WorldWideScience

Sample records for single-strand dna breaks

  1. Sulforaphane induces DNA single strand breaks in cultured human cells

    Energy Technology Data Exchange (ETDEWEB)

    Sestili, Piero, E-mail: piero.sestili@uniurb.it [Dipartimento di Scienze Biomolecolari, Via Maggetti, 21, Universita degli Studi di Urbino ' Carlo Bo' , 61029 Urbino, PU (Italy); Paolillo, Marco [Dipartimento di Scienze Biomolecolari, Via Maggetti, 21, Universita degli Studi di Urbino ' Carlo Bo' , 61029 Urbino, PU (Italy); Lenzi, Monia [Dipartimento di Farmacologia, Universita degli Studi di Bologna, Via Irnerio 48, 40126 Bologna (Italy); Colombo, Evelin; Vallorani, Luciana; Casadei, Lucia; Martinelli, Chiara [Dipartimento di Scienze Biomolecolari, Via Maggetti, 21, Universita degli Studi di Urbino ' Carlo Bo' , 61029 Urbino, PU (Italy); Fimognari, Carmela [Dipartimento di Farmacologia, Universita degli Studi di Bologna, Via Irnerio 48, 40126 Bologna (Italy)

    2010-07-07

    Sulforaphane (SFR), an isothiocyanate from cruciferous vegetables, possesses growth-inhibiting and apoptosis-inducing activities in cancer cell lines. Recently, SFR has been shown to promote the mitochondrial formation of reactive oxygen species (ROS) in human cancer cell lines. The present study was undertaken to see whether SFR-derived ROS might cause DNA damage in cultured human cells, namely T limphoblastoid Jurkat and human umbilical vein endothelial cells (HUVEC). 1-3 h treatments with 10-30 {mu}M SFR elicited intracellular ROS formation (as assayed with dihydrorhodamine, DHR, oxidation) as well as DNA breakage (as assessed with fast halo assay, FHA). These effects lacked cell-type specificity, since could be observed in both Jurkat and HUVEC. Differential-pH FHA analysis of damaged DNA showed that SFR causes frank DNA single strand breaks (SSBs); no DNA double strand breaks (DSBs) were found within the considered treatment times (up to 3 h). SFR-derived ROS were formed at the mitochondrial respiratory chain (MRC) level: indeed rotenone or myxothiazol (MRC Complex I and III inhibitors, respectively) abrogated ROS formation. Furthermore ROS were not formed in Jurkat cells pharmacologically depleted of respiring mitochondria (MRC-/Jurkat). Formation of ROS was causally linked to the induction of SSBs: indeed all the experimental conditions capable of preventing ROS formation also prevented the damage of nuclear DNA from SFR-intoxicated cells. As to the toxicological relevance of SSBs, we found that their prevention slightly but significantly attenuated SFR cytotoxicity, suggesting that high-dose SFR toxicity is the result of a complex series of events among which GSH depletion seems to play a pivotal role. In conclusion, the present study identifies a novel mechanism contributing to SFR toxicity which - since DNA damage is a prominent mechanism underlying the cytotoxic activity of established antineoplastic agents - might help to exploit the therapeutic value

  2. Sulforaphane induces DNA single strand breaks in cultured human cells

    International Nuclear Information System (INIS)

    Sestili, Piero; Paolillo, Marco; Lenzi, Monia; Colombo, Evelin; Vallorani, Luciana; Casadei, Lucia; Martinelli, Chiara; Fimognari, Carmela

    2010-01-01

    Sulforaphane (SFR), an isothiocyanate from cruciferous vegetables, possesses growth-inhibiting and apoptosis-inducing activities in cancer cell lines. Recently, SFR has been shown to promote the mitochondrial formation of reactive oxygen species (ROS) in human cancer cell lines. The present study was undertaken to see whether SFR-derived ROS might cause DNA damage in cultured human cells, namely T limphoblastoid Jurkat and human umbilical vein endothelial cells (HUVEC). 1-3 h treatments with 10-30 μM SFR elicited intracellular ROS formation (as assayed with dihydrorhodamine, DHR, oxidation) as well as DNA breakage (as assessed with fast halo assay, FHA). These effects lacked cell-type specificity, since could be observed in both Jurkat and HUVEC. Differential-pH FHA analysis of damaged DNA showed that SFR causes frank DNA single strand breaks (SSBs); no DNA double strand breaks (DSBs) were found within the considered treatment times (up to 3 h). SFR-derived ROS were formed at the mitochondrial respiratory chain (MRC) level: indeed rotenone or myxothiazol (MRC Complex I and III inhibitors, respectively) abrogated ROS formation. Furthermore ROS were not formed in Jurkat cells pharmacologically depleted of respiring mitochondria (MRC-/Jurkat). Formation of ROS was causally linked to the induction of SSBs: indeed all the experimental conditions capable of preventing ROS formation also prevented the damage of nuclear DNA from SFR-intoxicated cells. As to the toxicological relevance of SSBs, we found that their prevention slightly but significantly attenuated SFR cytotoxicity, suggesting that high-dose SFR toxicity is the result of a complex series of events among which GSH depletion seems to play a pivotal role. In conclusion, the present study identifies a novel mechanism contributing to SFR toxicity which - since DNA damage is a prominent mechanism underlying the cytotoxic activity of established antineoplastic agents - might help to exploit the therapeutic value of

  3. A neutral glyoxal gel electrophoresis method for the detection and semi-quantitation of DNA single-strand breaks.

    Science.gov (United States)

    Pachkowski, Brian; Nakamura, Jun

    2013-01-01

    Single-strand breaks are among the most prevalent lesions found in DNA. Traditional electrophoretic methods (e.g., the Comet assay) used for investigating these lesions rely on alkaline conditions to denature DNA prior to electrophoresis. However, the presence of alkali-labile sites in DNA can result in the introduction of additional single-strand breaks upon alkali treatment during DNA sample processing. Herein, we describe a neutral glyoxal gel electrophoresis assay which is based on alkali-free DNA denaturation and is suitable for qualitative and semi-quantitative analyses of single-strand breaks in DNA isolated from different organisms.

  4. Induction and repair of double- and single-strand DNA breaks in bacteriophage lambda superinfecting Escherichia coli

    International Nuclear Information System (INIS)

    Boye, E.; Krisch, R.E.

    1980-01-01

    Induction and repair of double-and single-strand DNA breaks have been measured after decays of 125 I and 3 H incorporated into the DNA and after external irradiation with 4 MeV electrons. For the decay experiments, cells of wild type Escherichia coli K-12 were superinfected with bacteriophage lambda DNA labelled with 5'-( 125 I)iodo-2'-deoxyuridine or with (methyl- 3 H)thymidine and frozen in liquid nitrogen. Aliquots were thawed at intervals and lysed at neutral pH, and the phage DNA was assayed for double- and single-strand breakage by neutral sucrose gradient centrifugation. The gradients used allowed measurements of both kinds of breaks in the same gradient. Decays of 125 I induced 0.39 single-strand breaks per double-strand break. No repair of either break type could be detected. Each 3 H disintegration caused 0.20 single-strand breaks and very few double-strand breaks. The single-strand breaks were rapidly rejoined after the cells were thawed. For irradiation with 4 MeV electrons, cells of wild type E. coli K-12 were superinfected with phage lambda and suspended in growth medium. Irradiation induced 42 single-strand breaks per double-strand break. The rates of break induction were 6.75 x 10 -14 (double-strand breaks) and 2.82 x 10 -12 (single-strand breaks) per rad and per dalton. The single-strand breaks were rapidly repaired upon incubation whereas the double-strand breaks seemed to remain unrepaired. It is concluded that double-strand breaks in superinfecting bacteriophage lambda DNA are repaired to a very small extent, if at all. (Author)

  5. Delayed repair of DNA single-strand breaks does not increase cytogenetic damage

    International Nuclear Information System (INIS)

    Morgan, W.F.; Djordjevic, M.C.; Jostes, R.F.; Pantelias, G.E.

    1985-01-01

    DNA damage and cytogenetic effects of ionizing radiation were investigated in Chinese hamster ovary (CHO) cells and unstimulated human peripheral blood lymphocytes. DNA damage and repair were analysed by alkaline elution under conditions that predominantly measured DNA single-strand breaks (ssb). X-radiation (2.5 Gy) induced ssb in both CHO cells and unstimulated lymphocytes, and the breaks were repaired within 30 and 90 min, respectively. This rapid repair was delayed by the poly(ADP-ribose) polymerase inhibitor, 3-aminobenzamide (3AB). The cytogenetic effects of the 3AB-induced delay in DNA repair were examined by analysing sister chromatid exchange (SCE) frequency in CHO cells and fragmentation of prematurely condensed chromosomes (PCC) in unstimulated human lymphocytes after 2.5 Gy of X-rays. Although 3AB delayed the rejoining of DNA ssb, this delay did not result in increased cytogenetic damage manifested as either SCE or fragmentation of PCC. These results indicate that the rapidly rejoining DNA ssb are not important in the production of chromosome damage. (author)

  6. The effects of radioprotective agents on the radiation-induced DNA single strand breaks

    International Nuclear Information System (INIS)

    Rhiu, Sung Ryul; Ko, Kyung Hwan; Jung, In Yong; Cho, Chul Ku; Kim, Tae Hwan; Park, Woo Wiun; Kim, Sung Ho; Ji, Young Hoon; Kim, Kyung Jung; Bang, Hio Chang; Jung, Young Suk; Choi, Moon Sik

    1992-04-01

    With the increased use of atomic energy in science, industry, medicine and public power production, the probability of nuclear accidents certainly appears to be on the increase. Therefore, early medical diagnosis and first-aid are needed urgently to establish an efficient treatment. We carried out the studies of radiation protector such as DDC, MEA, WR-2721 and variety of decontaminator with a view to establishing the protective measure and diagnostic standards for safety of worker and neighbors living around the radiation area in case of occurring the accidental contamination. In this experiment, we examined radiation-induced DNA single strand breaks as one of the study on molecular biology of the response of cells to radiation because an understanding of the radiation-induced damage in molecular level would add to our knowledge of radiation protection and treatment. (Author)

  7. Gamma-ray induced double-strand breaks in DNA resulting from randomly-inflicted single-strand breaks: temporal local denaturation, a new radiation phenomenon?

    NARCIS (Netherlands)

    Schans, G.P. van der

    1978-01-01

    The induction of single- and double-strand breaks in DNA by γ-rays has been measured. The maximum number of nucleotide paris (a) between two independently induced single-strand breaks in opposite strands of the DNA which cannot prevent the occurrence of a double-strand break was found to amount to

  8. Formation of double-strand breaks in DNA of γ-irradiated bacteria depending on the function of fast repair processes of DNA single-strand breaks

    International Nuclear Information System (INIS)

    Petrov, S.I.; Gaziev, A.I.

    1980-01-01

    The formation of double-strand breaks in DNA of γ-irradiated ( 60 Co)Ex coli bacteria depending on the function of fast repair processes of DNA single-strand breaks, is investigated. The profiles of sedimentation of DNA Ex coli cells, irradiated at 0-2 deg C in the salt medium and in EDTA-borate buffer, are presented. It is shown that when irradiating cells in EDTA-borate buffer, the output of single- and double strand breaks in DNA is much higher than in the case of their irradiation in the minimum salt medium. The dependence of output of single-strand and double-strand breaks depending on the radiatier doze of E coli cells in the salt medium and EDTA-borate buffer, is studied. The supposition is made on the presence of a regulative interaction between the accumulation of DNA single-breaks and their repair with the formation of double-strand breaks. The functionating of fast and superfast repair processes considerably affects the formation of double-strand breaks in DNA of a bacterium cell. A considerable amount of double-breaks registered immediately after irradiation forms due to a close position of single-strand breaks on the opposite DNA strands

  9. Carboplatin enhances the production and persistence of radiation-induced DNA single-strand breaks

    International Nuclear Information System (INIS)

    Yang, L.; Douple, E.B.; O'Hara, J.A.; Wang, H.J.

    1995-01-01

    Fluorometric analysis of DNA unwinding and alkaline elution were used to investigate the production and persistence of DNA single-strand breaks (SSBs) in Chinese hamster V79 and xrs-5 cells treated with the chemotherapeutic agent carboplatin in combination with radiation. Carboplatin was administered to cells before irradiation in hypoxic conditions, or the drug was added immediately after irradiation during the postirradiation recovery period in air. The results of DNA unwinding studies suggest that carboplatin enhances the production of radiation-induced SSBs in hypoxic V79 cells and xrs-5 cells by a factor of 1.86 and 1.83, respectively, when combined with radiation compared to the SSBs produced by irradiation alone. Carboplatin alone did not produce a measureable number of SSBs. Alkaline elution profiles also indicated that the rate of elution of SSBs was higher in cells treated with the carboplatin is present after irradiation and during the postirradiation recovery period, the rejoining of radiation-induced SSBs by a factor of 1.46 in V79 cells with 20 Gy irradiation and by a factor of 2.02 in xrs-5 cells with 20 Gy irradiation. When carboplatin is present after irradiation and during the postirradiation recovery period, the rejoining of radiation-induced SSBs is inhibited during this postirradiation incubation period (radiopotentiation) with a relative inhibition factor at 1 h postirradiation of 1.25 in V79 cells and 1.15 in xrs-5 cells. An increased production and persistence of SSBs resulting from the interaction of carboplatin with radiation may be an important step in the mechanism responsible for the potentiated cell killing previously from studies in animal tumors and in cultured cells. 31 refs., 7 figs

  10. Single--stranded DNA mycoplasmaviruses

    Energy Technology Data Exchange (ETDEWEB)

    Maniloff, J.; Das, J.; Nowak, J.A.

    1978-01-01

    Two general types of single--stranded DNA bacteriophases have been described, icosahedral virions (e.g., 0X174) and filamentous virions (e.g., M13). Mycoplasmavirus MVL51 appears to represent another type of single--stranded DNA phage, with a genome size close to that of 0X174 and a nonlytic mode of infection like that of filamentous phages. The bullet shaped MVL51 morphology is unlike that of other known phages.

  11. Evidence that single-stranded DNA breaks are a normal feature of koala sperm chromatin, while double-stranded DNA breaks are indicative of DNA damage.

    Science.gov (United States)

    Zee, Yeng Peng; López-Fernández, Carmen; Arroyo, F; Johnston, Stephen D; Holt, William V; Gosalvez, Jaime

    2009-08-01

    In this study, we have used single and double comet assays to differentiate between single- and double-stranded DNA damage in an effort to refine the interpretation of DNA damage in mature koala spermatozoa. We have also investigated the likelihood that single-stranded DNA breakage is part of the natural spermiogenic process in koalas, where its function would be the generation of structural bends in the DNA molecule so that appropriate packaging and compaction can occur. Koala spermatozoa were examined using the sperm chromatin dispersion test (SCDt) and comet assays to investigate non-orthodox double-stranded DNA. Comet assays were conducted under 1) neutral conditions; and 2) neutral followed by alkaline conditions (double comet assay); the latter technique enabled simultaneous visualisation of both single-stranded and double-stranded DNA breaks. Following the SCDt, there was a continuum of nuclear morphotypes, ranging from no apparent DNA fragmentation to those with highly dispersed and degraded chromatin. Dispersion morphotypes were mirrored by a similar diversity of comet morphologies that could be further differentiated using the double comet assay. The majority of koala spermatozoa had nuclei with DNA abasic-like residues that produced single-tailed comets following the double comet assay. The ubiquity of these residues suggests that constitutive alkali-labile sites are part of the structural configuration of the koala sperm nucleus. Spermatozoa with 'true' DNA fragmentation exhibited a continuum of comet morphologies, ranging from a more severe form of alkaline-susceptible DNA with a diffuse single tail to nuclei that exhibited both single- and double-stranded breaks with two comet tails.

  12. Micronuclei, DNA single-strand breaks and DNA-repair activity in mice exposed to 1,3-butadiene by inhalation

    Czech Academy of Sciences Publication Activity Database

    Vodička, Pavel; Štětina, R.; Šmerák, P.; Vodičková, Ludmila; Naccarati, Alessio; Bárta, I.; Hemminki, K.

    2006-01-01

    Roč. 608, - (2006), s. 49-57 ISSN 1383-5718 R&D Projects: GA ČR(CZ) GA310/01/0802 Institutional research plan: CEZ:AV0Z50390512 Keywords : Single-strand DNA breaks * Micronucleus formation * DNA-repair activity Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.122, year: 2006

  13. Epidermal growth factor stimulating reparation of γ-ray-induced single-strand breaks predominantly in untranscribed DNA of HeLa cells

    International Nuclear Information System (INIS)

    Igusheva, O.A.; Bil'din, V.N.; Zhestyanikov, V.D.

    1994-01-01

    Considerable evidence suggest that genomic DNA undergoes reparation unevenly because of different transcription activities of its particular sequence. It is highly probably that transcriptional factors are necessary for postion stages of excision reparation and for reparation of single-strand DNA breaks caused by ionizing radiation. There is evidence suggesting that DNA lesions inflicted by γ-radiation is preferentially initiated in transcribed rather than in untranscribed DNA species. This paper looks at the relationship between stimulatory effect of epidermal growth factor (EGF) on reparation of single-strand DNA breaks and reparation of the damage done to active and inert fragments of chromatin. The results show that EGF stimulates reparation of single-strand DNA breaks induced by γ-radiation more effectively in untranscribed than in transcribed DNA. 13 refs., 1 fig., 1 tab

  14. Mapping meiotic single-strand DNA reveals a new landscape of DNA double-strand breaks in Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Cyril Buhler

    2007-12-01

    Full Text Available DNA double-strand breaks (DSBs, which are formed by the Spo11 protein, initiate meiotic recombination. Previous DSB-mapping studies have used rad50S or sae2Delta mutants, which are defective in break processing, to accumulate Spo11-linked DSBs, and report large (> or = 50 kb "DSB-hot" regions that are separated by "DSB-cold" domains of similar size. Substantial recombination occurs in some DSB-cold regions, suggesting that DSB patterns are not normal in rad50S or sae2Delta mutants. We therefore developed a novel method to map genome-wide, single-strand DNA (ssDNA-associated DSBs that accumulate in processing-capable, repair-defective dmc1Delta and dmc1Delta rad51Delta mutants. DSBs were observed at known hot spots, but also in most previously identified "DSB-cold" regions, including near centromeres and telomeres. Although approximately 40% of the genome is DSB-cold in rad50S mutants, analysis of meiotic ssDNA from dmc1Delta shows that most of these regions have substantial DSB activity. Southern blot assays of DSBs in selected regions in dmc1Delta, rad50S, and wild-type cells confirm these findings. Thus, DSBs are distributed much more uniformly than was previously believed. Comparisons of DSB signals in dmc1, dmc1 rad51, and dmc1 spo11 mutant strains identify Dmc1 as a critical strand-exchange activity genome-wide, and confirm previous conclusions that Spo11-induced lesions initiate all meiotic recombination.

  15. Molecular dosimetry of DNA damage caused by alkylation. I. Single-strand breaks induced by ethylating agents in cultured mammalian cells in relation to survival

    NARCIS (Netherlands)

    Abbondandolo, A.; Dogliotti, E.; Lohman, P.H.M.; Berends, F.

    1982-01-01

    Cultured Chinese hamster ovary cells were treated with ethylating agents. DNA lesions giving rise to single-strand breaks (ssb) or alkali-labile sites were measured by centrifugation in alkaline sucrose gradients after lysis in alkali. 4 agents with different tendencies to ethylate preferentially

  16. Role of DNA repair in repair of cytogenetic damages. Contribution of repair of single-strand DNA breaks to cytogenetic damages repair

    International Nuclear Information System (INIS)

    Rozanova, O.M.; Zaichkina, S.I.; Aptikaev, G.F.; Ganassi, E.Eh.

    1989-01-01

    The comparison was made between the results of the effect of poly(ADP-ribosylation) ingibitors (e.g. nicotinamide and 3-aminobenzamide) and a chromatin proteinase ingibitor, phenylmethylsulfonylfluoride, on the cytogenetic damages repair, by a micronuclear test, and DNA repair in Chinese hamster fibroblasts. The values of the repair half-periods (5-7 min for the cytogenetic damages and 5 min for the rapidly repaired DNA damages) and a similar modyfying effect with regard to radiation cytogenetic damages and kynetics of DNA damages repair were found to be close. This confirms the contribution of repair of DNA single-strand breaks in the initiation of structural damages to chromosomes

  17. Yield of radiation-induced DNA single-strand breaks in Escherichia coli and superinfecting phage lambda at different dose rates. Repair of strand breaks in different buffers

    International Nuclear Information System (INIS)

    Boye, E.; Johansen, I.; Brustad, T.

    1976-01-01

    Cells of E. coli K-12 strain AB 1886 were irradiated in oxygenated phosphate buffered saline at 2 0 C with electrons from a 4-MeV linear accelerator. The yield of DNA single-strand breaks was determined as a function of the dose rate between 2.5 and 21,000 krad/min. For dose rates over 100 krad/min the yield was found to be constant. Below 10 krad/min the yield of breaks decreases drastically. This is explained by rejoining of breaks during irradiation. Twenty percent of the breaks induced by acute exposure are repaired within 3 min at 2 0 C. Superinfecting phage lambda DNA is repaired at the same rate as chromosomal DNA. In contrast to the results obtained with phosphate-buffered saline, an increase in the number of breaks after irradiation is observed when the bacteria are suspended in tris buffer. It is suggested that buffers of low ionic strength facilitate the leakage through the membrane of a small-molecular-weight component(s) necessary for DNA strand rejoining

  18. Genetic effects and reparation of single-stranded DNA breaks in Arabidopsis thaliana populations growing in the vicinity of the Chernobyl Nuclear Power Station

    International Nuclear Information System (INIS)

    Abramov, V.I.; Sergeeva, S.A.; Ptitsyna, S.N.; Semov, A.B.; Shevchenko, V.A.

    1992-01-01

    The genetic effects and efficiency of repair of single-stranded DNA breaks in natural populations of Arabidopsis growing within a thirty-kilometer zone of the Chernobyl Nuclear Power Station were studied. A direct relationship was found between the level of radioactive contamination and the frequency of embryonal lethal mutations in the Arabidopsis populations studied. A decrease in the efficiency of reparation of single-stranded DNA breaks was found in Arabidopsis plants growing in the contaminated sites. The level of efficiency of DNA reparation was dependent on the duration for which the Arabidopsis population had been growing in the contaminated sites and on the degree of radioactive contamination of the sites. 9 refs., 4 tabs

  19. The survival and repair of DNA single-strand breaks in gamma-irradiated Escherichia coli adapted to methyl methane sulfonate

    International Nuclear Information System (INIS)

    Zhestyanikov, V.D.; Savel'eva, G.E.

    1992-01-01

    The survival and repair of single-strand breaks of DNA in gamma-irradiated E.coli adapted to methyl methane sulfonate (MMS) (20 mkg/ml during 3 hours) have been investigated. It is shown that the survival of adapted bacteria of radioresistant strains B/r, H/r30, AB1157 and W3110 pol + increases with DMF (dose modification factor) ranging within 1.4-1.8 and in radiosensitive strains B s-1 , AB1157 recA13 and AB1157 lexA3 with DMF ranging within 1.3-1.4, and does not change in strains with mutation in poLA gene P3478 poLA1 and 016 res-3. The increase in radioresistance during the adaptation to MMS correlates with the acceleration of repair of gamma-ray-induced single-strand breaks in the radioresistant strains B/r and W3110 pol + and with the appearance of the ability to repair some part of DNA single-strand breaks in the mutant B s-1

  20. Localization of specific sequences and DNA single-strand breaks in individual UV-A-irradiated human lymphocytes by COMET FISH

    Science.gov (United States)

    Bock, Claudia; Rapp, Alexander; Dittmar, Heike; Monajembashi, Shamci; Greulich, Karl-Otto

    1999-01-01

    The COMET assay, a single cell electrophoresis technique which allows to separate electrophoretically fractionated DNA according to size has been combined with fluorescence in situ hybridization (FISH) which allows to localize specific genes or gene regions. This combination (COMET FISH) allows the detection of DNA single strand breaks in specific regions of the genome of human lymphocytes at the single cell level. Various types of DNA probes, e.g. centromere-, (alpha) - satellite-, telomere-, whole chromosome-, single copy- and region specific DNA probes have been used to investigate whether the UV-A induced DNA single strand breaks are distributed randomly all over the human genome or induced at specific sites ('hot spots'). In the investigated human peripheral blood lymphocytes all but one centromere reveal low sensitivity for UV-A irradiation (500 kJ/m2), while telomeres are randomly distributed over COMET heads and tails. The human chromosome 1 is fractionated by irradiation, but remains in the COMET head, indicating an only moderate degree of fractionation. Among three tested single copy probes, c- myc, p53 and p58, the p53 gene located on chromosome 17p13.1 and the p58 gene (1p36) appear to be located in UV-A stable regions of the human genome in 95% of 65 investigated lymphocytes. In contrast, the c-myc proto-oncogene (8q24) is found in the COMET tail in 90% of the 27 investigated lymphocytes and thus appears to be more sensitive to UV-A irradiation.

  1. Cytogenetic Markers, DNA Single-Strand Breaks, Urinary Metabolites, and DNA Repair Rates in Styrene-Exposed Lamination Workers

    Czech Academy of Sciences Publication Activity Database

    Vodička, Pavel; Tuimala, J.; Štětina, R.; Kumar, R.; Manini, P.; Naccarati, Alessio; Maestri, L.; Vodičková, L.; Kuricová, Miroslava; Jarventaus, H.; Majvalková, Z.; Hirvonen, A.; Imbriani, M.; Mutti, A.; Norppa, H.; Hemminki, K.

    2004-01-01

    Roč. 112, č. 8 (2004), s. 867-871 ISSN 0091-6765 R&D Projects: GA ČR GA310/03/0437; GA ČR GA310/01/0802 Institutional research plan: CEZ:AV0Z5039906 Keywords : DNA repair rates * genotoxicity Subject RIV: FM - Hygiene Impact factor: 3.929, year: 2004

  2. Repair of X-ray-induced single-strand breaks by a cell-free system

    International Nuclear Information System (INIS)

    Seki, Shuji; Ikeda, Shogo; Tsutui, Ken; Teraoka, Hirobumi

    1990-01-01

    Repair of X-ray-induced single-strand breaks of DNA was studied in vitro using an exonuclease purified from mouse ascites sarcoma (SR-C3H/He) cells. X-ray-dose-dependent unscheduled DNA synthesis was primed by the exonuclease. Repair of X-ray-induced single-strand breaks in pUC19 plasmid DNA was demonstrated by agarose gel electrophoresis after incubating the damaged DNA with the exonuclease, DNA polymerase (Klenow fragment of DNA polymerase I or DNA polymerase β purified from SR-C3H/He cells), four deoxynucleoside triphosphates, ATP and DNA ligase (T4 DNA ligase or DNA ligase I purified from calf thymus). The present results suggested that the exonuclease is involved in the initiation of repair of X-ray-induced single-strand breaks in removing 3' ends of X-ray-damaged DNA. (author)

  3. Cells deficient in PARP-1 show an accelerated accumulation of DNA single strand breaks, but not AP sites, over the PARP-1-proficient cells exposed to MMS.

    Science.gov (United States)

    Pachkowski, Brian F; Tano, Keizo; Afonin, Valeriy; Elder, Rhoderick H; Takeda, Shunichi; Watanabe, Masami; Swenberg, James A; Nakamura, Jun

    2009-12-01

    Poly(ADP-ribose) polymerase-1 (PARP-1) is a base excision repair (BER) protein that binds to DNA single strand breaks (SSBs) and subsequently synthesizes and transfers poly(ADP-ribose) polymers to various nuclear proteins. Numerous biochemical studies have implicated PARP-1 as a modulator of BER; however, the role of PARP-1 in BER in living cells remains unclear partly due to lack of accurate quantitation of BER intermediates existing in cells. Since DT40 cells, chicken B lymphocytes, naturally lack PARP-2, DT40 cells allow for the investigation of the PARP-1 null phenotype without confounding by PARP-2. To test the hypothesis that PARP-1 is necessary for efficient BER during methylmethane sulfonate (MMS) exposure in vertebrate cells, intact DT40 cells and their isogenic PARP-1 null counterparts were challenged with different exposure scenarios for phenotypic characterization. With chronic exposure, PARP-1 null cells exhibited sensitivity to MMS but with an acute exposure did not accumulate base lesions or AP sites to a greater extent than wild-type cells. However, an increase in SSB content in PARP-1 null cell DNA, as indicated by glyoxal gel electrophoresis under neutral conditions, suggested the presence of BER intermediates. These data suggest that during exposure, PARP-1 impacts the stage of BER after excision of the deoxyribosephosphate moiety from the 5' end of DNA strand breaks by polymerase beta.

  4. A novel technique using DNA denaturation to detect multiply induced single-strand breaks in a hydrated plasmid DNA molecule by X-ray and 4He2+ ion irradiation

    International Nuclear Information System (INIS)

    Yokoya, A.; Shikazono, N.; Fujii, K.; Noguchi, M.; Urushibara, A.

    2011-01-01

    To detect multiple single-strand breaks (SSBs) produced in plasmid DNA molecules by direct energy deposition from radiation tracks, we have developed a novel technique using DNA denaturation by which irradiated DNA is analysed as single-strand DNA (SS-DNA). The multiple SSBs that arise in both strands of DNA, but do not induce a double-strand break, are quantified as loss of SS-DNA using agarose gel electrophoresis. We have applied this method to X-ray and 4 He 2+ ion-irradiated samples of fully hydrated pUC18 plasmid DNA. The fractions of both SS-DNA and closed circular DNA (CC-DNA) exponentially decrease with the increasing dose of X rays and 4 He 2+ ions. The efficiency of the loss of SS-DNA was half that of CC-DNA for both types of irradiation, indicating that one of two strands in DNA is not broken when one SSB is produced in CC-DNA by irradiation. Contrary to our initial expectation, these results indicate that SSBs are not multiply induced even by high linear energy transfer radiation distributed in both strands. (authors)

  5. Effect of vanillin on methylene blue plus light-induced single-strand breaks in plasmid pBR322 DNA.

    Science.gov (United States)

    Kumar, S S; Ghosh, A; Devasagayam, T P; Chauhan, P S

    2000-09-20

    The ability of vanillin (4-hydroxy-3-methoxybenzaldehyde), a naturally occurring food flavouring agent, in inhibiting photosensitization-induced single-strand breaks (ssbs) in plasmid pBR322 DNA has been examined in an in vitro system, independent of DNA repair/replication processes. Photosensitization of DNA with methylene blue, visible light and oxygen, induced ssbs resulting in the production of open circular form (OC form) in a concentration-dependent manner. The yield of OC form induced by photosensitization was increased several-fold by deuteration of the buffer and was found to be inhibited by sodium azide, a scavenger of singlet oxygen (1O(2)). Vanillin, per se, did not induce but inhibited photosensitization-induced ssbs in plasmid DNA, at millimolar concentrations. The inhibitory effect of vanillin was both concentration- and time-dependent. On a molar basis, vanillin was, however, less effective than trolox, a water-soluble analogue of alpha-tocopherol. Photosensitization by methylene blue system generates singlet oxygen, as one of the major components of ROS. Therefore, interaction of singlet oxygen with vanillin was investigated. The rate constant of vanillin with 1O(2) was estimated to be 5.93x10(7)M(-1)s(-1) and that of sodium azide as 2. 7x10(8)M(-1)s(-1). The present investigations show that vanillin can protect against photosensitization-induced ssbs in the plasmid pBR322 DNA, and this effect may partly be due to its ability to scavenge 1O(2).

  6. A biomarker model of sublethal genotoxicity (DNA single-strand breaks and adducts) using the sentinel organism Aporrectodea longa in spiked soil

    International Nuclear Information System (INIS)

    Martin, Francis L.; Piearce, Trevor G.; Hewer, Alan; Phillips, David H.; Semple, Kirk T.

    2005-01-01

    There is a need to develop risk biomarkers during the remediation of contaminated land. We employed the earthworm, Aporrectodea longa (Ude), to determine whether genotoxicity measures could be applied to this organism's intestinal tissues. Earthworms were added, for 24 h or 7 days, to soil samples spiked with benzo[a]pyrene (B[a]P) and/or lindane. After exposure, intestinal tissues (crop/gizzard or intestine) were removed prior to the measurement in disaggregated cells of DNA single-strand breaks (SSBs) by the alkaline comet assay. Damage was quantified by comet tail length (CTL, μm). B[a]P 24-h exposure induced dose-related increases (P 32 P-postlabelling, showed a two-adduct-spot pattern. This preliminary investigation suggests that earthworm tissues may be incorporated into genotoxicity assays to facilitate hazard identification within terrestrial ecosystems. - Sublethal genotoxicity in the sentinel organism A. longa can be used to monitor the effects of contaminants in soil

  7. Contribution of single-strand breaks and alkali-labile bonds to the loss of infectivity of γ-irradiated phiX174 RF-DNA in E. coli cells mutant in various repair functions

    International Nuclear Information System (INIS)

    McKee, R.H.

    1975-01-01

    Twenty-one radiation sensitive mutants have been examined for their capacity to support gamma-irradiated phiX174 RF-DNA. The survival of phiX174 RF-DNA was reduced in essentially all of the sensitive mutants. The irradiated phiX174 RF-DNA was then separated into populations containing either single-strand breaks or alkali-labile bonds to examine the capacity of the mutants to repair each of the classes of lesions. It was found that all E. coli strains are unable to repair 22 percent of the single-strand breaks and all sensitive mutants are unable to repair an additional 10 percent of the breaks. All the repair functions examined are involved in single-strand break repair and none are more or less necessary than any of the others. PhiX174 RF-DNA is also inactivated by alkali-labile bonds. In the normal strains the inactivation efficiency is 0.16 lethal events per lesion with a threshold dose of 15 to 20 krads. The mutants are divided into two classes by their sensitivity to alkali-labile bonds. Both classes of mutants are also inactivated by alkali-labile bonds with efficiencies of about 0.17 and 0.29 lethal events per lesion, respectively. It is proposed that the differences seen in survival curves of phiX174 measured in the sensitive mutants is due to this difference. Although in normal cells the efficiency of inactivation of phiX174 by single-strand breaks is 50 percent greater than by alkali-labile bonds, alkali-labile bonds are produced at approximately twice the rate of single-strand breaks so alkali-labile bonds account for about 61 percent of the overall inactivation. In the mutants of least sensitivity alkali-labile bonds account for about 54 percent of the inactivating events and in the most sensitive about 67 percent

  8. DNA replication of single-stranded Escherichia coli DNA phages

    NARCIS (Netherlands)

    Baas, P.D.

    1985-01-01

    Research on single-stranded DNA phages has contributed tremendously to our knowledge of several fundamental life-processes. The small size of their genomes and the fast rate at which they multiply in their host, Escherichia coil, made them attractive candidates for various studies. There

  9. Repair of single-strand breaks in normal and trisomic lymphocytes

    International Nuclear Information System (INIS)

    Leonard, J.C.; Merz, T.

    1982-01-01

    Recently, Athanasiou and colleagues (1981) reported a deficiency in the capacity of lymphocytes from persons with Down's syndrome to repair single-strand DNA breaks. They found that 1 h after exposure to 160 Gray, repair processes had restored the sedimentation profile of DNA from normal lymphocytes to control values, whereas the relative average molecular weight of DNA from irradiated lymphocytes from persons with Down's syndrome showed no increase during the repair interval. They have suggested that their data, in conjunction with the earlier data concerning the frequencies of induced chromosomal aberrations in lymphocytes from persons with Down's syndrome, reflect a decreased efficiency in some aspect of DNA repair in trisomic cells. However, for further studies of this hypothesis, it is more appropriate to study the rejoining of DNA single-strand breaks after doses comparable to those used in tests for chromosomal aberrations. (orig.)

  10. Accumulation of single-strand breaks doses not result in double-strand DNA breaks: peculiarity of transcribing fragment of human ribosomal operon that allows its detection in biological fluids at the death of various cells in organism

    International Nuclear Information System (INIS)

    Vejko, N.N.; Spitkovskij, D.M.

    2000-01-01

    The evidences of stability of the human ribosomal gene in the transcribing range (TR-rDNA) to fragmentation are presented in two groups of experiments: 1) in the case of availability of the fragments in the cells of sectional corpse material (necrosis and apoptosis) and by pathologies accompanied by the cells death through the apoptosis or necrosis mechanism; 2) in the model experiments, wherein the separated genomes DNA is subjected to the impact of nucleases initiating single-strand breaks (SB), or chemical introduction with a subsequent comparative analysis of stability to fragmentation of various DNA sequences including TR-rDNA. The DNA solutions were subjected to γ-radiation with the dose rate of 4.8 Gy/min. It is shown that in spite of the great number of the SBs the TR-rDNA is characterized by increased stability to fragmentation, which makes it possible to propose this DNA fragment for application as a cell death marker in biological fluids [ru

  11. Protective effects of pulmonary epithelial lining fluid on oxidative stress and DNA single-strand breaks caused by ultrafine carbon black, ferrous sulphate and organic extract of diesel exhaust particles

    Energy Technology Data Exchange (ETDEWEB)

    Chuang, Hsiao-Chi [School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan (China); Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan (China); Cheng, Yi-Ling; Lei, Yu-Chen [Institute of Occupational Medicine and Industrial Hygiene, College of Public Health, National Taiwan University, Taipei, Taiwan (China); Chang, Hui-Hsien [Institute of Environmental Health, College of Public Health, National Taiwan University, Taipei, Taiwan (China); Cheng, Tsun-Jen, E-mail: tcheng@ntu.edu.tw [Institute of Occupational Medicine and Industrial Hygiene, College of Public Health, National Taiwan University, Taipei, Taiwan (China); Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan (China)

    2013-02-01

    Pulmonary epithelial lining fluid (ELF) is the first substance to make contact with inhaled particulate matter (PM) and interacts chemically with PM components. The objective of this study was to determine the role of ELF in oxidative stress, DNA damage and the production of proinflammatory cytokines following physicochemical exposure to PM. Ultrafine carbon black (ufCB, 15 nm; a model carbonaceous core), ferrous sulphate (FeSO{sub 4}; a model transition metal) and a diesel exhaust particle (DEP) extract (a model organic compound) were used to examine the acellular oxidative potential of synthetic ELF and non-ELF systems. We compared the effects of exposure to ufCB, FeSO{sub 4} and DEP extract on human alveolar epithelial Type II (A549) cells to determine the levels of oxidative stress, DNA single-strand breaks and interleukin-8 (IL-8) production in ELF and non-ELF systems. The effects of ufCB and FeSO{sub 4} on the acellular oxidative potential, cellular oxidative stress and DNA single-strand breakage were mitigated significantly by the addition of ELF, whereas there was no decrease following treatment with the DEP extract. There was no significant effect on IL-8 production following exposure to samples that were suspended in ELF/non-ELF systems. The results of the present study indicate that ELF plays an important role in the initial defence against PM in the pulmonary environment. Experimental components, such as ufCB and FeSO{sub 4}, induced the production of oxidative stress and led to DNA single-strand breaks, which were moderately prevented by the addition of ELF. These findings suggest that ELF plays a protective role against PM-driven oxidative stress and DNA damage. -- Highlights: ► To determine the role of ELF in ROS, DNA damage and IL-8 after exposure to PM. ► ufCB, FeSO{sub 4} and DEP extract were used to examine the protective effects of ELF. ► PM-driven oxidative stress and DNA single-strand breakage were mitigated by ELF. ► The findings

  12. Phenolic extracts of brewers' spent grain (BSG) as functional ingredients - assessment of their DNA protective effect against oxidant-induced DNA single strand breaks in U937 cells.

    Science.gov (United States)

    McCarthy, Aoife L; O'Callaghan, Yvonne C; Connolly, Alan; Piggott, Charles O; Fitzgerald, Richard J; O'Brien, Nora M

    2012-09-15

    Brewers' spent grain (BSG), a by-product of the brewing industry, contains high amounts of phenolic acids, which have antioxidant effects. The present study examined the ability of BSG extracts to protect against the genotoxic effects of oxidants, hydrogen peroxide (H(2)O(2)), 3-morpholinosydnonimine hydrochloride (SIN-1), 4-nitroquinoline 1-oxide (4-NQO) and tert-butylhydroperoxide (t-BOOH) in U937 cells. Four pale (P1-P4) and four black (B1-B4) BSG extracts were investigated. U937 cells were pre-incubated with BSG extracts, exposed to the oxidants and the DNA damage was measured by the Comet assay. The black BSG extracts (B1-B4) significantly protected against H(2)O(2)-induced DNA damage. Extract B2, which had the highest phenol content, provided the greatest protection. Extracts P2, B2, B3 and B4 provided significant protection against SIN-1-induced DNA damage. None of the extracts protected against DNA damage induced by t-BOOH and 4-NQO. The DNA protective effects of the BSG phenolic extracts may be related to iron chelation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Improved single-strand DNA sizing accuracy in capillary electrophoresis.

    OpenAIRE

    Rosenblum, B B; Oaks, F; Menchen, S; Johnson, B

    1997-01-01

    Interpolation algorithms can be developed to size unknown single-stranded (ss) DNA fragments based on their electrophoretic mobilities, when they are compared with the mobilities of standard fragments of known sizes; however, sequence-specific anomalous electrophoretic migration can affect the accuracy and precision of the called sizes of the fragments. We used the anomalous migration of ssDNA fragments to optimize denaturation conditions for capillary electrophoresis. The capillary electroph...

  14. Single-strand DNA molecule translocation through nanoelectrode gaps

    International Nuclear Information System (INIS)

    Zhao Xiongce; Payne, Christina M; Cummings, Peter T; Lee, James W

    2007-01-01

    Molecular dynamics simulations were performed to investigate the translocation of single-strand DNA through nanoscale electrode gaps under the action of a constant driving force. The application behind this theoretical study is a proposal to use nanoelectrodes as a screening gap as part of a rapid genomic sequencing device. Preliminary results from a series of simulations using various gap widths and driving forces suggest that the narrowest electrode gap that a single-strand DNA can pass is ∼1.5 nm. The minimum force required to initiate the translocation within nanoseconds is ∼0.3 nN. Simulations using DNA segments of various lengths indicate that the minimum initiation force is insensitive to the length of DNA. However, the average threading velocity of DNA varies appreciably from short to long DNA segments. We attribute such variation to the different nature of drag force experienced by the short and long DNA segments in the environment. It is found that DNA molecules deform significantly to fit in the shape of the nanogap during the translocation

  15. The Rev1 interacting region (RIR) motif in the scaffold protein XRCC1 mediates a low-affinity interaction with polynucleotide kinase/phosphatase (PNKP) during DNA single-strand break repair.

    Science.gov (United States)

    Breslin, Claire; Mani, Rajam S; Fanta, Mesfin; Hoch, Nicolas; Weinfeld, Michael; Caldecott, Keith W

    2017-09-29

    The scaffold protein X-ray repair cross-complementing 1 (XRCC1) interacts with multiple enzymes involved in DNA base excision repair and single-strand break repair (SSBR) and is important for genetic integrity and normal neurological function. One of the most important interactions of XRCC1 is that with polynucleotide kinase/phosphatase (PNKP), a dual-function DNA kinase/phosphatase that processes damaged DNA termini and that, if mutated, results in ataxia with oculomotor apraxia 4 (AOA4) and microcephaly with early-onset seizures and developmental delay (MCSZ). XRCC1 and PNKP interact via a high-affinity phosphorylation-dependent interaction site in XRCC1 and a forkhead-associated domain in PNKP. Here, we identified using biochemical and biophysical approaches a second PNKP interaction site in XRCC1 that binds PNKP with lower affinity and independently of XRCC1 phosphorylation. However, this interaction nevertheless stimulated PNKP activity and promoted SSBR and cell survival. The low-affinity interaction site required the highly conserved Rev1-interacting region (RIR) motif in XRCC1 and included three critical and evolutionarily invariant phenylalanine residues. We propose a bipartite interaction model in which the previously identified high-affinity interaction acts as a molecular tether, holding XRCC1 and PNKP together and thereby promoting the low-affinity interaction identified here, which then stimulates PNKP directly. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Programmable autonomous synthesis of single-stranded DNA

    Science.gov (United States)

    Kishi, Jocelyn Y.; Schaus, Thomas E.; Gopalkrishnan, Nikhil; Xuan, Feng; Yin, Peng

    2018-02-01

    DNA performs diverse functional roles in biology, nanotechnology and biotechnology, but current methods for autonomously synthesizing arbitrary single-stranded DNA are limited. Here, we introduce the concept of primer exchange reaction (PER) cascades, which grow nascent single-stranded DNA with user-specified sequences following prescribed reaction pathways. PER synthesis happens in a programmable, autonomous, in situ and environmentally responsive fashion, providing a platform for engineering molecular circuits and devices with a wide range of sensing, monitoring, recording, signal-processing and actuation capabilities. We experimentally demonstrate a nanodevice that transduces the detection of a trigger RNA into the production of a DNAzyme that degrades an independent RNA substrate, a signal amplifier that conditionally synthesizes long fluorescent strands only in the presence of a particular RNA signal, molecular computing circuits that evaluate logic (AND, OR, NOT) combinations of RNA inputs, and a temporal molecular event recorder that records in the PER transcript the order in which distinct RNA inputs are sequentially detected.

  17. Single-stranded DNA library preparation from highly degraded DNA using T4 DNA ligase.

    Science.gov (United States)

    Gansauge, Marie-Theres; Gerber, Tobias; Glocke, Isabelle; Korlevic, Petra; Lippik, Laurin; Nagel, Sarah; Riehl, Lara Maria; Schmidt, Anna; Meyer, Matthias

    2017-06-02

    DNA library preparation for high-throughput sequencing of genomic DNA usually involves ligation of adapters to double-stranded DNA fragments. However, for highly degraded DNA, especially ancient DNA, library preparation has been found to be more efficient if each of the two DNA strands are converted into library molecules separately. We present a new method for single-stranded library preparation, ssDNA2.0, which is based on single-stranded DNA ligation with T4 DNA ligase utilizing a splinter oligonucleotide with a stretch of random bases hybridized to a 3΄ biotinylated donor oligonucleotide. A thorough evaluation of this ligation scheme shows that single-stranded DNA can be ligated to adapter oligonucleotides in higher concentration than with CircLigase (an RNA ligase that was previously chosen for end-to-end ligation in single-stranded library preparation) and that biases in ligation can be minimized when choosing splinters with 7 or 8 random nucleotides. We show that ssDNA2.0 tolerates higher quantities of input DNA than CircLigase-based library preparation, is less costly and better compatible with automation. We also provide an in-depth comparison of library preparation methods on degraded DNA from various sources. Most strikingly, we find that single-stranded library preparation increases library yields from tissues stored in formalin for many years by several orders of magnitude. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  18. Oxidized Base Damage and Single-Strand Break Repair in Mammalian Genomes: Role of Disordered Regions and Posttranslational Modifications in Early Enzymes

    OpenAIRE

    Hegde, Muralidhar L.; Izumi, Tadahide; Mitra, Sankar

    2012-01-01

    Oxidative genome damage induced by reactive oxygen species includes oxidized bases, abasic (AP) sites, and single-strand breaks, all of which are repaired via the evolutionarily conserved base excision repair/single-strand break repair (BER/SSBR) pathway. BER/SSBR in mammalian cells is complex, with preferred and backup sub-pathways, and is linked to genome replication and transcription. The early BER/SSBR enzymes, namely, DNA glycosylases (DGs) and the end-processing proteins such as abasic ...

  19. Molecular investigation of evaporation of biodroplets containing single-strand DNA on graphene surface.

    Science.gov (United States)

    Akbari, Fahimeh; Foroutan, Masumeh

    2018-02-14

    In this study, the water droplet behaviour of four different types of single-strand DNA with homogeneous base sequence on a graphene substrate during evaporation of the droplet was investigated using molecular dynamics (MD) simulation. The simulation results indicated that the evaporation depended on the DNA sequence. The observed changes can be divided into four parts: (i) vaporization mode, (ii) evaporation flux, (iii) mechanism of single-strand placement on the surface, and (iv) consideration of remaining single strands after evaporation. Our simulation observations indicated different evaporation modes for thymine biodroplets as compared to those for other biodroplets. The evaporation of the thymine biodroplets occurred with an increase in the contact angle, while that of the other biodroplets occur in a constant contact angle mode. Moreover, thymine biodroplets generate the lowest contact line compared to other single strands, and it is always placed far away from the centre of the droplets during evaporation. Investigating variations in the evaporation flux shows that thymine has the highest evaporation flux and guanine has the lowest. Moreover, during initial evaporation, the flux of evaporation increases at the triple point of the biodroplets containing thymine single strands, while it decreases in the other biodroplets. The following observation was obtained from the study of the placement of single strands on the substrate: guanine and thymine interacted slower than other single strands during evaporation with graphene, adenine single strand had a higher folding during evaporation, and guanine single strand showed the lowest end-to-end distance. The investigation of single-strand DNA after evaporation shows that adenine produces the most stable structure at the end of evaporation. In addition, cytosine is the most stretched single-strand DNA due to its lack of internal π-π stacking and hydrogen bonding. Therefore, cytosine single strand is more

  20. Regions of incompatibility in single-stranded DNA bacteriophages phi X174 and G4

    NARCIS (Netherlands)

    van der Avoort, H. G.; van der Ende, A.; van Arkel, G. A.; Weisbeek, P. J.

    1984-01-01

    The intracellular presence of a recombinant plasmid containing the intercistronic region between the genes H and A of bacteriophage phi X174 strongly inhibits the conversion of infecting single-stranded phi X DNA to parental replicative-form DNA. Also, transfection with single-stranded or

  1. Radiation-induced DNA single-strand scission and its rejoining in spermatogonia and spermatozoa of mouse

    International Nuclear Information System (INIS)

    Ono, T.; Okada, S.

    1977-01-01

    Gamma-ray-induced DNA single-strand scissions and the ability to repair the scissions in spermatogonia from young mice and in spermatozoa from adult mice were studied quantitatively by an alkaline sucrose density-gradient centrifugation method. The average size of DNAs in non-irradiated spermatogonia was 2.6-3.0xx10 8 daltons, similar to those of a spermatid-rich population, and the size of DNA in non-irradiated spermatozoa was 1.2x10 8 daltons. In spermatogonia, the radiosensitivity of DNA was 0.42 single-strand breaks/10 12 daltons of DNA/rad in oxic conditions and only 0.24 under anoxic conditions. In spermatozoa the break efficiency of DNA was 0.22 single-strand breaks/10 12 daltons of DNA/rad under oxic conditions and altered little under anoxic irradiation. The DNA scissions were efficiently repaired in spermatogonia within 10 min, whereas the breaks in spermatozoa were not rejoined at all even after two days of post-irradiation time. The radiosensitivities of DNA, repair capability and non- and/or slowreparable DNA scissions were compared in spermatogonium-rich, spermatid-rich and spermatozoanrich populations

  2. Initiation signals for complementary strand DNA synthesis on single-stranded plasmid DNA

    NARCIS (Netherlands)

    van der Ende, A.; Teertstra, R.; van der Avoort, H. G.; Weisbeek, P. J.

    1983-01-01

    The bacteriophage 0X174 origin for (+) strand DNA synthesis, when inserted in a plasmid, is in vivo a substrate for the initiator A protein, that is produced by infecting phages. The result of this interaction is the packaging of single-stranded plasmid DNA into preformed phage coats. These plasmid

  3. New insights on single-stranded versus double-stranded DNA library preparation for ancient DNA

    DEFF Research Database (Denmark)

    Wales, Nathan; Carøe, Christian; Sandoval-Velasco, Marcela

    2015-01-01

    An innovative single-stranded DNA (ssDNA) library preparation method has sparked great interest among ancient DNA (aDNA) researchers, especially after reports of endogenous DNA content increases >20-fold in some samples. To investigate the behavior of this method, we generated ssDNA...... and conventional double-stranded DNA (dsDNA) libraries from 23 ancient and historic plant and animal specimens. We found ssDNA library preparation substantially increased endogenous content when dsDNA libraries contained...

  4. Genetic transformation of Streptococcus pneumoniae by DNA cloned into the single-stranded bacteriophage f1.

    OpenAIRE

    Barany, F; Boeke, J D

    1983-01-01

    A Staphylococcus aureus plasmid derivative, pFB9, coding for erythromycin and chloramphenicol resistance was cloned into the filamentous Escherichia coli phage f1. Recombinant phage-plasmid hybrids, designated plasmids, were isolated from E. coli and purified by transformation into Streptococcus pneumoniae. Single-stranded DNA was prepared from E. coli cells infected with two different plasmids, fBB101 and fBB103. Introduction of fully or partially single-stranded DNA into Streptococcus pneum...

  5. Adenovirus DNA replication in vitro: Duplication of single-stranded DNA containing a panhandle structure

    NARCIS (Netherlands)

    Leegwater, P.A.J.; Rombouts, R.F.A.; Vliet, P.C. van der

    1988-01-01

    Adenovirus DNA replicates by displacement of one of the parental strands followed by duplication of the displaced parental single strand (complementary strand synthesis). Displacement synthesis has been performed in a reconstituted system composed of viral and cellular proteins, employing either the

  6. Single-stranded DNA cleavage by divergent CRISPR-Cas9 enzymes

    Science.gov (United States)

    Ma, Enbo; Harrington, Lucas B.; O’Connell, Mitchell R.; Zhou, Kaihong; Doudna, Jennifer A.

    2015-01-01

    Summary Double-stranded DNA (dsDNA) cleavage by Cas9 is a hallmark of type II CRISPR-Cas immune systems. Cas9–guide RNA complexes recognize 20-base-pair sequences in DNA and generate a site-specific double-strand break, a robust activity harnessed for genome editing. DNA recognition by all studied Cas9 enzymes requires a protospacer adjacent motif (PAM) next to the target site. We show that Cas9 enzymes from evolutionarily divergent bacteria can recognize and cleave single-stranded DNA (ssDNA) by an RNA-guided, PAM-independent recognition mechanism. Comparative analysis shows that in contrast to the type II-A S. pyogenes Cas9 that is widely used for genome engineering, the smaller type II-C Cas9 proteins have limited dsDNA binding and unwinding activity and promiscuous guide-RNA specificity. These results indicate that inefficiency of type II-C Cas9 enzymes for genome editing results from a limited ability to cleave dsDNA, and suggest that ssDNA cleavage was an ancestral function of the Cas9 enzyme family. PMID:26545076

  7. Dynamics of RecA filaments on single-stranded DNA

    NARCIS (Netherlands)

    Van Loenhout, M.T.J.; Van der Heijden, T.; Kanaar, R.; Wyman, C.; Dekker, C.

    2009-01-01

    RecA, the key protein in homologous recombination, performs its actions as a helical filament on single-stranded DNA (ssDNA). ATP hydrolysis makes the RecA–ssDNA filament dynamic and is essential for successful recombination. RecA has been studied extensively by single-molecule techniques on

  8. POT1-independent single-strand telomeric DNA binding activities in Brassicaceae.

    Science.gov (United States)

    Shakirov, Eugene V; McKnight, Thomas D; Shippen, Dorothy E

    2009-06-01

    Telomeres define the ends of linear eukaryotic chromosomes and are required for genome maintenance and continued cell proliferation. The extreme ends of telomeres terminate in a single-strand protrusion, termed the G-overhang, which, in vertebrates and fission yeast, is bound by evolutionarily conserved members of the POT1 (protection of telomeres) protein family. Unlike most other model organisms, the flowering plant Arabidopsis thaliana encodes two divergent POT1-like proteins. Here we show that the single-strand telomeric DNA binding activity present in A. thaliana nuclear extracts is not dependent on POT1a or POT1b proteins. Furthermore, in contrast to POT1 proteins from yeast and vertebrates, recombinant POT1a and POT1b proteins from A. thaliana, and from two additional Brassicaceae species, Arabidopsis lyrata and Brassica oleracea (cauliflower), fail to bind single-strand telomeric DNA in vitro under the conditions tested. Finally, although we detected four single-strand telomeric DNA binding activities in nuclear extracts from B. oleracea, partial purification and DNA cross-linking analysis of these complexes identified proteins that are smaller than the predicted sizes of BoPOT1a or BoPOT1b. Taken together, these data suggest that POT1 proteins are not the major single-strand telomeric DNA binding activities in A. thaliana and its close relatives, underscoring the remarkable functional divergence of POT1 proteins from plants and other eukaryotes.

  9. Opposite effects of nitric oxide donors on DNA single strand breakage and cytotoxicity caused by tert-butylhydroperoxide

    Science.gov (United States)

    Guidarelli, Andrea; Sestili, Piero; Cantoni, Orazio

    1998-01-01

    The effects of three different NO donors on tert-butylhydroperoxide (tB-OOH)-induced DNA cleavage and toxicity were investigated in U937 cells.Treatment with S-nitroso-N-acetyl-penicillamine (SNAP, 1–30 μM), while not in itself DNA-damaging, potentiated the DNA strand scission induced by 200 μM tB-OOH in a concentration-dependent fashion. The enhancing effects of SNAP were observed with two different techniques for the assessment of DNA damage. Decomposed SNAP was inactive. S-nitrosoglutathione (GSNO, 300 μM) and (Z)-1-[(2-aminoethyl)-N-(2-ammonioethyl) amino]diazen-1-ium-1,2-diolate (DETA-NO, 1 mM) also increased DNA cleavage generated by tB-OOH and these responses, as well as that mediated by SNAP, were prevented by the NO scavenger 2-phenyl-4,4,5,5-tetramethylimidazolin-1-oxyl-3-oxide (PTIO).SNAP neither inhibited catalase activity nor increased the formation of DNA lesions in cells exposed to H2O2. Furthermore, SNAP did not affect the rate of rejoining of the DNA single strand breaks generated by tB-OOH.Under the conditions utilized in the DNA damage experiments, treatment with tB-OOH alone or associated with SNAP did not cause cell death. However, SNAP as well as GSNO markedly reduced the lethal response promoted by millimolar concentrations of tB-OOH and these effects were abolished by PTIO. Decomposed SNAP was inactive.It is concluded that low levels of NO donors, which probably release physiological concentrations of NO, enhance the accumulation of DNA single strand breaks in U937 cells exposed to tB-OOH. This NO-mediated effect appears to (a) not depend on inhibition of either DNA repair (which would increase the net accumulation of DNA lesions by preventing DNA single strand break removal) or catalase activity (which would also enhance the net accumulation of DNA lesions since H2O2 is one of the species mediating the tB-OOH-induced DNA cleavage) and (b) be caused by enforced formation of tB-OOH-derived DNA-damaging species. In contrast to

  10. BCR-ABL promotes the frequency of mutagenic single-strand annealing DNA repair

    Science.gov (United States)

    Fernandes, Margret S.; Reddy, Mamatha M.; Gonneville, Jeffrey R.; DeRoo, Scott C.; Podar, Klaus; Griffin, James D.; Weinstock, David M.

    2009-01-01

    Intracellular oxidative stress in cells transformed by the BCR-ABL oncogene is associated with increased DNA double-strand breaks. Imprecise repair of these breaks can result in the accumulation of mutations, leading to therapy-related drug resistance and disease progression. Using several BCR-ABL model systems, we found that BCR-ABL specifically promotes the repair of double-strand breaks through single-strand annealing (SSA), a mutagenic pathway that involves sequence repeats. Moreover, our results suggest that mutagenic SSA repair can be regulated through the interplay between BCR-ABL and extrinsic growth factors. Increased SSA activity required Y177 in BCR-ABL, as well as a functional PI3K and Ras pathway downstream of this site. Furthermore, our data hint at a common pathway for DSB repair whereby BCR-ABL, Tel-ABL, Tel-PDGFR, FLT3-ITD, and Jak2V617F all increase mutagenic repair. This increase in SSA may not be sufficiently suppressed by tyrosine kinase inhibitors in the stromal microenvironment. Therefore, drugs that target growth factor receptor signaling represent potential therapeutic agents to combat tyrosine kinase-induced genomic instability. PMID:19571320

  11. Ion assisted structural collapse of a single stranded DNA: A molecular dynamics approach

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Soumadwip; Dixit, Himanshu; Chakrabarti, Rajarshi, E-mail: rajarshi@chem.iitb.ac.in

    2015-09-28

    Highlights: • The dynamics of a single-stranded DNA in presence of different concentrations of Mg{sup 2+} is investigated. • The initial DNA chain collapse is characterized by the formation of non-sequentially stacked base pairs. • The DNA chain re-swells at high concentrations of Mg{sup 2+} as a consequence of overcharging. - Abstract: The structure and dynamics of negatively charged nucleic acids strongly correlate with the concentration and charge of the oppositely charged counterions. It is well known that the structural collapse of DNA is favoured in the presence of additional salt, a source of excess oppositely charged ions. Under such conditions single stranded DNA adopts a collapsed coil like conformation, typically characterized by stacking base pairs. Using atomistic molecular dynamics simulation, we demonstrate that in the presence of additional divalent salt (MgCl{sub 2}) single stranded DNA with base sequence 5′-CGCGAATTCGCG-3′ (Dickerson Drew dodecamer) initially collapses and then expands with increasing salt concentration. This is due to the overcharging induced DNA chain swelling, a dominant factor at a higher divalent salt concentration. In a nutshell, our simulations show how in the presence of divalent salt, non-sequential base stacking and overcharging competes and affect single stranded DNA dynamics unlike a monovalent salt.

  12. Acheta domesticus Volvovirus, a Novel Single-Stranded Circular DNA Virus of the House Cricket.

    Science.gov (United States)

    Pham, Hanh T; Bergoin, Max; Tijssen, Peter

    2013-03-14

    The genome of a novel virus of the house cricket consists of a 2,517-nucleotide (nt) circular single-stranded DNA (ssDNA) molecule with 4 open reading frames (ORFs). One ORF had a low identity to circovirus nucleotide sequences (NS). The unique properties of this volvovirus suggested that it belongs to a new virus family or genus.

  13. Acheta domesticus Volvovirus, a Novel Single-Stranded Circular DNA Virus of the House Cricket

    OpenAIRE

    Pham, Hanh T.; Bergoin, Max; Tijssen, Peter

    2013-01-01

    International audience; The genome of a novel virus of the house cricket consists of a 2,517-nucleotide (nt) circular single-stranded DNA (ssDNA) molecule with 4 open reading frames (ORFs). One ORF had a low identity to circovirus nucleotide sequences (NS). The unique properties of this volvovirus suggested that it belongs to a new virus family or genus.

  14. Effects of single-stranded DNA binding proteins on primer extension by telomerase.

    Science.gov (United States)

    Cohen, Shlomit; Jacob, Eyal; Manor, Haim

    2004-08-12

    We present a biochemical analysis of the effects of three single-stranded DNA binding proteins on extension of oligonucleotide primers by the Tetrahymena telomerase. One of them, a human protein designated translin, which was shown to specifically bind the G-rich Tetrahymena and human telomeric repeats, slightly stimulated the primer extension reactions at molar ratios of translin/primer of primers, rather than by a direct interaction of this protein with telomerase. A second protein, the general human single-stranded DNA binding protein Replication Protein A (RPA), similarly affected the primer extension by telomerase, even though its mode of binding to DNA differs from that of translin. A third protein, the E. coli single-stranded DNA binding protein (SSB), whose binding to DNA is highly cooperative, caused more substantial stimulation and inhibition at the lower and the higher molar ratios of SSB/primer, respectively. Both telomere-specific and general single-stranded DNA binding proteins are found in living cells in telomeric complexes. Based on our data, we propose that these proteins may exert either stimulatory or inhibitory effects on intracellular telomerases, depending on their local concentrations. Copyright 2004 Elsevier B.V.

  15. Stretching and controlled motion of single-stranded DNA in locally heated solid-state nanopores.

    Science.gov (United States)

    Belkin, Maxim; Maffeo, Christopher; Wells, David B; Aksimentiev, Aleksei

    2013-08-27

    Practical applications of solid-state nanopores for DNA detection and sequencing require the electrophoretic motion of DNA through the nanopores to be precisely controlled. Controlling the motion of single-stranded DNA presents a particular challenge, in part because of the multitude of conformations that a DNA strand can adopt in a nanopore. Through continuum, coarse-grained and atomistic modeling, we demonstrate that local heating of the nanopore volume can be used to alter the electrophoretic mobility and conformation of single-stranded DNA. In the nanopore systems considered, the temperature near the nanopore is modulated via a nanometer-size heater element that can be radiatively switched on and off. The local enhancement of temperature produces considerable stretching of the DNA fragment confined within the nanopore. Such stretching is reversible, so that the conformation of DNA can be toggled between compact (local heating is off) and extended (local heating is on) states. The effective thermophoretic force acting on single-stranded DNA in the vicinity of the nanopore is found to be sufficiently large (4-8 pN) to affect such changes in the DNA conformation. The local heating of the nanopore volume is observed to promote single-file translocation of DNA strands at transmembrane biases as low as 10 mV, which opens new avenues for using solid-state nanopores for detection and sequencing of DNA.

  16. Phylogenetic and functional analysis of the bacteriophage P1 single-stranded DNA-binding protein

    DEFF Research Database (Denmark)

    Bendtsen, Jannick Dyrløv; Nilsson, A.S.; Lehnherr, H.

    2002-01-01

    Bacteriophage P1 encodes a single-stranded DNA-binding protein (SSB-P1), which shows 66% amino acid sequence identity to the SSB protein of the host bacterium Escherichia coli. A phylogenetic analysis indicated that the P1 ssb gene coexists with its E. coli counterpart as an independent unit...

  17. Bacterial single-stranded DNA-binding proteins are phosphorylated on tyrosine

    DEFF Research Database (Denmark)

    Mijakovic, Ivan; Petranovic, Dina; Macek, B

    2006-01-01

    by kinase YwqD and phosphatase YwqE. Phosphorylation of B.subtilis SSB increased binding almost 200-fold to single-stranded DNA in vitro. Tyrosine phosphorylation of B.subtilis, S.coelicolor and Escherichia coli SSBs occured while they were expressed in E.coli, indicating that tyrosine phosphorylation...

  18. Sites of termination of in vitro DNA synthesis on psoralen phototreated single-stranded templates

    International Nuclear Information System (INIS)

    Piette, J.; Hearst, J.

    1985-01-01

    Single-stranded DNA has been photochemically induced to react with 4'-hydroxymethyl-4,5',8-trimethylpsoralen (HMT) and used as substrate for DNA replication with E. coli DNA polymerase I large fragment. By using the dideoxy sequencing procedure, it is possible to map the termination sites on the template photoreacted with HMT. These sites occur at the nucleotides preceding each thymine residue (and a few cytosine residues), emphasizing the fact that in a single-stranded stretch of DNA, HMT reacts with each thymine residue without any specificity regarding the flanking base sequence of the thymine residues. In addition, termination of DNA synthesis due to psoralen-adducted thymine is not influenced by the efficiency of the 3'-5' exonuclease proof-reading activity of the DNA polymerase. (author)

  19. Alkali-labile sites and post-irradiation effects in single-stranded DNA induced by H radicals

    International Nuclear Information System (INIS)

    Lafleur, M.V.M.; Heuvel, N. van; Woldhuis, J.; Loman, H.

    1978-01-01

    Single-stranded phiX174 DNA in aqueous solutions has been irradiated in the absence of oxygen, under conditions in which H radicals react with the DNA. It was shown that H radical reactions result in breaks, which contribute approximately 10 per cent inactivation. Further, two types of alkali-labile sites were formed. One was lethal and gave rise to single-strand breaks by alkali and was most probably identical with post-irradiation heat damage and contributed about 33 per cent to the inactivation mentioned above. The other consisted of non-lethal damage, partly dihydropyrimidine derivatives, and was converted to lethal damage by alkali. This followed from experiments in which the DNA was treated with osmium-tetroxide, which oxidized thymine to 5,6-dihydroxydihydrothymine. Treatment with alkali of this DNA gave the same temperature dependence as found for the non-lethal alkali-labile sites in irradiated DNA. A similar temperature dependence was found for dihydrothymine and irradiated pyrimidines with alkali. (author)

  20. Quantitation of ultraviolet-induced single-strand breaks using oligonucleotide chip

    International Nuclear Information System (INIS)

    Pal, Sukdeb; Kim, Min Jung; Choo, Jaebum; Kang, Seong Ho; Lee, Kyeong-Hee; Song, Joon Myong

    2008-01-01

    A simple, accurate and robust methodology was established for the direct quantification of ultraviolet (UV)-induced single-strand break (SSB) using oligonucleotide chip. Oligonucleotide chips were fabricated by covalently anchoring the fluorescent-labeled ssDNAs onto silicon dioxide chip surfaces. Assuming that the possibility of more than one UV-induced SSB to be generated in a small oligonucleotide is extremely low, SSB formation was investigated quantifying the endpoint probe density by fluorescence measurement upon UV irradiation. The SSB yields obtained based on the highly sensitive laser-induced fluorometric determination of fluorophore-labeled oligonucleotides were found to coincide well with that predicted from a theoretical extrapolation of the results obtained for plasmid DNAs using conventional agarose gel electrophoresis. The developed method has the potential to serve as a high throughput, sample-thrifty, and time saving tool to realize more realistic, and direct quantification of radiation and chemical-induced strand breaks. It will be especially useful for determining the frequency of SSBs or lesions convertible to SSBs by specific cleaving reagents or enzymes

  1. Method of preparing and applying single stranded DNA probes to double stranded target DNAs in situ

    Science.gov (United States)

    Gray, J.W.; Pinkel, D.

    1991-07-02

    A method is provided for producing single stranded non-self-complementary nucleic acid probes, and for treating target DNA for use therewith. The probe is constructed by treating DNA with a restriction enzyme and an exonuclease to form template/primers for a DNA polymerase. The digested strand is resynthesized in the presence of labeled nucleoside triphosphate precursor. Labeled single stranded fragments are separated from the resynthesized fragments to form the probe. Target DNA is treated with the same restriction enzyme used to construct the probe, and is treated with an exonuclease before application of the probe. The method significantly increases the efficiency and specificity of hybridization mixtures by increasing effective probe concentration by eliminating self-hybridization between both probe and target DNAs, and by reducing the amount of target DNA available for mismatched hybridizations. No Drawings

  2. Single-Stranded DNA Aptamers against Pathogens and Toxins: Identification and Biosensing Applications

    Science.gov (United States)

    Hong, Ka Lok

    2015-01-01

    Molecular recognition elements (MREs) can be short sequences of single-stranded DNA, RNA, small peptides, or antibody fragments. They can bind to user-defined targets with high affinity and specificity. There has been an increasing interest in the identification and application of nucleic acid molecular recognition elements, commonly known as aptamers, since they were first described in 1990 by the Gold and Szostak laboratories. A large number of target specific nucleic acids MREs and their applications are currently in the literature. This review first describes the general methodologies used in identifying single-stranded DNA (ssDNA) aptamers. It then summarizes advancements in the identification and biosensing application of ssDNA aptamers specific for bacteria, viruses, their associated molecules, and selected chemical toxins. Lastly, an overview of the basic principles of ssDNA aptamer-based biosensors is discussed. PMID:26199940

  3. Genetic and biochemical identification of a novel single-stranded DNA binding complex in Haloferax volcanii

    Directory of Open Access Journals (Sweden)

    Amy eStroud

    2012-06-01

    Full Text Available Single-stranded DNA binding proteins play an essential role in DNA replication and repair. They use oligosaccharide-binding folds, a five-stranded ß-sheet coiled into a closed barrel, to bind to single-stranded DNA thereby protecting and stabilizing the DNA. In eukaryotes the single-stranded DNA binding protein is known as replication protein A (RPA and consists of three distinct subunits that function as a heterotrimer. The bacterial homolog is termed single-stranded DNA-binding protein (SSB and functions as a homotetramer. In the archaeon Haloferax volcanii there are three genes encoding homologs of RPA. Two of the rpa genes (rpa1 and rpa3 exist in operons with a novel gene specific to Euryarchaeota, this gene encodes a protein that we have termed rpa-associated protein (RPAP. The rpap genes encode proteins belonging to COG3390 group and feature oligosaccharide-binding folds, suggesting that they might cooperate with RPA in binding to single-stranded DNA. Our genetic analysis showed that rpa1 and rpa3 deletion mutants have differing phenotypes; only ∆rpa3 strains are hypersensitive to DNA damaging agents. Deletion of the rpa3-associated gene rpap3 led to similar levels of DNA damage sensitivity, as did deletion of the rpa3 operon, suggesting that RPA3 and RPAP3 function in the same pathway. Protein pull-downs involving recombinant hexahistidine-tagged RPAs showed that RPA3 co-purifies with RPAP3, and RPA1 co-purifies with RPAP1. This indicates that the RPAs interact only with their respective associated proteins; this was corroborated by the inability to construct rpa1 rpap3 and rpa3 rpap1 double mutants. This is the first report investigating the individual function of the archaeal COG3390 RPA-associated proteins. We have shown genetically and biochemically that the RPAPs interact with their respective RPAs, and have uncovered a novel single-stranded DNA binding complex that is unique to Euryarchaeota.

  4. The bacterial DnaA-trio replication origin element specifies single-stranded DNA initiator binding.

    Science.gov (United States)

    Richardson, Tomas T; Harran, Omar; Murray, Heath

    2016-06-16

    DNA replication is tightly controlled to ensure accurate inheritance of genetic information. In all organisms, initiator proteins possessing AAA+ (ATPases associated with various cellular activities) domains bind replication origins to license new rounds of DNA synthesis. In bacteria the master initiator protein, DnaA, is highly conserved and has two crucial DNA binding activities. DnaA monomers recognize the replication origin (oriC) by binding double-stranded DNA sequences (DnaA-boxes); subsequently, DnaA filaments assemble and promote duplex unwinding by engaging and stretching a single DNA strand. While the specificity for duplex DnaA-boxes by DnaA has been appreciated for over 30 years, the sequence specificity for single-strand DNA binding has remained unknown. Here we identify a new indispensable bacterial replication origin element composed of a repeating trinucleotide motif that we term the DnaA-trio. We show that the function of the DnaA-trio is to stabilize DnaA filaments on a single DNA strand, thus providing essential precision to this binding mechanism. Bioinformatic analysis detects DnaA-trios in replication origins throughout the bacterial kingdom, indicating that this element is part of the core oriC structure. The discovery and characterization of the novel DnaA-trio extends our fundamental understanding of bacterial DNA replication initiation, and because of the conserved structure of AAA+ initiator proteins these findings raise the possibility of specific recognition motifs within replication origins of higher organisms.

  5. Cultivated single stranded DNA phages that infect marine Bacteroidetes prove difficult to detect with DNA binding stains

    DEFF Research Database (Denmark)

    Holmfeldt, Karin; Odic, Dusko; Sullivan, Matthew B.

    2012-01-01

    This is the first description of cultivated icosahedral single stranded DNA (ssDNA) phages isolated on heterotrophic marine bacterioplankton and with Bacteroidetes hosts. None of the 8 phages stained well with DNA binding stains, suggesting that in situ abundances of ssDNA phages are drastically...

  6. Characterization of a mitochondrially targeted single-stranded DNA-binding protein in Arabidopsis thaliana.

    Science.gov (United States)

    Edmondson, Andrew C; Song, Daqing; Alvarez, Luis A; Wall, Melisa K; Almond, David; McClellan, David A; Maxwell, Anthony; Nielsen, Brent L

    2005-04-01

    A gene encoding a predicted mitochondrially targeted single-stranded DNA binding protein (mtSSB) was identified in the Arabidopsis thaliana genome sequence. This gene (At4g11060) codes for a protein of 201 amino acids, including a 28-residue putative mitochondrial targeting transit peptide. Protein sequence alignment shows high similarity between the mtSSB protein and single-stranded DNA binding proteins (SSB) from bacteria, including residues conserved for SSB function. Phylogenetic analysis indicates a close relationship between this protein and other mitochondrially targeted SSB proteins. The predicted targeting sequence was fused with the GFP coding region, and the organellar localization of the expressed fusion protein was determined. Specific targeting to mitochondria was observed in in-vitro import experiments and by transient expression of a GFP fusion construct in Arabidopsis leaves after microprojectile bombardment. The mature mtSSB coding region was overexpressed in Escherichia coli and the protein was purified for biochemical characterization. The purified protein binds single-stranded, but not double-stranded, DNA. MtSSB stimulates the homologous strand-exchange activity of E. coli RecA. These results indicate that mtSSB is a functional homologue of the E. coli SSB, and that it may play a role in mitochondrial DNA recombination.

  7. Alkyladenine DNA glycosylase (AAG) localizes to mitochondria and interacts with mitochondrial single-stranded binding protein (mtSSB).

    Science.gov (United States)

    van Loon, Barbara; Samson, Leona D

    2013-03-01

    Due to a harsh environment mitochondrial genomes accumulate high levels of DNA damage, in particular oxidation, hydrolytic deamination, and alkylation adducts. While repair of alkylated bases in nuclear DNA has been explored in detail, much less is known about the repair of DNA alkylation damage in mitochondria. Alkyladenine DNA glycosylase (AAG) recognizes and removes numerous alkylated bases, but to date AAG has only been detected in the nucleus, even though mammalian mitochondria are known to repair DNA lesions that are specific substrates of AAG. Here we use immunofluorescence to show that AAG localizes to mitochondria, and we find that native AAG is present in purified human mitochondrial extracts, as well as that exposure to alkylating agent promotes AAG accumulation in the mitochondria. We identify mitochondrial single-stranded binding protein (mtSSB) as a novel interacting partner of AAG; interaction between mtSSB and AAG is direct and increases upon methyl methanesulfonate (MMS) treatment. The consequence of this interaction is specific inhibition of AAG glycosylase activity in the context of a single-stranded DNA (ssDNA), but not a double-stranded DNA (dsDNA) substrate. By inhibiting AAG-initiated processing of damaged bases, mtSSB potentially prevents formation of DNA breaks in ssDNA, ensuring that base removal primarily occurs in dsDNA. In summary, our findings suggest the existence of AAG-initiated BER in mitochondria and further support a role for mtSSB in DNA repair. Copyright © 2012. Published by Elsevier B.V.

  8. Two highly thermostable paralogous single-stranded DNA-binding proteins from Thermoanaerobacter tengcongensis.

    Science.gov (United States)

    Olszewski, Marcin; Mickiewicz, Małgorzata; Kur, Józef

    2008-07-01

    The thermophilic bacterium Thermoanaerobacter tengcongensis has two single-stranded DNA-binding (SSB) proteins, designated TteSSB2 and TteSSB3. In a SSB complementation assay in Escherichia coli, only TteSSB3 took over the in vivo function of EcoSSB. We have cloned the ssb genes obtained by PCR and have developed E. coli overexpression systems. The TteSSB2 and TteSSB3 consist of 153 and 150 amino acids with a calculated molecular mass of 17.29 and 16.96 kDa, respectively. They are the smallest known bacterial SSB proteins. The homology between amino acid sequences of these proteins is 40% identity and 53% similarity. They are functional as homotetramers, with each monomer encoding one single-stranded DNA binding domain (OB-fold). In fluorescence titrations with poly(dT), both proteins bind single-stranded DNA with a binding site size of about 40 nt per homotetramer. Thermostability with half-life of about 30 s at 95 degrees C makes TteSSB3 similar to the known SSB of Thermus aquaticus (TaqSSB). The TteSSB2 was fully active even after 6 h incubation at 100 degrees C. Here, we show for the first time paralogous thermostable homotetrameric SSBs, which could be an attractive alternative for known homodimeric thermostable SSB proteins in their applications for molecular biology methods and analytical purposes.

  9. Towards quantitative viromics for both double-stranded and single-stranded DNA viruses

    Directory of Open Access Journals (Sweden)

    Simon Roux

    2016-12-01

    Full Text Available Background Viruses strongly influence microbial population dynamics and ecosystem functions. However, our ability to quantitatively evaluate those viral impacts is limited to the few cultivated viruses and double-stranded DNA (dsDNA viral genomes captured in quantitative viral metagenomes (viromes. This leaves the ecology of non-dsDNA viruses nearly unknown, including single-stranded DNA (ssDNA viruses that have been frequently observed in viromes, but not quantified due to amplification biases in sequencing library preparations (Multiple Displacement Amplification, Linker Amplification or Tagmentation. Methods Here we designed mock viral communities including both ssDNA and dsDNA viruses to evaluate the capability of a sequencing library preparation approach including an Adaptase step prior to Linker Amplification for quantitative amplification of both dsDNA and ssDNA templates. We then surveyed aquatic samples to provide first estimates of the abundance of ssDNA viruses. Results Mock community experiments confirmed the biased nature of existing library preparation methods for ssDNA templates (either largely enriched or selected against and showed that the protocol using Adaptase plus Linker Amplification yielded viromes that were ±1.8-fold quantitative for ssDNA and dsDNA viruses. Application of this protocol to community virus DNA from three freshwater and three marine samples revealed that ssDNA viruses as a whole represent only a minor fraction (<5% of DNA virus communities, though individual ssDNA genomes, both eukaryote-infecting Circular Rep-Encoding Single-Stranded DNA (CRESS-DNA viruses and bacteriophages from the Microviridae family, can be among the most abundant viral genomes in a sample. Discussion Together these findings provide empirical data for a new virome library preparation protocol, and a first estimate of ssDNA virus abundance in aquatic systems.

  10. The impact of base stacking on the conformations and electrostatics of single-stranded DNA.

    Science.gov (United States)

    Plumridge, Alex; Meisburger, Steve P; Andresen, Kurt; Pollack, Lois

    2017-04-20

    Single-stranded DNA (ssDNA) is notable for its interactions with ssDNA binding proteins (SSBs) during fundamentally important biological processes including DNA repair and replication. Previous work has begun to characterize the conformational and electrostatic properties of ssDNA in association with SSBs. However, the conformational distributions of free ssDNA have been difficult to determine. To capture the vast array of ssDNA conformations in solution, we pair small angle X-ray scattering with novel ensemble fitting methods, obtaining key parameters such as the size, shape and stacking character of strands with different sequences. Complementary ion counting measurements using inductively coupled plasma atomic emission spectroscopy are employed to determine the composition of the ion atmosphere at physiological ionic strength. Applying this combined approach to poly dA and poly dT, we find that the global properties of these sequences are very similar, despite having vastly different propensities for single-stranded helical stacking. These results suggest that a relatively simple mechanism for the binding of ssDNA to non-specific SSBs may be at play, which explains the disparity in binding affinities observed for these systems. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  11. The binding of in vitro synthesized adenovirus DNA binding protein to single-stranded DNA is stimulated by zinc ions

    NARCIS (Netherlands)

    Vos, H.L.; Lee, F.M. van der; Sussenbach, J.S.

    1988-01-01

    We have synthesized wild type DNA binding protein (DBP) of adenovirus type 5 (Ad5) and several truncated forms of this protein by a combination of in vitro transcription and translation. The proteins obtained were tested for binding to a single-stranded DNA-cellulose column. It could be shown that

  12. In Vitro Selection of a Single-Stranded DNA Molecular Recognition Element Specific for Bromacil

    Directory of Open Access Journals (Sweden)

    Ryan M. Williams

    2014-01-01

    Full Text Available Bromacil is a widely used herbicide that is known to contaminate environmental systems. Due to the hazards it presents and inefficient detection methods, it is necessary to create a rapid and efficient sensing device. Towards this end, we have utilized a stringent in vitro selection method to identify single-stranded DNA molecular recognition elements (MRE specific for bromacil. We have identified one MRE with high affinity (Kd=9.6 nM and specificity for bromacil compared to negative targets of selection and other pesticides. The selected ssDNA MRE will be useful as the sensing element in a field-deployable bromacil detection device.

  13. Detection of antibodies to single-stranded DNA in naturally acquired and experimentally induced viral hepatitis

    Energy Technology Data Exchange (ETDEWEB)

    Gust, I.D.; Feinstone, S.M.; Purcell, R.H.; Alter, H.J.

    1980-01-01

    A sensitive ''Farr'' assay, utilizing /sup 125/I-labelled DNA was developed for detecting antibody to single-stranded DNA (anti-ssDNA). The test was shown to be specific and as sensitive as assays using /sup 14/C-labelled DNA, for the detection of antibody in patients with connective tissue diseases. Groups of sera from patients with naturally acquired viral hepatitis and experimentally infected chimpanzees were tested for anti-ssDNA by the /sup 125/I assay and by counterimmunoelectrophoresis (CIEP). No consistent pattern was observed with either technique, indicating the elevated levels of this antibody are not as reliable markers of parenchymal liver damage as had been previously suggested.

  14. Biophysical characterization of the association of histones with single-stranded DNA.

    Science.gov (United States)

    Wang, Ying; van Merwyk, Luis; Tönsing, Katja; Walhorn, Volker; Anselmetti, Dario; Fernàndez-Busquets, Xavier

    2017-11-01

    Despite the profound current knowledge of the architecture and dynamics of nucleosomes, little is known about the structures generated by the interaction of histones with single-stranded DNA (ssDNA), which is widely present during replication and transcription. Non-denaturing gel electrophoresis, transmission electron microscopy, atomic force microscopy, magnetic tweezers. Histones have a high affinity for ssDNA in 0.15M NaCl ionic strength, with an apparent binding constant similar to that calculated for their association with double-stranded DNA (dsDNA). The length of DNA (number of nucleotides in ssDNA or base pairs in dsDNA) associated with a fixed core histone mass is the same for both ssDNA and dsDNA. Although histone-ssDNA complexes show a high tendency to aggregate, nucleosome-like structures are formed at physiological salt concentrations. Core histones are able to protect ssDNA from digestion by micrococcal nuclease, and a shortening of ssDNA occurs upon its interaction with histones. The purified (+) strand of a cloned DNA fragment of nucleosomal origin has a higher affinity for histones than the purified complementary (-) strand. At physiological ionic strength histones have high affinity for ssDNA, possibly associating with it into nucleosome-like structures. In the cell nucleus histones may spontaneously interact with ssDNA to facilitate their participation in the replication and transcription of chromatin. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Self-assembly of complex two-dimensional shapes from single-stranded DNA tiles.

    Science.gov (United States)

    Wei, Bryan; Vhudzijena, Michelle K; Robaszewski, Joanna; Yin, Peng

    2015-05-08

    Current methods in DNA nano-architecture have successfully engineered a variety of 2D and 3D structures using principles of self-assembly. In this article, we describe detailed protocols on how to fabricate sophisticated 2D shapes through the self-assembly of uniquely addressable single-stranded DNA tiles which act as molecular pixels on a molecular canvas. Each single-stranded tile (SST) is a 42-nucleotide DNA strand composed of four concatenated modular domains which bind to four neighbors during self-assembly. The molecular canvas is a rectangle structure self-assembled from SSTs. A prescribed complex 2D shape is formed by selecting the constituent molecular pixels (SSTs) from a 310-pixel molecular canvas and then subjecting the corresponding strands to one-pot annealing. Due to the modular nature of the SST approach we demonstrate the scalability, versatility and robustness of this method. Compared with alternative methods, the SST method enables a wider selection of information polymers and sequences through the use of de novo designed and synthesized short DNA strands.

  16. A single-strand specific lesion drives MMS-induced hyper-mutability at a double-strand break in yeast.

    Science.gov (United States)

    Yang, Yong; Gordenin, Dmitry A; Resnick, Michael A

    2010-08-05

    Localized hyper-mutability (LHM) can be important in evolution, immunity, and genetic diseases. We previously reported that single-strand DNA (ssDNA) can be an important source of damage-induced LHM in yeast. Here, we establish that the generation of LHM by methyl methanesulfonate (MMS) during repair of a chromosomal double-strand break (DSB) can result in over 0.2 mutations/kb, which is approximately 20,000-fold higher than the MMS-induced mutation density without a DSB. The MMS-induced mutations associated with DSB repair were primarily due to substitutions via translesion DNA synthesis at damaged cytosines, even though there are nearly 10 times more MMS-induced lesions at other bases. Based on this mutation bias, the promutagenic lesion dominating LHM is likely 3-methylcytosine, which is single-strand specific. Thus, the dramatic increase in mutagenesis at a DSB is concluded to result primarily from the generation of non-repairable lesions in ssDNA associated with DSB repair along with efficient induction of highly mutagenic ssDNA-specific lesions. These findings with MMS-induced LHM have broad biological implications for unrepaired damage generated in ssDNA and possibly ssRNA. Published by Elsevier B.V.

  17. On the Formation of Thymine Photodimers in Thymine Single Strands and Calf Thymus DNA

    DEFF Research Database (Denmark)

    Baggesen, Lisbeth Munksgård; Hoffmann, S.V.; Nielsen, Steen Brøndsted

    2014-01-01

    a principal component analysis of the CD spectra, we extract fingerprint spectra of both the cyclobutane pyrimidine dimer (CPD) and the pyrimidine (6-4) pyrimidone photoadduct (64PP). Extending the CD measurements to the vacuum ultraviolet region in combination with systematic examinations of size effects...... of terminal thymines, i.e., the reaction does not occur preferentially at the extremities of the single strands as previously stated. It is even possible to form two dimers with only two bridging thymines. Finally, experiments conducted on calf thymus DNA provided a similar signature of the photodimer...

  18. The validity of sedimentation data from high molecular weight DNA and the effects of additives on radiation-induced single-strand breakage

    International Nuclear Information System (INIS)

    Dugle, D.L.

    1979-10-01

    The optimization of many of the factors governing reproducible sedimentation behaviour of high molecular weight single-strand DNA in a particular alkaline sucrose density gradient system is described. A range of angular momenta is defined for which a constant strand breakage efficiency is required, despite a rotor speed effect which increases the measured molecular weights at decreasing rotor speeds for larger DNA molecules. The possibility is discussed that the bimodal control DNA profiles obtained after sedimentation at 11 500 rev/min (12 400 g) or less represent structural subunits of the chromatid. The random induction of single-strand DNA breaks by ionizing radiation is demonstrated by the computer-derived fits to the experimental profiles. The enhancement of single-strand break (SSB) yields in hypoxic cells by oxygen, para-nitroacetophenone (PNAP), or any of the three nitrofuran derivatives used was well correlated with increased cell killing. Furthermore, reductions in SSB yields for known hydroxyl radical (OH.) scavengers correlates with the reactivities of these compounds toward OH.. This supports the contention that some type of OH.-induced initial lesion, which may ultimately be expressed as an unrepaired or misrepaired double-strand break, constitutes a lethal event. (author)

  19. Single-strand-conformation polymorphism of ribosomal DNA for rapid species differentiation in genus Phytophthora.

    Science.gov (United States)

    Kong, Ping; Hong, Chuanxue; Richardson, Patricia A; Gallegly, Mannon E

    2003-08-01

    Single-strand-conformation polymorphism (SSCP) of ribosomal DNA of 29 species (282 isolates) of Phytophthora was characterized in this study. Phytophthora boehmeriae, Phytophthora botryosa, Phytophthora cactorum, Phytophthora cambivora, Phytophthora capsici, Phytophthora cinnamomi, Phytophthora colocasiae, Phytophthora fragariae, Phytophthora heveae, Phytophthora hibernalis, Phytophthora ilicis, Phytophthora infestans, Phytophthora katsurae, Phytophthora lateralis, Phytophthora meadii, Phytophthora medicaginis, Phytophthora megakarya, Phytophthora nicotianae, Phytophthora palmivora, Phytophthora phaseoli, Phytophthora pseudotsugae, Phytophthora sojae, Phytophthora syringae, and Phytophthora tropicalis each showed a unique SSCP pattern. Phytophthora citricola, Phytophthora citrophthora, Phytophthora cryptogea, Phytophthora drechsleri, and Phytophthora megasperma each had more than one distinct pattern. A single-stranded DNA ladder also was developed, which facilitates comparison of SSCP patterns within and between gels. With a single DNA fingerprint, 277 isolates of Phytophthora recovered from irrigation water and plant tissues in Virginia were all correctly identified into eight species at substantially reduced time, labor, and cost. The SSCP analysis presented in this work will aid in studies on taxonomy, genetics, and ecology of the genus Phytophthora.

  20. CdS nanowires formed by chemical synthesis using conjugated single-stranded DNA molecules

    Science.gov (United States)

    Sarangi, S. N.; Sahu, S. N.; Nozaki, S.

    2018-03-01

    CdS nanowires were successfully grown by chemical synthesis using two conjugated single-stranded (ss) DNA molecules, poly G (30) and poly C (30), as templates. During the early stage of the synthesis with the DNA molecules, the Cd 2+ interacts with Poly G and Poly C and produces the (Cd 2+)-Poly GC complex. As the growth proceeds, it results in nanowires. The structural analysis by grazing angle x-ray diffraction and transmission electron microscopy confirmed the zinc-blende CdS nanowires with the growth direction of . Although the nanowires are well surface-passivated with the DNA molecules, the photoluminescence quenching was caused by the electron transfer from the nanowires to the DNA molecules. The quenching can be used to detect and label the DNAs.

  1. Novel Circular Single-Stranded DNA Viruses among an Asteroid, Echinoid and Holothurian (Phylum: Echinodermata).

    Science.gov (United States)

    Jackson, Elliot W; Bistolas, Kalia S I; Button, Jason B; Hewson, Ian

    2016-01-01

    Echinoderms are prone to large population fluctuations that can be mediated by pervasive disease events. For the majority of echinoderm disease events the causative pathogen is unknown. Viruses have only recently been explored as potential pathogens using culture-independent techniques though little information currently exists on echinoderm viruses. In this study, ten circular ssDNA viruses were discovered in tissues among an asteroid (Asterias forbesi), an echinoid (Strongylocentrotus droebachiensis) and a holothurian (Parastichopus californicus) using viral metagenomics. Genome architecture and sequence similarity place these viruses among the rapidly expanding circular rep-encoding single stranded (CRESS) DNA viral group. Multiple genomes from the same tissue were no more similar in sequence identity to each other than when compared to other known CRESS DNA viruses. The results from this study are the first to describe a virus from a holothurian and continue to show the ubiquity of these viruses among aquatic invertebrates.

  2. Radioimmunoassay of single-stranded DNA antibodies for control of diagnosis and therapy

    International Nuclear Information System (INIS)

    Meffert, H.; Boehm, F.; Soennichsen, N.; Gens, J.

    1980-01-01

    Several years experience in quantitative determination of single-stranded DNA antibodies is reported and the normal range as well as the diagnostic hit rate of the method is outlined. In the controls the mean DNA attachment rate was 1.5% and the upper normal range limit was 12.8%, the risk of erroneous rejection being 1%. The DNA binding rate was greater than 12.8% in 74.7% of untreated patients suffering from lupus erythematodes visceralis, in 47.6% of patients with circumscribed sclerodermia, in 14.4% of patients with progressive sclerodermia, and in 10.3% of those suffering from lupus erythematodes chronicus. The findings emphasize the importance of regulatory mechanisms of the immune system to the process of autosensitization

  3. Accurate quantification of microRNA via single strand displacement reaction on DNA origami motif.

    Directory of Open Access Journals (Sweden)

    Jie Zhu

    Full Text Available DNA origami is an emerging technology that assembles hundreds of staple strands and one single-strand DNA into certain nanopattern. It has been widely used in various fields including detection of biological molecules such as DNA, RNA and proteins. MicroRNAs (miRNAs play important roles in post-transcriptional gene repression as well as many other biological processes such as cell growth and differentiation. Alterations of miRNAs' expression contribute to many human diseases. However, it is still a challenge to quantitatively detect miRNAs by origami technology. In this study, we developed a novel approach based on streptavidin and quantum dots binding complex (STV-QDs labeled single strand displacement reaction on DNA origami to quantitatively detect the concentration of miRNAs. We illustrated a linear relationship between the concentration of an exemplary miRNA as miRNA-133 and the STV-QDs hybridization efficiency; the results demonstrated that it is an accurate nano-scale miRNA quantifier motif. In addition, both symmetrical rectangular motif and asymmetrical China-map motif were tested. With significant linearity in both motifs, our experiments suggested that DNA Origami motif with arbitrary shape can be utilized in this method. Since this DNA origami-based method we developed owns the unique advantages of simple, time-and-material-saving, potentially multi-targets testing in one motif and relatively accurate for certain impurity samples as counted directly by atomic force microscopy rather than fluorescence signal detection, it may be widely used in quantification of miRNAs.

  4. Accurate Quantification of microRNA via Single Strand Displacement Reaction on DNA Origami Motif

    Science.gov (United States)

    Lou, Jingyu; Li, Weidong; Li, Sheng; Zhu, Hongxin; Yang, Lun; Zhang, Aiping; He, Lin; Li, Can

    2013-01-01

    DNA origami is an emerging technology that assembles hundreds of staple strands and one single-strand DNA into certain nanopattern. It has been widely used in various fields including detection of biological molecules such as DNA, RNA and proteins. MicroRNAs (miRNAs) play important roles in post-transcriptional gene repression as well as many other biological processes such as cell growth and differentiation. Alterations of miRNAs' expression contribute to many human diseases. However, it is still a challenge to quantitatively detect miRNAs by origami technology. In this study, we developed a novel approach based on streptavidin and quantum dots binding complex (STV-QDs) labeled single strand displacement reaction on DNA origami to quantitatively detect the concentration of miRNAs. We illustrated a linear relationship between the concentration of an exemplary miRNA as miRNA-133 and the STV-QDs hybridization efficiency; the results demonstrated that it is an accurate nano-scale miRNA quantifier motif. In addition, both symmetrical rectangular motif and asymmetrical China-map motif were tested. With significant linearity in both motifs, our experiments suggested that DNA Origami motif with arbitrary shape can be utilized in this method. Since this DNA origami-based method we developed owns the unique advantages of simple, time-and-material-saving, potentially multi-targets testing in one motif and relatively accurate for certain impurity samples as counted directly by atomic force microscopy rather than fluorescence signal detection, it may be widely used in quantification of miRNAs. PMID:23990889

  5. Managing Single-Stranded DNA during Replication Stress in Fission Yeast

    Directory of Open Access Journals (Sweden)

    Sarah A. Sabatinos

    2015-09-01

    Full Text Available Replication fork stalling generates a variety of responses, most of which cause an increase in single-stranded DNA. ssDNA is a primary signal of replication distress that activates cellular checkpoints. It is also a potential source of genome instability and a substrate for mutation and recombination. Therefore, managing ssDNA levels is crucial to chromosome integrity. Limited ssDNA accumulation occurs in wild-type cells under stress. In contrast, cells lacking the replication checkpoint cannot arrest forks properly and accumulate large amounts of ssDNA. This likely occurs when the replication fork polymerase and helicase units are uncoupled. Some cells with mutations in the replication helicase (mcm-ts mimic checkpoint-deficient cells, and accumulate extensive areas of ssDNA to trigger the G2-checkpoint. Another category of helicase mutant (mcm4-degron causes fork stalling in early S-phase due to immediate loss of helicase function. Intriguingly, cells realize that ssDNA is present, but fail to detect that they accumulate ssDNA, and continue to divide. Thus, the cellular response to replication stalling depends on checkpoint activity and the time that replication stress occurs in S-phase. In this review we describe the signs, signals, and symptoms of replication arrest from an ssDNA perspective. We explore the possible mechanisms for these effects. We also advise the need for caution when detecting and interpreting data related to the accumulation of ssDNA.

  6. Zinc(II) and the single-stranded DNA binding protein of bacteriophage T4

    International Nuclear Information System (INIS)

    Gauss, P.; Krassa, K.B.; McPheeters, D.S.; Nelson, M.A.; Gold, L.

    1987-01-01

    The DNA binding domain of the gene 32 protein of the bacteriophage T4 contains a single zinc-finger sequence. The gene 32 protein is an extensively studied member of a class of proteins that bind relatively nonspecifically to single-stranded DNA. The authors have sequenced and characterized mutations in gene 32 whose defective proteins are activated by increasing the Zn(II) concentration in the growth medium. The results identify a role for the gene 32 protein in activation of T4 late transcription. Several eukaryotic proteins with zinc fingers participate in activation of transcription, and the gene 32 protein of T4 should provide a simple, well-characterized system in which genetics can be utilized to study the role of a zinc finger in nucleic acid binding and gene expression

  7. Oxidized base damage and single-strand break repair in mammalian genomes: role of disordered regions and posttranslational modifications in early enzymes.

    Science.gov (United States)

    Hegde, Muralidhar L; Izumi, Tadahide; Mitra, Sankar

    2012-01-01

    Oxidative genome damage induced by reactive oxygen species includes oxidized bases, abasic (AP) sites, and single-strand breaks, all of which are repaired via the evolutionarily conserved base excision repair/single-strand break repair (BER/SSBR) pathway. BER/SSBR in mammalian cells is complex, with preferred and backup sub-pathways, and is linked to genome replication and transcription. The early BER/SSBR enzymes, namely, DNA glycosylases (DGs) and the end-processing proteins such as abasic endonuclease 1 (APE1), form complexes with downstream repair (and other noncanonical) proteins via pairwise interactions. Furthermore, a unique feature of mammalian early BER/SSBR enzymes is the presence of a disordered terminal extension that is absent in their Escherichia coli prototypes. These nonconserved segments usually contain organelle-targeting signals, common interaction interfaces, and sites of posttranslational modifications that may be involved in regulating their repair function including lesion scanning. Finally, the linkage of BER/SSBR deficiency to cancer, aging, and human neurodegenerative diseases, and therapeutic targeting of BER/SSBR are discussed. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Comparative studies on the minus origin mutants of Escherichia coli spherical single-stranded DNA phages.

    Science.gov (United States)

    Kodaira, K; Godson, N G; Taketo, A

    1995-01-25

    The minus origins for complementary strand DNA synthesis (-ori) of Escherichia coli spherical single-stranded DNA (microvirid) phages G4, phi K, alpha 3, and St-1 closely resemble each other in DNA structure and contain two potential secondary hairpin loops (I and II) that have been implicated as direct recognition sites for host E. coli dnaG protein (primase). We introduced mutations (deletion or insertion) within the -ori regions of phi K and G4 by the nuclease digestion method. Mutants thus constructed produced minute plaques, showed thermosensitivity, and they remarkably reduced the phage yield and rate of viral DNA synthesis. Deletions in the phi K mutants (dTa) were ranging from 1 nucleotide (nt) to 102 nt centered at the hairpin II; a dTa8 mutant was entirely lacking in the two hairpins besides the starting point for primer RNA synthesis. On the other hand, the G4 mutants (dSa) had deletions centered at hairpin I; two mutants dSa35 and dXN completely lost the hairpin I and the primer RNA starting point. In addition, progeny phage populations of several phi K and G4 mutants contained revertant-like phages. DNA sequencing analysis revealed that these secondary phages had been generated by spontaneous DNA rearrangement with additional insertion or deletion near the parental mutation sites, via an unknown recA-independent pathway.

  9. Human topoisomerase IIIalpha is a single-stranded DNA decatenase that is stimulated by BLM and RMI1

    DEFF Research Database (Denmark)

    Yang, Jay; Bachrati, Csanad Z; Ou, Jiongwen

    2010-01-01

    -passage mechanism. We generated single-stranded catenanes that resemble the proposed dissolution intermediate recognized by human topoisomerase IIIalpha. We demonstrate that human topoisomerase IIIalpha is a single-stranded DNA decatenase that is specifically stimulated by the BLM-RMI1 pair. In addition, RMI1......Human topoisomerase IIIalpha is a type IA DNA topoisomerase that functions with BLM and RMI1 to resolve DNA replication and recombination intermediates. BLM, human topoisomerase IIIalpha, and RMI1 catalyze the dissolution of double Holliday junctions into noncrossover products via a strand...

  10. Viral single-strand DNA induces p53-dependent apoptosis in human embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Matthew L Hirsch

    Full Text Available Human embryonic stem cells (hESCs are primed for rapid apoptosis following mild forms of genotoxic stress. A natural form of such cellular stress occurs in response to recombinant adeno-associated virus (rAAV single-strand DNA genomes, which exploit the host DNA damage response for replication and genome persistence. Herein, we discovered a unique DNA damage response induced by rAAV transduction specific to pluripotent hESCs. Within hours following rAAV transduction, host DNA damage signaling was elicited as measured by increased gamma-H2AX, ser15-p53 phosphorylation, and subsequent p53-dependent transcriptional activation. Nucleotide incorporation assays demonstrated that rAAV transduced cells accumulated in early S-phase followed by the induction of apoptosis. This lethal signaling sequalae required p53 in a manner independent of transcriptional induction of Puma, Bax and Bcl-2 and was not evident in cells differentiated towards a neural lineage. Consistent with a lethal DNA damage response induced upon rAAV transduction of hESCs, empty AAV protein capsids demonstrated no toxicity. In contrast, DNA microinjections demonstrated that the minimal AAV origin of replication and, in particular, a 40 nucleotide G-rich tetrad repeat sequence, was sufficient for hESC apoptosis. Our data support a model in which rAAV transduction of hESCs induces a p53-dependent lethal response that is elicited by a telomeric sequence within the AAV origin of replication.

  11. Multicopy Single-Stranded DNA Directs Intestinal Colonization of Enteric Pathogens

    Energy Technology Data Exchange (ETDEWEB)

    Elfenbein, Johanna R.; Knodler, Leigh A.; Nakayasu, Ernesto S.; Ansong, Charles; Brewer, Heather M.; Bogomolnaya, Lydia; Adams, L. Garry; McClelland, Michael; Adkins, Joshua N.; Andrews-Polymenis, Helene L.; Fang, Ferric C.

    2015-09-14

    Multicopy single-stranded DNAs (msDNAs) are hybrid RNA-DNA molecules encoded on retroelements called retrons and produced by the action of retron reverse transcriptases. Retrons are widespread in bacteria but the natural function of msDNA has remained elusive despite 30 years of study. The major roadblock to elucidation of the function of these unique molecules has been the lack of any identifiable phenotypes for mutants unable to make msDNA. We report that msDNA of the zoonotic pathogen Salmonella Typhimurium is necessary for colonization of the intestine. Similarly, we observed a defect in intestinal persistence in an enteropathogenic E. coli mutant lacking its retron reverse transcriptase. Under anaerobic conditions in the absence of msDNA, proteins of central anaerobic metabolism needed for Salmonella colonization of the intestine are dysregulated. We show that the msDNA-deficient mutant can utilize nitrate but not other alternate electron acceptors in anaerobic conditions. Consistent with the availability of nitrate in the inflamed gut, a neutrophilic inflammatory response partially rescued the ability of a mutant lacking msDNA to colonize the intestine. These findings together indicate that the mechanistic basis of msDNA function during Salmonella colonization of the intestine is proper production of proteins needed for anaerobic metabolism. We further conclude that a natural function of msDNA is to regulate protein abundance, the first attributable function for any msDNA. Our data provide novel insight into the function of this mysterious molecule that likely represents a new class of regulatory molecules.

  12. Interaction with Single-stranded DNA-binding Protein Stimulates Escherichia coli Ribonuclease HI Enzymatic Activity.

    Science.gov (United States)

    Petzold, Christine; Marceau, Aimee H; Miller, Katherine H; Marqusee, Susan; Keck, James L

    2015-06-05

    Single-stranded (ss) DNA-binding proteins (SSBs) bind and protect ssDNA intermediates formed during replication, recombination, and repair reactions. SSBs also directly interact with many different genome maintenance proteins to stimulate their enzymatic activities and/or mediate their proper cellular localization. We have identified an interaction formed between Escherichia coli SSB and ribonuclease HI (RNase HI), an enzyme that hydrolyzes RNA in RNA/DNA hybrids. The RNase HI·SSB complex forms by RNase HI binding the intrinsically disordered C terminus of SSB (SSB-Ct), a mode of interaction that is shared among all SSB interaction partners examined to date. Residues that comprise the SSB-Ct binding site are conserved among bacterial RNase HI enzymes, suggesting that RNase HI·SSB complexes are present in many bacterial species and that retaining the interaction is important for its cellular function. A steady-state kinetic analysis shows that interaction with SSB stimulates RNase HI activity by lowering the reaction Km. SSB or RNase HI protein variants that disrupt complex formation nullify this effect. Collectively our findings identify a direct RNase HI/SSB interaction that could play a role in targeting RNase HI activity to RNA/DNA hybrid substrates within the genome. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Interaction with Single-stranded DNA-binding Protein Stimulates Escherichia coli Ribonuclease HI Enzymatic Activity*

    Science.gov (United States)

    Petzold, Christine; Marceau, Aimee H.; Miller, Katherine H.; Marqusee, Susan; Keck, James L.

    2015-01-01

    Single-stranded (ss) DNA-binding proteins (SSBs) bind and protect ssDNA intermediates formed during replication, recombination, and repair reactions. SSBs also directly interact with many different genome maintenance proteins to stimulate their enzymatic activities and/or mediate their proper cellular localization. We have identified an interaction formed between Escherichia coli SSB and ribonuclease HI (RNase HI), an enzyme that hydrolyzes RNA in RNA/DNA hybrids. The RNase HI·SSB complex forms by RNase HI binding the intrinsically disordered C terminus of SSB (SSB-Ct), a mode of interaction that is shared among all SSB interaction partners examined to date. Residues that comprise the SSB-Ct binding site are conserved among bacterial RNase HI enzymes, suggesting that RNase HI·SSB complexes are present in many bacterial species and that retaining the interaction is important for its cellular function. A steady-state kinetic analysis shows that interaction with SSB stimulates RNase HI activity by lowering the reaction Km. SSB or RNase HI protein variants that disrupt complex formation nullify this effect. Collectively our findings identify a direct RNase HI/SSB interaction that could play a role in targeting RNase HI activity to RNA/DNA hybrid substrates within the genome. PMID:25903123

  14. Substrate-assisted 2D DNA lattices and algorithmic lattices from single-stranded tiles.

    Science.gov (United States)

    Kim, Junghoon; Ha, Tai Hwan; Park, Sung Ha

    2015-08-07

    We present a simple route to circumvent kinetic traps which affect many types of DNA nanostructures in their self-assembly process. Using this method, a new 2D DNA lattice made up of short, single-stranded tile (SST) motifs was created. Previously, the growth of SST DNA assemblies was restricted to 1D (tubes and ribbons) or finite-sized 2D (molecular canvases). By utilizing the substrate-assisted growth method, sets of SSTs were designed as unit cells to self-assemble into periodic and aperiodic 2D lattices which continuously grow both along and orthogonal to the helical axis. Notably, large-scale (∼1 μm(2)) fully periodic 2D lattices were fabricated using a minimum of just 2 strand species. Furthermore, the ability to create 2D lattices from a few motifs enables certain rules to be encoded into these SSTs to carry out algorithmic self-assembly. A set of these motifs was designed to execute simple 1-input 1-output COPY and NOT algorithms, the space-time manifestations which were aperiodic 2D algorithmic SST lattices. The methodology presented here can be straightforwardly applied to other motifs which fall into this type of kinetic trap to create novel DNA crystals.

  15. Leishmania replication protein A-1 binds in vivo single-stranded telomeric DNA

    International Nuclear Information System (INIS)

    Neto, J.L. Siqueira; Lira, C.B.B.; Giardini, M.A.; Khater, L.; Perez, A.M.; Peroni, L.A.; Reis, J.R.R. dos; Freitas-Junior, L.H.; Ramos, C.H.I.; Cano, M.I.N.

    2007-01-01

    Replication protein A (RPA) is a highly conserved heterotrimeric single-stranded DNA-binding protein involved in different events of DNA metabolism. In yeast, subunits 1 (RPA-1) and 2 (RPA-2) work also as telomerase recruiters and, in humans, the complex unfolds G-quartet structures formed by the 3' G-rich telomeric strand. In most eukaryotes, RPA-1 and RPA-2 bind DNA using multiple OB fold domains. In trypanosomatids, including Leishmania, RPA-1 has a canonical OB fold and a truncated RFA-1 structural domain. In Leishmania amazonensis, RPA-1 alone can form a complex in vitro with the telomeric G-rich strand. In this work, we show that LaRPA-1 is a nuclear protein that associates in vivo with Leishmania telomeres. We mapped the boundaries of the OB fold DNA-binding domain using deletion mutants. Since Leishmania and other trypanosomatids lack homologues of known telomere end binding proteins, our results raise questions about the function of RPA-1 in parasite telomeres

  16. Effect of Conformational Entropy on the Nanomechanics of Microcantilever-Based Single-Stranded DNA Sensors

    Directory of Open Access Journals (Sweden)

    Zou-Qing Tan

    2014-09-01

    Full Text Available An entropy-controlled bending mechanism is presented to study the nanomechanics of microcantilever-based single-stranded DNA (ssDNA sensors. First; the conformational free energy of the ssDNA layer is given with an improved scaling theory of thermal blobs considering the curvature effect; and the mechanical energy of the non-biological layer is described by Zhang’s two-variable method for laminated beams. Then; an analytical model for static deflections of ssDNA microcantilevers is formulated by the principle of minimum energy. The comparisons of deflections predicted by the proposed model; Utz–Begley’s model and Hagan’s model are also examined. Numerical results show that the conformational entropy effect on microcantilever deflections cannot be ignored; especially at the conditions of high packing density or long chain systems; and the variation of deflection predicted by the proposed analytical model not only accords with that observed in the related experiments qualitatively; but also appears quantitatively closer to the experimental values than that by the preexisting models. In order to improve the sensitivity of static-mode biosensors; it should be as small as possible to reduce the substrate stiffness.

  17. In vitro selection and characterization of single stranded DNA aptamers for luteolin: A possible recognition tool.

    Science.gov (United States)

    Tuma Sabah, Jinan; Zulkifli, Razauden Mohamed; Shahir, Shafinaz; Ahmed, Farediah; Abdul Kadir, Mohammed Rafiq; Zakaria, Zarita

    2018-03-06

    Distinctive bioactivities possessed by luteolin (3', 4', 5, 7-tetrahydroxy-flavone) are advantageous for sundry practical applications. This paper reports the in vitro selection and characterization of single stranded-DNA (ssDNA) aptamers, specific for luteolin (LUT). 76-mer library containing 1015 randomized ssDNA were screened via systematic evolution of ligands by exponential enrichment (SELEX). The recovered ssDNA pool from the 8th round was amplified with unlabeled primers and cloned into PSTBlue-1 vector prior to sequencing. 22 of LUT-binding aptamer variants were further classified into one of the seven groups based on their N40 random sequence regions, wherein one representative from each group was characterized. The dissociation constant of aptamers designated as LUT#28, LUT#20 and LUT#3 was discerned to be 107, 214 and 109 nM, respectively with high binding affinity towards LUT. Prediction analysis of the secondary structure suggested discrete features with typical loop and stem motifs. Furthermore, LUT#3 displayed higher specificity with insignificant binding toward kaempferol and quercetin despite its structural and functional similarity compared to LUT#28 and LUT#20. Further LUT#3 can detect free luteolin within 0.2-1 mM in solution. It was suggested that LUT#3 aptamer were the most suitable for LUT recognition tool at laboratory scale based on the condition tested. Copyright © 2018. Published by Elsevier Inc.

  18. Size-controllable DNA nanoribbons assembled from three types of reusable brick single-strand DNA tiles.

    Science.gov (United States)

    Shi, Xiaolong; Chen, Congzhou; Li, Xin; Song, Tao; Chen, Zhihua; Zhang, Zheng; Wang, Yanfeng

    2015-11-21

    Precise control of nanostructure is a significant goal shared by supramolecular chemistry, nanotechnology and materials science. In DNA nanotechnology, methods of constructing desired DNA nanostructures using programmable DNA strands have been studied extensively and have become a promising branch of research, but developing universal and low-cost (in the sense of using fewer types of DNA strands) methods remains a challenge. In this work, we propose a novel approach to assemble size-controllable DNA nanoribbons with three types of reusable brick SSTs (single-stranded DNA tiles), where the control of ribbon size is achieved by regulating the concentration ratio between manipulative strands and packed single-stranded DNA tiles. In our method, three types of brick SSTs are sufficient in assembling DNA nanoribbons of different sizes, which is much less than the number of types of unique tile-programmable assembling strategy, thus achieving a universal and low-cost method. The assembled DNA nanoribbons are observed and analyzed by atomic force microscopy (AFM). Experimental observations strongly suggest the feasibility and reliability of our method.

  19. Interaction of anticancer Ru(III) complexes with single stranded and duplex DNA model systems.

    Science.gov (United States)

    Musumeci, Domenica; Rozza, Lucia; Merlino, Antonello; Paduano, Luigi; Marzo, Tiziano; Massai, Lara; Messori, Luigi; Montesarchio, Daniela

    2015-08-21

    The interaction of the anticancer Ru(iii) complex AziRu - in comparison with its analogue NAMI-A, currently in advanced clinical trials as an antimetastatic agent - with DNA model systems, both single stranded and duplex oligonucleotides, was investigated using a combined approach, including absorption UV-vis spectroscopy, circular dichroism (CD) and electrospray mass spectrometry (ESI-MS) techniques. UV-vis absorption spectra of the Ru complexes were recorded at different times in a pseudo-physiological solution, to monitor the ligand exchange processes in the absence and in the presence of the examined oligonucleotides. CD experiments provided information on the overall conformational changes of the DNA model systems induced by these metal complexes. UV- and CD-monitored thermal denaturation studies were performed to analyse the effects of AziRu and NAMI-A on the stability of the duplex structures. ESI-MS experiments, carried out on the oligonucleotide/metal complex mixtures under investigation, allowed us to detect the formation of stable adducts between the guanine-containing oligomers and the ruthenium complexes. These data unambiguously demonstrate that both AziRu and NAMI-A can interact with the DNA model systems. Although very similar in their structures, the two metal compounds manifest a markedly different reactivity with the examined sequences, respectively, with either a naked Ru(3+) ion or a Ru(Im)(3+) (Im = imidazole) fragment being incorporated into the oligonucleotide structure via stable linkages.

  20. The mechanism of the nitric oxide-mediated enhancement of tert-butylhydroperoxide-induced DNA single strand breakage

    Science.gov (United States)

    Guidarelli, Andrea; Clementi, Emilio; Sciorati, Clara; Cantoni, Orazio

    1998-01-01

    Caffeine (Cf) enhances the DNA cleavage induced by tert-butylhydroperoxide (tB-OOH) in U937 cells via a mechanism involving Ca2+-dependent mitochondrial formation of DNA-damaging species (Guidarelli et al., 1997b). Nitric oxide (NO) is not involved in this process since U937 cells do not express the constitutive nitric oxide synthase (cNOS).Treatment with the NO donors S-nitroso-N-acetyl-penicillamine (SNAP, 10 μM), or S-nitrosoglutathione (GSNO, 300 μM), however, potentiated the DNA strand scission induced by 200 μM tB-OOH. The DNA lesions generated by tB-OOH alone, or combined with SNAP, were repaired with superimposable kinetics and were insensitive to anti-oxidants and peroxynitrite scavengers but suppressed by iron chelators.SNAP or GSNO did not cause mitochondrial Ca2+ accumulation but their enhancing effects on the tB-OOH-induced DNA strand scission were prevented by ruthenium red, an inhibitor of the calcium uniporter of mitochondria. Furthermore, the enhancing effects of both SNAP and GSNO were identical to and not additive with those promoted by the Ca2+-mobilizing agents Cf or ATP.The SNAP- or GSNO-mediated enhancement of the tB-OOH-induced DNA cleavage was abolished by the respiratory chain inhibitors rotenone and myxothiazol and was not apparent in respiration-deficient cells.It is concluded that, in cells which do not express the enzyme cNOS, exogenous NO enhances the accumulation of DNA single strand breaks induced by tB-OOH via a mechanism involving inhibition of complex III. PMID:9846647

  1. Distinct circular single-stranded DNA viruses exist in different soil types.

    Science.gov (United States)

    Reavy, Brian; Swanson, Maud M; Cock, Peter J A; Dawson, Lorna; Freitag, Thomas E; Singh, Brajesh K; Torrance, Lesley; Mushegian, Arcady R; Taliansky, Michael

    2015-06-15

    The potential dependence of virus populations on soil types was examined by electron microscopy, and the total abundance of virus particles in four soil types was similar to that previously observed in soil samples. The four soil types examined differed in the relative abundances of four morphological groups of viruses. Machair, a unique type of coastal soil in western Scotland and Ireland, differed from the others tested in having a higher proportion of tailed bacteriophages. The other soils examined contained predominantly spherical and thin filamentous virus particles, but the Machair soil had a more even distribution of the virus types. As the first step in looking at differences in populations in detail, virus sequences from Machair and brown earth (agricultural pasture) soils were examined by metagenomic sequencing after enriching for circular Rep-encoding single-stranded DNA (ssDNA) (CRESS-DNA) virus genomes. Sequences from the family Microviridae (icosahedral viruses mainly infecting bacteria) of CRESS-DNA viruses were predominant in both soils. Phylogenetic analysis of Microviridae major coat protein sequences from the Machair viruses showed that they spanned most of the diversity of the subfamily Gokushovirinae, whose members mainly infect obligate intracellular parasites. The brown earth soil had a higher proportion of sequences that matched the morphologically similar family Circoviridae in BLAST searches. However, analysis of putative replicase proteins that were similar to those of viruses in the Circoviridae showed that they are a novel clade of Circoviridae-related CRESS-DNA viruses distinct from known Circoviridae genera. Different soils have substantially different taxonomic biodiversities even within ssDNA viruses, which may be driven by physicochemical factors. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  2. Stretching and Controlled Motion of Single-Stranded DNA in Locally-Heated Solid-State Nanopores

    Science.gov (United States)

    Belkin, Maxim; Maffeo, Christopher; Wells, David B.

    2013-01-01

    Practical applications of solid-state nanopores for DNA detection and sequencing require the electrophoretic motion of DNA through the nanopores to be precisely controlled. Controlling the motion of single-stranded DNA presents a particular challenge, in part because of the multitude of conformations that a DNA strand can adopt in a nanopore. Through continuum, coarse-grained and atomistic modeling, we demonstrate that local heating of the nanopore volume can be used to alter the electrophoretic mobility and conformation of single-stranded DNA. In the nanopore systems considered, the temperature near the nanopore is modulated via a nanometer-size heater element that can be radiatively switched on and off. The local enhancement of temperature produces considerable stretching of the DNA fragment confined within the nanopore. Such stretching is reversible, so that the conformation of DNA can be toggled between compact (local heating is off) and extended (local heating is on) states. The effective thermophoretic force acting on single-stranded DNA in the vicinity of the nanopore is found to be sufficiently large (4–8 pN) to affect such changes in the DNA conformation. The local heating of the nanopore volume is observed to promote single-file translocation of DNA strands at transmembrane biases as low as 10 mV, which opens new avenues for using solid-state nanopores for detection and sequencing of DNA. PMID:23876013

  3. Single-stranded DNA-binding protein recruits DNA polymerase V to primer termini on RecA-coated DNA.

    Science.gov (United States)

    Arad, Gali; Hendel, Ayal; Urbanke, Claus; Curth, Ute; Livneh, Zvi

    2008-03-28

    Translesion DNA synthesis (TLS) by DNA polymerase V (polV) in Escherichia coli involves accessory proteins, including RecA and single-stranded DNA-binding protein (SSB). To elucidate the role of SSB in TLS we used an in vitro exonuclease protection assay and found that SSB increases the accessibility of 3' primer termini located at abasic sites in RecA-coated gapped DNA. The mutant SSB-113 protein, which is defective in protein-protein interactions, but not in DNA binding, was as effective as wild-type SSB in increasing primer termini accessibility, but deficient in supporting polV-catalyzed TLS. Consistently, the heterologous SSB proteins gp32, encoded by phage T4, and ICP8, encoded by herpes simplex virus 1, could replace E. coli SSB in the TLS reaction, albeit with lower efficiency. Immunoprecipitation experiments indicated that polV directly interacts with SSB and that this interaction is disrupted by the SSB-113 mutation. Taken together our results suggest that SSB functions to recruit polV to primer termini on RecA-coated DNA, operating by two mechanisms: 1) increasing the accessibility of 3' primer termini caused by binding of SSB to DNA and 2) a direct SSB-polV interaction mediated by the C terminus of SSB.

  4. Aptamer based voltammetric determination of ampicillin using a single-stranded DNA binding protein and DNA functionalized gold nanoparticles.

    Science.gov (United States)

    Wang, Jun; Ma, Kui; Yin, Huanshun; Zhou, Yunlei; Ai, Shiyun

    2017-12-20

    An aptamer based method is described for the electrochemical determination of ampicillin. It is based on the use of DNA aptamer, DNA functionalized gold nanoparticles (DNA-AuNPs), and single-stranded DNA binding protein (ssDNA-BP). When the aptamer hybridizes with the target DNA on the AuNPs, the ssDNA-BP is captured on the electrode surface via its specific interaction with ss-DNA. This results in a decreased electrochemical signal of the redox probe Fe(CN) 6 3- which is measured best at a voltage of 0.188 mV (vs. reference electrode). In the presence of ampicillin, the formation of aptamer-ampicillin conjugate blocks the further immobilization of DNA-AuNPs and ssDNA-BP, and this leads to an increased response. The method has a linear reposne that convers the 1 pM to 5 nM ampicillin concentration range, with a 0.38 pM detection limit (at an S/N ratio of 3). The assay is selective, stable and reproducible. It was applied to the determination of ampicillin in spiked milk samples where it gave recoveries ranging from 95.5 to 105.5%. Graphical abstract Schematic of a simple and sensitive electrochemical apta-biosensor for ampicillin detection. It is based on the use of gold nanoparticles (AuNPs), DNA aptamer, DNA functionalized AuNPs (DNA-AuNPs), and single-strand DNA binding protein (SSBP).

  5. Complex shapes self-assembled from single-stranded DNA tiles.

    Science.gov (United States)

    Wei, Bryan; Dai, Mingjie; Yin, Peng

    2012-05-30

    Programmed self-assembly of strands of nucleic acid has proved highly effective for creating a wide range of structures with desired shapes. A particularly successful implementation is DNA origami, in which a long scaffold strand is folded by hundreds of short auxiliary strands into a complex shape. Modular strategies are in principle simpler and more versatile and have been used to assemble DNA or RNA tiles into periodic and algorithmic two-dimensional lattices, extended ribbons and tubes, three-dimensional crystals, polyhedra and simple finite two-dimensional shapes. But creating finite yet complex shapes from a large number of uniquely addressable tiles remains challenging. Here we solve this problem with the simplest tile form, a 'single-stranded tile' (SST) that consists of a 42-base strand of DNA composed entirely of concatenated sticky ends and that binds to four local neighbours during self-assembly. Although ribbons and tubes with controlled circumferences have been created using the SST approach, we extend it to assemble complex two-dimensional shapes and tubes from hundreds (in some cases more than one thousand) distinct tiles. Our main design feature is a self-assembled rectangle that serves as a molecular canvas, with each of its constituent SST strands--folded into a 3 nm-by-7 nm tile and attached to four neighbouring tiles--acting as a pixel. A desired shape, drawn on the canvas, is then produced by one-pot annealing of all those strands that correspond to pixels covered by the target shape; the remaining strands are excluded. We implement the strategy with a master strand collection that corresponds to a 310-pixel canvas, and then use appropriate strand subsets to construct 107 distinct and complex two-dimensional shapes, thereby establishing SST assembly as a simple, modular and robust framework for constructing nanostructures with prescribed shapes from short synthetic DNA strands.

  6. Electrical conduction and photoresponses of gamma-ray-irradiated single-stranded DNA/single-walled carbon nanotube composite systems

    Energy Technology Data Exchange (ETDEWEB)

    Hong, W.; Lee, E.M.; Kim, D.W.; Lee, Cheol Eui, E-mail: rscel@korea.ac.kr

    2015-04-15

    Highlights: •Effects of gamma-ray irradiation on single-stranded DNA (ssDNA)/single-walled carbon nanotube (SWNT) composite films. •Barrier for thermally activated conduction in the composite systems modified by the gamma-ray irradiation. •Photoresponses reveal photoexcitation and oxygen photodesorption modified by gamma-ray irradiation. -- Abstract: Effects of gamma-ray irradiation on the electrical conductivity and photoresponse have been studied for single-stranded DNA (ssDNA)/single-walled carbon nanotube (SWNT) composite films. The temperature-dependent electrical conductivity of the ssDNA/SWNT composite films, well described by a fluctuation-induced tunneling model, indicated modification of the barrier for thermally activated conduction by the gamma-ray irradiation. Besides, the photoresponse measurements indicated modified photoexcited charge carrier generation and oxygen photodesorption in the composite systems due to the gamma-ray irradiation.

  7. Stabilization of Pt nanoparticles by single stranded DNA and the binary assembly of Au and Pt nanoparticles without hybridization

    International Nuclear Information System (INIS)

    Yang, J.; Lee, Jim Yang; Too, Heng-Phon; Chow, Gan-Moog; Gan, Leong M.

    2006-01-01

    The non-specific interaction between single stranded DNA (ssDNA) and 12 nm Pt nanoparticles is investigated in this work. The data show a strong and non-specific interaction between the two which can be exploited for the stabilization of Pt nanoparticles in aqueous solutions. Based on the experimental findings, a non-hybridization based protocol to assemble 17 nm Au and Pt nanoparticles (12 nm cubic and 3.6 nm spherical) by single-stranded DNA was developed. Transmission electron microscopy (TEM) and UV-visible spectroscopy confirmed that Au and Pt nanoparticles could be assembled by the non-specific interaction in an orderly manner. The experimental results also caution against the potential pitfalls in using DNA melting point analysis to infer metal nanoparticle assembly by DNA hybridization

  8. Folding of single-stranded DNA quadruplexes containing an autonomously stable mini-hairpin loop.

    Science.gov (United States)

    Balkwill, Graham D; Garner, Thomas P; Searle, Mark S

    2009-05-01

    The single-stranded DNA quadruplex motif TG(3)-L(1)-G(3)-L(2)-G(3)-L(3)-G(3)T (where L(1), L(2) and L(3) are the three loop sequences) was used as a template for probing the effects of the loop sequences on stability and folding topology. An autonomously stable mini-hairpin sequence (ACGTAGT) was inserted into the central loop (L(2)) of different sequences with intrinsic propensities to form either parallel or anti-parallel structures. Single nucleotides (T) at positions L(1) and L(3) strongly favour the formation of a parallel structure with the L(2) hairpin insert affecting stability in the same way as a T(7) loop. However, in the context of an anti-parallel quadruplex with T(3) loops in positions L(1) and L(3), the mini-hairpin in the central loop forms a stable structure which enhances the T(m) of the quadruplex by approximately 10 degrees C when compared with the T(7) insert. The CD and UV melting data show that base pairing interactions within the ACGTAGT hairpin loop sequence, when accommodated as a diagonal loop in an anti-parallel structure, can enhance stability and lead to novel quadruplex structures, adding complexity to the folding landscape and expanding the potential repertoire of sequences that are able to regulate gene expression in vivo.

  9. Normal formation and repair of γ-radiation-induced single and double strand DNA breaks in Down syndrome fibroblasts

    International Nuclear Information System (INIS)

    Steiner, M.E.; Woods, W.G.

    1982-01-01

    Fibroblasts from patients with Down syndrome (Trisomy 21) were examined for repair capability of γ-radiation-induced single strand and double strand DNA breaks. Formation and repair of DNA breaks were determined by DNA alkaline and non-denaturing elution techniques. Down syndrome fibroblasts were found to repair single strand and double strand breaks as well as fibroblasts from normal controls. (orig.)

  10. Complexities due to single-stranded RNA during antibody detection of genomic rna:dna hybrids.

    Science.gov (United States)

    Zhang, Zheng Z; Pannunzio, Nicholas R; Hsieh, Chih-Lin; Yu, Kefei; Lieber, Michael R

    2015-04-08

    Long genomic R-loops in eukaryotes were first described at the immunoglobulin heavy chain locus switch regions using bisulfite sequencing and functional studies. A mouse monoclonal antibody called S9.6 has been used for immunoprecipitation (IP) to identify R-loops, based on the assumption that it is specific for RNA:DNA over other nucleic acid duplexes. However, recent work has demonstrated that a variable domain of S9.6 binds AU-rich RNA:RNA duplexes with a KD that is only 5.6-fold weaker than for RNA:DNA duplexes. Most IP protocols do not pre-clear the genomic nucleic acid with RNase A to remove free RNA. Fold back of ssRNA can readily generate RNA:RNA duplexes that may bind the S9.6 antibody, and adventitious binding of RNA may also create short RNA:DNA regions. Here we investigate whether RNase A is needed to obtain reliable IP with S9.6. As our test locus, we chose the most well-documented site for kilobase-long mammalian genomic R-loops, the immunoglobulin heavy chain locus (IgH) class switch regions. The R-loops at this locus can be induced by using cytokines to stimulate transcription from germline transcript promoters. We tested IP using S9.6 with and without various RNase treatments. The RNase treatments included RNase H to destroy the RNA in an RNA:DNA duplex and RNase A to destroy single-stranded (ss) RNA to prevent it from binding S9.6 directly (as duplex RNA) and to prevent the ssRNA from annealing to the genome, resulting in adventitious RNA:DNA hybrids. We find that optimal detection of RNA:DNA duplexes requires removal of ssRNA using RNase A. Without RNase A treatment, known regions of R-loop formation containing RNA:DNA duplexes can not be reliably detected. With RNase A treatment, a signal can be detected over background, but only within a limited 2 or 3-fold range, even with a stable kilobase-long genomic R-loop. Any use of the S9.6 antibody must be preceded by RNase A treatment to remove free ssRNA that may compete for the S9.6 binding by

  11. Interaction of bacteriophage T4 and T7 single-stranded DNA-binding proteins with DNA

    International Nuclear Information System (INIS)

    Shokri, Leila; Williams, Mark C; Rouzina, Ioulia

    2009-01-01

    Bacteriophages T4 and T7 are well-studied model replication systems, which have allowed researchers to determine the roles of many proteins central to DNA replication, recombination and repair. Here we summarize and discuss the results from two recently developed single-molecule methods to determine the salt-dependent DNA-binding kinetics and thermodynamics of the single-stranded DNA (ssDNA)-binding proteins (SSBs) from these systems. We use these methods to characterize both the equilibrium double-stranded DNA (dsDNA) and ssDNA binding of the SSBs T4 gene 32 protein (gp32) and T7 gene 2.5 protein (gp2.5). Despite the overall two-orders-of-magnitude weaker binding of gp2.5 to both forms of DNA, we find that both proteins exhibit four-orders-of-magnitude preferential binding to ssDNA relative to dsDNA. This strong preferential ssDNA binding as well as the weak dsDNA binding is essential for the ability of both proteins to search dsDNA in one dimension to find available ssDNA-binding sites at the replication fork

  12. Assembly of presynaptic filaments. Factors affecting the assembly of RecA protein onto single-stranded DNA

    DEFF Research Database (Denmark)

    Thresher, RJ; Christiansen, Gunna; Griffith, JD

    1988-01-01

    We have previously shown that the assembly of RecA protein onto single-stranded DNA (ssDNA) facilitated by SSB protein occurs in three steps: (1) rapid binding of SSB protein to the ssDNA; (2) nucleation of RecA protein onto this template; and (3) co-operative polymerization of additional Rec...... assembled onto ssDNA at net rates that varied from 250 to 900 RecA protein monomers per minute, with the rate inversely related to the concentration of SSB protein. Combined sucrose sedimentation and electron microscope analysis established that SSB protein was displaced from the ssDNA during RecA protein...

  13. Mutability dynamics of an emergent single stranded DNA virus in a naïve host.

    Directory of Open Access Journals (Sweden)

    Subir Sarker

    Full Text Available Quasispecies variants and recombination were studied longitudinally in an emergent outbreak of beak and feather disease virus (BFDV infection in the orange-bellied parrot (Neophema chrysogaster. Detailed health monitoring and the small population size (<300 individuals of this critically endangered bird provided an opportunity to longitudinally track viral replication and mutation events occurring in a circular, single-stranded DNA virus over a period of four years within a novel bottleneck population. Optimized PCR was used with different combinations of primers, primer walking, direct amplicon sequencing and sequencing of cloned amplicons to analyze BFDV genome variants. Analysis of complete viral genomes (n = 16 and Rep gene sequences (n = 35 revealed that the outbreak was associated with mutations in functionally important regions of the normally conserved Rep gene and immunogenic capsid (Cap gene with a high evolutionary rate (3.41×10(-3 subs/site/year approaching that for RNA viruses; simultaneously we observed significant evidence of recombination hotspots between two distinct progenitor genotypes within orange-bellied parrots indicating early cross-transmission of BFDV in the population. Multiple quasispecies variants were also demonstrated with at least 13 genotypic variants identified in four different individual birds, with one containing up to seven genetic variants. Preferential PCR amplification of variants was also detected. Our findings suggest that the high degree of genetic variation within the BFDV species as a whole is reflected in evolutionary dynamics within individually infected birds as quasispecies variation, particularly when BFDV jumps from one host species to another.

  14. Functional analysis of multiple single-stranded DNA-binding proteins from Methanosarcina acetivorans and their effects on DNA synthesis by DNA polymerase BI.

    Science.gov (United States)

    Robbins, Justin B; Murphy, Mary C; White, Bryan A; Mackie, Roderick I; Ha, Taekjip; Cann, Isaac K O

    2004-02-20

    Single-stranded DNA-binding proteins and their functional homologs, replication protein A, are essential components of cellular DNA replication, repair and recombination. We describe here the isolation and characterization of multiple replication protein A homologs, RPA1, RPA2, and RPA3, from the archaeon Methanosarcina acetivorans. RPA1 comprises four single-stranded DNA-binding domains, while RPA2 and RPA3 are each composed of two such domains and a zinc finger domain. Gel filtration analysis suggested that RPA1 exists as homotetramers and homodimers in solution, while RPA2 and RPA3 form only homodimers. Unlike the multiple RPA proteins found in other Archaea and eukaryotes, each of the M. acetivorans RPAs can act as a distinct single-stranded DNA-binding protein. Fluorescence resonance energy transfer and fluorescence polarization anisotropy studies revealed that the M. acetivorans RPAs bind to as few as 10 single-stranded DNA bases. However, more stable binding is achieved with single-stranded DNA of 18-23 bases, and for such substrates the estimated Kd was 3.82 +/- 0.28 nM, 173.6 +/- 105.17 nM, and 5.92 +/- 0.23 nM, for RPA1, RPA2, and RPA3, respectively. The architectures of the M. acetivorans RPAs are different from those of hitherto reported homologs. Thus, these proteins may represent novel forms of replication protein A. Most importantly, our results show that the three RPAs and their combinations highly stimulate the primer extension capacity of M. acetivorans DNA polymerase BI. Although bacterial SSB and eukaryotic RPA have been shown to stimulate DNA synthesis by their cognate DNA polymerases, our findings provide the first in vitro biochemical evidence for the conservation of this property in an archaeon.

  15. TrmBL2 from Pyrococcus furiosus Interacts Both with Double-Stranded and Single-Stranded DNA.

    Directory of Open Access Journals (Sweden)

    Sebastian Wierer

    Full Text Available In many hyperthermophilic archaea the DNA binding protein TrmBL2 or one of its homologues is abundantly expressed. TrmBL2 is thought to play a significant role in modulating the chromatin architecture in combination with the archaeal histone proteins and Alba. However, its precise physiological role is poorly understood. It has been previously shown that upon binding TrmBL2 covers double-stranded DNA, which leads to the formation of a thick and fibrous filament. Here we investigated the filament formation process as well as the stabilization of DNA by TrmBL2 from Pyroccocus furiosus in detail. We used magnetic tweezers that allow to monitor changes of the DNA mechanical properties upon TrmBL2 binding on the single-molecule level. Extended filaments formed in a cooperative manner and were considerably stiffer than bare double-stranded DNA. Unlike Alba, TrmBL2 did not form DNA cross-bridges. The protein was found to bind double- and single-stranded DNA with similar affinities. In mechanical disruption experiments of DNA hairpins this led to stabilization of both, the double- (before disruption and the single-stranded (after disruption DNA forms. Combined, these findings suggest that the biological function of TrmBL2 is not limited to modulating genome architecture and acting as a global repressor but that the protein acts additionally as a stabilizer of DNA secondary structure.

  16. The single-strand DNA binding activity of human PC4 preventsmutagenesis and killing by oxidative DNA damage

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jen-Yeu; Sarker, Altaf Hossain; Cooper, Priscilla K.; Volkert, Michael R.

    2004-02-01

    Human positive cofactor 4 (PC4) is a transcriptional coactivator with a highly conserved single-strand DNA (ssDNA) binding domain of unknown function. We identified PC4 as a suppressor of the oxidative mutator phenotype of the Escherichia coli fpg mutY mutant and demonstrate that this suppression requires its ssDNA binding activity. Yeast mutants lacking their PC4 ortholog Sub1 are sensitive to hydrogen peroxide and exhibit spontaneous and peroxide induced hypermutability. PC4 expression suppresses the peroxide sensitivity of the yeast sub l{Delta} mutant, suggesting that the human protein has a similar function. A role for yeast and human proteins in DNA repair is suggested by the demonstration that Sub1 acts in a peroxide-resistance pathway involving Rad2 and by the physical interaction of PC4 with the human Rad2 homolog XPG. We show XPG recruits PC4 to a bubble-containing DNA substrate with resulting displacement of XPG and formation of a PC4-DNA complex. We discuss the possible requirement for PC4 in either global or transcription-coupled repair of oxidative DNA damage to mediate the release of XPG bound to its substrate.

  17. Functional characterization of a conserved archaeal viral operon revealing single-stranded DNA binding, annealing and nuclease activities

    DEFF Research Database (Denmark)

    Guo, Yang; Kragelund, Birthe Brandt; White, Malcolm F.

    2015-01-01

    encoding proteins of unknown function and forming an operon with ORF207 (gp19). SIRV2 gp17 was found to be a single-stranded DNA (ssDNA) binding protein different in structure from all previously characterized ssDNA binding proteins. Mutagenesis of a few conserved basic residues suggested a U......-shaped binding path for ssDNA. The recombinant gp18 showed an ssDNA annealing activity often associated with helicases and recombinases. To gain insight into the biological role of the entire operon, we characterized SIRV2 gp19 and showed it to possess a 5'→3' ssDNA exonuclease activity, in addition...... for rudiviruses and the close interaction among the ssDNA binding, annealing and nuclease proteins strongly point to a role of the gene operon in genome maturation and/or DNA recombination that may function in viral DNA replication/repair....

  18. The Adsorption of Short Single-Stranded DNA Oligomers on Mineral Surfaces

    Science.gov (United States)

    Kopstein, M.; Sverjensky, D. A.; Hazen, R. M.; Cleaves, H. J.

    2009-12-01

    Previous studies have described feasible pathways for the synthesis of simple organic building blocks such as formaldehyde and hydrogen cyanide, and their reaction to form more complex biomolecules such as nucleotide bases, amino acids and sugars (Miller and Orgel 1974, Miller and Cleaves 2006). However, the polymerization of monomers into a useful genetic material remains problematic (Orgel 2004). Organic building blocks were unlikely to polymerize from very dilute aqueous solution in the primitive oceans. Mineral surface adsorption has been suggested as a possible mechanism for concentrating the necessary building blocks (Bernal 1951). This study focused on the adsorption behavior of single-stranded DNA homo-oligomers of adenine and thymine (including the monomers, dimers, tetramers, hexamers, octomers, and decamers) with five different mineral surfaces (pyrite, rutile, hematite, olivine and calcite). Adsorption was studied in 0.1 M pH 8.1 KHCO3 with0.05 M NaCl as background electrolyte. Solutions were mixed for 24 hours at room temperature, centrifuged and the supernatants analyzed by UV/visible spectrophotometry. Equilibrium solution concentrations were measured and used to determine the number of moles adsorbed per square meter. Langmuir isotherms were constructed using the experimental data. It was found that adenine-containing molecules tend to bind much more strongly than thymine-containing molecules. It was also found that the number of moles adsorbed at saturation tends to fall with increasing chain length, while adsorption affinity tends to rise. Oligomer length appears to affect adsorption more than the mineral type. These results may have implications for the primordial organization of the first nucleic acid molecules as the persistence of extra-cellular nucleic acids in the environment. References Bernal, J. D. (1951) The Physical Basis of Life (Routledge, London). Miller S.L. and Cleaves, H.J. (2006) Prebiotic chemistry on the primitive Earth. In

  19. Bacillus subtilis single-stranded DNA-binding protein SsbA is phosphorylated at threonine 38 by the serine/threonine kinase YabT

    DEFF Research Database (Denmark)

    Derouiche, Abderahmane; Petranovic, Dina; Macek, Boris

    2016-01-01

    Background and purpose: Single-stranded DNA-binding proteins participate in all stages of DNA metabolism that involve single-stranded DNA, from replication, recombination, repair of DNA damage, to natural competence in species such as Bacillus subtilis. B. subtilis single-stranded DNA-binding pro......Background and purpose: Single-stranded DNA-binding proteins participate in all stages of DNA metabolism that involve single-stranded DNA, from replication, recombination, repair of DNA damage, to natural competence in species such as Bacillus subtilis. B. subtilis single-stranded DNA...... assays.Results: In addition to the known tyrosine phosphorylation of SsbA on tyrosine 82, we identified a new phosphorylation site: threonine 38. The in vitro assays demonstrated that SsbA is preferentially phosphorylated by the B. subtilis Hanks-type kinase YabT, and phosphorylation of threonine 38...... leads to enhanced cooperative binding to DNA.Conclusions: Our findings contribute to the emerging picture that bacterial proteins, exemplified here by SsbA, undergo phosphorylation at multiple residues. This results in a complex regulation of cellular functions, and suggests that the complexity...

  20. Evidence of impurities in thiolated single-stranded DNA oligomers and their effect on DNA self-assembly on gold.

    Science.gov (United States)

    Lee, Chi-Ying; Canavan, Heather E; Gamble, Lara J; Castner, David G

    2005-05-24

    The diversity of techniques used in the synthesis, treatment, and purification of the single-stranded DNA oligomers containing a thiol anchor group (SH-ssDNA) has led to a significant variation in the purity of commercially available SH-ssDNA. In this work, we use X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) to study how the impurities present in commercially synthesized SH-ssDNA oligomers affected the structure of the resulting DNA films on Au. XPS results indicate that two of the purchased SH-ssDNA oligomers contain excess carbon and sulfur. The molecular fragmentation patterns obtained with ToF-SIMS were used to determine the identity of several contaminants in the DNA films, including poly(dimethylsiloxane) (PDMS), lipid molecules, and sulfur-containing molecules. In particular, the ToF-SIMS results determined that the excess sulfur detected by XPS was due to the presence of dithiothreitol, a reductant often used to cleave disulfide precursors. Furthermore, we found that the SH-ssDNA self-assembly process is affected by the presence of these contaminants. When relatively pure SH-ssDNA is used to prepare the DNA films, the P, N, O, and C atomic percentages were observed by XPS to increase over a 24-h time period. In contrast, surfaces prepared using SH-ssDNA containing higher levels of contaminants did not follow this trend. XPS result indicates that, after the initial SH-ssDNA adsorption, the remaining material incorporated into these films was due to contamination.

  1. Cisplatin GG-crosslinks within single-stranded DNA: origin of the preference for left-handed helicity.

    Science.gov (United States)

    Monnet, Jordan; Kozelka, Jiří

    2012-10-01

    Molecular dynamics (MD) simulations of the single-stranded DNA trinucleotide TG*G*, with the G* guanines crosslinked by the antitumor drug cisplatin, were performed with explicit representation of the water as solvent. The purpose of the simulations was to explain previous NMR observations indicating that in single-stranded cisplatin-DNA adducts, the crosslinked guanines adopt a left-handed helical orientation, whereas in duplexes, the orientation is right-handed. The analysis of the MD trajectory of TG*G* has ascribed a crucial role to hydrogen-bonding (direct or through-water) interactions of the 5'-oriented NH(3) ligand of platinum with acceptor groups at the 5'-side of the crosslink, namely the TpG* phosphate and the terminal 5'-OH group. These interactions bring about some strain into the trinucleotide which is slightly but significantly (1-1.5 kcal.mol(-1)) higher for the right-handed orientation than for the left-handed one. During the unconstrained, 3 ns long MD simulation, left-handed conformations were ~15 times more abundant than the right-handed ones. This sampling difference agrees roughly with the calculated energy difference in strain energy. Overall, these results show that the Pt-GG crosslink within single-stranded DNA is malleable and can access different conformations at a moderate energy cost. This malleability could be of importance in interactions between the platinated DNA and cellular proteins, in which the DNA is locally unwound. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Base damage within single-strand DNA underlies in vivo hypermutability induced by a ubiquitous environmental agent.

    Directory of Open Access Journals (Sweden)

    Kin Chan

    Full Text Available Chromosomal DNA must be in single-strand form for important transactions such as replication, transcription, and recombination to occur. The single-strand DNA (ssDNA is more prone to damage than double-strand DNA (dsDNA, due to greater exposure of chemically reactive moieties in the nitrogenous bases. Thus, there can be agents that damage regions of ssDNA in vivo while being inert toward dsDNA. To assess the potential hazard posed by such agents, we devised an ssDNA-specific mutagenesis reporter system in budding yeast. The reporter strains bear the cdc13-1 temperature-sensitive mutation, such that shifting to 37°C results in telomere uncapping and ensuing 5' to 3' enzymatic resection. This exposes the reporter region, containing three closely-spaced reporter genes, as a long 3' ssDNA overhang. We validated the ability of the system to detect mutagenic damage within ssDNA by expressing a modified human single-strand specific cytosine deaminase, APOBEC3G. APOBEC3G induced a high density of substitutions at cytosines in the ssDNA overhang strand, resulting in frequent, simultaneous inactivation of two reporter genes. We then examined the mutagenicity of sulfites, a class of reactive sulfur oxides to which humans are exposed frequently via respiration and food intake. Sulfites, at a concentration similar to that found in some foods, induced a high density of mutations, almost always as substitutions at cytosines in the ssDNA overhang strand, resulting in simultaneous inactivation of at least two reporter genes. Furthermore, sulfites formed a long-lived adducted 2'-deoxyuracil intermediate in DNA that was resistant to excision by uracil-DNA N-glycosylase. This intermediate was bypassed by error-prone translesion DNA synthesis, frequently involving Pol ζ, during repair synthesis. Our results suggest that sulfite-induced lesions in DNA can be particularly deleterious, since cells might not possess the means to repair or bypass such lesions

  3. Surface treatment on amorphous InGaZnO4 thin film for single-stranded DNA biosensing

    Science.gov (United States)

    Sun, Dali; Matsui, Hiroaki; Wu, Chun-Nan; Tabata, Hitoshi

    2015-01-01

    Amorphous InGaZnO4 (aIGZO) has been widely used as a transparent semiconductor. However, no research has been found yet applying aIGZO to biosensing. This paper examined the single strand DNA (ssDNA) immobilization on aIGZO by absorption with a comparison to ITO, which is the first step for many biosensing schemas. The DNA quantification by florescence intensity shows that the absorption capacity of aIGZO film to ssDNA is 6.7 times greater than that of ITO. XPS and contact angle analysis proved the high DNA absorption affinity on aIGZO film is related to its high effectiveness to OH- attachment. A feasible method to immobilized ssDNA on aIGZO thin film is evaluated in this paper, and consequently, enables a possible approach to apply aIGZO in biosensing.

  4. Highly stable triple helix formation by homopyrimidine (l)-acyclic threoninol nucleic acids with single stranded DNA and RNA

    DEFF Research Database (Denmark)

    Kumar, Vipin; Kesavan, Venkitasamy; Gothelf, Kurt Vesterager

    2015-01-01

    Acyclic (l)-threoninol nucleic acid (aTNA) containing thymine, cytosine and adenine nucleobases were synthesized and shown to form surprisingly stable triplexes with complementary single stranded homopurine DNA or RNA targets. The triplex structures consist of two (l)-aTNA strands and one DNA...... or RNA, and these triplexes are significantly stronger than the corresponding DNA or RNA duplexes as shown in competition experiments. As a unique property the (l)-aTNAs exclusively form triplex structures with DNA and RNA and no duplex structures are observed by gel electrophoresis. The results were...... compared to the known enantiomer (d)-aTNA, which forms much weaker triplexes depending upon temperature and time. It was demonstrated that (l)-aTNA triplexes are able to stop primer extension on a DNA template, showing the potential of (l)-aTNA for antisense applications....

  5. Quenching of Single-Walled Carbon Nanotube Fluorescence by Dissolved Oxygen Reveals Selective Single-Stranded DNA Affinities.

    Science.gov (United States)

    Zheng, Yu; Bachilo, Sergei M; Weisman, R Bruce

    2017-05-04

    The selective interactions between short oligomers of single-stranded DNA (ssDNA) and specific structures of single-walled carbon nanotubes have been exploited in powerful methods for nanotube sorting. We report here that nanotubes coated with ssDNA also display selective interactions through the selective quenching of nanotube fluorescence by dissolved oxygen. In aqueous solutions equilibrated under 1 atm of O 2 , emission intensity from semiconducting nanotubes is reduced by between 9 and 40%, varying with the combination of ssDNA sequence and nanotube structure. This quenching reverses promptly and completely on the removal of dissolved O 2 and may be due to physisorption on nanotube surfaces. Fluorescence quenching offers a simple, nondestructive approach for studying the structure-selective interactions of ssDNA with single-walled carbon nanotubes and identifying recognition sequences.

  6. Characterization of the single-stranded DNA binding protein pV(VGJΦ) of VGJΦ phage from Vibrio cholerae.

    Science.gov (United States)

    Falero, Alina; Caballero, Andy; Trigueros, Sonia; Pérez, Celso; Campos, Javier; Marrero, Karen; Fando, Rafael

    2011-09-01

    pV(VGJΦ), a single-stranded DNA binding protein of the vibriophage VGJΦ was subject to biochemical analysis. Here, we show that this protein has a general affinity for single-stranded DNA (ssDNA) as documented by Electrophoretic Mobility Shift Assay (EMSA). The apparent molecular weight of the monomer is about 12.7kDa as measured by HPLC-SEC. Moreover, isoelectrofocusing showed an isoelectric point for pV(VGJΦ) of 6.82 pH units. Size exclusion chromatography in 150mM NaCl, 50mM sodium phosphate buffer, pH 7.0 revealed a major protein species of 27.0kDa, suggesting homodimeric protein architecture. Furthermore, pV(VGJΦ) binds ssDNA at extreme temperatures and the complex was stable after extended incubation times. Upon frozen storage at -20°C for a year the protein retained its integrity, biological activity and oligomericity. On the other hand, bioinformatics analysis predicted that pV(VGJΦ) protein has a disordered C-terminal, which might be involved in its functional activity. All the aforementioned features make pV(VGJΦ) interesting for biotechnological applications. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Non-uniform binding of single-stranded DNA binding proteins to hybrids of single-stranded DNA and single-walled carbon nanotubes observed by atomic force microscopy in air and in liquid

    Energy Technology Data Exchange (ETDEWEB)

    Umemura, Kazuo, E-mail: meicun2006@163.com; Ishizaka, Kei; Nii, Daisuke; Izumi, Katsuki

    2016-12-01

    Highlights: • Conjugates of protein, DNA, and SWNTs were observed by AFM in liquid. • Non-uniform binding of proteins was visualized in liquid. • Thickness of DNA molecules on SWNT surfaces was well characterized in liquid. - Abstract: Using atomic force spectroscopy (AFM), we observed hybrids of single-stranded DNA (ssDNA) and single-walled carbon nanotubes (SWNTs) with or without protein molecules in air and in an aqueous solution. This is the first report of ssDNA–SWNT hybrids with proteins in solution analyzed by AFM. In the absence of protein, the height of the ssDNA–SWNT hybrids was 1.1 ± 0.3 nm and 2.4 ± 0.6 nm in air and liquid, respectively, suggesting that the ssDNA molecules adopted a flexible structure on the SWNT surface. In the presence of single-stranded DNA binding (SSB) proteins, the heights of the hybrids in air and liquid increased to 6.4 ± 3.1 nm and 10.0 ± 4.5 nm, respectively. The AFM images clearly showed binding of the SSB proteins to the ssDNA–SWNT hybrids. The morphology of the SSB–ssDNA–SWNT hybrids was non-uniform, particularly in aqueous solution. The variance of hybrid height was quantitatively estimated by cross-section analysis along the long-axis of each hybrid. The SSB–ssDNA–SWNT hybrids showed much larger variance than the ssDNA–SWNT hybrids.

  8. Two-dimensional strandness-dependent electrophoresis: a method to characterize single-stranded DNA, double-stranded DNA, and RNA-DNA hybrids in complex samples.

    Science.gov (United States)

    Gunnarsson, Gudmundur H; Gudmundsson, Bjarki; Thormar, Hans G; Alfredsson, Arni; Jonsson, Jon J

    2006-03-01

    We describe two-dimensional strandness-dependent electrophoresis (2D-SDE) for quantification and length distribution analysis of single-stranded (ss) DNA fragments, double-stranded (ds) DNA fragments, RNA-DNA hybrids, and nicked DNA fragments in complex samples. In the first dimension nucleic acid molecules are separated based on strandness and length in the presence of 7 M urea. After the first-dimension electrophoresis all nucleic acid fragments are heat denatured in the gel. During the second-dimension electrophoresis all nucleic acid fragments are single-stranded and migrate according to length. 2D-SDE takes about 90 min and requires only basic skills and equipment. We show that 2D-SDE has many applications in analyzing complex nucleic acid samples including (1) estimation of renaturation efficiency and kinetics, (2) monitoring cDNA synthesis, (3) detection of nicked DNA fragments, and (4) estimation of quality and in vitro damage of nucleic acid samples. Results from 2D-SDE should be useful to validate techniques such as complex polymerase chain reaction, subtractive hybridization, cDNA synthesis, cDNA normalization, and microarray analysis. 2D-SDE could also be used, e.g., to characterize biological nucleic acid samples. Information obtained with 2D-SDE cannot be readily obtained with other methods. 2D-SDE can be used for preparative isolation of ssDNA fragments, dsDNA fragments, and RNA-DNA hybrids.

  9. Initiation and termination of the bacteriophage phi X174 rolling circle DNA replication in vivo: packaging of plasmid single-stranded DNA into bacteriophage phi X174 coats

    NARCIS (Netherlands)

    van der Ende, A.; Teertstra, R.; Weisbeek, P. J.

    1982-01-01

    The bacteriophage phi X174 viral (+) origin when inserted in a plasmid can interact in vivo with the A protein produced by infecting phi X174 phages. A consequence of this interaction is packaging of single-stranded plasmid DNA into preformed phage coats resulting in infective particles (1). This

  10. Changes in the infrared microspectroscopic characteristics of DNA caused by cationic elements, different base richness and single-stranded form.

    Directory of Open Access Journals (Sweden)

    Maria Luiza S Mello

    Full Text Available BACKGROUND: The infrared (IR analysis of dried samples of DNA and DNA-polypeptide complexes is still scarce. Here we have studied the FT-IR profiles of these components to further the understanding of the FT-IR signatures of chromatin and cell nuclei. METHODOLOGY/PRINCIPAL FINDINGS: Calf thymus and salmon testis DNA, and complexes of histone H1, protamine, poly-L-lysine and poly-L-arginine (histone-mimic macromolecules with DNA were analyzed in an IR microspectroscope equipped with an attenuated total reflection diamond objective and Grams software. Conditions including polypeptides bound to the DNA, DNA base composition, and single-stranded form were found to differently affect the vibrational characteristics of the chemical groups (especially, PO(2(- in the nucleic acid. The antisymmetric stretching (ν(as of the DNA PO(2(- was greater than the symmetric stretching (ν(s of these groups and increased in the polypeptide-DNA complexes. A shift of the ν(as of the DNA PO(2(- to a lower frequency and an increased intensity of this vibration were induced especially by lysine-rich histones. Lysine richness additionally contributed to an increase in the vibrational stretching of the amide I group. Even in simple molecules such as inorganic phosphates, the vibrational characteristics of the phosphate anions were differently affected by different cations. As a result of the optimization of the DNA conformation by binding to arginine-rich polypeptides, enhancements of the vibrational characteristics in the FT-IR fingerprint could be detected. Although different profiles were obtained for the DNA with different base compositions, this situation was no longer verified in the polypeptide-DNA complexes and most likely in isolated chromatin or cell nuclei. However, the ν(as PO(2(-/ν(s PO(2(- ratio could discriminate DNA with different base compositions and DNA in a single-stranded form. CONCLUSIONS/SIGNIFICANCE: FT-IR spectral profiles are a valuable tool

  11. Correlation of Free Radical Yields with Strand Break Yields Produced in Plasmid DNA by the Direct Effect of Ionizing Radiation

    OpenAIRE

    Purkayastha, Shubhadeep; Milligan, Jamie R.; Bernhard, William A.

    2005-01-01

    The purpose of this study was to determine how free radical formation (fr) correlates with single strand break (ssb) and double strand break (dsb) formation in DNA exposed to the direct effects of ionizing radiation. Chemical yields have been determined of (i) total radicals trapped on DNA at 4 K, G(∑fr), (ii) radicals trapped on the DNA sugar, Gsugar(fr), (iii) prompt single strand breaks, Gprompt(ssb), (iv) total single strand breaks, Gtotal(ssb), and (v) double strand breaks, G(dsb). These...

  12. Identification and genetic characterization of a novel circular single-stranded DNA virus in a human upper respiratory tract sample.

    Science.gov (United States)

    Cui, Lunbiao; Wu, Binyao; Zhu, Xiaojuan; Guo, Xiling; Ge, Yiyue; Zhao, Kangchen; Qi, Xian; Shi, Zhiyang; Zhu, Fengcai; Sun, Lixin; Zhou, Minghao

    2017-11-01

    Metagenomic analysis through high-throughput sequencing is a tool for detecting both known and novel viruses. Using this technique, a novel circular single-stranded DNA (ssDNA) virus genome was discovered in respiratory secretions from a febrile traveler. The virus, named human respiratory-associated PSCV-5-like virus (HRAPLV), has a genome comprising 3,018 bases, with two major putative ORFs inversely encoding capsid (Cap) and replicase (Rep) protein and separated by two intergenic regions. One stem-loop structure was predicted in the larger intergenic region (LIR). The predicted amino acid sequences of the Cap and Rep proteins of HRAPLV showed highest identity to those of porcine stool-associated circular virus 5 isolate CP3 (PoSCV 5) (53.0% and 48.9%, respectively). The host tropism of the virus is unknown, and further study is warranted to determine whether this novel virus is associated with human disease.

  13. Characterization of the single stranded DNA binding protein SsbB encoded in the Gonoccocal Genetic Island.

    Directory of Open Access Journals (Sweden)

    Samta Jain

    Full Text Available Most strains of Neisseria gonorrhoeae carry a Gonococcal Genetic Island which encodes a type IV secretion system involved in the secretion of ssDNA. We characterize the GGI-encoded ssDNA binding protein, SsbB. Close homologs of SsbB are located within a conserved genetic cluster found in genetic islands of different proteobacteria. This cluster encodes DNA-processing enzymes such as the ParA and ParB partitioning proteins, the TopB topoisomerase, and four conserved hypothetical proteins. The SsbB homologs found in these clusters form a family separated from other ssDNA binding proteins.In contrast to most other SSBs, SsbB did not complement the Escherichia coli ssb deletion mutant. Purified SsbB forms a stable tetramer. Electrophoretic mobility shift assays and fluorescence titration assays, as well as atomic force microscopy demonstrate that SsbB binds ssDNA specifically with high affinity. SsbB binds single-stranded DNA with minimal binding frames for one or two SsbB tetramers of 15 and 70 nucleotides. The binding mode was independent of increasing Mg(2+ or NaCl concentrations. No role of SsbB in ssDNA secretion or DNA uptake could be identified, but SsbB strongly stimulated Topoisomerase I activity.We propose that these novel SsbBs play an unknown role in the maintenance of genetic islands.

  14. Slowing single-stranded DNA translocation through a solid-state nanopore by decreasing the nanopore diameter.

    Science.gov (United States)

    Akahori, Rena; Haga, Takanobu; Hatano, Toshiyuki; Yanagi, Itaru; Ohura, Takeshi; Hamamura, Hirotaka; Iwasaki, Tomio; Yokoi, Takahide; Anazawa, Takashi

    2014-07-11

    To slow the translocation of single-stranded DNA (ssDNA) through a solid-state nanopore, a nanopore was narrowed, and the effect of the narrowing on the DNA translocation speed was investigated. In order to accurately measure the speed, long (5.3 kb) ssDNA (namely, ss-poly(dA)) with uniform length (±0.4 kb) was synthesized. The diameters of nanopores fabricated by a transmission electron microscope were controlled by atomic-layer deposition. Reducing the nanopore diameter from 4.5 to 2.3 nm slowed down the translocation of ssDNA by more than 16 times (to 0.18 μs base(-1)) when 300 mV was applied across the nanopore. It is speculated that the interaction between the nanopore and the ssDNA dominates the translocation speed. Unexpectedly, the translocation speed of ssDNA through the 4.5 nm nanopore is more than two orders of magnitude higher than that of double-stranded DNA (dsDNA) through a nanopore of almost the same size. The cause of such a faster translocation of ssDNA can be explained by the weaker drag force inside the nanopore. Moreover, the measured translocation speeds of ssDNA and dsDNA agree well with those calculated by molecular-dynamics (MD) simulation. The MD simulation predicted that reducing the nanopore diameter to almost the same as that of ssDNA (i.e. 1.4 nm) decreases the translocation speed (to 1.4 μs base(-1)). Narrowing the nanopore is thus an effective approach for accomplishing nanopore DNA sequencing.

  15. Genetic and Biochemical Identification of a Novel Single-Stranded DNA-Binding Complex in Haloferax volcanii.

    Science.gov (United States)

    Stroud, Amy; Liddell, Susan; Allers, Thorsten

    2012-01-01

    Single-stranded DNA (ssDNA)-binding proteins play an essential role in DNA replication and repair. They use oligonucleotide/oligosaccharide-binding (OB)-folds, a five-stranded β-sheet coiled into a closed barrel, to bind to ssDNA thereby protecting and stabilizing the DNA. In eukaryotes the ssDNA-binding protein (SSB) is known as replication protein A (RPA) and consists of three distinct subunits that function as a heterotrimer. The bacterial homolog is termed SSB and functions as a homotetramer. In the archaeon Haloferax volcanii there are three genes encoding homologs of RPA. Two of the rpa genes (rpa1 and rpa3) exist in operons with a novel gene specific to Euryarchaeota; this gene encodes a protein that we have termed RPA-associated protein (rpap). The rpap genes encode proteins belonging to COG3390 group and feature OB-folds, suggesting that they might cooperate with RPA in binding to ssDNA. Our genetic analysis showed that rpa1 and rpa3 deletion mutants have differing phenotypes; only Δrpa3 strains are hypersensitive to DNA damaging agents. Deletion of the rpa3-associated gene rpap3 led to similar levels of DNA damage sensitivity, as did deletion of the rpa3 operon, suggesting that RPA3 and RPAP3 function in the same pathway. Protein pull-downs involving recombinant hexahistidine-tagged RPAs showed that RPA3 co-purifies with RPAP3, and RPA1 co-purifies with RPAP1. This indicates that the RPAs interact only with their respective associated proteins; this was corroborated by the inability to construct rpa1 rpap3 and rpa3 rpap1 double mutants. This is the first report investigating the individual function of the archaeal COG3390 RPA-associated proteins (RPAPs). We have shown genetically and biochemically that the RPAPs interact with their respective RPAs, and have uncovered a novel single-stranded DNA-binding complex that is unique to Euryarchaeota.

  16. Characterization of exceptionally thermostable single-stranded DNA-binding proteins from Thermotoga maritima and Thermotoga neapolitana.

    Science.gov (United States)

    Olszewski, Marcin; Grot, Anna; Wojciechowski, Marek; Nowak, Marta; Mickiewicz, Małgorzata; Kur, Józef

    2010-10-15

    In recent years, there has been an increasing interest in SSBs because they find numerous applications in diverse molecular biology and analytical methods. We report the characterization of single-stranded DNA binding proteins (SSBs) from the thermophilic bacteria Thermotoga maritima (TmaSSB) and Thermotoga neapolitana (TneSSB). They are the smallest known bacterial SSB proteins, consisting of 141 and 142 amino acid residues with a calculated molecular mass of 16.30 and 16.58 kDa, respectively. The similarity between amino acid sequences of these proteins is very high: 90% identity and 95% similarity. Surprisingly, both TmaSSB and TneSSB possess a quite low sequence similarity to Escherichia coli SSB (36 and 35% identity, 55 and 56% similarity, respectively). They are functional as homotetramers containing one single-stranded DNA binding domain (OB-fold) in each monomer. Agarose mobility assays indicated that the ssDNA-binding site for both proteins is salt independent, and fluorescence spectroscopy resulted in a size of 68 ± 2 nucleotides. The half-lives of TmaSSB and TneSSB were 10 h and 12 h at 100°C, respectively. When analysed by differential scanning microcalorimetry (DSC) the melting temperature (Tm) was 109.3°C and 112.5°C for TmaSSB and TneSSB, respectively. The results showed that TmaSSB and TneSSB are the most thermostable SSB proteins identified to date, offering an attractive alternative to TaqSSB and TthSSB in molecular biology applications, especially with using high temperature e. g. polymerase chain reaction (PCR).

  17. Characterization of exceptionally thermostable single-stranded DNA-binding proteins from Thermotoga maritima and Thermotoga neapolitana

    Directory of Open Access Journals (Sweden)

    Mickiewicz Małgorzata

    2010-10-01

    Full Text Available Abstract Background In recent years, there has been an increasing interest in SSBs because they find numerous applications in diverse molecular biology and analytical methods. Results We report the characterization of single-stranded DNA binding proteins (SSBs from the thermophilic bacteria Thermotoga maritima (TmaSSB and Thermotoga neapolitana (TneSSB. They are the smallest known bacterial SSB proteins, consisting of 141 and 142 amino acid residues with a calculated molecular mass of 16.30 and 16.58 kDa, respectively. The similarity between amino acid sequences of these proteins is very high: 90% identity and 95% similarity. Surprisingly, both TmaSSB and TneSSB possess a quite low sequence similarity to Escherichia coli SSB (36 and 35% identity, 55 and 56% similarity, respectively. They are functional as homotetramers containing one single-stranded DNA binding domain (OB-fold in each monomer. Agarose mobility assays indicated that the ssDNA-binding site for both proteins is salt independent, and fluorescence spectroscopy resulted in a size of 68 ± 2 nucleotides. The half-lives of TmaSSB and TneSSB were 10 h and 12 h at 100°C, respectively. When analysed by differential scanning microcalorimetry (DSC the melting temperature (Tm was 109.3°C and 112.5°C for TmaSSB and TneSSB, respectively. Conclusion The results showed that TmaSSB and TneSSB are the most thermostable SSB proteins identified to date, offering an attractive alternative to TaqSSB and TthSSB in molecular biology applications, especially with using high temperature e. g. polymerase chain reaction (PCR.

  18. Escherichia coli Single-Stranded DNA-Binding Protein: NanoESI-MS Studies of Salt-Modulated Subunit Exchange and DNA Binding Transactions

    Science.gov (United States)

    Mason, Claire E.; Jergic, Slobodan; Lo, Allen T. Y.; Wang, Yao; Dixon, Nicholas E.; Beck, Jennifer L.

    2013-02-01

    Single-stranded DNA-binding proteins (SSBs) are ubiquitous oligomeric proteins that bind with very high affinity to single-stranded DNA and have a variety of essential roles in DNA metabolism. Nanoelectrospray ionization mass spectrometry (nanoESI-MS) was used to monitor subunit exchange in full-length and truncated forms of the homotetrameric SSB from Escherichia coli. Subunit exchange in the native protein was found to occur slowly over a period of hours, but was significantly more rapid in a truncated variant of SSB from which the eight C-terminal residues were deleted. This effect is proposed to result from C-terminus mediated stabilization of the SSB tetramer, in which the C-termini interact with the DNA-binding cores of adjacent subunits. NanoESI-MS was also used to examine DNA binding to the SSB tetramer. Binding of single-stranded oligonucleotides [one molecule of (dT)70, one molecule of (dT)35, or two molecules of (dT)35] was found to prevent SSB subunit exchange. Transfer of SSB tetramers between discrete oligonucleotides was also observed and is consistent with predictions from solution-phase studies, suggesting that SSB-DNA complexes can be reliably analyzed by ESI mass spectrometry.

  19. Identification and characterization of single-stranded DNA-binding protein from the facultative psychrophilic bacteria Pseudoalteromonas haloplanktis.

    Science.gov (United States)

    Olszewski, Marcin; Nowak, Marta; Cyranka-Czaja, Anna; Kur, Józef

    2014-01-01

    Single-stranded DNA-binding protein (SSB) plays an important role in DNA metabolism such as DNA replication, repair, and recombination, and is essential for cell survival. This study reports on the ssb-like gene cloning, gene expression and characterization of a single-stranded DNA-binding protein of Pseudoalteromonas haloplanktis (PhaSSB) and is the first report of such a protein from psychrophilic microorganism. PhaSSB possesses a high sequence similarity to Escherichia coli SSB (48% identity and 57% similarity) and has the longest amino acid sequence (244 amino acid residues) of all the known bacterial SSBs with one OB-fold per monomer. An analysis of purified PhaSSB by means of chemical cross-linking experiments, sedimentation analysis and size exclusion chromatography revealed a stable tetramer in solution. Using EMSA, we characterized the stoichiometry of PhaSSB complexed with a series of ssDNA homopolymers, and the size of the binding site was determined as being approximately 35 nucleotides long. In fluorescence titrations, the occluded site size of PhaSSB on poly(dT) is 34 nucleotides per tetramer under low-salt conditions (2mM NaCl), but increases to 54-64 nucleotides at higher-salt conditions (100-300mM NaCl). This suggests that PhaSSB undergoes a transition between ssDNA binding modes, which is observed for EcoSSB. The binding properties of PhaSSB investigated using SPR technology revealed that the affinity of PhaSSB to ssDNA is typical of SSB proteins. The only difference in the binding mode of PhaSSB to ssDNA is a faster association phase, when compared to EcoSSB, though compensated by faster dissociation rate. When analyzed by differential scanning calorimetry (DSC), the melting temperature (Tm) was determined as 63 °C, which is only a few degrees lower than for EcoSSB. Copyright © 2013 Elsevier GmbH. All rights reserved.

  20. Saccharomyces cerevisiae Hrq1 helicase activity is affected by the sequence but not the length of single-stranded DNA.

    Science.gov (United States)

    Rogers, Cody M; Bochman, Matthew L

    2017-05-13

    Mutations in the human RecQ4 DNA helicase are associated with three different diseases characterized by genomic instability. To gain insight into how RecQ4 dysfunction leads to these pathologies, several groups have used the Saccharomyces cerevisiae RecQ4 homolog Hrq1 as an experimental model. Hrq1 displays many of the same functions as RecQ4 in vivo and in vitro. However, there is some disagreement in the literature about the effects of single-stranded DNA (ssDNA) length on Hrq1 helicase activity and the ability of Hrq1 to anneal complementary ssDNA oligonucleotides into duplex DNA. Here, we present a side-by-side comparison of Hrq1 and RecQ4 helicase activity, demonstrating that in both cases, long random-sequence 3' ssDNA tails inhibit DNA unwinding in vitro in a length-dependent manner. This appears to be due to the formation of secondary structures in the random-sequence ssDNA because Hrq1 preferentially unwound poly(dT)-tailed forks independent of ssDNA length. Further, RecQ4 is capable of ssDNA strand annealing and annealing-dependent strand exchange, but Hrq1 lacks these activities. These results establish the importance of DNA sequence in Hrq1 helicase activity, and the absence of Hrq1 strand annealing activity explains the previously identified discrepancies between S. cerevisiae Hrq1 and human RecQ4. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. RADX interacts with single-stranded DNA to promote replication fork stability

    DEFF Research Database (Denmark)

    Schubert, Lisa; Ho, Teresa; Hoffmann, Saskia

    2017-01-01

    has an essential genome maintenance role, protecting ssDNA regions from nucleolytic degradation and providing a recruitment platform for proteins involved in responses to replication stress and DNA damage. Here, we identify the uncharacterized protein RADX (CXorf57) as an ssDNA-binding factor in human...... cells. RADX binds ssDNA via an N-terminal OB fold cluster, which mediates its recruitment to sites of replication stress. Deregulation of RADX expression and ssDNA binding leads to enhanced replication fork stalling and degradation, and we provide evidence that a balanced interplay between RADX and RPA...

  2. Assembly of presynaptic filaments. Factors affecting the assembly of RecA protein onto single-stranded DNA

    DEFF Research Database (Denmark)

    Thresher, RJ; Christiansen, Gunna; Griffith, JD

    1988-01-01

    We have previously shown that the assembly of RecA protein onto single-stranded DNA (ssDNA) facilitated by SSB protein occurs in three steps: (1) rapid binding of SSB protein to the ssDNA; (2) nucleation of RecA protein onto this template; and (3) co-operative polymerization of additional Rec......M in the presence of 12 mM-Mg2+), and relatively low concentrations of SSB protein (1 monomer per 18 nucleotides). Assembly was depressed threefold when SSB protein was added to one monomer per nine nucleotides. These effects appeared to be exerted at the nucleation step. Following nucleation, RecA protein...... assembled onto ssDNA at net rates that varied from 250 to 900 RecA protein monomers per minute, with the rate inversely related to the concentration of SSB protein. Combined sucrose sedimentation and electron microscope analysis established that SSB protein was displaced from the ssDNA during RecA protein...

  3. TERRA and hnRNPA1 orchestrate an RPA-to-POT1 switch on telomeric single-stranded DNA.

    Science.gov (United States)

    Flynn, Rachel Litman; Centore, Richard C; O'Sullivan, Roderick J; Rai, Rekha; Tse, Alice; Songyang, Zhou; Chang, Sandy; Karlseder, Jan; Zou, Lee

    2011-03-24

    Maintenance of telomeres requires both DNA replication and telomere 'capping' by shelterin. These two processes use two single-stranded DNA (ssDNA)-binding proteins, replication protein A (RPA) and protection of telomeres 1 (POT1). Although RPA and POT1 each have a critical role at telomeres, how they function in concert is not clear. POT1 ablation leads to activation of the ataxia telangiectasia and Rad3-related (ATR) checkpoint kinase at telomeres, suggesting that POT1 antagonizes RPA binding to telomeric ssDNA. Unexpectedly, we found that purified POT1 and its functional partner TPP1 are unable to prevent RPA binding to telomeric ssDNA efficiently. In cell extracts, we identified a novel activity that specifically displaces RPA, but not POT1, from telomeric ssDNA. Using purified protein, here we show that the heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1) recapitulates the RPA displacing activity. The RPA displacing activity is inhibited by the telomeric repeat-containing RNA (TERRA) in early S phase, but is then unleashed in late S phase when TERRA levels decline at telomeres. Interestingly, TERRA also promotes POT1 binding to telomeric ssDNA by removing hnRNPA1, suggesting that the re-accumulation of TERRA after S phase helps to complete the RPA-to-POT1 switch on telomeric ssDNA. Together, our data suggest that hnRNPA1, TERRA and POT1 act in concert to displace RPA from telomeric ssDNA after DNA replication, and promote telomere capping to preserve genomic integrity.

  4. Detection of short single-strand DNA homopolymers with ultrathin Si3N4 nanopores.

    Science.gov (United States)

    Ma, Jian; Qiu, Yinghua; Yuan, Zhishan; Zhang, Yin; Sha, Jingjie; Liu, Lei; Sun, Litao; Ni, Zhonghua; Yi, Hong; Li, Deyu; Chen, Yunfei

    2015-08-01

    A series of nanopores with diameters ranging from 2.5 to 63 nm are fabricated on a reduced Si3N4 membrane by focused ion beam and high energy electron beam. Through measuring the blocked ionic currents for DNA strands threading linearly through those solid-state nanopores, it is found that the blockade ionic current is proportional to the square of the hydrodynamic diameter of the DNA strand. With the nanopore diameter reduced to be comparable with that of DNA strands, the hydrodynamic diameter of the DNA becomes smaller, which is attributed to the size confinement effects. The duration time for the linear DNA translocation events increases monotonically with the nanopore length. By comparing the spatial configurations of DNA strands through nanopores with different diameters, it is found that the nanopore with large diameter has enough space to allow the DNA strand to translocate through with complex conformation. With the decrease of the nanopore diameter, the folded part of the DNA is prone to be straightened by the nanopore, which leads to the increase in the occurrence frequency of the linear DNA translocation events. Reducing the diameter of the nanopore to 2.5 nm allows the detection and discrimination of three nucleotide "G" and three nucleotide "T" homopolymer DNA strands based on differences in their physical dimensions.

  5. Charge enhancement of single-stranded DNA in negative electrospray ionization using the supercharging reagent meta-nitrobenzyl alcohol.

    Science.gov (United States)

    Brahim, Bessem; Alves, Sandra; Cole, Richard B; Tabet, Jean-Claude

    2013-12-01

    Charge enhancement of single-stranded oligonucleotide ions in negative ESI mode is investigated. The employed reagent, meta-nitrobenzyl alcohol (m-NBA), was found to improve total signal intensity (Itot), increase the highest observed charge states (zhigh), and raise the average charge states (zavg) of all tested oligonucleotides analyzed in negative ESI. To quantify these increases, signal enhancement ratios (SER1%) and charge enhancement coefficients (CEC1%) were introduced. The SER1%, (defined as the quotient of total oligonucleotide ion abundances with 1% m-NBA divided by total oligonucleotide abundance without m-NBA) was found to be greater than unity for every oligonucleotide tested. The CEC1% values (defined as the average charge state in the presence of 1% m-NBA minus the average charge state in the absence of m-NBA) were found to be uniformly positive. Upon close inspection, the degree of charge enhancement for longer oligonucleotides was found to be dependent upon thymine density (i.e., the number and the location of phospho-thymidine units). A correlation between the charge enhancement induced by the presence of m-NBA and the apparent gas-phase acidity (largely determined by the sequence of thymine units but also by the presence of protons on other nucleobases) of multiply deprotonated oligonucleotide species, was thus established. Ammonium cations appeared to be directly involved in the m-NBA supercharging mechanism, and their role seems to be consistent with previously postulated ESI mechanisms describing desorption/ionization of single-stranded DNA into the gas phase.

  6. Charge Enhancement of Single-Stranded DNA in Negative Electrospray Ionization Using the Supercharging Reagent Meta-nitrobenzyl Alcohol

    Science.gov (United States)

    Brahim, Bessem; Alves, Sandra; Cole, Richard B.; Tabet, Jean-Claude

    2013-12-01

    Charge enhancement of single-stranded oligonucleotide ions in negative ESI mode is investigated. The employed reagent, meta-nitrobenzyl alcohol (m-NBA), was found to improve total signal intensity (Itot), increase the highest observed charge states (zhigh), and raise the average charge states (zavg) of all tested oligonucleotides analyzed in negative ESI. To quantify these increases, signal enhancement ratios (SER1%) and charge enhancement coefficients (CEC1%) were introduced. The SER1%, (defined as the quotient of total oligonucleotide ion abundances with 1 % m-NBA divided by total oligonucleotide abundance without m-NBA) was found to be greater than unity for every oligonucleotide tested. The CEC1% values (defined as the average charge state in the presence of 1 % m-NBA minus the average charge state in the absence of m-NBA) were found to be uniformly positive. Upon close inspection, the degree of charge enhancement for longer oligonucleotides was found to be dependent upon thymine density (i.e., the number and the location of phospho-thymidine units). A correlation between the charge enhancement induced by the presence of m-NBA and the apparent gas-phase acidity (largely determined by the sequence of thymine units but also by the presence of protons on other nucleobases) of multiply deprotonated oligonucleotide species, was thus established. Ammonium cations appeared to be directly involved in the m-NBA supercharging mechanism, and their role seems to be consistent with previously postulated ESI mechanisms describing desorption/ionization of single-stranded DNA into the gas phase.

  7. Interaction with Single-stranded DNA-binding Protein Stimulates Escherichia coli Ribonuclease HI Enzymatic Activity

    Energy Technology Data Exchange (ETDEWEB)

    Petzold, Christine; Marceau, Aimee H.; Miller, Katherine H.; Marqusee, Susan; Keck, James L. (UW-MED); (UCB)

    2015-04-22

    Single-stranded (ss) DNA-binding proteins (SSBs) bind and protect ssDNA intermediates formed during replication, recombination, and repair reactions. SSBs also directly interact with many different genome maintenance proteins to stimulate their enzymatic activities and/or mediate their proper cellular localization. We have identified an interaction formed between Escherichia coli SSB and ribonuclease HI (RNase HI), an enzyme that hydrolyzes RNA in RNA/DNA hybrids. The RNase HI·SSB complex forms by RNase HI binding the intrinsically disordered C terminus of SSB (SSB-Ct), a mode of interaction that is shared among all SSB interaction partners examined to date. Residues that comprise the SSB-Ct binding site are conserved among bacterial RNase HI enzymes, suggesting that RNase HI·SSB complexes are present in many bacterial species and that retaining the interaction is important for its cellular function. A steady-state kinetic analysis shows that interaction with SSB stimulates RNase HI activity by lowering the reaction Km. SSB or RNase HI protein variants that disrupt complex formation nullify this effect. Collectively our findings identify a direct RNase HI/SSB interaction that could play a role in targeting RNase HI activity to RNA/DNA hybrid substrates within the genome.

  8. Double-stranded DNA dissociates into single strands when dragged into a poor solvent.

    Science.gov (United States)

    Cui, Shuxun; Yu, Jin; Kühner, Ferdinand; Schulten, Klaus; Gaub, Hermann E

    2007-11-28

    DNA displays a richness of biologically relevant supramolecular structures, which depend on both sequence and ambient conditions. The effect of dragging double-stranded DNA (dsDNA) from water into poor solvent on the double-stranded structure is still unclear because of condensation. Here, we employed single molecule techniques based on atomic force microscopy and molecular dynamics (MD) simulations to investigate the change in structure and mechanics of DNA during the ambient change. We found that the two strands are split apart when the dsDNA is pulled at one strand from water into a poor solvent. The findings were corroborated by MD simulations where dsDNA was dragged from water into poor solvent, revealing details of the strand separation at the water/poor solvent interface. Because the structure of DNA is of high polarity, all poor solvents show a relatively low polarity. We speculate that the principle of spontaneous unwinding/splitting of dsDNA by providing a low-polarity (in other word, hydrophobic) micro-environment is exploited as one of the catalysis mechanisms of helicases.

  9. Sequence-specific RNA Photocleavage by Single-stranded DNA in Presence of Riboflavin

    Science.gov (United States)

    Zhao, Yongyun; Chen, Gangyi; Yuan, Yi; Li, Na; Dong, Juan; Huang, Xin; Cui, Xin; Tang, Zhuo

    2015-10-01

    Constant efforts have been made to develop new method to realize sequence-specific RNA degradation, which could cause inhibition of the expression of targeted gene. Herein, by using an unmodified short DNA oligonucleotide for sequence recognition and endogenic small molecue, vitamin B2 (riboflavin) as photosensitizer, we report a simple strategy to realize the sequence-specific photocleavage of targeted RNA. The DNA strand is complimentary to the target sequence to form DNA/RNA duplex containing a G•U wobble in the middle. The cleavage reaction goes through oxidative elimination mechanism at the nucleoside downstream of U of the G•U wobble in duplex to obtain unnatural RNA terminal, and the whole process is under tight control by using light as switch, which means the cleavage could be carried out according to specific spatial and temporal requirements. The biocompatibility of this method makes the DNA strand in combination with riboflavin a promising molecular tool for RNA manipulation.

  10. Comment on "Monomer Dynamics in Double- and Single-Stranded DNA Polymers"

    OpenAIRE

    Tothova, J.; Brutovsky, B.; Lisy, V.

    2005-01-01

    It is discussed that the kinetics observed by Shusterman et al. [Phys. Rev. Lett. 92, 048303] for long dsDNA is not the Rouse one and, in fact, the macromolecule behaves (approximately) as the Zimm polymer.

  11. Sequence-specific RNA Photocleavage by Single-stranded DNA in Presence of Riboflavin.

    Science.gov (United States)

    Zhao, Yongyun; Chen, Gangyi; Yuan, Yi; Li, Na; Dong, Juan; Huang, Xin; Cui, Xin; Tang, Zhuo

    2015-10-13

    Constant efforts have been made to develop new method to realize sequence-specific RNA degradation, which could cause inhibition of the expression of targeted gene. Herein, by using an unmodified short DNA oligonucleotide for sequence recognition and endogenic small molecule, vitamin B2 (riboflavin) as photosensitizer, we report a simple strategy to realize the sequence-specific photocleavage of targeted RNA. The DNA strand is complimentary to the target sequence to form DNA/RNA duplex containing a G • U wobble in the middle. The cleavage reaction goes through oxidative elimination mechanism at the nucleoside downstream of U of the G • U wobble in duplex to obtain unnatural RNA terminal, and the whole process is under tight control by using light as switch, which means the cleavage could be carried out according to specific spatial and temporal requirements. The biocompatibility of this method makes the DNA strand in combination with riboflavin a promising molecular tool for RNA manipulation.

  12. Determination of nanogram quantities of osmium-labeled single stranded DNA by differential pulse stripping voltammetry

    Czech Academy of Sciences Publication Activity Database

    Kizek, René; Havran, Luděk; Fojta, Miroslav; Paleček, Emil

    2002-01-01

    Roč. 55, 1/2 (2002), s. 199-121 ISSN 1567-5394 R&D Projects: GA ČR GV204/97/K084; GA ČR GA204/00/D049; GA AV ČR IAA4004108 Institutional research plan: CEZ:AV0Z5004920 Keywords : differential pulse stripping voltammetry * microdetermination of DNA * chemical modification of DNA Subject RIV: BO - Biophysics Impact factor: 1.463, year: 2002

  13. Electronic Transport in Single-Stranded DNA Molecule Related to Huntington's Disease

    Science.gov (United States)

    Sarmento, R. G.; Silva, R. N. O.; Madeira, M. P.; Frazão, N. F.; Sousa, J. O.; Macedo-Filho, A.

    2018-04-01

    We report a numerical analysis of the electronic transport in single chain DNA molecule consisting of 182 nucleotides. The DNA chains studied were extracted from a segment of the human chromosome 4p16.3, which were modified by expansion of CAG (cytosine-adenine-guanine) triplet repeats to mimics Huntington's disease. The mutated DNA chains were connected between two platinum electrodes to analyze the relationship between charge propagation in the molecule and Huntington's disease. The computations were performed within a tight-binding model, together with a transfer matrix technique, to investigate the current-voltage (I-V) of 23 types of DNA sequence and compare them with the distributions of the related CAG repeat numbers with the disease. All DNA sequences studied have a characteristic behavior of a semiconductor. In addition, the results showed a direct correlation between the current-voltage curves and the distributions of the CAG repeat numbers, suggesting possible applications in the development of DNA-based biosensors for molecular diagnostics.

  14. Electronic Transport in Single-Stranded DNA Molecule Related to Huntington's Disease

    Science.gov (United States)

    Sarmento, R. G.; Silva, R. N. O.; Madeira, M. P.; Frazão, N. F.; Sousa, J. O.; Macedo-Filho, A.

    2018-02-01

    We report a numerical analysis of the electronic transport in single chain DNA molecule consisting of 182 nucleotides. The DNA chains studied were extracted from a segment of the human chromosome 4p16.3, which were modified by expansion of CAG (cytosine-adenine-guanine) triplet repeats to mimics Huntington's disease. The mutated DNA chains were connected between two platinum electrodes to analyze the relationship between charge propagation in the molecule and Huntington's disease. The computations were performed within a tight-binding model, together with a transfer matrix technique, to investigate the current-voltage (I-V) of 23 types of DNA sequence and compare them with the distributions of the related CAG repeat numbers with the disease. All DNA sequences studied have a characteristic behavior of a semiconductor. In addition, the results showed a direct correlation between the current-voltage curves and the distributions of the CAG repeat numbers, suggesting possible applications in the development of DNA-based biosensors for molecular diagnostics.

  15. First-In-Class Small Molecule Inhibitors of the Single-Strand DNA Cytosine Deaminase APOBEC3G

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ming; Shandilya, Shivender M.D.; Carpenter, Michael A.; Rathore, Anurag; Brown, William L.; Perkins, Angela L.; Harki, Daniel A.; Solberg, Jonathan; Hook, Derek J.; Pandey, Krishan K.; Parniak, Michael A.; Johnson, Jeffrey R.; Krogan, Nevan J.; Somasundaran, Mohan; Ali, Akbar; Schiffer, Celia A.; Harris, Reuben S. (Pitt); (UMASS, MED); (SLUHSC); (UCSF); (UMM)

    2012-04-04

    APOBEC3G is a single-stranded DNA cytosine deaminase that comprises part of the innate immune response to viruses and transposons. Although APOBEC3G is the prototype for understanding the larger mammalian polynucleotide deaminase family, no specific chemical inhibitors exist to modulate its activity. High-throughput screening identified 34 compounds that inhibit APOBEC3G catalytic activity. Twenty of 34 small molecules contained catechol moieties, which are known to be sulfhydryl reactive following oxidation to the orthoquinone. Located proximal to the active site, C321 was identified as the binding site for the inhibitors by a combination of mutational screening, structural analysis, and mass spectrometry. Bulkier substitutions C321-to-L, F, Y, or W mimicked chemical inhibition. A strong specificity for APOBEC3G was evident, as most compounds failed to inhibit the related APOBEC3A enzyme or the unrelated enzymes E. coli uracil DNA glycosylase, HIV-1 RNase H, or HIV-1 integrase. Partial, but not complete, sensitivity could be conferred to APOBEC3A by introducing the entire C321 loop from APOBEC3G. Thus, a structural model is presented in which the mechanism of inhibition is both specific and competitive, by binding a pocket adjacent to the APOBEC3G active site, reacting with C321, and blocking access to substrate DNA cytosines.

  16. Change of conformation and internal dynamics of supercoiled DNA upon binding of Escherichia coli single-strand binding protein

    International Nuclear Information System (INIS)

    Langowski, J.; Benight, A.S.; Fujimoto, B.S.; Schurr, J.M.; Schomburg, U.

    1985-01-01

    The influence of Escherichia coli single-strand binding (SSB) protein on the conformation and internal dynamics of pBR322 and pUC8 supercoiled DNAs has been investigated by using dynamic light scattering at 632.8 and 351.1 nm and time-resolved fluorescence polarization anisotropy of intercalated ethidium. SSB protein binds to both DNAs up to a stoichiometry that is sufficient to almost completely relax the superhelical turns. Upon saturation binding, the translational diffusion coefficients (D 0 ) of both DNAs decrease by approximately 20%. Apparent diffusion coefficients (D/sub app/) obtained from dynamic light scattering display the well-known increase with K 2 (K = scattering vector), leveling off toward a plateau value (D/sub plat/) at high K 2 . For both DNAs, the difference D/sub plat/ - D 0 increases upon relaxation of supercoils by SSB protein, which indicates a corresponding enhancement of the subunit mobilities in internal motions. Fluorescence polarization anisotropy measurements on free and complexed pBR322 DNA indicate a (predominantly) uniform torsional rigidity for the saturated DNA/SSB protein complex that is significantly reduced compared to the free DNA. These observations are all consistent with the notion that binding of SSB protein is accompanied by a gradual loss of supercoils and saturates when the superhelical twist is largely removed

  17. Sequence-based separation of single-stranded DNA using nucleotides in capillary electrophoresis: focus on phosphate.

    Science.gov (United States)

    Zhang, Xueru; McGown, Linda B

    2013-06-01

    DNA analysis has widespread applicability in biology, medicine, biotechnology, and forensics. DNA separation by length is readily achieved using sieving gels in electrophoresis. Separation by sequence is less simple, generally requiring adequate differences in native or induced conformation or differences in thermal or chemical stability of the strands that are hybridized prior to measurement. We previously demonstrated separation of four single-stranded DNA 76-mers that differ by only a few A-G substitutions based solely on sequence using guanosine-5'-monophosphate (GMP) in the running buffer. We attributed separation to the unique self-assembly of GMP to form higher order structures. Here, we examine an expanded set of 76-mers designed to probe the mechanism of the separation and effects of experimental conditions. We were surprised to find that other ribonucleotides achieved the similar separation to GMP, and that some separation was achieved using sodium phosphate instead of GMP. Potassium phosphate achieved almost as good separations as the ribonucleotides. This suggests that the separation medium provides a physicochemical environment for the DNA that effects strand migration in a sequence-selective manner. Further investigation is needed to determine whether the mechanism involves specific interactions between the phosphates and the DNA strands or is a result of other properties of the separation medium. Phosphate generally has been avoided in DNA separations by capillary gel electrophoresis because its high ionic strength exacerbates Joule heating. Our results suggest that phosphate compounds should be examined for separation of DNA based on sequence. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Electric light scattering from single-stranded DNA in linear polyacrylamide solutions.

    Science.gov (United States)

    Todorov, R; Starchev, K; Stoylov, S P

    2001-01-01

    The electric light scattering (ELS) of ssDNA (calf thymus, 10 kbp, 55 micrograms/mL) in denaturing polyacrylamide (PAA) solutions was studied as a function of applied sinusoidal electric field and polymer concentration. Electric fields of strengths up to 300 V/cm and of frequencies between 100 and 5000 Hz were applied. It was found that the ELS effect increases with the field strength and decreases at high frequencies. The dependence of the ELS effect of ssDNA on polymer concentration passes through a maximum at 1% PAA. The relaxation times of decay of the ELS effect increase with increasing polymer concentrations. It was demonstrated that ELS is a useful method for investigation of ssDNA behavior in the course of pulse-field electrophoresis in polymer solutions.

  19. Expansion during PCR of short single-stranded DNA fragments carrying nonselfcomplementary dinucleotide or trinucleotide repeats

    Czech Academy of Sciences Publication Activity Database

    Reichová, Naďa; Kypr, Jaroslav

    2003-01-01

    Roč. 30, č. 3 (2003), s. 155-163 ISSN 0301-4851 R&D Projects: GA ČR GA301/01/0590 Institutional research plan: CEZ:AV0Z5004920 Keywords : DNA * PCR * expansion Subject RIV: BO - Biophysics Impact factor: 0.565, year: 2003

  20. Oligo(dT) is not a correct native PAGE marker for single-stranded DNA

    Czech Academy of Sciences Publication Activity Database

    Kejnovská, Iva; Kypr, Jaroslav; Vorlíčková, Michaela

    2007-01-01

    Roč. 353, č. 3 (2007), s. 776-779 ISSN 0006-291X R&D Projects: GA AV ČR(CZ) IAA4004201; GA AV ČR(CZ) IAA1004201 Institutional research plan: CEZ:AV0Z50040702 Keywords : polyacrylamide gel electrophoresis * DNA length markers * oligo(dT) Subject RIV: BO - Biophysics Impact factor: 2.749, year: 2007

  1. Differentiation of Short Single-Stranded DNA Homopolymers in Solid-State Nanopores

    Science.gov (United States)

    Venta, Kimberly; Shemer, Gabriel; Puster, Matthew; Rodríguez-Manzo, Julio A.; Balan, Adrian; Rosenstein, Jacob K.; Shepard, Ken; Drndić, Marija

    2013-01-01

    In the last two decades, new techniques that monitor ionic current modulations as single molecules pass through a nanoscale pore have enabled numerous single-molecule studies. While biological nanopores have recently shown the ability to resolve single nucleotides within individual DNA molecules, similar developments with solid-state nanopores have lagged, due to challenges both in fabricating stable nanopores of similar dimensions as biological nanopores and in achieving sufficiently low-noise and high-bandwidth recordings. Here we show that small silicon nitride nanopores (0.8 to 2-nm-diameter in 5 to 8-nm-thick membranes) can resolve differences between ionic current signals produced by short (30 base) ssDNA homopolymers (poly(dA), poly(dC), poly(dT)), when combined with measurement electronics that allow a signal-to-noise ratio of better than 10 to be achieved at 1 MHz bandwidth. While identifying intramolecular DNA sequences with silicon nitride nanopores will require further improvements in nanopore sensitivity and noise levels, homopolymer differentiation represents an important milestone in the development of solid-state nanopores. PMID:23621759

  2. Theoretical Study of the Transpore Velocity Control of Single-Stranded DNA

    Directory of Open Access Journals (Sweden)

    Weixin Qian

    2014-08-01

    Full Text Available The electrokinetic transport dynamics of deoxyribonucleic acid (DNA molecules have recently attracted significant attention in various fields of research. Our group is interested in the detailed examination of the behavior of DNA when confined in micro/nanofluidic channels. In the present study, the translocation mechanism of a DNA-like polymer chain in a nanofluidic channel was investigated using Langevin dynamics simulations. A coarse-grained bead-spring model was developed to simulate the dynamics of a long polymer chain passing through a rectangular cross-section nanopore embedded in a nanochannel, under the influence of a nonuniform electric field. Varying the cross-sectional area of the nanopore was found to allow optimization of the translocation process through modification of the electric field in the flow channel, since a drastic drop in the electric potential at the nanopore was induced by changing the cross-section. Furthermore, the configuration of the polymer chain in the nanopore was observed to determine its translocation velocity. The competition between the strength of the electric field and confinement in the small pore produces various transport mechanisms and the results of this study thus represent a means of optimizing the design of nanofluidic devices for single molecule detection.

  3. The interplay of primer-template DNA phosphorylation status and single-stranded DNA binding proteins in directing clamp loaders to the appropriate polarity of DNA.

    Science.gov (United States)

    Hayner, Jaclyn N; Douma, Lauren G; Bloom, Linda B

    2014-01-01

    Sliding clamps are loaded onto DNA by clamp loaders to serve the critical role of coordinating various enzymes on DNA. Clamp loaders must quickly and efficiently load clamps at primer/template (p/t) junctions containing a duplex region with a free 3'OH (3'DNA), but it is unclear how clamp loaders target these sites. To measure the Escherichia coli and Saccharomyces cerevisiae clamp loader specificity toward 3'DNA, fluorescent β and PCNA clamps were used to measure clamp closing triggered by DNA substrates of differing polarity, testing the role of both the 5'phosphate (5'P) and the presence of single-stranded binding proteins (SSBs). SSBs inhibit clamp loading by both clamp loaders on the incorrect polarity of DNA (5'DNA). The 5'P groups contribute selectivity to differing degrees for the two clamp loaders, suggesting variations in the mechanism by which clamp loaders target 3'DNA. Interestingly, the χ subunit of the E. coli clamp loader is not required for SSB to inhibit clamp loading on phosphorylated 5'DNA, showing that χ·SSB interactions are dispensable. These studies highlight a common role for SSBs in directing clamp loaders to 3'DNA, as well as uncover nuances in the mechanisms by which SSBs perform this vital role. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  4. Genomic analysis of Pseudomonas putida phage tf with localized single-strand DNA interruptions.

    Directory of Open Access Journals (Sweden)

    Anatoly S Glukhov

    Full Text Available The complete sequence of the 46,267 bp genome of the lytic bacteriophage tf specific to Pseudomonas putida PpG1 has been determined. The phage genome has two sets of convergently transcribed genes and 186 bp long direct terminal repeats. The overall genomic architecture of the tf phage is similar to that of the previously described Pseudomonas aeruginosa phages PaP3, LUZ24 and phiMR299-2, and 39 out of the 72 products of predicted tf open reading frames have orthologs in these phages. Accordingly, tf was classified as belonging to the LUZ24-like bacteriophage group. However, taking into account very low homology levels between tf DNA and that of the other phages, tf should be considered as an evolutionary divergent member of the group. Two distinguishing features not reported for other members of the group were found in the tf genome. Firstly, a unique end structure--a blunt right end and a 4-nucleotide 3'-protruding left end--was observed. Secondly, 14 single-chain interruptions (nicks were found in the top strand of the tf DNA. All nicks were mapped within a consensus sequence 5'-TACT/RTGMC-3'. Two nicks were analyzed in detail and were shown to be present in more than 90% of the phage population. Although localized nicks were previously found only in the DNA of T5-like and phiKMV-like phages, it seems increasingly likely that this enigmatic structural feature is common to various other bacteriophages.

  5. Single stranded loops of quadruplex DNA as key benchmark for testing nucleic acids force fields

    Czech Academy of Sciences Publication Activity Database

    Fadrná, E.; Špačková, Naďa; Sarzynska, J.; Koča, J.; Orozco, M.; Cheatham III, T.E.; Kulinski, T.; Šponer, Jiří

    2009-01-01

    Roč. 5, č. 9 (2009), s. 2514-2530 ISSN 1549-9618 R&D Projects: GA MŠk(CZ) LC06030; GA AV ČR(CZ) 1QS500040581; GA AV ČR(CZ) IAA400040802 Grant - others:GA ČR(CZ) GA203/09/1476 Program:GA Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : DNA quadruplex * MD simulation * force fields Subject RIV: BO - Biophysics Impact factor: 4.804, year: 2009

  6. Ion Density Analysis of Single-Stranded DNA in Liquid Crystal

    Science.gov (United States)

    Iwabata, Kazuki; Seki, Yasutaka; Toizumi, Ryota; Shimada, Yuki; Furue, Hirokazu; Sakaguchi, Kengo

    2013-09-01

    With the widespread use of liquid crystals (LCs) in liquid crystal displays, we have looked into the application of liquid crystals in biotechnology. The purpose of the study described here is to investigate the physical properties of DNA using LCs. Synthetic oligonucleotide molecules were dispersed in MLC6884, the sample injected into antiparallel cells, and the amount of mobile ions was measured. The LC cell doped with oligonucleotide molecules showed a sequence-dependent, specific correlation between oligonucleotide concentration and the amount of mobile ions in the LC cells. In the framework of the Stokes model and polyacrylamide gel electrophoresis (PAGE) analysis, we speculate that this result arises from the difference in ion mobility, which is caused by the shape of the oligonucleotide molecule in the LC.

  7. UPregulated single-stranded DNA-binding protein 1 induces cell chemoresistance to cisplatin in lung cancer cell lines.

    Science.gov (United States)

    Zhao, Xiang; He, Rong; Liu, Yu; Wu, Yongkai; Kang, Leitao

    2017-07-01

    Cisplatin and its analogues are widely used as anti-tumor drugs in lung cancer but many cisplatin-resistant lung cancer cases have been identified in recent years. Single-stranded DNA-binding protein 1 (SSDBP1) can effectively induce H69 cell resistance to cisplatin in our previous identification; thus, it is necessary to explore the mechanism underlying the effects of SSDBP1-induced resistance to cisplatin. First, SSDBP1-overexpressed or silent cell line was constructed and used to analyze the effects of SSDBP1 on chemoresistance of lung cancer cells to cisplatin. SSDBP1 expression was assayed by real-time PCR and Western blot. Next, the effects of SSDBP1 on cisplatin sensitivity, proliferation, and apoptosis of lung cancer cell lines were assayed by MTT and flow cytometry, respectively; ABC transporters, apoptosis-related genes, and cell cycle-related genes by real-time PCR, and DNA wound repair by comet assay. Low expression of SSDBP1 was observed in H69 cells, while increased expression in cisplatin-resistant H69 cells. Upregulated expression of SSDBP1 in H69AR cells was identified to promote proliferation and cisplatin resistance and inhibit apoptosis, while downregulation of SSDBP1 to inhibit cisplatin resistance and proliferation and promoted apoptosis. Moreover, SSDBP1 promoted the expression of P2gp, MRP1, Cyclin D1, and CDK4 and inhibited the expression of caspase 3 and caspase 9. Furthermore, SSDBP1 promoted the DNA wound repair. These results indicated that SSDBP1 may induce cell chemoresistance of cisplatin through promoting DNA repair, resistance-related gene expression, cell proliferation, and inhibiting apoptosis.

  8. EFFECTOR OF TRANSCRIPTION2 is involved in xylem differentiation and includes a functional DNA single strand cutting domain.

    Science.gov (United States)

    Ivanov, Rumen; Tiedemann, Jens; Czihal, Andreas; Schallau, Anna; Diep, Le Hong; Mock, Hans-Peter; Claus, Bernhard; Tewes, Annegret; Bäumlein, Helmut

    2008-01-01

    EFFECTORS OF TRANSCRIPTION2 (ET) are plant-specific regulatory proteins characterized by the presence of two to five C-terminal DNA- and Zn-binding repeats, and a highly conserved cysteine pattern. We describe the structural characterization of the three member Arabidopsis thaliana ET gene family and reveal some allelic sequence polymorphisms. A mutation analysis showed that AtET2 affects the expression of various KNAT genes involved in the maintenance of the undifferentiated state of cambial meristem cells. It also plays a role in the regulation of GA5 (gibberellin 3-beta-dioxygenase) and the cell-cycle-related GASA4. A correlation was established between AtET2 expression and the cellular differentiation state. AtET-GFP fusion proteins shuttle between the cytoplasm and nucleus, with the AtET2 product prevented from entering the nucleus in non-differentiating cells. Within the nucleus, AtET2 probably acts via a single strand cutting domain. A more general regulatory role for ET factors is proposed, governing cell differentiation in cambial meristems, a crucial process for the development of plant vascular tissues.

  9. UV light-induced DNA synthesis arrest in HeLa cells is associated with changes in phosphorylation of human single-stranded DNA-binding protein

    International Nuclear Information System (INIS)

    Carty, M.P.; Zernik-Kobak, M.; McGrath, S.; Dixon, K.

    1994-01-01

    We show that DNA replication activity in extracts of human HeLa cells decreases following UV irradiation. Alterations in replication activity in vitro parallel the UV-induced block in cell cycle progression of these cells in culture. UV irradiation also induces specific changes in the pattern of phosphorylation of the 34 kDa subunit of a DNA replication protein, human single-stranded DNA-binding protein (hSSB). The appearance of a hyperphosphorylated form of hSSB correlates with reduced in vitro DNA replication activity in extracts of UV-irradiated cells. Replication activity can be restored to these extracts in vitro by addition of purified hSSB. These results suggest that UV-induced DNA synthesis arrest may be mediated in part through phosphorylation-related alterations in the activity of hSSB, an essential component of the DNA replication apparatus. (Author)

  10. Transient oxidative stress and inflammation after intraperitoneal administration of multiwalled carbon nanotubes functionalized with single strand DNA in rats

    Energy Technology Data Exchange (ETDEWEB)

    Clichici, Simona, E-mail: simonaclichici@yahoo.com [Department of Physiology, University of Medicine and Pharmacy, Cluj-Napoca (Romania); Biris, Alexandru Radu [National R and D Institute of Isotopic and Molecular Technologies, Cluj-Napoca (Romania); Tabaran, Flaviu [University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca (Romania); Filip, Adriana [Department of Physiology, University of Medicine and Pharmacy, Cluj-Napoca (Romania)

    2012-03-15

    Multi-walled carbon nanotubes (MWCNTs) are widely used for nanotechnology. Their impact on living organisms is, however, not entirely clarified. Oxidative stress and inflammation seem to be the key mechanisms involved in MWCNTs' cytotoxicity. Until present, pulmonary and skin models were the main tested experimental designs to assess carbon nanotubes' toxicity. The systemic administration of MWCNTs is essential, with respect for future medical applications. Our research is performed on Wistar rats and is focused on the dynamics of oxidative stress parameters in blood and liver and pro-inflammatory cytokines in liver, after single dose (270 mg l{sup −1}) ip administration of MWCNTs (exterior diameter 15–25 nm, interior diameter 10–15 nm, surface 88 m{sup 2} g{sup −1}) functionalized with single strand DNA (ss-DNA). The presence of MWCNTs in blood was assessed by Raman spectroscopy, while in liver histological examination and confocal microscopy were used. It was found that ss-DNA-MWCNTs induce oxidative stress in plasma and liver, with the return of the tested parameters to normal values, 6 h after ip injection of nanotubes, with the exception of reduced glutathione in plasma. The inflammatory cytokines (TNF-α, IL-1β) had a similar pattern of evolution. We also assessed the level of ERK1/2 and the phosphorylation of p65 subunit of NF-kB in liver that had a transient increase and returned to normal at the end of the tested period. Our results demonstrate that ss-DNA-MWCNTs produce oxidative stress and inflammation, but with a transient pattern. Given the fact that antioxidants modify the profile not only for oxidative stress, but also of inflammation, the dynamics of these alterations may be of practical importance for future protective strategies. -- Highlights: ► ss-DNA-MWCNTs ip administration induce oxidative stress in plasma and liver. ► ss-DNA-MWCNTs ip administration determine liver inflammation. ► ERK1/2 and p65 phosphorylated NF

  11. Intramolecular binding mode of the C-terminus of Escherichia coli single-stranded DNA binding protein determined by nuclear magnetic resonance spectroscopy

    OpenAIRE

    Shishmarev, Dmitry; Wang, Yao; Mason, Claire E.; Su, Xun-Cheng; Oakley, Aaron J.; Graham, Bim; Huber, Thomas; Dixon, Nicholas E.; Otting, Gottfried

    2013-01-01

    Single-stranded DNA (ssDNA) binding protein (SSB) is an essential protein to protect ssDNA and recruit specific ssDNA-processing proteins. Escherichia coli SSB forms a tetramer at neutral pH, comprising a structurally well-defined ssDNA binding domain (OB-domain) and a disordered C-terminal domain (C-domain) of ∼64 amino acid residues. The C-terminal eight-residue segment of SSB (C-peptide) has been shown to interact with the OB-domain, but crystal structures failed to reveal any electron den...

  12. Nucleotide fluctuation of radiation-resistant Halobacterium sp. NRC-1 single-stranded DNA-binding protein (RPA) genes

    Science.gov (United States)

    Holden, Todd; Tremberger, G., Jr.; Cheung, E.; Subramaniam, R.; Gadura, N.; Schneider, P.; Sullivan, R.; Flamholz, A.; Lieberman, D.; Cheung, T. D.

    2009-08-01

    The Single-Stranded DNA-Binding Protein (RPA) Genes in gamma ray radiation-resistant halophilic archaeon Halobacterium sp. NRC-1 were analyzed in terms of their nucleotide fluctuations. In an ATCG sequence, each base was assigned a number equal to its atomic number. The resulting numerical sequence was the basis of the statistical analysis in this study. Fractal analysis using the Higuchi method gave fractal dimensions of 2.04 and 2.06 for the gene sequences VNG2160 and VNG2162, respectively. The 16S rRNA sequence has a fractal dimension of 1.99. The di-nucleotide Shannon entropy values were found to be negatively correlated with the observed fractal dimensions (R2~ 0.992, N=3). Inclusion of Deinococcus radiodurans Rad-A in the regression analysis decreases the R2 slightly to 0.98 (N=4). A third VNG2163 RPA gene of unknown function but with upregulation activity under irradiation was found to have a fractal dimension of 2.05 and a Shannon entropy of 3.77 bits. The above results are similar to those found in bacterial Deinococcus radiodurans and suggest that their high radiation resistance property would have favored selection of CG di-nucleotide pairs. The two transcription factors TbpD (VNG7114) and TfbA (VNG 2184) were also studied. Using VNG7114, VNG2184, and VNG2163; the regression analysis of fractal dimension versus Shannon entropy shows that R2 ~ 0.997 for N =3. The VNG2163 unknown function may be related to the pathways with transcriptions closely regulated to sequences VNG7114 and VNG2184.

  13. Complementarily addressed modification and cleavage of a single-stranded fragment of DNA with the aid of alkylating derivatives of oligonucleotides

    International Nuclear Information System (INIS)

    Brosalina, E.B.; Vlasov, V.V.; Kutyavin, I.V.; Mamaev, S.V.; Pletnev, A.G.; Podyminogin, M.A.

    1986-01-01

    The chemical modification of a 303-nucleotide single-stranded fragment of DNA by alkylating oligonucleotide derivatives bearing 4-[N-methyl-N-(2-chloroethyl)amino]benzyl groups in the 5'-terminal phosphate of the 3'-terminal ribose residue has been investigated. It has been shown that under the conditions of the formation of a complex with the DNA fragment both types of derivatives specifically alkylate nucleotides of the DNA fragments that are located directly adjacent to the sections complementary to the oligonucleotides bearing the reactive groups. Alkylation takes place with a high efficiency, and the DNA fragment can be cleaved specifically at the position of the alkylated nucleotides

  14. Single-strand conformation polymorphism analysis of ribosomal DNA for detection of Phytophthora ramorum directly from plant tissues

    Science.gov (United States)

    Ping Kong; Patricia A. Richardson; Chuanxue Hong; Thomas L. Kubisiak

    2006-01-01

    At the first Sudden Oak Death Science Symposium, we reported on the use of a single strand conformation polymorphism (SSCP) analysis for rapid identification of Phytophthora ramorum in culture. We have since assessed and improved the fingerprinting technique for detecting this pathogen directly from plant tissues. The improved SSCP protocol uses a...

  15. Intensive Linkage Mapping in a Wasp (Bracon Hebetor) and a Mosquito (Aedes Aegypti) with Single-Strand Conformation Polymorphism Analysis of Random Amplified Polymorphic DNA Markers

    OpenAIRE

    Antolin, M. F.; Bosio, C. F.; Cotton, J.; Sweeney, W.; Strand, M. R.; Black-IV, W. C.

    1996-01-01

    The use of random amplified polymorphic DNA from the polymerase chain reaction (RAPD-PCR) allows efficient construction of saturated linkage maps. However, when analyzed by agarose gel electrophoresis, most RAPD-PCR markers segregate as dominant alleles, reducing the amount of linkage information obtained. We describe the use of single strand conformation polymorphism (SSCP) analysis of RAPD markers to generate linkage maps in a haplodiploid parasitic wasp Bracon (Habrobracon) hebetor and a d...

  16. Coupled aggregation of mitochondrial single-strand DNA-binding protein tagged with Eos fluorescent protein visualizes synchronized activity of mitochondrial nucleoids

    Czech Academy of Sciences Publication Activity Database

    Olejár, Tomáš; Pajuelo-Reguera, David; Alán, Lukáš; Dlasková, Andrea; Ježek, Petr

    2015-01-01

    Roč. 12, č. 4 (2015), s. 5185-5190 ISSN 1791-2997 R&D Projects: GA ČR(CZ) GAP302/10/0346; GA MŠk(CZ) EE2.3.30.0025 Institutional support: RVO:67985823 Keywords : mitochondrial nucleoid * single- strand ed DNA -binding protein * photoconvertible fluorescent protein Eos Subject RIV: EA - Cell Biology Impact factor: 1.559, year: 2015

  17. Dynamics of water around the complex structures formed between the KH domains of far upstream element binding protein and single-stranded DNA molecules

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, Kaushik; Bandyopadhyay, Sanjoy, E-mail: sanjoy@chem.iitkgp.ernet.in [Molecular Modeling Laboratory, Department of Chemistry, Indian Institute of Technology, Kharagpur 721302 (India)

    2015-07-28

    Single-stranded DNA (ss-DNA) binding proteins specifically bind to the single-stranded regions of the DNA and protect it from premature annealing, thereby stabilizing the DNA structure. We have carried out atomistic molecular dynamics simulations of the aqueous solutions of two DNA binding K homology (KH) domains (KH3 and KH4) of the far upstream element binding protein complexed with two short ss-DNA segments. Attempts have been made to explore the influence of the formation of such complex structures on the microscopic dynamics and hydrogen bond properties of the interfacial water molecules. It is found that the water molecules involved in bridging the ss-DNA segments and the protein domains form a highly constrained thin layer with extremely retarded mobility. These water molecules play important roles in freezing the conformational oscillations of the ss-DNA oligomers and thereby forming rigid complex structures. Further, it is demonstrated that the effect of complexation on the slow long-time relaxations of hydrogen bonds at the interface is correlated with hindered motions of the surrounding water molecules. Importantly, it is observed that the highly restricted motions of the water molecules bridging the protein and the DNA components in the complexed forms originate from more frequent hydrogen bond reformations.

  18. Ca2+ improves organization of single-stranded DNA bases in human Rad51 filament, explaining stimulatory effect on gene recombination.

    KAUST Repository

    Fornander, Louise H

    2012-02-22

    Human RAD51 protein (HsRad51) catalyses the DNA strand exchange reaction for homologous recombination. To clarify the molecular mechanism of the reaction in vitro being more effective in the presence of Ca(2+) than of Mg(2+), we have investigated the effect of these ions on the structure of HsRad51 filament complexes with single- and double-stranded DNA, the reaction intermediates. Flow linear dichroism spectroscopy shows that the two ionic conditions induce significantly different structures in the HsRad51/single-stranded DNA complex, while the HsRad51/double-stranded DNA complex does not demonstrate this ionic dependence. In the HsRad51/single-stranded DNA filament, the primary intermediate of the strand exchange reaction, ATP/Ca(2+) induces an ordered conformation of DNA, with preferentially perpendicular orientation of nucleobases relative to the filament axis, while the presence of ATP/Mg(2+), ADP/Mg(2+) or ADP/Ca(2+) does not. A high strand exchange activity is observed for the filament formed with ATP/Ca(2+), whereas the other filaments exhibit lower activity. Molecular modelling suggests that the structural variation is caused by the divalent cation interfering with the L2 loop close to the DNA-binding site. It is proposed that the larger Ca(2+) stabilizes the loop conformation and thereby the protein-DNA interaction. A tight binding of DNA, with bases perpendicularly oriented, could facilitate strand exchange.

  19. Monitoring the Retention of Human Proliferating Cell Nuclear Antigen at Primer/Template Junctions by Proteins That Bind Single-Stranded DNA.

    Science.gov (United States)

    Hedglin, Mark; Aitha, Mahesh; Benkovic, Stephen J

    2017-07-11

    In humans, proliferating cell nuclear antigen (PCNA) sliding clamps encircling DNA coordinate various aspects of DNA metabolism throughout the cell cycle. A critical aspect of this is restricting PCNA to the vicinity of its DNA target site. For example, PCNA must be maintained at or near primer/template (P/T) junctions during DNA synthesis. With a diverse array of cellular factors implicated, many of which interact with PCNA, DNA, or both, it is unknown how this critical feat is achieved. Furthermore, current biochemical assays that examine the retention of PCNA near P/T junctions are inefficient, discontinuous, and qualitative and significantly deviate from physiologically relevant conditions. To overcome these challenges and limitations, we recently developed a novel and convenient Förster resonance energy transfer (FRET) assay that directly and continuously monitors the retention of human PCNA at a P/T junction. Here we describe in detail the design, methodology, interpretation, and limitations of this quantitative FRET assay using the single-stranded DNA-binding protein, SSB, from Escherichia coli as an example. This powerful tool is broadly applicable to any single-stranded DNA-binding protein and may be utilized and/or expanded upon to dissect DNA metabolic pathways that are dependent upon PCNA.

  20. Functional roles of the N- and C-terminal regions of the human mitochondrial single-stranded DNA-binding protein.

    Directory of Open Access Journals (Sweden)

    Marcos T Oliveira

    2010-10-01

    Full Text Available Biochemical studies of the mitochondrial DNA (mtDNA replisome demonstrate that the mtDNA polymerase and the mtDNA helicase are stimulated by the mitochondrial single-stranded DNA-binding protein (mtSSB. Unlike Escherichia coli SSB, bacteriophage T7 gp2.5 and bacteriophage T4 gp32, mtSSBs lack a long, negatively charged C-terminal tail. Furthermore, additional residues at the N-terminus (notwithstanding the mitochondrial presequence are present in the sequence of species across the animal kingdom. We sought to analyze the functional importance of the N- and C-terminal regions of the human mtSSB in the context of mtDNA replication. We produced the mature wild-type human mtSSB and three terminal deletion variants, and examined their physical and biochemical properties. We demonstrate that the recombinant proteins adopt a tetrameric form, and bind single-stranded DNA with similar affinities. They also stimulate similarly the DNA unwinding activity of the human mtDNA helicase (up to 8-fold. Notably, we find that unlike the high level of stimulation that we observed previously in the Drosophila system, stimulation of DNA synthesis catalyzed by human mtDNA polymerase is only moderate, and occurs over a narrow range of salt concentrations. Interestingly, each of the deletion variants of human mtSSB stimulates DNA synthesis at a higher level than the wild-type protein, indicating that the termini modulate negatively functional interactions with the mitochondrial replicase. We discuss our findings in the context of species-specific components of the mtDNA replisome, and in comparison with various prokaryotic DNA replication machineries.

  1. Genetic and environmental influence on DNA strand break repair

    DEFF Research Database (Denmark)

    Garm, Christian; Moreno-Villanueva, Maria; Bürkle, Alexander

    2013-01-01

    factors are likely to influence DNA repair capacity. In order to gain more insight into the genetic and environmental contribution to the molecular basis of DNA repair, we have performed a human twin study, where we focused on the consequences of some of the most abundant types of DNA damage (single-strand...... breaks), and some of the most hazardous lesions (DNA double-strand breaks). DNA damage signaling response (Gamma-H2AX signaling), relative amount of endogenous damage, and DNA-strand break repair capacities were studied in peripheral blood mononuclear cells from 198 twins (94 monozygotic and 104...... dizygotic). We did not detect genetic effects on the DNA-strand break variables in our study. Environ. Mol. Mutagen., 2013. © 2013 Wiley Periodicals, Inc....

  2. The human mitochondrial single-stranded DNA-binding protein displays distinct kinetics and thermodynamics of DNA binding and exchange.

    Science.gov (United States)

    Qian, Yufeng; Johnson, Kenneth A

    2017-08-04

    The human mitochondrial ssDNA-binding protein (mtSSB) is a homotetrameric protein, involved in mtDNA replication and maintenance. Although mtSSB is structurally similar to SSB from Escherichia coli (EcoSSB), it lacks the C-terminal disordered domain, and little is known about the biophysics of mtSSB-ssDNA interactions. Here, we characterized the kinetics and thermodynamics of mtSSB binding to ssDNA by equilibrium titrations and stopped-flow kinetic measurements. We show that the mtSSB tetramer can bind to ssDNA in two distinct binding modes: (SSB) 30 and (SSB) 60 , defined by DNA binding site sizes of 30 and 60 nucleotides, respectively. We found that the binding mode is modulated by magnesium ion and NaCl concentration, but unlike EcoSSB, the mtSSB does not show negative intersubunit cooperativity. Global fitting of both the equilibrium and kinetic data afforded estimates for the rate and equilibrium constants governing the formation of (SSB) 60 and (SSB) 30 complexes and for the transitions between the two binding modes. We found that the mtSSB tetramer binds to ssDNA with a rate constant near the diffusion limit (2 × 10 9 m -1 s -1 ) and that longer DNA (≥60 nucleotides) rapidly wraps around all four monomers, as revealed by FRET assays. We also show that the mtSSB tetramer can directly transfer from one ssDNA molecule to another via an intermediate with two DNA molecules bound to the mtSSB. In conclusion, our results indicate that human mtSSB shares many physicochemical properties with EcoSSB and that the differences may be explained by the lack of an acidic, disordered C-terminal tail in human mtSSB protein. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. On-site detection of Phytophthora spp.—single-stranded target DNA as the limiting factor to improve on-chip hybridization

    International Nuclear Information System (INIS)

    Schwenkbier, Lydia; Pollok, Sibyll; Popp, Jürgen; Weber, Karina; König, Stephan; Wagner, Stefan; Werres, Sabine; Weber, Jörg; Hentschel, Martin

    2014-01-01

    We report on a lab-on-a-chip approach for on-site detection of Phytophthora species that allows visual signal readout. The results demonstrate the significance of single-stranded DNA (ssDNA) generation in terms of improving the intensity of the hybridization signal and to improve the reliability of the method. Conventional PCR with subsequent heat denaturation, sodium hydroxide-based denaturation, lambda exonuclease digestion and two asymmetric PCR methods were investigated for the species P. fragariae, P. kernoviae, and P. ramorum. The positioning of the capture probe within the amplified yeast GTP-binding protein (YPT1) target DNA was also of interest because it significantly influences the intensity of the signal. Statistical tests were used to validate the impact of the ssDNA generation methods and the capture-target probe position. The single-stranded target DNA generated by Linear-After-The-Exponential PCR (LATE-PCR) was found to produce signal intensities comparable to post-PCR exonuclease treatment. The LATE-PCR is the best method for the on-site detection of Phytophthora because the enzymatic digestion after PCR is more laborious and time-consuming. (author)

  4. Fusion of Taq DNA polymerase with single-stranded DNA binding-like protein of Nanoarchaeum equitans-Expression and characterization.

    Directory of Open Access Journals (Sweden)

    Marcin Olszewski

    Full Text Available DNA polymerases are present in all organisms and are important enzymes that synthesise DNA molecules. They are used in various fields of science, predominantly as essential components for in vitro DNA syntheses, known as PCR. Modern diagnostics, molecular biology and genetic engineering need DNA polymerases which demonstrate improved performance. This study was aimed at obtaining a new NeqSSB-TaqS fusion DNA polymerase from the Taq DNA Stoffel domain and a single-stranded DNA binding-like protein of Nanoarchaeum equitans in order to significantly improve the properties of DNA polymerase. The DNA coding sequence of Taq Stoffel DNA polymerase and the nonspecific DNA-binding protein of Nanoarchaeum equitans (NeqSSB-like protein were fused. A novel recombinant gene was obtained which was cloned into the pET-30 Ek/LIC vector and introduced into E. coli for expression. The recombinant enzyme was purified and its enzymatic properties including DNA polymerase activity, PCR amplification rate, thermostability, processivity and resistance to inhibitors, were tested. The yield of the target protein reached approximately 18 mg/l after 24 h of the IPTG induction. The specific activity of the polymerase was 2200 U/mg. The recombinant NeqSSB-TaqS exhibited a much higher extension rate (1000 bp template in 20 s, processivity (19 nt, thermostability (half-life 35 min at 95°C and higher tolerance to PCR inhibitors (0.3-1.25% of whole blood, 0.84-13.5 μg of lactoferrin and 4.7-150 ng of heparin than Taq Stoffel DNA polymerase. Furthermore, our studies show that NeqSSB-TaqS DNA polymerase has a high level of flexibility in relation to Mg2+ ions (from 1 to 5 mM and KCl or (NH42SO4 salts (more than 60 mM and 40 mM, respectively. Using NeqSSB-TaqS DNA polymerase instead of the Taq DNA polymerase could be a better choice in many PCR applications.

  5. Comparison of the electrophoretic method with the sedimentation method for the analysis of DNA strand breaks

    International Nuclear Information System (INIS)

    Yamamoto, Osamu; Ogawa, Masaaki; Hoshi, Masaharu

    1982-01-01

    Application of electrophoresis to the analysis of DNA strand breaks was studied comparing with the sedimentation analysis. A BRL gel electrophoresis system (Type V16) was used for this study. Calf thymus DNA (1 mg/ml) irradiated with 60 Co gamma-rays in SSC solution was applied to both the electrophoretic analysis and the sedimentation analysis. Lamda phage DNA and its fragments were employed as the standard size molecules. In a range from 1 k base pairs to 6 k base pairs in length for double stranded DNA or from 2 k bases to 12 k bases for single stranded DNA, the calculated average molecular weight from the electrophoresis coincided with that from the sedimentation. Number of single strand breaks and double strand breaks were 1.34 x 10 11 breaks/mg/rad (G = 0.215) and 0.48 x 10 5 breaks/mg/rad 2 , respectively. (author)

  6. DNA turnover and strand breaks in Escherichia coli

    International Nuclear Information System (INIS)

    Hanawalt, P.; Grivell, A.; Nakayama, H.

    1975-01-01

    The extent of DNA turnover has been measured in a dnaB mutant of Escherichia coli, temperature sensitive for semiconservative DNA replication. At the nonpermissive temperature about 0.02 percent of the deoxynucleotides in DNA are exchanged per generation period. This turnover rate is markedly depressed in the presence of rifampicin. During thymine starvation strand breaks accumulate in the DNA of E. coli strains that are susceptible to thymineless death. Rifampicin suppresses the appearance of these breaks, consistent with our hypothesis that transcription may be accompanied by repairable single-strand breaks in DNA. DNA turnover is enhanced severalfold in strands containing 5-bromodeoxyuridine in place of thymidine, possibly because the analog (or the deoxyuridine, following debromination) is sometimes recognized and excised

  7. On the identification techniques for ionizing radiation structure breaks in the DNA molecule

    International Nuclear Information System (INIS)

    Kamluk, A.N.; Shirko, A.V.; Zhavarankau, I.S.

    2012-01-01

    In this paper, we propose a theoretical method for evaluation of the number and locations of single-strand breaks in DNA using a change in the passage of a longitudinal wave along the double helix. A linear chain of n interacting particles connected by a pair of springs is taken as a model of the DNA molecule. (authors)

  8. Single-stranded DNA fragments of insect-specific nuclear polyhedrosis virus act as selective DNA insecticides for gypsy moth control.

    Science.gov (United States)

    Oberemok, Volodymyr V; Skorokhod, Oleksii A

    2014-07-01

    This paper focuses on the DNA insecticides as a novel preparation against gypsy moth (Lymantria dispar) based on DNA fragments of the anti-apoptotic gene of its nuclear polyhedrosis virus. It was found that the external application of a solution with two single-stranded DNA fragments from BIR and RING domains of LdMNPV (L.dispar multicapsid nuclear polyhedrosis virus) IAP-3 (inhibitor of apoptosis) gene induces a significantly higher mortality of gypsy moth caterpillars in comparison with the application of the control solutions. This effect does not depend on the infection of caterpillars with LdMNPV. The results also show that DNA insecticides based on LdMNPV IAP-3 gene fragments can be selective in action, and at least are not harmful to tobacco hornworm (Manduca sexta) and black cutworm (Agrotis ipsilon). Part of the gypsy moth genome cloned with the fragments of BIR and RING domains of LdMNPV IAP-3 gene as primers, has an overlap with the corresponding part of the LdMNPV IAP-3 gene and L.dispar IAP-1 mRNA for an inhibitor of apoptosis protein with the high cover by query, allows assuming that we cloned a part of gypsy moth anti-apoptosis gene. This finding gives the grounding that proposed here DNA insecticides might act through the blocking of the mechanisms involved in post transcriptional expression of insect anti-apoptosis genes. The results show the insecticidal potential of the viral genome fragments that can be used to create safe and relatively fast-acting DNA insecticides to control the quantity of gypsy moth populations, important task for forestry and agriculture. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Conformation effects of CpG methylation on single-stranded DNA oligonucleotides: analysis of the opioid peptide dynorphin-coding sequences.

    Directory of Open Access Journals (Sweden)

    Malik Mumtaz Taqi

    Full Text Available Single-stranded DNA (ssDNA is characterized by high conformational flexibility that allows these molecules to adopt a variety of conformations. Here we used native polyacrylamide gel electrophoresis (PAGE, circular dichroism (CD spectroscopy and nuclear magnetic resonance (NMR spectroscopy to show that cytosine methylation at CpG sites affects the conformational flexibility of short ssDNA molecules. The CpG containing 37-nucleotide PDYN (prodynorphin fragments were used as model molecules. The presence of secondary DNA structures was evident from differences in oligonucleotide mobilities on PAGE, from CD spectra, and from formation of A-T, G-C, and non-canonical G-T base pairs observed by NMR spectroscopy. The oligonucleotides displayed secondary structures at 4°C, and some also at 37°C. Methylation at CpG sites prompted sequence-dependent formation of novel conformations, or shifted the equilibrium between different existing ssDNA conformations. The effects of methylation on gel mobility and base pairing were comparable in strength to the effects induced by point mutations in the DNA sequences. The conformational effects of methylation may be relevant for epigenetic regulatory events in a chromatin context, including DNA-protein or DNA-DNA recognition in the course of gene transcription, and DNA replication and recombination when double-stranded DNA is unwinded to ssDNA.

  10. Isolation and characterization of a single-stranded DNA virus infecting the marine diatom Chaetoceros sp. strain SS628-11 isolated from western Japan.

    Directory of Open Access Journals (Sweden)

    Kei Kimura

    Full Text Available Diatoms are significant organisms for primary production in the earth's aquatic environment. Hence, their dynamics are an important focus area in current studies. Viruses are a great concern as potential factors of diatom mortality, along with other physical, chemical, and biological factors. We isolated and characterized a new diatom virus (Csp07DNAV that lyses the marine planktonic diatom Chaetoceros sp. strain SS628-11. This paper examines the physiological, morphological, and genomic characteristics of Csp07DNAV. The virus was isolated from a surface water sample that was collected at Hiroshima Bay, Japan. It was icosahedral, had a diameter of 34 nm, and accumulated in the nuclei of host cells. Rod-shaped virus particles also coexisted in the host nuclei. The latent period and burst size were estimated to be <12 h and 29 infectious units per host cell, respectively. Csp07DNAV had a closed circular single-stranded DNA genome (5,552 nucleotides, which included a double-stranded region and 3 open reading frames. The monophyly of Csp07DNAV and other Bacilladnavirus group single-stranded DNA viruses was supported by phylogenetic analysis that was based on the amino acid sequence of each virus protein. On the basis of these results, we considered Csp07DNAV to be a new member of the genus Bacilladnavirus.

  11. Sedimentation properties of DNA-membrane complexes and yield of DNA breaks at irradiation of mammalian cells

    International Nuclear Information System (INIS)

    Erzgraber, G.; Kozubek, S.; Lapidus, I.L.

    1985-01-01

    The dependence of the relative sedimentation velocity of DNA-membrane complexes on the dose of irradiation and time of incubation of Chinese Hamster cells is analysed. It is concluded that the initial part of the curve provides the information on the occurrence of single strand breaks in DNA; the position of the local maximum allows us to calculate the yield of DNA double strand breaks. The reparation decay constant can be estimated as well

  12. DNA strand breaks, repair, and survival in x-irradiated mammalian cells

    International Nuclear Information System (INIS)

    Dugle, D.L.; Gillespie, C.J.; Chapman, J.D.

    1976-01-01

    The yields of unrepairable single- and double-strand breaks in the DNA of x-irradiated Chinese hamster cells were measured by low-speed neutral and alkaline sucrose density gradient sedimentation in order to investigate the relation between these lesions and reproductive death. After maximal single-strand rejoining, at all doses, the number of residual single-strand breaks was twice the number of residual double-strand breaks. Both double-strand and unrepairable single-strand breaks were proportional to the square of absorbed dose, in the range 10-50 krad. No rejoining of double-strand breaks was observed. These observations suggest that, in mammalian cells, most double-strand breaks are not repairable, while all single-strand breaks are repaired except those that are sufficiently close on complementary strands to constitute double-strand breaks. Comparison with cell survival measurements at much lower doses suggests that loss of reproductive capacity corresponds to induction of approximately one double-strand break

  13. Analysis of DNA strand break induction and repair in plants from the vicinity of Chernobyl

    International Nuclear Information System (INIS)

    Syomov, A.B.; Ptitsyna, S.N.; Sergeeva, S.A.

    1992-01-01

    For 3 years following the Chernobyl accident DNA repair efficiency was studied in irradiated and control populations of various plan species. Compared with the control populations, some irradiated populations exhibited increases in the yield of DNA single-strand breaks per unit dose of challenge radiation. The effect was registered in low-dose-rate alpha-irradiated populations, but was absent in plant populations growing in conditions of low-dose-rate beta-irradiation. The efficiency of single-strand DNA repair was identical in control and irradiated populations and approximated 100%. (author). 12 refs.; 1 fig.; 2 tabs

  14. Two modes of interaction of the single-stranded DNA-binding protein of bacteriophage T7 with the DNA polymerase-thioredoxin complex

    KAUST Repository

    Ghosh, Sharmistha

    2010-04-06

    The DNA polymerase encoded by bacteriophage T7 has low processivity. Escherichia coli thioredoxin binds to a segment of 76 residues in the thumb subdomain of the polymerase and increases the processivity. The binding of thioredoxin leads to the formation of two basic loops, loops A and B, located within the thioredoxin-binding domain (TBD). Both loops interact with the acidic C terminus of the T7 helicase. A relatively weak electrostatic mode involves the C-terminal tail of the helicase and the TBD, whereas a high affinity interaction that does not involve the C-terminal tail occurs when the polymerase is in a polymerization mode. T7 gene 2.5 single-stranded DNA-binding protein (gp2.5) also has an acidic C-terminal tail. gp2.5 also has two modes of interaction with the polymerase, but both involve the C-terminal tail of gp2.5. An electrostatic interaction requires the basic residues in loops A and B, and gp2.5 binds to both loops with similar affinity as measured by surface plasmon resonance. When the polymerase is in a polymerization mode, the C terminus of gene 2.5 protein interacts with the polymerase in regions outside the TBD.gp2.5 increases the processivity of the polymerase-helicase complex during leading strand synthesis. When loop B of the TBD is altered, abortive DNA products are observed during leading strand synthesis. Loop B appears to play an important role in communication with the helicase and gp2.5, whereas loop A plays a stabilizing role in these interactions. © 2010 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. DNA resection in eukaryotes: deciding how to fix the break.

    Science.gov (United States)

    Huertas, Pablo

    2010-01-01

    DNA double-strand breaks are repaired by different mechanisms, including homologous recombination and nonhomologous end-joining. DNA-end resection, the first step in recombination, is a key step that contributes to the choice of DSB repair. Resection, an evolutionarily conserved process that generates single-stranded DNA, is linked to checkpoint activation and is critical for survival. Failure to regulate and execute this process results in defective recombination and can contribute to human disease. Here I review recent findings on the mechanisms of resection in eukaryotes, from yeast to vertebrates, provide insights into the regulatory strategies that control it, and highlight the consequences of both its impairment and its deregulation.

  16. Thermodynamics of complex structures formed between single-stranded DNA oligomers and the KH domains of the far upstream element binding protein

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, Kaushik; Sinha, Sudipta Kumar; Bandyopadhyay, Sanjoy, E-mail: sanjoy@chem.iitkgp.ernet.in [Molecular Modeling Laboratory, Department of Chemistry, Indian Institute of Technology, Kharagpur 721302 (India)

    2016-05-28

    The noncovalent interaction between protein and DNA is responsible for regulating the genetic activities in living organisms. The most critical issue in this problem is to understand the underlying driving force for the formation and stability of the complex. To address this issue, we have performed atomistic molecular dynamics simulations of two DNA binding K homology (KH) domains (KH3 and KH4) of the far upstream element binding protein (FBP) complexed with two single-stranded DNA (ss-DNA) oligomers in aqueous media. Attempts have been made to calculate the individual components of the net entropy change for the complexation process by adopting suitable statistical mechanical approaches. Our calculations reveal that translational, rotational, and configurational entropy changes of the protein and the DNA components have unfavourable contributions for this protein-DNA association process and such entropy lost is compensated by the entropy gained due to the release of hydration layer water molecules. The free energy change corresponding to the association process has also been calculated using the Free Energy Perturbation (FEP) method. The free energy gain associated with the KH4–DNA complex formation has been found to be noticeably higher than that involving the formation of the KH3–DNA complex.

  17. Integrative modelling coupled with ion mobility mass spectrometry reveals structural features of the clamp loader in complex with single-stranded DNA binding protein.

    Science.gov (United States)

    Politis, Argyris; Park, Ah Young; Hall, Zoe; Ruotolo, Brandon T; Robinson, Carol V

    2013-11-29

    DNA polymerase III, a decameric 420-kDa assembly, simultaneously replicates both strands of the chromosome in Escherichia coli. A subassembly of this holoenzyme, the seven-subunit clamp loader complex, is responsible for loading the sliding clamp (β2) onto DNA. Here, we use structural information derived from ion mobility mass spectrometry (IM-MS) to build three-dimensional models of one form of the full clamp loader complex, γ3δδ'ψχ (254 kDa). By probing the interaction between the clamp loader and a single-stranded DNA (ssDNA) binding protein (SSB4) and by identifying two distinct conformational states, with and without ssDNA, we assemble models of ψχ-SSB4 (108 kDa) and the clamp loader-SSB4 (340 kDa) consistent with IM data. A significant increase in measured collision cross-section (~10%) of the clamp loader-SSB4 complex upon DNA binding suggests large conformational rearrangements. This DNA bound conformation represents the active state and, along with the presence of ψχ, stabilises the clamp loader-SSB4 complex. Overall, this study of a large heteromeric complex analysed by IM-MS, coupled with integrative modelling, highlights the potential of such an approach to reveal structural features of previously unknown complexes of high biological importance. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Cas3 is a single-stranded DNA nuclease and ATP-dependent helicase in the CRISPR/Cas immune system.

    Science.gov (United States)

    Sinkunas, Tomas; Gasiunas, Giedrius; Fremaux, Christophe; Barrangou, Rodolphe; Horvath, Philippe; Siksnys, Virginijus

    2011-04-06

    Clustered regularly interspaced short palindromic repeat (CRISPR) is a recently discovered adaptive prokaryotic immune system that provides acquired immunity against foreign nucleic acids by utilizing small guide crRNAs (CRISPR RNAs) to interfere with invading viruses and plasmids. In Escherichia coli, Cas3 is essential for crRNA-guided interference with virus proliferation. Cas3 contains N-terminal HD phosphohydrolase and C-terminal Superfamily 2 (SF2) helicase domains. Here, we provide the first report of the cloning, expression, purification and in vitro functional analysis of the Cas3 protein of the Streptococcus thermophilus CRISPR4 (Ecoli subtype) system. Cas3 possesses a single-stranded DNA (ssDNA)-stimulated ATPase activity, which is coupled to unwinding of DNA/DNA and RNA/DNA duplexes. Cas3 also shows ATP-independent nuclease activity located in the HD domain with a preference for ssDNA substrates. To dissect the contribution of individual domains, Cas3 separation-of-function mutants (ATPase(+)/nuclease(-) and ATPase(-)/nuclease(+)) were obtained by site-directed mutagenesis. We propose that the Cas3 ATPase/helicase domain acts as a motor protein, which assists delivery of the nuclease activity to Cascade-crRNA complex targeting foreign DNA.

  19. Flow cytometry analysis of single-strand DNA damage in neuroblastoma cell lines using the F7-26 monoclonal antibody.

    Science.gov (United States)

    Grigoryan, Rita S; Yang, Bo; Keshelava, Nino; Barnhart, Jerry R; Reynolds, C Patrick

    2007-11-01

    The F7-26 monoclonal antibody (Mab) has been reported to be specific for single-strand DNA damage (ssDNA) and to also identify cells in apoptosis. We carriedout studies to determine if F7-26 binding measured by flow cytometry was able to specifically identify exogenous ssDNA as opposed to DNA damage from apoptosis. Neuroblastoma cells were treated with melphalan (L-PAM), fenretinide, 4-hydroperoxycyclophosphamide (4-HC)+/-pan-caspase inhibitor BOC-d-fmk, topotecan or with 10Gy gamma radiation+/-hydrogen peroxide (H2O2) and fixed immediately postradiation. Cytotoxicity was measured by DIMSCAN digital imaging fluorescence assay. The degree of ssDNA damage was analyzed by flow cytometry using Mab F7-26, with DNA visualized by propidium iodide counterstaining. Flow cytometry was used to measure apoptosis detected by terminal deoxynucleotidyltransferase (TUNEL) assay and reactive oxygen species (ROS) by carboxy-dichlorofluorescein diacetate. Irradiated and immediately fixed neuroblastoma cells showed increased ssDNA, but not apoptosis by TUNEL (TUNEL-negative). 4-HC or L-PAM+/-BOC-d-fmk increased ssDNA (F7-26-positive), but BOC-d-fmk prevented TUNEL staining. Fenretinide increased apoptosis by TUNEL but not ssDNA damage detected with F7-26. Enhanced ssDNA in neuroblastoma cells treated with radiation+H2O2 was associated with increased ROS. Topotecan increased both ssDNA and cytotoxicity in 4-HC-treated cells. These data demonstrate that Mab F7-26 recognized ssDNA due to exogenous DNA damage, rather than apoptosis. This assay should be useful to characterize the mechanism of action of antineoplastic drugs. Copyright (c) 2007 International Society for Analytical Cytology.

  20. Influence of the single-strand linker composition on the structural/dynamical properties of a truncated octahedral DNA nano-cage family.

    Science.gov (United States)

    Iacovelli, Federico; Alves, Cassio; Falconi, Mattia; Oteri, Francesco; de Oliveira, Cristiano L P; Desideri, Alessandro

    2014-10-01

    The structural/dynamical properties of three truncated octahedral DNA nano-cages composed by identical double helices but single strand linkers with different composition, namely 7 thymidines, 7 adenines, and 7 alternated thymidines and adenines, have been investigated through classical molecular dynamics simulations. Trajectories have been analyzed to investigate the role of the linkers in defining nano-cages stability and flexibility, including possible influence on the internal cages motions. The data indicate that the cages behavior is almost identical and that the structural/dynamical parameters measured along the trajectories are not particularly affected by the presence of different bases. These results demonstrate that the constraints imposed by the nano-structure geometry are the main factor in modulating these properties

  1. Human Rad51 filaments on double- and single-stranded DNA : Correlating regular and irregular forms with recombination function

    NARCIS (Netherlands)

    Ristic, D.; Modesti, M.; Van der Heijden, T.; Van Noort, J.; Dekker, C.; Kanaar, R.; Wyman, C.

    Recombinase proteins assembled into helical filaments on DNA are believed to be the catalytic core of homologous recombination. The assembly, disassembly and dynamic rearrangements of this structure must drive the DNA strand exchange reactions of homologous recombination. The sensitivity of

  2. Alkyladenine DNA glycosylase (AAG) localizes to mitochondria and interacts with mitochondrial single-stranded binding protein (mtSSB)

    OpenAIRE

    van Loon, Barbara; Samson, Leona D.

    2013-01-01

    Due to a harsh environment mitochondrial genomes accumulate high levels of DNA damage, in particular oxidation, hydrolytic deamination, and alkylation adducts. While repair of alkylated bases in nuclear DNA has been explored in detail, much less is known about the repair of DNA alkylation damage in mitochondria. Alkyladenine DNA glycosylase (AAG) recognizes and removes numerous alkylated bases, but to date AAG has only been detected in the nucleus, even though mammalian mitochondria are known...

  3. Selection and Characterization of Single-Stranded DNA Aptamers Binding Human B-Cell Surface Protein CD20 by Cell-SELEX

    Directory of Open Access Journals (Sweden)

    Mansoureh Haghighi

    2018-03-01

    Full Text Available The B-lymphocyte antigen (CD20 is a suitable target for single-stranded (ss nucleic acid oligomer (aptamers. The aim of study was selection and characterization of a ssDNA aptamer against CD20 using Cell-Systematic Evolution of Ligands by Exponential Enrichment (Cell-SELEX. The cDNA clone of CD20 (pcDNA-CD20 was transfected to human embryonic kidney (HEK293T cells. Ten rounds of Cell-SELEX was performed on recombinant HEK-CD20 cells. The final eluted ssDNA pool was amplified and ligated in T/A vector for cloning. The plasmids of positive clones were extracted, sequenced and the secondary structures of the aptamers predicted using DNAMAN® software. The sequencing results revealed 10 different types; three of them had the highest thermodynamic stability, named AP-1, AP-2 and AP-3. The AP-1 aptamer was the most thermodynamically stable one (ΔGAP-1 = −10.87 kcal/mol with the highest binding affinity to CD20 (96.91 ± 4.5 nM. Since, the CD20 is a suitable target for recognition of B-Cell. The selected aptamers could be comparable to antibodies with many advantages. The AP-1, AP-2 and AP-3 could be candidate instead of antibodies for diagnostic and therapeutic applications in immune deficiency, autoimmune diseases, leukemia and lymphoma.

  4. Characterization of the Single Stranded DNA Binding Protein SsbB Encoded in the Gonoccocal Genetic Island

    NARCIS (Netherlands)

    Jain, Samta; Zweig, Maria; Peeters, Eveline; Siewering, Katja; Hackett, Kathleen T.; Dillard, Joseph P.; van der Does, Chris

    2012-01-01

    Background: Most strains of Neisseria gonorrhoeae carry a Gonococcal Genetic Island which encodes a type IV secretion system involved in the secretion of ssDNA. We characterize the GGI-encoded ssDNA binding protein, SsbB. Close homologs of SsbB are located within a conserved genetic cluster found in

  5. Human Rad51 filaments on double- and single-stranded DNA: correlating regular and irregular forms with recombination function.

    NARCIS (Netherlands)

    D. Ristic (Dejan); M. Modesti (Mauro); T. van der Heijden (Thijn); J. Noort (John); C. Dekker (Cees); R. Kanaar (Roland); C. Wyman (Claire)

    2005-01-01

    textabstractRecombinase proteins assembled into helical filaments on DNA are believed to be the catalytic core of homologous recombination. The assembly, disassembly and dynamic rearrangements of this structure must drive the DNA strand exchange reactions of homologous recombination. The sensitivity

  6. RNA binding to APOBEC3G induces the disassembly of functional deaminase complexes by displacing single-stranded DNA substrates

    Science.gov (United States)

    Polevoda, Bogdan; McDougall, William M.; Tun, Bradley N.; Cheung, Michael; Salter, Jason D.; Friedman, Alan E.; Smith, Harold C.

    2015-01-01

    APOBEC3G (A3G) DNA deaminase activity requires a holoenzyme complex whose assembly on nascent viral reverse transcripts initiates with A3G dimers binding to ssDNA followed by formation of higher-order A3G homo oligomers. Catalytic activity is inhibited when A3G binds to RNA. Our prior studies suggested that RNA inhibited A3G binding to ssDNA. In this report, near equilibrium binding and gel shift analyses showed that A3G assembly and disassembly on ssDNA was an ordered process involving A3G dimers and multimers thereof. Although, fluorescence anisotropy showed that A3G had similar nanomolar affinity for RNA and ssDNA, RNA stochastically dissociated A3G dimers and higher-order oligomers from ssDNA, suggesting a different modality for RNA binding. Mass spectrometry mapping of A3G peptides cross-linked to nucleic acid suggested ssDNA only bound to three peptides, amino acids (aa) 181–194 in the N-terminus and aa 314–320 and 345–374 in the C-terminus that were part of a continuous exposed surface. RNA bound to these peptides and uniquely associated with three additional peptides in the N- terminus, aa 15–29, 41–52 and 83–99, that formed a continuous surface area adjacent to the ssDNA binding surface. The data predict a mechanistic model of RNA inhibition of ssDNA binding to A3G in which competitive and allosteric interactions determine RNA-bound versus ssDNA-bound conformational states. PMID:26424853

  7. Cyclic voltammetry of echinomycin and its interaction with double-stranded and single-stranded DNA adsorbed at the electrode

    Czech Academy of Sciences Publication Activity Database

    Jelen, František; Erdem, A.; Paleček, Emil

    2002-01-01

    Roč. 55, 1/2 (2002), s. 165-167 ISSN 1567-5394 R&D Projects: GA AV ČR IAA4004901; GA ČR GV204/97/K084 Institutional research plan: CEZ:AV0Z5004920 Keywords : electrochemistry of DNA * interaction of DNA with echinomycin * hanging mercury drop electrode Subject RIV: BO - Biophysics Impact factor: 1.463, year: 2002

  8. In Vitro Selection of a Single-Stranded DNA Molecular Recognition Element against the Pesticide Fipronil and Sensitive Detection in River Water

    Directory of Open Access Journals (Sweden)

    Ka L. Hong

    2017-12-01

    Full Text Available Fipronil is a commonly used insecticide that has been shown to have environmental and human health risks. The current standard methods of detection for fipronil and its metabolites, such as GC-MS, are time consuming and labor intensive. In this study, a variant of systematic evolution of ligands by exponential enrichment (SELEX, was utilized to identify the first single-stranded DNA (ssDNA molecular recognition element (MRE that binds to fipronil with high affinity (Kd = 48 ± 8 nM. The selected MRE displayed low cross binding activity on various environmentally relevant, structurally unrelated herbicides and pesticides, in addition to broad-spectrum binding activity on major metabolites of fipronil and a structurally similar pesticide in prepared river samples. Additionally, a proof-of-principle fluorescent detection assay was developed by using the selected ssDNA MRE as a signal-reporting element, with a limit of detection of 105 nM in a prepared river water sample.

  9. Guanine quadruplex monoclonal antibody 1H6 cross-reacts with restrained thymidine-rich single stranded DNA

    NARCIS (Netherlands)

    Kazemier, Hinke G.; Paeschke, Katrin; Lansdorp, Peter M.

    2017-01-01

    Previously we reported the production and characterization of monoclonal antibody 1H6 raised against (T(4)G(4))(2) intermolecular guanine quadruplex (G4) DNA structures (Henderson A. et al. (2014) Nucleic Acids Res., 42, 860-869; Hoffmann R. F. et al. (2016) Nucleic Acids Res., 44, 152-163). It was

  10. Direct imaging of hexaamine-ruthenium(III) in domain boundaries in monolayers of single-stranded DNA

    DEFF Research Database (Denmark)

    Grubb, Mikala; Wackerbarth, Hainer; Wengel, J.

    2007-01-01

    We describe adsorption and identification of the binding sites of [Ru(NH3)(6)](3+) (RuHex) molecules in a closely packed monolayer of a 13-base ss-DNA on Au(111) electrodes by electrochemical in situ scanning tunneling microscopy (STM), cyclic voltammetry and interfacial capacitance data. In situ...

  11. Gauging the Nanotoxicity of h2D-C2N toward Single-Stranded DNA: An in Silico Molecular Simulation Approach.

    Science.gov (United States)

    Mukhopadhyay, Titas Kumar; Bhattacharyya, Kalishankar; Datta, Ayan

    2018-04-12

    Recent toxicological assessments of graphene, graphene oxides, and some other two-dimensional (2D) materials have shown them to be substantially toxic at the nanoscale, where they inhibit and eventually disrupt biological processes. These shortfalls of graphene and analogs have resulted in a quest for novel biocompatible 2D materials with minimum cytotoxicity. In this article, we demonstrate C 2 N (h2D-C 2 N), a newly synthesized 2D porous graphene analog, to be non-nanotoxic toward genetic materials from an "in-silico" point of view through sequence-dependent binding of different polynucleotide single-stranded DNA (ssDNA) onto it. The calculated binding energy of nucleobases and the free energy of binding of polynucleotides follow the common trait, cytosine > guanine > adenine > thymine, and are well within the limits of physisorption. Ab-initio simulations completely exclude the possibility of any chemical reaction, demonstrating purely noncovalent binding of nucleobases with C 2 N through a crucial interplay between hydrogen bonding and π-stacking interactions with the surface. Further, we show that the extent of distortion inflicted upon ssDNA by C 2 N is negligible. Analysis of the density of states of the nucleobase-C 2 N hybrids confirms minimum electronic perturbation of the bases after adsorption. Most importantly, we demonstrate the potency of C 2 N in nucleic acid transportation via reversible binding of ssDNA. The plausible use of C 2 N as a template for DNA repair is illustrated through an example of C 2 N-assisted complementary ssDNA winding.

  12. Double-Strand DNA Break Repair in Mycobacteria.

    Science.gov (United States)

    Glickman, Michael S

    2014-10-01

    Discontinuity of both strands of the chromosome is a lethal event in all living organisms because it compromises chromosome replication. As such, a diversity of DNA repair systems has evolved to repair double-strand DNA breaks (DSBs). In part, this diversity of DSB repair systems has evolved to repair breaks that arise in diverse physiologic circumstances or sequence contexts, including cellular states of nonreplication or breaks that arise between repeats. Mycobacteria elaborate a set of three genetically distinct DNA repair pathways: homologous recombination, nonhomologous end joining, and single-strand annealing. As such, mycobacterial DSB repair diverges substantially from the standard model of prokaryotic DSB repair and represents an attractive new model system. In addition, the presence in mycobacteria of a DSB repair system that can repair DSBs in nonreplicating cells (nonhomologous end joining) or when DSBs arise between repeats (single-strand annealing) has clear potential relevance to Mycobacterium tuberculosis pathogenesis, although the exact role of these systems in M. tuberculosis pathogenesis is still being elucidated. In this article we will review the genetics of mycobacterial DSB repair systems, focusing on recent insights.

  13. Detection of benzo[a]pyrene-guanine adducts in single-stranded DNA using the α-hemolysin nanopore

    Science.gov (United States)

    Perera, Rukshan T.; Fleming, Aaron M.; Johnson, Robert P.; Burrows, Cynthia J.; White, Henry S.

    2015-02-01

    The carcinogenic precursor benzo[a]pyrene (BP), a polycyclic aromatic hydrocarbon, is released into the environment through the incomplete combustion of hydrocarbons. Metabolism of BP in the human body yields a potent alkylating agent (benzo[a]pyrene diol epoxide, BPDE) that reacts with guanine (G) in DNA to form an adduct implicated in cancer initiation. We report that the α-hemolysin (αHL) nanopore platform can be used to detect a BPDE adduct to G in synthetic oligodeoxynucleotides. Translocation of a 41-mer poly-2‧-deoxycytidine strand with a centrally located BPDE adduct to G through αHL in 1 M KCl produces a unique multi-level current signature allowing the adduct to be detected. This readily distinguishable current modulation was observed when the BPDE-adducted DNA strand translocated from either the 5‧ or 3‧ directions. This study suggests that BPDE adducts and other large aromatic biomarkers can be detected with αHL, presenting opportunities for the monitoring, quantification, and sequencing of mutagenic compounds from cellular DNA samples.

  14. Single-stranded DNA aptamer targeting and neutralization of anti-D alloantibody: a potential therapeutic strategy for haemolytic diseases caused by Rhesus alloantibody.

    Science.gov (United States)

    Zhang, Yinze; Wu, Fan; Wang, Manni; Zhuang, Naibao; Zhou, Huayou; Xu, Hua

    2018-02-01

    Rhesus (Rh) D antigen is the most important antigen in the Rh blood group system because of its strong immunogenicity. When RhD-negative individuals are exposed to RhD-positive blood, they may produce anti-D alloantibody, potentially resulting in delayed haemolytic transfusion reactions and Rh haemolytic disease of the foetus and newborn, which are difficult to treat. Inhibition of the binding of anti-D antibody with RhD antigens on the surface of red blood cells may effectively prevent immune haemolytic diseases. In this study, single-stranded (ss) DNA aptamers, specifically binding to anti-D antibodies, were selected via systematic evolution of ligands by exponential enrichment (SELEX) technology. After 14 rounds of selection, the purified ssDNA was sequenced using a Personal Genome Machine system. Haemagglutination inhibition assays were performed to screen aptamers for biological activity in terms of blocking antigen-antibody reactions: the affinity and specificity of the aptamers were also determined. In addition to high specificity, the aptamers which were selected showed high affinity for anti-D antibodies with dissociation constant (K d ) values ranging from 51.46±14.90 to 543.30±92.59 nM. By the combined use of specific ssDNA aptamer 7 and auxiliary ssDNA aptamer 2, anti-D could be effectively neutralised at low concentrations of the aptamers. Our results demonstrate that ssDNA aptamers may be a novel, promising strategy for the treatment of delayed haemolytic transfusion reactions and Rh haemolytic disease of the foetus and newborn.

  15. Breaking DNA strands by extreme-ultraviolet laser pulses in vacuum

    Czech Academy of Sciences Publication Activity Database

    Nováková, Eva; Vyšín, Luděk; Burian, Tomáš; Juha, Libor; Davídková, Marie; Múčka, V.; Čuba, V.; Grisham, M. E.; Heinbuch, S.; Rocca, J.J.

    2015-01-01

    Roč. 91, č. 4 (2015), "042718-1"-"042718-8" ISSN 1539-3755 R&D Projects: GA ČR(CZ) GBP108/12/G108; GA ČR GA13-28721S Institutional support: RVO:68378271 ; RVO:61389005 Keywords : XUV * DNA damages * single- strand breaks (SSBs) * double- strand breaks (DSBs) Subject RIV: BO - Biophysics Impact factor: 2.288, year: 2014

  16. Repair and gamma radiation-induced single- and double-strand breaks in DNA of Escherichia coli

    International Nuclear Information System (INIS)

    Petrov, S.I.

    1981-01-01

    Studies in the kinetics of repair of γ-radiation-induced single- and double-strand breaks in DNA of E. coli cells showed that double-strand DNA breaks are rejoined by the following two ways. The first way is conditioned by repair of single-strand breaks and represents the repair of ''oblique'' double-strand breaks in DNA, whereas the second way is conditioned by functioning of the recombination mechanisms and, to all appearance, represents the repair of ''direct'' double-strand breaks in DNA

  17. Pleolipoviridae, a newly proposed family comprising archaeal pleomorphic viruses with single-stranded or double-stranded DNA genomes.

    Science.gov (United States)

    Pietilä, Maija K; Roine, Elina; Sencilo, Ana; Bamford, Dennis H; Oksanen, Hanna M

    2016-01-01

    Viruses infecting archaea show a variety of virion morphotypes, and they are currently classified into more than ten viral families or corresponding groups. A pleomorphic virus morphotype is very common among haloarchaeal viruses, and to date, several such viruses have been isolated. Here, we propose the classification of eight such viruses and formation of a new family, Pleolipoviridae (from the Greek pleo for more or many and lipos for lipid), containing three genera, Alpha-, Beta-, and Gammapleolipovirus. The proposal is currently under review by the International Committee on Taxonomy of Viruses (ICTV). The members of the proposed family Pleolipoviridae infect halophilic archaea and are nonlytic. They share structural and genomic features and differ from any other classified virus. The virion of pleolipoviruses is composed of a pleomorphic membrane vesicle enclosing the genome. All pleolipoviruses have two major structural protein species, internal membrane and spike proteins. Although the genomes of the pleolipoviruses are single- or double-stranded, linear or circular DNA molecules, they share the same genome organization and gene synteny and show significant similarity at the amino acid level. The canonical features common to all members of the proposed family Pleolipoviridae show that they are closely related and thus form a new viral family.

  18. Strand breaks and alkali-labile bonds induced by ultraviolet light in DNA with 5-bromouracil in vivo.

    Science.gov (United States)

    Krasin, F; Hutchinson, F

    1978-01-01

    Supercircular gamma phage DNA with 10 bromouracils/100 thymine bases, irradiated with 313 nm light in Tris buffer and sedimented on alkaline and neutral gradients, showed 4.6 alkali-labile bonds per true single-strand break, in agreement with Hewitt and Marburger (1975 Photochem. Photobiol. 21:413). The same DNA irradiated in Escherichia coli host cells showed about the same number of breaks in alkaline gradients for equal fluence, but only 0.5 alkali-labile bond per true break. Similarly, E. coli DNA with bromouracil irradiated in the cells showed only 10--20% more breaks when denatured with 0.1 M NaOH than under neutral conditions with 9 M sodium perchlorate at 50 degrees C. These results show that true single-strand breaks occur more frequently than alkali-labile bonds after ultraviolet irradiation of DNA containing bromouracil in cells. PMID:367462

  19. Hematopoietic Lineage Transcriptome Stability and Representation in PAXgeneTM Collected Peripheral Blood Utilising SPIA Single-Stranded cDNA Probes for Microarray

    Directory of Open Access Journals (Sweden)

    Laura Kennedy

    2008-01-01

    Full Text Available Peripheral blood as a surrogate tissue for transcriptome profiling holds great promise for the discovery of diagnostic and prognostic disease biomarkers, particularly when target tissues of disease are not readily available. To maximize the reliability of gene expression data generated from clinical blood samples, both the sample collection and the microarray probe generation methods should be optimized to provide stabilized, reproducible and representative gene expression profiles faithfully representing the transcriptional profiles of the constituent blood cell types present in the circulation. Given the increasing innovation in this field in recent years, we investigated a combination of methodological advances in both RNA stabilisation and microarray probe generation with the goal of achieving robust, reliable and representative transcriptional profiles from whole blood. To assess the whole blood profiles, the transcriptomes of purified blood cell types were measured and compared with the global transcriptomes measured in whole blood. The results demonstrate that a combination of PAXgeneTM RNA stabilising technology and single-stranded cDNA probe generation afforded by the NuGEN Ovation RNA amplification system V2TM enables an approach that yields faithful representation of specific hematopoietic cell lineage transcriptomes in whole blood without the necessity for prior sample fractionation, cell enrichment or globin reduction. Storage stability assessments of the PAXgeneTM blood samples also advocate a short, fixed room temperature storage time for all PAXgeneTM blood samples collected for the purposes of global transcriptional profiling in clinical studies.

  20. Hematopoietic Lineage Transcriptome Stability and Representation in PAXgene Collected Peripheral Blood Utilising SPIA Single-Stranded cDNA Probes for Microarray.

    Science.gov (United States)

    Kennedy, Laura; Vass, J Keith; Haggart, D Ross; Moore, Steve; Burczynski, Michael E; Crowther, Dan; Miele, Gino

    2008-08-25

    Peripheral blood as a surrogate tissue for transcriptome profiling holds great promise for the discovery of diagnostic and prognostic disease biomarkers, particularly when target tissues of disease are not readily available. To maximize the reliability of gene expression data generated from clinical blood samples, both the sample collection and the microarray probe generation methods should be optimized to provide stabilized, reproducible and representative gene expression profiles faithfully representing the transcriptional profiles of the constituent blood cell types present in the circulation. Given the increasing innovation in this field in recent years, we investigated a combination of methodological advances in both RNA stabilisation and microarray probe generation with the goal of achieving robust, reliable and representative transcriptional profiles from whole blood. To assess the whole blood profiles, the transcriptomes of purified blood cell types were measured and compared with the global transcriptomes measured in whole blood. The results demonstrate that a combination of PAXgene() RNA stabilising technology and single-stranded cDNA probe generation afforded by the NuGEN Ovation RNA amplification system V2() enables an approach that yields faithful representation of specific hematopoietic cell lineage transcriptomes in whole blood without the necessity for prior sample fractionation, cell enrichment or globin reduction. Storage stability assessments of the PAXgene() blood samples also advocate a short, fixed room temperature storage time for all PAXgene() blood samples collected for the purposes of global transcriptional profiling in clinical studies.

  1. Hematopoietic Lineage Transcriptome Stability and Representation in PAXgene™ Collected Peripheral Blood Utilising SPIA Single-Stranded cDNA Probes for Microarray

    Science.gov (United States)

    Kennedy, Laura; Vass, J. Keith; Haggart, D. Ross; Moore, Steve; Burczynski, Michael E.; Crowther, Dan; Miele, Gino

    2008-01-01

    Peripheral blood as a surrogate tissue for transcriptome profiling holds great promise for the discovery of diagnostic and prognostic disease biomarkers, particularly when target tissues of disease are not readily available. To maximize the reliability of gene expression data generated from clinical blood samples, both the sample collection and the microarray probe generation methods should be optimized to provide stabilized, reproducible and representative gene expression profiles faithfully representing the transcriptional profiles of the constituent blood cell types present in the circulation. Given the increasing innovation in this field in recent years, we investigated a combination of methodological advances in both RNA stabilisation and microarray probe generation with the goal of achieving robust, reliable and representative transcriptional profiles from whole blood. To assess the whole blood profiles, the transcriptomes of purified blood cell types were measured and compared with the global transcriptomes measured in whole blood. The results demonstrate that a combination of PAXgene™ RNA stabilising technology and single-stranded cDNA probe generation afforded by the NuGEN Ovation RNA amplification system V2™ enables an approach that yields faithful representation of specific hematopoietic cell lineage transcriptomes in whole blood without the necessity for prior sample fractionation, cell enrichment or globin reduction. Storage stability assessments of the PAXgene™ blood samples also advocate a short, fixed room temperature storage time for all PAXgene™ blood samples collected for the purposes of global transcriptional profiling in clinical studies. PMID:19578521

  2. Enzymatic quantification of strand breaks of DNA induced by vacuum-UV radiation

    International Nuclear Information System (INIS)

    Ito, Takashi

    1986-01-01

    Hind3 digested plasmid DNA dried on an aluminum plate was irradiated by vacuum-UV at 160 and 195 nm using a synchrotron irradiation system. A change induced in the DNA, presumably a single strand break, was quantified by the aid of the strand break-derived stimulation of poly(ADP-ribose) synthetase activity. The end group of strand breaks so induced was recognized by the enzyme as effectively as that by DNase 1 treatment, suggesting a nicking as the major lesion inflicted on the DNA. The fluence (UV) dependent stimulation of poly(ADP-ribose) synthetase activity was much higher upon 160 nm irradiation than upon 195 nm irradiation. (Auth.)

  3. Evaluation of the neutral comet assay for detection of alpha-particle induced DNA-double-strand-breaks

    International Nuclear Information System (INIS)

    Hofbauer, Daniela

    2010-01-01

    Aim of this study was to differentiate DNA-double-strand-breaks from DNA-single-strand-breaks on a single cell level, using the comet assay after α- and γ-irradiation. Americium-241 was used as a alpha-irradiation-source, Caesium-137 was used for γ-irradiation. Because of technical problems with both the neutral and alkaline comet assay after irradiation of gastric cancer cells and human lymphocytes, no definite differentiation of DNA-damage was possible.

  4. Detection of hybridization of single-strand DNA PCR products in temperature change process by a novel metal-clamping piezoelectric sensor.

    Science.gov (United States)

    Chen, Qinghai; Bian, Zhiheng; Hua, Xing; Yao, Chunyan; Wu, Wei; Zhang, Xue; Zhang, Bo; Huang, Junfu; Tang, Wanli; Fu, Weiling

    2010-05-15

    Oligonucleotide probes on the sensor surface can be hybridized with single-strand DNA (ssDNA) that is formed from PCR products in ice bath after degeneration. Thus, detection of PCR products by piezoelectric sensors requires the participation of ssDNA PCR products in ice bath. When PCR products in ice bath are added into the buffer of the sensor well at room temperature, there will be a temperature change process during mixing. However, it still remains unclear whether the temperature change affects the frequency baseline stability of the sensor and the result judgment, which is the basic condition for detecting hybridization of nucleic acid. In this study, we detected the hybridization of HPV PCR products during temperature change process by a self-designed adjustable metal-clamping piezoelectric sensor. The study mainly involves sensor adjustment, probe immobilization and ice bath sample addition (at different concentrations and different volumes). The response curve of basic frequency in temperature change process showed three stages, i.e., increase, decrease to baseline, and continuous decrease to stability. The early increase of frequency and duration of the time can reach 55+/-7.4 Hz and 39 min when 40 microL sample (0-1 degrees C) was added into 110 microL buffer (25 degrees C). The frequency increase effect caused by temperature difference at early stage depends on the volume ratio of two liquids and on the temperature difference. The results indicate that we should pay more attention to possibly small volume of PCR products in ice bath and minor temperature difference of two liquids in operation. 2010 Elsevier B.V. All rights reserved.

  5. Ampelomyces mycoparasites from apple powdery mildew identified as a distinct group based on single-stranded conformation polymorphism analysis of the rDNA ITS region.

    Science.gov (United States)

    Szentiványi, Orsolya; Kiss, Levente; Russell, John C; Kovács, Gábor M; Varga, Krisztina; Jankovics, Tünde; Lesemann, Silke; Xu, Xiang-Ming; Jeffries, Peter

    2005-04-01

    Pycnidial fungi belonging to the genus Ampelomyces are the most common natural antagonists of powdery mildews worldwide. During a study of the interactions between apple powdery mildew (Podosphaera leucotricha) and Ampelomyces mycoparasites, 52 new Ampelomyces isolates were obtained from P. leucotricha and, in addition, 13 new isolates from other species of the Erysiphaceae in four European countries. Their genetic diversity was screened using single-stranded conformation polymorphism (SSCP) analysis of the internal transcribed spacer (ITS) region of the ribosomal DNA (rDNA). For comparison, 24 isolates obtained from genetic resource collections or other sources were included in this study. Based on the ITS-SSCP patterns, the isolates were placed in eight groups. The isolates belonged to two types based on their growth in culture. The faster-growing and the slower-growing isolates were included in different SSCP groups. A phylogenetic analysis of the ITS sequences of representatives of these groups confirmed the results obtained with the SSCP method, and showed that the faster-growing isolates do not belong to Ampelomyces as suggested by earlier studies. All the isolates from P. leucotricha fell into a distinct SSCP group of genetically homogeneous isolates. This suggests that Ampelomyces mycoparasites which occur in apple powdery mildew are slightly different from the other Ampelomyces groups which contain mycoparasites from various powdery mildew species. This may be because the main growth period of Ampelomyces mycoparasites in apple powdery mildew is isolated in time from that of Ampelomyces isolates that occur in other species of the Erysiphaceae. P. leucotricha starts its life-cycle early in the season, usually in March-April, while most powdery mildews are active in the same environments only late in the year.

  6. A novel protein that recognizes DNA strand break

    Energy Technology Data Exchange (ETDEWEB)

    Narumi, Issay; Satoh, Katsuya; Kikuchi, Masahiro [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    2002-03-01

    By analyzing a DNA damage-sensitive mutant of the radioresistant bacterium Deinococcus radiodurans, we discovered that a novel protein participates in the extreme radiation resistance of this bacterium. The protein (designated PprA for promoting prominent repair) can recognize DNA strand breaks. PprA could bind to double-stranded DNA (dsDNA) in the open circular form and to linear dsDNA, but could not bind to either dsDNA in the closed circular form or single-stranded DNA (ssDNA). Further, under conditions where a substantial amount of degradation of naked DNA fragments would normally result from the activity of E. coli exonuclease III, no DNA degradation was observed when the DNA fragments were preincubated with PprA. These suggest that PprA would protect irradiation-damaged DNA from exonuclease-mediated degradation and consequent DNA repair processes could function. Beside DNA-binding ability, PprA could promote the activities of DNA repair enzymes such as DNA ligase and RecA, suggesting that PprA functions as a DNA repair-promoting protein to potentiate the effectiveness of DNA repair. These properties enable PprA to use the widespread application in vivo and in vitro. (author)

  7. Salt Dependence of the Radius of Gyration and Flexibility of Single-stranded DNA in Solution probed by Small-angle X-ray Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Sim, Adelene Y.L.; Lipfert, Jan; Herschlag, Daniel; Doniach, Sebastian

    2012-07-06

    Short single-stranded nucleic acids are ubiquitous in biological processes and understanding their physical properties provides insights to nucleic acid folding and dynamics. We used small angle x-ray scattering to study 8-100 residue homopolymeric single-stranded DNAs in solution, without external forces or labeling probes. Poly-T's structural ensemble changes with increasing ionic strength in a manner consistent with a polyelectrolyte persistence length theory that accounts for molecular flexibility. For any number of residues, poly-A is consistently more elongated than poly-T, likely due to the tendency of A residues to form stronger base-stacking interactions than T residues.

  8. Biochemical studies of DNA strand break repair and molecular characterization of mei-41, a gene involved in DNA break repair

    International Nuclear Information System (INIS)

    Oliveri, D.R.

    1989-01-01

    The ability to repair X-irradiation induced single-strand DNA breaks was examined in mutagen-sensitive mutants of Drosophila melanogaster. This analysis demonstrated that examined stocks possess a normal capacity to repair X-ray induced single-strand breaks. One of the mutants in this study, mei-41, has been shown to be involved in a number of DNA metabolizing functions. A molecular characterization of this mutant is presented. A cDNA hybridizing to genomic DNA both proximal and distal to a P element inducing a mei-41 mutation was isolated from both embryonic and adult female recombinant lambda phage libraries. A 2.2 kilobase embryonic cDNA clone was sequenced; the sequence of an open reading frame was identified which would predict a protein of 384 amino acids with a molecular weight of 43,132 daltons. An examination of homologies to sequences in protein and nucleic acid data bases revealed no sequences with significant homology to mei-41, however, two potential Zinc-finger domains were identified. Analysis of RNA hybridizing to the embryonic cDNA demonstrated the existence of a major 2.2 kilobase transcript expressed primarily in embryos and adult flies. An examination of the transcription of this gene in mei-41 mutants revealed significant variation from wild-type, an indication that the embryonic cDNA does represent a mei-41 transcript. Expression in tissues from adult animals demonstrated that the 2.2 kilobase RNA is expressed primarily in reproductive tissues. A 3.8kb transcript is the major species of RNA in the adult head and thorax. Evidence is presented which implies that expression of the mei-41 gene is strongly induced by exposure of certain cells to mutagens

  9. OligArch: A software tool to allow artificially expanded genetic information systems (AEGIS to guide the autonomous self-assembly of long DNA constructs from multiple DNA single strands

    Directory of Open Access Journals (Sweden)

    Kevin M. Bradley

    2014-08-01

    Full Text Available Synthetic biologists wishing to self-assemble large DNA (L-DNA constructs from small DNA fragments made by automated synthesis need fragments that hybridize predictably. Such predictability is difficult to obtain with nucleotides built from just the four standard nucleotides. Natural DNA's peculiar combination of strong and weak G:C and A:T pairs, the context-dependence of the strengths of those pairs, unimolecular strand folding that competes with desired interstrand hybridization, and non-Watson–Crick interactions available to standard DNA, all contribute to this unpredictability. In principle, adding extra nucleotides to the genetic alphabet can improve the predictability and reliability of autonomous DNA self-assembly, simply by increasing the information density of oligonucleotide sequences. These extra nucleotides are now available as parts of artificially expanded genetic information systems (AEGIS, and tools are now available to generate entirely standard DNA from AEGIS DNA during PCR amplification. Here, we describe the OligArch (for "oligonucleotide architecting" software, an application that permits synthetic biologists to engineer optimally self-assembling DNA constructs from both six- and eight-letter AEGIS alphabets. This software has been used to design oligonucleotides that self-assemble to form complete genes from 20 or more single-stranded synthetic oligonucleotides. OligArch is therefore a key element of a scalable and integrated infrastructure for the rapid and designed engineering of biology.

  10. A novel role of the Dna2 translocase function in DNA break resection.

    Science.gov (United States)

    Miller, Adam S; Daley, James M; Pham, Nhung Tuyet; Niu, Hengyao; Xue, Xiaoyu; Ira, Grzegorz; Sung, Patrick

    2017-03-01

    DNA double-strand break repair by homologous recombination entails nucleolytic resection of the 5' strand at break ends. Dna2, a flap endonuclease with 5'-3' helicase activity, is involved in the resection process. The Dna2 helicase activity has been implicated in Okazaki fragment processing during DNA replication but is thought to be dispensable for DNA end resection. Unexpectedly, we found a requirement for the helicase function of Dna2 in end resection in budding yeast cells lacking exonuclease 1. Biochemical analysis reveals that ATP hydrolysis-fueled translocation of Dna2 on ssDNA facilitates 5' flap cleavage near a single-strand-double strand junction while attenuating 3' flap incision. Accordingly, the ATP hydrolysis-defective dna2-K1080E mutant is less able to generate long products in a reconstituted resection system. Our study thus reveals a previously unrecognized role of the Dna2 translocase activity in DNA break end resection and in the imposition of the 5' strand specificity of end resection. © 2017 Miller et al.; Published by Cold Spring Harbor Laboratory Press.

  11. Hole hopping rates in single strand oligonucleotides

    Energy Technology Data Exchange (ETDEWEB)

    Borrelli, Raffaele [Dipartimento di Scienze Agrarie, Forestali e Alimentari, Università di Torino, Largo Paolo Braccini 2, I-10095 Grugliasco, TO (Italy); Capobianco, Amedeo [Dipartimento di Chimica e Biologia, Università di Salerno, Via Giovanni Paolo II, I-84084 Fisciano, SA (Italy); Peluso, Andrea, E-mail: apeluso@unisa.it [Dipartimento di Chimica e Biologia, Università di Salerno, Via Giovanni Paolo II, I-84084 Fisciano, SA (Italy)

    2014-08-31

    Highlights: • DNA hole transfer rates have been computed. • Delocalized adenine domains significantly affect hole transfer rates in DNA. • Franck–Condon weighted density of state from DFT normal modes. • DNA application in molecular electronics. - Abstract: The rates of hole transfer between guanine and adenine in single strand DNA have been evaluated by using Fermi’s golden rule and Kubo’s generating function approach for the Franck–Condon weighted density of states. The whole sets of the normal modes and vibrational frequencies of the two nucleobases, obtained at DFT/B3LYP level of calculation, have been considered in computations. The results show that in single strand the pyramidalization/planarization mode of the amino groups of both nucleobases plays the major role. At room temperature, the Franck–Condon density of states extends over a wide range of hole site energy difference, 0–1 eV, giving some hints about the design of oligonucleotides of potential technological interest.

  12. The application of strand invasion phenomenon, directed by peptide nucleic acid (PNA) and single-stranded DNA binding protein (SSB) for the recognition of specific sequences of human endogenous retroviral HERV-W family.

    Science.gov (United States)

    Machnik, Grzegorz; Bułdak, Łukasz; Ruczyński, Jarosław; Gąsior, Tomasz; Huzarska, Małgorzata; Belowski, Dariusz; Alenowicz, Magdalena; Mucha, Piotr; Rekowski, Piotr; Okopień, Bogusław

    2017-05-01

    The HERV-W family of human endogenous retroviruses represents a group of numerous sequences that show close similarity in genetic composition. It has been documented that some members of HERV-W-derived expression products are supposed to play significant role in humans' pathology, such as multiple sclerosis or schizophrenia. Other members of the family are necessary to orchestrate physiological processes (eg, ERVWE1 coding syncytin-1 that is engaged in syncytiotrophoblast formation). Therefore, an assay that would allow the recognition of particular form of HERV-W members is highly desirable. A peptide nucleic acid (PNA)-mediated technique for the discrimination between multiple sclerosis-associated retrovirus and ERVWE1 sequence has been developed. The assay uses a PNA probe that, being fully complementary to the ERVWE1 but not to multiple sclerosis-associated retrovirus (MSRV) template, shows high selective potential. Single-stranded DNA binding protein facilitates the PNA-mediated, sequence-specific formation of strand invasion complex and, consequently, local DNA unwinding. The target DNA may be then excluded from further analysis in any downstream process such as single-stranded DNA-specific exonuclease action. Finally, the reaction conditions have been optimized, and several PNA probes that are targeted toward distinct loci along whole HERV-W env sequences have been evaluated. We believe that PNA/single-stranded DNA binding protein-based application has the potential to selectively discriminate particular HERV-W molecules as they are at least suspected to play pathogenic role in a broad range of medical conditions, from psycho-neurologic disorders (multiple sclerosis and schizophrenia) and cancers (breast cancer) to that of an auto-immunologic background (psoriasis and lupus erythematosus). Copyright © 2016 John Wiley & Sons, Ltd.

  13. Comparison of DNA strand-break simulated with different DNA models

    International Nuclear Information System (INIS)

    Xie, Wenzhang; Li, Junli; Qiu, Rui; Yan, Congchong; Zeng, Zhi; Li, Chunyan

    2013-01-01

    Full text of the publication follows. In Monte Carlo simulation of DNA damage, the geometric model of DNA is of great importance. To study the influence of DNA model on the simulation of DNA damage, three DNA models were created in this paper. They were a volume model and two atomic models with different parameters. Direct DNA strand-break induced by low-energy electrons were simulated respectively with the three models. The results show that most of the energy depositions in the DNA segments do not lead to strand-breaks. The simple single strand-break (SSB) tends to be the predominant damage type, and the contribution of complex double strand-break (DSB) to the total DSB cannot be neglected. Among the yields of all the three DNA target models applied here, the yields of the volume model are the highest, the yields of the atomic model with double van der Waals radii (r) take the second place, whereas the yields of the atomic model with single r come last. On average, the ratios of SSB yields are approximately equivalent to the corresponding ratios of the models' volume. However, there seems to be no clear relationship between the DSB yields and the models' volume. (authors)

  14. Single-stranded regions in transforming deoxyribonucleic acid after uptake by competent Haemophilus influenzae

    Energy Technology Data Exchange (ETDEWEB)

    Sedgwick, B.; Setlow, J.K.

    1976-02-01

    About 15% of donor deoxyribonucleic acid (DNA) is single stranded immediately after uptake into competent Haemophilus influenzae wild-type cells, as judged by its sensitivity to S1 endonuclease. This amount decreases to 4 to 5% by 30 min after uptake. Mutants which are defective in the covalent association of recipient and donor DNA form little or no S1 endonuclease-sensitive donor. At 17 C donor DNA taken up by the wild type contains single-stranded regions although there is no observable association, either covalent or noncovalent. The single-stranded regions are at the ends of donor DNA molecules, as judged by the unchanged sedimentation velocity after S1 endonuclease digestion. The amount of single-stranded donor remains constant at 17 C for more than 60 min after uptake, suggesting that the decrease observed at 37 C is the result of association of single-stranded ends with single-stranded regions of recipient cell DNA. Three sequential steps necessary for the integration of donor DNA into recipient DNA are proposed: the synthesis of single-stranded regions in recipient DNA, the interaction of donor DNA with recipient DNA resulting in the production of single-stranded ends on donor DNA, and the stable pairing of homologous single-stranded regions. (auth)

  15. Increased type I collagen content and DNA binding activity of a single-stranded, cytosine-rich sequence in the high-salt buffer protein extract of the copper-deficient rat heart.

    Science.gov (United States)

    Zeng, Huawei; Saari, Jack T

    2004-11-01

    Dietary copper (Cu) deficiency not only causes a hypertrophic cardiomyopathy but also increases cancer risk in rodent models. However, a possible alteration in gene expression has not been fully examined. The present study was undertaken to determine the effect of Cu deficiency on protein profiles in rat heart tissue. Male Sprague-Dawley rats were fed diets that were either a Cu-adequate diet (6.0 microg Cu/g diet, n = 6) or a Cu-deficient diet (0.3 microg Cu/g diet, n = 6) for 5 weeks. The high-salt buffer (HSB) protein extract from heart tissue of Cu-deficient, but not Cu-adequate rats showed a 132 kDa protein band by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis. This protein band stained pink with Coomassie Blue, suggesting the presence of collagens or other proline-rich proteins. Dot immunoblotting demonstrated that total type I collagen was increased by 110% in HSB protein extract from Cu-deficient, relative to Cu-adequate, rats. Liquid chromatography with mass spectrometry analysis indicated that the 132 kDa protein band contained a collagen alpha (I) chain precursor as well as a leucine-rich protein 130 (LRP130) in HSB protein extract from Cu-deficient but not Cu-adequate rats. A gel shift assay showed that HSB protein extract from Cu-deficient rats bound to a single-stranded cytosine-rich DNA with higher affinity than the extract of Cu-adequate rats, similar to reports of an increase in LRP130 single-stranded DNA binding activity in several types of tumor cells. Collectively, these results not only suggest an additional feature of altered collagen metabolism with Cu deficiency but also demonstrate for the first time an increase in single-stranded cytosine-rich DNA binding in Cu-deficient rat heart.

  16. The early UL31 gene of equine herpesvirus 1 encodes a single-stranded DNA-binding protein that has a nuclear localization signal sequence at the C-terminus

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seongman; Chul Ahn, Byung; O' Callaghan, Dennis J. [Department of Microbiology and Immunology, Center for Molecular and Tumor Virology, Louisiana State University Health Sciences Center, Shreveport, LA 71130-3932 (United States); Kim, Seong Kee, E-mail: skim1@lsuhsc.edu [Department of Microbiology and Immunology, Center for Molecular and Tumor Virology, Louisiana State University Health Sciences Center, Shreveport, LA 71130-3932 (United States)

    2012-10-25

    The amino acid sequence of the UL31 protein (UL31P) of equine herpesvirus 1 (EHV-1) has homology to that of the ICP8 of herpes simplex virus type 1 (HSV-1). Here we show that the UL31 gene is synergistically trans-activated by the IEP and the UL5P (EICP27). Detection of the UL31 RNA transcript and the UL31P in EHV-1-infected cells at 6 h post-infection (hpi) as well as metabolic inhibition assays indicated that UL31 is an early gene. The UL31P preferentially bound to single-stranded DNA over double-stranded DNA in gel shift assays. Subcellular localization of the green fluorescent protein (GFP)-UL31 fusion proteins revealed that the C-terminal 32 amino acid residues of the UL31P are responsible for the nuclear localization. These findings may contribute to defining the role of the UL31P single-stranded DNA-binding protein in EHV-1 DNA replication.

  17. The early UL31 gene of equine herpesvirus 1 encodes a single-stranded DNA-binding protein that has a nuclear localization signal sequence at the C-terminus

    International Nuclear Information System (INIS)

    Kim, Seongman; Chul Ahn, Byung; O’Callaghan, Dennis J.; Kim, Seong Kee

    2012-01-01

    The amino acid sequence of the UL31 protein (UL31P) of equine herpesvirus 1 (EHV-1) has homology to that of the ICP8 of herpes simplex virus type 1 (HSV-1). Here we show that the UL31 gene is synergistically trans-activated by the IEP and the UL5P (EICP27). Detection of the UL31 RNA transcript and the UL31P in EHV-1-infected cells at 6 h post-infection (hpi) as well as metabolic inhibition assays indicated that UL31 is an early gene. The UL31P preferentially bound to single-stranded DNA over double-stranded DNA in gel shift assays. Subcellular localization of the green fluorescent protein (GFP)–UL31 fusion proteins revealed that the C-terminal 32 amino acid residues of the UL31P are responsible for the nuclear localization. These findings may contribute to defining the role of the UL31P single-stranded DNA-binding protein in EHV-1 DNA replication.

  18. Evaluation of the neutral comet assay for detection of alpha-particle induced DNA-double-strand-breaks; Evaluation des Comet Assays bei neutralem pH zur Detektion von α-Partikel induzierten DNA-Doppelstrangbruechen

    Energy Technology Data Exchange (ETDEWEB)

    Hofbauer, Daniela

    2010-10-20

    Aim of this study was to differentiate DNA-double-strand-breaks from DNA-single-strand-breaks on a single cell level, using the comet assay after α- and γ-irradiation. Americium-241 was used as a alpha-irradiation-source, Caesium-137 was used for γ-irradiation. Because of technical problems with both the neutral and alkaline comet assay after irradiation of gastric cancer cells and human lymphocytes, no definite differentiation of DNA-damage was possible.

  19. Engineering BspQI nicking enzymes and application of N.BspQI in DNA labeling and production of single-strand DNA.

    Science.gov (United States)

    Zhang, Penghua; Too, Priscilla Hiu-Mei; Samuelson, James C; Chan, Siu-Hong; Vincze, Tamas; Doucette, Stephanie; Bäckström, Stefan; Potamousis, Konstantinos D; Schramm, Timothy M; Forrest, Dan; Schwartz, David C; Xu, Shuang-yong

    2010-02-01

    BspQI is a thermostable Type IIS restriction endonuclease (REase) with the recognition sequence 5'GCTCTTC N1/N4 3'. Here we report the cloning and expression of the bspQIR gene for the BspQI restriction enzyme in Escherichia coli. Alanine scanning of the BspQI charged residues identified a number of DNA nicking variants. After sampling combinations of different amino acid substitutions, an Nt.BspQI triple mutant (E172A/E248A/E255K) was constructed with predominantly top-strand DNA nicking activity. Furthermore, a triple mutant of BspQI (Nb.BspQI, N235A/K331A/R428A) was engineered to create a bottom-strand nicking enzyme. In addition, we demonstrated the application of Nt.BspQI in optical mapping of single DNA molecules. Nt or Nb.BspQI-nicked dsDNA can be further digested by E. coli exonuclease III to create ssDNA for downstream applications. BspQI contains two potential catalytic sites: a top-strand catalytic site (Ct) with a D-H-N-K motif found in the HNH endonuclease family and a bottom-strand catalytic site (Cb) with three scattered Glu residues. BlastP analysis of proteins in GenBank indicated a putative restriction enzyme with significant amino acid sequence identity to BspQI from the sequenced bacterial genome Croceibacter atlanticus HTCC2559. This restriction gene was amplified by PCR and cloned into a T7 expression vector. Restriction mapping and run-off DNA sequencing of digested products from the partially purified enzyme indicated that it is an EarI isoschizomer with 6-bp recognition, which we named CatHI (CTCTTC N1/N4).

  20. The Mycoplasma pneumoniae MPN229 gene encodes a protein that selectively binds single-stranded DNA and stimulates Recombinase A-mediated DNA strand exchange

    NARCIS (Netherlands)

    M. Sluijter (Marcel); T.A. Hoogenboezem (Thomas); N.G. Hartwig (Nico); C. Vink (Cornelis)

    2008-01-01

    textabstractBackground. Mycoplasma pneumoniae has previously been characterized as a micro-organism that is genetically highly stable. In spite of this genetic stability, homologous DNA recombination has been hypothesized to lie at the basis of antigenic variation of the major surface protein, P1,

  1. Crosslinks rather than strand breaks determine access to ancient DNA sequences from frozen sediments

    DEFF Research Database (Denmark)

    Hansen, Anders Johannes; Mitchell, D.L.; Wiuf, C.

    2006-01-01

    Diagenesis was studied in DNA obtained from Siberian permafrost (permanently frozen soil) ranging from 10 to 400 thousand years in age. Despite optimal preservation conditions, we found the sedimentary DNA to be severely modified by interstrand crosslinks, single and double stranded breaks......, and freely exposed sugar, phosphate, and hydroxyl groups. Intriguingly, interstrand crosslinks were found to accumulate about hundred times faster than single stranded breaks, suggesting that crosslinking rather than depurination is the primary limiting factor for ancient DNA amplification under frozen...... conditions. The results question the reliability of the commonly used models relying on depurination kinetics for predicting the long-term survival of DNA under permafrost conditions and suggest that new strategies for repair of ancient DNA must be considered if the yield of amplifiable DNA from permafrost...

  2. Strand breaks in plasmid DNA following positional changes of Auger-electron-emitting radionuclides

    International Nuclear Information System (INIS)

    Adelstein, S.J.; Kassis, A.I.

    1996-01-01

    The purpose of our studies is to elucidate the kinetics of DNA strand breaks caused by low-energy Auger electron emitters in close proximity to DNA. Previously we have studied the DNA break yields in plasmids after the decay of indium-111 bound to DNA or free in solution. In this work, we compare the DNA break yields in supercoiled DNA of iodine-125 decaying close to DNA following DNA intercalation, minor-groove binding, or surface binding, and at a distance form DNA. Supercoiled DNA, stored at 4 C to accumulate radiation dose from the decay of 125 I, was then resolved by gel electrophoresis into supercoiled, nicked circular, and linear forms, representing undamaged DNA, single-strand breaks, and double-strand breaks respectively. DNA-intercalated or groove-bound 125 I is more effective than surface-bound radionuclide or 125 I free in solution. The hydroxyl radical scavenger DMSO protects against damage by 125 I free in solution but has minimal effect on damage by groove-bound 125 I. (orig.)

  3. Strand breaks and lethal damage in plasmid DNA subjected to 60CO-γirradiation

    International Nuclear Information System (INIS)

    Klimczak, U.

    1992-01-01

    Experiments with calf thymus DNA subjected to extracellular irradiation yield information on the role of direct and indirect effects in single-strand breakage, if this is evaluated with reference to the scavenger activity in respect of OH radicals. The role of the two processes in the occurrence of double-stand breaks and further damage leading to cell decay has so far remained largely obscure. It was the aim of the study described here to contribute to research in this field by performing in vitro experiments on biologically active DNA. For this purpose, DNA from pBR322 plasmids was irradiated in the presence of OH-radical scavengers. The number of single-strand and double-strand breaks was determined on the basis of the system's ability to eliminate OH radicals. In order to asses the influence of irradiation processes on the biological activity of DNA, investigations were carried out in E. coli for transformations caused by irradiated plasmid DNA. The results were interpreted in the light of theories about inhomogenous reaction kinetics put forward by Mark et al. (1989). It was finally discussed, which of the gamma-irradiation injuries occurring in DNA was to be held responsible for the inactivation of plasmid DNA and which enzymatic processes were additionally at work here. (orig./MG) [de

  4. The interaction of hyperthermophilic TATA-box binding protein with single-stranded DNA is entropically favorable and exhibits a large negative heat capacity change at high salt concentration.

    Science.gov (United States)

    Nagatoishi, Satoru; Tanaka, Yoshikazu; Kudou, Motonori; Tsumoto, Kouhei

    2009-09-01

    We have investigated the thermodynamics of the interaction between the TATA-box-binding protein from Pyrococcus horikoshii (PhoTBP) and its target DNA (TATA-1). The interaction between PhoTBP and double-stranded DNA (dsDNA) is entropically favorable and enthalpically unfavorable. The thermodynamic parameters for TATA-1 duplex formation in the presence of PhoTBP, that is, ternary PhoTBP-dsDNA complexation, are similar to those for TATA-1 duplex formation, which is enthalpically favorable. Surface plasmon resonance analysis indicates that the interaction between PhoTBP and single-stranded DNA (ssDNA) of TATA-1 is entropy driven and has a large negative heat capacity change (-1.19 kcal mol(-1) K(-1)) at high salt concentration (800 mM NaCl). These results suggest that the favorable entropic effect corresponding to the interaction between PhoTBP and dsDNA is due not to ternary complexation but to the interaction between PhoTBP and ssDNA. This report is the first to describe the thermodynamics of the interaction between TBP and ssDNA.

  5. Structure of the replicative form of bacteriophage φX174 : VI. Studies on alkali-denatured double-stranded φX DNA

    NARCIS (Netherlands)

    Pouwels, P.H.; Knijnenburg, C.M.; Rotterdam, J. van; Cohen, J.A.; Jansz, H.S.

    1968-01-01

    Double-stranded φX DNA which accumulates after infection with bacteriophage φX174 in the presence of chloramphenicol consists mainly of twisted circular double-stranded DNA with no single-strand breaks (component I) and of circular double-stranded DNA, in which single-strand breaks are present

  6. Effects of 3-Deoxyadenosine (Cordycepin) on the repair of X-ray-induced DNA single- and double-strand breaks in chinese hamster V79 cells

    International Nuclear Information System (INIS)

    Hiraoka, Wakako; Kuwabara, Mikinori; Sato, Fumiaki

    1990-01-01

    The ability of cordycepin to inhibit the repair of DNA strand breaks was examined with X-irradiated Chinese hamster V79 cells in log-phase culture. A filter elution technique revealed that 70 μM cordycepin did not inhibit the repair of single-strand breaks but inhibited the repair of double-strand breaks. These findings confirmed the fact that the increase in the lethality of cordycepin in X-irradiated cultured mammalian cells was attributable to unrepaired DNA double-strand breaks. (author)

  7. Transformation-associated recombination between diverged and homologous DNA repeats is induced by strand breaks

    Energy Technology Data Exchange (ETDEWEB)

    Larionov, V.; Kouprina, N. [National Inst. of Environmental Health Sciences, Research Triangle Park, NC (United States)]|[Institute of Cytology, St. Petersburg, (Russian Federation); Edlarov, M. [National Inst. of Environmental Health Sciences, Research Triangle Park, NC (United States)]|[Center of Bioengineering, Moscow, (Russian Federation); Perkins, E.; Porter, G.; Resnick, M.A. [National Inst. of Environmental Health Sciences, Research Triangle Park, NC (United States)

    1993-12-31

    Rearrangement and deletion within plasmid DNA is commonly observed during transformation. We have examined the mechanisms of transformation-associated recombination in the yeast Saccharomyces cerevisiae using a plasmid system which allowed the effects of physical state and/or extent of homology on recombination to be studied. The plasmid contains homologous or diverged (19%) DNA repeats separated by a genetically detectable color marker. Recombination during transformation for covalently closed circular plasmids was over 100-fold more frequent than during mitotic growth. The frequency of recombination is partly dependent on the method of transformation in that procedures involving lithium acetate or spheroplasting yield higher frequencies than electroporation. When present in the repeats, unique single-strand breaks that are ligatable, as well as double-strand breaks, lead to high levels of recombination between diverged and identical repeats. The transformation-associated recombination between repeat DNA`s is under the influence of the RADS2, RADI and the RNCI genes,

  8. Theoretical investigation of the production of strand breaks in DNA by water radicals

    International Nuclear Information System (INIS)

    Chatterjee, A.; Magee, J.L.

    1985-01-01

    A calculation has been made of the indirect action of radiation on SV40 DNA in dilute aqueous solution, including the extent of OH reaction with both the sugar moiety and the bases. A realistic DNA model is used along with a track model that gives the correct decay rates of hydrated electrons and OH radicals in pure water with the same calculational techniques. It was found, in agreement with experiment, that 80% of the OH attack on DNA is on the bases and 20% is on the sugar. It is estimated that the probability is almost non-existent ( -6 ) for two OH radicals from the same track or from two tracks to reach sugars on opposite strands within 12 base pairs from each other. Thus double strand breaks that depend linearly on the dose (as we find in a companion experimental programme) must arise from some other mechanism. The calculated single strand break probabilities are in good agreement with experiment. (author)

  9. Breaking DNA strands by extreme-ultraviolet laser pulses in vacuum

    Science.gov (United States)

    Nováková, Eva; Vyšín, Luděk; Burian, Tomáš; Juha, Libor; Davídková, Marie; Múčka, Viliam; Čuba, Václav; Grisham, Michael E.; Heinbuch, Scott; Rocca, Jorge J.

    2015-04-01

    Ionizing radiation induces a variety of DNA damages including single-strand breaks (SSBs), double-strand breaks (DSBs), abasic sites, modified sugars, and bases. Most theoretical and experimental studies have been focused on DNA strand scissions, in particular production of DNA double-strand breaks. DSBs have been proven to be a key damage at a molecular level responsible for the formation of chromosomal aberrations, leading often to cell death. We have studied the nature of DNA damage induced directly by the pulsed 46.9-nm (26.5 eV) radiation provided by an extreme ultraviolet (XUV) capillary-discharge Ne-like Ar laser (CDL). Doses up to 45 kGy were delivered with a repetition rate of 3 Hz. We studied the dependence of the yield of SSBs and DSBs of a simple model of DNA molecule (pBR322) on the CDL pulse fluence. Agarose gel electrophoresis method was used for determination of both SSB and DSB yields. The action cross sections of the single- and double-strand breaks of pBR322 plasmid DNA in solid state were determined. We observed an increase in the efficiency of strand-break induction in the supercoiled DNA as a function of laser pulse fluence. Results are compared to those acquired at synchrotron radiation facilities and other sources of extreme-ultraviolet and soft x-ray radiation.

  10. Breaking DNA strands by extreme-ultraviolet laser pulses in vacuum.

    Science.gov (United States)

    Nováková, Eva; Vyšín, Luděk; Burian, Tomáš; Juha, Libor; Davídková, Marie; Múčka, Viliam; Čuba, Václav; Grisham, Michael E; Heinbuch, Scott; Rocca, Jorge J

    2015-04-01

    Ionizing radiation induces a variety of DNA damages including single-strand breaks (SSBs), double-strand breaks (DSBs), abasic sites, modified sugars, and bases. Most theoretical and experimental studies have been focused on DNA strand scissions, in particular production of DNA double-strand breaks. DSBs have been proven to be a key damage at a molecular level responsible for the formation of chromosomal aberrations, leading often to cell death. We have studied the nature of DNA damage induced directly by the pulsed 46.9-nm (26.5 eV) radiation provided by an extreme ultraviolet (XUV) capillary-discharge Ne-like Ar laser (CDL). Doses up to 45 kGy were delivered with a repetition rate of 3 Hz. We studied the dependence of the yield of SSBs and DSBs of a simple model of DNA molecule (pBR322) on the CDL pulse fluence. Agarose gel electrophoresis method was used for determination of both SSB and DSB yields. The action cross sections of the single- and double-strand breaks of pBR322 plasmid DNA in solid state were determined. We observed an increase in the efficiency of strand-break induction in the supercoiled DNA as a function of laser pulse fluence. Results are compared to those acquired at synchrotron radiation facilities and other sources of extreme-ultraviolet and soft x-ray radiation.

  11. Heavy Metal Exposure Influences Double Strand Break DNA Repair Outcomes.

    Directory of Open Access Journals (Sweden)

    Maria E Morales

    Full Text Available Heavy metals such as cadmium, arsenic and nickel are classified as carcinogens. Although the precise mechanism of carcinogenesis is undefined, heavy metal exposure can contribute to genetic damage by inducing double strand breaks (DSBs as well as inhibiting critical proteins from different DNA repair pathways. Here we take advantage of two previously published culture assay systems developed to address mechanistic aspects of DNA repair to evaluate the effects of heavy metal exposures on competing DNA repair outcomes. Our results demonstrate that exposure to heavy metals significantly alters how cells repair double strand breaks. The effects observed are both specific to the particular metal and dose dependent. Low doses of NiCl2 favored resolution of DSBs through homologous recombination (HR and single strand annealing (SSA, which were inhibited by higher NiCl2 doses. In contrast, cells exposed to arsenic trioxide preferentially repaired using the "error prone" non-homologous end joining (alt-NHEJ while inhibiting repair by HR. In addition, we determined that low doses of nickel and cadmium contributed to an increase in mutagenic recombination-mediated by Alu elements, the most numerous family of repetitive elements in humans. Sequence verification confirmed that the majority of the genetic deletions were the result of Alu-mediated non-allelic recombination events that predominantly arose from repair by SSA. All heavy metals showed a shift in the outcomes of alt-NHEJ repair with a significant increase of non-templated sequence insertions at the DSB repair site. Our data suggest that exposure to heavy metals will alter the choice of DNA repair pathway changing the genetic outcome of DSBs repair.

  12. Heavy Metal Exposure Influences Double Strand Break DNA Repair Outcomes.

    Science.gov (United States)

    Morales, Maria E; Derbes, Rebecca S; Ade, Catherine M; Ortego, Jonathan C; Stark, Jeremy; Deininger, Prescott L; Roy-Engel, Astrid M

    2016-01-01

    Heavy metals such as cadmium, arsenic and nickel are classified as carcinogens. Although the precise mechanism of carcinogenesis is undefined, heavy metal exposure can contribute to genetic damage by inducing double strand breaks (DSBs) as well as inhibiting critical proteins from different DNA repair pathways. Here we take advantage of two previously published culture assay systems developed to address mechanistic aspects of DNA repair to evaluate the effects of heavy metal exposures on competing DNA repair outcomes. Our results demonstrate that exposure to heavy metals significantly alters how cells repair double strand breaks. The effects observed are both specific to the particular metal and dose dependent. Low doses of NiCl2 favored resolution of DSBs through homologous recombination (HR) and single strand annealing (SSA), which were inhibited by higher NiCl2 doses. In contrast, cells exposed to arsenic trioxide preferentially repaired using the "error prone" non-homologous end joining (alt-NHEJ) while inhibiting repair by HR. In addition, we determined that low doses of nickel and cadmium contributed to an increase in mutagenic recombination-mediated by Alu elements, the most numerous family of repetitive elements in humans. Sequence verification confirmed that the majority of the genetic deletions were the result of Alu-mediated non-allelic recombination events that predominantly arose from repair by SSA. All heavy metals showed a shift in the outcomes of alt-NHEJ repair with a significant increase of non-templated sequence insertions at the DSB repair site. Our data suggest that exposure to heavy metals will alter the choice of DNA repair pathway changing the genetic outcome of DSBs repair.

  13. Lethal effects of the decay of 33P incorporated in the bacteriophage S 13 and the mechanism of the double-strand-break of DNA

    International Nuclear Information System (INIS)

    Apelgot, S.

    1980-01-01

    The experiments performed show the lethal effect of β decay of 33 P incorporated in DNA of bacteriophage S13. The lethal efficiency is high, 0.72 at 0 0 C and 0.55 at -196 0 C. The presence of a radical scavenger like AET had no influence. It was found previously that for such phages with single-stranded DNA, the lethal efficiency of 32 P decay was unity, and that the lethal event is a DNA single-strand break, owing to the high recoil energy of the nucleogenic 32 S atom. As the recoil energy of the 33 S atom is too low to account for such a break, it is suggested that the reorganization of the phosphate molecule into sulphate is able to bring about a DNA single-strand break with an efficiency as high as 0.7, at 0 0 C. A model for the DNA double-strand-break produced by a transmutation process is suggested. (author)

  14. APOBEC3 cytidine deaminases in double-strand DNA break repair and cancer promotion.

    Science.gov (United States)

    Nowarski, Roni; Kotler, Moshe

    2013-06-15

    High frequency of cytidine to thymidine conversions was identified in the genome of several types of cancer cells. In breast cancer cells, these mutations are clustered in long DNA regions associated with single-strand DNA (ssDNA), double-strand DNA breaks (DSB), and genomic rearrangements. The observed mutational pattern resembles the deamination signature of cytidine to uridine carried out by members of the APOBEC3 family of cellular deaminases. Consistently, APOBEC3B (A3B) was recently identified as the mutational source in breast cancer cells. A3G is another member of the cytidine deaminases family predominantly expressed in lymphoma cells, where it is involved in mutational DSB repair following ionizing radiation treatments. This activity provides us with a new paradigm for cancer cell survival and tumor promotion and a mechanistic link between ssDNA, DSBs, and clustered mutations. Cancer Res; 73(12); 3494-8. ©2013 AACR. ©2013 AACR.

  15. Conformationally locked aryl C-nucleosides: synthesis of phosphoramidite monomers and incorporation into single-stranded DNA and LNA (locked nucleic acid)

    DEFF Research Database (Denmark)

    Babu, B. Ravindra; Prasad, Ashok K.; Trikha, Smriti

    2002-01-01

    . The phosphoramidite approach was used for automated incorporation of the LNA-type beta-configured C-aryl monomers 17a-17e into short DNA and 2'-OMe-RNA/LNA strands. It is shown that universal hybridization can be obtained with a conformationally restricted monomer as demonstrated most convincingly for the pyrene LNA...... monomer 17d, both in a DNA context and in an RNA-like context. Increased binding affinity of oligonucleotide probes for universal hybridization can be induced by combining the pyrene LNA monomer 17d with affinity-enhancing 2'-OMe-RNA/LNA monomers....

  16. Replication of the plasmid pBR322 under the control of a cloned replication origin from the single-stranded DNA phage M13.

    OpenAIRE

    Cleary, J M; Ray, D S

    1980-01-01

    The replication origins of viral and complementary strands of bacteriophage M13 DNA are contained within a 507-nucleotide intergenic region of the viral genome. Chimeric plasmids have been constructed by inserting restriction endonuclease fragments of the M13 intergenic region into the plasmid pBR322. Replication of these hybrid plasmids, under conditions not permissive for the plasmid replicon, depends on specific segments of the M13 origin region and on the presence of M13 helper virus. Thu...

  17. Genetic evidence for single-strand lesions initiating Nbs1-dependent homologous recombination in diversification of Ig v in chicken B lymphocytes.

    Directory of Open Access Journals (Sweden)

    Makoto Nakahara

    2009-01-01

    Full Text Available Homologous recombination (HR is initiated by DNA double-strand breaks (DSB. However, it remains unclear whether single-strand lesions also initiate HR in genomic DNA. Chicken B lymphocytes diversify their Immunoglobulin (Ig V genes through HR (Ig gene conversion and non-templated hypermutation. Both types of Ig V diversification are initiated by AID-dependent abasic-site formation. Abasic sites stall replication, resulting in the formation of single-stranded gaps. These gaps can be filled by error-prone DNA polymerases, resulting in hypermutation. However, it is unclear whether these single-strand gaps can also initiate Ig gene conversion without being first converted to DSBs. The Mre11-Rad50-Nbs1 (MRN complex, which produces 3' single-strand overhangs, promotes the initiation of DSB-induced HR in yeast. We show that a DT40 line expressing only a truncated form of Nbs1 (Nbs1(p70 exhibits defective HR-dependent DSB repair, and a significant reduction in the rate--though not the fidelity--of Ig gene conversion. Interestingly, this defective gene conversion was restored to wild type levels by overproduction of Escherichia coli SbcB, a 3' to 5' single-strand-specific exonuclease, without affecting DSB repair. Conversely, overexpression of chicken Exo1 increased the efficiency of DSB-induced gene-targeting more than 10-fold, with no effect on Ig gene conversion. These results suggest that Ig gene conversion may be initiated by single-strand gaps rather than by DSBs, and, like SbcB, the MRN complex in DT40 may convert AID-induced lesions into single-strand gaps suitable for triggering HR. In summary, Ig gene conversion and hypermutation may share a common substrate-single-stranded gaps. Genetic analysis of the two types of Ig V diversification in DT40 provides a unique opportunity to gain insight into the molecular mechanisms underlying the filling of gaps that arise as a consequence of replication blocks at abasic sites, by HR and error

  18. Production of strand breaks in DNA in the presence of the hydroxylamine of SR-2508 (1-[N-(2-hydroxyethyl)acetamido]-2-nitroimidazole) at neutral pH

    International Nuclear Information System (INIS)

    Laderoute, K.R.; Eryavec, E.; McClelland, R.A.; Rauth, A.M.

    1986-01-01

    The protonated hydroxylamine of SR 2508 has been prepared by radiochemical reduction and then lyophilized, isolated as the hydrochloride salt, and characterized by proton magnetic resonance spectroscopy. Single strand breaks are produced in the plasmid pBR322 when aliquots of a neutralized solution of the hydroxylamine (10-20 mM) are added to air-equilibrated solutions of the plasmid immediately after adjusting the pH. No breaks are observed, if times greater than five min elapse before adding the neutralized hydroxylamine to DNA, or if oxygen is excluded from the reaction mixture. These results suggest that single strand breaks occur because of the existence of a short-lived reactive species, which is produced after pH adjustment. Observations that oxygen is consumed during the pH jump, H 2 O 2 produced and catalase, desferal and radical scavengers inhibit the reaction are consistent with the hydroxyl radical as the active agent

  19. Interference in DNA replication can cause mitotic chromosomal breakage unassociated with double-strand breaks.

    Directory of Open Access Journals (Sweden)

    Mari Fujita

    Full Text Available Morphological analysis of mitotic chromosomes is used to detect mutagenic chemical compounds and to estimate the dose of ionizing radiation to be administered. It has long been believed that chromosomal breaks are always associated with double-strand breaks (DSBs. We here provide compelling evidence against this canonical theory. We employed a genetic approach using two cell lines, chicken DT40 and human Nalm-6. We measured the number of chromosomal breaks induced by three replication-blocking agents (aphidicolin, 5-fluorouracil, and hydroxyurea in DSB-repair-proficient wild-type cells and cells deficient in both homologous recombination and nonhomologous end-joining (the two major DSB-repair pathways. Exposure of cells to the three replication-blocking agents for at least two cell cycles resulted in comparable numbers of chromosomal breaks for RAD54(-/-/KU70(-/- DT40 clones and wild-type cells. Likewise, the numbers of chromosomal breaks induced in RAD54(-/-/LIG4(-/- Nalm-6 clones and wild-type cells were also comparable. These data indicate that the replication-blocking agents can cause chromosomal breaks unassociated with DSBs. In contrast with DSB-repair-deficient cells, chicken DT40 cells deficient in PIF1 or ATRIP, which molecules contribute to the completion of DNA replication, displayed higher numbers of mitotic chromosomal breaks induced by aphidicolin than did wild-type cells, suggesting that single-strand gaps left unreplicated may result in mitotic chromosomal breaks.

  20. Protection of free-radical induced DNA strand breaks in vitro by flavonoids

    International Nuclear Information System (INIS)

    Fisher, L.; Anderson, R.F.

    1998-01-01

    Full text: We have used both plasmid and cosmid test systems to assay the effect of antioxidant flavonoids (AO) on DNA strand breakage in supercoiled closed circular DNA (DNA SC ) following the formation oxidative radical damage on DNA (DNA OXID + . ) in aqueous solution. Single strand breaks in DNA SC result in the formation of the relaxed circular form (DNA RC ) and double strand breaks give linear DNA (DNA L ). Dose response curves were constructed for the log of the loss of [DNA S C] against dose (0-600 Gy). The D 37 (dose for 37% unchanged DNA SC ) values determined in the presence of increasing amounts of flavonoids were compared as ratios to the D 37 control value to give dose modification factor (DMF). Irradiations were carried out under 'constant scavenging' conditions to separate out the effect of direct radical scavenging from the possible electron transfer reaction. Control irradiation experiments, were performed in aerated TRIS buffer, concentration 10 mM, which has a scavenging capacity, k s (defined as the summation of the rate constants for the reaction of OH radicals with all species in solution, multiplied by their concentrations) of 1.5 x 10 7 s -1 . The concentration of TRIS was reduced upon addition of AO to maintain k s at this level. Data will be presented for examples from all four major types of flavonoids (flavonols, isoflavones, flavones and flavon-3-ols) showing DMF values plateau at near 2.0 even at low concentrations (ca. 20 μM) of the flavonoids. Increased DNA strand breaks following post irradiation incubation with endo III protein was unaffected by having the flavonoids present at the time of irradiation. This result suggests that the protection afforded by the flavonoids is unlikely to be in repairing radical damage on pyrimidine bases that are precursors of DNA strand breaks. Overall these studies provide evidence for an additional mechanism of antioxidant activity

  1. One-dimensional TRFLP-SSCP is an effective DNA fingerprinting strategy for soil Archaea that is able to simultaneously differentiate broad taxonomic clades based on terminal fragment length polymorphisms and closely related sequences based on single stranded conformation polymorphisms.

    Science.gov (United States)

    Swanson, Colby A; Sliwinski, Marek K

    2013-09-01

    DNA fingerprinting methods provide a means to rapidly compare microbial assemblages from environmental samples without the need to first cultivate species in the laboratory. The profiles generated by these techniques are able to identify statistically significant temporal and spatial patterns, correlations to environmental gradients, and biological variability to estimate the number of replicates for clone libraries or next generation sequencing (NGS) surveys. Here we describe an improved DNA fingerprinting technique that combines terminal restriction fragment length polymorphisms (TRFLP) and single stranded conformation polymorphisms (SSCP) so that both can be used to profile a sample simultaneously rather than requiring two sequential steps as in traditional two-dimensional (2-D) gel electrophoresis. For the purpose of profiling Archaeal 16S rRNA genes from soil, the dynamic range of this combined 1-D TRFLP-SSCP approach was superior to TRFLP and SSCP. 1-D TRFLP-SSCP was able to distinguish broad taxonomic clades with genetic distances greater than 10%, such as Euryarchaeota and the Thaumarchaeal clades g_Ca. Nitrososphaera (formerly 1.1b) and o_NRP-J (formerly 1.1c) better than SSCP. In addition, 1-D TRFLP-SSCP was able to simultaneously distinguish closely related clades within a genus such as s_SCA1145 and s_SCA1170 better than TRFLP. We also tested the utility of 1-D TRFLP-SSCP fingerprinting of environmental assemblages by comparing this method to the generation of a 16S rRNA clone library of soil Archaea from a restored Tallgrass prairie. This study shows 1-D TRFLP-SSCP fingerprinting provides a rapid and phylogenetically informative screen of Archaeal 16S rRNA genes in soil samples. © 2013.

  2. DNA ligase 1 deficient plants display severe growth defects and delayed repair of both DNA single and double strand breaks

    Directory of Open Access Journals (Sweden)

    Bray Clifford M

    2009-06-01

    Full Text Available Abstract Background DNA ligase enzymes catalyse the joining of adjacent polynucleotides and as such play important roles in DNA replication and repair pathways. Eukaryotes possess multiple DNA ligases with distinct roles in DNA metabolism, with clear differences in the functions of DNA ligase orthologues between animals, yeast and plants. DNA ligase 1, present in all eukaryotes, plays critical roles in both DNA repair and replication and is indispensable for cell viability. Results Knockout mutants of atlig1 are lethal. Therefore, RNAi lines with reduced levels of AtLIG1 were generated to allow the roles and importance of Arabidopsis DNA ligase 1 in DNA metabolism to be elucidated. Viable plants were fertile but displayed a severely stunted and stressed growth phenotype. Cell size was reduced in the silenced lines, whilst flow cytometry analysis revealed an increase of cells in S-phase in atlig1-RNAi lines relative to wild type plants. Comet assay analysis of isolated nuclei showed atlig1-RNAi lines displayed slower repair of single strand breaks (SSBs and also double strand breaks (DSBs, implicating AtLIG1 in repair of both these lesions. Conclusion Reduced levels of Arabidopsis DNA ligase 1 in the silenced lines are sufficient to support plant development but result in retarded growth and reduced cell size, which may reflect roles for AtLIG1 in both replication and repair. The finding that DNA ligase 1 plays an important role in DSB repair in addition to its known function in SSB repair, demonstrates the existence of a previously uncharacterised novel pathway, independent of the conserved NHEJ. These results indicate that DNA ligase 1 functions in both DNA replication and in repair of both ss and dsDNA strand breaks in higher plants.

  3. Human Xip1 (C2orf13) is a novel regulator of cellular responses to DNA strand breaks

    DEFF Research Database (Denmark)

    Bekker-Jensen, Simon; Fugger, Kasper; Danielsen, Jannie Rendtlew

    2007-01-01

    in the C terminus of Xip1. The initial recruitment kinetics of Xip1 closely paralleled that of XRCC1, a central organizer of single strand break (SSB) repair, and its accumulation was both delayed and sustained when the detection of SSBs was abrogated by inhibition of PARP-1. Xip1 and XRCC1 stably...... identify the previously uncharacterized human protein Xip1 (C2orf13) as a novel component of the checkpoint response to DNA strand breaks. Green fluorescent protein-tagged Xip1 was rapidly recruited to sites of DNA breaks, and this accumulation was dependent on a novel type of zinc finger motif located...... interacted through recognition of CK2 phosphorylation sites in XRCC1 by the Forkhead-associated (FHA) domain of Xip1, and XRCC1 was required to maintain steady-state levels of Xip1. Moreover, Xip1 was phosphorylated on Ser-116 by ataxia telangiectasia-mutated in response to ionizing radiation, further...

  4. Mutagenesis of the Agrobacterium VirE2 single-stranded DNA-binding protein identifies regions required for self-association and interaction with VirE1 and a permissive site for hybrid protein construction.

    Science.gov (United States)

    Zhou, X R; Christie, P J

    1999-07-01

    The VirE2 single-stranded DNA-binding protein (SSB) of Agrobacterium tumefaciens is required for delivery of T-DNA to the nuclei of susceptible plant cells. By yeast two-hybrid and immunoprecipitation analyses, VirE2 was shown to self-associate and to interact with VirE1. VirE2 mutants with small deletions or insertions of a 31-residue oligopeptide (i31) at the N or C terminus or with an i31 peptide insertion at Leu236 retained the capacity to form homomultimers. By contrast, VirE2 mutants with modifications outside a central region located between residues 320 and 390 retained the capacity to interact with VirE1. These findings suggest the tertiary structure of VirE2 is important for homomultimer formation whereas a central domain mediates formation of a complex with VirE1. The capacity of VirE2 mutants to interact with full-length VirE2 in the yeast Saccharomyces cerevisiae correlated with the abundance of the mutant proteins in A. tumefaciens, suggesting that VirE2 is stabilized by homomultimerization in the bacterium. We further characterized the promoter and N- and C-terminal sequence requirements for synthesis of functional VirE2. A PvirB::virE2 construct yielded functional VirE2 protein as defined by complementation of a virE2 null mutation. By contrast, PvirE or Plac promoter constructs yielded functional VirE2 only if virE1 was coexpressed with virE2. Deletion of 10 or 9 residues from the N or C terminus of VirE2, respectively, or addition of heterologous peptides or proteins to either terminus resulted in a loss of protein function. However, an i31 peptide insertion at Tyr39 had no effect on protein function as defined by the capacity of the mutant protein to (i) interact with native VirE2, (ii) interact with VirE1, (iii) accumulate at abundant levels in A. tumefaciens, and (iv) restore wild-type virulence to a virE2 null mutant. We propose that Tyr39 of VirE2 corresponds to a permissive site for insertion of heterologous peptides or proteins of interest

  5. Induction of DNA strand breaks by RSU-1069, a nitroimidazole-aziridine radiosensitizer

    International Nuclear Information System (INIS)

    Silver, A.R.J.; O'Neill, P.; Jenkins, T.C.

    1985-01-01

    [2- 14 C]-RSU-1069 [1-(2-nitro-1-imidazolyl)-3-(1-aziridino)-2-propanol], either as a parent or following radiation reduction, binds to calf thymus DNA in vitro. Radiation-reduced RSU-1069 binds to a greater extent and more rapidly than the parent compound. RSU-1137, a non-aziridino analogue of RSU-1069, binds following radiation reduction. Radiation-reduced misonidazole exhibits binding ratios a thousand-fold less than those of reduced RSU-1069. Both parent and reduced RSU-1069 cause single strand breaks (ssbs) in pSV2 gpt plasmid DNA with the reduced compound causing a greater number of breaks. Parent and reduced RSU-1137 and misonidazole do not cause ssbs. It is inferred that the aziridine moiety present in both parent and reduced RSU-1069 is required for ssb production. RSU-1069 reacts with inorganic phosphate probably via nucleophilic ring-opening of the aziridine fragment. Incubation of plasmid DNA with reduced RSU-1069 in the presence of either phosphate or deoxyribose-5-phosphate at concentrations greater than 0.35 mol dm -3 prevents strand breakage, whereas 1.2 mol dm -3 deoxyribose does not protect against strand breakage formation. It is proposed that the observed binding to DNA occurs via the aziridine and the reduced nitro group of RSU-1069 and that these two have different target sites. Binding to DNA via the reduced nitro group may serve to increase aziridine attack due to localization at or near its target. (author)

  6. Evidence for multiple repair pathways of double-strand DNA breaks in Chinese hamster cells

    International Nuclear Information System (INIS)

    Giaccia, A.J.; Weistein, R.; Stamato, T.D.; Roosa, R.

    1984-01-01

    XR-1 is a mutant of the Chinese hamster cell (CHO-K1) which is abnormally sensitive to killing by gamma rays in G/sub 1/ (D37 = 27 rads vs. 318 for parent) and early S phases of the cell cycle but has near normal resistance in late S and early G/sub 2/ (Somatic Cell Genetics, 9:165-173, 1983). Complementation studies between XR-1 and its parent indicate that this sensitivity to gamma rays is a recessive phenotype. Both the XR-1 and its parent cell are able to repair single strand DNA breaks. However, in comparison to its parental cell, the XR-1 cell is markedly deficient in the repair of double strand DNA breaks introduced by gamma irradiation during the sensitive G/sub 1/-early S period, while in the late S-G/sub 2/ resistant period the repair is similar in both cells. This correlation suggests that an unrepaired double strand DNA break is the lethal lesion and that at least two pathways for the repair of these lesions exist in mammalian cells

  7. Fragmentation in DNA double-strand breaks

    International Nuclear Information System (INIS)

    Wei Zhiyong; Suzhou Univ., Suzhou; Zhang Lihui; Li Ming; Fan Wo; Xu Yujie

    2005-01-01

    DNA double strand breaks are important lesions induced by irradiations. Random breakage model or quantification supported by this concept is suitable to analyze DNA double strand break data induced by low LET radiation, but deviation from random breakage model is more evident in high LET radiation data analysis. In this work we develop a new method, statistical fragmentation model, to analyze the fragmentation process of DNA double strand breaks. After charged particles enter the biological cell, they produce ionizations along their tracks, and transfer their energies to the cells and break the cellular DNA strands into fragments. The probable distribution of the fragments is obtained under the condition in which the entropy is maximum. Under the approximation E≅E 0 + E 1 l + E 2 l 2 , the distribution functions are obtained as exp(αl + βl 2 ). There are two components, the one proportional to exp(βl 2 ), mainly contributes to the low mass fragment yields, the other component, proportional to exp(αl), decreases slowly as the mass of the fragments increases. Numerical solution of the constraint equations provides parameters α and β. Experimental data, especially when the energy deposition is higher, support the statistical fragmentation model. (authors)

  8. Repair of ultraviolet light damage in Saccharomyces cerevisiae as studied with double- and single-stranded incoming DNAs

    International Nuclear Information System (INIS)

    Keszenman-Pereyra, D.; Hieda, K.

    1992-01-01

    Purified double- and single-stranded DNAs of the autonomously replicating vector M13RK9-T were irradiated with ultraviolet light (UV) in vitro and introduced into competent whole cells of Saccharomyces cerevisiae. Incoming double-stranded DNA was more sensitive to UV in excision repair-deficient rad2-1 cells than in proficient repair RAD + cells, while single-stranded DNA exhibited high sensitivity in both host cells. The results indicate that in yeast there is no effective rescue of UV-incoming single-stranded DNA by excision repair or other constitutive dark repair processes

  9. Formation of plasmid DNA strand breaks induced by low-energy ion beam: indication of nuclear stopping effects

    International Nuclear Information System (INIS)

    Chen Yu; Jiang Bingyao; Chen Youshan; Ding Xingzhao; Liu Xianghuai; Chen Ceshi; Guo Xinyou; Yin Guanglin

    1998-01-01

    Plasmid pGEM 3zf(+) was irradiated by nitrogen ion beam with energies between 20 and 100 keV and the fluence kept as 1 x 10 12 ions/cm 2 . The irradiated plasmid was assayed by neutral electrophoresis and quantified by densitometry. The yields of DNA with single-strand and double-strand breaks first increased then decreased with increasing ion energy. There was a maximal yield value in the range of 20-100 keV. The relationship between DNA double-strand breaks (DSB) cross-section and linear energy transfer (LET) also showed a peak-shaped distribution. To understand the physical process during DNA strand breaks, a Monte Carlo calculation code known as TRIM (Transport of Ions in Matter) was used to simulate energy losses due to nuclear stopping and to electronic stopping. It can be assumed that nuclear stopping plays a more important role in DNA strand breaks than electronic stopping in this energy range. The physical mechanisms of DNA strand breaks induced by a low-energy ion beam are also discussed. (orig.)

  10. Trapping and breaking of in vivo nicked DNA during pulsed-field gel electrophoresis

    Science.gov (United States)

    Khan, Sharik R.; Kuzminov, Andrei

    2013-01-01

    Pulsed field gel electrophoresis (PFGE) offers a high-resolution approach to quantify chromosomal fragmentation in bacteria, measured as percent of chromosomal DNA entering the gel. The degree of separation in PFG depends upon the size of DNA, as well as various conditions of electrophoresis, such as electric field strength (FS), time of electrophoresis, switch time and buffer composition. Here we describe a new parameter, the structural integrity of the sample DNA itself, that influences its migration through PFGs. We show that sub-chromosomal fragments containing both spontaneous and DNA damage-induced nicks are prone to breakage during PFGE. Such breakage at single strand interruptions results in artefactual decrease in molecular weight of linear DNA making accurate determination of the number of double strand breaks difficult. While breakage of nicked sub-chromosomal fragments is FS-independent, some high molecular weight sub-chromosomal fragments are also trapped within wells under the standard PFGE conditions. This trapping can be minimized by lowering the field strength and increasing the time of electrophoresis. We discuss how breakage of nicked DNA may be mechanistically linked to trapping. Our results suggest how to optimize conditions for PFGE when quantifying chromosomal fragmentation induced by DNA damage. PMID:23770235

  11. SU-E-T-05: Comparing DNA Strand Break Yields for Photons under Different Irradiation Conditions with Geant4-DNA.

    Science.gov (United States)

    Pater, P; Bernal, M; Naqa, I El; Seuntjens, J

    2012-06-01

    To validate and scrutinize published DNA strand break data with Geant4-DNA and a probabilistic model. To study the impact of source size, electronic equilibrium and secondary electron tracking cutoff on direct relative biological effectiveness (DRBE). Geant4 (v4.9.5) was used to simulate a cylindrical region of interest (ROI) with r = 15 nm and length = 1.05 mm, in a slab of liquid water of 1.06 g/cm 3 density. The ROI was irradiated with mono-energetic photons, with a uniformly distributed volumetric isotropic source (0.28, 1.5 keV) or a plane beam (0.662, 1.25 MeV), of variable size. Electrons were tracked down to 50 or 10 eV, with G4-DNA processes and energy transfer greater than 10.79 eV was scored. Based on volume ratios, each scored event had a 0.0388 probability of happening on either DNA helix (break). Clusters of at least one break on each DNA helix within 3.4 nm were found using a DBSCAN algorithm and categorized as double strand breaks (DSB). All other events were categorized as single strand breaks (SSB). Geant4-DNA is able to reproduce strand break yields previously published. Homogeneous irradiation conditions should be present throughout the ROI for DRBE comparisons. SSB yields seem slightly dependent on the primary photon energy. DRBEs show a significant increasing trend for lower energy incident photons. A lower electron cutoff produces higher SSB yields, but decreases the SSB/DSB yields ratio. The probabilistic and geometrical DNA models can predict equivalent results. Using Geant4, we were able to reproduce previously published results on the direct strand break yields of photon and study the importance of irradiation conditions. We also show an ascending trend for DRBE with lower incident photon energies. A probabilistic model coupled with track structure analysis can be used to simulate strand break yields. NSERC, CIHR. © 2012 American Association of Physicists in Medicine.

  12. Sequence dependence of electron-induced DNA strand breakage revealed by DNA nanoarrays

    DEFF Research Database (Denmark)

    Keller, Adrian; Rackwitz, Jenny; Cauët, Emilie

    2014-01-01

    sections for electron induced single strand breaks in specific 13 mer oligonucleotides we used atomic force microscopy analysis of DNA origami based DNA nanoarrays. We investigated the DNA sequences 5'-TT(XYX)3TT with X = A, G, C and Y = T, BrU 5-bromouracil and found absolute strand break cross sections...

  13. Correlations of DNA strand breaks and their repair with cell survival following acute exposure to mercury(II) and X-rays

    International Nuclear Information System (INIS)

    Cantoni, O.; Costa, M.

    1983-01-01

    Alkaline elution analysis demonstrates that both HgCl 2 and X-rays result in a rapid induction of DNA single-strand breaks at acutely cytotoxic doses (HgCl 2 , 25-100 microM for 60 min; X-rays, 150-600 rads) in cultured Chinese hamster ovary cells. Cytotoxicity, as measured by cell-plating efficiency, correlates linearly with the level of DNA breakage induced by both agents (HgCl 2 , r . 0.97; X-rays, r . 0.99), although a substantial difference in axis intercepts of the two linear regression lines indicates that a higher level of DNA damage was required by X-rays as compared with HgCl 2 to produce an equivalent level of cell killing. DNA damage induced by X-rays was rapidly repaired such that within 1 hr following treatment the elution rate of DNA from treated cells resembled that obtained in untreated cultures. In contrast, DNA damage after Hg 2+ insult was not repaired, and further damage was evident following a similar 1-hr recovery period. Addition of noncytotoxic, non-DNA-damaging concentrations of HgCl 2 (10 microM) to cells 15-45 min following treatment with X-rays greatly inhibited the repair of the DNA strand breaks. Thus, although both HgCl 2 and X-rays induce rapid and striking single-strand breaks in the DNA, persistence of Hg 2+ in the cell can inhibit the repair of these breaks. The inhibition of DNA repair by HgCl 2 may explain why this agent is not severely mutagenic or carcinogenic despite its ability to induce an X-ray-like DNA damage and why a lower level of mercury-induced DNA damage, compared with that induced by X-rays, was required to produce an equivalent level of cell death

  14. Transformation-associated recombination between diverged and homologous DNA repeats is induced by strand breaks

    Energy Technology Data Exchange (ETDEWEB)

    Larionov, V.; Kouprina, N. [National Institute of Environmental Health Sciences (NIH), Research Triangle Park, NC (United States)]|[Institute of Cytology, St. Petersburg (Russian Federation); Eldarov, M. [National Institute of Environmental Health Sciences (NIH), Research Triangle Park, NC (United States)]|[Center for Bioengineering, Moscow (Russian Federation); Perkins, E.; Porter, G.; Resnick, M.A. [National Institute of Environmental Health Sciences (NIH), Research Triangle Park, NC (United States)

    1994-10-01

    Rearrangement and deletion within plasmid DNA is commonly observed during transformation. We have examined the mechanisms of transformation-associated recombination in the yeast Saccharomyces cerevisiae using a plasmid system which allowed the effects of physical state and/or extent of homology on recombination to be studied. The plasmid contains homologous or diverged (19%) DNA repeats separated by a genetically detectable color marker. Recombination during transformation for covalently closed circular plasmids was over 100-fold more frequent than during mitotic-growth. The frequency of recombination is partly dependent on the method of transformation In that procedures involving lithium acetate or spheroplasting yield higher frequencies than electroporation. When present in the repeats, unique single-strand breaks that are ligatable, as well as double-strand breaks, lead to high levels of recombination between diverged and identical repeats. The transformation-associated recombination between repeat DNA`s is under the influence of the RAD52, RAD1 and the RNC1 genes.

  15. DNA strand breaks induced by soft X-ray pulses from a compact laser plasma source

    Science.gov (United States)

    Adjei, Daniel; Wiechec, Anna; Wachulak, Przemyslaw; Ayele, Mesfin Getachew; Lekki, Janusz; Kwiatek, Wojciech M.; Bartnik, Andrzej; Davídková, Marie; Vyšín, Luděk; Juha, Libor; Pina, Ladislav; Fiedorowicz, Henryk

    2016-03-01

    Application of a compact laser plasma source of soft X-rays in radiobiology studies is demonstrated. The source is based on a laser produced plasma as a result of irradiation of a double-stream gas puff target with nanosecond laser pulses from a commercially available Nd:YAG laser. The source allows irradiation of samples with soft X-ray pulses in the "water window" spectral range (wavelength: 2.3-4.4 nm; photon energy: 280-560 eV) in vacuum or a helium atmosphere at very high-dose rates and doses exceeding the kGy level. Single-strand breaks (SSB) and double-strand breaks (DBS) induced in DNA plasmids pBR322 and pUC19 have been measured. The different conformations of the plasmid DNA were separated by agarose gel electrophoresis. An exponential decrease in the supercoiled form with an increase in linear and relaxed forms of the plasmids has been observed as a function of increasing photon fluence. Significant difference between SSB and DSB in case of wet and dry samples was observed that is connected with the production of free radicals in the wet sample by soft X-ray photons and subsequent affecting the plasmid DNA. Therefore, the new source was validated to be useful for radiobiology experiments.

  16. Inhibition of radiation-induced DNA strand breaks by hoechst 33258: OH-radical scavenging and DNA radical quenching

    International Nuclear Information System (INIS)

    Adhikary, A.; Bothe, E.; Von Sonntag, C.; Adhikary, A.

    1997-01-01

    The minor-groove-binding dye Hoechst 33258 has been found to protect pBR322 DNA in aqueous solution against radiation-induced single-strand breaks (ssb). This protective effect has been assumed to be largely due to the scavenging of the strand-break-generating OH radicals by Hoechst. From D 37 values for ssb at different Hoechst concentrations the value of the OH radical scavenging constant of DNA-bound Hoechst has been estimated at k Ho/DNA = 2.7 * 10 11 dm 3 mol -1 . This unexpectedly high value has led us to study the reactions of OH radicals with Hoechst in the absence and in the presence of double-stranded calf thymus DNA (ds DNA) by pulse radiolysis, and the formation of radiation-induced ssb by low angle laser light scattering. The D 37 /D 37 0 values at different Hoechst concentrations agree with the values obtained by Martin and al. and demonstrate the protection. However, this protection cannot be explained on the basis of OH radical scavenging alone using the above rate constants. There must, in addition, be some quenching of DNA radicals. Hoechst radicals are formed in the later ms time range, i.e a long time after the disappearance of the OH radicals. This delayed Hoechst radical formation has been assigned to a a reaction of DNA radicals with Hoechst, thereby inhibiting strand breakage. In confirmation, pulse radiolysis of aqueous solution of nucleotides in the presence of Hoechst yields a similar delayed Hoechst radical formation. The data indicate that in DNA the cross-section of this quenching has a diameter of 3 to 4 base pairs per Hoechst molecule. (N.C.)

  17. IDN2 Interacts with RPA and Facilitates DNA Double-Strand Break Repair by Homologous Recombination in Arabidopsis.

    Science.gov (United States)

    Liu, Mingming; Ba, Zhaoqing; Costa-Nunes, Pedro; Wei, Wei; Li, Lanxia; Kong, Fansi; Li, Yan; Chai, Jijie; Pontes, Olga; Qi, Yijun

    2017-03-01

    Repair of DNA double-strand breaks (DSBs) is critical for the maintenance of genome integrity. We previously showed that DSB-induced small RNAs (diRNAs) facilitate homologous recombination-mediated DSB repair in Arabidopsis thaliana Here, we show that INVOLVED IN DE NOVO2 (IDN2), a double-stranded RNA binding protein involved in small RNA-directed DNA methylation, is required for DSB repair in Arabidopsis. We find that IDN2 interacts with the heterotrimeric replication protein A (RPA) complex. Depletion of IDN2 or the diRNA binding ARGONAUTE2 leads to increased accumulation of RPA at DSB sites and mislocalization of the recombination factor RAD51. These findings support a model in which IDN2 interacts with RPA and facilitates the release of RPA from single-stranded DNA tails and subsequent recruitment of RAD51 at DSB sites to promote DSB repair. © 2017 American Society of Plant Biologists. All rights reserved.

  18. The role of DNA double-strand breaks in spontaneous homologous recombination in S. cerevisiae

    DEFF Research Database (Denmark)

    Lettier, Gaëlle; Feng, Q.; Mayolo, A.A. de

    2006-01-01

    Homologous recombination (HR) is a source of genomic instability and the loss of heterozygosity in mitotic cells. Since these events pose a severe health risk, it is important to understand the molecular events that cause spontaneous HR. In eukaryotes, high levels of HR are a normal feature of me...... mutants, supporting the view that DNA nicks and single-stranded gaps, rather than DSBs, are major sources of spontaneous HR in mitotic yeast cells....... of meiosis and result from the induction of a large number of DNA double-strand breaks (DSBs). By analogy, it is generally believed that the rare spontaneous mitotic HR events are due to repair of DNA DSBs that accidentally occur during mitotic growth. Here we provide the first direct evidence that most...... spontaneous mitotic HR in Saccharomyces cerevisiae is initiated by DNA lesions other than DSBs. Specifically, we describe a class of rad52 mutants that are fully proficient in inter- and intra-chromosomal mitotic HR, yet at the same time fail to repair DNA DSBs. The conclusions are drawn from genetic analyses...

  19. Glutathione requirement for the rejoining of radiation-induced DNA breaks in misonidazole-treated cells

    International Nuclear Information System (INIS)

    Edgren, M.; Revesz, L.

    1985-01-01

    The role of glutathione (GSH) in the rejoining of radiation-induced single-strand DNA breaks (ssb) was studied in human fibroblast cultures sensitized to radiation by a 30 min treatment with 1 mM misonidazole (MISO). Hypoxically irradiated cells, deficient in GSH, either inherently, or due to a 16 h incubation with 1 mM buthionine sulphoximine (BSO), rejoined the breaks after MISO treatment at a lower rate and to a lesser extent than did GSH-proficient cells. Without MISO treatment, the hypoxically induced ssb were rejoined in the GSH-deficient cells as effectively as in the proficient cells. It is concluded that a large proportion of the breaks which arise after hypoxic irradiation in the presence of MISO are of a different type to those which arise in the absence of the drug, and require a particular GSH-dependent, enzymatic repair system. This requirement for rejoining in hypoxically irradiated, MISO-treated cells is similar to that seen earlier in MISO-untreated, oxically irradiated cells, and suggests that the ssb induced by radiation in the presence of MISO or oxygen are of a similar nature. (author)

  20. Effective screen of CRISPR/Cas9-induced mutants in rice by single-strand conformation polymorphism.

    Science.gov (United States)

    Zheng, Xuelian; Yang, Shixin; Zhang, Dengwei; Zhong, Zhaohui; Tang, Xu; Deng, Kejun; Zhou, Jianping; Qi, Yiping; Zhang, Yong

    2016-07-01

    A method based on DNA single-strand conformation polymorphism is demonstrated for effective genotyping of CRISPR/Cas9-induced mutants in rice. Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9) has been widely adopted for genome editing in many organisms. A large proportion of mutations generated by CRISPR/Cas9 are very small insertions and deletions (indels), presumably because Cas9 generates blunt-ended double-strand breaks which are subsequently repaired without extensive end-processing. CRISPR/Cas9 is highly effective for targeted mutagenesis in the important crop, rice. For example, homozygous mutant seedlings are commonly recovered from CRISPR/Cas9-treated calli. However, many current mutation detection methods are not very suitable for screening homozygous mutants that typically carry small indels. In this study, we tested a mutation detection method based on single-strand conformational polymorphism (SSCP). We found it can effectively detect small indels in pilot experiments. By applying the SSCP method for CRISRP-Cas9-mediated targeted mutagenesis in rice, we successfully identified multiple mutants of OsROC5 and OsDEP1. In conclusion, the SSCP analysis will be a useful genotyping method for rapid identification of CRISPR/Cas9-induced mutants, including the most desirable homozygous mutants. The method also has high potential for similar applications in other plant species.

  1. DNA degradation, UV sensitivity and SOS-mediated mutagenesis in strains of Escherichia coli deficient in single-strand DNA binding protein: Effects of mutations and treatments that alter levels of exonuclease V or RecA protein

    International Nuclear Information System (INIS)

    Lieberman, H.B.; Witkin, E.M.

    1983-01-01

    Certain strains suppress the temperature-sensitivity caused by ssb-1, which encodes a mutant ssDNA binding protein (SSB). At 42 0 C, such strains are extremely UV-sensitive, degrade their DNA extensively after UV irradiation, and are defficient in UV mutability and UV induction of recA protein synthesis. We transduced recC22, which eliminates Exonuclease V activity, and recAo281, which causes operator-constitutive synthesis of recA protein, into such an ssb-1 strain. Both double mutants degraded their DNA extensively at 42 0 C after UV irradiation, and both were even more UV-sensitive than the ssb-1 single mutant. We conclude that one or more nucleases other than Exonuclease V degrades DNA in the ssb recC strain, and that recA protein, even if synthesized copiously, can function efficiently in recombinational DNA repair and in control of post-UV DNA degradation only if normal SSB is also present. Pretreatment with nalidixic acid at 30 0 C restored normal UV mutability at 42 0 C, but did not increase UV resistance, in an ssb-1 strain. Another ssb allele, ssb-113, which blocks SOS induction at 30 0 C, increases spontaneous mutability more than tenfold. The ssb-113 allele was transduced into the SOS-constitutive recA730 strain SC30. This double mutant expressed the same elevated spontaneous and UV-induced mutability at 30 0 C as the ssb + recA730 strain, and was three times more UV-resistant than its ssb-113 recA + parent. We conclude that ssb-1 at 42 0 C and ssb-113 at 30 0 C block UV-induced activation of recA protease, but that neither allele interferes with subsequent steps in SOS-mediated mutagenesis. (orig.)

  2. The in vitro metabolites of 2,4,6-trichlorophenol and their DNA strand breaking properties.

    Science.gov (United States)

    Juhl, U; Blum, K; Witte, I

    1989-01-01

    The carcinogenic compound 2,4,6-trichlorophenol (2,4,6-TCP) was incubated with rat liver S-9 fraction. Three metabolites were identified: 2,6-dichloro-1,4-hydroquinone (DHQ), and two isomers of hydroxypentachlorodiphenyl ether (OH-Cl5-DPE). The latter are probably products of microsomal .OH radical attack on the trichlorophenol molecule forming phenoxy free radicals. These would undergo dimerizations with other molecules present in solution. The 2,6-dichloro-1,4-semiquinone free radical was identified by ESR spectroscopy. It is formed at physiological conditions in phosphate buffer at pH 7.2 and 7.8, with a more intensive signal at the more alkaline pH. The formation is probably due to the autoxidation of the corresponding hydroquinone. Incubation of a mixture of metabolites with PM2 DNA at pH 7.2 resulted in single strand breaks. Addition of catalase and dimethylsulfoxide (DMSO) inhibited the DNA strand scission. It was concluded that reactive oxygen species (ROS), produced during the formation of the semiquinone radical, were responsible for the observed DNA damage. The significance of the ROS and the semiquinone free radical is discussed in view of the reported tumorgenicity of 2,4,6-TCP in rats and mice.

  3. Assaying Break and Nick-Induced Homologous Recombination in Mammalian Cells Using the DR-GFP Reporter and Cas9 Nucleases

    NARCIS (Netherlands)

    Vriend, Lianne E. M.; Jasin, Maria; Krawczyk, Przemek M.

    2014-01-01

    Thousands of DNA breaks occur daily in mammalian cells, including potentially tumorigenic double-strand breaks (DSBs) and less dangerous but vastly more abundant single-strand breaks (SSBs). The majority of SSBs are quickly repaired, but some can be converted to DSBs, posing a threat to the

  4. 3′-Terminated Overhangs Regulate DNA Double-Strand Break Processing in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Edyta Đermić

    2017-09-01

    Full Text Available Double-strand breaks (DSBs are lethal DNA lesions, which are repaired by homologous recombination in Escherichia coli. To study DSB processing in vivo, we induced DSBs into the E. coli chromosome by γ-irradiation and measured chromosomal degradation. We show that the DNA degradation is regulated by RecA protein concentration and its rate of association with single-stranded DNA (ssDNA. RecA decreased DNA degradation in wild-type, recB, and recD strains, indicating that it is a general phenomenon in E. coli. On the other hand, DNA degradation was greatly reduced and unaffected by RecA in the recB1080 mutant (which produces long overhangs and in a strain devoid of four exonucleases that degrade a 3′ tail (ssExos. 3′–5′ ssExos deficiency is epistatic to RecA deficiency concerning DNA degradation, suggesting that bound RecA is shielding the 3′ tail from degradation by 3′–5′ ssExos. Since 3′ tail preservation is common to all these situations, we infer that RecA polymerization constitutes a subset of mechanisms for preserving the integrity of 3′ tails emanating from DSBs, along with 3′ tail’s massive length, or prevention of their degradation by inactivation of 3′–5′ ssExos. Thus, we conclude that 3′ overhangs are crucial in controlling the extent of DSB processing in E. coli. This study suggests a regulatory mechanism for DSB processing in E. coli, wherein 3′ tails impose a negative feedback loop on DSB processing reactions, specifically on helicase reloading onto dsDNA ends.

  5. In vivo recombineering of bacteriophage λ by PCR fragments and single-strand oligonucleotides

    International Nuclear Information System (INIS)

    Oppenheim, Amos B.; Rattray, Alison J.; Bubunenko, Mikhail; Thomason, Lynn C.; Court, Donald L.

    2004-01-01

    We demonstrate that the bacteriophage λ Red functions efficiently recombine linear DNA or single-strand oligonucleotides (ss-oligos) into bacteriophage λ to create specific changes in the viral genome. Point mutations, deletions, and gene replacements have been created. While recombineering with oligonucleotides, we encountered other mutations accompanying the desired point mutational change. DNA sequence analysis suggests that these unwanted mutations are mainly frameshift deletions introduced during oligonucleotide synthesis

  6. Effect of radiation and freezing on (/sup 3/H)DNA of Yersinia enterocolitica

    Energy Technology Data Exchange (ETDEWEB)

    Grecz, N.; El-zawahry, Y.A.

    1984-05-01

    Freezing of the enteropathogenic bacterium Yersinia enterocolitica to -18 and -75/sup 0/C caused 7 and 42% cell death, respectively, and 0.329 and 0.588 single-strand breaks per 10/sup 8/ daltons of DNA, respectively, while radiation to one D/sub 10/ dose (10% cell survival) combined with freezing to 2 to 0, -18 and -75/sup 0/C induces 0.05, 0.75, and 5.04 single-strand breaks, respectively. The increase in the effectiveness of radiation with respect to the yield of single-strand breaks at -18 to -75/sup 0/C is contrary to expectation and seems to be due to arrest of repair of single-strand breaks by these low temperatures. 27 references.

  7. Effect of radiation and freezing on [3H]DNA of Yersinia enterocolitica

    International Nuclear Information System (INIS)

    Grecz, N.; El-zawahry, Y.A.

    1984-01-01

    Freezing of the enteropathogenic bacterium Yersinia enterocolitica to -18 and -75 0 C caused 7 and 42% cell death, respectively, and 0.329 and 0.588 single-strand breaks per 10 8 daltons of DNA, respectively, while radiation to one D 10 dose (10% cell survival) combined with freezing to 2 to 0, -18 and -75 0 C induces 0.05, 0.75, and 5.04 single-strand breaks, respectively. The increase in the effectiveness of radiation with respect to the yield of single-strand breaks at -18 to -75 0 C is contrary to expectation and seems to be due to arrest of repair of single-strand breaks by these low temperatures. 27 references

  8. Radiation induced strand breaks and time scale for repair of broken strands in superinfecting phage lambda DNA in Escherichia coli lysogenic for lambda

    International Nuclear Information System (INIS)

    Johansen, I.; Boye, E.; Brustad, T.

    1975-01-01

    The production of the first radiation induced break in covalent lambda DNA molecules in pol + and pol A 1 lysogenic host cells was measured after exposure to electrons from a linear accelerator and transfer to alkaline detergent within 100 ms from the onset of irradiation. The results revealed the presence of an oxygen effect in DNA strand breakage. In both pol + and pol A 1 host cells the rate of production in nitrogen was 1.2x10 -12 DNA single strand breaks per rad per dalton as compared to 5x10 -12 in oxygen. The yields of strand breaks in lambda DNA in pol + host cells under oxygenated or anoxic conditions are independent of whether the cells are irradiated in buffer at room temperature, in buffer at ice temperature, or in growth medium at 37 0 C. These results indicate that enzymic repair of DNA strand breaks before analysis is insignificant in these experiments. The presence of an oxygen effect in DNA strand breakage under these conditions suggest that an actual difference exists between initial number of breaks produced in nitrogen and in oxygen. The kinetics of rejoining of broken molecules under optimal growth conditions was measured by incubating the irradiated host cells prior to lysis. In pol + host cells 50% of the lambda DNA molecules broken in presence of oxygen are rejoined within 10 to 20 seconds of incubation. A significantly lower recovery is seen in pol + host cells after irradiation in nitrogen. The rejoining of broken lambda DNA strands in pol A 1 host cells is impaired after irradiation in presence of oxygen as well as under anoxia. These results show that DNA polymerase I is needed for the rapid rejoining of radiation induced strand breaks in the DNA, and that oxygen promoted strand breaks are more easily rejoined than are those produced in nitrogen. (author)

  9. Effects of the ssb-1 and ssb-113 mutations on survival and DNA repair in UV-irradiated delta uvrB strains of Escherichia coli K-12.

    OpenAIRE

    Wang, T C; Smith, K C

    1982-01-01

    The molecular defect in DNA repair caused by ssb mutations (single-strand binding protein) was studied by analyzing DNA synthesis and DNA double-strand break production in UV-irradiated Escherichia coli delta uvrB strains. The presence of the ssb-113 mutation produced a large inhibition of DNA synthesis and led to the formation of double-strand breaks, whereas the ssb-1 mutation produced much less inhibition of DNA synthesis and fewer double-strand breaks. We suggest that the single-strand bi...

  10. Distinct genetic control of homologous recombination repair of Cas9-induced double-strand breaks, nicks and paired nicks

    NARCIS (Netherlands)

    Vriend, Lianne E. M.; Prakash, Rohit; Chen, Chun-Chin; Vanoli, Fabio; Cavallo, Francesca; Zhang, Yu; Jasin, Maria; Krawczyk, Przemek M.

    2016-01-01

    DNA double-strand breaks (DSBs) are known to be powerful inducers of homologous recombination (HR), but single-strand breaks (nicks) have also been shown to trigger HR. Both DSB- and nick-induced HR ((nick)HR) are exploited in advanced genome-engineering approaches based on the bacterial RNA-guided

  11. Transformation frequency of γ irradiated plasmid DNA and the enzymatic double strand break formation by incubation in a protein extract of Escherichia coli

    International Nuclear Information System (INIS)

    Schulte-Frohlinde, D.; Mark, F.; Ventur, Y.

    1994-01-01

    It was found that incubation of γ-irradiated or DNaseI-treated plasmid DNA in a protein extract of Escherichia coli leads to enzyme-induced formation of double strand breaks (dsb) in competition with repair of precursors of these dsb. A survival curve of the plasmid DNA (as determined by transformation of E. coli) was calculated on the basis of enzyme-induced dsb as well as those produced by irradiation assuming that they are lethal. The calculated D O value was the same as that measured directly by transformation of irradiated plasmid DNA. Two models are presented that fit the experimental survival data as a function of dose. One is based on damage formation in the plasmid DNA including enzymatic conversion of single strand damage into dsb (U-model), the other is an enzymatic repair saturation model based on Michaelis-Menten kinetics. (Author)

  12. Transformation frequency of [gamma] irradiated plasmid DNA and the enzymatic double strand break formation by incubation in a protein extract of Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Schulte-Frohlinde, D.; Mark, F.; Ventur, Y. (Max-Planck-Institut fuer Strahlenchemie, Muelheim an der Ruhr (Germany))

    1994-01-01

    It was found that incubation of [gamma]-irradiated or DNaseI-treated plasmid DNA in a protein extract of Escherichia coli leads to enzyme-induced formation of double strand breaks (dsb) in competition with repair of precursors of these dsb. A survival curve of the plasmid DNA (as determined by transformation of E. coli) was calculated on the basis of enzyme-induced dsb as well as those produced by irradiation assuming that they are lethal. The calculated D[sub O] value was the same as that measured directly by transformation of irradiated plasmid DNA. Two models are presented that fit the experimental survival data as a function of dose. One is based on damage formation in the plasmid DNA including enzymatic conversion of single strand damage into dsb (U-model), the other is an enzymatic repair saturation model based on Michaelis-Menten kinetics. (Author).

  13. Mycobacteria exploit three genetically distinct DNA double-strand break repair pathways.

    Science.gov (United States)

    Gupta, Richa; Barkan, Daniel; Redelman-Sidi, Gil; Shuman, Stewart; Glickman, Michael S

    2011-01-01

    Bacterial pathogens rely on their DNA repair pathways to resist genomic damage inflicted by the host. DNA double-strand breaks (DSBs) are especially threatening to bacterial viability. DSB repair by homologous recombination (HR) requires nucleases that resect DSB ends and a strand exchange protein that facilitates homology search. RecBCD and RecA perform these functions in Escherichia coli and constitute the major pathway of error-free DSB repair. Mycobacteria, including the human pathogen M. tuberculosis, elaborate an additional error-prone pathway of DSB repair via non-homologous end-joining (NHEJ) catalysed by Ku and DNA ligase D (LigD). Little is known about the relative contributions of HR and NHEJ to mycobacterial chromosome repair, the factors that dictate pathway choice, or the existence of additional DSB repair pathways. Here we demonstrate that Mycobacterium smegmatis has three DSB repair pathway options: HR, NHEJ and a novel mechanism of single-strand annealing (SSA). Inactivation of NHEJ or SSA is compensated by elevated HR. We find that mycobacterial RecBCD does not participate in HR or confer resistance to ionizing radiation (IR), but is required for the RecA-independent SSA pathway. In contrast, the mycobacterial helicase-nuclease AdnAB participates in the RecA-dependent HR pathway, and is a major determinant of resistance to IR and oxidative DNA damage. These findings reveal distinctive features of mycobacterial DSB repair, most notably the dedication of the RecBCD and AdnAB helicase-nuclease machines to distinct repair pathways. © 2010 Blackwell Publishing Ltd.

  14. Role for DNA polymerase beta in response to ionizing radiation.

    NARCIS (Netherlands)

    Vermeulen, C.; Verwijs-Janssen, M.; Cramers, P.; Begg, A.C.; Vens, C.

    2007-01-01

    Evidence for a role of DNA polymerase beta in determining radiosensitivity is conflicting. In vitro assays show an involvement of DNA polymerase beta in single strand break repair and base excision repair of oxidative damages, both products of ionizing radiation. Nevertheless the lack of DNA

  15. Alternative end-joining of DNA breaks

    NARCIS (Netherlands)

    Schendel, Robin van

    2016-01-01

    DNA is arguably the most important molecule found in any organism, as it contains all information to perform cellular functions and enables continuity of species. It is continuously exposed to DNA-damaging agents both from endogenous and exogenous sources. To protect DNA against these sources of DNA

  16. DNA breaks early in replication in B cell cancers

    Science.gov (United States)

    Research by scientists at the NCI has identified a new class of DNA sites in cells that break early in the replication process. They found that these break sites correlate with damage often seen in B cell cancers, such as diffuse large B cell lymphoma.

  17. Involvement of DNA polymerase beta in repair of ionizing radiation damage as measured by in vitro plasmid assays.

    NARCIS (Netherlands)

    Vens, C.; Hofland, I.; Begg, A.C.

    2007-01-01

    Characteristic of damage introduced in DNA by ionizing radiation is the induction of a wide range of lesions. Single-strand breaks (SSBs) and base damages outnumber double-strand breaks (DSBs). If unrepaired, these lesions can lead to DSBs and increased mutagenesis. XRCC1 and DNA polymerase beta

  18. RecA bundles mediate homology pairing between distant sisters during DNA break repair

    Science.gov (United States)

    Lesterlin, Christian; Ball, Graeme; Schermelleh, Lothar; Sherratt, David J.

    2014-02-01

    DNA double-strand break (DSB) repair by homologous recombination has evolved to maintain genetic integrity in all organisms. Although many reactions that occur during homologous recombination are known, it is unclear where, when and how they occur in cells. Here, by using conventional and super-resolution microscopy, we describe the progression of DSB repair in live Escherichia coli. Specifically, we investigate whether homologous recombination can occur efficiently between distant sister loci that have segregated to opposite halves of an E. coli cell. We show that a site-specific DSB in one sister can be repaired efficiently using distant sister homology. After RecBCD processing of the DSB, RecA is recruited to the cut locus, where it nucleates into a bundle that contains many more RecA molecules than can associate with the two single-stranded DNA regions that form at the DSB. Mature bundles extend along the long axis of the cell, in the space between the bulk nucleoid and the inner membrane. Bundle formation is followed by pairing, in which the two ends of the cut locus relocate at the periphery of the nucleoid and together move rapidly towards the homology of the uncut sister. After sister locus pairing, RecA bundles disassemble and proteins that act late in homologous recombination are recruited to give viable recombinants 1-2-generation-time equivalents after formation of the initial DSB. Mutated RecA proteins that do not form bundles are defective in sister pairing and in DSB-induced repair. This work reveals an unanticipated role of RecA bundles in channelling the movement of the DNA DSB ends, thereby facilitating the long-range homology search that occurs before the strand invasion and transfer reactions.

  19. Detection of polymorphisms in leptin gene using single strand ...

    African Journals Online (AJOL)

    student

    Sachs B1 variant. Nucleic Acids Res. 19, 405-406. Barroso, A., Dunner, S. & Cañon, J., 1998. Technical note: detection of bovine kappa-casein variants A, B,. C and E by means of Polymerase Chain Reaction-Single Strand Conformation ...

  20. A single-stranded architecture for cotranscriptional folding of RNA nanostructures

    DEFF Research Database (Denmark)

    Geary, Cody; Rothemund, Paul; Andersen, Ebbe Sloth

    2014-01-01

    . We introduce an architecture for designing artificial RNA structures that fold from a single strand, in which arrays of antiparallel RNA helices are precisely organized by RNA tertiary motifs and a new type of crossover pattern. We constructed RNA tiles that assemble into hexagonal lattices......Artificial DNA and RNA structures have been used as scaffolds for a variety of nanoscale devices. In comparison to DNA structures, RNA structures have been limited in size, but they also have advantages: RNA can fold during transcription and thus can be genetically encoded and expressed in cells...

  1. Deficiency of double-strand DNA break repair does not impair Mycobacterium tuberculosis virulence in multiple animal models of infection.

    Science.gov (United States)

    Heaton, Brook E; Barkan, Daniel; Bongiorno, Paola; Karakousis, Petros C; Glickman, Michael S

    2014-08-01

    Mycobacterium tuberculosis persistence within its human host requires mechanisms to resist the effector molecules of host immunity, which exert their bactericidal effects through damaging pathogen proteins, membranes, and DNA. Substantial evidence indicates that bacterial pathogens, including M. tuberculosis, require DNA repair systems to repair the DNA damage inflicted by the host during infection, but the role of double-strand DNA break (DSB) repair systems is unclear. Double-strand DNA breaks are the most cytotoxic form of DNA damage and must be repaired for chromosome replication to proceed. M. tuberculosis elaborates three genetically distinct DSB repair systems: homologous recombination (HR), nonhomologous end joining (NHEJ), and single-strand annealing (SSA). NHEJ, which repairs DSBs in quiescent cells, may be particularly relevant to M. tuberculosis latency. However, very little information is available about the phenotype of DSB repair-deficient M. tuberculosis in animal models of infection. Here we tested M. tuberculosis strains lacking NHEJ (a Δku ΔligD strain), HR (a ΔrecA strain), or both (a ΔrecA Δku strain) in C57BL/6J mice, C3HeB/FeJ mice, guinea pigs, and a mouse hollow-fiber model of infection. We found no difference in bacterial load, histopathology, or host mortality between wild-type and DSB repair mutant strains in any model of infection. These results suggest that the animal models tested do not inflict DSBs on the mycobacterial chromosome, that other repair pathways can compensate for the loss of NHEJ and HR, or that DSB repair is not required for M. tuberculosis pathogenesis. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  2. Breaking bad: The mutagenic effect of DNA repair

    Science.gov (United States)

    2015-01-01

    Species survival depends on the faithful replication of genetic information, which is continually monitored and maintained by DNA repair pathways thatcorrect replication errors and the thousands of lesions that arise daily from the inherent chemical lability of DNA and the effects of genotoxic agents. Nonetheless,neutrally evolving DNA (not under purifying selection) accumulates base substitutions with time (the neutral mutation rate). Thus, repair processes are not 100% efficient. The neutral mutation rate varies both between and within chromosomes. For example it is 10 – 50 fold higher at CpGsthan at non-CpG positions. Interestingly, the neutral mutation rate at non-CpG sites is positively correlated with CpG content. Althoughthe basis of this correlation was not immediately apparent,some bioinformatic results were consistent with the induction of non-CpGmutations byDNA repairat flanking CpG sites. Recent studies with a model system showed that in vivo repair of preformed lesions (mismatches, abasic sites, single stranded nicks) can in factinduce mutations in flanking DNA. Mismatch repair (MMR) is an essential component for repair-induced mutations, which can occur as distant as 5 kb from the introduced lesions. Most, but not all, mutations involved the C of TpCpN (G of NpGpA) which is the target sequence of the C-preferringsingle-stranded DNA specific APOBEC deaminases. APOBEC-mediated mutations are not limited to our model system: Recent studies by others showed that some tumors harbor mutations with the same signature, as can intermediates in RNA-guided endonuclease-mediated genome editing. APOBEC deaminases participate in normal physiological functions such as generating mutations that inactivate viruses or endogenous retrotransposons, or that enhance immunoglobulin diversity in B cells. The recruitment of normally physiological errorprone processes during DNA repairwould have important implications for disease, aging and evolution. This perspective briefly

  3. Methods for the preparation of large quantities of complex single-stranded oligonucleotide libraries.

    Science.gov (United States)

    Murgha, Yusuf E; Rouillard, Jean-Marie; Gulari, Erdogan

    2014-01-01

    Custom-defined oligonucleotide collections have a broad range of applications in fields of synthetic biology, targeted sequencing, and cytogenetics. Also, they are used to encode information for technologies like RNA interference, protein engineering and DNA-encoded libraries. High-throughput parallel DNA synthesis technologies developed for the manufacture of DNA microarrays can produce libraries of large numbers of different oligonucleotides, but in very limited amounts. Here, we compare three approaches to prepare large quantities of single-stranded oligonucleotide libraries derived from microarray synthesized collections. The first approach, alkaline melting of double-stranded PCR amplified libraries with a biotinylated strand captured on streptavidin coated magnetic beads results in little or no non-biotinylated ssDNA. The second method wherein the phosphorylated strand of PCR amplified libraries is nucleolyticaly hydrolyzed is recommended when small amounts of libraries are needed. The third method combining in vitro transcription of PCR amplified libraries to reverse transcription of the RNA product into single-stranded cDNA is our recommended method to produce large amounts of oligonucleotide libraries. Finally, we propose a method to remove any primer binding sequences introduced during library amplification.

  4. Genome-wide mapping of DNA strand breaks.

    Directory of Open Access Journals (Sweden)

    Frédéric Leduc

    Full Text Available Determination of cellular DNA damage has so far been limited to global assessment of genome integrity whereas nucleotide-level mapping has been restricted to specific loci by the use of specific primers. Therefore, only limited DNA sequences can be studied and novel regions of genomic instability can hardly be discovered. Using a well-characterized yeast model, we describe a straightforward strategy to map genome-wide DNA strand breaks without compromising nucleotide-level resolution. This technique, termed "damaged DNA immunoprecipitation" (dDIP, uses immunoprecipitation and the terminal deoxynucleotidyl transferase-mediated dUTP-biotin end-labeling (TUNEL to capture DNA at break sites. When used in combination with microarray or next-generation sequencing technologies, dDIP will allow researchers to map genome-wide DNA strand breaks as well as other types of DNA damage and to establish a clear profiling of altered genes and/or intergenic sequences in various experimental conditions. This mapping technique could find several applications for instance in the study of aging, genotoxic drug screening, cancer, meiosis, radiation and oxidative DNA damage.

  5. Radiobiology of DNA strand breakage

    International Nuclear Information System (INIS)

    Johansen, I.

    1975-01-01

    The yield of single-strand breaks in lambda DNA within lysogenic host bacteria was measured after exposure to 4-MeV electrons (50 msec) and rapid transfer (45 msec) to alkaline detergent. In nitrogen anoxia the yield was 1.2 x 10 -12 DNA single-strand breaks per rad per dalton, and under full oxygenation the yield increased to 5 x 10 -12 breaks per rad per dalton. A search for the presence of fast repair mechanisms failed to demonstrate the presence of any mechanism for repair of strand breaks operating within a fraction of a second. Strand breaks produced in the presence of oxygen were repaired in 30--40 sec, while breaks produced under anoxia were rejoined even slower. A functional product from the polAl gene was needed for the rejoining of the broken molecules. Intermediate levels of DNA strand breakage seen at low concentrations of oxygen are dependent on the concentration of cellular sulfhydryl compounds, suggesting that in strand breakage oxygen and hydrogen donors compete for reactions with radiation-induced transients in the DNA. Intercomparisons of data on radiation-induced lethality of cells and single-strand breaks in episomal DNA allow the distinction between two classes of radiation-induced radicals, R 1 and R 2 , with different chemical properties; R 1 reacts readily with oxygen and N-oxyls under formation of potentially lethal products. The reactivity of oxygen in this reaction is 30--40 times higher than that of TMPN. R 2 reacts 16 times more readily than R 1 with oxygen under formation of single-strand breaks in the DNA. R 2 does not react with N-oxyls

  6. Identification of Ku70 and Ku80 homologues in Arabidopsis thaliana: evidence for a role in the repair of DNA double-strand breaks.

    Science.gov (United States)

    Tamura, Katsunori; Adachi, Yugo; Chiba, Keiko; Oguchi, Keiko; Takahashi, Hideo

    2002-03-01

    In higher organisms such as mammals and plants, DNA double-strand breaks (DSBs) are repaired preferentially by non-homologous end joining (NHEJ) rather than by homologous recombination. The NHEJ pathway is mediated by Ku, a heterodimer of approximately 70 and 80 kDa subunits, which contributes to various aspects of the metabolism of DNA ends in eukaryotic cells. On the basis of their predicted sequence similarity to human Ku70 and Ku80, cDNAs encoding the first plant homologues of these proteins (AtKu70 and AtKu80, respectively) have now been isolated from Arabidopsis thaliana. AtKu70 and AtKu80 share 28.6 and 22.5% amino acid sequence identity with human Ku70 and Ku80, respectively. Yeast two-hybrid analysis demonstrated that AtKu70 and AtKu80 form a heterodimer, and electrophoretic mobility-shift assays revealed that this heterodimer binds to double-stranded telomeric and non-telomeric DNA sequences, but not to single-stranded DNA. The AtKu heterodimer also possesses single-stranded DNA-dependent ATPase and ATP-dependent DNA helicase activities. Reverse transcription and the polymerase chain reaction revealed that AtKu70 and AtKu80 genes are expressed widely but at low levels in plant tissues. The expression of these two genes in cultured cells was markedly increased in response to the generation of DSBs by bleomycin or methylmethane sulfonate. These results suggest that the evolutionarily conserved Ku70-Ku80 heterodimer functions in DSB repair by the NHEJ pathway in A. thaliana.

  7. Plasmid DNA damage by heavy ions at spread-out Bragg peak energies

    NARCIS (Netherlands)

    Dang, H. M.; van Goethem, M. J.; van der Graaf, E. R.; Brandenburg, S.; Hoekstra, R.; Schlatholter, T.

    2010-01-01

    Interaction of ionizing radiation with plasmid DNA can lead to formation of single strand breaks, double strand breaks and clustered lesions. We have investigated the response of the synthetic plasmid pBR322 in aqueous solution upon irradiation with (12)C ions under spread-out Bragg peak conditions

  8. Inhibition of {gamma}-radiation induced DNA damage in plasmid pBR322 by TMG, a water-soluble derivative of vitamin E

    Energy Technology Data Exchange (ETDEWEB)

    Rajagopalan, R.; Nair, C.K.K. [Bhabha Atomic Research Centre, Mumbai (India); Wani, K.; Huilgol, N.G. [Nanavati Hospital and MRC, Vile Parle (India); Kagiya, Tsutomu V. [Kinki Research Foundation, Kyoto (Japan)

    2002-06-01

    Alpha-tocopherol monoglucoside (TMG), a water-soluble derivative of {alpha}-tocopherol, has been examined for its ability to protect DNA against radiation-induced strand breaks. Gamma radiation, up to a dose of 6 Gy (dose rate, 0.7 Gy/minute), induced a dose-dependent increase in single strand breaks (SSBs) in plasmid pBR322 DNA. TMG inhibited the formation of {gamma}-radiation induced DNA single strand breaks (SSBs) in a concentration-dependent manner; 500 {mu}M of TMG protected the single strand breaks completely. It also protected thymine glycol formation induced by {gamma}-radiation in a dose-dependent manner, based on an estimation of thymine glycol by HPLC. (author)

  9. Acute hypoxia and hypoxic exercise induce DNA strand breaks and oxidative DNA damage in humans

    DEFF Research Database (Denmark)

    Møller, P; Loft, S; Lundby, C

    2001-01-01

    The present study investigated the effect of a single bout of exhaustive exercise on the generation of DNA strand breaks and oxidative DNA damage under normal conditions and at high-altitude hypoxia (4559 meters for 3 days). Twelve healthy subjects performed a maximal bicycle exercise test...... exercise in altitude hypoxia. Exercise-induced generation of DNA strand breaks was not seen at sea level. In both environments, the level of FPG and endonuclease III-sensitive sites remained unchanged immediately after exercise. DNA strand breaks and oxidative DNA damage are probably produced by reactive...... oxygen species, generated by leakage of the mitochondrial respiration or during a hypoxia-induced inflammation. Furthermore, the presence of DNA strand breaks may play an important role in maintaining hypoxia-induced inflammation processes. Hypoxia seems to deplete the antioxidant system of its capacity...

  10. DNA single- and double-strand breaks by alkaline- and immuno-comet assay in lymphocytes of workers exposed to styrene.

    Science.gov (United States)

    Fracasso, Maria Enrica; Doria, Denise; Carrieri, Mariella; Bartolucci, Giovanni Battista; Quintavalle, Sonia; De Rosa, Edoardo

    2009-02-25

    Occupational exposure to styrene was studied in 34 workers employed in the production of fiberglass-reinforced plastic sheets and compared to 29 unexposed healthy controls. We evaluated genotoxic effects induced by occupational styrene exposure in lymphocytes by alkaline version of the comet assay to detect single-strand breaks (SSBs), DNA oxidation products (formamido pyrimidine glycosilase (Fpg)- and endonuclease (Endo III)-sensitive sites) and DNA repair kinetics studies, as well as the neutral version of comet assay for DNA double-strand breaks (DSBs). An innovative aspect of this study was the use of immuno-comet assay, a new technique that recognizes DSBs with specific antibody by DAPI/FITC method. The battery of parameters included markers of external and internal exposure. Exposed workers showed significant high levels of SSBs (p<0.0001) and DSBs (p<0.0001) in neutral- and immuno-comet assay. A drastic decrease in DNA repair activity as compared to controls was observed (180 min vs. 35 min). Styrene workplace concentration significantly correlated with alkaline comet parameters (TM, p=0.013; TI, p=0.008), in negative with TL (p=0.022), and with DNA-base oxidation (TM Endo III, p=0.048 and TI Endo III, p=0.028). There was a significant negative correlation between urinary metabolites (MA+PGA) and TM Endo III (p=0.032) and TI Endo III (p=0.017).

  11. Chromatin remodelers in the DNA double strand break response

    NARCIS (Netherlands)

    Smeenk, Godelieve

    2012-01-01

    During my PhD project, I studied the role of several chromatin remodelers in the DNA double strand break (DSB) response. We discovered that both CHD4 and SMARCA5 are required for ubiquitin signaling through the E3 ubiquitin ligases RNF8 and RNF168, which is a central signaling event in the response

  12. Functional characterization of an alkaline exonuclease and single strand annealing protein from the SXT genetic element of Vibrio cholerae

    Directory of Open Access Journals (Sweden)

    Huang Jian-dong

    2011-04-01

    Full Text Available Abstract Background SXT is an integrating conjugative element (ICE originally isolated from Vibrio cholerae, the bacterial pathogen that causes cholera. It houses multiple antibiotic and heavy metal resistance genes on its ca. 100 kb circular double stranded DNA (dsDNA genome, and functions as an effective vehicle for the horizontal transfer of resistance genes within susceptible bacterial populations. Here, we characterize the activities of an alkaline exonuclease (S066, SXT-Exo and single strand annealing protein (S065, SXT-Bet encoded on the SXT genetic element, which share significant sequence homology with Exo and Bet from bacteriophage lambda, respectively. Results SXT-Exo has the ability to degrade both linear dsDNA and single stranded DNA (ssDNA molecules, but has no detectable endonuclease or nicking activities. Adopting a stable trimeric arrangement in solution, the exonuclease activities of SXT-Exo are optimal at pH 8.2 and essentially require Mn2+ or Mg2+ ions. Similar to lambda-Exo, SXT-Exo hydrolyzes dsDNA with 5'- to 3'-polarity in a highly processive manner, and digests DNA substrates with 5'-phosphorylated termini significantly more effectively than those lacking 5'-phosphate groups. Notably, the dsDNA exonuclease activities of both SXT-Exo and lambda-Exo are stimulated by the addition of lambda-Bet, SXT-Bet or a single strand DNA binding protein encoded on the SXT genetic element (S064, SXT-Ssb. When co-expressed in E. coli cells, SXT-Bet and SXT-Exo mediate homologous recombination between a PCR-generated dsDNA fragment and the chromosome, analogous to RecET and lambda-Bet/Exo. Conclusions The activities of the SXT-Exo protein are consistent with it having the ability to resect the ends of linearized dsDNA molecules, forming partially ssDNA substrates for the partnering SXT-Bet single strand annealing protein. As such, SXT-Exo and SXT-Bet may function together to repair or process SXT genetic elements within infected V

  13. Radioprotective action of WR-1065 on radiation-induced DNA strand breaks in cultured Chinese hamster ovary cells

    International Nuclear Information System (INIS)

    Murray, D.; VanAnkeren, S.C.; Milas, L.; Meyn, R.E.

    1988-01-01

    We have examined the radioprotective effect of WR-1065 on cultured Chinese hamster ovary cells. The effects of the drug on the induction and rejoining of gamma-ray-induced DNA single-strand breaks (SSBs) and double-strand breaks (DSBs) were measured using alkaline (pH 12.1) and neutral (pH 7.0) elution, respectively. Molecular protection factors (PFs) calculated from these data allowed us to determine whether the degree of modification of strand breakage accurately predicted the PFs measured using the biological end point of cell survival. The drug did protect against the induction of both SSBs and DSBs, although to an extent that did not appear to fully account for the degree of radioprotection in terms of cell killing measured under identical conditions. It is therefore unlikely that radioprotection by WR-1065 occurs simply as a consequence of a general lowering of all types of gamma-ray-induced DNA lesions, and it is possible that the drug could differentially protect against the induction of subsets of these DNA lesions. The rate of SSB rejoining was retarded following preirradiation treatment of cells with WR-1065, but there was no effect on DSB rejoining. Postirradiation treatment with WR-1065 also appeared to retard SSB rejoining but without an accompanying effect on either DSB rejoining or cell survival; however, this effect was largely reversed by the addition of catalase and was, therefore, probably a result of H 2 O 2 generated by autoxidation of the drug. Based on these observations, it would appear that the molecular actions of aminothiol radioprotective compounds that lead to reduced cell killing are much more complex than previously thought

  14. A comparative investigation of DNA strand breaks, sister chromatid exchanges and K-ras gene mutations induced by cadmium salts in cultured human cells

    International Nuclear Information System (INIS)

    Mouron, Silvana Andrea; Grillo, Claudia Alejandra; Dulout, Fernando Noel; Golijow, Carlos Daniel

    2004-01-01

    Cadmium (Cd) is a toxic heavy metal of continuing occupational and environmental concern with a wide variety of adverse effects. Several studies have shown that cadmium produces DNA strand breaks, DNA-protein cross-links, oxidative DNA damage, chromosomal aberrations, dysregulation of gene expression resulting in enhanced proliferation, depressed apoptosis and/or altered DNA repair. This study was undertaken to investigate the ability of cadmium chloride (CdCl 2 ) and cadmium sulphate (CdSO 4 ) to induce point mutations in codon 12 of the K-ras protooncogene assessed by polymerase chain reaction-single strand conformation polymorphisms (PCR-SSCP) and RFLP-enriched PCR methods. Also their genotoxic effects were analyzed by the comet assay and sister chromatid exchanges test. The human lung fibroblast cell line MRC-5 was used for the experiments. Sister chromatid exchanges assay (SCEs) frequencies were significantly increased in cells exposed to cadmium salts in relation to controls (p < 0.001). Despite the slow increment observed in the three comet parameters considered when cells were treated with cadmium chloride, significant differences between groups were only found in the variable comet moment (CM) (p < 0.005). On the other hand, when cells were exposed to cadmium sulphate, the Kruskal-Wallis test showed highly significant differences between groups for migration, tail moment and comet moment parameters (p < 0.001). Nevertheless, a null or weak point mutation induction in K-ras protooncogene was detected using polymerase chain reaction-low ionic strength-single strand conformation polymorphisms (PCR-LIS-SSCP) and RFLP-enriched PCR methods when cells were treated with cadmium salts. Thus, inorganic cadmium produces genotoxicity in human lung fibroblast MRC-5 cells, in the absence of significant point mutation of the K-ras gene

  15. RNA-directed repair of DNA double-strand breaks.

    Science.gov (United States)

    Yang, Yun-Gui; Qi, Yijun

    2015-08-01

    DNA double-strand breaks (DSBs) are among the most deleterious DNA lesions, which if unrepaired or repaired incorrectly can cause cell death or genome instability that may lead to cancer. To counteract these adverse consequences, eukaryotes have evolved a highly orchestrated mechanism to repair DSBs, namely DNA-damage-response (DDR). DDR, as defined specifically in relation to DSBs, consists of multi-layered regulatory modes including DNA damage sensors, transducers and effectors, through which DSBs are sensed and then repaired via DNAprotein interactions. Unexpectedly, recent studies have revealed a direct role of RNA in the repair of DSBs, including DSB-induced small RNA (diRNA)-directed and RNA-templated DNA repair. Here, we summarize the recent discoveries of RNA-mediated regulation of DSB repair and discuss the potential impact of these novel RNA components of the DSB repair pathway on genomic stability and plasticity. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Investigations of radiation-induced strand breaks of poly(U) in aqueous solutions

    International Nuclear Information System (INIS)

    Lemaire, D.G.E.

    1984-01-01

    DNA strand breaks induced by γ irradiation were studied in polyuridylic acid (Poly(U)), a single-strand model substance with a single base. Poly(U) in diluted, aqueous solution was irradiated in a Co-γ source, and the 100 eV yields of strand breaks (Cr values) were determined on the basis of the loss of molecular weight. The molecular weight was determined by small-angle laser light scattering. (orig./PW) [de

  17. Functions of Human Rad51 and Other Recombination Factors in DNA Double-Strand Break Repair

    National Research Council Canada - National Science Library

    Sigurdsson, Stefan

    2004-01-01

    ... of. DNA double strand breaks. Genetic and biochemical studies have suggested that the function of genes of the RAD52 group is highly conserved from yeast to humans and interestingly the efficiency of DNA double strand break...

  18. An inverse switch in DNA base excision and strand break repair contributes to melphalan resistance in multiple myeloma cells.

    Directory of Open Access Journals (Sweden)

    Mirta M L Sousa

    Full Text Available Alterations in checkpoint and DNA repair pathways may provide adaptive mechanisms contributing to acquired drug resistance. Here, we investigated the levels of proteins mediating DNA damage signaling and -repair in RPMI8226 multiple myeloma cells and its Melphalan-resistant derivative 8226-LR5. We observed markedly reduced steady-state levels of DNA glycosylases UNG2, NEIL1 and MPG in the resistant cells and cross-resistance to agents inducing their respective DNA base lesions. Conversely, repair of alkali-labile sites was apparently enhanced in the resistant cells, as substantiated by alkaline comet assay, autoribosylation of PARP-1, and increased sensitivity to PARP-1 inhibition by 4-AN or KU58684. Reduced base-excision and enhanced single-strand break repair would both contribute to the observed reduction in genomic alkali-labile sites, which could jeopardize productive processing of the more cytotoxic Melphalan-induced interstrand DNA crosslinks (ICLs. Furthermore, we found a marked upregulation of proteins in the non-homologous end-joining (NHEJ pathway of double-strand break (DSB repair, likely contributing to the observed increase in DSB repair kinetics in the resistant cells. Finally, we observed apparent upregulation of ATR-signaling and downregulation of ATM-signaling in the resistant cells. This was accompanied by markedly increased sensitivity towards Melphalan in the presence of ATR-, DNA-PK, or CHK1/2 inhibitors whereas no sensitizing effect was observed subsequent to ATM inhibition, suggesting that replication blocking lesions are primary triggers of the DNA damage response in the Melphalan resistant cells. In conclusion, Melphalan resistance is apparently contributed by modulation of the DNA damage response at multiple levels, including downregulation of specific repair pathways to avoid repair intermediates that could impair efficient processing of cytotoxic ICLs and ICL-induced DSBs. This study has revealed several novel

  19. A quantitative model of the major pathways for radiation-induced DNA double-strand break repair

    International Nuclear Information System (INIS)

    Belov, O.V.; Krasavin, E.A.; Lyashko, M.S.; Batmunkh, M.; Sweilam, N.H.

    2014-01-01

    We have developed a model approach to simulate the major pathways of DNA double-strand break (DSB) repair in mammalian and human cells. The proposed model shows a possible mechanistic explanation of the basic regularities of DSB processing through the nonhomologous end-joining (NHEJ), homologous recombination (HR), and single-strand annealing (SSA). It reconstructs the time-courses of radiation-induced foci specific to particular repair processes including the major intermediate stages. The model is validated for ionizing radiations of a wide range of linear energy transfer (0.2-236 keV/μm) including a relatively broad spectrum of heavy ions. The appropriate set of reaction rate constants was suggested to satisfy the kinetics of DSB rejoining for the considered types of exposure. The simultaneous assessment of three repair pathways allows one to describe their possible biological relations in response to radiation. With the help of the proposed approach, we reproduce several experimental data sets on γ-H2AX foci remaining in different types of cells including those defective in NHEJ, HR, or SSA functions.

  20. DNA breaks and end resection measured genome-wide by end sequencing | Center for Cancer Research

    Science.gov (United States)

    About the Cover The cover depicts a ribbon of DNA portrayed as a city skyline. The central gap in the landscape localizes to the precise site of the DNA break. The features surrounding the break denote the processing of DNA-end structures (end-resection) emanating from the break location. Cover artwork by Ethan Tyler, NIH. Abstract

  1. Cadmium/zinc-metallothionein induces DNA strand breaks in vitro.

    Science.gov (United States)

    Müller, T; Schuckelt, R; Jaenicke, L

    1991-01-01

    The in vitro DNA strand breaking activity of metallothionein (MT) containing Cd2+ and Zn2+ in a molar ratio of 5:2 is described. Studies with radical scavengers and electron paramagnetic resonance spectroscopy indicate that the DNA damage might be caused by a radical species formed by the native protein (i.e., MT) charged with the heavy metal ions. No DNA strand breaks are detectable with the heat-denatured MT or with Cd2+ or Zn2+ alone. Inhibition studies using EDTA as a metal ion chelator or N-ethylmaleimide to alkylate sulfhydryl groups suggest that both the bound heavy metal ions as well as the SH groups of the various cysteine residues of MT may be involved in the MT-dependent DNA cleavage. Further characterization showed that the DNA cleavage is more likely random than sequence- or base-specific. These observations may provide a clue in the search for initial events in Cd-related carcinogenicity.

  2. Damages induced in lambda phage DNA by enzyme-generated triplet acetone

    International Nuclear Information System (INIS)

    Menck, C.F.; Cabral Neto, J.B.; Gomes, R.A.; Faljoni-Alario, A.

    1985-01-01

    Exposure of lambda phage to triplet acetone, generated during the aerobic oxidation of isobutanal by peroxidase, leads to genome lesions. The majority of these lesions are detected as DNA single-strand breaks only in alkaline conditions, so true breaks were not observed. Also, no sites sensitive to UV-endonuclease from Micrococcus luteus were found in DNA from treated phage. The participation of triplet acetone in the generation of such DNA damage is discussed. (Author) [pt

  3. Genetics of repair of radiation damage to DNA in bacteria

    International Nuclear Information System (INIS)

    Billen, D.; Hadden, C.T.

    1984-01-01

    The purpose of this study was to determine whether chemical protection against single-strand breaks observed in toluene-treated E. coli (AB3063) subjected to X irradiation in air was due to the removal of OH radicals, or resulted from the production of secondary radicals. In toluene-treated cells DNA strand-break production can be measured without the complication of strand ligation during or immediately following x-ray exposure since such cells are deficient in DNA ligase activity

  4. Single Strand Annealing Plays a Major Role in RecA-Independent Recombination between Repeated Sequences in the Radioresistant Deinococcus radiodurans Bacterium.

    Directory of Open Access Journals (Sweden)

    Solenne Ithurbide

    2015-10-01

    Full Text Available The bacterium Deinococcus radiodurans is one of the most radioresistant organisms known. It is able to reconstruct a functional genome from hundreds of radiation-induced chromosomal fragments. Our work aims to highlight the genes involved in recombination between 438 bp direct repeats separated by intervening sequences of various lengths ranging from 1,479 bp to 10,500 bp to restore a functional tetA gene in the presence or absence of radiation-induced DNA double strand breaks. The frequency of spontaneous deletion events between the chromosomal direct repeats were the same in recA+ and in ΔrecA, ΔrecF, and ΔrecO bacteria, whereas recombination between chromosomal and plasmid DNA was shown to be strictly dependent on the RecA and RecF proteins. The presence of mutations in one of the repeated sequence reduced, in a MutS-dependent manner, the frequency of the deletion events. The distance between the repeats did not influence the frequencies of deletion events in recA+ as well in ΔrecA bacteria. The absence of the UvrD protein stimulated the recombination between the direct repeats whereas the absence of the DdrB protein, previously shown to be involved in DNA double strand break repair through a single strand annealing (SSA pathway, strongly reduces the frequency of RecA- (and RecO- independent deletions events. The absence of the DdrB protein also increased the lethal sectoring of cells devoid of RecA or RecO protein. γ-irradiation of recA+ cells increased about 10-fold the frequencies of the deletion events, but at a lesser extend in cells devoid of the DdrB protein. Altogether, our results suggest a major role of single strand annealing in DNA repeat deletion events in bacteria devoid of the RecA protein, and also in recA+ bacteria exposed to ionizing radiation.

  5. Acute hypoxia and hypoxic exercise induce DNA strand breaks and oxidative DNA damage in humans

    DEFF Research Database (Denmark)

    Møller, P; Loft, S; Lundby, C

    2001-01-01

    The present study investigated the effect of a single bout of exhaustive exercise on the generation of DNA strand breaks and oxidative DNA damage under normal conditions and at high-altitude hypoxia (4559 meters for 3 days). Twelve healthy subjects performed a maximal bicycle exercise test...... oxygen species, generated by leakage of the mitochondrial respiration or during a hypoxia-induced inflammation. Furthermore, the presence of DNA strand breaks may play an important role in maintaining hypoxia-induced inflammation processes. Hypoxia seems to deplete the antioxidant system of its capacity...

  6. DEK is required for homologous recombination repair of DNA breaks

    DEFF Research Database (Denmark)

    Smith, Eric A; Gole, Boris; Willis, Nicholas A

    2017-01-01

    DEK is a highly conserved chromatin-bound protein whose upregulation across cancer types correlates with genotoxic therapy resistance. Loss of DEK induces genome instability and sensitizes cells to DNA double strand breaks (DSBs), suggesting defects in DNA repair. While these DEK......-deficiency phenotypes were thought to arise from a moderate attenuation of non-homologous end joining (NHEJ) repair, the role of DEK in DNA repair remains incompletely understood. We present new evidence demonstrating the observed decrease in NHEJ is insufficient to impact immunoglobulin class switching in DEK knockout......-deficient cells. To define responsible mechanisms, we tested the role of DEK in the HR repair cascade. DEK-deficient cells were impaired for γH2AX phosphorylation and attenuated for RAD51 filament formation. Additionally, DEK formed a complex with RAD51, but not BRCA1, suggesting a potential role regarding RAD51...

  7. Elastic properties of alternative versus single-stranded leveling archwires.

    Science.gov (United States)

    Rucker, Brian K; Kusy, Robert P

    2002-11-01

    The strength, stiffness, and range of single-stranded stainless steel (SS) and superelastic nickel-titanium (NiTi) archwires were compared with those of alternative leveling products, including nylon-coated and multistranded wires. Wire cross-sections were photographed after being potted in polymer, ground, and polished. Because the rectangular wires had rounded or beveled corners, gravimetric measurements and specific gravity calculations quantified the actual polygonal cross-sectional areas versus the ideal rectangular cross-sectional areas. Beveling reduced the cross-sectional areas by 7% to 8%; this decreased the wire stiffnesses by 15% to 19%. Using a testing machine, we measured the yield strengths, the elastic limits, and the ultimate tensile strengths in tension, and wire stiffnesses in 3-point bending. From cyclic loading tests, the elastic limits of the superelastic NiTi wires were approximately 90% and 45% of their ultimate tensile strengths for the round and rectangular wires, respectively. Using the measurements of the mechanical properties and geometric parameters of each wire, we computed the elastic property ratios (EPRs) versus a 16-mil (0.41 mm) NiTi wire. The single-stranded NiTi wires outperformed the alternative wires, whose EPRs varied from 0.05 to 0.32 for strength, from 0.11 to 1.55 for stiffness, and from 0.10 to 0.80 for range. Based on the current study and a review of the orthodontic literature, few superelastic wires are activated sufficiently in vivo to exhibit superelastic behavior. Therefore, the EPR data reported here for superelastic wires truly represent their performance in most clinical situations.

  8. Modulation by glutathione of DNA strand breaks induced by 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone and its aldehyde metabolites in rat hepatocytes.

    Science.gov (United States)

    Demkowicz-Dobrzanski, K; Castonguay, A

    1992-08-01

    Activation of the tobacco carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) produced methylating species and two aldehydes: formaldehyde and 4-oxo-4-(3-pyridyl)-butanal (OPB). We investigated the modulation by glutathione of single-strand breaks (SSB) generated by N-methyl-N-nitrosourea (MNU) and the two aldehydes. Hepatocytes were simultaneously exposed to 0.2 mM MNU and to 0-2.00 mM formaldehyde or OPB for 4 h. Both aldehydes induced SSB in a dose-dependent manner. Formaldehyde and OPB exerted a synergistic effect on the formation of DNA SSB by MNU. It is postulated that both aldehydes interfere with DNA repair processes and thus increase the genotoxic effect of DNA methylating species. We investigated whether glutathione (GSH) could protect DNA from NNK-derived intermediates. Formaldehyde (2 mM) and OPB (2 mM) decreased intracellular GSH contents to 60 and 86% of control respectively. DL-Buthionine-[S,R]-sulfoximine (BSO) treatment reduced the GSH contents of hepatocytes to 19% of control but did not reduce the content of cytochrome P450 nor the metabolism of NNK. The frequency of DNA SSB induced by NNK, formaldehyde or OPB was significantly higher in GSH-depleted hepatocytes. GSH repletion with GSH monoethyl ester returned NNK-induced SSB to its initial frequency. OPB but not NNK nor formaldehyde induced double-strand breaks. We conclude that OPB and formaldehyde inhibit the repair of DNA damage induced by methylating species and that GSH reduces the level of DNA damage induced by NNK-derived reactive metabolites.

  9. Reaction of misonidazole with DNA radicals and its effect on the template activity of DNA

    International Nuclear Information System (INIS)

    Endoh, Daiji; Kuwabara, Mikinori; Sato, Fumiaki; Yoshii, Giichi.

    1985-01-01

    After calf thymus DNA was gamma-irradiated in the solid state in vacuo and subsequently dissolved in aqueous solution containing misonidazole (3 mM) under hypoxic condition, the frequency of single-strand breaks and alkali-labile sites in DNA and the amount of misonidazole bound to DNA were measured. The presence of misonidazole converted the precursor radicals, which otherwise results in single-strand breaks, to alkali-labile sites, and the amount of alkali-labile sites increased linearly with increasing radiation dose. The amount of misonidazole bound to DNA also increased linearly with increasing radiation dose. The biological meaning of the changes in the frequency of single-strand breaks and alkali-labile sites by the reaction of misonidazole with DNA radicals and of binding misonidazole with DNA was examined using a model system to measure the template activity of DNA for RNA synthesis in vitro. The conversion of DNA radicals to alkali-labile sites protected the radiation-induced decrease in the template activity of DNA, while the adduct formation of misonidazole had no effect on it. (author)

  10. Master equation approach to DNA breathing in heteropolymer DNA

    DEFF Research Database (Denmark)

    Ambjörnsson, Tobias; Banik, Suman K; Lomholt, Michael A

    2007-01-01

    After crossing an initial barrier to break the first base-pair (bp) in double-stranded DNA, the disruption of further bps is characterized by free energies up to a few k(B)T. Thermal motion within the DNA double strand therefore causes the opening of intermittent single-stranded denaturation zones......, the DNA bubbles. The unzipping and zipping dynamics of bps at the two zipper forks of a bubble, where the single strand of the denatured zone joins the still intact double strand, can be monitored by single molecule fluorescence or NMR methods. We here establish a dynamic description of this DNA breathing...... in a heteropolymer DNA with given sequence in terms of a master equation that governs the time evolution of the joint probability distribution for the bubble size and position along the sequence. The transfer coefficients are based on the Poland-Scheraga free energy model. We derive the autocorrelation function...

  11. Capillary Electrophoresis Single-Strand Conformational Polymorphisms as a Method to Differentiate Algal Species

    Directory of Open Access Journals (Sweden)

    Alice Jernigan

    2015-01-01

    Full Text Available Capillary electrophoresis single-strand conformational polymorphism (CE-SSCP was explored as a fast and inexpensive method to differentiate both prokaryotic (blue-green and eukaryotic (green and brown algae. A selection of two blue-green algae (Nostoc muscorum and Anabaena inaequalis, five green algae (Chlorella vulgaris, Oedogonium foveolatum, Mougeotia sp., Scenedesmus quadricauda, and Ulothrix fimbriata, and one brown algae (Ectocarpus sp. were examined and CE-SSCP electropherogram “fingerprints” were compared to each other for two variable regions of either the 16S or 18S rDNA gene. The electropherogram patterns were remarkably stable and consistent for each particular species. The patterns were unique to each species, although some common features were observed between the different types of algae. CE-SSCP could be a useful method for monitoring changes in an algae species over time as potential shifts in species occurred.

  12. Do DNA Double-Strand Breaks Drive Aging?

    Science.gov (United States)

    White, Ryan R; Vijg, Jan

    2016-09-01

    DNA double-strand breaks (DSBs) are rare, but highly toxic, lesions requiring orchestrated and conserved machinery to prevent adverse consequences, such as cell death and cancer-causing genome structural mutations. DSBs trigger the DNA damage response (DDR) that directs a cell to repair the break, undergo apoptosis, or become senescent. There is increasing evidence that the various endpoints of DSB processing by different cells and tissues are part of the aging phenotype, with each stage of the DDR associated with specific aging pathologies. In this Perspective, we discuss the possibility that DSBs are major drivers of intrinsic aging, highlighting the dynamics of spontaneous DSBs in relation to aging, the distinct age-related pathologies induced by DSBs, and the segmental progeroid phenotypes in humans and mice with genetic defects in DSB repair. A model is presented as to how DSBs could drive some of the basic mechanisms underlying age-related functional decline and death. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. In vivo quantification of DNA double strand breaks

    International Nuclear Information System (INIS)

    Simonsson, M.; Qvarnstroem, F.; Turesson, I.; Johansson, K.-A.; Nyman, J.; Hermansson, I.; Oden, A.; Book, M.

    2003-01-01

    DNA double strand breaks (DSBs) can be introduced in the genome by exposure to exogenous agents such as ionising radiation and radio-mimetic chemicals. The biological importance of these breaks is significant even at low numbers. Inaccurate repair or lack of repair of a single DSB has the potential to kill a cell or lead to tumourigenesis. Thus the induction and repair of DSBs are crucial events in the onset of malignancies. Following the induction of DSBs, the core histone H2AX is rapidly phosphorylated at residue serine 139. This phosphorylated form of H2AX is referred to as gH2AX. Histones wrapped in megabase regions flanking these breaks are involved in this process, which results in the formation of discrete nuclear foci. It has previously been shown that a single DSB is sufficient to produce a detectable focus. So far there has been a lack of methods capable of measuring the amount of DSBs at clinically relevant quantities. Such a method would embrace a wide field of applications. It could be applied as a biological dosimeter when studying carcinogenic effects and provide the basis for an assay predicting individual radiosensitivity. We describe a measurement procedure that detects and quantifies small amounts of DSBs in vivo. This is accomplished using immunofluorescence detection of the molecular marker gH2AX. The gH2AX foci are quantified in histological sections using basic digital image analysis methods as the main component. In a primary assessment of the procedure we analysed the in vivo dose response of prostate cancer patients in clinical practice undergoing radiotherapy. Epidermal nucleated cells in skin biopsies taken 30 minutes following the first single dose delivered show linear dose response for low doses ranging from 0 - 1.2 Gy. The described procedure for double strand break quantification can detect dose changes as low as 0.18 Gy

  14. Solution structure and DNA binding of the zinc-finger domain from DNA ligase IIIalpha.

    Science.gov (United States)

    Kulczyk, Arkadiusz W; Yang, Ji-Chun; Neuhaus, David

    2004-08-13

    DNA ligase IIIalpha carries out the final ligation step in the base excision repair (BER) and single strand break repair (SSBR) mechanisms of DNA repair. The enzyme recognises single-strand nicks and other damage features in double-stranded DNA, both through the catalytic domain and an N-terminal domain containing a single zinc finger. The latter is homologous to other zinc fingers that recognise damaged DNA, two in the N terminus of poly(adenosine-ribose)polymerase and three in the N terminus of the Arabidopsis thaliana nick-sensing DNA 3'-phosphoesterase. Here, we present the solution structure of the zinc-finger domain of human DNA ligase IIIalpha, the first structure of a finger from this group. It is related to that of the erythroid transcription factor GATA-1, but has an additional N-terminal beta-strand and C-terminal alpha-helix. Chemical shift mapping using a DNA ligand containing a single-stranded break showed that the DNA-binding surface of the DNA-ligase IIIalpha zinc finger is substantially different from that of GATA-1, consistent with the fact that the two proteins recognise very different features in the DNA. Likely implications for DNA binding are discussed.

  15. (Pheo)melanin photosensitizes UVA-induced DNA damage in cultured human melanocytes

    NARCIS (Netherlands)

    Wenczl, E.; Schans, G.P. van der; Roza, L.; Kolb, R.M.; Timmerman, A.J.; Smit, N.P.M.; Pavel, S.; Schothorst, A.A.

    1998-01-01

    The question of whether melanins are photoprotecting and/or photosensitizing in human skin cells continues to be debated. To evaluate the role of melanin upon UVA irradiation, DNA single-strand breaks (ssb) were measured in human melanocytes differing only in the amount of pigment produced by

  16. Decreased DNA repair capacity in familial, but not in sporadic Alzheimer's disease

    NARCIS (Netherlands)

    M.E.T.I. Boerrigter; C.M. van Duijn (Cornelia); E. Mullaart; P. Eikelenboom (Piet); C.M.A. van der Togt; D.L. Knook; J. Vijg (Jan); A. Hofman (Albert)

    1991-01-01

    textabstractUsing the alkaline filter elution technique we determined the induction and disappearance of DNA single-strand breaks (SSB) in freshly isolated peripheral blood lymphocytes (PBL) from 43 Alzheimer's disease (AD) patients and 48 normal, healthy age- and sex-matched control subjects

  17. Decreased DNA repair capacity in familial, but not in sporadic Alzheimer's disease

    NARCIS (Netherlands)

    Boerrigter, M. E.; van Duijn, C. M.; Mullaart, E.; Eikelenboom, P.; van der Togt, C. M.; Knook, D. L.; Hofman, A.; Vijg, J.

    1991-01-01

    Using the alkaline filter elution technique we determined the induction and disappearance of DNA single-strand breaks (SSB) in freshly isolated peripheral blood lymphocytes (PBL) from 43 Alzheimer's disease (AD) patients and 48 normal, healthy age- and sex-matched control subjects following in vitro

  18. Effect of 3-aminobenzamide on the rate of ligation during repair of alkylated DNA in human fibroblasts

    International Nuclear Information System (INIS)

    Morgan, W.F.; Cleaver, J.E.

    1983-01-01

    3-Aminobenzamide, an inhibitor of polyadenosine diphosphoribose polymerase, produced rapid reversible changes in single-strand break frequencies in DNA from primary human fibroblasts damaged by alkylating agents, but it did not cause such changes in the DNA of cells damaged by ultraviolet light. The increase in single-strand peak frequencies was not due to an accumulation of blocked repair sites, such as occurs with DNA polymerase inhibitors, but to a delay in the rejoining of induced breaks. 3-Aminobenzamide increases the net break frequency that results from a dynamic balance between excision and ligation. This balance appears to be regulated at the ligation step by adenosine diphosphate ribosylation, which is rapidly altered by addition or removal of 3-aminobenzamide. The rapidity with which strand break frequencies change in the presence of 3-aminobenzamide implies that individual strand breaks resulting from excision at any time after exposure have a lifetime of no more than about 30 min in the cell

  19. DNA-radiosensitivity and repair in mammolian cells

    International Nuclear Information System (INIS)

    Proskuryakov, S.Ya.; Ivannik, B.P.; Ryabchenko, N.I.

    1979-01-01

    Determination was made of the formation and repair of single-stranded DNA breaks (SB) in cells of rat thymus and liver and Ehrlich's ascites tumor (EAT) with the use of the method of low-gradient viscosimetry of alkaline cell lysates. The radiochemical yield of single-stranded breaks (Gsub(SB)) induced by irradiation of animals is 41.2 eV/break for hepatocytes, 96.8 eV/break, for thymocytes, and 129.7 eV/break, for EAT cells. The half-recovery time of single-stranded DNA breaks for cells of thymus and EAT exposed in vivo is 16.0 and 5.1 s -1 , correspondingly. In hepatocytes exposed in vivo and in vitro no repairs occurs for 3 h. Under conditions of inhibition of SB repair, when suspensions of thymocytes and hepatocytes were exposed in vitro at 4 deg C, Gsub(SB) is 35.5 and 38.7 eV/break, respectively. The analysis of the data obtained prompts the conclusion that under in vivo conditions, there is a correlation between DNA radiosensitivity and the rate of repair processes

  20. Autophosphorylation of DNA-PKCS regulates its dynamics at DNA double-strand breaks.

    Science.gov (United States)

    Uematsu, Naoya; Weterings, Eric; Yano, Ken-ichi; Morotomi-Yano, Keiko; Jakob, Burkhard; Taucher-Scholz, Gisela; Mari, Pierre-Olivier; van Gent, Dik C; Chen, Benjamin P C; Chen, David J

    2007-04-23

    The DNA-dependent protein kinase catalytic subunit (DNA-PK(CS)) plays an important role during the repair of DNA double-strand breaks (DSBs). It is recruited to DNA ends in the early stages of the nonhomologous end-joining (NHEJ) process, which mediates DSB repair. To study DNA-PK(CS) recruitment in vivo, we used a laser system to introduce DSBs in a specified region of the cell nucleus. We show that DNA-PK(CS) accumulates at DSB sites in a Ku80-dependent manner, and that neither the kinase activity nor the phosphorylation status of DNA-PK(CS) influences its initial accumulation. However, impairment of both of these functions results in deficient DSB repair and the maintained presence of DNA-PK(CS) at unrepaired DSBs. The use of photobleaching techniques allowed us to determine that the kinase activity and phosphorylation status of DNA-PK(CS) influence the stability of its binding to DNA ends. We suggest a model in which DNA-PK(CS) phosphorylation/autophosphorylation facilitates NHEJ by destabilizing the interaction of DNA-PK(CS) with the DNA ends.

  1. Susceptibility to bystander DNA damage is influenced by replication and transcriptional activity

    OpenAIRE

    Dickey, Jennifer S.; Baird, Brandon J.; Redon, Christophe E.; Avdoshina, Valeriya; Palchik, Guillermo; Wu, Junfang; Kondratyev, Alexei; Bonner, William M.; Martin, Olga A.

    2012-01-01

    Direct cellular DNA damage may lead to genome destabilization in unexposed, bystander, cells sharing the same milieu with directly damaged cells by means of the bystander effect. One proposed mechanism involves double strand break (DSB) formation in S phase cells at sites of single strand lesions in the DNA of replication complexes, which has a more open structure compared with neighboring DNA. The DNA in transcription complexes also has a more open structure, and hence may be susceptible to ...

  2. Nbs1 ChIP-Seq Identifies Off-Target DNA Double-Strand Breaks Induced by AID in Activated Splenic B Cells.

    Directory of Open Access Journals (Sweden)

    Lyne Khair

    2015-08-01

    Full Text Available Activation-induced cytidine deaminase (AID is required for initiation of Ig class switch recombination (CSR and somatic hypermutation (SHM of antibody genes during immune responses. AID has also been shown to induce chromosomal translocations, mutations, and DNA double-strand breaks (DSBs involving non-Ig genes in activated B cells. To determine what makes a DNA site a target for AID-induced DSBs, we identify off-target DSBs induced by AID by performing chromatin immunoprecipitation (ChIP for Nbs1, a protein that binds DSBs, followed by deep sequencing (ChIP-Seq. We detect and characterize hundreds of off-target AID-dependent DSBs. Two types of tandem repeats are highly enriched within the Nbs1-binding sites: long CA repeats, which can form Z-DNA, and tandem pentamers containing the AID target hotspot WGCW. These tandem repeats are not nearly as enriched at AID-independent DSBs, which we also identified. Msh2, a component of the mismatch repair pathway and important for genome stability, increases off-target DSBs, similar to its effect on Ig switch region DSBs, which are required intermediates during CSR. Most of the off-target DSBs are two-ended, consistent with generation during G1 phase, similar to DSBs in Ig switch regions. However, a minority are one-ended, presumably due to conversion of single-strand breaks to DSBs during replication. One-ended DSBs are repaired by processes involving homologous recombination, including break-induced replication repair, which can lead to genome instability. Off-target DSBs, especially those present during S phase, can lead to chromosomal translocations, deletions and gene amplifications, resulting in the high frequency of B cell lymphomas derived from cells that express or have expressed AID.

  3. Ku recruits XLF to DNA double-strand breaks.

    Science.gov (United States)

    Yano, Ken-ichi; Morotomi-Yano, Keiko; Wang, Shih-Ya; Uematsu, Naoya; Lee, Kyung-Jong; Asaithamby, Aroumougame; Weterings, Eric; Chen, David J

    2008-01-01

    XRCC4-like factor (XLF)--also known as Cernunnos--has recently been shown to be involved in non-homologous end-joining (NHEJ), which is the main pathway for the repair of DNA double-strand breaks (DSBs) in mammalian cells. XLF is likely to enhance NHEJ by stimulating XRCC4-ligase IV-mediated joining of DSBs. Here, we report mechanistic details of XLF recruitment to DSBs. Live cell imaging combined with laser micro-irradiation showed that XLF is an early responder to DSBs and that Ku is essential for XLF recruitment to DSBs. Biochemical analysis showed that Ku-XLF interaction occurs on DNA and that Ku stimulates XLF binding to DNA. Unexpectedly, XRCC4 is dispensable for XLF recruitment to DSBs, although photobleaching analysis showed that XRCC4 stabilizes the binding of XLF to DSBs. Our observations showed the direct involvement of XLF in the dynamic assembly of the NHEJ machinery and provide mechanistic insights into DSB recognition.

  4. Simulation of 125I-induced DNA strand breaks in a CAP-DNA complex

    International Nuclear Information System (INIS)

    Li, W.; Friedland, W.; Jacob, P.

    2000-01-01

    DNA strand breakage induced by decay of 125 I incorporated into the pyrimidine of a small piece of DNA with a specific base pair sequence has been investigated theoretically and experimentally (Lobachevsky and Martin 2000a, 2000b; Nikjoo et al., 1996; Pomplun and Terrissol, 1994; Charlton and Humm, 1988). Recently an attempt was made to analyse the DNA kinks in a CAP-DNA complex with 125 I induced DNA strand breakage (Karamychev et al., 1999). This method could be used as a so called radioprobing for such DNa distortions like other chemical and biological assays, provided that it has been tested and confirmed in a corresponding theoretical simulation. In the measurement, the distribution of the first breaks on the DNA strands starting from their labeled end can be determined. Based on such first breakage distributions, the simulation calculation could then be used to derive information on the structure of a given DNA-protein complex. The biophysical model PARTRAC has been applied successfully in simulating DNA damage induced by irradiation (Friedland et al., 1998; 1999). In the present study PARTRAC is adapted to a DNA-protein complex in which a specific sequence of 30 base pairs of DNA is connected with the catabolite gene activator protein (CAP). This report presents the first step of the analysis in which the CAP-DNA model used in NIH is overlaid with electron track structures in liquid water and the strand breaks due to direct ionization and due to radical attack are simulated. The second step will be to take into account the neutralization of the heavily charged tellurium and the protective effect of the CAP protein against radical attack. (orig.)

  5. DNA double-strand break repair in Caenorhabditis elegans.

    Science.gov (United States)

    Lemmens, Bennie B L G; Tijsterman, Marcel

    2011-02-01

    Faithful repair of DNA double-strand breaks (DSBs) is vital for animal development, as inappropriate repair can cause gross chromosomal alterations that result in cellular dysfunction, ultimately leading to cancer, or cell death. Correct processing of DSBs is not only essential for maintaining genomic integrity, but is also required in developmental programs, such as gametogenesis, in which DSBs are deliberately generated. Accordingly, DSB repair deficiencies are associated with various developmental disorders including cancer predisposition and infertility. To avoid this threat, cells are equipped with an elaborate and evolutionarily well-conserved network of DSB repair pathways. In recent years, Caenorhabditis elegans has become a successful model system in which to study DSB repair, leading to important insights in this process during animal development. This review will discuss the major contributions and recent progress in the C. elegans field to elucidate the complex networks involved in DSB repair, the impact of which extends well beyond the nematode phylum.

  6. ⁹⁹mTc pyrene derivative complex causes double-strand breaks in dsDNA mainly through cluster-mediated indirect effect in aqueous solution.

    Directory of Open Access Journals (Sweden)

    Wei-Ju Chung

    Full Text Available Radiation therapy for cancer patients works by ionizing damage to nuclear DNA, primarily by creating double-strand breaks (DSB. A major shortcoming of traditional radiation therapy is the set of side effect associated with its long-range interaction with nearby tissues. Low-energy Auger electrons have the advantage of an extremely short effective range, minimizing damage to healthy tissue. Consequently, the isotope ⁹⁹mTc, an Auger electron source, is currently being studied for its beneficial potential in cancer treatment. We examined the dose effect of a pyrene derivative ⁹⁹mTc complex on plasmid DNA by using gel electrophoresis in both aqueous and methanol solutions. In aqueous solutions, the average yield per decay for double-strand breaks is 0.011±0.005 at low dose range, decreasing to 0.0005±0.0003 in the presence of 1 M dimethyl sulfoxide (DMSO. The apparent yield per decay for single-strand breaks (SSB is 0.04±0.02, decreasing to approximately a fifth with 1 M DMSO. In methanol, the average yield per decay of DSB is 0.54±0.06 and drops to undetectable levels in 2 M DMSO. The SSB yield per decay is 7.2±0.2, changing to 0.4±0.2 in the presence of 2 M DMSO. The 95% decrease in the yield of DSB in DMSO indicates that the main mechanism for DSB formation is through indirect effect, possibly by cooperative binding or clustering of intercalators. In the presence of non-radioactive ligands at a near saturation concentration, where radioactive Tc compounds do not form large clusters, the yield of SSB stays the same while the yield of DSB decreases to the value in DMSO. DSBs generated by ⁹⁹mTc conjugated to intercalators are primarily caused by indirect effects through clustering.

  7. An Investigation into the Mechanisms of DNA Strand Breakage by Direct Ionization of Variably Hydrated Plasmid DNA

    OpenAIRE

    Purkayastha, Shubhadeep; Milligan, Jamie R.; Bernhard, William A.

    2006-01-01

    The mechanisms by which ionizing radiation directly causes strand breaks in DNA were investigated by comparing the chemical yield of DNA-trapped free radicals to the chemical yield of DNA single strand break (ssb) and double strand break (dsb), as a function of hydration (Γ). Solid-state films of plasmid pUC18, hydrated to 2.5 < Γ < 22.5 mol, were X-irradiated at 4 K, warmed to room temperature, and dissolved in water. Free radical yields were determined by EPR at 4 K. With use of the same sa...

  8. Neocarzinostatin-mediated DNA damage and repair in wild-type and repair-deficient Chinese hamster ovary cells

    International Nuclear Information System (INIS)

    Kuo, W.L.; Meyn, R.E.; Haidle, C.W.

    1984-01-01

    The formation and repair of neocarzinostatin (NCS)-mediated DNA damage were examined in two strains of Chinese hamster ovary cells. The response in strain EM9, a mutant line selected for its sensitivity to ethyl methanesulfonate and shown to have a defect in the repair of X-ray-induced DNA breaks, was compared with that observed in the parental strain (AA8). The DNA strand breaks and their subsequent rejoining were measured using the method of elution of DNA from filters under either alkaline (for single-strand breaks), or nondenaturing conditions (for double-strand breaks). Colony survival assays showed that the mutant was more sensitive to the action of NCS than was the parental strain by a factor of approximately 1.5. Elution analyses showed that the DNA from both strains was damaged by NCS; the mutant displayed more damage than the parent under the same treatment conditions. Single-strand breaks were produced with a frequency of about 10 to 15 times the frequency of double-strand breaks. Both strains were able to rejoin both single-strand breaks and double-strand breaks induced by NCS treatment. The strand break data suggest that the difference in NCS-mediated cytotoxicity between EM9 and AA8 cells may be directly related to the enhanced production of DNA strand breaks in EM9. However, the fact that much higher doses of NCS were required in the DNA studies compared to the colony survival assays implies that either a small number of DNA breaks occur in a critical region of the genome, or that lesions other than DNA strand breaks are partly responsible for the observed cytotoxicity

  9. UVA activation of N-dialkylnitrosamines releasing nitric oxide, producing strand breaks as well as oxidative damages in DNA, and inducing mutations in the Ames test.

    Science.gov (United States)

    Arimoto-Kobayashi, Sakae; Sano, Kayoko; Machida, Masaki; Kaji, Keiko; Yakushi, Keiko

    2010-09-10

    We investigated the photo-mutagenicity and photo-genotoxicity of N-dialkylnitrosamines and its mechanisms of UVA activation. With simultaneous irradiation of UVA, photo-mutagenicity of seven N-dialkylnitrosamines was observed in Ames bacteria (Salmonella typhimurium TA1535) in the absence of metabolic activation. Mutagenicity of pre-irradiated N-dialkylnitrosamines was also observed with S. typhimurium hisG46, TA100, TA102 and YG7108 in the absence of metabolic activation. UVA-mediated mutation with N-nitrosodimethylamine (NDMA) and N-nitrosodiethylamine (NDEA) decreased by adding either the NO or OH radical scavenger. When superhelical DNA was irradiated with N-dialkylnitrosamines, nicked circular DNA appeared. Ten N-dialkylnitrosamines examined produced strand breaks in the treated DNA in the presence of UVA. The level of single-strand breaks in phiX174 DNA mediated by N-nitrosomorpholine (NMOR) and UVA decreased by adding either a radical scavenger or superoxide dismutase. When calf thymus DNA was treated with N-dialkylnitrosamines (NDMA, NDEA, NMOR, N-nitrosopyrrolidine (NPYR) and N-nitrosopiperidine (NPIP)) and UVA, the ratio of 8-oxodG/dG in the DNA increased. Action spectra were obtained to determine if nitrosamine acts as a sensitizer of UVA. Both mutation frequency and NO formation were highest at the absorption maximum of nitrosamines, approximately 340 nm. The plots of NO formation and mutation frequency align with the absorption curve of NPYR, NMOR and NDMA. A significant linear correlation between the optical density of N-dialkynitrosamines at 340 nm and NO formation in each irradiated solution was revealed by ANOVA. We would like to propose the hypothesis that the N-nitroso moiety of N-dialkylnitrosamines absorbs UVA photons, UVA-photolysis of N-dialkylnitrosamines brings release of nitric oxide, and subsequent production of alkyl radical cations and active oxygen species follow as secondary events, which cause DNA strand breaks, oxidative and

  10. UVA activation of N-dialkylnitrosamines releasing nitric oxide, producing strand breaks as well as oxidative damages in DNA, and inducing mutations in the Ames test

    Energy Technology Data Exchange (ETDEWEB)

    Arimoto-Kobayashi, Sakae, E-mail: arimoto@cc.okayama-u.ac.jp [Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima, Okayama 700-8530 (Japan); Sano, Kayoko; Machida, Masaki; Kaji, Keiko; Yakushi, Keiko [Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima, Okayama 700-8530 (Japan)

    2010-09-10

    We investigated the photo-mutagenicity and photo-genotoxicity of N-dialkylnitrosamines and its mechanisms of UVA activation. With simultaneous irradiation of UVA, photo-mutagenicity of seven N-dialkylnitrosamines was observed in Ames bacteria (Salmonella typhimurium TA1535) in the absence of metabolic activation. Mutagenicity of pre-irradiated N-dialkylnitrosamines was also observed with S. typhimurium hisG46, TA100, TA102 and YG7108 in the absence of metabolic activation. UVA-mediated mutation with N-nitrosodimethylamine (NDMA) and N-nitrosodiethylamine (NDEA) decreased by adding either the NO or OH radical scavenger. When superhelical DNA was irradiated with N-dialkylnitrosamines, nicked circular DNA appeared. Ten N-dialkylnitrosamines examined produced strand breaks in the treated DNA in the presence of UVA. The level of single-strand breaks in {phi}X174 DNA mediated by N-nitrosomorpholine (NMOR) and UVA decreased by adding either a radical scavenger or superoxide dismutase. When calf thymus DNA was treated with N-dialkylnitrosamines (NDMA, NDEA, NMOR, N-nitrosopyrrolidine (NPYR) and N-nitrosopiperidine (NPIP)) and UVA, the ratio of 8-oxodG/dG in the DNA increased. Action spectra were obtained to determine if nitrosamine acts as a sensitizer of UVA. Both mutation frequency and NO formation were highest at the absorption maximum of nitrosamines, approximately 340 nm. The plots of NO formation and mutation frequency align with the absorption curve of NPYR, NMOR and NDMA. A significant linear correlation between the optical density of N-dialkynitrosamines at 340 nm and NO formation in each irradiated solution was revealed by ANOVA. We would like to propose the hypothesis that the N-nitroso moiety of N-dialkylnitrosamines absorbs UVA photons, UVA-photolysis of N-dialkylnitrosamines brings release of nitric oxide, and subsequent production of alkyl radical cations and active oxygen species follow as secondary events, which cause DNA strand breaks, oxidative and

  11. Direct and inverted repeats elicit genetic instability by both exploiting and eluding DNA double-strand break repair systems in mycobacteria.

    Directory of Open Access Journals (Sweden)

    Ewelina A Wojcik

    Full Text Available Repetitive DNA sequences with the potential to form alternative DNA conformations, such as slipped structures and cruciforms, can induce genetic instability by promoting replication errors and by serving as a substrate for DNA repair proteins, which may lead to DNA double-strand breaks (DSBs. However, the contribution of each of the DSB repair pathways, homologous recombination (HR, non-homologous end-joining (NHEJ and single-strand annealing (SSA, to this sort of genetic instability is not fully understood. Herein, we assessed the genome-wide distribution of repetitive DNA sequences in the Mycobacterium smegmatis, Mycobacterium tuberculosis and Escherichia coli genomes, and determined the types and frequencies of genetic instability induced by direct and inverted repeats, both in the presence and in the absence of HR, NHEJ, and SSA. All three genomes are strongly enriched in direct repeats and modestly enriched in inverted repeats. When using chromosomally integrated constructs in M. smegmatis, direct repeats induced the perfect deletion of their intervening sequences ~1,000-fold above background. Absence of HR further enhanced these perfect deletions, whereas absence of NHEJ or SSA had no influence, suggesting compromised replication fidelity. In contrast, inverted repeats induced perfect deletions only in the absence of SSA. Both direct and inverted repeats stimulated excision of the constructs from the attB integration sites independently of HR, NHEJ, or SSA. With episomal constructs, direct and inverted repeats triggered DNA instability by activating nucleolytic activity, and absence of the DSB repair pathways (in the order NHEJ>HR>SSA exacerbated this instability. Thus, direct and inverted repeats may elicit genetic instability in mycobacteria by 1 directly interfering with replication fidelity, 2 stimulating the three main DSB repair pathways, and 3 enticing L5 site-specific recombination.

  12. Direct and inverted repeats elicit genetic instability by both exploiting and eluding DNA double-strand break repair systems in mycobacteria.

    Science.gov (United States)

    Wojcik, Ewelina A; Brzostek, Anna; Bacolla, Albino; Mackiewicz, Pawel; Vasquez, Karen M; Korycka-Machala, Malgorzata; Jaworski, Adam; Dziadek, Jaroslaw

    2012-01-01

    Repetitive DNA sequences with the potential to form alternative DNA conformations, such as slipped structures and cruciforms, can induce genetic instability by promoting replication errors and by serving as a substrate for DNA repair proteins, which may lead to DNA double-strand breaks (DSBs). However, the contribution of each of the DSB repair pathways, homologous recombination (HR), non-homologous end-joining (NHEJ) and single-strand annealing (SSA), to this sort of genetic instability is not fully understood. Herein, we assessed the genome-wide distribution of repetitive DNA sequences in the Mycobacterium smegmatis, Mycobacterium tuberculosis and Escherichia coli genomes, and determined the types and frequencies of genetic instability induced by direct and inverted repeats, both in the presence and in the absence of HR, NHEJ, and SSA. All three genomes are strongly enriched in direct repeats and modestly enriched in inverted repeats. When using chromosomally integrated constructs in M. smegmatis, direct repeats induced the perfect deletion of their intervening sequences ~1,000-fold above background. Absence of HR further enhanced these perfect deletions, whereas absence of NHEJ or SSA had no influence, suggesting compromised replication fidelity. In contrast, inverted repeats induced perfect deletions only in the absence of SSA. Both direct and inverted repeats stimulated excision of the constructs from the attB integration sites independently of HR, NHEJ, or SSA. With episomal constructs, direct and inverted repeats triggered DNA instability by activating nucleolytic activity, and absence of the DSB repair pathways (in the order NHEJ>HR>SSA) exacerbated this instability. Thus, direct and inverted repeats may elicit genetic instability in mycobacteria by 1) directly interfering with replication fidelity, 2) stimulating the three main DSB repair pathways, and 3) enticing L5 site-specific recombination.

  13. The Ku Heterodimer and the Metabolism of Single-Ended DNA Double-Strand Breaks

    NARCIS (Netherlands)

    A. Balestrini (Alessia); D. Ristic (Dejan); I. Dionne (Isabelle); X.Z. Liu (Xiao); C. Wyman (Claire); R.J. Wellinger (Raymund); J.H.J. Petrini (John)

    2013-01-01

    textabstractSingle-ended double-strand breaks (DSBs) are a common form of spontaneous DNA break, generated when the replisome encounters a discontinuity in the DNA template. Given their prevalence, understanding the mechanisms governing the fate(s) of single-ended DSBs is important. We describe the

  14. Colocalization of multiple DNA double-strand breaks at a single Rad52 repair centre

    DEFF Research Database (Denmark)

    Lisby, M.; Mortensen, Uffe Hasbro; Rothstein, R.

    2003-01-01

    DNA double-strand break repair (DSBR) is an essential process for preserving genomic integrity in all organisms. To investigate this process at the cellular level, we engineered a system of fluorescently marked DNA double-strand breaks (DSBs) in the yeast Saccharomyces cerevisiae to visualize in ...

  15. Role of DNA-PK in cellular responses to DNA double-strand breaks

    International Nuclear Information System (INIS)

    Chen, D.J.

    2003-01-01

    DNA double-strand breaks (DSBs) are probably the most dangerous of the many different types of DNA damage that occur within the cell. DSBs are generated by exogenous agents such as ionizing radiation (IR) or by endogenously generated reactive oxygen species and occur as intermediates during meiotic and V(D)J recombination. The repair of DSBs is of paramount importance to the cell as misrepair of DSBs can lead to cell death or promote tumorigenesis. In eukaryotes there exists two distinct mechanisms for DNA DSB repair: homologous recombination (HR) and non-homologous end joining (NHEJ). In mammalian cells, however, it is clear that nonhomologous repair of DSBs is highly active and plays a major role in conferring radiation resistance to the cell. The NHEJ machinery minimally consists of the DNA-dependent Protein Kinase (DNA-PK) and a complex of XRCC4 and DNA Ligase IV. The DNA-PK complex is composed of a 470 kDa catalytic subunit (DNA-PKcs), and the heterodimeric Ku70 and Ku80 DNA end-binding complex. DNA-PKcs is a PI-3 kinase with homology to ATM and ATR in its C-terminal kinase domain. The DNA-PK complex protects and tethers the ends, and directs assembly and, perhaps, the activation of other NHEJ proteins. We have previously demonstrated that the kinase activity of DNA-PK is essential for DNA DSB repair and V(D)J recombination. It is, therefore, of immense interest to determine the in vivo targets of DNA-PKcs and the mechanisms by which phosphorylation of these targets modulates NHEJ. Recent studies have resulted in the identification of a number of protein targets that are phosphorylated by and/or interact with DNA-PKcs. Our laboratory has recently identified autophosphorylation site(s) on DNA-PKcs. We find that phosphorylation at these sites in vivo is an early and essential response to DSBs and demonstrate, for the first time, the localization of DNA-PKcs to the sites of DNA damage in vivo. Furthermore, mutation of these phosphorylation sites in mammalian

  16. Detection of hepatitis A virus by hybridization with single-stranded RNA probes

    International Nuclear Information System (INIS)

    Xi, J.; Estes, M.K.; Metcalf, T.G.

    1987-01-01

    An improved method of dot-blot hybridization to detect hepatitis A virus (HAV) was developed with single-stranded RNA (ssRNA) probes. Radioactive and nonradioactive ssRNA probes were generated by in vitro transcription of HAV templates inserted into the plasmid pGEM-1. 32 P-labeled ssRNA probes were at least eightfold more sensitive than the 32 P-labeled double-stranded cDNA counterparts, whereas biotin-labeled ssRNA probes showed a sensitivity comparable with that of the 32 P-labeled double-stranded cDNA counterparts. Hybridization of HAV with the ssRNA probes at high stringency revealed specific reactions with a high signal-to-noise ratio. The differential hybridization reactions seen with probes of positive and negative sense (compared with HAV genomic RNA) were used to detect HAV in clinical and field samples. A positive/negative ratio was introduced as an indicator that permitted an semiquantitative expression of a positive HAV reaction. Good agreement of this indicator was observed with normal stool samples and with HAV-seeded samples. By using this system, HAV was detected in estuarine and freshwater samples collected from a sewage-polluted bayou in Houston and a saltwater tributary of Galveston Bay

  17. Double strand breaks in DNA in vivo and in vitro after 60Co-γ-irradiation

    International Nuclear Information System (INIS)

    Huelsewede, J.W.

    1985-01-01

    The questions of what the correlation is between double strand breaks in DNA in the cell and lethal radiation damage and by means of which possible mechanisms DNA double strand breaks could occur were studied. E. coli served as test system. In addition to this the molecular weight of the DNA from irradiated E. coli as a function of the radiation dose under various conditions was measured. This data was compared on the one hand to the survival of the cell and on the other hand to the formation of DNA double strand breaks in an aqueous buffer system, which in its ionic characteristics was similar to cell fluids. (orig./MG) [de

  18. DNA Strand Breaks in Mitotic Germ Cells of Caenorhabditis elegans Evaluated by Comet Assay.

    Science.gov (United States)

    Park, Sojin; Choi, Seoyun; Ahn, Byungchan

    2016-03-01

    DNA damage responses are important for the maintenance of genome stability and the survival of organisms. Such responses are activated in the presence of DNA damage and lead to cell cycle arrest, apoptosis, and DNA repair. In Caenorhabditis elegans, double-strand breaks induced by DNA damaging agents have been detected indirectly by antibodies against DSB recognizing proteins. In this study we used a comet assay to detect DNA strand breaks and to measure the elimination of DNA strand breaks in mitotic germline nuclei of C. elegans. We found that C. elegans brc-1 mutants were more sensitive to ionizing radiation and camptothecin than the N2 wild-type strain and repaired DNA strand breaks less efficiently than N2. This study is the first demonstration of direct measurement of DNA strand breaks in mitotic germline nuclei of C. elegans. This newly developed assay can be applied to detect DNA strand breaks in different C. elegans mutants that are sensitive to DNA damaging agents.

  19. Psoralens cleave pBR322 DNA under ultraviolet radiation

    International Nuclear Information System (INIS)

    Kagan, J.; Xinsheng Chen; Wang, T.P.

    1992-01-01

    Supercoiled (SC) pBR322 was used to probe the recent claim that 5-geranoxylpsoralen (5-GOP) did not photoreact with DNA. Contrary to expectations, 5-GOP was found to damage DNA in the presence of UV-A through two competing pathways; (a) single strand breaks, identified by the conversion of supercoiled into open circular and linear DNA, and (b) cross-linking, revealed by the fluence-dependent decrease in the extent of denaturation of the double stranded supercoiled DNA to single stranded circular DNA. In addition, a fluence-dependent modification reduced the ability of the restriction enzyme EcoR I to linearize the photosensitized DNA, and alkali-labile lesions were generated. Psoralen, 5-methoxypsoralen, and 8-methoxypsoralen, which are well-known to undergo cycloaddition to DNA, had a more pronounced effect on supercoiled DNA. Single strand breaks occurred more readily than with 5-GOP, and the surviving SC form remaining had reduced electrophoretic mobility in agarose gels. In all cases, the DNA damage was more prominent when oxygen was absent. (author)

  20. Nick translation detection in situ of cellular DNA strand break induced by radiation

    International Nuclear Information System (INIS)

    Maehara, Y.; Anai, H.; Kusumoto, T.; Sakaguchi, Y.; Sugimachi, K.

    1989-01-01

    DNA strand break in HeLa cells induced by radiation was detected using the in situ nick translation method. The cells were exposed to radiation of 3, 6, 12, 18, and 24 Gy in Lab-Tek tissue culture chamber/slides and were fixed with ethanol/acetic acid on the slide glass. The break sites in DNA were translated artificially in the presence of Escherichia coli DNA polymerase I and [ 3 H]-labeled dTTP. Autoradiographic observation was made of the level of break sites in the DNA. The DNA strand break appeared even with a 3 Gy exposure, increased 8.6 times at 24 Gy compared with the control cells, and this level correlated reciprocally to change in cell viability. This nick translation method provides a rapid in situ assay for determining radiation-induced DNA damage of cultured cells, in a semi-quantitative manner

  1. Screening for Breast Cancer Using Near-Field Infrared Spectroscopy of a Single Strand of Hair

    National Research Council Canada - National Science Library

    Erramilli, Shyamsunder

    2003-01-01

    .... In this study, we have successfully developed a new infrared method for the detection in a single strand of hair the presence of lipid deposits that were the putative cause of the observed x-ray patterns...

  2. Low concentration of arsenite exacerbates UVR-induced DNA strand breaks by inhibiting PARP-1 activity

    International Nuclear Information System (INIS)

    Qin Xujun; Hudson, Laurie G.; Liu Wenlan; Timmins, Graham S.; Liu Kejian

    2008-01-01

    Epidemiological studies have associated arsenic exposure with many types of human cancers. Arsenic has also been shown to act as a co-carcinogen even at low concentrations. However, the precise mechanism of its co-carcinogenic action is unknown. Recent studies indicate that arsenic can interfere with DNA-repair processes. Poly(ADP-ribose) polymerase (PARP)-1 is a zinc-finger DNA-repair protein, which can promptly sense DNA strand breaks and initiate DNA-repair pathways. In the present study, we tested the hypothesis that low concentrations of arsenic could inhibit PAPR-1 activity and so exacerbate levels of ultraviolet radiation (UVR)-induced DNA strand breaks. HaCat cells were treated with arsenite and/or UVR, and then DNA strand breaks were assessed by comet assay. Low concentrations of arsenite (≤ 2 μM) alone did not induce significant DNA strand breaks, but greatly enhanced the DNA strand breaks induced by UVR. Further studies showed that 2 μM arsenite effectively inhibited PARP-1 activity. Zinc supplementation of arsenite-treated cells restored PARP-1 activity and significantly diminished the exacerbating effect of arsenite on UVR-induced DNA strand breaks. Importantly, neither arsenite treatment, nor zinc supplementation changed UVR-triggered reactive oxygen species (ROS) formation, suggesting that their effects upon UVR-induced DNA strand breaks are not through a direct free radical mechanism. Combination treatments of arsenite with PARP-1 inhibitor 3-aminobenzamide or PARP-1 siRNA demonstrate that PARP-1 is the target of arsenite. Together, these findings show that arsenite at low concentration exacerbates UVR-induced DNA strand breaks by inhibiting PARP-1 activity, which may represent an important mechanism underlying the co-carcinogenicity of arsenic

  3. New Method for Differentiation of Granuloviruses (Betabaculoviruses Based on Multitemperature Single Stranded Conformational Polymorphism

    Directory of Open Access Journals (Sweden)

    Martyna Krejmer-Rabalska

    2017-12-01

    Full Text Available Baculoviruses have been used as biopesticides for decades. Recently, due to the excessive use of chemical pesticides there is a need for finding new agents that may be useful in biological protection. Sometimes few isolates or species are discovered in one host. In the past few years, many new baculovirus species have been isolated from environmental samples, thoroughly characterized and thanks to next generation sequencing methods their genomes are being deposited in the GenBank database. Next generation sequencing (NGS methodology is the most certain way of detection, but it has many disadvantages. During our studies, we have developed a method based on Polymerase chain reaction (PCR followed by Multitemperature Single Stranded Conformational Polymorphism (MSSCP which allows for distinguishing new granulovirus isolates in only a few hours and at low-cost. On the basis of phylogenetic analysis of betabaculoviruses, representative species have been chosen. The alignment of highly conserved genes—granulin and late expression factor-9, was performed and the degenerate primers were designed to amplify the most variable, short DNA fragments flanked with the most conserved sequences. Afterwards, products of PCR reaction were analysed by MSSCP technique. In our opinion, the proposed method may be used for screening of new isolates derived from environmental samples.

  4. Effect of catechins and tannins on depleted uranium-induced DNA strand breaks

    International Nuclear Information System (INIS)

    Emiko Matsuda; Akira Nakajima

    2012-01-01

    The effects of polyphenols on plasmid DNA strand breaks by depleted uranium were studied using four catechins: (+)-catechin, (-)-epicatechin, (-)-epigallocatechin (EGC), and (-)-epigallocatechin gallate (EGCG); seven tannins: Chinese gallotannin, persimmon tannin (PST), mimosa tannin (MMT), myrobalan tannin, quebracho tannin, gambir tannin, and chestnut tannin; and gallic acid. The plasmid DNA strand breaks by uranyl ion (UO 2 2+ ) with hydrogen peroxide (H 2 O 2 ) were strongly enhanced by EGC, EGCG, MMT, and PST (condenced tannins). The obtained results showed that the DNA strand breaks are caused by UO 2 2+ through the direct interaction between the uranyl complex and the negatively charged DNA phosphate backbone. The additional DNA strand breaks by the addition of polyphenols occurred through an indirect process by the reduction of UO 2 2+ to UO 2 + and hydroxyl radical formation through a Fenton-type reaction with H 2 O 2 . (author)

  5. Cell cycle-regulated centers of DNA double-strand break repair

    DEFF Research Database (Denmark)

    Lisby, Michael; Antúnez de Mayolo, Adriana; Mortensen, Uffe H

    2003-01-01

    In eukaryotes, homologous recombination is an important pathway for the repair of DNA double-strand breaks. We have studied this process in living cells in the yeast Saccharomyces cerevisiae using Rad52 as a cell biological marker. In response to DNA damage, Rad52 redistributes itself and forms...... foci specifically during S phase. We have shown previously that Rad52 foci are centers of DNA repair where multiple DNA double-strand breaks colocalize. Here we report a correlation between the timing of Rad52 focus formation and modification of the Rad52 protein. In addition, we show that the two ends...... of a double-strand break are held tightly together in the majority of cells. Interestingly, in a small but significant fraction of the S phase cells, the two ends of a break separate suggesting that mechanisms exist to reassociate and align these ends for proper DNA repair....

  6. Detection of DNA strand breaks in mammalian cells using the radioresistant bacterium PprA protein

    International Nuclear Information System (INIS)

    Satoh, Katsuya; Wada, Seiichi; Narumi, Issay; Kikuchi, Masahiro; Funayama, Tomoo; Kobayashi, Yasuhiko

    2003-01-01

    We have previously found that the PprA protein from Deinococcus radiodurans possesses ability to recognize DNA carrying strand breaks. In the present study, we attempted to visualize radiation-induced DNA strand breaks with PprA protein using immunofluorescence technique to elucidate the DNA damage response mechanism in mammalian cultured cells. As a result, colocalization of Cy2 and DAPI fluorescent signals was observed. This observation suggests that DNA strand breaks in the nucleus of CHO-K1 cells were effectively detected using the PprA protein. The amount of DNA strand breaks (integrated density of Cy2 fluorescent signals) was increased with the increase in the radiation dose. (author)

  7. Specificity and completeness of inhibition of DNA repair by novobiocin and aphidicolin

    Energy Technology Data Exchange (ETDEWEB)

    Cleaver, J.E.

    1982-01-01

    Novobiocin and aphidicolin were both potent inhibitors of excision repair of u.v.-induced damage to DNA in human embryonic fibroblasts, and both also inhibited semiconservative DNA replication even more strongly. The mechanism of action of these two drugs is, however, different. Novobiocin inhibited repair replication without accumulating single-strand breaks, but aphidicolin inhibited repair replication with the accumulation of numerous single-strand breaks. Novobiocin appears to inhibit repair at an earlier stage than aphidicolin, which may indicate that DNA topoisomerases play a role in eukaryotic DNA repair. Digestion of DNA by exonuclease III indicated that repair patches in novobiocin-treated cells contained no excess 3'OH termini, whereas up to 40% of the repaired DNA in aphidicolin-treated cells had free 3'OH termini. Therefore, although aphidicolin resulted in the accumulation of single-strand breaks, many of the repair events escaped inhibition and the number of breaks is an underestimate of the true number of repair events.

  8. Induction of DNA strand breaks in 14C-labelled cells

    International Nuclear Information System (INIS)

    Sundell-Bergman, S.; Johanson, K.J.

    1979-01-01

    Chinese hamster cells grown in vitro were labelled with 14 C-thymidine for 18 hours and after 3 hours in non-radioactive medium they were stored at 0 0 C for various periods ( 1 to 12 hours). During this treatment a number of DNA strand breaks were induced by 14 C decay which were not repaired at 0 0 C. The number of DNA strand breaks was determined using the DNA unwinding technique. At 0.5-1 dpm per cell a detectable number of DNA strand breaks were found. Treatment for six hours (1 dpm per cell) reduced the percentage of double-stranded DNA from 80 to 70%, corresponding to about 750 DNA strand breaks per cell. The rejoining of DNA strand breaks was studied after treatment for 12 hours at 0 0 C followed by incubation of the cells for various periods at 37 0 C. Most of the DNA strand breaks induced by 14 C decay at 0 0 C were repaired after incubation at 37 0 C for 15 minutes. Assuming an absorbed dose of 1.8 mGy per 14 C decay to the cell nucleus an RBE value close to 1 was found for internal irradiation from 14 C decay as compared with 60 Co-gamma irradiation. (author)

  9. Cell cycle-regulated centers of DNA double-strand break repair

    DEFF Research Database (Denmark)

    Lisby, Michael; Antúnez de Mayolo, Adriana; Mortensen, Uffe H

    2003-01-01

    In eukaryotes, homologous recombination is an important pathway for the repair of DNA double-strand breaks. We have studied this process in living cells in the yeast Saccharomyces cerevisiae using Rad52 as a cell biological marker. In response to DNA damage, Rad52 redistributes itself and forms...... of a double-strand break are held tightly together in the majority of cells. Interestingly, in a small but significant fraction of the S phase cells, the two ends of a break separate suggesting that mechanisms exist to reassociate and align these ends for proper DNA repair....

  10. DNA synthesis in irradiated mammalian cells

    International Nuclear Information System (INIS)

    Painter, R.B.; California Univ., San Francisco; Young, B.R.

    1987-01-01

    One of the first responses observed in S phase mammalian cells that have suffered DNA damage is the inhibition of initiation of DNA replicons. In cells exposed to ionizing radiation, a single-strand break appears to be the stimulus for this effect, whereby the initiation of many adjacent replicons (a replicon cluster) is blocked by a single-strand break in any one of them. In cells exposed to ultraviolet light (u.v.), replicon initiation is blocked at fluences that induce about one pyrimidine dimer per replicon. The inhibition of replicon initiation by u.v. in Chinese hamster cells that are incapable of excising pyrimidine dimers from their DNA is virtually the same as in cells that are proficient in dimer excision. Therefore, a single-strand break formed during excision repair of pyrimidine dimers is not the stimulus for inhibition of replicon initiation in u.v.-irradiated cells. Considering this fact, as well as the comparative insensitivity of human ataxia telangiectasia cells to u.v.-induced inhibition of replicon initiation, we propose that a relatively rare lesion is the stimulus for u.v. -induced inhibition of replicon initiation. (author

  11. Association of DNA repair polymorphisms with DNA repair functional outcomes in healthy human subjects

    Czech Academy of Sciences Publication Activity Database

    Vodička, Pavel; Štětina, R.; Poláková, Veronika; Tulupová, Elena; Naccarati, Alessio; Vodičková, Ludmila; Kumar, R.; Hánová, Monika; Pardini, Barbara; Slyšková, Jana; Musak, L.; De Palma, G.; Souček, P.; Hemminki, K.

    2007-01-01

    Roč. 28, č. 3 (2007), s. 657-664 ISSN 0143-3334 R&D Projects: GA MZd NR8563; GA ČR GA310/05/2626 Institutional research plan: CEZ:AV0Z50390512 Keywords : Base excision DNA * Single-strand breaks * Peripheral blood lymphocytes Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.406, year: 2007

  12. Effects of an extract from the sea squirt Ecteinascidia turbinata on DNA synthesis and excision repair in human fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, W.C.; Carrier, W.L.; Regan, J.D.

    1982-01-01

    An aqueous ethanol extract from the marine tunicate species Ecteinascidia turbinata was studied to determine its effect on semiconservative DNA synthesis in human skin fibroblast cultures as measured by (/sup 3/H) thymidine uptake in acid-insoluble cell fractions. In addition, the effect of this extract on DNA excision repair in ultraviolet light (254 nm) irradiated fibroblasts was measured by the bromodeoxyuridine photolysis assay, thymine dimer chromatography, and DNA single-strand break analysis on alkaline sucrose gradients. Repair inhibition was accompanied by an accumulation of single-strand DNA breaks which was enhanced by the addtion of 2 mM hydroxyurea. These results are discussed with respect to a mechanism of action of the marine tunicate extract at the level of DNA polymerases and are contrasted with previously studied inhibitory mechanisms of arabinofuranosyl nucleosides.

  13. Investigations of the conformation of DNA, native or alterated by irradiation, with ultraviolet radiation

    International Nuclear Information System (INIS)

    Zierenberg, B.

    1971-01-01

    An extension of the range of scattering angles in the direction of smaller angles (up to delta = 12 0 ) made it possible to successfully use the light scattering methods for the determination of DNA molecular weights >= 3 x 10 6 . In order to determine the conformation of native DNA in solution, different molecular weights were prepared by ultrasonic degradation. According to their hyperchromicity, these preparations are practically native. When native DNA in solution is irradiated with UV light of the wavelength lambda = 313 nm, two different photoreactions may occur: a) double and single strand breaks leading to degradation of the DNA molecule, and b) dimerisation of neighbouring thymine bases. The two reactions are independent of each other. In the presence of acetophenone as photosensitizer, the reaction type a) is greater by a factor 4 (in terms of single-strand breaks), while the reaction type b) is greater by a factor 16. The number of thymidine dimers per single strand break amounts to 100 for photosensitized reactions and to 25 for non-photosensitized reactions. The number of single strand breaks in terms of the quantum flux of 1 μ Einstein absorbed by the DNA is greater by a factor 3 during irradiation with UV light lambda = 254 nm as compared to the wavelength lambda = 313 nm. At this wavelength, DNA degradation starts at absorption energies as low as >= 2 x 10 7 erg/cm 3 . Light scattering and measurements with DNA containing thymidine dimers indicated neither a change in the total conformation nor a noticeable change in the microstructure. The hyperchromicity of the DNA was also unchanged. From these experimental results, it is concluded that the double helix of DNA is essentially stable to thymidine dimerisation. (orig./MG) [de

  14. Relationship of DNA repair and chromosome aberrations to potentially lethal damage repair in X-irradiated mammalian cells

    International Nuclear Information System (INIS)

    Fornace, A.J. Jr.; Nagasawa, H.; Little, J.B.

    1980-01-01

    By the alkaline elution technique, the repair of x-ray-induced DNA single strand breaks and DNA-protein cross-links was investigated in stationary phase, contact-inhibited mouse cells. During the first hour of repair, approximately 90% of x-ray induced single strand breaks were rejoined whereas most of the remaining breaks were rejoined more slowly during the next 5 h. The number of residual non-rejoined single strand breaks was approximately proportional to the x-ray dose at early repair times. DNA-protein cross-links were removed at a slower rate - T 1/2 approximately 10 to 12 h. Cells were subcultured at low density at various times after irradiation and scored for colony survival, and chromosome aberrations in the first mitosis after sub-culture. Both cell lethality and the frequency of chromosome aberrations decreased during the first several hours of repair, reaching a minimum level by 6 h; this decrease correlated temporally with the repair of the slowly rejoining DNA strand breaks. The possible relationship of DNA repair to changes in survival and chromosome aberrations is discussed

  15. Differential requirement for SUB1 in chromosomal and plasmid double-strand DNA break repair.

    Directory of Open Access Journals (Sweden)

    Lijian Yu

    Full Text Available Non homologous end joining (NHEJ is an important process that repairs double strand DNA breaks (DSBs in eukaryotic cells. Cells defective in NHEJ are unable to join chromosomal breaks. Two different NHEJ assays are typically used to determine the efficiency of NHEJ. One requires NHEJ of linearized plasmid DNA transformed into the test organism; the other requires NHEJ of a single chromosomal break induced either by HO endonuclease or the I-SceI restriction enzyme. These two assays are generally considered equivalent and rely on the same set of NHEJ genes. PC4 is an abundant DNA binding protein that has been suggested to stimulate NHEJ. Here we tested the role of PC4's yeast homolog SUB1 in repair of DNA double strand breaks using different assays. We found SUB1 is required for NHEJ repair of DSBs in plasmid DNA, but not in chromosomal DNA. Our results suggest that these two assays, while similar are not equivalent and that repair of plasmid DNA requires additional factor(s that are not required for NHEJ repair of chromosomal double-strand DNA breaks. Possible roles for Sub1 proteins in NHEJ of plasmid DNA are discussed.

  16. The DNA-dependent protein kinase: a multifunctional protein kinase with roles in DNA double strand break repair and mitosis

    Science.gov (United States)

    Jette, Nicholas; Lees-Miller, Susan P.

    2015-01-01

    The DNA-dependent protein kinase (DNA-PK) is a serine/threonine protein kinase composed of a large catalytic subunit (DNA-PKcs) and the Ku70/80 heterodimer. Over the past two decades, significant progress has been made in elucidating the role of DNA-PK in non-homologous end joining (NHEJ), the major pathway for repair of ionizing radiation-induced DNA double strand breaks in human cells and recently, additional roles for DNA-PK have been reported. In this review, we will describe the biochemistry, structure and function of DNA-PK, its roles in DNA double strand break repair and its newly described roles in mitosis and other cellular processes. PMID:25550082

  17. Enzymatic induction of DNA double-strand breaks in γ-irradiated Escherichia coli K-12

    International Nuclear Information System (INIS)

    Bonura, T.; Smith, K.C.; Kaplan, H.S.

    1975-01-01

    The polA1 mutation increases the sensitivity of E. coli K-12 to killing by γ-irradiation in air by a factor of 2.9 and increases the yield of DNA double-strand breaks by a factor of 2.5. These additional DNA double-strand breaks appear to be due to the action of nucleases in the polA1 strain rather than to the rejoining of radiation-induced double-strand breaks in the pol + strain. This conclusion is based upon the observation that γ-irradiation at 3 0 did not affect the yield of DNA double-strand breaks in the pol + strain, but decreased the yield in the polA1 strain by a factor of 2.2. Irradiation of the polA1 strain at 3 0 followed by incubation at 3 0 for 20 min before plating resulted in approximately a 1.5-fold increase in the D 0 . The yield of DNA double-strand breaks was reduced by a factor of 1.5. The pol + strain, however, did not show the protective effect of the low temperature incubation upon either survival or DNA double-strand breakage. We suggest that the increased yield of DNA double-strand breaks in the polA 1 strain may be the result of the unsuccessful excision repair of ionizing radiation-induced dna base damage

  18. Alkaline gel electrophoresis assay to detect DNA strand breaks and repair mechanisms in Escherichia coli

    International Nuclear Information System (INIS)

    Mattos, Jose Carlos Pelielo de; Motta, Ellen Serri da; Oliveira, Marcia Betania Nunes de; Dantas, Flavio Jose da Silva; Araujo, Adriano Caldeira de

    2008-01-01

    Reactive oxygen species (ROS) can induce lesions in different cellular targets, including DNA. Stannous chloride (SnCl 2 ) is a ROS generator, leading to lethality in Escherichia coli (E. coli), with the base excision repair (BER) mechanism playing a role in this process. Many techniques have been developed to detect genotoxicity, as comet assay, in eukaryotic cells, and plasmid DNA agarose gel electrophoresis. In this study, an adaptation of the alkaline gel electrophoresis method was carried out to ascertain the induction of strand breaks by SnCl 2 in bacterial DNA, from E. coli BER mutants, and its repair pathway. Results obtained show that SnCl 2 was able to induce DNA strand breaks in all strains tested. Moreover, endonuclease IV and exonuclease III play a role in DNA repair. On the whole, data has shown that the alkaline gel electrophoresis assay could be used both for studying DNA strand breaks induction and for associated repair mechanisms. (author)

  19. Three methods to determine the yields of DNA double-strand breaks

    International Nuclear Information System (INIS)

    Erzgraeber, G.; Lapidus, I.L.

    1985-01-01

    A possibility of determining the yield of DNA double-strand breaks in cells of the Chinese hamster (V79-4) by finding the amount of DNA released as a result of breaks and by determining the relative sedimentation velocity of DNA-membrane complexes affected by ionizing radiations with different physical characteristics is discussed. Results of the analysis are compared with the data obtained by a traditional method of sedimentation in the neutral sucrose density gradient. Comparative characterization of the methods is discussed. The yields of DNA double-strand breaks determined by the suggested independent methods are in good agreement, which opens possibilities of studying induction and repair of double-strand breaks by means of simpler and more reliable methods

  20. Study in regularities in the formation of double stranded DNA breaks in irradiated rat thymocytes

    International Nuclear Information System (INIS)

    Ivannik, B.P.; ProskuryakoV, S.Ya.; Ryabchenko, N.I.

    1979-01-01

    Using low-gradient viscosimetry of neutral detergent nuclear lysates a study was made of postradiation changes in the molecular weight of double-stranded DNA of thymocytes. It was established that 375 eV are needed for one double-stranded break to appear, and a dose of 1 rad is required for 0.275 double-stranded break to occur at the site of DNA with m.w. 10 12 dalton. The repair of double-stranded breaks is only observed when rats are exposed to a dose of 500 R. It is assumed that the absence of repair of double-stranded DNA breaks and the presence of secondary postradiation degradation of DNA are responsible for thymocyte death

  1. A high throughput system for the preparation of single stranded templates grown in microculture.

    Science.gov (United States)

    Kolner, D E; Guilfoyle, R A; Smith, L M

    1994-01-01

    A high throughput system for the preparation of single stranded M13 sequencing templates is described. Supernatants from clones grown in 48-well plates are treated with a chaotropic agent to dissociate the phage coat protein. Using a semi-automated cell harvester, the free nucleic acid is bound to a glass fiber filter in the presence of chaotrope and then washed with ethanol by aspiration. Individual glass fiber discs are punched out on the cell harvester and dried briefly. The DNA samples are then eluted in water by centrifugation. The processing time from 96 microcultures to sequence quality templates is approximately 1 hr. Assuming the ability to sequence 400 bases per clone, a 0.5 megabase per day genome sequencing facility will require 6250 purified templates a week. Toward accomplishing this goal we have developed a procedure which is a modification of a method that uses a chaotropic agent and glass fiber filter (Kristensen et al., 1987). By exploiting the ability of a cell harvester to uniformly aspirate and wash 96 samples, a rapid system for high quality template preparation has been developed. Other semi-automated systems for template preparation have been developed using commercially available robotic workstations like the Biomek (Mardis and Roe, 1989). Although minimal human intervention is required, processing time is at least twice as long. Custom systems based on paramagnetic beads (Hawkins et al., 1992) produce DNA in insufficient quantity for direct sequencing and therefore require cycle sequencing. These systems require custom programing, have a fairly high initial cost and have not proven to be as fast as the method reported here.

  2. Identification of five novel FBN1 mutations by non-radioactive single-strand conformation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Liu, W.; Qian, C.; Comeau, K.; Francke, U. [Stanford Univ. Medical Center, Stanford, CA (United States)

    1994-09-01

    Marfan syndrome (MFS), one of the most common genetic disorders of connective tissue, is characterized by variable manifestations in skeletal, cardiovascular and ocular systems. Mutations in the fibrillin gene on chromosome 15 (FBN1) have been shown to cause MFS. To examine the relationship between FBN1 gene mutations, fibrillin protein function and MFS phenotypes, we screened for alternations in the fibrillin coding sequence in fibroblast derived cDNA from MFS patients. To date, abnormally migrating bands in more than 20 unrelated MFS patients have been identified by using non-radioactive single-strand conformation analysis and silver staining. Five altered bands have been directly sequenced. Two missense mutations and three splice site mutations have been identified. Both missense mutations substitute another amino acid for a cysteine residue (C1402W and C1672R) in EGF-like motifs of the fibrillin polypeptide chain. The two splice site mutations are at nucleotide positions 6994+1 (G{yields}A), and 7205-2 (A{yields}G) and result in in-frame skipping of exon 56 and 58, respectively. Skipping of exon 56 occurs in 50% of mutant transcripts. Use of a cryptic splice site 51 bp upstream of the normal donor site results in half of the mutant transcripts containing part of exon 56. Both products contain in-frame deletions. Another splice site mutation, identified by exon screening from patient genomic DNA using intron primers, is at nucleotide position 2293+2 (T{yields}A), but the predicted exon skipping has not been detected at the RT-PCR level. This may be due to instability of the mutant transcript. Including the mutations reported here, a total of 8 out of 36 published FBN1 gene mutations involve exon skipping. It may be inferred that FBN1 exon skipping plays an important pathogenic role in MFS.

  3. ATP binding and hydrolysis by Saccharomyces cerevisiae Msh2-Msh3 are differentially modulated by Mismatch and Double-strand Break Repair DNA substrates

    Science.gov (United States)

    Kumar, Charanya; Eichmiller, Robin; Wang, Bangchen; Williams, Gregory M.; Bianco, Piero R.; Surtees, Jennifer A.

    2014-01-01

    In Saccharomyces cerevisiae, Msh2-Msh3-mediated mismatch repair (MMR) recognizes and targets insertion/deletion loops for repair. Msh2-Msh3 is also required for 3′ non-homologous tail removal (3′NHTR) in double-strand break repair. In both pathways, Msh2-Msh3 binds double-strand/single-strand junctions and initiates repair in an ATP-dependent manner. However, we recently demonstrated that the two pathways have distinct requirements with respect to Msh2-Msh3 activities. We identified a set of aromatic residues in the nucleotide binding pocket (FLY motif) of Msh3 that, when mutated, disrupted MMR, but left 3′ NHTR largely intact. One of these mutations, msh3Y942A, was predicted to disrupt the nucleotide sandwich and allow altered positioning of ATP within the pocket. To develop a mechanistic understanding of the differential requirements for ATP binding and/or hydrolysis in the two pathways, we characterized Msh2-Msh3 and Msh2-msh3Y942A ATP binding and hydrolysis activities in the presence of MMR and 3′ NHTR DNA substrates. We observed distinct, substrate-dependent ATP hydrolysis and nucleotide turnover by Msh2-Msh3, indicating that the MMR and 3′ NHTR DNA substrates differentially modify the ATP binding/hydrolysis activities of Msh2-Msh3. Msh2-msh3Y942A retained the ability to bind DNA and ATP but exhibited altered ATP hydrolysis and nucleotide turnover. We propose that both ATP and structure-specific repair substrates cooperate to direct Msh2-Msh3-mediated repair and suggest an explanation for the msh3Y942A separation-of-function phenotype. PMID:24746922

  4. DNA strand break induction and rejoining in Chinese hamster cells as a function of radiation quality

    International Nuclear Information System (INIS)

    Ritter, M.A.

    1976-01-01

    Chinese Hamster cells (V79-S171) were irradiated with 300 kVp x-rays and low-energy charged particles, covering an LET range of about 1 to 2900 keV/μm. The LET dependence of DNA strand-break induction and the rejoining kinetics of these breaks during post-irradiation incubation were investigated using alkaline sucrose gradients. The break-induction studies indicated that strand-break efficiency generally decreases with increasing LET, that low-energy, heavy ions induce DNA breaks non-randomly, and that anoxia protects less against high-LET induction than against low-LET induction of DNA breaks. Strand-break rejoining studies indicate the presence of three classes of breaks: a fast-rejoining class (T 1 / 2 = 8 min), whose induction efficiency decreases rapidly with LET increase; a slow-rejoining class (T 1 / 2 appoximately equal to 90 min), whose induction efficiency decreased gradually with LET increase; and a non-rejoining class (remained open during post-irradiation incubation), whose induction efficiency demonstrated a peaked response as a function of LET. The RBE for induction of non-rejoining DNA breaks rose to a maximum of 4.9 at an LET of 150 keV/μm and then decreased with further LET increase. This peaked response agrees closely with RBE's from the literature that are based upon initial slopes of mammalian cell survival curves as a function of LET. The agreement implies that non-rejoining DNA breaks are causally related to the lethal, irreversible component of cell inactivation by radiation

  5. Relationship between internal dosimetry and DNA double strand breaks in lymphocytes after radionuclide therapy; Zusammenhang zwischen physikalischer Dosimetrie und DNA Doppelstrangbruechen in Lymphozyten nach Radionuklidtherapie

    Energy Technology Data Exchange (ETDEWEB)

    Eberlein, Uta

    2015-09-30

    In radionuclide therapy radiopharmaceuticals are administered mostly systemically. Primarily, beta-emitters are used because of their short range in tissue. As a result the radiopharmaceutical distributes within the human body and accumulates in organs and target structures. Thus, the body is irradiated internally, in contrast to external irradiation in radiotherapy. The pattern of the activity distribution within the human body is determined by the physical and chemical properties of the radiopharmaceutical. Furthermore, the amount of activity and its accumulation in organs or tissues is essential for the calculation of the absorbed dose which defines the energy deposited in the body by ionizing radiation. During internal or external irradiation, patients are exposed to ionizing radiation which does not only destroy the malignant cells but also damages healthy tissue and cells. This is mainly caused by direct and indirect interaction of the radiation with the DNA which damages the DNA structure. Most frequently, there are single strand breaks and base damages. DNA double strand breaks (DSBs) are rare; nevertheless, they are the most critical lesions for cells as repairing the damage is difficult. Unrepaired or misrepaired DNA could cause mutations, chromosomal aberrations or lead to cell death. The formation of a DNA DSB in nuclear chromatin results in the rapid phosphorylation of the histone H2 variant H2AX, then called gamma-H2AX. Furthermore, DSBs also recruit the damage sensor 53BP1 to the chromatin surrounding the DSBs, which leads to 53BP1 and gamma-H2AX co-localization in the chromatin surrounding a DSB. By immunofluorescence staining with gamma-H2AX and 53BP1 antibodies those biomarkers can be addressed by microscopically visible DNA damage protein foci, this is also known as the DNA damage focus assay. With progression of DSB repair, gamma-H2AX and 53BP1 foci disappear. It is assumed that one focus corresponds to one DSB. Therefore, the number of foci per

  6. The DNA-dependent protein kinase: a multifunctional protein kinase with roles in DNA double strand break repair and mitosis

    OpenAIRE

    Jette, Nicholas; Lees-Miller, Susan P.

    2014-01-01

    The DNA-dependent protein kinase (DNA-PK) is a serine/threonine protein kinase composed of a large catalytic subunit (DNA-PKcs) and the Ku70/80 heterodimer. Over the past two decades, significant progress has been made in elucidating the role of DNA-PK in non-homologous end joining (NHEJ), the major pathway for repair of ionizing radiation-induced DNA double strand breaks in human cells and recently, additional roles for DNA-PK have been reported. In this review, we will describe the biochemi...

  7. Balancing Pathways in DNA Double Strand Break Repair

    NARCIS (Netherlands)

    I. Brandsma (Inger)

    2016-01-01

    markdownabstractAll information a cell needs to live and survive is stored in the genomic DNA. Maintenance of an intact and uncompromised genome is of vital importance for cell survival. Damaged DNA can block transcription and replication, processes essential for cell viability. Persistent DNA

  8. Molecular Basis for DNA Double-Strand Break Annealing and Primer Extension by an NHEJ DNA Polymerase

    Directory of Open Access Journals (Sweden)

    Nigel C. Brissett

    2013-11-01

    Full Text Available Nonhomologous end-joining (NHEJ is one of the major DNA double-strand break (DSB repair pathways. The mechanisms by which breaks are competently brought together and extended during NHEJ is poorly understood. As polymerases extend DNA in a 5′-3′ direction by nucleotide addition to a primer, it is unclear how NHEJ polymerases fill in break termini containing 3′ overhangs that lack a primer strand. Here, we describe, at the molecular level, how prokaryotic NHEJ polymerases configure a primer-template substrate by annealing the 3′ overhanging strands from opposing breaks, forming a gapped intermediate that can be extended in trans. We identify structural elements that facilitate docking of the 3′ ends in the active sites of adjacent polymerases and reveal how the termini act as primers for extension of the annealed break, thus explaining how such DSBs are extended in trans. This study clarifies how polymerases couple break-synapsis to catalysis, providing a molecular mechanism to explain how primer extension is achieved on DNA breaks.

  9. Screening for mutations in human alpha-globin genes by nonradioactive single-strand conformation polymorphism

    Directory of Open Access Journals (Sweden)

    Jorge S.B.

    2003-01-01

    Full Text Available Point mutations and small insertions or deletions in the human alpha-globin genes may produce alpha-chain structural variants and alpha-thalassemia. Mutations can be detected either by direct DNA sequencing or by screening methods, which select the mutated exon for sequencing. Although small (about 1 kb, 3 exons and 2 introns, the alpha-globin genes are duplicate (alpha2 and alpha1 and highy G-C rich, which makes them difficult to denature, reducing sequencing efficiency and causing frequent artifacts. We modified some conditions for PCR and electrophoresis in order to detect mutations in these genes employing nonradioactive single-strand conformation polymorphism (SSCP. Primers previously described by other authors for radioactive SSCP and phast-SSCP plus denaturing gradient gel electrophoresis were here combined and the resultant fragments (6 new besides 6 original per alpha-gene submitted to silver staining SSCP. Nine structural and one thalassemic mutations were tested, under different conditions including two electrophoretic apparatus (PhastSystem(TM and GenePhor(TM, Amersham Biosciences, different polyacrylamide gel concentrations, run temperatures and denaturing agents, and entire and restriction enzyme cut fragments. One hundred percent of sensitivity was achieved with four of the new fragments formed, using the PhastSystem(TM and 20% gels at 15ºC, without the need of restriction enzymes. This nonradioactive PCR-SSCP approach showed to be simple, rapid and sensitive, reducing the costs involved in frequent sequencing repetitions and increasing the reliability of the results. It can be especially useful for laboratories which do not have an automated sequencer.

  10. Structural chromosome abnormalities, increased DNA strand breaks and DNA strand break repair deficiency in dermal fibroblasts from old female human donors

    Science.gov (United States)

    Kalfalah, Faiza; Seggewiß, Sabine; Walter, Regina; Tigges, Julia; Moreno-Villanueva, María; Bürkle, Alexander; Ohse, Sebastian; Busch, Hauke; Boerries, Melanie; Hildebrandt, Barbara; Royer-Pokora, Brigitte; Boege, Fritz

    2015-01-01

    Dermal fibroblasts provide a paradigmatic model of cellular adaptation to long-term exogenous stress and ageing processes driven thereby. Here we addressed whether fibroblast ageing analysed ex vivo entails genome instability. Dermal fibroblasts from human female donors aged 20–67 years were studied in primary culture at low population doubling. Under these conditions, the incidence of replicative senescence and rates of age-correlated telomere shortening were insignificant. Genome-wide gene expression analysis revealed age-related impairment of mitosis, telomere and chromosome maintenance and induction of genes associated with DNA repair and non-homologous end-joining, most notably XRCC4 and ligase 4. We observed an age-correlated drop in proliferative capacity and age-correlated increases in heterochromatin marks, structural chromosome abnormalities (deletions, translocations and chromatid breaks), DNA strand breaks and histone H2AX-phosphorylation. In a third of the cells from old and middle-aged donors repair of X-ray induced DNA strand breaks was impaired despite up-regulation of DNA repair genes. The distinct phenotype of genome instability, increased heterochromatinisation and (in 30% of the cases futile) up-regulation of DNA repair genes was stably maintained over several cell passages indicating that it represents a feature of geroconversion that is distinct from cellular senescence, as it does not encompass a block of proliferation. PMID:25678531

  11. Stalled repair of lesions when present within a clustered DNA damage site

    International Nuclear Information System (INIS)

    Lomax, M.E.; Cunniffe, S.; O'Neill, P.

    2003-01-01

    Ionising radiation produces clustered DNA damages (two or more lesions within one or two helical turns of the DNA) which could challenge the repair mechanism(s) of the cell. Using purified base excision repair (BER) enzymes and synthetic oligonucleotides a number of recent studies have established the excision of a lesion within clustered damage sites is compromised. Evidence will be presented that the efficiency of repair of lesions within a clustered DNA damage site is reduced, relative to that of the isolated lesions, since the lifetime of both lesions is extended by up to four fold. Simple clustered damage sites, comprised of single-strand breaks, abasic sites and base damages, one or five bases 3' or 5' to each other, were synthesised in oligonucleotides and repair carried out in mammalian cell nuclear extracts. The rate of repair of the single-strand break/abasic site within these clustered damage sites is reduced, mainly due to inhibition of the DNA ligase. The mechanism of repair of the single-strand break/abasic site shows some asymmetry. Repair appears to be by the short-patch BER pathway when the lesions are 5' to each other. In contrast, when the lesions are 3' to each other repair appears to proceed along the long-patch BER pathway. The lesions within the cluster are processed sequentially, the single-strand break/abasic site being repaired before excision of 8-oxoG, limiting the formation of double-strand breaks to <2%. Stalled processing of clustered DNA damage extends the lifetime of the lesions to an extent that could have biological consequences, e.g. if the lesions are still present during transcription and/or at replication mutations could arise

  12. Chromatin mobility is increased at sites of DNA double-strand breaks

    NARCIS (Netherlands)

    Krawczyk, P. M.; Borovski, T.; Stap, J.; Cijsouw, T.; ten Cate, R.; Medema, J. P.; Kanaar, R.; Franken, N. A. P.; Aten, J. A.

    2012-01-01

    DNA double-strand breaks (DSBs) can efficiently kill cancer cells, but they can also produce unwanted chromosome rearrangements when DNA ends from different DSBs are erroneously joined. Movement of DSB-containing chromatin domains might facilitate these DSB interactions and promote the formation of

  13. Regulation of DNA double-strand break repair by ubiquitin and ubiquitin-like modifiers

    DEFF Research Database (Denmark)

    Schwertman, Petra; Bekker-Jensen, Simon; Mailand, Niels

    2016-01-01

    DNA double-strand breaks (DSBs) are highly cytotoxic DNA lesions. The swift recognition and faithful repair of such damage is crucial for the maintenance of genomic stability, as well as for cell and organismal fitness. Signalling by ubiquitin, SUMO and other ubiquitin-like modifiers (UBLs...

  14. SCAI promotes DNA double-strand break repair in distinct chromosomal contexts

    DEFF Research Database (Denmark)

    Hansen, Rebecca Kring; Mund, Andreas; Poulsen, Sara Lund

    2016-01-01

    DNA double-strand breaks (DSBs) are highly cytotoxic DNA lesions, whose accurate repair by non-homologous end-joining (NHEJ) or homologous recombination (HR) is crucial for genome integrity and is strongly influenced by the local chromatin environment. Here, we identify SCAI (suppressor of cancer...

  15. R.b.e. of 50 kVp X-rays and 660 keV γ-rays (137Cs) with respect to the production of DNA damage, repair and cell-killing in Escherichia coli K-12

    International Nuclear Information System (INIS)

    Bonura, T.; Youngs, D.A.; Smith, K.C.

    1975-01-01

    A comparison has been made of the efficiency of cell-killing, DNA single-strand breakage and double-strand breakage in an Escherichia coli K-12 wild-type strain after irradiation with soft X-rays (50 kVp) and hard γ-rays (660 keV) under aerobic conditions. Irradiation with 50 kVp X-rays resulted in 1.47 times more cell-killing than was observed with 137 Cs γ-rays based on a comparison of D 0 values evaluated from the survival curves. DNA sedimentation studies showed that, although 50 kVp X-rays were 1.93 times more effective than 137 Cs γ-rays in producing DNA double-strand breaks, there was no significant difference between the two qualities of radiation with respect to the initial number of single-strand breaks produced. When the cells were irradiated and allowed to repair maximally in minimal medium, 1.57 times more unrepaired DNA single-strand breaks remained per krad after irradiation with 50 kVp X-rays than with 137 Cs γ-rays. The increased yield of DNA double-strand breaks resulting from 50 kVp X-irradiation may account for most of these additional unrepaired single-strand breaks, since single- and double-strand breaks are indistinguishable on alkaline sucrose gradients. These results suggest that the greater r.b.e. of 50 kVp X-rays may be related to an increased effectiveness for producing DNA double-strand breaks compared with the higher energy 137 Cs γ-rays. (author)

  16. Reversible mono-ADP-ribosylation of DNA breaks.

    Science.gov (United States)

    Munnur, Deeksha; Ahel, Ivan

    2017-12-01

    Adenosine diphosphate (ADP)-ribosylation is a chemical modification of macromolecules that plays an important role in regulation of quintessential biological processes such as DNA repair, transcription, chromatin remodelling, stress response, apoptosis, bacterial metabolism and many others. ADP-ribosylation is carried out by ADP-ribosyltransferase proteins, such as poly (ADP-ribose) polymerases (PARPs) that transfer either monomer or polymers of ADP-ribose onto the molecular targets by using nicotinamide adenine dinucleotide (NAD + ) as a cofactor. Traditionally, proteins have been described as primary targets of ADP-ribosylation; however, there has been growing evidence that DNA may be a common target as well. Here, we show using biochemical studies that PARP3, a DNA damage-activated ADP-ribosyltransferase, can mono-ADP-ribosylate double-stranded DNA ends. ADP-ribosylation of DNA mediated by PARP3 attaches a single mono-ADP-ribose moiety to the phosphate group at the terminal ends of DNA. We further show that mono ADP-ribosylation at DNA ends can be efficiently reversed by several cellular hydrolases (PARG, MACROD2, TARG1 and ARH3). This suggests that mono ADP-ribosylated DNA adducts can be efficiently removed in cells by several mechanisms. © 2017 The Authors. The FEBS Journal published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.

  17. The effects of microgravity on ligase activity in the repair of DNA double-strand breaks.

    Science.gov (United States)

    Takahashi, A; Ohnishi, K; Takahashi, S; Masukawa, M; Sekikawa, K; Amano, T; Nakano, T; Nagaoka, S; Ohnishi, T

    2000-06-01

    In recent years, contradictory data have been reported about the effects of microgravity on radiation-induced biological responses in space experiments. The aim of the present study was to clarify whether enzymatic repair of DNA double-strand breaks is affected by microgravity using an in vitro enzymatic reaction system. The DNA repair activity of T4 DNA ligase (EC 6.5.1.1) was measured in vitro for a DNA substrate damaged by restriction enzyme digestion during a US Space Shuttle mission (Discovery; STS-91). After the flight, the amount of ligated DNA molecules was measured using an electrophoresis method. Ligated products (closed circular DNA, open circular DNA and multimeric ligated products) were produced by T4 DNA ligase treatment of linear DNA containing double-strand breaks, and they increased with increasing T4 DNA ligase concentration (0-3 units per microg of plasmid DNA). Almost no difference in T4 DNA ligase activity was detected between the space experiments and the control ground experiments. No significant effect of microgravity on ligation of damaged DNA was found during space flight. Therefore, other mechanisms must account for the synergism between radiation and microgravity, if it exists.

  18. Neddylation inhibits CtIP-mediated resection and regulates DNA double strand break repair pathway choice.

    Science.gov (United States)

    Jimeno, Sonia; Fernández-Ávila, María Jesús; Cruz-García, Andrés; Cepeda-García, Cristina; Gómez-Cabello, Daniel; Huertas, Pablo

    2015-01-01

    DNA double strand breaks are the most cytotoxic lesions that can occur on the DNA. They can be repaired by different mechanisms and optimal survival requires a tight control between them. Here we uncover protein deneddylation as a major controller of repair pathway choice. Neddylation inhibition changes the normal repair profile toward an increase on homologous recombination. Indeed, RNF111/UBE2M-mediated neddylation acts as an inhibitor of BRCA1 and CtIP-mediated DNA end resection, a key process in repair pathway choice. By controlling the length of ssDNA produced during DNA resection, protein neddylation not only affects the choice between NHEJ and homologous recombination but also controls the balance between different recombination subpathways. Thus, protein neddylation status has a great impact in the way cells respond to DNA breaks. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  19. The transcription fidelity factor GreA impedes DNA break repair.

    Science.gov (United States)

    Sivaramakrishnan, Priya; Sepúlveda, Leonardo A; Halliday, Jennifer A; Liu, Jingjing; Núñez, María Angélica Bravo; Golding, Ido; Rosenberg, Susan M; Herman, Christophe

    2017-10-12

    Homologous recombination repairs DNA double-strand breaks and must function even on actively transcribed DNA. Because break repair prevents chromosome loss, the completion of repair is expected to outweigh the transcription of broken templates. However, the interplay between DNA break repair and transcription processivity is unclear. Here we show that the transcription factor GreA inhibits break repair in Escherichia coli. GreA restarts backtracked RNA polymerase and hence promotes transcription fidelity. We report that removal of GreA results in markedly enhanced break repair via the classic RecBCD-RecA pathway. Using a deep-sequencing method to measure chromosomal exonucleolytic degradation, we demonstrate that the absence of GreA limits RecBCD-mediated resection. Our findings suggest that increased RNA polymerase backtracking promotes break repair by instigating RecA loading by RecBCD, without the influence of canonical Chi signals. The idea that backtracked RNA polymerase can stimulate recombination presents a DNA transaction conundrum: a transcription fidelity factor that compromises genomic integrity.

  20. Rapid Synthesis of a Long Double-Stranded Oligonucleotide from a Single-Stranded Nucleotide Using Magnetic Beads and an Oligo Library.

    Directory of Open Access Journals (Sweden)

    Sumate Pengpumkiat

    Full Text Available Chemical synthesis of oligonucleotides is a widely used tool in the field of biochemistry. Several methods for gene synthesis have been introduced in the growing area of genomics. In this paper, a novel method of constructing dsDNA is proposed. Short (28-mer oligo fragments from a library were assembled through successive annealing and ligation processes, followed by PCR. First, two oligo fragments annealed to form a dsDNA molecule. The double-stranded oligo was immobilized onto magnetic beads (solid support via streptavidin-biotin binding. Next, single-stranded oligo fragments were added successively through ligation to form the complete DNA molecule. The synthesized DNA was amplified through PCR and gel electrophoresis was used to characterize the product. Sanger sequencing showed that more than 97% of the nucleotides matched the expected sequence. Extending the length of the DNA molecule by adding single-stranded oligonucleotides from a basis set (library via ligation enables a more convenient and rapid mechanism for the design and synthesis of oligonucleotides on the go. Coupled with an automated dispensing system and libraries of short oligo fragments, this novel DNA synthesis method would offer an efficient and cost-effective method for producing dsDNA.

  1. Reverse gyrase functions in genome integrity maintenance by protecting DNA breaks in vivo

    DEFF Research Database (Denmark)

    Han, Wenyuan; Feng, Xu; She, Qunxin

    2017-01-01

    Reverse gyrase introduces positive supercoils to circular DNA and is implicated in genome stability maintenance in thermophiles. The extremely thermophilic crenarchaeon Sulfolobus encodes two reverse gyrase proteins, TopR1 (topoisomerase reverse gyrase 1) and TopR2, whose functions in thermophili...... genomic DNA degradation during MMS treatment, accompanied by a higher rate of cell death. Taken together, these results indicate that TopR1 probably facilitates genome integrity maintenance by protecting DNA breaks from thermo-degradation in vivo....

  2. Effects of hyperthermia on repair of radiation-induced DNA strand breaks

    International Nuclear Information System (INIS)

    Mills, M.D.; Meyn, R.E.

    1981-01-01

    Previous reports have suggested a relationship between the heat-induced changes in nucleoprotein and the hyperthermic enhancement of radiation sensitivity. In an effort to further understand these relationships, we measured the level of initial DNA strand break damage and the DNA strand break rejoining kinetics in Chinese hamster ovary cells following combined hyperthermia and ionizing radiation treatments. The amount of protein associated with DNA measured as the ratio of [ 3 H)leucine to [ 14 C]thymidine was also compared in chromatin isolated from both heated and unheated cells. The results of these experiments show that the initial level of radiation-induced DNA strand breaks is significantly enhanced by a prior hyperthermia treatment of 43 0 C for 30 min. Treatments at higher temperatures and longer treatments at the same temperature magnified this effect. Hyperthermia was also shown to cause a substantial inhibition of the DNA strand break rejoining after irradiation. Both the initial level of DNA damage and the rejoining kinetics recovered to normal levels with incubation at 37 0 C between the hyperthermia and radiation treatments. Recovery of these parameters coincided with the return of the amount of protein associated with DNA to normal values, further suggesting a relationship between the changes in nucleoprotein and the hyperthermic enhancement of radiation sensivivity

  3. Screening for Breast Cancer Using Near Field Infrared Spectroscopy of a Single Strand of Hair

    National Research Council Canada - National Science Library

    Erramilli, Shyamsunder

    2001-01-01

    ... predisposition to breast cancer because of the breast of a mutation of the BRCA1 gene. We would like to develop a new method for the screening of breast cancer based on infrared spectroscopy of a single strand of human hair...

  4. Phenylketonuria in The Netherlands : 93% of the mutations are detected by single-strand conformation analysis

    NARCIS (Netherlands)

    vanderSijsBos, CJM; Diepstraten, CM; Juyn, JA; Plaisier, M; Giltay, JC; vanSpronsen, FJ; Smit, GPA; Berger, R; Smeitink, JAM; PollThe, BT; vanAmstel, JKP

    1996-01-01

    Single-strand conformational analysis was used to screen for genetic defects in all thirteen exons of the phenylalanine hydroxylase gene (PAH) in phenylketonuria and hyperphenylalaninemia patients in the Netherlands. Exons that showed a bandshift were sequenced directly, In this way, we were able to

  5. Data for increase of Lymantria dispar male survival after topical application of single-stranded RING domain fragment of IAP-3 gene of its nuclear polyhedrosis virus

    Science.gov (United States)

    Oberemok, Volodymyr V.; Laikova, Kateryna V.; Zaitsev, Aleksei S.; Gushchin, Vladimir A.; Skorokhod, Oleksii A.

    2016-01-01

    This data article is related to the research article entitled “The RING for gypsy moth control: topical application of fragment of its nuclear polyhedrosis virus anti-apoptosis gene as insecticide” [1]. This article reports on significantly higher survival of gypsy moth Lymantria dispar male individuals in response to topical application of single-stranded DNA, based on RING (really interesting new gene) domain fragment of LdMNPV (L. dispar multicapsid nuclear polyhedrosis virus) IAP-3 (inhibitor of apoptosis) gene and acted as DNA insecticide. PMID:27054151

  6. Postreplicational formation and repair of DNA double-strand breaks in UV-irradiated Escherichia coli uvrB cells

    International Nuclear Information System (INIS)

    Wang, Tzuchien V.; Smith, K.C.

    1986-01-01

    The number of DNA double-strand breaks formed in UV-irradiated uvrB recF recB cells correlates with the number of unrepaired DNA daughter-strand gaps, and is dependent on DNA synthesis after UV-irradiation. These results are consistent with the model that the DNA double-strand breaks that are produced in UV-irradiated excision-deficient cells occur as the result of breaks in the parental DNA opposite unrepaired DNA daughter-strand gaps. By employing a temperature-sensitive recA200 mutation, we have devised an improved assay for studying the formation and repair of these DNA double-strand breaks. Possible mechanisms for the postreplication repair of DNA double-strand breaks are discussed. (Auth.)

  7. Alkylation base damage is converted into repairable double-strand breaks and complex intermediates in G2 cells lacking AP endonuclease.

    Directory of Open Access Journals (Sweden)

    Wenjian Ma

    2011-04-01

    Full Text Available DNA double-strand breaks (DSBs are potent sources of genome instability. While there is considerable genetic and molecular information about the disposition of direct DSBs and breaks that arise during replication, relatively little is known about DSBs derived during processing of single-strand lesions, especially for the case of single-strand breaks (SSBs with 3'-blocked termini generated in vivo. Using our recently developed assay for detecting end-processing at random DSBs in budding yeast, we show that single-strand lesions produced by the alkylating agent methyl methanesulfonate (MMS can generate DSBs in G2-arrested cells, i.e., S-phase independent. These derived DSBs were observed in apn1/2 endonuclease mutants and resulted from aborted base excision repair leading to 3' blocked single-strand breaks following the creation of abasic (AP sites. DSB formation was reduced by additional mutations that affect processing of AP sites including ntg1, ntg2, and, unexpectedly, ogg1, or by a lack of AP sites due to deletion of the MAG1 glycosylase gene. Similar to direct DSBs, the derived DSBs were subject to MRX (Mre11, Rad50, Xrs2-determined resection and relied upon the recombinational repair genes RAD51, RAD52, as well as on the MCD1 cohesin gene, for repair. In addition, we identified a novel DNA intermediate, detected as slow-moving chromosomal DNA (SMD in pulsed field electrophoresis gels shortly after MMS exposure in apn1/2 cells. The SMD requires nicked AP sites, but is independent of resection/recombination processes, suggesting that it is a novel structure generated during processing of 3'-blocked SSBs. Collectively, this study provides new insights into the potential consequences of alkylation base damage in vivo, including creation of novel structures as well as generation and repair of DSBs in nonreplicating cells.

  8. Double Stranded Sperm DNA Breaks, Measured by Comet Assay, Are Associated with Unexplained Recurrent Miscarriage in Couples without a Female Factor

    Science.gov (United States)

    Ribas-Maynou, Jordi; García-Peiró, Agustín; Fernandez-Encinas, Alba; Amengual, Maria José; Prada, Elena; Cortés, Pilar; Navarro, Joaquima; Benet, Jordi

    2012-01-01

    It is known that sperm samples from recurrent pregnancy loss (RPL) couples have an increase in their sperm DNA fragmentation (SDF), but no studies have been performed in order to identify differences between single stranded SDF (ssSDF) and double stranded SDF (dsSDF) in these patients. This could be relevant because the type of DNA damage could have different effects. Semen samples were classified attending their clinical status: 25 fertile donors and 20 RPL patients with at least two unexplained first trimester miscarriages. SDF was analysed using alkaline and neutral Comet assay, SCD test and pulsed-field gel electrophoresis (PFGE), and ROC analysis including data from 105 more infertile patients (n = 150) was performed to establish predictive threshold values. SDF for alkaline and neutral Comet, and the SCD test was analysed in these categories of individuals. Data revealed the presence of two subgroups within fertile donors. The values obtained were 21.10±9.13, 23.35±10.45 and 12.31±4.31, respectively, for fertile donors with low values for both ssSDF and dsSDF; 27.86±12.64, 80.69±12.67 and 12.43±5.22, for fertile donors with low ssSDF and high dsSDF; and 33.61±15.50, 84.64±11.28 and 19.28±6.05, for unexplained RPL patients, also showing a low ssSDF and high dsSDF profile. This latter profile was seen in 85% of unexplained RPL and 33% of fertile donors, suggesting that it may be associated to a male risk factor for undergoing RPL. ROC analysis regarding recurrent miscarriage set the cut-off value at 77.50% of dsDNA SDF. PFGE for low ssSDF and high dsSDF profile samples and positive controls treated with DNase, to induce dsDNA breaks, showed a more intense band of about 48 kb, which fits the toroid model of DNA compaction in sperm, pointing out that some nuclease activity may be affecting their sperm DNA in RPL patients. This work identifies a very specific SDF profile related to the paternal risk of having RPL. PMID:23028579

  9. Induction of non-rejoinable DNA breaks in mammalian cells by high LET radiations

    International Nuclear Information System (INIS)

    Ritter, M.A.

    1976-01-01

    Chinese hamster cells (V79-S171) were irradiated with x-rays and low-energy charged particles with an LET range of 9.5 to 827 keV/μm. The dependency of DNA strand break induction on LET and the fraction of breaks that could not rejoin during post-irradiation incubation were determined with alkaline sucrose gradient techniques. Results indicate that the efficiency of strand break induction decreases with increasing LET. The efficiency of non-rejoinable break induction, however, increases to 4.8 times the x-ray value at an LET of 150 keV/μm and then decreases with further LET increase. This peaked LET response for non-rejoinable break induction is very similar to the pattern that the RBE for cell killing exhibits as a function of LET

  10. Direct and Auger Electron-Induced, Single- and Double-Strand Breaks on Plasmid DNA Caused by 99mTc-Labeled Pyrene Derivatives and the Effect of Bonding Distance.

    Directory of Open Access Journals (Sweden)

    Falco Reissig

    Full Text Available It is evident that 99mTc causes radical-mediated DNA damage due to Auger electrons, which were emitted simultaneously with the known γ-emission of 99mTc. We have synthesized a series of new 99mTc-labeled pyrene derivatives with varied distances between the pyrene moiety and the radionuclide. The pyrene motif is a common DNA intercalator and allowed us to test the influence of the radionuclide distance on damages of the DNA helix. In general, pUC 19 plasmid DNA enables the investigation of the unprotected interactions between the radiotracers and DNA that results in single-strand breaks (SSB or double-strand breaks (DSB. The resulting DNA fragments were separated by gel electrophoresis and quantified by fluorescent staining. Direct DNA damage and radical-induced indirect DNA damage by radiolysis products of water were evaluated in the presence or absence of the radical scavenger DMSO. We demonstrated that Auger electrons directly induced both SSB and DSB in high efficiency when 99mTc was tightly bound to the plasmid DNA and this damage could not be completely prevented by DMSO, a free radical scavenger. For the first time, we were able to minimize this effect by increasing the carbon chain lengths between the pyrene moiety and the 99mTc nuclide. However, a critical distance between the 99mTc atom and the DNA helix could not be determined due to the significantly lowered DSB generation resulting from the interaction which is dependent on the type of the 99mTc binding motif. The effect of variable DNA damage caused by the different chain length between the pyrene residue and the Tc-core as well as the possible conformations of the applied Tc-complexes was supplemented with molecular dynamics (MD calculations. The effectiveness of the DNA-binding 99mTc-labeled pyrene derivatives was demonstrated by comparison to non-DNA-binding 99mTcO4-, since nearly all DNA damage caused by 99mTcO4- was prevented by incubating with DMSO.

  11. Ligase-deficient yeast cells exhibit defective DNA rejoining and enhanced gamma ray sensitivity

    International Nuclear Information System (INIS)

    Moore, C.W.

    1982-01-01

    Yeast cells deficient in DNA ligase were also deficient in their capacity to rejoin single-strand scissions in prelabeled nuclear DNA. After high-dose-rate gamma irradiation (10 and 25 krads), cdc9-9 mutant cells failed to rejoin single-strand scissions at the restrictive temperature of 37 0 C. In contrast, parental (CDC9) cells (incubated with mutant cells both during and after irradiation) exhibited rapid medium-independent DNA rejoining after 10 min of post-irradiation incubation and slower rates of rejoining after longer incubation. Parental cells were also more resistant than mutant cells to killing by gamma irradiation. Approximately 2.5 +- 0.07 and 5.7 +- 0.6 single-strand breaks per 10 8 daltons were detected in DNAs from either CDC9 or cdc9-9 cells converted to spheroplasts immediately after 10 and 25 krads of irradiation, respectively. At the permissive temperature of 23 0 C, the cdc9-9 cells contained 2 to 3 times the number of DNA single-strand breaks as parental cells after 10 min to 4 h of incubation after 10 krads of irradiation, and two- to eightfold more breaks after 10 min to 2.5 h of incubation after 25 krads of irradiation. Rejoining of single-strand scissions was faster in medium. After only 10 min in buffered growth medium after 10 krads of irradiation, the number of DNA single-strand breaks was reduced to 0.32 +- 0.3 (at 23 0 C) or 0.21 +- 0.05 (at 37 0 C) per 10 8 daltons in parental cells, but remained at 2.1 +- 0.06 (at 23 0 C) or 2.3 +- 0.07 (at 37 0 C) per 10 8 daltons in mutant cells. After 10 or 25 krads of irradiation plus 1 h of incubation in medium at 37 0 C, only DNA from CDC9 cells was rejoined to the size of DNA from unirradiated cells, whereas at 23 0 C, DNAs in both strains were completely rejoined

  12. Radiobiological study on DNA strand breaks and repair using single cell gel electrophoresis

    International Nuclear Information System (INIS)

    Ikushima, Takaji

    1994-01-01

    Single cell gel electrophoresis (SCGE) provides a novel method to measure DNA damage in individual cells and more importantly, to assess heterogeneity in response within a mixed population of cells. Cells embedded in agarose are lysed, subjected to electrophoresis, stained with a fluorescent DNA-specific dye, and viewed under a fluorescence microscope. Damaged cells display 'comets', broken DNA migrating farther to the anode in the electric field. We have previously used this technique to quantify DNA damage induced by moderate doses of low and high LET radiations in cultured Chinese hamster cells. The assay has been optimized in terms of lysing and electrophoresis conditions, and applied to analyse the DNA strand breaks, their repair kinetics and heterogeneity in response in individual Chinese hamster cells exposed to gamma-rays, and to KUR thermal neutrons with and without 10 B or to KEK PF monochromatic soft X-rays as well as to a radio-mimetic agent, neocarzinostatin. The DNA double-strand breaks induced by boron-neutron captured reactions were repaired at a slower rate, but a heterogeneity in response might not contribute to the difference. The neocarzinostatin-induced DNA damage were efficiently repaired in a dose-dependent fashion. The initial amount of gamma-ray induced DNA double-strand breaks was not significantly altered in cells pre-exposed to very low adapting dose. (author)

  13. JNK Phosphorylates SIRT6 to Stimulate DNA Double-Strand Break Repair in Response to Oxidative Stress by Recruiting PARP1 to DNA Breaks

    Directory of Open Access Journals (Sweden)

    Michael Van Meter

    2016-09-01

    Full Text Available The accumulation of damage caused by oxidative stress has been linked to aging and to the etiology of numerous age-related diseases. The longevity gene, sirtuin 6 (SIRT6, promotes genome stability by facilitating DNA repair, especially under oxidative stress conditions. Here we uncover the mechanism by which SIRT6 is activated by oxidative stress to promote DNA double-strand break (DSB repair. We show that the stress-activated protein kinase, c-Jun N-terminal kinase (JNK, phosphorylates SIRT6 on serine 10 in response to oxidative stress. This post-translational modification facilitates the mobilization of SIRT6 to DNA damage sites and is required for efficient recruitment of poly (ADP-ribose polymerase 1 (PARP1 to DNA break sites and for efficient repair of DSBs. Our results demonstrate a post-translational mechanism regulating SIRT6, and they provide the link between oxidative stress signaling and DNA repair pathways that may be critical for hormetic response and longevity assurance.

  14. Branch migration prevents DNA loss during double-strand break repair.

    Directory of Open Access Journals (Sweden)

    Julia S P Mawer

    2014-08-01

    Full Text Available The repair of DNA double-strand breaks must be accurate to avoid genomic rearrangements that can lead to cell death and disease. This can be accomplished by promoting homologous recombination between correctly aligned sister chromosomes. Here, using a unique system for generating a site-specific DNA double-strand break in one copy of two replicating Escherichia coli sister chromosomes, we analyse the intermediates of sister-sister double-strand break repair. Using two-dimensional agarose gel electrophoresis, we show that when double-strand breaks are formed in the absence of RuvAB, 4-way DNA (Holliday junctions are accumulated in a RecG-dependent manner, arguing against the long-standing view that the redundancy of RuvAB and RecG is in the resolution of Holliday junctions. Using pulsed-field gel electrophoresis, we explain the redundancy by showing that branch migration catalysed by RuvAB and RecG is required for stabilising the intermediates of repair as, when branch migration cannot take place, repair is aborted and DNA is lost at the break locus. We demonstrate that in the repair of correctly aligned sister chromosomes, an unstable early intermediate is stabilised by branch migration. This reliance on branch migration may have evolved to help promote recombination between correctly aligned sister chromosomes to prevent genomic rearrangements.

  15. DNA strand breaks and TDP-43 mislocation are absent in the murine hSOD1G93A model of amyotrophic lateral sclerosis in vivo and in vitro.

    Directory of Open Access Journals (Sweden)

    Diane Penndorf

    Full Text Available Mutations in the human Cu/Zn superoxide dismutase type-1 (hSOD1 gene are common in familial amyotrophic lateral sclerosis (fALS. The pathophysiology has been linked to, e.g., organelle dysfunction, RNA metabolism and oxidative DNA damage conferred by SOD1 malfunction. However, apart from metabolically evoked DNA oxidation, it is unclear whether severe genotoxicity including DNA single-strand breaks (SSBs and double-strand breaks (DSBs, originates from loss of function of nuclear SOD1 enzyme. Factors that endogenously interfere with DNA integrity and repair complexes in hSOD1-mediated fALS remain similarly unexplored. In this regard, uncontrolled activation of transposable elements (TEs might contribute to DNA disintegration and neurodegeneration. The aim of this study was to elucidate the role of the fALS-causing hSOD1G93A mutation in the generation of severe DNA damage beyond well-characterized DNA base oxidation. Therefore, DNA damage was assessed in spinal tissue of hSOD1G93A-overexpressing mice and in corresponding motor neuron-enriched cell cultures in vitro. Overexpression of the hSOD1G93A locus did not change the threshold for severe DNA damage per se. We found that levels of SSBs and DSBs were unaltered between hSOD1G93A and control conditions, as demonstrated in post-mitotic motor neurons and in astrocytes susceptible to replication-dependent DNA breakage. Analogously, parameters indicative of DNA damage response processes were not activated in vivo or in vitro. Evidence for a mutation-related elevation in TE activation was not detected, in accordance with the absence of TAR DNA binding protein 43 (TDP-43 proteinopathy in terms of cytoplasmic mislocation or nuclear loss, as nuclear TDP-43 is supposed to silence TEs physiologically. Conclusively, the superoxide dismutase function of SOD1 might not be required to preserve DNA integrity in motor neurons, at least when the function of TDP-43 is unaltered. Our data establish a foundation for

  16. Normalized cDNA libraries

    Science.gov (United States)

    Soares, Marcelo B.; Efstratiadis, Argiris

    1997-01-01

    This invention provides a method to normalize a directional cDNA library constructed in a vector that allows propagation in single-stranded circle form comprising: (a) propagating the directional cDNA library in single-stranded circles; (b) generating fragments complementary to the 3' noncoding sequence of the single-stranded circles in the library to produce partial duplexes; (c) purifying the partial duplexes; (d) melting and reassociating the purified partial duplexes to moderate Cot; and (e) purifying the unassociated single-stranded circles, thereby generating a normalized cDNA library.

  17. On the linearity of the dose-effect relationship of DNA double strand breaks

    International Nuclear Information System (INIS)

    Chadwick, K.H.; Leenhouts, H.P.

    1994-01-01

    Most radiation biologists believe that DNA double-strand breaks are induced linearly with radiation dose for all types of radiation. Since 1985, with the advent of elution and gel electrophoresis techniques which permit the measurement of DNA double-strand breaks induced in mammalian cells at doses having radiobiological relevance, the true nature of the dose-effect relationship has been brought into some doubt. Many investigators measured curvilinear dose-effect relationships and a few found good correlations between the induction of the DNA double-strand breaks and cell survival. We approach the problem pragmatically by assuming that the induction of DNA double-strand breaks by 125 I Auger electron emitters incorporated into the DNA of the cells is a linear function of the number of 125 I decays, and by comparing the dose-effect relationship for sparsely ionizing radiation against this standard. The conclusion drawn that the curvilinear dose-effect relationships and the correlations with survival are real. (Author)

  18. Increased rate of repair of ultraviolet-induced DNA strand breaks in mitogen stimulated lymphocytes

    International Nuclear Information System (INIS)

    Hamlet, S.M.; Lavin, M.F.; Jennings, P.A.; Queensland Univ., St. Lucia; Queensland Univ. St. Lucia

    1982-01-01

    Previous results have shown that phytohaemagglutinin-stimulated bovine lymphocytes exhibit a peak of ultraviolet-induced DNA repair synthesis 3 to 4 days after addition of mitogen. The level of repair synthesis was approximately tenfold higher than that in unstimulated lymphocytes. These studies have been extended to examine the rate of repair of strand breaks in U.V.-irradiated bovine lymphocytes. The extent of breakage of DNA was shown to be the same in mitogen-stimulated and unstimulated lymphocytes from two breeds of cattle, when determined by sedimentation of nucleoids on sucrose gradients. However, in mitogen-stimulated cells the time taken to repair DNA strand breaks was 6 hours compared with 12 hours in stationary phase lymphocytes after a U.V. dose of 5 J/m 2 . These results suggest that the increased rate of repair of strand breaks is due to the induction of enzymes involved at the post-incision stage of DNA repair. Thus the increased level of repair synthesis observed in earlier work correlates with an increased rate of repair of DNA strand breaks in phytohaemagglutinin-stimulated bovine lymphocytes. (author)

  19. DNA hybrids suggesting a recombination process repairing radiation-induced DNA double-strand breaks in Ehrlich Ascites tumor cells

    International Nuclear Information System (INIS)

    Barthel, H.R.

    1984-01-01

    The results presented suggest the possibility of repair of DNA double-strand breaks by recombination, at least in the S and G 2 -phases of the cell cycle, in mammalian cells. Further experiments with synchronized cell cultures will have to show whether this process may also occur in the G 1 -phase of the cell cycle. (orig./AJ) [de

  20. Breaking the DNA damage response to improve cervical cancer treatment.

    Science.gov (United States)

    Wieringa, Hylke W; van der Zee, Ate G J; de Vries, Elisabeth G E; van Vugt, Marcel A T M

    2016-01-01

    Every year, cervical cancer affects ∼500,000 women worldwide, and ∼275,000 patients die of this disease. The addition of platin-based chemotherapy to primary radiotherapy has increased 5-year survival of advanced-stage cervical cancer patients, which is, however, still only 66%. One of the factors thought to contribute to treatment failure is the ability of tumor cells to repair chemoradiotherapy-induced DNA damage. Therefore, sensitization of tumor cells for chemoradiotherapy via inhibition of the DNA damage response (DDR) as a novel strategy to improve therapy effect, is currently studied pre-clinically as well as in the clinic. Almost invariably, cervical carcinogenesis involves infection with the human papillomavirus (HPV), which inactivates part of the DNA damage response. This HPV-mediated partial inactivation of the DDR presents therapeutic targeting of the residual DDR as an interesting approach to achieve chemoradio-sensitization for cervical cancer. How the DDR can be most efficiently targeted, however, remains unclear. The fact that cisplatin and radiotherapy activate multiple signaling axes within the DDR further complicates a rational choice of therapeutic targets within the DDR. In this review, we provide an overview of the current preclinical and clinical knowledge about targeting the DDR in cervical cancer. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Compound Poisson Processes and Clustered Damage of Radiation Induced DNA Double Strand Breaks

    International Nuclear Information System (INIS)

    Gudowska-Nowak, E.; Ritter, S.; Taucher-Scholz, G.; Kraft, G.

    2000-01-01

    Recent experimental data have demonstrated that DNA damage induced by densely ionizing radiation in mammalian cells is distributed along the DNA molecule in the form of clusters. The principal constituent of DNA damage are double-strand breaks (DSB) which are formed when the breaks occur in both DNA strands and are directly opposite or separated by only a few base pairs. DSBs are believed to be most important lesions produced in chromosomes by radiation; interaction between DSBs can lead to cell killing, mutation or carcinogenesis. The paper discusses a model of clustered DSB formation viewed in terms of compound Poisson process along with the predictive essay of the formalism in application to experimental data. (author)

  2. Calibration of pulsed field gel electrophoresis for measurement of DNA double-strand breaks

    International Nuclear Information System (INIS)

    Ager, D.D.; Dewey, W.C.

    1990-01-01

    Pulsed field gel electrophoresis (PFGE) assay was calibrated for the measurement of X-ray induced DNA double-strand breaks in Chinese hamster ovary (CHO) cells. Calibration was conducted by incorporating [ 125 I] deoxyuridine into DNA, which induces one double-strand break for every disintegration that occurs in frozen cells. Based on the percentage of DNA migrating into the gel, the number of breaks/dalton/Gy was estimated to be (9.3±1.0) x 10 -12 . This value is close to (10 to 12) x 10 -12 determined by neutral filter elution using similar cell lysis procedures at 24 o C and at pH8.0. The estimate is in good agreement with the value of (11.7±2) x 10 -12 breaks/dalton/Gy as measured in Ehrlich ascites tumour cells using the neutral sucrose gradient method (Bloecher 1988), and (6 to 9) x 10 -12 breaks/dalton/Gy as measured in mouse L and Chinese hamster V79 cells using neutral filter elution (Radford and Hodgson 1985). (author)

  3. Double strand DNA breaks response in Huntington´s disease

    Czech Academy of Sciences Publication Activity Database

    Šolc, Petr; Valášek, Jan; Rausová, Petra; Juhásová, Jana; Juhás, Štefan; Motlík, Jan

    2015-01-01

    Roč. 78, Suppl 2 (2015), s. 15-15 ISSN 1210-7859. [Conference on Animal Models for neurodegenerative Diseases /3./. 08.11.2015-10.11.2015, Liblice] R&D Projects: GA MŠk ED2.1.00/03.0124; GA MŠk(CZ) 7F14308 Institutional support: RVO:67985904 Keywords : Huntington´s disease * DNA damage * double strand DNA breaks Subject RIV: FH - Neurology

  4. DNA polymerase θ (POLQ), double-strand break repair, and cancer.

    Science.gov (United States)

    Wood, Richard D; Doublié, Sylvie

    2016-08-01

    DNA polymerase theta (pol θ) is encoded in the genomes of many eukaryotes, though not in fungi. Pol θ is encoded by the POLQ gene in mammalian cells. The C-terminal third of the protein is a family A DNA polymerase with additional insertion elements relative to prokaryotic homologs. The N-terminal third is a helicase-like domain with DNA-dependent ATPase activity. Pol θ is important in the repair of genomic double-strand breaks (DSBs) from many sources. These include breaks formed by ionizing radiation and topoisomerase inhibitors, breaks arising at stalled DNA replication forks, breaks introduced during diversification steps of the mammalian immune system, and DSB induced by CRISPR-Cas9. Pol θ participates in a route of DSB repair termed "alternative end-joining" (altEJ). AltEJ is independent of the DNA binding Ku protein complex and requires DNA end resection. Pol θ is able to mediate joining of two resected 3' ends harboring DNA sequence microhomology. "Signatures" of Pol θ action during altEJ are the frequent utilization of longer microhomologies, and the insertion of additional sequences at joining sites. The mechanism of end-joining employs the ability of Pol θ to tightly grasp a 3' terminus through unique contacts in the active site, allowing extension from minimally paired primers. Pol θ is involved in controlling the frequency of chromosome translocations and preserves genome integrity by limiting large deletions. It may also play a backup role in DNA base excision repair. POLQ is a member of a cluster of similarly upregulated genes that are strongly correlated with poor clinical outcome for breast cancer, ovarian cancer and other cancer types. Inhibition of pol θ is a compelling approach for combination therapy of radiosensitization. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Homing endonucleases catalyze double-stranded DNA breaks and somatic transgene excision in Aedes aegypti

    OpenAIRE

    Traver, Brenna E.; Anderson, Michelle A. E.; Adelman, Zach N.

    2009-01-01

    Aedes aegypti is a major vector of arthropod-borne viruses such as yellow fever virus and dengue viruses. Efforts to discern the function of genes involved in important behaviors such as vector competence and host seeking through reverse genetics would greatly benefit from the ability to generate targeted gene disruptions. Homing endonucleases are selfish elements which catalyze double-stranded DNA (dsDNA) breaks in a sequence-specific manner. In this report we demonstrate that the homing end...

  6. Radioresistance of GGG sequences to prompt strand break formation from direct-type radiation damage.

    Science.gov (United States)

    Black, Paul J; Miller, Adam S; Hayes, Jeffrey J

    2016-11-01

    As humans, we are constantly exposed to ionizing radiation from natural, man-made and cosmic sources which can damage DNA, leading to deleterious effects including cancer incidence. In this work, we introduce a method to monitor strand breaks resulting from damage due to the direct effect of ionizing radiation and provide evidence for sequence-dependent effects leading to strand breaks. To analyze only DNA strand breaks caused by radiation damage due to the direct effect of ionizing radiation, we combined an established technique to generate dehydrated DNA samples with a technique to analyze single-strand breaks on short oligonucleotide sequences via denaturing gel electrophoresis. We find that direct damage primarily results in a reduced number of strand breaks in guanine triplet regions (GGG) when compared to isolated guanine (G) bases with identical flanking base context. In addition, we observe strand break behavior possibly indicative of protection of guanine bases when flanked by pyrimidines and sensitization of guanine to strand break when flanked by adenine (A) bases in both isolated G and GGG cases. These observations provide insight into the strand break behavior in GGG regions damaged via the direct effect of ionizing radiation. In addition, this could be indicative of DNA sequences that are naturally more susceptible to strand break due to the direct effect of ionizing radiation.

  7. Visual characterization and quantitative measurement of artemisinin-induced DNA breakage

    Energy Technology Data Exchange (ETDEWEB)

    Cai Huaihong [Bionanotechnology Lab, and Department of Chemistry, Jinan University, Guangzhou 510632 (China); Yang Peihui [Bionanotechnology Lab, and Department of Chemistry, Jinan University, Guangzhou 510632 (China)], E-mail: typh@jnu.edu.cn; Chen Jianan [Bionanotechnology Lab, and Department of Chemistry, Jinan University, Guangzhou 510632 (China); Liang Zhihong [Experiment and Technology Center, Jinan University, Guangzhou 510632 (China); Chen Qiongyu [Institute of Genetic Engineering, Jinan University, Guangzhou 510632 (China); Cai Jiye [Bionanotechnology Lab, and Department of Chemistry, Jinan University, Guangzhou 510632 (China)], E-mail: tjycai@jnu.edu.cn

    2009-05-01

    DNA conformational change and breakage induced by artemisinin, a traditional Chinese herbal medicine, have been visually characterized and quantitatively measured by the multiple tools of electrochemistry, UV-vis absorption spectroscopy, atomic force microscopy (AFM), and DNA electrophoresis. Electrochemical and spectroscopic results confirm that artemisinin can intercalate into DNA double helix, which causes DNA conformational changes. AFM imaging vividly demonstrates uneven DNA strand breaking induced by QHS interaction. To assess these DNA breakages, quantitative analysis of the extent of DNA breakage has been performed by analyzing AFM images. Basing on the statistical analysis, the occurrence of DNA breaks is found to depend on the concentration of artemisinin. DNA electrophoresis further validates that the intact DNA molecules are unwound due to the breakages occur at the single strands. A reliable scheme is proposed to explain the process of artemisinin-induced DNA cleavage. These results can provide further information for better understanding the anticancer activity of artemisinin.

  8. Alkaline gel electrophoresis assay to detect DNA strand breaks and repair mechanisms in Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Mattos, Jose Carlos Pelielo de; Motta, Ellen Serri da; Oliveira, Marcia Betania Nunes de; Dantas, Flavio Jose da Silva; Araujo, Adriano Caldeira de [Universidade do Estado do Rio de Janeiro (UERJ), RJ (Brazil). Dept. de Biofisica e Biometria. Lab. de Radio e Fotobiologia]. E-mail: jcmattos@uerj.br

    2008-12-15

    Reactive oxygen species (ROS) can induce lesions in different cellular targets, including DNA. Stannous chloride (SnCl{sub 2}) is a ROS generator, leading to lethality in Escherichia coli (E. coli), with the base excision repair (BER) mechanism playing a role in this process. Many techniques have been developed to detect genotoxicity, as comet assay, in eukaryotic cells, and plasmid DNA agarose gel electrophoresis. In this study, an adaptation of the alkaline gel electrophoresis method was carried out to ascertain the induction of strand breaks by SnCl{sub 2} in bacterial DNA, from E. coli BER mutants, and its repair pathway. Results obtained show that SnCl{sub 2} was able to induce DNA strand breaks in all strains tested. Moreover, endonuclease IV and exonuclease III play a role in DNA repair. On the whole, data has shown that the alkaline gel electrophoresis assay could be used both for studying DNA strand breaks induction and for associated repair mechanisms. (author)

  9. 125I-induced DNA double strand breaks: use in calibration of the neutral filter elution technique and comparison with X-ray induced breaks

    International Nuclear Information System (INIS)

    Radford, I.R.; Hodgson, G.S.

    1985-01-01

    The neutral filter elution assay, for measurement of DNA double strand breakage, has been calibrated using mouse L cells and Chinese hamster V79 cells labelled with [ 125 I]dUrd and then held at liquid nitrogen temperature to accumulate decays. The basis of the calibration is the observation that each 125 I decay, occurring in DNA, produces a DNA double strand break. Linear relationships between 125 I decays per cell and lethal lesions per cell (minus natural logarithm survival) and the level of elution, were found. Using the calibration data, it was calculated that the yield of DNA double strand breaks after X-irradiation of both cell types was from 6 to 9 x 10 -12 DNA double strand breaks per Gy per dalton of DNA, for doses greater than 6 Gy. Neutral filter elution and survival data for X-irradiated and 125 I-labelled cells suggested that the relationships between lethal lesions and DNA double strand breakage were significantly different for both cell types. An attempt was made to study the repair kinetics for 125 I-induced DNA double strand breaks, but was frustrated by the rapid DNA degradation which occurs in cells that have been killed by the freezing-thawing process. (author)

  10. Tailoring Thermal Conductivity of Single-stranded Carbon-chain Polymers through Atomic Mass Modification

    OpenAIRE

    Liao, Quanwen; Zeng, Lingping; Liu, Zhichun; Liu, Wei

    2016-01-01

    Tailoring the thermal conductivity of polymers is central to enlarge their applications in the thermal management of flexible integrated circuits. Progress has been made over the past decade by fabricating materials with various nanostructures, but a clear relationship between various functional groups and thermal properties of polymers remains to be established. Here, we numerically study the thermal conductivity of single-stranded carbon-chain polymers with multiple substituents of hydrogen...

  11. REV7 counteracts DNA double-strand break resection and affects PARP inhibition

    NARCIS (Netherlands)

    Xu, Guotai; Chapman, J. Ross; Brandsma, Inger; Yuan, Jingsong; Mistrik, Martin; Bouwman, Peter; Bartkova, Jirina; Gogola, Ewa; Warmerdam, Daniël; Barazas, Marco; Jaspers, Janneke E.; Watanabe, Kenji; Pieterse, Mark; Kersbergen, Ariena; Sol, Wendy; Celie, Patrick H. N.; Schouten, Philip C.; van den Broek, Bram; Salman, Ahmed; Nieuwland, Marja; de Rink, Iris; de Ronde, Jorma; Jalink, Kees; Boulton, Simon J.; Chen, Junjie; van Gent, Dik C.; Bartek, Jiri; Jonkers, Jos; Borst, Piet; Rottenberg, Sven

    2015-01-01

    Error-free repair of DNA double-strand breaks (DSBs) is achieved by homologous recombination (HR), and BRCA1 is an important factor for this repair pathway(1). In the absence of BRCA1-mediated HR, the administration of PARP inhibitors induces synthetic lethality of tumour cells of patients with

  12. A role for small RNAs in DNA double-strand break repair

    DEFF Research Database (Denmark)

    Wei, W.; Ba, Z.; Wu, Y.

    2012-01-01

    Eukaryotes have evolved complex mechanisms to repair DNA double-strand breaks (DSBs) through coordinated actions of protein sensors, transducers, and effectors. Here we show that ∼21-nucleotide small RNAs are produced from the sequences in the vicinity of DSB sites in Arabidopsis and in human cells...

  13. Ago2 facilitates Rad51 recruitment and DNA double-strand break repair by homologous recombination

    DEFF Research Database (Denmark)

    Gao, Min; Wei, Wei; Li, Ming Hua

    2014-01-01

    DNA double-strand breaks (DSBs) are highly cytotoxic lesions and pose a major threat to genome stability if not properly repaired. We and others have previously shown that a class of DSB-induced small RNAs (diRNAs) is produced from sequences around DSB sites. DiRNAs are associated with Argonaute...

  14. DNA double-strand break rejoining in human follicular lymphoma and glioblastoma tumor cells

    NARCIS (Netherlands)

    Macann, AMJ; Britten, RA; Poppema, S; Pearcey, R; Rosenberg, E; Allalunis-Turner, MJ; Murray, D

    2000-01-01

    Follicle center cell lymphoma is among the most radioresponsive of human cancers. To assess whether this radioresponsiveness might be a result of a compromised ability of the tumor cells to accomplish the biologically-effective repair of DNA double-strand breaks (DSBs), we have measured i) the

  15. Intercalation of single-strand oligonucleotides between nucleolipid anionic membranes: a neutron diffraction study.

    Science.gov (United States)

    Milani, Silvia; Berti, Debora; Dante, Silvia; Hauss, Thomas; Baglioni, Piero

    2009-04-07

    This contribution presents a neutron diffraction investigation of anionic lamellar phases composed of mixtures of 1-palmitoyl, 2-oleoyl phosphatidyl-nucleosides (POPN, where N is either adenosine or uridine), and POPC (1-palmitoyl,2-oleoyl-phosphatidyl-choline). Their behavior is studied for two different mole ratios and in the presence of nucleic acids. The samples are formed by the evaporation of liposomal dispersions prepared in water or in solutions containing single-strand oligonucleotides. Previous small angle X-ray scattering (SAXS) experiments on the system POPA/polyU (polyuridylic acid, high degree of polymerization, synthetic ribonucleic acid) proved that the insertion and ordering of the biopolymer in the phospholipid lamellae were driven by molecular recognition. In the present study, we extend the previous investigation to single-strand monodisperse oligonucleotides (50-mers). Structural details of the membranes were obtained from the analysis of the neutron diffraction scattering length density profiles. The evidence of direct and specific interactions, driven by molecular recognition between the nucleic polar heads of the nucleolipid and the single-strand nucleic acid, is strengthened by the comparison with identically charged bilayers formed by POPG/POPC. These results contribute to the understanding of the parameters governing the interactions between nucleolipid membranes and oligonucleotides, providing a novel strategy for the design of lipid-based vehicles for nucleic acids.

  16. RNF4 is required for DNA double-strand break repair in vivo

    DEFF Research Database (Denmark)

    Vyas, R; Kumar, R; Clermont, F

    2013-01-01

    Unrepaired DNA double-strand breaks (DSBs) cause genetic instability that leads to malignant transformation or cell death. Cells respond to DSBs with the ordered recruitment of signaling and repair proteins to the sites of DNA lesions. Coordinated protein SUMOylation and ubiquitylation have crucial...... in other key regulators of HR repair, Rnf4 deficiency leads to age-dependent impairment in spermatogenesis. These findings identify Rnf4 as a critical component of the DDR in vivo and support the possibility that Rnf4 controls protein localization at DNA damage sites by integrating SUMOylation...

  17. Chilling-responsive DEMETER-LIKE DNA demethylase mediates in poplar bud break.

    Science.gov (United States)

    Conde, Daniel; Le Gac, Anne-Laure; Perales, Mariano; Dervinis, Christopher; Kirst, Matias; Maury, Stéphane; González-Melendi, Pablo; Allona, Isabel

    2017-10-01

    Annual dormancy-growth cycle is a developmental and physiological process essential for the survival of deciduous trees in temperate and boreal forests. Seasonal control of shoot growth in woody perennials requires specific genetic programmes responding to environmental signals. The environmental-controlled mechanisms that regulate the shift between winter dormancy and the growth-promoting genetic programmes are still unknown. Here, we show that dynamics in genomic DNA methylation levels are involved in the regulation of dormancy-growth cycle in poplar. The reactivation of growth in the apical shoot during bud break process in spring is preceded by a progressive reduction of genomic DNA methylation in apex tissue. The induction in apex tissue of a chilling-dependent poplar DEMETER-LIKE 10 (PtaDML10) DNA demethylase precedes shoot growth reactivation. Transgenic poplars showing downregulation of PtaDML8/10 caused delayed bud break. Genome-wide transcriptome and methylome analysis and data mining revealed that the gene targets of DEMETER-LIKE-dependent DNA demethylation are genetically associated with bud break. These data point to a chilling-dependent DEMETER-like DNA demethylase mechanisms being involved in the shift from winter dormancy to a condition that precedes shoot apical vegetative growth in poplar. © 2017 John Wiley & Sons Ltd.

  18. Homing endonucleases catalyze double-stranded DNA breaks and somatic transgene excision in Aedes aegypti.

    Science.gov (United States)

    Traver, B E; Anderson, M A E; Adelman, Z N

    2009-10-01

    Aedes aegypti is a major vector of arthropod-borne viruses such as yellow fever virus and dengue viruses. Efforts to discern the function of genes involved in important behaviours, such as vector competence and host seeking through reverse genetics, would greatly benefit from the ability to generate targeted gene disruptions. Homing endonucleases are selfish elements which catalyze double-stranded DNA (dsDNA) breaks in a sequence-specific manner. In this report we demonstrate that the homing endonucleases I-PpoI, I-SceI, I-CreI and I-AniI are all able to induce dsDNA breaks in adult female Ae. aegypti chromosomes as well as catalyze the somatic excision of a transgene. These experiments provide evidence that homing endonucleases can be used to manipulate the genome of this important disease vector.

  19. In vivo nicking and rejoining of nuclear DNA in ultraviolet-irradiated radiation-resistant and sensitive strains of Dictyostelium discoideum

    International Nuclear Information System (INIS)

    Welker, D.L.; Deering, R.A.

    1979-01-01

    Some aspects of DNA repair in several radiation-resistant and radiation-sensitive strains of Dictyostelium discoideum were investigated by using alkaline sucrose gradients to analyze for the production and resealing of single-strand breaks following irradiation with 254 nm UV. All radiation-resistant strains and all mutants assayed that are sensitive to both UV and 60 Co gamma rays produced single-strand breaks in their nuclear DNA after a UV fluence of 15J/m 2 . Mutants at the radC locus which are sensitive to UV but as resistant as their parental strains to 60 Co gamma rays produced many fewer single-strand breaks in their DNA after irradiation with UV. Thus, the radC mutations alter a repair pathway specific for UV-induced DNA damage and presumably affect the activity of a UV-damage-specific endonuclease involved in excision repair. All radiation-resistant strains and all of our mutants sensitive to gamma rays rejoined much of their DNA during a three-hour post-UV-irradiation incubation, suggesting that these strains have at least a partially intact excision repair system. (orig.) [de

  20. Zinc chromate induces chromosome instability and DNA double strand breaks in human lung cells

    International Nuclear Information System (INIS)

    Xie Hong; Holmes, Amie L.; Young, Jamie L.; Qin Qin; Joyce, Kellie; Pelsue, Stephen C.; Peng Cheng; Wise, Sandra S.; Jeevarajan, Antony S.; Wallace, William T.; Hammond, Dianne; Wise, John Pierce

    2009-01-01

    Hexavalent chromium Cr(VI) is a respiratory toxicant and carcinogen, with solubility playing an important role in its carcinogenic potential. Zinc chromate, a water insoluble or 'particulate' Cr(VI) compound, has been shown to be carcinogenic in epidemiology studies and to induce tumors in experimental animals, but its genotoxicity is poorly understood. Our study shows that zinc chromate induced concentration-dependent increases in cytotoxicity, chromosome damage and DNA double strand breaks in human lung cells. In response to zinc chromate-induced breaks, MRE11 expression was increased and ATM and ATR were phosphorylated, indicating that the DNA double strand break repair system was initiated in the cells. In addition, our data show that zinc chromate-induced double strand breaks were only observed in the G2/M phase population, with no significant amount of double strand breaks observed in G1 and S phase cells. These data will aid in understanding the mechanisms of zinc chromate toxicity and carcinogenesis

  1. Procedure for normalization of cDNA libraries

    Science.gov (United States)

    Bonaldo, Maria DeFatima; Soares, Marcelo Bento

    1997-01-01

    This invention provides a method to normalize a cDNA library constructed in a vector capable of being converted to single-stranded circles and capable of producing complementary nucleic acid molecules to the single-stranded circles comprising: (a) converting the cDNA library in single-stranded circles; (b) generating complementary nucleic acid molecules to the single-stranded circles; (c) hybridizing the single-stranded circles converted in step (a) with complementary nucleic acid molecules of step (b) to produce partial duplexes to an appropriate Cot; (e) separating the unhybridized single-stranded circles from the hybridized single-stranded circles, thereby generating a normalized cDNA library.

  2. Carbon ion induced DNA double-strand breaks in melanophore B{sub 16}

    Energy Technology Data Exchange (ETDEWEB)

    Wei Zengquan; Zhou Guangming; Wang Jufang; He Jing; Li Qiang; Li Wenjian; Xie Hongmei; Cai Xichen; Tao Huang; Dang Bingrong; Han Guangwu [Chinese Academy of Sciences, Lanzhou (China). Inst. of Modern Physics; Gao Qingxiang [Lanzhou Univ. (China)

    1997-09-01

    DNA double-strand breaks (DSBs) in melanophore B{sub 16} induced by plateau and extended Bragg peak of 75 MeV/u {sup 12}C{sup 6+} ions were studied by using a technique of inverse pulsed-field gel electrophoresis (PIGE). DNA fragment lengths were distributed in two ranges: the larger in 1.4 Mbp-3.2 Mbp and the smaller in less than 1.2 Mbp. It indicates that distribution of DNA fragments induced by heavy ion irradiation is not stochastic and there probably are sensitive sites to heavy ions in DNA molecules of B{sub 16}. Percentage of DNA released from plug (PR) increased and trended towards a quasi-plateau {proportional_to}85% as dose increased. Content of the larger fragments decreased and flattened with increasing dose while content of the smaller ones increased and trended towards saturation. (orig.)

  3. Carbon ion induced DNA double-strand breaks in melanophore B16

    International Nuclear Information System (INIS)

    Wei Zengquan; Zhou Guangming; Wang Jufang; He Jing; Li Qiang; Li Wenjian; Xie Hongmei; Cai Xichen; Tao Huang; Dang Bingrong; Han Guangwu

    1997-01-01

    DNA double-strand breaks (DSBs) in melanophore B 16 induced by plateau and extended Bragg peak of 75 MeV/u 12 C 6+ ions were studied by using a technique of inverse pulsed-field gel electrophoresis (PIGE). DNA fragment lengths were distributed in two ranges: the larger in 1.4 Mbp-3.2 Mbp and the smaller in less than 1.2 Mbp. It indicates that distribution of DNA fragments induced by heavy ion irradiation is not stochastic and there probably are sensitive sites to heavy ions in DNA molecules of B 16 . Percentage of DNA released from plug (PR) increased and trended towards a quasi-plateau ∝85% as dose increased. Content of the larger fragments decreased and flattened with increasing dose while content of the smaller ones increased and trended towards saturation. (orig.)

  4. Correlation between residual level of DNA double-strand breaks and the radiosensitivity of cancer cells

    International Nuclear Information System (INIS)

    Sun Jianxiang; Sun Weijian; Sui Jianli; Zhou Pingkun

    2008-01-01

    Objective: To understand the variation of the DNA double-strand break rejoining capacity among different cultured cancer cell lines and the primary cancer cells from brain cancer patients, and to explore the predictor of radiotherapy responses of cancers. Methods: DNA double-strand breaks (DSBs) were induced by 60 Co γ-irradiation. Pulsed-field gel electrophoresis was used to analyze the initial production and rejoining of DNA DSBs. Radiosensitivity was determined by in vitro assay of clonogenic-forming capacity. Results: A wide variation of radiosensitivity, e.g. the survival parameter of Do varied from 0.65 to 2.15 Gy, was displayed among the eight cell lines derived from different type of cancers. Although differential level of initial DNA DSBs induced by 20 Gy γ-rays was observed among various cell lines, it was not correlated with the radiosensitivity. The deficiency of DNA DSB rejoining in radiosensitive cell lines was shown either in the early rapid-rejoining phase (SX-10 cells) or in the late slow-rejoining phase (A2780 cells). A significant relationship was observed between the residual level of DNA DSBs measured at 2 h post-20 Gy irradiation and the cellular radiosensitivity (D 0 or SF 2 ). The kinetic curves of rejoining DNA DSBs in the primary human brain tumor cells indicated a variation on DSB rejoining capacity among different individual tumor. The residual level of DNA DSBs after 2 h of rejoining post 20 Gy irradiation in primary human brain tumor cells is compatible to the results obtained in vitro culture cancer cell lines. Conclusions: The residual level of DNA DSBs is correlated with radioresistance of cancer cells, and the residual DNA damage is a useful parameter in predicting the response of tumor tissue to radiotherapy. (authors)

  5. Electrophoresis examination of strand breaks in plasmid DNA induced by low-energy nitrogen ion irradiation

    International Nuclear Information System (INIS)

    Zhao Yong; Tan Zheng; Du Yanhua; Qiu Guanying

    2003-01-01

    To study the effect on plasmid DNA of heavy ion in the energy range of keV where nuclear stopping interaction becomes more important or even predominant, thin film of plasmid pGEM-3Zf(-) DNA was prepared on aluminum surface and irradiated in vacuum ( -3 Pa) by low-energy nitrogen ions with energy of 30 keV (LET=285 keV/μm) at various fluence ranging from 2 x 10 10 to 8.2 x 10 13 ions/cm 2 . DNA strand breaks were analyzed by neutral electrophoresis followed by quantification with image analysis software. Low-energy nitrogen ion irradiation induced single-, double- and multiple double-strand breaks (DSB) and multiple DSB as the dominating form of DNA damages. Moreover, the linear fluence-response relationship at a low fluence range suggests that DSBs are induced predominantly by single ion track. However, strand break production is limited to a short range in the irradiated samples

  6. New tools to study DNA double-strand break repair pathway choice.

    Directory of Open Access Journals (Sweden)

    Daniel Gomez-Cabello

    Full Text Available A broken DNA molecule is difficult to repair, highly mutagenic, and extremely cytotoxic. Such breaks can be repaired by homology-independent or homology-directed mechanisms. Little is known about the network that controls the repair pathway choice except that a licensing step for homology-mediated repair exists, called DNA-end resection. The choice between these two repair pathways is a key event for genomic stability maintenance, and an imbalance of the ratio is directly linked with human diseases, including cancer. Here we present novel reporters to study the balance between both repair options in human cells. In these systems, a double-strand break can be alternatively repaired by homology-independent or -dependent mechanisms, leading to the accumulation of distinct fluorescent proteins. These reporters thus allow the balance between both repair pathways to be analyzed in different experimental setups. We validated the reporters by analyzing the effect of protein downregulation of the DNA end resection and non-homologous end-joining pathways. Finally, we analyzed the role of the DNA damage response on double-strand break (DSB repair mechanism selection. Our reporters could be used in the future to understand the roles of specific factors, whole pathways, or drugs in DSB repair pathway choice, or for genome-wide screening. Moreover, our findings can be applied to increase gene-targeting efficiency, making it a beneficial tool for a broad audience in the biological sciences.

  7. New tools to study DNA double-strand break repair pathway choice.

    Science.gov (United States)

    Gomez-Cabello, Daniel; Jimeno, Sonia; Fernández-Ávila, María Jesús; Huertas, Pablo

    2013-01-01

    A broken DNA molecule is difficult to repair, highly mutagenic, and extremely cytotoxic. Such breaks can be repaired by homology-independent or homology-directed mechanisms. Little is known about the network that controls the repair pathway choice except that a licensing step for homology-mediated repair exists, called DNA-end resection. The choice between these two repair pathways is a key event for genomic stability maintenance, and an imbalance of the ratio is directly linked with human diseases, including cancer. Here we present novel reporters to study the balance between both repair options in human cells. In these systems, a double-strand break can be alternatively repaired by homology-independent or -dependent mechanisms, leading to the accumulation of distinct fluorescent proteins. These reporters thus allow the balance between both repair pathways to be analyzed in different experimental setups. We validated the reporters by analyzing the effect of protein downregulation of the DNA end resection and non-homologous end-joining pathways. Finally, we analyzed the role of the DNA damage response on double-strand break (DSB) repair mechanism selection. Our reporters could be used in the future to understand the roles of specific factors, whole pathways, or drugs in DSB repair pathway choice, or for genome-wide screening. Moreover, our findings can be applied to increase gene-targeting efficiency, making it a beneficial tool for a broad audience in the biological sciences.

  8. Seasonal and PAH impact on DNA strand-break levels in gills of transplanted zebra mussels.

    Science.gov (United States)

    Michel, Cécile; Bourgeault, Adeline; Gourlay-Francé, Catherine; Palais, Frédéric; Geffard, Alain; Vincent-Hubert, Françoise

    2013-06-01

    Genotoxicity endpoints are useful tools to biomonitor the physicochemical and biological quality of aquatic ecosystems. A caging study on the freshwater bivalve Dreissena polymorpha was planned to run over four seasons in the Seine River basin in order to assess whether DNA damage measured in transplanted mussels to polluted area vary according to seasonal changes. Three sites were chosen along the Seine River, one upstream from Paris and two downstream, corresponding to a chemical gradient of water contamination. The DNA strand break (comet assay) and chromosomal damage (micronucleus test) were measured in caged mussels at each site and in winter, spring and summer, along with PAH water contamination, PAH bioaccumulation, the mussel condition index (CI), the gonado-somatic index (GSI) and the filtration rate (FR). The level of DNA strand break measured in winter was low and increased in spring, concomitantly with FR and GSI. Over the same period, micronucleus (MN) frequency and PAH bioaccumulation decreased significantly in caged mussels, with both parameters positively correlated to each other. DNA strand-break levels and MN frequencies showed inter-site variations corresponding to the chemical contamination gradient. These two genotoxicity endpoints usefully complement each other in field studies. These results show that the MN test and comet assay, when applied to gill cells of caged zebra mussels, are sensitive tools for freshwater genotoxicity monitoring. Copyright © 2013. Published by Elsevier Inc.

  9. Human SIRT6 promotes DNA end resection through CtIP deacetylation

    DEFF Research Database (Denmark)

    Kaidi, Abderrahmane; Weinert, Brian T; Choudhary, Chunaram

    2010-01-01

    the accumulation of replication protein A and single-stranded DNA at DNA damage sites, reduced rates of homologous recombination, and sensitized cells to DSB-inducing agents. We identified the DSB resection protein CtIP [C-terminal binding protein (CtBP) interacting protein] as a SIRT6 interaction partner......SIRT6 belongs to the sirtuin family of protein lysine deacetylases, which regulate aging and genome stability. We found that human SIRT6 has a role in promoting DNA end resection, a crucial step in DNA double-strand break (DSB) repair by homologous recombination. SIRT6 depletion impaired...

  10. Transient RNA-DNA Hybrids Are Required for Efficient Double-Strand Break Repair.

    Science.gov (United States)

    Ohle, Corina; Tesorero, Rafael; Schermann, Géza; Dobrev, Nikolay; Sinning, Irmgard; Fischer, Tamás

    2016-11-03

    RNA-DNA hybrids are a major internal cause of DNA damage within cells, and their degradation by RNase H enzymes is important for maintaining genomic stability. Here, we identified an unexpected role for RNA-DNA hybrids and RNase H enzymes in DNA repair. Using a site-specific DNA double-strand break (DSB) system in Schizosaccharomyces pombe, we showed that RNA-DNA hybrids form as part of the homologous-recombination (HR)-mediated DSB repair process and that RNase H enzymes are essential for their degradation and efficient completion of DNA repair. Deleting RNase H stabilizes RNA-DNA hybrids around DSB sites and strongly impairs recruitment of the ssDNA-binding RPA complex. In contrast, overexpressing RNase H1 destabilizes these hybrids, leading to excessive strand resection and RPA recruitment and to severe loss of repeat regions around DSBs. Our study challenges the existing model of HR-mediated DSB repair and reveals a surprising role for RNA-DNA hybrids in maintaining genomic stability. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Fine resolution mapping of double-strand break sites for human ribosomal DNA units

    Directory of Open Access Journals (Sweden)

    Bernard J. Pope

    2016-12-01

    Full Text Available DNA breakage arises during a variety of biological processes, including transcription, replication and genome rearrangements. In the context of disease, extensive fragmentation of DNA has been described in cancer cells and during early stages of neurodegeneration (Stephens et al., 2011 Stephens et al. (2011 [5]; Blondet et al., 2001 Blondet et al. (2001 [1]. Stults et al. (2009 Stults et al. (2009 [6] reported that human rDNA gene clusters are hotspots for recombination and that rDNA restructuring is among the most common chromosomal alterations in adult solid tumours. As such, analysis of rDNA regions is likely to have significant prognostic and predictive value, clinically. Tchurikov et al. (2015a, 2016 Tchurikov et al. (2015a, 2016 [7,9] have made major advances in this direction, reporting that sites of human genome double-strand breaks (DSBs occur frequently at sites in rDNA that are tightly linked with active transcription - the authors used a RAFT (rapid amplification of forum termini protocol that selects for blunt-ended sites. They reported the relative frequency of these rDNA DSBs within defined co-ordinate ‘windows’ of varying size and made these data (as well as the relevant ‘raw’ sequencing information available to the public (Tchurikov et al., 2015b. Assay designs targeting rDNA DSB hotspots will benefit greatly from the publication of break sites at greater resolution. Here, we re-analyse public RAFT data and make available rDNA DSB co-ordinates to the single-nucleotide level.

  12. Characterization of hepatic DNA damage induced in rats by the pyrrolizidine alkaloid monocrotaline

    Energy Technology Data Exchange (ETDEWEB)

    Petry, T.W.; Bowden, G.T.; Huxtable, R.J.; Sipes, I.G.

    1984-04-01

    Hepatic DNA damage induced by the pyrrolizidine alkaloid monocrotaline was evaluated following i.p. administration to adult male Sprague-Dawley rats. Animals were treated with various doses ranging upward from 5 mg/kg, and hepatic nuclei were isolated 4 hr later. Hepatic nuclei were used as the DNA source in all experiments. DNA damage was characterized by the alkaline elution technique. A mixture of DNA-DNA interstrand cross-links and DNA-protein cross-links was induced. Following an injection of monocrotaline, 30 mg/kg i.p., DNA-DNA interstrand cross-linking reached a maximum within 12 hr or less and thereafter decreased over a protracted period of time. By 96 hr postadministration, the calculated cross-linking factor was no longer statistically different from zero. No evidence for the induction of DNA single-strand breaks was observed, although the presence of small numbers of DNA single-strand breaks could have been masked by the overwhelming predominance of DNA cross-links. These DNA cross-links may be related to the hepatocarcinogenic, hepatotoxic, and/or antimitotic effects of monocrotaline.

  13. What is DNA damage? Risk of double-strand break and its individual variation

    International Nuclear Information System (INIS)

    Hanaoka, Fumio

    2011-01-01

    The author discusses about the title subject in an aspect of possible spreading of Fukushima radioactive substances mainly in eastern north area of Japan where carcinogenic incidence may be increased as the ionizing radiation injures the gene (DNA). At first, explained is that cancer is a disease of genes with infinitive proliferation of cells, there are systems to prevent it by repairing the damaged DNA and by other mechanisms like exclusion of cells damaged too much or killing cancer cells with immunity, and individual difference of the repairing capability exists. DNA is always damaged even under ordinary living conditions by sunlight UV ray, cosmic radiation and chemicals externally and by active oxygen species and thermal water movement internally. Concomitantly, DNA damaged by many mechanisms like deletion, dimmer formation, chemical modification of bases, single and double strand breaks is always repaired by concerned enzymes. Double-strand damage by high-energy radiation like gamma ray is quite risky because its repair sometimes accompanies error as concerned enzymes are from more multiple genes. There are many syndromes derived from gene deficit of those repairing enzymes. The diseases concerned with repair of the double-strand damage teach that fetus and infant are more sensitive to radiation than adult as their young body cells are more actively synthesizing DNA, during which, if DNA is injured by radiation, risk of repairing error is higher as the double strand break more frequently occurs. It cannot be simply said that a certain radiation dose limit is generally permissible. There is an individual difference of radiation sensitivity and a possible method to find out an individual weak to radiation is the lymphocyte screening in vitro using anticancer bleomycin which breaks the double strand. (T.T.)

  14. Transient increase in DNA strand breaks in car refinishing spray painters.

    Science.gov (United States)

    Fuchs, J; Hengstler, J G; Hummrich, F; Oesch, F

    1996-12-01

    Genotoxic risk was evaluated for spray painters possibly exposed to polyester resins and acrylic enamel-based paints in automotive body repair shops. DNA (deoxyribonucleic acid) strand breaks and alkali-labile sites were measured in peripheral mononuclear blood cells ex vivo using the alkaline elution method. Samples of venous blood were taken on Monday after a free weekend and again on Friday from 38 male and 1 female spray painters and compared with the blood samples from 36 male and 3 female referents. The elution rate of each DNA sample was standardized by dividing it by the elution rate obtained from simultaneously sampled untreated Chinese hamster V79 cells. The spray painters showed a significantly (P < 0.001) higher mean level of strand breaks and alkali-labile sites in the Friday samples [2.05 (SE 0.17)] compared with the Monday samples [1.38 (SE 0.07)]. The Monday results of the spray painters were not distinguishable from the referents' [1.41 (SE 0.10)]. The increase in DNA damage was numerically higher, but only weakly significant (use of masks, P < 0.05) or nonsignificant (use of spray booths), when fewer safety provisions were taken. A significant increase in DNA strand breaks and alkali-labile sites was found in spray painters after a week's work. However, DNA damage seems to be reversible. The use of modern safety equipment seems to affect DNA damage only marginally. There is an urgent need to identify the genotoxic chemicals in the occupational environment of spray painters and to develop corresponding satisfactory safety measures.

  15. Method for detecting DNA strand breaks in mammalian cells using the Deinococcus radiodurans PprA protein

    International Nuclear Information System (INIS)

    Satoh, Katsuya; Wada, Seiichi; Kikuchi, Masahiro; Funayama, Tomoo; Narumi, Issay; Kobayashi, Yasuhiko

    2006-01-01

    In a previous study, we identified the novel protein PprA that plays a critical role in the radiation resistance of Deinococcus radiodurans. In this study, we focussed on the ability of PprA protein to recognize and bind to double-stranded DNA carrying strand breaks, and attempted to visualize radiation-induced DNA strand breaks in mammalian cultured cells by employing PprA protein using an immunofluorescence technique. Increased PprA protein binding to CHO-K1 nuclei immediately following irradiation suggests the protein is binding to DNA strand breaks. By altering the cell permeabilization conditions, PprA protein binding to CHO-K1 mitochondria, which is probably resulted from DNA strand break immediately following irradiation, was also detected. The method developed and detailed in this study will be useful in evaluating DNA damage responses in cultured cells, and could also be applicable to genotoxic tests in the environmental and pharmaceutical fields

  16. Effects of heavy ions on inactivation and DNA double strand breaks in Deinococcus radiodurans R1.

    Science.gov (United States)

    Zimmermann, H; Schafer, M; Schmitz, C; Bucker, H

    1994-10-01

    Inactivation and double strand break (dsb) induction after heavy ion irradiation were studied in stationary phase cells of the highly radiation resistant bacterium Deinococcus radiodurans R1. There is evidence that the radiation sensitivity of this bacterium is nearly independent on energy in the range of up to 15 MeV/u for lighter ions (Ar). The responses to dsb induction for charged particles show direct relationship between increasing radiation dose and residual intact DNA.

  17. Assembly and function of DNA double-strand break repair foci in mammalian cells

    DEFF Research Database (Denmark)

    Bekker-Jensen, Simon; Mailand, Niels

    2010-01-01

    DNA double-strand breaks (DSBs) are among the most cytotoxic types of DNA damage, which if left unrepaired can lead to mutations or gross chromosomal aberrations, and promote the onset of diseases associated with genomic instability such as cancer. One of the most discernible hallmarks...... of the cellular response to DSBs is the accumulation and local concentration of a plethora of DNA damage signaling and repair proteins in the vicinity of the lesion, initiated by ATM-mediated phosphorylation of H2AX (¿-H2AX) and culminating in the generation of distinct nuclear compartments, so-called Ionizing...... of such DNA repair foci still remains limited. In this review, we focus on recent discoveries on the mechanisms that govern the formation of IRIF, and discuss the implications of such findings in light of our understanding of the physiological importance of these structures....

  18. [Bacterial infections as seen from the eukaryotic genome: DNA double strand breaks, inflammation and cancer].

    Science.gov (United States)

    Lemercier, Claudie

    2014-01-01

    An increasing number of studies report that infection by pathogenic bacteria alters the host genome, producing highly hazardous DNA double strand breaks for the eukaryotic cell. Even when DNA repair occurs, it often leaves "scars" on chromosomes that might generate genomic instability at the next cell division. Chronic intestinal inflammation promotes the expansion of genotoxic bacteria in the intestinal microbiote which in turn triggers tumor formation and colon carcinomas. Bacteria act at the level of the host DNA repair machinery. They also highjack the host cell cycle to allow themselves time for replication in an appropriate reservoir. However, except in the case of bacteria carrying the CDT nuclease, the molecular mechanisms responsible for DNA lesions are not well understood, even if reactive oxygen species released during infection make good candidates. © 2014 médecine/sciences – Inserm.

  19. Deficiency of Double-Strand DNA Break Repair Does Not Impair Mycobacterium tuberculosis Virulence in Multiple Animal Models of Infection

    OpenAIRE

    Heaton, Brook E.; Barkan, Daniel; Bongiorno, Paola; Karakousis, Petros C.; Glickman, Michael S.

    2014-01-01

    Mycobacterium tuberculosis persistence within its human host requires mechanisms to resist the effector molecules of host immunity, which exert their bactericidal effects through damaging pathogen proteins, membranes, and DNA. Substantial evidence indicates that bacterial pathogens, including M. tuberculosis, require DNA repair systems to repair the DNA damage inflicted by the host during infection, but the role of double-strand DNA break (DSB) repair systems is unclear. Double-strand DNA bre...

  20. Mycobacterial nonhomologous end joining mediates mutagenic repair of chromosomal double-strand DNA breaks.

    Science.gov (United States)

    Stephanou, Nicolas C; Gao, Feng; Bongiorno, Paola; Ehrt, Sabine; Schnappinger, Dirk; Shuman, Stewart; Glickman, Michael S

    2007-07-01

    Bacterial nonhomologous end joining (NHEJ) is a recently described DNA repair pathway best characterized in mycobacteria. Bacterial NHEJ proteins LigD and Ku have been analyzed biochemically, and their roles in linear plasmid repair in vivo have been verified genetically; yet the contributions of NHEJ to repair of chromosomal DNA damage are unknown. Here we use an extensive set of NHEJ- and homologous recombination (HR)-deficient Mycobacterium smegmatis strains to probe the importance of HR and NHEJ in repairing diverse types of chromosomal DNA damage. An M. smegmatis Delta recA Delta ku double mutant has no apparent growth defect in vitro. Loss of the NHEJ components Ku and LigD had no effect on sensitivity to UV radiation, methyl methanesulfonate, or quinolone antibiotics. NHEJ deficiency had no effect on sensitivity to ionizing radiation in logarithmic- or early-stationary-phase cells but was required for ionizing radiation resistance in late stationary phase in 7H9 but not LB medium. In addition, NHEJ components were required for repair of I-SceI mediated chromosomal double-strand breaks (DSBs), and in the absence of HR, the NHEJ pathway rapidly mutates the chromosomal break site. The molecular outcomes of NHEJ-mediated chromosomal DSB repair involve predominantly single-nucleotide insertions at the break site, similar to previous findings using plasmid substrates. These findings demonstrate that prokaryotic NHEJ is specifically required for DSB repair in late stationary phase and can mediate mutagenic repair of homing endonuclease-generated chromosomal DSBs.

  1. Three classes of recurrent DNA break clusters in brain progenitors identified by 3D proximity-based break joining assay.

    Science.gov (United States)

    Wei, Pei-Chi; Lee, Cheng-Sheng; Du, Zhou; Schwer, Bjoern; Zhang, Yuxiang; Kao, Jennifer; Zurita, Jeffrey; Alt, Frederick W

    2018-02-20

    We recently discovered 27 recurrent DNA double-strand break (DSB) clusters (RDCs) in mouse neural stem/progenitor cells (NSPCs). Most RDCs occurred across long, late-replicating RDC genes and were found only after mild inhibition of DNA replication. RDC genes share intriguing characteristics, including encoding surface proteins that organize brain architecture and neuronal junctions, and are genetically implicated in neuropsychiatric disorders and/or cancers. RDC identification relies on high-throughput genome-wide translocation sequencing (HTGTS), which maps recurrent DSBs based on their translocation to "bait" DSBs in specific chromosomal locations. Cellular heterogeneity in 3D genome organization allowed unequivocal identification of RDCs on 14 different chromosomes using HTGTS baits on three mouse chromosomes. Additional candidate RDCs were also implicated, however, suggesting that some RDCs were missed. To more completely identify RDCs, we exploited our finding that joining of two DSBs occurs more frequently if they lie on the same cis chromosome. Thus, we used CRISPR/Cas9 to introduce specific DSBs into each mouse chromosome in NSPCs that were used as bait for HTGTS libraries. This analysis confirmed all 27 previously identified RDCs and identified many new ones. NSPC RDCs fall into three groups based on length, organization, transcription level, and replication timing of genes within them. While mostly less robust, the largest group of newly defined RDCs share many intriguing characteristics with the original 27. Our findings also revealed RDCs in NSPCs in the absence of induced replication stress, and support the idea that the latter treatment augments an already active endogenous process.

  2. Role of cyclobutane dimers in UV-denaturation of DNA

    International Nuclear Information System (INIS)

    Zavil'gel'skij, G.B.; Zuev, A.V.

    1978-01-01

    UV irradiation of double-stranded DNA produces local denatured regions. The evidence presented indicates that these single-stranded regions arise from photoproducts other than pyrimidine dimers. The irradiation of T2 DNA at 8x10 4 erg/mm 2 (254 nm) produces 6-8% thymine dimers, amd Tsub(mel) drops by 12-14 deg C, accompanied by a significant broadening of the transition profile. The kinetics of denatured region formation and lowering Tsub(mel) corresponds to that of formation of crosslinkages and differs markedly from the kinetics of formation of cyclobutane pyrimidine dimers. Treatment of UV-irradiated DNA with light in the presence of yeast photoreactivating enzyme monomerizes almost all thymine dimers but does not change the Tsub(mel). Local denatured regions are detected in UV-irradiated DNA and are absent from AcPhM-sensibilized DNA, which contains 20-25% thymine dimers, as determined by the accridine orange fluorescence technique. S1 nuclease from Aspergillis oryzae produces single-strand breaks in UV-irradiated DNA of phage PM2 but is not active on AcPhM-treated PM2 DNA, which contains about 50 thymine dimers. It is supposed that the formation of a cyclobutane dimer only weakens the hydrogen bonds in the AT base pair rather than breaks them. Local denatured regions are thought to arise from the accumulation in UV-irradiated DNA (254 nm) of the sufficient number of photoproducts with impaired ability to base pairing

  3. Persistent damaged bases in DNA allow mutagenic break repair in Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Jessica M Moore

    2017-07-01

    Full Text Available Bacteria, yeast and human cancer cells possess mechanisms of mutagenesis upregulated by stress responses. Stress-inducible mutagenesis potentially accelerates adaptation, and may provide important models for mutagenesis that drives cancers, host pathogen interactions, antibiotic resistance and possibly much of evolution generally. In Escherichia coli repair of double-strand breaks (DSBs becomes mutagenic, using low-fidelity DNA polymerases under the control of the SOS DNA-damage response and RpoS general stress response, which upregulate and allow the action of error-prone DNA polymerases IV (DinB, II and V to make mutations during repair. Pol IV is implied to compete with and replace high-fidelity DNA polymerases at the DSB-repair replisome, causing mutagenesis. We report that up-regulated Pol IV is not sufficient for mutagenic break repair (MBR; damaged bases in the DNA are also required, and that in starvation-stressed cells, these are caused by reactive-oxygen species (ROS. First, MBR is reduced by either ROS-scavenging agents or constitutive activation of oxidative-damage responses, both of which reduce cellular ROS levels. The ROS promote MBR other than by causing DSBs, saturating mismatch repair, oxidizing proteins, or inducing the SOS response or the general stress response. We find that ROS drive MBR through oxidized guanines (8-oxo-dG in DNA, in that overproduction of a glycosylase that removes 8-oxo-dG from DNA prevents MBR. Further, other damaged DNA bases can substitute for 8-oxo-dG because ROS-scavenged cells resume MBR if either DNA pyrimidine dimers or alkylated bases are induced. We hypothesize that damaged bases in DNA pause the replisome and allow the critical switch from high fidelity to error-prone DNA polymerases in the DSB-repair replisome, thus allowing MBR. The data imply that in addition to the indirect stress-response controlled switch to MBR, a direct cis-acting switch to MBR occurs independently of DNA breakage

  4. Persistent damaged bases in DNA allow mutagenic break repair in Escherichia coli.

    Science.gov (United States)

    Moore, Jessica M; Correa, Raul; Rosenberg, Susan M; Hastings, P J

    2017-07-01

    Bacteria, yeast and human cancer cells possess mechanisms of mutagenesis upregulated by stress responses. Stress-inducible mutagenesis potentially accelerates adaptation, and may provide important models for mutagenesis that drives cancers, host pathogen interactions, antibiotic resistance and possibly much of evolution generally. In Escherichia coli repair of double-strand breaks (DSBs) becomes mutagenic, using low-fidelity DNA polymerases under the control of the SOS DNA-damage response and RpoS general stress response, which upregulate and allow the action of error-prone DNA polymerases IV (DinB), II and V to make mutations during repair. Pol IV is implied to compete with and replace high-fidelity DNA polymerases at the DSB-repair replisome, causing mutagenesis. We report that up-regulated Pol IV is not sufficient for mutagenic break repair (MBR); damaged bases in the DNA are also required, and that in starvation-stressed cells, these are caused by reactive-oxygen species (ROS). First, MBR is reduced by either ROS-scavenging agents or constitutive activation of oxidative-damage responses, both of which reduce cellular ROS levels. The ROS promote MBR other than by causing DSBs, saturating mismatch repair, oxidizing proteins, or inducing the SOS response or the general stress response. We find that ROS drive MBR through oxidized guanines (8-oxo-dG) in DNA, in that overproduction of a glycosylase that removes 8-oxo-dG from DNA prevents MBR. Further, other damaged DNA bases can substitute for 8-oxo-dG because ROS-scavenged cells resume MBR if either DNA pyrimidine dimers or alkylated bases are induced. We hypothesize that damaged bases in DNA pause the replisome and allow the critical switch from high fidelity to error-prone DNA polymerases in the DSB-repair replisome, thus allowing MBR. The data imply that in addition to the indirect stress-response controlled switch to MBR, a direct cis-acting switch to MBR occurs independently of DNA breakage, caused by ROS

  5. Enzymatic repair of uv-irradiated DNA in vitro

    International Nuclear Information System (INIS)

    Hamilton, L.D.; Mahler, I.; Grossman, L.

    1975-01-01

    Excision repair of uv-damaged Bacillus subtilis transforming DNA has been carried out by a sequential enzyme system in vitro. Incision adjacent to the pyrimidine dimer in the DNA strand by correndonuclease II-initiated excision of the damage by the 5' → 3'-directed exonuclease of the Micrococcus luteus DNA polymerase. Reinsertion of nucleotides into the gap in the strand by the DNA polymerase at 10 0 C terminated in a single-strand break which was sealed by a polynucleotide ligase, thereby repairing the DNA strand. This restored biological activity to damaged DNA up to doses resulting in 60 percent inactivation of transforming activity. At higher doses, less repair was achieved, due to the development of double-strand breaks during the in vitro incision and excision steps

  6. Regulation of rDNA stability by sumoylation

    DEFF Research Database (Denmark)

    Eckert-Boulet, Nadine; Lisby, Michael

    2009-01-01

    , the eukaryotic cell has evolved mechanisms to favor equal sister chromatid exchange (SCE) and suppress unequal SCE, single-strand annealing and break-induced replication. In the budding yeast Saccharomyces cerevisiae, the tight regulation of homologous recombination at the rDNA locus is dependent on the Smc5-Smc......Repair of DNA lesions by homologous recombination relies on the copying of genetic information from an intact homologous sequence. However, many eukaryotic genomes contain repetitive sequences such as the ribosomal gene locus (rDNA), which poses a risk for illegitimate recombination. Therefore......6 complex and sumoylation of Rad52, which directs DNA double-strand breaks in the rDNA to relocalize from within the nucleolus to the nucleoplasm before association with the recombination machinery. The relocalization before repair is important for maintaining rDNA stability. The focus...

  7. DNA Damage Signals and Space Radiation Risk

    Science.gov (United States)

    Cucinotta, Francis A.

    2011-01-01

    Space radiation is comprised of high-energy and charge (HZE) nuclei and protons. The initial DNA damage from HZE nuclei is qualitatively different from X-rays or gamma rays due to the clustering of damage sites which increases their complexity. Clustering of DNA damage occurs on several scales. First there is clustering of single strand breaks (SSB), double strand breaks (DSB), and base damage within a few to several hundred base pairs (bp). A second form of damage clustering occurs on the scale of a few kbp where several DSB?s may be induced by single HZE nuclei. These forms of damage clusters do not occur at low to moderate doses of X-rays or gamma rays thus presenting new challenges to DNA repair systems. We review current knowledge of differences that occur in DNA repair pathways for different types of radiation and possible relationships to mutations, chromosomal aberrations and cancer risks.

  8. Early models of DNA damage formation

    International Nuclear Information System (INIS)

    Śmiałek, Małgorzata A

    2012-01-01

    Quantification of DNA damage, induced by various types of incident radiation as well as chemical agents, has been the subject of many theoretical and experimental studies, supporting the development of modern cancer therapy. The primary observations showed that many factors can lead to damage of DNA molecules. It became clear that the development of experimental techniques for exploring this phenomenon is required. Another problem was simultaneously dealt with, anticipating on how the damage is distributed within the double helix of the DNA molecule and how the single strand break formation and accumulation can influence the lethal double strand break formation. In this work the most important probabilistic models for DNA strand breakage and damage propagation are summarized and compared.

  9. Choreography of the DNA damage response

    DEFF Research Database (Denmark)

    Lisby, Michael; Barlow, Jacqueline H; Burgess, Rebecca C

    2004-01-01

    recombination machinery assembles at the site. Unlike the response to DSBs, Mre11 and recombination proteins are not recruited to hydroxyurea-stalled replication forks unless the forks collapse. The cellular response to DSBs and DNA replication stress is likely directed by the Mre11 complex detecting......DNA repair is an essential process for preserving genome integrity in all organisms. In eukaryotes, recombinational repair is choreographed by multiprotein complexes that are organized into centers (foci). Here, we analyze the cellular response to DNA double-strand breaks (DSBs) and replication...... stress in Saccharomyces cerevisiae. The Mre11 nuclease and the ATM-related Tel1 kinase are the first proteins detected at DSBs. Next, the Rfa1 single-strand DNA binding protein relocalizes to the break and recruits other key checkpoint proteins. Later and only in S and G2 phase, the homologous...

  10. Tailoring Thermal Conductivity of Single-stranded Carbon-chain Polymers through Atomic Mass Modification.

    Science.gov (United States)

    Liao, Quanwen; Zeng, Lingping; Liu, Zhichun; Liu, Wei

    2016-10-07

    Tailoring the thermal conductivity of polymers is central to enlarge their applications in the thermal management of flexible integrated circuits. Progress has been made over the past decade by fabricating materials with various nanostructures, but a clear relationship between various functional groups and thermal properties of polymers remains to be established. Here, we numerically study the thermal conductivity of single-stranded carbon-chain polymers with multiple substituents of hydrogen atoms through atomic mass modification. We find that their thermal conductivity can be tuned by atomic mass modifications as revealed through molecular dynamics simulations. The simulation results suggest that heavy homogeneous substituents do not assist heat transport and trace amounts of heavy substituents can in fact hinder heat transport substantially. Our analysis indicates that carbon chain has the biggest contribution (over 80%) to the thermal conduction in single-stranded carbon-chain polymers. We further demonstrate that atomic mass modifications influence the phonon bands of bonding carbon atoms, and the discrepancies of phonon bands between carbon atoms are responsible for the remarkable drops in thermal conductivity and large thermal resistances in carbon chains. Our study provides fundamental insight into how to tailor the thermal conductivity of polymers through variable substituents.

  11. Atrazine Triggers DNA Damage Response and Induces DNA Double-Strand Breaks in MCF-10A Cells

    Directory of Open Access Journals (Sweden)

    Peixin Huang

    2015-06-01

    Full Text Available Atrazine, a pre-emergent herbicide in the chloro-s-triazine family, has been widely used in crop lands and often detected in agriculture watersheds, which is considered as a potential threat to human health. Although atrazine and its metabolites showed an elevated incidence of mammary tumors in female Sprague–Dawley (SD rats, no molecular evidence was found relevant to its carcinogenesis in humans. This study aims to determine whether atrazine could induce the expression of DNA damage response-related proteins in normal human breast epithelial cells (MCF-10A and to examine the cytotoxicity of atrazine at a molecular level. Our results indicate that a short-term exposure of MCF-10A to an environmentally-detectable concentration of atrazine (0.1 µg/mL significantly increased the expression of tumor necrosis factor receptor-1 (TNFR1 and phosphorylated Rad17 in the cells. Atrazine treatment increased H2AX phosphorylation (γH2AX and the formation of γH2AX foci in the nuclei of MCF-10A cells. Atrazine also sequentially elevated DNA damage checkpoint proteins of ATM- and RAD3-related (ATR, ATRIP and phospho-Chk1, suggesting that atrazine could induce DNA double-strand breaks and trigger the DNA damage response ATR-Chk1 pathway in MCF-10A cells. Further investigations are needed to determine whether atrazine-triggered DNA double-strand breaks and DNA damage response ATR-Chk1 pathway occur in vivo.

  12. DNA and chromosome breaks induced by 123I-estrogen in CHO cells

    International Nuclear Information System (INIS)

    Schwartz, J.L.

    1997-01-01

    The effects of the Auger electron-emitting isotope I-123, covalently bound to estrogen, on DNA single- and double-strand breakage and on chromosome breakage was determined in estrogen positive Chinese hamster ovary (CHO-ER) cells. Exposure to the 123 I-estrogen induced both single- and double-strand breaks with a ratio of single- to double-strand breaks of 2.2. The corresponding ratio with 60 Co gamma rays was 15.6. The dose-response was biphasic suggesting that either receptor sites are saturated at high does, or that there is a nonrandom distribution of breaks induced by the 123 I-estrogen. The 123 I-estrogen treatment induced chromosome aberrations with an efficiency of about 1 aberration for each 1,000 disintegrations per cell. This corresponds to the mean lethal dose of 123 I-estrogen for these cells suggesting that the lethal event induced by the Auger electron emitter bound to estrogen is a chromosome aberration. Most of the chromosome-type aberrations were dicentrics and rings, suggesting that 123 I-estrogen-induced chromosome breaks are rejoined. The F-ratio, the ratio of dicentrics to centric rings, was 5.8 ± 1.7, which is similar to that seen with high LET radiations. Their results suggest that I-123 bound to estrogen is an efficient clastogenic agent, that the cytotoxic damage produced by I-123 bound to estrogen is very like high LET-induced damage, and the I-123 in the estrogen-receptor-DNA complex is probably in close proximity to the sugar-phosphate backbone of the DNA

  13. Methylproamine protects against ionizing radiation by preventing DNA double-strand breaks

    International Nuclear Information System (INIS)

    Sprung, Carl N.; Vasireddy, Raja S.; Karagiannis, Tom C.; Loveridge, Shanon J.; Martin, Roger F.; McKay, Michael J.

    2010-01-01

    Purpose: The majority of cancer patients will receive radiotherapy (RT), therefore, investigations into advances of this modality are important. Conventional RT dose intensities are limited by adverse responses in normal tissues and a primary goal is to ameliorate adverse normal tissue effects. The aim of these experiments is to further our understanding regarding the mechanism of radioprotection by the DNA minor groove binder, methylproamine, in a cellular context at the DNA level. Materials and methods: We used immunocytochemical methods to measure the accumulation of phosphorylated H2AX (γH2AX) foci following ionizing radiation (IR) in patient-derived lymphoblastoid cells exposed to methylproamine. Furthermore, we performed pulsed field gel electrophoresis DNA damage and repair assays to directly interrogate the action of methylproamine on DNA in irradiated cells. Results: We found that methylproamine-treated cells had fewer γH2AX foci after IR compared to untreated cells. Also, the presence of methylproamine decreased the amount of lower molecular weight DNA entering the gel as shown by the pulsed field gel electrophoresis assay. Conclusions: These results suggest that methylproamine acts by preventing the formation of DNA double-strand breaks (dsbs) and support the hypothesis that radioprotection by methylproamine is mediated, at least in part, by decreasing initial DNA damage.

  14. Sumoylation influences DNA break repair partly by increasing the solubility of a conserved end resection protein.

    Directory of Open Access Journals (Sweden)

    Prabha Sarangi

    2015-01-01

    Full Text Available Protein modifications regulate both DNA repair levels and pathway choice. How each modification achieves regulatory effects and how different modifications collaborate with each other are important questions to be answered. Here, we show that sumoylation regulates double-strand break repair partly by modifying the end resection factor Sae2. This modification is conserved from yeast to humans, and is induced by DNA damage. We mapped the sumoylation site of Sae2 to a single lysine in its self-association domain. Abolishing Sae2 sumoylation by mutating this lysine to arginine impaired Sae2 function in the processing and repair of multiple types of DNA breaks. We found that Sae2 sumoylation occurs independently of its phosphorylation, and the two modifications act in synergy to increase soluble forms of Sae2. We also provide evidence that sumoylation of the Sae2-binding nuclease, the Mre11-Rad50-Xrs2 complex, further increases end resection. These findings reveal a novel role for sumoylation in DNA repair by regulating the solubility of an end resection factor. They also show that collaboration between different modifications and among multiple substrates leads to a stronger biological effect.

  15. The Ku heterodimer and the metabolism of single-ended DNA double-strand breaks.

    Science.gov (United States)

    Balestrini, Alessia; Ristic, Dejan; Dionne, Isabelle; Liu, Xiao Z; Wyman, Claire; Wellinger, Raymund J; Petrini, John H J

    2013-06-27

    Single-ended double-strand breaks (DSBs) are a common form of spontaneous DNA break, generated when the replisome encounters a discontinuity in the DNA template. Given their prevalence, understanding the mechanisms governing the fate(s) of single-ended DSBs is important. We describe the influence of the Ku heterodimer and Mre11 nuclease activity on processing of single-ended DSBs. Separation-of-function alleles of yku70 were derived that phenocopy Ku deficiency with respect to single-ended DSBs but remain proficient for NHEJ. The Ku mutants fail to regulate Exo1 activity, and bypass the requirement for Mre11 nuclease activity in the repair of camptothecin-induced single-ended DSBs. Ku mutants exhibited reduced affinity for DNA ends, manifest as both reduced end engagement and enhanced probability of diffusing inward on linear DNA. This study reveals an interplay between Ku and Mre11 in the metabolism of single-ended DSBs that is distinct from repair pathway choice at double-ended DSBs. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  16. The Ku Heterodimer and the Metabolism of Single-Ended DNA Double-Strand Breaks

    Directory of Open Access Journals (Sweden)

    Alessia Balestrini

    2013-06-01

    Full Text Available Single-ended double-strand breaks (DSBs are a common form of spontaneous DNA break, generated when the replisome encounters a discontinuity in the DNA template. Given their prevalence, understanding the mechanisms governing the fate(s of single-ended DSBs is important. We describe the influence of the Ku heterodimer and Mre11 nuclease activity on processing of single-ended DSBs. Separation-of-function alleles of yku70 were derived that phenocopy Ku deficiency with respect to single-ended DSBs but remain proficient for NHEJ. The Ku mutants fail to regulate Exo1 activity, and bypass the requirement for Mre11 nuclease activity in the repair of camptothecin-induced single-ended DSBs. Ku mutants exhibited reduced affinity for DNA ends, manifest as both reduced end engagement and enhanced probability of diffusing inward on linear DNA. This study reveals an interplay between Ku and Mre11 in the metabolism of single-ended DSBs that is distinct from repair pathway choice at double-ended DSBs.

  17. Absorption by DNA single strands of adenine isolated in vacuo: The role of multiple chromophores

    DEFF Research Database (Denmark)

    Nielsen, L.M.; Pedersen, S.O.; Kirketerp, M.-B.S.

    2012-01-01

    to that for the adenine molecule and the dAMP mononucleotide. Desolvation has little effect on the bandwidth, which implies that inhomogenous broadening of the absorption bands in aqueous solution is of minor importance compared to, e.g., conformational disorder. Finally, at high photon energies, internal conversion...

  18. A single-stranded DNA aptamer that selectively binds to Staphylococcus aureus enterotoxin B.

    Directory of Open Access Journals (Sweden)

    Jeffrey A DeGrasse

    Full Text Available The bacterium Staphylococcus aureus is a common foodborne pathogen capable of secreting a cocktail of small, stable, and strain-specific, staphylococcal enterotoxins (SEs. Staphylococcal food poisoning (SFP results when improperly handled food contaminated with SEs is consumed. Gastrointestinal symptoms of SFP include emesis, diarrhea and severe abdominal pain, which manifest within hours of ingesting contaminated food. Immuno-affinity based methods directly detect, identify, and quantify several SEs within a food or clinical sample. However, the success of these assays depends upon the availability of a monoclonal antibody, the development of which is non-trivial and costly. The current scope of the available immuno-affinity based methods is limited to the classical SEs and does not encompass all of the known or emergent SEs. In contrast to antibodies, aptamers are short nucleic acids that exhibit high affinity and specificity for their targets without the high-costs and ethical concerns of animal husbandry. Further, researchers may choose to freely distribute aptamers and develop assays without the proprietary issues that increase the per-sample cost of immuno-affinity assays. This study describes a novel aptamer, selected in vitro, with affinity to staphylococcal enterotoxin B (SEB that may be used in lieu of antibodies in SE detection assays. The aptamer, designated APT(SEB1, successfully isolates SEB from a complex mixture of SEs with extremely high discrimination. This work sets the foundation for future aptamer and assay development towards the entire family of SEs. The rapid, robust, and low-cost identification and quantification of all of the SEs in S. aureus contaminated food is essential for food safety and epidemiological efforts. An in vitro generated library of SE aptamers could potentially allow for the comprehensive and cost-effective analysis of food samples that immuno-affinity assays currently cannot provide.

  19. Pathways for double-strand break repair in genetically unstable Z-DNA-forming sequences.

    Science.gov (United States)

    Kha, Diem T; Wang, Guliang; Natrajan, Nithya; Harrison, Lynn; Vasquez, Karen M

    2010-05-14

    DNA can adopt many structures that differ from the canonical B-form, and several of these non-canonical DNA structures have been implicated in genetic instability associated with human disease. Earlier, we found that Z-DNA causes DNA double-strand breaks (DSBs) in mammalian cells that can result in large-scale deletions and rearrangements. In contrast, the same Z-DNA-forming CG repeat in Escherichia coli resulted in only small contractions or expansions within the repeat. This difference in the Z-DNA-induced mutation spectrum between mammals and bacteria might be due to different mechanisms for DSB repair; in mammalian cells, non-homologous end-joining (NHEJ) is a major DSB repair pathway, while E. coli do not contain this system and typically use homologous recombination (HR) to process DSBs. To test the extent to which the different DSB repair pathways influenced the Z-DNA-induced mutagenesis, we engineered bacterial E.coli strains to express an inducible NHEJ system, to mimic the situation in mammalian cells. Mycobacterium tuberculosis NHEJ proteins Ku and ligase D (LigD) were expressed in E.coli cells in the presence or absence of HR, and the Z-DNA-induced mutations were characterized. We found that the presence of the NHEJ mechanism markedly shifted the mutation spectrum from small deletions/insertions to large-scale deletions (from 2% to 24%). Our results demonstrate that NHEJ plays a role in the generation of Z-DNA-induced large-scale deletions, suggesting that this pathway is associated with DNA structure-induced destabilization of genomes from prokaryotes to eukaryotes. (c) 2010 Elsevier Ltd. All rights reserved.

  20. Maintenance of genome stability in plants: repairing DNA double strand breaks and chromatin structure stability

    Directory of Open Access Journals (Sweden)

    Sujit eRoy

    2014-09-01

    Full Text Available Plant cells are subject to high levels of DNA damage resulting from plant’s obligatory dependence on sunlight and the associated exposure to environmental stresses like solar UV radiation, high soil salinity, drought, chilling injury and other air and soil pollutants including heavy metals and metabolic byproducts from endogenous processes. The irreversible DNA damages, generated by the environmental and genotoxic stresses affect plant growth and development, reproduction and crop productivity. Thus, for maintaining genome stability, plants have developed an extensive array of mechanisms for the detection and repair of DNA damages. This review will focus recent advances in our understanding of mechanisms regulating plant genome stability in the context of repairing of double stand breaks and chromatin structure maintenance.

  1. γ-H2AX as a biomarker for DNA double-strand breaks in ecotoxicology.

    Science.gov (United States)

    Gerić, Marko; Gajski, Goran; Garaj-Vrhovac, Vera

    2014-07-01

    The visualisation of DNA damage response proteins enables the indirect measurement of DNA damage. Soon after the occurrence of a DNA double-strand break (DSB), the formation of γ-H2AX histone variants is to be expected. This review is focused on the potential use of the γ-H2AX foci assay in assessing the genotoxicity of environmental contaminants including cytostatic pharmaceuticals, since standard methods may not be sensitive enough to detect the damaging effect of low environmental concentrations of such drugs. These compounds are constantly released into the environment, potentially representing a threat to water quality, aquatic organisms, and, ultimately, human health. Our review of the literature revealed that this method could be used in the biomonitoring and risk assessment of aquatic systems affected by wastewater from the production, usage, and disposal of cytostatic pharmaceuticals. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. DNA repair goes hip-hop: SMARCA and CHD chromatin remodellers join the break dance.

    Science.gov (United States)

    Rother, Magdalena B; van Attikum, Haico

    2017-10-05

    Proper signalling and repair of DNA double-strand breaks (DSB) is critical to prevent genome instability and diseases such as cancer. The packaging of DNA into chromatin, however, has evolved as a mere obstacle to these DSB responses. Posttranslational modifications and ATP-dependent chromatin remodelling help to overcome this barrier by modulating nucleosome structures and allow signalling and repair machineries access to DSBs in chromatin. Here we recap our current knowledge on how ATP-dependent SMARCA- and CHD-type chromatin remodellers alter chromatin structure during the signalling and repair of DSBs and discuss how their dysfunction impacts genome stability and human disease.This article is part of the themed issue 'Chromatin modifiers and remodellers in DNA repair and signalling'. © 2017 The Authors.

  3. Genetic polymorphisms of DNA double-strand break repair pathway genes and glioma susceptibility

    International Nuclear Information System (INIS)

    Zhao, Peng; Zou, Peng; Zhao, Lin; Yan, Wei; Kang, Chunsheng; Jiang, Tao; You, Yongping

    2013-01-01

    Genetic variations in DNA double-strand break repair genes can influence the ability of a cell to repair damaged DNA and alter an individual’s susceptibility to cancer. We studied whether polymorphisms in DNA double-strand break repair genes are associated with an increased risk of glioma development. We genotyped 10 potentially functional single nucleotide polymorphisms (SNPs) in 7 DNA double-strand break repair pathway genes (XRCC3, BRCA2, RAG1, XRCC5, LIG4, XRCC4 and ATM) in a case–control study including 384 glioma patients and 384 cancer-free controls in a Chinese Han population. Genotypes were determined using the OpenArray platform. In the single-locus analysis there was a significant association between gliomas and the LIG4 rs1805388 (Ex2 +54C>T, Thr9Ile) TT genotype (adjusted OR, 3.27; 95% CI, 1.87-5.71), as well as the TC genotype (adjusted OR, 1.62; 95% CI, 1.20-2.18). We also found that the homozygous variant genotype (GG) of XRCC4 rs1805377 (IVS7-1A>G, splice-site) was associated with a significantly increased risk of gliomas (OR, 1.77; 95% CI, 1.12-2.80). Interestingly, we detected a significant additive and multiplicative interaction effect between the LIG4 rs1805388 and XRCC4 rs1805377 polymorphisms with an increasing risk of gliomas. When we stratified our analysis by smoking status, LIG4 rs1805388 was associated with an increased glioma risk among smokers. These results indicate for the first time that LIG4 rs1805388 and XRCC4 rs1805377, alone or in combination, are associated with a risk of gliomas

  4. Processing of 3'-Phosphoglycolate-Terminated DNA Double-StrandBreaks by Artemis Nuclease

    Energy Technology Data Exchange (ETDEWEB)

    Povrik, Lawrence F.; Zhou, Tong; Zhou, Ruizhe; Cowan, Morton J.; Yannone, Steven M.

    2005-10-01

    The Artemis nuclease is required for V(D)J recombination and for repair of an as yet undefined subset of radiation-induced DNA double-strand breaks. To assess the possibility that Artemis functions on oxidatively modified double-strand break termini, its activity toward model DNA substrates, bearing either 3{prime}-hydroxyl or 3{prime}-phosphoglycolate moieties, was examined. A 3{prime}-phosphoglycolate had little effect on Artemis-mediated trimming of long 3{prime} overhangs (>9 nucleotides), which were efficiently trimmed to 4-5 nucleotides. However, 3{prime}-phosphoglycolates on overhangs of 4-5 bases promoted selective Artemis-mediated trimming of a single 3{prime}-terminal nucleotide, while at least 2 nucleotides were trimmed from identical hydroxyl-terminated substrates. Artemis also efficiently removed a single nucleotide from a phosphoglycolate-terminated 3-base 3{prime} overhang, while leaving an analogous hydroxyl-terminated overhang largely intact. Such removal was dependent upon Ku, DNA-dependent protein kinase, and ATP. Together, these data suggest that Artemis-mediated cleavage of 3{prime} overhangs requires a minimum of 2 nucleotides, or a nucleotide plus a phosphoglycolate, 3{prime} to the cleavage site. Shorter 3{prime}-phosphoglycolate-terminated overhangs and blunt ends were also processed by Artemis, but much less efficiently. Consistent with the in vitro substrate specificity of Artemis, human cells lacking Artemis exhibited hypersensitivity to X-rays, bleomycin and neocarzinostatin, which all induce 3{prime}-phosphoglycolate-terminated double-strand breaks. Collectively, these results suggest that 3{prime}-phosphoglycolate termini and/or specific classes of DNA ends that arise from such blocked termini are relevant Artemis substrates in vivo.

  5. BLM–DNA2–RPA–MRN and EXO1–BLM–RPA–MRN constitute two DNA end resection machineries for human DNA break repair

    Science.gov (United States)

    Nimonkar, Amitabh V.; Genschel, Jochen; Kinoshita, Eri; Polaczek, Piotr; Campbell, Judith L.; Wyman, Claire; Modrich, Paul; Kowalczykowski, Stephen C.

    2011-01-01

    Repair of dsDNA breaks requires processing to produce 3′-terminated ssDNA. We biochemically reconstituted DNA end resection using purified human proteins: Bloom helicase (BLM); DNA2 helicase/nuclease; Exonuclease 1 (EXO1); the complex comprising MRE11, RAD50, and NBS1 (MRN); and Replication protein A (RPA). Resection occurs via two routes. In one, BLM and DNA2 physically and specifically interact to resect DNA in a process that is ATP-dependent and requires BLM helicase and DNA2 nuclease functions. RPA is essential for both DNA unwinding by BLM and enforcing 5′ → 3′ resection polarity by DNA2. MRN accelerates processing by recruiting BLM to the end. In the other, EXO1 resects the DNA and is stimulated by BLM, MRN, and RPA. BLM increases the affinity of EXO1 for ends, and MRN recruits and enhances the processivity of EXO1. Our results establish two of the core machineries that initiate recombinational DNA repair in human cells. PMID:21325134

  6. Consumption of a dark roast coffee decreases the level of spontaneous DNA strand breaks: a randomized controlled trial.

    Science.gov (United States)

    Bakuradze, T; Lang, R; Hofmann, T; Eisenbrand, G; Schipp, D; Galan, J; Richling, E

    2015-02-01

    Coffee consumption has been reported to decrease oxidative damage in peripheral white blood cells (WBC). However, effects on the level of spontaneous DNA strand breaks, a well established marker of health risk, have not b