hibernalis, Phytophthora ilicis, Phytophthora infestans, Phytophthora katsurae, Phytophthora lateralis, Phytophthora meadii, Phytophthora medicaginis, Phytophthora megakarya, Phytophthora nicotianae, Phytophthora palmivora, Phytophthora phaseoli, Phytophthora pseudotsugae, Phytophthora sojae, Phytophthora syringae, and Phytophthora tropicalis each showed a unique SSCP pattern. Phytophthora citricola, Phytophthora citrophthora, Phytophthora cryptogea, Phytophthora drechsleri, and Phytophthora megasperma each had more than one distinct pattern. A single-stranded DNA ladder also was developed, which facilitates comparison of SSCP patterns within and between gels. With a single DNA fingerprint, 277 isolates of Phytophthora recovered from irrigation water and plant tissues in Virginia were all correctly identified into eight species at substantially reduced time, labor, and cost. The SSCP analysis presented in this work will aid in studies on taxonomy, genetics, and ecology of the genus Phytophthora.

  10. CdS nanowires formed by chemical synthesis using conjugated single-stranded DNA molecules

    Science.gov (United States)

    Sarangi, S. N.; Sahu, S. N.; Nozaki, S.

    2018-03-01

    CdS nanowires were successfully grown by chemical synthesis using two conjugated single-stranded (ss) DNA molecules, poly G (30) and poly C (30), as templates. During the early stage of the synthesis with the DNA molecules, the Cd 2+ interacts with Poly G and Poly C and produces the (Cd 2+)-Poly GC complex. As the growth proceeds, it results in nanowires. The structural analysis by grazing angle x-ray diffraction and transmission electron microscopy confirmed the zinc-blende CdS nanowires with the growth direction of . Although the nanowires are well surface-passivated with the DNA molecules, the photoluminescence quenching was caused by the electron transfer from the nanowires to the DNA molecules. The quenching can be used to detect and label the DNAs.

  11. Induction and repair of double- and single-strand DNA breaks in bacteriophage lambda superinfecting Escherichia coli

    International Nuclear Information System (INIS)

    Boye, E.; Krisch, R.E.

    1980-01-01

    Induction and repair of double-and single-strand DNA breaks have been measured after decays of 125 I and 3 H incorporated into the DNA and after external irradiation with 4 MeV electrons. For the decay experiments, cells of wild type Escherichia coli K-12 were superinfected with bacteriophage lambda DNA labelled with 5'-( 125 I)iodo-2'-deoxyuridine or with (methyl- 3 H)thymidine and frozen in liquid nitrogen. Aliquots were thawed at intervals and lysed at neutral pH, and the phage DNA was assayed for double- and single-strand breakage by neutral sucrose gradient centrifugation. The gradients used allowed measurements of both kinds of breaks in the same gradient. Decays of 125 I induced 0.39 single-strand breaks per double-strand break. No repair of either break type could be detected. Each 3 H disintegration caused 0.20 single-strand breaks and very few double-strand breaks. The single-strand breaks were rapidly rejoined after the cells were thawed. For irradiation with 4 MeV electrons, cells of wild type E. coli K-12 were superinfected with phage lambda and suspended in growth medium. Irradiation induced 42 single-strand breaks per double-strand break. The rates of break induction were 6.75 x 10 -14 (double-strand breaks) and 2.82 x 10 -12 (single-strand breaks) per rad and per dalton. The single-strand breaks were rapidly repaired upon incubation whereas the double-strand breaks seemed to remain unrepaired. It is concluded that double-strand breaks in superinfecting bacteriophage lambda DNA are repaired to a very small extent, if at all. (Author)

  12. Novel Circular Single-Stranded DNA Viruses among an Asteroid, Echinoid and Holothurian (Phylum: Echinodermata).

    Science.gov (United States)

    Jackson, Elliot W; Bistolas, Kalia S I; Button, Jason B; Hewson, Ian

    2016-01-01

    Echinoderms are prone to large population fluctuations that can be mediated by pervasive disease events. For the majority of echinoderm disease events the causative pathogen is unknown. Viruses have only recently been explored as potential pathogens using culture-independent techniques though little information currently exists on echinoderm viruses. In this study, ten circular ssDNA viruses were discovered in tissues among an asteroid (Asterias forbesi), an echinoid (Strongylocentrotus droebachiensis) and a holothurian (Parastichopus californicus) using viral metagenomics. Genome architecture and sequence similarity place these viruses among the rapidly expanding circular rep-encoding single stranded (CRESS) DNA viral group. Multiple genomes from the same tissue were no more similar in sequence identity to each other than when compared to other known CRESS DNA viruses. The results from this study are the first to describe a virus from a holothurian and continue to show the ubiquity of these viruses among aquatic invertebrates.

  13. Radioimmunoassay of single-stranded DNA antibodies for control of diagnosis and therapy

    International Nuclear Information System (INIS)

    Meffert, H.; Boehm, F.; Soennichsen, N.; Gens, J.

    1980-01-01

    Several years experience in quantitative determination of single-stranded DNA antibodies is reported and the normal range as well as the diagnostic hit rate of the method is outlined. In the controls the mean DNA attachment rate was 1.5% and the upper normal range limit was 12.8%, the risk of erroneous rejection being 1%. The DNA binding rate was greater than 12.8% in 74.7% of untreated patients suffering from lupus erythematodes visceralis, in 47.6% of patients with circumscribed sclerodermia, in 14.4% of patients with progressive sclerodermia, and in 10.3% of those suffering from lupus erythematodes chronicus. The findings emphasize the importance of regulatory mechanisms of the immune system to the process of autosensitization

  14. Accurate quantification of microRNA via single strand displacement reaction on DNA origami motif.

    Directory of Open Access Journals (Sweden)

    Jie Zhu

    Full Text Available DNA origami is an emerging technology that assembles hundreds of staple strands and one single-strand DNA into certain nanopattern. It has been widely used in various fields including detection of biological molecules such as DNA, RNA and proteins. MicroRNAs (miRNAs play important roles in post-transcriptional gene repression as well as many other biological processes such as cell growth and differentiation. Alterations of miRNAs' expression contribute to many human diseases. However, it is still a challenge to quantitatively detect miRNAs by origami technology. In this study, we developed a novel approach based on streptavidin and quantum dots binding complex (STV-QDs labeled single strand displacement reaction on DNA origami to quantitatively detect the concentration of miRNAs. We illustrated a linear relationship between the concentration of an exemplary miRNA as miRNA-133 and the STV-QDs hybridization efficiency; the results demonstrated that it is an accurate nano-scale miRNA quantifier motif. In addition, both symmetrical rectangular motif and asymmetrical China-map motif were tested. With significant linearity in both motifs, our experiments suggested that DNA Origami motif with arbitrary shape can be utilized in this method. Since this DNA origami-based method we developed owns the unique advantages of simple, time-and-material-saving, potentially multi-targets testing in one motif and relatively accurate for certain impurity samples as counted directly by atomic force microscopy rather than fluorescence signal detection, it may be widely used in quantification of miRNAs.

  15. Accurate Quantification of microRNA via Single Strand Displacement Reaction on DNA Origami Motif

    Science.gov (United States)

    Lou, Jingyu; Li, Weidong; Li, Sheng; Zhu, Hongxin; Yang, Lun; Zhang, Aiping; He, Lin; Li, Can

    2013-01-01

    DNA origami is an emerging technology that assembles hundreds of staple strands and one single-strand DNA into certain nanopattern. It has been widely used in various fields including detection of biological molecules such as DNA, RNA and proteins. MicroRNAs (miRNAs) play important roles in post-transcriptional gene repression as well as many other biological processes such as cell growth and differentiation. Alterations of miRNAs' expression contribute to many human diseases. However, it is still a challenge to quantitatively detect miRNAs by origami technology. In this study, we developed a novel approach based on streptavidin and quantum dots binding complex (STV-QDs) labeled single strand displacement reaction on DNA origami to quantitatively detect the concentration of miRNAs. We illustrated a linear relationship between the concentration of an exemplary miRNA as miRNA-133 and the STV-QDs hybridization efficiency; the results demonstrated that it is an accurate nano-scale miRNA quantifier motif. In addition, both symmetrical rectangular motif and asymmetrical China-map motif were tested. With significant linearity in both motifs, our experiments suggested that DNA Origami motif with arbitrary shape can be utilized in this method. Since this DNA origami-based method we developed owns the unique advantages of simple, time-and-material-saving, potentially multi-targets testing in one motif and relatively accurate for certain impurity samples as counted directly by atomic force microscopy rather than fluorescence signal detection, it may be widely used in quantification of miRNAs. PMID:23990889

  16. Managing Single-Stranded DNA during Replication Stress in Fission Yeast

    Directory of Open Access Journals (Sweden)

    Sarah A. Sabatinos

    2015-09-01

    Full Text Available Replication fork stalling generates a variety of responses, most of which cause an increase in single-stranded DNA. ssDNA is a primary signal of replication distress that activates cellular checkpoints. It is also a potential source of genome instability and a substrate for mutation and recombination. Therefore, managing ssDNA levels is crucial to chromosome integrity. Limited ssDNA accumulation occurs in wild-type cells under stress. In contrast, cells lacking the replication checkpoint cannot arrest forks properly and accumulate large amounts of ssDNA. This likely occurs when the replication fork polymerase and helicase units are uncoupled. Some cells with mutations in the replication helicase (mcm-ts mimic checkpoint-deficient cells, and accumulate extensive areas of ssDNA to trigger the G2-checkpoint. Another category of helicase mutant (mcm4-degron causes fork stalling in early S-phase due to immediate loss of helicase function. Intriguingly, cells realize that ssDNA is present, but fail to detect that they accumulate ssDNA, and continue to divide. Thus, the cellular response to replication stalling depends on checkpoint activity and the time that replication stress occurs in S-phase. In this review we describe the signs, signals, and symptoms of replication arrest from an ssDNA perspective. We explore the possible mechanisms for these effects. We also advise the need for caution when detecting and interpreting data related to the accumulation of ssDNA.

  17. Single-stranded DNA cleavage by divergent CRISPR-Cas9 enzymes

    Science.gov (United States)

    Ma, Enbo; Harrington, Lucas B.; O’Connell, Mitchell R.; Zhou, Kaihong; Doudna, Jennifer A.

    2015-01-01

    Summary Double-stranded DNA (dsDNA) cleavage by Cas9 is a hallmark of type II CRISPR-Cas immune systems. Cas9–guide RNA complexes recognize 20-base-pair sequences in DNA and generate a site-specific double-strand break, a robust activity harnessed for genome editing. DNA recognition by all studied Cas9 enzymes requires a protospacer adjacent motif (PAM) next to the target site. We show that Cas9 enzymes from evolutionarily divergent bacteria can recognize and cleave single-stranded DNA (ssDNA) by an RNA-guided, PAM-independent recognition mechanism. Comparative analysis shows that in contrast to the type II-A S. pyogenes Cas9 that is widely used for genome engineering, the smaller type II-C Cas9 proteins have limited dsDNA binding and unwinding activity and promiscuous guide-RNA specificity. These results indicate that inefficiency of type II-C Cas9 enzymes for genome editing results from a limited ability to cleave dsDNA, and suggest that ssDNA cleavage was an ancestral function of the Cas9 enzyme family. PMID:26545076

  18. Zinc(II) and the single-stranded DNA binding protein of bacteriophage T4

    International Nuclear Information System (INIS)

    Gauss, P.; Krassa, K.B.; McPheeters, D.S.; Nelson, M.A.; Gold, L.

    1987-01-01

    The DNA binding domain of the gene 32 protein of the bacteriophage T4 contains a single zinc-finger sequence. The gene 32 protein is an extensively studied member of a class of proteins that bind relatively nonspecifically to single-stranded DNA. The authors have sequenced and characterized mutations in gene 32 whose defective proteins are activated by increasing the Zn(II) concentration in the growth medium. The results identify a role for the gene 32 protein in activation of T4 late transcription. Several eukaryotic proteins with zinc fingers participate in activation of transcription, and the gene 32 protein of T4 should provide a simple, well-characterized system in which genetics can be utilized to study the role of a zinc finger in nucleic acid binding and gene expression

  19. Comparative studies on the minus origin mutants of Escherichia coli spherical single-stranded DNA phages.

    Science.gov (United States)

    Kodaira, K; Godson, N G; Taketo, A

    1995-01-25

    The minus origins for complementary strand DNA synthesis (-ori) of Escherichia coli spherical single-stranded DNA (microvirid) phages G4, phi K, alpha 3, and St-1 closely resemble each other in DNA structure and contain two potential secondary hairpin loops (I and II) that have been implicated as direct recognition sites for host E. coli dnaG protein (primase). We introduced mutations (deletion or insertion) within the -ori regions of phi K and G4 by the nuclease digestion method. Mutants thus constructed produced minute plaques, showed thermosensitivity, and they remarkably reduced the phage yield and rate of viral DNA synthesis. Deletions in the phi K mutants (dTa) were ranging from 1 nucleotide (nt) to 102 nt centered at the hairpin II; a dTa8 mutant was entirely lacking in the two hairpins besides the starting point for primer RNA synthesis. On the other hand, the G4 mutants (dSa) had deletions centered at hairpin I; two mutants dSa35 and dXN completely lost the hairpin I and the primer RNA starting point. In addition, progeny phage populations of several phi K and G4 mutants contained revertant-like phages. DNA sequencing analysis revealed that these secondary phages had been generated by spontaneous DNA rearrangement with additional insertion or deletion near the parental mutation sites, via an unknown recA-independent pathway.

  20. Human topoisomerase IIIalpha is a single-stranded DNA decatenase that is stimulated by BLM and RMI1

    DEFF Research Database (Denmark)

    Yang, Jay; Bachrati, Csanad Z; Ou, Jiongwen

    2010-01-01

    -passage mechanism. We generated single-stranded catenanes that resemble the proposed dissolution intermediate recognized by human topoisomerase IIIalpha. We demonstrate that human topoisomerase IIIalpha is a single-stranded DNA decatenase that is specifically stimulated by the BLM-RMI1 pair. In addition, RMI1......Human topoisomerase IIIalpha is a type IA DNA topoisomerase that functions with BLM and RMI1 to resolve DNA replication and recombination intermediates. BLM, human topoisomerase IIIalpha, and RMI1 catalyze the dissolution of double Holliday junctions into noncrossover products via a strand...

  1. The effects of radioprotective agents on the radiation-induced DNA single strand breaks

    International Nuclear Information System (INIS)

    Rhiu, Sung Ryul; Ko, Kyung Hwan; Jung, In Yong; Cho, Chul Ku; Kim, Tae Hwan; Park, Woo Wiun; Kim, Sung Ho; Ji, Young Hoon; Kim, Kyung Jung; Bang, Hio Chang; Jung, Young Suk; Choi, Moon Sik

    1992-04-01

    With the increased use of atomic energy in science, industry, medicine and public power production, the probability of nuclear accidents certainly appears to be on the increase. Therefore, early medical diagnosis and first-aid are needed urgently to establish an efficient treatment. We carried out the studies of radiation protector such as DDC, MEA, WR-2721 and variety of decontaminator with a view to establishing the protective measure and diagnostic standards for safety of worker and neighbors living around the radiation area in case of occurring the accidental contamination. In this experiment, we examined radiation-induced DNA single strand breaks as one of the study on molecular biology of the response of cells to radiation because an understanding of the radiation-induced damage in molecular level would add to our knowledge of radiation protection and treatment. (Author)

  2. Delayed repair of DNA single-strand breaks does not increase cytogenetic damage

    International Nuclear Information System (INIS)

    Morgan, W.F.; Djordjevic, M.C.; Jostes, R.F.; Pantelias, G.E.

    1985-01-01

    DNA damage and cytogenetic effects of ionizing radiation were investigated in Chinese hamster ovary (CHO) cells and unstimulated human peripheral blood lymphocytes. DNA damage and repair were analysed by alkaline elution under conditions that predominantly measured DNA single-strand breaks (ssb). X-radiation (2.5 Gy) induced ssb in both CHO cells and unstimulated lymphocytes, and the breaks were repaired within 30 and 90 min, respectively. This rapid repair was delayed by the poly(ADP-ribose) polymerase inhibitor, 3-aminobenzamide (3AB). The cytogenetic effects of the 3AB-induced delay in DNA repair were examined by analysing sister chromatid exchange (SCE) frequency in CHO cells and fragmentation of prematurely condensed chromosomes (PCC) in unstimulated human lymphocytes after 2.5 Gy of X-rays. Although 3AB delayed the rejoining of DNA ssb, this delay did not result in increased cytogenetic damage manifested as either SCE or fragmentation of PCC. These results indicate that the rapidly rejoining DNA ssb are not important in the production of chromosome damage. (author)

  3. Multicopy Single-Stranded DNA Directs Intestinal Colonization of Enteric Pathogens

    Energy Technology Data Exchange (ETDEWEB)

    Elfenbein, Johanna R.; Knodler, Leigh A.; Nakayasu, Ernesto S.; Ansong, Charles; Brewer, Heather M.; Bogomolnaya, Lydia; Adams, L. Garry; McClelland, Michael; Adkins, Joshua N.; Andrews-Polymenis, Helene L.; Fang, Ferric C.

    2015-09-14

    Multicopy single-stranded DNAs (msDNAs) are hybrid RNA-DNA molecules encoded on retroelements called retrons and produced by the action of retron reverse transcriptases. Retrons are widespread in bacteria but the natural function of msDNA has remained elusive despite 30 years of study. The major roadblock to elucidation of the function of these unique molecules has been the lack of any identifiable phenotypes for mutants unable to make msDNA. We report that msDNA of the zoonotic pathogen Salmonella Typhimurium is necessary for colonization of the intestine. Similarly, we observed a defect in intestinal persistence in an enteropathogenic E. coli mutant lacking its retron reverse transcriptase. Under anaerobic conditions in the absence of msDNA, proteins of central anaerobic metabolism needed for Salmonella colonization of the intestine are dysregulated. We show that the msDNA-deficient mutant can utilize nitrate but not other alternate electron acceptors in anaerobic conditions. Consistent with the availability of nitrate in the inflamed gut, a neutrophilic inflammatory response partially rescued the ability of a mutant lacking msDNA to colonize the intestine. These findings together indicate that the mechanistic basis of msDNA function during Salmonella colonization of the intestine is proper production of proteins needed for anaerobic metabolism. We further conclude that a natural function of msDNA is to regulate protein abundance, the first attributable function for any msDNA. Our data provide novel insight into the function of this mysterious molecule that likely represents a new class of regulatory molecules.

  4. Localization of specific sequences and DNA single-strand breaks in individual UV-A-irradiated human lymphocytes by COMET FISH

    Science.gov (United States)

    Bock, Claudia; Rapp, Alexander; Dittmar, Heike; Monajembashi, Shamci; Greulich, Karl-Otto

    1999-01-01

    The COMET assay, a single cell electrophoresis technique which allows to separate electrophoretically fractionated DNA according to size has been combined with fluorescence in situ hybridization (FISH) which allows to localize specific genes or gene regions. This combination (COMET FISH) allows the detection of DNA single strand breaks in specific regions of the genome of human lymphocytes at the single cell level. Various types of DNA probes, e.g. centromere-, (alpha) - satellite-, telomere-, whole chromosome-, single copy- and region specific DNA probes have been used to investigate whether the UV-A induced DNA single strand breaks are distributed randomly all over the human genome or induced at specific sites ('hot spots'). In the investigated human peripheral blood lymphocytes all but one centromere reveal low sensitivity for UV-A irradiation (500 kJ/m2), while telomeres are randomly distributed over COMET heads and tails. The human chromosome 1 is fractionated by irradiation, but remains in the COMET head, indicating an only moderate degree of fractionation. Among three tested single copy probes, c- myc, p53 and p58, the p53 gene located on chromosome 17p13.1 and the p58 gene (1p36) appear to be located in UV-A stable regions of the human genome in 95% of 65 investigated lymphocytes. In contrast, the c-myc proto-oncogene (8q24) is found in the COMET tail in 90% of the 27 investigated lymphocytes and thus appears to be more sensitive to UV-A irradiation.

  5. Interaction with Single-stranded DNA-binding Protein Stimulates Escherichia coli Ribonuclease HI Enzymatic Activity.

    Science.gov (United States)

    Petzold, Christine; Marceau, Aimee H; Miller, Katherine H; Marqusee, Susan; Keck, James L

    2015-06-05

    Single-stranded (ss) DNA-binding proteins (SSBs) bind and protect ssDNA intermediates formed during replication, recombination, and repair reactions. SSBs also directly interact with many different genome maintenance proteins to stimulate their enzymatic activities and/or mediate their proper cellular localization. We have identified an interaction formed between Escherichia coli SSB and ribonuclease HI (RNase HI), an enzyme that hydrolyzes RNA in RNA/DNA hybrids. The RNase HI·SSB complex forms by RNase HI binding the intrinsically disordered C terminus of SSB (SSB-Ct), a mode of interaction that is shared among all SSB interaction partners examined to date. Residues that comprise the SSB-Ct binding site are conserved among bacterial RNase HI enzymes, suggesting that RNase HI·SSB complexes are present in many bacterial species and that retaining the interaction is important for its cellular function. A steady-state kinetic analysis shows that interaction with SSB stimulates RNase HI activity by lowering the reaction Km. SSB or RNase HI protein variants that disrupt complex formation nullify this effect. Collectively our findings identify a direct RNase HI/SSB interaction that could play a role in targeting RNase HI activity to RNA/DNA hybrid substrates within the genome. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Interaction with Single-stranded DNA-binding Protein Stimulates Escherichia coli Ribonuclease HI Enzymatic Activity*

    Science.gov (United States)

    Petzold, Christine; Marceau, Aimee H.; Miller, Katherine H.; Marqusee, Susan; Keck, James L.

    2015-01-01

    Single-stranded (ss) DNA-binding proteins (SSBs) bind and protect ssDNA intermediates formed during replication, recombination, and repair reactions. SSBs also directly interact with many different genome maintenance proteins to stimulate their enzymatic activities and/or mediate their proper cellular localization. We have identified an interaction formed between Escherichia coli SSB and ribonuclease HI (RNase HI), an enzyme that hydrolyzes RNA in RNA/DNA hybrids. The RNase HI·SSB complex forms by RNase HI binding the intrinsically disordered C terminus of SSB (SSB-Ct), a mode of interaction that is shared among all SSB interaction partners examined to date. Residues that comprise the SSB-Ct binding site are conserved among bacterial RNase HI enzymes, suggesting that RNase HI·SSB complexes are present in many bacterial species and that retaining the interaction is important for its cellular function. A steady-state kinetic analysis shows that interaction with SSB stimulates RNase HI activity by lowering the reaction Km. SSB or RNase HI protein variants that disrupt complex formation nullify this effect. Collectively our findings identify a direct RNase HI/SSB interaction that could play a role in targeting RNase HI activity to RNA/DNA hybrid substrates within the genome. PMID:25903123

  7. Substrate-assisted 2D DNA lattices and algorithmic lattices from single-stranded tiles.

    Science.gov (United States)

    Kim, Junghoon; Ha, Tai Hwan; Park, Sung Ha

    2015-08-07

    We present a simple route to circumvent kinetic traps which affect many types of DNA nanostructures in their self-assembly process. Using this method, a new 2D DNA lattice made up of short, single-stranded tile (SST) motifs was created. Previously, the growth of SST DNA assemblies was restricted to 1D (tubes and ribbons) or finite-sized 2D (molecular canvases). By utilizing the substrate-assisted growth method, sets of SSTs were designed as unit cells to self-assemble into periodic and aperiodic 2D lattices which continuously grow both along and orthogonal to the helical axis. Notably, large-scale (∼1 μm(2)) fully periodic 2D lattices were fabricated using a minimum of just 2 strand species. Furthermore, the ability to create 2D lattices from a few motifs enables certain rules to be encoded into these SSTs to carry out algorithmic self-assembly. A set of these motifs was designed to execute simple 1-input 1-output COPY and NOT algorithms, the space-time manifestations which were aperiodic 2D algorithmic SST lattices. The methodology presented here can be straightforwardly applied to other motifs which fall into this type of kinetic trap to create novel DNA crystals.

  8. Effect of Conformational Entropy on the Nanomechanics of Microcantilever-Based Single-Stranded DNA Sensors

    Directory of Open Access Journals (Sweden)

    Zou-Qing Tan

    2014-09-01

    Full Text Available An entropy-controlled bending mechanism is presented to study the nanomechanics of microcantilever-based single-stranded DNA (ssDNA sensors. First; the conformational free energy of the ssDNA layer is given with an improved scaling theory of thermal blobs considering the curvature effect; and the mechanical energy of the non-biological layer is described by Zhang’s two-variable method for laminated beams. Then; an analytical model for static deflections of ssDNA microcantilevers is formulated by the principle of minimum energy. The comparisons of deflections predicted by the proposed model; Utz–Begley’s model and Hagan’s model are also examined. Numerical results show that the conformational entropy effect on microcantilever deflections cannot be ignored; especially at the conditions of high packing density or long chain systems; and the variation of deflection predicted by the proposed analytical model not only accords with that observed in the related experiments qualitatively; but also appears quantitatively closer to the experimental values than that by the preexisting models. In order to improve the sensitivity of static-mode biosensors; it should be as small as possible to reduce the substrate stiffness.

  9. In vitro selection and characterization of single stranded DNA aptamers for luteolin: A possible recognition tool.

    Science.gov (United States)

    Tuma Sabah, Jinan; Zulkifli, Razauden Mohamed; Shahir, Shafinaz; Ahmed, Farediah; Abdul Kadir, Mohammed Rafiq; Zakaria, Zarita

    2018-03-06

    Distinctive bioactivities possessed by luteolin (3', 4', 5, 7-tetrahydroxy-flavone) are advantageous for sundry practical applications. This paper reports the in vitro selection and characterization of single stranded-DNA (ssDNA) aptamers, specific for luteolin (LUT). 76-mer library containing 1015 randomized ssDNA were screened via systematic evolution of ligands by exponential enrichment (SELEX). The recovered ssDNA pool from the 8th round was amplified with unlabeled primers and cloned into PSTBlue-1 vector prior to sequencing. 22 of LUT-binding aptamer variants were further classified into one of the seven groups based on their N40 random sequence regions, wherein one representative from each group was characterized. The dissociation constant of aptamers designated as LUT#28, LUT#20 and LUT#3 was discerned to be 107, 214 and 109 nM, respectively with high binding affinity towards LUT. Prediction analysis of the secondary structure suggested discrete features with typical loop and stem motifs. Furthermore, LUT#3 displayed higher specificity with insignificant binding toward kaempferol and quercetin despite its structural and functional similarity compared to LUT#28 and LUT#20. Further LUT#3 can detect free luteolin within 0.2-1 mM in solution. It was suggested that LUT#3 aptamer were the most suitable for LUT recognition tool at laboratory scale based on the condition tested. Copyright © 2018. Published by Elsevier Inc.

  10. Size-controllable DNA nanoribbons assembled from three types of reusable brick single-strand DNA tiles.

    Science.gov (United States)

    Shi, Xiaolong; Chen, Congzhou; Li, Xin; Song, Tao; Chen, Zhihua; Zhang, Zheng; Wang, Yanfeng

    2015-11-21

    Precise control of nanostructure is a significant goal shared by supramolecular chemistry, nanotechnology and materials science. In DNA nanotechnology, methods of constructing desired DNA nanostructures using programmable DNA strands have been studied extensively and have become a promising branch of research, but developing universal and low-cost (in the sense of using fewer types of DNA strands) methods remains a challenge. In this work, we propose a novel approach to assemble size-controllable DNA nanoribbons with three types of reusable brick SSTs (single-stranded DNA tiles), where the control of ribbon size is achieved by regulating the concentration ratio between manipulative strands and packed single-stranded DNA tiles. In our method, three types of brick SSTs are sufficient in assembling DNA nanoribbons of different sizes, which is much less than the number of types of unique tile-programmable assembling strategy, thus achieving a universal and low-cost method. The assembled DNA nanoribbons are observed and analyzed by atomic force microscopy (AFM). Experimental observations strongly suggest the feasibility and reliability of our method.

  11. Interaction of anticancer Ru(III) complexes with single stranded and duplex DNA model systems.

    Science.gov (United States)

    Musumeci, Domenica; Rozza, Lucia; Merlino, Antonello; Paduano, Luigi; Marzo, Tiziano; Massai, Lara; Messori, Luigi; Montesarchio, Daniela

    2015-08-21

    The interaction of the anticancer Ru(iii) complex AziRu - in comparison with its analogue NAMI-A, currently in advanced clinical trials as an antimetastatic agent - with DNA model systems, both single stranded and duplex oligonucleotides, was investigated using a combined approach, including absorption UV-vis spectroscopy, circular dichroism (CD) and electrospray mass spectrometry (ESI-MS) techniques. UV-vis absorption spectra of the Ru complexes were recorded at different times in a pseudo-physiological solution, to monitor the ligand exchange processes in the absence and in the presence of the examined oligonucleotides. CD experiments provided information on the overall conformational changes of the DNA model systems induced by these metal complexes. UV- and CD-monitored thermal denaturation studies were performed to analyse the effects of AziRu and NAMI-A on the stability of the duplex structures. ESI-MS experiments, carried out on the oligonucleotide/metal complex mixtures under investigation, allowed us to detect the formation of stable adducts between the guanine-containing oligomers and the ruthenium complexes. These data unambiguously demonstrate that both AziRu and NAMI-A can interact with the DNA model systems. Although very similar in their structures, the two metal compounds manifest a markedly different reactivity with the examined sequences, respectively, with either a naked Ru(3+) ion or a Ru(Im)(3+) (Im = imidazole) fragment being incorporated into the oligonucleotide structure via stable linkages.

  12. Distinct circular single-stranded DNA viruses exist in different soil types.

    Science.gov (United States)

    Reavy, Brian; Swanson, Maud M; Cock, Peter J A; Dawson, Lorna; Freitag, Thomas E; Singh, Brajesh K; Torrance, Lesley; Mushegian, Arcady R; Taliansky, Michael

    2015-06-15

    The potential dependence of virus populations on soil types was examined by electron microscopy, and the total abundance of virus particles in four soil types was similar to that previously observed in soil samples. The four soil types examined differed in the relative abundances of four morphological groups of viruses. Machair, a unique type of coastal soil in western Scotland and Ireland, differed from the others tested in having a higher proportion of tailed bacteriophages. The other soils examined contained predominantly spherical and thin filamentous virus particles, but the Machair soil had a more even distribution of the virus types. As the first step in looking at differences in populations in detail, virus sequences from Machair and brown earth (agricultural pasture) soils were examined by metagenomic sequencing after enriching for circular Rep-encoding single-stranded DNA (ssDNA) (CRESS-DNA) virus genomes. Sequences from the family Microviridae (icosahedral viruses mainly infecting bacteria) of CRESS-DNA viruses were predominant in both soils. Phylogenetic analysis of Microviridae major coat protein sequences from the Machair viruses showed that they spanned most of the diversity of the subfamily Gokushovirinae, whose members mainly infect obligate intracellular parasites. The brown earth soil had a higher proportion of sequences that matched the morphologically similar family Circoviridae in BLAST searches. However, analysis of putative replicase proteins that were similar to those of viruses in the Circoviridae showed that they are a novel clade of Circoviridae-related CRESS-DNA viruses distinct from known Circoviridae genera. Different soils have substantially different taxonomic biodiversities even within ssDNA viruses, which may be driven by physicochemical factors. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  13. Stretching and Controlled Motion of Single-Stranded DNA in Locally-Heated Solid-State Nanopores

    Science.gov (United States)

    Belkin, Maxim; Maffeo, Christopher; Wells, David B.

    2013-01-01

    Practical applications of solid-state nanopores for DNA detection and sequencing require the electrophoretic motion of DNA through the nanopores to be precisely controlled. Controlling the motion of single-stranded DNA presents a particular challenge, in part because of the multitude of conformations that a DNA strand can adopt in a nanopore. Through continuum, coarse-grained and atomistic modeling, we demonstrate that local heating of the nanopore volume can be used to alter the electrophoretic mobility and conformation of single-stranded DNA. In the nanopore systems considered, the temperature near the nanopore is modulated via a nanometer-size heater element that can be radiatively switched on and off. The local enhancement of temperature produces considerable stretching of the DNA fragment confined within the nanopore. Such stretching is reversible, so that the conformation of DNA can be toggled between compact (local heating is off) and extended (local heating is on) states. The effective thermophoretic force acting on single-stranded DNA in the vicinity of the nanopore is found to be sufficiently large (4–8 pN) to affect such changes in the DNA conformation. The local heating of the nanopore volume is observed to promote single-file translocation of DNA strands at transmembrane biases as low as 10 mV, which opens new avenues for using solid-state nanopores for detection and sequencing of DNA. PMID:23876013

  14. Single-stranded DNA-binding protein recruits DNA polymerase V to primer termini on RecA-coated DNA.

    Science.gov (United States)

    Arad, Gali; Hendel, Ayal; Urbanke, Claus; Curth, Ute; Livneh, Zvi

    2008-03-28

    Translesion DNA synthesis (TLS) by DNA polymerase V (polV) in Escherichia coli involves accessory proteins, including RecA and single-stranded DNA-binding protein (SSB). To elucidate the role of SSB in TLS we used an in vitro exonuclease protection assay and found that SSB increases the accessibility of 3' primer termini located at abasic sites in RecA-coated gapped DNA. The mutant SSB-113 protein, which is defective in protein-protein interactions, but not in DNA binding, was as effective as wild-type SSB in increasing primer termini accessibility, but deficient in supporting polV-catalyzed TLS. Consistently, the heterologous SSB proteins gp32, encoded by phage T4, and ICP8, encoded by herpes simplex virus 1, could replace E. coli SSB in the TLS reaction, albeit with lower efficiency. Immunoprecipitation experiments indicated that polV directly interacts with SSB and that this interaction is disrupted by the SSB-113 mutation. Taken together our results suggest that SSB functions to recruit polV to primer termini on RecA-coated DNA, operating by two mechanisms: 1) increasing the accessibility of 3' primer termini caused by binding of SSB to DNA and 2) a direct SSB-polV interaction mediated by the C terminus of SSB.

  15. Aptamer based voltammetric determination of ampicillin using a single-stranded DNA binding protein and DNA functionalized gold nanoparticles.

    Science.gov (United States)

    Wang, Jun; Ma, Kui; Yin, Huanshun; Zhou, Yunlei; Ai, Shiyun

    2017-12-20

    An aptamer based method is described for the electrochemical determination of ampicillin. It is based on the use of DNA aptamer, DNA functionalized gold nanoparticles (DNA-AuNPs), and single-stranded DNA binding protein (ssDNA-BP). When the aptamer hybridizes with the target DNA on the AuNPs, the ssDNA-BP is captured on the electrode surface via its specific interaction with ss-DNA. This results in a decreased electrochemical signal of the redox probe Fe(CN) 6 3- which is measured best at a voltage of 0.188 mV (vs. reference electrode). In the presence of ampicillin, the formation of aptamer-ampicillin conjugate blocks the further immobilization of DNA-AuNPs and ssDNA-BP, and this leads to an increased response. The method has a linear reposne that convers the 1 pM to 5 nM ampicillin concentration range, with a 0.38 pM detection limit (at an S/N ratio of 3). The assay is selective, stable and reproducible. It was applied to the determination of ampicillin in spiked milk samples where it gave recoveries ranging from 95.5 to 105.5%. Graphical abstract Schematic of a simple and sensitive electrochemical apta-biosensor for ampicillin detection. It is based on the use of gold nanoparticles (AuNPs), DNA aptamer, DNA functionalized AuNPs (DNA-AuNPs), and single-strand DNA binding protein (SSBP).

  16. Complex shapes self-assembled from single-stranded DNA tiles.

    Science.gov (United States)

    Wei, Bryan; Dai, Mingjie; Yin, Peng

    2012-05-30

    Programmed self-assembly of strands of nucleic acid has proved highly effective for creating a wide range of structures with desired shapes. A particularly successful implementation is DNA origami, in which a long scaffold strand is folded by hundreds of short auxiliary strands into a complex shape. Modular strategies are in principle simpler and more versatile and have been used to assemble DNA or RNA tiles into periodic and algorithmic two-dimensional lattices, extended ribbons and tubes, three-dimensional crystals, polyhedra and simple finite two-dimensional shapes. But creating finite yet complex shapes from a large number of uniquely addressable tiles remains challenging. Here we solve this problem with the simplest tile form, a 'single-stranded tile' (SST) that consists of a 42-base strand of DNA composed entirely of concatenated sticky ends and that binds to four local neighbours during self-assembly. Although ribbons and tubes with controlled circumferences have been created using the SST approach, we extend it to assemble complex two-dimensional shapes and tubes from hundreds (in some cases more than one thousand) distinct tiles. Our main design feature is a self-assembled rectangle that serves as a molecular canvas, with each of its constituent SST strands--folded into a 3 nm-by-7 nm tile and attached to four neighbouring tiles--acting as a pixel. A desired shape, drawn on the canvas, is then produced by one-pot annealing of all those strands that correspond to pixels covered by the target shape; the remaining strands are excluded. We implement the strategy with a master strand collection that corresponds to a 310-pixel canvas, and then use appropriate strand subsets to construct 107 distinct and complex two-dimensional shapes, thereby establishing SST assembly as a simple, modular and robust framework for constructing nanostructures with prescribed shapes from short synthetic DNA strands.

  17. Radiation-induced DNA single-strand scission and its rejoining in spermatogonia and spermatozoa of mouse

    International Nuclear Information System (INIS)

    Ono, T.; Okada, S.

    1977-01-01

    Gamma-ray-induced DNA single-strand scissions and the ability to repair the scissions in spermatogonia from young mice and in spermatozoa from adult mice were studied quantitatively by an alkaline sucrose density-gradient centrifugation method. The average size of DNAs in non-irradiated spermatogonia was 2.6-3.0xx10 8 daltons, similar to those of a spermatid-rich population, and the size of DNA in non-irradiated spermatozoa was 1.2x10 8 daltons. In spermatogonia, the radiosensitivity of DNA was 0.42 single-strand breaks/10 12 daltons of DNA/rad in oxic conditions and only 0.24 under anoxic conditions. In spermatozoa the break efficiency of DNA was 0.22 single-strand breaks/10 12 daltons of DNA/rad under oxic conditions and altered little under anoxic irradiation. The DNA scissions were efficiently repaired in spermatogonia within 10 min, whereas the breaks in spermatozoa were not rejoined at all even after two days of post-irradiation time. The radiosensitivities of DNA, repair capability and non- and/or slowreparable DNA scissions were compared in spermatogonium-rich, spermatid-rich and spermatozoanrich populations

  18. Electrical conduction and photoresponses of gamma-ray-irradiated single-stranded DNA/single-walled carbon nanotube composite systems

    Energy Technology Data Exchange (ETDEWEB)

    Hong, W.; Lee, E.M.; Kim, D.W.; Lee, Cheol Eui, E-mail: rscel@korea.ac.kr

    2015-04-15

    Highlights: •Effects of gamma-ray irradiation on single-stranded DNA (ssDNA)/single-walled carbon nanotube (SWNT) composite films. •Barrier for thermally activated conduction in the composite systems modified by the gamma-ray irradiation. •Photoresponses reveal photoexcitation and oxygen photodesorption modified by gamma-ray irradiation. -- Abstract: Effects of gamma-ray irradiation on the electrical conductivity and photoresponse have been studied for single-stranded DNA (ssDNA)/single-walled carbon nanotube (SWNT) composite films. The temperature-dependent electrical conductivity of the ssDNA/SWNT composite films, well described by a fluctuation-induced tunneling model, indicated modification of the barrier for thermally activated conduction by the gamma-ray irradiation. Besides, the photoresponse measurements indicated modified photoexcited charge carrier generation and oxygen photodesorption in the composite systems due to the gamma-ray irradiation.

  19. Stabilization of Pt nanoparticles by single stranded DNA and the binary assembly of Au and Pt nanoparticles without hybridization

    International Nuclear Information System (INIS)

    Yang, J.; Lee, Jim Yang; Too, Heng-Phon; Chow, Gan-Moog; Gan, Leong M.

    2006-01-01

    The non-specific interaction between single stranded DNA (ssDNA) and 12 nm Pt nanoparticles is investigated in this work. The data show a strong and non-specific interaction between the two which can be exploited for the stabilization of Pt nanoparticles in aqueous solutions. Based on the experimental findings, a non-hybridization based protocol to assemble 17 nm Au and Pt nanoparticles (12 nm cubic and 3.6 nm spherical) by single-stranded DNA was developed. Transmission electron microscopy (TEM) and UV-visible spectroscopy confirmed that Au and Pt nanoparticles could be assembled by the non-specific interaction in an orderly manner. The experimental results also caution against the potential pitfalls in using DNA melting point analysis to infer metal nanoparticle assembly by DNA hybridization

  20. BCR-ABL promotes the frequency of mutagenic single-strand annealing DNA repair

    Science.gov (United States)

    Fernandes, Margret S.; Reddy, Mamatha M.; Gonneville, Jeffrey R.; DeRoo, Scott C.; Podar, Klaus; Griffin, James D.; Weinstock, David M.

    2009-01-01

    Intracellular oxidative stress in cells transformed by the BCR-ABL oncogene is associated with increased DNA double-strand breaks. Imprecise repair of these breaks can result in the accumulation of mutations, leading to therapy-related drug resistance and disease progression. Using several BCR-ABL model systems, we found that BCR-ABL specifically promotes the repair of double-strand breaks through single-strand annealing (SSA), a mutagenic pathway that involves sequence repeats. Moreover, our results suggest that mutagenic SSA repair can be regulated through the interplay between BCR-ABL and extrinsic growth factors. Increased SSA activity required Y177 in BCR-ABL, as well as a functional PI3K and Ras pathway downstream of this site. Furthermore, our data hint at a common pathway for DSB repair whereby BCR-ABL, Tel-ABL, Tel-PDGFR, FLT3-ITD, and Jak2V617F all increase mutagenic repair. This increase in SSA may not be sufficiently suppressed by tyrosine kinase inhibitors in the stromal microenvironment. Therefore, drugs that target growth factor receptor signaling represent potential therapeutic agents to combat tyrosine kinase-induced genomic instability. PMID:19571320

  1. Folding of single-stranded DNA quadruplexes containing an autonomously stable mini-hairpin loop.

    Science.gov (United States)

    Balkwill, Graham D; Garner, Thomas P; Searle, Mark S

    2009-05-01

    The single-stranded DNA quadruplex motif TG(3)-L(1)-G(3)-L(2)-G(3)-L(3)-G(3)T (where L(1), L(2) and L(3) are the three loop sequences) was used as a template for probing the effects of the loop sequences on stability and folding topology. An autonomously stable mini-hairpin sequence (ACGTAGT) was inserted into the central loop (L(2)) of different sequences with intrinsic propensities to form either parallel or anti-parallel structures. Single nucleotides (T) at positions L(1) and L(3) strongly favour the formation of a parallel structure with the L(2) hairpin insert affecting stability in the same way as a T(7) loop. However, in the context of an anti-parallel quadruplex with T(3) loops in positions L(1) and L(3), the mini-hairpin in the central loop forms a stable structure which enhances the T(m) of the quadruplex by approximately 10 degrees C when compared with the T(7) insert. The CD and UV melting data show that base pairing interactions within the ACGTAGT hairpin loop sequence, when accommodated as a diagonal loop in an anti-parallel structure, can enhance stability and lead to novel quadruplex structures, adding complexity to the folding landscape and expanding the potential repertoire of sequences that are able to regulate gene expression in vivo.

  2. Complexities due to single-stranded RNA during antibody detection of genomic rna:dna hybrids.

    Science.gov (United States)

    Zhang, Zheng Z; Pannunzio, Nicholas R; Hsieh, Chih-Lin; Yu, Kefei; Lieber, Michael R

    2015-04-08

    Long genomic R-loops in eukaryotes were first described at the immunoglobulin heavy chain locus switch regions using bisulfite sequencing and functional studies. A mouse monoclonal antibody called S9.6 has been used for immunoprecipitation (IP) to identify R-loops, based on the assumption that it is specific for RNA:DNA over other nucleic acid duplexes. However, recent work has demonstrated that a variable domain of S9.6 binds AU-rich RNA:RNA duplexes with a KD that is only 5.6-fold weaker than for RNA:DNA duplexes. Most IP protocols do not pre-clear the genomic nucleic acid with RNase A to remove free RNA. Fold back of ssRNA can readily generate RNA:RNA duplexes that may bind the S9.6 antibody, and adventitious binding of RNA may also create short RNA:DNA regions. Here we investigate whether RNase A is needed to obtain reliable IP with S9.6. As our test locus, we chose the most well-documented site for kilobase-long mammalian genomic R-loops, the immunoglobulin heavy chain locus (IgH) class switch regions. The R-loops at this locus can be induced by using cytokines to stimulate transcription from germline transcript promoters. We tested IP using S9.6 with and without various RNase treatments. The RNase treatments included RNase H to destroy the RNA in an RNA:DNA duplex and RNase A to destroy single-stranded (ss) RNA to prevent it from binding S9.6 directly (as duplex RNA) and to prevent the ssRNA from annealing to the genome, resulting in adventitious RNA:DNA hybrids. We find that optimal detection of RNA:DNA duplexes requires removal of ssRNA using RNase A. Without RNase A treatment, known regions of R-loop formation containing RNA:DNA duplexes can not be reliably detected. With RNase A treatment, a signal can be detected over background, but only within a limited 2 or 3-fold range, even with a stable kilobase-long genomic R-loop. Any use of the S9.6 antibody must be preceded by RNase A treatment to remove free ssRNA that may compete for the S9.6 binding by

  3. Carboplatin enhances the production and persistence of radiation-induced DNA single-strand breaks

    International Nuclear Information System (INIS)

    Yang, L.; Douple, E.B.; O'Hara, J.A.; Wang, H.J.

    1995-01-01

    Fluorometric analysis of DNA unwinding and alkaline elution were used to investigate the production and persistence of DNA single-strand breaks (SSBs) in Chinese hamster V79 and xrs-5 cells treated with the chemotherapeutic agent carboplatin in combination with radiation. Carboplatin was administered to cells before irradiation in hypoxic conditions, or the drug was added immediately after irradiation during the postirradiation recovery period in air. The results of DNA unwinding studies suggest that carboplatin enhances the production of radiation-induced SSBs in hypoxic V79 cells and xrs-5 cells by a factor of 1.86 and 1.83, respectively, when combined with radiation compared to the SSBs produced by irradiation alone. Carboplatin alone did not produce a measureable number of SSBs. Alkaline elution profiles also indicated that the rate of elution of SSBs was higher in cells treated with the carboplatin is present after irradiation and during the postirradiation recovery period, the rejoining of radiation-induced SSBs by a factor of 1.46 in V79 cells with 20 Gy irradiation and by a factor of 2.02 in xrs-5 cells with 20 Gy irradiation. When carboplatin is present after irradiation and during the postirradiation recovery period, the rejoining of radiation-induced SSBs is inhibited during this postirradiation incubation period (radiopotentiation) with a relative inhibition factor at 1 h postirradiation of 1.25 in V79 cells and 1.15 in xrs-5 cells. An increased production and persistence of SSBs resulting from the interaction of carboplatin with radiation may be an important step in the mechanism responsible for the potentiated cell killing previously from studies in animal tumors and in cultured cells. 31 refs., 7 figs

  4. Interaction of bacteriophage T4 and T7 single-stranded DNA-binding proteins with DNA

    International Nuclear Information System (INIS)

    Shokri, Leila; Williams, Mark C; Rouzina, Ioulia

    2009-01-01

    Bacteriophages T4 and T7 are well-studied model replication systems, which have allowed researchers to determine the roles of many proteins central to DNA replication, recombination and repair. Here we summarize and discuss the results from two recently developed single-molecule methods to determine the salt-dependent DNA-binding kinetics and thermodynamics of the single-stranded DNA (ssDNA)-binding proteins (SSBs) from these systems. We use these methods to characterize both the equilibrium double-stranded DNA (dsDNA) and ssDNA binding of the SSBs T4 gene 32 protein (gp32) and T7 gene 2.5 protein (gp2.5). Despite the overall two-orders-of-magnitude weaker binding of gp2.5 to both forms of DNA, we find that both proteins exhibit four-orders-of-magnitude preferential binding to ssDNA relative to dsDNA. This strong preferential ssDNA binding as well as the weak dsDNA binding is essential for the ability of both proteins to search dsDNA in one dimension to find available ssDNA-binding sites at the replication fork

  5. Assembly of presynaptic filaments. Factors affecting the assembly of RecA protein onto single-stranded DNA

    DEFF Research Database (Denmark)

    Thresher, RJ; Christiansen, Gunna; Griffith, JD

    1988-01-01

    We have previously shown that the assembly of RecA protein onto single-stranded DNA (ssDNA) facilitated by SSB protein occurs in three steps: (1) rapid binding of SSB protein to the ssDNA; (2) nucleation of RecA protein onto this template; and (3) co-operative polymerization of additional Rec...... assembled onto ssDNA at net rates that varied from 250 to 900 RecA protein monomers per minute, with the rate inversely related to the concentration of SSB protein. Combined sucrose sedimentation and electron microscope analysis established that SSB protein was displaced from the ssDNA during RecA protein...

  6. Mutability dynamics of an emergent single stranded DNA virus in a naïve host.

    Directory of Open Access Journals (Sweden)

    Subir Sarker

    Full Text Available Quasispecies variants and recombination were studied longitudinally in an emergent outbreak of beak and feather disease virus (BFDV infection in the orange-bellied parrot (Neophema chrysogaster. Detailed health monitoring and the small population size (<300 individuals of this critically endangered bird provided an opportunity to longitudinally track viral replication and mutation events occurring in a circular, single-stranded DNA virus over a period of four years within a novel bottleneck population. Optimized PCR was used with different combinations of primers, primer walking, direct amplicon sequencing and sequencing of cloned amplicons to analyze BFDV genome variants. Analysis of complete viral genomes (n = 16 and Rep gene sequences (n = 35 revealed that the outbreak was associated with mutations in functionally important regions of the normally conserved Rep gene and immunogenic capsid (Cap gene with a high evolutionary rate (3.41×10(-3 subs/site/year approaching that for RNA viruses; simultaneously we observed significant evidence of recombination hotspots between two distinct progenitor genotypes within orange-bellied parrots indicating early cross-transmission of BFDV in the population. Multiple quasispecies variants were also demonstrated with at least 13 genotypic variants identified in four different individual birds, with one containing up to seven genetic variants. Preferential PCR amplification of variants was also detected. Our findings suggest that the high degree of genetic variation within the BFDV species as a whole is reflected in evolutionary dynamics within individually infected birds as quasispecies variation, particularly when BFDV jumps from one host species to another.

  7. Functional analysis of multiple single-stranded DNA-binding proteins from Methanosarcina acetivorans and their effects on DNA synthesis by DNA polymerase BI.

    Science.gov (United States)

    Robbins, Justin B; Murphy, Mary C; White, Bryan A; Mackie, Roderick I; Ha, Taekjip; Cann, Isaac K O

    2004-02-20

    Single-stranded DNA-binding proteins and their functional homologs, replication protein A, are essential components of cellular DNA replication, repair and recombination. We describe here the isolation and characterization of multiple replication protein A homologs, RPA1, RPA2, and RPA3, from the archaeon Methanosarcina acetivorans. RPA1 comprises four single-stranded DNA-binding domains, while RPA2 and RPA3 are each composed of two such domains and a zinc finger domain. Gel filtration analysis suggested that RPA1 exists as homotetramers and homodimers in solution, while RPA2 and RPA3 form only homodimers. Unlike the multiple RPA proteins found in other Archaea and eukaryotes, each of the M. acetivorans RPAs can act as a distinct single-stranded DNA-binding protein. Fluorescence resonance energy transfer and fluorescence polarization anisotropy studies revealed that the M. acetivorans RPAs bind to as few as 10 single-stranded DNA bases. However, more stable binding is achieved with single-stranded DNA of 18-23 bases, and for such substrates the estimated Kd was 3.82 +/- 0.28 nM, 173.6 +/- 105.17 nM, and 5.92 +/- 0.23 nM, for RPA1, RPA2, and RPA3, respectively. The architectures of the M. acetivorans RPAs are different from those of hitherto reported homologs. Thus, these proteins may represent novel forms of replication protein A. Most importantly, our results show that the three RPAs and their combinations highly stimulate the primer extension capacity of M. acetivorans DNA polymerase BI. Although bacterial SSB and eukaryotic RPA have been shown to stimulate DNA synthesis by their cognate DNA polymerases, our findings provide the first in vitro biochemical evidence for the conservation of this property in an archaeon.

  8. Opposite effects of nitric oxide donors on DNA single strand breakage and cytotoxicity caused by tert-butylhydroperoxide

    Science.gov (United States)

    Guidarelli, Andrea; Sestili, Piero; Cantoni, Orazio

    1998-01-01

    The effects of three different NO donors on tert-butylhydroperoxide (tB-OOH)-induced DNA cleavage and toxicity were investigated in U937 cells.Treatment with S-nitroso-N-acetyl-penicillamine (SNAP, 1–30 μM), while not in itself DNA-damaging, potentiated the DNA strand scission induced by 200 μM tB-OOH in a concentration-dependent fashion. The enhancing effects of SNAP were observed with two different techniques for the assessment of DNA damage. Decomposed SNAP was inactive. S-nitrosoglutathione (GSNO, 300 μM) and (Z)-1-[(2-aminoethyl)-N-(2-ammonioethyl) amino]diazen-1-ium-1,2-diolate (DETA-NO, 1 mM) also increased DNA cleavage generated by tB-OOH and these responses, as well as that mediated by SNAP, were prevented by the NO scavenger 2-phenyl-4,4,5,5-tetramethylimidazolin-1-oxyl-3-oxide (PTIO).SNAP neither inhibited catalase activity nor increased the formation of DNA lesions in cells exposed to H2O2. Furthermore, SNAP did not affect the rate of rejoining of the DNA single strand breaks generated by tB-OOH.Under the conditions utilized in the DNA damage experiments, treatment with tB-OOH alone or associated with SNAP did not cause cell death. However, SNAP as well as GSNO markedly reduced the lethal response promoted by millimolar concentrations of tB-OOH and these effects were abolished by PTIO. Decomposed SNAP was inactive.It is concluded that low levels of NO donors, which probably release physiological concentrations of NO, enhance the accumulation of DNA single strand breaks in U937 cells exposed to tB-OOH. This NO-mediated effect appears to (a) not depend on inhibition of either DNA repair (which would increase the net accumulation of DNA lesions by preventing DNA single strand break removal) or catalase activity (which would also enhance the net accumulation of DNA lesions since H2O2 is one of the species mediating the tB-OOH-induced DNA cleavage) and (b) be caused by enforced formation of tB-OOH-derived DNA-damaging species. In contrast to

  9. TrmBL2 from Pyrococcus furiosus Interacts Both with Double-Stranded and Single-Stranded DNA.

    Directory of Open Access Journals (Sweden)

    Sebastian Wierer

    Full Text Available In many hyperthermophilic archaea the DNA binding protein TrmBL2 or one of its homologues is abundantly expressed. TrmBL2 is thought to play a significant role in modulating the chromatin architecture in combination with the archaeal histone proteins and Alba. However, its precise physiological role is poorly understood. It has been previously shown that upon binding TrmBL2 covers double-stranded DNA, which leads to the formation of a thick and fibrous filament. Here we investigated the filament formation process as well as the stabilization of DNA by TrmBL2 from Pyroccocus furiosus in detail. We used magnetic tweezers that allow to monitor changes of the DNA mechanical properties upon TrmBL2 binding on the single-molecule level. Extended filaments formed in a cooperative manner and were considerably stiffer than bare double-stranded DNA. Unlike Alba, TrmBL2 did not form DNA cross-bridges. The protein was found to bind double- and single-stranded DNA with similar affinities. In mechanical disruption experiments of DNA hairpins this led to stabilization of both, the double- (before disruption and the single-stranded (after disruption DNA forms. Combined, these findings suggest that the biological function of TrmBL2 is not limited to modulating genome architecture and acting as a global repressor but that the protein acts additionally as a stabilizer of DNA secondary structure.

  10. The single-strand DNA binding activity of human PC4 preventsmutagenesis and killing by oxidative DNA damage

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jen-Yeu; Sarker, Altaf Hossain; Cooper, Priscilla K.; Volkert, Michael R.

    2004-02-01

    Human positive cofactor 4 (PC4) is a transcriptional coactivator with a highly conserved single-strand DNA (ssDNA) binding domain of unknown function. We identified PC4 as a suppressor of the oxidative mutator phenotype of the Escherichia coli fpg mutY mutant and demonstrate that this suppression requires its ssDNA binding activity. Yeast mutants lacking their PC4 ortholog Sub1 are sensitive to hydrogen peroxide and exhibit spontaneous and peroxide induced hypermutability. PC4 expression suppresses the peroxide sensitivity of the yeast sub l{Delta} mutant, suggesting that the human protein has a similar function. A role for yeast and human proteins in DNA repair is suggested by the demonstration that Sub1 acts in a peroxide-resistance pathway involving Rad2 and by the physical interaction of PC4 with the human Rad2 homolog XPG. We show XPG recruits PC4 to a bubble-containing DNA substrate with resulting displacement of XPG and formation of a PC4-DNA complex. We discuss the possible requirement for PC4 in either global or transcription-coupled repair of oxidative DNA damage to mediate the release of XPG bound to its substrate.

  11. Functional characterization of a conserved archaeal viral operon revealing single-stranded DNA binding, annealing and nuclease activities

    DEFF Research Database (Denmark)

    Guo, Yang; Kragelund, Birthe Brandt; White, Malcolm F.

    2015-01-01

    encoding proteins of unknown function and forming an operon with ORF207 (gp19). SIRV2 gp17 was found to be a single-stranded DNA (ssDNA) binding protein different in structure from all previously characterized ssDNA binding proteins. Mutagenesis of a few conserved basic residues suggested a U......-shaped binding path for ssDNA. The recombinant gp18 showed an ssDNA annealing activity often associated with helicases and recombinases. To gain insight into the biological role of the entire operon, we characterized SIRV2 gp19 and showed it to possess a 5'→3' ssDNA exonuclease activity, in addition...... for rudiviruses and the close interaction among the ssDNA binding, annealing and nuclease proteins strongly point to a role of the gene operon in genome maturation and/or DNA recombination that may function in viral DNA replication/repair....

  12. The Adsorption of Short Single-Stranded DNA Oligomers on Mineral Surfaces

    Science.gov (United States)

    Kopstein, M.; Sverjensky, D. A.; Hazen, R. M.; Cleaves, H. J.

    2009-12-01

    Previous studies have described feasible pathways for the synthesis of simple organic building blocks such as formaldehyde and hydrogen cyanide, and their reaction to form more complex biomolecules such as nucleotide bases, amino acids and sugars (Miller and Orgel 1974, Miller and Cleaves 2006). However, the polymerization of monomers into a useful genetic material remains problematic (Orgel 2004). Organic building blocks were unlikely to polymerize from very dilute aqueous solution in the primitive oceans. Mineral surface adsorption has been suggested as a possible mechanism for concentrating the necessary building blocks (Bernal 1951). This study focused on the adsorption behavior of single-stranded DNA homo-oligomers of adenine and thymine (including the monomers, dimers, tetramers, hexamers, octomers, and decamers) with five different mineral surfaces (pyrite, rutile, hematite, olivine and calcite). Adsorption was studied in 0.1 M pH 8.1 KHCO3 with0.05 M NaCl as background electrolyte. Solutions were mixed for 24 hours at room temperature, centrifuged and the supernatants analyzed by UV/visible spectrophotometry. Equilibrium solution concentrations were measured and used to determine the number of moles adsorbed per square meter. Langmuir isotherms were constructed using the experimental data. It was found that adenine-containing molecules tend to bind much more strongly than thymine-containing molecules. It was also found that the number of moles adsorbed at saturation tends to fall with increasing chain length, while adsorption affinity tends to rise. Oligomer length appears to affect adsorption more than the mineral type. These results may have implications for the primordial organization of the first nucleic acid molecules as the persistence of extra-cellular nucleic acids in the environment. References Bernal, J. D. (1951) The Physical Basis of Life (Routledge, London). Miller S.L. and Cleaves, H.J. (2006) Prebiotic chemistry on the primitive Earth. In

  13. Bacillus subtilis single-stranded DNA-binding protein SsbA is phosphorylated at threonine 38 by the serine/threonine kinase YabT

    DEFF Research Database (Denmark)

    Derouiche, Abderahmane; Petranovic, Dina; Macek, Boris

    2016-01-01

    Background and purpose: Single-stranded DNA-binding proteins participate in all stages of DNA metabolism that involve single-stranded DNA, from replication, recombination, repair of DNA damage, to natural competence in species such as Bacillus subtilis. B. subtilis single-stranded DNA-binding pro......Background and purpose: Single-stranded DNA-binding proteins participate in all stages of DNA metabolism that involve single-stranded DNA, from replication, recombination, repair of DNA damage, to natural competence in species such as Bacillus subtilis. B. subtilis single-stranded DNA...... assays.Results: In addition to the known tyrosine phosphorylation of SsbA on tyrosine 82, we identified a new phosphorylation site: threonine 38. The in vitro assays demonstrated that SsbA is preferentially phosphorylated by the B. subtilis Hanks-type kinase YabT, and phosphorylation of threonine 38...... leads to enhanced cooperative binding to DNA.Conclusions: Our findings contribute to the emerging picture that bacterial proteins, exemplified here by SsbA, undergo phosphorylation at multiple residues. This results in a complex regulation of cellular functions, and suggests that the complexity...

  14. Evidence of impurities in thiolated single-stranded DNA oligomers and their effect on DNA self-assembly on gold.

    Science.gov (United States)

    Lee, Chi-Ying; Canavan, Heather E; Gamble, Lara J; Castner, David G

    2005-05-24

    The diversity of techniques used in the synthesis, treatment, and purification of the single-stranded DNA oligomers containing a thiol anchor group (SH-ssDNA) has led to a significant variation in the purity of commercially available SH-ssDNA. In this work, we use X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) to study how the impurities present in commercially synthesized SH-ssDNA oligomers affected the structure of the resulting DNA films on Au. XPS results indicate that two of the purchased SH-ssDNA oligomers contain excess carbon and sulfur. The molecular fragmentation patterns obtained with ToF-SIMS were used to determine the identity of several contaminants in the DNA films, including poly(dimethylsiloxane) (PDMS), lipid molecules, and sulfur-containing molecules. In particular, the ToF-SIMS results determined that the excess sulfur detected by XPS was due to the presence of dithiothreitol, a reductant often used to cleave disulfide precursors. Furthermore, we found that the SH-ssDNA self-assembly process is affected by the presence of these contaminants. When relatively pure SH-ssDNA is used to prepare the DNA films, the P, N, O, and C atomic percentages were observed by XPS to increase over a 24-h time period. In contrast, surfaces prepared using SH-ssDNA containing higher levels of contaminants did not follow this trend. XPS result indicates that, after the initial SH-ssDNA adsorption, the remaining material incorporated into these films was due to contamination.

  15. Detection of circular telomeric DNA without 2D gel electrophoresis.

    Science.gov (United States)

    Dlaska, Margit; Anderl, Conrad; Eisterer, Wolfgang; Bechter, Oliver E

    2008-09-01

    The end of linear chromosomes forms a lasso-like structure called the t-loop. Such t-loops resemble a DNA recombination intermediate, where the single-stranded 3' overhang is arrested in a stretch of duplex DNA. Presumably, such a t-loop can also be deleted via a recombination process. This would result in the occurrence of circular extrachromosomal telomeric DNA (t-circles), which are known to be abundantly present in immortal cells engaging the recombination-based alternative lengthening of telomeres pathway (ALT pathway). Little is known about the basic mechanism of telomeric recombination in these cells and what ultimately causes the generation of such t-circles. Current standard procedures for detecting these molecules involve 2D gel electrophoresis or electron microscopy. However, both methods are labor intense and sophisticated to perform. Here, we present a simpler, faster, and equally sensitive method for detecting t-circles. Our approach is a telomere restriction fragment assay that involves the enzymatic preservation of circular DNA with Klenow enzyme followed by Bal31 degradation of the remaining linear DNA molecules. We show that with this approach t-circles can be detected in ALT cell lines, whereas no t-circles are present in telomerase-positive cell lines. We consider our approach a valid method in which t-circle generation is the experimental readout.

  16. Cisplatin GG-crosslinks within single-stranded DNA: origin of the preference for left-handed helicity.

    Science.gov (United States)

    Monnet, Jordan; Kozelka, Jiří

    2012-10-01

    Molecular dynamics (MD) simulations of the single-stranded DNA trinucleotide TG*G*, with the G* guanines crosslinked by the antitumor drug cisplatin, were performed with explicit representation of the water as solvent. The purpose of the simulations was to explain previous NMR observations indicating that in single-stranded cisplatin-DNA adducts, the crosslinked guanines adopt a left-handed helical orientation, whereas in duplexes, the orientation is right-handed. The analysis of the MD trajectory of TG*G* has ascribed a crucial role to hydrogen-bonding (direct or through-water) interactions of the 5'-oriented NH(3) ligand of platinum with acceptor groups at the 5'-side of the crosslink, namely the TpG* phosphate and the terminal 5'-OH group. These interactions bring about some strain into the trinucleotide which is slightly but significantly (1-1.5 kcal.mol(-1)) higher for the right-handed orientation than for the left-handed one. During the unconstrained, 3 ns long MD simulation, left-handed conformations were ~15 times more abundant than the right-handed ones. This sampling difference agrees roughly with the calculated energy difference in strain energy. Overall, these results show that the Pt-GG crosslink within single-stranded DNA is malleable and can access different conformations at a moderate energy cost. This malleability could be of importance in interactions between the platinated DNA and cellular proteins, in which the DNA is locally unwound. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Alkyladenine DNA glycosylase (AAG) localizes to mitochondria and interacts with mitochondrial single-stranded binding protein (mtSSB).

    Science.gov (United States)

    van Loon, Barbara; Samson, Leona D

    2013-03-01

    Due to a harsh environment mitochondrial genomes accumulate high levels of DNA damage, in particular oxidation, hydrolytic deamination, and alkylation adducts. While repair of alkylated bases in nuclear DNA has been explored in detail, much less is known about the repair of DNA alkylation damage in mitochondria. Alkyladenine DNA glycosylase (AAG) recognizes and removes numerous alkylated bases, but to date AAG has only been detected in the nucleus, even though mammalian mitochondria are known to repair DNA lesions that are specific substrates of AAG. Here we use immunofluorescence to show that AAG localizes to mitochondria, and we find that native AAG is present in purified human mitochondrial extracts, as well as that exposure to alkylating agent promotes AAG accumulation in the mitochondria. We identify mitochondrial single-stranded binding protein (mtSSB) as a novel interacting partner of AAG; interaction between mtSSB and AAG is direct and increases upon methyl methanesulfonate (MMS) treatment. The consequence of this interaction is specific inhibition of AAG glycosylase activity in the context of a single-stranded DNA (ssDNA), but not a double-stranded DNA (dsDNA) substrate. By inhibiting AAG-initiated processing of damaged bases, mtSSB potentially prevents formation of DNA breaks in ssDNA, ensuring that base removal primarily occurs in dsDNA. In summary, our findings suggest the existence of AAG-initiated BER in mitochondria and further support a role for mtSSB in DNA repair. Copyright © 2012. Published by Elsevier B.V.

  18. Micronuclei, DNA single-strand breaks and DNA-repair activity in mice exposed to 1,3-butadiene by inhalation

    Czech Academy of Sciences Publication Activity Database

    Vodička, Pavel; Štětina, R.; Šmerák, P.; Vodičková, Ludmila; Naccarati, Alessio; Bárta, I.; Hemminki, K.

    2006-01-01

    Roč. 608, - (2006), s. 49-57 ISSN 1383-5718 R&D Projects: GA ČR(CZ) GA310/01/0802 Institutional research plan: CEZ:AV0Z50390512 Keywords : Single-strand DNA breaks * Micronucleus formation * DNA-repair activity Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.122, year: 2006

  19. Surface treatment on amorphous InGaZnO4 thin film for single-stranded DNA biosensing

    Science.gov (United States)

    Sun, Dali; Matsui, Hiroaki; Wu, Chun-Nan; Tabata, Hitoshi

    2015-01-01

    Amorphous InGaZnO4 (aIGZO) has been widely used as a transparent semiconductor. However, no research has been found yet applying aIGZO to biosensing. This paper examined the single strand DNA (ssDNA) immobilization on aIGZO by absorption with a comparison to ITO, which is the first step for many biosensing schemas. The DNA quantification by florescence intensity shows that the absorption capacity of aIGZO film to ssDNA is 6.7 times greater than that of ITO. XPS and contact angle analysis proved the high DNA absorption affinity on aIGZO film is related to its high effectiveness to OH- attachment. A feasible method to immobilized ssDNA on aIGZO thin film is evaluated in this paper, and consequently, enables a possible approach to apply aIGZO in biosensing.

  20. Alkali-labile sites and post-irradiation effects in single-stranded DNA induced by H radicals

    International Nuclear Information System (INIS)

    Lafleur, M.V.M.; Heuvel, N. van; Woldhuis, J.; Loman, H.

    1978-01-01

    Single-stranded phiX174 DNA in aqueous solutions has been irradiated in the absence of oxygen, under conditions in which H radicals react with the DNA. It was shown that H radical reactions result in breaks, which contribute approximately 10 per cent inactivation. Further, two types of alkali-labile sites were formed. One was lethal and gave rise to single-strand breaks by alkali and was most probably identical with post-irradiation heat damage and contributed about 33 per cent to the inactivation mentioned above. The other consisted of non-lethal damage, partly dihydropyrimidine derivatives, and was converted to lethal damage by alkali. This followed from experiments in which the DNA was treated with osmium-tetroxide, which oxidized thymine to 5,6-dihydroxydihydrothymine. Treatment with alkali of this DNA gave the same temperature dependence as found for the non-lethal alkali-labile sites in irradiated DNA. A similar temperature dependence was found for dihydrothymine and irradiated pyrimidines with alkali. (author)

  1. Highly stable triple helix formation by homopyrimidine (l)-acyclic threoninol nucleic acids with single stranded DNA and RNA

    DEFF Research Database (Denmark)

    Kumar, Vipin; Kesavan, Venkitasamy; Gothelf, Kurt Vesterager

    2015-01-01

    Acyclic (l)-threoninol nucleic acid (aTNA) containing thymine, cytosine and adenine nucleobases were synthesized and shown to form surprisingly stable triplexes with complementary single stranded homopurine DNA or RNA targets. The triplex structures consist of two (l)-aTNA strands and one DNA...... or RNA, and these triplexes are significantly stronger than the corresponding DNA or RNA duplexes as shown in competition experiments. As a unique property the (l)-aTNAs exclusively form triplex structures with DNA and RNA and no duplex structures are observed by gel electrophoresis. The results were...... compared to the known enantiomer (d)-aTNA, which forms much weaker triplexes depending upon temperature and time. It was demonstrated that (l)-aTNA triplexes are able to stop primer extension on a DNA template, showing the potential of (l)-aTNA for antisense applications....

  2. Quenching of Single-Walled Carbon Nanotube Fluorescence by Dissolved Oxygen Reveals Selective Single-Stranded DNA Affinities.

    Science.gov (United States)

    Zheng, Yu; Bachilo, Sergei M; Weisman, R Bruce

    2017-05-04

    The selective interactions between short oligomers of single-stranded DNA (ssDNA) and specific structures of single-walled carbon nanotubes have been exploited in powerful methods for nanotube sorting. We report here that nanotubes coated with ssDNA also display selective interactions through the selective quenching of nanotube fluorescence by dissolved oxygen. In aqueous solutions equilibrated under 1 atm of O 2 , emission intensity from semiconducting nanotubes is reduced by between 9 and 40%, varying with the combination of ssDNA sequence and nanotube structure. This quenching reverses promptly and completely on the removal of dissolved O 2 and may be due to physisorption on nanotube surfaces. Fluorescence quenching offers a simple, nondestructive approach for studying the structure-selective interactions of ssDNA with single-walled carbon nanotubes and identifying recognition sequences.

  3. Characterization of the single-stranded DNA binding protein pV(VGJΦ) of VGJΦ phage from Vibrio cholerae.

    Science.gov (United States)

    Falero, Alina; Caballero, Andy; Trigueros, Sonia; Pérez, Celso; Campos, Javier; Marrero, Karen; Fando, Rafael

    2011-09-01

    pV(VGJΦ), a single-stranded DNA binding protein of the vibriophage VGJΦ was subject to biochemical analysis. Here, we show that this protein has a general affinity for single-stranded DNA (ssDNA) as documented by Electrophoretic Mobility Shift Assay (EMSA). The apparent molecular weight of the monomer is about 12.7kDa as measured by HPLC-SEC. Moreover, isoelectrofocusing showed an isoelectric point for pV(VGJΦ) of 6.82 pH units. Size exclusion chromatography in 150mM NaCl, 50mM sodium phosphate buffer, pH 7.0 revealed a major protein species of 27.0kDa, suggesting homodimeric protein architecture. Furthermore, pV(VGJΦ) binds ssDNA at extreme temperatures and the complex was stable after extended incubation times. Upon frozen storage at -20°C for a year the protein retained its integrity, biological activity and oligomericity. On the other hand, bioinformatics analysis predicted that pV(VGJΦ) protein has a disordered C-terminal, which might be involved in its functional activity. All the aforementioned features make pV(VGJΦ) interesting for biotechnological applications. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Non-uniform binding of single-stranded DNA binding proteins to hybrids of single-stranded DNA and single-walled carbon nanotubes observed by atomic force microscopy in air and in liquid

    Energy Technology Data Exchange (ETDEWEB)

    Umemura, Kazuo, E-mail: meicun2006@163.com; Ishizaka, Kei; Nii, Daisuke; Izumi, Katsuki

    2016-12-01

    Highlights: • Conjugates of protein, DNA, and SWNTs were observed by AFM in liquid. • Non-uniform binding of proteins was visualized in liquid. • Thickness of DNA molecules on SWNT surfaces was well characterized in liquid. - Abstract: Using atomic force spectroscopy (AFM), we observed hybrids of single-stranded DNA (ssDNA) and single-walled carbon nanotubes (SWNTs) with or without protein molecules in air and in an aqueous solution. This is the first report of ssDNA–SWNT hybrids with proteins in solution analyzed by AFM. In the absence of protein, the height of the ssDNA–SWNT hybrids was 1.1 ± 0.3 nm and 2.4 ± 0.6 nm in air and liquid, respectively, suggesting that the ssDNA molecules adopted a flexible structure on the SWNT surface. In the presence of single-stranded DNA binding (SSB) proteins, the heights of the hybrids in air and liquid increased to 6.4 ± 3.1 nm and 10.0 ± 4.5 nm, respectively. The AFM images clearly showed binding of the SSB proteins to the ssDNA–SWNT hybrids. The morphology of the SSB–ssDNA–SWNT hybrids was non-uniform, particularly in aqueous solution. The variance of hybrid height was quantitatively estimated by cross-section analysis along the long-axis of each hybrid. The SSB–ssDNA–SWNT hybrids showed much larger variance than the ssDNA–SWNT hybrids.

  5. Epidermal growth factor stimulating reparation of γ-ray-induced single-strand breaks predominantly in untranscribed DNA of HeLa cells

    International Nuclear Information System (INIS)

    Igusheva, O.A.; Bil'din, V.N.; Zhestyanikov, V.D.

    1994-01-01

    Considerable evidence suggest that genomic DNA undergoes reparation unevenly because of different transcription activities of its particular sequence. It is highly probably that transcriptional factors are necessary for postion stages of excision reparation and for reparation of single-strand DNA breaks caused by ionizing radiation. There is evidence suggesting that DNA lesions inflicted by γ-radiation is preferentially initiated in transcribed rather than in untranscribed DNA species. This paper looks at the relationship between stimulatory effect of epidermal growth factor (EGF) on reparation of single-strand DNA breaks and reparation of the damage done to active and inert fragments of chromatin. The results show that EGF stimulates reparation of single-strand DNA breaks induced by γ-radiation more effectively in untranscribed than in transcribed DNA. 13 refs., 1 fig., 1 tab

  6. Two-dimensional strandness-dependent electrophoresis: a method to characterize single-stranded DNA, double-stranded DNA, and RNA-DNA hybrids in complex samples.

    Science.gov (United States)

    Gunnarsson, Gudmundur H; Gudmundsson, Bjarki; Thormar, Hans G; Alfredsson, Arni; Jonsson, Jon J

    2006-03-01

    We describe two-dimensional strandness-dependent electrophoresis (2D-SDE) for quantification and length distribution analysis of single-stranded (ss) DNA fragments, double-stranded (ds) DNA fragments, RNA-DNA hybrids, and nicked DNA fragments in complex samples. In the first dimension nucleic acid molecules are separated based on strandness and length in the presence of 7 M urea. After the first-dimension electrophoresis all nucleic acid fragments are heat denatured in the gel. During the second-dimension electrophoresis all nucleic acid fragments are single-stranded and migrate according to length. 2D-SDE takes about 90 min and requires only basic skills and equipment. We show that 2D-SDE has many applications in analyzing complex nucleic acid samples including (1) estimation of renaturation efficiency and kinetics, (2) monitoring cDNA synthesis, (3) detection of nicked DNA fragments, and (4) estimation of quality and in vitro damage of nucleic acid samples. Results from 2D-SDE should be useful to validate techniques such as complex polymerase chain reaction, subtractive hybridization, cDNA synthesis, cDNA normalization, and microarray analysis. 2D-SDE could also be used, e.g., to characterize biological nucleic acid samples. Information obtained with 2D-SDE cannot be readily obtained with other methods. 2D-SDE can be used for preparative isolation of ssDNA fragments, dsDNA fragments, and RNA-DNA hybrids.

  7. Initiation and termination of the bacteriophage phi X174 rolling circle DNA replication in vivo: packaging of plasmid single-stranded DNA into bacteriophage phi X174 coats

    NARCIS (Netherlands)

    van der Ende, A.; Teertstra, R.; Weisbeek, P. J.

    1982-01-01

    The bacteriophage phi X174 viral (+) origin when inserted in a plasmid can interact in vivo with the A protein produced by infecting phi X174 phages. A consequence of this interaction is packaging of single-stranded plasmid DNA into preformed phage coats resulting in infective particles (1). This

  8. Changes in the infrared microspectroscopic characteristics of DNA caused by cationic elements, different base richness and single-stranded form.

    Directory of Open Access Journals (Sweden)

    Maria Luiza S Mello

    Full Text Available BACKGROUND: The infrared (IR analysis of dried samples of DNA and DNA-polypeptide complexes is still scarce. Here we have studied the FT-IR profiles of these components to further the understanding of the FT-IR signatures of chromatin and cell nuclei. METHODOLOGY/PRINCIPAL FINDINGS: Calf thymus and salmon testis DNA, and complexes of histone H1, protamine, poly-L-lysine and poly-L-arginine (histone-mimic macromolecules with DNA were analyzed in an IR microspectroscope equipped with an attenuated total reflection diamond objective and Grams software. Conditions including polypeptides bound to the DNA, DNA base composition, and single-stranded form were found to differently affect the vibrational characteristics of the chemical groups (especially, PO(2(- in the nucleic acid. The antisymmetric stretching (ν(as of the DNA PO(2(- was greater than the symmetric stretching (ν(s of these groups and increased in the polypeptide-DNA complexes. A shift of the ν(as of the DNA PO(2(- to a lower frequency and an increased intensity of this vibration were induced especially by lysine-rich histones. Lysine richness additionally contributed to an increase in the vibrational stretching of the amide I group. Even in simple molecules such as inorganic phosphates, the vibrational characteristics of the phosphate anions were differently affected by different cations. As a result of the optimization of the DNA conformation by binding to arginine-rich polypeptides, enhancements of the vibrational characteristics in the FT-IR fingerprint could be detected. Although different profiles were obtained for the DNA with different base compositions, this situation was no longer verified in the polypeptide-DNA complexes and most likely in isolated chromatin or cell nuclei. However, the ν(as PO(2(-/ν(s PO(2(- ratio could discriminate DNA with different base compositions and DNA in a single-stranded form. CONCLUSIONS/SIGNIFICANCE: FT-IR spectral profiles are a valuable tool

  9. Identification and genetic characterization of a novel circular single-stranded DNA virus in a human upper respiratory tract sample.

    Science.gov (United States)

    Cui, Lunbiao; Wu, Binyao; Zhu, Xiaojuan; Guo, Xiling; Ge, Yiyue; Zhao, Kangchen; Qi, Xian; Shi, Zhiyang; Zhu, Fengcai; Sun, Lixin; Zhou, Minghao

    2017-11-01

    Metagenomic analysis through high-throughput sequencing is a tool for detecting both known and novel viruses. Using this technique, a novel circular single-stranded DNA (ssDNA) virus genome was discovered in respiratory secretions from a febrile traveler. The virus, named human respiratory-associated PSCV-5-like virus (HRAPLV), has a genome comprising 3,018 bases, with two major putative ORFs inversely encoding capsid (Cap) and replicase (Rep) protein and separated by two intergenic regions. One stem-loop structure was predicted in the larger intergenic region (LIR). The predicted amino acid sequences of the Cap and Rep proteins of HRAPLV showed highest identity to those of porcine stool-associated circular virus 5 isolate CP3 (PoSCV 5) (53.0% and 48.9%, respectively). The host tropism of the virus is unknown, and further study is warranted to determine whether this novel virus is associated with human disease.

  10. Characterization of the single stranded DNA binding protein SsbB encoded in the Gonoccocal Genetic Island.

    Directory of Open Access Journals (Sweden)

    Samta Jain

    Full Text Available Most strains of Neisseria gonorrhoeae carry a Gonococcal Genetic Island which encodes a type IV secretion system involved in the secretion of ssDNA. We characterize the GGI-encoded ssDNA binding protein, SsbB. Close homologs of SsbB are located within a conserved genetic cluster found in genetic islands of different proteobacteria. This cluster encodes DNA-processing enzymes such as the ParA and ParB partitioning proteins, the TopB topoisomerase, and four conserved hypothetical proteins. The SsbB homologs found in these clusters form a family separated from other ssDNA binding proteins.In contrast to most other SSBs, SsbB did not complement the Escherichia coli ssb deletion mutant. Purified SsbB forms a stable tetramer. Electrophoretic mobility shift assays and fluorescence titration assays, as well as atomic force microscopy demonstrate that SsbB binds ssDNA specifically with high affinity. SsbB binds single-stranded DNA with minimal binding frames for one or two SsbB tetramers of 15 and 70 nucleotides. The binding mode was independent of increasing Mg(2+ or NaCl concentrations. No role of SsbB in ssDNA secretion or DNA uptake could be identified, but SsbB strongly stimulated Topoisomerase I activity.We propose that these novel SsbBs play an unknown role in the maintenance of genetic islands.

  11. Formation of double-strand breaks in DNA of γ-irradiated bacteria depending on the function of fast repair processes of DNA single-strand breaks

    International Nuclear Information System (INIS)

    Petrov, S.I.; Gaziev, A.I.

    1980-01-01

    The formation of double-strand breaks in DNA of γ-irradiated ( 60 Co)Ex coli bacteria depending on the function of fast repair processes of DNA single-strand breaks, is investigated. The profiles of sedimentation of DNA Ex coli cells, irradiated at 0-2 deg C in the salt medium and in EDTA-borate buffer, are presented. It is shown that when irradiating cells in EDTA-borate buffer, the output of single- and double strand breaks in DNA is much higher than in the case of their irradiation in the minimum salt medium. The dependence of output of single-strand and double-strand breaks depending on the radiatier doze of E coli cells in the salt medium and EDTA-borate buffer, is studied. The supposition is made on the presence of a regulative interaction between the accumulation of DNA single-breaks and their repair with the formation of double-strand breaks. The functionating of fast and superfast repair processes considerably affects the formation of double-strand breaks in DNA of a bacterium cell. A considerable amount of double-breaks registered immediately after irradiation forms due to a close position of single-strand breaks on the opposite DNA strands

  12. Slowing single-stranded DNA translocation through a solid-state nanopore by decreasing the nanopore diameter.

    Science.gov (United States)

    Akahori, Rena; Haga, Takanobu; Hatano, Toshiyuki; Yanagi, Itaru; Ohura, Takeshi; Hamamura, Hirotaka; Iwasaki, Tomio; Yokoi, Takahide; Anazawa, Takashi

    2014-07-11

    To slow the translocation of single-stranded DNA (ssDNA) through a solid-state nanopore, a nanopore was narrowed, and the effect of the narrowing on the DNA translocation speed was investigated. In order to accurately measure the speed, long (5.3 kb) ssDNA (namely, ss-poly(dA)) with uniform length (±0.4 kb) was synthesized. The diameters of nanopores fabricated by a transmission electron microscope were controlled by atomic-layer deposition. Reducing the nanopore diameter from 4.5 to 2.3 nm slowed down the translocation of ssDNA by more than 16 times (to 0.18 μs base(-1)) when 300 mV was applied across the nanopore. It is speculated that the interaction between the nanopore and the ssDNA dominates the translocation speed. Unexpectedly, the translocation speed of ssDNA through the 4.5 nm nanopore is more than two orders of magnitude higher than that of double-stranded DNA (dsDNA) through a nanopore of almost the same size. The cause of such a faster translocation of ssDNA can be explained by the weaker drag force inside the nanopore. Moreover, the measured translocation speeds of ssDNA and dsDNA agree well with those calculated by molecular-dynamics (MD) simulation. The MD simulation predicted that reducing the nanopore diameter to almost the same as that of ssDNA (i.e. 1.4 nm) decreases the translocation speed (to 1.4 μs base(-1)). Narrowing the nanopore is thus an effective approach for accomplishing nanopore DNA sequencing.

  13. Genetic and Biochemical Identification of a Novel Single-Stranded DNA-Binding Complex in Haloferax volcanii.

    Science.gov (United States)

    Stroud, Amy; Liddell, Susan; Allers, Thorsten

    2012-01-01

    Single-stranded DNA (ssDNA)-binding proteins play an essential role in DNA replication and repair. They use oligonucleotide/oligosaccharide-binding (OB)-folds, a five-stranded β-sheet coiled into a closed barrel, to bind to ssDNA thereby protecting and stabilizing the DNA. In eukaryotes the ssDNA-binding protein (SSB) is known as replication protein A (RPA) and consists of three distinct subunits that function as a heterotrimer. The bacterial homolog is termed SSB and functions as a homotetramer. In the archaeon Haloferax volcanii there are three genes encoding homologs of RPA. Two of the rpa genes (rpa1 and rpa3) exist in operons with a novel gene specific to Euryarchaeota; this gene encodes a protein that we have termed RPA-associated protein (rpap). The rpap genes encode proteins belonging to COG3390 group and feature OB-folds, suggesting that they might cooperate with RPA in binding to ssDNA. Our genetic analysis showed that rpa1 and rpa3 deletion mutants have differing phenotypes; only Δrpa3 strains are hypersensitive to DNA damaging agents. Deletion of the rpa3-associated gene rpap3 led to similar levels of DNA damage sensitivity, as did deletion of the rpa3 operon, suggesting that RPA3 and RPAP3 function in the same pathway. Protein pull-downs involving recombinant hexahistidine-tagged RPAs showed that RPA3 co-purifies with RPAP3, and RPA1 co-purifies with RPAP1. This indicates that the RPAs interact only with their respective associated proteins; this was corroborated by the inability to construct rpa1 rpap3 and rpa3 rpap1 double mutants. This is the first report investigating the individual function of the archaeal COG3390 RPA-associated proteins (RPAPs). We have shown genetically and biochemically that the RPAPs interact with their respective RPAs, and have uncovered a novel single-stranded DNA-binding complex that is unique to Euryarchaeota.

  14. Characterization of exceptionally thermostable single-stranded DNA-binding proteins from Thermotoga maritima and Thermotoga neapolitana.

    Science.gov (United States)

    Olszewski, Marcin; Grot, Anna; Wojciechowski, Marek; Nowak, Marta; Mickiewicz, Małgorzata; Kur, Józef

    2010-10-15

    In recent years, there has been an increasing interest in SSBs because they find numerous applications in diverse molecular biology and analytical methods. We report the characterization of single-stranded DNA binding proteins (SSBs) from the thermophilic bacteria Thermotoga maritima (TmaSSB) and Thermotoga neapolitana (TneSSB). They are the smallest known bacterial SSB proteins, consisting of 141 and 142 amino acid residues with a calculated molecular mass of 16.30 and 16.58 kDa, respectively. The similarity between amino acid sequences of these proteins is very high: 90% identity and 95% similarity. Surprisingly, both TmaSSB and TneSSB possess a quite low sequence similarity to Escherichia coli SSB (36 and 35% identity, 55 and 56% similarity, respectively). They are functional as homotetramers containing one single-stranded DNA binding domain (OB-fold) in each monomer. Agarose mobility assays indicated that the ssDNA-binding site for both proteins is salt independent, and fluorescence spectroscopy resulted in a size of 68 ± 2 nucleotides. The half-lives of TmaSSB and TneSSB were 10 h and 12 h at 100°C, respectively. When analysed by differential scanning microcalorimetry (DSC) the melting temperature (Tm) was 109.3°C and 112.5°C for TmaSSB and TneSSB, respectively. The results showed that TmaSSB and TneSSB are the most thermostable SSB proteins identified to date, offering an attractive alternative to TaqSSB and TthSSB in molecular biology applications, especially with using high temperature e. g. polymerase chain reaction (PCR).

  15. Characterization of exceptionally thermostable single-stranded DNA-binding proteins from Thermotoga maritima and Thermotoga neapolitana

    Directory of Open Access Journals (Sweden)

    Mickiewicz Małgorzata

    2010-10-01

    Full Text Available Abstract Background In recent years, there has been an increasing interest in SSBs because they find numerous applications in diverse molecular biology and analytical methods. Results We report the characterization of single-stranded DNA binding proteins (SSBs from the thermophilic bacteria Thermotoga maritima (TmaSSB and Thermotoga neapolitana (TneSSB. They are the smallest known bacterial SSB proteins, consisting of 141 and 142 amino acid residues with a calculated molecular mass of 16.30 and 16.58 kDa, respectively. The similarity between amino acid sequences of these proteins is very high: 90% identity and 95% similarity. Surprisingly, both TmaSSB and TneSSB possess a quite low sequence similarity to Escherichia coli SSB (36 and 35% identity, 55 and 56% similarity, respectively. They are functional as homotetramers containing one single-stranded DNA binding domain (OB-fold in each monomer. Agarose mobility assays indicated that the ssDNA-binding site for both proteins is salt independent, and fluorescence spectroscopy resulted in a size of 68 ± 2 nucleotides. The half-lives of TmaSSB and TneSSB were 10 h and 12 h at 100°C, respectively. When analysed by differential scanning microcalorimetry (DSC the melting temperature (Tm was 109.3°C and 112.5°C for TmaSSB and TneSSB, respectively. Conclusion The results showed that TmaSSB and TneSSB are the most thermostable SSB proteins identified to date, offering an attractive alternative to TaqSSB and TthSSB in molecular biology applications, especially with using high temperature e. g. polymerase chain reaction (PCR.

  16. Escherichia coli Single-Stranded DNA-Binding Protein: NanoESI-MS Studies of Salt-Modulated Subunit Exchange and DNA Binding Transactions

    Science.gov (United States)

    Mason, Claire E.; Jergic, Slobodan; Lo, Allen T. Y.; Wang, Yao; Dixon, Nicholas E.; Beck, Jennifer L.

    2013-02-01

    Single-stranded DNA-binding proteins (SSBs) are ubiquitous oligomeric proteins that bind with very high affinity to single-stranded DNA and have a variety of essential roles in DNA metabolism. Nanoelectrospray ionization mass spectrometry (nanoESI-MS) was used to monitor subunit exchange in full-length and truncated forms of the homotetrameric SSB from Escherichia coli. Subunit exchange in the native protein was found to occur slowly over a period of hours, but was significantly more rapid in a truncated variant of SSB from which the eight C-terminal residues were deleted. This effect is proposed to result from C-terminus mediated stabilization of the SSB tetramer, in which the C-termini interact with the DNA-binding cores of adjacent subunits. NanoESI-MS was also used to examine DNA binding to the SSB tetramer. Binding of single-stranded oligonucleotides [one molecule of (dT)70, one molecule of (dT)35, or two molecules of (dT)35] was found to prevent SSB subunit exchange. Transfer of SSB tetramers between discrete oligonucleotides was also observed and is consistent with predictions from solution-phase studies, suggesting that SSB-DNA complexes can be reliably analyzed by ESI mass spectrometry.

  17. Identification and characterization of single-stranded DNA-binding protein from the facultative psychrophilic bacteria Pseudoalteromonas haloplanktis.

    Science.gov (United States)

    Olszewski, Marcin; Nowak, Marta; Cyranka-Czaja, Anna; Kur, Józef

    2014-01-01

    Single-stranded DNA-binding protein (SSB) plays an important role in DNA metabolism such as DNA replication, repair, and recombination, and is essential for cell survival. This study reports on the ssb-like gene cloning, gene expression and characterization of a single-stranded DNA-binding protein of Pseudoalteromonas haloplanktis (PhaSSB) and is the first report of such a protein from psychrophilic microorganism. PhaSSB possesses a high sequence similarity to Escherichia coli SSB (48% identity and 57% similarity) and has the longest amino acid sequence (244 amino acid residues) of all the known bacterial SSBs with one OB-fold per monomer. An analysis of purified PhaSSB by means of chemical cross-linking experiments, sedimentation analysis and size exclusion chromatography revealed a stable tetramer in solution. Using EMSA, we characterized the stoichiometry of PhaSSB complexed with a series of ssDNA homopolymers, and the size of the binding site was determined as being approximately 35 nucleotides long. In fluorescence titrations, the occluded site size of PhaSSB on poly(dT) is 34 nucleotides per tetramer under low-salt conditions (2mM NaCl), but increases to 54-64 nucleotides at higher-salt conditions (100-300mM NaCl). This suggests that PhaSSB undergoes a transition between ssDNA binding modes, which is observed for EcoSSB. The binding properties of PhaSSB investigated using SPR technology revealed that the affinity of PhaSSB to ssDNA is typical of SSB proteins. The only difference in the binding mode of PhaSSB to ssDNA is a faster association phase, when compared to EcoSSB, though compensated by faster dissociation rate. When analyzed by differential scanning calorimetry (DSC), the melting temperature (Tm) was determined as 63 °C, which is only a few degrees lower than for EcoSSB. Copyright © 2013 Elsevier GmbH. All rights reserved.

  18. Saccharomyces cerevisiae Hrq1 helicase activity is affected by the sequence but not the length of single-stranded DNA.

    Science.gov (United States)

    Rogers, Cody M; Bochman, Matthew L

    2017-05-13

    Mutations in the human RecQ4 DNA helicase are associated with three different diseases characterized by genomic instability. To gain insight into how RecQ4 dysfunction leads to these pathologies, several groups have used the Saccharomyces cerevisiae RecQ4 homolog Hrq1 as an experimental model. Hrq1 displays many of the same functions as RecQ4 in vivo and in vitro. However, there is some disagreement in the literature about the effects of single-stranded DNA (ssDNA) length on Hrq1 helicase activity and the ability of Hrq1 to anneal complementary ssDNA oligonucleotides into duplex DNA. Here, we present a side-by-side comparison of Hrq1 and RecQ4 helicase activity, demonstrating that in both cases, long random-sequence 3' ssDNA tails inhibit DNA unwinding in vitro in a length-dependent manner. This appears to be due to the formation of secondary structures in the random-sequence ssDNA because Hrq1 preferentially unwound poly(dT)-tailed forks independent of ssDNA length. Further, RecQ4 is capable of ssDNA strand annealing and annealing-dependent strand exchange, but Hrq1 lacks these activities. These results establish the importance of DNA sequence in Hrq1 helicase activity, and the absence of Hrq1 strand annealing activity explains the previously identified discrepancies between S. cerevisiae Hrq1 and human RecQ4. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Gamma-ray induced double-strand breaks in DNA resulting from randomly-inflicted single-strand breaks: temporal local denaturation, a new radiation phenomenon?

    NARCIS (Netherlands)

    Schans, G.P. van der

    1978-01-01

    The induction of single- and double-strand breaks in DNA by γ-rays has been measured. The maximum number of nucleotide paris (a) between two independently induced single-strand breaks in opposite strands of the DNA which cannot prevent the occurrence of a double-strand break was found to amount to

  20. RADX interacts with single-stranded DNA to promote replication fork stability

    DEFF Research Database (Denmark)

    Schubert, Lisa; Ho, Teresa; Hoffmann, Saskia

    2017-01-01

    has an essential genome maintenance role, protecting ssDNA regions from nucleolytic degradation and providing a recruitment platform for proteins involved in responses to replication stress and DNA damage. Here, we identify the uncharacterized protein RADX (CXorf57) as an ssDNA-binding factor in human...... cells. RADX binds ssDNA via an N-terminal OB fold cluster, which mediates its recruitment to sites of replication stress. Deregulation of RADX expression and ssDNA binding leads to enhanced replication fork stalling and degradation, and we provide evidence that a balanced interplay between RADX and RPA...

  1. Assembly of presynaptic filaments. Factors affecting the assembly of RecA protein onto single-stranded DNA

    DEFF Research Database (Denmark)

    Thresher, RJ; Christiansen, Gunna; Griffith, JD

    1988-01-01

    We have previously shown that the assembly of RecA protein onto single-stranded DNA (ssDNA) facilitated by SSB protein occurs in three steps: (1) rapid binding of SSB protein to the ssDNA; (2) nucleation of RecA protein onto this template; and (3) co-operative polymerization of additional Rec......M in the presence of 12 mM-Mg2+), and relatively low concentrations of SSB protein (1 monomer per 18 nucleotides). Assembly was depressed threefold when SSB protein was added to one monomer per nine nucleotides. These effects appeared to be exerted at the nucleation step. Following nucleation, RecA protein...... assembled onto ssDNA at net rates that varied from 250 to 900 RecA protein monomers per minute, with the rate inversely related to the concentration of SSB protein. Combined sucrose sedimentation and electron microscope analysis established that SSB protein was displaced from the ssDNA during RecA protein...

  2. Detection of short single-strand DNA homopolymers with ultrathin Si3N4 nanopores.

    Science.gov (United States)

    Ma, Jian; Qiu, Yinghua; Yuan, Zhishan; Zhang, Yin; Sha, Jingjie; Liu, Lei; Sun, Litao; Ni, Zhonghua; Yi, Hong; Li, Deyu; Chen, Yunfei

    2015-08-01

    A series of nanopores with diameters ranging from 2.5 to 63 nm are fabricated on a reduced Si3N4 membrane by focused ion beam and high energy electron beam. Through measuring the blocked ionic currents for DNA strands threading linearly through those solid-state nanopores, it is found that the blockade ionic current is proportional to the square of the hydrodynamic diameter of the DNA strand. With the nanopore diameter reduced to be comparable with that of DNA strands, the hydrodynamic diameter of the DNA becomes smaller, which is attributed to the size confinement effects. The duration time for the linear DNA translocation events increases monotonically with the nanopore length. By comparing the spatial configurations of DNA strands through nanopores with different diameters, it is found that the nanopore with large diameter has enough space to allow the DNA strand to translocate through with complex conformation. With the decrease of the nanopore diameter, the folded part of the DNA is prone to be straightened by the nanopore, which leads to the increase in the occurrence frequency of the linear DNA translocation events. Reducing the diameter of the nanopore to 2.5 nm allows the detection and discrimination of three nucleotide "G" and three nucleotide "T" homopolymer DNA strands based on differences in their physical dimensions.

  3. Evidence that single-stranded DNA breaks are a normal feature of koala sperm chromatin, while double-stranded DNA breaks are indicative of DNA damage.

    Science.gov (United States)

    Zee, Yeng Peng; López-Fernández, Carmen; Arroyo, F; Johnston, Stephen D; Holt, William V; Gosalvez, Jaime

    2009-08-01

    In this study, we have used single and double comet assays to differentiate between single- and double-stranded DNA damage in an effort to refine the interpretation of DNA damage in mature koala spermatozoa. We have also investigated the likelihood that single-stranded DNA breakage is part of the natural spermiogenic process in koalas, where its function would be the generation of structural bends in the DNA molecule so that appropriate packaging and compaction can occur. Koala spermatozoa were examined using the sperm chromatin dispersion test (SCDt) and comet assays to investigate non-orthodox double-stranded DNA. Comet assays were conducted under 1) neutral conditions; and 2) neutral followed by alkaline conditions (double comet assay); the latter technique enabled simultaneous visualisation of both single-stranded and double-stranded DNA breaks. Following the SCDt, there was a continuum of nuclear morphotypes, ranging from no apparent DNA fragmentation to those with highly dispersed and degraded chromatin. Dispersion morphotypes were mirrored by a similar diversity of comet morphologies that could be further differentiated using the double comet assay. The majority of koala spermatozoa had nuclei with DNA abasic-like residues that produced single-tailed comets following the double comet assay. The ubiquity of these residues suggests that constitutive alkali-labile sites are part of the structural configuration of the koala sperm nucleus. Spermatozoa with 'true' DNA fragmentation exhibited a continuum of comet morphologies, ranging from a more severe form of alkaline-susceptible DNA with a diffuse single tail to nuclei that exhibited both single- and double-stranded breaks with two comet tails.

  4. Role of DNA repair in repair of cytogenetic damages. Contribution of repair of single-strand DNA breaks to cytogenetic damages repair

    International Nuclear Information System (INIS)

    Rozanova, O.M.; Zaichkina, S.I.; Aptikaev, G.F.; Ganassi, E.Eh.

    1989-01-01

    The comparison was made between the results of the effect of poly(ADP-ribosylation) ingibitors (e.g. nicotinamide and 3-aminobenzamide) and a chromatin proteinase ingibitor, phenylmethylsulfonylfluoride, on the cytogenetic damages repair, by a micronuclear test, and DNA repair in Chinese hamster fibroblasts. The values of the repair half-periods (5-7 min for the cytogenetic damages and 5 min for the rapidly repaired DNA damages) and a similar modyfying effect with regard to radiation cytogenetic damages and kynetics of DNA damages repair were found to be close. This confirms the contribution of repair of DNA single-strand breaks in the initiation of structural damages to chromosomes

  5. Charge enhancement of single-stranded DNA in negative electrospray ionization using the supercharging reagent meta-nitrobenzyl alcohol.

    Science.gov (United States)

    Brahim, Bessem; Alves, Sandra; Cole, Richard B; Tabet, Jean-Claude

    2013-12-01

    Charge enhancement of single-stranded oligonucleotide ions in negative ESI mode is investigated. The employed reagent, meta-nitrobenzyl alcohol (m-NBA), was found to improve total signal intensity (Itot), increase the highest observed charge states (zhigh), and raise the average charge states (zavg) of all tested oligonucleotides analyzed in negative ESI. To quantify these increases, signal enhancement ratios (SER1%) and charge enhancement coefficients (CEC1%) were introduced. The SER1%, (defined as the quotient of total oligonucleotide ion abundances with 1% m-NBA divided by total oligonucleotide abundance without m-NBA) was found to be greater than unity for every oligonucleotide tested. The CEC1% values (defined as the average charge state in the presence of 1% m-NBA minus the average charge state in the absence of m-NBA) were found to be uniformly positive. Upon close inspection, the degree of charge enhancement for longer oligonucleotides was found to be dependent upon thymine density (i.e., the number and the location of phospho-thymidine units). A correlation between the charge enhancement induced by the presence of m-NBA and the apparent gas-phase acidity (largely determined by the sequence of thymine units but also by the presence of protons on other nucleobases) of multiply deprotonated oligonucleotide species, was thus established. Ammonium cations appeared to be directly involved in the m-NBA supercharging mechanism, and their role seems to be consistent with previously postulated ESI mechanisms describing desorption/ionization of single-stranded DNA into the gas phase.

  6. Charge Enhancement of Single-Stranded DNA in Negative Electrospray Ionization Using the Supercharging Reagent Meta-nitrobenzyl Alcohol

    Science.gov (United States)

    Brahim, Bessem; Alves, Sandra; Cole, Richard B.; Tabet, Jean-Claude

    2013-12-01

    Charge enhancement of single-stranded oligonucleotide ions in negative ESI mode is investigated. The employed reagent, meta-nitrobenzyl alcohol (m-NBA), was found to improve total signal intensity (Itot), increase the highest observed charge states (zhigh), and raise the average charge states (zavg) of all tested oligonucleotides analyzed in negative ESI. To quantify these increases, signal enhancement ratios (SER1%) and charge enhancement coefficients (CEC1%) were introduced. The SER1%, (defined as the quotient of total oligonucleotide ion abundances with 1 % m-NBA divided by total oligonucleotide abundance without m-NBA) was found to be greater than unity for every oligonucleotide tested. The CEC1% values (defined as the average charge state in the presence of 1 % m-NBA minus the average charge state in the absence of m-NBA) were found to be uniformly positive. Upon close inspection, the degree of charge enhancement for longer oligonucleotides was found to be dependent upon thymine density (i.e., the number and the location of phospho-thymidine units). A correlation between the charge enhancement induced by the presence of m-NBA and the apparent gas-phase acidity (largely determined by the sequence of thymine units but also by the presence of protons on other nucleobases) of multiply deprotonated oligonucleotide species, was thus established. Ammonium cations appeared to be directly involved in the m-NBA supercharging mechanism, and their role seems to be consistent with previously postulated ESI mechanisms describing desorption/ionization of single-stranded DNA into the gas phase.

  7. Interaction with Single-stranded DNA-binding Protein Stimulates Escherichia coli Ribonuclease HI Enzymatic Activity

    Energy Technology Data Exchange (ETDEWEB)

    Petzold, Christine; Marceau, Aimee H.; Miller, Katherine H.; Marqusee, Susan; Keck, James L. (UW-MED); (UCB)

    2015-04-22

    Single-stranded (ss) DNA-binding proteins (SSBs) bind and protect ssDNA intermediates formed during replication, recombination, and repair reactions. SSBs also directly interact with many different genome maintenance proteins to stimulate their enzymatic activities and/or mediate their proper cellular localization. We have identified an interaction formed between Escherichia coli SSB and ribonuclease HI (RNase HI), an enzyme that hydrolyzes RNA in RNA/DNA hybrids. The RNase HI·SSB complex forms by RNase HI binding the intrinsically disordered C terminus of SSB (SSB-Ct), a mode of interaction that is shared among all SSB interaction partners examined to date. Residues that comprise the SSB-Ct binding site are conserved among bacterial RNase HI enzymes, suggesting that RNase HI·SSB complexes are present in many bacterial species and that retaining the interaction is important for its cellular function. A steady-state kinetic analysis shows that interaction with SSB stimulates RNase HI activity by lowering the reaction Km. SSB or RNase HI protein variants that disrupt complex formation nullify this effect. Collectively our findings identify a direct RNase HI/SSB interaction that could play a role in targeting RNase HI activity to RNA/DNA hybrid substrates within the genome.

  8. Double-stranded DNA dissociates into single strands when dragged into a poor solvent.

    Science.gov (United States)

    Cui, Shuxun; Yu, Jin; Kühner, Ferdinand; Schulten, Klaus; Gaub, Hermann E

    2007-11-28

    DNA displays a richness of biologically relevant supramolecular structures, which depend on both sequence and ambient conditions. The effect of dragging double-stranded DNA (dsDNA) from water into poor solvent on the double-stranded structure is still unclear because of condensation. Here, we employed single molecule techniques based on atomic force microscopy and molecular dynamics (MD) simulations to investigate the change in structure and mechanics of DNA during the ambient change. We found that the two strands are split apart when the dsDNA is pulled at one strand from water into a poor solvent. The findings were corroborated by MD simulations where dsDNA was dragged from water into poor solvent, revealing details of the strand separation at the water/poor solvent interface. Because the structure of DNA is of high polarity, all poor solvents show a relatively low polarity. We speculate that the principle of spontaneous unwinding/splitting of dsDNA by providing a low-polarity (in other word, hydrophobic) micro-environment is exploited as one of the catalysis mechanisms of helicases.

  9. Sequence-specific RNA Photocleavage by Single-stranded DNA in Presence of Riboflavin

    Science.gov (United States)

    Zhao, Yongyun; Chen, Gangyi; Yuan, Yi; Li, Na; Dong, Juan; Huang, Xin; Cui, Xin; Tang, Zhuo

    2015-10-01

    Constant efforts have been made to develop new method to realize sequence-specific RNA degradation, which could cause inhibition of the expression of targeted gene. Herein, by using an unmodified short DNA oligonucleotide for sequence recognition and endogenic small molecue, vitamin B2 (riboflavin) as photosensitizer, we report a simple strategy to realize the sequence-specific photocleavage of targeted RNA. The DNA strand is complimentary to the target sequence to form DNA/RNA duplex containing a G•U wobble in the middle. The cleavage reaction goes through oxidative elimination mechanism at the nucleoside downstream of U of the G•U wobble in duplex to obtain unnatural RNA terminal, and the whole process is under tight control by using light as switch, which means the cleavage could be carried out according to specific spatial and temporal requirements. The biocompatibility of this method makes the DNA strand in combination with riboflavin a promising molecular tool for RNA manipulation.

  10. Comment on "Monomer Dynamics in Double- and Single-Stranded DNA Polymers"

    OpenAIRE

    Tothova, J.; Brutovsky, B.; Lisy, V.

    2005-01-01

    It is discussed that the kinetics observed by Shusterman et al. [Phys. Rev. Lett. 92, 048303] for long dsDNA is not the Rouse one and, in fact, the macromolecule behaves (approximately) as the Zimm polymer.

  11. Sequence-specific RNA Photocleavage by Single-stranded DNA in Presence of Riboflavin.

    Science.gov (United States)

    Zhao, Yongyun; Chen, Gangyi; Yuan, Yi; Li, Na; Dong, Juan; Huang, Xin; Cui, Xin; Tang, Zhuo

    2015-10-13

    Constant efforts have been made to develop new method to realize sequence-specific RNA degradation, which could cause inhibition of the expression of targeted gene. Herein, by using an unmodified short DNA oligonucleotide for sequence recognition and endogenic small molecule, vitamin B2 (riboflavin) as photosensitizer, we report a simple strategy to realize the sequence-specific photocleavage of targeted RNA. The DNA strand is complimentary to the target sequence to form DNA/RNA duplex containing a G • U wobble in the middle. The cleavage reaction goes through oxidative elimination mechanism at the nucleoside downstream of U of the G • U wobble in duplex to obtain unnatural RNA terminal, and the whole process is under tight control by using light as switch, which means the cleavage could be carried out according to specific spatial and temporal requirements. The biocompatibility of this method makes the DNA strand in combination with riboflavin a promising molecular tool for RNA manipulation.

  12. Determination of nanogram quantities of osmium-labeled single stranded DNA by differential pulse stripping voltammetry

    Czech Academy of Sciences Publication Activity Database

    Kizek, René; Havran, Luděk; Fojta, Miroslav; Paleček, Emil

    2002-01-01

    Roč. 55, 1/2 (2002), s. 199-121 ISSN 1567-5394 R&D Projects: GA ČR GV204/97/K084; GA ČR GA204/00/D049; GA AV ČR IAA4004108 Institutional research plan: CEZ:AV0Z5004920 Keywords : differential pulse stripping voltammetry * microdetermination of DNA * chemical modification of DNA Subject RIV: BO - Biophysics Impact factor: 1.463, year: 2002

  13. Electronic Transport in Single-Stranded DNA Molecule Related to Huntington's Disease

    Science.gov (United States)

    Sarmento, R. G.; Silva, R. N. O.; Madeira, M. P.; Frazão, N. F.; Sousa, J. O.; Macedo-Filho, A.

    2018-04-01

    We report a numerical analysis of the electronic transport in single chain DNA molecule consisting of 182 nucleotides. The DNA chains studied were extracted from a segment of the human chromosome 4p16.3, which were modified by expansion of CAG (cytosine-adenine-guanine) triplet repeats to mimics Huntington's disease. The mutated DNA chains were connected between two platinum electrodes to analyze the relationship between charge propagation in the molecule and Huntington's disease. The computations were performed within a tight-binding model, together with a transfer matrix technique, to investigate the current-voltage (I-V) of 23 types of DNA sequence and compare them with the distributions of the related CAG repeat numbers with the disease. All DNA sequences studied have a characteristic behavior of a semiconductor. In addition, the results showed a direct correlation between the current-voltage curves and the distributions of the CAG repeat numbers, suggesting possible applications in the development of DNA-based biosensors for molecular diagnostics.

  14. Electronic Transport in Single-Stranded DNA Molecule Related to Huntington's Disease

    Science.gov (United States)

    Sarmento, R. G.; Silva, R. N. O.; Madeira, M. P.; Frazão, N. F.; Sousa, J. O.; Macedo-Filho, A.

    2018-02-01

    We report a numerical analysis of the electronic transport in single chain DNA molecule consisting of 182 nucleotides. The DNA chains studied were extracted from a segment of the human chromosome 4p16.3, which were modified by expansion of CAG (cytosine-adenine-guanine) triplet repeats to mimics Huntington's disease. The mutated DNA chains were connected between two platinum electrodes to analyze the relationship between charge propagation in the molecule and Huntington's disease. The computations were performed within a tight-binding model, together with a transfer matrix technique, to investigate the current-voltage (I-V) of 23 types of DNA sequence and compare them with the distributions of the related CAG repeat numbers with the disease. All DNA sequences studied have a characteristic behavior of a semiconductor. In addition, the results showed a direct correlation between the current-voltage curves and the distributions of the CAG repeat numbers, suggesting possible applications in the development of DNA-based biosensors for molecular diagnostics.

  15. First-In-Class Small Molecule Inhibitors of the Single-Strand DNA Cytosine Deaminase APOBEC3G

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ming; Shandilya, Shivender M.D.; Carpenter, Michael A.; Rathore, Anurag; Brown, William L.; Perkins, Angela L.; Harki, Daniel A.; Solberg, Jonathan; Hook, Derek J.; Pandey, Krishan K.; Parniak, Michael A.; Johnson, Jeffrey R.; Krogan, Nevan J.; Somasundaran, Mohan; Ali, Akbar; Schiffer, Celia A.; Harris, Reuben S. (Pitt); (UMASS, MED); (SLUHSC); (UCSF); (UMM)

    2012-04-04

    APOBEC3G is a single-stranded DNA cytosine deaminase that comprises part of the innate immune response to viruses and transposons. Although APOBEC3G is the prototype for understanding the larger mammalian polynucleotide deaminase family, no specific chemical inhibitors exist to modulate its activity. High-throughput screening identified 34 compounds that inhibit APOBEC3G catalytic activity. Twenty of 34 small molecules contained catechol moieties, which are known to be sulfhydryl reactive following oxidation to the orthoquinone. Located proximal to the active site, C321 was identified as the binding site for the inhibitors by a combination of mutational screening, structural analysis, and mass spectrometry. Bulkier substitutions C321-to-L, F, Y, or W mimicked chemical inhibition. A strong specificity for APOBEC3G was evident, as most compounds failed to inhibit the related APOBEC3A enzyme or the unrelated enzymes E. coli uracil DNA glycosylase, HIV-1 RNase H, or HIV-1 integrase. Partial, but not complete, sensitivity could be conferred to APOBEC3A by introducing the entire C321 loop from APOBEC3G. Thus, a structural model is presented in which the mechanism of inhibition is both specific and competitive, by binding a pocket adjacent to the APOBEC3G active site, reacting with C321, and blocking access to substrate DNA cytosines.

  16. Change of conformation and internal dynamics of supercoiled DNA upon binding of Escherichia coli single-strand binding protein

    International Nuclear Information System (INIS)

    Langowski, J.; Benight, A.S.; Fujimoto, B.S.; Schurr, J.M.; Schomburg, U.

    1985-01-01

    The influence of Escherichia coli single-strand binding (SSB) protein on the conformation and internal dynamics of pBR322 and pUC8 supercoiled DNAs has been investigated by using dynamic light scattering at 632.8 and 351.1 nm and time-resolved fluorescence polarization anisotropy of intercalated ethidium. SSB protein binds to both DNAs up to a stoichiometry that is sufficient to almost completely relax the superhelical turns. Upon saturation binding, the translational diffusion coefficients (D 0 ) of both DNAs decrease by approximately 20%. Apparent diffusion coefficients (D/sub app/) obtained from dynamic light scattering display the well-known increase with K 2 (K = scattering vector), leveling off toward a plateau value (D/sub plat/) at high K 2 . For both DNAs, the difference D/sub plat/ - D 0 increases upon relaxation of supercoils by SSB protein, which indicates a corresponding enhancement of the subunit mobilities in internal motions. Fluorescence polarization anisotropy measurements on free and complexed pBR322 DNA indicate a (predominantly) uniform torsional rigidity for the saturated DNA/SSB protein complex that is significantly reduced compared to the free DNA. These observations are all consistent with the notion that binding of SSB protein is accompanied by a gradual loss of supercoils and saturates when the superhelical twist is largely removed

  17. The mechanism of the nitric oxide-mediated enhancement of tert-butylhydroperoxide-induced DNA single strand breakage

    Science.gov (United States)

    Guidarelli, Andrea; Clementi, Emilio; Sciorati, Clara; Cantoni, Orazio

    1998-01-01

    Caffeine (Cf) enhances the DNA cleavage induced by tert-butylhydroperoxide (tB-OOH) in U937 cells via a mechanism involving Ca2+-dependent mitochondrial formation of DNA-damaging species (Guidarelli et al., 1997b). Nitric oxide (NO) is not involved in this process since U937 cells do not express the constitutive nitric oxide synthase (cNOS).Treatment with the NO donors S-nitroso-N-acetyl-penicillamine (SNAP, 10 μM), or S-nitrosoglutathione (GSNO, 300 μM), however, potentiated the DNA strand scission induced by 200 μM tB-OOH. The DNA lesions generated by tB-OOH alone, or combined with SNAP, were repaired with superimposable kinetics and were insensitive to anti-oxidants and peroxynitrite scavengers but suppressed by iron chelators.SNAP or GSNO did not cause mitochondrial Ca2+ accumulation but their enhancing effects on the tB-OOH-induced DNA strand scission were prevented by ruthenium red, an inhibitor of the calcium uniporter of mitochondria. Furthermore, the enhancing effects of both SNAP and GSNO were identical to and not additive with those promoted by the Ca2+-mobilizing agents Cf or ATP.The SNAP- or GSNO-mediated enhancement of the tB-OOH-induced DNA cleavage was abolished by the respiratory chain inhibitors rotenone and myxothiazol and was not apparent in respiration-deficient cells.It is concluded that, in cells which do not express the enzyme cNOS, exogenous NO enhances the accumulation of DNA single strand breaks induced by tB-OOH via a mechanism involving inhibition of complex III. PMID:9846647

  18. Sequence-based separation of single-stranded DNA using nucleotides in capillary electrophoresis: focus on phosphate.

    Science.gov (United States)

    Zhang, Xueru; McGown, Linda B

    2013-06-01

    DNA analysis has widespread applicability in biology, medicine, biotechnology, and forensics. DNA separation by length is readily achieved using sieving gels in electrophoresis. Separation by sequence is less simple, generally requiring adequate differences in native or induced conformation or differences in thermal or chemical stability of the strands that are hybridized prior to measurement. We previously demonstrated separation of four single-stranded DNA 76-mers that differ by only a few A-G substitutions based solely on sequence using guanosine-5'-monophosphate (GMP) in the running buffer. We attributed separation to the unique self-assembly of GMP to form higher order structures. Here, we examine an expanded set of 76-mers designed to probe the mechanism of the separation and effects of experimental conditions. We were surprised to find that other ribonucleotides achieved the similar separation to GMP, and that some separation was achieved using sodium phosphate instead of GMP. Potassium phosphate achieved almost as good separations as the ribonucleotides. This suggests that the separation medium provides a physicochemical environment for the DNA that effects strand migration in a sequence-selective manner. Further investigation is needed to determine whether the mechanism involves specific interactions between the phosphates and the DNA strands or is a result of other properties of the separation medium. Phosphate generally has been avoided in DNA separations by capillary gel electrophoresis because its high ionic strength exacerbates Joule heating. Our results suggest that phosphate compounds should be examined for separation of DNA based on sequence. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Electric light scattering from single-stranded DNA in linear polyacrylamide solutions.

    Science.gov (United States)

    Todorov, R; Starchev, K; Stoylov, S P

    2001-01-01

    The electric light scattering (ELS) of ssDNA (calf thymus, 10 kbp, 55 micrograms/mL) in denaturing polyacrylamide (PAA) solutions was studied as a function of applied sinusoidal electric field and polymer concentration. Electric fields of strengths up to 300 V/cm and of frequencies between 100 and 5000 Hz were applied. It was found that the ELS effect increases with the field strength and decreases at high frequencies. The dependence of the ELS effect of ssDNA on polymer concentration passes through a maximum at 1% PAA. The relaxation times of decay of the ELS effect increase with increasing polymer concentrations. It was demonstrated that ELS is a useful method for investigation of ssDNA behavior in the course of pulse-field electrophoresis in polymer solutions.

  20. Expansion during PCR of short single-stranded DNA fragments carrying nonselfcomplementary dinucleotide or trinucleotide repeats

    Czech Academy of Sciences Publication Activity Database

    Reichová, Naďa; Kypr, Jaroslav

    2003-01-01

    Roč. 30, č. 3 (2003), s. 155-163 ISSN 0301-4851 R&D Projects: GA ČR GA301/01/0590 Institutional research plan: CEZ:AV0Z5004920 Keywords : DNA * PCR * expansion Subject RIV: BO - Biophysics Impact factor: 0.565, year: 2003

  1. In vitro expansion of mammalian telomere repeats by DNA polymerase α-primase

    Science.gov (United States)

    Nozawa, Katsura; Suzuki, Motoshi; Takemura, Masaharu; Yoshida, Shonen

    2000-01-01

    Among the polymerases, DNA polymerase α-primase is involved in lagging strand DNA synthesis. A previous report indicated that DNA polymerase α-primase initiates primer RNA synthesis with purine bases on a single-stranded G-rich telomere repeat. In this study, we found that DNA polymerase α-primase precisely initiated with adenosine opposite the 3′-side thymidine in the G-rich telomere repeat 5′-(TTAGGG)n-3′ under rATP-rich conditions. Then, DNA polymerase α-primase synthesized the nascent DNA fragments by extending the primer. It was remarkable that DNA polymerase α-primase further expanded the product DNA far beyond the length of the template DNA, as ladders of multiple hexanucleotides on polyacrylamide gel electrophoresis. Using an oligomer duplex 5′-A(GGGTTA)5-3′/5′-(TAACCC)5T-3′ as a template–primer, we show that both the Klenow fragment of Escherichia coli DNA polymerase I and HIV reverse transcriptase could expand telomere DNA sequences as well, giving products greater than the size of the template DNA. The maximum product lengths with these polymerases were ∼40–90 nt longer than the template length. Our data imply that DNA polymerases have an intrinsic activity to expand the hexanucleotide repeats of the telomere sequence by a slippage mechanism and that DNA polymerase α uses both the repeat DNA primers and the de novo RNA primers for expansion. On the other hand, a plasmid harboring a eukaryotic telomere repeat showed remarkable genetic instability in E.coli. The telomere repeats exhibited either expansions or deletions by multiple hexanucleotide repeats during culture for a number of generations, suggesting involvement of the slippage mechanism in the instability of telomeric DNA in vivo. PMID:10931927

  2. Oligo(dT) is not a correct native PAGE marker for single-stranded DNA

    Czech Academy of Sciences Publication Activity Database

    Kejnovská, Iva; Kypr, Jaroslav; Vorlíčková, Michaela

    2007-01-01

    Roč. 353, č. 3 (2007), s. 776-779 ISSN 0006-291X R&D Projects: GA AV ČR(CZ) IAA4004201; GA AV ČR(CZ) IAA1004201 Institutional research plan: CEZ:AV0Z50040702 Keywords : polyacrylamide gel electrophoresis * DNA length markers * oligo(dT) Subject RIV: BO - Biophysics Impact factor: 2.749, year: 2007

  3. Differentiation of Short Single-Stranded DNA Homopolymers in Solid-State Nanopores

    Science.gov (United States)

    Venta, Kimberly; Shemer, Gabriel; Puster, Matthew; Rodríguez-Manzo, Julio A.; Balan, Adrian; Rosenstein, Jacob K.; Shepard, Ken; Drndić, Marija

    2013-01-01

    In the last two decades, new techniques that monitor ionic current modulations as single molecules pass through a nanoscale pore have enabled numerous single-molecule studies. While biological nanopores have recently shown the ability to resolve single nucleotides within individual DNA molecules, similar developments with solid-state nanopores have lagged, due to challenges both in fabricating stable nanopores of similar dimensions as biological nanopores and in achieving sufficiently low-noise and high-bandwidth recordings. Here we show that small silicon nitride nanopores (0.8 to 2-nm-diameter in 5 to 8-nm-thick membranes) can resolve differences between ionic current signals produced by short (30 base) ssDNA homopolymers (poly(dA), poly(dC), poly(dT)), when combined with measurement electronics that allow a signal-to-noise ratio of better than 10 to be achieved at 1 MHz bandwidth. While identifying intramolecular DNA sequences with silicon nitride nanopores will require further improvements in nanopore sensitivity and noise levels, homopolymer differentiation represents an important milestone in the development of solid-state nanopores. PMID:23621759

  4. Theoretical Study of the Transpore Velocity Control of Single-Stranded DNA

    Directory of Open Access Journals (Sweden)

    Weixin Qian

    2014-08-01

    Full Text Available The electrokinetic transport dynamics of deoxyribonucleic acid (DNA molecules have recently attracted significant attention in various fields of research. Our group is interested in the detailed examination of the behavior of DNA when confined in micro/nanofluidic channels. In the present study, the translocation mechanism of a DNA-like polymer chain in a nanofluidic channel was investigated using Langevin dynamics simulations. A coarse-grained bead-spring model was developed to simulate the dynamics of a long polymer chain passing through a rectangular cross-section nanopore embedded in a nanochannel, under the influence of a nonuniform electric field. Varying the cross-sectional area of the nanopore was found to allow optimization of the translocation process through modification of the electric field in the flow channel, since a drastic drop in the electric potential at the nanopore was induced by changing the cross-section. Furthermore, the configuration of the polymer chain in the nanopore was observed to determine its translocation velocity. The competition between the strength of the electric field and confinement in the small pore produces various transport mechanisms and the results of this study thus represent a means of optimizing the design of nanofluidic devices for single molecule detection.

  5. Molecular dosimetry of DNA damage caused by alkylation. I. Single-strand breaks induced by ethylating agents in cultured mammalian cells in relation to survival

    NARCIS (Netherlands)

    Abbondandolo, A.; Dogliotti, E.; Lohman, P.H.M.; Berends, F.

    1982-01-01

    Cultured Chinese hamster ovary cells were treated with ethylating agents. DNA lesions giving rise to single-strand breaks (ssb) or alkali-labile sites were measured by centrifugation in alkaline sucrose gradients after lysis in alkali. 4 agents with different tendencies to ethylate preferentially

  6. The interplay of primer-template DNA phosphorylation status and single-stranded DNA binding proteins in directing clamp loaders to the appropriate polarity of DNA.

    Science.gov (United States)

    Hayner, Jaclyn N; Douma, Lauren G; Bloom, Linda B

    2014-01-01

    Sliding clamps are loaded onto DNA by clamp loaders to serve the critical role of coordinating various enzymes on DNA. Clamp loaders must quickly and efficiently load clamps at primer/template (p/t) junctions containing a duplex region with a free 3'OH (3'DNA), but it is unclear how clamp loaders target these sites. To measure the Escherichia coli and Saccharomyces cerevisiae clamp loader specificity toward 3'DNA, fluorescent β and PCNA clamps were used to measure clamp closing triggered by DNA substrates of differing polarity, testing the role of both the 5'phosphate (5'P) and the presence of single-stranded binding proteins (SSBs). SSBs inhibit clamp loading by both clamp loaders on the incorrect polarity of DNA (5'DNA). The 5'P groups contribute selectivity to differing degrees for the two clamp loaders, suggesting variations in the mechanism by which clamp loaders target 3'DNA. Interestingly, the χ subunit of the E. coli clamp loader is not required for SSB to inhibit clamp loading on phosphorylated 5'DNA, showing that χ·SSB interactions are dispensable. These studies highlight a common role for SSBs in directing clamp loaders to 3'DNA, as well as uncover nuances in the mechanisms by which SSBs perform this vital role. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  7. Genomic analysis of Pseudomonas putida phage tf with localized single-strand DNA interruptions.

    Directory of Open Access Journals (Sweden)

    Anatoly S Glukhov

    Full Text Available The complete sequence of the 46,267 bp genome of the lytic bacteriophage tf specific to Pseudomonas putida PpG1 has been determined. The phage genome has two sets of convergently transcribed genes and 186 bp long direct terminal repeats. The overall genomic architecture of the tf phage is similar to that of the previously described Pseudomonas aeruginosa phages PaP3, LUZ24 and phiMR299-2, and 39 out of the 72 products of predicted tf open reading frames have orthologs in these phages. Accordingly, tf was classified as belonging to the LUZ24-like bacteriophage group. However, taking into account very low homology levels between tf DNA and that of the other phages, tf should be considered as an evolutionary divergent member of the group. Two distinguishing features not reported for other members of the group were found in the tf genome. Firstly, a unique end structure--a blunt right end and a 4-nucleotide 3'-protruding left end--was observed. Secondly, 14 single-chain interruptions (nicks were found in the top strand of the tf DNA. All nicks were mapped within a consensus sequence 5'-TACT/RTGMC-3'. Two nicks were analyzed in detail and were shown to be present in more than 90% of the phage population. Although localized nicks were previously found only in the DNA of T5-like and phiKMV-like phages, it seems increasingly likely that this enigmatic structural feature is common to various other bacteriophages.

  8. Single stranded loops of quadruplex DNA as key benchmark for testing nucleic acids force fields

    Czech Academy of Sciences Publication Activity Database

    Fadrná, E.; Špačková, Naďa; Sarzynska, J.; Koča, J.; Orozco, M.; Cheatham III, T.E.; Kulinski, T.; Šponer, Jiří

    2009-01-01

    Roč. 5, č. 9 (2009), s. 2514-2530 ISSN 1549-9618 R&D Projects: GA MŠk(CZ) LC06030; GA AV ČR(CZ) 1QS500040581; GA AV ČR(CZ) IAA400040802 Grant - others:GA ČR(CZ) GA203/09/1476 Program:GA Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : DNA quadruplex * MD simulation * force fields Subject RIV: BO - Biophysics Impact factor: 4.804, year: 2009

  9. Ion Density Analysis of Single-Stranded DNA in Liquid Crystal

    Science.gov (United States)

    Iwabata, Kazuki; Seki, Yasutaka; Toizumi, Ryota; Shimada, Yuki; Furue, Hirokazu; Sakaguchi, Kengo

    2013-09-01

    With the widespread use of liquid crystals (LCs) in liquid crystal displays, we have looked into the application of liquid crystals in biotechnology. The purpose of the study described here is to investigate the physical properties of DNA using LCs. Synthetic oligonucleotide molecules were dispersed in MLC6884, the sample injected into antiparallel cells, and the amount of mobile ions was measured. The LC cell doped with oligonucleotide molecules showed a sequence-dependent, specific correlation between oligonucleotide concentration and the amount of mobile ions in the LC cells. In the framework of the Stokes model and polyacrylamide gel electrophoresis (PAGE) analysis, we speculate that this result arises from the difference in ion mobility, which is caused by the shape of the oligonucleotide molecule in the LC.

  10. UPregulated single-stranded DNA-binding protein 1 induces cell chemoresistance to cisplatin in lung cancer cell lines.

    Science.gov (United States)

    Zhao, Xiang; He, Rong; Liu, Yu; Wu, Yongkai; Kang, Leitao

    2017-07-01

    Cisplatin and its analogues are widely used as anti-tumor drugs in lung cancer but many cisplatin-resistant lung cancer cases have been identified in recent years. Single-stranded DNA-binding protein 1 (SSDBP1) can effectively induce H69 cell resistance to cisplatin in our previous identification; thus, it is necessary to explore the mechanism underlying the effects of SSDBP1-induced resistance to cisplatin. First, SSDBP1-overexpressed or silent cell line was constructed and used to analyze the effects of SSDBP1 on chemoresistance of lung cancer cells to cisplatin. SSDBP1 expression was assayed by real-time PCR and Western blot. Next, the effects of SSDBP1 on cisplatin sensitivity, proliferation, and apoptosis of lung cancer cell lines were assayed by MTT and flow cytometry, respectively; ABC transporters, apoptosis-related genes, and cell cycle-related genes by real-time PCR, and DNA wound repair by comet assay. Low expression of SSDBP1 was observed in H69 cells, while increased expression in cisplatin-resistant H69 cells. Upregulated expression of SSDBP1 in H69AR cells was identified to promote proliferation and cisplatin resistance and inhibit apoptosis, while downregulation of SSDBP1 to inhibit cisplatin resistance and proliferation and promoted apoptosis. Moreover, SSDBP1 promoted the expression of P2gp, MRP1, Cyclin D1, and CDK4 and inhibited the expression of caspase 3 and caspase 9. Furthermore, SSDBP1 promoted the DNA wound repair. These results indicated that SSDBP1 may induce cell chemoresistance of cisplatin through promoting DNA repair, resistance-related gene expression, cell proliferation, and inhibiting apoptosis.

  11. EFFECTOR OF TRANSCRIPTION2 is involved in xylem differentiation and includes a functional DNA single strand cutting domain.

    Science.gov (United States)

    Ivanov, Rumen; Tiedemann, Jens; Czihal, Andreas; Schallau, Anna; Diep, Le Hong; Mock, Hans-Peter; Claus, Bernhard; Tewes, Annegret; Bäumlein, Helmut

    2008-01-01

    EFFECTORS OF TRANSCRIPTION2 (ET) are plant-specific regulatory proteins characterized by the presence of two to five C-terminal DNA- and Zn-binding repeats, and a highly conserved cysteine pattern. We describe the structural characterization of the three member Arabidopsis thaliana ET gene family and reveal some allelic sequence polymorphisms. A mutation analysis showed that AtET2 affects the expression of various KNAT genes involved in the maintenance of the undifferentiated state of cambial meristem cells. It also plays a role in the regulation of GA5 (gibberellin 3-beta-dioxygenase) and the cell-cycle-related GASA4. A correlation was established between AtET2 expression and the cellular differentiation state. AtET-GFP fusion proteins shuttle between the cytoplasm and nucleus, with the AtET2 product prevented from entering the nucleus in non-differentiating cells. Within the nucleus, AtET2 probably acts via a single strand cutting domain. A more general regulatory role for ET factors is proposed, governing cell differentiation in cambial meristems, a crucial process for the development of plant vascular tissues.

  12. UV light-induced DNA synthesis arrest in HeLa cells is associated with changes in phosphorylation of human single-stranded DNA-binding protein

    International Nuclear Information System (INIS)

    Carty, M.P.; Zernik-Kobak, M.; McGrath, S.; Dixon, K.

    1994-01-01

    We show that DNA replication activity in extracts of human HeLa cells decreases following UV irradiation. Alterations in replication activity in vitro parallel the UV-induced block in cell cycle progression of these cells in culture. UV irradiation also induces specific changes in the pattern of phosphorylation of the 34 kDa subunit of a DNA replication protein, human single-stranded DNA-binding protein (hSSB). The appearance of a hyperphosphorylated form of hSSB correlates with reduced in vitro DNA replication activity in extracts of UV-irradiated cells. Replication activity can be restored to these extracts in vitro by addition of purified hSSB. These results suggest that UV-induced DNA synthesis arrest may be mediated in part through phosphorylation-related alterations in the activity of hSSB, an essential component of the DNA replication apparatus. (Author)

  13. Transient oxidative stress and inflammation after intraperitoneal administration of multiwalled carbon nanotubes functionalized with single strand DNA in rats

    Energy Technology Data Exchange (ETDEWEB)

    Clichici, Simona, E-mail: simonaclichici@yahoo.com [Department of Physiology, University of Medicine and Pharmacy, Cluj-Napoca (Romania); Biris, Alexandru Radu [National R and D Institute of Isotopic and Molecular Technologies, Cluj-Napoca (Romania); Tabaran, Flaviu [University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca (Romania); Filip, Adriana [Department of Physiology, University of Medicine and Pharmacy, Cluj-Napoca (Romania)

    2012-03-15

    Multi-walled carbon nanotubes (MWCNTs) are widely used for nanotechnology. Their impact on living organisms is, however, not entirely clarified. Oxidative stress and inflammation seem to be the key mechanisms involved in MWCNTs' cytotoxicity. Until present, pulmonary and skin models were the main tested experimental designs to assess carbon nanotubes' toxicity. The systemic administration of MWCNTs is essential, with respect for future medical applications. Our research is performed on Wistar rats and is focused on the dynamics of oxidative stress parameters in blood and liver and pro-inflammatory cytokines in liver, after single dose (270 mg l{sup −1}) ip administration of MWCNTs (exterior diameter 15–25 nm, interior diameter 10–15 nm, surface 88 m{sup 2} g{sup −1}) functionalized with single strand DNA (ss-DNA). The presence of MWCNTs in blood was assessed by Raman spectroscopy, while in liver histological examination and confocal microscopy were used. It was found that ss-DNA-MWCNTs induce oxidative stress in plasma and liver, with the return of the tested parameters to normal values, 6 h after ip injection of nanotubes, with the exception of reduced glutathione in plasma. The inflammatory cytokines (TNF-α, IL-1β) had a similar pattern of evolution. We also assessed the level of ERK1/2 and the phosphorylation of p65 subunit of NF-kB in liver that had a transient increase and returned to normal at the end of the tested period. Our results demonstrate that ss-DNA-MWCNTs produce oxidative stress and inflammation, but with a transient pattern. Given the fact that antioxidants modify the profile not only for oxidative stress, but also of inflammation, the dynamics of these alterations may be of practical importance for future protective strategies. -- Highlights: ► ss-DNA-MWCNTs ip administration induce oxidative stress in plasma and liver. ► ss-DNA-MWCNTs ip administration determine liver inflammation. ► ERK1/2 and p65 phosphorylated NF

  14. Genetic effects and reparation of single-stranded DNA breaks in Arabidopsis thaliana populations growing in the vicinity of the Chernobyl Nuclear Power Station

    International Nuclear Information System (INIS)

    Abramov, V.I.; Sergeeva, S.A.; Ptitsyna, S.N.; Semov, A.B.; Shevchenko, V.A.

    1992-01-01

    The genetic effects and efficiency of repair of single-stranded DNA breaks in natural populations of Arabidopsis growing within a thirty-kilometer zone of the Chernobyl Nuclear Power Station were studied. A direct relationship was found between the level of radioactive contamination and the frequency of embryonal lethal mutations in the Arabidopsis populations studied. A decrease in the efficiency of reparation of single-stranded DNA breaks was found in Arabidopsis plants growing in the contaminated sites. The level of efficiency of DNA reparation was dependent on the duration for which the Arabidopsis population had been growing in the contaminated sites and on the degree of radioactive contamination of the sites. 9 refs., 4 tabs

  15. Intramolecular binding mode of the C-terminus of Escherichia coli single-stranded DNA binding protein determined by nuclear magnetic resonance spectroscopy

    OpenAIRE

    Shishmarev, Dmitry; Wang, Yao; Mason, Claire E.; Su, Xun-Cheng; Oakley, Aaron J.; Graham, Bim; Huber, Thomas; Dixon, Nicholas E.; Otting, Gottfried

    2013-01-01

    Single-stranded DNA (ssDNA) binding protein (SSB) is an essential protein to protect ssDNA and recruit specific ssDNA-processing proteins. Escherichia coli SSB forms a tetramer at neutral pH, comprising a structurally well-defined ssDNA binding domain (OB-domain) and a disordered C-terminal domain (C-domain) of ∼64 amino acid residues. The C-terminal eight-residue segment of SSB (C-peptide) has been shown to interact with the OB-domain, but crystal structures failed to reveal any electron den...

  16. Nucleotide fluctuation of radiation-resistant Halobacterium sp. NRC-1 single-stranded DNA-binding protein (RPA) genes

    Science.gov (United States)

    Holden, Todd; Tremberger, G., Jr.; Cheung, E.; Subramaniam, R.; Gadura, N.; Schneider, P.; Sullivan, R.; Flamholz, A.; Lieberman, D.; Cheung, T. D.

    2009-08-01

    The Single-Stranded DNA-Binding Protein (RPA) Genes in gamma ray radiation-resistant halophilic archaeon Halobacterium sp. NRC-1 were analyzed in terms of their nucleotide fluctuations. In an ATCG sequence, each base was assigned a number equal to its atomic number. The resulting numerical sequence was the basis of the statistical analysis in this study. Fractal analysis using the Higuchi method gave fractal dimensions of 2.04 and 2.06 for the gene sequences VNG2160 and VNG2162, respectively. The 16S rRNA sequence has a fractal dimension of 1.99. The di-nucleotide Shannon entropy values were found to be negatively correlated with the observed fractal dimensions (R2~ 0.992, N=3). Inclusion of Deinococcus radiodurans Rad-A in the regression analysis decreases the R2 slightly to 0.98 (N=4). A third VNG2163 RPA gene of unknown function but with upregulation activity under irradiation was found to have a fractal dimension of 2.05 and a Shannon entropy of 3.77 bits. The above results are similar to those found in bacterial Deinococcus radiodurans and suggest that their high radiation resistance property would have favored selection of CG di-nucleotide pairs. The two transcription factors TbpD (VNG7114) and TfbA (VNG 2184) were also studied. Using VNG7114, VNG2184, and VNG2163; the regression analysis of fractal dimension versus Shannon entropy shows that R2 ~ 0.997 for N =3. The VNG2163 unknown function may be related to the pathways with transcriptions closely regulated to sequences VNG7114 and VNG2184.

  17. The validity of sedimentation data from high molecular weight DNA and the effects of additives on radiation-induced single-strand breakage

    International Nuclear Information System (INIS)

    Dugle, D.L.

    1979-10-01

    The optimization of many of the factors governing reproducible sedimentation behaviour of high molecular weight single-strand DNA in a particular alkaline sucrose density gradient system is described. A range of angular momenta is defined for which a constant strand breakage efficiency is required, despite a rotor speed effect which increases the measured molecular weights at decreasing rotor speeds for larger DNA molecules. The possibility is discussed that the bimodal control DNA profiles obtained after sedimentation at 11 500 rev/min (12 400 g) or less represent structural subunits of the chromatid. The random induction of single-strand DNA breaks by ionizing radiation is demonstrated by the computer-derived fits to the experimental profiles. The enhancement of single-strand break (SSB) yields in hypoxic cells by oxygen, para-nitroacetophenone (PNAP), or any of the three nitrofuran derivatives used was well correlated with increased cell killing. Furthermore, reductions in SSB yields for known hydroxyl radical (OH.) scavengers correlates with the reactivities of these compounds toward OH.. This supports the contention that some type of OH.-induced initial lesion, which may ultimately be expressed as an unrepaired or misrepaired double-strand break, constitutes a lethal event. (author)

  18. Chromatid interchanges at intrachromosomal telomeric DNA sequences

    International Nuclear Information System (INIS)

    Fernandez, J.L.; Vazquez-Gundin, F.; Bilbao, A.; Gosalvez, J.; Goyanes, V.

    1997-01-01

    Chinese hamster Don cells were exposed to X-rays, mitomycin C and teniposide (VM-26) to induce chromatid exchanges (quadriradials and triradials). After fluorescence in situ hybridization (FISH) of telomere sequences it was found that interstitial telomere-like DNA sequence arrays presented around five times more breakage-rearrangements than the genome overall. This high recombinogenic capacity was independent of the clastogen, suggesting that this susceptibility is not related to the initial mechanisms of DNA damage. (author)

  19. Complementarily addressed modification and cleavage of a single-stranded fragment of DNA with the aid of alkylating derivatives of oligonucleotides

    International Nuclear Information System (INIS)

    Brosalina, E.B.; Vlasov, V.V.; Kutyavin, I.V.; Mamaev, S.V.; Pletnev, A.G.; Podyminogin, M.A.

    1986-01-01

    The chemical modification of a 303-nucleotide single-stranded fragment of DNA by alkylating oligonucleotide derivatives bearing 4-[N-methyl-N-(2-chloroethyl)amino]benzyl groups in the 5'-terminal phosphate of the 3'-terminal ribose residue has been investigated. It has been shown that under the conditions of the formation of a complex with the DNA fragment both types of derivatives specifically alkylate nucleotides of the DNA fragments that are located directly adjacent to the sections complementary to the oligonucleotides bearing the reactive groups. Alkylation takes place with a high efficiency, and the DNA fragment can be cleaved specifically at the position of the alkylated nucleotides

  20. Single-strand conformation polymorphism analysis of ribosomal DNA for detection of Phytophthora ramorum directly from plant tissues

    Science.gov (United States)

    Ping Kong; Patricia A. Richardson; Chuanxue Hong; Thomas L. Kubisiak

    2006-01-01

    At the first Sudden Oak Death Science Symposium, we reported on the use of a single strand conformation polymorphism (SSCP) analysis for rapid identification of Phytophthora ramorum in culture. We have since assessed and improved the fingerprinting technique for detecting this pathogen directly from plant tissues. The improved SSCP protocol uses a...

  1. Intensive Linkage Mapping in a Wasp (Bracon Hebetor) and a Mosquito (Aedes Aegypti) with Single-Strand Conformation Polymorphism Analysis of Random Amplified Polymorphic DNA Markers

    OpenAIRE

    Antolin, M. F.; Bosio, C. F.; Cotton, J.; Sweeney, W.; Strand, M. R.; Black-IV, W. C.

    1996-01-01

    The use of random amplified polymorphic DNA from the polymerase chain reaction (RAPD-PCR) allows efficient construction of saturated linkage maps. However, when analyzed by agarose gel electrophoresis, most RAPD-PCR markers segregate as dominant alleles, reducing the amount of linkage information obtained. We describe the use of single strand conformation polymorphism (SSCP) analysis of RAPD markers to generate linkage maps in a haplodiploid parasitic wasp Bracon (Habrobracon) hebetor and a d...

  2. Coupled aggregation of mitochondrial single-strand DNA-binding protein tagged with Eos fluorescent protein visualizes synchronized activity of mitochondrial nucleoids

    Czech Academy of Sciences Publication Activity Database

    Olejár, Tomáš; Pajuelo-Reguera, David; Alán, Lukáš; Dlasková, Andrea; Ježek, Petr

    2015-01-01

    Roč. 12, č. 4 (2015), s. 5185-5190 ISSN 1791-2997 R&D Projects: GA ČR(CZ) GAP302/10/0346; GA MŠk(CZ) EE2.3.30.0025 Institutional support: RVO:67985823 Keywords : mitochondrial nucleoid * single- strand ed DNA -binding protein * photoconvertible fluorescent protein Eos Subject RIV: EA - Cell Biology Impact factor: 1.559, year: 2015

  3. Dynamics of water around the complex structures formed between the KH domains of far upstream element binding protein and single-stranded DNA molecules

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, Kaushik; Bandyopadhyay, Sanjoy, E-mail: sanjoy@chem.iitkgp.ernet.in [Molecular Modeling Laboratory, Department of Chemistry, Indian Institute of Technology, Kharagpur 721302 (India)

    2015-07-28

    Single-stranded DNA (ss-DNA) binding proteins specifically bind to the single-stranded regions of the DNA and protect it from premature annealing, thereby stabilizing the DNA structure. We have carried out atomistic molecular dynamics simulations of the aqueous solutions of two DNA binding K homology (KH) domains (KH3 and KH4) of the far upstream element binding protein complexed with two short ss-DNA segments. Attempts have been made to explore the influence of the formation of such complex structures on the microscopic dynamics and hydrogen bond properties of the interfacial water molecules. It is found that the water molecules involved in bridging the ss-DNA segments and the protein domains form a highly constrained thin layer with extremely retarded mobility. These water molecules play important roles in freezing the conformational oscillations of the ss-DNA oligomers and thereby forming rigid complex structures. Further, it is demonstrated that the effect of complexation on the slow long-time relaxations of hydrogen bonds at the interface is correlated with hindered motions of the surrounding water molecules. Importantly, it is observed that the highly restricted motions of the water molecules bridging the protein and the DNA components in the complexed forms originate from more frequent hydrogen bond reformations.

  4. Ca2+ improves organization of single-stranded DNA bases in human Rad51 filament, explaining stimulatory effect on gene recombination.

    KAUST Repository

    Fornander, Louise H

    2012-02-22

    Human RAD51 protein (HsRad51) catalyses the DNA strand exchange reaction for homologous recombination. To clarify the molecular mechanism of the reaction in vitro being more effective in the presence of Ca(2+) than of Mg(2+), we have investigated the effect of these ions on the structure of HsRad51 filament complexes with single- and double-stranded DNA, the reaction intermediates. Flow linear dichroism spectroscopy shows that the two ionic conditions induce significantly different structures in the HsRad51/single-stranded DNA complex, while the HsRad51/double-stranded DNA complex does not demonstrate this ionic dependence. In the HsRad51/single-stranded DNA filament, the primary intermediate of the strand exchange reaction, ATP/Ca(2+) induces an ordered conformation of DNA, with preferentially perpendicular orientation of nucleobases relative to the filament axis, while the presence of ATP/Mg(2+), ADP/Mg(2+) or ADP/Ca(2+) does not. A high strand exchange activity is observed for the filament formed with ATP/Ca(2+), whereas the other filaments exhibit lower activity. Molecular modelling suggests that the structural variation is caused by the divalent cation interfering with the L2 loop close to the DNA-binding site. It is proposed that the larger Ca(2+) stabilizes the loop conformation and thereby the protein-DNA interaction. A tight binding of DNA, with bases perpendicularly oriented, could facilitate strand exchange.

  5. The survival and repair of DNA single-strand breaks in gamma-irradiated Escherichia coli adapted to methyl methane sulfonate

    International Nuclear Information System (INIS)

    Zhestyanikov, V.D.; Savel'eva, G.E.

    1992-01-01

    The survival and repair of single-strand breaks of DNA in gamma-irradiated E.coli adapted to methyl methane sulfonate (MMS) (20 mkg/ml during 3 hours) have been investigated. It is shown that the survival of adapted bacteria of radioresistant strains B/r, H/r30, AB1157 and W3110 pol + increases with DMF (dose modification factor) ranging within 1.4-1.8 and in radiosensitive strains B s-1 , AB1157 recA13 and AB1157 lexA3 with DMF ranging within 1.3-1.4, and does not change in strains with mutation in poLA gene P3478 poLA1 and 016 res-3. The increase in radioresistance during the adaptation to MMS correlates with the acceleration of repair of gamma-ray-induced single-strand breaks in the radioresistant strains B/r and W3110 pol + and with the appearance of the ability to repair some part of DNA single-strand breaks in the mutant B s-1

  6. Systematic Analysis of the DNA Damage Response Network in Telomere Defective Budding Yeast

    Directory of Open Access Journals (Sweden)

    Eva-Maria Holstein

    2017-07-01

    Full Text Available Functional telomeres are critically important to eukaryotic genetic stability. Scores of proteins and pathways are known to affect telomere function. Here, we report a series of related genome-wide genetic interaction screens performed on budding yeast cells with acute or chronic telomere defects. Genetic interactions were examined in cells defective in Cdc13 and Stn1, affecting two components of CST, a single stranded DNA (ssDNA binding complex that binds telomeric DNA. For comparison, genetic interactions were also examined in cells with defects in Rfa3, affecting the major ssDNA binding protein, RPA, which has overlapping functions with CST at telomeres. In more complex experiments, genetic interactions were measured in cells lacking EXO1 or RAD9, affecting different aspects of the DNA damage response, and containing a cdc13-1 induced telomere defect. Comparing fitness profiles across these data sets helps build a picture of the specific responses to different types of dysfunctional telomeres. The experiments show that each context reveals different genetic interactions, consistent with the idea that each genetic defect causes distinct molecular defects. To help others engage with the large volumes of data, the data are made available via two interactive web-based tools: Profilyzer and DIXY. One particularly striking genetic interaction observed was that the chk1∆ mutation improved fitness of cdc13-1 exo1∆ cells more than other checkpoint mutations (ddc1∆, rad9∆, rad17∆, and rad24∆, whereas, in cdc13-1 cells, the effects of all checkpoint mutations were similar. We show that this can be explained by Chk1 stimulating resection—a new function for Chk1 in the eukaryotic DNA damage response network.

  7. Monitoring the Retention of Human Proliferating Cell Nuclear Antigen at Primer/Template Junctions by Proteins That Bind Single-Stranded DNA.

    Science.gov (United States)

    Hedglin, Mark; Aitha, Mahesh; Benkovic, Stephen J

    2017-07-11

    In humans, proliferating cell nuclear antigen (PCNA) sliding clamps encircling DNA coordinate various aspects of DNA metabolism throughout the cell cycle. A critical aspect of this is restricting PCNA to the vicinity of its DNA target site. For example, PCNA must be maintained at or near primer/template (P/T) junctions during DNA synthesis. With a diverse array of cellular factors implicated, many of which interact with PCNA, DNA, or both, it is unknown how this critical feat is achieved. Furthermore, current biochemical assays that examine the retention of PCNA near P/T junctions are inefficient, discontinuous, and qualitative and significantly deviate from physiologically relevant conditions. To overcome these challenges and limitations, we recently developed a novel and convenient Förster resonance energy transfer (FRET) assay that directly and continuously monitors the retention of human PCNA at a P/T junction. Here we describe in detail the design, methodology, interpretation, and limitations of this quantitative FRET assay using the single-stranded DNA-binding protein, SSB, from Escherichia coli as an example. This powerful tool is broadly applicable to any single-stranded DNA-binding protein and may be utilized and/or expanded upon to dissect DNA metabolic pathways that are dependent upon PCNA.

  8. Peroxiredoxin 1 Protects Telomeres from Oxidative Damage and Preserves Telomeric DNA for Extension by Telomerase

    Directory of Open Access Journals (Sweden)

    Eric Aeby

    2016-12-01

    Full Text Available Oxidative damage of telomeres can promote cancer, cardiac failure, and muscular dystrophy. Specific mechanisms protecting telomeres from oxidative damage have not been described. We analyzed telomeric chromatin composition during the cell cycle and show that the antioxidant enzyme peroxiredoxin 1 (PRDX1 is enriched at telomeres during S phase. Deletion of the PRDX1 gene leads to damage of telomeric DNA upon oxidative stress, revealing a protective function of PRDX1 against oxidative damage at telomeres. We also show that the oxidized nucleotide 8-oxo-2′deoxyguanosine-5′-triphosphate (8oxodGTP causes premature chain termination when incorporated by telomerase and that some DNA substrates terminating in 8oxoG prevent extension by telomerase. Thus, PRDX1 safeguards telomeres from oxygen radicals to counteract telomere damage and preserve telomeric DNA for elongation by telomerase.

  9. Functional roles of the N- and C-terminal regions of the human mitochondrial single-stranded DNA-binding protein.

    Directory of Open Access Journals (Sweden)

    Marcos T Oliveira

    2010-10-01

    Full Text Available Biochemical studies of the mitochondrial DNA (mtDNA replisome demonstrate that the mtDNA polymerase and the mtDNA helicase are stimulated by the mitochondrial single-stranded DNA-binding protein (mtSSB. Unlike Escherichia coli SSB, bacteriophage T7 gp2.5 and bacteriophage T4 gp32, mtSSBs lack a long, negatively charged C-terminal tail. Furthermore, additional residues at the N-terminus (notwithstanding the mitochondrial presequence are present in the sequence of species across the animal kingdom. We sought to analyze the functional importance of the N- and C-terminal regions of the human mtSSB in the context of mtDNA replication. We produced the mature wild-type human mtSSB and three terminal deletion variants, and examined their physical and biochemical properties. We demonstrate that the recombinant proteins adopt a tetrameric form, and bind single-stranded DNA with similar affinities. They also stimulate similarly the DNA unwinding activity of the human mtDNA helicase (up to 8-fold. Notably, we find that unlike the high level of stimulation that we observed previously in the Drosophila system, stimulation of DNA synthesis catalyzed by human mtDNA polymerase is only moderate, and occurs over a narrow range of salt concentrations. Interestingly, each of the deletion variants of human mtSSB stimulates DNA synthesis at a higher level than the wild-type protein, indicating that the termini modulate negatively functional interactions with the mitochondrial replicase. We discuss our findings in the context of species-specific components of the mtDNA replisome, and in comparison with various prokaryotic DNA replication machineries.

  10. The human mitochondrial single-stranded DNA-binding protein displays distinct kinetics and thermodynamics of DNA binding and exchange.

    Science.gov (United States)

    Qian, Yufeng; Johnson, Kenneth A

    2017-08-04

    The human mitochondrial ssDNA-binding protein (mtSSB) is a homotetrameric protein, involved in mtDNA replication and maintenance. Although mtSSB is structurally similar to SSB from Escherichia coli (EcoSSB), it lacks the C-terminal disordered domain, and little is known about the biophysics of mtSSB-ssDNA interactions. Here, we characterized the kinetics and thermodynamics of mtSSB binding to ssDNA by equilibrium titrations and stopped-flow kinetic measurements. We show that the mtSSB tetramer can bind to ssDNA in two distinct binding modes: (SSB) 30 and (SSB) 60 , defined by DNA binding site sizes of 30 and 60 nucleotides, respectively. We found that the binding mode is modulated by magnesium ion and NaCl concentration, but unlike EcoSSB, the mtSSB does not show negative intersubunit cooperativity. Global fitting of both the equilibrium and kinetic data afforded estimates for the rate and equilibrium constants governing the formation of (SSB) 60 and (SSB) 30 complexes and for the transitions between the two binding modes. We found that the mtSSB tetramer binds to ssDNA with a rate constant near the diffusion limit (2 × 10 9 m -1 s -1 ) and that longer DNA (≥60 nucleotides) rapidly wraps around all four monomers, as revealed by FRET assays. We also show that the mtSSB tetramer can directly transfer from one ssDNA molecule to another via an intermediate with two DNA molecules bound to the mtSSB. In conclusion, our results indicate that human mtSSB shares many physicochemical properties with EcoSSB and that the differences may be explained by the lack of an acidic, disordered C-terminal tail in human mtSSB protein. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. On-site detection of Phytophthora spp.—single-stranded target DNA as the limiting factor to improve on-chip hybridization

    International Nuclear Information System (INIS)

    Schwenkbier, Lydia; Pollok, Sibyll; Popp, Jürgen; Weber, Karina; König, Stephan; Wagner, Stefan; Werres, Sabine; Weber, Jörg; Hentschel, Martin

    2014-01-01

    We report on a lab-on-a-chip approach for on-site detection of Phytophthora species that allows visual signal readout. The results demonstrate the significance of single-stranded DNA (ssDNA) generation in terms of improving the intensity of the hybridization signal and to improve the reliability of the method. Conventional PCR with subsequent heat denaturation, sodium hydroxide-based denaturation, lambda exonuclease digestion and two asymmetric PCR methods were investigated for the species P. fragariae, P. kernoviae, and P. ramorum. The positioning of the capture probe within the amplified yeast GTP-binding protein (YPT1) target DNA was also of interest because it significantly influences the intensity of the signal. Statistical tests were used to validate the impact of the ssDNA generation methods and the capture-target probe position. The single-stranded target DNA generated by Linear-After-The-Exponential PCR (LATE-PCR) was found to produce signal intensities comparable to post-PCR exonuclease treatment. The LATE-PCR is the best method for the on-site detection of Phytophthora because the enzymatic digestion after PCR is more laborious and time-consuming. (author)

  12. Cytogenetic Markers, DNA Single-Strand Breaks, Urinary Metabolites, and DNA Repair Rates in Styrene-Exposed Lamination Workers

    Czech Academy of Sciences Publication Activity Database

    Vodička, Pavel; Tuimala, J.; Štětina, R.; Kumar, R.; Manini, P.; Naccarati, Alessio; Maestri, L.; Vodičková, L.; Kuricová, Miroslava; Jarventaus, H.; Majvalková, Z.; Hirvonen, A.; Imbriani, M.; Mutti, A.; Norppa, H.; Hemminki, K.

    2004-01-01

    Roč. 112, č. 8 (2004), s. 867-871 ISSN 0091-6765 R&D Projects: GA ČR GA310/03/0437; GA ČR GA310/01/0802 Institutional research plan: CEZ:AV0Z5039906 Keywords : DNA repair rates * genotoxicity Subject RIV: FM - Hygiene Impact factor: 3.929, year: 2004

  13. Fusion of Taq DNA polymerase with single-stranded DNA binding-like protein of Nanoarchaeum equitans-Expression and characterization.

    Directory of Open Access Journals (Sweden)

    Marcin Olszewski

    Full Text Available DNA polymerases are present in all organisms and are important enzymes that synthesise DNA molecules. They are used in various fields of science, predominantly as essential components for in vitro DNA syntheses, known as PCR. Modern diagnostics, molecular biology and genetic engineering need DNA polymerases which demonstrate improved performance. This study was aimed at obtaining a new NeqSSB-TaqS fusion DNA polymerase from the Taq DNA Stoffel domain and a single-stranded DNA binding-like protein of Nanoarchaeum equitans in order to significantly improve the properties of DNA polymerase. The DNA coding sequence of Taq Stoffel DNA polymerase and the nonspecific DNA-binding protein of Nanoarchaeum equitans (NeqSSB-like protein were fused. A novel recombinant gene was obtained which was cloned into the pET-30 Ek/LIC vector and introduced into E. coli for expression. The recombinant enzyme was purified and its enzymatic properties including DNA polymerase activity, PCR amplification rate, thermostability, processivity and resistance to inhibitors, were tested. The yield of the target protein reached approximately 18 mg/l after 24 h of the IPTG induction. The specific activity of the polymerase was 2200 U/mg. The recombinant NeqSSB-TaqS exhibited a much higher extension rate (1000 bp template in 20 s, processivity (19 nt, thermostability (half-life 35 min at 95°C and higher tolerance to PCR inhibitors (0.3-1.25% of whole blood, 0.84-13.5 μg of lactoferrin and 4.7-150 ng of heparin than Taq Stoffel DNA polymerase. Furthermore, our studies show that NeqSSB-TaqS DNA polymerase has a high level of flexibility in relation to Mg2+ ions (from 1 to 5 mM and KCl or (NH42SO4 salts (more than 60 mM and 40 mM, respectively. Using NeqSSB-TaqS DNA polymerase instead of the Taq DNA polymerase could be a better choice in many PCR applications.

  14. Single-stranded DNA fragments of insect-specific nuclear polyhedrosis virus act as selective DNA insecticides for gypsy moth control.

    Science.gov (United States)

    Oberemok, Volodymyr V; Skorokhod, Oleksii A

    2014-07-01

    This paper focuses on the DNA insecticides as a novel preparation against gypsy moth (Lymantria dispar) based on DNA fragments of the anti-apoptotic gene of its nuclear polyhedrosis virus. It was found that the external application of a solution with two single-stranded DNA fragments from BIR and RING domains of LdMNPV (L.dispar multicapsid nuclear polyhedrosis virus) IAP-3 (inhibitor of apoptosis) gene induces a significantly higher mortality of gypsy moth caterpillars in comparison with the application of the control solutions. This effect does not depend on the infection of caterpillars with LdMNPV. The results also show that DNA insecticides based on LdMNPV IAP-3 gene fragments can be selective in action, and at least are not harmful to tobacco hornworm (Manduca sexta) and black cutworm (Agrotis ipsilon). Part of the gypsy moth genome cloned with the fragments of BIR and RING domains of LdMNPV IAP-3 gene as primers, has an overlap with the corresponding part of the LdMNPV IAP-3 gene and L.dispar IAP-1 mRNA for an inhibitor of apoptosis protein with the high cover by query, allows assuming that we cloned a part of gypsy moth anti-apoptosis gene. This finding gives the grounding that proposed here DNA insecticides might act through the blocking of the mechanisms involved in post transcriptional expression of insect anti-apoptosis genes. The results show the insecticidal potential of the viral genome fragments that can be used to create safe and relatively fast-acting DNA insecticides to control the quantity of gypsy moth populations, important task for forestry and agriculture. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Leukocyte telomere length variation due to DNA extraction method.

    Science.gov (United States)

    Denham, Joshua; Marques, Francine Z; Charchar, Fadi J

    2014-12-04

    Telomere length is indicative of biological age. Shorter telomeres have been associated with several disease and health states. There are inconsistencies throughout the literature amongst relative telomere length measured by quantitative PCR (qPCR) and different extraction methods or kits used. We quantified whole-blood leukocyte telomere length using the telomere to single copy gene (T/S) ratio by qPCR in 20 young (18-25 yrs) men after extracting DNA using three common extraction methods: Lahiri and Nurnberger (high salt) method, PureLink Genomic DNA Mini kit (Life Technologies) and QiaAmp DNA Mini kit (Qiagen). Telomere length differences of DNA extracted from the three extraction methods was assessed by one-way analysis of variance (ANOVA). DNA purity differed between extraction methods used (P=0.01). Telomere length was impacted by the DNA extraction method used (P=0.01). Telomeres extracted using the Lahiri and Nurnberger method (mean T/S ratio: 2.43, range: 1.57-3.02) and PureLink Genomic DNA Mini Kit (mean T/S ratio: 2.57, range: 2.24-2.80) did not differ (P=0.13). Likewise, QiaAmp and Purelink-extracted telomeres were not statistically different (P=0.14). The Lahiri-extracted telomeres, however, were significantly shorter than those extracted using the QiaAmp DNA Mini Kit (mean T/S ratio: 2.71, range: 2.32-3.02; P=0.003). DNA purity was associated with telomere length. There are discrepancies between the length of leukocyte telomeres extracted from the same individuals according to the DNA extraction method used. DNA purity could be responsible for the discrepancy in telomere length but this will require validation studies. We recommend using the same DNA extraction kit when quantifying leukocyte telomere length by qPCR or when comparing different cohorts to avoid erroneous associations between telomere length and traits of interest.

  16. Conformation effects of CpG methylation on single-stranded DNA oligonucleotides: analysis of the opioid peptide dynorphin-coding sequences.

    Directory of Open Access Journals (Sweden)

    Malik Mumtaz Taqi

    Full Text Available Single-stranded DNA (ssDNA is characterized by high conformational flexibility that allows these molecules to adopt a variety of conformations. Here we used native polyacrylamide gel electrophoresis (PAGE, circular dichroism (CD spectroscopy and nuclear magnetic resonance (NMR spectroscopy to show that cytosine methylation at CpG sites affects the conformational flexibility of short ssDNA molecules. The CpG containing 37-nucleotide PDYN (prodynorphin fragments were used as model molecules. The presence of secondary DNA structures was evident from differences in oligonucleotide mobilities on PAGE, from CD spectra, and from formation of A-T, G-C, and non-canonical G-T base pairs observed by NMR spectroscopy. The oligonucleotides displayed secondary structures at 4°C, and some also at 37°C. Methylation at CpG sites prompted sequence-dependent formation of novel conformations, or shifted the equilibrium between different existing ssDNA conformations. The effects of methylation on gel mobility and base pairing were comparable in strength to the effects induced by point mutations in the DNA sequences. The conformational effects of methylation may be relevant for epigenetic regulatory events in a chromatin context, including DNA-protein or DNA-DNA recognition in the course of gene transcription, and DNA replication and recombination when double-stranded DNA is unwinded to ssDNA.

  17. Isolation and characterization of a single-stranded DNA virus infecting the marine diatom Chaetoceros sp. strain SS628-11 isolated from western Japan.

    Directory of Open Access Journals (Sweden)

    Kei Kimura

    Full Text Available Diatoms are significant organisms for primary production in the earth's aquatic environment. Hence, their dynamics are an important focus area in current studies. Viruses are a great concern as potential factors of diatom mortality, along with other physical, chemical, and biological factors. We isolated and characterized a new diatom virus (Csp07DNAV that lyses the marine planktonic diatom Chaetoceros sp. strain SS628-11. This paper examines the physiological, morphological, and genomic characteristics of Csp07DNAV. The virus was isolated from a surface water sample that was collected at Hiroshima Bay, Japan. It was icosahedral, had a diameter of 34 nm, and accumulated in the nuclei of host cells. Rod-shaped virus particles also coexisted in the host nuclei. The latent period and burst size were estimated to be <12 h and 29 infectious units per host cell, respectively. Csp07DNAV had a closed circular single-stranded DNA genome (5,552 nucleotides, which included a double-stranded region and 3 open reading frames. The monophyly of Csp07DNAV and other Bacilladnavirus group single-stranded DNA viruses was supported by phylogenetic analysis that was based on the amino acid sequence of each virus protein. On the basis of these results, we considered Csp07DNAV to be a new member of the genus Bacilladnavirus.

  18. Two modes of interaction of the single-stranded DNA-binding protein of bacteriophage T7 with the DNA polymerase-thioredoxin complex

    KAUST Repository

    Ghosh, Sharmistha

    2010-04-06

    The DNA polymerase encoded by bacteriophage T7 has low processivity. Escherichia coli thioredoxin binds to a segment of 76 residues in the thumb subdomain of the polymerase and increases the processivity. The binding of thioredoxin leads to the formation of two basic loops, loops A and B, located within the thioredoxin-binding domain (TBD). Both loops interact with the acidic C terminus of the T7 helicase. A relatively weak electrostatic mode involves the C-terminal tail of the helicase and the TBD, whereas a high affinity interaction that does not involve the C-terminal tail occurs when the polymerase is in a polymerization mode. T7 gene 2.5 single-stranded DNA-binding protein (gp2.5) also has an acidic C-terminal tail. gp2.5 also has two modes of interaction with the polymerase, but both involve the C-terminal tail of gp2.5. An electrostatic interaction requires the basic residues in loops A and B, and gp2.5 binds to both loops with similar affinity as measured by surface plasmon resonance. When the polymerase is in a polymerization mode, the C terminus of gene 2.5 protein interacts with the polymerase in regions outside the TBD.gp2.5 increases the processivity of the polymerase-helicase complex during leading strand synthesis. When loop B of the TBD is altered, abortive DNA products are observed during leading strand synthesis. Loop B appears to play an important role in communication with the helicase and gp2.5, whereas loop A plays a stabilizing role in these interactions. © 2010 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Thermodynamics of complex structures formed between single-stranded DNA oligomers and the KH domains of the far upstream element binding protein

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, Kaushik; Sinha, Sudipta Kumar; Bandyopadhyay, Sanjoy, E-mail: sanjoy@chem.iitkgp.ernet.in [Molecular Modeling Laboratory, Department of Chemistry, Indian Institute of Technology, Kharagpur 721302 (India)

    2016-05-28

    The noncovalent interaction between protein and DNA is responsible for regulating the genetic activities in living organisms. The most critical issue in this problem is to understand the underlying driving force for the formation and stability of the complex. To address this issue, we have performed atomistic molecular dynamics simulations of two DNA binding K homology (KH) domains (KH3 and KH4) of the far upstream element binding protein (FBP) complexed with two single-stranded DNA (ss-DNA) oligomers in aqueous media. Attempts have been made to calculate the individual components of the net entropy change for the complexation process by adopting suitable statistical mechanical approaches. Our calculations reveal that translational, rotational, and configurational entropy changes of the protein and the DNA components have unfavourable contributions for this protein-DNA association process and such entropy lost is compensated by the entropy gained due to the release of hydration layer water molecules. The free energy change corresponding to the association process has also been calculated using the Free Energy Perturbation (FEP) method. The free energy gain associated with the KH4–DNA complex formation has been found to be noticeably higher than that involving the formation of the KH3–DNA complex.

  20. Integrative modelling coupled with ion mobility mass spectrometry reveals structural features of the clamp loader in complex with single-stranded DNA binding protein.

    Science.gov (United States)

    Politis, Argyris; Park, Ah Young; Hall, Zoe; Ruotolo, Brandon T; Robinson, Carol V

    2013-11-29

    DNA polymerase III, a decameric 420-kDa assembly, simultaneously replicates both strands of the chromosome in Escherichia coli. A subassembly of this holoenzyme, the seven-subunit clamp loader complex, is responsible for loading the sliding clamp (β2) onto DNA. Here, we use structural information derived from ion mobility mass spectrometry (IM-MS) to build three-dimensional models of one form of the full clamp loader complex, γ3δδ'ψχ (254 kDa). By probing the interaction between the clamp loader and a single-stranded DNA (ssDNA) binding protein (SSB4) and by identifying two distinct conformational states, with and without ssDNA, we assemble models of ψχ-SSB4 (108 kDa) and the clamp loader-SSB4 (340 kDa) consistent with IM data. A significant increase in measured collision cross-section (~10%) of the clamp loader-SSB4 complex upon DNA binding suggests large conformational rearrangements. This DNA bound conformation represents the active state and, along with the presence of ψχ, stabilises the clamp loader-SSB4 complex. Overall, this study of a large heteromeric complex analysed by IM-MS, coupled with integrative modelling, highlights the potential of such an approach to reveal structural features of previously unknown complexes of high biological importance. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Cas3 is a single-stranded DNA nuclease and ATP-dependent helicase in the CRISPR/Cas immune system.

    Science.gov (United States)

    Sinkunas, Tomas; Gasiunas, Giedrius; Fremaux, Christophe; Barrangou, Rodolphe; Horvath, Philippe; Siksnys, Virginijus

    2011-04-06

    Clustered regularly interspaced short palindromic repeat (CRISPR) is a recently discovered adaptive prokaryotic immune system that provides acquired immunity against foreign nucleic acids by utilizing small guide crRNAs (CRISPR RNAs) to interfere with invading viruses and plasmids. In Escherichia coli, Cas3 is essential for crRNA-guided interference with virus proliferation. Cas3 contains N-terminal HD phosphohydrolase and C-terminal Superfamily 2 (SF2) helicase domains. Here, we provide the first report of the cloning, expression, purification and in vitro functional analysis of the Cas3 protein of the Streptococcus thermophilus CRISPR4 (Ecoli subtype) system. Cas3 possesses a single-stranded DNA (ssDNA)-stimulated ATPase activity, which is coupled to unwinding of DNA/DNA and RNA/DNA duplexes. Cas3 also shows ATP-independent nuclease activity located in the HD domain with a preference for ssDNA substrates. To dissect the contribution of individual domains, Cas3 separation-of-function mutants (ATPase(+)/nuclease(-) and ATPase(-)/nuclease(+)) were obtained by site-directed mutagenesis. We propose that the Cas3 ATPase/helicase domain acts as a motor protein, which assists delivery of the nuclease activity to Cascade-crRNA complex targeting foreign DNA.

  2. Flow cytometry analysis of single-strand DNA damage in neuroblastoma cell lines using the F7-26 monoclonal antibody.

    Science.gov (United States)

    Grigoryan, Rita S; Yang, Bo; Keshelava, Nino; Barnhart, Jerry R; Reynolds, C Patrick

    2007-11-01

    The F7-26 monoclonal antibody (Mab) has been reported to be specific for single-strand DNA damage (ssDNA) and to also identify cells in apoptosis. We carriedout studies to determine if F7-26 binding measured by flow cytometry was able to specifically identify exogenous ssDNA as opposed to DNA damage from apoptosis. Neuroblastoma cells were treated with melphalan (L-PAM), fenretinide, 4-hydroperoxycyclophosphamide (4-HC)+/-pan-caspase inhibitor BOC-d-fmk, topotecan or with 10Gy gamma radiation+/-hydrogen peroxide (H2O2) and fixed immediately postradiation. Cytotoxicity was measured by DIMSCAN digital imaging fluorescence assay. The degree of ssDNA damage was analyzed by flow cytometry using Mab F7-26, with DNA visualized by propidium iodide counterstaining. Flow cytometry was used to measure apoptosis detected by terminal deoxynucleotidyltransferase (TUNEL) assay and reactive oxygen species (ROS) by carboxy-dichlorofluorescein diacetate. Irradiated and immediately fixed neuroblastoma cells showed increased ssDNA, but not apoptosis by TUNEL (TUNEL-negative). 4-HC or L-PAM+/-BOC-d-fmk increased ssDNA (F7-26-positive), but BOC-d-fmk prevented TUNEL staining. Fenretinide increased apoptosis by TUNEL but not ssDNA damage detected with F7-26. Enhanced ssDNA in neuroblastoma cells treated with radiation+H2O2 was associated with increased ROS. Topotecan increased both ssDNA and cytotoxicity in 4-HC-treated cells. These data demonstrate that Mab F7-26 recognized ssDNA due to exogenous DNA damage, rather than apoptosis. This assay should be useful to characterize the mechanism of action of antineoplastic drugs. Copyright (c) 2007 International Society for Analytical Cytology.

  3. Influence of the single-strand linker composition on the structural/dynamical properties of a truncated octahedral DNA nano-cage family.

    Science.gov (United States)

    Iacovelli, Federico; Alves, Cassio; Falconi, Mattia; Oteri, Francesco; de Oliveira, Cristiano L P; Desideri, Alessandro

    2014-10-01

    The structural/dynamical properties of three truncated octahedral DNA nano-cages composed by identical double helices but single strand linkers with different composition, namely 7 thymidines, 7 adenines, and 7 alternated thymidines and adenines, have been investigated through classical molecular dynamics simulations. Trajectories have been analyzed to investigate the role of the linkers in defining nano-cages stability and flexibility, including possible influence on the internal cages motions. The data indicate that the cages behavior is almost identical and that the structural/dynamical parameters measured along the trajectories are not particularly affected by the presence of different bases. These results demonstrate that the constraints imposed by the nano-structure geometry are the main factor in modulating these properties

  4. Human Rad51 filaments on double- and single-stranded DNA : Correlating regular and irregular forms with recombination function

    NARCIS (Netherlands)

    Ristic, D.; Modesti, M.; Van der Heijden, T.; Van Noort, J.; Dekker, C.; Kanaar, R.; Wyman, C.

    Recombinase proteins assembled into helical filaments on DNA are believed to be the catalytic core of homologous recombination. The assembly, disassembly and dynamic rearrangements of this structure must drive the DNA strand exchange reactions of homologous recombination. The sensitivity of

  5. Alkyladenine DNA glycosylase (AAG) localizes to mitochondria and interacts with mitochondrial single-stranded binding protein (mtSSB)

    OpenAIRE

    van Loon, Barbara; Samson, Leona D.

    2013-01-01

    Due to a harsh environment mitochondrial genomes accumulate high levels of DNA damage, in particular oxidation, hydrolytic deamination, and alkylation adducts. While repair of alkylated bases in nuclear DNA has been explored in detail, much less is known about the repair of DNA alkylation damage in mitochondria. Alkyladenine DNA glycosylase (AAG) recognizes and removes numerous alkylated bases, but to date AAG has only been detected in the nucleus, even though mammalian mitochondria are known...

  6. A novel technique using DNA denaturation to detect multiply induced single-strand breaks in a hydrated plasmid DNA molecule by X-ray and 4He2+ ion irradiation

    International Nuclear Information System (INIS)

    Yokoya, A.; Shikazono, N.; Fujii, K.; Noguchi, M.; Urushibara, A.

    2011-01-01

    To detect multiple single-strand breaks (SSBs) produced in plasmid DNA molecules by direct energy deposition from radiation tracks, we have developed a novel technique using DNA denaturation by which irradiated DNA is analysed as single-strand DNA (SS-DNA). The multiple SSBs that arise in both strands of DNA, but do not induce a double-strand break, are quantified as loss of SS-DNA using agarose gel electrophoresis. We have applied this method to X-ray and 4 He 2+ ion-irradiated samples of fully hydrated pUC18 plasmid DNA. The fractions of both SS-DNA and closed circular DNA (CC-DNA) exponentially decrease with the increasing dose of X rays and 4 He 2+ ions. The efficiency of the loss of SS-DNA was half that of CC-DNA for both types of irradiation, indicating that one of two strands in DNA is not broken when one SSB is produced in CC-DNA by irradiation. Contrary to our initial expectation, these results indicate that SSBs are not multiply induced even by high linear energy transfer radiation distributed in both strands. (authors)

  7. Yield of radiation-induced DNA single-strand breaks in Escherichia coli and superinfecting phage lambda at different dose rates. Repair of strand breaks in different buffers

    International Nuclear Information System (INIS)

    Boye, E.; Johansen, I.; Brustad, T.

    1976-01-01

    Cells of E. coli K-12 strain AB 1886 were irradiated in oxygenated phosphate buffered saline at 2 0 C with electrons from a 4-MeV linear accelerator. The yield of DNA single-strand breaks was determined as a function of the dose rate between 2.5 and 21,000 krad/min. For dose rates over 100 krad/min the yield was found to be constant. Below 10 krad/min the yield of breaks decreases drastically. This is explained by rejoining of breaks during irradiation. Twenty percent of the breaks induced by acute exposure are repaired within 3 min at 2 0 C. Superinfecting phage lambda DNA is repaired at the same rate as chromosomal DNA. In contrast to the results obtained with phosphate-buffered saline, an increase in the number of breaks after irradiation is observed when the bacteria are suspended in tris buffer. It is suggested that buffers of low ionic strength facilitate the leakage through the membrane of a small-molecular-weight component(s) necessary for DNA strand rejoining

  8. Selection and Characterization of Single-Stranded DNA Aptamers Binding Human B-Cell Surface Protein CD20 by Cell-SELEX

    Directory of Open Access Journals (Sweden)

    Mansoureh Haghighi

    2018-03-01

    Full Text Available The B-lymphocyte antigen (CD20 is a suitable target for single-stranded (ss nucleic acid oligomer (aptamers. The aim of study was selection and characterization of a ssDNA aptamer against CD20 using Cell-Systematic Evolution of Ligands by Exponential Enrichment (Cell-SELEX. The cDNA clone of CD20 (pcDNA-CD20 was transfected to human embryonic kidney (HEK293T cells. Ten rounds of Cell-SELEX was performed on recombinant HEK-CD20 cells. The final eluted ssDNA pool was amplified and ligated in T/A vector for cloning. The plasmids of positive clones were extracted, sequenced and the secondary structures of the aptamers predicted using DNAMAN® software. The sequencing results revealed 10 different types; three of them had the highest thermodynamic stability, named AP-1, AP-2 and AP-3. The AP-1 aptamer was the most thermodynamically stable one (ΔGAP-1 = −10.87 kcal/mol with the highest binding affinity to CD20 (96.91 ± 4.5 nM. Since, the CD20 is a suitable target for recognition of B-Cell. The selected aptamers could be comparable to antibodies with many advantages. The AP-1, AP-2 and AP-3 could be candidate instead of antibodies for diagnostic and therapeutic applications in immune deficiency, autoimmune diseases, leukemia and lymphoma.

  9. Characterization of the Single Stranded DNA Binding Protein SsbB Encoded in the Gonoccocal Genetic Island

    NARCIS (Netherlands)

    Jain, Samta; Zweig, Maria; Peeters, Eveline; Siewering, Katja; Hackett, Kathleen T.; Dillard, Joseph P.; van der Does, Chris

    2012-01-01

    Background: Most strains of Neisseria gonorrhoeae carry a Gonococcal Genetic Island which encodes a type IV secretion system involved in the secretion of ssDNA. We characterize the GGI-encoded ssDNA binding protein, SsbB. Close homologs of SsbB are located within a conserved genetic cluster found in

  10. Human Rad51 filaments on double- and single-stranded DNA: correlating regular and irregular forms with recombination function.

    NARCIS (Netherlands)

    D. Ristic (Dejan); M. Modesti (Mauro); T. van der Heijden (Thijn); J. Noort (John); C. Dekker (Cees); R. Kanaar (Roland); C. Wyman (Claire)

    2005-01-01

    textabstractRecombinase proteins assembled into helical filaments on DNA are believed to be the catalytic core of homologous recombination. The assembly, disassembly and dynamic rearrangements of this structure must drive the DNA strand exchange reactions of homologous recombination. The sensitivity

  11. Intramolecular telomeric G-quadruplexes dramatically inhibit DNA synthesis by replicative and translesion polymerases, revealing their potential to lead to genetic change.

    Directory of Open Access Journals (Sweden)

    Deanna N Edwards

    Full Text Available Recent research indicates that hundreds of thousands of G-rich sequences within the human genome have the potential to form secondary structures known as G-quadruplexes. Telomeric regions, consisting of long arrays of TTAGGG/AATCCC repeats, are among the most likely areas in which these structures might form. Since G-quadruplexes assemble from certain G-rich single-stranded sequences, they might arise when duplex DNA is unwound such as during replication. Coincidentally, these bulky structures when present in the DNA template might also hinder the action of DNA polymerases. In this study, single-stranded telomeric templates with the potential to form G-quadruplexes were examined for their effects on a variety of replicative and translesion DNA polymerases from humans and lower organisms. Our results demonstrate that single-stranded templates containing four telomeric GGG runs fold into intramolecular G-quadruplex structures. These intramolecular G quadruplexes are somewhat dynamic in nature and stabilized by increasing KCl concentrations and decreasing temperatures. Furthermore, the presence of these intramolecular G-quadruplexes in the template dramatically inhibits DNA synthesis by various DNA polymerases, including the human polymerase δ employed during lagging strand replication of G-rich telomeric strands and several human translesion DNA polymerases potentially recruited to sites of replication blockage. Notably, misincorporation of nucleotides is observed when certain translesion polymerases are employed on substrates containing intramolecular G-quadruplexes, as is extension of the resulting mismatched base pairs upon dynamic unfolding of this secondary structure. These findings reveal the potential for blockage of DNA replication and genetic changes related to sequences capable of forming intramolecular G-quadruplexes.

  12. RNA binding to APOBEC3G induces the disassembly of functional deaminase complexes by displacing single-stranded DNA substrates

    Science.gov (United States)

    Polevoda, Bogdan; McDougall, William M.; Tun, Bradley N.; Cheung, Michael; Salter, Jason D.; Friedman, Alan E.; Smith, Harold C.

    2015-01-01

    APOBEC3G (A3G) DNA deaminase activity requires a holoenzyme complex whose assembly on nascent viral reverse transcripts initiates with A3G dimers binding to ssDNA followed by formation of higher-order A3G homo oligomers. Catalytic activity is inhibited when A3G binds to RNA. Our prior studies suggested that RNA inhibited A3G binding to ssDNA. In this report, near equilibrium binding and gel shift analyses showed that A3G assembly and disassembly on ssDNA was an ordered process involving A3G dimers and multimers thereof. Although, fluorescence anisotropy showed that A3G had similar nanomolar affinity for RNA and ssDNA, RNA stochastically dissociated A3G dimers and higher-order oligomers from ssDNA, suggesting a different modality for RNA binding. Mass spectrometry mapping of A3G peptides cross-linked to nucleic acid suggested ssDNA only bound to three peptides, amino acids (aa) 181–194 in the N-terminus and aa 314–320 and 345–374 in the C-terminus that were part of a continuous exposed surface. RNA bound to these peptides and uniquely associated with three additional peptides in the N- terminus, aa 15–29, 41–52 and 83–99, that formed a continuous surface area adjacent to the ssDNA binding surface. The data predict a mechanistic model of RNA inhibition of ssDNA binding to A3G in which competitive and allosteric interactions determine RNA-bound versus ssDNA-bound conformational states. PMID:26424853

  13. DNA-PKcs is critical for telomere capping

    Energy Technology Data Exchange (ETDEWEB)

    Gilley, David; Tanaka, Hiromi; Hande, M. Prakash; Kurimasa,Akihiro; Li, Gloria C.; Chen, David J.

    2001-04-10

    The DNA-dependent protein kinase catalytic subunit (DNA-PKcs) is critical for DNA repair via the non-homologous end joining (NHEJ) pathway. Previously, it was reported that bone marrow cells and spontaneously transformed fibroblasts from SCID (severe combined immunodeficiency) mice have defects in telomere maintenance. The genetically defective SCID mouse arose spontaneously from its parental strain CB17. One known genomic alteration in SCID mice is a truncation of the extreme carboxyl-terminus of DNA-PKcs, but other as yet unidentified alterations may also exist. We have used a defined system, the DNA-PKcs knockout mouse, to investigate specifically the role DNA-PKcs specifically plays in telomere maintenance. We report that primary mouse embryonic fibroblasts (MEFs) and primary cultured kidney cells from 6-8 month old DNA-PKcs deficient mice accumulate a large number of telomere fusions, yet still retain wildtype telomere length. Thus, the phenotype of this defect separates the two-telomere related phenotypes, capping and length maintenance. DNA-PKcs deficient MEFs also exhibit elevated levels of chromosome fragments and breaks, which correlate with increased telomere fusions. Based on the high levels of telomere fusions observed in DNA-PKcs deficient cells, we conclude that DNA-PKcs plays an important capping role at the mammalian telomere.

  14. Single-molecule TPM studies on the conversion of human telomeric DNA.

    Science.gov (United States)

    Chu, Jen-Fei; Chang, Ta-Chau; Li, Hung-Wen

    2010-04-21

    Human telomere contains guanine-rich (G-rich) tandem repeats of single-stranded DNA sequences at its 3' tail. The G-rich sequences can be folded into various secondary structures, termed G-quadruplexes (G4s), by Hoogsteen basepairing in the presence of monovalent cations (such as Na+ and K+). We developed a single-molecule tethered particle motion (TPM) method to investigate the unfolding process of G4s in the human telomeric sequence AGGG(TTAGGG)3 in real time. The TPM method monitors the DNA tether length change caused by formation of the G4, thus allowing the unfolding process and structural conversion to be monitored at the single-molecule level. In the presence of its antisense sequence, the folded G4 structure can be disrupted and converted to the unfolded conformation, with apparent unfolding time constants of 82 s and 3152 s. We also observed that the stability of the G4 is greatly affected by different monovalent cations. The folding equilibrium constant of G4 is strongly dependent on the salt concentration, ranging from 1.75 at 5 mM Na+ to 3.40 at 15 mM Na+. Earlier spectral studies of Na+- and K+-folded states suggested that the spectral conversion between these two different folded structures may go through a structurally unfolded intermediate state. However, our single-molecule TPM experiments did not detect any totally unfolded intermediate within our experimental resolution when sodium-folded G4 DNA molecules were titrated with high-concentration, excess potassium ions. This observation suggests that a totally unfolding pathway is likely not the major pathway for spectral conversion on the timescale of minutes, and that interconversion among folded states can be achieved by the loop rearrangement. This study also demonstrates that TPM experiments can be used to study conformational changes in single-stranded DNA molecules. Copyright 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  15. Cyclic voltammetry of echinomycin and its interaction with double-stranded and single-stranded DNA adsorbed at the electrode

    Czech Academy of Sciences Publication Activity Database

    Jelen, František; Erdem, A.; Paleček, Emil

    2002-01-01

    Roč. 55, 1/2 (2002), s. 165-167 ISSN 1567-5394 R&D Projects: GA AV ČR IAA4004901; GA ČR GV204/97/K084 Institutional research plan: CEZ:AV0Z5004920 Keywords : electrochemistry of DNA * interaction of DNA with echinomycin * hanging mercury drop electrode Subject RIV: BO - Biophysics Impact factor: 1.463, year: 2002

  16. Cells deficient in PARP-1 show an accelerated accumulation of DNA single strand breaks, but not AP sites, over the PARP-1-proficient cells exposed to MMS.

    Science.gov (United States)

    Pachkowski, Brian F; Tano, Keizo; Afonin, Valeriy; Elder, Rhoderick H; Takeda, Shunichi; Watanabe, Masami; Swenberg, James A; Nakamura, Jun

    2009-12-01

    Poly(ADP-ribose) polymerase-1 (PARP-1) is a base excision repair (BER) protein that binds to DNA single strand breaks (SSBs) and subsequently synthesizes and transfers poly(ADP-ribose) polymers to various nuclear proteins. Numerous biochemical studies have implicated PARP-1 as a modulator of BER; however, the role of PARP-1 in BER in living cells remains unclear partly due to lack of accurate quantitation of BER intermediates existing in cells. Since DT40 cells, chicken B lymphocytes, naturally lack PARP-2, DT40 cells allow for the investigation of the PARP-1 null phenotype without confounding by PARP-2. To test the hypothesis that PARP-1 is necessary for efficient BER during methylmethane sulfonate (MMS) exposure in vertebrate cells, intact DT40 cells and their isogenic PARP-1 null counterparts were challenged with different exposure scenarios for phenotypic characterization. With chronic exposure, PARP-1 null cells exhibited sensitivity to MMS but with an acute exposure did not accumulate base lesions or AP sites to a greater extent than wild-type cells. However, an increase in SSB content in PARP-1 null cell DNA, as indicated by glyoxal gel electrophoresis under neutral conditions, suggested the presence of BER intermediates. These data suggest that during exposure, PARP-1 impacts the stage of BER after excision of the deoxyribosephosphate moiety from the 5' end of DNA strand breaks by polymerase beta.

  17. In Vitro Selection of a Single-Stranded DNA Molecular Recognition Element against the Pesticide Fipronil and Sensitive Detection in River Water

    Directory of Open Access Journals (Sweden)

    Ka L. Hong

    2017-12-01

    Full Text Available Fipronil is a commonly used insecticide that has been shown to have environmental and human health risks. The current standard methods of detection for fipronil and its metabolites, such as GC-MS, are time consuming and labor intensive. In this study, a variant of systematic evolution of ligands by exponential enrichment (SELEX, was utilized to identify the first single-stranded DNA (ssDNA molecular recognition element (MRE that binds to fipronil with high affinity (Kd = 48 ± 8 nM. The selected MRE displayed low cross binding activity on various environmentally relevant, structurally unrelated herbicides and pesticides, in addition to broad-spectrum binding activity on major metabolites of fipronil and a structurally similar pesticide in prepared river samples. Additionally, a proof-of-principle fluorescent detection assay was developed by using the selected ssDNA MRE as a signal-reporting element, with a limit of detection of 105 nM in a prepared river water sample.

  18. Guanine quadruplex monoclonal antibody 1H6 cross-reacts with restrained thymidine-rich single stranded DNA

    NARCIS (Netherlands)

    Kazemier, Hinke G.; Paeschke, Katrin; Lansdorp, Peter M.

    2017-01-01

    Previously we reported the production and characterization of monoclonal antibody 1H6 raised against (T(4)G(4))(2) intermolecular guanine quadruplex (G4) DNA structures (Henderson A. et al. (2014) Nucleic Acids Res., 42, 860-869; Hoffmann R. F. et al. (2016) Nucleic Acids Res., 44, 152-163). It was

  19. Direct imaging of hexaamine-ruthenium(III) in domain boundaries in monolayers of single-stranded DNA

    DEFF Research Database (Denmark)

    Grubb, Mikala; Wackerbarth, Hainer; Wengel, J.

    2007-01-01

    We describe adsorption and identification of the binding sites of [Ru(NH3)(6)](3+) (RuHex) molecules in a closely packed monolayer of a 13-base ss-DNA on Au(111) electrodes by electrochemical in situ scanning tunneling microscopy (STM), cyclic voltammetry and interfacial capacitance data. In situ...

  20. Gauging the Nanotoxicity of h2D-C2N toward Single-Stranded DNA: An in Silico Molecular Simulation Approach.

    Science.gov (United States)

    Mukhopadhyay, Titas Kumar; Bhattacharyya, Kalishankar; Datta, Ayan

    2018-04-12

    Recent toxicological assessments of graphene, graphene oxides, and some other two-dimensional (2D) materials have shown them to be substantially toxic at the nanoscale, where they inhibit and eventually disrupt biological processes. These shortfalls of graphene and analogs have resulted in a quest for novel biocompatible 2D materials with minimum cytotoxicity. In this article, we demonstrate C 2 N (h2D-C 2 N), a newly synthesized 2D porous graphene analog, to be non-nanotoxic toward genetic materials from an "in-silico" point of view through sequence-dependent binding of different polynucleotide single-stranded DNA (ssDNA) onto it. The calculated binding energy of nucleobases and the free energy of binding of polynucleotides follow the common trait, cytosine > guanine > adenine > thymine, and are well within the limits of physisorption. Ab-initio simulations completely exclude the possibility of any chemical reaction, demonstrating purely noncovalent binding of nucleobases with C 2 N through a crucial interplay between hydrogen bonding and π-stacking interactions with the surface. Further, we show that the extent of distortion inflicted upon ssDNA by C 2 N is negligible. Analysis of the density of states of the nucleobase-C 2 N hybrids confirms minimum electronic perturbation of the bases after adsorption. Most importantly, we demonstrate the potency of C 2 N in nucleic acid transportation via reversible binding of ssDNA. The plausible use of C 2 N as a template for DNA repair is illustrated through an example of C 2 N-assisted complementary ssDNA winding.

  1. Detection of benzo[a]pyrene-guanine adducts in single-stranded DNA using the α-hemolysin nanopore

    Science.gov (United States)

    Perera, Rukshan T.; Fleming, Aaron M.; Johnson, Robert P.; Burrows, Cynthia J.; White, Henry S.

    2015-02-01

    The carcinogenic precursor benzo[a]pyrene (BP), a polycyclic aromatic hydrocarbon, is released into the environment through the incomplete combustion of hydrocarbons. Metabolism of BP in the human body yields a potent alkylating agent (benzo[a]pyrene diol epoxide, BPDE) that reacts with guanine (G) in DNA to form an adduct implicated in cancer initiation. We report that the α-hemolysin (αHL) nanopore platform can be used to detect a BPDE adduct to G in synthetic oligodeoxynucleotides. Translocation of a 41-mer poly-2‧-deoxycytidine strand with a centrally located BPDE adduct to G through αHL in 1 M KCl produces a unique multi-level current signature allowing the adduct to be detected. This readily distinguishable current modulation was observed when the BPDE-adducted DNA strand translocated from either the 5‧ or 3‧ directions. This study suggests that BPDE adducts and other large aromatic biomarkers can be detected with αHL, presenting opportunities for the monitoring, quantification, and sequencing of mutagenic compounds from cellular DNA samples.

  2. Effect of vanillin on methylene blue plus light-induced single-strand breaks in plasmid pBR322 DNA.

    Science.gov (United States)

    Kumar, S S; Ghosh, A; Devasagayam, T P; Chauhan, P S

    2000-09-20

    The ability of vanillin (4-hydroxy-3-methoxybenzaldehyde), a naturally occurring food flavouring agent, in inhibiting photosensitization-induced single-strand breaks (ssbs) in plasmid pBR322 DNA has been examined in an in vitro system, independent of DNA repair/replication processes. Photosensitization of DNA with methylene blue, visible light and oxygen, induced ssbs resulting in the production of open circular form (OC form) in a concentration-dependent manner. The yield of OC form induced by photosensitization was increased several-fold by deuteration of the buffer and was found to be inhibited by sodium azide, a scavenger of singlet oxygen (1O(2)). Vanillin, per se, did not induce but inhibited photosensitization-induced ssbs in plasmid DNA, at millimolar concentrations. The inhibitory effect of vanillin was both concentration- and time-dependent. On a molar basis, vanillin was, however, less effective than trolox, a water-soluble analogue of alpha-tocopherol. Photosensitization by methylene blue system generates singlet oxygen, as one of the major components of ROS. Therefore, interaction of singlet oxygen with vanillin was investigated. The rate constant of vanillin with 1O(2) was estimated to be 5.93x10(7)M(-1)s(-1) and that of sodium azide as 2. 7x10(8)M(-1)s(-1). The present investigations show that vanillin can protect against photosensitization-induced ssbs in the plasmid pBR322 DNA, and this effect may partly be due to its ability to scavenge 1O(2).

  3. Single-stranded DNA aptamer targeting and neutralization of anti-D alloantibody: a potential therapeutic strategy for haemolytic diseases caused by Rhesus alloantibody.

    Science.gov (United States)

    Zhang, Yinze; Wu, Fan; Wang, Manni; Zhuang, Naibao; Zhou, Huayou; Xu, Hua

    2018-02-01

    Rhesus (Rh) D antigen is the most important antigen in the Rh blood group system because of its strong immunogenicity. When RhD-negative individuals are exposed to RhD-positive blood, they may produce anti-D alloantibody, potentially resulting in delayed haemolytic transfusion reactions and Rh haemolytic disease of the foetus and newborn, which are difficult to treat. Inhibition of the binding of anti-D antibody with RhD antigens on the surface of red blood cells may effectively prevent immune haemolytic diseases. In this study, single-stranded (ss) DNA aptamers, specifically binding to anti-D antibodies, were selected via systematic evolution of ligands by exponential enrichment (SELEX) technology. After 14 rounds of selection, the purified ssDNA was sequenced using a Personal Genome Machine system. Haemagglutination inhibition assays were performed to screen aptamers for biological activity in terms of blocking antigen-antibody reactions: the affinity and specificity of the aptamers were also determined. In addition to high specificity, the aptamers which were selected showed high affinity for anti-D antibodies with dissociation constant (K d ) values ranging from 51.46±14.90 to 543.30±92.59 nM. By the combined use of specific ssDNA aptamer 7 and auxiliary ssDNA aptamer 2, anti-D could be effectively neutralised at low concentrations of the aptamers. Our results demonstrate that ssDNA aptamers may be a novel, promising strategy for the treatment of delayed haemolytic transfusion reactions and Rh haemolytic disease of the foetus and newborn.

  4. Pleolipoviridae, a newly proposed family comprising archaeal pleomorphic viruses with single-stranded or double-stranded DNA genomes.

    Science.gov (United States)

    Pietilä, Maija K; Roine, Elina; Sencilo, Ana; Bamford, Dennis H; Oksanen, Hanna M

    2016-01-01

    Viruses infecting archaea show a variety of virion morphotypes, and they are currently classified into more than ten viral families or corresponding groups. A pleomorphic virus morphotype is very common among haloarchaeal viruses, and to date, several such viruses have been isolated. Here, we propose the classification of eight such viruses and formation of a new family, Pleolipoviridae (from the Greek pleo for more or many and lipos for lipid), containing three genera, Alpha-, Beta-, and Gammapleolipovirus. The proposal is currently under review by the International Committee on Taxonomy of Viruses (ICTV). The members of the proposed family Pleolipoviridae infect halophilic archaea and are nonlytic. They share structural and genomic features and differ from any other classified virus. The virion of pleolipoviruses is composed of a pleomorphic membrane vesicle enclosing the genome. All pleolipoviruses have two major structural protein species, internal membrane and spike proteins. Although the genomes of the pleolipoviruses are single- or double-stranded, linear or circular DNA molecules, they share the same genome organization and gene synteny and show significant similarity at the amino acid level. The canonical features common to all members of the proposed family Pleolipoviridae show that they are closely related and thus form a new viral family.

  5. Hematopoietic Lineage Transcriptome Stability and Representation in PAXgeneTM Collected Peripheral Blood Utilising SPIA Single-Stranded cDNA Probes for Microarray

    Directory of Open Access Journals (Sweden)

    Laura Kennedy

    2008-01-01

    Full Text Available Peripheral blood as a surrogate tissue for transcriptome profiling holds great promise for the discovery of diagnostic and prognostic disease biomarkers, particularly when target tissues of disease are not readily available. To maximize the reliability of gene expression data generated from clinical blood samples, both the sample collection and the microarray probe generation methods should be optimized to provide stabilized, reproducible and representative gene expression profiles faithfully representing the transcriptional profiles of the constituent blood cell types present in the circulation. Given the increasing innovation in this field in recent years, we investigated a combination of methodological advances in both RNA stabilisation and microarray probe generation with the goal of achieving robust, reliable and representative transcriptional profiles from whole blood. To assess the whole blood profiles, the transcriptomes of purified blood cell types were measured and compared with the global transcriptomes measured in whole blood. The results demonstrate that a combination of PAXgeneTM RNA stabilising technology and single-stranded cDNA probe generation afforded by the NuGEN Ovation RNA amplification system V2TM enables an approach that yields faithful representation of specific hematopoietic cell lineage transcriptomes in whole blood without the necessity for prior sample fractionation, cell enrichment or globin reduction. Storage stability assessments of the PAXgeneTM blood samples also advocate a short, fixed room temperature storage time for all PAXgeneTM blood samples collected for the purposes of global transcriptional profiling in clinical studies.

  6. Hematopoietic Lineage Transcriptome Stability and Representation in PAXgene Collected Peripheral Blood Utilising SPIA Single-Stranded cDNA Probes for Microarray.

    Science.gov (United States)

    Kennedy, Laura; Vass, J Keith; Haggart, D Ross; Moore, Steve; Burczynski, Michael E; Crowther, Dan; Miele, Gino

    2008-08-25

    Peripheral blood as a surrogate tissue for transcriptome profiling holds great promise for the discovery of diagnostic and prognostic disease biomarkers, particularly when target tissues of disease are not readily available. To maximize the reliability of gene expression data generated from clinical blood samples, both the sample collection and the microarray probe generation methods should be optimized to provide stabilized, reproducible and representative gene expression profiles faithfully representing the transcriptional profiles of the constituent blood cell types present in the circulation. Given the increasing innovation in this field in recent years, we investigated a combination of methodological advances in both RNA stabilisation and microarray probe generation with the goal of achieving robust, reliable and representative transcriptional profiles from whole blood. To assess the whole blood profiles, the transcriptomes of purified blood cell types were measured and compared with the global transcriptomes measured in whole blood. The results demonstrate that a combination of PAXgene() RNA stabilising technology and single-stranded cDNA probe generation afforded by the NuGEN Ovation RNA amplification system V2() enables an approach that yields faithful representation of specific hematopoietic cell lineage transcriptomes in whole blood without the necessity for prior sample fractionation, cell enrichment or globin reduction. Storage stability assessments of the PAXgene() blood samples also advocate a short, fixed room temperature storage time for all PAXgene() blood samples collected for the purposes of global transcriptional profiling in clinical studies.

  7. Hematopoietic Lineage Transcriptome Stability and Representation in PAXgene™ Collected Peripheral Blood Utilising SPIA Single-Stranded cDNA Probes for Microarray

    Science.gov (United States)

    Kennedy, Laura; Vass, J. Keith; Haggart, D. Ross; Moore, Steve; Burczynski, Michael E.; Crowther, Dan; Miele, Gino

    2008-01-01

    Peripheral blood as a surrogate tissue for transcriptome profiling holds great promise for the discovery of diagnostic and prognostic disease biomarkers, particularly when target tissues of disease are not readily available. To maximize the reliability of gene expression data generated from clinical blood samples, both the sample collection and the microarray probe generation methods should be optimized to provide stabilized, reproducible and representative gene expression profiles faithfully representing the transcriptional profiles of the constituent blood cell types present in the circulation. Given the increasing innovation in this field in recent years, we investigated a combination of methodological advances in both RNA stabilisation and microarray probe generation with the goal of achieving robust, reliable and representative transcriptional profiles from whole blood. To assess the whole blood profiles, the transcriptomes of purified blood cell types were measured and compared with the global transcriptomes measured in whole blood. The results demonstrate that a combination of PAXgene™ RNA stabilising technology and single-stranded cDNA probe generation afforded by the NuGEN Ovation RNA amplification system V2™ enables an approach that yields faithful representation of specific hematopoietic cell lineage transcriptomes in whole blood without the necessity for prior sample fractionation, cell enrichment or globin reduction. Storage stability assessments of the PAXgene™ blood samples also advocate a short, fixed room temperature storage time for all PAXgene™ blood samples collected for the purposes of global transcriptional profiling in clinical studies. PMID:19578521

  8. A biomarker model of sublethal genotoxicity (DNA single-strand breaks and adducts) using the sentinel organism Aporrectodea longa in spiked soil

    International Nuclear Information System (INIS)

    Martin, Francis L.; Piearce, Trevor G.; Hewer, Alan; Phillips, David H.; Semple, Kirk T.

    2005-01-01

    There is a need to develop risk biomarkers during the remediation of contaminated land. We employed the earthworm, Aporrectodea longa (Ude), to determine whether genotoxicity measures could be applied to this organism's intestinal tissues. Earthworms were added, for 24 h or 7 days, to soil samples spiked with benzo[a]pyrene (B[a]P) and/or lindane. After exposure, intestinal tissues (crop/gizzard or intestine) were removed prior to the measurement in disaggregated cells of DNA single-strand breaks (SSBs) by the alkaline comet assay. Damage was quantified by comet tail length (CTL, μm). B[a]P 24-h exposure induced dose-related increases (P 32 P-postlabelling, showed a two-adduct-spot pattern. This preliminary investigation suggests that earthworm tissues may be incorporated into genotoxicity assays to facilitate hazard identification within terrestrial ecosystems. - Sublethal genotoxicity in the sentinel organism A. longa can be used to monitor the effects of contaminants in soil

  9. Detection of hybridization of single-strand DNA PCR products in temperature change process by a novel metal-clamping piezoelectric sensor.

    Science.gov (United States)

    Chen, Qinghai; Bian, Zhiheng; Hua, Xing; Yao, Chunyan; Wu, Wei; Zhang, Xue; Zhang, Bo; Huang, Junfu; Tang, Wanli; Fu, Weiling

    2010-05-15

    Oligonucleotide probes on the sensor surface can be hybridized with single-strand DNA (ssDNA) that is formed from PCR products in ice bath after degeneration. Thus, detection of PCR products by piezoelectric sensors requires the participation of ssDNA PCR products in ice bath. When PCR products in ice bath are added into the buffer of the sensor well at room temperature, there will be a temperature change process during mixing. However, it still remains unclear whether the temperature change affects the frequency baseline stability of the sensor and the result judgment, which is the basic condition for detecting hybridization of nucleic acid. In this study, we detected the hybridization of HPV PCR products during temperature change process by a self-designed adjustable metal-clamping piezoelectric sensor. The study mainly involves sensor adjustment, probe immobilization and ice bath sample addition (at different concentrations and different volumes). The response curve of basic frequency in temperature change process showed three stages, i.e., increase, decrease to baseline, and continuous decrease to stability. The early increase of frequency and duration of the time can reach 55+/-7.4 Hz and 39 min when 40 microL sample (0-1 degrees C) was added into 110 microL buffer (25 degrees C). The frequency increase effect caused by temperature difference at early stage depends on the volume ratio of two liquids and on the temperature difference. The results indicate that we should pay more attention to possibly small volume of PCR products in ice bath and minor temperature difference of two liquids in operation. 2010 Elsevier B.V. All rights reserved.

  10. Ampelomyces mycoparasites from apple powdery mildew identified as a distinct group based on single-stranded conformation polymorphism analysis of the rDNA ITS region.

    Science.gov (United States)

    Szentiványi, Orsolya; Kiss, Levente; Russell, John C; Kovács, Gábor M; Varga, Krisztina; Jankovics, Tünde; Lesemann, Silke; Xu, Xiang-Ming; Jeffries, Peter

    2005-04-01

    Pycnidial fungi belonging to the genus Ampelomyces are the most common natural antagonists of powdery mildews worldwide. During a study of the interactions between apple powdery mildew (Podosphaera leucotricha) and Ampelomyces mycoparasites, 52 new Ampelomyces isolates were obtained from P. leucotricha and, in addition, 13 new isolates from other species of the Erysiphaceae in four European countries. Their genetic diversity was screened using single-stranded conformation polymorphism (SSCP) analysis of the internal transcribed spacer (ITS) region of the ribosomal DNA (rDNA). For comparison, 24 isolates obtained from genetic resource collections or other sources were included in this study. Based on the ITS-SSCP patterns, the isolates were placed in eight groups. The isolates belonged to two types based on their growth in culture. The faster-growing and the slower-growing isolates were included in different SSCP groups. A phylogenetic analysis of the ITS sequences of representatives of these groups confirmed the results obtained with the SSCP method, and showed that the faster-growing isolates do not belong to Ampelomyces as suggested by earlier studies. All the isolates from P. leucotricha fell into a distinct SSCP group of genetically homogeneous isolates. This suggests that Ampelomyces mycoparasites which occur in apple powdery mildew are slightly different from the other Ampelomyces groups which contain mycoparasites from various powdery mildew species. This may be because the main growth period of Ampelomyces mycoparasites in apple powdery mildew is isolated in time from that of Ampelomyces isolates that occur in other species of the Erysiphaceae. P. leucotricha starts its life-cycle early in the season, usually in March-April, while most powdery mildews are active in the same environments only late in the year.

  11. CTCF driven TERRA transcription facilitates completion of telomere DNA replication.

    Science.gov (United States)

    Beishline, Kate; Vladimirova, Olga; Tutton, Stephen; Wang, Zhuo; Deng, Zhong; Lieberman, Paul M

    2017-12-13

    Telomere repeat DNA forms a nucleo-protein structure that can obstruct chromosomal DNA replication, especially under conditions of replication stress. Transcription of telomere repeats can initiate at subtelomeric CTCF-binding sites to generate telomere repeat-encoding RNA (TERRA), but the role of transcription, CTCF, and TERRA in telomere replication is not known. Here, we have used CRISPR/Cas9 gene editing to mutate CTCF-binding sites at the putative start site of TERRA transcripts for a class of subtelomeres. Under replication stress, telomeres lacking CTCF-driven TERRA exhibit sister-telomere loss and upon entry into mitosis, exhibit the formation of ultra-fine anaphase bridges and micronuclei. Importantly, these phenotypes could be rescued by the forced transcription of TERRA independent of CTCF binding. Our findings indicate that subtelomeric CTCF facilitates telomeric DNA replication by promoting TERRA transcription. Our findings also demonstrate that CTCF-driven TERRA transcription acts in cis to facilitate telomere repeat replication and chromosome stability.

  12. Acute coronary syndrome: Role of the telomere dynamic

    African Journals Online (AJOL)

    USER

    2010-05-03

    May 3, 2010 ... SSDB, single-stranded DNA breaks; eNOS, endothelial nitric oxide synthase; RNP ... ignore telomere as a double stranded DNA break point ...... 62(1): 7-12. Bellini A, Mattoli S (2007). The role of the fibrocyte, a bone marrow- derived mesenchymal progenitor, in reactive and reparative fibroses. Lab. Invest.

  13. Cancer and aging: The importance of telomeres in genome maintenance

    Energy Technology Data Exchange (ETDEWEB)

    Rodier, Francis; Kim, Sahn-ho; Nijjar, Tarlochan; Yaswen, Paul; Campisi, Judith

    2004-10-01

    Telomeres are the specialized DNA-protein structures that cap the ends of linear chromosomes, thereby protecting them from degradation and fusion by cellular DNA repair processes. In vertebrate cells, telomeres consist of several kilobase pairs of DNA having the sequence TTAGGG, a few hundred base pairs of single-stranded DNA at the 3' end of the telomeric DNA tract, and a host of proteins that organize the telomeric double and single stranded DNA into a protective structure. Functional telomeres are essential for maintaining the integrity and stability of genomes. When combined with loss of cell cycle checkpoint controls, telomere dysfunction can lead to genomic instability, a common cause and hallmark of cancer. Consequently, normal mammalian cells respond to dysfunctional telomeres by undergoing apoptosis (programmed cell death) or cellular senescence (permanent cell cycle arrest), two cellular tumor suppressor mechanisms. These tumor suppressor mechanisms are potent suppressors of cancer, but recent evidence suggests that they can antagonistically also contribute to aging phenotypes. Here, we review what is known about the structure and function of telomeres in mammalian cells, particularly human cells, and how telomere dysfunction may arise and contribute to cancer and aging phenotypes.

  14. Salt Dependence of the Radius of Gyration and Flexibility of Single-stranded DNA in Solution probed by Small-angle X-ray Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Sim, Adelene Y.L.; Lipfert, Jan; Herschlag, Daniel; Doniach, Sebastian

    2012-07-06

    Short single-stranded nucleic acids are ubiquitous in biological processes and understanding their physical properties provides insights to nucleic acid folding and dynamics. We used small angle x-ray scattering to study 8-100 residue homopolymeric single-stranded DNAs in solution, without external forces or labeling probes. Poly-T's structural ensemble changes with increasing ionic strength in a manner consistent with a polyelectrolyte persistence length theory that accounts for molecular flexibility. For any number of residues, poly-A is consistently more elongated than poly-T, likely due to the tendency of A residues to form stronger base-stacking interactions than T residues.

  15. Oligonucleotide Models of Telomeric DNA and RNA Form a Hybrid G-quadruplex Structure as a Potential Component of Telomeres*

    Science.gov (United States)

    Xu, Yan; Ishizuka, Takumi; Yang, Jie; Ito, Kenichiro; Katada, Hitoshi; Komiyama, Makoto; Hayashi, Tetsuya

    2012-01-01

    Telomeric repeat-containing RNA, a non-coding RNA molecule, has recently been found in mammalian cells. The detailed structural features and functions of the telomeric RNA at human chromosome ends remain unclear, although this RNA molecule may be a key component of the telomere machinery. In this study, using model human telomeric DNA and RNA sequences, we demonstrated that human telomeric RNA and DNA oligonucleotides form a DNA-RNA G-quadruplex. We next employed chemistry-based oligonucleotide probes to mimic the naturally formed telomeric DNA-RNA G-quadruplexes in living cells, suggesting that the process of DNA-RNA G-quadruplex formation with oligonucleotide models of telomeric DNA and RNA could occur in cells. Furthermore, we investigated the possible roles of this DNA-RNA G-quadruplex. The formation of the DNA-RNA G-quadruplex causes a significant increase in the clonogenic capacity of cells and has an effect on inhibition of cellular senescence. Here, we have used a model system to provide evidence about the formation of G-quadruplex structures involving telomeric DNA and RNA sequences that have the potential to provide a protective capping structure for telomere ends. PMID:23012368

  16. Telomere elongation chooses TERRA ALTernatives.

    Science.gov (United States)

    Arora, Rajika; Azzalin, Claus M

    2015-01-01

    Alternative Lengthening of Telomeres (ALT) mechanisms allow telomerase-negative immortal cells to buffer replicative telomere shortening. ALT is naturally active in a number of human cancers and might be selected upon telomerase inactivation. ALT is thought to operate through homologous recombination (HR) occurring between telomeric repeats from independent chromosome ends. Indeed, suppression of a number of HR factors impairs ALT cell proliferation. Yet, how HR is initiated at ALT telomeres remains elusive. Mounting evidence suggests that the long noncoding telomeric RNA TERRA renders ALT telomeres recombinogenic by forming RNA:DNA hybrids with the telomeric C-rich strand. TERRA and telomeric hybrids act in concert with a number of other factors, including the RNA endoribonuclease RNaseH1 and the single stranded DNA binding protein RPA. The functional interaction network built upon these different players seems indispensable for ALT telomere maintenance, and digging into the molecular details of this previously unappreciated network might open the way to novel avenues for cancer treatments.

  17. Contribution of single-strand breaks and alkali-labile bonds to the loss of infectivity of γ-irradiated phiX174 RF-DNA in E. coli cells mutant in various repair functions

    International Nuclear Information System (INIS)

    McKee, R.H.

    1975-01-01

    Twenty-one radiation sensitive mutants have been examined for their capacity to support gamma-irradiated phiX174 RF-DNA. The survival of phiX174 RF-DNA was reduced in essentially all of the sensitive mutants. The irradiated phiX174 RF-DNA was then separated into populations containing either single-strand breaks or alkali-labile bonds to examine the capacity of the mutants to repair each of the classes of lesions. It was found that all E. coli strains are unable to repair 22 percent of the single-strand breaks and all sensitive mutants are unable to repair an additional 10 percent of the breaks. All the repair functions examined are involved in single-strand break repair and none are more or less necessary than any of the others. PhiX174 RF-DNA is also inactivated by alkali-labile bonds. In the normal strains the inactivation efficiency is 0.16 lethal events per lesion with a threshold dose of 15 to 20 krads. The mutants are divided into two classes by their sensitivity to alkali-labile bonds. Both classes of mutants are also inactivated by alkali-labile bonds with efficiencies of about 0.17 and 0.29 lethal events per lesion, respectively. It is proposed that the differences seen in survival curves of phiX174 measured in the sensitive mutants is due to this difference. Although in normal cells the efficiency of inactivation of phiX174 by single-strand breaks is 50 percent greater than by alkali-labile bonds, alkali-labile bonds are produced at approximately twice the rate of single-strand breaks so alkali-labile bonds account for about 61 percent of the overall inactivation. In the mutants of least sensitivity alkali-labile bonds account for about 54 percent of the inactivating events and in the most sensitive about 67 percent

  18. OligArch: A software tool to allow artificially expanded genetic information systems (AEGIS to guide the autonomous self-assembly of long DNA constructs from multiple DNA single strands

    Directory of Open Access Journals (Sweden)

    Kevin M. Bradley

    2014-08-01

    Full Text Available Synthetic biologists wishing to self-assemble large DNA (L-DNA constructs from small DNA fragments made by automated synthesis need fragments that hybridize predictably. Such predictability is difficult to obtain with nucleotides built from just the four standard nucleotides. Natural DNA's peculiar combination of strong and weak G:C and A:T pairs, the context-dependence of the strengths of those pairs, unimolecular strand folding that competes with desired interstrand hybridization, and non-Watson–Crick interactions available to standard DNA, all contribute to this unpredictability. In principle, adding extra nucleotides to the genetic alphabet can improve the predictability and reliability of autonomous DNA self-assembly, simply by increasing the information density of oligonucleotide sequences. These extra nucleotides are now available as parts of artificially expanded genetic information systems (AEGIS, and tools are now available to generate entirely standard DNA from AEGIS DNA during PCR amplification. Here, we describe the OligArch (for "oligonucleotide architecting" software, an application that permits synthetic biologists to engineer optimally self-assembling DNA constructs from both six- and eight-letter AEGIS alphabets. This software has been used to design oligonucleotides that self-assemble to form complete genes from 20 or more single-stranded synthetic oligonucleotides. OligArch is therefore a key element of a scalable and integrated infrastructure for the rapid and designed engineering of biology.

  19. Hole hopping rates in single strand oligonucleotides

    Energy Technology Data Exchange (ETDEWEB)

    Borrelli, Raffaele [Dipartimento di Scienze Agrarie, Forestali e Alimentari, Università di Torino, Largo Paolo Braccini 2, I-10095 Grugliasco, TO (Italy); Capobianco, Amedeo [Dipartimento di Chimica e Biologia, Università di Salerno, Via Giovanni Paolo II, I-84084 Fisciano, SA (Italy); Peluso, Andrea, E-mail: apeluso@unisa.it [Dipartimento di Chimica e Biologia, Università di Salerno, Via Giovanni Paolo II, I-84084 Fisciano, SA (Italy)

    2014-08-31

    Highlights: • DNA hole transfer rates have been computed. • Delocalized adenine domains significantly affect hole transfer rates in DNA. • Franck–Condon weighted density of state from DFT normal modes. • DNA application in molecular electronics. - Abstract: The rates of hole transfer between guanine and adenine in single strand DNA have been evaluated by using Fermi’s golden rule and Kubo’s generating function approach for the Franck–Condon weighted density of states. The whole sets of the normal modes and vibrational frequencies of the two nucleobases, obtained at DFT/B3LYP level of calculation, have been considered in computations. The results show that in single strand the pyramidalization/planarization mode of the amino groups of both nucleobases plays the major role. At room temperature, the Franck–Condon density of states extends over a wide range of hole site energy difference, 0–1 eV, giving some hints about the design of oligonucleotides of potential technological interest.

  20. The application of strand invasion phenomenon, directed by peptide nucleic acid (PNA) and single-stranded DNA binding protein (SSB) for the recognition of specific sequences of human endogenous retroviral HERV-W family.

    Science.gov (United States)

    Machnik, Grzegorz; Bułdak, Łukasz; Ruczyński, Jarosław; Gąsior, Tomasz; Huzarska, Małgorzata; Belowski, Dariusz; Alenowicz, Magdalena; Mucha, Piotr; Rekowski, Piotr; Okopień, Bogusław

    2017-05-01

    The HERV-W family of human endogenous retroviruses represents a group of numerous sequences that show close similarity in genetic composition. It has been documented that some members of HERV-W-derived expression products are supposed to play significant role in humans' pathology, such as multiple sclerosis or schizophrenia. Other members of the family are necessary to orchestrate physiological processes (eg, ERVWE1 coding syncytin-1 that is engaged in syncytiotrophoblast formation). Therefore, an assay that would allow the recognition of particular form of HERV-W members is highly desirable. A peptide nucleic acid (PNA)-mediated technique for the discrimination between multiple sclerosis-associated retrovirus and ERVWE1 sequence has been developed. The assay uses a PNA probe that, being fully complementary to the ERVWE1 but not to multiple sclerosis-associated retrovirus (MSRV) template, shows high selective potential. Single-stranded DNA binding protein facilitates the PNA-mediated, sequence-specific formation of strand invasion complex and, consequently, local DNA unwinding. The target DNA may be then excluded from further analysis in any downstream process such as single-stranded DNA-specific exonuclease action. Finally, the reaction conditions have been optimized, and several PNA probes that are targeted toward distinct loci along whole HERV-W env sequences have been evaluated. We believe that PNA/single-stranded DNA binding protein-based application has the potential to selectively discriminate particular HERV-W molecules as they are at least suspected to play pathogenic role in a broad range of medical conditions, from psycho-neurologic disorders (multiple sclerosis and schizophrenia) and cancers (breast cancer) to that of an auto-immunologic background (psoriasis and lupus erythematosus). Copyright © 2016 John Wiley & Sons, Ltd.

  1. Protective effects of pulmonary epithelial lining fluid on oxidative stress and DNA single-strand breaks caused by ultrafine carbon black, ferrous sulphate and organic extract of diesel exhaust particles

    Energy Technology Data Exchange (ETDEWEB)

    Chuang, Hsiao-Chi [School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan (China); Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan (China); Cheng, Yi-Ling; Lei, Yu-Chen [Institute of Occupational Medicine and Industrial Hygiene, College of Public Health, National Taiwan University, Taipei, Taiwan (China); Chang, Hui-Hsien [Institute of Environmental Health, College of Public Health, National Taiwan University, Taipei, Taiwan (China); Cheng, Tsun-Jen, E-mail: tcheng@ntu.edu.tw [Institute of Occupational Medicine and Industrial Hygiene, College of Public Health, National Taiwan University, Taipei, Taiwan (China); Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan (China)

    2013-02-01

    Pulmonary epithelial lining fluid (ELF) is the first substance to make contact with inhaled particulate matter (PM) and interacts chemically with PM components. The objective of this study was to determine the role of ELF in oxidative stress, DNA damage and the production of proinflammatory cytokines following physicochemical exposure to PM. Ultrafine carbon black (ufCB, 15 nm; a model carbonaceous core), ferrous sulphate (FeSO{sub 4}; a model transition metal) and a diesel exhaust particle (DEP) extract (a model organic compound) were used to examine the acellular oxidative potential of synthetic ELF and non-ELF systems. We compared the effects of exposure to ufCB, FeSO{sub 4} and DEP extract on human alveolar epithelial Type II (A549) cells to determine the levels of oxidative stress, DNA single-strand breaks and interleukin-8 (IL-8) production in ELF and non-ELF systems. The effects of ufCB and FeSO{sub 4} on the acellular oxidative potential, cellular oxidative stress and DNA single-strand breakage were mitigated significantly by the addition of ELF, whereas there was no decrease following treatment with the DEP extract. There was no significant effect on IL-8 production following exposure to samples that were suspended in ELF/non-ELF systems. The results of the present study indicate that ELF plays an important role in the initial defence against PM in the pulmonary environment. Experimental components, such as ufCB and FeSO{sub 4}, induced the production of oxidative stress and led to DNA single-strand breaks, which were moderately prevented by the addition of ELF. These findings suggest that ELF plays a protective role against PM-driven oxidative stress and DNA damage. -- Highlights: ► To determine the role of ELF in ROS, DNA damage and IL-8 after exposure to PM. ► ufCB, FeSO{sub 4} and DEP extract were used to examine the protective effects of ELF. ► PM-driven oxidative stress and DNA single-strand breakage were mitigated by ELF. ► The findings

  2. Single-stranded regions in transforming deoxyribonucleic acid after uptake by competent Haemophilus influenzae

    Energy Technology Data Exchange (ETDEWEB)

    Sedgwick, B.; Setlow, J.K.

    1976-02-01

    About 15% of donor deoxyribonucleic acid (DNA) is single stranded immediately after uptake into competent Haemophilus influenzae wild-type cells, as judged by its sensitivity to S1 endonuclease. This amount decreases to 4 to 5% by 30 min after uptake. Mutants which are defective in the covalent association of recipient and donor DNA form little or no S1 endonuclease-sensitive donor. At 17 C donor DNA taken up by the wild type contains single-stranded regions although there is no observable association, either covalent or noncovalent. The single-stranded regions are at the ends of donor DNA molecules, as judged by the unchanged sedimentation velocity after S1 endonuclease digestion. The amount of single-stranded donor remains constant at 17 C for more than 60 min after uptake, suggesting that the decrease observed at 37 C is the result of association of single-stranded ends with single-stranded regions of recipient cell DNA. Three sequential steps necessary for the integration of donor DNA into recipient DNA are proposed: the synthesis of single-stranded regions in recipient DNA, the interaction of donor DNA with recipient DNA resulting in the production of single-stranded ends on donor DNA, and the stable pairing of homologous single-stranded regions. (auth)

  3. Trypanosoma brucei RAP1 maintains telomere and subtelomere integrity by suppressing TERRA and telomeric RNA:DNA hybrids.

    Science.gov (United States)

    Nanavaty, Vishal; Sandhu, Ranjodh; Jehi, Sanaa E; Pandya, Unnati M; Li, Bibo

    2017-06-02

    Trypanosoma brucei causes human African trypanosomiasis and regularly switches its major surface antigen, VSG, thereby evading the host's immune response. VSGs are monoallelically expressed from subtelomeric expression sites (ESs), and VSG switching exploits subtelomere plasticity. However, subtelomere integrity is essential for T. brucei viability. The telomeric transcript, TERRA, was detected in T. brucei previously. We now show that the active ES-adjacent telomere is transcribed. We find that TbRAP1, a telomere protein essential for VSG silencing, suppresses VSG gene conversion-mediated switching. Importantly, TbRAP1 depletion increases the TERRA level, which appears to result from longer read-through into the telomere downstream of the active ES. Depletion of TbRAP1 also results in more telomeric RNA:DNA hybrids and more double strand breaks (DSBs) at telomeres and subtelomeres. In TbRAP1-depleted cells, expression of excessive TbRNaseH1, which cleaves the RNA strand of the RNA:DNA hybrid, brought telomeric RNA:DNA hybrids, telomeric/subtelomeric DSBs and VSG switching frequency back to WT levels. Therefore, TbRAP1-regulated appropriate levels of TERRA and telomeric RNA:DNA hybrid are fundamental to subtelomere/telomere integrity. Our study revealed for the first time an important role of a long, non-coding RNA in antigenic variation and demonstrated a link between telomeric silencing and subtelomere/telomere integrity through TbRAP1-regulated telomere transcription. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  4. Increased type I collagen content and DNA binding activity of a single-stranded, cytosine-rich sequence in the high-salt buffer protein extract of the copper-deficient rat heart.

    Science.gov (United States)

    Zeng, Huawei; Saari, Jack T

    2004-11-01

    Dietary copper (Cu) deficiency not only causes a hypertrophic cardiomyopathy but also increases cancer risk in rodent models. However, a possible alteration in gene expression has not been fully examined. The present study was undertaken to determine the effect of Cu deficiency on protein profiles in rat heart tissue. Male Sprague-Dawley rats were fed diets that were either a Cu-adequate diet (6.0 microg Cu/g diet, n = 6) or a Cu-deficient diet (0.3 microg Cu/g diet, n = 6) for 5 weeks. The high-salt buffer (HSB) protein extract from heart tissue of Cu-deficient, but not Cu-adequate rats showed a 132 kDa protein band by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis. This protein band stained pink with Coomassie Blue, suggesting the presence of collagens or other proline-rich proteins. Dot immunoblotting demonstrated that total type I collagen was increased by 110% in HSB protein extract from Cu-deficient, relative to Cu-adequate, rats. Liquid chromatography with mass spectrometry analysis indicated that the 132 kDa protein band contained a collagen alpha (I) chain precursor as well as a leucine-rich protein 130 (LRP130) in HSB protein extract from Cu-deficient but not Cu-adequate rats. A gel shift assay showed that HSB protein extract from Cu-deficient rats bound to a single-stranded cytosine-rich DNA with higher affinity than the extract of Cu-adequate rats, similar to reports of an increase in LRP130 single-stranded DNA binding activity in several types of tumor cells. Collectively, these results not only suggest an additional feature of altered collagen metabolism with Cu deficiency but also demonstrate for the first time an increase in single-stranded cytosine-rich DNA binding in Cu-deficient rat heart.

  5. The early UL31 gene of equine herpesvirus 1 encodes a single-stranded DNA-binding protein that has a nuclear localization signal sequence at the C-terminus

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seongman; Chul Ahn, Byung; O' Callaghan, Dennis J. [Department of Microbiology and Immunology, Center for Molecular and Tumor Virology, Louisiana State University Health Sciences Center, Shreveport, LA 71130-3932 (United States); Kim, Seong Kee, E-mail: skim1@lsuhsc.edu [Department of Microbiology and Immunology, Center for Molecular and Tumor Virology, Louisiana State University Health Sciences Center, Shreveport, LA 71130-3932 (United States)

    2012-10-25

    The amino acid sequence of the UL31 protein (UL31P) of equine herpesvirus 1 (EHV-1) has homology to that of the ICP8 of herpes simplex virus type 1 (HSV-1). Here we show that the UL31 gene is synergistically trans-activated by the IEP and the UL5P (EICP27). Detection of the UL31 RNA transcript and the UL31P in EHV-1-infected cells at 6 h post-infection (hpi) as well as metabolic inhibition assays indicated that UL31 is an early gene. The UL31P preferentially bound to single-stranded DNA over double-stranded DNA in gel shift assays. Subcellular localization of the green fluorescent protein (GFP)-UL31 fusion proteins revealed that the C-terminal 32 amino acid residues of the UL31P are responsible for the nuclear localization. These findings may contribute to defining the role of the UL31P single-stranded DNA-binding protein in EHV-1 DNA replication.

  6. The early UL31 gene of equine herpesvirus 1 encodes a single-stranded DNA-binding protein that has a nuclear localization signal sequence at the C-terminus

    International Nuclear Information System (INIS)

    Kim, Seongman; Chul Ahn, Byung; O’Callaghan, Dennis J.; Kim, Seong Kee

    2012-01-01

    The amino acid sequence of the UL31 protein (UL31P) of equine herpesvirus 1 (EHV-1) has homology to that of the ICP8 of herpes simplex virus type 1 (HSV-1). Here we show that the UL31 gene is synergistically trans-activated by the IEP and the UL5P (EICP27). Detection of the UL31 RNA transcript and the UL31P in EHV-1-infected cells at 6 h post-infection (hpi) as well as metabolic inhibition assays indicated that UL31 is an early gene. The UL31P preferentially bound to single-stranded DNA over double-stranded DNA in gel shift assays. Subcellular localization of the green fluorescent protein (GFP)–UL31 fusion proteins revealed that the C-terminal 32 amino acid residues of the UL31P are responsible for the nuclear localization. These findings may contribute to defining the role of the UL31P single-stranded DNA-binding protein in EHV-1 DNA replication.

  7. Assessing Telomere Length Using Surface Enhanced Raman Scattering

    Science.gov (United States)

    Zong, Shenfei; Wang, Zhuyuan; Chen, Hui; Cui, Yiping

    2014-11-01

    Telomere length can provide valuable insight into telomeres and telomerase related diseases, including cancer. Here, we present a brand-new optical telomere length measurement protocol using surface enhanced Raman scattering (SERS). In this protocol, two single strand DNA are used as SERS probes. They are labeled with two different Raman molecules and can specifically hybridize with telomeres and centromere, respectively. First, genome DNA is extracted from cells. Then the telomere and centromere SERS probes are added into the genome DNA. After hybridization with genome DNA, excess SERS probes are removed by magnetic capturing nanoparticles. Finally, the genome DNA with SERS probes attached is dropped onto a SERS substrate and subjected to SERS measurement. Longer telomeres result in more attached telomere probes, thus a stronger SERS signal. Consequently, SERS signal can be used as an indicator of telomere length. Centromere is used as the inner control. By calibrating the SERS intensity of telomere probe with that of the centromere probe, SERS based telomere measurement is realized. This protocol does not require polymerase chain reaction (PCR) or electrophoresis procedures, which greatly simplifies the detection process. We anticipate that this easy-operation and cost-effective protocol is a fine alternative for the assessment of telomere length.

  8. Phenolic extracts of brewers' spent grain (BSG) as functional ingredients - assessment of their DNA protective effect against oxidant-induced DNA single strand breaks in U937 cells.

    Science.gov (United States)

    McCarthy, Aoife L; O'Callaghan, Yvonne C; Connolly, Alan; Piggott, Charles O; Fitzgerald, Richard J; O'Brien, Nora M

    2012-09-15

    Brewers' spent grain (BSG), a by-product of the brewing industry, contains high amounts of phenolic acids, which have antioxidant effects. The present study examined the ability of BSG extracts to protect against the genotoxic effects of oxidants, hydrogen peroxide (H(2)O(2)), 3-morpholinosydnonimine hydrochloride (SIN-1), 4-nitroquinoline 1-oxide (4-NQO) and tert-butylhydroperoxide (t-BOOH) in U937 cells. Four pale (P1-P4) and four black (B1-B4) BSG extracts were investigated. U937 cells were pre-incubated with BSG extracts, exposed to the oxidants and the DNA damage was measured by the Comet assay. The black BSG extracts (B1-B4) significantly protected against H(2)O(2)-induced DNA damage. Extract B2, which had the highest phenol content, provided the greatest protection. Extracts P2, B2, B3 and B4 provided significant protection against SIN-1-induced DNA damage. None of the extracts protected against DNA damage induced by t-BOOH and 4-NQO. The DNA protective effects of the BSG phenolic extracts may be related to iron chelation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Engineering BspQI nicking enzymes and application of N.BspQI in DNA labeling and production of single-strand DNA.

    Science.gov (United States)

    Zhang, Penghua; Too, Priscilla Hiu-Mei; Samuelson, James C; Chan, Siu-Hong; Vincze, Tamas; Doucette, Stephanie; Bäckström, Stefan; Potamousis, Konstantinos D; Schramm, Timothy M; Forrest, Dan; Schwartz, David C; Xu, Shuang-yong

    2010-02-01

    BspQI is a thermostable Type IIS restriction endonuclease (REase) with the recognition sequence 5'GCTCTTC N1/N4 3'. Here we report the cloning and expression of the bspQIR gene for the BspQI restriction enzyme in Escherichia coli. Alanine scanning of the BspQI charged residues identified a number of DNA nicking variants. After sampling combinations of different amino acid substitutions, an Nt.BspQI triple mutant (E172A/E248A/E255K) was constructed with predominantly top-strand DNA nicking activity. Furthermore, a triple mutant of BspQI (Nb.BspQI, N235A/K331A/R428A) was engineered to create a bottom-strand nicking enzyme. In addition, we demonstrated the application of Nt.BspQI in optical mapping of single DNA molecules. Nt or Nb.BspQI-nicked dsDNA can be further digested by E. coli exonuclease III to create ssDNA for downstream applications. BspQI contains two potential catalytic sites: a top-strand catalytic site (Ct) with a D-H-N-K motif found in the HNH endonuclease family and a bottom-strand catalytic site (Cb) with three scattered Glu residues. BlastP analysis of proteins in GenBank indicated a putative restriction enzyme with significant amino acid sequence identity to BspQI from the sequenced bacterial genome Croceibacter atlanticus HTCC2559. This restriction gene was amplified by PCR and cloned into a T7 expression vector. Restriction mapping and run-off DNA sequencing of digested products from the partially purified enzyme indicated that it is an EarI isoschizomer with 6-bp recognition, which we named CatHI (CTCTTC N1/N4).

  10. The Mycoplasma pneumoniae MPN229 gene encodes a protein that selectively binds single-stranded DNA and stimulates Recombinase A-mediated DNA strand exchange

    NARCIS (Netherlands)

    M. Sluijter (Marcel); T.A. Hoogenboezem (Thomas); N.G. Hartwig (Nico); C. Vink (Cornelis)

    2008-01-01

    textabstractBackground. Mycoplasma pneumoniae has previously been characterized as a micro-organism that is genetically highly stable. In spite of this genetic stability, homologous DNA recombination has been hypothesized to lie at the basis of antigenic variation of the major surface protein, P1,

  11. Telomere-binding proteins of Arabidopsis thaliana.

    Science.gov (United States)

    Zentgraf, U

    1995-02-01

    The nucleoprotein structure of Arabidopsis thaliana telomeres was investigated. A protein specifically binding to telomeric sequences was characterized by gel mobility shift assays with synthetic oligonucleotides consisting of four 7 bp telomeric repeats of Arabidopsis (TTTAGGG) and crude nuclear protein extracts of Arabidopsis leaves. These DNA-protein binding studies revealed that the binding affinity of this telomere-binding protein to the G-rich single-strand as well as to the double-stranded telomeric DNA is much higher than to the C-rich single-strand. The molecular mass of the protein was identified by SDS-PAGE to be 67 kDa. The isoelectric points were determined to be 5.0, 4.85 and 4.7, respectively, indicating that either one protein with different modifications or three slightly different proteins have been isolated. An RNA component, possibly serving as a template for reverse transcription of a plant telomerase, does not mediate the DNA-protein contact because the DNA-protein interactions were not RNAse-sensitive.

  12. The interaction of hyperthermophilic TATA-box binding protein with single-stranded DNA is entropically favorable and exhibits a large negative heat capacity change at high salt concentration.

    Science.gov (United States)

    Nagatoishi, Satoru; Tanaka, Yoshikazu; Kudou, Motonori; Tsumoto, Kouhei

    2009-09-01

    We have investigated the thermodynamics of the interaction between the TATA-box-binding protein from Pyrococcus horikoshii (PhoTBP) and its target DNA (TATA-1). The interaction between PhoTBP and double-stranded DNA (dsDNA) is entropically favorable and enthalpically unfavorable. The thermodynamic parameters for TATA-1 duplex formation in the presence of PhoTBP, that is, ternary PhoTBP-dsDNA complexation, are similar to those for TATA-1 duplex formation, which is enthalpically favorable. Surface plasmon resonance analysis indicates that the interaction between PhoTBP and single-stranded DNA (ssDNA) of TATA-1 is entropy driven and has a large negative heat capacity change (-1.19 kcal mol(-1) K(-1)) at high salt concentration (800 mM NaCl). These results suggest that the favorable entropic effect corresponding to the interaction between PhoTBP and dsDNA is due not to ternary complexation but to the interaction between PhoTBP and ssDNA. This report is the first to describe the thermodynamics of the interaction between TBP and ssDNA.

  13. Telomeres in ICF syndrome cells are vulnerable to DNA damage due to elevated DNA:RNA hybrids

    Science.gov (United States)

    Sagie, Shira; Toubiana, Shir; Hartono, Stella R.; Katzir, Hagar; Tzur-Gilat, Aya; Havazelet, Shany; Francastel, Claire; Velasco, Guillaume; Chédin, Frédéric; Selig, Sara

    2017-01-01

    DNA:RNA hybrids, nucleic acid structures with diverse physiological functions, can disrupt genome integrity when dysregulated. Human telomeres were shown to form hybrids with the lncRNA TERRA, yet the formation and distribution of these hybrids among telomeres, their regulation and their cellular effects remain elusive. Here we predict and confirm in several human cell types that DNA:RNA hybrids form at many subtelomeric and telomeric regions. We demonstrate that ICF syndrome cells, which exhibit short telomeres and elevated TERRA levels, are enriched for hybrids at telomeric regions throughout the cell cycle. Telomeric hybrids are associated with high levels of DNA damage at chromosome ends in ICF cells, which are significantly reduced with overexpression of RNase H1. Our findings suggest that abnormally high TERRA levels in ICF syndrome lead to accumulation of telomeric hybrids that, in turn, can result in telomeric dysfunction. PMID:28117327

  14. Accumulation of single-strand breaks doses not result in double-strand DNA breaks: peculiarity of transcribing fragment of human ribosomal operon that allows its detection in biological fluids at the death of various cells in organism

    International Nuclear Information System (INIS)

    Vejko, N.N.; Spitkovskij, D.M.

    2000-01-01

    The evidences of stability of the human ribosomal gene in the transcribing range (TR-rDNA) to fragmentation are presented in two groups of experiments: 1) in the case of availability of the fragments in the cells of sectional corpse material (necrosis and apoptosis) and by pathologies accompanied by the cells death through the apoptosis or necrosis mechanism; 2) in the model experiments, wherein the separated genomes DNA is subjected to the impact of nucleases initiating single-strand breaks (SB), or chemical introduction with a subsequent comparative analysis of stability to fragmentation of various DNA sequences including TR-rDNA. The DNA solutions were subjected to γ-radiation with the dose rate of 4.8 Gy/min. It is shown that in spite of the great number of the SBs the TR-rDNA is characterized by increased stability to fragmentation, which makes it possible to propose this DNA fragment for application as a cell death marker in biological fluids [ru

  15. Factors that influence telomeric oxidative base damage and repair by DNA glycosylase OGG1

    DEFF Research Database (Denmark)

    Rhee, David B; Ghosh, Avik; Lu, Jian

    2011-01-01

    Telomeres are nucleoprotein complexes at the ends of linear chromosomes in eukaryotes, and are essential in preventing chromosome termini from being recognized as broken DNA ends. Telomere shortening has been linked to cellular senescence and human aging, with oxidative stress as a major...... contributing factor. 7,8-Dihydro-8-oxogaunine (8-oxodG) is one of the most abundant oxidative guanine lesions, and 8-oxoguanine DNA glycosylase (OGG1) is involved in its removal. In this study, we examined if telomeric DNA is particularly susceptible to oxidative base damage and if telomere-specific factors...... affect the incision of oxidized guanines by OGG1. We demonstrated that telomeric TTAGGG repeats were more prone to oxidative base damage and repaired less efficiently than non-telomeric TG repeats in vivo. We also showed that the 8-oxodG-incision activity of OGG1 is similar in telomeric and non...

  16. Involvement of DNA repair in telomere maintenance and chromosomal instability in human cells

    International Nuclear Information System (INIS)

    Ayouaz, Ali

    2008-01-01

    Telomeres are a major actor of cell immortalization, precursor of a carcinogenesis process. Thus, it appears that the maintenance of telomeres is crucial in the implementation of carcinogenesis process. Due to their structures and under some conditions, telomeres can be assimilated in some respects to chromosomal breakages. Within this perspective, this research thesis aims at determining under which circumstances telomeres can be taken as targets by DNA repair mechanisms. More precisely, the author addressed the respective contributions of two repair mechanisms (the Non-Homologous End-Joining or NHEJ, and Homologous Recombination or HR) in the maintenance of telomere integrity. The author first discusses knowledge related to the interaction between chromosomal extremities and repair mechanisms. Then, he defines the behaviour of these mechanisms with respect to telomeres. He shows that, in absence of recombination mechanisms, the integrity of telomeres is not affected. Finally, he reports the attempt to determine their respective contributions in telomeric homeostasis [fr

  17. Evolution of Arabidopsis protection of telomeres 1 alters nucleic acid recognition and telomerase regulation

    OpenAIRE

    Arora, Amit; Beilstein, Mark A.; Shippen, Dorothy E.

    2016-01-01

    Protection of telomeres (POT1) binds chromosome ends, recognizing single-strand telomeric DNA via two oligonucleotide/oligosaccharide binding folds (OB-folds). The Arabidopsis thaliana POT1a and POT1b paralogs are atypical: they do not exhibit telomeric DNA binding, and they have opposing roles in regulating telomerase activity. AtPOT1a stimulates repeat addition processivity of the canonical telomerase enzyme, while AtPOT1b interacts with a regulatory lncRNA that represses telomerase activit...

  18. Site-specific DNA damage at GGG sequence by oxidative stress may accelerate telomere shortening.

    Science.gov (United States)

    Oikawa, S; Kawanishi, S

    1999-06-25

    Telomere shortening during human aging has been reported to be accelerated by oxidative stress. We investigated the mechanism of telomere shortening by oxidative stress. H2O2 plus Cu(II) caused predominant DNA damage at the 5' site of 5'-GGG-3' in the telomere sequence. Furthermore, H2O2 plus Cu(II) induced 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) formation in telomere sequences more efficiently than that in non-telomere sequences. NO plus O2- efficiently caused base alteration at the 5' site of 5'-GGG-3' in the telomere sequence. It is concluded that the site-specific DNA damage at the GGG sequence by oxidative stress may play an important role in increasing the rate of telomere shortening with aging.

  19. The Rev1 interacting region (RIR) motif in the scaffold protein XRCC1 mediates a low-affinity interaction with polynucleotide kinase/phosphatase (PNKP) during DNA single-strand break repair.

    Science.gov (United States)

    Breslin, Claire; Mani, Rajam S; Fanta, Mesfin; Hoch, Nicolas; Weinfeld, Michael; Caldecott, Keith W

    2017-09-29

    The scaffold protein X-ray repair cross-complementing 1 (XRCC1) interacts with multiple enzymes involved in DNA base excision repair and single-strand break repair (SSBR) and is important for genetic integrity and normal neurological function. One of the most important interactions of XRCC1 is that with polynucleotide kinase/phosphatase (PNKP), a dual-function DNA kinase/phosphatase that processes damaged DNA termini and that, if mutated, results in ataxia with oculomotor apraxia 4 (AOA4) and microcephaly with early-onset seizures and developmental delay (MCSZ). XRCC1 and PNKP interact via a high-affinity phosphorylation-dependent interaction site in XRCC1 and a forkhead-associated domain in PNKP. Here, we identified using biochemical and biophysical approaches a second PNKP interaction site in XRCC1 that binds PNKP with lower affinity and independently of XRCC1 phosphorylation. However, this interaction nevertheless stimulated PNKP activity and promoted SSBR and cell survival. The low-affinity interaction site required the highly conserved Rev1-interacting region (RIR) motif in XRCC1 and included three critical and evolutionarily invariant phenylalanine residues. We propose a bipartite interaction model in which the previously identified high-affinity interaction acts as a molecular tether, holding XRCC1 and PNKP together and thereby promoting the low-affinity interaction identified here, which then stimulates PNKP directly. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. TERRA, hnRNP A1, and DNA-PKcs Interactions at Human Telomeres.

    Science.gov (United States)

    Le, Phuong N; Maranon, David G; Altina, Noelia H; Battaglia, Christine L R; Bailey, Susan M

    2013-01-01

    Maintenance of telomeres, repetitive elements at eukaryotic chromosomal termini, and the end-capping structure and function they provide, are imperative for preserving genome integrity and stability. The discovery that telomeres are transcribed into telomere repeat containing RNA (TERRA) has revolutionized our view of this repetitive, rather unappreciated region of the genome. We have previously shown that the non-homologous end-joining, shelterin associated DNA dependent protein kinase catalytic subunit (DNA-PKcs) participates in mammalian telomeric end-capping, exclusively at telomeres created by leading-strand synthesis. Here, we explore potential roles of DNA-PKcs and its phosphorylation target heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) in the localization of TERRA at human telomeres. Evaluation of co-localized foci utilizing RNA-FISH and three-dimensional (3D) reconstruction strategies provided evidence that both inhibition of DNA-PKcs kinase activity and siRNA depletion of hnRNP A1 result in accumulation of TERRA at individual telomeres; depletion of hnRNP A1 also resulted in increased frequencies of fragile telomeres. These observations are consistent with previous demonstrations that decreased levels of the nonsense RNA-mediated decay factors SMG1 and UPF1 increase TERRA at telomeres and interfere with replication of leading-strand telomeres. We propose that hTR mediated stimulation of DNA-PKcs and subsequent phosphorylation of hnRNP A1 influences the cell cycle dependent distribution of TERRA at telomeres by contributing to the removal of TERRA from telomeres, an action important for progression of S-phase, and thereby facilitating efficient telomere replication and end-capping.

  1. Conformationally locked aryl C-nucleosides: synthesis of phosphoramidite monomers and incorporation into single-stranded DNA and LNA (locked nucleic acid)

    DEFF Research Database (Denmark)

    Babu, B. Ravindra; Prasad, Ashok K.; Trikha, Smriti

    2002-01-01

    . The phosphoramidite approach was used for automated incorporation of the LNA-type beta-configured C-aryl monomers 17a-17e into short DNA and 2'-OMe-RNA/LNA strands. It is shown that universal hybridization can be obtained with a conformationally restricted monomer as demonstrated most convincingly for the pyrene LNA...... monomer 17d, both in a DNA context and in an RNA-like context. Increased binding affinity of oligonucleotide probes for universal hybridization can be induced by combining the pyrene LNA monomer 17d with affinity-enhancing 2'-OMe-RNA/LNA monomers....

  2. Identification of novel interactors of human telomeric G-quadruplex DNA.

    Science.gov (United States)

    Pagano, Bruno; Margarucci, Luigi; Zizza, Pasquale; Amato, Jussara; Iaccarino, Nunzia; Cassiano, Chiara; Salvati, Erica; Novellino, Ettore; Biroccio, Annamaria; Casapullo, Agostino; Randazzo, Antonio

    2015-02-18

    A chemoproteomic-driven approach was used to investigate the interaction network between human telomeric G-quadruplex DNA and nuclear proteins. We identified novel G-quadruplex binding partners, able to recognize these DNA structures at chromosome ends, suggesting a possible, and so far unknown, role of these proteins in telomere functions.

  3. Replication of the plasmid pBR322 under the control of a cloned replication origin from the single-stranded DNA phage M13.

    OpenAIRE

    Cleary, J M; Ray, D S

    1980-01-01

    The replication origins of viral and complementary strands of bacteriophage M13 DNA are contained within a 507-nucleotide intergenic region of the viral genome. Chimeric plasmids have been constructed by inserting restriction endonuclease fragments of the M13 intergenic region into the plasmid pBR322. Replication of these hybrid plasmids, under conditions not permissive for the plasmid replicon, depends on specific segments of the M13 origin region and on the presence of M13 helper virus. Thu...

  4. Cooperation of DNA-PKcs and WRN helicase in the maintenance of telomeric D-loops

    DEFF Research Database (Denmark)

    Kusumoto-Matsuo, Rika; Opresko, Patricia L; Ramsden, Dale

    2010-01-01

    Werner syndrome is an inherited human progeriod syndrome caused by mutations in the gene encoding the Werner Syndrome protein, WRN. It has both 3'-5' DNA helicase and exonuclease activities, and is suggested to have roles in many aspects of DNA metabolism, including DNA repair and telomere...... maintenance. The DNA-PK complex also functions in both DNA double strand break repair and telomere maintenance. Interaction between WRN and the DNA-PK complex has been reported in DNA double strand break repair, but their possible cooperation at telomeres has not been reported. This study analyzes thein vitro...... D-loop model substrate. In addition, the length of telomeric G-tails decreases in DNA-PKcs knockdown cells, and this phenotype is reversed by overexpression of WRN helicase. These results suggest that WRN and DNA-PKcs may cooperatively prevent G-tail shortening in vivo....

  5. Usefulness of telomere length in DNA from human teeth for age estimation.

    Science.gov (United States)

    Márquez-Ruiz, Ana Belén; González-Herrera, Lucas; Valenzuela, Aurora

    2018-03-01

    Age estimation is widely used to identify individuals in forensic medicine. However, the accuracy of the most commonly used procedures is markedly reduced in adulthood, and these methods cannot be applied in practice when morphological information is limited. Molecular methods for age estimation have been extensively developed in the last few years. The fact that telomeres shorten at each round of cell division has led to the hypothesis that telomere length can be used as a tool to predict age. The present study thus aimed to assess the correlation between telomere length measured in dental DNA and age, and the effect of sex and tooth type on telomere length; a further aim was to propose a statistical regression model to estimate the biological age based on telomere length. DNA was extracted from 91 tooth samples belonging to 77 individuals of both sexes and 15 to 85 years old and was used to determine telomere length by quantitative real-time PCR. Our results suggested that telomere length was not affected by sex and was greater in molar teeth. We found a significant correlation between age and telomere length measured in DNA from teeth. However, the equation proposed to predict age was not accurate enough for forensic age estimation on its own. Age estimation based on telomere length in DNA from tooth samples may be useful as a complementary method which provides an approximate estimate of age, especially when human skeletal remains are the only forensic sample available.

  6. Repair of X-ray-induced single-strand breaks by a cell-free system

    International Nuclear Information System (INIS)

    Seki, Shuji; Ikeda, Shogo; Tsutui, Ken; Teraoka, Hirobumi

    1990-01-01

    Repair of X-ray-induced single-strand breaks of DNA was studied in vitro using an exonuclease purified from mouse ascites sarcoma (SR-C3H/He) cells. X-ray-dose-dependent unscheduled DNA synthesis was primed by the exonuclease. Repair of X-ray-induced single-strand breaks in pUC19 plasmid DNA was demonstrated by agarose gel electrophoresis after incubating the damaged DNA with the exonuclease, DNA polymerase (Klenow fragment of DNA polymerase I or DNA polymerase β purified from SR-C3H/He cells), four deoxynucleoside triphosphates, ATP and DNA ligase (T4 DNA ligase or DNA ligase I purified from calf thymus). The present results suggested that the exonuclease is involved in the initiation of repair of X-ray-induced single-strand breaks in removing 3' ends of X-ray-damaged DNA. (author)

  7. Site-specific DNA damage at the GGG sequence by UVA involves acceleration of telomere shortening.

    Science.gov (United States)

    Oikawa, S; Tada-Oikawa, S; Kawanishi, S

    2001-04-17

    Telomere shortening is associated with cellular senescence. We investigated whether UVA, which contributes to photoaging, accelerates telomere shortening in human cultured cells. The terminal restriction fragment (TRF) from WI-38 fibroblasts irradiated with UVA (365-nm light) decreased with increasing irradiation dose. Furthermore, UVA irradiation dose-dependently increased the formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) in both WI-38 fibroblasts and HL-60 cells. To clarify the mechanism of the acceleration of telomere shortening, we investigated site-specific DNA damage induced by UVA irradiation in the presence of endogenous photosensitizers using (32)P 5'-end-labeled DNA fragments containing the telomeric oligonucleotide (TTAGGG)(4). UVA irradiation with riboflavin induced 8-oxodG formation in the DNA fragments containing telomeric sequence, and Fpg protein treatment led to chain cleavages at the central guanine of 5'-GGG-3' in telomere sequence. The amount of 8-oxodG formation in DNA fragment containing telomere sequence [5'-CGC(TTAGGG)(7)CGC-3'] was approximately 5 times more than that in DNA fragment containing nontelomere sequence [5'-CGC(TGTGAG)(7)CGC-3']. Catalase did not inhibit this oxidative DNA damage, indicating no or little participation of H(2)O(2) in DNA damage. These results indicate that the photoexcited endogenous photosensitizer specifically oxidizes the central guanine of 5'-GGG-3' in telomere sequence to produce 8-oxodG probably through an electron-transfer reaction. It is concluded that the site-specific damage in telomere sequence induced by UVA irradiation may participate in the increase of telomere shortening rate.

  8. One-dimensional TRFLP-SSCP is an effective DNA fingerprinting strategy for soil Archaea that is able to simultaneously differentiate broad taxonomic clades based on terminal fragment length polymorphisms and closely related sequences based on single stranded conformation polymorphisms.

    Science.gov (United States)

    Swanson, Colby A; Sliwinski, Marek K

    2013-09-01

    DNA fingerprinting methods provide a means to rapidly compare microbial assemblages from environmental samples without the need to first cultivate species in the laboratory. The profiles generated by these techniques are able to identify statistically significant temporal and spatial patterns, correlations to environmental gradients, and biological variability to estimate the number of replicates for clone libraries or next generation sequencing (NGS) surveys. Here we describe an improved DNA fingerprinting technique that combines terminal restriction fragment length polymorphisms (TRFLP) and single stranded conformation polymorphisms (SSCP) so that both can be used to profile a sample simultaneously rather than requiring two sequential steps as in traditional two-dimensional (2-D) gel electrophoresis. For the purpose of profiling Archaeal 16S rRNA genes from soil, the dynamic range of this combined 1-D TRFLP-SSCP approach was superior to TRFLP and SSCP. 1-D TRFLP-SSCP was able to distinguish broad taxonomic clades with genetic distances greater than 10%, such as Euryarchaeota and the Thaumarchaeal clades g_Ca. Nitrososphaera (formerly 1.1b) and o_NRP-J (formerly 1.1c) better than SSCP. In addition, 1-D TRFLP-SSCP was able to simultaneously distinguish closely related clades within a genus such as s_SCA1145 and s_SCA1170 better than TRFLP. We also tested the utility of 1-D TRFLP-SSCP fingerprinting of environmental assemblages by comparing this method to the generation of a 16S rRNA clone library of soil Archaea from a restored Tallgrass prairie. This study shows 1-D TRFLP-SSCP fingerprinting provides a rapid and phylogenetically informative screen of Archaeal 16S rRNA genes in soil samples. © 2013.

  9. The DNA damage response at eroded telomeres and tethering to the nuclear pore complex

    DEFF Research Database (Denmark)

    Khadaroo, Basheer; Teixeira, M Teresa; Luciano, Pierre

    2009-01-01

    to induce the recruitment of checkpoint and recombination proteins. Notably, a DNA damage response at eroded telomeres starts many generations before senescence and is characterized by the recruitment of Cdc13 (cell division cycle 13), replication protein A, DNA damage checkpoint proteins and the DNA repair......The ends of linear eukaryotic chromosomes are protected by telomeres, which serve to ensure proper chromosome replication and to prevent spurious recombination at chromosome ends. In this study, we show by single cell analysis that in the absence of telomerase, a single short telomere is sufficient...

  10. Switch telomerase to ALT mechanism by inducing telomeric DNA damages and dysfunction of ATRX and DAXX.

    Science.gov (United States)

    Hu, Yang; Shi, Guang; Zhang, Laichen; Li, Feng; Jiang, Yuanling; Jiang, Shuai; Ma, Wenbin; Zhao, Yong; Songyang, Zhou; Huang, Junjiu

    2016-08-31

    Activation of telomerase or alternative lengthening of telomeres (ALT) is necessary for tumours to escape from dysfunctional telomere-mediated senescence. Anti-telomerase drugs might be effective in suppressing tumour growth in approximately 85-90% of telomerase-positive cancer cells. However, there are still chances for these cells to bypass drug treatment after switching to the ALT mechanism to maintain their telomere integrity. But the mechanism underlying this switch is unknown. In this study, we used telomerase-positive cancer cells (HTC75) to discover the mechanism of the telomerase-ALT switch by inducing telomere-specific DNA damage, alpha-thalassemia X-linked syndrome protein (ATRX) knockdown and deletion of death associated protein (DAXX). Surprisingly, two important ALT hallmarks in the ALT-like HTC75 cells were observed after treatments: ALT-associated promyelocytic leukaemia bodies (APBs) and extrachromosomal circular DNA of telomeric repeats. Moreover, knocking out hTERT by utilizing the CRISPR/Cas9 technique led to telomere elongation in a telomerase-independent manner in ALT-like HTC75 cells. In summary, this is the first report to show that inducing telomeric DNA damage, disrupting the ATRX/DAXX complex and inhibiting telomerase activity in telomerase-positive cancer cells lead to the ALT switch.

  11. Cooperation of DNA-PKcs and WRN helicase in the maintenance of telomeric D-loops

    DEFF Research Database (Denmark)

    Kusumoto-Matsuo, Rika; Opresko, Patricia L; Ramsden, Dale

    2010-01-01

    Werner syndrome is an inherited human progeriod syndrome caused by mutations in the gene encoding the Werner Syndrome protein, WRN. It has both 3'-5' DNA helicase and exonuclease activities, and is suggested to have roles in many aspects of DNA metabolism, including DNA repair and telomere...... D-loop model substrate. In addition, the length of telomeric G-tails decreases in DNA-PKcs knockdown cells, and this phenotype is reversed by overexpression of WRN helicase. These results suggest that WRN and DNA-PKcs may cooperatively prevent G-tail shortening in vivo....

  12. Mutagenesis of the Agrobacterium VirE2 single-stranded DNA-binding protein identifies regions required for self-association and interaction with VirE1 and a permissive site for hybrid protein construction.

    Science.gov (United States)

    Zhou, X R; Christie, P J

    1999-07-01

    The VirE2 single-stranded DNA-binding protein (SSB) of Agrobacterium tumefaciens is required for delivery of T-DNA to the nuclei of susceptible plant cells. By yeast two-hybrid and immunoprecipitation analyses, VirE2 was shown to self-associate and to interact with VirE1. VirE2 mutants with small deletions or insertions of a 31-residue oligopeptide (i31) at the N or C terminus or with an i31 peptide insertion at Leu236 retained the capacity to form homomultimers. By contrast, VirE2 mutants with modifications outside a central region located between residues 320 and 390 retained the capacity to interact with VirE1. These findings suggest the tertiary structure of VirE2 is important for homomultimer formation whereas a central domain mediates formation of a complex with VirE1. The capacity of VirE2 mutants to interact with full-length VirE2 in the yeast Saccharomyces cerevisiae correlated with the abundance of the mutant proteins in A. tumefaciens, suggesting that VirE2 is stabilized by homomultimerization in the bacterium. We further characterized the promoter and N- and C-terminal sequence requirements for synthesis of functional VirE2. A PvirB::virE2 construct yielded functional VirE2 protein as defined by complementation of a virE2 null mutation. By contrast, PvirE or Plac promoter constructs yielded functional VirE2 only if virE1 was coexpressed with virE2. Deletion of 10 or 9 residues from the N or C terminus of VirE2, respectively, or addition of heterologous peptides or proteins to either terminus resulted in a loss of protein function. However, an i31 peptide insertion at Tyr39 had no effect on protein function as defined by the capacity of the mutant protein to (i) interact with native VirE2, (ii) interact with VirE1, (iii) accumulate at abundant levels in A. tumefaciens, and (iv) restore wild-type virulence to a virE2 null mutant. We propose that Tyr39 of VirE2 corresponds to a permissive site for insertion of heterologous peptides or proteins of interest

  13. MERISTEM DISORGANIZATION1 encodes TEN1, an essential telomere protein that modulates telomerase processivity in Arabidopsis.

    Science.gov (United States)

    Leehy, Katherine A; Lee, Jung Ro; Song, Xiangyu; Renfrew, Kyle B; Shippen, Dorothy E

    2013-04-01

    Telomeres protect chromosome ends from being recognized as DNA damage, and they facilitate the complete replication of linear chromosomes. CST [for CTC1(Cdc13)/STN1/TEN1] is a trimeric chromosome end binding complex implicated in both aspects of telomere function. Here, we characterize TEN1 in the flowering plant Arabidopsis thaliana. We report that TEN1 (for telomeric pathways in association with Stn1, which stands for suppressor of cdc thirteen) is encoded by a previously characterized gene, MERISTEM DISORGANIZATION1 (MDO1). A point mutation in MDO1, mdo1-1/ten1-3 (G77E), triggers stem cell differentiation and death as well as a constitutive DNA damage response. We provide biochemical and genetic evidence that ten1-3 is likely to be a null mutation. As with ctc1 and stn1 null mutants, telomere tracts in ten1-3 are shorter and more heterogeneous than the wild type. Mutants also exhibit frequent telomere fusions, increased single-strand telomeric DNA, and telomeric circles. However, unlike stn1 or ctc1 mutants, telomerase enzyme activity is elevated in ten1-3 mutants due to an increase in repeat addition processivity. In addition, TEN1 is detected at a significantly smaller fraction of telomeres than CTC1. These data indicate that TEN1 is critical for telomere stability and also plays an unexpected role in modulating telomerase enzyme activity.

  14. Protection of Arabidopsis Blunt-Ended Telomeres Is Mediated by a Physical Association with the Ku Heterodimer.

    Science.gov (United States)

    Valuchova, Sona; Fulnecek, Jaroslav; Prokop, Zbynek; Stolt-Bergner, Peggy; Janouskova, Eliska; Hofr, Ctirad; Riha, Karel

    2017-06-01

    Telomeres form specialized chromatin that protects natural chromosome termini from being recognized as DNA double-strand breaks. Plants possess unusual blunt-ended telomeres that are unable to form t-loops or complex with single-strand DNA binding proteins, raising the question of the mechanism behind their protection. We have previously suggested that blunt-ended telomeres in Arabidopsis thaliana are protected by Ku, a DNA repair factor with a high affinity for DNA ends. In nonhomologous end joining, Ku loads onto broken DNA via a channel consisting of positively charged amino acids. Here, we demonstrate that while association of Ku with plant telomeres also depends on this channel, Ku's requirements for DNA binding differ between DNA repair and telomere protection. We show that a Ku complex proficient in DNA loading but impaired in translocation along DNA is able to protect blunt-ended telomeres but is deficient in DNA repair. This suggests that Ku physically sequesters blunt-ended telomeres within its DNA binding channel, shielding them from other DNA repair machineries. © 2017 American Society of Plant Biologists. All rights reserved.

  15. Characterization of two Arabidopsis thaliana myb-like proteins showing affinity to telomeric DNA sequence.

    Science.gov (United States)

    Schrumpfová, Petra; Kuchar, Milan; Miková, Gabriela; Skrísovská, Lenka; Kubicárová, Tatiana; Fajkus, Jirí

    2004-04-01

    Telomere-binding proteins participate in forming a functional nucleoprotein structure at chromosome ends. Using a genomic approach, two Arabidopsis thaliana genes coding for candidate Myb-like telomere binding proteins were cloned and expressed in E. coli. Both proteins, termed AtTBP2 (accession Nos. T46051 (protein database) and GI:638639 (nucleotide database); 295 amino acids, 32 kDa, pI 9.53) and AtTBP3 (BAB08466, GI:9757879; 299 amino acids, 33 kDa, pI 9.88), contain a single Myb-like DNA-binding domain at the N-terminus, and a histone H1/H5-like DNA-binding domain in the middle of the protein sequence. Both proteins are expressed in various A. thaliana tissues. Using the two-hybrid system interaction between the proteins AtTBP2 and AtTBP3 and self interactions of each of the proteins were detected. Gel-retardation assays revealed that each of the two proteins is able to bind the G-rich strand and double-stranded DNA of plant telomeric sequence with an affinity proportional to a number of telomeric repeats. Substrates bearing a non-telomeric DNA sequence positioned between two telomeric repeats were bound with an efficiency depending on the length of interrupting sequence. The ability to bind variant telomere sequences decreased with sequence divergence from the A. thaliana telomeric DNA. None of the proteins alone or their mixture affects telomerase activity in vitro. Correspondingly, no interaction was observed between any of two proteins and the Arabidopsis telomerase reverse transcriptase catalytic subunit TERT (accession No. AF172097) using two-hybrid assay.

  16. Telomeric Allelic Imbalance Indicates Defective DNA Repair and Sensitivity to DNA-Damaging Agents

    DEFF Research Database (Denmark)

    Birkbak, Nicolai J.; Wang, Zhigang C.; Kim, Ji-Young

    2012-01-01

    also benefit from these agents. NtAI, a genomic measure of unfaithfully repaired DNA, may identify cancer patients likely to benefit from treatments targeting defective DNA repair. Cancer Discov; 2(4); 366–75. ©2012 AACR. This article is highlighted in the In This Issue feature, p. 288......DNA repair competency is one determinant of sensitivity to certain chemotherapy drugs, such as cisplatin. Cancer cells with intact DNA repair can avoid the accumulation of genome damage during growth and also can repair platinum-induced DNA damage. We sought genomic signatures indicative...... of defective DNA repair in cell lines and tumors and correlated these signatures to platinum sensitivity. The number of subchromosomal regions with allelic imbalance extending to the telomere (NtAI) predicted cisplatin sensitivity in vitro and pathologic response to preoperative cisplatin treatment in patients...

  17. [Length and structure of telomeric DNA in three species of Baikal gastropods (Caenogastropoda: Hydrobioidea: Benedictiidae)].

    Science.gov (United States)

    Koroleva, A G; Evtushenko, E V; Maximova, N V; Vershinin, A V; Sintnikova, T Y; Kirilchik, S V

    2015-03-01

    The structure of telomeric repeat (TTAGGG)n was determined and the length of telomeric DNA (tDNA) was measured in three species of gastropods from the family Benedictiidae that are endemic to Lake Baikal. Fluorescence in situ hybridization (FISH) confirmed the localization of a telomeric repeat at the chromosome ends. The sizes of tDNA in "giant" eurybathic, psammo-pelobiontic species Benedictia fragilis and shallow water litho-psammobiontic species B. baicalensis with medium shell sizes were similar (16 ± 2.9 and 15 ± 2.1 kb, respectively), but they had a greater length than that of the shallow water spongio-litobiontic species Kobeltocochlea martensiana with small shells (10.5 ± 1.5 kb). We discuss tendencies in age-related changes in tDNA length in snails and a possible mechanism for maintaining tDNA size in ontogeny.

  18. BRCA1 in the DNA damage response and at telomeres

    Directory of Open Access Journals (Sweden)

    Eliot Michael Rosen

    2013-06-01

    Full Text Available Abstract. Mutations of the breast and ovarian cancer susceptibility gene 1 (BRCA1 account for about 40-45% of hereditary breast cancer cases. Moreover, a significant fraction of sporadic (non-hereditary breast and ovarian cancers exhibit reduced or absent expression of the BRCA1 protein, suggesting an additional role for BRCA1 in sporadic cancers. BRCA1 follows the classic pattern of a highly penetrant Knudsen-type tumor suppressor gene in which one allele is inactivated through a germ-line mutation and the other is mutated or deleted within the tumor. BRCA1 is a multi-functional protein but it is not fully understood which function(s is (are most important for tumor suppression, nor is it clear why BRCA1 mutations confer a high risk for breast and ovarian cancers and not a broad spectrum of tumor types. Here, we will review BRCA1 functions in the DNA damage response (DDR, which are likely to contribute to tumor suppression. In the process, we will highlight some of the controversies and unresolved issues in the field. We will also describe a recently identified and under-investigated role for BRCA1 in the regulation of telomeres and the implications of this role in the DDR and cancer suppression.

  19. Repair of ultraviolet light damage in Saccharomyces cerevisiae as studied with double- and single-stranded incoming DNAs

    International Nuclear Information System (INIS)

    Keszenman-Pereyra, D.; Hieda, K.

    1992-01-01

    Purified double- and single-stranded DNAs of the autonomously replicating vector M13RK9-T were irradiated with ultraviolet light (UV) in vitro and introduced into competent whole cells of Saccharomyces cerevisiae. Incoming double-stranded DNA was more sensitive to UV in excision repair-deficient rad2-1 cells than in proficient repair RAD + cells, while single-stranded DNA exhibited high sensitivity in both host cells. The results indicate that in yeast there is no effective rescue of UV-incoming single-stranded DNA by excision repair or other constitutive dark repair processes

  20. NEIL3 Repairs Telomere Damage during S Phase to Secure Chromosome Segregation at Mitosis

    Directory of Open Access Journals (Sweden)

    Jia Zhou

    2017-08-01

    Full Text Available Oxidative damage to telomere DNA compromises telomere integrity. We recently reported that the DNA glycosylase NEIL3 preferentially repairs oxidative lesions in telomere sequences in vitro. Here, we show that loss of NEIL3 causes anaphase DNA bridging because of telomere dysfunction. NEIL3 expression increases during S phase and reaches maximal levels in late S/G2. NEIL3 co-localizes with TRF2 and associates with telomeres during S phase, and this association increases upon oxidative stress. Mechanistic studies reveal that NEIL3 binds to single-stranded DNA via its intrinsically disordered C terminus in a telomere-sequence-independent manner. Moreover, NEIL3 is recruited to telomeres through its interaction with TRF1, and this interaction enhances the enzymatic activity of purified NEIL3. Finally, we show that NEIL3 interacts with AP Endonuclease 1 (APE1 and the long-patch base excision repair proteins PCNA and FEN1. Taken together, we propose that NEIL3 protects genome stability through targeted repair of oxidative damage in telomeres during S/G2 phase.

  1. Convergence of The Nobel Fields of Telomere Biology and DNA Repair.

    Science.gov (United States)

    Fouquerel, Elise; Opresko, Patricia L

    2017-01-01

    The fields of telomere biology and DNA repair have enjoyed a great deal of cross-fertilization and convergence in recent years. Telomeres function at chromosome ends to prevent them from being falsely recognized as chromosome breaks by the DNA damage response and repair machineries. Conversely, both canonical and nonconical functions of numerous DNA repair proteins have been found to be critical for preserving telomere structure and function. In 2009, Elizabeth Blackburn, Carol Greider and Jack Szostak were awarded the Nobel prize in Physiology or Medicine for the discovery of telomeres and telomerase. Four years later, pioneers in the field of DNA repair, Aziz Sancar, Tomas Lindahl and Paul Modrich were recognized for their seminal contributions by being awarded the Nobel Prize in Chemistry. This review is part of a special issue meant to celebrate this amazing achievement, and will focus in particular on the convergence of nucleotide excision repair and telomere biology, and will discuss the profound implications for human health. © 2016 The American Society of Photobiology.

  2. Cytogenetic Analysis of Populus trichocarpa - Ribosomal DNA, Telomere Repeat Sequence, and Marker-selected BACs

    Science.gov (United States)

    M.N. lslam-Faridi; C.D. Nelson; S.P. DiFazio; L.E. Gunter; G.A. Tuskan

    2009-01-01

    The 185-285 rDNA and 55 rDNA loci in Populus trichocarpa were localized using fluorescent in situ hybridization (FISH). Two 185-285 rDNA sites and one 55 rDNA site were identified and located at the ends of 3 different chromosomes. FISH signals from the Arabidopsis-type telomere repeat sequence were observed at the distal ends of each chromosome. Six BAC clones...

  3. A colorimetric platform for sensitively differentiating telomere DNA with different lengths, monitoring G-quadruplex and dsDNA based on silver nanoclusters and unmodified gold nanoparticles

    Science.gov (United States)

    Qu, Fei; Chen, Zeqiu; You, Jinmao; Song, Cuihua

    2018-05-01

    Human telomere DNA plays a vital role in genome integrity control and carcinogenesis as an indication for extensive cell proliferation. Herein, silver nanoclusters (Ag NCs) templated by polymer and unmodified gold nanoparticles (Au NPs) are designed as a new colorimetric platform for sensitively differentiating telomere DNA with different lengths, monitoring G-quadruplex and dsDNA. Ag NCs can produce the aggregation of Au NPs, so the color of Au NPs changes to blue and the absorption peak moves to 700 nm. While the telomere DNA can protect Au NPs from aggregation, the color turns to red again and the absorption band blue shift. Benefiting from the obvious color change, we can differentiate the length of telomere DNA by naked eyes. As the length of telomere DNA is longer, the variation of color becomes more noticeable. The detection limits of telomere DNA containing 10, 22, 40, 64 bases are estimated to be 1.41, 1.21, 0.23 and 0.22 nM, respectively. On the other hand, when telomere DNA forms G-quadruplex in the presence of K+, or dsDNA with complementary sequence, both G-quadruplex and dsDNA can protect Au NPs better than the unfolded telomere DNA. Hence, a new colorimetric platform for monitoring structure conversion of DNA is established by Ag NCs-Au NPs system, and to prove this type of application, a selective K+ sensor is developed.

  4. Evolution of Arabidopsis protection of telomeres 1 alters nucleic acid recognition and telomerase regulation.

    Science.gov (United States)

    Arora, Amit; Beilstein, Mark A; Shippen, Dorothy E

    2016-11-16

    Protection of telomeres (POT1) binds chromosome ends, recognizing single-strand telomeric DNA via two oligonucleotide/oligosaccharide binding folds (OB-folds). The Arabidopsis thaliana POT1a and POT1b paralogs are atypical: they do not exhibit telomeric DNA binding, and they have opposing roles in regulating telomerase activity. AtPOT1a stimulates repeat addition processivity of the canonical telomerase enzyme, while AtPOT1b interacts with a regulatory lncRNA that represses telomerase activity. Here, we show that OB1 of POT1a, but not POT1b, has an intrinsic affinity for telomeric DNA. DNA binding was dependent upon a highly conserved Phe residue (F65) that in human POT1 directly contacts telomeric DNA. F65A mutation of POT1a OB1 abolished DNA binding and diminished telomerase repeat addition processivity. Conversely, AtPOT1b and other POT1b homologs from Brassicaceae and its sister family, Cleomaceae, naturally bear a non-aromatic amino acid at this position. By swapping Val (V63) with Phe, AtPOT1b OB1 gained the capacity to bind telomeric DNA and to stimulate telomerase repeat addition processivity. We conclude that, in the context of DNA binding, variation at a single amino acid position promotes divergence of the AtPOT1b paralog from the ancestral POT1 protein. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  5. Rif1: a conserved regulator of DNA replication and repair hijacked by telomeres in yeasts

    Directory of Open Access Journals (Sweden)

    Stefano eMattarocci

    2016-03-01

    Full Text Available Rif1 was originally identified in the budding yeast S. cerevisiae as a telomere-binding protein that negatively regulates telomerase-mediated telomere elongation. Although this function is conserved in the distantly related fission yeast S. pombe, recent studies, both in yeasts and in metazoans, reveal that Rif1 also functions more globally, both in the temporal control of DNA replication and in DNA repair. Rif1 proteins are large and characterized by N-terminal HEAT repeats, predicted to form an elongated alpha-helical structure. In addition, all Rif1 homologues contain two short motifs, abbreviated RVxF/SILK, that are implicated in recruitment of the PP1 (yeast Glc7 phosphatase. In yeasts the RVxF/SILK domains have been shown to play a role in control of DNA replication initiation, at least in part through targeted de-phosphorylation of proteins in the pre-Replication Complex. In human cells Rif1 is recruited to DNA double-strand breaks through an interaction with 53BP1 where it counteracts DNA resection, thus promoting repair by non-homologous end-joining. This function requires the N-terminal HEAT repeat-containing domain. Interestingly, this domain is also implicated in DNA end protection at un-capped telomeres in yeast. We conclude by discussing the deployment of Rif1 at telomeres in yeasts from both an evolutionary perspective and in light of its recently discovered global functions.

  6. Chromosomal localization of ribosomal and telomeric DNA provides new insights on the evolution of gomphocerinae grasshoppers.

    Science.gov (United States)

    Jetybayev, I E; Bugrov, A G; Karamysheva, T V; Camacho, J P M; Rubtsov, N B

    2012-01-01

    Chromosome location of ribosomal DNA (rDNA) and telomeric repeats was analysed in mitotic chromosomes of 15 species of Gomphocerinae grasshoppers belonging to the tribes Arcypterini, Gomphocerini, Stenobothrini, and Chrysochraontini. Two types of rDNA distribution were found in the Gomphocerini tribe. Type 1, found in 9 species, was characterized by the presence of rDNA in the short arm of the long biarmed chromosomes 2 and 3 and, in some species, also in the X chromosome. Type 2 was found only in Aeropus sibiricus and Stauroderus scalaris and consisted in the presence of pericentromeric rDNA blocks in all chromosomes. A comparison of rDNA distribution in Gomphocerini species with 2n ♂ = 23, 2n ♂ = 21, and 2n ♂ = 17 suggested the possible involvement of chromosome 6 in the ancestral karyotype (2n ♂ = 23) in 1 of the 3 centric fusions that decreased the chromosome number in these species. In the tribe Stenobothrini, Stenobothrus eurasius carried a single rDNA cluster in the X chromosome, likewise 2 Spanish species previously analysed, but Omocestus viridulus unusually showed a single rDNA cluster in the longest autosome. Telomeric repeats were located primarily on the ends of chromosome arms. In 2 species, however, we observed the presence of interstitial clusters outside telomeric regions. The first one, Aeropus sibiricus, exhibited a polymorphic interstitial site of telomeric repeats in chromosome 6 as a consequence of a paracentric inversion. Most remarkably, Chorthippus jacobsoni showed the presence of telomeric repeats in the pericentric regions of the 3 biarmed chromosome pairs originated by centric fusion, thus suggesting that these rearrangements were not of the Robertsonian type but true centric fusion with a probable generation of dicentric chromosomes. Copyright © 2012 S. Karger AG, Basel.

  7. Autonomous replication of foreign DNA in Histoplasma capsulatum: role of native telomeric sequences.

    OpenAIRE

    Woods, J P; Goldman, W E

    1993-01-01

    Genetic transformation of the dimorphic pathogenic fungus Histoplasma capsulatum can result in chromosomal integration of the transforming DNA or the generation of multicopy linear plasmids carrying the transforming DNA. We showed previously that Escherichia coli plasmids do not replicate autonomously in H. capsulatum without significant modifications, one of which is the in vivo addition of Histoplasma telomeres at the termini of linear DNA. To address the requirements for autonomous replica...

  8. Alternative mechanisms of telomere lengthening: Permissive mutations, DNA repair proteins and tumorigenic progression

    Energy Technology Data Exchange (ETDEWEB)

    Gocha, April Renee Sandy; Harris, Julia [Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University College of Medicine, Columbus, OH 43210 (United States); Groden, Joanna, E-mail: joanna.groden@osumc.edu [Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University College of Medicine, Columbus, OH 43210 (United States)

    2013-03-15

    Highlights: ► Neoplastic cells maintain telomeres by telomerase or ALT. ► Genetic mutations in p53, ATRX, DAXX or H3F3A may activate ALT. ► Many DNA repair proteins are involved in ALT. ► Tumor progression is favored by telomerase expression. - Abstract: Telomeres protect chromosome termini to maintain genomic stability and regulate cellular lifespan. Maintenance of telomere length is required for neoplastic cells after the acquisition of mutations that deregulate cell cycle control and increase cellular proliferation, and can occur through expression of the enzyme telomerase or in a telomerase-independent manner termed alternative lengthening of telomeres (ALT). The precise mechanisms that govern the activation of ALT or telomerase in tumor cells are unknown, although cellular origin may favor one or the other mechanisms. ALT pathways are incompletely understood to date; however, recent publications have increasingly broadened our understanding of how ALT is activated, how it proceeds, and how it influences tumor growth. Specific mutational events influence ALT activation, as mutations in genes that suppress recombination and/or alterations in the regulation of telomerase expression are associated with ALT. Once engaged, ALT uses DNA repair proteins to maintain telomeres in the absence of telomerase; experiments that manipulate the expression of specific proteins in cells using ALT are illuminating some of its mechanisms. Furthermore, ALT may influence tumor growth, as experimental and clinical data suggest that telomerase expression may favor tumor progression. This review summarizes recent findings in mammalian cells and models, as well as clinical data, that identify the genetic mutations permissive to ALT, the DNA repair proteins involved in ALT mechanisms and the importance of telomere maintenance mechanisms for tumor progression. A comprehensive understanding of the mechanisms that permit tumor cell immortalization will be important for identifying

  9. The binding efficiency of RPA to telomeric G-strands folded into contiguous G-quadruplexes is independent of the number of G4 units.

    Science.gov (United States)

    Lancrey, Astrid; Safa, Layal; Chatain, Jean; Delagoutte, Emmanuelle; Riou, Jean-François; Alberti, Patrizia; Saintomé, Carole

    2018-03-01

    Replication protein A (RPA) is a single-stranded DNA binding protein involved in replication and in telomere maintenance. During telomere replication, G-quadruplexes (G4) can accumulate on the lagging strand template and need to be resolved. It has been shown that human RPA is able to unfold a single G4. Nevertheless, the G-strand of human telomeres is prone to fold into higher-order structures formed by contiguous G-quadruplexes. To understand how RPA deals with these structures, we studied its interaction with telomeric G-strands folding into an increasing number of contiguous G4s. The aim of this study was to determine whether the efficiency of binding/unfolding of hRPA to telomeric G-strands depends on the number of G4 units. Our data show that the number n of contiguous G4 units (n ≥ 2) does not affect the efficiency of hRPA to coat transiently exposed single-stranded telomeric G-strands. This feature may be essential in preventing instability due to G4 structures during telomere replication. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  10. Inhibition of telomere recombination by inactivation of KEOPS subunit Cgi121 promotes cell longevity.

    Directory of Open Access Journals (Sweden)

    Jing Peng

    2015-03-01

    Full Text Available DNA double strand break (DSB is one of the major damages that cause genome instability and cellular aging. The homologous recombination (HR-mediated repair of DSBs plays an essential role in assurance of genome stability and cell longevity. Telomeres resemble DSBs and are competent for HR. Here we show that in budding yeast Saccharomyces cerevisiae telomere recombination elicits genome instability and accelerates cellular aging. Inactivation of KEOPS subunit Cgi121 specifically inhibits telomere recombination, and significantly extends cell longevity in both telomerase-positive and pre-senescing telomerase-negative cells. Deletion of CGI121 in the short-lived yku80(tel mutant restores lifespan to cgi121Δ level, supporting the function of Cgi121 in telomeric single-stranded DNA generation and thus in promotion of telomere recombination. Strikingly, inhibition of telomere recombination is able to further slow down the aging process in long-lived fob1Δ cells, in which rDNA recombination is restrained. Our study indicates that HR activity at telomeres interferes with telomerase to pose a negative impact on cellular longevity.

  11. Lack of association of colonic epithelium telomere length and oxidative DNA damage in Type 2 diabetes under good metabolic control

    Directory of Open Access Journals (Sweden)

    Kennedy Hugh

    2008-10-01

    Full Text Available Abstract Background Telomeres are DNA repeat sequences necessary for DNA replication which shorten at cell division at a rate directly related to levels of oxidative stress. Critical telomere shortening predisposes to cell senescence and to epithelial malignancies. Type 2 diabetes is characterised by increased oxidative DNA damage, telomere attrition, and an increased risk of colonic malignancy. We hypothesised that the colonic mucosa in Type 2 diabetes would be characterised by increased DNA damage and telomere shortening. Methods We examined telomere length (by flow fluorescent in situ hybridization and oxidative DNA damage (flow cytometry of 8 – oxoguanosine in the colonic mucosal cells of subjects with type 2 diabetes (n = 10; mean age 62.2 years, mean HbA1c 6.9% and 22 matched control subjects. No colonic pathology was apparent in these subjects at routine gastrointestinal investigations. Results Mean colonic epithelial telomere length in the diabetes group was not significantly different from controls (10.6 [3.6] vs. 12.1 [3.4] Molecular Equivalent of Soluble Fluorochrome Units [MESF]; P = 0.5. Levels of oxidative DNA damage were similar in both T2DM and control groups (2.6 [0.6] vs. 2.5 [0.6] Mean Fluorescent Intensity [MFI]; P = 0.7. There was no significant relationship between oxidative DNA damage and telomere length in either group (both p > 0.1. Conclusion Colonic epithelium in Type 2 diabetes does not differ significantly from control colonic epithelium in oxidative DNA damage or telomere length. There is no evidence in this study for increased oxidative DNA damage or significant telomere attrition in colonic mucosa as a carcinogenic mechanism.

  12. DNA degradation, UV sensitivity and SOS-mediated mutagenesis in strains of Escherichia coli deficient in single-strand DNA binding protein: Effects of mutations and treatments that alter levels of exonuclease V or RecA protein

    International Nuclear Information System (INIS)

    Lieberman, H.B.; Witkin, E.M.

    1983-01-01

    Certain strains suppress the temperature-sensitivity caused by ssb-1, which encodes a mutant ssDNA binding protein (SSB). At 42 0 C, such strains are extremely UV-sensitive, degrade their DNA extensively after UV irradiation, and are defficient in UV mutability and UV induction of recA protein synthesis. We transduced recC22, which eliminates Exonuclease V activity, and recAo281, which causes operator-constitutive synthesis of recA protein, into such an ssb-1 strain. Both double mutants degraded their DNA extensively at 42 0 C after UV irradiation, and both were even more UV-sensitive than the ssb-1 single mutant. We conclude that one or more nucleases other than Exonuclease V degrades DNA in the ssb recC strain, and that recA protein, even if synthesized copiously, can function efficiently in recombinational DNA repair and in control of post-UV DNA degradation only if normal SSB is also present. Pretreatment with nalidixic acid at 30 0 C restored normal UV mutability at 42 0 C, but did not increase UV resistance, in an ssb-1 strain. Another ssb allele, ssb-113, which blocks SOS induction at 30 0 C, increases spontaneous mutability more than tenfold. The ssb-113 allele was transduced into the SOS-constitutive recA730 strain SC30. This double mutant expressed the same elevated spontaneous and UV-induced mutability at 30 0 C as the ssb + recA730 strain, and was three times more UV-resistant than its ssb-113 recA + parent. We conclude that ssb-1 at 42 0 C and ssb-113 at 30 0 C block UV-induced activation of recA protease, but that neither allele interferes with subsequent steps in SOS-mediated mutagenesis. (orig.)

  13. Molecular mechanism of DNA recognition by the alpha subunit of the Oxytricha telomere binding protein.

    Science.gov (United States)

    Laporte, L; Benevides, J M; Thomas, G J

    1999-01-12

    Interactions between telomeric DNA and the alpha subunit of the heterodimeric telomere binding protein of Oxytricha nova have been probed by Raman spectroscopy, CD spectroscopy, and nondenaturing gel electrophoresis. Telomeric sequences investigated include the Oxytricha 3' overhang, d(T4G4)2, and the related sequence dT6(T4G4)2, which incorporates a 5'-thymidylate leader. Corresponding nontelomeric isomers, d(TG)8 and dT6(TG)8, have also been investigated. Both d(T4G4)2 and dT6(T4G4)2 form stable hairpins that contain Hoogsteen G.G base pairs [Laporte, L., and Thomas, G. J., Jr. (1998) J. Mol. Biol. 281, 261-270]. The alpha subunit binds specifically and stoichiometrically to the dT6(T4G4)2 hairpin and alters its secondary structure by inducing conformational changes in the 5'-thymidylate leader without extensive disruption of G.G base pairing. Conversely, binding of the alpha subunit to d(T4G4)2 eliminates G.G pairing and unfolds the hairpin. DNA unfolding is accompanied by conformational changes affecting both the backbone and dG residues, as evidenced by Raman and CD spectra. Interestingly, the alpha subunit also forms complexes with the nontelomeric isomers, d(TG)8 and dT6(TG)8, evidenced by altered electrophoretic mobility in nondenaturing gels; however, Raman and CD spectra of complexes of the alpha subunit with nontelomeric DNA suggest no significant changes in backbone or deoxynucleoside conformations. Similarly, the alpha subunit binds to but does not appreciably alter the secondary structure of duplex DNA. The present results show that while the alpha subunit has the capacity to bind to Watson-Crick and different non-Watson-Crick motifs, DNA refolding is specific to the Oxytricha telomeric hairpin and the retention of G.G pairing is specific to the telomeric sequence incorporating the 5' leading sequence. A model is proposed for alpha subunit binding to telomeric DNA, and the physiological role of the alpha subunit in telomere organization is discussed.

  14. Cytogenetic study on antlions (Neuroptera, Myrmeleontidae: first data on telomere structure and rDNA location

    Directory of Open Access Journals (Sweden)

    Valentina G. Kuznetsova

    2016-11-01

    Full Text Available Myrmeleontidae, commonly known as “antlions”, are the most diverse family of the insect order Neuroptera, with over 1700 described species (in 191 genera of which 37 species (in 21 genera have so far been studied in respect to standard karyotypes. In the present paper we provide first data on the occurrence of the “insect-type” telomeric repeat (TTAGGn and location of 18S rDNA clusters in the antlion karyotypes studied using fluorescence in situ hybridization (FISH. We show that males of Palpares libelluloides (Linnaeus, 1764 (Palparinae, Acanthaclisis occitanica (Villers, 1789 (Acanthaclisinae and Distoleon tetragrammicus (Fabricius, 1798 (Nemoleontinae have rDNA clusters on a large bivalent, two last species having an additional rDNA cluster on one of the sex chromosomes, most probably the X. (TTAGGn - containing telomeres are clearly characteristic of P. libelluloides and A. occitanica; the presence of this telomeric motif in D. tetragrammicus is questionable. In addition, we detected the presence of the (TTAGGn telomeric repeat in Libelloides macaronius (Scopoli, 1763 from the family Ascalaphidae (owlflies, a sister group to the Myrmeleontidae. We presume that the “insect” motif (TTAGGn was present in a common ancestor of the families Ascalaphidae and Myrmeleontidae within the neuropteran suborder Myrmeleontiformia.

  15. Cytogenetic study on antlions (Neuroptera, Myrmeleontidae): first data on telomere structure and rDNA location.

    Science.gov (United States)

    Kuznetsova, Valentina G; Khabiev, Gadzhimurad N; Anokhin, Boris A

    2016-01-01

    Myrmeleontidae, commonly known as "antlions", are the most diverse family of the insect order Neuroptera, with over 1700 described species (in 191 genera) of which 37 species (in 21 genera) have so far been studied in respect to standard karyotypes. In the present paper we provide first data on the occurrence of the "insect-type" telomeric repeat (TTAGG) n and location of 18S rDNA clusters in the antlion karyotypes studied using fluorescence in situ hybridization (FISH). We show that males of Palpares libelluloides (Linnaeus, 1764) (Palparinae), Acanthaclisis occitanica (Villers, 1789) (Acanthaclisinae) and Distoleon tetragrammicus (Fabricius, 1798) (Nemoleontinae) have rDNA clusters on a large bivalent, two last species having an additional rDNA cluster on one of the sex chromosomes, most probably the X. (TTAGG) n - containing telomeres are clearly characteristic of Palpares libelluloides and Acanthaclisis occitanica ; the presence of this telomeric motif in Distoleon tetragrammicus is questionable. In addition, we detected the presence of the (TTAGG) n telomeric repeat in Libelloides macaronius (Scopoli, 1763) from the family Ascalaphidae (owlflies), a sister group to the Myrmeleontidae. We presume that the "insect" motif (TTAGG) n was present in a common ancestor of the families Ascalaphidae and Myrmeleontidae within the neuropteran suborder Myrmeleontiformia.

  16. Repair of single-strand breaks in normal and trisomic lymphocytes

    International Nuclear Information System (INIS)

    Leonard, J.C.; Merz, T.

    1982-01-01

    Recently, Athanasiou and colleagues (1981) reported a deficiency in the capacity of lymphocytes from persons with Down's syndrome to repair single-strand DNA breaks. They found that 1 h after exposure to 160 Gray, repair processes had restored the sedimentation profile of DNA from normal lymphocytes to control values, whereas the relative average molecular weight of DNA from irradiated lymphocytes from persons with Down's syndrome showed no increase during the repair interval. They have suggested that their data, in conjunction with the earlier data concerning the frequencies of induced chromosomal aberrations in lymphocytes from persons with Down's syndrome, reflect a decreased efficiency in some aspect of DNA repair in trisomic cells. However, for further studies of this hypothesis, it is more appropriate to study the rejoining of DNA single-strand breaks after doses comparable to those used in tests for chromosomal aberrations. (orig.)

  17. Mitosis, double strand break repair, and telomeres: a view from the end: how telomeres and the DNA damage response cooperate during mitosis to maintain genome stability.

    Science.gov (United States)

    Cesare, Anthony J

    2014-11-01

    Double strand break (DSB) repair is suppressed during mitosis because RNF8 and downstream DNA damage response (DDR) factors, including 53BP1, do not localize to mitotic chromatin. Discovery of the mitotic kinase-dependent mechanism that inhibits DSB repair during cell division was recently reported. It was shown that restoring mitotic DSB repair was detrimental, resulting in repair dependent genome instability and covalent telomere fusions. The telomere DDR that occurs naturally during cellular aging and in cancer is known to be refractory to G2/M checkpoint activation. Such DDR-positive telomeres, and those that occur as part of the telomere-dependent prolonged mitotic arrest checkpoint, normally pass through mitosis without covalent ligation, but result in cell growth arrest in G1 phase. The discovery that suppressing DSB repair during mitosis may function primarily to protect DDR-positive telomeres from fusing during cell division reinforces the unique cooperation between telomeres and the DDR to mediate tumor suppression. © 2014 The Author. Bioessays published by WILEY Periodicals, Inc.

  18. Chalcone-imidazolone conjugates induce apoptosis through DNA damage pathway by affecting telomeres

    Directory of Open Access Journals (Sweden)

    Kamal Ahmed

    2011-04-01

    Full Text Available Abstract Background Breast cancer is one of the most prevalent cancers in the world and more than one million women are diagnosed leading to 410,000 deaths every year. In our previous studies new chalcone-imidazolone conjugates were prepared and evaluated for their anticancer activity in a panel of 53 human tumor cell lines and the lead compounds identified were 6 and 8. This prompted us to investigate the mechanism of apoptotic event. Results Involvement of pro-apoptotic protein (Bax, active caspase-9 and cleavage of retinoblastoma protein was studied. Interestingly, the compounds caused upregulation of p21, check point proteins (Chk1, Chk2 and as well as their phosphorylated forms which are known to regulate the DNA damage pathway. Increased p53BP1 foci by immunolocalisation studies and TRF1 suggested the possible involvement of telomere and associated proteins in the apoptotic event. The telomeric protein such as TRF2 which is an important target for anticancer therapy against human breast cancer was extensively studied along with proteins involved in proper functioning of telomeres. Conclusions The apoptotic proteins such as Bax, active caspase-9 and cleaved RB are up-regulated in the compound treated cells revealing the apoptotic nature of the compounds. Down regulation of TRF2 and upregulation of the TRF1 as well as telomerase assay indicated the decrease in telomeric length revealing telomeric dysfunction and thereby controlling the rapid rate of cell proliferation. In summary, chalcone-imidazolone conjugates displayed significant DNA damage activity particularly at telomeres and caused both apoptosis and senescence-like growth arrest which suggested that these compounds have potential activity against breast carcinoma.

  19. Interaction of hnRNP A1 with telomere DNA G-quadruplex structures studied at the single molecule level

    DEFF Research Database (Denmark)

    Krüger, Asger Christian; Raarup, Merete Krog; Nielsen, Morten Muhlig

    2010-01-01

    G-rich telomeric DNA sequences can form G-quadruplex structures. The heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) and a shortened derivative (UP1) are active in telomere length regulation, and it has been reported that UP1 can unwind G-quadruplex structures. Here, we investigate...... the interaction of hnRNP A1 with G-quadruplex DNA structures containing the human telomere repeat (TTAGGG) by gel retardation assays, ensemble fluorescence energy transfer (FRET) spectroscopy, and single molecule FRET microscopy. Our biochemical experiments show that hnRNP A1 binds well to the G...... to the previously reported crystal structures of UP1-telomere DNA complexes where the DNA oligo within the protein-DNA complex is in a fully open conformation....

  20. Crystal structure of four-stranded Oxytricha telomeric DNA

    Science.gov (United States)

    Kang, C.; Zhang, X.; Ratliff, R.; Moyzis, R.; Rich, A.

    1992-01-01

    The sequence d(GGGGTTTTGGGG) from the 3' overhang of the Oxytricha telomere has been crystallized and its three-dimensional structure solved to 2.5 A resolution. The oligonucleotide forms hairpins, two of which join to make a four-stranded helical structure with the loops containing four thymine residues at either end. The guanine residues are held together by cyclic hydrogen bonding and an ion is located in the centre. The four guanine residues in each segment have a glycosyl conformation that alternates between anti and syn. There are two four-stranded molecules in the asymmetric unit showing that the structure has some intrinsic flexibility.

  1. Irreparable telomeric DNA damage and persistent DDR signalling as a shared causative mechanism of cellular senescence and ageing.

    Science.gov (United States)

    Rossiello, Francesca; Herbig, Utz; Longhese, Maria Pia; Fumagalli, Marzia; d'Adda di Fagagna, Fabrizio

    2014-06-01

    The DNA damage response (DDR) orchestrates DNA repair and halts cell cycle. If damage is not resolved, cells can enter into an irreversible state of proliferative arrest called cellular senescence. Organismal ageing in mammals is associated with accumulation of markers of cellular senescence and DDR persistence at telomeres. Since the vast majority of the cells in mammals are non-proliferating, how do they age? Are telomeres involved? Also oncogene activation causes cellular senescence due to altered DNA replication and DDR activation in particular at the telomeres. Is there a common mechanism shared among apparently distinct types of cellular senescence? And what is the role of telomeric DNA damage? Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. In vivo recombineering of bacteriophage λ by PCR fragments and single-strand oligonucleotides

    International Nuclear Information System (INIS)

    Oppenheim, Amos B.; Rattray, Alison J.; Bubunenko, Mikhail; Thomason, Lynn C.; Court, Donald L.

    2004-01-01

    We demonstrate that the bacteriophage λ Red functions efficiently recombine linear DNA or single-strand oligonucleotides (ss-oligos) into bacteriophage λ to create specific changes in the viral genome. Point mutations, deletions, and gene replacements have been created. While recombineering with oligonucleotides, we encountered other mutations accompanying the desired point mutational change. DNA sequence analysis suggests that these unwanted mutations are mainly frameshift deletions introduced during oligonucleotide synthesis

  3. Stabilization of Telomere G-Quadruplexes Interferes with Human Herpesvirus 6A Chromosomal Integration.

    Science.gov (United States)

    Gilbert-Girard, Shella; Gravel, Annie; Artusi, Sara; Richter, Sara N; Wallaschek, Nina; Kaufer, Benedikt B; Flamand, Louis

    2017-07-15

    Human herpesviruses 6A and 6B (HHV-6A/B) can integrate their genomes into the telomeres of human chromosomes using a mechanism that remains poorly understood. To achieve a better understanding of the HHV-6A/B integration mechanism, we made use of BRACO-19, a compound that stabilizes G-quadruplex secondary structures and prevents telomere elongation by the telomerase complex. First, we analyzed the folding of telomeric sequences into G-quadruplex structures and their binding to BRACO-19 using G-quadruplex-specific antibodies and surface plasmon resonance. Circular dichroism studies indicate that BRACO-19 modifies the conformation and greatly stabilizes the G-quadruplexes formed in G-rich telomeric DNA. Subsequently we assessed the effects of BRACO-19 on the HHV-6A initial phase of infection. Our results indicate that BRACO-19 does not affect entry of HHV-6A DNA into cells. We next investigated if stabilization of G-quadruplexes by BRACO-19 affected HHV-6A's ability to integrate its genome into host chromosomes. Incubation of telomerase-expressing cells with BRACO-19, such as HeLa and MCF-7, caused a significant reduction in the HHV-6A integration frequency ( P integration frequency in U2OS cells that lack telomerase activity and elongate their telomeres through alternative lengthening mechanisms. Our data suggest that the fluidity of telomeres is important for efficient chromosomal integration of HHV-6A and that interference with telomerase activity negatively affects the generation of cellular clones containing integrated HHV-6A. IMPORTANCE HHV-6A/B can integrate their genomes into the telomeres of infected cells. Telomeres consist of repeated hexanucleotides (TTAGGG) of various lengths (up to several kilobases) and end with a single-stranded 3' extension. To avoid recognition and induce a DNA damage response, the single-stranded overhang folds back on itself and forms a telomeric loop (T-loop) or adopts a tertiary structure, referred to as a G-quadruplex. In the

  4. Telomeres and human health

    DEFF Research Database (Denmark)

    Bojesen, S E

    2013-01-01

    Telomeres are the tips of chromosomes and consist of proteins and hexanucleotide tandem repeats of DNA. The DNA repeats are shortened at each mitotic division of normal cells, and the telomere length chronicles how many divisions the cell has undergone. Thus, telomere length is a marker of fundam...

  5. Effect of G-quadruplex polymorphism on the recognition of telomeric DNA by a metal complex.

    Directory of Open Access Journals (Sweden)

    Caterina Musetti

    Full Text Available The physiological role(s played by G-quadruplexes renders these 'non-canonical' DNA secondary structures interesting new targets for therapeutic intervention. In particular, the search for ligands for selective recognition and stabilization of G-quadruplex arrangements has led to a number of novel targeted agents. An interesting approach is represented by the use of metal-complexes, their binding to DNA being modulated by ligand and metal ion nature, and by complex stoichiometry. In this work we characterized thermodynamically and stereochemically the interactions of a Ni(II bis-phenanthroline derivative with telomeric G-quadruplex sequences using calorimetric, chiroptical and NMR techniques. We employed three strictly related sequences based on the human telomeric repeat, namely Tel22, Tel26 and wtTel26, which assume distinct conformations in potassium containing solutions. We were able to monitor specific enthalpy/entropy changes according to the structural features of the target telomeric sequence and to dissect the binding process into distinct events. Interestingly, temperature effects turned out to be prominent both in terms of binding stoichiometry and ΔH/ΔS contributions, while the final G-quadruplex-metal complex architecture tended to merge for the examined sequences. These results underline the critical choice of experimental conditions and DNA sequence for practical use of thermodynamic data in the rational development of effective G-quadruplex binders.

  6. Telomerer og telomerase

    DEFF Research Database (Denmark)

    Bendix, Laila; Kølvraa, Steen

    2010-01-01

    In 2009 the Nobel Prize in Medicine was awarded to EH Blackburn, CW Greider and JW Szostak for their work on "How chromosomes are protected by telomeres and the enzyme telomerase". Telomeres are specialized DNA structures localized at the end of linear chromosomes. Telomeres are known...... as the biological clock of the cell, since they shorten with each cell division. Telomerase can elongate telomeres. Telomeres protect chromosome ends against being recognized as double stranded DNA breaks, and are thought to be a guard against cancer. It has furthermore been suggested that telomeres may play a role...... in aging and age-related diseases....

  7. Influence of DNA extraction methods on relative telomere length measurements and its impact on epidemiological studies.

    Science.gov (United States)

    Raschenberger, Julia; Lamina, Claudia; Haun, Margot; Kollerits, Barbara; Coassin, Stefan; Boes, Eva; Kedenko, Ludmilla; Köttgen, Anna; Kronenberg, Florian

    2016-05-03

    Measurement of telomere length is widely used in epidemiologic studies. Insufficient standardization of the measurements processes has, however, complicated the comparison of results between studies. We aimed to investigate whether DNA extraction methods have an influence on measured values of relative telomere length (RTL) and whether this has consequences for epidemiological studies. We performed four experiments with RTL measurement in quadruplicate by qPCR using DNA extracted with different methods: 1) a standardized validation experiment including three extraction methods (magnetic-particle-method EZ1, salting-out-method INV, phenol-chloroform-isoamyl-alcohol PCI) each in the same 20 samples demonstrated pronounced differences in RTL with lowest values with EZ1 followed by INV and PCI-isolated DNA; 2) a comparison of 307 samples from an epidemiological study showing EZ1-measurements 40% lower than INV-measurements; 3) a matching-approach of two similar non-diseased control groups including 143 pairs of subjects revealed significantly shorter RTL in EZ1 than INV-extracted DNA (0.844 ± 0.157 vs. 1.357 ± 0.242); 4) an association analysis of RTL with prevalent cardiovascular disease detected a stronger association with INV than with EZ1-extracted DNA. In summary, DNA extraction methods have a pronounced influence on the measured RTL-values. This might result in spurious or lost associations in epidemiological studies under certain circumstances.

  8. An enzyme-catalyzed multistep DNA refolding mechanism in hairpin telomere formation.

    Directory of Open Access Journals (Sweden)

    Ke Shi

    Full Text Available Hairpin telomeres of bacterial linear chromosomes are generated by a DNA cutting-rejoining enzyme protelomerase. Protelomerase resolves a concatenated dimer of chromosomes as the last step of chromosome replication, converting a palindromic DNA sequence at the junctions between chromosomes into covalently closed hairpins. The mechanism by which protelomerase transforms a duplex DNA substrate into the hairpin telomeres remains largely unknown. We report here a series of crystal structures of the protelomerase TelA bound to DNA that represent distinct stages along the reaction pathway. The structures suggest that TelA converts a linear duplex substrate into hairpin turns via a transient strand-refolding intermediate that involves DNA-base flipping and wobble base-pairs. The extremely compact di-nucleotide hairpin structure of the product is fully stabilized by TelA prior to strand ligation, which drives the reaction to completion. The enzyme-catalyzed, multistep strand refolding is a novel mechanism in DNA rearrangement reactions.

  9. Extrachromosomal telomere repeat DNA is linked to ALT development via cGAS-STING DNA sensing pathway.

    Science.gov (United States)

    Chen, Yi-An; Shen, Yi-Ling; Hsia, Hsuan-Yu; Tiang, Yee-Peng; Sung, Tzu-Ling; Chen, Liuh-Yow

    2017-12-01

    Extrachromosomal telomere repeat (ECTR) DNA is unique to cancer cells that maintain telomeres through the alternative lengthening of telomeres (ALT) pathway, but the role of ECTRs in ALT development remains elusive. We found that induction of ECTRs in normal human fibroblasts activated the cGAS-STING-TBK1-IRF3 signaling axis to trigger IFNβ production and a type I interferon response, resulting in cell-proliferation defects. In contrast, ALT cancer cells are commonly defective in sensing cytosolic DNA. We found that STING expression was inhibited in ALT cancer cell lines and transformed ALT cells. Notably, the ALT suppressors histone H3.3 and the ATRX-Daxx histone chaperone complex were also required to activate the DNA-sensing pathway. Collectively, our data suggest that the loss of the cGAS-STING pathway may be required to evade ECTR-induced anti-proliferation effects and permit ALT development, and this requirement may be exploited for treatments specific to cancers utilizing the ALT pathway.

  10. Hypomethylating drugs efficiently decrease cytosine methylation in telomeric DNA and activate telomerase without affecting telomere lengths in tobacco cells

    Czech Academy of Sciences Publication Activity Database

    Majerová, E.; Fojtová, M.; Mozgová, I.; Bittová, M.; Fajkus, Jiří

    2011-01-01

    Roč. 77, 4-5 (2011), s. 371-380 ISSN 0167-4412 Institutional support: RVO:68081707 Keywords : Nicotiana tabacum * Cell culture * Telomere Subject RIV: BO - Biophysics Impact factor: 4.150, year: 2011

  11. Plastic roles of phenylalanine and tyrosine residues of TLS/FUS in complex formation with the G-quadruplexes of telomeric DNA and TERRA.

    Science.gov (United States)

    Kondo, Keiko; Mashima, Tsukasa; Oyoshi, Takanori; Yagi, Ryota; Kurokawa, Riki; Kobayashi, Naohiro; Nagata, Takashi; Katahira, Masato

    2018-02-12

    The length of a telomere is regulated via elongation and shortening processes. Telomeric DNA and telomeric repeat-containing RNA (TERRA), which both contain G-rich repeated sequences, form G-quadruplex structures. Previously, translocated in liposarcoma (TLS) protein, also known as fused in sarcoma (FUS) protein, was found to form a ternary complex with the G-quadruplex structures of telomeric DNA and TERRA. We then showed that the third RGG motif of TLS, the RGG3 domain, is responsible for the complex formation. However, the structural basis for their binding remains obscure. Here, NMR-based binding assaying revealed the interactions in the binary and ternary complexes of RGG3 with telomeric DNA or/and TERRA. In the ternary complex, tyrosine bound exclusively to TERRA, while phenylalanine bound exclusively to telomeric DNA. Thus, tyrosine and phenylalanine each play a central role in the recognition of TERRA and telomeric DNA, respectively. Surprisingly in the binary complexes, RGG3 used both tyrosine and phenylalanine residues to bind to either TERRA or telomeric DNA. We propose that the plastic roles of tyrosine and phenylalanine are important for RGG3 to efficiently form the ternary complex, and thereby regulate the telomere shortening.

  12. Stability of Human Telomere Quadruplexes at High DNA Concentrations

    Czech Academy of Sciences Publication Activity Database

    Kejnovská, Iva; Vorlíčková, Michaela; Brázdová, Marie; Sagi, J.

    2014-01-01

    Roč. 101, č. 4 (2014), s. 428-438 ISSN 0006-3525 R&D Projects: GA ČR(CZ) GAP205/12/0466 Institutional support: RVO:68081707 Keywords : quadruplex * DNA concentration * folding topology Subject RIV: BO - Biophysics Impact factor: 2.385, year: 2014

  13. Preserving Yeast Genetic Heritage through DNA Damage Checkpoint Regulation and Telomere Maintenance

    Directory of Open Access Journals (Sweden)

    Huilin Zhou

    2012-10-01

    Full Text Available In order to preserve genome integrity, extrinsic or intrinsic DNA damages must be repaired before they accumulate in cells and trigger other mutations and genome rearrangements. Eukaryotic cells are able to respond to different genotoxic stresses as well as to single DNA double strand breaks (DSBs, suggesting highly sensitive and robust mechanisms to detect lesions that trigger a signal transduction cascade which, in turn, controls the DNA damage response (DDR. Furthermore, cells must be able to distinguish natural chromosomal ends from DNA DSBs in order to prevent inappropriate checkpoint activation, DDR and chromosomal rearrangements. Since the original discovery of RAD9, the first DNA damage checkpoint gene identified in Saccharomyces cerevisiae, many genes that have a role in this pathway have been identified, including MRC1, MEC3, RAD24, RAD53, DUN1, MEC1 and TEL1. Extensive studies have established most of the genetic basis of the DNA damage checkpoint and uncovered its different functions in cell cycle regulation, DNA replication and repair, and telomere maintenance. However, major questions concerning the regulation and functions of the DNA damage checkpoint remain to be answered. First, how is the checkpoint activity coupled to DNA replication and repair? Second, how do cells distinguish natural chromosome ends from deleterious DNA DSBs? In this review we will examine primarily studies performed using Saccharomyces cerevisiae as a model system.

  14. DNA profiling, telomere analysis and antioxidant properties as tools for monitoring ex situ seed longevity.

    Science.gov (United States)

    Donà, M; Balestrazzi, A; Mondoni, A; Rossi, G; Ventura, L; Buttafava, A; Macovei, A; Sabatini, M E; Valassi, A; Carbonera, D

    2013-05-01

    The germination test currently represents the most used method to assess seed viability in germplasm banks, despite the difficulties caused by the occurrence of seed dormancy. Furthermore, seed longevity can vary considerably across species and populations from different environments, and studies related to the eco-physiological processes underlying such variations are still limited in their depth. The aim of the present work was the identification of reliable molecular markers that might help in monitoring seed deterioration. Dry seeds were subjected to artificial ageing and collected at different time points for molecular/biochemical analyses. DNA damage was measured using the RAPD (random amplified polymorphic DNA) approach while the seed antioxidant profile was obtained using both the DPPH (1,1-diphenyl, 2-picrylhydrazyl) assay and the Folin-Ciocalteu reagent method. Electron paramagnetic resonance (EPR) provided profiles of free radicals. Quantitative real-time polymerase chain reaction (QRT-PCR) was used to assess the expression profiles of the antioxidant genes MT2 (type 2 metallothionein) and SOD (superoxide dismutase). A modified QRT-PCR protocol was used to determine telomere length. The RAPD profiles highlighted different capacities of the two Silene species to overcome DNA damage induced by artificial ageing. The antioxidant profiles of dry and rehydrated seeds revealed that the high-altitude taxon Silene acaulis was characterized by a lower antioxidant specific activity. Significant upregulation of the MT2 and SOD genes was observed only in the rehydrated seeds of the low-altitude species. Rehydration resulted in telomere lengthening in both Silene species. Different seed viability markers have been selected for plant species showing inherent variation of seed longevity. RAPD analysis, quantification of redox activity of non-enzymatic antioxidant compounds and gene expression profiling provide deeper insights to study seed viability during storage

  15. Multifunctional Role of ATM/Tel1 Kinase in Genome Stability: From the DNA Damage Response to Telomere Maintenance

    Directory of Open Access Journals (Sweden)

    Enea Gino Di Domenico

    2014-01-01

    Full Text Available The mammalian protein kinase ataxia telangiectasia mutated (ATM is a key regulator of the DNA double-strand-break response and belongs to the evolutionary conserved phosphatidylinositol-3-kinase-related protein kinases. ATM deficiency causes ataxia telangiectasia (AT, a genetic disorder that is characterized by premature aging, cerebellar neuropathy, immunodeficiency, and predisposition to cancer. AT cells show defects in the DNA damage-response pathway, cell-cycle control, and telomere maintenance and length regulation. Likewise, in Saccharomyces cerevisiae, haploid strains defective in the TEL1 gene, the ATM ortholog, show chromosomal aberrations and short telomeres. In this review, we outline the complex role of ATM/Tel1 in maintaining genomic stability through its control of numerous aspects of cellular survival. In particular, we describe how ATM/Tel1 participates in the signal transduction pathways elicited by DNA damage and in telomere homeostasis and its importance as a barrier to cancer development.

  16. DNA adducts of antitumor cisplatin preclude telomeric sequences from forming G quadruplexes

    Czech Academy of Sciences Publication Activity Database

    Heringová, Pavla; Kašpárková, Jana; Brabec, Viktor

    2009-01-01

    Roč. 14, č. 6 (2009), s. 959-968 ISSN 0949-8257 R&D Projects: GA MZd(CZ) NR8562; GA MŠk(CZ) LC06030; GA MŠk(CZ) ME08017; GA MŠk(CZ) OC08003; GA AV ČR(CZ) 1QS500040581; GA AV ČR(CZ) KAN200200651; GA AV ČR(CZ) IAA400040803 Grant - others:GA MŠk(CZ) OC09018 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : cisplatin * DNA quadruplex * telomere Subject RIV: BO - Biophysics Impact factor: 3.415, year: 2009

  17. The relationship between leukocyte mitochondrial DNA copy number and telomere length in community-dwelling elderly women.

    Directory of Open Access Journals (Sweden)

    Jung-Ha Kim

    Full Text Available PURPOSE: Both telomere length and mitochondrial function are accepted as reflective indices of aging. Recent studies have shown that telomere dysfunction may influence impaired mitochondrial biogenesis and function. However, there has been no study regarding the possible association between telomere and mitochondrial function in humans. Therefore, the purpose of the study was to identify any relationships between mitochondrial and telomere function. METHODS: The present study included 129 community-dwelling, elderly women. The leukocyte mitochondrial DNA copy number and telomere length were measured using a quantitative real-time polymerase chain reaction method. Anthropometric measurement, biochemical blood testing, a depression screening questionnaire using a 15-question geriatric depression scale (GDS-15, and a cognitive function test using the Korean version of the mini mental state examination (K-MMSE were performed. RESULTS: Leukocyte mtDNA copy number was positively associated with telomere length (r=0.39, p=<0.0001 and K-MMSE score (r=0.06, p=0.02. Additionally, leukocyte mtDNA copy number was negatively correlated with GDS-15 score (r=-0.17, p=0.04. Age (r=-0.15, p=0.09, waist circumference (r=-0.16, p=0.07, and serum ferritin level (r=-0.13, p=0.07 tended to be inversely correlated with leukocyte mtDNA copy number. With a stepwise multiple regression analysis, telomere length was found to be an independent factor associated with leukocyte mtDNA copy number after adjustment for confounding variables including age, body mass index, waist circumference, total cholesterol, HDL-cholesterol, LDL-cholesterol, triglycerides, hs-CRP, serum ferritin, HOMA-IR, K-MMSE, GDS-15, hypertension, diabetes, dyslipidemia, currently smoking, alcohol drinking, and regular exercise. CONCLUSIONS: This study showed that leukocyte mtDNA copy number was positively correlated with leukocyte telomere length in community-dwelling elderly women. Our findings suggest

  18. Detection of polymorphisms in leptin gene using single strand ...

    African Journals Online (AJOL)

    student

    Sachs B1 variant. Nucleic Acids Res. 19, 405-406. Barroso, A., Dunner, S. & Cañon, J., 1998. Technical note: detection of bovine kappa-casein variants A, B,. C and E by means of Polymerase Chain Reaction-Single Strand Conformation ...

  19. A single-stranded architecture for cotranscriptional folding of RNA nanostructures

    DEFF Research Database (Denmark)

    Geary, Cody; Rothemund, Paul; Andersen, Ebbe Sloth

    2014-01-01

    . We introduce an architecture for designing artificial RNA structures that fold from a single strand, in which arrays of antiparallel RNA helices are precisely organized by RNA tertiary motifs and a new type of crossover pattern. We constructed RNA tiles that assemble into hexagonal lattices......Artificial DNA and RNA structures have been used as scaffolds for a variety of nanoscale devices. In comparison to DNA structures, RNA structures have been limited in size, but they also have advantages: RNA can fold during transcription and thus can be genetically encoded and expressed in cells...

  20. HYPOTHESIS: PARALOG FORMATION FROM PROGENITOR PROTEINS AND PARALOG MUTAGENESIS SPUR THE RAPID EVOLUTION OF TELOMERE BINDING PROTEINS

    Directory of Open Access Journals (Sweden)

    Arthur J Lustig

    2016-02-01

    Full Text Available Through elegant studies in fungal cells and complex organisms, we propose a unifying paradigm for the rapid evolution of telomere binding proteins (TBPs that associate with either (or both telomeric DNA and telomeric proteins. TBPs protect and regulate telomere structure and function. Four critical factors are involved. First, TBPs that commonly bind to telomeric DNA include the c-Myb binding proteins, OB-fold single-stranded binding proteins, and G-G base paired Hoogsteen structure (G4 binding proteins. Each contributes independently or, in some cases, cooperatively, to provide a minimum level of telomere function. As a result of these minimal requirements and the great abundance of homologs of these motifs in the proteome, DNA telomere-binding activity may be generated more easily than expected. Second, telomere dysfunction gives rise to genome instability, through the elevation of recombination rates, genome ploidy, and the frequency of gene mutations. The formation of paralogs that diverge from their progenitor proteins ultimately can form a high frequency of altered TBPs with altered functions. Third, TBPs that assemble into complexes (e.g. mammalian shelterin derive benefits from the novel emergent functions. Fourth, a limiting factor in the evolution of TBP complexes is the formation of mutually compatible interaction surfaces amongst the TBPs. These factors may have different degrees of importance in the evolution of different phyla, illustrated by the apparently simpler telomeres in complex plants. Selective pressures that can utilize the mechanisms of paralog formation and mutagenesis to drive TBP evolution along routes dependent on the requisite physiologic changes.

  1. Molecular architecture of classical cytological landmarks: Centromeres and telomeres

    Energy Technology Data Exchange (ETDEWEB)

    Meyne, J.

    1994-11-01

    Both the human telomere repeat and the pericentromeric repeat sequence (GGAAT)n were isolated based on evolutionary conservation. Their isolation was based on the premise that chromosomal features as structurally and functionally important as telomeres and centromeres should be highly conserved. Both sequences were isolated by high stringency screening of a human repetitive DNA library with rodent repetitive DNA. The pHuR library (plasmid Human Repeat) used for this project was enriched for repetitive DNA by using a modification of the standard DNA library preparation method. Usually DNA for a library is cut with restriction enzymes, packaged, infected, and the library is screened. A problem with this approach is that many tandem repeats don`t have any (or many) common restriction sites. Therefore, many of the repeat sequences will not be represented in the library because they are not restricted to a viable length for the vector used. To prepare the pHuR library, human DNA was mechanically sheared to a small size. These relatively short DNA fragments were denatured and then renatured to C{sub o}t 50. Theoretically only repetitive DNA sequences should renature under C{sub o}t 50 conditions. The single-stranded regions were digested using S1 nuclease, leaving the double-stranded, renatured repeat sequences.

  2. Oxidized Base Damage and Single-Strand Break Repair in Mammalian Genomes: Role of Disordered Regions and Posttranslational Modifications in Early Enzymes

    OpenAIRE

    Hegde, Muralidhar L.; Izumi, Tadahide; Mitra, Sankar

    2012-01-01

    Oxidative genome damage induced by reactive oxygen species includes oxidized bases, abasic (AP) sites, and single-strand breaks, all of which are repaired via the evolutionarily conserved base excision repair/single-strand break repair (BER/SSBR) pathway. BER/SSBR in mammalian cells is complex, with preferred and backup sub-pathways, and is linked to genome replication and transcription. The early BER/SSBR enzymes, namely, DNA glycosylases (DGs) and the end-processing proteins such as abasic ...

  3. Methods for the preparation of large quantities of complex single-stranded oligonucleotide libraries.

    Science.gov (United States)

    Murgha, Yusuf E; Rouillard, Jean-Marie; Gulari, Erdogan

    2014-01-01

    Custom-defined oligonucleotide collections have a broad range of applications in fields of synthetic biology, targeted sequencing, and cytogenetics. Also, they are used to encode information for technologies like RNA interference, protein engineering and DNA-encoded libraries. High-throughput parallel DNA synthesis technologies developed for the manufacture of DNA microarrays can produce libraries of large numbers of different oligonucleotides, but in very limited amounts. Here, we compare three approaches to prepare large quantities of single-stranded oligonucleotide libraries derived from microarray synthesized collections. The first approach, alkaline melting of double-stranded PCR amplified libraries with a biotinylated strand captured on streptavidin coated magnetic beads results in little or no non-biotinylated ssDNA. The second method wherein the phosphorylated strand of PCR amplified libraries is nucleolyticaly hydrolyzed is recommended when small amounts of libraries are needed. The third method combining in vitro transcription of PCR amplified libraries to reverse transcription of the RNA product into single-stranded cDNA is our recommended method to produce large amounts of oligonucleotide libraries. Finally, we propose a method to remove any primer binding sequences introduced during library amplification.

  4. Telomere healing following DNA polymerase arrest-induced breakages is likely the main mechanism generating chromosome 4p terminal deletions.

    Science.gov (United States)

    Hannes, Femke; Van Houdt, Jeroen; Quarrell, Oliver W; Poot, Martin; Hochstenbach, Ron; Fryns, Jean-Pierre; Vermeesch, Joris R

    2010-12-01

    Constitutional developmental disorders are frequently caused by terminal chromosomal deletions. The mechanisms and/or architectural features that might underlie those chromosome breakages remain largely unexplored. Because telomeres are the vital DNA protein complexes stabilizing linear chromosomes against chromosome degradation, fusion, and incomplete replication, those terminal-deleted chromosomes acquired new telomeres either by telomere healing or by telomere capture. To unravel the mechanisms leading to chromosomal breakage and healing, we sequenced nine chromosome 4p terminal deletion boundaries. A computational analysis of the breakpoint flanking region, including 12 previously published pure terminal breakage sites, was performed in order to identify architectural features that might be involved in this process. All terminal 4p truncations were likely stabilized by telomerase-mediated telomere healing. In the majority of breakpoints multiple genetic elements have a potential to induce secondary structures and an enrichment in replication stalling site motifs were identified. These findings suggest DNA replication stalling-induced chromosome breakage during early development is the first mechanistic step leading toward terminal deletion syndromes. © 2010 Wiley-Liss, Inc.

  5. Ligand binding to telomeric G-quadruplex DNA investigated by funnel-metadynamics simulations.

    Science.gov (United States)

    Moraca, Federica; Amato, Jussara; Ortuso, Francesco; Artese, Anna; Pagano, Bruno; Novellino, Ettore; Alcaro, Stefano; Parrinello, Michele; Limongelli, Vittorio

    2017-03-14

    G-quadruplexes (G4s) are higher-order DNA structures typically present at promoter regions of genes and telomeres. Here, the G4 formation decreases the replicative DNA at each cell cycle, finally leading to apoptosis. The ability to control this mitotic clock, particularly in cancer cells, is fascinating and passes through a rational understanding of the ligand/G4 interaction. We demonstrate that an accurate description of the ligand/G4 binding mechanism is possible using an innovative free-energy method called funnel-metadynamics (FM), which we have recently developed to investigate ligand/protein interaction. Using FM simulations, we have elucidated the binding mechanism of the anticancer alkaloid berberine to the human telomeric G4 ( d [AG 3 (T 2 AG 3 ) 3 ]), computing also the binding free-energy landscape. Two ligand binding modes have been identified as the lowest energy states. Furthermore, we have found prebinding sites, which are preparatory to reach the final binding mode. In our simulations, the ions and the water molecules have been explicitly represented and the energetic contribution of the solvent during ligand binding evaluated. Our theoretical results provide an accurate estimate of the absolute ligand/DNA binding free energy ([Formula: see text] = -10.3 ± 0.5 kcal/mol) that we validated through steady-state fluorescence binding assays. The good agreement between the theoretical and experimental value demonstrates that FM is a most powerful method to investigate ligand/DNA interaction and can be a useful tool for the rational design also of G4 ligands.

  6. Nutriomes and personalised nutrition for DNA damage prevention, telomere integrity maintenance and cancer growth control.

    Science.gov (United States)

    Fenech, Michael F

    2014-01-01

    DNA damage at the base sequence and chromosome level is a fundamental cause of developmental and degenerative diseases. Multiple micronutrients and their interactions with the inherited and/or acquired genome determine DNA damage and genomic instability rates. The challenge is to identify for each individual the combination of micronutrients and their doses (i.e. the nutriome) that optimises genome stability, including telomere integrity and functionality and DNA repair. Using nutrient array systems with high-content analysis diagnostics of DNA damage, cell death and cell growth, it is possible to define, on an individual basis, the optimal nutriome for DNA damage prevention and cancer growth control. This knowledge can also be used to improve culture systems for cells used in therapeutics such as stem cells to ensure that they are not genetically aberrant when returned to the body. Furthermore, this information could be used to design dietary patterns that deliver the micronutrient combinations and concentrations required for preventing DNA damage by micronutrient deficiency or excess. Using this approach, new knowledge could be obtained to identify the dietary restrictions and/or supplementations required to control specific cancers, which is particularly important given that reliable validated advice is not yet available for those diagnosed with cancer.

  7. Functional characterization of an alkaline exonuclease and single strand annealing protein from the SXT genetic element of Vibrio cholerae

    Directory of Open Access Journals (Sweden)

    Huang Jian-dong

    2011-04-01

    Full Text Available Abstract Background SXT is an integrating conjugative element (ICE originally isolated from Vibrio cholerae, the bacterial pathogen that causes cholera. It houses multiple antibiotic and heavy metal resistance genes on its ca. 100 kb circular double stranded DNA (dsDNA genome, and functions as an effective vehicle for the horizontal transfer of resistance genes within susceptible bacterial populations. Here, we characterize the activities of an alkaline exonuclease (S066, SXT-Exo and single strand annealing protein (S065, SXT-Bet encoded on the SXT genetic element, which share significant sequence homology with Exo and Bet from bacteriophage lambda, respectively. Results SXT-Exo has the ability to degrade both linear dsDNA and single stranded DNA (ssDNA molecules, but has no detectable endonuclease or nicking activities. Adopting a stable trimeric arrangement in solution, the exonuclease activities of SXT-Exo are optimal at pH 8.2 and essentially require Mn2+ or Mg2+ ions. Similar to lambda-Exo, SXT-Exo hydrolyzes dsDNA with 5'- to 3'-polarity in a highly processive manner, and digests DNA substrates with 5'-phosphorylated termini significantly more effectively than those lacking 5'-phosphate groups. Notably, the dsDNA exonuclease activities of both SXT-Exo and lambda-Exo are stimulated by the addition of lambda-Bet, SXT-Bet or a single strand DNA binding protein encoded on the SXT genetic element (S064, SXT-Ssb. When co-expressed in E. coli cells, SXT-Bet and SXT-Exo mediate homologous recombination between a PCR-generated dsDNA fragment and the chromosome, analogous to RecET and lambda-Bet/Exo. Conclusions The activities of the SXT-Exo protein are consistent with it having the ability to resect the ends of linearized dsDNA molecules, forming partially ssDNA substrates for the partnering SXT-Bet single strand annealing protein. As such, SXT-Exo and SXT-Bet may function together to repair or process SXT genetic elements within infected V

  8. DNA breaks and repair in interstitial telomere sequences: Influence of chromatin structure

    International Nuclear Information System (INIS)

    Revaud, D.

    2009-06-01

    Interstitial Telomeric Sequences (ITS) are over-involved in spontaneous and radiationinduced chromosome aberrations in chinese hamster cells. We have performed a study to investigate the origin of their instability, spontaneously or after low doses irradiation. Our results demonstrate that ITS have a particular chromatin structure: short nucleotide repeat length, less compaction of the 30 nm chromatin fiber, presence of G-quadruplex structures. These features would modulate breaks production and would favour the recruitment of alternative DNA repair mechanisms, which are prone to produce chromosome aberrations. These pathways could be at the origin of chromosome aberrations in ITS whereas NHEJ and HR Double Strand Break repair pathways are rather required for a correct repair in these regions. (author)

  9. Low-Energy Electron-Induced Strand Breaks in Telomere-Derived DNA Sequences-Influence of DNA Sequence and Topology.

    Science.gov (United States)

    Rackwitz, Jenny; Bald, Ilko

    2018-03-26

    During cancer radiation therapy high-energy radiation is used to reduce tumour tissue. The irradiation produces a shower of secondary low-energy (DNA very efficiently by dissociative electron attachment. Recently, it was suggested that low-energy electron-induced DNA strand breaks strongly depend on the specific DNA sequence with a high sensitivity of G-rich sequences. Here, we use DNA origami platforms to expose G-rich telomere sequences to low-energy (8.8 eV) electrons to determine absolute cross sections for strand breakage and to study the influence of sequence modifications and topology of telomeric DNA on the strand breakage. We find that the telomeric DNA 5'-(TTA GGG) 2 is more sensitive to low-energy electrons than an intermixed sequence 5'-(TGT GTG A) 2 confirming the unique electronic properties resulting from G-stacking. With increasing length of the oligonucleotide (i.e., going from 5'-(GGG ATT) 2 to 5'-(GGG ATT) 4 ), both the variety of topology and the electron-induced strand break cross sections increase. Addition of K + ions decreases the strand break cross section for all sequences that are able to fold G-quadruplexes or G-intermediates, whereas the strand break cross section for the intermixed sequence remains unchanged. These results indicate that telomeric DNA is rather sensitive towards low-energy electron-induced strand breakage suggesting significant telomere shortening that can also occur during cancer radiation therapy. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. A C-terminal Myb extension domain defines a novel family of double-strand telomeric DNA-binding proteins in Arabidopsis.

    Science.gov (United States)

    Karamysheva, Zemfira N; Surovtseva, Yulia V; Vespa, Laurent; Shakirov, Eugene V; Shippen, Dorothy E

    2004-11-12

    Little is known about the protein composition of plant telomeres. We queried the Arabidopsis thaliana genome data base in search of genes with similarity to the human telomere proteins hTRF1 and hTRF2. hTRF1/hTRF2 are distinguished by the presence of a single Myb-like domain in their C terminus that is required for telomeric DNA binding in vitro. Twelve Arabidopsis genes fitting this criterion, dubbed TRF-like (TRFL), fell into two distinct gene families. Notably, TRFL family 1 possessed a highly conserved region C-terminal to the Myb domain called Myb-extension (Myb-ext) that is absent in TRFL family 2 and hTRF1/hTRF2. Immunoprecipitation experiments revealed that recombinant proteins from TRFL family 1, but not those from family 2, formed homodimers and heterodimers in vitro. DNA binding studies with isolated C-terminal fragments from TRFL family 1 proteins, but not family 2, showed specific binding to double-stranded plant telomeric DNA in vitro. Removal of the Myb-ext domain from TRFL1, a family 1 member, abolished DNA binding. However, when the Myb-ext domain was introduced into the corresponding region in TRFL3, a family 2 member, telomeric DNA binding was observed. Thus, Myb-ext is required for binding plant telomeric DNA and defines a novel class of proteins in Arabidopsis.

  11. Oxidative stress, telomere shortening, and DNA methylation in relation to low-to-moderate occupational exposure to welding fumes.

    Science.gov (United States)

    Li, Huiqi; Hedmer, Maria; Wojdacz, Tomasz; Hossain, Mohammad Bakhtiar; Lindh, Christian H; Tinnerberg, Håkan; Albin, Maria; Broberg, Karin

    2015-10-01

    Evidence suggests that exposure to welding fumes is a risk factor for lung cancer. We examined relationships between low-to-moderate occupational exposure to particles from welding fumes and cancer-related biomarkers for oxidative stress, changes in telomere length, and alterations in DNA methylation. We enrolled 101 welders and 127 controls (all currently nonsmoking men) from southern Sweden. We performed personal sampling of respirable dust and measured 8-oxodG concentrations in urine using a simplified liquid chromatography tandem mass spectrometry method. Telomere length in peripheral blood was measured by quantitative polymerase chain reaction. Methylation status of 10 tumor suppressor genes was determined by methylation-sensitive high-resolution melting analysis. All analyses were adjusted for age, body mass index, previous smoking, passive smoking, current residence, and wood burning stove/boiler at home. Welders were exposed to respirable dust at 1.2 mg/m(3) (standard deviation, 3.3 mg/m(3); range, 0.1-19.3), whereas control exposures did not exceed 0.1 mg/m(3) (P < 0.001). Welders and controls did not differ in 8-oxodG levels (β = 1.2, P = 0.17) or relative telomere length (β = -0.053, P = 0.083) in adjusted models. Welders showed higher probability of adenomatous polyposis coli (APC) methylation in the unadjusted model (odds ratio = 14, P = 0.014), but this was not significant in the fully adjusted model (P = 0.052). Every working year as a welder was associated with 0.0066 units shorter telomeres (95% confidence interval -0.013 to -0.00053, P = 0.033). Although there were no clear associations between concentrations of respirable dust and the biomarkers, there were modest signs of associations between oxidative stress, telomere alterations, DNA methylation, and occupational exposure to low-to-moderate levels of particles. © 2015 Wiley Periodicals, Inc.

  12. Telomerers rolle ved aldersbetingede sygdomme

    DEFF Research Database (Denmark)

    Bendix, Laila; Kølvraa, Steen

    2010-01-01

    . On the other hand, the association between telomere length and mortality is poor. Nevertheless, it has been suggested that telomeres may play a role in the development of many aging-related diseases. This has led to attempts to develop telomere-elongating treatment.......Telomeres are specialized DNA structures, protecting the ends of linear chromosomes. The association between telomeres and cellular aging is well-established, and it has been shown that there is a negative correlation between telomere length and chronological age for many types of human tissue...

  13. Effects of Unpredictable Variable Prenatal Stress (UVPS) on Bdnf DNA Methylation and Telomere Length in the Adult Rat Brain

    Science.gov (United States)

    Blaze, Jennifer; Asok, A.; Moyer, E. L.; Roth, T. L.; Ronca, A. E.

    2015-01-01

    In utero exposure to stress can shape neurobiological and behavioral outcomes in offspring, producing vulnerability to psychopathology later in life. Animal models of prenatal stress likewise have demonstrated long-­-term alterations in brain function and behavioral deficits in offspring. For example, using a rodent model of unpredictable variable prenatal stress (UVPS), in which dams are exposed to unpredictable, variable stress across pregnancy, we have found increased body weight and anxiety-­-like behavior in adult male, but not female, offspring. DNA methylation (addition of methyl groups to cytosines which normally represses gene transcription) and changes in telomere length (TTAGGG repeats on the ends of chromosomes) are two molecular modifications that result from stress and could be responsible for the long-­-term effects of UVPS. Here, we measured methylation of brain-­-derived neurotrophic factor (bdnf), a gene important in development and plasticity, and telomere length in the brains of adult offspring from the UVPS model. Results indicate that prenatally stressed adult males have greater methylation in the medial prefrontal cortex (mPFC) compared to non-­-stressed controls, while females have greater methylation in the ventral hippocampus compared to controls. Further, prenatally stressed males had shorter telomeres than controls in the mPFC. These findings demonstrate the ability of UVPS to produce epigenetic alterations and changes in telomere length across behaviorally-­-relevant brain regions, which may have linkages to the phenotypic outcomes.

  14. Addition of Bases to the 5'-end of Human Telomeric DNA: Influences on Thermal Stability and Energetics of Unfolding

    Directory of Open Access Journals (Sweden)

    Katherine L. Hayden

    2014-02-01

    Full Text Available Telomeric DNA has been intensely investigated for its role in chromosome protection, aging, cell death, and disease. In humans the telomeric tandem repeat (TTAGGGn is found at the ends of chromosomes and provides a novel target for the development of new drugs in the treatment of age related diseases such as cancer. These telomeric sequences show slight sequence variations from species to species; however, each contains repeats of 3 to 4 guanines allowing the G-rich strands to fold into compact and stable nuclease resistant conformations referred to as G-quadruplexes. The focus of this manuscript is to examine the effects of 5'-nucleotides flanking the human telomeric core sequence 5'-AGGG(TTAGGG 3-3' (h-Tel22. Our studies reveal that the addition of the 5'-flanking nucleotides (5'-T, and 5'-TT results in significant changes to the thermodynamic stability of the G-quadruplex structure. Our data indicate that the observed changes in stability are associated with changes in the number of bound waters resulting from the addition of 5'-flanking nucleotides to the h-Tel22 sequence as well as possible intermolecular interactions of the 5' overhang with the core structure.

  15. Exploring the Dynamics of Propeller Loops in Human Telomeric DNA Quadruplexes Using Atomistic Simulations

    Science.gov (United States)

    2017-01-01

    We have carried out a series of extended unbiased molecular dynamics (MD) simulations (up to 10 μs long, ∼162 μs in total) complemented by replica-exchange with the collective variable tempering (RECT) approach for several human telomeric DNA G-quadruplex (GQ) topologies with TTA propeller loops. We used different AMBER DNA force-field variants and also processed simulations by Markov State Model (MSM) analysis. The slow conformational transitions in the propeller loops took place on a scale of a few μs, emphasizing the need for long simulations in studies of GQ dynamics. The propeller loops sampled similar ensembles for all GQ topologies and for all force-field dihedral-potential variants. The outcomes of standard and RECT simulations were consistent and captured similar spectrum of loop conformations. However, the most common crystallographic loop conformation was very unstable with all force-field versions. Although the loss of canonical γ-trans state of the first propeller loop nucleotide could be related to the indispensable bsc0 α/γ dihedral potential, even supporting this particular dihedral by a bias was insufficient to populate the experimentally dominant loop conformation. In conclusion, while our simulations were capable of providing a reasonable albeit not converged sampling of the TTA propeller loop conformational space, the force-field description still remained far from satisfactory. PMID:28475322

  16. PGC-1α Modulates Telomere Function and DNA Damage in Protecting against Aging-Related Chronic Diseases

    Directory of Open Access Journals (Sweden)

    Shiqin Xiong

    2015-09-01

    Full Text Available Cellular senescence and organismal aging predispose age-related chronic diseases, such as neurodegenerative, metabolic, and cardiovascular disorders. These diseases emerge coincidently from elevated oxidative/electrophilic stress, inflammation, mitochondrial dysfunction, DNA damage, and telomere dysfunction and shortening. Mechanistic linkages are incompletely understood. Here, we show that ablation of peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α accelerates vascular aging and atherosclerosis, coinciding with telomere dysfunction and shortening and DNA damage. PGC-1α deletion reduces expression and activity of telomerase reverse transcriptase (TERT and increases p53 levels. Ectopic expression of PGC-1α coactivates TERT transcription and reverses telomere malfunction and DNA damage. Furthermore, alpha lipoic acid (ALA, a non-dispensable mitochondrial cofactor, upregulates PGC-1α-dependent TERT and the cytoprotective Nrf-2-mediated antioxidant/electrophile-responsive element (ARE/ERE signaling cascades, and counteracts high-fat-diet-induced, age-dependent arteriopathy. These results illustrate the pivotal importance of PGC-1α in ameliorating senescence, aging, and associated chronic diseases, and may inform novel therapeutic approaches involving electrophilic specificity.

  17. Break-induced telomere synthesis underlies alternative telomere maintenance.

    Science.gov (United States)

    Dilley, Robert L; Verma, Priyanka; Cho, Nam Woo; Winters, Harrison D; Wondisford, Anne R; Greenberg, Roger A

    2016-11-03

    Homology-directed DNA repair is essential for genome maintenance through templated DNA synthesis. Alternative lengthening of telomeres (ALT) necessitates homology-directed DNA repair to maintain telomeres in about 10-15% of human cancers. How DNA damage induces assembly and execution of a DNA replication complex (break-induced replisome) at telomeres or elsewhere in the mammalian genome is poorly understood. Here we define break-induced telomere synthesis and demonstrate that it utilizes a specialized replisome, which underlies ALT telomere maintenance. DNA double-strand breaks enact nascent telomere synthesis by long-tract unidirectional replication. Proliferating cell nuclear antigen (PCNA) loading by replication factor C (RFC) acts as the initial sensor of telomere damage to establish predominance of DNA polymerase δ (Pol δ) through its POLD3 subunit. Break-induced telomere synthesis requires the RFC-PCNA-Pol δ axis, but is independent of other canonical replisome components, ATM and ATR, or the homologous recombination protein Rad51. Thus, the inception of telomere damage recognition by the break-induced replisome orchestrates homology-directed telomere maintenance.

  18. Elastic properties of alternative versus single-stranded leveling archwires.

    Science.gov (United States)

    Rucker, Brian K; Kusy, Robert P

    2002-11-01

    The strength, stiffness, and range of single-stranded stainless steel (SS) and superelastic nickel-titanium (NiTi) archwires were compared with those of alternative leveling products, including nylon-coated and multistranded wires. Wire cross-sections were photographed after being potted in polymer, ground, and polished. Because the rectangular wires had rounded or beveled corners, gravimetric measurements and specific gravity calculations quantified the actual polygonal cross-sectional areas versus the ideal rectangular cross-sectional areas. Beveling reduced the cross-sectional areas by 7% to 8%; this decreased the wire stiffnesses by 15% to 19%. Using a testing machine, we measured the yield strengths, the elastic limits, and the ultimate tensile strengths in tension, and wire stiffnesses in 3-point bending. From cyclic loading tests, the elastic limits of the superelastic NiTi wires were approximately 90% and 45% of their ultimate tensile strengths for the round and rectangular wires, respectively. Using the measurements of the mechanical properties and geometric parameters of each wire, we computed the elastic property ratios (EPRs) versus a 16-mil (0.41 mm) NiTi wire. The single-stranded NiTi wires outperformed the alternative wires, whose EPRs varied from 0.05 to 0.32 for strength, from 0.11 to 1.55 for stiffness, and from 0.10 to 0.80 for range. Based on the current study and a review of the orthodontic literature, few superelastic wires are activated sufficiently in vivo to exhibit superelastic behavior. Therefore, the EPR data reported here for superelastic wires truly represent their performance in most clinical situations.

  19. Toward the design of a catalytic metallodrug: selective cleavage of G-quadruplex telomeric DNA by an anticancer copper-acridine-ATCUN complex.

    Science.gov (United States)

    Yu, Zhen; Han, Menglu; Cowan, James A

    2015-02-02

    Telomeric DNA represents a novel target for the development of anticancer drugs. By application of a catalytic metallodrug strategy, a copper-acridine-ATCUN complex (CuGGHK-Acr) has been designed that targets G-quadruplex telomeric DNA. Both fluorescence solution assays and gel sequencing demonstrate the CuGGHK-Acr catalyst to selectively bind and cleave the G-quadruplex telomere sequence. The cleavage pathway has been mapped by matrix assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) experiments. CuGGHK-Acr promotes significant inhibition of cancer cell proliferation and shortening of telomere length. Both senescence and apoptosis are induced in the breast cancer cell line MCF7. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Telomere shortening correlates to dysplasia but not to DNA aneuploidy in longstanding ulcerative colitis

    DEFF Research Database (Denmark)

    Friis-Ottessen, Mariann; Bendix, Laila; Kølvraa, Steen

    2014-01-01

    Ulcerative colitis (UC) is a chronic, inflammatory bowel disease which may lead to dysplasia and adenocarcinoma in patients when long-lasting. Short telomeres have been reported in mucosal cells of UC patients. Telomeres are repetitive base sequences capping the ends of linear chromosomes......, and protect them from erosion and subsequent wrongful recombination and end-to-end joining during cell division. Short telomeres are associated with the development of chromosomal instability and aneuploidy, the latter being risk factors for development of dysplasia and cancer. Specifically, the abrupt...

  1. Consequences of acute oxidative stress in Leishmania amazonensis: From telomere shortening to the selection of the fittest parasites.

    Science.gov (United States)

    da Silva, Marcelo Santos; Segatto, Marcela; Pavani, Raphael Souza; Gutierrez-Rodrigues, Fernanda; Bispo, Vanderson da Silva; de Medeiros, Marisa Helena Gennari; Calado, Rodrigo Tocantins; Elias, Maria Carolina; Cano, Maria Isabel Nogueira

    2017-01-01

    Leishmaniasis is a spectrum of diseases caused by parasites of the genus Leishmania that affects millions of people around the world. During infection, the parasites use different strategies to survive the host's defenses, including overcoming exposure to reactive oxidant species (ROS), responsible for causing damage to lipids, proteins and DNA. This damage especially affects telomeres, which frequently results in genome instability, senescence and cell death. Telomeres are the physical ends of the chromosomes composed of repetitive DNA coupled with proteins, whose function is to protect the chromosomes termini and avoid end-fusion and nucleolytic degradation. In this work, we induced acute oxidative stress in promastigote forms of Leishmania amazonensis by treating parasites with 2mM hydrogen peroxide (H 2 O 2 ) for 1h, which was able to increase intracellular ROS levels. In addition, oxidative stress induced DNA damage, as confirmed by 8-oxodGuo quantification and TUNEL assays and the dissociation of LaRPA-1 from the 3' G-overhang, leading to telomere shortening. Moreover, LaRPA-1 was observed to interact with newly formed C-rich single-stranded telomeric DNA, probably as a consequence of the DNA damage response. Nonetheless, acute oxidative stress caused the death of some of the L. amazonensis population and induced cell cycle arrest at the G2/M phase in survivor parasites, which were able to continue proliferating and replicating DNA and became more resistant to oxidative stress. Taken together, these results suggest that adaptation occurs through the selection of the fittest parasites in terms of repairing oxidative DNA damage at telomeres and maintaining genome stability in a stressful environment. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Capillary Electrophoresis Single-Strand Conformational Polymorphisms as a Method to Differentiate Algal Species

    Directory of Open Access Journals (Sweden)

    Alice Jernigan

    2015-01-01

    Full Text Available Capillary electrophoresis single-strand conformational polymorphism (CE-SSCP was explored as a fast and inexpensive method to differentiate both prokaryotic (blue-green and eukaryotic (green and brown algae. A selection of two blue-green algae (Nostoc muscorum and Anabaena inaequalis, five green algae (Chlorella vulgaris, Oedogonium foveolatum, Mougeotia sp., Scenedesmus quadricauda, and Ulothrix fimbriata, and one brown algae (Ectocarpus sp. were examined and CE-SSCP electropherogram “fingerprints” were compared to each other for two variable regions of either the 16S or 18S rDNA gene. The electropherogram patterns were remarkably stable and consistent for each particular species. The patterns were unique to each species, although some common features were observed between the different types of algae. CE-SSCP could be a useful method for monitoring changes in an algae species over time as potential shifts in species occurred.

  3. Method Specific Calibration Corrects for DNA Extraction Method Effects on Relative Telomere Length Measurements by Quantitative PCR.

    Science.gov (United States)

    Seeker, Luise A; Holland, Rebecca; Underwood, Sarah; Fairlie, Jennifer; Psifidi, Androniki; Ilska, Joanna J; Bagnall, Ainsley; Whitelaw, Bruce; Coffey, Mike; Banos, Georgios; Nussey, Daniel H

    2016-01-01

    Telomere length (TL) is increasingly being used as a biomarker in epidemiological, biomedical and ecological studies. A wide range of DNA extraction techniques have been used in telomere experiments and recent quantitative PCR (qPCR) based studies suggest that the choice of DNA extraction method may influence average relative TL (RTL) measurements. Such extraction method effects may limit the use of historically collected DNA samples extracted with different methods. However, if extraction method effects are systematic an extraction method specific (MS) calibrator might be able to correct for them, because systematic effects would influence the calibrator sample in the same way as all other samples. In the present study we tested whether leukocyte RTL in blood samples from Holstein Friesian cattle and Soay sheep measured by qPCR was influenced by DNA extraction method and whether MS calibration could account for any observed differences. We compared two silica membrane-based DNA extraction kits and a salting out method. All extraction methods were optimized to yield enough high quality DNA for TL measurement. In both species we found that silica membrane-based DNA extraction methods produced shorter RTL measurements than the non-membrane-based method when calibrated against an identical calibrator. However, these differences were not statistically detectable when a MS calibrator was used to calculate RTL. This approach produced RTL measurements that were highly correlated across extraction methods (r > 0.76) and had coefficients of variation lower than 10% across plates of identical samples extracted by different methods. Our results are consistent with previous findings that popular membrane-based DNA extraction methods may lead to shorter RTL measurements than non-membrane-based methods. However, we also demonstrate that these differences can be accounted for by using an extraction method-specific calibrator, offering researchers a simple means of accounting for

  4. DNA Amplification by Breakage/Fusion/Bridge Cycles Initiated by Spontaneous Telomere Loss in a Human Cancer Cell Line

    Directory of Open Access Journals (Sweden)

    Anthony W.l. Lo

    2002-01-01

    Full Text Available The development of genomic instability is an important step in generatingthe multiple genetic changes required for cancer. One consequence of genomic instability is the overexpression of oncogenes due to gene amplification. One mechanism for gene amplification is the breakagelfusionlbridge (B/F/Bcyclethatinvolvesthe repeated fusion and breakage of chromosomes following the loss of a telomere. B/F/B cycles have been associated with low-copy gene amplification in human cancer cells, and have been proposed to be an initiating event in high-copy gene amplification. We have found that spontaneous telomere loss on a marker chromosome 16 in a human tumor cell line results in sister chromatid fusion and prolonged periods of chromosome instability. The high rate of anaphase bridges involving chromosome 16 demonstrates that this instability results from B/F/B cycles. The amplification of subtelomeric DNA on the marker chromosome provides conclusive evidence that B/F/B cycles initiated by spontaneous telomere loss are a mechanism for gene amplification in human cancer cells.

  5. Linking of Antitumor trans NHC-Pt(II) Complexes to G-Quadruplex DNA Ligand for Telomeric Targeting.

    Science.gov (United States)

    Betzer, Jean-François; Nuter, Frédérick; Chtchigrovsky, Mélanie; Hamon, Florian; Kellermann, Guillaume; Ali, Samar; Calméjane, Marie-Ange; Roque, Sylvain; Poupon, Joël; Cresteil, Thierry; Teulade-Fichou, Marie-Paule; Marinetti, Angela; Bombard, Sophie

    2016-06-15

    G-quadruplex structures (G4) are promising anticancerous targets. A great number of small molecules targeting these structures have already been identified through biophysical methods. In cellulo, some of them are able to target either telomeric DNA and/or some sequences involved in oncogene promotors, both resulting in cancer cell death. However, only a few of them are able to bind to these structures G4 irreversibly. Here we combine within the same molecule the G4-binding agent PDC (pyridodicarboxamide) with a N-heterocyclic carbene-platinum complex NHC-Pt already identified for its antitumor properties. The resulting conjugate platinum complex NHC-Pt-PDC stabilizes strongly G-quadruplex structures in vitro, with affinity slightly affected as compared to PDC. In addition, we show that the new conjugate binds preferentially and irreversibly the quadruplex form of the human telomeric sequence with a profile in a way different from that of NHC-Pt thereby indicating that the platination reaction is oriented by stacking of the PDC moiety onto the G4-structure. In cellulo, NHC-Pt-PDC induces a significant loss of TRF2 from telomeres that is considerably more important than the effect of its two components alone, PDC and NHC-Pt, respectively.

  6. Genetic evidence for single-strand lesions initiating Nbs1-dependent homologous recombination in diversification of Ig v in chicken B lymphocytes.

    Directory of Open Access Journals (Sweden)

    Makoto Nakahara

    2009-01-01

    Full Text Available Homologous recombination (HR is initiated by DNA double-strand breaks (DSB. However, it remains unclear whether single-strand lesions also initiate HR in genomic DNA. Chicken B lymphocytes diversify their Immunoglobulin (Ig V genes through HR (Ig gene conversion and non-templated hypermutation. Both types of Ig V diversification are initiated by AID-dependent abasic-site formation. Abasic sites stall replication, resulting in the formation of single-stranded gaps. These gaps can be filled by error-prone DNA polymerases, resulting in hypermutation. However, it is unclear whether these single-strand gaps can also initiate Ig gene conversion without being first converted to DSBs. The Mre11-Rad50-Nbs1 (MRN complex, which produces 3' single-strand overhangs, promotes the initiation of DSB-induced HR in yeast. We show that a DT40 line expressing only a truncated form of Nbs1 (Nbs1(p70 exhibits defective HR-dependent DSB repair, and a significant reduction in the rate--though not the fidelity--of Ig gene conversion. Interestingly, this defective gene conversion was restored to wild type levels by overproduction of Escherichia coli SbcB, a 3' to 5' single-strand-specific exonuclease, without affecting DSB repair. Conversely, overexpression of chicken Exo1 increased the efficiency of DSB-induced gene-targeting more than 10-fold, with no effect on Ig gene conversion. These results suggest that Ig gene conversion may be initiated by single-strand gaps rather than by DSBs, and, like SbcB, the MRN complex in DT40 may convert AID-induced lesions into single-strand gaps suitable for triggering HR. In summary, Ig gene conversion and hypermutation may share a common substrate-single-stranded gaps. Genetic analysis of the two types of Ig V diversification in DT40 provides a unique opportunity to gain insight into the molecular mechanisms underlying the filling of gaps that arise as a consequence of replication blocks at abasic sites, by HR and error

  7. Telomeres: Implications for Cancer Development

    Directory of Open Access Journals (Sweden)

    Aina Bernal

    2018-01-01

    Full Text Available Telomeres facilitate the protection of natural ends of chromosomes from constitutive exposure to the DNA damage response (DDR. This is most likely achieved by a lariat structure that hides the linear telomeric DNA through protein-protein and protein-DNA interactions. The telomere shortening associated with DNA replication in the absence of a compensatory mechanism culminates in unmasked telomeres. Then, the subsequent activation of the DDR will define the fate of cells according to the functionality of cell cycle checkpoints. Dysfunctional telomeres can suppress cancer development by engaging replicative senescence or apoptotic pathways, but they can also promote tumour initiation. Studies in telomere dynamics and karyotype analysis underpin telomere crisis as a key event driving genomic instability. Significant attainment of telomerase or alternative lengthening of telomeres (ALT-pathway to maintain telomere length may be permissive and required for clonal evolution of genomically-unstable cells during progression to malignancy. We summarise current knowledge of the role of telomeres in the maintenance of chromosomal stability and carcinogenesis.

  8. Repair of UV-induced DNA lesions in natural Saccharomyces cerevisiae telomeres is moderated by Sir2 and Sir3, and inhibited by yKu-Sir4 interaction.

    Science.gov (United States)

    Guintini, Laetitia; Tremblay, Maxime; Toussaint, Martin; D'Amours, Annie; Wellinger, Ralf E; Wellinger, Raymund J; Conconi, Antonio

    2017-05-05

    Ultraviolet light (UV) causes DNA damage that is removed by nucleotide excision repair (NER). UV-induced DNA lesions must be recognized and repaired in nucleosomal DNA, higher order structures of chromatin and within different nuclear sub-compartments. Telomeric DNA is made of short tandem repeats located at the ends of chromosomes and their maintenance is critical to prevent genome instability. In Saccharomyces cerevisiae the chromatin structure of natural telomeres is distinctive and contingent to telomeric DNA sequences. Namely, nucleosomes and Sir proteins form the heterochromatin like structure of X-type telomeres, whereas a more open conformation is present at Y'-type telomeres. It is proposed that there are no nucleosomes on the most distal telomeric repeat DNA, which is bound by a complex of proteins and folded into higher order structure. How these structures affect NER is poorly understood. Our data indicate that the X-type, but not the Y'-type, sub-telomeric chromatin modulates NER, a consequence of Sir protein-dependent nucleosome stability. The telomere terminal complex also prevents NER, however, this effect is largely dependent on the yKu-Sir4 interaction, but Sir2 and Sir3 independent. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  9. Diminished telomeric 3' overhangs are associated with telomere dysfunction in Hoyeraal-Hreidarsson syndrome.

    Directory of Open Access Journals (Sweden)

    Noa Lamm

    Full Text Available BACKGROUND: Eukaryotic chromosomes end with telomeres, which in most organisms are composed of tandem DNA repeats associated with telomeric proteins. These DNA repeats are synthesized by the enzyme telomerase, whose activity in most human tissues is tightly regulated, leading to gradual telomere shortening with cell divisions. Shortening beyond a critical length causes telomere uncapping, manifested by the activation of a DNA damage response (DDR and consequently cell cycle arrest. Thus, telomere length limits the number of cell divisions and provides a tumor-suppressing mechanism. However, not only telomere shortening, but also damaged telomere structure, can cause telomere uncapping. Dyskeratosis Congenita (DC and its severe form Hoyeraal-Hreidarsson Syndrome (HHS are genetic disorders mainly characterized by telomerase deficiency, accelerated telomere shortening, impaired cell proliferation, bone marrow failure, and immunodeficiency. METHODOLOGY/PRINCIPAL FINDINGS: We studied the telomere phenotypes in a family affected with HHS, in which the genes implicated in other cases of DC and HHS have been excluded, and telomerase expression and activity appears to be normal. Telomeres in blood leukocytes derived from the patients were severely short, but in primary fibroblasts they were normal in length. Nevertheless, a significant fraction of telomeres in these fibroblasts activated DDR, an indication of their uncapped state. In addition, the telomeric 3' overhangs are diminished in blood cells and fibroblasts derived from the patients, consistent with a defect in telomere structure common to both cell types. CONCLUSIONS/SIGNIFICANCE: Altogether, these results suggest that the primary defect in these patients lies in the telomere structure, rather than length. We postulate that this defect hinders the access of telomerase to telomeres, thus causing accelerated telomere shortening in blood cells that rely on telomerase to replenish their telomeres

  10. Diminished Telomeric 3′ Overhangs Are Associated with Telomere Dysfunction in Hoyeraal-Hreidarsson Syndrome

    Science.gov (United States)

    Lamm, Noa; Ordan, Elly; Shponkin, Rotem; Richler, Carmelit; Aker, Memet; Tzfati, Yehuda

    2009-01-01

    Background Eukaryotic chromosomes end with telomeres, which in most organisms are composed of tandem DNA repeats associated with telomeric proteins. These DNA repeats are synthesized by the enzyme telomerase, whose activity in most human tissues is tightly regulated, leading to gradual telomere shortening with cell divisions. Shortening beyond a critical length causes telomere uncapping, manifested by the activation of a DNA damage response (DDR) and consequently cell cycle arrest. Thus, telomere length limits the number of cell divisions and provides a tumor-suppressing mechanism. However, not only telomere shortening, but also damaged telomere structure, can cause telomere uncapping. Dyskeratosis Congenita (DC) and its severe form Hoyeraal-Hreidarsson Syndrome (HHS) are genetic disorders mainly characterized by telomerase deficiency, accelerated telomere shortening, impaired cell proliferation, bone marrow failure, and immunodeficiency. Methodology/Principal Findings We studied the telomere phenotypes in a family affected with HHS, in which the genes implicated in other cases of DC and HHS have been excluded, and telomerase expression and activity appears to be normal. Telomeres in blood leukocytes derived from the patients were severely short, but in primary fibroblasts they were normal in length. Nevertheless, a significant fraction of telomeres in these fibroblasts activated DDR, an indication of their uncapped state. In addition, the telomeric 3′ overhangs are diminished in blood cells and fibroblasts derived from the patients, consistent with a defect in telomere structure common to both cell types. Conclusions/Significance Altogether, these results suggest that the primary defect in these patients lies in the telomere structure, rather than length. We postulate that this defect hinders the access of telomerase to telomeres, thus causing accelerated telomere shortening in blood cells that rely on telomerase to replenish their telomeres. In addition, it

  11. Diet, nutrition and telomere length.

    Science.gov (United States)

    Paul, Ligi

    2011-10-01

    The ends of human chromosomes are protected by DNA-protein complexes termed telomeres, which prevent the chromosomes from fusing with each other and from being recognized as a double-strand break by DNA repair proteins. Due to the incomplete replication of linear chromosomes by DNA polymerase, telomeric DNA shortens with repeated cell divisions until the telomeres reach a critical length, at which point the cells enter senescence. Telomere length is an indicator of biological aging, and dysfunction of telomeres is linked to age-related pathologies like cardiovascular disease, Parkinson disease, Alzheimer disease and cancer. Telomere length has been shown to be positively associated with nutritional status in human and animal studies. Various nutrients influence telomere length potentially through mechanisms that reflect their role in cellular functions including inflammation, oxidative stress, DNA integrity, DNA methylation and activity of telomerase, the enzyme that adds the telomeric repeats to the ends of the newly synthesized DNA. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Comparative analysis of chromosomal localization of ribosomal and telomeric DNA markers in three species of Pyrgomorphidae grasshoppers.

    Science.gov (United States)

    Buleu, Olesya G; Jetybayev, Ilyas Y; Bugrov, Alexander G

    2017-01-01

    The karyotypes of three species of Pyrgomorphidae grasshoppers were studied: Zonocerus elegans (Thunberg, 1815), Pyrgomorpha guentheri (Burr, 1899) and Atractomorpha lata (Mochulsky, 1866). Data on karyotypes of P. guentheri and Z. elegans are reported here for the first time. All species have karyotypes consisting of 19 acrocentric chromosomes in males and 20 acrocentric chromosomes in females (2n♂=19, NF=19; 2n♀=20, NF=20) and X0/XX sex determination system. A comparative analysis of the localization of C-heterochromatin, clusters of ribosomal DNA, and telomere repeats revealed inter-species diversity in these cytogenetic markers. These differences indicate that the karyotype divergence in the species studied is not associated with structural chromosome rearrangements, but with the evolution of repeated DNA sequences.

  13. Comparative analysis of chromosomal localization of ribosomal and telomeric DNA markers in three species of Pyrgomorphidae grasshoppers

    Directory of Open Access Journals (Sweden)

    Olesya G. Buleu

    2017-09-01

    Full Text Available The karyotypes of three species of Pyrgomorphidae grasshoppers were studied: Zonocerus elegans (Thunberg, 1815, Pyrgomorpha guentheri (Burr, 1899 and Atractomorpha lata (Mochulsky, 1866. Data on karyotypes of P. guentheri and Z. elegans are reported here for the first time. All species have karyotypes consisting of 19 acrocentric chromosomes in males and 20 acrocentric chromosomes in females (2n♂=19, NF=19; 2n♀=20, NF=20 and X0/XX sex determination system. A comparative analysis of the localization of C-heterochromatin, clusters of ribosomal DNA, and telomere repeats revealed inter-species diversity in these cytogenetic markers. These differences indicate that the karyotype divergence in the species studied is not associated with structural chromosome rearrangements, but with the evolution of repeated DNA sequences.

  14. Detection of hepatitis A virus by hybridization with single-stranded RNA probes

    International Nuclear Information System (INIS)

    Xi, J.; Estes, M.K.; Metcalf, T.G.

    1987-01-01

    An improved method of dot-blot hybridization to detect hepatitis A virus (HAV) was developed with single-stranded RNA (ssRNA) probes. Radioactive and nonradioactive ssRNA probes were generated by in vitro transcription of HAV templates inserted into the plasmid pGEM-1. 32 P-labeled ssRNA probes were at least eightfold more sensitive than the 32 P-labeled double-stranded cDNA counterparts, whereas biotin-labeled ssRNA probes showed a sensitivity comparable with that of the 32 P-labeled double-stranded cDNA counterparts. Hybridization of HAV with the ssRNA probes at high stringency revealed specific reactions with a high signal-to-noise ratio. The differential hybridization reactions seen with probes of positive and negative sense (compared with HAV genomic RNA) were used to detect HAV in clinical and field samples. A positive/negative ratio was introduced as an indicator that permitted an semiquantitative expression of a positive HAV reaction. Good agreement of this indicator was observed with normal stool samples and with HAV-seeded samples. By using this system, HAV was detected in estuarine and freshwater samples collected from a sewage-polluted bayou in Houston and a saltwater tributary of Galveston Bay

  15. Dynamic DNA binding, junction recognition and G4 melting activity underlie the telomeric and genome-wide roles of human CST.

    Science.gov (United States)

    Bhattacharjee, Anukana; Wang, Yongyao; Diao, Jiajie; Price, Carolyn M

    2017-12-01

    Human CST (CTC1-STN1-TEN1) is a ssDNA-binding complex that helps resolve replication problems both at telomeres and genome-wide. CST resembles Replication Protein A (RPA) in that the two complexes harbor comparable arrays of OB-folds and have structurally similar small subunits. However, the overall architecture and functions of CST and RPA are distinct. Currently, the mechanism underlying CST action at diverse replication issues remains unclear. To clarify CST mechanism, we examined the capacity of CST to bind and resolve DNA structures found at sites of CST activity. We show that CST binds preferentially to ss-dsDNA junctions, an activity that can explain the incremental nature of telomeric C-strand synthesis following telomerase action. We also show that CST unfolds G-quadruplex structures, thus providing a mechanism for CST to facilitate replication through telomeres and other GC-rich regions. Finally, smFRET analysis indicates that CST binding to ssDNA is dynamic with CST complexes undergoing concentration-dependent self-displacement. These findings support an RPA-based model where dissociation and re-association of individual OB-folds allow CST to mediate loading and unloading of partner proteins to facilitate various aspects of telomere replication and genome-wide resolution of replication stress. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  16. Long G2 accumulates recombination intermediates and disturbs chromosome segregation at dysfunction telomere in Schizosaccharomyces pombe

    Energy Technology Data Exchange (ETDEWEB)

    Habib, Ahmed G.K.; Masuda, Kenta; Yukawa, Masashi; Tsuchiya, Eiko [Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8530 (Japan); Ueno, Masaru, E-mail: scmueno@hiroshima-u.ac.jp [Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8530 (Japan); Research Center for the Mathematics on Chromatin Live Dynamics, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8530 (Japan)

    2015-08-14

    Protection of telomere (Pot1) is a single-stranded telomere binding protein which is essential for chromosome ends protection. Fission yeast Rqh1 is a member of RecQ helicases family which has essential roles in the maintenance of genomic stability and regulation of homologous recombination. Double mutant between fission yeast pot1Δ and rqh1 helicase dead (rqh1-hd) maintains telomere by homologous recombination. In pot1Δ rqh1-hd double mutant, recombination intermediates accumulate near telomere which disturb chromosome segregation and make cells sensitive to microtubule inhibitors thiabendazole (TBZ). Deletion of chk1{sup +} or mutation of its kinase domain shortens the G2 of pot1Δ rqh1-hd double mutant and suppresses both the accumulation of recombination intermediates and the TBZ sensitivity of that double mutant. In this study, we asked whether the long G2 is the reason for the TBZ sensitivity of pot1Δ rqh1-hd double mutant. We found that shortening the G2 of pot1Δ rqh1-hd double mutant by additional mutations of wee1 and mik1 or gain of function mutation of Cdc2 suppresses both the accumulation of recombination intermediates and the TBZ sensitivity of pot1Δ rqh1-hd double mutant. Our results suggest that long G2 of pot1Δ rqh1-hd double mutant may allow time for the accumulation of recombination intermediates which disturb chromosome segregation and make cells sensitive to TBZ. - Ηighlights: • We show link between long G2 and accumulation of toxic recombination intermediates. • Accumulation of recombination intermediates at telomere results in TBZ sensitivity. • Activation of DNA damage checkpoint worsens cells' viability in presence of TBZ.

  17. Screening for Breast Cancer Using Near-Field Infrared Spectroscopy of a Single Strand of Hair

    National Research Council Canada - National Science Library

    Erramilli, Shyamsunder

    2003-01-01

    .... In this study, we have successfully developed a new infrared method for the detection in a single strand of hair the presence of lipid deposits that were the putative cause of the observed x-ray patterns...

  18. Novel telomere-anchored PCR approach for studying sexual stage telomeres in Aspergillus nidulans.

    Directory of Open Access Journals (Sweden)

    Nengding Wang

    Full Text Available Telomere length varies between germline and somatic cells of the same organism, leading to the hypothesis that telomeres are lengthened during meiosis. However, little is known about the meiotic telomere length in many organisms. In the filamentous fungus Aspergillus nidulans, the telomere lengths in hyphae and asexual spores are invariant. No study using existing techniques has determined the telomere length of the sexual ascospores due to the relatively low abundance of pure meiotic cells in A. nidulans and the small quantity of DNA present. To address this, we developed a simple and sensitive PCR strategy to measure the telomere length of A. nidulans meiotic cells. This novel technique, termed "telomere-anchored PCR," measures the length of the telomere on chromosome II-L using a small fraction of the DNA required for the traditional terminal restriction fragment (TRF Southern analysis. Using this approach, we determined that the A. nidulans ascospore telomere length is virtually identical to telomeres of other cell types from this organism, approximately 110 bp, indicating that a surprisingly strict telomere length regulation exists in the major cell types of A. nidulans. When the hyphal telomeres were measured in a telomerase reverse transcriptase (TERT knockout strain, small decreases in length were readily detected. Thus, this technique can detect telomeres in relatively rare cell types and is particularly sensitive in measuring exceptionally short telomeres. This rapid and inexpensive telomere-anchored PCR method potentially can be utilized in other filamentous fungi and types of organisms.

  19. Telomere Biology and Thoracic Aortic Aneurysm

    Directory of Open Access Journals (Sweden)

    Thomas Aschacher

    2017-12-01

    Full Text Available Ascending aortic aneurysms are mostly asymptomatic and present a great risk of aortic dissection or perforation. Consequently, ascending aortic aneurysms are a source of lethality with increased age. Biological aging results in progressive attrition of telomeres, which are the repetitive DNA sequences at the end of chromosomes. These telomeres play an important role in protection of genomic DNA from end-to-end fusions. Telomere maintenance and telomere attrition-associated senescence of endothelial and smooth muscle cells have been indicated to be part of the pathogenesis of degenerative vascular diseases. This systematic review provides an overview of telomeres, telomere-associated proteins and telomerase to the formation and progression of aneurysms of the thoracic ascending aorta. A better understanding of telomere regulation in the vascular pathology might provide new therapeutic approaches. Measurements of telomere length and telomerase activity could be potential prognostic biomarkers for increased risk of death in elderly patients suffering from an aortic aneurysm.

  20. Drosophila atm/telomere fusion is required for telomeric localization of HP1 and telomere position effect

    OpenAIRE

    Oikemus, Sarah R.; McGinnis, Nadine; Queiroz-Machado, Joana; Tukachinsky, Hanna; Takada, Saeko; Sunkel, Claudio E.; Brodsky, Michael H.

    2004-01-01

    Terminal deletions of Drosophila chromosomes can be stably protected from end-to-end fusion despite the absence of all telomere-associated sequences. The sequence-independent protection of these telomeres suggests that recognition of chromosome ends might contribute to the epigenetic protection of telomeres. In mammals, Ataxia Telangiectasia Mutated (ATM) is activated by DNA damage and acts through an unknown, telomerase-independent mechanism to regulate telomere length and protection. We dem...

  1. New Method for Differentiation of Granuloviruses (Betabaculoviruses Based on Multitemperature Single Stranded Conformational Polymorphism

    Directory of Open Access Journals (Sweden)

    Martyna Krejmer-Rabalska

    2017-12-01

    Full Text Available Baculoviruses have been used as biopesticides for decades. Recently, due to the excessive use of chemical pesticides there is a need for finding new agents that may be useful in biological protection. Sometimes few isolates or species are discovered in one host. In the past few years, many new baculovirus species have been isolated from environmental samples, thoroughly characterized and thanks to next generation sequencing methods their genomes are being deposited in the GenBank database. Next generation sequencing (NGS methodology is the most certain way of detection, but it has many disadvantages. During our studies, we have developed a method based on Polymerase chain reaction (PCR followed by Multitemperature Single Stranded Conformational Polymorphism (MSSCP which allows for distinguishing new granulovirus isolates in only a few hours and at low-cost. On the basis of phylogenetic analysis of betabaculoviruses, representative species have been chosen. The alignment of highly conserved genes—granulin and late expression factor-9, was performed and the degenerate primers were designed to amplify the most variable, short DNA fragments flanked with the most conserved sequences. Afterwards, products of PCR reaction were analysed by MSSCP technique. In our opinion, the proposed method may be used for screening of new isolates derived from environmental samples.

  2. Solution structure of the Arabidopsis thaliana telomeric repeat-binding protein DNA binding domain: a new fold with an additional C-terminal helix.

    Science.gov (United States)

    Sue, Shih-Che; Hsiao, Hsin-Hao; Chung, Ben C-P; Cheng, Ying-Hsien; Hsueh, Kuang-Lung; Chen, Chung Mong; Ho, Chia Hsing; Huang, Tai-Huang

    2006-02-10

    The double-stranded telomeric repeat-binding protein (TRP) AtTRP1 is isolated from Arabidopsis thaliana. Using gel retardation assays, we defined the C-terminal 97 amino acid residues, Gln464 to Val560 (AtTRP1(464-560)), as the minimal structured telomeric repeat-binding domain. This region contains a typical Myb DNA-binding motif and a C-terminal extension of 40 amino acid residues. The monomeric AtTRP1(464-560) binds to a 13-mer DNA duplex containing a single repeat of an A.thaliana telomeric DNA sequence (GGTTTAG) in a 1:1 complex, with a K(D) approximately 10(-6)-10(-7) M. Nuclear magnetic resonance (NMR) examination revealed that the solution structure of AtTRP1(464-560) is a novel four-helix tetrahedron rather than the three-helix bundle structure found in typical Myb motifs and other TRPs. Binding of the 13-mer DNA duplex to AtTRP1(464-560) induced significant chemical shift perturbations of protein amide resonances, which suggests that helix 3 (H3) and the flexible loop connecting H3 and H4 are essential for telomeric DNA sequence recognition. Furthermore, similar to that in hTRF1, the N-terminal arm likely contributes to or stabilizes DNA binding. Sequence comparisons suggested that the four-helix structure and the involvement of the loop residues in DNA binding may be features unique to plant TRPs.

  3. Effective screen of CRISPR/Cas9-induced mutants in rice by single-strand conformation polymorphism.

    Science.gov (United States)

    Zheng, Xuelian; Yang, Shixin; Zhang, Dengwei; Zhong, Zhaohui; Tang, Xu; Deng, Kejun; Zhou, Jianping; Qi, Yiping; Zhang, Yong

    2016-07-01

    A method based on DNA single-strand conformation polymorphism is demonstrated for effective genotyping of CRISPR/Cas9-induced mutants in rice. Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9) has been widely adopted for genome editing in many organisms. A large proportion of mutations generated by CRISPR/Cas9 are very small insertions and deletions (indels), presumably because Cas9 generates blunt-ended double-strand breaks which are subsequently repaired without extensive end-processing. CRISPR/Cas9 is highly effective for targeted mutagenesis in the important crop, rice. For example, homozygous mutant seedlings are commonly recovered from CRISPR/Cas9-treated calli. However, many current mutation detection methods are not very suitable for screening homozygous mutants that typically carry small indels. In this study, we tested a mutation detection method based on single-strand conformational polymorphism (SSCP). We found it can effectively detect small indels in pilot experiments. By applying the SSCP method for CRISRP-Cas9-mediated targeted mutagenesis in rice, we successfully identified multiple mutants of OsROC5 and OsDEP1. In conclusion, the SSCP analysis will be a useful genotyping method for rapid identification of CRISPR/Cas9-induced mutants, including the most desirable homozygous mutants. The method also has high potential for similar applications in other plant species.

  4. Shedding lights on the flexible-armed porphyrins: Human telomeric G4 DNA interaction and cell photocytotoxicity research.

    Science.gov (United States)

    Sun, Xiang-Yu; Zhao, Ping; Jin, Shu-Fang; Liu, Min-Chao; Wang, Xia-Hong; Huang, Yu-Min; Cheng, Zhen-Feng; Yan, Si-Qi; Li, Yan-Yu; Chen, Ya-Qing; Zhong, Yan-Mei

    2017-08-01

    DNA polymorphism exerts a fascination on a large scientific community. Without crystallographic structural data, clarification of the binding modes between G-quadruplex (G4) and ligand (complex) is a challenging job. In the present work, three porphyrin compounds with different flexible carbon chains (arms) were designed, synthesized and characterized. Their binding, folding and stabilizing abilities to human telomeric G4 DNA structures were comparatively researched. Positive charges at the end of the flexible carbon chains seem to be favorable for the DNA-porphyrin interactions, which were evidenced by the spectral results and further confirmed by the molecular docking calculations. Biological function analysis demonstrated that these porphyrins show no substantial inhibition to Hela, A549 and BEL 7402 cancer cell lines under dark while exhibit broad inhibition under visible light. This significantly enhanced photocytotoxicity relative to the dark control is an essential property of photochemotherapeutic agents. The feature of the flexible arms emerges as critical influencing factors in the cell photocytotoxicity. Moreover, an ROS-mediated mitochondrial dysfunction pathway was suggested for the cell apoptosis induced by these flexible-armed porphyrins. It is found that the porphyrins with positive charges located at the end of the flexible arms represent an exciting opportunity for photochemotherapeutic anti-cancer drug design. Copyright © 2017. Published by Elsevier B.V.

  5. A high throughput system for the preparation of single stranded templates grown in microculture.

    Science.gov (United States)

    Kolner, D E; Guilfoyle, R A; Smith, L M

    1994-01-01

    A high throughput system for the preparation of single stranded M13 sequencing templates is described. Supernatants from clones grown in 48-well plates are treated with a chaotropic agent to dissociate the phage coat protein. Using a semi-automated cell harvester, the free nucleic acid is bound to a glass fiber filter in the presence of chaotrope and then washed with ethanol by aspiration. Individual glass fiber discs are punched out on the cell harvester and dried briefly. The DNA samples are then eluted in water by centrifugation. The processing time from 96 microcultures to sequence quality templates is approximately 1 hr. Assuming the ability to sequence 400 bases per clone, a 0.5 megabase per day genome sequencing facility will require 6250 purified templates a week. Toward accomplishing this goal we have developed a procedure which is a modification of a method that uses a chaotropic agent and glass fiber filter (Kristensen et al., 1987). By exploiting the ability of a cell harvester to uniformly aspirate and wash 96 samples, a rapid system for high quality template preparation has been developed. Other semi-automated systems for template preparation have been developed using commercially available robotic workstations like the Biomek (Mardis and Roe, 1989). Although minimal human intervention is required, processing time is at least twice as long. Custom systems based on paramagnetic beads (Hawkins et al., 1992) produce DNA in insufficient quantity for direct sequencing and therefore require cycle sequencing. These systems require custom programing, have a fairly high initial cost and have not proven to be as fast as the method reported here.

  6. Identification of five novel FBN1 mutations by non-radioactive single-strand conformation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Liu, W.; Qian, C.; Comeau, K.; Francke, U. [Stanford Univ. Medical Center, Stanford, CA (United States)

    1994-09-01

    Marfan syndrome (MFS), one of the most common genetic disorders of connective tissue, is characterized by variable manifestations in skeletal, cardiovascular and ocular systems. Mutations in the fibrillin gene on chromosome 15 (FBN1) have been shown to cause MFS. To examine the relationship between FBN1 gene mutations, fibrillin protein function and MFS phenotypes, we screened for alternations in the fibrillin coding sequence in fibroblast derived cDNA from MFS patients. To date, abnormally migrating bands in more than 20 unrelated MFS patients have been identified by using non-radioactive single-strand conformation analysis and silver staining. Five altered bands have been directly sequenced. Two missense mutations and three splice site mutations have been identified. Both missense mutations substitute another amino acid for a cysteine residue (C1402W and C1672R) in EGF-like motifs of the fibrillin polypeptide chain. The two splice site mutations are at nucleotide positions 6994+1 (G{yields}A), and 7205-2 (A{yields}G) and result in in-frame skipping of exon 56 and 58, respectively. Skipping of exon 56 occurs in 50% of mutant transcripts. Use of a cryptic splice site 51 bp upstream of the normal donor site results in half of the mutant transcripts containing part of exon 56. Both products contain in-frame deletions. Another splice site mutation, identified by exon screening from patient genomic DNA using intron primers, is at nucleotide position 2293+2 (T{yields}A), but the predicted exon skipping has not been detected at the RT-PCR level. This may be due to instability of the mutant transcript. Including the mutations reported here, a total of 8 out of 36 published FBN1 gene mutations involve exon skipping. It may be inferred that FBN1 exon skipping plays an important pathogenic role in MFS.

  7. Drosophila atm/telomere fusion is required for telomeric localization of HP1 and telomere position effect.

    Science.gov (United States)

    Oikemus, Sarah R; McGinnis, Nadine; Queiroz-Machado, Joana; Tukachinsky, Hanna; Takada, Saeko; Sunkel, Claudio E; Brodsky, Michael H

    2004-08-01

    Terminal deletions of Drosophila chromosomes can be stably protected from end-to-end fusion despite the absence of all telomere-associated sequences. The sequence-independent protection of these telomeres suggests that recognition of chromosome ends might contribute to the epigenetic protection of telomeres. In mammals, Ataxia Telangiectasia Mutated (ATM) is activated by DNA damage and acts through an unknown, telomerase-independent mechanism to regulate telomere length and protection. We demonstrate that the Drosophila homolog of ATM is encoded by the telomere fusion (tefu) gene. In the absence of ATM, telomere fusions occur even though telomere-specific Het-A sequences are still present. High levels of spontaneous apoptosis are observed in ATM-deficient tissues, indicating that telomere dysfunction induces apoptosis in Drosophila. Suppression of this apoptosis by p53 mutations suggests that loss of ATM activates apoptosis through a DNA damage-response mechanism. Loss of ATM reduces the levels of heterochromatin protein 1 (HP1) at telomeres and suppresses telomere position effect. We propose that recognition of chromosome ends by ATM prevents telomere fusion and apoptosis by recruiting chromatin-modifying complexes to telomeres.

  8. Telomere dysfunction and chromosome instability

    Energy Technology Data Exchange (ETDEWEB)

    Murnane, John P., E-mail: jmurnane@radonc.ucsf.edu [Department of Radiation Oncology, University of California San Francisco, 2340 Sutter Street, San Francisco, CA 94143-1331 (United States)

    2012-02-01

    The ends of chromosomes are composed of a short repeat sequence and associated proteins that together form a cap, called a telomere, that keeps the ends from appearing as double-strand breaks (DSBs) and prevents chromosome fusion. The loss of telomeric repeat sequences or deficiencies in telomeric proteins can result in chromosome fusion and lead to chromosome instability. The similarity between chromosome rearrangements resulting from telomere loss and those found in cancer cells implicates telomere loss as an important mechanism for the chromosome instability contributing to human cancer. Telomere loss in cancer cells can occur through gradual shortening due to insufficient telomerase, the protein that maintains telomeres. However, cancer cells often have a high rate of spontaneous telomere loss despite the expression of telomerase, which has been proposed to result from a combination of oncogene-mediated replication stress and a deficiency in DSB repair in telomeric regions. Chromosome fusion in mammalian cells primarily involves nonhomologous end joining (NHEJ), which is the major form of DSB repair. Chromosome fusion initiates chromosome instability involving breakage-fusion-bridge (B/F/B) cycles, in which dicentric chromosomes form bridges and break as the cell attempts to divide, repeating the process in subsequent cell cycles. Fusion between sister chromatids results in large inverted repeats on the end of the chromosome, which amplify further following additional B/F/B cycles. B/F/B cycles continue until the chromosome acquires a new telomere, most often by translocation of the end of another chromosome. The instability is not confined to a chromosome that loses its telomere, because the instability is transferred to the chromosome donating a translocation. Moreover, the amplified regions are unstable and form extrachromosomal DNA that can reintegrate at new locations. Knowledge concerning the factors promoting telomere loss and its consequences is

  9. Telomeric repeat-containing RNA TERRA: a noncoding RNA connecting telomere biology to genome integrity.

    Science.gov (United States)

    Cusanelli, Emilio; Chartrand, Pascal

    2015-01-01

    Telomeres are dynamic nucleoprotein structures that protect the ends of chromosomes from degradation and activation of DNA damage response. For this reason, telomeres are essential to genome integrity. Chromosome ends are enriched in heterochromatic marks and proper organization of telomeric chromatin is important to telomere stability. Despite their heterochromatic state, telomeres are transcribed giving rise to long noncoding RNAs (lncRNA) called TERRA (telomeric repeat-containing RNA). TERRA molecules play critical roles in telomere biology, including regulation of telomerase activity and heterochromatin formation at chromosome ends. Emerging evidence indicate that TERRA transcripts form DNA-RNA hybrids at chromosome ends which can promote homologous recombination among telomeres, delaying cellular senescence and sustaining genome instability. Intriguingly, TERRA RNA-telomeric DNA hybrids are involved in telomere length homeostasis of telomerase-negative cancer cells. Furthermore, TERRA transcripts play a role in the DNA damage response (DDR) triggered by dysfunctional telomeres. We discuss here recent developments on TERRA's role in telomere biology and genome integrity, and its implication in cancer.

  10. Interactions of DNA binding proteins with G-Quadruplex structures at the single molecule level

    Science.gov (United States)

    Ray, Sujay

    Guanine-rich nucleic acid (DNA/RNA) sequences can form non-canonical secondary structures, known as G-quadruplex (GQ). Numerous in vivo and in vitro studies have demonstrated formation of these structures in telomeric and non-telomeric regions of the genome. Telomeric GQs protect the chromosome ends whereas non-telomeric GQs either act as road blocks or recognition sites for DNA metabolic machinery. These observations suggest the significance of these structures in regulation of different metabolic processes, such as replication and repair. GQs are typically thermodynamically more stable than the corresponding Watson-Crick base pairing formed by G-rich and C-rich strands, making protein activity a crucial factor for their destabilization. Inside the cell, GQs interact with different proteins and their enzymatic activity is the determining factor for their stability. We studied interactions of several proteins with GQs to understand the underlying principles of protein-GQ interactions using single-molecule FRET and other biophysical techniques. Replication Protein-A (RPA), a single stranded DNA (ssDNA) binding protein, is known to posses GQ unfolding activity. First, we compared the thermal stability of three potentially GQ-forming DNA sequences (PQS) to their stability against RPA-mediated unfolding. One of these sequences is the human telomeric repeat and the other two, located in the promoter region of tyrosine hydroxylase gene, are highly heterogeneous sequences that better represent PQS in the genome. The thermal stability of these structures do not necessarily correlate with their stability against protein-mediated unfolding. We conclude that thermal stability is not necessarily an adequate criterion for predicting the physiological viability of GQ structures. To determine the critical structural factors that influence protein-GQ interactions we studied two groups of GQ structures that have systematically varying loop lengths and number of G-tetrad layers. We

  11. Targeting G-quadruplex DNA structures in the telomere and oncogene promoter regions by benzimidazole‒carbazole ligands.

    Science.gov (United States)

    Kaulage, Mangesh H; Maji, Basudeb; Pasadi, Sanjeev; Ali, Asfa; Bhattacharya, Santanu; Muniyappa, K

    2018-03-25

    Recent studies support the idea that G-quadruplex structures in the promoter regions of oncogenes and telomere DNA can serve as potential therapeutic targets in the treatment of cancer. Accordingly, several different types of organic small molecules that stabilize G-quadruplex structures and inhibit telomerase activity have been discerned. Here, we describe the binding of benzimidazole-carbazole ligands to G-quadruplex structures formed in G-rich DNA sequences containing the promoter regions of human c-MYC, c-KIT1, c-KIT2, VEGF and BCL2 proto-oncogenes. The fluorescence spectroscopic data indicate that benzimidazole-carbazole ligands bind and stabilize the G-quadruplexes in the promoter region of oncogenes. The molecular docking studies provide insights into the mode and extent of binding of this class of ligands to the G-quadruplexes formed in oncogene promoters. The high stability of these G-quadruplex structures was validated by thermal denaturation and telomerase-catalyzed extension of the 3' end. Notably, benzimidazole-carbazole ligands suppress the expression of oncogenes in cancer cells in a dose-dependent manner. We anticipate that benzimidazole-carbazole ligands, by virtue of their ability to stabilize G-quadruplex structures in the promoter regions of oncogenes, might reduce the risk of cancer through the loss of function in the proteins encoded by these genes. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  12. Dysfunction of chromatin assembly Factor 1 induces shortening of telomeres and loss of 45S rDNA in Arabidopsis thaliana

    Czech Academy of Sciences Publication Activity Database

    Mozgová, I.; Mokroš, P.; Fajkus, Jiří

    2010-01-01

    Roč. 22, č. 8 (2010), s. 2768-2780 ISSN 1040-4651 R&D Projects: GA MŠk(CZ) LC06004 Grant - others:GA MŠk(CZ) GD204/08/H054 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : telomere * rDNA * chromatin assembly Subject RIV: BO - Biophysics Impact factor: 9.396, year: 2010

  13. Karyotypes, male meiosis and comparative FISH mapping of 18S ribosomal DNA and telomeric (TTAGGn repeat in eight species of true bugs (Hemiptera, Heteroptera

    Directory of Open Access Journals (Sweden)

    Snejana Grozeva

    2011-11-01

    Full Text Available Eight species belonging to five true bug families were analyzed using DAPI/CMA3-staining and fluorescence in situ hybridization (FISH with telomeric (TTAGGn and 18S rDNA probes. Standard chromosomal complements are reported for the first time for Deraeocoris rutilus (Herrich-Schäffer, 1838 (2n=30+2m+XY and D. ruber (Linnaeus, 1758 (2n=30+2m+XY from the family Miridae. Using FISH, the location of a 18S rDNA cluster was detected in these species and in five more species: Megaloceroea recticornis (Geoffroy, 1785 (2n=30+XY from the Miridae; Oxycarenus lavaterae (Fabricius, 1787 (2n=14+2m+XY from the Lygaeidae s.l.; Pyrrhocoris apterus (Linnaeus, 1758 (2n=22+X from the Pyrrhocoridae; Eurydema oleracea (Linnaeus, 1758 (2n=12+XY and Graphosoma lineatum (Linnaeus, 1758 (2n=12+XY from the Pentatomidae. The species were found to differ with respect to location of a 18S rRNA gene cluster which resides on autosomes in O. lavaterae and P. apterus, whereas it locates on sex chromosomes in other five species. The 18S rDNA location provides the first physical landmark of the genomes of the species studied. The insect consensus telomeric pentanucleotide (TTAGGn was demonstrated to be absent in all the species studied in this respect, D. rutilus, M. recticornis, Cimex lectularius Linnaeus, 1758 (Cimicidae, E. oleracea, and G. lineatum, supporting the hypothesis that this motif was lost in early evolution of the Heteroptera and secondarily replaced with another motif (yet unknown or the alternative telomerase-independent mechanisms of telomere maintenance. Dot-blot hybridization analysis of the genomic DNA from C. lectularius, Nabis sp. and O. lavaterae with (TTAGGn and six other telomeric probes likewise provided a negative result.

  14. Karyotypes, male meiosis and comparative FISH mapping of 18S ribosomal DNA and telomeric (TTAGG) n repeat in eight species of true bugs (Hemiptera, Heteroptera).

    Science.gov (United States)

    Grozeva, S; Kuznetsova, V G; Anokhin, B A

    2011-01-01

    Eight species belonging to five true bug families were analyzed using DAPI/CMA3-staining and fluorescence in situ hybridization (FISH) with telomeric (TTAGG)n and 18S rDNA probes. Standard chromosomal complements are reported for the first time for Deraeocoris rutilus (Herrich-Schäffer, 1838) (2n=30+2m+XY) and Deraeocoris ruber(Linnaeus, 1758) (2n=30+2m+XY) from the family Miridae. Using FISH, the location of a 18S rDNA cluster was detected in these species and in five more species: Megaloceroea recticornis (Geoffroy, 1785) (2n=30+XY) from the Miridae; Oxycarenus lavaterae (Fabricius, 1787) (2n=14+2m+XY) from the Lygaeidae s.l.; Pyrrhocoris apterus (Linnaeus, 1758) (2n=22+X) from the Pyrrhocoridae; Eurydema oleracea (Linnaeus, 1758) (2n=12+XY) and Graphosoma lineatum (Linnaeus, 1758) (2n=12+XY) from the Pentatomidae. The species were found to differ with respect to location of a 18S rRNA gene cluster which resides on autosomes in Oxycarenus lavaterae and Pyrrhocoris apterus, whereas it locates on sex chromosomes in other five species. The 18S rDNA location provides the first physical landmark of the genomes of the species studied. The insect consensus telomeric pentanucleotide (TTAGG)n was demonstrated to be absent in all the species studied in this respect, Deraeocoris rutilus, Megaloceroea recticornis, Cimex lectularius Linnaeus, 1758 (Cimicidae), Eurydema oleracea, and Graphosoma lineatum, supporting the hypothesis that this motif was lost in early evolution of the Heteroptera and secondarily replaced with another motif (yet unknown) or the alternative telomerase-independent mechanisms of telomere maintenance. Dot-blot hybridization analysis of the genomic DNA from Cimex lectularius, Nabis sp. and Oxycarenus lavaterae with (TTAGG)n and six other telomeric probes likewise provided a negative result.

  15. Screening for mutations in human alpha-globin genes by nonradioactive single-strand conformation polymorphism

    Directory of Open Access Journals (Sweden)

    Jorge S.B.

    2003-01-01

    Full Text Available Point mutations and small insertions or deletions in the human alpha-globin genes may produce alpha-chain structural variants and alpha-thalassemia. Mutations can be detected either by direct DNA sequencing or by screening methods, which select the mutated exon for sequencing. Although small (about 1 kb, 3 exons and 2 introns, the alpha-globin genes are duplicate (alpha2 and alpha1 and highy G-C rich, which makes them difficult to denature, reducing sequencing efficiency and causing frequent artifacts. We modified some conditions for PCR and electrophoresis in order to detect mutations in these genes employing nonradioactive single-strand conformation polymorphism (SSCP. Primers previously described by other authors for radioactive SSCP and phast-SSCP plus denaturing gradient gel electrophoresis were here combined and the resultant fragments (6 new besides 6 original per alpha-gene submitted to silver staining SSCP. Nine structural and one thalassemic mutations were tested, under different conditions including two electrophoretic apparatus (PhastSystem(TM and GenePhor(TM, Amersham Biosciences, different polyacrylamide gel concentrations, run temperatures and denaturing agents, and entire and restriction enzyme cut fragments. One hundred percent of sensitivity was achieved with four of the new fragments formed, using the PhastSystem(TM and 20% gels at 15ºC, without the need of restriction enzymes. This nonradioactive PCR-SSCP approach showed to be simple, rapid and sensitive, reducing the costs involved in frequent sequencing repetitions and increasing the reliability of the results. It can be especially useful for laboratories which do not have an automated sequencer.

  16. Rapid Synthesis of a Long Double-Stranded Oligonucleotide from a Single-Stranded Nucleotide Using Magnetic Beads and an Oligo Library.

    Directory of Open Access Journals (Sweden)

    Sumate Pengpumkiat

    Full Text Available Chemical synthesis of oligonucleotides is a widely used tool in the field of biochemistry. Several methods for gene synthesis have been introduced in the growing area of genomics. In this paper, a novel method of constructing dsDNA is proposed. Short (28-mer oligo fragments from a library were assembled through successive annealing and ligation processes, followed by PCR. First, two oligo fragments annealed to form a dsDNA molecule. The double-stranded oligo was immobilized onto magnetic beads (solid support via streptavidin-biotin binding. Next, single-stranded oligo fragments were added successively through ligation to form the complete DNA molecule. The synthesized DNA was amplified through PCR and gel electrophoresis was used to characterize the product. Sanger sequencing showed that more than 97% of the nucleotides matched the expected sequence. Extending the length of the DNA molecule by adding single-stranded oligonucleotides from a basis set (library via ligation enables a more convenient and rapid mechanism for the design and synthesis of oligonucleotides on the go. Coupled with an automated dispensing system and libraries of short oligo fragments, this novel DNA synthesis method would offer an efficient and cost-effective method for producing dsDNA.

  17. Screening for Breast Cancer Using Near Field Infrared Spectroscopy of a Single Strand of Hair

    National Research Council Canada - National Science Library

    Erramilli, Shyamsunder

    2001-01-01

    ... predisposition to breast cancer because of the breast of a mutation of the BRCA1 gene. We would like to develop a new method for the screening of breast cancer based on infrared spectroscopy of a single strand of human hair...

  18. Phenylketonuria in The Netherlands : 93% of the mutations are detected by single-strand conformation analysis

    NARCIS (Netherlands)

    vanderSijsBos, CJM; Diepstraten, CM; Juyn, JA; Plaisier, M; Giltay, JC; vanSpronsen, FJ; Smit, GPA; Berger, R; Smeitink, JAM; PollThe, BT; vanAmstel, JKP

    1996-01-01

    Single-strand conformational analysis was used to screen for genetic defects in all thirteen exons of the phenylalanine hydroxylase gene (PAH) in phenylketonuria and hyperphenylalaninemia patients in the Netherlands. Exons that showed a bandshift were sequenced directly, In this way, we were able to

  19. Data for increase of Lymantria dispar male survival after topical application of single-stranded RING domain fragment of IAP-3 gene of its nuclear polyhedrosis virus

    Science.gov (United States)

    Oberemok, Volodymyr V.; Laikova, Kateryna V.; Zaitsev, Aleksei S.; Gushchin, Vladimir A.; Skorokhod, Oleksii A.

    2016-01-01

    This data article is related to the research article entitled “The RING for gypsy moth control: topical application of fragment of its nuclear polyhedrosis virus anti-apoptosis gene as insecticide” [1]. This article reports on significantly higher survival of gypsy moth Lymantria dispar male individuals in response to topical application of single-stranded DNA, based on RING (really interesting new gene) domain fragment of LdMNPV (L. dispar multicapsid nuclear polyhedrosis virus) IAP-3 (inhibitor of apoptosis) gene and acted as DNA insecticide. PMID:27054151

  20. A single-strand specific lesion drives MMS-induced hyper-mutability at a double-strand break in yeast.

    Science.gov (United States)

    Yang, Yong; Gordenin, Dmitry A; Resnick, Michael A

    2010-08-05

    Localized hyper-mutability (LHM) can be important in evolution, immunity, and genetic diseases. We previously reported that single-strand DNA (ssDNA) can be an important source of damage-induced LHM in yeast. Here, we establish that the generation of LHM by methyl methanesulfonate (MMS) during repair of a chromosomal double-strand break (DSB) can result in over 0.2 mutations/kb, which is approximately 20,000-fold higher than the MMS-induced mutation density without a DSB. The MMS-induced mutations associated with DSB repair were primarily due to substitutions via translesion DNA synthesis at damaged cytosines, even though there are nearly 10 times more MMS-induced lesions at other bases. Based on this mutation bias, the promutagenic lesion dominating LHM is likely 3-methylcytosine, which is single-strand specific. Thus, the dramatic increase in mutagenesis at a DSB is concluded to result primarily from the generation of non-repairable lesions in ssDNA associated with DSB repair along with efficient induction of highly mutagenic ssDNA-specific lesions. These findings with MMS-induced LHM have broad biological implications for unrepaired damage generated in ssDNA and possibly ssRNA. Published by Elsevier B.V.

  1. Telomere functions grounding on TERRA firma.

    Science.gov (United States)

    Azzalin, Claus M; Lingner, Joachim

    2015-01-01

    Long noncoding telomeric repeat-containing RNAs - TERRAs - are transcribed in a regulated manner from telomeres throughout eukaryotes. TERRA molecules consist of chromosome end-specific subtelomeric sequences and telomeric repeats at their 3' ends. Recent work suggests that TERRA sustains several important functions at chromosome ends. TERRA can regulate telomere length through modulation of exonuclease 1 and telomerase, it may promote recruitment of chromatin modifiers to damaged telomeres and thereby enable DNA end-processing, and it may promote telomere protein composition changes during cell cycle progression. Furthermore, telomere transcription regulates chromosome-end mobility within the nucleus. We review how TERRA, by regulated expression and by providing a molecular scaffold for various protein enzymes, can support a large variety of vital functions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. ATM Kinase Is Required for Telomere Elongation in Mouse and Human Cells

    Directory of Open Access Journals (Sweden)

    Stella Suyong Lee

    2015-11-01

    Full Text Available Short telomeres induce a DNA damage response, senescence, and apoptosis, thus maintaining telomere length equilibrium is essential for cell viability. Telomerase addition of telomere repeats is tightly regulated in cells. To probe pathways that regulate telomere addition, we developed the ADDIT assay to measure new telomere addition at a single telomere in vivo. Sequence analysis showed telomerase-specific addition of repeats onto a new telomere occurred in just 48 hr. Using the ADDIT assay, we found that ATM is required for addition of new repeats onto telomeres in mouse cells. Evaluation of bulk telomeres, in both human and mouse cells, showed that blocking ATM inhibited telomere elongation. Finally, the activation of ATM through the inhibition of PARP1 resulted in increased telomere elongation, supporting the central role of the ATM pathway in regulating telomere addition. Understanding this role of ATM may yield new areas for possible therapeutic intervention in telomere-mediated disease.

  3. Normalized cDNA libraries

    Science.gov (United States)

    Soares, Marcelo B.; Efstratiadis, Argiris

    1997-01-01

    This invention provides a method to normalize a directional cDNA library constructed in a vector that allows propagation in single-stranded circle form comprising: (a) propagating the directional cDNA library in single-stranded circles; (b) generating fragments complementary to the 3' noncoding sequence of the single-stranded circles in the library to produce partial duplexes; (c) purifying the partial duplexes; (d) melting and reassociating the purified partial duplexes to moderate Cot; and (e) purifying the unassociated single-stranded circles, thereby generating a normalized cDNA library.

  4. TERRA RNA Antagonizes ATRX and Protects Telomeres.

    Science.gov (United States)

    Chu, Hsueh-Ping; Cifuentes-Rojas, Catherine; Kesner, Barry; Aeby, Eric; Lee, Hun-Goo; Wei, Chunyao; Oh, Hyun Jung; Boukhali, Myriam; Haas, Wilhelm; Lee, Jeannie T

    2017-06-29

    Through an integration of genomic and proteomic approaches to advance understanding of long noncoding RNAs, we investigate the function of the telomeric transcript, TERRA. By identifying thousands of TERRA target sites in the mouse genome, we demonstrate that TERRA can bind both in cis to telomeres and in trans to genic targets. We then define a large network of interacting proteins, including epigenetic factors, telomeric proteins, and the RNA helicase, ATRX. TERRA and ATRX share hundreds of target genes and are functionally antagonistic at these loci: whereas TERRA activates, ATRX represses gene expression. At telomeres, TERRA competes with telomeric DNA for ATRX binding, suppresses ATRX localization, and ensures telomeric stability. Depleting TERRA increases telomerase activity and induces telomeric pathologies, including formation of telomere-induced DNA damage foci and loss or duplication of telomeric sequences. We conclude that TERRA functions as an epigenomic modulator in trans and as an essential regulator of telomeres in cis. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Repair activity of oxidatively damaged DNA and telomere length in human lung epithelial cells after exposure to multi-walled carbon nanotubes

    DEFF Research Database (Denmark)

    Borghini, Andrea; Roursgaard, Martin; Andreassi, Maria Grazia

    2017-01-01

    One type of carbon nanotubes (CNTs) (MWCNT-7, from Mitsui) has been classified as probably carcinogenic to humans, however insufficient data does not warrant the same classification for other types of CNTs. Experimental data indicate that CNT exposure can result in oxidative stress and DNA damage...... in cultured cells, whereas these materials appear to induce low or no mutagenicity. Therefore, the present study aimed to investigate whether in vitro exposure of cultured airway epithelial cells (A549) to multi-walled CNTs (MWCNTs) could increase the DNA repair activity of oxidatively damaged DNA and drive...... the cells toward replicative senescence, assessed by attrition of telomeres. To investigate this, H2O2 and KBrO3 were used to induce DNA damage in the cells and the effect of pre-exposure to MWCNT tested for a change in repair activity inside the cells or in the extract of treated cells. The effect of MWCNT...

  6. Tailoring Thermal Conductivity of Single-stranded Carbon-chain Polymers through Atomic Mass Modification

    OpenAIRE

    Liao, Quanwen; Zeng, Lingping; Liu, Zhichun; Liu, Wei

    2016-01-01

    Tailoring the thermal conductivity of polymers is central to enlarge their applications in the thermal management of flexible integrated circuits. Progress has been made over the past decade by fabricating materials with various nanostructures, but a clear relationship between various functional groups and thermal properties of polymers remains to be established. Here, we numerically study the thermal conductivity of single-stranded carbon-chain polymers with multiple substituents of hydrogen...

  7. i-Motif of cytosine-rich human telomere DNA fragments containing natural base lesions

    Czech Academy of Sciences Publication Activity Database

    Dvořáková, Zuzana; Renčiuk, Daniel; Kejnovská, Iva; Školáková, Petra; Bednářová, Klára; Sagi, J.; Vorlíčková, Michaela

    2018-01-01

    Roč. 46, č. 4 (2018), s. 1624-1634 ISSN 1362-4962 R&D Projects: GA ČR(CZ) GA15-06785S; GA ČR GA17-12075S; GA ČR(CZ) GJ17-19170Y; GA MŠk EF15_003/0000477 Institutional support: RVO:68081707 Keywords : pair opening kinetics * g-quadruplex dna Subject RIV: CE - Biochemistry OBOR OECD: Biochemistry and molecular biology

  8. Conformational dynamics of the human propeller telomeric DNA quadruplex on a microsecond time scale

    Czech Academy of Sciences Publication Activity Database

    Islam, B.; Sgobba, M.; Laughton, C.; Orozco, M.; Šponer, Jiří; Neidle, S.; Haider, S.

    2013-01-01

    Roč. 41, č. 4 (2013), s. 2723-2735 ISSN 0305-1048 R&D Projects: GA ČR(CZ) GAP208/11/1822 Grant - others:GA ČR(CZ) ED1.1.00/02.0068 Program:ED Institutional support: RVO:68081707 Keywords : MOLECULAR-DYNAMICS * CRYSTAL-STRUCTURE * B-DNA Subject RIV: BO - Biophysics Impact factor: 8.808, year: 2013

  9. Intercalation of single-strand oligonucleotides between nucleolipid anionic membranes: a neutron diffraction study.

    Science.gov (United States)

    Milani, Silvia; Berti, Debora; Dante, Silvia; Hauss, Thomas; Baglioni, Piero

    2009-04-07

    This contribution presents a neutron diffraction investigation of anionic lamellar phases composed of mixtures of 1-palmitoyl, 2-oleoyl phosphatidyl-nucleosides (POPN, where N is either adenosine or uridine), and POPC (1-palmitoyl,2-oleoyl-phosphatidyl-choline). Their behavior is studied for two different mole ratios and in the presence of nucleic acids. The samples are formed by the evaporation of liposomal dispersions prepared in water or in solutions containing single-strand oligonucleotides. Previous small angle X-ray scattering (SAXS) experiments on the system POPA/polyU (polyuridylic acid, high degree of polymerization, synthetic ribonucleic acid) proved that the insertion and ordering of the biopolymer in the phospholipid lamellae were driven by molecular recognition. In the present study, we extend the previous investigation to single-strand monodisperse oligonucleotides (50-mers). Structural details of the membranes were obtained from the analysis of the neutron diffraction scattering length density profiles. The evidence of direct and specific interactions, driven by molecular recognition between the nucleic polar heads of the nucleolipid and the single-strand nucleic acid, is strengthened by the comparison with identically charged bilayers formed by POPG/POPC. These results contribute to the understanding of the parameters governing the interactions between nucleolipid membranes and oligonucleotides, providing a novel strategy for the design of lipid-based vehicles for nucleic acids.

  10. Telomeres, telomerase and premature ovarian failure

    Directory of Open Access Journals (Sweden)

    Renata Košir Pogačnik

    2011-11-01

    Full Text Available Telomeres are specialized structures at the ends of chromosomes, consisting of six repeated nucleotides in TTAGGG sequence. Genome stability is partly maintained by the architecture of telomeres and is gradually lost as telomeres progressively shorten with each cell replication. Critically shortened telomeres are recognized by DNA repair mechanisms as DNA damage and the cell replication cycle stops. The cell eventually dies or undergoes cell apoptosis. Telomere represents a cellular marker of biological age and are therefore also called cell mitotic clock. The enzyme that counteracts telomere shortening by adding nucleotides to the 3’ end of DNA strand is called telomerase. It is composed of the RNA subunit (TR, which is special type of messenger RNA (mRNA, the catalytic protein subunit (TERT, which works as a reverse transcriptase and numerous additional proteins. Telomerase is active in some germline, epithelial and haemopoietic cells, but in most somatic cells the activity is undetectable. In literature, the length of telomeres is closely connected with premature ovarian failure (POF. POF is generally defined as the onset of menopause before the age of 40. The causes of disease are genetical, autoimmune, iatrogenic or if we cannot establish the cause – idiopathic. A lot of studies examined correlation between idiopathic POF, length of telomeres and telomerase activity. The studies mostly show that women with POF have shortened telomeres and decreased activity of telomerase as compared to healthy women.

  11. Characterization of oxidative guanine damage and repair in mammalian telomeres.

    Directory of Open Access Journals (Sweden)

    Zhilong Wang

    2010-05-01

    Full Text Available 8-oxo-7,8-dihydroguanine (8-oxoG and 2,6-diamino-4-hydroxy-5-formamidopyrimidine (FapyG are among the most common oxidative DNA lesions and are substrates for 8-oxoguanine DNA glycosylase (OGG1-initiated DNA base excision repair (BER. Mammalian telomeres consist of triple guanine repeats and are subject to oxidative guanine damage. Here, we investigated the impact of oxidative guanine damage and its repair by OGG1 on telomere integrity in mice. The mouse cells were analyzed for telomere integrity by telomere quantitative fluorescence in situ hybridization (telomere-FISH, by chromosome orientation-FISH (CO-FISH, and by indirect immunofluorescence in combination with telomere-FISH and for oxidative base lesions by Fpg-incision/Southern blot assay. In comparison to the wild type, telomere lengthening was observed in Ogg1 null (Ogg1(-/- mouse tissues and primary embryonic fibroblasts (MEFs cultivated in hypoxia condition (3% oxygen, whereas telomere shortening was detected in Ogg1(-/- mouse hematopoietic cells and primary MEFs cultivated in normoxia condition (20% oxygen or in the presence of an oxidant. In addition, telomere length abnormalities were accompanied by altered telomere sister chromatid exchanges, increased telomere single- and double-strand breaks, and preferential telomere lagging- or G-strand losses in Ogg1(-/- mouse cells. Oxidative guanine lesions were increased in telomeres in Ogg1(-/- mice with aging and primary MEFs cultivated in 20% oxygen. Furthermore, oxidative guanine lesions persisted at high level in Ogg1(-/- MEFs after acute exposure to hydrogen peroxide, while they rapidly returned to basal level in wild-type MEFs. These findings indicate that oxidative guanine damage can arise in telomeres where it affects length homeostasis, recombination, DNA replication, and DNA breakage repair. Our studies demonstrate that BER pathway is required in repairing oxidative guanine damage in telomeres and maintaining telomere integrity

  12. Procedure for normalization of cDNA libraries

    Science.gov (United States)

    Bonaldo, Maria DeFatima; Soares, Marcelo Bento

    1997-01-01

    This invention provides a method to normalize a cDNA library constructed in a vector capable of being converted to single-stranded circles and capable of producing complementary nucleic acid molecules to the single-stranded circles comprising: (a) converting the cDNA library in single-stranded circles; (b) generating complementary nucleic acid molecules to the single-stranded circles; (c) hybridizing the single-stranded circles converted in step (a) with complementary nucleic acid molecules of step (b) to produce partial duplexes to an appropriate Cot; (e) separating the unhybridized single-stranded circles from the hybridized single-stranded circles, thereby generating a normalized cDNA library.

  13. A DNA-binding protein from Candida albicans that binds to the RPG box of Saccharomyces cerevisiae and the telomeric repeat sequence of C. albicans.

    Science.gov (United States)

    Ishii, N; Yamamoto, M; Lahm, H W; Iizumi, S; Yoshihara, F; Nakayama, H; Arisawa, M; Aoki, Y

    1997-02-01

    Electromobility shift assays with a DNA probe containing the Saccharomyces cerevisiae ENO1 RPG box identified a specific DNA-binding protein in total protein extracts of Candida albicans. The protein, named Rbf1p (RPG-box-binding protein 1), bound to other S. cerevisiae RPG boxes, although the nucleotide recognition profile was not completely the same as that of S. cerevisiae Rap 1p (repressor-activator protein 1), an RPG-box-binding protein. The repetitive sequence of the C. albicans chromosomal telomere also competed with RPG-box binding to Rbf1p. For further analysis, we purified Rbf1p 57,600-fold from C. albicans total protein extracts, raised mAbs against the purified protein and immunologically cloned the gene, whose ORF specified a protein of 527 aa. The bacterially expressed protein showed RPG-box-binding activity with the same profile as that of the purified one. The Rbf1p, containing two glutamine-rich regions that are found in many transcription factors, showed transcriptional activation capability in S. cerevisiae and was predominantly observed in nuclei. These results suggest that Rbf1p is a transcription factor with telomere-binding activity in C. albicans.

  14. Expression of Telomere-Associated Proteins is Interdependent to Stabilize Native Telomere Structure and Telomere Dysfunction by G-Quadruplex Ligand Causes TERRA Upregulation.

    Science.gov (United States)

    Sadhukhan, Ratan; Chowdhury, Priyanka; Ghosh, Sourav; Ghosh, Utpal

    2017-11-13

    Telomere DNA can form specialized nucleoprotein structure with telomere-associated proteins to hide free DNA ends or G-quadruplex structures under certain conditions especially in presence of G-quadruplex ligand. Telomere DNA is transcribed to form non-coding telomere repeat-containing RNA (TERRA) whose biogenesis and function is poorly understood. Our aim was to find the role of telomere-associated proteins and telomere structures in TERRA transcription. We silenced four [two shelterin (TRF1, TRF2) and two non-shelterin (PARP-1, SLX4)] telomere-associated genes using siRNA and verified depletion in protein level. Knocking down of one gene modulated expression of other telomere-associated genes and increased TERRA from 10q, 15q, XpYp and XqYq chromosomes in A549 cells. Telomere was destabilized or damaged by G-quadruplex ligand pyridostatin (PDS) and bleomycin. Telomere dysfunction-induced foci (TIFs) were observed for each case of depletion of proteins, treatment with PDS or bleomycin. TERRA level was elevated by PDS and bleomycin treatment alone or in combination with depletion of telomere-associated proteins.

  15. Mice with Pulmonary Fibrosis Driven by Telomere Dysfunction

    Directory of Open Access Journals (Sweden)

    Juan M. Povedano

    2015-07-01

    Full Text Available Idiopathic pulmonary fibrosis (IPF is a degenerative disease of the lungs with an average survival post-diagnosis of 2–3 years. New therapeutic targets and treatments are necessary. Mutations in components of the telomere-maintenance enzyme telomerase or in proteins important for telomere protection are found in both familial and sporadic IPF cases. However, the lack of mouse models that faithfully recapitulate the human disease has hampered new advances. Here, we generate two independent mouse models that develop IPF owing to either critically short telomeres (telomerase-deficient mice or severe telomere dysfunction in the absence of telomere shortening (mice with Trf1 deletion in type II alveolar cells. We show that both mouse models develop pulmonary fibrosis through induction of telomere damage, thus providing proof of principle of the causal role of DNA damage stemming from dysfunctional telomeres in IPF development and identifying telomeres as promising targets for new treatments.

  16. Genetic and physical mapping of telomeres and macrosatellites of rice.

    Science.gov (United States)

    Wu, K S; Tanksley, S D

    1993-08-01

    Telomeres and telomere-associated satellites of rice were genetically and physically analyzed by pulsed-field gel electrophoresis (PFGE) using Arabidopsis telomeric DNA and rice satellite sequences as probes. We demonstrate that Arabidopsis telomeric sequences hybridize to rice telomeres under the conditions of high stringency. Using the Arabidopsis probe, multiple, discrete telomeric fragments could be identified on pulsed-field gel blots of rice DNAs digested with rare-cutting restriction enzymes. Most of the telomeric bands larger than 300 kb are physically linked with satellite bands as revealed by PFGE. Some of the telomeric and satellite bands segregate in a Mendelian fashion and are highly reproducible. Three such telomeric bands have been mapped to the distal ends of RFLP linkage groups: Telsm-1 on chromosome 8, Telsa-1 on chromosome 9 and Telsm-3 on chromosome 11. One segregating satellite band was mapped to an internal region of chromosome 10. Telomeric fragments were shown not only to be genetically linked to but also physically linked (based on PFGE) to the terminal RFLP markers. The physical distance from telomeric sequences to a distal RFLP marker, r45s gene, on chromosome 9, is 200 kb while the distance from telomeric sequences to RG98, a terminal RFLP marker on chromosome 11, is 260 kb. Physical maps of the telomere regions of chromosome 9 and chromosome 11 are presented.

  17. Loss of telomere protection: consequences and opportunities.

    Directory of Open Access Journals (Sweden)

    Jacqueline Johanna Leonarda Jacobs

    2013-04-01

    Full Text Available Telomeres are repetitive sequences at the natural ends of linear eukaryotic chromosomes that protect these from recognition as chromosome breaks. Their ability to do so critically depends on the binding of sufficient quantities of functional shelterin, a six-unit protein complex with specific and crucial roles in telomere maintenance and function. Insufficient telomere length, leading to insufficient concentration of shelterin at chromosome ends, or otherwise crippled shelterin function, causes telomere deprotection. While contributing to aging-related pathologies, loss of telomere protection can act as a barrier to tumorigenesis, as dysfunctional telomeres activate DNA-damage-like checkpoint responses that halt cell proliferation or trigger cell death. In addition, dysfunctional telomeres affect cancer development and progression by being a source of genomic instability. Reviewed here are the different approaches that are being undertaken to investigate the mammalian cellular response to telomere dysfunction and its consequences for cancer. Furthermore, it is discussed how current and future knowledge about the mechanisms underlying telomere damage responses might be applied for diagnostic purposes or therapeutic intervention.

  18. Tailoring Thermal Conductivity of Single-stranded Carbon-chain Polymers through Atomic Mass Modification.

    Science.gov (United States)

    Liao, Quanwen; Zeng, Lingping; Liu, Zhichun; Liu, Wei

    2016-10-07

    Tailoring the thermal conductivity of polymers is central to enlarge their applications in the thermal management of flexible integrated circuits. Progress has been made over the past decade by fabricating materials with various nanostructures, but a clear relationship between various functional groups and thermal properties of polymers remains to be established. Here, we numerically study the thermal conductivity of single-stranded carbon-chain polymers with multiple substituents of hydrogen atoms through atomic mass modification. We find that their thermal conductivity can be tuned by atomic mass modifications as revealed through molecular dynamics simulations. The simulation results suggest that heavy homogeneous substituents do not assist heat transport and trace amounts of heavy substituents can in fact hinder heat transport substantially. Our analysis indicates that carbon chain has the biggest contribution (over 80%) to the thermal conduction in single-stranded carbon-chain polymers. We further demonstrate that atomic mass modifications influence the phonon bands of bonding carbon atoms, and the discrepancies of phonon bands between carbon atoms are responsible for the remarkable drops in thermal conductivity and large thermal resistances in carbon chains. Our study provides fundamental insight into how to tailor the thermal conductivity of polymers through variable substituents.

  19. TERRA: telomeric repeat-containing RNA.

    Science.gov (United States)

    Luke, Brian; Lingner, Joachim

    2009-09-02

    Telomeres, the physical ends of eukaryotic chromosomes, consist of tandem arrays of short DNA repeats and a large set of specialized proteins. A recent analysis has identified telomeric repeat-containing RNA (TERRA), a large non-coding RNA in animals and fungi, which forms an integral component of telomeric heterochromatin. TERRA transcription occurs at most or all chromosome ends and it is regulated by RNA surveillance factors and in response to changes in telomere length. TERRA functions that are emerging suggest important roles in the regulation of telomerase and in orchestrating chromatin remodelling throughout development and cellular differentiation. The accumulation of TERRA at telomeres can also interfere with telomere replication, leading to a sudden loss of telomere tracts. Such a phenotype can be observed upon impairment of the RNA surveillance machinery or in cells from ICF (Immunodeficiency, Centromeric region instability, Facial anomalies) patients, in which TERRA is upregulated because of DNA methylation defects in the subtelomeric region. Thus, TERRA may mediate several crucial functions at the telomeres, a region of the genome that had been considered to be transcriptionally silent.

  20. Absorption by DNA single strands of adenine isolated in vacuo: The role of multiple chromophores

    DEFF Research Database (Denmark)

    Nielsen, L.M.; Pedersen, S.O.; Kirketerp, M.-B.S.

    2012-01-01

    to that for the adenine molecule and the dAMP mononucleotide. Desolvation has little effect on the bandwidth, which implies that inhomogenous broadening of the absorption bands in aqueous solution is of minor importance compared to, e.g., conformational disorder. Finally, at high photon energies, internal conversion...

  1. A single-stranded DNA aptamer that selectively binds to Staphylococcus aureus enterotoxin B.

    Directory of Open Access Journals (Sweden)

    Jeffrey A DeGrasse

    Full Text Available The bacterium Staphylococcus aureus is a common foodborne pathogen capable of secreting a cocktail of small, stable, and strain-specific, staphylococcal enterotoxins (SEs. Staphylococcal food poisoning (SFP results when improperly handled food contaminated with SEs is consumed. Gastrointestinal symptoms of SFP include emesis, diarrhea and severe abdominal pain, which manifest within hours of ingesting contaminated food. Immuno-affinity based methods directly detect, identify, and quantify several SEs within a food or clinical sample. However, the success of these assays depends upon the availability of a monoclonal antibody, the development of which is non-trivial and costly. The current scope of the available immuno-affinity based methods is limited to the classical SEs and does not encompass all of the known or emergent SEs. In contrast to antibodies, aptamers are short nucleic acids that exhibit high affinity and specificity for their targets without the high-costs and ethical concerns of animal husbandry. Further, researchers may choose to freely distribute aptamers and develop assays without the proprietary issues that increase the per-sample cost of immuno-affinity assays. This study describes a novel aptamer, selected in vitro, with affinity to staphylococcal enterotoxin B (SEB that may be used in lieu of antibodies in SE detection assays. The aptamer, designated APT(SEB1, successfully isolates SEB from a complex mixture of SEs with extremely high discrimination. This work sets the foundation for future aptamer and assay development towards the entire family of SEs. The rapid, robust, and low-cost identification and quantification of all of the SEs in S. aureus contaminated food is essential for food safety and epidemiological efforts. An in vitro generated library of SE aptamers could potentially allow for the comprehensive and cost-effective analysis of food samples that immuno-affinity assays currently cannot provide.

  2. Oxidized base damage and single-strand break repair in mammalian genomes: role of disordered regions and posttranslational modifications in early enzymes.

    Science.gov (United States)

    Hegde, Muralidhar L; Izumi, Tadahide; Mitra, Sankar

    2012-01-01

    Oxidative genome damage induced by reactive oxygen species includes oxidized bases, abasic (AP) sites, and single-strand breaks, all of which are repaired via the evolutionarily conserved base excision repair/single-strand break repair (BER/SSBR) pathway. BER/SSBR in mammalian cells is complex, with preferred and backup sub-pathways, and is linked to genome replication and transcription. The early BER/SSBR enzymes, namely, DNA glycosylases (DGs) and the end-processing proteins such as abasic endonuclease 1 (APE1), form complexes with downstream repair (and other noncanonical) proteins via pairwise interactions. Furthermore, a unique feature of mammalian early BER/SSBR enzymes is the presence of a disordered terminal extension that is absent in their Escherichia coli prototypes. These nonconserved segments usually contain organelle-targeting signals, common interaction interfaces, and sites of posttranslational modifications that may be involved in regulating their repair function including lesion scanning. Finally, the linkage of BER/SSBR deficiency to cancer, aging, and human neurodegenerative diseases, and therapeutic targeting of BER/SSBR are discussed. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Rapid telomere motions in live human cells analyzed by highly time-resolved microscopy

    Directory of Open Access Journals (Sweden)

    Wang Xueying

    2008-10-01

    Full Text Available Abstract Background Telomeres cap chromosome ends and protect the genome. We studied individual telomeres in live human cancer cells. In capturing telomere motions using quantitative imaging to acquire complete high-resolution three-dimensional datasets every second for 200 seconds, telomere dynamics were systematically analyzed. Results The motility of individual telomeres within the same cancer cell nucleus was widely heterogeneous. One class of internal heterochromatic regions of chromosomes analyzed moved more uniformly and showed less motion and heterogeneity than telomeres. The single telomere analyses in cancer cells revealed that shorter telomeres showed more motion, and the more rapid telomere motions were energy dependent. Experimentally increasing bulk telomere length dampened telomere motion. In contrast, telomere uncapping, but not a DNA damaging agent, methyl methanesulfonate, significantly increased telomere motion. Conclusion New methods for seconds-scale, four-dimensional, live cell microscopic imaging and data analysis, allowing systematic tracking of individual telomeres in live cells, have defined a previously undescribed form of telomere behavior in human cells, in which the degree of telomere motion was dependent upon telomere length and functionality.

  4. Empirical model for matching spectrophotometric reflectance of yarn windings and multispectral imaging reflectance of single strands of yarns.

    Science.gov (United States)

    Luo, Lin; Shen, Hui-Liang; Shao, Si-Jie; Xin, John

    2015-08-01

    The state-of-the-art multispectral imaging system can directly acquire the reflectance of a single strand of yarn that is impossible for traditional spectrophotometers. Instead, the spectrophotometric reflectance of a yarn winding, which is constituted by yarns wound on a background card, is regarded as the yarn reflectance in textile. While multispectral imaging systems and spectrophotometers can be separately used to acquire the reflectance of a single strand of yarn and corresponding yarn winding, the quantitative relationship between them is not yet known. In this paper, the relationship is established based on models that describe the spectral response of a spectrophotometer to a yarn winding and that of a multispectral imaging system to a single strand of yarn. The reflectance matching function from a single strand of yarn to corresponding yarn winding is derived to be a second degree polynomial function, which coefficients are the solutions of a constrained nonlinear optimization problem. Experiments on 100 pairs of samples show that the proposed approach can reduce the color difference between yarn windings and single strands of yarns from 2.449 to 1.082 CIEDE2000 units. The coefficients of the optimal reflection matching function imply that the reflectance of a yarn winding measured by a spectrophotometer consists of not only the intrinsic reflectance of yarn but also the nonignorable interreflection component between yarns.

  5. Comparative biology of telomeres: where plants stand.

    Science.gov (United States)

    Watson, J Matthew; Riha, Karel

    2010-09-10

    Telomeres are essential structures at the ends of eukaryotic chromosomes. Work on their structure and function began almost 70 years ago in plants and flies, continued through the Nobel Prize winning work on yeast and ciliates, and goes on today in many model and non-model organisms. The basic molecular mechanisms of telomeres are highly conserved throughout evolution, and our current understanding of how telomeres function is a conglomeration of insights gained from many different species. This review will compare the current knowledge of telomeres in plants with other organisms, with special focus on the functional length of telomeric DNA, the search for TRF homologs, the family of POT1 proteins, and the recent discovery of members of the CST complex. Copyright 2010 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  6. Effect of Wortmannin on the repair profiles of DNA double-strand breaks in the whole genome and in interstitial telomeric sequences of Chinese hamster cells

    International Nuclear Information System (INIS)

    Losada, Raquel; Rivero, Maria Teresa; Slijepcevic, Predrag; Goyanes, Vicente; Fernandez, Jose Luis

    2005-01-01

    The DNA breakage detection-fluorescence in situ hybridization (DBD-FISH) procedure was applied to analyze the effect of Wortmannin (WM) in the rejoining kinetics of ionizing radiation-induced DNA double-strand breaks (DSBs) in the whole genome and in the long interstitial telomeric repeat sequence (ITRS) blocks from Chinese hamster cell lines. The results indicate that the ITRS blocks from wild-type Chinese hamster cell lines, CHO9 and V79B, exhibit a slower initial rejoining rate of ionizing radiation-induced DSBs than the genome overall. Neither Rad51C nor the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) activities, involved in homologous recombination (HR) and in non-homologous end-joining (NHEJ) pathways of DSB repair respectively, influenced the rejoining kinetics within ITRS in contrast to DNA sequences in the whole genome. Nevertheless, DSB removal rate within ITRS was decreased in the absence of Ku86 activity, though at a lower affectation level than in the whole genome, thus homogenizing both rejoining kinetics rates. WM treatment slowed down the DSB rejoining kinetics rate in ITRS, this effect being more pronounced in the whole genome, resulting in a similar pattern to that of the Ku86 deficient cells. In fact, no WM effect was detected in the Ku86 deficient Chinese hamster cells, so probably WM does not add further impairment in DSB rejoining than that resulted as a consequence of absence of Ku activity. The same slowing effect was also observed after treatment of Rad51C and DNA-PKcs defective hamster cells by WM, suggesting that: (1) there is no potentiation of the HR when the NHEJ is impaired by WM, either in the whole genome or in the ITRS, and (2) that this impairment may probably involve more targets than DNA-PKcs. These results suggest that there is an intragenomic heterogeneity in DSB repair, as well as in the effect of WM on this process

  7. Telomere Capping Proteins are Structurally Related to RPA with an additional Telomere-Specific Domain

    Energy Technology Data Exchange (ETDEWEB)

    Gelinas, A.; Paschini, M; Reyes, F; Heroux, A; Batey, R; Lundblad, V; Wuttke, D

    2009-01-01

    Telomeres must be capped to preserve chromosomal stability. The conserved Stn1 and Ten1 proteins are required for proper capping of the telomere, although the mechanistic details of how they contribute to telomere maintenance are unclear. Here, we report the crystal structures of the C-terminal domain of the Saccharomyces cerevisiae Stn1 and the Schizosaccharomyces pombe Ten1 proteins. These structures reveal striking similarities to corresponding subunits in the replication protein A complex, further supporting an evolutionary link between telomere maintenance proteins and DNA repair complexes. Our structural and in vivo data of Stn1 identify a new domain that has evolved to support a telomere-specific role in chromosome maintenance. These findings endorse a model of an evolutionarily conserved mechanism of DNA maintenance that has developed as a result of increased chromosomal structural complexity.

  8. Telomere capping proteins are structurally related to RPA with an additional telomere-specific domain.

    Science.gov (United States)

    Gelinas, Amy D; Paschini, Margherita; Reyes, Francis E; Héroux, Annie; Batey, Robert T; Lundblad, Victoria; Wuttke, Deborah S

    2009-11-17

    Telomeres must be capped to preserve chromosomal stability. The conserved Stn1 and Ten1 proteins are required for proper capping of the telomere, although the mechanistic details of how they contribute to telomere maintenance are unclear. Here, we report the crystal structures of the C-terminal domain of the Saccharomyces cerevisiae Stn1 and the Schizosaccharomyces pombe Ten1 proteins. These structures reveal striking similarities to corresponding subunits in the replication protein A complex, further supporting an evolutionary link between telomere maintenance proteins and DNA repair complexes. Our structural and in vivo data of Stn1 identify a new domain that has evolved to support a telomere-specific role in chromosome maintenance. These findings endorse a model of an evolutionarily conserved mechanism of DNA maintenance that has developed as a result of increased chromosomal structural complexity.

  9. Male and female meiosis in the mountain scorpion Zabius fuscus (Scorpiones, Buthidae): heterochromatin, rDNA and TTAGG telomeric repeats.

    Science.gov (United States)

    Adilardi, Renzo Sebastián; Ojanguren-Affilastro, Andrés Alejandro; Mattoni, Camilo Iván; Mola, Liliana María

    2015-08-01

    All cytogenetically studied scorpions present male achiasmatic meiosis and lack heteromorphic sex chromosomes. In contrast, information about female meiosis in scorpions is scarce due to the difficulty of finding meiotic cells. The genus Zabius includes three described species and no chromosome studies have been performed on it until now. We analyzed the constitutive heterochromatin distribution, NORs and telomeric sequences in mitosis and meiosis of males and females of different populations of Zabius fuscus. All specimens presented 2n = 18 holokinetic chromosomes that gradually decreased in size. Male meiosis presented nine bivalents and a polymorphism for one reciprocal translocation in one population. Telomeric signals were detected at every terminal region, confirming also the presence of a (TTAGG) n motif in Buthidae. Constitutive heterochromatin was found in three chromosome pairs at a terminal region; moreover, NORs were embedded in the heterochromatic region of the largest pair. Chromosome size and landmarks allowed us to propose the chromosomes involved in the rearrangement. In four females, cells at different prophase I stages were analyzed. We describe a diffuse stage and the presence of ring-shaped bivalents. We discuss the possible origin of these bivalents in the framework of chiasmatic or achiasmatic female meiosis. These results contribute to increase the scarce evidence of female meiosis in scorpions and raise new questions about its mechanism.

  10. Telomeric repeat-containing RNA (TERRA) and telomerase are components of telomeres during mammalian gametogenesis.

    Science.gov (United States)

    Reig-Viader, Rita; Vila-Cejudo, Marta; Vitelli, Valerio; Buscà, Rafael; Sabaté, Montserrat; Giulotto, Elena; Caldés, Montserrat Garcia; Ruiz-Herrera, Aurora

    2014-05-01

    Telomeres are ribonucleoprotein structures at the end of chromosomes composed of telomeric DNA, specific-binding proteins, and noncoding RNA (TERRA). Despite their importance in preventing chromosome instability, little is known about the cross talk between these three elements during the formation of the germ line. Here, we provide evidence that both TERRA and the telomerase enzymatic subunit (TERT) are components of telomeres in mammalian germ cells. We found that TERRA colocalizes with telomeres during mammalian meiosis and that its expression progressively increases during spermatogenesis until the beginning of spermiogenesis. While both TERRA levels and distribution would be regulated in a gender-specific manner, telomere-TERT colocalization appears to be regulated based on species-specific characteristics of the telomeric structure. Moreover, we found that TERT localization at telomeres is maintained throughout spermatogenesis as a structural component without affecting telomere elongation. Our results represent the first evidence of colocalization between telomerase and telomeres during mammalian gametogenesis. © 2014 by the Society for the Study of Reproduction, Inc.

  11. DNA Replication Arrest and DNA Damage Responses Induced by Alkylating Minor Groove Binders

    National Research Council Canada - National Science Library

    Kuo, Shue-Ru

    2001-01-01

    .... Both DNA-PK and the unknown factor are functioned as trans-acting inhibitors. RPA is the major eukaryotic single-stranded DNA binding protein required for DNA replication, repair and recombination...

  12. Telomere Position Effect and Silencing of Transgenes near Telomeres in the Mouse¶

    Science.gov (United States)

    Pedram, Mehrdad; Sprung, Carl N.; Gao, Qing; Lo, Anthony W. I.; Reynolds, Gloria E.; Murnane, John P.

    2006-01-01

    Reversible transcriptional silencing of genes located near telomeres, termed the telomere position effect (TPE), is well characterized in Saccharomyces cerevisiae. TPE has also been observed in human tumor cell lines, but its function remains unknown. To investigate TPE in normal mammalian cells, we developed clones of mouse embryonic stem (ES) cells that contain single-copy marker genes integrated adjacent to different telomeres. Analysis of these telomeric transgenes demonstrated that they were expressed at very low levels compared to the same transgenes integrated at interstitial sites. Similar to the situation in yeast, but in contrast to studies with human tumor cell lines, TPE in mouse ES cells was not reversed with trichostatin A. Prolonged culturing without selection resulted in extensive DNA methylation and complete silencing of telomeric transgenes, which could be reversed by treatment with 5-azacytidine. Thus, complete silencing of the telomeric transgenes appears to involve a two-step process in which the initial repression is reinforced by DNA methylation. Extensive methylation of the telomeric transgenes was also observed in various tissues and embryonic fibroblasts isolated from transgenic mice. In contrast, telomeric transgenes were not silenced in ES cell lines isolated from 3-day-old preimplantation embryos, consistent with the hypothesis that TPE plays a role in the development of the embryo. PMID:16479005

  13. Telomere Length Dynamics and the Evolution of Cancer Genome Architecture

    Directory of Open Access Journals (Sweden)

    Kez Cleal

    2018-02-01

    Full Text Available Telomeres are progressively eroded during repeated rounds of cell division due to the end replication problem but also undergo additional more substantial stochastic shortening events. In most cases, shortened telomeres induce a cell-cycle arrest or trigger apoptosis, although for those cells that bypass such signals during tumour progression, a critical length threshold is reached at which telomere dysfunction may ensue. Dysfunction of the telomere nucleoprotein complex can expose free chromosome ends to the DNA double-strand break (DSB repair machinery, leading to telomere fusion with both telomeric and non-telomeric loci. The consequences of telomere fusions in promoting genome instability have long been appreciated through the breakage–fusion–bridge (BFB cycle mechanism, although recent studies using high-throughput sequencing technologies have uncovered evidence of involvement in a wider spectrum of genomic rearrangements including chromothripsis. A critical step in cancer progression is the transition of a clone to immortality, through the stabilisation of the telomere repeat array. This can be achieved via the reactivation of telomerase, or the induction of the alternative lengthening of telomeres (ALT pathway. Whilst telomere dysfunction may promote genome instability and tumour progression, by limiting the replicative potential of a cell and enforcing senescence, telomere shortening can act as a tumour suppressor mechanism. However, the burden of senescent cells has also been implicated as a driver of ageing and age-related pathology, and in the promotion of cancer through inflammatory signalling. Considering the critical role of telomere length in governing cancer biology, we review questions related to the prognostic value of studying the dynamics of telomere shortening and fusion, and discuss mechanisms and consequences of telomere-induced genome rearrangements.

  14. Torsional regulation of hRPA-induced unwinding of double-stranded DNA

    NARCIS (Netherlands)

    De Vlaminck, I.; Vidic, I.; Van Loenhout, M.T.J.; Kanaar, R.; Lebbink, J.H.G.; Dekker, C.

    2010-01-01

    All cellular single-stranded (ss) DNA is rapidly bound and stabilized by single stranded DNA-binding proteins (SSBs). Replication protein A, the main eukaryotic SSB, is able to unwind double-stranded (ds) DNA by binding and stabilizing transiently forming bubbles of ssDNA. Here, we study the

  15. Telomerers rolle i cancer

    DEFF Research Database (Denmark)

    Bendix, Laila; Kølvraa, Steen

    2010-01-01

    Telomeres are a double-edged sword when it comes to cancer. On one hand, telomeres limit the cells' ability to divide and thereby restrict the uninhibited growth seen in cancer. On the other hand, short telomeres can initiate the chromosome instability that characterizes cancer. Diseases...... with the combination of short telomeres and high cancer risk are seen, but until now the use of telomeres as predictors of cancer has, in general, been unsuccessful. Telomeres and telomerase play an important role in further cancer development. Researchers are trying to exploit this in the development of new cancer...

  16. Telomerers rolle i cancer

    DEFF Research Database (Denmark)

    Bendix, Laila; Kølvraa, Steen

    2010-01-01

    Telomeres are a double-edged sword when it comes to cancer. On one hand, telomeres limit the cells' ability to divide and thereby restrict the uninhibited growth seen in cancer. On the other hand, short telomeres can initiate the chromosome instability that characterizes cancer. Diseases with the......Telomeres are a double-edged sword when it comes to cancer. On one hand, telomeres limit the cells' ability to divide and thereby restrict the uninhibited growth seen in cancer. On the other hand, short telomeres can initiate the chromosome instability that characterizes cancer. Diseases...

  17. Functional characterization of the TERRA transcriptome at damaged telomeres.

    Science.gov (United States)

    Porro, Antonio; Feuerhahn, Sascha; Delafontaine, Julien; Riethman, Harold; Rougemont, Jacques; Lingner, Joachim

    2014-10-31

    Telomere deprotection occurs during tumorigenesis and aging upon telomere shortening or loss of the telomeric shelterin component TRF2. Deprotected telomeres undergo changes in chromatin structure and elicit a DNA damage response (DDR) that leads to cellular senescence. The telomeric long noncoding RNA TERRA has been implicated in modulating the structure and processing of deprotected telomeres. Here, we characterize the human TERRA transcriptome at normal and TRF2-depleted telomeres and demonstrate that TERRA upregulation is occurring upon depletion of TRF2 at all transcribed telomeres. TRF2 represses TERRA transcription through its homodimerization domain, which was previously shown to induce chromatin compaction and to prevent the early steps of DDR activation. We show that TERRA associates with SUV39H1 H3K9 histone methyltransferase, which promotes accumulation of H3K9me3 at damaged telomeres and end-to-end fusions. Altogether our data elucidate the TERRA landscape and defines critical roles for this RNA in the telomeric DNA damage response.

  18. Sensitive multiplex RNA quantification using capillary electrophoresis-based single-strand conformation polymorphism.

    Science.gov (United States)

    Shin, Gi Won; Hwang, Hee Sung; Nam, Hong Gil; Oh, Mi-Hwa; Jung, Gyoo Yeol

    2010-05-01

    Quantification of RNA provides information crucial for various biological studies, including analysis of mRNA expression and that of microRNAs. Reverse transcription (RT) coupled with real-time polymerase chain reaction (PCR) is known to be the most accurate method for quantifying nucleic acids, and thus represents the state-of-the-art for RNA quantification. However, the use of real-time PCR for RNA quantification is limited to a single target per analytical run because of reductions in quantification power and limitations of fluorescence dyes associated with multiplex applications. Here, we report a novel multiplex RNA quantification method that uses capillary electrophoresis single-strand conformation polymorphism (CE-SSCP) coupled with modified RT and asymmetric PCR. The reverse transcripts of seven in vitro transcribed RNAs were modified with common sequence tags and amplified by asymmetric PCR using primers specific to the common tags. The resulting amplicons were separated and quantified by CE-SSCP. A series of experiments using different amounts of RNA demonstrated that the assay had a limit of detection of 2 amol and a dynamic range of approximately 10(5). These results clearly indicate the potential of this method to provide robust and precise multiplex RNA quantification.

  19. Quantitation of ultraviolet-induced single-strand breaks using oligonucleotide chip

    International Nuclear Information System (INIS)

    Pal, Sukdeb; Kim, Min Jung; Choo, Jaebum; Kang, Seong Ho; Lee, Kyeong-Hee; Song, Joon Myong

    2008-01-01

    A simple, accurate and robust methodology was established for the direct quantification of ultraviolet (UV)-induced single-strand break (SSB) using oligonucleotide chip. Oligonucleotide chips were fabricated by covalently anchoring the fluorescent-labeled ssDNAs onto silicon dioxide chip surfaces. Assuming that the possibility of more than one UV-induced SSB to be generated in a small oligonucleotide is extremely low, SSB formation was investigated quantifying the endpoint probe density by fluorescence measurement upon UV irradiation. The SSB yields obtained based on the highly sensitive laser-induced fluorometric determination of fluorophore-labeled oligonucleotides were found to coincide well with that predicted from a theoretical extrapolation of the results obtained for plasmid DNAs using conventional agarose gel electrophoresis. The developed method has the potential to serve as a high throughput, sample-thrifty, and time saving tool to realize more realistic, and direct quantification of radiation and chemical-induced strand breaks. It will be especially useful for determining the frequency of SSBs or lesions convertible to SSBs by specific cleaving reagents or enzymes

  20. Capillary electrophoresis single-strand conformation polymorphism for the monitoring of gastrointestinal microbiota of chicken flocks.

    Science.gov (United States)

    Pissavin, C; Burel, C; Gabriel, I; Beven, V; Mallet, S; Maurice, R; Queguiner, M; Lessire, M; Fravalo, P

    2012-09-01

    The objective of the present study was to evaluate the capillary electrophoresis single-strand conformation polymorphism (CE-SSCP) to characterize poultry gut microbiota and the ability of this molecular method to detect modifications related to rearing conditions to be used as an epidemiological tool. The V3 region of the 16S rRNA gene was selected as the PCR target. Our results showed that this method provides reproducible data. The microbiota analysis of individuals showed that variability between individual fingerprints was higher for ileum and cloaca than for ceca. However, pooling the samples decreased this variability. To estimate the variability within and between farms, we compared molecular gut patterns of animals from the same hatchery reared under similar conditions and fed the same diet in 2 separate farms. Total aerobic bacteria, coliforms, and lactic acid bacteria were enumerated using conventional bacteriological methods. A significant difference was observed for coliforms present in the ceca and the cloaca depending on the farm. Ileal contents fingerprints were more closely related to those of cloacal contents than to those of ceca contents. When comparing samples from the 2 farms, a specific microbiota was highlighted for each farm. For each gut compartment, the microbiota fingerprints were joined in clusters according to the farm. Thus, this rapid and potentially high-throughput method to obtain gut flora fingerprints is sensitive enough to detect a "farm effect" on the balance of poultry gut microbiota despite the birds being fed the same regimens and reared under similar conditions.

  1. Telomere length analysis.

    Science.gov (United States)

    Canela, Andrés; Klatt, Peter; Blasco, María A

    2007-01-01

    Most somatic cells of long-lived species undergo telomere shortening throughout life. Critically short telomeres trigger loss of cell viability in tissues, which has been related to alteration of tissue function and loss of regenerative capabilities in aging and aging-related diseases. Hence, telomere length is an important biomarker for aging and can be used in the prognosis of aging diseases. These facts highlight the importance of developing methods for telomere length determination that can be employed to evaluate telomere length during the human aging process. Telomere length quantification methods have improved greatly in accuracy and sensitivity since the development of the conventional telomeric Southern blot. Here, we describe the different methodologies recently developed for telomere length quantification, as well as their potential applications for human aging studies.

  2. The human CTC1/STN1/TEN1 complex regulates telomere maintenance in ALT cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Chenhui; Jia, Pingping; Chastain, Megan; Shiva, Olga; Chai, Weihang, E-mail: wchai@wsu.edu

    2017-06-15

    Maintaining functional telomeres is important for long-term proliferation of cells. About 15% of cancer cells are telomerase-negative and activate the alternative-lengthening of telomeres (ALT) pathway to maintain their telomeres. Recent studies have shown that the human CTC1/STN1/TEN1 complex (CST) plays a multi-faceted role in telomere maintenance in telomerase-expressing cancer cells. However, the role of CST in telomere maintenance in ALT cells is unclear. Here, we report that human CST forms a functional complex localizing in the ALT-associated PML bodies (APBs) in ALT cells throughout the cell cycle. Suppression of CST induces telomere instabilities including telomere fragility and elevates telomeric DNA recombination, leading to telomere dysfunction. In addition, CST deficiency significantly diminishes the abundance of extrachromosomal circular telomere DNA known as C-circles and t-circles. Suppression of CST also results in multinucleation in ALT cells and impairs cell proliferation. Our findings imply that the CST complex plays an important role in regulating telomere maintenance in ALT cells. - Highlights: • CST localizes at telomeres and ALT-associated PML bodies in ALT cells throughout the cell cycle. • CST is important for promoting telomeric DNA replication in ALT cells. • CST deficiency decreases ECTR formation and increases T-SCE. • CST deficiency impairs ALT cell proliferation and results in multinucleation.

  3. HSV-1 Remodels Host Telomeres to Facilitate Viral Replication

    Directory of Open Access Journals (Sweden)

    Zhong Deng

    2014-12-01

    Full Text Available Telomeres protect the ends of cellular chromosomes. We show here that infection with herpes simplex virus 1 (HSV-1 results in chromosomal structural aberrations at telomeres and the accumulation of telomere dysfunction-induced DNA damage foci (TIFs. At the molecular level, HSV-1 induces transcription of telomere repeat-containing RNA (TERRA, followed by the proteolytic degradation of the telomere protein TPP1 and loss of the telomere repeat DNA signal. The HSV-1-encoded E3 ubiquitin ligase ICP0 is required for TERRA transcription and facilitates TPP1 degradation. Small hairpin RNA (shRNA depletion of TPP1 increases viral replication, indicating that TPP1 inhibits viral replication. Viral replication protein ICP8 forms foci that coincide with telomeric proteins, and ICP8-null virus failed to degrade telomere DNA signal. These findings suggest that HSV-1 reorganizes telomeres to form ICP8-associated prereplication foci and to promote viral genomic replication.

  4. Application of Single Strand Conformational Polymorphism (PCR-SSCP) in Identification of Some Beta-Globin Gene Mutations in A Group of Egyptian Beta-Thalassemia Patients and Carriers

    International Nuclear Information System (INIS)

    Somaya, E.T.; Soliman, M.D

    2010-01-01

    The present study investigated whether the single-strand conformational polymorphism (SSCP) method could be employed to identify (rather than simply detect) four of the most common beta-globin gene mutations in the Egyptian population: IVS-I-110, IVS-I-6, the IVS-I-1, and Codon 39. Using DNA from 90 beta-thalassemia patients and carriers, by PCR the appropriate 238-bp region of the human beta-globin gene was amplified, the reaction products (Single-stranded DNA) were analyzed by none denaturing polyacrylamide gel electrophoresis, and the bands visualized by silver staining. Single-stranded DNA (ssDNA) fragments showed reproducible pattern of bands that were characteristic of the mutations present. With the use of control samples containing six of the 10 possible combinations of the four beta-globin gene mutations under study, we were able to predict the mutations present in 23 out of 90 (26.4%) of the patients studied. These predictions were confirmed independently by the amplification refractory mutation system (ARMS) method. It is concluded that this non-radioactive PCR-SSCP method can be used to reliably identify mutations in beta-thalassemia patients, provided that suitable controls are available. However, usefulness of this method for determining the genotype of beta-thalassaemic individuals is obviously limited by the great number of controls required. Moreover, the ability to detect mutations by SSCP is in general lower compared to other methods, ARMS, DGGE or DHPLC, which are reported to detect 49.5% to 73% of the mutations present. The SSCP method is nevertheless much easier to employ than other methods and is especially successful for beta-thalassemia carriers. This method would thus be particularly useful for an initial screening of target groups (prenatal diagnosis)

  5. Modified Terminal Restriction Fragment Analysis for Quantifying Telomere Length Using In-gel Hybridization.

    Science.gov (United States)

    Jenkins, Frank J; Kerr, Charles M; Fouquerel, Elise; Bovbjerg, Dana H; Opresko, Patricia L

    2017-07-10

    There are several different techniques for measuring telomere length, each with their own advantages and disadvantages. The traditional approach, Telomere Restriction Fragment (TRF) analysis, utilizes a DNA hybridization technique whereby genomic DNA samples are digested with restriction enzymes, leaving behind telomere DNA repeats and some sub-telomeric DNA. These are separated by agarose gel electrophoresis, transferred to a filter membrane and hybridized to oligonucleotide probes tagged with either chemiluminescence or radioactivity to visualize telomere restriction fragments. This approach, while requiring a larger quantity of DNA than other techniques such as PCR, can measure the telomere length distribution of a population of cells and allows measurement expressed in absolute kilobases. This manuscript demonstrates a modified DNA hybridization procedure for determining telomere length. Genomic DNA is first digested with restriction enzymes (that do not cut telomeres) and separated by agarose gel electrophoresis. The gel is then dried and the DNA is denatured and hybridized in situ to a radiolabeled oligonucleotide probe. This in situ hybridization avoids loss of telomere DNA and improves signal intensity. Following hybridization, the gels are imaged utilizing phosphor screens and the telomere length is quantified using a graphing program. This procedure was developed by the laboratories of Drs. Woodring Wright and Jerry Shay at the University of Texas Southwestern 1 , 2 . Here, we present a detailed description of this procedure, with some modifications.

  6. Identification of Ku70 and Ku80 homologues in Arabidopsis thaliana: evidence for a role in the repair of DNA double-strand breaks.

    Science.gov (United States)

    Tamura, Katsunori; Adachi, Yugo; Chiba, Keiko; Oguchi, Keiko; Takahashi, Hideo

    2002-03-01

    In higher organisms such as mammals and plants, DNA double-strand breaks (DSBs) are repaired preferentially by non-homologous end joining (NHEJ) rather than by homologous recombination. The NHEJ pathway is mediated by Ku, a heterodimer of approximately 70 and 80 kDa subunits, which contributes to various aspects of the metabolism of DNA ends in eukaryotic cells. On the basis of their predicted sequence similarity to human Ku70 and Ku80, cDNAs encoding the first plant homologues of these proteins (AtKu70 and AtKu80, respectively) have now been isolated from Arabidopsis thaliana. AtKu70 and AtKu80 share 28.6 and 22.5% amino acid sequence identity with human Ku70 and Ku80, respectively. Yeast two-hybrid analysis demonstrated that AtKu70 and AtKu80 form a heterodimer, and electrophoretic mobility-shift assays revealed that this heterodimer binds to double-stranded telomeric and non-telomeric DNA sequences, but not to single-stranded DNA. The AtKu heterodimer also possesses single-stranded DNA-dependent ATPase and ATP-dependent DNA helicase activities. Reverse transcription and the polymerase chain reaction revealed that AtKu70 and AtKu80 genes are expressed widely but at low levels in plant tissues. The expression of these two genes in cultured cells was markedly increased in response to the generation of DSBs by bleomycin or methylmethane sulfonate. These results suggest that the evolutionarily conserved Ku70-Ku80 heterodimer functions in DSB repair by the NHEJ pathway in A. thaliana.

  7. Leukocyte telomere dynamics in the elderly

    DEFF Research Database (Denmark)

    Steenstrup, Troels; Hjelmborg, Jacob V B; Mortensen, Laust Hvas

    2013-01-01

    of the Longitudinal Study of Aging Danish Twins. We measured LTL by Southern blots of the terminal restriction fragment length (TRFL) in 476 individuals (73-94 years) in a cross-sectional evaluation and in a subset of this cohort comprising 80 individuals (73-81 years at baseline) who were followed.......010). For the TRFL distribution, which captures telomeres of all lengths in the DNA sample, we observed significant shifts with age toward shorter telomeres. Based on the measurement error of the TRFLs, we computed that in the longitudinal evaluation 10.6 % of individuals would manifest LTL elongation over 10 years......, assuming a 340 bp attrition during this period. This was not significantly different from the empirical observation of 7.5 % of individuals showing LTL elongation. We conclude that accumulation of ultra-short telomeres in leukocytes of the elderly reflects a shift toward shorter telomeres in the entire...

  8. Ammonia disinfection of hatchery waste for elimination of single-stranded RNA viruses.

    Science.gov (United States)

    Emmoth, Eva; Ottoson, Jakob; Albihn, Ann; Belák, Sándor; Vinnerås, Björn

    2011-06-01

    Hatchery waste, an animal by-product of the poultry industry, needs sanitation treatment before further use as fertilizer or as a substrate in biogas or composting plants, owing to the potential presence of opportunistic pathogens, including zoonotic viruses. Effective sanitation is also important in viral epizootic outbreaks and as a routine, ensuring high hygiene standards on farms. This study examined the use of ammonia at different concentrations and temperatures to disinfect hatchery waste. Inactivation kinetics of high-pathogenic avian influenza virus H7N1 and low-pathogenic avian influenza virus H5N3, as representatives of notifiable avian viral diseases, were determined in spiked hatchery waste. Bovine parainfluenza virus type 3, feline coronavirus, and feline calicivirus were used as models for other important avian pathogens, such as Newcastle disease virus, infectious bronchitis virus, and avian hepatitis E virus. Bacteriophage MS2 was also monitored as a stable indicator. Coronavirus was the most sensitive virus, with decimal reduction (D) values of 1.2 and 0.63 h after addition of 0.5% (wt/wt) ammonia at 14 and 25°C, respectively. Under similar conditions, high-pathogenic avian influenza H7N1 was the most resistant, with D values of 3.0 and 1.4 h. MS2 was more resistant than the viruses to all treatments and proved to be a suitable indicator of viral inactivation. The results indicate that ammonia treatment of hatchery waste is efficient in inactivating enveloped and naked single-stranded RNA viruses. Based on the D values and confidence intervals obtained, guidelines for treatment were proposed, and one was successfully validated at full scale at a hatchery, with MS2 added to hatchery waste.

  9. Single Strand Annealing Plays a Major Role in RecA-Independent Recombination between Repeated Sequences in the Radioresistant Deinococcus radiodurans Bacterium.

    Directory of Open Access Journals (Sweden)

    Solenne Ithurbide

    2015-10-01

    Full Text Available The bacterium Deinococcus radiodurans is one of the most radioresistant organisms known. It is able to reconstruct a functional genome from hundreds of radiation-induced chromosomal fragments. Our work aims to highlight the genes involved in recombination between 438 bp direct repeats separated by intervening sequences of various lengths ranging from 1,479 bp to 10,500 bp to restore a functional tetA gene in the presence or absence of radiation-induced DNA double strand breaks. The frequency of spontaneous deletion events between the chromosomal direct repeats were the same in recA+ and in ΔrecA, ΔrecF, and ΔrecO bacteria, whereas recombination between chromosomal and plasmid DNA was shown to be strictly dependent on the RecA and RecF proteins. The presence of mutations in one of the repeated sequence reduced, in a MutS-dependent manner, the frequency of the deletion events. The distance between the repeats did not influence the frequencies of deletion events in recA+ as well in ΔrecA bacteria. The absence of the UvrD protein stimulated the recombination between the direct repeats whereas the absence of the DdrB protein, previously shown to be involved in DNA double strand break repair through a single strand annealing (SSA pathway, strongly reduces the frequency of RecA- (and RecO- independent deletions events. The absence of the DdrB protein also increased the lethal sectoring of cells devoid of RecA or RecO protein. γ-irradiation of recA+ cells increased about 10-fold the frequencies of the deletion events, but at a lesser extend in cells devoid of the DdrB protein. Altogether, our results suggest a major role of single strand annealing in DNA repeat deletion events in bacteria devoid of the RecA protein, and also in recA+ bacteria exposed to ionizing radiation.

  10. Telomeres and human reproduction.

    Science.gov (United States)

    Kalmbach, Keri Horan; Fontes Antunes, Danielle Mota; Dracxler, Roberta Caetano; Knier, Taylor Warner; Seth-Smith, Michelle Louise; Wang, Fang; Liu, Lin; Keefe, David Lawrence

    2013-01-01

    Telomeres mediate biologic aging in organisms as diverse as plants, yeast, and mammals. We propose a telomere theory of reproductive aging that posits telomere shortening in the female germ line as the primary driver of reproductive aging in women. Experimental shortening of telomeres in mice, which normally do not exhibit appreciable oocyte aging, and which have exceptionally long telomeres, recapitulates the aging phenotype of human oocytes. Telomere shortening in mice reduces synapsis and chiasmata, increases embryo fragmentation, cell cycle arrest, apoptosis, spindle dysmorphologies, and chromosome abnormalities. Telomeres are shorter in the oocytes from women undergoing in vitro fertilization, who then produce fragmented, aneuploid embryos that fail to implant. In contrast, the testes are replete with spermatogonia that can rejuvenate telomere reserves throughout the life of the man by expressing telomerase. Differences in telomere dynamics across the life span of men and women may have evolved because of the difference in the inherent risks of aging on reproduction between men and women. Additionally, growing evidence links altered telomere biology to endometriosis and gynecologic cancers, thus future studies should examine the role of telomeres in pathologies of the reproductive tract. Copyright © 2013. Published by Elsevier Inc.

  11. Dysfunctional telomeres in human BRCA2 mutated breast tumors and cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Bodvarsdottir, Sigridur K., E-mail: skb@hi.is [Cancer Research Laboratory, BioMedical Centre, Faculty of Medicine, University of Iceland, Vatnsmyrarvegi 16, 101 Reykjavik (Iceland); Steinarsdottir, Margret [Chromosome Laboratory, Department of Genetics and Molecular Medicine, Landspitali University Hospital, Reykjavik (Iceland); Bjarnason, Hordur; Eyfjord, Jorunn E. [Cancer Research Laboratory, BioMedical Centre, Faculty of Medicine, University of Iceland, Vatnsmyrarvegi 16, 101 Reykjavik (Iceland)

    2012-01-03

    In the present study the possible involvement of telomeres in chromosomal instability of breast tumors and cell lines from BRCA2 mutation carriers was examined. Breast tumors from BRCA2 mutation carriers showed significantly higher frequency of chromosome end-to-end fusions (CEFs) than tumors from non-carriers despite normal telomere DNA content. Frequent CEFs were also found in four different BRCA2 heterozygous breast epithelial cell lines, occasionally with telomere signal at the fusion point, indicating telomere capping defects. Extrachromosomal telomeric repeat (ECTR) DNA was frequently found scattered around metaphase chromosomes and interstitial telomere sequences (ITSs) were also common. Telomere sister chromatid exchanges (T-SCEs), characteristic of cells using alternative lengthening of telomeres (ALT), were frequently detected in all heterozygous BRCA2 cell lines as well as the two ALT positive cell lines tested. Even though T-SCE frequency was similar in BRCA2 heterozygous and ALT positive cell lines they differed in single telomere signal loss and ITSs. Chromatid type alterations were more prominent in the BRCA2 heterozygous cell lines that may have propensity for telomere based chromosome healing. Telomere dysfunction-induced foci (TIFs) formation, identified by co-localization of telomeres and {gamma}-H2AX, supported telomere associated DNA damage response in BRCA2 heterozygous cell lines. TIFs were found in interphase nuclei, at chromosome ends, ITSs and ECTR DNA. In conclusion, our results suggest that BRCA2 has an important role in telomere stabilization by repressing CEFs through telomere capping and the prevention of telomere loss by replication stabilization.

  12. Telomeres and disease: enter TERRA.

    Science.gov (United States)

    Maicher, André; Kastner, Lisa; Luke, Brian

    2012-06-01

    Telomere function is tightly regulated in order to maintain chromosomal stability. When telomeres become dysfunctional, the replicative capacity of cells diminishes and cellular senescence ensues. This can lead to impaired tissue replenishment and eventually degenerative disorders, referred to as telomere syndromes. Cancer can also develop as a result of the genomic instability associated with telomere dysfunction. TERRA (TElomeric Repeat containing RNA) is a long non-coding transcript that stems from sub-telomeric regions and continues into the telomeric tract and is therefore a hybrid of both sub-telomeric and telomeric sequence. In general, increased TERRA transcription is associated with telomere shortening and compromised telomere function. Here we will briefly outline the general principles behind telomere dysfunction-associated diseases. Furthermore, we will discuss the few known links that exist between telomere transcription (TERRA) and disease. Finally, we will speculate on how the understanding, and eventual manipulation, of TERRA transcription could potentially be used in terms of therapeutic strategies.

  13. The Effect of Physical Activity agains the Telomere Length in the Leukocytes Cells of KONI Athletes

    Directory of Open Access Journals (Sweden)

    Endang Purwaningsih

    2017-07-01

    Full Text Available Telomeres are strands of non coding DNA at the ends of chromosomes that have the primary function to protect DNA from damage and maintain chromosomal stability. Physical exercise will increase the antioxidant activity can increase telomere proteins, lengthen telomeres and or protein networks associated with telomere so that the telomere remains long, or stopping telomere shortening. Telomere length was also associated with age. The purpose of the research was to determine telomere length of leukocyte cells in the KONI (Indonesian National Sports Committee athletes in Jakarta. The research method is descriptive, by measuring telomere length using quantitative PCR on leukocyte cells. Samples are KONI athletes from several sports, including men and women athletes, with ages between 15-20 years. Used a control group (not athletes is students of the Faculty of Medicine, University of YARSI. The results showed that there was no significant difference (p> 0.05 between telomere length group of athletes with the control group in both sexes. Similarly, telomere length between athlete male with female athletes also showed no significant difference (p> 0.05. It was concluded that physical exercise in athletes KONI at the age of 15- 20 years had no effect on telomere length in leukocytes. The results of this study provide information about the telomere length in Indonesian athletes at an early age.

  14. Markers of Decompression Stress of Mass Stranded/Live Caught and Released vs. Single Stranded Marine Mammals

    Science.gov (United States)

    2014-09-30

    Caught and Released vs. Single Stranded Marine Mammals Michael Moore Biology Department Woods Hole Oceanographic Institution Woods Hole, MA 02543...Society for Marine Mammalogy 2013 Biennial Conference on the Biology of Marine Mammals in New Zealand. Dr. Fahlman’s graduate student Lauren Gonzalez...Harabin, Metabolism and thermoregulation in guinea pigs in hyperbaric hydrogen: Effects of pressure. Journal of Thermal Biology , 1997. 22(1): p. 31-41

  15. Selective binding and reverse transcription inhibition of single-strand poly(A) RNA by metal TMPyP complexes.

    Science.gov (United States)

    Zhou, Zhu-Xin; Gao, Feng; Chen, Xing; Tian, Xiang-Jing; Ji, Liang-Nian

    2014-10-06

    Ni-, Cu-, and Zn-TMPyP are capable of binding to single-strand poly(A) RNA with high preference and affinity and inhibiting the reverse transcription of RNA by both M-MuLV and HIV-1 reverse transcriptase. With 10 nM azidothymidine, the IC50 value of M-TMPyP could be lowered to 10(-1) μM order.

  16. Telomere length modulation in human astroglial brain tumors.

    Directory of Open Access Journals (Sweden)

    Domenico La Torre

    Full Text Available BACKGROUND: Telomeres alteration during carcinogenesis and tumor progression has been described in several cancer types. Telomeres length is stabilized by telomerase (h-TERT and controlled by several proteins that protect telomere integrity, such as the Telomere Repeat-binding Factor (TRF 1 and 2 and the tankyrase-poli-ADP-ribose polymerase (TANKs-PARP complex. OBJECTIVE: To investigate telomere dysfunction in astroglial brain tumors we analyzed telomeres length, telomerase activity and the expression of a panel of genes controlling the length and structure of telomeres in tissue samples obtained in vivo from astroglial brain tumors with different grade of malignancy. MATERIALS AND METHODS: Eight Low Grade Astrocytomas (LGA, 11 Anaplastic Astrocytomas (AA and 11 Glioblastoma Multiforme (GBM samples were analyzed. Three samples of normal brain tissue (NBT were used as controls. Telomeres length was assessed through Southern Blotting. Telomerase activity was evaluated by a telomere repeat amplification protocol (TRAP assay. The expression levels of TRF1, TRF2, h-TERT and TANKs-PARP complex were determined through Immunoblotting and RT-PCR. RESULTS: LGA were featured by an up-regulation of TRF1 and 2 and by shorter telomeres. Conversely, AA and GBM were featured by a down-regulation of TRF1 and 2 and an up-regulation of both telomerase and TANKs-PARP complex. CONCLUSIONS: In human astroglial brain tumours, up-regulation of TRF1 and TRF2 occurs in the early stages of carcinogenesis determining telomeres shortening and genomic instability. In a later stage, up-regulation of PARP-TANKs and telomerase activation may occur together with an ADP-ribosylation of TRF1, causing a reduced ability to bind telomeric DNA, telomeres elongation and tumor malignant progression.

  17. Efficient and simpler method to construct normalized cDNA libraries with improved representations of full-length cDNAs

    Science.gov (United States)

    Soares, Marcelo Bento; Bonaldo, Maria de Fatima

    1998-01-01

    This invention provides a method to normalize a cDNA library comprising: (a) constructing a directionally cloned library containing cDNA inserts wherein the insert is capable of being amplified by polymerase chain reaction; (b) converting a double-stranded cDNA library into single-stranded DNA circles; (c) generating single-stranded nucleic acid molecules complementary to the single-stranded DNA circles converted in step (b) by polymerase chain reaction with appropriate primers; (d) hybridizing the single-stranded DNA circles converted in step (b) with the complementary single-stranded nucleic acid molecules generated in step (c) to produce partial duplexes to an appropriate Cot; and (e) separating the unhybridized single-stranded DNA circles from the hybridized DNA circles, thereby generating a normalized cDNA library. This invention also provides a method to normalize a cDNA library wherein the generating of single-stranded nucleic acid molecules complementary to the single-stranded DNA circles converted in step (b) is by excising cDNA inserts from the double-stranded cDNA library; purifying the cDNA inserts from cloning vectors; and digesting the cDNA inserts with an exonuclease. This invention further provides a method to construct a subtractive cDNA library following the steps described above. This invention further provides normalized and/or subtractive cDNA libraries generated by the above methods.

  18. Variation of DNA methylation in candidate age-related targets on the mitochondrial-telomere axis in cord blood and placenta.

    Science.gov (United States)

    Janssen, B G; Byun, H M; Cox, B; Gyselaers, W; Izzi, B; Baccarelli, A A; Nawrot, T S

    2014-09-01

    Epigenetics is tissue-specific and potentially even cell-specific, but little information is available from human reproductive studies about the concordance of DNA methylation patterns in cord blood and placenta, as well as within-placenta variations. We evaluated methylation levels at promoter regions of candidate genes in biological ageing pathways (SIRT1, TP53, PPARG, PPARGC1A, and TFAM), a subtelomeric region (D4Z4) and the mitochondrial genome (MT-RNR1, D-loop). Ninety individuals were randomly chosen from the ENVIRONAGE birth cohort to evaluate methylation concordance between cord blood and placenta using highly quantitative bisulfite-PCR pyrosequencing. In a subset of nineteen individuals, a more extensive sampling scheme was performed to examine within-placenta variation. The DNA methylation levels of the subtelomeric region and mitochondrial genome showed concordance between cord blood and placenta with correlation coefficients ranging from r = 0.31 to 0.43, p ≤ 0.005, and also between the maternal and foetal sides of placental tissue (r = 0.53 to 0.72, p ≤ 0.05). For the majority of targets, an agreement in methylation levels between four foetal biopsies was found (with intra-class correlation coefficients ranging from 0.16 to 0.72), indicating small within-placenta variation. The methylation levels of the subtelomeric region (D4Z4) and mitochondrial genome (MT-RNR1, D-loop) showed concordance between cord blood and placenta, suggesting a common epigenetic signature of these targets between tissues. Concordance was lacking between the other genes that were studied. In placental tissue, methylation patterns of most targets on the mitochondrial-telomere axis were not strongly influenced by sample location. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Role of electrostatics in the assembly pathway of a single-stranded RNA virus.

    Science.gov (United States)

    Garmann, Rees F; Comas-Garcia, Mauricio; Koay, Melissa S T; Cornelissen, Jeroen J L M; Knobler, Charles M; Gelbart, William M

    2014-09-01

    We have recently discovered (R. D. Cadena-Nava et al., J. Virol. 86:3318-3326, 2012, doi:10.1128/JVI.06566-11) that the in vitro packaging of RNA by the capsid protein (CP) of cowpea chlorotic mottle virus is optimal when there is a significant excess of CP, specifically that complete packaging of all of the RNA in solution requires sufficient CP to provide charge matching of the N-terminal positively charged arginine-rich motifs (ARMS) of the CPs with the negatively charged phosphate backbone of the RNA. We show here that packaging results from the initial formation of a charge-matched protocapsid consisting of RNA decorated by a disordered arrangement of CPs. This protocapsid reorganizes into the final, icosahedrally symmetric nucleocapsid by displacing the excess CPs from the RNA to the exterior surface of the emerging capsid through electrostatic attraction between the ARMs of the excess CP and the negative charge density of the capsid exterior. As a test of this scenario, we prepare CP mutants with extra and missing (relative to the wild type) cationic residues and show that a correspondingly smaller and larger excess, respectively, of CP is needed for complete packaging of RNA. Cowpea chlorotic mottle virus (CCMV) has long been studied as a model system for the assembly of single-stranded RNA viruses. While much is known about the electrostatic interactions within the CCMV virion, relatively little is known about these interactions during assembly, i.e., within intermediate states preceding the final nucleocapsid structure. Theoretical models and coarse-grained molecular dynamics simulations suggest that viruses like CCMV assemble by the bulk adsorption of CPs onto the RNA driven by electrostatic attraction, followed by structural reorganization into the final capsid. Such a mechanism facilitates assembly by condensing the RNA for packaging while simultaneously concentrating the local density of CP for capsid nucleation. We provide experimental evidence of

  20. Conformational Diversity of Single-Stranded DNA from Bacterial Repetitive Extragenic Palindromes: Implications for the DNA Recognition Elements of Transposases

    Czech Academy of Sciences Publication Activity Database

    Charnavets, Tatsiana; Nunvář, Jaroslav; Nečasová, Iva; Voelker, J.; Breslauer, K.J.; Schneider, Bohdan

    2015-01-01

    Roč. 103, č. 10 (2015), s. 585-596 ISSN 0006-3525 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0109; GA ČR GAP305/12/1801; GA MŠk(CZ) EE2.3.30.0020 Institutional support: RVO:86652036 Keywords : bacterial repetitive extragenic palindromes (REP) * circular dichroism spectroscopy * REP associated tyrosine transposases (RAYTs) Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.248, year: 2015

  1. Correlation of chromosomal instability, telomere length and telomere maintenance in microsatellite stable rectal cancer: a molecular subclass of rectal cancer.

    Directory of Open Access Journals (Sweden)

    Lisa A Boardman

    Full Text Available Colorectal cancer (CRC tumor DNA is characterized by chromosomal damage termed chromosomal instability (CIN and excessively shortened telomeres. Up to 80% of CRC is microsatellite stable (MSS and is historically considered to be chromosomally unstable (CIN+. However, tumor phenotyping depicts some MSS CRC with little or no genetic changes, thus being chromosomally stable (CIN-. MSS CIN- tumors have not been assessed for telomere attrition.MSS rectal cancers from patients ≤50 years old with Stage II (B2 or higher or Stage III disease were assessed for CIN, telomere length and telomere maintenance mechanism (telomerase activation [TA]; alternative lengthening of telomeres [ALT]. Relative telomere length was measured by qPCR in somatic epithelial and cancer DNA. TA was measured with the TRAPeze assay, and tumors were evaluated for the presence of C-circles indicative of ALT. p53 mutation status was assessed in all available samples. DNA copy number changes were evaluated with Spectral Genomics aCGH.Tumors were classified as chromosomally stable (CIN- and chromosomally instable (CIN+ by degree of DNA copy number changes. CIN- tumors (35%; n=6 had fewer copy number changes (<17% of their clones with DNA copy number changes than CIN+ tumors (65%; n=13 which had high levels of copy number changes in 20% to 49% of clones. Telomere lengths were longer in CIN- compared to CIN+ tumors (p=0.0066 and in those in which telomerase was not activated (p=0.004. Tumors exhibiting activation of telomerase had shorter tumor telomeres (p=0.0040; and tended to be CIN+ (p=0.0949.MSS rectal cancer appears to represent a heterogeneous group of tumors that may be categorized both on the basis of CIN status and telomere maintenance mechanism. MSS CIN- rectal cancers appear to have longer telomeres than those of MSS CIN+ rectal cancers and to utilize ALT rather than activation of telomerase.

  2. AKTIP/Ft1, a New Shelterin-Interacting Factor Required for Telomere Maintenance.

    KAUST Repository

    Burla, Romina

    2015-06-25

    Telomeres are nucleoprotein complexes that protect the ends of linear chromosomes from incomplete replication, degradation and detection as DNA breaks. Mammalian telomeres are protected by shelterin, a multiprotein complex that binds the TTAGGG telomeric repeats and recruits a series of additional factors that are essential for telomere function. Although many shelterin-associated proteins have been so far identified, the inventory of shelterin-interacting factors required for telomere maintenance is still largely incomplete. Here, we characterize AKTIP/Ft1 (human AKTIP and mouse Ft1 are orthologous), a novel mammalian shelterin-bound factor identified on the basis of its homology with the Drosophila telomere protein Pendolino. AKTIP/Ft1 shares homology with the E2 variant ubiquitin-conjugating (UEV) enzymes and has been previously implicated in the control of apoptosis and in vesicle trafficking. RNAi-mediated depletion of AKTIP results in formation of telomere dysfunction foci (TIFs). Consistent with these results, AKTIP interacts with telomeric DNA and binds the shelterin components TRF1 and TRF2 both in vivo and in vitro. Analysis of AKTIP- depleted human primary fibroblasts showed that they are defective in PCNA recruiting and arrest in the S phase due to the activation of the intra S checkpoint. Accordingly, AKTIP physically interacts with PCNA and the RPA70 DNA replication factor. Ft1-depleted p53-/- MEFs did not arrest in the S phase but displayed significant increases in multiple telomeric signals (MTS) and sister telomere associations (STAs), two hallmarks of defective telomere replication. In addition, we found an epistatic relation for MST formation between Ft1 and TRF1, which has been previously shown to be required for replication fork progression through telomeric DNA. Ch-IP experiments further suggested that in AKTIP-depleted cells undergoing the S phase, TRF1 is less tightly bound to telomeric DNA than in controls. Thus, our results collectively

  3. Clonal origin of multiple lung cancers: K-ras and p53 mutations determined by nonradioisotopic single-strand conformation polymorphism analysis.

    Science.gov (United States)

    Lau, D H; Yang, B; Hu, R; Benfield, J R

    1997-08-01

    Disease stage is the most important factor in determining prognosis and treatment of lung cancer. Staging of lung cancer is complicated by presentation of multiple pulmonary malignant lesions with a similar histology. It is a dilemma to decide if these lesions are synchronous primaries arising from different malignant clones or metastases from a single clone. Lung cancer is associated with multiple genetic abnormalities including mutations of K-ras and p53, which are believed to occur prior to onset of metastasis. To determine the clonal origin of multiple pulmonary malginant nodules, we analyzed point-mutations of K-ras and p53 by microdissection, polymerase chain reactions (PCR), nonradioisotopic single-strand conformation polymorphism (SSCP) analysis, and DNA sequencing. Each pulmonary lesion was microdissected from paraffin slides. Genomic DNA was amplified by two sequential PCRs followed by electrophoresis in a minigel and silver staining. Deoxyribonucleic acid sequencing was performed if necessary to confirm a mutation found upon SSCP analysis. Applying this molecular approach, we were able to differentiate the clonal origins of multiple malignant nodules of the lung as exemplified by the two cases presented.

  4. The telomere-associated homeobox-containing protein TAH1/HMBOX1 participates in telomere maintenance in ALT cells.

    Science.gov (United States)

    Feng, Xuyang; Luo, Zhenhua; Jiang, Shuai; Li, Feng; Han, Xin; Hu, Yang; Wang, Dan; Zhao, Yong; Ma, Wenbin; Liu, Dan; Huang, Junjiu; Songyang, Zhou

    2013-09-01

    The majority of cancer cells rely on elevated telomerase expression and activity for rapid growth and proliferation. Telomerase-negative cancer cells, by contrast, often employ the alternative lengthening of telomeres (ALT) pathway to maintain telomeres. ALT cells are characterized by long and dynamic telomeres and the presence of ALT-associated promyelocytic leukemia (PML) bodies (APBs). Previous work has shown the importance of APBs to the ALT pathway, but their formation and precise role remain unclear. Here, we demonstrate that a homeobox-containing protein known as HMBOX1 can directly bind telomeric double-stranded DNA and associate with PML nuclear bodies. Hence, we renamed this protein TAH1 for telomere-associated homeobox-containing protein 1. TAH1 knockdown significantly reduced the number of APBs and led to an increase in DNA damage response signals at telomeres. Importantly, TAH1 inhibition also notably reduced the presence of telomere C-circles, indicating altered ALT activity. Our findings point to TAH1 as a novel link between pathways that regulate DNA damage responses, PML nuclear bodies, and telomere homeostasis in ALT cells, and provide insight into how ALT cells may achieve sustained growth and proliferation independent of the telomerase.

  5. Normal formation and repair of γ-radiation-induced single and double strand DNA breaks in Down syndrome fibroblasts

    International Nuclear Information System (INIS)

    Steiner, M.E.; Woods, W.G.

    1982-01-01

    Fibroblasts from patients with Down syndrome (Trisomy 21) were examined for repair capability of γ-radiation-induced single strand and double strand DNA breaks. Formation and repair of DNA breaks were determined by DNA alkaline and non-denaturing elution techniques. Down syndrome fibroblasts were found to repair single strand and double strand breaks as well as fibroblasts from normal controls. (orig.)

  6. Phase Transition of DNA-Linked Gold Nanoparticle

    OpenAIRE

    Kiang, Ching-Hwa

    2001-01-01

    Melting and hybridization of DNA-capped gold nanoparticle networks are investigated with optical absorption spectroscopy. Single-stranded, 12-base DNA-capped gold nanoparticles are linked with complementary, single-stranded, 24-base linker DNA to form particle networks. Compared to free DNA, a sharp melting transition is seen in these networked DNA-nanoparticle systems. The sharpness is explained by percolation transition phenomena.

  7. Telomere Length and Mortality

    DEFF Research Database (Denmark)

    Kimura, Masayuki; Hjelmborg, Jacob V B; Gardner, Jeffrey P

    2008-01-01

    Leukocyte telomere length, representing the mean length of all telomeres in leukocytes, is ostensibly a bioindicator of human aging. The authors hypothesized that shorter telomeres might forecast imminent mortality in elderly people better than leukocyte telomere length. They performed mortality...... telomeres predicted the death of the first co-twin better than the mTRFL did (mTRFL: 0.56, 95% confidence interval (CI): 0.49, 0.63; mTRFL(50): 0.59, 95% CI: 0.52, 0.66; mTRFL(25): 0.59, 95% CI: 0.52, 0.66; MTRFL: 0.60, 95% CI: 0.53, 0.67). The telomere-mortality association was stronger in years 3-4 than...

  8. Social isolation shortens telomeres in African Grey parrots (Psittacus erithacus erithacus.

    Directory of Open Access Journals (Sweden)

    Denise Aydinonat

    Full Text Available Telomeres, the caps of eukaryotic chromosomes, control chromosome stability and cellular senescence, but aging and exposure to chronic stress are suspected to cause attrition of telomere length. We investigated the effect of social isolation on telomere length in the highly social and intelligent African Grey parrot (Psittacus erithacus erithacus. Our study population consisted of single-housed (n = 26 and pair-housed (n = 19 captive individuals between 0.75 to 45 years of age. Relative telomere length of erythrocyte DNA was measured by quantitative real-time PCR. We found that telomere length declined with age (p<0.001, and socially isolated parrots had significantly shorter telomeres compared to pair-housed birds (p<0.001 - even among birds of similar ages. Our findings provide the first evidence that social isolation affects telomere length, which supports the hypothesis that telomeres provide a biomarker indicating exposure to chronic stress.

  9. Acacetin and Chrysin, Two Polyphenolic Compounds, Alleviate Telomeric Position Effect in Human Cells

    Directory of Open Access Journals (Sweden)

    Amina Boussouar

    2013-01-01

    Full Text Available We took advantage of the ability of human telomeres to silence neighboring genes (telomere position effect or TPE to design a high-throughput screening assay for drugs altering telomeres. We identified, for the first time, that two dietary flavones, acacetin and chrysin, are able to specifically alleviate TPE in human cells. We further investigated their influence on telomere integrity and showed that both drugs drastically deprotect telomeres against DNA damage response. However, telomere deprotection triggered by shelterin dysfunction does not affect TPE, indicating that acacetin and chrysin target several functions of telomeres. These results show that TPE-based screening assays represent valuable methods to discover new compounds targeting telomeres.

  10. Tpp1/Acd maintains genomic stability through a complex role in telomere protection.

    Science.gov (United States)

    Else, Tobias; Theisen, Brian K; Wu, Yipin; Hutz, Janna E; Keegan, Catherine E; Hammer, Gary D; Ferguson, David O

    2007-01-01

    Telomeres serve to protect the ends of chromosomes, and failure to maintain telomeres can lead to dramatic genomic instability. Human TPP1 was identified as a protein which interacts with components of a telomere cap complex, but does not directly bind to telomeric DNA. While biochemical interactions indicate a function in telomere biology, much remains to be learned regarding the roles of TPP1 in vivo. We previously reported the positional cloning of the gene responsible for the adrenocortical dysplasia (acd) mouse phenotype, which revealed a mutation in the mouse homologue encoding TPP1. We find that cells from homozygous acd mice harbor chromosomes fused at telomere sequences, demonstrating a role in telomere protection in vivo. Surprisingly, our studies also reveal fusions and radial structures lacking internal telomere sequences, which are not anticipated from a simple deficiency in telomere protection. Employing spectral karyotyping and telomere FISH in a combined approach, we have uncovered a striking pattern; fusions with telomeric sequences involve nonhomologous chromosomes while those lacking telomeric sequences involve homologues. Together, these studies show that Tpp1/Acd plays a vital role in telomere protection, but likely has additional functions yet to be defined.

  11. Telomere biology in metazoa

    OpenAIRE

    Gomes, Nuno Miguel Veiga

    2011-01-01

    Tese de doutoramento, Engenharia Biomédica e Biofísica, Universidade de Lisboa, Faculdade de Ciências, 2011 Telomerase, the enzyme that maintains telomeres, is absent from most adult human somatic cells, producing a progressive telomere shortening that limits the proliferative potential of primary human cell cultures (Shay and Wright 2007). This programmed telomere shortening, replicative aging, functions as a tumor suppressor program that generates a barrier for the outgrowth of tumors. R...

  12. Telomeres and Telomerase in The Aging Heart

    Directory of Open Access Journals (Sweden)

    Anna Meiliana

    2017-12-01

    Full Text Available BACKGROUND: Aging per se is a risk factor for reduced cardiac function and heart diseases, even when adjusted for aging-associated cardiovascular risk factors. Accordingly, aging-related biochemical and cell-biological changes lead to pathophysiological conditions, especially reduced heart function and heart disease. CONTENT: Telomere dysfunction induces a profound p53-dependent repression of the master regulators of mitochondrial biogenesis and function, peroxisome proliferator-activated receptor gamma coactivator (PGC-1a and PGC-1b in the heart, which leads to bioenergetic compromise due to impaired oxidative phosphorylation and ATP generation. This telomere-p53-PGC mitochondrial/metabolic axis integrates many factors linked to heart aging including increased DNA damage, p53 activation, mitochondrial, and metabolic dysfunction and provides a molecular basis of how dysfunctional telomeres can compromise cardiomyocytes and stem cell compartments in the heart to precipitate cardiac aging. SUMMARY: The aging myocardium with telomere shortening and accumulation of senescent cells restricts the tissue regenerative ability, which contributes to systolic or diastolic heart failure. Moreover, patients with ion-channel defects might have genetic imbalance caused by oxidative stress-related accelerated telomere shortening, which may subsequently cause sudden cardiac death. Telomere length can serve as a marker for the biological status of previous cell divisions and DNA damage with inflammation and oxidative stress. It can be integrated into current risk prediction and stratification models for cardiovascular diseases and can be used in precise personalized treatments. KEYWORDS: aging, telomere, telomerase, aging heart, mitochondria, cardiac stem cell

  13. Genomic instability and telomere fusion of canine osteosarcoma cells.

    Directory of Open Access Journals (Sweden)

    Junko Maeda

    Full Text Available Canine osteosarcoma (OSA is known to present with highly variable and chaotic karyotypes, including hypodiploidy, hyperdiploidy, and increased numbers of metacentric chromosomes. The spectrum of genomic instabilities in canine OSA has significantly augmented the difficulty in clearly defining the biological and clinical significance of the observed cytogenetic abnormalities. In this study, eight canine OSA cell lines were used to investigate telomere fusions by fluorescence in situ hybridization (FISH using a peptide nucleotide acid probe. We characterized each cell line by classical cytogenetic studies and cellular phenotypes including telomere associated factors and then evaluated correlations from this data. All eight canine OSA cell lines displayed increased abnormal metacentric chromosomes and exhibited numerous telomere fusions and interstitial telomeric signals. Also, as evidence of unstable telomeres, colocalization of γ-H2AX and telomere signals in interphase cells was observed. Each cell line was characterized by a combination of data representing cellular doubling time, DNA content, chromosome number, metacentric chromosome frequency, telomere signal level, cellular radiosensitivity, and DNA-PKcs protein expression level. We have also studied primary cultures from 10 spontaneous canine OSAs. Based on the observation of telomere aberrations in those primary cell cultures, we are reasonably certain that our observations in cell lines are not an artifact of prolonged culture. A correlation between telomere fusions and the other characteristics analyzed in our study could not be identified. However, it is important to note that all of the canine OSA samples exhibiting telomere fusion utilized in our study were telomerase positive. Pending further research regarding telomerase negative canine OSA cell lines, our findings may suggest telomere fusions can potentially serve as a novel marker for canine OSA.

  14. Diverse effects of naturally occurring base lesions on the structure and stability of the human telomere DNA quadruplex

    Czech Academy of Sciences Publication Activity Database

    Konvalinová, Helena; Dvořáková, Zuzana; Renčiuk, Daniel; Bednářová, Klára; Kejnovská, Iva; Trantírek, L.; Vorlíčková, Michaela; Sagi, J.

    2015-01-01

    Roč. 118, NOV 2015 (2015), s. 15-25 ISSN 0300-9084 R&D Projects: GA ČR(CZ) GAP205/12/0466; GA ČR(CZ) GA13-28310S; GA ČR(CZ) GA15-06785S Institutional support: RVO:68081707 Keywords : DNA secondary structure * Circular dichroism spectroscopy * Guanine quadruplex Subject RIV: BO - Biophysics Impact factor: 3.017, year: 2015

  15. Guanine quadruplex formation by RNA/DNA hybrid analogs of Oxytricha telomere G4T4G4 fragment

    Czech Academy of Sciences Publication Activity Database

    Vondrušková, Jitka; Kypr, Jaroslav; Kejnovská, Iva; Fialová, Markéta; Vorlíčková, Michaela

    2008-01-01

    Roč. 89, č. 10 (2008), s. 797-806 ISSN 0006-3525 R&D Projects: GA ČR(CZ) GA204/07/0057; GA AV ČR(CZ) IAA100040701 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : RNA/DNA hybrids * guanine quadruplex * circular dichroism spectroscopy Subject RIV: BO - Biophysics Impact factor: 2.823, year: 2008

  16. Telomere Length Maintenance in Cancer: At the Crossroad between Telomerase and Alternative Lengthening of Telomeres (ALT).

    Science.gov (United States)

    De Vitis, Marco; Berardinelli, Francesco; Sgura, Antonella

    2018-02-18

    Eukaryotic cells undergo continuous telomere shortening as a consequence of multiple rounds of replications. During tumorigenesis, cells have to acquire telomere DNA maintenance mechanisms (TMMs) in order to counteract telomere shortening, to preserve telomeres from DNA damage repair systems and to avoid telomere-mediated senescence and/or apoptosis. For this reason, telomere maintenance is an essential step in cancer progression. Most human tumors maintain their telomeres expressing telomerase, whereas a lower but significant proportion activates the alternative lengthening of telomeres (ALT) pathway. However, evidence about the coexistence of ALT and telomerase has been found both in vivo in the same cancer populations and in vitro in engineered cellular models, making the distinction between telomerase- and ALT-positive tumors elusive. Indeed, after the development of drugs able to target telomerase, the capability for some cancer cells to escape death, switching from telomerase to ALT, was highlighted. Unfortunately, to date, the mechanism underlying the possible switching or the coexistence of telomerase and ALT within the same cell or populations is not completely understood and different factors could be involved. In recent years, different studies have tried to shed light on the complex regulation network that controls the transition between the two TMMs, suggesting a role for embryonic cancer origin, epigenetic modifications, and specific genes activation-both in vivo and in vitro. In this review, we examine recent findings about the cancer-associated differential activation of the two known TMMs and the possible factors implicated in this process. Furthermore, some studies on cancers are also described that did not display any TMM.

  17. L-Carnosine reduces telomere damage and shortening rate in cultured normal fibroblasts

    International Nuclear Information System (INIS)

    Shao Lan; Li Qinghuan; Tan Zheng

    2004-01-01

    Telomere is the repetitive DNA sequence at the end of chromosomes, which shortens progressively with cell division and limits the replicative potential of normal human somatic cells. L-Carnosine, a naturally occurring dipeptide, has been reported to delay the replicative senescence, and extend the lifespan of cultured human diploid fibroblasts. In this work, we studied the effect of carnosine on the telomeric DNA of cultured human fetal lung fibroblast cells. Cells continuously grown in 20 mM carnosine exhibited a slower telomere shortening rate and extended lifespan in population doublings. When kept in a long-term nonproliferating state, they accumulated much less damages in the telomeric DNA when cultured in the presence of carnosine. We suggest that the reduction in telomere shortening rate and damages in telomeric DNA made an important contribution to the life-extension effect of carnosine

  18. Development of an Interaction Assay between Single-Stranded Nucleic Acids Trapped with Silica Particles and Fluorescent Compounds

    Directory of Open Access Journals (Sweden)

    R. Maeda

    2012-09-01

    Full Text Available Biopolymers are easily denatured by heating, a change in pH or chemical substances when they are immobilized on a substrate. To prevent denaturation of biopolymers, we developed a method to trap a polynucleotide on a substrate by hydrogen bonding using silica particles with surfaces modified by aminoalkyl chains ([A-AM silane]/SiO2. [A-AM silane]/SiO2 was synthesized by silane coupling reaction of N-2-(aminoethyl-3-aminopropyltrimethoxysilane (A-AM silane with SiO2 particles with a diameter of 5 μm at 100 °C for 20 min. The surface chemical structure of [A-AM silane]/SiO2 was characterized by Fourier transform infrared spectroscopy and molecular orbital calculations. The surface of the silica particles was modified with A-AM silane and primary amine groups were formed. [A-AM silane]/SiO2 was trapped with single-stranded nucleic acids [(Poly-X; X = A (adenine, G (guanine and C (cytosine] in PBS solution at 37 °C for 1 h. The single-stranded nucleic acids were trapped on the surface of the [A-AM silane]/SiO2 by hydrogen bonding to form conjugated materials. The resulting complexes were further conjugated by derivatives of acridine orange (AO as fluorescent labels under the same conditions to form [AO:Poly-X:A-AM silane]/SiO2 complexes. Changes in the fluorescence intensity of these complexes originating from interactions between the single-stranded nucleic acid and aromatic compounds were also evaluated. The change in intensity displayed the order [AO: Poly-G: A-AM silane]/SiO2 > [AO:Poly-A:A-AM silane]/SiO2 >> [AO:Poly-C:A-AM silane]/SiO2. This suggests that the single-stranded nucleic acids conjugated with aminoalkyl chains on the surfaces of SiO2 particles and the change in fluorescence intensity reflected the molecular interaction between AO and the nucleic-acid base in a polynucleotide.

  19. Structure of the replicative form of bacteriophage φX174 : VI. Studies on alkali-denatured double-stranded φX DNA

    NARCIS (Netherlands)

    Pouwels, P.H.; Knijnenburg, C.M.; Rotterdam, J. van; Cohen, J.A.; Jansz, H.S.

    1968-01-01

    Double-stranded φX DNA which accumulates after infection with bacteriophage φX174 in the presence of chloramphenicol consists mainly of twisted circular double-stranded DNA with no single-strand breaks (component I) and of circular double-stranded DNA, in which single-strand breaks are present

  20. Telomeres and their possible role in chromosome stabilization

    Energy Technology Data Exchange (ETDEWEB)

    Day, J.P.; Marder, B.A.; Morgan, W.F. (Univ. of California, San Francisco, CA (United States))

    1993-01-01

    The evidence to date generally supports the hypothesis that telomere capping makes chromosome fragments refractory to subsequent rejoining events, but this control may be somewhat relaxed after chromosome breakage. Cell survival requires that the fragments rejoin before metaphase. Unprotected ends such as those produced by DNA damage are subject to degradation, presumably by endogenous cellular exo- and endonucleases. Telomere repeat sequences may be added to broken chromosome ends to protect the ends from further degradation. That telomeric DNA does not always prevent rejoining raises interesting questions as to what constitutes capping, and how rapidly it occurs after DNA damage in relation to chromosome break rejoining. The prevention of degradation and control of rejoining may be mediated by telomere-specific binding proteins, especially the telomere terminal binding protein. Some of these proteins may be involved in scavenging telomeric DNA when the cell senses that chromosomal breaks have occurred. Although chromosome break rejoining is an efficient process in eukaryotic cells, some breaks are never rejoined and can result in terminal delections and chromatid and isochromatid deletions at metaphase. It is unclear why these breaks are not rejoined, but it may be due to one or more of the following: (1) chance: broken chromosomes are separated, do not approach sufficiently close to one another, and are consequently physically unable to rejoin; (2) a large number of added telomere repeat sequences indicating to the cell that the chromosome has an authentic telomere; (3) some other DNA modification event that protects DNA ends from degradation, e.g., folding back of DNA ends to form a hairpin, as has been implicated in VDJ recombination.

  1. Telomere length and depression

    DEFF Research Database (Denmark)

    Wium-Andersen, Marie Kim; Ørsted, David Dynnes; Rode, Line

    2017-01-01

    BACKGROUND: Depression has been cross-sectionally associated with short telomeres as a measure of biological age. However, the direction and nature of the association is currently unclear. AIMS: We examined whether short telomere length is associated with depression cross-sectionally as well...... as prospectively and genetically. METHOD: Telomere length and three polymorphisms, TERT, TERC and OBFC1, were measured in 67 306 individuals aged 20-100 years from the Danish general population and associated with register-based attendance at hospital for depression and purchase of antidepressant medication....... RESULTS: Attendance at hospital for depression was associated with short telomere length cross-sectionally, but not prospectively. Further, purchase of antidepressant medication was not associated with short telomere length cross-sectionally or prospectively. Mean follow-up was 7.6 years (range 0...

  2. The DDR at telomeres lacking intact shelterin does not require substantial chromatin decompaction.

    Science.gov (United States)

    Timashev, Leonid A; Babcock, Hazen; Zhuang, Xiaowei; de Lange, Titia

    2017-03-15

    Telomeres are protected by shelterin, a six-subunit protein complex that represses the DNA damage response (DDR) at chromosome ends. Extensive data suggest that TRF2 in shelterin remodels telomeres into the t-loop structure, thereby hiding telomere ends from double-stranded break repair and ATM signaling, whereas POT1 represses ATR signaling by excluding RPA. An alternative protection mechanism was suggested recently by which shelterin subunits TRF1, TRF2, and TIN2 mediate telomeric chromatin compaction, which was proposed to minimize access of DDR factors. We performed superresolution imaging of telomeres in mouse cells after conditional deletion of TRF1, TRF2, or both, the latter of which results in the complete loss of shelterin. Upon removal of TRF1 or TRF2, we observed only minor changes in the telomere volume in most of our experiments. Upon codeletion of TRF1 and TRF2, the telomere volume increased by varying amounts, but even those samples exhibiting small changes in telomere volume showed DDR at nearly all telomeres. Upon shelterin removal, telomeres underwent 53BP1-dependent clustering, potentially explaining at least in part the apparent increase in telomere volume. Furthermore, chromatin accessibility, as determined by ATAC-seq (assay for transposase-accessible chromatin [ATAC] with high-throughput sequencing), was not substantially altered by shelterin removal. These results suggest that the DDR induced by shelterin removal does not require substantial telomere decompaction. © 2017 Timashev et al.; Published by Cold Spring Harbor Laboratory Press.

  3. The human CTC1/STN1/TEN1 complex regulates telomere maintenance in ALT cancer cells.

    Science.gov (United States)

    Huang, Chenhui; Jia, Pingping; Chastain, Megan; Shiva, Olga; Chai, Weihang

    2017-06-15

    Maintaining functional telomeres is important for long-term proliferation of cells. About 15% of cancer cells are telomerase-negative and activate the alternative-lengthening of telomeres (ALT) pathway to maintain their telomeres. Recent studies have shown that the human CTC1/STN1/TEN1 complex (CST) plays a multi-faceted role in telomere maintenance in telomerase-expressing cancer cells. However, the role of CST in telomere maintenance in ALT cells is unclear. Here, we report that human CST forms a functional complex localizing in the ALT-associated PML bodies (APBs) in ALT cells throughout the cell cycle. Suppression of CST induces telomere instabilities including telomere fragility and elevates telomeric DNA recombination, leading to telomere dysfunction. In addition, CST deficiency significantly diminishes the abundance of extrachromosomal circular telomere DNA known as C-circles and t-circles. Suppression of CST also results in multinucleation in ALT cells and impairs cell proliferation. Our findings imply that the CST complex plays an important role in regulating telomere maintenance in ALT cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. SMARCAL1 Resolves Replication Stress at ALT Telomeres.

    Science.gov (United States)

    Cox, Kelli E; Maréchal, Alexandre; Flynn, Rachel Litman

    2016-02-09

    Cancer cells overcome replicative senescence by exploiting mechanisms of telomere elongation, a process often accomplished by reactivation of the enzyme telomerase. However, a subset of cancer cells lack telomerase activity and rely on the alternative lengthening of telomeres (ALT) pathway, a recombination-based mechanism of telomere elongation. Although the mechanisms regulating ALT are not fully defined, chronic replication stress at telomeres might prime these fragile regions for recombination. Here, we demonstrate that the replication stress response protein SMARCAL1 is a critical regulator of ALT activity. SMARCAL1 associates with ALT telomeres to resolve replication stress and ensure telomere stability. In the absence of SMARCAL1, persistently stalled replication forks at ALT telomeres deteriorate into DNA double-strand breaks promoting the formation of chromosome fusions. Our studies not only define a role for SMARCAL1 in ALT telomere maintenance, but also demonstrate that resolution of replication stress is a crucial step in the ALT mechanism. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Nature vs nurture: interplay between the genetic control of telomere length and environmental factors.

    Science.gov (United States)

    Harari, Yaniv; Romano, Gal-Hagit; Ungar, Lior; Kupiec, Martin

    2013-11-15

    Telomeres are nucleoprotein structures that cap the ends of the linear eukaryotic chromosomes, thus protecting their stability and integrity. They play important roles in DNA replication and repair and are central to our understanding of aging and cancer development. In rapidly dividing cells, telomere length is maintained by the activity of telomerase. About 400 TLM (telomere length maintenance) genes have been identified in yeast, as participants of an intricate homeostasis network that keeps telomere length constant. Two papers have recently shown that despite this extremely complex control, telomere length can be manipulated by external stimuli. These results have profound implications for our understanding of cellular homeostatic systems in general and of telomere length maintenance in particular. In addition, they point to the possibility of developing aging and cancer therapies based on telomere length manipulation.

  6. Detection of p53 mutations by single-strand conformation polymorphisms (SSCP) gel electrophoresis. A comparative study of radioactive and nonradioactive silver-stained SSCP analysis.

    Science.gov (United States)

    Bosari, S; Marchetti, A; Buttitta, F; Graziani, D; Borsani, G; Loda, M; Bevilacqua, G; Coggi, G

    1995-12-01

    p53 mutations are the most common genetic abnormality in humans tumors, but their clinical significance remains to be precisely elucidated. Conventional single-strand conformation polymorphism (SSCP) analysis, a well-established technique for detecting p53 mutations, uses radioactively labeled polymerase chain reaction (PCR) products, which migrate abnormally in the presence of mutations. We performed radioactive PCR-SSCP analysis in a series of 30 formalin-fixed, paraffin-embedded ovarian carcinomas and two cell lines (SW480 and Caov4) harboring known homozygous p53 mutations and compared the results with nonradioactive silver-stained SSCP. The purpose was to assess whether nonradioactive SSCP is suitable for detecting p53 mutations in a rapid, sensitive, cost-effective fashion, without the need of radioactive isotopes. We accomplished PCR amplification of p53 exons 5 through 8 in 26 carcinomas, and radioactive SSCP detected p53 mutations in 13 tumors; three mutations were localized in exon 5, six in exon 6, two in exon 7, and two in exon 8. All mutations were correctly identified with nonradioactive SSCP, except for one exon 8 mutation. To establish the sensitivity of nonradioactive SSCP, DNA samples of SW480 and Caov4 were mixed with increasing amounts (0-90%) of normal DNA and subjected to PCR-SSCP analysis. Mutations were detected until the concentration of SW480 and Caov4 was 15% and 10%, respectively, of the total sample. The results of our investigation demonstrate that nonradioactive silver-stained SSCP is a sensitive, rapid, and simple technique to detect p53 mutations, even in formalin-fixed tissues, and could be easily used to investigate large series of patients to assess the clinical significance of p53 mutations in human tumors.

  7. DNA Replication Arrest and DNA Damage Responses Induced by Alkylating Minor Groove Binders

    National Research Council Canada - National Science Library

    Kuo, Shu-Ru

    2003-01-01

    .... We found that RPA purified from cells treated with adozelesin has the same single-stranded DNA binding activity and support nucleotide excision repair as normal RPA, but is not able to support SV40...

  8. DNA Structure Specificity Conferred on a Replicative Helicase by Its Loader*

    OpenAIRE

    Gupta, Milind K.; Atkinson, John; McGlynn, Peter

    2009-01-01

    Prokaryotic and eukaryotic replicative helicases can translocate along single-stranded and double-stranded DNA, with the central cavity of these multimeric ring helicases being able to accommodate both forms of DNA. Translocation by such helicases along single-stranded DNA results in the unwinding of forked DNA by steric exclusion and appears critical in unwinding of parental strands at the replication fork, whereas translocation over double-stranded DNA has no well-defined role. We have foun...

  9. Identification of the functional domains of the telomere protein Rap1 in Schizosaccharomyces pombe.

    Directory of Open Access Journals (Sweden)

    Ikumi Fujita

    Full Text Available The telomere at the end of a linear chromosome plays crucial roles in genome stability. In the fission yeast Schizosaccharomyces pombe, the Rap1 protein, one of the central players at the telomeres, associates with multiple proteins to regulate various telomere functions, such as the maintenance of telomere DNA length, telomere end protection, maintenance of telomere heterochromatin, and telomere clustering in meiosis. The molecular bases of the interactions between Rap1 and its partners, however, remain largely unknown. Here, we describe the identification of the interaction domains of Rap1 with its partners. The Bqt1/Bqt2 complex, which is required for normal meiotic progression, Poz1, which is required for telomere length control, and Taz1, which is required for the recruitment of Rap1 to telomeres, bind to distinct domains in the C-terminal half of Rap1. Intriguingly, analyses of a series of deletion mutants for rap1(+ have revealed that the long N-terminal region (1-456 a.a. [amino acids] of Rap1 (full length: 693 a.a. is not required for telomere DNA length control, telomere end protection, and telomere gene silencing, whereas the C-terminal region (457-693 a.a. containing Poz1- and Taz1-binding domains plays important roles in those functions. Furthermore, the Bqt1/Bqt2- and Taz1-binding domains are essential for normal spore formation after meiosis. Our results suggest that the C-terminal half of Rap1 is critical for the primary telomere functions, whereas the N-terminal region containing the BRCT (BRCA1 C-terminus and Myb domains, which are evolutionally conserved among the Rap1 family proteins, does not play a major role at the telomeres.

  10. Sde2: A novel nuclear protein essential for telomeric silencing and genomic stability in Schizosaccharomyces pombe

    International Nuclear Information System (INIS)

    Sugioka-Sugiyama, Rie; Sugiyama, Tomoyasu

    2011-01-01

    Research highlights: → Sde2 is essential for telomere silencing. → Sde2 is involved in the maintenance of genomic stability. → Sde2 promotes the recruitment of SHREC, a histone deacetylase complex, to telomeres. -- Abstract: Telomeres, specialized domains assembled at the ends of linear chromosomes, are essential for genomic stability in eukaryotes. The formation and maintenance of telomeres are governed by numerous factors such as telomeric repeats, telomere-binding proteins, heterochromatin proteins, and telomerase. Here, we report Sde2, a novel nuclear protein essential for telomeric silencing and genomic stability in the fission yeast Schizosaccharomyces pombe. A deficiency in sde2 results in the derepression of the ura4 + gene inserted near telomeric repeats, and the noncoding transcripts from telomeric regions accumulate in sde2Δ cells. The loss of Sde2 function compromises transcriptional silencing at telomeres, and this silencing defect is accompanied by increased levels of acetylated histone H3K14 and RNA polymerase II occupancy at telomeres as well as reduced recruitment of the SNF2 ATPase/histone deacetylase-containing complex SHREC to telomeres. Deletion of sde2 also leads to a higher frequency of mitotic minichromosome loss, and sde2Δ cells often form asci that contain spores in abnormal numbers, shapes, or both. In addition, sde2Δ cells are highly sensitive to several stresses, including high/low temperatures, bleomycin, which induces DNA damage, and thiabendazole, a microtubule-destabilizing agent. Furthermore, Sde2 genetically interacts with the telomere regulators Taz1, Pof3, and Ccq1. These findings demonstrate that Sde2 cooperates with other telomere regulators to maintain functional telomeres, thereby preventing genomic instability.

  11. Fabrication, characterization and electrochemical performance of single strand carbon fiber prepared by catalytic chemical vapor decomposition method

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Vrushali S. [Department of Chemistry, University of Pune, Ganeshkhind, Pune 411007, Maharashtra (India); Gokhale, Suresh P.; Patil, Kashinath R. [Physical and Material Chemistry Division, National Chemical Laboratory, Pune (India); Haram, Santosh K., E-mail: haram@chem.unipune.ernet.i [Department of Chemistry, University of Pune, Ganeshkhind, Pune 411007, Maharashtra (India)

    2010-02-15

    Preparation, fabrication and voltammetric characterizations of a single strand of carbon fiber (SSCF) electrode and their potential applications for biosensor are presented. SSCFs of diameter ca. 10 +- 2 mum and few millimeters in length are prepared by catalytic chemical vapor decomposition (CCVD) method. Voltammetry with potassium ferricyanide, alpha-methylferrocene methanol and hexaammineruthenium(III) chloride on SSCF electrode are used as bench marks to validate the electrode properties. Quasi-steady state voltammograms obtained were fitted into a cylindrical diffusion model. From which, the standard rate constant (k{sup 0}) and electron transfer coefficient (alpha) are obtained. The use of SSCF electrode is demonstrated for the voltammetric detection of the micromolar quantity of dopamine in the presence of large excess (ca. 200 times) of ascorbic acid, without any fouling of electrode surface. The kinetics of electron transfer are investigated.

  12. Fabrication, characterization and electrochemical performance of single strand carbon fiber prepared by catalytic chemical vapor decomposition method

    International Nuclear Information System (INIS)

    Joshi, Vrushali S.; Gokhale, Suresh P.; Patil, Kashinath R.; Haram, Santosh K.

    2010-01-01

    Preparation, fabrication and voltammetric characterizations of a single strand of carbon fiber (SSCF) electrode and their potential applications for biosensor are presented. SSCFs of diameter ca. 10 ± 2 μm and few millimeters in length are prepared by catalytic chemical vapor decomposition (CCVD) method. Voltammetry with potassium ferricyanide, α-methylferrocene methanol and hexaammineruthenium(III) chloride on SSCF electrode are used as bench marks to validate the electrode properties. Quasi-steady state voltammograms obtained were fitted into a cylindrical diffusion model. From which, the standard rate constant (k 0 ) and electron transfer coefficient (α) are obtained. The use of SSCF electrode is demonstrated for the voltammetric detection of the micromolar quantity of dopamine in the presence of large excess (ca. 200 times) of ascorbic acid, without any fouling of electrode surface. The kinetics of electron transfer are investigated.

  13. Multiplex and quantitative pathogen detection with high-resolution capillary electrophoresis-based single-strand conformation polymorphism.

    Science.gov (United States)

    Hwang, Hee Sung; Shin, Gi Won; Chung, Boram; Na, Jeongkyeong; Jung, Gyoo Yeol

    2013-01-01

    Among the molecular diagnostic methods for bacteria-induced diseases, capillary electrophoresis-based single-strand conformation polymorphism (CE-SSCP) combined with 16S rRNA gene-specific PCR has enormous potential because it can separate sequence variants using a simple procedure. However, conventional CE-SSCP systems have limited resolution and cannot separate most 16S rRNA gene-specific markers into separate peaks. A high-resolution CE-SSCP system that uses a poly(ethyleneoxide)-poly(propyleneoxide)-poly(ethyleneoxide) triblock copolymer matrix was recently developed and shown to effectively separate highly similar PCR products. In this report, a protocol for the detection of 12 pathogenic bacteria is provided. Pathogen markers were amplified by PCR using universal primers and separated by CE-SSCP; each marker peak was well separated at baseline and showed a characteristic mobility, allowing the easy identification of the pathogens.

  14. Telomeric noncoding RNA TERRA is induced by telomere shortening to nucleate telomerase molecules at short telomeres.

    Science.gov (United States)

    Cusanelli, Emilio; Romero, Carmina Angelica Perez; Chartrand, Pascal

    2013-09-26

    Elongation of a short telomere depends on the action of multiple telomerase molecules, which are visible as telomerase RNA foci or clusters associated with telomeres in yeast and mammalian cells. How several telomerase molecules act on a single short telomere is unknown. Herein, we report that the telomeric noncoding RNA TERRA is involved in the nucleation of telomerase molecules into clusters prior to their recruitment at a short telomere. We find that telomere shortening induces TERRA expression, leading to the accumulation of TERRA molecules into a nuclear focus. Simultaneous time-lapse imaging of telomerase RNA and TERRA reveals spontaneous events of telomerase nucleation on TERRA foci in early S phase, generating TERRA-telomerase clusters. This cluster is subsequently recruited to the short telomere from which TERRA transcripts originate during S phase. We propose that telomere shortening induces noncoding RNA expression to coordinate the recruitment and activity of telomerase molecules at short telomeres. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. The Genetic Basis of Natural Variation in Caenorhabditis elegans Telomere Length.

    Science.gov (United States)

    Cook, Daniel E; Zdraljevic, Stefan; Tanny, Robyn E; Seo, Beomseok; Riccardi, David D; Noble, Luke M; Rockman, Matthew V; Alkema, Mark J; Braendle, Christian; Kammenga, Jan E; Wang, John; Kruglyak, Leonid; Félix, Marie-Anne; Lee, Junho; Andersen, Erik C

    2016-09-01

    Telomeres are involved in the maintenance of chromosomes and the prevention of genome instability. Despite this central importance, significant variation in telomere length has been observed in a variety of organisms. The genetic determinants of telomere-length variation and their effects on organismal fitness are largely unexplored. Here, we describe natural variation in telomere length across the Caenorhabditis elegans species. We identify a large-effect variant that contributes to differences in telomere length. The variant alters the conserved oligonucleotide/oligosaccharide-binding fold of protection of telomeres 2 (POT-2), a homolog of a human telomere-capping shelterin complex subunit. Mutations within this domain likely reduce the ability of POT-2 to bind telomeric DNA, thereby increasing telomere length. We find that telomere-length variation does not correlate with offspring production or longevity in C. elegans wild isolates, suggesting that naturally long telomeres play a limited role in modifying fitness phenotypes in C. elegans. Copyright © 2016 by the Genetics Society of America.

  16. Selaginella moellendoffii telomeres: conserved and unique features in an ancient land plant lineage

    Directory of Open Access Journals (Sweden)

    Eugene V Shakirov

    2012-07-01

    Full Text Available Telomeres, the essential terminal regions of linear eukaryotic chromosomes, consist of G-rich DNA repeats bound by a plethora of associated proteins. While the general pathways of telomere maintenance are evolutionarily conserved, individual telomere complex components show remarkable variation between eukaryotic lineages and even within closely related species. The recent genome sequencing of the lycophyte Selaginella moellendoffii and the availability of an ever-increasing number of flowering plant genomes provides a unique opportunity to evaluate the molecular and functional evolution of telomere components from the early evolving non-seed plants to the more developmentally advanced angiosperms. Here we analyzed telomere sequence in S. moellendorffii and found it to consist of TTTAGGG repeats, typical of most plants. Telomere tracts in S. moellendorffii range from 1-5.5 kb, closely resembling Arabidopsis thaliana. We identified several S. moellendorffii genes encoding sequence homologues of proteins involved in telomere maintenance in other organisms, including CST complex components and the telomere-binding proteins POT1 and TRFL. Notable sequence similarities and differences were uncovered among the telomere-related genes in some of the plant lineages. Taken together, the data indicate that comparative analysis of the telomere complex in early diverging land plants such as S. moellendorffii and green algae will yield important insights into the evolution of telomeres and their protein constituents.

  17. Quadruplexes of human telomere DNA analogs designed to contain G:A:G:A, G:G:A:A, and A:A:A:A tetrads

    Czech Academy of Sciences Publication Activity Database

    Sagi, J.; Renčiuk, Daniel; Tomaško, Martin; Vorlíčková, Michaela

    2010-01-01

    Roč. 93, č. 10 (2010), s. 880-886 ISSN 0006-3525 R&D Projects: GA AV ČR(CZ) IAA100040701; GA AV ČR(CZ) IAA500040903 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : human telomere quadruplex * adenine for guanine substitution * CD spectroscopy Subject RIV: BO - Biophysics Impact factor: 2.572, year: 2010

  18. TERRA-reinforced association of LSD1 with MRE11 promotes processing of uncapped telomeres.

    Science.gov (United States)

    Porro, Antonio; Feuerhahn, Sascha; Lingner, Joachim

    2014-02-27

    Telomeres protect chromosome ends from being recognized as sites of DNA damage. Upon telomere shortening or telomere uncapping induced by loss of telomeric repeat-binding factor 2 (TRF2), telomeres elicit a DNA-damage response leading to cellular senescence. Here, we show that following TRF2 depletion, the levels of the long noncoding RNA TERRA increase and LSD1, which binds TERRA, is recruited to telomeres. At uncapped telomeres, LSD1 associates with MRE11, one of the nucleases implicated in the processing of 3' telomeric G overhangs, and we show that LSD1 is required for efficient removal of these structures. The LSD1-MRE11 interaction is reinforced in vivo following TERRA upregulation in TRF2-deficient cells and in vitro by TERRA-mimicking RNA oligonucleotides. Furthermore, LSD1 enhances the nuclease activity of MRE11 in vitro. Our data indicate that recruitment of LSD1 to deprotected telomeres requires MRE11 and is promoted by TERRA. LSD1 stimulates MRE11 catalytic activity and nucleolytic processing of uncapped telomeres. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Pleolipoviridae, a newly proposed family comprising archaeal pleomorphic viruses with single-stranded or double-stranded DNA genomes

    Czech Academy of Sciences Publication Activity Database

    Pietilä, M.K.; Roine, E.; Sencilo, Ana; Bamford, D.H.; Oksanen, H.M.

    2016-01-01

    Roč. 161, č. 1 (2016), s. 249-256 ISSN 0304-8608 R&D Projects: GA ČR(CZ) GAP302/11/ 1940 Institutional support: RVO:61388971 Keywords : VIRION ARCHITECTURE * HALOVIRUSES * SPINDLE Subject RIV: EE - Microbiology, Virology Impact factor: 2.058, year: 2016

  20. Characterization of isolates of Citrus tristeza virus by sequential analyses of enzyme immunoassays and capillary electrophoresis-single-strand conformation polymorphisms.

    Science.gov (United States)

    Licciardello, G; Raspagliesi, D; Bar-Joseph, M; Catara, A

    2012-05-01

    Citrus tristeza virus (CTV) is the causal agent of tristeza disease, which is one of the most devastating diseases of citrus crops worldwide. This paper describes a method for the rapid detection and genotyping of naturally spreading CTV isolates. This method uses ELISA or dot-blot immunological tests to detect trees infected with CTV. The reaction wells or membrane spots for which there is a positive reaction are sequentially treated by (i) washing and elution of viral RNA from the trapped samples, (ii) one-step synthesis of cDNA and PCR and (iii) automated fluorescence-based capillary electrophoresis single-strand conformation polymorphism (CE-SSCP) analysis of amplification products. Comparative CE-SSCP results are presented for CTV RNA extracted directly from infected leaves and ELISA plates or from membranes. In the analyses of all of these RNA samples, the p18, p27 and p23 CTV genes were targeted for amplification. Specific profiles of forward and reverse strands were obtained from a group of eight CTV isolates collected in Sicily, each with distinct biological characteristics, which were analyzed using the conventional two-step procedure (immunological detection followed by CE-SSCP molecular characterization after RNA isolation) or in a continuous process of ELISA/CE-SSCP or dot-blot/CE-SSCP starting from infected plant material. The combined method is simple, highly sensitive and reproducible, thus allowing the processing of numerous field samples for a variety of epidemiological needs. The sequential processing of an ELISA or dot-blot/ELISA followed by CE-SSCP is expected to allow the rapid detection of recent CTV infections along with the simultaneous characterization of the genetic diversity and structure of the population of newly invading CTV. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. The relationship between telomere length and beekeeping among Malaysians.

    Science.gov (United States)

    Nasir, Nurul Fatihah Mohamad; Kannan, Thirumulu Ponnuraj; Sulaiman, Siti Amrah; Shamsuddin, Shaharum; Azlina, Ahmad; Stangaciu, Stefan

    2015-06-01

    The belief that beekeepers live longer than anyone else is present since ages. However, no research has been done to explore the longevity of life in beekeepers. Here, we investigated the telomere length in 30 male beekeepers and 30 male non-beekeepers and associated them with the longevity of life using Southern analysis of terminal restriction fragments (TRFs) generated by Hinf I/Rsa I digestion of human genomic DNA using TeloTAGGG Telomere Length Assay. Interestingly, we found that the telomere length of male beekeepers was significantly longer than those of male non-beekeepers with a p value of less than 0.05, suggesting that beekeepers may have longer life compared to non-beekeepers. We further found that the consumption of bee products for a long period and frequent consumption of bee products per day are associated with telomere length. An increase of year in consuming bee products is associated with a mean increase in telomere length of 0.258 kbp. In addition, an increase in frequency of eating bee products per day was also associated with a mean increase of 2.66 kbp in telomere length. These results suggested that bee products might play some roles in telomere length maintenance.

  2. Lead Exposure Induces Telomere Instability in Human Cells.

    Directory of Open Access Journals (Sweden)

    Géraldine Pottier

    Full Text Available Lead (Pb is an important environmental contaminant due to its widespread use over many centuries. While it affects primarily every organ system of the body, the most pernicious effects of Pb are on the central nervous system leading to cognitive and behavioral modification. Despite decades of research, the mechanisms responsible for Pb toxicity remain poorly understood. Recent work has suggested that Pb exposure may have consequences on chromosomal integrity as it was shown that Pb exposure leads to the generation of γH2Ax foci, a well-established biomarker for DNA double stranded break (DSB formation. As the chromosomal localization of γH2Ax foci plays an important role in determining the molecular mechanism responsible for their formation, we examined the localization of Pb-induced foci with respect to telomeres. Indeed, short or dysfunctional telomeres (uncapped or damaged telomeres may be recognized as DSB by the DNA repair machinery, leading to "telomere-Induced Foci" (TIFs. In the current study, we show that while Pb exposure did not increase intra-chromosomal foci, it significantly induced TIFs, leading in some cases, to chromosomal abnormalities including telomere loss. The evidence suggests that these chromosomal abnormalities are likely due to perturbation of telomere replication, in particular on the lagging DNA strand. We propose a mechanism by which Pb exposure leads to the loss of telomere maintenance. As numerous studies have demonstrated a role for telomere maintenance in brain development and tissue homeostasis, our results suggest a possible mechanism for lead-induced neurotoxicity.

  3. A DNA nanocapsule with aptamer-controlled open-closure function for targeted delivery

    DEFF Research Database (Denmark)

    Bentin, Thomas

    2012-01-01

    A DNA capsule fitted with aptamer controlled target sensing has been "woven" using a 7308-base single-stranded DNA "thread" and 196 staple oligonucleotides. The capsule enables logic-gated molecular cargo delivery to targeted cell surfaces.......A DNA capsule fitted with aptamer controlled target sensing has been "woven" using a 7308-base single-stranded DNA "thread" and 196 staple oligonucleotides. The capsule enables logic-gated molecular cargo delivery to targeted cell surfaces....

  4. DNA breaks and repair in interstitial telomere sequences: Influence of chromatin structure; Etude des cassures de l'ADN et des mecanismes de reparation dans les sequences telomeriques interstitielles: Influence de la structure chromatinienne

    Energy Technology Data Exchange (ETDEWEB)

    Revaud, D.

    2009-06-15

    Interstitial Telomeric Sequences (ITS) are over-involved in spontaneous and radiationinduced chromosome aberrations in chinese hamster cells. We have performed a study to investigate the origin of their instability, spontaneously or after low doses irradiation. Our results demonstrate that ITS have a particular chromatin structure: short nucleotide repeat length, less compaction of the 30 nm chromatin fiber, presence of G-quadruplex structures. These features would modulate breaks production and would favour the recruitment of alternative DNA repair mechanisms, which are prone to produce chromosome aberrations. These pathways could be at the origin of chromosome aberrations in ITS whereas NHEJ and HR Double Strand Break repair pathways are rather required for a correct repair in these regions. (author)

  5. Method for construction of normalized cDNA libraries

    Science.gov (United States)

    Soares, Marcelo B.; Efstratiadis, Argiris

    1998-01-01

    This invention provides a method to normalize a directional cDNA library constructed in a vector that allows propagation in single-stranded circle form comprising: (a) propagating the directional cDNA library in single-stranded circles; (b) generating fragments complementary to the 3' noncoding sequence of the single-stranded circles in the library to produce partial duplexes; (c) purifying the partial duplexes; (d) melting and reassociating the purified partial duplexes to appropriate Cot; and (e) purifying the unassociated single-stranded circles, thereby generating a normalized cDNA library. This invention also provides normalized cDNA libraries generated by the above-described method and uses of the generated libraries.

  6. The Modular Construction of DNA Double Helix

    Indian Academy of Sciences (India)

    DNA or the left-handed double helix,. Z- DNA. Construction of the Module .... 12. DNA, namely, replication and transcription. In the former case, Figure 3. 8 would represent a DNA single strand-generated by splitting of the mother duplex ...

  7. Identification of small molecules capable of regulating conformational changes of telomeric G-quadruplex

    Science.gov (United States)

    Chen, Shuo-Bin; Liu, Guo-Cai; Gu, Lian-Quan; Huang, Zhi-Shu; Tan, Jia-Heng

    2018-02-01

    Design of small molecules targeted at human telomeric G-quadruplex DNA is an extremely active research area. Interestingly, the telomeric G-quadruplex is a highly polymorphic structure. Changes in its conformation upon small molecule binding may be a powerful method to achieve a desired biological effect. However, the rational development of small molecules capable of regulating conformational change of telomeric G-quadruplex structures is still challenging. In this study, we developed a reliable ligand-based pharmacophore model based on isaindigotone derivatives with conformational change activity toward telomeric G-quadruplex DNA. Furthermore, virtual screening of database was conducted using this pharmacophore model and benzopyranopyrimidine derivatives in the database were identified as a strong inducer of the telomeric G-quadruplex DNA conformation, transforming it from hybrid-type structure to parallel structure.

  8. Childhood Physical and Sexual Abuse History and Leukocyte Telomere Length among Women in Middle Adulthood.

    Directory of Open Access Journals (Sweden)

    Susan M Mason

    Full Text Available Abuse victimization in childhood is associated with a variety of age-related cardiometabolic diseases, but the mechanisms remain unknown. Telomeres, which form the protective caps at the ends of chromosomes, have been proposed as measures of biological age, and a growing body of research suggests that telomere attrition may help to explain relationships between stress and cardiometabolic degradation. We examined the association between childhood abuse victimization and leukocyte telomere length among 1,135 participants in the Nurses' Health Study II (NHSII.The NHSII ascertained physical and sexual child abuse histories in 2001. Telomere length was measured in genomic DNA extracted from peripheral blood leukocytes collected between 1996 and 1999. The ratio of telomere repeat copy number to a single gene copy number (T/S was determined by a modified version of the quantitative real-time PCR telomere assay. Telomere length was log-transformed and corrected for assay variation across batch. We regressed telomere length on childhood abuse exposure variables and covariates using linear regression.We observed a reduction in telomere length associated with moderate physical abuse versus no physical abuse, but there was no evidence of a dose-response relationship for increased severity of physical abuse. No associations were noted for sexual abuse.We found no evidence of an association between severity of childhood physical or sexual abuse and leukocyte telomere length in the NHSII.

  9. Novel variants in Nordic patients referred for genetic testing of telomere-related disorders

    DEFF Research Database (Denmark)

    Norberg, Anna; Rosén, Anna; Raaschou-Jensen, Klas

    2018-01-01

    referred for genetic testing due to suspected telomere-related disorder. We performed Sanger sequencing of the genes TERT, TERC, DKC1, and TINF2 on 135 unrelated index patients and measured telomere length by qPCR on DNA from peripheral blood leukocytes. We identified pathogenic or likely pathogenic...... variants identified in our study highlights the need for solid interpretation of new variants that may be detected. Measurement of telomere length is a useful approach for evaluating pathogenicity of genetic variants associated with telomere-related disorders....

  10. N-Methyl-N'-nitro-N-nitrosoguanidine-induced senescence-like growth arrest in colon cancer cells is associated with loss of adenomatous polyposis coli protein, microtubule organization, and telomeric DNA

    Directory of Open Access Journals (Sweden)

    Narayan Satya

    2004-01-01

    Full Text Available Abstract Background Cellular senescence is a state in which mammalian cells enter into an irreversible growth arrest and altered biological functions. The senescence response in mammalian cells can be elicited by DNA-damaging agents. In the present study we report that the DNA-damaging agent N-methyl-N'-nitro-N-nitrosoguanidine (MNNG is able to induce senescence in the HCT-116 colon cancer cell line. Results Cells treated with lower concentrations of MNNG (0–25 microM for 50 h showed a dose-dependent increase in G2/M phase arrest and apoptosis; however, cells treated with higher concentrations of MNNG (50–100 microM showed a senescence-like G0/G1 phase arrest which was confirmed by increased expression of β-galactosidase, a senescence induced marker. The G2/M phase arrest and apoptosis were found to be associated with increased levels of p53 protein, but the senescence-like G0/G1 phase arrest was dissociated with p53 protein levels, since the p53 protein levels decreased in senescence-like arrested cells. We further, determined whether the decreased level of p53 was a transcriptional or a translational phenomenon. The results revealed that the decreased level of p53 protein in senescence-like arrested cells was a transcriptional phenomenon since p53 mRNA levels simultaneously decreased after treatment with higher concentrations of MNNG. We also examined the effect of MNNG treatment on other cell cycle-related proteins such as p21, p27, cyclin B1, Cdc2, c-Myc and max. The expression levels of these proteins were increased in cells treated with lower concentrations of MNNG, which supported the G2/M phase arrest. However, cells treated with higher concentrations of MNNG showed decreased levels of these proteins, and hence, may not play a role in cell cycle arrest. We then examined a possible association of the expression of APC protein and telomeric DNA signals with cellular senescence in MNNG-treated cells. We found that protein and m

  11. A two-step model for senescence triggered by a single critically short telomere

    DEFF Research Database (Denmark)

    Abdallah, Pauline; Luciano, Pierre; Runge, Kurt W

    2009-01-01

    Telomeres protect chromosome ends from fusion and degradation. In the absence of a specific telomere elongation mechanism, their DNA shortens progressively with every round of replication, leading to replicative senescence. Here, we show that telomerase-deficient cells bearing a single, very shor...

  12. Telomere length and mental well-being in eldery men from the Netherlands and Greece

    NARCIS (Netherlands)

    Rius-Ottenheim, N.; Houben, J.M.J.; Kromhout, D.; Kafatos, A.; Mast, van der R.C.; Zitman, F.G.; Geleijnse, J.M.; Hageman, G.J.; Giltay, E.J.

    2012-01-01

    Telomeres, repetitive DNA sequences that promote chromosomal stability, have been related to different measures of mental well-being and self-rated health, but mainly in women during adulthood. We aimed to investigate whether accelerated telomere shortening is associated with poor mental well-being

  13. Mechanochemical properties of individual human telomeric RNA (TERRA) G-quadruplexes.

    Science.gov (United States)

    Yangyuoru, Philip M; Zhang, Amy Y Q; Shi, Zhe; Koirala, Deepak; Balasubramanian, Shankar; Mao, Hanbin

    2013-10-11

    Potential functions: By following the unfolding and refolding of individual human RNA telomeric (TERRA) G-quadruplexes (GQs) in laser tweezers, the mechanical stability and transition kinetics of RNA GQs are obtained. Comparison between TERRA and DNA GQs suggests their different regulatory capacities for processes associated with human telomeres. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Increasing the accuracy and precision of relative telomere length estimates by RT qPCR

    NARCIS (Netherlands)

    Eastwood, Justin R.; Mulder, Ellis; Verhulst, Simon; Peters, Anne

    As attrition of telomeres, DNA caps that protect chromosome integrity, is accelerated by various forms of stress, telomere length (TL) has been proposed as an indicator of lifetime accumulated stress. In ecological studies, it has been used to provide insights into ageing, life history trade-offs,

  15. Structure-spectrophotometric selectivity relationship in interactions of quercetin related flavonoids with double stranded and single stranded RNA

    Science.gov (United States)

    Piantanida, Ivo; Mašić, Lozika; Rusak, Gordana

    2009-04-01

    Interactions of five flavonoids with dsRNA and single stranded ssRNA were studied by UV/vis titrations. The results obtained supported the intercalative binding mode as a dominant interaction of studied flavonoids with dsRNA as well as major interaction with ssRNA. Furthermore, changes of the UV/vis spectra of flavonoids induced by addition of poly G or poly C, respectively, are significantly stronger than changes induced by double stranded poly G-poly C, pointing to essential role of the free poly G or poly C sequence (not hydrogen bonded in double helix). Exclusively poly G caused significant batochromic shift of the UV/vis maxima of all studied flavonoids, whereby the intensity of batochromic shift is nicely correlated to the number of OH groups of flavonoid. Unlikely to poly G, addition of poly A and poly U induced measurable changes only in the UV/vis spectra of flavonoids characterised by no OH (galangin) or three OH groups (myricetin) on the phenyl part of the molecule. Consequently, flavonoids with one- or two-OH groups on the phenyl part of the molecule (luteolin, fisetin, kaempferol) specifically differentiate between poly A, poly U (negligible changes in the UV/Vis spectra) and poly G (strong changes in the UV/Vis spectra) as well as poly C (moderate changes in the UV/Vis spectra).

  16. Capillary electrophoresis ribosomal RNA single-stranded conformation polymorphism: a new approach for characterization of low-diversity microbial communities.

    Science.gov (United States)

    Nai, Yi H; Zemb, Oliver; Gutierrez-Zamora, Maria-Luisa; Manefield, Mike; Powell, Shane M; Breadmore, Michael C

    2012-10-01

    Capillary electrophoresis (CE) has been the principle system for nucleic acid analysis since the early 1990s due to its inherent advantages such as fast analysis time, high resolution and efficiency, minimal sample requirement, high detection sensitivity, and automation. In the past few decades, microbial community fingerprinting methods such as terminal restriction fragment length polymorphism and single-stranded conformation polymorphism (SSCP) have migrated to CE to utilize its advantages over conventional slab gel electrophoresis. Recently, a gel-based direct rRNA fingerprint method was demonstrated. Different from other existing microbial community characterization approaches, this novel approach is polymerase chain reaction free and capable of providing information on the relative abundance of rRNA from individual phylotypes in low-diversity samples. As a gel-based method, it has a long analysis time and relatively large reagent and sample requirements. Here, we addressed these limitations by transferring the RNA fingerprint approach to the CE platform. Analysis time significantly improved from 24 h to 60 min, and the use of a fluorescently labeled hybridization probe as the detection strategy decreased the sample requirement by ten-fold. The combination of fast analysis time, low sample requirement, and sensitive fluorescence detection makes CE-RNA-SSCP an appealing new approach for characterizing low-diversity microbial communities.

  17. Genetic heterogeneity of glucose-6-phosphate dehydrogenase deficiency revealed by single-strand conformation and sequence analysis

    Energy Technology Data Exchange (ETDEWEB)

    Calabro, V.; Mason, P.J.; Luzzatto, L. (Hammersmith Hospital, London (United Kingdom)); Filosa, S.; Martini, G. (CNR, Naples (Italy)); Civitelli, D.; Cittadella, R.; Brancati, C. (CNR, Cosenza (Italy))

    1993-03-01

    The authors have carried out a systematic study of the molecular basis of glucose-6-phosphate dehydrogenase (G6PD) deficiency on a sample of 53 male subjects from Calabria, in southern Italy. Their sequential approach consisted of the following steps: (1) Partial biochemical characterization was used to pinpoint candidate known variants. The identity of these was then varified by restriction-enzyme or allele-specific oligonucleotide hybridization analysis of the appropriate PCR-amplified fragment. (2) On samples for which there was no obvious candidate mutation, they