WorldWideScience

Sample records for single-strand annealing pathway

  1. Functional characterization of an alkaline exonuclease and single strand annealing protein from the SXT genetic element of Vibrio cholerae

    Directory of Open Access Journals (Sweden)

    Huang Jian-dong

    2011-04-01

    Full Text Available Abstract Background SXT is an integrating conjugative element (ICE originally isolated from Vibrio cholerae, the bacterial pathogen that causes cholera. It houses multiple antibiotic and heavy metal resistance genes on its ca. 100 kb circular double stranded DNA (dsDNA genome, and functions as an effective vehicle for the horizontal transfer of resistance genes within susceptible bacterial populations. Here, we characterize the activities of an alkaline exonuclease (S066, SXT-Exo and single strand annealing protein (S065, SXT-Bet encoded on the SXT genetic element, which share significant sequence homology with Exo and Bet from bacteriophage lambda, respectively. Results SXT-Exo has the ability to degrade both linear dsDNA and single stranded DNA (ssDNA molecules, but has no detectable endonuclease or nicking activities. Adopting a stable trimeric arrangement in solution, the exonuclease activities of SXT-Exo are optimal at pH 8.2 and essentially require Mn2+ or Mg2+ ions. Similar to lambda-Exo, SXT-Exo hydrolyzes dsDNA with 5'- to 3'-polarity in a highly processive manner, and digests DNA substrates with 5'-phosphorylated termini significantly more effectively than those lacking 5'-phosphate groups. Notably, the dsDNA exonuclease activities of both SXT-Exo and lambda-Exo are stimulated by the addition of lambda-Bet, SXT-Bet or a single strand DNA binding protein encoded on the SXT genetic element (S064, SXT-Ssb. When co-expressed in E. coli cells, SXT-Bet and SXT-Exo mediate homologous recombination between a PCR-generated dsDNA fragment and the chromosome, analogous to RecET and lambda-Bet/Exo. Conclusions The activities of the SXT-Exo protein are consistent with it having the ability to resect the ends of linearized dsDNA molecules, forming partially ssDNA substrates for the partnering SXT-Bet single strand annealing protein. As such, SXT-Exo and SXT-Bet may function together to repair or process SXT genetic elements within infected V

  2. Single Strand Annealing Plays a Major Role in RecA-Independent Recombination between Repeated Sequences in the Radioresistant Deinococcus radiodurans Bacterium.

    Directory of Open Access Journals (Sweden)

    Solenne Ithurbide

    2015-10-01

    Full Text Available The bacterium Deinococcus radiodurans is one of the most radioresistant organisms known. It is able to reconstruct a functional genome from hundreds of radiation-induced chromosomal fragments. Our work aims to highlight the genes involved in recombination between 438 bp direct repeats separated by intervening sequences of various lengths ranging from 1,479 bp to 10,500 bp to restore a functional tetA gene in the presence or absence of radiation-induced DNA double strand breaks. The frequency of spontaneous deletion events between the chromosomal direct repeats were the same in recA+ and in ΔrecA, ΔrecF, and ΔrecO bacteria, whereas recombination between chromosomal and plasmid DNA was shown to be strictly dependent on the RecA and RecF proteins. The presence of mutations in one of the repeated sequence reduced, in a MutS-dependent manner, the frequency of the deletion events. The distance between the repeats did not influence the frequencies of deletion events in recA+ as well in ΔrecA bacteria. The absence of the UvrD protein stimulated the recombination between the direct repeats whereas the absence of the DdrB protein, previously shown to be involved in DNA double strand break repair through a single strand annealing (SSA pathway, strongly reduces the frequency of RecA- (and RecO- independent deletions events. The absence of the DdrB protein also increased the lethal sectoring of cells devoid of RecA or RecO protein. γ-irradiation of recA+ cells increased about 10-fold the frequencies of the deletion events, but at a lesser extend in cells devoid of the DdrB protein. Altogether, our results suggest a major role of single strand annealing in DNA repeat deletion events in bacteria devoid of the RecA protein, and also in recA+ bacteria exposed to ionizing radiation.

  3. Mycobacteria exploit three genetically distinct DNA double-strand break repair pathways.

    Science.gov (United States)

    Gupta, Richa; Barkan, Daniel; Redelman-Sidi, Gil; Shuman, Stewart; Glickman, Michael S

    2011-01-01

    Bacterial pathogens rely on their DNA repair pathways to resist genomic damage inflicted by the host. DNA double-strand breaks (DSBs) are especially threatening to bacterial viability. DSB repair by homologous recombination (HR) requires nucleases that resect DSB ends and a strand exchange protein that facilitates homology search. RecBCD and RecA perform these functions in Escherichia coli and constitute the major pathway of error-free DSB repair. Mycobacteria, including the human pathogen M. tuberculosis, elaborate an additional error-prone pathway of DSB repair via non-homologous end-joining (NHEJ) catalysed by Ku and DNA ligase D (LigD). Little is known about the relative contributions of HR and NHEJ to mycobacterial chromosome repair, the factors that dictate pathway choice, or the existence of additional DSB repair pathways. Here we demonstrate that Mycobacterium smegmatis has three DSB repair pathway options: HR, NHEJ and a novel mechanism of single-strand annealing (SSA). Inactivation of NHEJ or SSA is compensated by elevated HR. We find that mycobacterial RecBCD does not participate in HR or confer resistance to ionizing radiation (IR), but is required for the RecA-independent SSA pathway. In contrast, the mycobacterial helicase-nuclease AdnAB participates in the RecA-dependent HR pathway, and is a major determinant of resistance to IR and oxidative DNA damage. These findings reveal distinctive features of mycobacterial DSB repair, most notably the dedication of the RecBCD and AdnAB helicase-nuclease machines to distinct repair pathways. © 2010 Blackwell Publishing Ltd.

  4. Human Cell Assays for Synthesis-Dependent Strand Annealing and Crossing over During Double-Strand Break Repair.

    Science.gov (United States)

    Zapotoczny, Grzegorz; Sekelsky, Jeff

    2017-04-03

    DNA double-strand breaks (DSBs) are one of the most deleterious types of lesions to the genome. Synthesis-dependent strand annealing (SDSA) is thought to be a major pathway of DSB repair, but direct tests of this model have only been conducted in budding yeast and Drosophila To better understand this pathway, we developed an SDSA assay for use in human cells. Our results support the hypothesis that SDSA is an important DSB repair mechanism in human cells. We used siRNA knockdown to assess the roles of a number of helicases suggested to promote SDSA. None of the helicase knockdowns reduced SDSA, but knocking down BLM or RTEL1 increased SDSA. Molecular analysis of repair products suggests that these helicases may prevent long-tract repair synthesis. Since the major alternative to SDSA (repair involving a double-Holliday junction intermediate) can lead to crossovers, we also developed a fluorescent assay that detects crossovers generated during DSB repair. Together, these assays will be useful in investigating features and mechanisms of SDSA and crossover pathways in human cells. Copyright © 2017 Zapotoczny and Sekelsky.

  5. Human Cell Assays for Synthesis-Dependent Strand Annealing and Crossing over During Double-Strand Break Repair

    Directory of Open Access Journals (Sweden)

    Grzegorz Zapotoczny

    2017-04-01

    Full Text Available DNA double-strand breaks (DSBs are one of the most deleterious types of lesions to the genome. Synthesis-dependent strand annealing (SDSA is thought to be a major pathway of DSB repair, but direct tests of this model have only been conducted in budding yeast and Drosophila. To better understand this pathway, we developed an SDSA assay for use in human cells. Our results support the hypothesis that SDSA is an important DSB repair mechanism in human cells. We used siRNA knockdown to assess the roles of a number of helicases suggested to promote SDSA. None of the helicase knockdowns reduced SDSA, but knocking down BLM or RTEL1 increased SDSA. Molecular analysis of repair products suggests that these helicases may prevent long-tract repair synthesis. Since the major alternative to SDSA (repair involving a double-Holliday junction intermediate can lead to crossovers, we also developed a fluorescent assay that detects crossovers generated during DSB repair. Together, these assays will be useful in investigating features and mechanisms of SDSA and crossover pathways in human cells.

  6. Functional characterization of a conserved archaeal viral operon revealing single-stranded DNA binding, annealing and nuclease activities

    DEFF Research Database (Denmark)

    Guo, Yang; Kragelund, Birthe Brandt; White, Malcolm F.

    2015-01-01

    encoding proteins of unknown function and forming an operon with ORF207 (gp19). SIRV2 gp17 was found to be a single-stranded DNA (ssDNA) binding protein different in structure from all previously characterized ssDNA binding proteins. Mutagenesis of a few conserved basic residues suggested a U......-shaped binding path for ssDNA. The recombinant gp18 showed an ssDNA annealing activity often associated with helicases and recombinases. To gain insight into the biological role of the entire operon, we characterized SIRV2 gp19 and showed it to possess a 5'→3' ssDNA exonuclease activity, in addition...... for rudiviruses and the close interaction among the ssDNA binding, annealing and nuclease proteins strongly point to a role of the gene operon in genome maturation and/or DNA recombination that may function in viral DNA replication/repair....

  7. Chlamydomonas chloroplasts can use short dispersed repeats and multiple pathways to repair a double-strand break in the genome.

    Science.gov (United States)

    Odom, Obed W; Baek, Kwang-Hyun; Dani, Radhika N; Herrin, David L

    2008-03-01

    Certain group I introns insert into intronless DNA via an endonuclease that creates a double-strand break (DSB). There are two models for intron homing in phage: synthesis-dependent strand annealing (SDSA) and double-strand break repair (DSBR). The Cr.psbA4 intron homes efficiently from a plasmid into the chloroplast psbA gene in Chlamydomonas, but little is known about the mechanism. Analysis of co-transformants selected using a spectinomycin-resistant 16S gene (16S(spec)) provided evidence for both pathways. We also examined the consequences of the donor DNA having only one-sided or no homology with the psbA gene. When there was no homology with the donor DNA, deletions of up to 5 kb involving direct repeats that flank the psbA gene were obtained. Remarkably, repeats as short as 15 bp were used for this repair, which is consistent with the single-strand annealing (SSA) pathway. When the donor had one-sided homology, the DSB in most co-transformants was repaired using two DNAs, the donor and the 16S(spec) plasmid, which, coincidentally, contained a region that is repeated upstream of psbA. DSB repair using two separate DNAs provides further evidence for the SDSA pathway. These data show that the chloroplast can repair a DSB using short dispersed repeats located proximally, distally, or even on separate molecules relative to the DSB. They also provide a rationale for the extensive repertoire of repeated sequences in this genome.

  8. Mouse RAD54 affects DNA double-strand break repair and sister chromatid exchange

    NARCIS (Netherlands)

    H.B. Beverloo (Berna); R.D. Johnson (Roger); M. Jasin (Maria); R. Kanaar (Roland); J.H.J. Hoeijmakers (Jan); M.L.G. Dronkert (Mies)

    2000-01-01

    textabstractCells can achieve error-free repair of DNA double-strand breaks (DSBs) by homologous recombination through gene conversion with or without crossover. In contrast, an alternative homology-dependent DSB repair pathway, single-strand annealing (SSA), results in deletions. In this study, we

  9. Double-Strand DNA Break Repair in Mycobacteria.

    Science.gov (United States)

    Glickman, Michael S

    2014-10-01

    Discontinuity of both strands of the chromosome is a lethal event in all living organisms because it compromises chromosome replication. As such, a diversity of DNA repair systems has evolved to repair double-strand DNA breaks (DSBs). In part, this diversity of DSB repair systems has evolved to repair breaks that arise in diverse physiologic circumstances or sequence contexts, including cellular states of nonreplication or breaks that arise between repeats. Mycobacteria elaborate a set of three genetically distinct DNA repair pathways: homologous recombination, nonhomologous end joining, and single-strand annealing. As such, mycobacterial DSB repair diverges substantially from the standard model of prokaryotic DSB repair and represents an attractive new model system. In addition, the presence in mycobacteria of a DSB repair system that can repair DSBs in nonreplicating cells (nonhomologous end joining) or when DSBs arise between repeats (single-strand annealing) has clear potential relevance to Mycobacterium tuberculosis pathogenesis, although the exact role of these systems in M. tuberculosis pathogenesis is still being elucidated. In this article we will review the genetics of mycobacterial DSB repair systems, focusing on recent insights.

  10. Molecular Basis for DNA Double-Strand Break Annealing and Primer Extension by an NHEJ DNA Polymerase

    Directory of Open Access Journals (Sweden)

    Nigel C. Brissett

    2013-11-01

    Full Text Available Nonhomologous end-joining (NHEJ is one of the major DNA double-strand break (DSB repair pathways. The mechanisms by which breaks are competently brought together and extended during NHEJ is poorly understood. As polymerases extend DNA in a 5′-3′ direction by nucleotide addition to a primer, it is unclear how NHEJ polymerases fill in break termini containing 3′ overhangs that lack a primer strand. Here, we describe, at the molecular level, how prokaryotic NHEJ polymerases configure a primer-template substrate by annealing the 3′ overhanging strands from opposing breaks, forming a gapped intermediate that can be extended in trans. We identify structural elements that facilitate docking of the 3′ ends in the active sites of adjacent polymerases and reveal how the termini act as primers for extension of the annealed break, thus explaining how such DSBs are extended in trans. This study clarifies how polymerases couple break-synapsis to catalysis, providing a molecular mechanism to explain how primer extension is achieved on DNA breaks.

  11. Excess single-stranded DNA inhibits meiotic double-strand break repair.

    Directory of Open Access Journals (Sweden)

    Rebecca Johnson

    2007-11-01

    Full Text Available During meiosis, self-inflicted DNA double-strand breaks (DSBs are created by the protein Spo11 and repaired by homologous recombination leading to gene conversions and crossovers. Crossover formation is vital for the segregation of homologous chromosomes during the first meiotic division and requires the RecA orthologue, Dmc1. We analyzed repair during meiosis of site-specific DSBs created by another nuclease, VMA1-derived endonuclease (VDE, in cells lacking Dmc1 strand-exchange protein. Turnover and resection of the VDE-DSBs was assessed in two different reporter cassettes that can repair using flanking direct repeat sequences, thereby obviating the need for a Dmc1-dependent DNA strand invasion step. Access of the single-strand binding complex replication protein A, which is normally used in all modes of DSB repair, was checked in chromatin immunoprecipitation experiments, using antibody against Rfa1. Repair of the VDE-DSBs was severely inhibited in dmc1Delta cells, a defect that was associated with a reduction in the long tract resection required to initiate single-strand annealing between the flanking repeat sequences. Mutants that either reduce Spo11-DSB formation or abolish resection at Spo11-DSBs rescued the repair block. We also found that a replication protein A component, Rfa1, does not accumulate to expected levels at unrepaired single-stranded DNA (ssDNA in dmc1Delta cells. The requirement of Dmc1 for VDE-DSB repair using flanking repeats appears to be caused by the accumulation of large quantities of ssDNA that accumulate at Spo11-DSBs when Dmc1 is absent. We propose that these resected DSBs sequester both resection machinery and ssDNA binding proteins, which in wild-type cells would normally be recycled as Spo11-DSBs repair. The implication is that repair proteins are in limited supply, and this could reflect an underlying mechanism for regulating DSB repair in wild-type cells, providing protection from potentially harmful effects

  12. A quantitative model of the major pathways for radiation-induced DNA double-strand break repair

    International Nuclear Information System (INIS)

    Belov, O.V.; Krasavin, E.A.; Lyashko, M.S.; Batmunkh, M.; Sweilam, N.H.

    2014-01-01

    We have developed a model approach to simulate the major pathways of DNA double-strand break (DSB) repair in mammalian and human cells. The proposed model shows a possible mechanistic explanation of the basic regularities of DSB processing through the nonhomologous end-joining (NHEJ), homologous recombination (HR), and single-strand annealing (SSA). It reconstructs the time-courses of radiation-induced foci specific to particular repair processes including the major intermediate stages. The model is validated for ionizing radiations of a wide range of linear energy transfer (0.2-236 keV/μm) including a relatively broad spectrum of heavy ions. The appropriate set of reaction rate constants was suggested to satisfy the kinetics of DSB rejoining for the considered types of exposure. The simultaneous assessment of three repair pathways allows one to describe their possible biological relations in response to radiation. With the help of the proposed approach, we reproduce several experimental data sets on γ-H2AX foci remaining in different types of cells including those defective in NHEJ, HR, or SSA functions.

  13. Mammalian DNA single-strand break repair: an X-ra(y)ted affair.

    Science.gov (United States)

    Caldecott, K W

    2001-05-01

    The genetic stability of living cells is continuously threatened by the presence of endogenous reactive oxygen species and other genotoxic molecules. Of particular threat are the thousands of DNA single-strand breaks that arise in each cell, each day, both directly from disintegration of damaged sugars and indirectly from the excision repair of damaged bases. If un-repaired, single-strand breaks can be converted into double-strand breaks during DNA replication, potentially resulting in chromosomal rearrangement and genetic deletion. Consequently, cells have adopted multiple pathways to ensure the rapid and efficient removal of single-strand breaks. A general feature of these pathways appears to be the extensive employment of protein-protein interactions to stimulate both the individual component steps and the overall repair reaction. Our current understanding of DNA single-strand break repair is discussed, and testable models for the architectural coordination of this important process are presented. Copyright 2001 John Wiley & Sons, Inc.

  14. Systematic Identification of Determinants for Single-Strand Annealing-Mediated Deletion Formation in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Maia Segura-Wang

    2017-10-01

    Full Text Available To ensure genomic integrity, living organisms have evolved diverse molecular processes for sensing and repairing damaged DNA. If improperly repaired, DNA damage can give rise to different types of mutations, an important class of which are genomic structural variants (SVs. In spite of their importance for phenotypic variation and genome evolution, potential contributors to SV formation in Saccharomyces cerevisiae (budding yeast, a highly tractable model organism, are not fully recognized. Here, we developed and applied a genome-wide assay to identify yeast gene knockout mutants associated with de novo deletion formation, in particular single-strand annealing (SSA-mediated deletion formation, in a systematic manner. In addition to genes previously linked to genome instability, our approach implicates novel genes involved in chromatin remodeling and meiosis in affecting the rate of SSA-mediated deletion formation in the presence or absence of stress conditions induced by DNA-damaging agents. We closely examined two candidate genes, the chromatin remodeling gene IOC4 and the meiosis-related gene MSH4, which when knocked-out resulted in gene expression alterations affecting genes involved in cell division and chromosome organization, as well as DNA repair and recombination, respectively. Our high-throughput approach facilitates the systematic identification of processes linked to the formation of a major class of genetic variation.

  15. Programmable autonomous synthesis of single-stranded DNA

    Science.gov (United States)

    Kishi, Jocelyn Y.; Schaus, Thomas E.; Gopalkrishnan, Nikhil; Xuan, Feng; Yin, Peng

    2018-02-01

    DNA performs diverse functional roles in biology, nanotechnology and biotechnology, but current methods for autonomously synthesizing arbitrary single-stranded DNA are limited. Here, we introduce the concept of primer exchange reaction (PER) cascades, which grow nascent single-stranded DNA with user-specified sequences following prescribed reaction pathways. PER synthesis happens in a programmable, autonomous, in situ and environmentally responsive fashion, providing a platform for engineering molecular circuits and devices with a wide range of sensing, monitoring, recording, signal-processing and actuation capabilities. We experimentally demonstrate a nanodevice that transduces the detection of a trigger RNA into the production of a DNAzyme that degrades an independent RNA substrate, a signal amplifier that conditionally synthesizes long fluorescent strands only in the presence of a particular RNA signal, molecular computing circuits that evaluate logic (AND, OR, NOT) combinations of RNA inputs, and a temporal molecular event recorder that records in the PER transcript the order in which distinct RNA inputs are sequentially detected.

  16. Effects of DNA double-strand and single-strand breaks on intrachromosomal recombination events in cell-cycle-arrested yeast cells

    International Nuclear Information System (INIS)

    Galli, A.; Schiestl, R.H.

    1998-01-01

    Intrachromosomal recombination between repeated elements can result in deletion (DEL recombination) events. We investigated the inducibility of such intrachromosomal recombination events at different stages of the cell cycle and the nature of the primary DNA lesions capable of initiating these events. Two genetic systems were constructed in Saccharomyces cerevisiae that select for DEL recombination events between duplicated alleles of CDC28 and TUB2. We determined effects of double-strand breaks (DSBs) and single-strand breaks (SSBs) between the duplicated alleles on DEL recombination when induced in dividing cells or cells arrested in G1 or G2. Site-specific DSBs and SSBs were produced by overexpression of the I-Sce I endonuclease and the gene II protein (gIIp), respectively. I-Sce I-induced DSBs caused an increase in DEL recombination frequencies in both dividing and cell-cycle-arrested cells, indicating that G1- and G2-arrested cells are capable of completing DSB repair. In contrast, gIIp-induced SSBs caused an increase in DEL recombination frequency only in dividing cells. To further examine these phenomena we used both γ-irradiation, inducing DSBs as its most relevant lesion, and UV, inducing other forms of DNA damage. UV irradiation did not increase DEL recombination frequencies in G1 or G2, whereas γ-rays increased DEL recombination frequencies in both phases. Both forms of radiation, however, induced DEL recombination in dividing cells. The results suggest that DSBsbut not SSBs induce DEL recombination, probably via the single-strand annealing pathway. Further, DSBs in dividing cells may result from the replication of a UV or SSB-damaged template. Alternatively, UV induced events may occur by replication slippage after DNA polymerase pausing in front of the damage. (author)

  17. Sub-Ensemble Monitoring of DNA Strand Displacement Using Multiparameter Single-Molecule FRET.

    Science.gov (United States)

    Baltierra-Jasso, Laura E; Morten, Michael J; Magennis, Steven W

    2018-03-05

    Non-enzymatic DNA strand displacement is an important mechanism in dynamic DNA nanotechnology. Here, we show that the large parameter space that is accessible by single-molecule FRET is ideal for the simultaneous monitoring of multiple reactants and products of DNA strand exchange reactions. We monitored the strand displacement from double-stranded DNA (dsDNA) by single-stranded DNA (ssDNA) at 37 °C; the data were modelled as a second-order reaction approaching equilibrium, with a rate constant of 10 m -1  s -1 . We also followed the displacement from a DNA three-way junction (3WJ) by ssDNA. The presence of three internal mismatched bases in the middle of the invading strand did not prevent displacement from the 3WJ, but reduced the second-order rate constant by about 50 %. We attribute strand exchange in the dsDNA and 3WJ to a zero-toehold pathway from the blunt-ended duplex arms. The single-molecule approach demonstrated here will be useful for studying complex DNA networks. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. RecO protein initiates DNA recombination and strand annealing through two alternative DNA binding mechanisms.

    Science.gov (United States)

    Ryzhikov, Mikhail; Gupta, Richa; Glickman, Michael; Korolev, Sergey

    2014-10-17

    Recombination mediator proteins (RMPs) are important for genome stability in all organisms. Several RMPs support two alternative reactions: initiation of homologous recombination and DNA annealing. We examined mechanisms of RMPs in both reactions with Mycobacterium smegmatis RecO (MsRecO) and demonstrated that MsRecO interacts with ssDNA by two distinct mechanisms. Zinc stimulates MsRecO binding to ssDNA during annealing, whereas the recombination function is zinc-independent and is regulated by interaction with MsRecR. Thus, different structural motifs or conformations of MsRecO are responsible for interaction with ssDNA during annealing and recombination. Neither annealing nor recombinase loading depends on MsRecO interaction with the conserved C-terminal tail of single-stranded (ss) DNA-binding protein (SSB), which is known to bind Escherichia coli RecO. However, similarly to E. coli proteins, MsRecO and MsRecOR do not dismiss SSB from ssDNA, suggesting that RMPs form a complex with SSB-ssDNA even in the absence of binding to the major protein interaction motif. We propose that alternative conformations of such complexes define the mechanism by which RMPs initiate the repair of stalled replication and support two different functions during recombinational repair of DNA breaks. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Multiple pathways of DNA double-strand break processing in a mutant Indian muntjac cell line

    International Nuclear Information System (INIS)

    Bouffler, S.D.; Jha, B.; Johnson, R.T.

    1990-01-01

    DNA break processing is compared in the Indian muntjac cell lines, SVM and DM. The initial frequencies and resealing of X-ray generated single- and double-strand breaks are similar in the two cell lines. Inhibiting the repair of UV damage leads to greater double-strand breakage in SVM than in DM, and some of these breaks are not repaired; however, repair-associated single-strand breakage and resealing are normal. Dimethylsulfate also induces excess double-strand breakage in SVM, and these breaks are irreparable. Restricted plasmids are reconstituted correctly in SVM at approximately 30% of the frequency observed in DM. Thus SVM has a reduced capacity to repair certain types of double-strand break. This defect is not due to a DNA ligase deficiency. We conclude that DNA double-strand breaks are repaired by a variety of pathways within mammalian cells and that the structure of the break or its mode of formation determines its subsequent fate

  20. Phage annealing proteins promote oligonucleotide-directed mutagenesis in Escherichia coli and mouse ES cells

    Directory of Open Access Journals (Sweden)

    Muyrers Joep PP

    2003-01-01

    Full Text Available Abstract Background The phage protein pairs, RecE/RecT from Rac or Redα/Redβ from λ, initiate efficient double strand break repair (DSBR in Escherichia coli that has proven very useful for DNA engineering. These phage pairs initiate DSBR either by annealing or by another mechanism that is not defined. Results Here we report that these proteins also mediate single strand oligonucleotide repair (ssOR at high efficiencies. The ssOR activity, unlike DSBR, does not require a phage exonuclease (RecE or Redα but only requires a phage annealing protein (RecT or Redβ. Notably, the P22 phage annealing protein Erf, which does not mediate the same DSBR reactions, also delivers ssOR activity. By altering aspects of the oligonucleotides, we document length and design parameters that affect ssOR efficiency to show a simple relationship to homologies either side of the repair site. Notably, ssOR shows strand bias. Oligonucleotides that can prime lagging strand replication deliver more ssOR than their leading complements. This suggests a model in which the annealing proteins hybridize the oligonucleotides to single stranded regions near the replication fork. We also show that ssOR is a highly efficient way to engineer BACs and can be detected in a eukaryotic cell upon expression of a phage annealing protein. Conclusion Phage annealing proteins can initiate the recombination of single stranded oligonucleotides into endogenous targets in Escherichia coli at very high efficiencies. This expands the repertoire of useful DNA engineering strategies, shows promise for applications in eukaryotic cells, and has implications for the unanswered questions regarding DSBR mediated by RecE/RecT and Redα/Redβ.

  1. Defective processing of methylated single-stranded DNA by E. coli alkB mutants

    Science.gov (United States)

    Dinglay, Suneet; Trewick, Sarah C.; Lindahl, Tomas; Sedgwick, Barbara

    2000-01-01

    Escherichia coli alkB mutants are very sensitive to DNA methylating agents. Despite these mutants being the subject of many studies, no DNA repair or other function has been assigned to the AlkB protein or to its human homolog. Here, we report that reactivation of methylmethanesulfonate (MMS)-treated single-stranded DNA phages, M13, f1, and G4, was decreased dramatically in alkB mutants. No such decrease occurred when using methylated λ phage or M13 duplex DNA. These data show that alkB mutants have a marked defect in processing methylation damage in single-stranded DNA. Recombinant AlkB protein bound more efficiently to single- than double-stranded DNA. The single-strand damage processed by AlkB was primarily cytotoxic and not mutagenic and was induced by SN2 methylating agents, MMS, DMS, and MeI but not by SN1 agent N-methyl-N-nitrosourea or by γ irradiation. Strains lacking other DNA repair activities, alkA tag, xth nfo, uvrA, mutS, and umuC, were not defective in reactivation of methylated M13 phage and did not enhance the defect of an alkB mutant. A recA mutation caused a small but additive defect. Thus, AlkB functions in a novel pathway independent of these activities. We propose that AlkB acts on alkylated single-stranded DNA in replication forks or at transcribed regions. Consistent with this theory, stationary phase alkB cells were less MMS sensitive than rapidly growing cells. PMID:10950872

  2. Strand Displacement by DNA Polymerase III Occurs through a τ-ψ-χ Link to Single-stranded DNA-binding Protein Coating the Lagging Strand Template*

    OpenAIRE

    Yuan, Quan; McHenry, Charles S.

    2009-01-01

    In addition to the well characterized processive replication reaction catalyzed by the DNA polymerase III holoenzyme on single-stranded DNA templates, the enzyme possesses an intrinsic strand displacement activity on flapped templates. The strand displacement activity is distinguished from the single-stranded DNA-templated reaction by a high dependence upon single-stranded DNA binding protein and an inability of γ-complex to support the reaction in the absence of τ. However, if γ-complex is p...

  3. Role of teh Rad52 Amino-terminal DNA Binding Activity in DNA Strand Capture in Homologous Recombination

    DEFF Research Database (Denmark)

    Shi, Idina; Hallwyl, Swee Chuang Lim; Seong, Changhyun

    2009-01-01

    Saccharomyces cerevisiae Rad52 protein promotes homologous recombination by nucleating the Rad51 recombinase onto replication protein A-coated single-stranded DNA strands and also by directly annealing such strands. We show that the purified rad52-R70A mutant protein, with a compromised amino-ter...

  4. Strand displacement by DNA polymerase III occurs through a tau-psi-chi link to single-stranded DNA-binding protein coating the lagging strand template.

    Science.gov (United States)

    Yuan, Quan; McHenry, Charles S

    2009-11-13

    In addition to the well characterized processive replication reaction catalyzed by the DNA polymerase III holoenzyme on single-stranded DNA templates, the enzyme possesses an intrinsic strand displacement activity on flapped templates. The strand displacement activity is distinguished from the single-stranded DNA-templated reaction by a high dependence upon single-stranded DNA binding protein and an inability of gamma-complex to support the reaction in the absence of tau. However, if gamma-complex is present to load beta(2), a truncated tau protein containing only domains III-V will suffice. This truncated protein is sufficient to bind both the alpha subunit of DNA polymerase (Pol) III and chipsi. This is reminiscent of the minimal requirements for Pol III to replicate short single-stranded DNA-binding protein (SSB)-coated templates where tau is only required to serve as a scaffold to hold Pol III and chi in the same complex (Glover, B., and McHenry, C. (1998) J. Biol. Chem. 273, 23476-23484). We propose a model in which strand displacement by DNA polymerase III holoenzyme depends upon a Pol III-tau-psi-chi-SSB binding network, where SSB is bound to the displaced strand, stabilizing the Pol III-template interaction. The same interaction network is probably important for stabilizing the leading strand polymerase interactions with authentic replication forks. The specificity constant (k(cat)/K(m)) for the strand displacement reaction is approximately 300-fold less favorable than reactions on single-stranded templates and proceeds with a slower rate (150 nucleotides/s) and only moderate processivity (approximately 300 nucleotides). PriA, the initiator of replication restart on collapsed or misassembled replication forks, blocks the strand displacement reaction, even if added to an ongoing reaction.

  5. Genetic and biochemical identification of a novel single-stranded DNA binding complex in Haloferax volcanii

    Directory of Open Access Journals (Sweden)

    Amy eStroud

    2012-06-01

    Full Text Available Single-stranded DNA binding proteins play an essential role in DNA replication and repair. They use oligosaccharide-binding folds, a five-stranded ß-sheet coiled into a closed barrel, to bind to single-stranded DNA thereby protecting and stabilizing the DNA. In eukaryotes the single-stranded DNA binding protein is known as replication protein A (RPA and consists of three distinct subunits that function as a heterotrimer. The bacterial homolog is termed single-stranded DNA-binding protein (SSB and functions as a homotetramer. In the archaeon Haloferax volcanii there are three genes encoding homologs of RPA. Two of the rpa genes (rpa1 and rpa3 exist in operons with a novel gene specific to Euryarchaeota, this gene encodes a protein that we have termed rpa-associated protein (RPAP. The rpap genes encode proteins belonging to COG3390 group and feature oligosaccharide-binding folds, suggesting that they might cooperate with RPA in binding to single-stranded DNA. Our genetic analysis showed that rpa1 and rpa3 deletion mutants have differing phenotypes; only ∆rpa3 strains are hypersensitive to DNA damaging agents. Deletion of the rpa3-associated gene rpap3 led to similar levels of DNA damage sensitivity, as did deletion of the rpa3 operon, suggesting that RPA3 and RPAP3 function in the same pathway. Protein pull-downs involving recombinant hexahistidine-tagged RPAs showed that RPA3 co-purifies with RPAP3, and RPA1 co-purifies with RPAP1. This indicates that the RPAs interact only with their respective associated proteins; this was corroborated by the inability to construct rpa1 rpap3 and rpa3 rpap1 double mutants. This is the first report investigating the individual function of the archaeal COG3390 RPA-associated proteins. We have shown genetically and biochemically that the RPAPs interact with their respective RPAs, and have uncovered a novel single-stranded DNA binding complex that is unique to Euryarchaeota.

  6. RADX interacts with single-stranded DNA to promote replication fork stability

    DEFF Research Database (Denmark)

    Schubert, Lisa; Ho, Teresa; Hoffmann, Saskia

    2017-01-01

    Single-stranded DNA (ssDNA) regions form as an intermediate in many DNA-associated transactions. Multiple cellular proteins interact with ssDNA via the oligonucleotide/oligosaccharide-binding (OB) fold domain. The heterotrimeric, multi-OB fold domain-containing Replication Protein A (RPA) complex...... ssDNA-binding activities is critical for avoiding these defects. Our findings establish RADX as an important component of cellular pathways that promote DNA replication integrity under basal and stressful conditions by means of multiple ssDNA-binding proteins....

  7. Molecular investigation of evaporation of biodroplets containing single-strand DNA on graphene surface.

    Science.gov (United States)

    Akbari, Fahimeh; Foroutan, Masumeh

    2018-02-14

    In this study, the water droplet behaviour of four different types of single-strand DNA with homogeneous base sequence on a graphene substrate during evaporation of the droplet was investigated using molecular dynamics (MD) simulation. The simulation results indicated that the evaporation depended on the DNA sequence. The observed changes can be divided into four parts: (i) vaporization mode, (ii) evaporation flux, (iii) mechanism of single-strand placement on the surface, and (iv) consideration of remaining single strands after evaporation. Our simulation observations indicated different evaporation modes for thymine biodroplets as compared to those for other biodroplets. The evaporation of the thymine biodroplets occurred with an increase in the contact angle, while that of the other biodroplets occur in a constant contact angle mode. Moreover, thymine biodroplets generate the lowest contact line compared to other single strands, and it is always placed far away from the centre of the droplets during evaporation. Investigating variations in the evaporation flux shows that thymine has the highest evaporation flux and guanine has the lowest. Moreover, during initial evaporation, the flux of evaporation increases at the triple point of the biodroplets containing thymine single strands, while it decreases in the other biodroplets. The following observation was obtained from the study of the placement of single strands on the substrate: guanine and thymine interacted slower than other single strands during evaporation with graphene, adenine single strand had a higher folding during evaporation, and guanine single strand showed the lowest end-to-end distance. The investigation of single-strand DNA after evaporation shows that adenine produces the most stable structure at the end of evaporation. In addition, cytosine is the most stretched single-strand DNA due to its lack of internal π-π stacking and hydrogen bonding. Therefore, cytosine single strand is more

  8. Protected DNA strand displacement for enhanced single nucleotide discrimination in double-stranded DNA.

    Science.gov (United States)

    Khodakov, Dmitriy A; Khodakova, Anastasia S; Huang, David M; Linacre, Adrian; Ellis, Amanda V

    2015-03-04

    Single nucleotide polymorphisms (SNPs) are a prime source of genetic diversity. Discriminating between different SNPs provides an enormous leap towards the better understanding of the uniqueness of biological systems. Here we report on a new approach for SNP discrimination using toehold-mediated DNA strand displacement. The distinctiveness of the approach is based on the combination of both 3- and 4-way branch migration mechanisms, which allows for reliable discrimination of SNPs within double-stranded DNA generated from real-life human mitochondrial DNA samples. Aside from the potential diagnostic value, the current study represents an additional way to control the strand displacement reaction rate without altering other reaction parameters and provides new insights into the influence of single nucleotide substitutions on 3- and 4-way branch migration efficiency and kinetics.

  9. Application of Laser Micro-irradiation for Examination of Single and Double Strand Break Repair in Mammalian Cells.

    Science.gov (United States)

    Holton, Nathaniel W; Andrews, Joel F; Gassman, Natalie R

    2017-09-05

    Highly coordinated DNA repair pathways exist to detect, excise and replace damaged DNA bases, and coordinate repair of DNA strand breaks. While molecular biology techniques have clarified structure, enzymatic functions, and kinetics of repair proteins, there is still a need to understand how repair is coordinated within the nucleus. Laser micro-irradiation offers a powerful tool for inducing DNA damage and monitoring the recruitment of repair proteins. Induction of DNA damage by laser micro-irradiation can occur with a range of wavelengths, and users can reliably induce single strand breaks, base lesions and double strand breaks with a range of doses. Here, laser micro-irradiation is used to examine repair of single and double strand breaks induced by two common confocal laser wavelengths, 355 nm and 405 nm. Further, proper characterization of the applied laser dose for inducing specific damage mixtures is described, so users can reproducibly perform laser micro-irradiation data acquisition and analysis.

  10. Toxin MqsR Cleaves Single-Stranded mRNA with Various 5 Ends

    Science.gov (United States)

    2016-08-24

    either protein ORIGINAL RESEARCH Toxin MqsR cleaves single- stranded mRNA with various 5’ ends Nityananda Chowdhury1,*, Brian W. Kwan1,*, Louise C...in which a single 5′- GCU site was predicted to be single- stranded (ssRNA), double- stranded (dsRNA), in the loop of a stem - loop (slRNA), or in a...single- stranded 5′- GCU sites since cleavage was approximately 20- fold higher than cleavage seen with the 5′- GCU site in the stem - loop and

  11. Annealing behavior of solution grown polyethylene single crystals

    NARCIS (Netherlands)

    Loos, J.; Tian, M.

    2006-01-01

    The morphology evolution of solution grown polyethylene single crystals has been studied upon annealing below their melting temperature by using atomic force microscopy (AFM). AFM investigations have been performed ex situ, which means AFM investigations at room temperature after the annealing

  12. Structural features of single-stranded integron cassette attC sites and their role in strand selection.

    Directory of Open Access Journals (Sweden)

    Marie Bouvier

    2009-09-01

    Full Text Available We recently showed that cassette integration and deletion in integron platforms were occurring through unconventional site-specific recombination reactions involving only the bottom strand of attC sites. The lack of sequence conservation among attC sites led us to hypothesize that sequence-independent structural recognition determinants must exist within attC sites. The structural data obtained from a synaptic complex of the Vibrio cholerae integrase with the bottom strand of an attC site has shown the importance of extra helical bases (EHB inside the stem-loop structure formed from the bottom strand. Here, we systematically determined the contribution of three structural elements common to all known single-stranded attC site recombination substrates (the EHBs, the unpaired central spacer (UCS, and the variable terminal structure (VTS to strand choice and recombination. Their roles have been evaluated in vivo in the attIxattC reaction context using the suicide conjugation assay we previously developed, but also in an attCxattC reaction using a deletion assay. Conjugation was used to deliver the attC sites in single-stranded form. Our results show that strand choice is primarily directed by the first EHB, but the presence of the two other EHBs also serves to increase this strand selection. We found that the structure of the central spacer is essential to achieve high level recombination of the bottom strand, suggesting a dual role for this structure in active site exclusion and for hindering the reverse reaction after the first strand exchange. Moreover, we have shown that the VTS has apparently no role in strand selectivity.

  13. Lingering single-strand breaks trigger Rad51-independent homology-directed repair of collapsed replication forks in the polynucleotide kinase/phosphatase mutant of fission yeast.

    Directory of Open Access Journals (Sweden)

    Arancha Sanchez

    2017-09-01

    Full Text Available The DNA repair enzyme polynucleotide kinase/phosphatase (PNKP protects genome integrity by restoring ligatable 5'-phosphate and 3'-hydroxyl termini at single-strand breaks (SSBs. In humans, PNKP mutations underlie the neurological disease known as MCSZ, but these individuals are not predisposed for cancer, implying effective alternative repair pathways in dividing cells. Homology-directed repair (HDR of collapsed replication forks was proposed to repair SSBs in PNKP-deficient cells, but the critical HDR protein Rad51 is not required in PNKP-null (pnk1Δ cells of Schizosaccharomyces pombe. Here, we report that pnk1Δ cells have enhanced requirements for Rad3 (ATR/Mec1 and Chk1 checkpoint kinases, and the multi-BRCT domain protein Brc1 that binds phospho-histone H2A (γH2A at damaged replication forks. The viability of pnk1Δ cells depends on Mre11 and Ctp1 (CtIP/Sae2 double-strand break (DSB resection proteins, Rad52 DNA strand annealing protein, Mus81-Eme1 Holliday junction resolvase, and Rqh1 (BLM/WRN/Sgs1 DNA helicase. Coupled with increased sister chromatid recombination and Rad52 repair foci in pnk1Δ cells, these findings indicate that lingering SSBs in pnk1Δ cells trigger Rad51-independent homology-directed repair of collapsed replication forks. From these data, we propose models for HDR-mediated tolerance of persistent SSBs with 3' phosphate in pnk1Δ cells.

  14. Electroporation and microinjection successfully deliver single-stranded and duplex DNA into live cells as detected by FRET measurements.

    Directory of Open Access Journals (Sweden)

    Rosemary A Bamford

    Full Text Available Förster resonance energy transfer (FRET technology relies on the close proximity of two compatible fluorophores for energy transfer. Tagged (Cy3 and Cy5 complementary DNA strands forming a stable duplex and a doubly-tagged single strand were shown to demonstrate FRET outside of a cellular environment. FRET was also observed after transfecting these DNA strands into fixed and live cells using methods such as microinjection and electroporation, but not when using lipid based transfection reagents, unless in the presence of the endosomal acidification inhibitor bafilomycin. Avoiding the endocytosis pathway is essential for efficient delivery of intact DNA probes into cells.

  15. Sub-ensemble monitoring of DNA strand displacement using multiparameter single-molecule FRET

    OpenAIRE

    Baltierra Jasso, Laura; Morten, Michael; Magennis, Steven William

    2018-01-01

    Non-enzymatic DNA strand displacement is an important mechanism in dynamic DNA nanotechnology. Here we show that the large parameter space that is accessible by single-molecule FRET is ideal for the simultaneous monitoring of multiple reactants and products of DNA strand exchange reactions. We monitored the strand displacement from double-stranded DNA (dsDNA) by single-stranded DNA (ssDNA) at 37 °C; the data were modelled as a second-order reaction approaching equilibrium, with a rate constan...

  16. Hydrogen Annealing Of Single-Crystal Superalloys

    Science.gov (United States)

    Smialek, James L.; Schaeffer, John C.; Murphy, Wendy

    1995-01-01

    Annealing at temperature equal to or greater than 2,200 degrees F in atmosphere of hydrogen found to increase ability of single-crystal superalloys to resist oxidation when subsequently exposed to oxidizing atmospheres at temperatures almost as high. Supperalloys in question are principal constituents of hot-stage airfoils (blades) in aircraft and ground-based turbine engines; also used in other high-temperature applications like chemical-processing plants, coal-gasification plants, petrochemical refineries, and boilers. Hydrogen anneal provides resistance to oxidation without decreasing fatigue strength and without need for coating or reactive sulfur-gettering constituents. In comparison with coating, hydrogen annealing costs less. Benefits extend to stainless steels, nickel/chromium, and nickel-base alloys, subject to same scale-adhesion and oxidation-resistance considerations, except that scale is chromia instead of alumina.

  17. Evidence for multiple repair pathways of double-strand DNA breaks in Chinese hamster cells

    International Nuclear Information System (INIS)

    Giaccia, A.J.; Weistein, R.; Stamato, T.D.; Roosa, R.

    1984-01-01

    XR-1 is a mutant of the Chinese hamster cell (CHO-K1) which is abnormally sensitive to killing by gamma rays in G/sub 1/ (D37 = 27 rads vs. 318 for parent) and early S phases of the cell cycle but has near normal resistance in late S and early G/sub 2/ (Somatic Cell Genetics, 9:165-173, 1983). Complementation studies between XR-1 and its parent indicate that this sensitivity to gamma rays is a recessive phenotype. Both the XR-1 and its parent cell are able to repair single strand DNA breaks. However, in comparison to its parental cell, the XR-1 cell is markedly deficient in the repair of double strand DNA breaks introduced by gamma irradiation during the sensitive G/sub 1/-early S period, while in the late S-G/sub 2/ resistant period the repair is similar in both cells. This correlation suggests that an unrepaired double strand DNA break is the lethal lesion and that at least two pathways for the repair of these lesions exist in mammalian cells

  18. Electron attachment to DNA single strands: gas phase and aqueous solution.

    Science.gov (United States)

    Gu, Jiande; Xie, Yaoming; Schaefer, Henry F

    2007-01-01

    The 2'-deoxyguanosine-3',5'-diphosphate, 2'-deoxyadenosine-3',5'-diphosphate, 2'-deoxycytidine-3',5'-diphosphate and 2'-deoxythymidine-3',5'-diphosphate systems are the smallest units of a DNA single strand. Exploring these comprehensive subunits with reliable density functional methods enables one to approach reasonable predictions of the properties of DNA single strands. With these models, DNA single strands are found to have a strong tendency to capture low-energy electrons. The vertical attachment energies (VEAs) predicted for 3',5'-dTDP (0.17 eV) and 3',5'-dGDP (0.14 eV) indicate that both the thymine-rich and the guanine-rich DNA single strands have the ability to capture electrons. The adiabatic electron affinities (AEAs) of the nucleotides considered here range from 0.22 to 0.52 eV and follow the order 3',5'-dTDP > 3',5'-dCDP > 3',5'-dGDP > 3',5'-dADP. A substantial increase in the AEA is observed compared to that of the corresponding nucleic acid bases and the corresponding nucleosides. Furthermore, aqueous solution simulations dramatically increase the electron attracting properties of the DNA single strands. The present investigation illustrates that in the gas phase, the excess electron is situated both on the nucleobase and on the phosphate moiety for DNA single strands. However, the distribution of the extra negative charge is uneven. The attached electron favors the base moiety for the pyrimidine, while it prefers the 3'-phosphate subunit for the purine DNA single strands. In contrast, the attached electron is tightly bound to the base fragment for the cytidine, thymidine and adenosine nucleotides, while it almost exclusively resides in the vicinity of the 3'-phosphate group for the guanosine nucleotides due to the solvent effects. The comparatively low vertical detachment energies (VDEs) predicted for 3',5'-dADP(-) (0.26 eV) and 3',5'-dGDP(-) (0.32 eV) indicate that electron detachment might compete with reactions having high activation barriers

  19. Transformation of Saccharomyces cerevisiae with UV-irradiated single-stranded plasmid.

    Science.gov (United States)

    Zgaga, Z

    1991-08-01

    UV-irradiated single-stranded replicative plasmids were used to transform different yeast strains. The low doses of UV used in this study (10-75 J/m2) caused a significant decrease in the transforming efficiency of plasmid DNA in the Rad+ strain, while they had no effect on transformation with double-stranded plasmids of comparable size. Neither the rev3 mutation, nor the rad18 or rad52 mutations influenced the efficiency of transformation with irradiated single-stranded plasmid. However, it was found to be decreased in the double rev3 rad52 mutant. Extracellular irradiation of plasmid that contains both URA3 and LEU2 genes (psLU) gave rise to up to 5% Leu- transformants among selected Ura+ ones in the repair-proficient strain. Induction of Leu- transformants was dose-dependent and only partially depressed in the rev3 mutant. These results suggest that both mutagenic and recombinational repair processes operate on UV-damaged single-stranded DNA in yeast.

  20. Formation of double-strand breaks in DNA of γ-irradiated bacteria depending on the function of fast repair processes of DNA single-strand breaks

    International Nuclear Information System (INIS)

    Petrov, S.I.; Gaziev, A.I.

    1980-01-01

    The formation of double-strand breaks in DNA of γ-irradiated ( 60 Co)Ex coli bacteria depending on the function of fast repair processes of DNA single-strand breaks, is investigated. The profiles of sedimentation of DNA Ex coli cells, irradiated at 0-2 deg C in the salt medium and in EDTA-borate buffer, are presented. It is shown that when irradiating cells in EDTA-borate buffer, the output of single- and double strand breaks in DNA is much higher than in the case of their irradiation in the minimum salt medium. The dependence of output of single-strand and double-strand breaks depending on the radiatier doze of E coli cells in the salt medium and EDTA-borate buffer, is studied. The supposition is made on the presence of a regulative interaction between the accumulation of DNA single-breaks and their repair with the formation of double-strand breaks. The functionating of fast and superfast repair processes considerably affects the formation of double-strand breaks in DNA of a bacterium cell. A considerable amount of double-breaks registered immediately after irradiation forms due to a close position of single-strand breaks on the opposite DNA strands

  1. Study of photoluminescence from annealed bulk-ZnO single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Yoneta, M.; Ohishi, M.; Saito, H. [Department of Applied Physics, Okayama University of Science, 1-1 Ridai-cho, Okayama 700-0005 (Japan); Yoshino, K. [Department of Electrical and Electronic Engineering, Miyazaki University, 1-1 Gakuen Kibanadai-nishi, Miyazaki 889-2192 (Japan); Honda, M. [Faculty of Science, Naruto University of Education, 748 Nakajima, Takashima, Naruto-cho, Naruto-shi 772-8502 (Japan)

    2006-03-15

    We have investigated the influence of rapid thermal annealing on the photoluminescence of bulk-ZnO single crystal. As-grown ZnO wafer, illuminated by 325 nm ultraviolet light at 4.2 K, emitted the visible luminescence of pale green centered of 2.29 eV. The luminescence was observed by the anneal at the temperature range between 400 C and 1000 C, however, its intensity decreased with anneal temperature. The free-exciton and the 2.18 eV emission line were obtained by the anneal at 1200 C for 60 sec. From the X-ray diffraction and the surface morphology measurements, the improvement of the crystallinity of bulk-ZnO crystal were confirmed. We suggest that a rapid thermal annealing technique is convenience to improve the the quality of bul-ZnO single crystals. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  2. Genetic analysis of RPA single-stranded DNA binding protein in Haloferax volcanii

    OpenAIRE

    Stroud, A. L.

    2012-01-01

    Replication protein A (RPA) is a single-stranded DNA-binding protein that is present in all three domains of life. The roles of RPA include stabilising and protecting single- stranded DNA from nuclease degradation during DNA replication and repair. To achieve this, RPA uses an oligosaccharide-binding fold (OB fold) to bind single- stranded DNA. Haloferax volcanii encodes three RPAs – RPA1, RPA2 and RPA3, of which rpa1 and rpa3 are in operons with genes encoding associated proteins (APs). ...

  3. Influence of DNA conformation on radiation-induced single-strand breaks

    International Nuclear Information System (INIS)

    Barone, F.; Belli, M.; Mazzei, F.

    1994-01-01

    We performed experiments on two DNA fragments of about 300 bp having different conformation to test whether radiation-induced single-strand breakage is dependent on DNA conformation. Breakage analysis was carried out by denaturing polyacrylamide gel electrophoresis, which allows determination of the broken site at single nucleotide resolution. We found uniform cutting patterns in B-form regions. On the contrary, X- or γ-irradiation of curved fragments of kinetoplast DNA showed that the distribution of single-strand breaks was not uniform along the fragment, as the cleavage pattern was modulated in phase with the runs of A-T pairs. This modulation likely reflected the reduced accessibility of the sites which on hydroxyl-radical attack give rise to strand breaks. The cleavage pattern was phased with the runs of A-T pairs. Moreover, the overall yield of strand breaks was considerably lower in curved DNA fragments than in those with extended straight regions. The conformation effect found here indicates that the cleavage pattern reflects the fine structural features of DNA. (orig./MG)

  4. Induction and repair of double- and single-strand DNA breaks in bacteriophage lambda superinfecting Escherichia coli

    International Nuclear Information System (INIS)

    Boye, E.; Krisch, R.E.

    1980-01-01

    Induction and repair of double-and single-strand DNA breaks have been measured after decays of 125 I and 3 H incorporated into the DNA and after external irradiation with 4 MeV electrons. For the decay experiments, cells of wild type Escherichia coli K-12 were superinfected with bacteriophage lambda DNA labelled with 5'-( 125 I)iodo-2'-deoxyuridine or with (methyl- 3 H)thymidine and frozen in liquid nitrogen. Aliquots were thawed at intervals and lysed at neutral pH, and the phage DNA was assayed for double- and single-strand breakage by neutral sucrose gradient centrifugation. The gradients used allowed measurements of both kinds of breaks in the same gradient. Decays of 125 I induced 0.39 single-strand breaks per double-strand break. No repair of either break type could be detected. Each 3 H disintegration caused 0.20 single-strand breaks and very few double-strand breaks. The single-strand breaks were rapidly rejoined after the cells were thawed. For irradiation with 4 MeV electrons, cells of wild type E. coli K-12 were superinfected with phage lambda and suspended in growth medium. Irradiation induced 42 single-strand breaks per double-strand break. The rates of break induction were 6.75 x 10 -14 (double-strand breaks) and 2.82 x 10 -12 (single-strand breaks) per rad and per dalton. The single-strand breaks were rapidly repaired upon incubation whereas the double-strand breaks seemed to remain unrepaired. It is concluded that double-strand breaks in superinfecting bacteriophage lambda DNA are repaired to a very small extent, if at all. (Author)

  5. The Ku Heterodimer and the Metabolism of Single-Ended DNA Double-Strand Breaks

    Directory of Open Access Journals (Sweden)

    Alessia Balestrini

    2013-06-01

    Full Text Available Single-ended double-strand breaks (DSBs are a common form of spontaneous DNA break, generated when the replisome encounters a discontinuity in the DNA template. Given their prevalence, understanding the mechanisms governing the fate(s of single-ended DSBs is important. We describe the influence of the Ku heterodimer and Mre11 nuclease activity on processing of single-ended DSBs. Separation-of-function alleles of yku70 were derived that phenocopy Ku deficiency with respect to single-ended DSBs but remain proficient for NHEJ. The Ku mutants fail to regulate Exo1 activity, and bypass the requirement for Mre11 nuclease activity in the repair of camptothecin-induced single-ended DSBs. Ku mutants exhibited reduced affinity for DNA ends, manifest as both reduced end engagement and enhanced probability of diffusing inward on linear DNA. This study reveals an interplay between Ku and Mre11 in the metabolism of single-ended DSBs that is distinct from repair pathway choice at double-ended DSBs.

  6. Investigations of morphological changes during annealing of polyethylene single crystals

    NARCIS (Netherlands)

    Tian, M.; Loos, J.

    2001-01-01

    The morphological evolution of isolated individual single crystals deposited on solid substrates was investigated during annealing experiments using in situ and ex situ atomic force microscopy techniques. The crystal morphology changed during annealing at temperatures slightly above the original

  7. Genetic polymorphisms of DNA double-strand break repair pathway genes and glioma susceptibility

    International Nuclear Information System (INIS)

    Zhao, Peng; Zou, Peng; Zhao, Lin; Yan, Wei; Kang, Chunsheng; Jiang, Tao; You, Yongping

    2013-01-01

    Genetic variations in DNA double-strand break repair genes can influence the ability of a cell to repair damaged DNA and alter an individual’s susceptibility to cancer. We studied whether polymorphisms in DNA double-strand break repair genes are associated with an increased risk of glioma development. We genotyped 10 potentially functional single nucleotide polymorphisms (SNPs) in 7 DNA double-strand break repair pathway genes (XRCC3, BRCA2, RAG1, XRCC5, LIG4, XRCC4 and ATM) in a case–control study including 384 glioma patients and 384 cancer-free controls in a Chinese Han population. Genotypes were determined using the OpenArray platform. In the single-locus analysis there was a significant association between gliomas and the LIG4 rs1805388 (Ex2 +54C>T, Thr9Ile) TT genotype (adjusted OR, 3.27; 95% CI, 1.87-5.71), as well as the TC genotype (adjusted OR, 1.62; 95% CI, 1.20-2.18). We also found that the homozygous variant genotype (GG) of XRCC4 rs1805377 (IVS7-1A>G, splice-site) was associated with a significantly increased risk of gliomas (OR, 1.77; 95% CI, 1.12-2.80). Interestingly, we detected a significant additive and multiplicative interaction effect between the LIG4 rs1805388 and XRCC4 rs1805377 polymorphisms with an increasing risk of gliomas. When we stratified our analysis by smoking status, LIG4 rs1805388 was associated with an increased glioma risk among smokers. These results indicate for the first time that LIG4 rs1805388 and XRCC4 rs1805377, alone or in combination, are associated with a risk of gliomas

  8. Hole hopping rates in single strand oligonucleotides

    Energy Technology Data Exchange (ETDEWEB)

    Borrelli, Raffaele [Dipartimento di Scienze Agrarie, Forestali e Alimentari, Università di Torino, Largo Paolo Braccini 2, I-10095 Grugliasco, TO (Italy); Capobianco, Amedeo [Dipartimento di Chimica e Biologia, Università di Salerno, Via Giovanni Paolo II, I-84084 Fisciano, SA (Italy); Peluso, Andrea, E-mail: apeluso@unisa.it [Dipartimento di Chimica e Biologia, Università di Salerno, Via Giovanni Paolo II, I-84084 Fisciano, SA (Italy)

    2014-08-31

    Highlights: • DNA hole transfer rates have been computed. • Delocalized adenine domains significantly affect hole transfer rates in DNA. • Franck–Condon weighted density of state from DFT normal modes. • DNA application in molecular electronics. - Abstract: The rates of hole transfer between guanine and adenine in single strand DNA have been evaluated by using Fermi’s golden rule and Kubo’s generating function approach for the Franck–Condon weighted density of states. The whole sets of the normal modes and vibrational frequencies of the two nucleobases, obtained at DFT/B3LYP level of calculation, have been considered in computations. The results show that in single strand the pyramidalization/planarization mode of the amino groups of both nucleobases plays the major role. At room temperature, the Franck–Condon density of states extends over a wide range of hole site energy difference, 0–1 eV, giving some hints about the design of oligonucleotides of potential technological interest.

  9. RPA Stabilization of Single-Stranded DNA Is Critical for Break-Induced Replication.

    Science.gov (United States)

    Ruff, Patrick; Donnianni, Roberto A; Glancy, Eleanor; Oh, Julyun; Symington, Lorraine S

    2016-12-20

    DNA double-strand breaks (DSBs) are cytotoxic lesions that must be accurately repaired to maintain genome stability. Replication protein A (RPA) plays an important role in homology-dependent repair of DSBs by protecting the single-stranded DNA (ssDNA) intermediates formed by end resection and by facilitating Rad51 loading. We found that hypomorphic mutants of RFA1 that support intra-chromosomal homologous recombination are profoundly defective for repair processes involving long tracts of DNA synthesis, in particular break-induced replication (BIR). The BIR defects of the rfa1 mutants could be partially suppressed by eliminating the Sgs1-Dna2 resection pathway, suggesting that Dna2 nuclease attacks the ssDNA formed during end resection when not fully protected by RPA. Overexpression of Rad51 was also found to suppress the rfa1 BIR defects. We suggest that Rad51 binding to the ssDNA formed by excessive end resection and during D-loop migration can partially compensate for dysfunctional RPA. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  10. DNA template strand sequencing of single-cells maps genomic rearrangements at high resolution

    NARCIS (Netherlands)

    Falconer, Ester; Hills, Mark; Naumann, Ulrike; Poon, Steven S. S.; Chavez, Elizabeth A.; Sanders, Ashley D.; Zhao, Yongjun; Hirst, Martin; Lansdorp, Peter M.

    DNA rearrangements such as sister chromatid exchanges (SCEs) are sensitive indicators of genomic stress and instability, but they are typically masked by single-cell sequencing techniques. We developed Strand-seq to independently sequence parental DNA template strands from single cells, making it

  11. Competition between the DNA unwinding and strand pairing activities of the Werner and Bloom syndrome proteins

    Directory of Open Access Journals (Sweden)

    Orren David K

    2006-01-01

    Full Text Available Abstract Background The premature aging and cancer-prone Werner and Bloom syndromes are caused by defects in the RecQ helicase enzymes WRN and BLM, respectively. Recently, both WRN and BLM (as well as several other RecQ members have been shown to possess a strand annealing activity in addition to the requisite DNA unwinding activity. Since an annealing function would appear to directly oppose the action of a helicase, we have examined in this study the dynamic equilibrium between unwinding and annealing mediated by either WRN or BLM. Results Our investigation into the competition between annealing and unwinding demonstrates that, under standard reaction conditions, WRN- or BLM-mediated annealing can partially or completely mask unwinding as measured in standard helicase assays. Several strategies were employed to suppress the annealing activity so that the actual strength of WRN- or BLM-dependent unwinding could be more accurately assessed. Interestingly, if a DNA oligomer complementary to one strand of the DNA substrate to be unwound is added during the helicase reaction, both WRN and BLM unwinding is enhanced, presumably by preventing protein-mediated re-annealing. This strategy allowed measurement of WRN-catalyzed unwinding of long (80 base pair duplex regions and fully complementary, blunt-ended duplexes, both of which were otherwise quite refractory to the helicase activity of WRN. Similarly, the addition of trap strand stimulated the ability of BLM to unwind long and blunt-ended duplexes. The stimulatory effect of the human replication protein A (hRPA, the eukaryotic single-stranded DNA binding protein on both WRN- and BLM-dependent unwinding was also re-examined in light of its possible role in preventing re-annealing. Our results show that hRPA influences the outcome of WRN and BLM helicase assays by both inhibiting re-annealing and directly promoting unwinding, with the larger contribution from the latter mechanism. Conclusion These

  12. Electronic transport in single-helical protein molecules: Effects of multiple charge conduction pathways and helical symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Kundu, Sourav, E-mail: sourav.kunduphy@gmail.com; Karmakar, S.N.

    2016-07-15

    We propose a tight-binding model to investigate electronic transport properties of single helical protein molecules incorporating both the helical symmetry and the possibility of multiple charge transfer pathways. Our study reveals that due to existence of both the multiple charge transfer pathways and helical symmetry, the transport properties are quite rigid under influence of environmental fluctuations which indicates that these biomolecules can serve as better alternatives in nanoelectronic devices than its other biological counterparts e.g., single-stranded DNA.

  13. The Ku heterodimer and the metabolism of single-ended DNA double-strand breaks.

    Science.gov (United States)

    Balestrini, Alessia; Ristic, Dejan; Dionne, Isabelle; Liu, Xiao Z; Wyman, Claire; Wellinger, Raymund J; Petrini, John H J

    2013-06-27

    Single-ended double-strand breaks (DSBs) are a common form of spontaneous DNA break, generated when the replisome encounters a discontinuity in the DNA template. Given their prevalence, understanding the mechanisms governing the fate(s) of single-ended DSBs is important. We describe the influence of the Ku heterodimer and Mre11 nuclease activity on processing of single-ended DSBs. Separation-of-function alleles of yku70 were derived that phenocopy Ku deficiency with respect to single-ended DSBs but remain proficient for NHEJ. The Ku mutants fail to regulate Exo1 activity, and bypass the requirement for Mre11 nuclease activity in the repair of camptothecin-induced single-ended DSBs. Ku mutants exhibited reduced affinity for DNA ends, manifest as both reduced end engagement and enhanced probability of diffusing inward on linear DNA. This study reveals an interplay between Ku and Mre11 in the metabolism of single-ended DSBs that is distinct from repair pathway choice at double-ended DSBs. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Repair and gamma radiation-induced single- and double-strand breaks in DNA of Escherichia coli

    International Nuclear Information System (INIS)

    Petrov, S.I.

    1981-01-01

    Studies in the kinetics of repair of γ-radiation-induced single- and double-strand breaks in DNA of E. coli cells showed that double-strand DNA breaks are rejoined by the following two ways. The first way is conditioned by repair of single-strand breaks and represents the repair of ''oblique'' double-strand breaks in DNA, whereas the second way is conditioned by functioning of the recombination mechanisms and, to all appearance, represents the repair of ''direct'' double-strand breaks in DNA

  15. Interactive Roles of DNA Helicases and Translocases with the Single-Stranded DNA Binding Protein RPA in Nucleic Acid Metabolism.

    Science.gov (United States)

    Awate, Sanket; Brosh, Robert M

    2017-06-08

    Helicases and translocases use the energy of nucleoside triphosphate binding and hydrolysis to unwind/resolve structured nucleic acids or move along a single-stranded or double-stranded polynucleotide chain, respectively. These molecular motors facilitate a variety of transactions including replication, DNA repair, recombination, and transcription. A key partner of eukaryotic DNA helicases/translocases is the single-stranded DNA binding protein Replication Protein A (RPA). Biochemical, genetic, and cell biological assays have demonstrated that RPA interacts with these human molecular motors physically and functionally, and their association is enriched in cells undergoing replication stress. The roles of DNA helicases/translocases are orchestrated with RPA in pathways of nucleic acid metabolism. RPA stimulates helicase-catalyzed DNA unwinding, enlists translocases to sites of action, and modulates their activities in DNA repair, fork remodeling, checkpoint activation, and telomere maintenance. The dynamic interplay between DNA helicases/translocases and RPA is just beginning to be understood at the molecular and cellular levels, and there is still much to be learned, which may inform potential therapeutic strategies.

  16. Inter-Fork Strand Annealing causes genomic deletions during the termination of DNA replication.

    Science.gov (United States)

    Morrow, Carl A; Nguyen, Michael O; Fower, Andrew; Wong, Io Nam; Osman, Fekret; Bryer, Claire; Whitby, Matthew C

    2017-06-06

    Problems that arise during DNA replication can drive genomic alterations that are instrumental in the development of cancers and many human genetic disorders. Replication fork barriers are a commonly encountered problem, which can cause fork collapse and act as hotspots for replication termination. Collapsed forks can be rescued by homologous recombination, which restarts replication. However, replication restart is relatively slow and, therefore, replication termination may frequently occur by an active fork converging on a collapsed fork. We find that this type of non-canonical fork convergence in fission yeast is prone to trigger deletions between repetitive DNA sequences via a mechanism we call Inter-Fork Strand Annealing (IFSA) that depends on the recombination proteins Rad52, Exo1 and Mus81, and is countered by the FANCM-related DNA helicase Fml1. Based on our findings, we propose that IFSA is a potential threat to genomic stability in eukaryotes.

  17. MEIOB targets single-strand DNA and is necessary for meiotic recombination.

    Directory of Open Access Journals (Sweden)

    Benoit Souquet

    Full Text Available Meiotic recombination is a mandatory process for sexual reproduction. We identified a protein specifically implicated in meiotic homologous recombination that we named: meiosis specific with OB domain (MEIOB. This protein is conserved among metazoan species and contains single-strand DNA binding sites similar to those of RPA1. Our studies in vitro revealed that both recombinant and endogenous MEIOB can be retained on single-strand DNA. Those in vivo demonstrated the specific expression of Meiob in early meiotic germ cells and the co-localization of MEIOB protein with RPA on chromosome axes. MEIOB localization in Dmc1 (-/- spermatocytes indicated that it accumulates on resected DNA. Homologous Meiob deletion in mice caused infertility in both sexes, due to a meiotic arrest at a zygotene/pachytene-like stage. DNA double strand break repair and homologous chromosome synapsis were impaired in Meiob (-/- meiocytes. Interestingly MEIOB appeared to be dispensable for the initial loading of recombinases but was required to maintain a proper number of RAD51 and DMC1 foci beyond the zygotene stage. In light of these findings, we propose that RPA and this new single-strand DNA binding protein MEIOB, are essential to ensure the proper stabilization of recombinases which is required for successful homology search and meiotic recombination.

  18. Annealing effect on superconductivity of La2CuO4 single crystals

    International Nuclear Information System (INIS)

    Tanaka, I.; Takahashi, H.; Kojima, H.

    1992-01-01

    This paper reports that La 2 CuO 4 single crystals grown at an oxygen pressure of 0.2 MPa by TSFZ method are superconducting below 32 K, and show a semiconducting behavior in nonsuperconducting state. The single crystals of La 2 CuO 4 are changed from superconductors to semiconductors by annealing in argon, and are returned to superconductors by annealing at ambient pressure of oxygen. Therefore, superconductivity of the La 2 CuO 4 single crystals is due to excess oxygen

  19. Annealing effect on superconductivity of La2CuO4 single crystals

    International Nuclear Information System (INIS)

    Tanaka, L.; Takahashi, H.; Kojima, H.

    1992-01-01

    La 2 CuO 4 single crystals grown at an oxygen pressure of 0.2 MPa by TSFZ method are superconducting below 32 K, and show a semiconducting behavior in nonsuperconducting state. The single crystals of La 2 CuO 4 are changed from superconductors to semiconductors by annealing in argon, and are returned to superconductors by annealing at ambient pressure of oxygen. Therefore, superconductivity of the La 2 CuO 4 single crystals is due to excess oxygen. (orig.)

  20. TALEN-Induced Double-Strand Break Repair of CTG Trinucleotide Repeats

    Directory of Open Access Journals (Sweden)

    Valentine Mosbach

    2018-02-01

    Full Text Available Trinucleotide repeat expansions involving CTG/CAG triplets are responsible for several neurodegenerative disorders, including myotonic dystrophy and Huntington’s disease. Because expansions trigger the disease, contracting repeat length could be a possible approach to gene therapy for these disorders. Here, we show that a TALEN-induced double-strand break was very efficient at contracting expanded CTG repeats in yeast. We show that RAD51, POL32, and DNL4 are dispensable for double-strand break repair within CTG repeats, the only required genes being RAD50, SAE2, and RAD52. Resection was totally abolished in the absence of RAD50 on both sides of the break, whereas it was reduced in a sae2Δ mutant on the side of the break containing the longest repeat tract, suggesting that secondary structures at double-strand break ends must be removed by the Mre11-Rad50 complex and Sae2. Following the TALEN double-strand break, single-strand annealing occurred between both sides of the repeat tract, leading to repeat contraction.

  1. Regions of incompatibility in single-stranded DNA bacteriophages phi X174 and G4

    NARCIS (Netherlands)

    van der Avoort, H. G.; van der Ende, A.; van Arkel, G. A.; Weisbeek, P. J.

    1984-01-01

    The intracellular presence of a recombinant plasmid containing the intercistronic region between the genes H and A of bacteriophage phi X174 strongly inhibits the conversion of infecting single-stranded phi X DNA to parental replicative-form DNA. Also, transfection with single-stranded or

  2. Towards quantitative viromics for both double-stranded and single-stranded DNA viruses

    Directory of Open Access Journals (Sweden)

    Simon Roux

    2016-12-01

    Full Text Available Background Viruses strongly influence microbial population dynamics and ecosystem functions. However, our ability to quantitatively evaluate those viral impacts is limited to the few cultivated viruses and double-stranded DNA (dsDNA viral genomes captured in quantitative viral metagenomes (viromes. This leaves the ecology of non-dsDNA viruses nearly unknown, including single-stranded DNA (ssDNA viruses that have been frequently observed in viromes, but not quantified due to amplification biases in sequencing library preparations (Multiple Displacement Amplification, Linker Amplification or Tagmentation. Methods Here we designed mock viral communities including both ssDNA and dsDNA viruses to evaluate the capability of a sequencing library preparation approach including an Adaptase step prior to Linker Amplification for quantitative amplification of both dsDNA and ssDNA templates. We then surveyed aquatic samples to provide first estimates of the abundance of ssDNA viruses. Results Mock community experiments confirmed the biased nature of existing library preparation methods for ssDNA templates (either largely enriched or selected against and showed that the protocol using Adaptase plus Linker Amplification yielded viromes that were ±1.8-fold quantitative for ssDNA and dsDNA viruses. Application of this protocol to community virus DNA from three freshwater and three marine samples revealed that ssDNA viruses as a whole represent only a minor fraction (<5% of DNA virus communities, though individual ssDNA genomes, both eukaryote-infecting Circular Rep-Encoding Single-Stranded DNA (CRESS-DNA viruses and bacteriophages from the Microviridae family, can be among the most abundant viral genomes in a sample. Discussion Together these findings provide empirical data for a new virome library preparation protocol, and a first estimate of ssDNA virus abundance in aquatic systems.

  3. Human Fanconi anemia monoubiquitination pathway promotes homologous DNA repair.

    Science.gov (United States)

    Nakanishi, Koji; Yang, Yun-Gui; Pierce, Andrew J; Taniguchi, Toshiyasu; Digweed, Martin; D'Andrea, Alan D; Wang, Zhao-Qi; Jasin, Maria

    2005-01-25

    Fanconi anemia (FA) is a recessive disorder characterized by congenital abnormalities, progressive bone-marrow failure, and cancer susceptibility. Cells from FA patients are hypersensitive to agents that produce DNA crosslinks and, after treatment with these agents, have pronounced chromosome breakage and other cytogenetic abnormalities. Eight FANC genes have been cloned, and the encoded proteins interact in a common cellular pathway. DNA-damaging agents activate the monoubiquitination of FANCD2, resulting in its targeting to nuclear foci that also contain BRCA1 and BRCA2/FANCD1, proteins involved in homology-directed DNA repair. Given the interaction of the FANC proteins with BRCA1 and BRCA2, we tested whether cells from FA patients (groups A, G, and D2) and mouse Fanca-/- cells with a targeted mutation are impaired for this repair pathway. We find that both the upstream (FANCA and FANCG) and downstream (FANCD2) FA pathway components promote homology-directed repair of chromosomal double-strand breaks (DSBs). The FANCD2 monoubiquitination site is critical for normal levels of repair, whereas the ATM phosphorylation site is not. The defect in these cells, however, is mild, differentiating them from BRCA1 and BRCA2 mutant cells. Surprisingly, we provide evidence that these proteins, like BRCA1 but unlike BRCA2, promote a second DSB repair pathway involving homology, i.e., single-strand annealing. These results suggest an early role for the FANC proteins in homologous DSB repair pathway choice.

  4. Toehold-mediated strand displacement reaction triggered isothermal DNA amplification for highly sensitive and selective fluorescent detection of single-base mutation.

    Science.gov (United States)

    Zhu, Jing; Ding, Yongshun; Liu, Xingti; Wang, Lei; Jiang, Wei

    2014-09-15

    Highly sensitive and selective detection strategy for single-base mutations is essential for risk assessment of malignancy and disease prognosis. In this work, a fluorescent detection method for single-base mutation was proposed based on high selectivity of toehold-mediated strand displacement reaction (TSDR) and powerful signal amplification capability of isothermal DNA amplification. A discrimination probe was specially designed with a stem-loop structure and an overhanging toehold domain. Hybridization between the toehold domain and the perfect matched target initiated the TSDR along with the unfolding of the discrimination probe. Subsequently, the target sequence acted as a primer to initiate the polymerization and nicking reactions, which released a great abundant of short sequences. Finally, the released strands were annealed with the reporter probe, launching another polymerization and nicking reaction to produce lots of G-quadruplex DNA, which could bind the N-methyl mesoporphyrin IX to yield an enhanced fluorescence response. However, when there was even a single base mismatch in the target DNA, the TSDR was suppressed and so subsequent isothermal DNA amplification and fluorescence response process could not occur. The proposed approach has been successfully implemented for the identification of the single-base mutant sequences in the human KRAS gene with a detection limit of 1.8 pM. Furthermore, a recovery of 90% was obtained when detecting the target sequence in spiked HeLa cells lysate, demonstrating the feasibility of this detection strategy for single-base mutations in biological samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Strand displacement activated peroxidase activity of hemin for fluorescent DNA sensing.

    Science.gov (United States)

    Wang, Quanbo; Xu, Nan; Gui, Zhen; Lei, Jianping; Ju, Huangxian; Yan, Feng

    2015-10-07

    To efficiently regulate the catalytic activity of the peroxidase mimic hemin, this work designs a double-stranded DNA probe containing an intermolecular dimer of hemin, whose peroxidase activity can be activated by a DNA strand displacement reaction. The double-stranded probe is prepared by annealing two strands of hemin labelled DNA oligonucleotides. Using the fluorescent oxidation product of tyramine by H2O2 as a tracing molecule, the low peroxidase activity of the hemin dimer ensures a low fluorescence background. The strand displacement reaction of the target DNA dissociates the hemin dimer and thus significantly increases the catalytic activity of hemin to produce a large amount of dityramine for fluorescence signal readout. Based on the strand displacement regulated peroxidase activity, a simple and sensitive homogeneous fluorescent DNA sensing method is proposed. The detection can conveniently be carried out in a 96-well plate within 20 min with a detection limit of 0.18 nM. This method shows high specificity, which can effectively distinguish single-base mismatched DNA from perfectly matched target DNA. The DNA strand displacement regulated catalytic activity of hemin has promising application in the determination of various DNA analytes.

  6. Double Strand Break Repair, one mechanism can hide another: Alternative non-homologous end joining

    International Nuclear Information System (INIS)

    Rass, E.; Grabarz, A.; Bertrand, P.; Lopez, B.S.

    2012-01-01

    DNA double strand breaks are major cytotoxic lesions encountered by the cells. They can be induced by ionizing radiation or endogenous stress and can lead to genetic instability. Two mechanisms compete for the repair of DNA double strand breaks: homologous recombination and non-homologous end joining (NHEJ). Homologous recombination requires DNA sequences homology and is initiated by single strand resection. Recently, advances have been made concerning the major steps and proteins involved in resection. NHEJ, in contrast, does not require sequence homology. The existence of a DNA double strand break repair mechanism, independent of KU and ligase IV, the key proteins of the canonical non homologous end joining pathway, has been revealed lately and named alternative non homologous end joining. The hallmarks of this highly mutagenic pathway are deletions at repair junctions and frequent use of distal micro-homologies. This mechanism is also initiated by a single strand resection of the break. The aim of this review is firstly to present recent data on single strand resection, and secondly the alternative NHEJ pathway, including a discussion on the fidelity of NHEJ. Based on current knowledge, canonical NHEJ does not appear as an intrinsically mutagenic mechanism, but in contrast, as a conservative one. The structure of broken DNA ends actually dictates the quality repair of the alternative NHEJ and seems the actual responsible for the mutagenesis attributed beforehand to the canonical NHEJ. The existence of this novel DNA double strand breaks repair mechanism needs to be taken into account in the development of radiosensitizing strategies in order to optimise the efficiency of radiotherapy. (authors)

  7. DNA single strand break in fibroblast from Down syndrome patients

    International Nuclear Information System (INIS)

    Rozga, B.

    1992-01-01

    The radiosensitivity of tree trisomic (trisomia +21) strains of human fibroblasts to gamma radiation has been investigated in vitro and the causes of induction and repair of single strand DNA breaks in these cells have been estimated. The single strand breaks in DNA of normal and trisomic cells have been found to be ameliorated with an approximately equal efficiency. Repair has been found to be three times slower in trisomic cells compared to their normal relevant, most likely due to their elevated sensitivity to ionizing radiation and the following mortality of trisomic cells, and/or the potential occurrence of a great number of chromosome aberrations in cells irradiated in vitro. (author). 28 refs, 4 figs, 1 tab

  8. Single-strand breaks in supercoiled DNA induced by vacuum-UV radiation in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Takakura, Kaoru; Ishikawa, Mitsuo; Hieda, Kotaro; Kobayashi, Katsumi; Ito, Atsushi; Ito, Takashi

    1986-09-01

    The induction of single-strand breaks in the DNA of plasmid pBR 322 by vacuum-UV radiation above 145 nm in aqueous solutions was studied in relation to the production of OH-radicals in water. The similarity and dissimilarity were examined on the wavelength dependence between the two effects. The maximum of single strand breaks at 150 nm could be explained by the action of OH-radicals derived from direct water photolysis: the maximum at 180 nm remains unexplained. There was no indication that the direct absorption of photon by the DNA molecule plays an important role in the production of single-strand breaks.

  9. Single-strand breaks in supercoiled DNA induced by vacuum-UV radiation in aqueous solution

    International Nuclear Information System (INIS)

    Takakura, Kaoru; Ishikawa, Mitsuo; Hieda, Kotaro; Kobayashi, Katsumi; Ito, Atsushi; Ito, Takashi

    1986-01-01

    The induction of single-strand breaks in the DNA of plasmid pBR 322 by vacuum-UV radiation above 145 nm in aqueous solutions was studied in relation to the production of OH-radicals in water. The similarity and dissimilarity were examined on the wavelength dependence between the two effects. The maximum of single strand breaks at 150 nm could be explained by the action of OH-radicals derived from direct water photolysis: the maximum at 180 nm remains unexplained. There was no indication that the direct absorption of photon by the DNA molecule plays an important role in the production of single-strand breaks. (author)

  10. Conserved helicase domain of human RecQ4 is required for strand annealing-independent DNA unwinding

    DEFF Research Database (Denmark)

    Rossi, Marie L; Ghosh, Avik K; Kulikowicz, Tomasz

    2010-01-01

    Humans have five members of the well conserved RecQ helicase family: RecQ1, Bloom syndrome protein (BLM), Werner syndrome protein (WRN), RecQ4, and RecQ5, which are all known for their roles in maintaining genome stability. BLM, WRN, and RecQ4 are associated with premature aging and cancer...... provide the first evidence that human RecQ4's unwinding is independent of strand annealing, and that it does not require the presence of excess ssDNA. Moreover, we demonstrate that a point mutation of the conserved lysine in the Walker A motif abolished helicase activity, implying that not the N...... activities and protein partners of RecQ4 are conserved with those of the other RecQ helicases....

  11. A single-strand specific lesion drives MMS-induced hyper-mutability at a double-strand break in yeast.

    Science.gov (United States)

    Yang, Yong; Gordenin, Dmitry A; Resnick, Michael A

    2010-08-05

    Localized hyper-mutability (LHM) can be important in evolution, immunity, and genetic diseases. We previously reported that single-strand DNA (ssDNA) can be an important source of damage-induced LHM in yeast. Here, we establish that the generation of LHM by methyl methanesulfonate (MMS) during repair of a chromosomal double-strand break (DSB) can result in over 0.2 mutations/kb, which is approximately 20,000-fold higher than the MMS-induced mutation density without a DSB. The MMS-induced mutations associated with DSB repair were primarily due to substitutions via translesion DNA synthesis at damaged cytosines, even though there are nearly 10 times more MMS-induced lesions at other bases. Based on this mutation bias, the promutagenic lesion dominating LHM is likely 3-methylcytosine, which is single-strand specific. Thus, the dramatic increase in mutagenesis at a DSB is concluded to result primarily from the generation of non-repairable lesions in ssDNA associated with DSB repair along with efficient induction of highly mutagenic ssDNA-specific lesions. These findings with MMS-induced LHM have broad biological implications for unrepaired damage generated in ssDNA and possibly ssRNA. Published by Elsevier B.V.

  12. Growth and characterization of air annealing Mn-doped YAG:Ce single crystal for LED

    International Nuclear Information System (INIS)

    Xiang, Weidong; Zhong, Jiasong; Zhao, Yinsheng; Zhao, Binyu; Liang, Xiaojuan; Dong, Yongjun; Zhang, Zhimin; Chen, Zhaoping; Liu, Bingfeng

    2012-01-01

    Highlights: ► The YAG:Ce,Mn single crystal was well synthesized by the Czochralski (CZ) method. ► The emission intensity of the sample has been influenced after annealing. ► Annealed in the air at 1200 °C was the most optimal annealing condition. ► The single crystal could be used in the white light LED which emitted by blue light. - Abstract: The growth of Mn-doped YAG:Ce (yttrium aluminum garnet doped cerium) single crystal by the Czochralski (CZ) method and the characterization of its spectroscopy and color-electric parameters are presented. The absorption spectra indicate that the crystal absorbed highly in the 300–500 nm wavelength range. The emission spectrum of the crystal consists of a peak around 538 nm when excited by 460 nm blue light, which prove the YAG:Ce,Mn single crystal could be used in the white light emitting doides (LED). The different charges of Mn ions have different luminescence properties, and the air annealing process for the single crystal would change the concentration of Mn ions with different charges, which could influence the emission intensity of the single crystal.

  13. Absolute determination of single-stranded and self-complementary adeno-associated viral vector genome titers by droplet digital PCR.

    Science.gov (United States)

    Lock, Martin; Alvira, Mauricio R; Chen, Shu-Jen; Wilson, James M

    2014-04-01

    Accurate titration of adeno-associated viral (AAV) vector genome copies is critical for ensuring correct and reproducible dosing in both preclinical and clinical settings. Quantitative PCR (qPCR) is the current method of choice for titrating AAV genomes because of the simplicity, accuracy, and robustness of the assay. However, issues with qPCR-based determination of self-complementary AAV vector genome titers, due to primer-probe exclusion through genome self-annealing or through packaging of prematurely terminated defective interfering (DI) genomes, have been reported. Alternative qPCR, gel-based, or Southern blotting titering methods have been designed to overcome these issues but may represent a backward step from standard qPCR methods in terms of simplicity, robustness, and precision. Droplet digital PCR (ddPCR) is a new PCR technique that directly quantifies DNA copies with an unparalleled degree of precision and without the need for a standard curve or for a high degree of amplification efficiency; all properties that lend themselves to the accurate quantification of both single-stranded and self-complementary AAV genomes. Here we compare a ddPCR-based AAV genome titer assay with a standard and an optimized qPCR assay for the titration of both single-stranded and self-complementary AAV genomes. We demonstrate absolute quantification of single-stranded AAV vector genomes by ddPCR with up to 4-fold increases in titer over a standard qPCR titration but with equivalent readout to an optimized qPCR assay. In the case of self-complementary vectors, ddPCR titers were on average 5-, 1.9-, and 2.3-fold higher than those determined by standard qPCR, optimized qPCR, and agarose gel assays, respectively. Droplet digital PCR-based genome titering was superior to qPCR in terms of both intra- and interassay precision and is more resistant to PCR inhibitors, a desirable feature for in-process monitoring of early-stage vector production and for vector genome biodistribution

  14. Single-strand DNA molecule translocation through nanoelectrode gaps

    International Nuclear Information System (INIS)

    Zhao Xiongce; Payne, Christina M; Cummings, Peter T; Lee, James W

    2007-01-01

    Molecular dynamics simulations were performed to investigate the translocation of single-strand DNA through nanoscale electrode gaps under the action of a constant driving force. The application behind this theoretical study is a proposal to use nanoelectrodes as a screening gap as part of a rapid genomic sequencing device. Preliminary results from a series of simulations using various gap widths and driving forces suggest that the narrowest electrode gap that a single-strand DNA can pass is ∼1.5 nm. The minimum force required to initiate the translocation within nanoseconds is ∼0.3 nN. Simulations using DNA segments of various lengths indicate that the minimum initiation force is insensitive to the length of DNA. However, the average threading velocity of DNA varies appreciably from short to long DNA segments. We attribute such variation to the different nature of drag force experienced by the short and long DNA segments in the environment. It is found that DNA molecules deform significantly to fit in the shape of the nanogap during the translocation

  15. Repair of X-ray-induced single-strand breaks by a cell-free system

    International Nuclear Information System (INIS)

    Seki, Shuji; Ikeda, Shogo; Tsutui, Ken; Teraoka, Hirobumi

    1990-01-01

    Repair of X-ray-induced single-strand breaks of DNA was studied in vitro using an exonuclease purified from mouse ascites sarcoma (SR-C3H/He) cells. X-ray-dose-dependent unscheduled DNA synthesis was primed by the exonuclease. Repair of X-ray-induced single-strand breaks in pUC19 plasmid DNA was demonstrated by agarose gel electrophoresis after incubating the damaged DNA with the exonuclease, DNA polymerase (Klenow fragment of DNA polymerase I or DNA polymerase β purified from SR-C3H/He cells), four deoxynucleoside triphosphates, ATP and DNA ligase (T4 DNA ligase or DNA ligase I purified from calf thymus). The present results suggested that the exonuclease is involved in the initiation of repair of X-ray-induced single-strand breaks in removing 3' ends of X-ray-damaged DNA. (author)

  16. Protected DNA strand displacement for enhanced single nucleotide discrimination in double-stranded DNA

    OpenAIRE

    Khodakov, Dmitriy A.; Khodakova, Anastasia S.; Huang, David M.; Linacre, Adrian; Ellis, Amanda V.

    2015-01-01

    Single nucleotide polymorphisms (SNPs) are a prime source of genetic diversity. Discriminating between different SNPs provides an enormous leap towards the better understanding of the uniqueness of biological systems. Here we report on a new approach for SNP discrimination using toehold-mediated DNA strand displacement. The distinctiveness of the approach is based on the combination of both 3- and 4-way branch migration mechanisms, which allows for reliable discrimination of SNPs within doubl...

  17. DNA template strand sequencing of single-cells maps genomic rearrangements at high resolution

    OpenAIRE

    Falconer, Ester; Hills, Mark; Naumann, Ulrike; Poon, Steven S. S.; Chavez, Elizabeth A.; Sanders, Ashley D.; Zhao, Yongjun; Hirst, Martin; Lansdorp, Peter M.

    2012-01-01

    DNA rearrangements such as sister chromatid exchanges (SCEs) are sensitive indicators of genomic stress and instability, but they are typically masked by single-cell sequencing techniques. We developed Strand-seq to independently sequence parental DNA template strands from single cells, making it possible to map SCEs at orders-of-magnitude greater resolution than was previously possible. On average, murine embryonic stem (mES) cells exhibit eight SCEs, which are detected at a resolution of up...

  18. STRUCTURAL AND FUNCTIONAL-ANALYSIS OF THE SINGLE-STRAND ORIGIN OF REPLICATION FROM THE LACTOCOCCAL PLASMID PWVO1

    NARCIS (Netherlands)

    SEEGERS, JFML; ZHAO, AC; MEIJER, WJJ; KHAN, SA; VENEMA, G; BRON, S

    1995-01-01

    The single-strand origin (SSO) of the rolling-circle (RC), broad-host-range lactococcal plasmid pWVO1 was functionally characterized. The activity of this SSO in the conversion of single-stranded DNA to double-stranded DNA was tested both in vivo and in vitro. In addition, the effect of this SSO on

  19. Normal formation and repair of γ-radiation-induced single and double strand DNA breaks in Down syndrome fibroblasts

    International Nuclear Information System (INIS)

    Steiner, M.E.; Woods, W.G.

    1982-01-01

    Fibroblasts from patients with Down syndrome (Trisomy 21) were examined for repair capability of γ-radiation-induced single strand and double strand DNA breaks. Formation and repair of DNA breaks were determined by DNA alkaline and non-denaturing elution techniques. Down syndrome fibroblasts were found to repair single strand and double strand breaks as well as fibroblasts from normal controls. (orig.)

  20. Effect of high temperature annealing on defects and optical properties of ZnO single crystals

    International Nuclear Information System (INIS)

    Jiang, M.; Wang, D.D.; Zou, B.; Chen, Z.Q.; Kawasuso, A.; Sekiguchi, T.

    2012-01-01

    Hydrothermal grown ZnO single crystals were annealed in N 2 or O 2 between 900 and 1300 C. Positron lifetime measurements reveal a single lifetime in all the ZnO samples before and after annealing. The positron lifetime is about 181 ps after annealing at 900 C in either N 2 or O 2 atmosphere. However, increase of the positron lifetime is observed after further annealing the sample at higher temperatures up to 1300 C, and it has a faster increase in O 2 ambient. Temperature dependence measurements show that the positron lifetime has very slight increase with temperature for the 900 C annealed sample, while it shows notable variation for the sample annealed at 1300 C. This implied that annealing at high temperature introduces additional defects. These defects are supposed to be Zn vacancy-related defects. Cathodoluminescence (CL) measurements indicates enhancement of both UV and green emission after annealing, and the enhancement of green emission is much stronger for the samples annealed in O 2 ambient. The possible origin of green emission is tentatively discussed. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Methods for the preparation of large quantities of complex single-stranded oligonucleotide libraries.

    Science.gov (United States)

    Murgha, Yusuf E; Rouillard, Jean-Marie; Gulari, Erdogan

    2014-01-01

    Custom-defined oligonucleotide collections have a broad range of applications in fields of synthetic biology, targeted sequencing, and cytogenetics. Also, they are used to encode information for technologies like RNA interference, protein engineering and DNA-encoded libraries. High-throughput parallel DNA synthesis technologies developed for the manufacture of DNA microarrays can produce libraries of large numbers of different oligonucleotides, but in very limited amounts. Here, we compare three approaches to prepare large quantities of single-stranded oligonucleotide libraries derived from microarray synthesized collections. The first approach, alkaline melting of double-stranded PCR amplified libraries with a biotinylated strand captured on streptavidin coated magnetic beads results in little or no non-biotinylated ssDNA. The second method wherein the phosphorylated strand of PCR amplified libraries is nucleolyticaly hydrolyzed is recommended when small amounts of libraries are needed. The third method combining in vitro transcription of PCR amplified libraries to reverse transcription of the RNA product into single-stranded cDNA is our recommended method to produce large amounts of oligonucleotide libraries. Finally, we propose a method to remove any primer binding sequences introduced during library amplification.

  2. Yield of single-strand breaks in the DNA of E. coli 10 msec after irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Fox, R A; Fielden, E M; Sapora, O [Institute of Cancer Research, Sutton (UK). Surrey Branch

    1976-04-01

    The rapid mixing of 0.3M alkali with a suspension of E.coli B/r 6 +- 3 and 144 +- 3 msec after irradiation with electrons (4.3 MeV, 0 to 50 krad) has been used to make a comparison of the yields of single strand breaks in the presence and absence of oxygen. No significant difference was observed between the numbers of single strand breaks appearing at 6 and 144 msec after irradiation. Assuming that mixing with alkali inactivates the cellular repair enzymes within several milliseconds, these results indicate that enzymic repair does not operate within this time scale. It seems probable that radiation chemical processes are responsible for the initial oxygen effect on single strand breaks.

  3. Repair of single-strand breaks in normal and trisomic lymphocytes

    International Nuclear Information System (INIS)

    Leonard, J.C.; Merz, T.

    1982-01-01

    Recently, Athanasiou and colleagues (1981) reported a deficiency in the capacity of lymphocytes from persons with Down's syndrome to repair single-strand DNA breaks. They found that 1 h after exposure to 160 Gray, repair processes had restored the sedimentation profile of DNA from normal lymphocytes to control values, whereas the relative average molecular weight of DNA from irradiated lymphocytes from persons with Down's syndrome showed no increase during the repair interval. They have suggested that their data, in conjunction with the earlier data concerning the frequencies of induced chromosomal aberrations in lymphocytes from persons with Down's syndrome, reflect a decreased efficiency in some aspect of DNA repair in trisomic cells. However, for further studies of this hypothesis, it is more appropriate to study the rejoining of DNA single-strand breaks after doses comparable to those used in tests for chromosomal aberrations. (orig.)

  4. Life forms employ different repair strategies of repair single- and double strand DNA breaks caused by different qualities of radiation: criticality of RecA mediated repair system

    International Nuclear Information System (INIS)

    Sharan, R.N.

    2013-01-01

    Different qualities of radiation, either through direct or indirect pathway, induce qualitative different spectrum of damages in DNA, which are also different in in vitro and in vivo systems. The single- and double strand breaks of DNA are of special interest as they lead to serious biological consequences. The implications of such damage to DNA and their processing by various inherent repair pathways together decide the fate of the living form

  5. Guiding the folding pathway of DNA origami.

    Science.gov (United States)

    Dunn, Katherine E; Dannenberg, Frits; Ouldridge, Thomas E; Kwiatkowska, Marta; Turberfield, Andrew J; Bath, Jonathan

    2015-09-03

    DNA origami is a robust assembly technique that folds a single-stranded DNA template into a target structure by annealing it with hundreds of short 'staple' strands. Its guiding design principle is that the target structure is the single most stable configuration. The folding transition is cooperative and, as in the case of proteins, is governed by information encoded in the polymer sequence. A typical origami folds primarily into the desired shape, but misfolded structures can kinetically trap the system and reduce the yield. Although adjusting assembly conditions or following empirical design rules can improve yield, well-folded origami often need to be separated from misfolded structures. The problem could in principle be avoided if assembly pathway and kinetics were fully understood and then rationally optimized. To this end, here we present a DNA origami system with the unusual property of being able to form a small set of distinguishable and well-folded shapes that represent discrete and approximately degenerate energy minima in a vast folding landscape, thus allowing us to probe the assembly process. The obtained high yield of well-folded origami structures confirms the existence of efficient folding pathways, while the shape distribution provides information about individual trajectories through the folding landscape. We find that, similarly to protein folding, the assembly of DNA origami is highly cooperative; that reversible bond formation is important in recovering from transient misfoldings; and that the early formation of long-range connections can very effectively enforce particular folds. We use these insights to inform the design of the system so as to steer assembly towards desired structures. Expanding the rational design process to include the assembly pathway should thus enable more reproducible synthesis, particularly when targeting more complex structures. We anticipate that this expansion will be essential if DNA origami is to continue its

  6. Dynamics of water around the complex structures formed between the KH domains of far upstream element binding protein and single-stranded DNA molecules

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, Kaushik; Bandyopadhyay, Sanjoy, E-mail: sanjoy@chem.iitkgp.ernet.in [Molecular Modeling Laboratory, Department of Chemistry, Indian Institute of Technology, Kharagpur 721302 (India)

    2015-07-28

    Single-stranded DNA (ss-DNA) binding proteins specifically bind to the single-stranded regions of the DNA and protect it from premature annealing, thereby stabilizing the DNA structure. We have carried out atomistic molecular dynamics simulations of the aqueous solutions of two DNA binding K homology (KH) domains (KH3 and KH4) of the far upstream element binding protein complexed with two short ss-DNA segments. Attempts have been made to explore the influence of the formation of such complex structures on the microscopic dynamics and hydrogen bond properties of the interfacial water molecules. It is found that the water molecules involved in bridging the ss-DNA segments and the protein domains form a highly constrained thin layer with extremely retarded mobility. These water molecules play important roles in freezing the conformational oscillations of the ss-DNA oligomers and thereby forming rigid complex structures. Further, it is demonstrated that the effect of complexation on the slow long-time relaxations of hydrogen bonds at the interface is correlated with hindered motions of the surrounding water molecules. Importantly, it is observed that the highly restricted motions of the water molecules bridging the protein and the DNA components in the complexed forms originate from more frequent hydrogen bond reformations.

  7. Yield of single-strand breaks in the DNA of E.coli 10 msec after irradiation

    International Nuclear Information System (INIS)

    Fox, R.A.; Fielden, E.M.; Sapora, O.

    1976-01-01

    The rapid mixing of 0.3M alkali with a suspension of E.coli B/r 6 +- 3 and 144 +- 3 msec after irradiation with electrons (4.3 MeV, 0 to 50 krad) has been used to make a comparison of the yields of single strand breaks in the presence and absence of oxygen. No significant difference was observed between the numbers of single strand breaks appearing at 6 and 144 msec after irradiation. Assuming that mixing with alkali inactivates the cellular repair enzymes within several milliseconds, these results indicate that enzymic repair does not operate within this time scale. It seems probable that radiation chemical processes are responsible for the initial oxygen effect on single strand breaks. (U.K.)

  8. Repair of single-strand breaks induced in the DNA of Proteus mirabilis by excision repair after UV-irradiation

    International Nuclear Information System (INIS)

    Stoerl, K.; Mund, C.

    1977-01-01

    Single-strand breaks have been produced in the DNA of P. mirabilis after UV-irradiation in dependence on the incident UV-doses. It has been found that there exists a discrepancy between the single-strand breaks estimated from sedimentation in alkaline sucrose gradients and the expected single-strand breaks approximated from measurements of dimer excision. The low number in incision breaks observed by sedimentation experiments is an indication that the cells are able to repair the excision-induced breaks as fast as they are formed. Toluenized cells have been used for investigation of the incision step independently of subsequent repair processes. In presence of NMN the appearance of more single-strand breaks in the DNA has been observed. Furthermore, the number of incision breaks in toluenized cells increased in presence of exogenous ATP. The completion of the excision repair process has been investigated by observing the rejoining of incision breaks. After irradiation with UV-doses higher than approximately 240 erg/mm 2 the number of single-strand breaks remaining unrepaired in the DNA increased. Studies of the influence of nutrition conditions on the repair process have shown approximately the same capacity for repair of single-strand breaks in growth medium as well as in buffer. Progress in the excision repair was also followed by investigation of the DNA synthesized at the template-DNA containing the pyrimidine dimers. In comparison with E. coli, P. mirabilis showed a somewhat lower efficiency for the repair of single-strand breaks during the excision repair. (author)

  9. Transcription blockage by homopurine DNA sequences: role of sequence composition and single-strand breaks

    Science.gov (United States)

    Belotserkovskii, Boris P.; Neil, Alexander J.; Saleh, Syed Shayon; Shin, Jane Hae Soo; Mirkin, Sergei M.; Hanawalt, Philip C.

    2013-01-01

    The ability of DNA to adopt non-canonical structures can affect transcription and has broad implications for genome functioning. We have recently reported that guanine-rich (G-rich) homopurine-homopyrimidine sequences cause significant blockage of transcription in vitro in a strictly orientation-dependent manner: when the G-rich strand serves as the non-template strand [Belotserkovskii et al. (2010) Mechanisms and implications of transcription blockage by guanine-rich DNA sequences., Proc. Natl Acad. Sci. USA, 107, 12816–12821]. We have now systematically studied the effect of the sequence composition and single-stranded breaks on this blockage. Although substitution of guanine by any other base reduced the blockage, cytosine and thymine reduced the blockage more significantly than adenine substitutions, affirming the importance of both G-richness and the homopurine-homopyrimidine character of the sequence for this effect. A single-strand break in the non-template strand adjacent to the G-rich stretch dramatically increased the blockage. Breaks in the non-template strand result in much weaker blockage signals extending downstream from the break even in the absence of the G-rich stretch. Our combined data support the notion that transcription blockage at homopurine-homopyrimidine sequences is caused by R-loop formation. PMID:23275544

  10. Genomic mapping of single-stranded DNA in hydroxyurea-challenged yeasts identifies origins of replication.

    Science.gov (United States)

    Feng, Wenyi; Collingwood, David; Boeck, Max E; Fox, Lindsay A; Alvino, Gina M; Fangman, Walton L; Raghuraman, Mosur K; Brewer, Bonita J

    2006-02-01

    During DNA replication one or both strands transiently become single stranded: first at the sites where initiation of DNA synthesis occurs (known as origins of replication) and subsequently on the lagging strands of replication forks as discontinuous Okazaki fragments are generated. We report a genome-wide analysis of single-stranded DNA (ssDNA) formation in the presence of hydroxyurea during DNA replication in wild-type and checkpoint-deficient rad53 Saccharomyces cerevisiae cells. In wild-type cells, ssDNA was first observed at a subset of replication origins and later 'migrated' bi-directionally, suggesting that ssDNA formation is associated with continuously moving replication forks. In rad53 cells, ssDNA was observed at virtually every known origin, but remained there over time, suggesting that replication forks stall. Telomeric regions seemed to be particularly sensitive to the loss of Rad53 checkpoint function. Replication origins in Schizosaccharomyces pombe were also mapped using our method.

  11. Dissimilar kinetic behavior of electrically manipulated single- and double-stranded DNA tethered to a gold surface.

    Science.gov (United States)

    Rant, Ulrich; Arinaga, Kenji; Tornow, Marc; Kim, Yong Woon; Netz, Roland R; Fujita, Shozo; Yokoyama, Naoki; Abstreiter, Gerhard

    2006-05-15

    We report on the electrical manipulation of single- and double-stranded oligodeoxynucleotides that are end tethered to gold surfaces in electrolyte solution. The response to alternating repulsive and attractive electric surface fields is studied by time-resolved fluorescence measurements, revealing markedly distinct dynamics for the flexible single-stranded and stiff double-stranded DNA, respectively. Hydrodynamic simulations rationalize this finding and disclose two different kinetic mechanisms: stiff polymers undergo rotation around the anchoring pivot point; flexible polymers, on the other hand, are pulled onto the attracting surface segment by segment.

  12. A neutral glyoxal gel electrophoresis method for the detection and semi-quantitation of DNA single-strand breaks.

    Science.gov (United States)

    Pachkowski, Brian; Nakamura, Jun

    2013-01-01

    Single-strand breaks are among the most prevalent lesions found in DNA. Traditional electrophoretic methods (e.g., the Comet assay) used for investigating these lesions rely on alkaline conditions to denature DNA prior to electrophoresis. However, the presence of alkali-labile sites in DNA can result in the introduction of additional single-strand breaks upon alkali treatment during DNA sample processing. Herein, we describe a neutral glyoxal gel electrophoresis assay which is based on alkali-free DNA denaturation and is suitable for qualitative and semi-quantitative analyses of single-strand breaks in DNA isolated from different organisms.

  13. A novel single fluorophore-labeled double-stranded oligonucleotide probe for fluorescence-enhanced nucleic acid detection based on the inherent quenching ability of deoxyguanosine bases and competitive strand-displacement reaction.

    Science.gov (United States)

    Zhang, Yingwei; Tian, Jingqi; Li, Hailong; Wang, Lei; Sun, Xuping

    2012-01-01

    We develop a novel single fluorophore-labeled double-stranded oligonucleotide (OND) probe for rapid, nanostructure-free, fluorescence-enhanced nucleic acid detection for the first time. We further demonstrate such probe is able to well discriminate single-base mutation in nucleic acid. The design takes advantage of an inherent quenching ability of guanine bases. The short strand of the probe is designed with an end-labeled fluorophore that is placed adjacent to two guanines as the quencher located on the long opposite strand, resulting in great quenching of dye fluorescence. In the presence of a target complementary to the long strand of the probe, a competitive strand-displacement reaction occurs and the long strand forms a more stable duplex with the target, resulting in the two strands of the probe being separated from each other. As a consequence of this displacement, the fluorophore and the quencher are no longer in close proximity and dye fluorescence increases, signaling the presence of target.

  14. Analysis of DNA double-strand break repair pathways in mice

    International Nuclear Information System (INIS)

    Brugmans, Linda; Kanaar, Roland; Essers, Jeroen

    2007-01-01

    During the last years significant new insights have been gained into the mechanism and biological relevance of DNA double-strand break (DSB) repair in relation to genome stability. DSBs are a highly toxic DNA lesion, because they can lead to chromosome fragmentation, loss and translocations, eventually resulting in cancer. DSBs can be induced by cellular processes such as V(D)J recombination or DNA replication. They can also be introduced by exogenous agents DNA damaging agents such as ionizing radiation or mitomycin C. During evolution several pathways have evolved for the repair of these DSBs. The most important DSB repair mechanisms in mammalian cells are nonhomologous end-joining and homologous recombination. By using an undamaged repair template, homologous recombination ensures accurate DSB repair, whereas the untemplated nonhomologous end-joining pathway does not. Although both pathways are active in mammals, the relative contribution of the two repair pathways to genome stability differs in the different cell types. Given the potential differences in repair fidelity, it is of interest to determine the relative contribution of homologous recombination and nonhomologous end-joining to DSB repair. In this review, we focus on the biological relevance of DSB repair in mammalian cells and the potential overlap between nonhomologous end-joining and homologous recombination in different tissues

  15. A link between double-strand break-related repair and V(D)J recombination: the scid mutation

    International Nuclear Information System (INIS)

    Hendrickson, E.A.; Qin, X.Q.; Bump, E.A.; Schatz, D.G.; Oettinger, M.; Weaver, D.T.

    1991-01-01

    We show here that mammalian site-specific recombination and DNA-repair pathways share a common factor. The effects of DNA-damaging agents on cell lines derived from mice homozygous for the scid (severe combined immune deficiency) mutation were studied. Surprisingly, all scid cell lines exhibited a profound hypersensitivity to DNA-damaging agents that caused double-strand breaks (x-irradiation and bleomycin) but not to other chemicals that caused single-strand breaks or cross-links. Neutral filter elution assays demonstrated that the x-irradiation hypersensitivity could be correlated with a deficiency in repairing double-strand breaks. These data suggest that the scid gene product is involved in two pathways: DNA repair of random double-strand breaks and the site-specific and lymphoid-restricted variable-(diversity)-joining [V(D)J] DNA rearrangement process. We propose that the scid gene product performs a similar function in both pathways and may be a ubiquitous protein

  16. Cisplatin enhances the formation of DNA single- and double-strand breaks by hydrated electrons and hydroxyl radicals.

    Science.gov (United States)

    Rezaee, Mohammad; Sanche, Léon; Hunting, Darel J

    2013-03-01

    The synergistic interaction of cisplatin with ionizing radiation is the clinical rationale for the treatment of several cancers including head and neck, cervical and lung cancer. The underlying molecular mechanism of the synergy has not yet been identified, although both DNA damage and repair processes are likely involved. Here, we investigate the indirect effect of γ rays on strand break formation in a supercoiled plasmid DNA (pGEM-3Zf-) covalently modified by cisplatin. The yields of single- and double-strand breaks were determined by irradiation of DNA and cisplatin/DNA samples with (60)Co γ rays under four different scavenging conditions to examine the involvement of hydrated electrons and hydroxyl radicals in inducing the DNA damage. At 5 mM tris in an N2 atmosphere, the presence of an average of two cisplatins per plasmid increased the yields of single- and double-strand breaks by factors of 1.9 and 2.2, respectively, relative to the irradiated unmodified DNA samples. Given that each plasmid of 3,200 base pairs contained an average of two cisplatins, this represents an increase in radiosensitivity of 3,200-fold on a per base pair basis. When hydrated electrons were scavenged by saturating the samples with N2O, these enhancement factors decreased to 1.5 and 1.2, respectively, for single- and double-strand breaks. When hydroxyl radicals were scavenged using 200 mM tris, the respective enhancement factors were 1.2 and 1.6 for single- and double-strand breaks, respectively. Furthermore, no enhancement in DNA damage by cisplatin was observed after scavenging both hydroxyl radicals and hydrated electrons. These findings show that hydrated electrons can induce both single- and double-strand breaks in the platinated DNA, but not in unmodified DNA. In addition, cisplatin modification is clearly an extremely efficient means of increasing the formation of both single- and double-strand breaks by the hydrated electrons and hydroxyl radicals created by ionizing

  17. The Fanconi anemia group A protein modulates homologous repair of DNA double-strand breaks in mammalian cells.

    Science.gov (United States)

    Yang, Yun-Gui; Herceg, Zdenko; Nakanishi, Koji; Demuth, Ilja; Piccoli, Colette; Michelon, Jocelyne; Hildebrand, Gabriele; Jasin, Maria; Digweed, Martin; Wang, Zhao-Qi

    2005-10-01

    Fanconi anemia (FA) cells exhibit hypersensitivity to DNA interstrand cross-links (ICLs) and high levels of chromosome instability. FA gene products have been shown to functionally or physically interact with BRCA1, RAD51 and the MRE11/RAD50/NBS1 complex, suggesting that the FA complex may be involved in the repair of DNA double-strand breaks (DSBs). Here, we have investigated specifically the function of the FA group A protein (FANCA) in the repair of DSBs in mammalian cells. We show that the targeted deletion of Fanca exons 37-39 generates a null for Fanca in mice and abolishes ubiquitination of Fancd2, the downstream effector of the FA complex. Cells lacking Fanca exhibit increased chromosomal aberrations and attenuated accumulation of Brca1 and Rad51 foci in response to DNA damage. The absence of Fanca greatly reduces gene-targeting efficiency in mouse embryonic stem (ES) cells and compromises the survival of fibroblast cells in response to ICL agent treatment. Fanca-null cells exhibit compromised homology-directed repair (HDR) of DSBs, particularly affecting the single-strand annealing pathway. These data identify the Fanca protein as an integral component in the early step of HDR of DSBs and thereby minimizing the genomic instability.

  18. Single-stranded DNA cleavage by divergent CRISPR-Cas9 enzymes

    Science.gov (United States)

    Ma, Enbo; Harrington, Lucas B.; O’Connell, Mitchell R.; Zhou, Kaihong; Doudna, Jennifer A.

    2015-01-01

    Summary Double-stranded DNA (dsDNA) cleavage by Cas9 is a hallmark of type II CRISPR-Cas immune systems. Cas9–guide RNA complexes recognize 20-base-pair sequences in DNA and generate a site-specific double-strand break, a robust activity harnessed for genome editing. DNA recognition by all studied Cas9 enzymes requires a protospacer adjacent motif (PAM) next to the target site. We show that Cas9 enzymes from evolutionarily divergent bacteria can recognize and cleave single-stranded DNA (ssDNA) by an RNA-guided, PAM-independent recognition mechanism. Comparative analysis shows that in contrast to the type II-A S. pyogenes Cas9 that is widely used for genome engineering, the smaller type II-C Cas9 proteins have limited dsDNA binding and unwinding activity and promiscuous guide-RNA specificity. These results indicate that inefficiency of type II-C Cas9 enzymes for genome editing results from a limited ability to cleave dsDNA, and suggest that ssDNA cleavage was an ancestral function of the Cas9 enzyme family. PMID:26545076

  19. The Ku Heterodimer and the Metabolism of Single-Ended DNA Double-Strand Breaks

    NARCIS (Netherlands)

    A. Balestrini (Alessia); D. Ristic (Dejan); I. Dionne (Isabelle); X.Z. Liu (Xiao); C. Wyman (Claire); R.J. Wellinger (Raymund); J.H.J. Petrini (John)

    2013-01-01

    textabstractSingle-ended double-strand breaks (DSBs) are a common form of spontaneous DNA break, generated when the replisome encounters a discontinuity in the DNA template. Given their prevalence, understanding the mechanisms governing the fate(s) of single-ended DSBs is important. We describe the

  20. Kinetics of end-to-end collision in short single-stranded nucleic acids.

    Science.gov (United States)

    Wang, Xiaojuan; Nau, Werner M

    2004-01-28

    A novel fluorescence-based method, which entails contact quenching of the long-lived fluorescent state of 2,3-diazabicyclo[2.2.2]-oct-2-ene (DBO), was employed to measure the kinetics of end-to-end collision in short single-stranded oligodeoxyribonucleotides of the type 5'-DBO-(X)n-dG with X = dA, dC, dT, or dU and n = 2 or 4. The fluorophore was covalently attached to the 5' end and dG was introduced as an efficient intrinsic quencher at the 3' terminus. The end-to-end collision rates, which can be directly related to the efficiency of intramolecular fluorescence quenching, ranged from 0.1 to 9.0 x 10(6) s(-1). They were strongly dependent on the strand length, the base sequence, as well as the temperature. Oligonucleotides containing dA in the backbone displayed much slower collision rates and significantly higher positive activation energies than strands composed of pyrimidine bases, suggesting a higher intrinsic rigidity of oligoadenylate. Comparison of the measured collision rates in short single-stranded oligodeoxyribonucleotides with the previously reported kinetics of hairpin formation indicates that the intramolecular collision is significantly faster than the nucleation step of hairpin closing. This is consistent with the configurational diffusion model suggested by Ansari et al. (Ansari, A.; Kuznetsov, S. V.; Shen, Y. Proc.Natl. Acad. Sci. USA 2001, 98, 7771-7776), in which the formation of misfolded loops is thought to slow hairpin formation.

  1. Genetic and Biochemical Identification of a Novel Single-Stranded DNA-Binding Complex in Haloferax volcanii.

    Science.gov (United States)

    Stroud, Amy; Liddell, Susan; Allers, Thorsten

    2012-01-01

    Single-stranded DNA (ssDNA)-binding proteins play an essential role in DNA replication and repair. They use oligonucleotide/oligosaccharide-binding (OB)-folds, a five-stranded β-sheet coiled into a closed barrel, to bind to ssDNA thereby protecting and stabilizing the DNA. In eukaryotes the ssDNA-binding protein (SSB) is known as replication protein A (RPA) and consists of three distinct subunits that function as a heterotrimer. The bacterial homolog is termed SSB and functions as a homotetramer. In the archaeon Haloferax volcanii there are three genes encoding homologs of RPA. Two of the rpa genes (rpa1 and rpa3) exist in operons with a novel gene specific to Euryarchaeota; this gene encodes a protein that we have termed RPA-associated protein (rpap). The rpap genes encode proteins belonging to COG3390 group and feature OB-folds, suggesting that they might cooperate with RPA in binding to ssDNA. Our genetic analysis showed that rpa1 and rpa3 deletion mutants have differing phenotypes; only Δrpa3 strains are hypersensitive to DNA damaging agents. Deletion of the rpa3-associated gene rpap3 led to similar levels of DNA damage sensitivity, as did deletion of the rpa3 operon, suggesting that RPA3 and RPAP3 function in the same pathway. Protein pull-downs involving recombinant hexahistidine-tagged RPAs showed that RPA3 co-purifies with RPAP3, and RPA1 co-purifies with RPAP1. This indicates that the RPAs interact only with their respective associated proteins; this was corroborated by the inability to construct rpa1 rpap3 and rpa3 rpap1 double mutants. This is the first report investigating the individual function of the archaeal COG3390 RPA-associated proteins (RPAPs). We have shown genetically and biochemically that the RPAPs interact with their respective RPAs, and have uncovered a novel single-stranded DNA-binding complex that is unique to Euryarchaeota.

  2. Resistive switching behavior in single crystal SrTiO{sub 3} annealed by laser

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Xinqiang [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China); Shuai, Yao, E-mail: yshuai@uestc.edu.cn [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China); Collaboration Innovation Center of Electronic Materials and Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China); Wu, Chuangui, E-mail: cgwu@uestc.edu.cn [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China); Collaboration Innovation Center of Electronic Materials and Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China); Luo, Wenbo [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China); Collaboration Innovation Center of Electronic Materials and Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China); Sun, Xiangyu [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China); Yuan, Ye; Zhou, Shengqiang [Helmholtz-Zentrum Dresden Rossendorf, Institute of Ion Beam Physics and Materials Research, Bautzner Landstrasse 400, D-01328 Dresden (Germany); Ou, Xin [State Key Laboratory of Functional Material for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 (China); Zhang, Wanli [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China); Collaboration Innovation Center of Electronic Materials and Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China)

    2016-12-15

    Highlights: • Laser annealing was used to introduce oxygen vacancies into the single crystal SrTiO{sub 3}. • The effect of laser annealing with different fluence on the single crystal SrTiO{sub 3} was systematically studied. • The concentration of oxygen vacancies can be tuned by changing the fluence of laser. • Resistive switching behavior was observed in the sample with relatively high laser fluence after an electro-forming process. - Abstract: Single crystal SrTiO{sub 3} (STO) wafers were annealed by XeCl laser (λ = 308 nm) with different fluences of 0.4 J/cm{sup 2}, 0.6 J/cm{sup 2} and 0.8 J/cm{sup 2}, respectively. Ti/Pt electrodes were sputtered on the surface of STO wafer to form co-planar capacitor-like structures of Pt/Ti/STO/Ti/Pt. Current-Voltage measurements show that the leakage current is enhanced by increasing laser fluence. Resistive switching behavior is only observed in the sample annealed by laser with relatively high fluence after an electro-forming process. The X-ray photoelectron spectroscopy measurements indicate that the amount of oxygen vacancies increases with the increase of laser fluence. This work indicates resistive switching appears when enough oxygen vacancies are generated by the laser, which form conductive filaments under an external electric field.

  3. Examining a DNA Replication Requirement for Bacteriophage λ Red- and Rac Prophage RecET-Promoted Recombination in Escherichia coli.

    Science.gov (United States)

    Thomason, Lynn C; Costantino, Nina; Court, Donald L

    2016-09-13

    regions may be created during DNA replication or by single-strand exonuclease digestion of linear duplex DNA. Previously, in vitro studies reported that these recombinases promote the single-strand annealing of two complementary DNAs and also strand invasion of a single DNA strand into duplex DNA to create a three-stranded region. Here, in vivo experiments show that recombinase-mediated annealing of complementary single-stranded DNA is the predominant recombination pathway in E. coli. Copyright © 2016 Thomason et al.

  4. Gold nanoparticle enhanced fluorescence anisotropy for the assay of single nucleotide polymorphisms (SNPs) based on toehold-mediated strand-displacement reaction.

    Science.gov (United States)

    Wang, Xinyi; Zou, Mingjian; Huang, Hongduan; Ren, Yuqian; Li, Limei; Yang, Xiaoda; Li, Na

    2013-03-15

    We developed a highly differentiating, homogeneous gold nanoparticle (AuNP) enhanced fluorescence anisotropic method for single nucleotide polymorphism (SNP) detection at nanomolar level using toehold-mediated strand-displacement reaction. The template strand, containing a toehold domain with an allele-specific site, was immobilized on the surface of AuNPs, and the solution fluorescence anisotropy was markedly enhanced when the fluorescein-labeled blocking DNA was attached to the AuNP via hybridization. Strand-displacement by the target ssDNA strand resulted in detachment of fluorescein-labeled DNA from AuNPs, and thus decreased fluorescence anisotropy. The drastic kinetic difference in strand-displacement from toehold design was used to distinguish between the perfectly matched and the single-base mismatched strands. Free energy changes were calculated to elucidate the dependence of the differentiation ability on the mutation site in the toehold region. A solid negative signal change can be obtained for single-base mismatched strand in the dynamic range of the calibration curve, and a more than 10-fold signal difference can still be observed in a mixed solution containing 100 times the single-base mismatched strand, indicating the good specificity of the method. This proposed method can be performed with a standard spectrofluorimeter in a homogeneous and cost-effective manner, and has the potential to be extended to the application of fluorescence anisotropy method of SNP detection. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Solubilization of Single-walled Carbon Nanotubes with Single- stranded DNA Generated from Asymmetric PCR

    Directory of Open Access Journals (Sweden)

    Chunhai Fan

    2007-07-01

    Full Text Available Carbon nanotubes (CNTs can be effectively dispersed and functionalized bywrapping with long single-stranded DNA (ssDNA synthesized by asymmetric PCR. ThessDNA-CNTs attached on surface of glass carbon electrode made it possible forelectrochemical analysis and sensing, which was demonstrated by reduction of H2O2 onhemoglobin/ssDNA-CNTs modified electrodes. This research showed the potentialapplication of DNA-functionalised CNTs in construction of future electrochemicalbiosensors.

  6. Dissociation of single-strand DNA: single-walled carbon nanotube hybrids by Watson-Crick base-pairing.

    Science.gov (United States)

    Jung, Seungwon; Cha, Misun; Park, Jiyong; Jeong, Namjo; Kim, Gunn; Park, Changwon; Ihm, Jisoon; Lee, Junghoon

    2010-08-18

    It has been known that single-strand DNA wraps around a single-walled carbon nanotube (SWNT) by pi-stacking. In this paper it is demonstrated that such DNA is dissociated from the SWNT by Watson-Crick base-pairing with a complementary sequence. Measurement of field effect transistor characteristics indicates a shift of the electrical properties as a result of this "unwrapping" event. We further confirm the suggested process through Raman spectroscopy and gel electrophoresis. Experimental results are verified in view of atomistic mechanisms with molecular dynamics simulations and binding energy analyses.

  7. Different responses to muon implantation in single- and double-stranded DNA

    International Nuclear Information System (INIS)

    Hubbard, Penny L.; Tani, Akiko; Oganesyan, Vasily S.; Butt, Julea N.; Cottrell, Stephen P.; Jayasooriya, Upali A.

    2006-01-01

    A model-free analysis of the longitudinal muon spin relaxation of muons implanted into single- and double-stranded DNA samples is reported. These samples show distinctly different responses to implanted muons with discontinuities of the integrated asymmetries at temperatures where these molecules are likely to have onset of molecular and electron dynamics

  8. Explanation for excessive DNA single-strand breaks and endogenous repair foci in pluripotent mouse embryonic stem cells.

    Science.gov (United States)

    Banáth, J P; Bañuelos, C A; Klokov, D; MacPhail, S M; Lansdorp, P M; Olive, P L

    2009-05-01

    Pluripotent mouse embryonic stem cells (mES cells) exhibit approximately 100 large gammaH2AX repair foci in the absence of measurable numbers of DNA double-strand breaks. Many of these cells also show excessive numbers of DNA single-strand breaks (>10,000 per cell) when analyzed using the alkaline comet assay. To understand the reasons for these unexpected observations, various methods for detecting DNA strand breaks were applied to wild-type mES cells and to mES cells lacking H2AX, ATM, or DNA-PKcs. H2AX phosphorylation and expression of other repair complexes were measured using flow and image analysis of antibody-stained cells. Results indicate that high numbers of endogenous gammaH2AX foci and single-strand breaks in pluripotent mES cells do not require ATM or DNA-PK kinase activity and appear to be associated with global chromatin decondensation rather than pre-existing DNA damage. This will limit applications of gammaH2AX foci analysis in mES cells to relatively high levels of initial or residual DNA damage. Excessive numbers of single-strand breaks in the alkaline comet assay can be explained by the vulnerability of replicating chromatin in mES cells to osmotic shock. This suggests that caution is needed in interpreting results with the alkaline comet assay when applied to certain cell types or after treatment with agents that make chromatin vulnerable to osmotic changes. Differentiation of mES cells caused a reduction in histone acetylation, gammaH2AX foci intensity, and DNA single-strand breakage, providing a link between chromatin structural organization, excessive gammaH2AX foci, and sensitivity of replicating mES cell chromatin to osmotic shock.

  9. Annealing effect of H+ -implanted single crystal silicon on strain and crystal structure

    International Nuclear Information System (INIS)

    Duo Xinzhong; Liu Weili; Zhang Miao; Gao Jianxia; Fu Xiaorong; Lin Chenglu

    2000-01-01

    The work focuses on the rocking curves of H + -implanted single silicon crystal detected by Four-Crystal X-ray diffractometer. The samples were annealed under different temperatures. Lattice defect in H + -implanted silicon crystals was detected by Rutherford Backscattering Spectrometry. It appeared that H-related complex did not crush until annealing temperature reached about 400 degree C. At that temperature H 2 was formed, deflated in silicon lattice and strained the lattice. But defects did not come into being in large quantity. The lattice was undamaged. When annealing temperature reached 500 degree C, strain induced by H 2 deflation crashed the silicon lattice. A large number of defects were formed. At the same time bubbles in the crystal and blister/flaking on the surface could be observed

  10. Quantitative analysis of swelling on annealing of hydrogen ion implanted diamond single crystals

    International Nuclear Information System (INIS)

    Kuznetsov, G.F.

    2006-01-01

    Local swelling observed upon high-temperature annealing of natural diamond single crystals implanted by 350-keV hydrogen ions with a dose of 12 10 16 cm 2 is studied. Based on room-temperature measurements, Griffith cracking criterion in combination with gas law, model quantitative calculations of the swelling size and the amount of hydrogen molecules in a swelling have been carried out for the first time. At room temperature, T 1 293 K, the amount of local elastic stresses in the upper layer of the diamond is counterbalanced by inner hydrogen pressure. Behavior of the gas bubbles with the annealing temperature increase up to 1693 K and repeated annealing at a temperature of 1743 K has been calculated [ru

  11. Non-uniform binding of single-stranded DNA binding proteins to hybrids of single-stranded DNA and single-walled carbon nanotubes observed by atomic force microscopy in air and in liquid

    Energy Technology Data Exchange (ETDEWEB)

    Umemura, Kazuo, E-mail: meicun2006@163.com; Ishizaka, Kei; Nii, Daisuke; Izumi, Katsuki

    2016-12-01

    Highlights: • Conjugates of protein, DNA, and SWNTs were observed by AFM in liquid. • Non-uniform binding of proteins was visualized in liquid. • Thickness of DNA molecules on SWNT surfaces was well characterized in liquid. - Abstract: Using atomic force spectroscopy (AFM), we observed hybrids of single-stranded DNA (ssDNA) and single-walled carbon nanotubes (SWNTs) with or without protein molecules in air and in an aqueous solution. This is the first report of ssDNA–SWNT hybrids with proteins in solution analyzed by AFM. In the absence of protein, the height of the ssDNA–SWNT hybrids was 1.1 ± 0.3 nm and 2.4 ± 0.6 nm in air and liquid, respectively, suggesting that the ssDNA molecules adopted a flexible structure on the SWNT surface. In the presence of single-stranded DNA binding (SSB) proteins, the heights of the hybrids in air and liquid increased to 6.4 ± 3.1 nm and 10.0 ± 4.5 nm, respectively. The AFM images clearly showed binding of the SSB proteins to the ssDNA–SWNT hybrids. The morphology of the SSB–ssDNA–SWNT hybrids was non-uniform, particularly in aqueous solution. The variance of hybrid height was quantitatively estimated by cross-section analysis along the long-axis of each hybrid. The SSB–ssDNA–SWNT hybrids showed much larger variance than the ssDNA–SWNT hybrids.

  12. Purification of Single-Stranded cDNA Based on RNA Degradation Treatment and Adsorption Chromatography.

    Science.gov (United States)

    Trujillo-Esquivel, Elías; Franco, Bernardo; Flores-Martínez, Alberto; Ponce-Noyola, Patricia; Mora-Montes, Héctor M

    2016-08-02

    Analysis of gene expression is a common research tool to study networks controlling gene expression, the role of genes with unknown function, and environmentally induced responses of organisms. Most of the analytical tools used to analyze gene expression rely on accurate cDNA synthesis and quantification to obtain reproducible and quantifiable results. Thus far, most commercial kits for isolation and purification of cDNA target double-stranded molecules, which do not accurately represent the abundance of transcripts. In the present report, we provide a simple and fast method to purify single-stranded cDNA, exhibiting high purity and yield. This method is based on the treatment with RNase H and RNase A after cDNA synthesis, followed by separation in silica spin-columns and ethanol precipitation. In addition, our method avoids the use of DNase I to eliminate genomic DNA from RNA preparations, which improves cDNA yield. As a case report, our method proved to be useful in the purification of single-stranded cDNA from the pathogenic fungus Sporothrix schenckii.

  13. Leishmania replication protein A-1 binds in vivo single-stranded telomeric DNA

    International Nuclear Information System (INIS)

    Neto, J.L. Siqueira; Lira, C.B.B.; Giardini, M.A.; Khater, L.; Perez, A.M.; Peroni, L.A.; Reis, J.R.R. dos; Freitas-Junior, L.H.; Ramos, C.H.I.; Cano, M.I.N.

    2007-01-01

    Replication protein A (RPA) is a highly conserved heterotrimeric single-stranded DNA-binding protein involved in different events of DNA metabolism. In yeast, subunits 1 (RPA-1) and 2 (RPA-2) work also as telomerase recruiters and, in humans, the complex unfolds G-quartet structures formed by the 3' G-rich telomeric strand. In most eukaryotes, RPA-1 and RPA-2 bind DNA using multiple OB fold domains. In trypanosomatids, including Leishmania, RPA-1 has a canonical OB fold and a truncated RFA-1 structural domain. In Leishmania amazonensis, RPA-1 alone can form a complex in vitro with the telomeric G-rich strand. In this work, we show that LaRPA-1 is a nuclear protein that associates in vivo with Leishmania telomeres. We mapped the boundaries of the OB fold DNA-binding domain using deletion mutants. Since Leishmania and other trypanosomatids lack homologues of known telomere end binding proteins, our results raise questions about the function of RPA-1 in parasite telomeres

  14. Growth and characterization of air annealing Tb-doped YAG:Ce single crystal for white-light-emitting diode

    International Nuclear Information System (INIS)

    Gong, Maogao; Xiang, Weidong; Liang, Xiaojuan; Zhong, Jiasong; Chen, Daqin; Huang, Jun; Gu, Guorui; Yang, Cheng; Xiang, Run

    2015-01-01

    Highlights: • We report preparation of transparent Ce,Tb:YAG single crystal by Czochralski method. • The effect of annealing on Ce,Tb:YAG single crystal had been investigated. • The Ce,Tb:YAG single crystal after annealing exhibited better optical performance. • The Ce,Tb:YAG single crystal could be used as an ideal candidate for WLED. - Abstract: We report the preparation of transparent Ce and Tb co-doped Y 3 Al 5 O 12 single crystal by the Czochralski method. The characterization of the resulting single crystal was accomplished by using X-ray powder diffractometer, scanning electron microscopy and energy dispersive X-ray spectroscopy. Absorption peak of the single crystal at about 460 nm has been obtained from ultraviolet–visible absorption spectrometer and their intensity is changed with different annealing condition. Its optical properties also have been investigated using fluorescence spectrometer. What’s more, its photoelectric parameters were studied by LED fast spectrometer. The constructed single crystal based white-light-emitting diode exhibits a high luminous efficiency of 140.89 lm/W, and a correlated color temperature of 4176 K as well as a color rendering index of 56.7, which reveal the prominent feasibility of the present single crystal material in white-light-emitting diode application

  15. Growth and characterization of air annealing Tb-doped YAG:Ce single crystal for white-light-emitting diode

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Maogao [College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035 (China); Xiang, Weidong, E-mail: xiangweidong001@126.com [College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035 (China); Liang, Xiaojuan [College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035 (China); Zhong, Jiasong; Chen, Daqin [College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China); Huang, Jun; Gu, Guorui; Yang, Cheng; Xiang, Run [College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035 (China)

    2015-08-05

    Highlights: • We report preparation of transparent Ce,Tb:YAG single crystal by Czochralski method. • The effect of annealing on Ce,Tb:YAG single crystal had been investigated. • The Ce,Tb:YAG single crystal after annealing exhibited better optical performance. • The Ce,Tb:YAG single crystal could be used as an ideal candidate for WLED. - Abstract: We report the preparation of transparent Ce and Tb co-doped Y{sub 3}Al{sub 5}O{sub 12} single crystal by the Czochralski method. The characterization of the resulting single crystal was accomplished by using X-ray powder diffractometer, scanning electron microscopy and energy dispersive X-ray spectroscopy. Absorption peak of the single crystal at about 460 nm has been obtained from ultraviolet–visible absorption spectrometer and their intensity is changed with different annealing condition. Its optical properties also have been investigated using fluorescence spectrometer. What’s more, its photoelectric parameters were studied by LED fast spectrometer. The constructed single crystal based white-light-emitting diode exhibits a high luminous efficiency of 140.89 lm/W, and a correlated color temperature of 4176 K as well as a color rendering index of 56.7, which reveal the prominent feasibility of the present single crystal material in white-light-emitting diode application.

  16. Single slit interference made easy with a strand of hair and a laser

    Science.gov (United States)

    Messer, Rebecca

    2018-01-01

    Students can easily measure the width of a strand of their own hair with a monochromatic light source such as a laser. This inexpensive activity engages students in an application of single slit diffraction using Babinet's principle.

  17. Helical filaments of human Dmc1 protein on single-stranded DNA: a cautionary tale

    Science.gov (United States)

    Yu, Xiong; Egelman, Edward H.

    2010-01-01

    Proteins in the RecA/Rad51/RadA family form nucleoprotein filaments on DNA that catalyze a strand exchange reaction as part of homologous genetic recombination. Because of the centrality of this system to many aspects of DNA repair, the generation of genetic diversity, and cancer when this system fails or is not properly regulated, these filaments have been the object of many biochemical and biophysical studies. A recent paper has argued that the human Dmc1 protein, a meiotic homolog of bacterial RecA and human Rad51, forms filaments on single stranded DNA with ∼ 9 subunits per turn in contrast to the filaments formed on double stranded DNA with ∼ 6.4 subunits per turn, and that the stoichiometry of DNA binding is different between these two filaments. We show using scanning transmission electron microscopy (STEM) that the Dmc1 filament formed on single stranded DNA has a mass per unit length expected from ∼ 6.5 subunits per turn. More generally, we show how ambiguities in helical symmetry determination can generate incorrect solutions, and why one sometimes must use other techniques, such as biochemistry, metal shadowing, or STEM to resolve these ambiguities. While three-dimensional reconstruction of helical filaments from EM images is a powerful tool, the intrinsic ambiguities that may be present with limited resolution are not sufficiently appreciated. PMID:20600108

  18. Radiation-induced DNA single-strand scission and its rejoining in spermatogonia and spermatozoa of mouse

    International Nuclear Information System (INIS)

    Ono, T.; Okada, S.

    1977-01-01

    Gamma-ray-induced DNA single-strand scissions and the ability to repair the scissions in spermatogonia from young mice and in spermatozoa from adult mice were studied quantitatively by an alkaline sucrose density-gradient centrifugation method. The average size of DNAs in non-irradiated spermatogonia was 2.6-3.0xx10 8 daltons, similar to those of a spermatid-rich population, and the size of DNA in non-irradiated spermatozoa was 1.2x10 8 daltons. In spermatogonia, the radiosensitivity of DNA was 0.42 single-strand breaks/10 12 daltons of DNA/rad in oxic conditions and only 0.24 under anoxic conditions. In spermatozoa the break efficiency of DNA was 0.22 single-strand breaks/10 12 daltons of DNA/rad under oxic conditions and altered little under anoxic irradiation. The DNA scissions were efficiently repaired in spermatogonia within 10 min, whereas the breaks in spermatozoa were not rejoined at all even after two days of post-irradiation time. The radiosensitivities of DNA, repair capability and non- and/or slowreparable DNA scissions were compared in spermatogonium-rich, spermatid-rich and spermatozoanrich populations

  19. Alterations in the nuclear matrix protein mass correlate with heat-induced inhibition of DNA single-strand-break repair

    International Nuclear Information System (INIS)

    Warters, R.L.; Brizgys, L.M.; Lyons, B.W.

    1987-01-01

    The total protein mass co-isolating with the nuclear matrix or nucleoid from Chinese hamster ovary (CHO) cells was observed to increase in heated cells as a function of increasing exposure temperature between 43 0 C and 45 0 C or of exposure time at any temperature. The sedimentation distance of the CHO cell nucleoid in sucrose gradients increased with increasing exposure time at 45 0 C. Both these nuclear alterations correlated in a log-linear manner with heat-induced inhibition of DNA strand break repair. A two-fold threshold increase in nuclear matrix protein mass preceded any substantial inhibition of repair of DNA single-strand breaks. When preheated cells were incubated at 37 0 C the nuclear matrix protein mass and nucleoid sedimentation recovered with a half-time of about 5 h, while DNA single-strand-break repair recovered with a half-time of about 2 h. When preheated cells were placed at 41 0 C a further increase was observed in the nuclear matrix protein mass and the half-time of DNA strand break repair, while nucleoid sedimentation recovered toward control values. These results implicate alterations in the protein mass of the nuclear matrix in heat-induced inhibition of repair of DNA single-strand breaks. (author)

  20. Sites of termination of in vitro DNA synthesis on psoralen phototreated single-stranded templates

    International Nuclear Information System (INIS)

    Piette, J.; Hearst, J.

    1985-01-01

    Single-stranded DNA has been photochemically induced to react with 4'-hydroxymethyl-4,5',8-trimethylpsoralen (HMT) and used as substrate for DNA replication with E. coli DNA polymerase I large fragment. By using the dideoxy sequencing procedure, it is possible to map the termination sites on the template photoreacted with HMT. These sites occur at the nucleotides preceding each thymine residue (and a few cytosine residues), emphasizing the fact that in a single-stranded stretch of DNA, HMT reacts with each thymine residue without any specificity regarding the flanking base sequence of the thymine residues. In addition, termination of DNA synthesis due to psoralen-adducted thymine is not influenced by the efficiency of the 3'-5' exonuclease proof-reading activity of the DNA polymerase. (author)

  1. Ca2+ improves organization of single-stranded DNA bases in human Rad51 filament, explaining stimulatory effect on gene recombination.

    KAUST Repository

    Fornander, Louise H

    2012-02-22

    Human RAD51 protein (HsRad51) catalyses the DNA strand exchange reaction for homologous recombination. To clarify the molecular mechanism of the reaction in vitro being more effective in the presence of Ca(2+) than of Mg(2+), we have investigated the effect of these ions on the structure of HsRad51 filament complexes with single- and double-stranded DNA, the reaction intermediates. Flow linear dichroism spectroscopy shows that the two ionic conditions induce significantly different structures in the HsRad51/single-stranded DNA complex, while the HsRad51/double-stranded DNA complex does not demonstrate this ionic dependence. In the HsRad51/single-stranded DNA filament, the primary intermediate of the strand exchange reaction, ATP/Ca(2+) induces an ordered conformation of DNA, with preferentially perpendicular orientation of nucleobases relative to the filament axis, while the presence of ATP/Mg(2+), ADP/Mg(2+) or ADP/Ca(2+) does not. A high strand exchange activity is observed for the filament formed with ATP/Ca(2+), whereas the other filaments exhibit lower activity. Molecular modelling suggests that the structural variation is caused by the divalent cation interfering with the L2 loop close to the DNA-binding site. It is proposed that the larger Ca(2+) stabilizes the loop conformation and thereby the protein-DNA interaction. A tight binding of DNA, with bases perpendicularly oriented, could facilitate strand exchange.

  2. Overproduction of single-stranded-DNA-binding protein specifically inhibits recombination of UV-irradiated bacteriophage DNA in Escherichia coli

    International Nuclear Information System (INIS)

    Moreau, P.L.

    1988-01-01

    Overproduction of single-stranded DNA (ssDNA)-binding protein (SSB) in uvr Escherichia coli mutants results in a wide range of altered phenotypes. (i) Cell survival after UV irradiation is decreased; (ii) expression of the recA-lexA regulon is slightly reduced after UV irradiation, whereas it is increased without irradiation; and (iii) recombination of UV-damaged lambda DNA is inhibited, whereas recombination of nonirradiated DNA is unaffected. These results are consistent with the idea that in UV-damaged bacteria, SSB is first required to allow the formation of short complexes of RecA protein and ssDNA that mediate cleavage of the LexA protein. However, in a second stage, SSB should be displaced from ssDNA to permit the production of longer RecA-ssDNA nucleoprotein filaments that are required for strand pairing and, hence, recombinational repair. Since bacteria overproducing SSB appear identical in physiological respects to recF mutant bacteria, it is suggested that the RecF protein (alone or with other proteins of the RecF pathway) may help RecA protein to release SSB from ssDNA

  3. Biophysical characterization of the association of histones with single-stranded DNA.

    Science.gov (United States)

    Wang, Ying; van Merwyk, Luis; Tönsing, Katja; Walhorn, Volker; Anselmetti, Dario; Fernàndez-Busquets, Xavier

    2017-11-01

    Despite the profound current knowledge of the architecture and dynamics of nucleosomes, little is known about the structures generated by the interaction of histones with single-stranded DNA (ssDNA), which is widely present during replication and transcription. Non-denaturing gel electrophoresis, transmission electron microscopy, atomic force microscopy, magnetic tweezers. Histones have a high affinity for ssDNA in 0.15M NaCl ionic strength, with an apparent binding constant similar to that calculated for their association with double-stranded DNA (dsDNA). The length of DNA (number of nucleotides in ssDNA or base pairs in dsDNA) associated with a fixed core histone mass is the same for both ssDNA and dsDNA. Although histone-ssDNA complexes show a high tendency to aggregate, nucleosome-like structures are formed at physiological salt concentrations. Core histones are able to protect ssDNA from digestion by micrococcal nuclease, and a shortening of ssDNA occurs upon its interaction with histones. The purified (+) strand of a cloned DNA fragment of nucleosomal origin has a higher affinity for histones than the purified complementary (-) strand. At physiological ionic strength histones have high affinity for ssDNA, possibly associating with it into nucleosome-like structures. In the cell nucleus histones may spontaneously interact with ssDNA to facilitate their participation in the replication and transcription of chromatin. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. DNA double-strand break repair: a tale of pathway choices

    Institute of Scientific and Technical Information of China (English)

    Jing Li; Xingzhi Xu

    2016-01-01

    Deoxyribonucleic acid double-strand breaks (DSBs) are cytotoxic lesions that must be repaired either through homologous recombination (HR) or non-homologous end-joining (NHEJ) pathways.DSB repair is critical for genome integrity,cellular homeostasis and also constitutes the biological foundation for radiotherapy and the majority of chemotherapy.The choice between HR and NHEJ is a complex yet not completely understood process that will entail more future efforts.Herein we review our current understandings about how the choice is made over an antagonizing balance between p53-binding protein 1 and breast cancer 1 in the context of cell cycle stages,downstream effects,and distinct chromosomal histone marks.These exciting areas of research will surely bring more mechanistic insights about DSB repair and be utilized in the clinical settings.

  5. Direct and inverted repeats elicit genetic instability by both exploiting and eluding DNA double-strand break repair systems in mycobacteria.

    Directory of Open Access Journals (Sweden)

    Ewelina A Wojcik

    Full Text Available Repetitive DNA sequences with the potential to form alternative DNA conformations, such as slipped structures and cruciforms, can induce genetic instability by promoting replication errors and by serving as a substrate for DNA repair proteins, which may lead to DNA double-strand breaks (DSBs. However, the contribution of each of the DSB repair pathways, homologous recombination (HR, non-homologous end-joining (NHEJ and single-strand annealing (SSA, to this sort of genetic instability is not fully understood. Herein, we assessed the genome-wide distribution of repetitive DNA sequences in the Mycobacterium smegmatis, Mycobacterium tuberculosis and Escherichia coli genomes, and determined the types and frequencies of genetic instability induced by direct and inverted repeats, both in the presence and in the absence of HR, NHEJ, and SSA. All three genomes are strongly enriched in direct repeats and modestly enriched in inverted repeats. When using chromosomally integrated constructs in M. smegmatis, direct repeats induced the perfect deletion of their intervening sequences ~1,000-fold above background. Absence of HR further enhanced these perfect deletions, whereas absence of NHEJ or SSA had no influence, suggesting compromised replication fidelity. In contrast, inverted repeats induced perfect deletions only in the absence of SSA. Both direct and inverted repeats stimulated excision of the constructs from the attB integration sites independently of HR, NHEJ, or SSA. With episomal constructs, direct and inverted repeats triggered DNA instability by activating nucleolytic activity, and absence of the DSB repair pathways (in the order NHEJ>HR>SSA exacerbated this instability. Thus, direct and inverted repeats may elicit genetic instability in mycobacteria by 1 directly interfering with replication fidelity, 2 stimulating the three main DSB repair pathways, and 3 enticing L5 site-specific recombination.

  6. Direct and inverted repeats elicit genetic instability by both exploiting and eluding DNA double-strand break repair systems in mycobacteria.

    Science.gov (United States)

    Wojcik, Ewelina A; Brzostek, Anna; Bacolla, Albino; Mackiewicz, Pawel; Vasquez, Karen M; Korycka-Machala, Malgorzata; Jaworski, Adam; Dziadek, Jaroslaw

    2012-01-01

    Repetitive DNA sequences with the potential to form alternative DNA conformations, such as slipped structures and cruciforms, can induce genetic instability by promoting replication errors and by serving as a substrate for DNA repair proteins, which may lead to DNA double-strand breaks (DSBs). However, the contribution of each of the DSB repair pathways, homologous recombination (HR), non-homologous end-joining (NHEJ) and single-strand annealing (SSA), to this sort of genetic instability is not fully understood. Herein, we assessed the genome-wide distribution of repetitive DNA sequences in the Mycobacterium smegmatis, Mycobacterium tuberculosis and Escherichia coli genomes, and determined the types and frequencies of genetic instability induced by direct and inverted repeats, both in the presence and in the absence of HR, NHEJ, and SSA. All three genomes are strongly enriched in direct repeats and modestly enriched in inverted repeats. When using chromosomally integrated constructs in M. smegmatis, direct repeats induced the perfect deletion of their intervening sequences ~1,000-fold above background. Absence of HR further enhanced these perfect deletions, whereas absence of NHEJ or SSA had no influence, suggesting compromised replication fidelity. In contrast, inverted repeats induced perfect deletions only in the absence of SSA. Both direct and inverted repeats stimulated excision of the constructs from the attB integration sites independently of HR, NHEJ, or SSA. With episomal constructs, direct and inverted repeats triggered DNA instability by activating nucleolytic activity, and absence of the DSB repair pathways (in the order NHEJ>HR>SSA) exacerbated this instability. Thus, direct and inverted repeats may elicit genetic instability in mycobacteria by 1) directly interfering with replication fidelity, 2) stimulating the three main DSB repair pathways, and 3) enticing L5 site-specific recombination.

  7. Base damage within single-strand DNA underlies in vivo hypermutability induced by a ubiquitous environmental agent.

    Directory of Open Access Journals (Sweden)

    Kin Chan

    Full Text Available Chromosomal DNA must be in single-strand form for important transactions such as replication, transcription, and recombination to occur. The single-strand DNA (ssDNA is more prone to damage than double-strand DNA (dsDNA, due to greater exposure of chemically reactive moieties in the nitrogenous bases. Thus, there can be agents that damage regions of ssDNA in vivo while being inert toward dsDNA. To assess the potential hazard posed by such agents, we devised an ssDNA-specific mutagenesis reporter system in budding yeast. The reporter strains bear the cdc13-1 temperature-sensitive mutation, such that shifting to 37°C results in telomere uncapping and ensuing 5' to 3' enzymatic resection. This exposes the reporter region, containing three closely-spaced reporter genes, as a long 3' ssDNA overhang. We validated the ability of the system to detect mutagenic damage within ssDNA by expressing a modified human single-strand specific cytosine deaminase, APOBEC3G. APOBEC3G induced a high density of substitutions at cytosines in the ssDNA overhang strand, resulting in frequent, simultaneous inactivation of two reporter genes. We then examined the mutagenicity of sulfites, a class of reactive sulfur oxides to which humans are exposed frequently via respiration and food intake. Sulfites, at a concentration similar to that found in some foods, induced a high density of mutations, almost always as substitutions at cytosines in the ssDNA overhang strand, resulting in simultaneous inactivation of at least two reporter genes. Furthermore, sulfites formed a long-lived adducted 2'-deoxyuracil intermediate in DNA that was resistant to excision by uracil-DNA N-glycosylase. This intermediate was bypassed by error-prone translesion DNA synthesis, frequently involving Pol ζ, during repair synthesis. Our results suggest that sulfite-induced lesions in DNA can be particularly deleterious, since cells might not possess the means to repair or bypass such lesions

  8. Single-molecule visualization of Saccharomyces cerevisiae leading-strand synthesis reveals dynamic interaction between MTC and the replisome.

    Science.gov (United States)

    Lewis, Jacob S; Spenkelink, Lisanne M; Schauer, Grant D; Hill, Flynn R; Georgescu, Roxanna E; O'Donnell, Michael E; van Oijen, Antoine M

    2017-10-03

    The replisome, the multiprotein system responsible for genome duplication, is a highly dynamic complex displaying a large number of different enzyme activities. Recently, the Saccharomyces cerevisiae minimal replication reaction has been successfully reconstituted in vitro. This provided an opportunity to uncover the enzymatic activities of many of the components in a eukaryotic system. Their dynamic behavior and interactions in the context of the replisome, however, remain unclear. We use a tethered-bead assay to provide real-time visualization of leading-strand synthesis by the S. cerevisiae replisome at the single-molecule level. The minimal reconstituted leading-strand replisome requires 24 proteins, forming the CMG helicase, the Pol ε DNA polymerase, the RFC clamp loader, the PCNA sliding clamp, and the RPA single-stranded DNA binding protein. We observe rates and product lengths similar to those obtained from ensemble biochemical experiments. At the single-molecule level, we probe the behavior of two components of the replication progression complex and characterize their interaction with active leading-strand replisomes. The Minichromosome maintenance protein 10 (Mcm10), an important player in CMG activation, increases the number of productive replication events in our assay. Furthermore, we show that the fork protection complex Mrc1-Tof1-Csm3 (MTC) enhances the rate of the leading-strand replisome threefold. The introduction of periods of fast replication by MTC leads to an average rate enhancement of a factor of 2, similar to observations in cellular studies. We observe that the MTC complex acts in a dynamic fashion with the moving replisome, leading to alternating phases of slow and fast replication.

  9. TiO2 Microflowers Assembled by 6-nm Single-Crystal Stranded Wires with Improved Photoelectrochemical Performances

    International Nuclear Information System (INIS)

    Liu, Chunlei; Zhou, Wei; Yu, Li; Zhang, Gong; Qu, Jiuhui; Liu, Huijuan

    2017-01-01

    Highlights: •The 6-nm single-crystal stranded wires of TiO 2 exhibited a photocurrent of 0.33 mA cm −2 compared to that of the P25/TF (0.06 mA cm −2 ), which greatly facilited the electron transfer rate. •A photoelectrochemical (PEC) system combining degradation of bisphenol A and H 2 production was constructed based on the TiO 2 -SWs/TF. •This PEC system exhibited a 94% bisphenol A degradation efficiency within 60 min at 1.2 V and H 2 production simultaneously. •A power consumption of only 0.02 kWh m −3 was consumed by the TiO 2 -SWs/TF in PEC system. •Two pathways for PEC degradation of bisphenol A were proposed based on the intermediates identified by UPLC-Q-TOF-MS. -- Abstract: As the diffusion length of charge carriers in TiO 2 is around 10 nm, it would be an efficient way to increase the photocatalytic properties by controlling the size within 10 nm. Herein, TiO 2 microflowers assembled by 6-nm single-crystal stranded wires grown on Ti foam (TiO 2 -SWs/TF) were synthesized which facilated electron transfer rate with a photocurrent of 0.33 mA cm −2 compared to that of the P25/TF (0.06 mA cm −2 ). A photoelectrochemical (PEC) system combining degradation of bisphenol A and H 2 production was constructed based on the as-obtained TiO 2 -SWs/TF as photoanode and Pt wire as cathode. This PEC system exhibited excellent ability for simultaneous bisphenol A degradation and H 2 production, giving a 94% bisphenol A degradation efficiency within 60 min at 1.2 vs (Ag/AgCl) V with power consumption of only 0.02 kWh m −3 . The excellent PEC degradation of bisphenol A by the TiO 2 -SWs/TF could mainly be ascribed to the fast electron transfer via the 6-nm ultrathin wires and synergetic effect of photocatalysis and electrochemical process. Two pathways for PEC degradation of bisphenol A were proposed based on the intermediates identified by Ultra Performance liquid chromatography-quadruple-time of flight-mass spectrometry (UPLC-Q-TOF-MS).

  10. Effect of Te atmosphere annealing on the properties of CdZnTe single crystals

    International Nuclear Information System (INIS)

    Yu Pengfei; Jie Wanqi; Wang Tao

    2011-01-01

    Low-resistivity CdZnTe:In (CZT:In) single crystals were annealed under Te atmosphere according to the behaviors of deep-donor Te antisite. The results indicated that the star-like Cd inclusions were completely eliminated after 120 h annealing. Meanwhile, the resistivity is greatly enhanced. The resistivity of the slice annealed after 240 h was achieved as high as 1.8x10 11 Ω cm, five orders of magnitude higher than that of as-grown slice. It suggested that the deep-donor level Te antisites were successfully introduced to pin the Fermi level at the mid band-gap position. The IR transmittances of the slices were also improved, which increased as the annealing time increased. PL measurement revealed that the (D 0 ,X) peak representing high quality of CZT crystal appeared. It can be concluded that the quality of CZT crystals is obviously improved after annealing under Te atmosphere. - Highlights: → High resistivity is due to deep-donor level Te Cd . → The resistivity achieved was as high as 1.8x10 11 Ω cm. → Star-like inclusions are Cd inclusions. → (D 0 ,X) peak represents the improvement of the crystal quality.

  11. Thermodynamics for the Formation of Double-Stranded DNA-Single-Walled Carbon Nanotube Hybrids.

    Science.gov (United States)

    Shiraki, Tomohiro; Tsuzuki, Akiko; Toshimitsu, Fumiyuki; Nakashima, Naotoshi

    2016-03-24

    For the first time, the thermodynamics are described for the formation of double-stranded DNA (ds-DNA)-single-walled carbon nanotube (SWNT) hybrids. This treatment is applied to the exchange reaction of sodium cholate (SC) molecules on SWNTs and the ds-DNAs d(A)20 -d(T)20 and nuclear factor (NF)-κB decoy. UV/Vis/near-IR spectroscopy with temperature variations was used for analyzing the exchange reaction on the SWNTs with four different chiralities: (n,m)=(8,3), (6,5), (7,5), and (8,6). Single-stranded DNAs (ss-DNAs), including d(A)20 and d(T)20, are also used for comparison. The d(A)20-d(T)20 shows a drastic change in its thermodynamic parameters around the melting temperature (Tm ) of the DNA oligomer. No such Tm dependency was measured, owing to high Tm in the NF-κB decoy DNA and no Tm in the ss-DNA. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Annealing helicase HARP closes RPA-stabilized DNA bubbles non-processively.

    Science.gov (United States)

    Burnham, Daniel R; Nijholt, Bas; De Vlaminck, Iwijn; Quan, Jinhua; Yusufzai, Timur; Dekker, Cees

    2017-05-05

    We investigate the mechanistic nature of the Snf2 family protein HARP, mutations of which are responsible for Schimke immuno-osseous dysplasia. Using a single-molecule magnetic tweezers assay, we construct RPA-stabilized DNA bubbles within torsionally constrained DNA to investigate the annealing action of HARP on a physiologically relevant substrate. We find that HARP closes RPA-stabilized bubbles in a slow reaction, taking on the order of tens of minutes for ∼600 bp of DNA to be re-annealed. The data indicate that DNA re-anneals through the removal of RPA, which is observed as clear steps in the bubble-closing traces. The dependence of the closing rate on both ionic strength and HARP concentration indicates that removal of RPA occurs via an association-dissociation mechanism where HARP does not remain associated with the DNA. The enzyme exhibits classical Michaelis-Menten kinetics and acts cooperatively with a Hill coefficient of 3 ± 1. Our work also allows the determination of some important features of RPA-bubble structures at low supercoiling, including the existence of multiple bubbles and that RPA molecules are mis-registered on the two strands. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  13. Radiobiology of DNA strand breakage

    International Nuclear Information System (INIS)

    Johansen, I.

    1975-01-01

    The yield of single-strand breaks in lambda DNA within lysogenic host bacteria was measured after exposure to 4-MeV electrons (50 msec) and rapid transfer (45 msec) to alkaline detergent. In nitrogen anoxia the yield was 1.2 x 10 -12 DNA single-strand breaks per rad per dalton, and under full oxygenation the yield increased to 5 x 10 -12 breaks per rad per dalton. A search for the presence of fast repair mechanisms failed to demonstrate the presence of any mechanism for repair of strand breaks operating within a fraction of a second. Strand breaks produced in the presence of oxygen were repaired in 30--40 sec, while breaks produced under anoxia were rejoined even slower. A functional product from the polAl gene was needed for the rejoining of the broken molecules. Intermediate levels of DNA strand breakage seen at low concentrations of oxygen are dependent on the concentration of cellular sulfhydryl compounds, suggesting that in strand breakage oxygen and hydrogen donors compete for reactions with radiation-induced transients in the DNA. Intercomparisons of data on radiation-induced lethality of cells and single-strand breaks in episomal DNA allow the distinction between two classes of radiation-induced radicals, R 1 and R 2 , with different chemical properties; R 1 reacts readily with oxygen and N-oxyls under formation of potentially lethal products. The reactivity of oxygen in this reaction is 30--40 times higher than that of TMPN. R 2 reacts 16 times more readily than R 1 with oxygen under formation of single-strand breaks in the DNA. R 2 does not react with N-oxyls

  14. QUANTITATION OF INTRACELLULAR NAD(P)H IN LIVING CELLS CAN MONITOR AN IMBALANCE OF DNA SINGLE STRAND BREAK REPAIR IN REAL TIME

    Science.gov (United States)

    Quantitation of intracellular NAD(P)H in living cells can monitor an imbalance of DNA single strand break repair in real time.ABSTRACTDNA single strand breaks (SSBs) are one of the most frequent DNA lesions in genomic DNA generated either by oxidative stress or du...

  15. DNA double-strand-break complexity levels and their possible contributions to the probability for error-prone processing and repair pathway choice.

    Science.gov (United States)

    Schipler, Agnes; Iliakis, George

    2013-09-01

    Although the DNA double-strand break (DSB) is defined as a rupture in the double-stranded DNA molecule that can occur without chemical modification in any of the constituent building blocks, it is recognized that this form is restricted to enzyme-induced DSBs. DSBs generated by physical or chemical agents can include at the break site a spectrum of base alterations (lesions). The nature and number of such chemical alterations define the complexity of the DSB and are considered putative determinants for repair pathway choice and the probability that errors will occur during this processing. As the pathways engaged in DSB processing show distinct and frequently inherent propensities for errors, pathway choice also defines the error-levels cells opt to accept. Here, we present a classification of DSBs on the basis of increasing complexity and discuss how complexity may affect processing, as well as how it may cause lethal or carcinogenic processing errors. By critically analyzing the characteristics of DSB repair pathways, we suggest that all repair pathways can in principle remove lesions clustering at the DSB but are likely to fail when they encounter clusters of DSBs that cause a local form of chromothripsis. In the same framework, we also analyze the rational of DSB repair pathway choice.

  16. Quantitation of ultraviolet-induced single-strand breaks using oligonucleotide chip

    International Nuclear Information System (INIS)

    Pal, Sukdeb; Kim, Min Jung; Choo, Jaebum; Kang, Seong Ho; Lee, Kyeong-Hee; Song, Joon Myong

    2008-01-01

    A simple, accurate and robust methodology was established for the direct quantification of ultraviolet (UV)-induced single-strand break (SSB) using oligonucleotide chip. Oligonucleotide chips were fabricated by covalently anchoring the fluorescent-labeled ssDNAs onto silicon dioxide chip surfaces. Assuming that the possibility of more than one UV-induced SSB to be generated in a small oligonucleotide is extremely low, SSB formation was investigated quantifying the endpoint probe density by fluorescence measurement upon UV irradiation. The SSB yields obtained based on the highly sensitive laser-induced fluorometric determination of fluorophore-labeled oligonucleotides were found to coincide well with that predicted from a theoretical extrapolation of the results obtained for plasmid DNAs using conventional agarose gel electrophoresis. The developed method has the potential to serve as a high throughput, sample-thrifty, and time saving tool to realize more realistic, and direct quantification of radiation and chemical-induced strand breaks. It will be especially useful for determining the frequency of SSBs or lesions convertible to SSBs by specific cleaving reagents or enzymes

  17. Repair pathways for heavy ion-induced complex DNA double strand breaks

    International Nuclear Information System (INIS)

    Yajima, Hirohiko; Nakajima, Nakako; Hirakawa, Hirokazu; Murakami, Takeshi; Okayasu, Ryuichi; Fujimori, Akira

    2012-01-01

    DNA double strand break (DSB) induced by ionizing radiation (IR) is a deleterious damage leading to cell death and genome instability if not properly repaired. It is well known that DSB is repaired by two major pathways, non-homologous end-joining (NHEJ) and homologous recombination (HR). It is also known that NHEJ is dominant throughout the cell cycle after X- or gamma-ray irradiation in mammalian cells, Meanwhile, it is thought that heavy-ion radiation (e.g., carbon-ions, iron-ions) gives rise to clustered DNA damages consisting of not only strand breaks but also aberrant bases in the vicinity of DSBs (complex DSBs). Our previous work suggested that the efficiency of NHEJ is diminished for repair of complex DSBs induced by heavy-ion radiation. We thought that this difficulty in NHEJ process associated with heavy ion induced complex DNA damage might be extended to HR process in cells exposed to heavy ions. In order to find out if this notion is true or not, exposed human cells to X-rays and heavy-ions, and studied HR associated processes at the molecular level. Our result indicates that complex DSBs induced by heavy ions effectively evoke DNA end resection activity during the HR process. Together with our results, a relevant recent progress in the field of DNA DSB repair will be discussed. (author)

  18. The impact of base stacking on the conformations and electrostatics of single-stranded DNA.

    Science.gov (United States)

    Plumridge, Alex; Meisburger, Steve P; Andresen, Kurt; Pollack, Lois

    2017-04-20

    Single-stranded DNA (ssDNA) is notable for its interactions with ssDNA binding proteins (SSBs) during fundamentally important biological processes including DNA repair and replication. Previous work has begun to characterize the conformational and electrostatic properties of ssDNA in association with SSBs. However, the conformational distributions of free ssDNA have been difficult to determine. To capture the vast array of ssDNA conformations in solution, we pair small angle X-ray scattering with novel ensemble fitting methods, obtaining key parameters such as the size, shape and stacking character of strands with different sequences. Complementary ion counting measurements using inductively coupled plasma atomic emission spectroscopy are employed to determine the composition of the ion atmosphere at physiological ionic strength. Applying this combined approach to poly dA and poly dT, we find that the global properties of these sequences are very similar, despite having vastly different propensities for single-stranded helical stacking. These results suggest that a relatively simple mechanism for the binding of ssDNA to non-specific SSBs may be at play, which explains the disparity in binding affinities observed for these systems. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  19. Mechanism of replication of ultraviolet-irradiated single-stranded DNA by DNA polymerase III holoenzyme of Escherichia coli. Implications for SOS mutagenesis

    International Nuclear Information System (INIS)

    Livneh, Z.

    1986-01-01

    Replication of UV-irradiated oligodeoxynucleotide-primed single-stranded phi X174 DNA with Escherichia coli DNA polymerase III holoenzyme in the presence of single-stranded DNA-binding protein was investigated. The extent of initiation of replication on the primed single-stranded DNA was not altered by the presence of UV-induced lesions in the DNA. The elongation step exhibited similar kinetics when either unirradiated or UV-irradiated templates were used. Inhibition of the 3'----5' proofreading exonucleolytic activity of the polymerase by dGMP or by a mutD mutation did not increase bypass of pyrimidine photodimers, and neither did purified RecA protein influence the extent of photodimer bypass as judged by the fraction of full length DNA synthesized. Single-stranded DNA-binding protein stimulated bypass since in its absence the fraction of full length DNA decreased 5-fold. Termination of replication at putative pyrimidine dimers involved dissociation of the polymerase from the DNA, which could then reinitiate replication at other available primer templates. Based on these observations a model for SOS-induced UV mutagenesis is proposed

  20. Induction of single-strand DNA breaks in human cells by H2O2 formed in near-uv (black light)-irradiated medium

    International Nuclear Information System (INIS)

    Wang, R.J.; Ananthaswamy, H.N.; Nixon, B.T.; Hartman, P.S.; Eisenstark, A.

    1980-01-01

    When Dulbecco's modified Eagle's medium (depleted of phenol red) was irradiated for up to 3 h by 4 to 5 W/m 2 black light, hydrogen peroxide (H 2 O 2 ) was produced. Generation of H 2 O 2 resulted from riboflavin-sensitized photooxidation of tryptophan and tyrosine. Reagent H 2 O 2 , or hydrogen peroxide generated in black light-exposed aqueous solutions containing riboflavin and tryptophan, induced 2 x 10 4 single-strand breaks per 10 16 daltons of DNA in intact, physiologically viable human D98/AH 2 cells. Concomitant with the single-strand breaks in the cells was loss of cellular reproductive viability. Two classes of photoproducts were identified: H 2 O 2 and non-H 2 O 2 . The H 2 O 2 component of the photoproducts was responsible for all the single-strand break induction but for only partial loss of reproductive viability. The non-H 2 O 2 photoproducts, accountable for the remainder of cell lethality, caused no single-strand breaks

  1. Residual Resistivity Ratio (RRR) Measurements of LHC Superconducting NbTi Cable Strands

    CERN Document Server

    Charifoulline, Z

    2006-01-01

    The Rutherford-type superconducting NbTi cables of the LHC accelerator are currently manufactured by six industrial companies. As a part of the acceptance tests, the Residual Resistivity Ratio (RRR) of superconducting strands is systematically measured on virgin strands to qualify the strands before cabling and on extracted strands to qualify the cables and to check the final heat treatment (controlled oxidation to control interstrand resistance). More than 12000 samples of virgin and extracted strands have been measured during last five years. Results show good correlation with the measurements done by the companies and reflect well the technological process of cable production (strand annealing, cabling, cable heat treatment). This paper presents a description of the RRR-test station and the measurement procedure, the summary of the results over all suppliers and finally the correlation between RRR-values of the cables and the magnets.

  2. Enzymatic production of 'monoclonal stoichiometric' single-stranded DNA oligonucleotides.

    Science.gov (United States)

    Ducani, Cosimo; Kaul, Corinna; Moche, Martin; Shih, William M; Högberg, Björn

    2013-07-01

    Single-stranded oligonucleotides are important as research tools, as diagnostic probes, in gene therapy and in DNA nanotechnology. Oligonucleotides are typically produced via solid-phase synthesis, using polymer chemistries that are limited relative to what biological systems produce. The number of errors in synthetic DNA increases with oligonucleotide length, and the resulting diversity of sequences can be a problem. Here we present the 'monoclonal stoichiometric' (MOSIC) method for enzyme-mediated production of DNA oligonucleotides. We amplified oligonucleotides from clonal templates derived from single bacterial colonies and then digested cutter hairpins in the products, which released pools of oligonucleotides with precisely controlled relative stoichiometric ratios. We prepared 14-378-nucleotide MOSIC oligonucleotides either by in vitro rolling-circle amplification or by amplification of phagemid DNA in Escherichia coli. Analyses of the formation of a DNA crystal and folding of DNA nanostructures confirmed the scalability, purity and stoichiometry of the produced oligonucleotides.

  3. Second-strand cDNA synthesis: classical method

    International Nuclear Information System (INIS)

    Gubler, U.

    1987-01-01

    The classical scheme for the synthesis of double-stranded cDNA as it was reported in 1976 is described. Reverse transcription of mRNA with oligo(dT) as the primer generates first strands with a small loop at the 3' end of the cDNA (the end that corresponds to the 5' end of the mRNA). Subsequent removal of the mRNA by alkaline hydrolysis leaves single-stranded cDNA molecules again with a small 3' loop. This loop can be used by either reverse transcriptase or Klenow fragment of DNA polymerase I as a primer for second-strand synthesis. The resulting products are double-stranded cDNA molecules that are covalently closed at the end corresponding to the 5' end of the original mRNA. Subsequent cleavage of the short piece of single-stranded cDNA within the loop with the single-strand-specific S 1 nuclease generate open double-stranded molecules that can be used for molecular cloning in plasmids or in phage. Useful variations of this scheme have been described

  4. Detection of hepatitis A virus by hybridization with single-stranded RNA probes

    International Nuclear Information System (INIS)

    Xi, J.; Estes, M.K.; Metcalf, T.G.

    1987-01-01

    An improved method of dot-blot hybridization to detect hepatitis A virus (HAV) was developed with single-stranded RNA (ssRNA) probes. Radioactive and nonradioactive ssRNA probes were generated by in vitro transcription of HAV templates inserted into the plasmid pGEM-1. 32 P-labeled ssRNA probes were at least eightfold more sensitive than the 32 P-labeled double-stranded cDNA counterparts, whereas biotin-labeled ssRNA probes showed a sensitivity comparable with that of the 32 P-labeled double-stranded cDNA counterparts. Hybridization of HAV with the ssRNA probes at high stringency revealed specific reactions with a high signal-to-noise ratio. The differential hybridization reactions seen with probes of positive and negative sense (compared with HAV genomic RNA) were used to detect HAV in clinical and field samples. A positive/negative ratio was introduced as an indicator that permitted an semiquantitative expression of a positive HAV reaction. Good agreement of this indicator was observed with normal stool samples and with HAV-seeded samples. By using this system, HAV was detected in estuarine and freshwater samples collected from a sewage-polluted bayou in Houston and a saltwater tributary of Galveston Bay

  5. DNA strand breaks, repair, and survival in x-irradiated mammalian cells

    International Nuclear Information System (INIS)

    Dugle, D.L.; Gillespie, C.J.; Chapman, J.D.

    1976-01-01

    The yields of unrepairable single- and double-strand breaks in the DNA of x-irradiated Chinese hamster cells were measured by low-speed neutral and alkaline sucrose density gradient sedimentation in order to investigate the relation between these lesions and reproductive death. After maximal single-strand rejoining, at all doses, the number of residual single-strand breaks was twice the number of residual double-strand breaks. Both double-strand and unrepairable single-strand breaks were proportional to the square of absorbed dose, in the range 10-50 krad. No rejoining of double-strand breaks was observed. These observations suggest that, in mammalian cells, most double-strand breaks are not repairable, while all single-strand breaks are repaired except those that are sufficiently close on complementary strands to constitute double-strand breaks. Comparison with cell survival measurements at much lower doses suggests that loss of reproductive capacity corresponds to induction of approximately one double-strand break

  6. Epidermal growth factor stimulating reparation of γ-ray-induced single-strand breaks predominantly in untranscribed DNA of HeLa cells

    International Nuclear Information System (INIS)

    Igusheva, O.A.; Bil'din, V.N.; Zhestyanikov, V.D.

    1994-01-01

    Considerable evidence suggest that genomic DNA undergoes reparation unevenly because of different transcription activities of its particular sequence. It is highly probably that transcriptional factors are necessary for postion stages of excision reparation and for reparation of single-strand DNA breaks caused by ionizing radiation. There is evidence suggesting that DNA lesions inflicted by γ-radiation is preferentially initiated in transcribed rather than in untranscribed DNA species. This paper looks at the relationship between stimulatory effect of epidermal growth factor (EGF) on reparation of single-strand DNA breaks and reparation of the damage done to active and inert fragments of chromatin. The results show that EGF stimulates reparation of single-strand DNA breaks induced by γ-radiation more effectively in untranscribed than in transcribed DNA. 13 refs., 1 fig., 1 tab

  7. A single-stranded architecture for cotranscriptional folding of RNA nanostructures

    DEFF Research Database (Denmark)

    Geary, Cody; Rothemund, Paul; Andersen, Ebbe Sloth

    2014-01-01

    Artificial DNA and RNA structures have been used as scaffolds for a variety of nanoscale devices. In comparison to DNA structures, RNA structures have been limited in size, but they also have advantages: RNA can fold during transcription and thus can be genetically encoded and expressed in cells....... We introduce an architecture for designing artificial RNA structures that fold from a single strand, in which arrays of antiparallel RNA helices are precisely organized by RNA tertiary motifs and a new type of crossover pattern. We constructed RNA tiles that assemble into hexagonal lattices...

  8. Relative frequency of formation of base radioproduct, single and double strand breaks on irradiation of diluted aqueous solution of DNA

    International Nuclear Information System (INIS)

    Ryznar, L.; Drasil, V.

    1975-01-01

    Diluted aqueous solution of DNA labelled with 6- 3 H-TdR was irradiated in the absence of oxygen and numbers of formed single and double strand breaks and the 5,6-dihydrothymine (DHT) yield were determined. The results indicate that, under given conditions, a molecule of a base radioproduct is formed approximately 10 times more frequently than one single strand break. The occurence of a single strand break is 20 times higher than that of a double strand break. The DNA labelled with 6- 3 H-TdR was isolated from mice fibroblasts of L-strain according to Marmur (specific activity 3.0 MBq/82 μCi/mg DNA, molecular weight M/sub n/=9.32x10 6 dalton). Solution of DNA was irradiated in the absence of oxygen (180 Gy /1.8x10 4 rads/, absorbed dose rate 0.3 Gy/s). It was lyophilized with an addition of non-labelled thymine, thymidine and DHT and then hydrolysed with 90% formic acid. The dried hydrolysate was chromatographed with irradiated non-labelled thymine added as a carrier. (F.G.)

  9. Molecular dynamics simulation of a DNA containing a single strand break

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, H.; Siebers, G.; Furukawa, A.; Otagiri, N.; Osman, R

    2002-07-01

    Molecular dynamics simulations were performed for a dodecamer DNA containing a single strand break (SSB), which has been represented by a 3'-OH deoxyribose and 5'-OH phosphate in the middle of the strand. Molecular force field parameters of the 5'-OH phosphate region were determined from an ab initio calculation at the HF/6-31G level using the program package GAMESS. The DNA was placed in a periodic boundary box with water molecules and Na+ counter-ions to produce a neutralised system. After minimisation, the system was heated to 300 K, equilibrated and a production run at constant NTP was executed for 1 ns using AMBER 4.1. Snapshots of the SSB-containing DNA and a detailed analysis of the equilibriated average structure revealed surprisingly small conformational changes compared to normal DNA. However, dynamic properties calculated using the essential dynamics method showed some features that may be important for the recognition of this damage by repair enzymes. (author)

  10. The validity of sedimentation data from high molecular weight DNA and the effects of additives on radiation-induced single-strand breakage

    International Nuclear Information System (INIS)

    Dugle, D.L.

    1979-10-01

    The optimization of many of the factors governing reproducible sedimentation behaviour of high molecular weight single-strand DNA in a particular alkaline sucrose density gradient system is described. A range of angular momenta is defined for which a constant strand breakage efficiency is required, despite a rotor speed effect which increases the measured molecular weights at decreasing rotor speeds for larger DNA molecules. The possibility is discussed that the bimodal control DNA profiles obtained after sedimentation at 11 500 rev/min (12 400 g) or less represent structural subunits of the chromatid. The random induction of single-strand DNA breaks by ionizing radiation is demonstrated by the computer-derived fits to the experimental profiles. The enhancement of single-strand break (SSB) yields in hypoxic cells by oxygen, para-nitroacetophenone (PNAP), or any of the three nitrofuran derivatives used was well correlated with increased cell killing. Furthermore, reductions in SSB yields for known hydroxyl radical (OH.) scavengers correlates with the reactivities of these compounds toward OH.. This supports the contention that some type of OH.-induced initial lesion, which may ultimately be expressed as an unrepaired or misrepaired double-strand break, constitutes a lethal event. (author)

  11. Deficiency of double-strand DNA break repair does not impair Mycobacterium tuberculosis virulence in multiple animal models of infection.

    Science.gov (United States)

    Heaton, Brook E; Barkan, Daniel; Bongiorno, Paola; Karakousis, Petros C; Glickman, Michael S

    2014-08-01

    Mycobacterium tuberculosis persistence within its human host requires mechanisms to resist the effector molecules of host immunity, which exert their bactericidal effects through damaging pathogen proteins, membranes, and DNA. Substantial evidence indicates that bacterial pathogens, including M. tuberculosis, require DNA repair systems to repair the DNA damage inflicted by the host during infection, but the role of double-strand DNA break (DSB) repair systems is unclear. Double-strand DNA breaks are the most cytotoxic form of DNA damage and must be repaired for chromosome replication to proceed. M. tuberculosis elaborates three genetically distinct DSB repair systems: homologous recombination (HR), nonhomologous end joining (NHEJ), and single-strand annealing (SSA). NHEJ, which repairs DSBs in quiescent cells, may be particularly relevant to M. tuberculosis latency. However, very little information is available about the phenotype of DSB repair-deficient M. tuberculosis in animal models of infection. Here we tested M. tuberculosis strains lacking NHEJ (a Δku ΔligD strain), HR (a ΔrecA strain), or both (a ΔrecA Δku strain) in C57BL/6J mice, C3HeB/FeJ mice, guinea pigs, and a mouse hollow-fiber model of infection. We found no difference in bacterial load, histopathology, or host mortality between wild-type and DSB repair mutant strains in any model of infection. These results suggest that the animal models tested do not inflict DSBs on the mycobacterial chromosome, that other repair pathways can compensate for the loss of NHEJ and HR, or that DSB repair is not required for M. tuberculosis pathogenesis. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  12. Temporary electron localization and scattering in disordered single strands of DNA

    International Nuclear Information System (INIS)

    Caron, Laurent; Sanche, Leon

    2006-01-01

    We present a theoretical study of the effect of structural and base sequence disorders on the transport properties of nonthermal electron scattering within and from single strands of DNA. The calculations are based on our recently developed formalism to treat multiple elastic scattering from simplified pseudomolecular DNA subunits. Structural disorder is shown to increase both the elastic scattering cross section and the attachment probability on the bases at low energy. Sequence disorder, however, has no significant effect

  13. A conserved MCM single-stranded DNA binding element is essential for replication initiation.

    Science.gov (United States)

    Froelich, Clifford A; Kang, Sukhyun; Epling, Leslie B; Bell, Stephen P; Enemark, Eric J

    2014-04-01

    The ring-shaped MCM helicase is essential to all phases of DNA replication. The complex loads at replication origins as an inactive double-hexamer encircling duplex DNA. Helicase activation converts this species to two active single hexamers that encircle single-stranded DNA (ssDNA). The molecular details of MCM DNA interactions during these events are unknown. We determined the crystal structure of the Pyrococcus furiosus MCM N-terminal domain hexamer bound to ssDNA and define a conserved MCM-ssDNA binding motif (MSSB). Intriguingly, ssDNA binds the MCM ring interior perpendicular to the central channel with defined polarity. In eukaryotes, the MSSB is conserved in several Mcm2-7 subunits, and MSSB mutant combinations in S. cerevisiae Mcm2-7 are not viable. Mutant Mcm2-7 complexes assemble and are recruited to replication origins, but are defective in helicase loading and activation. Our findings identify an important MCM-ssDNA interaction and suggest it functions during helicase activation to select the strand for translocation. DOI: http://dx.doi.org/10.7554/eLife.01993.001.

  14. The survival and repair of DNA single-strand breaks in gamma-irradiated Escherichia coli adapted to methyl methane sulfonate

    International Nuclear Information System (INIS)

    Zhestyanikov, V.D.; Savel'eva, G.E.

    1992-01-01

    The survival and repair of single-strand breaks of DNA in gamma-irradiated E.coli adapted to methyl methane sulfonate (MMS) (20 mkg/ml during 3 hours) have been investigated. It is shown that the survival of adapted bacteria of radioresistant strains B/r, H/r30, AB1157 and W3110 pol + increases with DMF (dose modification factor) ranging within 1.4-1.8 and in radiosensitive strains B s-1 , AB1157 recA13 and AB1157 lexA3 with DMF ranging within 1.3-1.4, and does not change in strains with mutation in poLA gene P3478 poLA1 and 016 res-3. The increase in radioresistance during the adaptation to MMS correlates with the acceleration of repair of gamma-ray-induced single-strand breaks in the radioresistant strains B/r and W3110 pol + and with the appearance of the ability to repair some part of DNA single-strand breaks in the mutant B s-1

  15. CHARACTERIZATION OF SINGLE-STRAND ORIGINS OF CRYPTIC ROLLING-CIRCLE PLASMIDS FROM BACILLUS-SUBTILIS

    NARCIS (Netherlands)

    MEIJER, WJJ; VENEMA, G; BRON, S

    1995-01-01

    In this paper we describe the isolation and characterization of single strand origins (SSOs) of several cryptic Bacillus subtilis plasmids which use the rolling-circle mechanism of replication, The plasmids used in this study involved pTA1015, pTA1020, pTA1030, pTA1040, pTA1050 and pTA1060, The SSO

  16. SALP, a new single-stranded DNA library preparation method especially useful for the high-throughput characterization of chromatin openness states.

    Science.gov (United States)

    Wu, Jian; Dai, Wei; Wu, Lin; Wang, Jinke

    2018-02-13

    Next-generation sequencing (NGS) is fundamental to the current biological and biomedical research. Construction of sequencing library is a key step of NGS. Therefore, various library construction methods have been explored. However, the current methods are still limited by some shortcomings. This study developed a new NGS library construction method, Single strand Adaptor Library Preparation (SALP), by using a novel single strand adaptor (SSA). SSA is a double-stranded oligonucleotide with a 3' overhang of 3 random nucleotides, which can be efficiently ligated to the 3' end of single strand DNA by T4 DNA ligase. SALP can be started with any denatured DNA fragments such as those sheared by Tn5 tagmentation, enzyme digestion and sonication. When started with Tn5-tagmented chromatin, SALP can overcome a key limitation of ATAC-seq and become a high-throughput NGS library construction method, SALP-seq, which can be used to comparatively characterize the chromatin openness state of multiple cells unbiasly. In this way, this study successfully characterized the comparative chromatin openness states of four different cell lines, including GM12878, HepG2, HeLa and 293T, with SALP-seq. Similarly, this study also successfully characterized the chromatin openness states of HepG2 cells with SALP-seq by using 10 5 to 500 cells. This study developed a new NGS library construction method, SALP, by using a novel kind of single strand adaptor (SSA), which should has wide applications in the future due to its unique performance.

  17. Role of electrostatics in the assembly pathway of a single-stranded RNA virus.

    Science.gov (United States)

    Garmann, Rees F; Comas-Garcia, Mauricio; Koay, Melissa S T; Cornelissen, Jeroen J L M; Knobler, Charles M; Gelbart, William M

    2014-09-01

    We have recently discovered (R. D. Cadena-Nava et al., J. Virol. 86:3318-3326, 2012, doi:10.1128/JVI.06566-11) that the in vitro packaging of RNA by the capsid protein (CP) of cowpea chlorotic mottle virus is optimal when there is a significant excess of CP, specifically that complete packaging of all of the RNA in solution requires sufficient CP to provide charge matching of the N-terminal positively charged arginine-rich motifs (ARMS) of the CPs with the negatively charged phosphate backbone of the RNA. We show here that packaging results from the initial formation of a charge-matched protocapsid consisting of RNA decorated by a disordered arrangement of CPs. This protocapsid reorganizes into the final, icosahedrally symmetric nucleocapsid by displacing the excess CPs from the RNA to the exterior surface of the emerging capsid through electrostatic attraction between the ARMs of the excess CP and the negative charge density of the capsid exterior. As a test of this scenario, we prepare CP mutants with extra and missing (relative to the wild type) cationic residues and show that a correspondingly smaller and larger excess, respectively, of CP is needed for complete packaging of RNA. Cowpea chlorotic mottle virus (CCMV) has long been studied as a model system for the assembly of single-stranded RNA viruses. While much is known about the electrostatic interactions within the CCMV virion, relatively little is known about these interactions during assembly, i.e., within intermediate states preceding the final nucleocapsid structure. Theoretical models and coarse-grained molecular dynamics simulations suggest that viruses like CCMV assemble by the bulk adsorption of CPs onto the RNA driven by electrostatic attraction, followed by structural reorganization into the final capsid. Such a mechanism facilitates assembly by condensing the RNA for packaging while simultaneously concentrating the local density of CP for capsid nucleation. We provide experimental evidence of

  18. Packaging signals in two single-stranded RNA viruses imply a conserved assembly mechanism and geometry of the packaged genome.

    Science.gov (United States)

    Dykeman, Eric C; Stockley, Peter G; Twarock, Reidun

    2013-09-09

    The current paradigm for assembly of single-stranded RNA viruses is based on a mechanism involving non-sequence-specific packaging of genomic RNA driven by electrostatic interactions. Recent experiments, however, provide compelling evidence for sequence specificity in this process both in vitro and in vivo. The existence of multiple RNA packaging signals (PSs) within viral genomes has been proposed, which facilitates assembly by binding coat proteins in such a way that they promote the protein-protein contacts needed to build the capsid. The binding energy from these interactions enables the confinement or compaction of the genomic RNAs. Identifying the nature of such PSs is crucial for a full understanding of assembly, which is an as yet untapped potential drug target for this important class of pathogens. Here, for two related bacterial viruses, we determine the sequences and locations of their PSs using Hamiltonian paths, a concept from graph theory, in combination with bioinformatics and structural studies. Their PSs have a common secondary structure motif but distinct consensus sequences and positions within the respective genomes. Despite these differences, the distributions of PSs in both viruses imply defined conformations for the packaged RNA genomes in contact with the protein shell in the capsid, consistent with a recent asymmetric structure determination of the MS2 virion. The PS distributions identified moreover imply a preferred, evolutionarily conserved assembly pathway with respect to the RNA sequence with potentially profound implications for other single-stranded RNA viruses known to have RNA PSs, including many animal and human pathogens. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Bacillus subtilis single-stranded DNA-binding protein SsbA is phosphorylated at threonine 38 by the serine/threonine kinase YabT

    DEFF Research Database (Denmark)

    Derouiche, Abderahmane; Petranovic, Dina; Macek, Boris

    2016-01-01

    Background and purpose: Single-stranded DNA-binding proteins participate in all stages of DNA metabolism that involve single-stranded DNA, from replication, recombination, repair of DNA damage, to natural competence in species such as Bacillus subtilis. B. subtilis single-stranded DNA......-binding proteins have previously been found to be phosphorylated on tyrosine and arginine residues. While tyrosine phosphorylation was shown to enhance the DNA-binding properties of SsbA, arginine phosphorylation was not functionally characterized.Materials and methods: We used mass spectrometry analysis to detect...... phosphorylation of SsbA purified from B. subtilis cells. The detected phosphorylation site was assessed for its influence on DNA-binding in vitro, using electrophoretic mobility shift assays. The ability of B. subtilis serine/threonine kinases to phosphorylate SsbA was assessed using in vitro phosphorylation...

  20. Molecular Pathways

    Science.gov (United States)

    Lok, Benjamin H.; Powell, Simon N.

    2012-01-01

    The Rad52 protein was largely ignored in humans and other mammals when the mouse knockout revealed a largely “no-effect” phenotype. However, using synthetic lethal approaches to investigate context dependent function, new studies have shown that Rad52 plays a key survival role in cells lacking the function of the BRCA1-BRCA2 pathway of homologous recombination. Biochemical studies also showed significant differences between yeast and human Rad52, in which yeast Rad52 can promote strand invasion of RPA-coated single-stranded DNA in the presence of Rad51, but human Rad52 cannot. This results in the paradox of how is human Rad52 providing Rad51 function: presumably there is something missing in the biochemical assays that exists in-vivo, but the nature of this missing factor is currently unknown. Recent studies have suggested that Rad52 provides back-up Rad51 function for all members of the BRCA1-BRCA2 pathway, suggesting that Rad52 may be a target for therapy in BRCA pathway deficient cancers. Screening for ways to inhibit Rad52 would potentially provide a complementary strategy for targeting BRCA-deficient cancers in addition to PARP inhibitors. PMID:23071261

  1. Identification of a Single Strand Origin of Replication in the Integrative and Conjugative Element ICEBs1 of Bacillus subtilis.

    Directory of Open Access Journals (Sweden)

    Laurel D Wright

    2015-10-01

    Full Text Available We identified a functional single strand origin of replication (sso in the integrative and conjugative element ICEBs1 of Bacillus subtilis. Integrative and conjugative elements (ICEs, also known as conjugative transposons are DNA elements typically found integrated into a bacterial chromosome where they are transmitted to daughter cells by chromosomal replication and cell division. Under certain conditions, ICEs become activated and excise from the host chromosome and can transfer to neighboring cells via the element-encoded conjugation machinery. Activated ICEBs1 undergoes autonomous rolling circle replication that is needed for the maintenance of the excised element in growing and dividing cells. Rolling circle replication, used by many plasmids and phages, generates single-stranded DNA (ssDNA. In many cases, the presence of an sso enhances the conversion of the ssDNA to double-stranded DNA (dsDNA by enabling priming of synthesis of the second DNA strand. We initially identified sso1 in ICEBs1 based on sequence similarity to the sso of an RCR plasmid. Several functional assays confirmed Sso activity. Genetic analyses indicated that ICEBs1 uses sso1 and at least one other region for second strand DNA synthesis. We found that Sso activity was important for two key aspects of the ICEBs1 lifecycle: 1 maintenance of the plasmid form of ICEBs1 in cells after excision from the chromosome, and 2 stable acquisition of ICEBs1 following transfer to a new host. We identified sequences similar to known plasmid sso's in several other ICEs. Together, our results indicate that many other ICEs contain at least one single strand origin of replication, that these ICEs likely undergo autonomous replication, and that replication contributes to the stability and spread of these elements.

  2. Investigation on accordance of DNA double-strand break of blood between in vivo and in vitro irradiation using single cell gel electrophoresis

    International Nuclear Information System (INIS)

    Liu Qiang; Jiang Enhai; Li Jin; Tang Weisheng; Wang Zhiquan; Zhao Yongcheng; Fan Feiyue

    2006-01-01

    Objective: To observe the consistency of DNA double-strand break between in vivo and in vitro irradiation, as a prophase study in radiation biodosimetry using single cell gel electrophoresis (SCGE). Methods: Detect DNA double-strand break after whole-body and in vitro radiation in mice lymphocytes using neutral single cell gel electrophoresis. The comet images were processed by CASP software and all the data were analysed by SPSS12.0. Results: There is no difference between in vivo and in vitro irradiation group in HDNA%, TDNA%, CL, TL, TM and OTM. Conclusion: The result of neutral single cell gel electrophoresis shortly after in vitro irradiation can precisely reflect the DNA double-strand break of lymphocytes in whole-body irradiation. (authors)

  3. Modelling Toehold-Mediated RNA Strand Displacement

    OpenAIRE

    Šulc, Petr; Ouldridge, Thomas E.; Romano, Flavio; Doye, Jonathan P.K.; Louis, Ard A.

    2015-01-01

    We study the thermodynamics and kinetics of an RNA toehold-mediated strand displacement reaction with a recently developed coarse-grained model of RNA. Strand displacement, during which a single strand displaces a different strand previously bound to a complementary substrate strand, is an essential mechanism in active nucleic acid nanotechnology and has also been hypothesized to occur in vivo. We study the rate of displacement reactions as a function of the length of the toehold and temperat...

  4. Expression, purification and biochemical characterization of a single-stranded DNA binding protein from Herbaspirillum seropedicae.

    Science.gov (United States)

    Vernal, Javier; Serpa, Viviane I; Tavares, Carolina; Souza, Emanuel M; Pedrosa, Fábio O; Terenzi, Hernán

    2007-05-01

    An open reading frame encoding a protein similar in size and sequence to the Escherichia coli single-stranded DNA binding protein (SSB protein) was identified in the Herbaspirillum seropedicae genome. This open reading frame was cloned into the expression plasmid pET14b. The SSB protein from H. seropedicae, named Hs_SSB, was overexpressed in E. coli strain BL21(DE3) and purified to homogeneity. Mass spectrometry data confirmed the identity of this protein. The apparent molecular mass of the native Hs_SSB was estimated by gel filtration, suggesting that the native protein is a tetramer made up of four similar subunits. The purified protein binds to single-stranded DNA (ssDNA) in a similar manner to other SSB proteins. The production of this recombinant protein in good yield opens up the possibility of obtaining its 3D-structure and will help further investigations into DNA metabolism.

  5. Characterization of a novel single-stranded RNA mycovirus in pleurotus ostreatus

    International Nuclear Information System (INIS)

    Yu, Hyun Jae; Lim, Dongbin; Lee, Hyun-Sook

    2003-01-01

    A mycovirus, named oyster mushroom spherical virus (OMSV), was isolated from cultivated oyster mushrooms with a severe epidemic of oyster mushroom Die-back disease. OMSV was a 27-nm spherical virus encapsidating a single-stranded RNA (ssRNA) of 5.784 kb with a coat protein of approximately 28.5 kDa. The nucleotide sequence of the virus revealed that its genomic RNA was positive strand, containing 5784 bases with seven open reading frames (ORF). ORF1 had the motifs of RNA-dependent RNA polymerases (RdRp) and helicase. ORF2 encoded a coat protein. ORF3 to 7 could encode putative polypeptides of approximately 12, 12.5, 21, 14.5, and 23 kDa, respectively, but none of them showed significant similarity to any other known polypeptides. The 5' end of the viral RNA was uncapped and the 3' end was polyadenylated with 74 bases. Genomic structure and organization and the derived amino acid sequence of RdRp and helicase domain were similar to those of tymoviruses, a plant virus group

  6. Rolling replication of UV-irradiated duplex DNA in the phi X174 replicative-form----single-strand replication system in vitro

    International Nuclear Information System (INIS)

    Shavitt, O.; Livneh, Z.

    1989-01-01

    Cloning of the phi X174 viral origin of replication into phage M13mp8 produced an M13-phi X174 chimera, the DNA of which directed efficient replicative-form----single-strand rolling replication in vitro. This replication assay was performed with purified phi X174-encoded gene A protein, Escherichia coli rep helicase, single-stranded DNA-binding protein, and DNA polymerase III holoenzyme. The nicking of replicative-form I (RFI) DNA by gene A protein was essentially unaffected by the presence of UV lesions in the DNA. However, unwinding of UV-irradiated DNA by the rep helicase was inhibited twofold as compared with unwinding of the unirradiated substrate. UV irradiation of the substrate DNA caused a strong inhibition in its ability to direct DNA synthesis. However, even DNA preparations that contained as many as 10 photodimers per molecule still supported the synthesis of progeny full-length single-stranded DNA. The appearance of full-length radiolabeled products implied at least two full rounds of replication, since the first round released the unlabeled plus viral strand of the duplex DNA. Pretreatment of the UV-irradiated DNA substrate with purified pyrimidine dimer endonuclease from Micrococcus luteus, which converted photodimer-containing supercoiled RFI DNA into relaxed, nicked RFII DNA and thus prevented its replication, reduced DNA synthesis by 70%. Analysis of radiolabeled replication products by agarose gel electrophoresis followed by autoradiography revealed that this decrease was due to a reduction in the synthesis of progeny full-length single-stranded DNA. This implies that 70 to 80% of the full-length DNA products produced in this system were synthesized on molecules that carried photodimers

  7. Phenylketonuria in The Netherlands : 93% of the mutations are detected by single-strand conformation analysis

    NARCIS (Netherlands)

    vanderSijsBos, CJM; Diepstraten, CM; Juyn, JA; Plaisier, M; Giltay, JC; vanSpronsen, FJ; Smit, GPA; Berger, R; Smeitink, JAM; PollThe, BT; vanAmstel, JKP

    1996-01-01

    Single-strand conformational analysis was used to screen for genetic defects in all thirteen exons of the phenylalanine hydroxylase gene (PAH) in phenylketonuria and hyperphenylalaninemia patients in the Netherlands. Exons that showed a bandshift were sequenced directly, In this way, we were able to

  8. Human RECQ5 helicase promotes repair of DNA double-strand breaks by synthesis-dependent strand annealing

    Czech Academy of Sciences Publication Activity Database

    Paliwal, S.; Kanagaraj, R.; Sturzenegger, A.; Burdová, Kamila; Janščák, Pavel

    2014-01-01

    Roč. 42, č. 4 (2014), s. 2380-2390 ISSN 0305-1048 R&D Projects: GA ČR GA204/09/0565; GA ČR GAP305/10/0281 Grant - others:Swiss National Science Foundation(CH) 31003A-129747; Swiss National Science Foundation(CH) 31003A_146206 Institutional support: RVO:68378050 Keywords : Human RECQ5 helicase * DNA double-strand breaks * mitotic homologous recombination Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 9.112, year: 2014

  9. Intracellular generation of single-strand template increases the knock-in efficiency by combining CRISPR/Cas9 with AAV.

    Science.gov (United States)

    Xiao, Qing; Min, Taishan; Ma, Shuangping; Hu, Lingna; Chen, Hongyan; Lu, Daru

    2018-04-18

    Targeted integration of transgenes facilitates functional genomic research and holds prospect for gene therapy. The established microhomology-mediated end-joining (MMEJ)-based strategy leads to the precise gene knock-in with easily constructed donor, yet the limited efficiency remains to be further improved. Here, we show that single-strand DNA (ssDNA) donor contributes to efficient increase of knock-in efficiency and establishes a method to achieve the intracellular linearization of long ssDNA donor. We identified that the CRISPR/Cas9 system is responsible for breaking double-strand DNA (dsDNA) of palindromic structure in inverted terminal repeats (ITRs) region of recombinant adeno-associated virus (AAV), leading to the inhibition of viral second-strand DNA synthesis. Combing Cas9 plasmids targeting genome and ITR with AAV donor delivery, the precise knock-in of gene cassette was achieved, with 13-14% of the donor insertion events being mediated by MMEJ in HEK 293T cells. This study describes a novel method to integrate large single-strand transgene cassettes into the genomes, increasing knock-in efficiency by 13.6-19.5-fold relative to conventional AAV-mediated method. It also provides a comprehensive solution to the challenges of complicated production and difficult delivery with large exogenous fragments.

  10. Single-stranded γPNAs for in vivo site-specific genome editing via Watson-Crick recognition.

    Science.gov (United States)

    Bahal, Raman; Quijano, Elias; McNeer, Nicole A; Liu, Yanfeng; Bhunia, Dinesh C; Lopez-Giraldez, Francesco; Fields, Rachel J; Saltzman, William M; Ly, Danith H; Glazer, Peter M

    2014-01-01

    Triplex-forming peptide nucleic acids (PNAs) facilitate gene editing by stimulating recombination of donor DNAs within genomic DNA via site-specific formation of altered helical structures that further stimulate DNA repair. However, PNAs designed for triplex formation are sequence restricted to homopurine sites. Herein we describe a novel strategy where next generation single-stranded gamma PNAs (γPNAs) containing miniPEG substitutions at the gamma position can target genomic DNA in mouse bone marrow at mixed-sequence sites to induce targeted gene editing. In addition to enhanced binding, γPNAs confer increased solubility and improved formulation into poly(lactic-co-glycolic acid) (PLGA) nanoparticles for efficient intracellular delivery. Single-stranded γPNAs induce targeted gene editing at frequencies of 0.8% in mouse bone marrow cells treated ex vivo and 0.1% in vivo via IV injection, without detectable toxicity. These results suggest that γPNAs may provide a new tool for induced gene editing based on Watson-Crick recognition without sequence restriction.

  11. Alkali-labile sites and post-irradiation effects in single-stranded DNA induced by H radicals

    International Nuclear Information System (INIS)

    Lafleur, M.V.M.; Heuvel, N. van; Woldhuis, J.; Loman, H.

    1978-01-01

    Single-stranded phiX174 DNA in aqueous solutions has been irradiated in the absence of oxygen, under conditions in which H radicals react with the DNA. It was shown that H radical reactions result in breaks, which contribute approximately 10 per cent inactivation. Further, two types of alkali-labile sites were formed. One was lethal and gave rise to single-strand breaks by alkali and was most probably identical with post-irradiation heat damage and contributed about 33 per cent to the inactivation mentioned above. The other consisted of non-lethal damage, partly dihydropyrimidine derivatives, and was converted to lethal damage by alkali. This followed from experiments in which the DNA was treated with osmium-tetroxide, which oxidized thymine to 5,6-dihydroxydihydrothymine. Treatment with alkali of this DNA gave the same temperature dependence as found for the non-lethal alkali-labile sites in irradiated DNA. A similar temperature dependence was found for dihydrothymine and irradiated pyrimidines with alkali. (author)

  12. Lattice location of platinum ions implanted into single crystal zirconia and their annealing behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Cao, D X [Royal Melbourne Inst. of Tech., VIC (Australia); Sood, D K [Academia Sinica, Shanghai, SH (China). Shanghai Inst. of Nuclear Research; Brown, I G [Lawrence Berkeley Lab., CA (United States)

    1994-12-31

    Single crystal samples of (100) oriented cubic zirconia stabilised with 9.5 mol % yttria were implanted with platinum ions, using a metal vapour vacuum arc (MEVVA) high current ion implanter, to a nominal dose of 1x10{sup 17} ions/cm{sup 2}. The implanted samples were annealed isothermally in air ambient at 1200 deg C, from 1-24 hours. Rutherford Backscattering Spectrometry and Channeling (RBSC) of 2 MeV He ions are employed to determine depth distributions of ion damage, Pt ions and substitutionality of Pt ions before and after annealing. The damage behaviour, Pt migration and lattice location are discussed in terms of metastable phase formation and solid solubility considerations. 7 refs., 3 figs.

  13. Lattice location of platinum ions implanted into single crystal zirconia and their annealing behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Cao, D.X. [Royal Melbourne Inst. of Tech., VIC (Australia); Sood, D.K. [Academia Sinica, Shanghai, SH (China). Shanghai Inst. of Nuclear Research; Brown, I.G. [Lawrence Berkeley Lab., CA (United States)

    1993-12-31

    Single crystal samples of (100) oriented cubic zirconia stabilised with 9.5 mol % yttria were implanted with platinum ions, using a metal vapour vacuum arc (MEVVA) high current ion implanter, to a nominal dose of 1x10{sup 17} ions/cm{sup 2}. The implanted samples were annealed isothermally in air ambient at 1200 deg C, from 1-24 hours. Rutherford Backscattering Spectrometry and Channeling (RBSC) of 2 MeV He ions are employed to determine depth distributions of ion damage, Pt ions and substitutionality of Pt ions before and after annealing. The damage behaviour, Pt migration and lattice location are discussed in terms of metastable phase formation and solid solubility considerations. 7 refs., 3 figs.

  14. Single-strand DNA binding protein SSB1 facilitates TERT recruitment to telomeres and maintains telomere G-overhangs

    Science.gov (United States)

    Pandita, Raj K.; Chow, Tracy T.; Udayakumar, Durga; Bain, Amanda L.; Cubeddu, Liza; Hunt, Clayton R.; Shi, Wei; Horikoshi, Nobuo; Zhao, Yong; Wright, Woodring E.; Khanna, Kum Kum; Shay, Jerry W.; Pandita, Tej K.

    2015-01-01

    Proliferating mammalian stem and cancer cells express telomerase (TERT) in an effort to extend chromosomal G-overhangs and maintain telomere ends. Telomerase-expressing cells also have higher levels of the single-stranded DNA binding protein SSB1, which has a critical role in DNA double-strand break repair. Here we report that SSB1 binds specifically to G-strand telomeric DNA in vitro and associates with telomeres in vivo. SSB1 interacted with the TERT catalytic subunit and regulates its interaction with telomeres. Deletion of SSB1 reduced TERT interaction with telomeres and lead to G-overhang loss. While SSB1 was recruited to DSB sites, we found no corresponding change in TERT levels at these sites, implying that SSB1-TERT interaction relied upon a specific chromatin structure or context. Our findings offer an explanation for how telomerase is recruited to telomeres to facilitate G-strand DNA extension, a critical step in maintaining telomere ends and cell viability in all cancer cells. PMID:25589350

  15. Induction and repair of DNA double strand breaks: The increasing spectrum of non-homologous end joining pathways

    International Nuclear Information System (INIS)

    Mladenov, Emil; Iliakis, George

    2011-01-01

    A defining characteristic of damage induced in the DNA by ionizing radiation (IR) is its clustered character that leads to the formation of complex lesions challenging the cellular repair mechanisms. The most widely investigated such complex lesion is the DNA double strand break (DSB). DSBs undermine chromatin stability and challenge the repair machinery because an intact template strand is lacking to assist restoration of integrity and sequence in the DNA molecule. Therefore, cells have evolved a sophisticated machinery to detect DSBs and coordinate a response on the basis of inputs from various sources. A central function of cellular responses to DSBs is the coordination of DSB repair. Two conceptually different mechanisms can in principle remove DSBs from the genome of cells of higher eukaryotes. Homologous recombination repair (HRR) uses as template a homologous DNA molecule and is therefore error-free; it functions preferentially in the S and G2 phases. Non-homologous end joining (NHEJ), on the other hand, simply restores DNA integrity by joining the two ends, is error prone as sequence is only fortuitously preserved and active throughout the cell cycle. The basis of DSB repair pathway choice remains unknown, but cells of higher eukaryotes appear programmed to utilize preferentially NHEJ. Recent work suggests that when the canonical DNA-PK dependent pathway of NHEJ (D-NHEJ), becomes compromised an alternative NHEJ pathway and not HRR substitutes in a quasi-backup function (B-NHEJ). Here, we outline aspects of DSB induction by IR and review the mechanisms of their processing in cells of higher eukaryotes. We place particular emphasis on backup pathways of NHEJ and summarize their increasing significance in various cellular processes, as well as their potential contribution to carcinogenesis.

  16. Thermal annealing and pressure effects on BaFe2-xCoxAs2 single crystals.

    Science.gov (United States)

    Shin, Dongwon; Jung, Soon-Gil; Prathiba, G; Seo, Soonbeom; Choi, Ki-Young; Kim, Kee Hoon; Park, Tuson

    2017-11-26

    We investigate the pressure and thermal annealing effects on BaFe2-xCoxAs2 (Co-Ba122) single crystals with x = 0.1 and 0.17 via electrical transport measurements. The thermal annealing treatment not only enhances the superconducting transition temperature (Tc) from 9.6 to 12.7 K for x = 0.1 and from 18.1 to 21.0 K for x = 0.17, but also increases the antiferromagnetic transition temperature (TN). Simultaneous enhancement of Tc and TN by the thermal annealing treatment indicates that thermal annealing could substantially improve the quality of the Co-doped Ba122 samples. Interestingly, Tc of the Co-Ba122 compounds shows a scaling behavior with a linear dependence on the resistivity value at 290 K, irrespective of tuning parameters, such as chemical doping, pressure, and thermal annealing. These results not only provide an effective way to access the intrinsic properties of the BaFe2As2 system, but also may shed a light on designing new materials with higher superconducting transition temperature. © 2017 IOP Publishing Ltd.

  17. Structure-spectrophotometric selectivity relationship in interactions of quercetin related flavonoids with double stranded and single stranded RNA

    Science.gov (United States)

    Piantanida, Ivo; Mašić, Lozika; Rusak, Gordana

    2009-04-01

    Interactions of five flavonoids with dsRNA and single stranded ssRNA were studied by UV/vis titrations. The results obtained supported the intercalative binding mode as a dominant interaction of studied flavonoids with dsRNA as well as major interaction with ssRNA. Furthermore, changes of the UV/vis spectra of flavonoids induced by addition of poly G or poly C, respectively, are significantly stronger than changes induced by double stranded poly G-poly C, pointing to essential role of the free poly G or poly C sequence (not hydrogen bonded in double helix). Exclusively poly G caused significant batochromic shift of the UV/vis maxima of all studied flavonoids, whereby the intensity of batochromic shift is nicely correlated to the number of OH groups of flavonoid. Unlikely to poly G, addition of poly A and poly U induced measurable changes only in the UV/vis spectra of flavonoids characterised by no OH (galangin) or three OH groups (myricetin) on the phenyl part of the molecule. Consequently, flavonoids with one- or two-OH groups on the phenyl part of the molecule (luteolin, fisetin, kaempferol) specifically differentiate between poly A, poly U (negligible changes in the UV/Vis spectra) and poly G (strong changes in the UV/Vis spectra) as well as poly C (moderate changes in the UV/Vis spectra).

  18. All-dry transferred single- and few-layer MoS2 field effect transistor with enhanced performance by thermal annealing

    Science.gov (United States)

    Islam, Arnob; Lee, Jaesung; Feng, Philip X.-L.

    2018-01-01

    We report on the experimental demonstration of all-dry stamp transferred single- and few-layer (1L to 3L) molybdenum disulfide (MoS2) field effect transistors (FETs), with a significant enhancement of device performance by employing thermal annealing in moderate vacuum. Three orders of magnitude reduction in both contact and channel resistances have been attained via thermal annealing. We obtain a low contact resistance of 22 kΩ μm after thermal annealing of 1L MoS2 FETs stamp-transferred onto gold (Au) contact electrodes. Furthermore, nearly two orders of magnitude enhancement of field effect mobility are also observed after thermal annealing. Finally, we employ Raman and photoluminescence measurements to reveal the phenomena of alloying or hybridization between 1L MoS2 and its contacting electrodes during annealing, which is responsible for attaining the low contact resistance.

  19. DNA polymerase I-mediated repair of 365 nm-induced single-strand breaks in the DNA of Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Ley, R D; Sedita, B A; Boye, E [Argonne National Lab., Ill. (USA)

    1978-03-01

    Irradiation of closed circular phage lambda DNA in vivo at 365 nm results in the induction of single-strand breaks and alkali-labile lesions at rates of 1.1 x 10/sup -14/ and 0.2 x 10/sup -14//dalton/J/m/sup 2/, respectively. The sum of the induction rates is similar to the rate of induction of single-strand breaks plus alkali-labile lesions (1 x 10/sup -14//dalton/J/m/sup 2/) observed in the E. coli genome. Postirradiation incubation of wild-type cells in buffer results in rapid repair of the breaks (up to 80% repaired in 10 min). No repair was observed in a DNA polymerase I-deficient mutant of E.coli.

  20. Accurate quantification of microRNA via single strand displacement reaction on DNA origami motif.

    Directory of Open Access Journals (Sweden)

    Jie Zhu

    Full Text Available DNA origami is an emerging technology that assembles hundreds of staple strands and one single-strand DNA into certain nanopattern. It has been widely used in various fields including detection of biological molecules such as DNA, RNA and proteins. MicroRNAs (miRNAs play important roles in post-transcriptional gene repression as well as many other biological processes such as cell growth and differentiation. Alterations of miRNAs' expression contribute to many human diseases. However, it is still a challenge to quantitatively detect miRNAs by origami technology. In this study, we developed a novel approach based on streptavidin and quantum dots binding complex (STV-QDs labeled single strand displacement reaction on DNA origami to quantitatively detect the concentration of miRNAs. We illustrated a linear relationship between the concentration of an exemplary miRNA as miRNA-133 and the STV-QDs hybridization efficiency; the results demonstrated that it is an accurate nano-scale miRNA quantifier motif. In addition, both symmetrical rectangular motif and asymmetrical China-map motif were tested. With significant linearity in both motifs, our experiments suggested that DNA Origami motif with arbitrary shape can be utilized in this method. Since this DNA origami-based method we developed owns the unique advantages of simple, time-and-material-saving, potentially multi-targets testing in one motif and relatively accurate for certain impurity samples as counted directly by atomic force microscopy rather than fluorescence signal detection, it may be widely used in quantification of miRNAs.

  1. Accurate Quantification of microRNA via Single Strand Displacement Reaction on DNA Origami Motif

    Science.gov (United States)

    Lou, Jingyu; Li, Weidong; Li, Sheng; Zhu, Hongxin; Yang, Lun; Zhang, Aiping; He, Lin; Li, Can

    2013-01-01

    DNA origami is an emerging technology that assembles hundreds of staple strands and one single-strand DNA into certain nanopattern. It has been widely used in various fields including detection of biological molecules such as DNA, RNA and proteins. MicroRNAs (miRNAs) play important roles in post-transcriptional gene repression as well as many other biological processes such as cell growth and differentiation. Alterations of miRNAs' expression contribute to many human diseases. However, it is still a challenge to quantitatively detect miRNAs by origami technology. In this study, we developed a novel approach based on streptavidin and quantum dots binding complex (STV-QDs) labeled single strand displacement reaction on DNA origami to quantitatively detect the concentration of miRNAs. We illustrated a linear relationship between the concentration of an exemplary miRNA as miRNA-133 and the STV-QDs hybridization efficiency; the results demonstrated that it is an accurate nano-scale miRNA quantifier motif. In addition, both symmetrical rectangular motif and asymmetrical China-map motif were tested. With significant linearity in both motifs, our experiments suggested that DNA Origami motif with arbitrary shape can be utilized in this method. Since this DNA origami-based method we developed owns the unique advantages of simple, time-and-material-saving, potentially multi-targets testing in one motif and relatively accurate for certain impurity samples as counted directly by atomic force microscopy rather than fluorescence signal detection, it may be widely used in quantification of miRNAs. PMID:23990889

  2. Accurate quantification of microRNA via single strand displacement reaction on DNA origami motif.

    Science.gov (United States)

    Zhu, Jie; Feng, Xiaolu; Lou, Jingyu; Li, Weidong; Li, Sheng; Zhu, Hongxin; Yang, Lun; Zhang, Aiping; He, Lin; Li, Can

    2013-01-01

    DNA origami is an emerging technology that assembles hundreds of staple strands and one single-strand DNA into certain nanopattern. It has been widely used in various fields including detection of biological molecules such as DNA, RNA and proteins. MicroRNAs (miRNAs) play important roles in post-transcriptional gene repression as well as many other biological processes such as cell growth and differentiation. Alterations of miRNAs' expression contribute to many human diseases. However, it is still a challenge to quantitatively detect miRNAs by origami technology. In this study, we developed a novel approach based on streptavidin and quantum dots binding complex (STV-QDs) labeled single strand displacement reaction on DNA origami to quantitatively detect the concentration of miRNAs. We illustrated a linear relationship between the concentration of an exemplary miRNA as miRNA-133 and the STV-QDs hybridization efficiency; the results demonstrated that it is an accurate nano-scale miRNA quantifier motif. In addition, both symmetrical rectangular motif and asymmetrical China-map motif were tested. With significant linearity in both motifs, our experiments suggested that DNA Origami motif with arbitrary shape can be utilized in this method. Since this DNA origami-based method we developed owns the unique advantages of simple, time-and-material-saving, potentially multi-targets testing in one motif and relatively accurate for certain impurity samples as counted directly by atomic force microscopy rather than fluorescence signal detection, it may be widely used in quantification of miRNAs.

  3. Mapping yeast origins of replication via single-stranded DNA detection.

    Science.gov (United States)

    Feng, Wenyi; Raghuraman, M K; Brewer, Bonita J

    2007-02-01

    Studies in th Saccharomyces cerevisiae have provided a framework for understanding how eukaryotic cells replicate their chromosomal DNA to ensure faithful transmission of genetic information to their daughter cells. In particular, S. cerevisiae is the first eukaryote to have its origins of replication mapped on a genomic scale, by three independent groups using three different microarray-based approaches. Here we describe a new technique of origin mapping via detection of single-stranded DNA in yeast. This method not only identified the majority of previously discovered origins, but also detected new ones. We have also shown that this technique can identify origins in Schizosaccharomyces pombe, illustrating the utility of this method for origin mapping in other eukaryotes.

  4. A lateral flow biosensor for detection of single nucleotide polymorphism by circular strand displacement reaction.

    Science.gov (United States)

    Xiao, Zhuo; Lie, Puchang; Fang, Zhiyuan; Yu, Luxin; Chen, Junhua; Liu, Jie; Ge, Chenchen; Zhou, Xuemeng; Zeng, Lingwen

    2012-09-04

    A lateral flow biosensor for detection of single nucleotide polymorphism based on circular strand displacement reaction (CSDPR) has been developed. Taking advantage of high fidelity of T4 DNA ligase, signal amplification by CSDPR, and the optical properties of gold nanoparticles, this assay has reached a detection limit of 0.01 fM.

  5. The opportunistic pathogen Pseudomonas aeruginosa activates the DNA double-strand break signaling and repair pathway in infected cells

    International Nuclear Information System (INIS)

    Elsen, S.; Collin-Faure, V.; Gidrol, X.; Lemercier, C.

    2013-01-01

    Highly hazardous DNA double-strand breaks can be induced in eukaryotic cells by a number of agents including pathogenic bacterial strains. We have investigated the genotoxic potential of Pseudomonas aeruginosa, an opportunistic pathogen causing devastating nosocomial infections in cystic fibrosis or immunocompromised patients. Our data revealed that infection of immune or epithelial cells by P. aeruginosa triggered DNA strand breaks and phosphorylation of histone H2AX (γH2AX), a marker of DNA double-strand breaks. Moreover, it induced formation of discrete nuclear repair foci similar to gamma-irradiation-induced foci, and containing γH2AX and 53BP1, an adaptor protein mediating the DNA-damage response pathway. Gene deletion, mutagenesis, and complementation in P. aeruginosa identified ExoS bacterial toxin as the major factor involved in γH2AX induction. Chemical inhibition of several kinases known to phosphorylate H2AX demonstrated that Ataxia Telangiectasia Mutated (ATM) was the principal kinase in P. aeruginosa-induced H2AX phosphorylation. Finally, infection led to ATM kinase activation by an auto-phosphorylation mechanism. Together, these data show for the first time that infection by P. aeruginosa activates the DNA double-strand break repair machinery of the host cells. This novel information sheds new light on the consequences of P. aeruginosa infection in mammalian cells. As pathogenic Escherichia coli or carcinogenic Helicobacter pylori can alter genome integrity through DNA double-strand breaks, leading to chromosomal instability and eventually cancer, our findings highlight possible new routes for further investigations of P. aeruginosa in cancer biology and they identify ATM as a potential target molecule for drug design. (authors)

  6. Single-strand DNA-binding protein SSB1 facilitates TERT recruitment to telomeres and maintains telomere G-overhangs.

    Science.gov (United States)

    Pandita, Raj K; Chow, Tracy T; Udayakumar, Durga; Bain, Amanda L; Cubeddu, Liza; Hunt, Clayton R; Shi, Wei; Horikoshi, Nobuo; Zhao, Yong; Wright, Woodring E; Khanna, Kum Kum; Shay, Jerry W; Pandita, Tej K

    2015-03-01

    Proliferating mammalian stem and cancer cells express telomerase [telomerase reverse transcriptase (TERT)] in an effort to extend chromosomal G-overhangs and maintain telomere ends. Telomerase-expressing cells also have higher levels of the single-stranded DNA-binding protein SSB1, which has a critical role in DNA double-strand break (DSB) repair. Here, we report that SSB1 binds specifically to G-strand telomeric DNA in vitro and associates with telomeres in vivo. SSB1 interacts with the TERT catalytic subunit and regulates its interaction with telomeres. Deletion of SSB1 reduces TERT interaction with telomeres and leads to G-overhang loss. Although SSB1 is recruited to DSB sites, we found no corresponding change in TERT levels at these sites, implying that SSB1-TERT interaction relies upon a specific chromatin structure or context. Our findings offer an explanation for how telomerase is recruited to telomeres to facilitate G-strand DNA extension, a critical step in maintaining telomere ends and cell viability in all cancer cells. Cancer Res; 75(5); 858-69. ©2015 AACR. ©2015 American Association for Cancer Research.

  7. The Bipolar Filaments Formed by Herpes Simplex Virus Type 1 SSB/Recombination Protein (ICP8) Suggest a Mechanism for DNA Annealing

    Energy Technology Data Exchange (ETDEWEB)

    Makhov, A.M.; Simon, M.; Sen, A.; Yu, X.; Griffith, J. D.; Egelman, E. H.

    2009-02-20

    Herpes simplex virus type 1 encodes a multifunctional protein, ICP8, which serves both as a single-strand binding protein and as a recombinase, catalyzing reactions involved in replication and recombination of the viral genome. In the presence of divalent ions and at low temperature, previous electron microscopic studies showed that ICP8 will form long left-handed helical filaments. Here, electron microscopic image reconstruction reveals that the filaments are bipolar, with an asymmetric unit containing two subunits of ICP8 that constitute a symmetrical dimer. This organization of the filament has been confirmed using scanning transmission electron microscopy. The pitch of the filaments is {approx} 250 {angstrom}, with {approx} 6.2 dimers per turn. Docking of a crystal structure of ICP8 into the reconstructed filament shows that the C-terminal domain of ICP8, attached to the body of the subunit by a flexible linker containing {approx} 10 residues, is packed into a pocket in the body of a neighboring subunit in the crystal in a similar manner as in the filament. However, the interactions between the large N-terminal domains are quite different in the filament from that observed in the crystal. A previously proposed model for ICP8 binding single-stranded DNA (ssDNA), based upon the crystal structure, leads to a model for a continuous strand of ssDNA near the filament axis. The bipolar nature of the ICP8 filaments means that a second strand of ssDNA would be running through this filament in the opposite orientation, and this provides a potential mechanism for how ICP8 anneals complementary ssDNA into double-stranded DNA, where each strand runs in opposite directions.

  8. Current sharing temperature of NbTi SULTAN samples compared to prediction using a single pinning mechanism parametrization for NbTi strand

    International Nuclear Information System (INIS)

    Pong, Ian; Vostner, Alexander; Devred, Arnaud; Bessette, Denis; Mitchell, Neil; Bordini, Bernardo; Bottura, Luca; Jewell, Matthew; Long Feng; Wu Yu

    2012-01-01

    NbTi strands to be used in four of the six ITER poloidal field (PF) coils, all the correction coils (CC) and all the superconducting feeder busbars are being produced in China. Short full-size qualification conductor (cabled and jacketed) samples have been developed at ASIPP and tested at CRPP. Single pinning mechanism parametrization for this Chinese strand (type S2) has been obtained using the Bottura scaling law. The determination of the scaling parameters using a Kramer-type regression method will be described. A comparison between the critical temperature at the operating current and field of a single strand as determined by the parametrization and the current sharing temperature (T CS ) of a few conductor samples tested at the SULTAN facility will be made. The validity and limitation of the estimation will be discussed. The estimated T CS dependence on various (superconducting critical as well as geometric and volumetric) parameters will be assessed using the modelled critical surface. Errors propagated from critical current (I c ) measurements of the strands and parameter fitting, and other uncertainties, will be quantified. (paper)

  9. Interaction of bacteriophage T4 and T7 single-stranded DNA-binding proteins with DNA

    International Nuclear Information System (INIS)

    Shokri, Leila; Williams, Mark C; Rouzina, Ioulia

    2009-01-01

    Bacteriophages T4 and T7 are well-studied model replication systems, which have allowed researchers to determine the roles of many proteins central to DNA replication, recombination and repair. Here we summarize and discuss the results from two recently developed single-molecule methods to determine the salt-dependent DNA-binding kinetics and thermodynamics of the single-stranded DNA (ssDNA)-binding proteins (SSBs) from these systems. We use these methods to characterize both the equilibrium double-stranded DNA (dsDNA) and ssDNA binding of the SSBs T4 gene 32 protein (gp32) and T7 gene 2.5 protein (gp2.5). Despite the overall two-orders-of-magnitude weaker binding of gp2.5 to both forms of DNA, we find that both proteins exhibit four-orders-of-magnitude preferential binding to ssDNA relative to dsDNA. This strong preferential ssDNA binding as well as the weak dsDNA binding is essential for the ability of both proteins to search dsDNA in one dimension to find available ssDNA-binding sites at the replication fork

  10. Site-selective probing of cTAR destabilization highlights the necessary plasticity of the HIV-1 nucleocapsid protein to chaperone the first strand transfer

    Science.gov (United States)

    Godet, Julien; Kenfack, Cyril; Przybilla, Frédéric; Richert, Ludovic; Duportail, Guy; Mély, Yves

    2013-01-01

    The HIV-1 nucleocapsid protein (NCp7) is a nucleic acid chaperone required during reverse transcription. During the first strand transfer, NCp7 is thought to destabilize cTAR, the (−)DNA copy of the TAR RNA hairpin, and subsequently direct the TAR/cTAR annealing through the zipping of their destabilized stem ends. To further characterize the destabilizing activity of NCp7, we locally probe the structure and dynamics of cTAR by steady-state and time resolved fluorescence spectroscopy. NC(11–55), a truncated NCp7 version corresponding to its zinc-finger domain, was found to bind all over the sequence and to preferentially destabilize the penultimate double-stranded segment in the lower part of the cTAR stem. This destabilization is achieved through zinc-finger–dependent binding of NC to the G10 and G50 residues. Sequence comparison further revealed that C•A mismatches close to the two G residues were critical for fine tuning the stability of the lower part of the cTAR stem and conferring to G10 and G50 the appropriate mobility and accessibility for specific recognition by NC. Our data also highlight the necessary plasticity of NCp7 to adapt to the sequence and structure variability of cTAR to chaperone its annealing with TAR through a specific pathway. PMID:23511968

  11. Roles of C-Terminal Region of Yeast and Human Rad52 in Rad51-Nucleoprotein Filament Formation and ssDNA Annealing.

    Directory of Open Access Journals (Sweden)

    Nilesh V Khade

    Full Text Available Yeast Rad52 (yRad52 has two important functions at homologous DNA recombination (HR; annealing complementary single-strand DNA (ssDNA molecules and recruiting Rad51 recombinase onto ssDNA (recombination mediator activity. Its human homolog (hRAD52 has a lesser role in HR, and apparently lacks mediator activity. Here we show that yRad52 can load human Rad51 (hRAD51 onto ssDNA complexed with yeast RPA in vitro. This is biochemically equivalent to mediator activity because it depends on the C-terminal Rad51-binding region of yRad52 and on functional Rad52-RPA interaction. It has been reported that the N-terminal two thirds of both yRad52 and hRAD52 is essential for binding to and annealing ssDNA. Although a second DNA binding region has been found in the C-terminal region of yRad52, its role in ssDNA annealing is not clear. In this paper, we also show that the C-terminal region of yRad52, but not of hRAD52, is involved in ssDNA annealing. This suggests that the second DNA binding site is required for the efficient ssDNA annealing by yRad52. We propose an updated model of Rad52-mediated ssDNA annealing.

  12. Radiobiological study on DNA strand breaks and repair using single cell gel electrophoresis

    International Nuclear Information System (INIS)

    Ikushima, Takaji

    1994-01-01

    Single cell gel electrophoresis (SCGE) provides a novel method to measure DNA damage in individual cells and more importantly, to assess heterogeneity in response within a mixed population of cells. Cells embedded in agarose are lysed, subjected to electrophoresis, stained with a fluorescent DNA-specific dye, and viewed under a fluorescence microscope. Damaged cells display 'comets', broken DNA migrating farther to the anode in the electric field. We have previously used this technique to quantify DNA damage induced by moderate doses of low and high LET radiations in cultured Chinese hamster cells. The assay has been optimized in terms of lysing and electrophoresis conditions, and applied to analyse the DNA strand breaks, their repair kinetics and heterogeneity in response in individual Chinese hamster cells exposed to gamma-rays, and to KUR thermal neutrons with and without 10 B or to KEK PF monochromatic soft X-rays as well as to a radio-mimetic agent, neocarzinostatin. The DNA double-strand breaks induced by boron-neutron captured reactions were repaired at a slower rate, but a heterogeneity in response might not contribute to the difference. The neocarzinostatin-induced DNA damage were efficiently repaired in a dose-dependent fashion. The initial amount of gamma-ray induced DNA double-strand breaks was not significantly altered in cells pre-exposed to very low adapting dose. (author)

  13. Construction of a microfluidic chip, using dried-down reagents, for LATE-PCR amplification and detection of single-stranded DNA.

    Science.gov (United States)

    Jia, Yanwei; Mak, Pui-In; Massey, Conner; Martins, Rui P; Wangh, Lawrence J

    2013-12-07

    LATE-PCR is an advanced form of non-symmetric PCR that efficiently generates single-stranded DNA which can readily be characterized at the end of amplification by hybridization to low-temperature fluorescent probes. We demonstrate here for the first time that monoplex and duplex LATE-PCR amplification and probe target hybridization can be carried out in double layered PDMS microfluidics chips containing dried reagents. Addition of a set of reagents during dry down overcomes the common problem of single-stranded oligonucleotide binding to PDMS. These proof-of-principle results open the way to construction of inexpensive point-of-care devices that take full advantage of the analytical power of assays built using LATE-PCR and low-temperature probes.

  14. Effects of 3-Deoxyadenosine (Cordycepin) on the repair of X-ray-induced DNA single- and double-strand breaks in chinese hamster V79 cells

    International Nuclear Information System (INIS)

    Hiraoka, Wakako; Kuwabara, Mikinori; Sato, Fumiaki

    1990-01-01

    The ability of cordycepin to inhibit the repair of DNA strand breaks was examined with X-irradiated Chinese hamster V79 cells in log-phase culture. A filter elution technique revealed that 70 μM cordycepin did not inhibit the repair of single-strand breaks but inhibited the repair of double-strand breaks. These findings confirmed the fact that the increase in the lethality of cordycepin in X-irradiated cultured mammalian cells was attributable to unrepaired DNA double-strand breaks. (author)

  15. The Globular State of the Single-Stranded RNA: Effect of the Secondary Structure Rearrangements

    Science.gov (United States)

    Grigoryan, Zareh A.; Karapetian, Armen T.

    2015-01-01

    The mutual influence of the slow rearrangements of secondary structure and fast collapse of the long single-stranded RNA (ssRNA) in approximation of coarse-grained model is studied with analytic calculations. It is assumed that the characteristic time of the secondary structure rearrangement is much longer than that for the formation of the tertiary structure. A nonequilibrium phase transition of the 2nd order has been observed. PMID:26345143

  16. The Globular State of the Single-Stranded RNA: Effect of the Secondary Structure Rearrangements

    Directory of Open Access Journals (Sweden)

    Zareh A. Grigoryan

    2015-01-01

    Full Text Available The mutual influence of the slow rearrangements of secondary structure and fast collapse of the long single-stranded RNA (ssRNA in approximation of coarse-grained model is studied with analytic calculations. It is assumed that the characteristic time of the secondary structure rearrangement is much longer than that for the formation of the tertiary structure. A nonequilibrium phase transition of the 2nd order has been observed.

  17. Packaging signals in single-stranded RNA viruses: nature?s alternative to a purely electrostatic assembly mechanism

    OpenAIRE

    Stockley, Peter G.; Twarock, Reidun; Bakker, Saskia E.; Barker, Amy M.; Borodavka, Alexander; Dykeman, Eric; Ford, Robert J.; Pearson, Arwen R.; Phillips, Simon E. V.; Ranson, Neil A.; Tuma, Roman

    2013-01-01

    The formation of a protective protein container is an essential step in the life-cycle of most viruses. In the case of single-stranded (ss)RNA viruses, this step occurs in parallel with genome packaging in a co-assembly process. Previously, it had been thought that this process can be explained entirely by electrostatics. Inspired by recent single-molecule fluorescence experiments that recapitulate the RNA packaging specificity seen in vivo for two model viruses, we present an alternative the...

  18. Novel Single-Stranded DNA Virus Genomes Recovered from Chimpanzee Feces Sampled from the Mambilla Plateau in Nigeria

    Science.gov (United States)

    Walters, Matthew; Bawuro, Musa; Christopher, Alfred; Knight, Alexander; Kraberger, Simona; Stainton, Daisy; Chapman, Hazel

    2017-01-01

    ABSTRACT Metagenomic approaches are rapidly expanding our knowledge of the diversity of viruses. In the fecal matter of Nigerian chimpanzees we recovered three gokushovirus genomes, one circular replication-associated protein encoding single-stranded DNA virus (CRESS), and a CRESS DNA molecule. PMID:28254982

  19. Fair Exchange in Strand Spaces

    Directory of Open Access Journals (Sweden)

    Joshua D. Guttman

    2009-10-01

    Full Text Available Many cryptographic protocols are intended to coordinate state changes among principals. Exchange protocols coordinate delivery of new values to the participants, e.g. additions to the set of values they possess. An exchange protocol is fair if it ensures that delivery of new values is balanced: If one participant obtains a new possession via the protocol, then all other participants will, too. Fair exchange requires progress assumptions, unlike some other protocol properties. The strand space model is a framework for design and verification of cryptographic protocols. A strand is a local behavior of a single principal in a single session of a protocol. A bundle is a partially ordered global execution built from protocol strands and adversary activities. The strand space model needs two additions for fair exchange protocols. First, we regard the state as a multiset of facts, and we allow strands to cause changes in this state via multiset rewriting. Second, progress assumptions stipulate that some channels are resilient-and guaranteed to deliver messages-and some principals are assumed not to stop at certain critical steps. This method leads to proofs of correctness that cleanly separate protocol properties, such as authentication and confidentiality, from invariants governing state evolution. G. Wang's recent fair exchange protocol illustrates the approach.

  20. An Evaluation of the Use of Simulated Annealing to Optimize Thinning Rates for Single Even-Aged Stands

    Directory of Open Access Journals (Sweden)

    Kai Moriguchi

    2015-01-01

    Full Text Available We evaluated the potential of simulated annealing as a reliable method for optimizing thinning rates for single even-aged stands. Four types of yield models were used as benchmark models to examine the algorithm’s versatility. Thinning rate, which was constrained to 0–50% every 5 years at stand ages of 10–45 years, was optimized to maximize the net present value for one fixed rotation term (50 years. The best parameters for the simulated annealing were chosen from 113 patterns, using the mean of the net present value from 39 runs to ensure the best performance. We compared the solutions with those from coarse full enumeration to evaluate the method’s reliability and with 39 runs of random search to evaluate its efficiency. In contrast to random search, the best run of simulated annealing for each of the four yield models resulted in a better solution than coarse full enumeration. However, variations in the objective function for two yield models obtained with simulated annealing were significantly larger than those of random search. In conclusion, simulated annealing with optimized parameters is more efficient for optimizing thinning rates than random search. However, it is necessary to execute multiple runs to obtain reliable solutions.

  1. Plasmid-derived DNA Strand Displacement Gates for Implementing Chemical Reaction Networks.

    Science.gov (United States)

    Chen, Yuan-Jyue; Rao, Sundipta D; Seelig, Georg

    2015-11-25

    DNA nanotechnology requires large amounts of highly pure DNA as an engineering material. Plasmid DNA could meet this need since it is replicated with high fidelity, is readily amplified through bacterial culture and can be stored indefinitely in the form of bacterial glycerol stocks. However, the double-stranded nature of plasmid DNA has so far hindered its efficient use for construction of DNA nanostructures or devices that typically contain single-stranded or branched domains. In recent work, it was found that nicked double stranded DNA (ndsDNA) strand displacement gates could be sourced from plasmid DNA. The following is a protocol that details how these ndsDNA gates can be efficiently encoded in plasmids and can be derived from the plasmids through a small number of enzymatic processing steps. Also given is a protocol for testing ndsDNA gates using fluorescence kinetics measurements. NdsDNA gates can be used to implement arbitrary chemical reaction networks (CRNs) and thus provide a pathway towards the use of the CRN formalism as a prescriptive molecular programming language. To demonstrate this technology, a multi-step reaction cascade with catalytic kinetics is constructed. Further it is shown that plasmid-derived components perform better than identical components assembled from synthetic DNA.

  2. Single and double strand breaks induced by 3H incorporated in DNA of cultured human kidney cells

    International Nuclear Information System (INIS)

    Tisljar-Lentulis, G.; Henneberg, P.; Mielke, T.; Feinendegen, L.E.

    1978-01-01

    In the course of the investigations of the biological effects of radionuclides incorporated in DNA single (SSB) and double strand breaks (DSB) caused tritium-decay were measured and compared with respective data resulting from 125 I. Tritium bound to thymidine and iododeoxyuridine seems to be more effective than tritium bound to other DNA-precursors. On the basis of decay, methyl- 3 H thymidine appears to be more effective with regard to the production of strand breaks than 3 H in position 6 of the pyrimidine ring. Based on the numbers of strand-breaks per rad, position 6 is more effective in accordance with data obtained by F. Krasin et al. The ratio of SSBs to DSBs per tritium decay appears to be approximately 8 in mammlian cells. Not only SSBs but also DSBs induced by 3 H in mammalian cells are reapairable. (orig./AJ) [de

  3. Torsional regulation of hRPA-induced unwinding of double-stranded DNA

    NARCIS (Netherlands)

    De Vlaminck, I.; Vidic, I.; Van Loenhout, M.T.J.; Kanaar, R.; Lebbink, J.H.G.; Dekker, C.

    2010-01-01

    All cellular single-stranded (ss) DNA is rapidly bound and stabilized by single stranded DNA-binding proteins (SSBs). Replication protein A, the main eukaryotic SSB, is able to unwind double-stranded (ds) DNA by binding and stabilizing transiently forming bubbles of ssDNA. Here, we study the

  4. Stabilization of Pt nanoparticles by single stranded DNA and the binary assembly of Au and Pt nanoparticles without hybridization

    International Nuclear Information System (INIS)

    Yang, J.; Lee, Jim Yang; Too, Heng-Phon; Chow, Gan-Moog; Gan, Leong M.

    2006-01-01

    The non-specific interaction between single stranded DNA (ssDNA) and 12 nm Pt nanoparticles is investigated in this work. The data show a strong and non-specific interaction between the two which can be exploited for the stabilization of Pt nanoparticles in aqueous solutions. Based on the experimental findings, a non-hybridization based protocol to assemble 17 nm Au and Pt nanoparticles (12 nm cubic and 3.6 nm spherical) by single-stranded DNA was developed. Transmission electron microscopy (TEM) and UV-visible spectroscopy confirmed that Au and Pt nanoparticles could be assembled by the non-specific interaction in an orderly manner. The experimental results also caution against the potential pitfalls in using DNA melting point analysis to infer metal nanoparticle assembly by DNA hybridization

  5. The application of strand invasion phenomenon, directed by peptide nucleic acid (PNA) and single-stranded DNA binding protein (SSB) for the recognition of specific sequences of human endogenous retroviral HERV-W family.

    Science.gov (United States)

    Machnik, Grzegorz; Bułdak, Łukasz; Ruczyński, Jarosław; Gąsior, Tomasz; Huzarska, Małgorzata; Belowski, Dariusz; Alenowicz, Magdalena; Mucha, Piotr; Rekowski, Piotr; Okopień, Bogusław

    2017-05-01

    The HERV-W family of human endogenous retroviruses represents a group of numerous sequences that show close similarity in genetic composition. It has been documented that some members of HERV-W-derived expression products are supposed to play significant role in humans' pathology, such as multiple sclerosis or schizophrenia. Other members of the family are necessary to orchestrate physiological processes (eg, ERVWE1 coding syncytin-1 that is engaged in syncytiotrophoblast formation). Therefore, an assay that would allow the recognition of particular form of HERV-W members is highly desirable. A peptide nucleic acid (PNA)-mediated technique for the discrimination between multiple sclerosis-associated retrovirus and ERVWE1 sequence has been developed. The assay uses a PNA probe that, being fully complementary to the ERVWE1 but not to multiple sclerosis-associated retrovirus (MSRV) template, shows high selective potential. Single-stranded DNA binding protein facilitates the PNA-mediated, sequence-specific formation of strand invasion complex and, consequently, local DNA unwinding. The target DNA may be then excluded from further analysis in any downstream process such as single-stranded DNA-specific exonuclease action. Finally, the reaction conditions have been optimized, and several PNA probes that are targeted toward distinct loci along whole HERV-W env sequences have been evaluated. We believe that PNA/single-stranded DNA binding protein-based application has the potential to selectively discriminate particular HERV-W molecules as they are at least suspected to play pathogenic role in a broad range of medical conditions, from psycho-neurologic disorders (multiple sclerosis and schizophrenia) and cancers (breast cancer) to that of an auto-immunologic background (psoriasis and lupus erythematosus). Copyright © 2016 John Wiley & Sons, Ltd.

  6. The double-edged effects of annealing MgO underlayers on the efficient synthesis of single-wall carbon nanotube forests.

    Science.gov (United States)

    Tsuji, Takashi; Hata, Kenji; Futaba, Don N; Sakurai, Shunsuke

    2017-11-16

    Recently, the millimetre-scale, highly efficient synthesis of single-wall carbon nanotube (SWCNT) forests from Fe catalysts has been reported through the annealing of the magnesia (MgO) underlayer. Here, we report the double-edged effects of underlayer annealing on the efficiency and structure of the SWCNT forest synthesis through a temperature-dependent examination. Our results showed that the efficiency of the SWCNT forests sharply increased with increased underlayer annealing temperatures from 600 °C up to 900 °C due to a temperature-dependent structural modification, characterized by increased grain size and reduced defects, of the MgO underlayer. Beyond this temperature, the SWCNT fraction also decreased as a result of further structural modification of the MgO underlayer. This exemplifies the double-edged effects of annealing. Specifically, for underlayer annealing below 600 °C, the catalyst subsurface diffusion was found to limit the growth efficiency, and for excessively high underlayer annealing temperatures (>900 °C), catalyst coalescence/ripening led to the formation of double-wall carbon nanotubes. As a result, three distinct regions of synthesis were observed: (i) a "low yield" region below a threshold temperature (∼600 °C); (ii) an "increased yield" region from 600 to 900 °C, and (iii) a "saturation" region above 900 °C. The efficient SWCNT forest synthesis could only occur within a specific annealing temperature window as a result of this double-edged effects of underlayer annealing.

  7. Nanocrystalline Si pathway induced unipolar resistive switching behavior from annealed Si-rich SiNx/SiNy multilayers

    International Nuclear Information System (INIS)

    Jiang, Xiaofan; Ma, Zhongyuan; Yang, Huafeng; Yu, Jie; Wang, Wen; Zhang, Wenping; Li, Wei; Xu, Jun; Xu, Ling; Chen, Kunji; Huang, Xinfan; Feng, Duan

    2014-01-01

    Adding a resistive switching functionality to a silicon microelectronic chip is a new challenge in materials research. Here, we demonstrate that unipolar and electrode-independent resistive switching effects can be realized in the annealed Si-rich SiN x /SiN y multilayers with high on/off ratio of 10 9 . High resolution transmission electron microscopy reveals that for the high resistance state broken pathways composed of discrete nanocrystalline silicon (nc-Si) exist in the Si nitride multilayers. While for the low resistance state the discrete nc-Si regions is connected, forming continuous nc-Si pathways. Based on the analysis of the temperature dependent I-V characteristics and HRTEM photos, we found that the break-and-bridge evolution of nc-Si pathway is the origin of resistive switching memory behavior. Our findings provide insights into the mechanism of the resistive switching behavior in nc-Si films, opening a way for it to be utilized as a material in Si-based memories.

  8. Nanocrystalline Si pathway induced unipolar resistive switching behavior from annealed Si-rich SiNx/SiNy multilayers

    Science.gov (United States)

    Jiang, Xiaofan; Ma, Zhongyuan; Yang, Huafeng; Yu, Jie; Wang, Wen; Zhang, Wenping; Li, Wei; Xu, Jun; Xu, Ling; Chen, Kunji; Huang, Xinfan; Feng, Duan

    2014-09-01

    Adding a resistive switching functionality to a silicon microelectronic chip is a new challenge in materials research. Here, we demonstrate that unipolar and electrode-independent resistive switching effects can be realized in the annealed Si-rich SiNx/SiNy multilayers with high on/off ratio of 109. High resolution transmission electron microscopy reveals that for the high resistance state broken pathways composed of discrete nanocrystalline silicon (nc-Si) exist in the Si nitride multilayers. While for the low resistance state the discrete nc-Si regions is connected, forming continuous nc-Si pathways. Based on the analysis of the temperature dependent I-V characteristics and HRTEM photos, we found that the break-and-bridge evolution of nc-Si pathway is the origin of resistive switching memory behavior. Our findings provide insights into the mechanism of the resistive switching behavior in nc-Si films, opening a way for it to be utilized as a material in Si-based memories.

  9. Complex DNA repair pathways as possible therapeutic targets to overcome temozolomide resistance in glioblastoma

    International Nuclear Information System (INIS)

    Yoshimoto, Koji; Mizoguchi, Masahiro; Hata, Nobuhiro; Murata, Hideki; Hatae, Ryusuke; Amano, Toshiyuki; Nakamizo, Akira; Sasaki, Tomio

    2012-01-01

    Many conventional chemotherapeutic drugs exert their cytotoxic function by inducing DNA damage in the tumor cell. Therefore, a cell-inherent DNA repair pathway, which reverses the DNA-damaging effect of the cytotoxic drugs, can mediate therapeutic resistance to chemotherapy. The monofunctional DNA-alkylating agent temozolomide (TMZ) is a commonly used chemotherapeutic drug and the gold standard treatment for glioblastoma (GBM). Although the activity of DNA repair protein O6-methylguanine-DNA methyltransferase (MGMT) has been described as the main modulator to determine the sensitivity of GBM to TMZ, a subset of GBM does not respond despite MGMT inactivation, suggesting that another DNA repair mechanism may also modulate the tolerance to TMZ. Considerable interest has focused on MGMT, mismatch repair (MMR), and the base excision repair (BER) pathway in the mechanism of mediating TMZ resistance, but emerging roles for the DNA strand-break repair pathway have been demonstrated. In the first part of this review article, we briefly review the significant role of MGMT, MMR, and the BER pathway in the tolerance to TMZ; in the last part, we review the recent publications that demonstrate possible roles of DNA strand-break repair pathways, such as single-strand break repair and double-strand break repair, as well as the Fanconi anemia pathway in the repair process after alkylating agent-based therapy. It is possible that all of these repair pathways have a potential to modulate the sensitivity to TMZ and aid in overcoming the therapeutic resistance in the clinic.

  10. Complex DNA repair pathways as possible therapeutic targets to overcome temozolomide resistance in glioblastoma

    Energy Technology Data Exchange (ETDEWEB)

    Yoshimoto, Koji; Mizoguchi, Masahiro; Hata, Nobuhiro; Murata, Hideki; Hatae, Ryusuke; Amano, Toshiyuki; Nakamizo, Akira; Sasaki, Tomio, E-mail: kyoshimo@ns.med.kyushu-u.ac.jp [Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka (Japan)

    2012-12-05

    Many conventional chemotherapeutic drugs exert their cytotoxic function by inducing DNA damage in the tumor cell. Therefore, a cell-inherent DNA repair pathway, which reverses the DNA-damaging effect of the cytotoxic drugs, can mediate therapeutic resistance to chemotherapy. The monofunctional DNA-alkylating agent temozolomide (TMZ) is a commonly used chemotherapeutic drug and the gold standard treatment for glioblastoma (GBM). Although the activity of DNA repair protein O6-methylguanine-DNA methyltransferase (MGMT) has been described as the main modulator to determine the sensitivity of GBM to TMZ, a subset of GBM does not respond despite MGMT inactivation, suggesting that another DNA repair mechanism may also modulate the tolerance to TMZ. Considerable interest has focused on MGMT, mismatch repair (MMR), and the base excision repair (BER) pathway in the mechanism of mediating TMZ resistance, but emerging roles for the DNA strand-break repair pathway have been demonstrated. In the first part of this review article, we briefly review the significant role of MGMT, MMR, and the BER pathway in the tolerance to TMZ; in the last part, we review the recent publications that demonstrate possible roles of DNA strand-break repair pathways, such as single-strand break repair and double-strand break repair, as well as the Fanconi anemia pathway in the repair process after alkylating agent-based therapy. It is possible that all of these repair pathways have a potential to modulate the sensitivity to TMZ and aid in overcoming the therapeutic resistance in the clinic.

  11. Molecular Genetic Characterization of Mutagenesis Using a Highly Sensitive Single-Stranded DNA Reporter System in Budding Yeast.

    Science.gov (United States)

    Chan, Kin

    2018-01-01

    Mutations are permanent alterations to the coding content of DNA. They are starting material for the Darwinian evolution of species by natural selection, which has yielded an amazing diversity of life on Earth. Mutations can also be the fundamental basis of serious human maladies, most notably cancers. In this chapter, I describe a highly sensitive reporter system for the molecular genetic analysis of mutagenesis, featuring controlled generation of long stretches of single-stranded DNA in budding yeast cells. This system is ~100- to ~1000-fold more susceptible to mutation than conventional double-stranded DNA reporters, and is well suited for generating large mutational datasets to investigate the properties of mutagens.

  12. Chromosomal aberrations and deoxyribonucleic acid single-strand breaks in adipose-derived stem cells during long-term expansion in vitro.

    Science.gov (United States)

    Froelich, Katrin; Mickler, Johannes; Steusloff, Gudrun; Technau, Antje; Ramos Tirado, Mario; Scherzed, Agmal; Hackenberg, Stephan; Radeloff, Andreas; Hagen, Rudolf; Kleinsasser, Norbert

    2013-07-01

    Adipose-derived stem cells (ASCs) are a promising mesenchymal cell source for tissue engineering approaches. To obtain an adequate cell amount, in vitro expansion of the cells may be required in some cases. To monitor potential contraindications for therapeutic applications in humans, DNA strand breaks and chromosomal aberrations in ASCs during in vitro expansion were examined. After isolation of ASC from human lipoaspirates of seven patients, in vitro expansion over 10 passages was performed. Cells from passages 1, 2, 3, 5 and 10 were used for the alkaline single-cell microgel electrophoresis (comet) assay to detect DNA single-strand breaks and alkali labile as well as incomplete excision repair sites. Chromosomal changes were examined by means of the chromosomal aberration test. During in vitro expansion, ASC showed no DNA single-strand breaks in the comet assay. With the chromosomal aberration test, however, a significant increase in chromosomal aberrations were detected. The study showed that although no DNA fragmentation could be determined, the safety of ASC cannot be ensured with respect to chromosome stability during in vitro expansion. Thus, reliable analyses for detecting ASC populations, which accumulate chromosomal aberrations or even undergo malignant transformation during extensive in vitro expansion, must be implemented as part of the safety evaluation of these cells for stem cell-based therapy. Copyright © 2013 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  13. Enzymatic Production of Monoclonal Stoichiometric Single-Stranded DNA Oligonucleotides

    Science.gov (United States)

    Ducani, Cosimo; Kaul, Corinna; Moche, Martin; Shih, William M.; Högberg, Björn

    2013-01-01

    Single-stranded oligonucleotides are important as research tools as probes for diagnostics and gene therapy. Today, production of oligonucleotides is done via solid-phase synthesis. However, the capabilities of current polymer chemistry are limited in comparison to what can be produced in biological systems. The errors in synthetic DNA increases with oligonucleotide length, and sequence diversity can often be a problem. Here, we present the Monoclonal Stoichiometric (MOSIC) method for enzymatic DNA oligonucleotide production. Using this method, we amplify oligonucleotides from clonal templates followed by digestion of a cutter-hairpin, resulting in pools of monoclonal oligonucleotides with precisely controlled relative stoichiometric ratios. We present data where MOSIC oligonucleotides, 14–378 nt long, were prepared either by in vitro rolling-circle amplification, or by amplification in Escherichia coli in the form of phagemid DNA. The formation of a DNA crystal and folding of DNA nanostructures confirmed the scalability, purity and stoichiometry of the produced oligonucleotides. PMID:23727986

  14. Modelling toehold-mediated RNA strand displacement.

    Science.gov (United States)

    Šulc, Petr; Ouldridge, Thomas E; Romano, Flavio; Doye, Jonathan P K; Louis, Ard A

    2015-03-10

    We study the thermodynamics and kinetics of an RNA toehold-mediated strand displacement reaction with a recently developed coarse-grained model of RNA. Strand displacement, during which a single strand displaces a different strand previously bound to a complementary substrate strand, is an essential mechanism in active nucleic acid nanotechnology and has also been hypothesized to occur in vivo. We study the rate of displacement reactions as a function of the length of the toehold and temperature and make two experimentally testable predictions: that the displacement is faster if the toehold is placed at the 5' end of the substrate; and that the displacement slows down with increasing temperature for longer toeholds. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  15. Detecting single-abasic residues within a DNA strand immobilized in a biological nanopore using an integrated CMOS sensor.

    Science.gov (United States)

    Kim, Jungsuk; Maitra, Raj D; Pedrotti, Ken; Dunbar, William B

    2013-02-01

    In this paper, we demonstrate the application of a novel current-measuring sensor (CMS) customized for nanopore applications. The low-noise CMS is fabricated in a 0.35μm CMOS process and is implemented in experiments involving DNA captured in an α-hemolysin (α-HL) nanopore. Specifically, the CMS is used to build a current amplitude map as a function of varying positions of a single-abasic residue within a homopolymer cytosine single-stranded DNA (ssDNA) that is captured and held in the pore. Each ssDNA is immobilized using a biotin-streptavidin linkage. Five different DNA templates are measured and compared: one all-cytosine ssDNA, and four with a single-abasic residue substitution that resides in or near the ~1.5nm aperture of the α-HL channel when the strand is immobilized. The CMOS CMS is shown to resolves the ~5Å displacements of the abasic residue within the varying templates. The demonstration represents an advance in application-specific circuitry that is optimized for small-footprint nanopore applications, including genomic sequencing.

  16. Reduction of spontaneous somatic mutation frequency by a low-dose X irradiation of Drosophila larvae and possible involvement of DNA single-strand damage repair.

    Science.gov (United States)

    Koana, Takao; Takahashi, Takashi; Tsujimura, Hidenobu

    2012-03-01

    The third instar larvae of Drosophila were irradiated with X rays, and the somatic mutation frequency in their wings was measured after their eclosion. In the flies with normal DNA repair and apoptosis functions, 0.2 Gy irradiation at 0.05 Gy/min reduced the frequency of the so-called small spot (mutant cell clone with reduced reproductive activity) compared with that in the sham-irradiated flies. When apoptosis was suppressed using the baculovirus p35 gene, the small spot frequency increased four times in the sham-irradiated control group, but the reduction by the 0.2-Gy irradiation was still evident. In a non-homologous end joining-deficient mutant, the small spot frequency was also reduced by 0.2 Gy radiation. In a mutant deficient in single-strand break repair, no reduction in the small spot frequency by 0.2 Gy radiation was observed, and the small spot frequency increased with the radiation dose. Large spot (mutant cell clone with normal reproductive activity) frequency was not affected by suppression of apoptosis and increased monotonically with radiation dose in wild-type larvae and in mutants for single- or double-strand break repair. It is hypothesized that some of the small spots resulted from single-strand damage and, in wild-type larvae, 0.2 Gy radiation activated the normal single-strand break repair gene, which reduced the background somatic mutation frequency.

  17. Bacterial single-stranded DNA-binding proteins are phosphorylated on tyrosine

    DEFF Research Database (Denmark)

    Mijakovic, Ivan; Petranovic, Dina; Macek, B

    2006-01-01

    for phosphotyrosine-containing proteins in Streptomyces griseus by immunoaffinity chromatography identified bacterial SSBs as a novel target of bacterial tyrosine kinases. Since genes encoding protein-tyrosine kinases (PTKs) have not been recognized in streptomycetes, and SSBs from Streptomyces coelicolor (Sc......SSB) and Bacillus subtilis (BsSSB) share 38.7% identity, we used a B.subtilis protein-tyrosine kinase YwqD to phosphorylate two cognate SSBs (BsSSB and YwpH) in vitro. We demonstrate that in vivo phosphorylation of B.subtilis SSB occurs on tyrosine residue 82, and this reaction is affected antagonistically...... by kinase YwqD and phosphatase YwqE. Phosphorylation of B.subtilis SSB increased binding almost 200-fold to single-stranded DNA in vitro. Tyrosine phosphorylation of B.subtilis, S.coelicolor and Escherichia coli SSBs occured while they were expressed in E.coli, indicating that tyrosine phosphorylation...

  18. Sequence-based separation of single-stranded DNA using nucleotides in capillary electrophoresis: focus on phosphate.

    Science.gov (United States)

    Zhang, Xueru; McGown, Linda B

    2013-06-01

    DNA analysis has widespread applicability in biology, medicine, biotechnology, and forensics. DNA separation by length is readily achieved using sieving gels in electrophoresis. Separation by sequence is less simple, generally requiring adequate differences in native or induced conformation or differences in thermal or chemical stability of the strands that are hybridized prior to measurement. We previously demonstrated separation of four single-stranded DNA 76-mers that differ by only a few A-G substitutions based solely on sequence using guanosine-5'-monophosphate (GMP) in the running buffer. We attributed separation to the unique self-assembly of GMP to form higher order structures. Here, we examine an expanded set of 76-mers designed to probe the mechanism of the separation and effects of experimental conditions. We were surprised to find that other ribonucleotides achieved the similar separation to GMP, and that some separation was achieved using sodium phosphate instead of GMP. Potassium phosphate achieved almost as good separations as the ribonucleotides. This suggests that the separation medium provides a physicochemical environment for the DNA that effects strand migration in a sequence-selective manner. Further investigation is needed to determine whether the mechanism involves specific interactions between the phosphates and the DNA strands or is a result of other properties of the separation medium. Phosphate generally has been avoided in DNA separations by capillary gel electrophoresis because its high ionic strength exacerbates Joule heating. Our results suggest that phosphate compounds should be examined for separation of DNA based on sequence. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Comparison of pulsed electron beam-annealed and pulsed ruby laser-annealed ion-implanted silicon

    International Nuclear Information System (INIS)

    Wilson, S.R.; Appleton, B.R.; White, C.W.; Narayan, J.; Greenwald, A.C.

    1978-11-01

    Recently two new techniques, pulsed electron beam annealing and pulsed laser annealing, have been developed for processing ion-implanted silicon. These two types of anneals have been compared using ion-channeling, ion back-scattering, and transmission electron microscopy (TEM). Single crystal samples were implanted with 100 keV As + ions to a dose of approx. 1 x 10 16 ions/cm 2 and subsequently annealed by either a pulsed Ruby laser or a pulsed electron beam. Our results show in both cases that the near-surface region has melted and regrown epitaxially with nearly all of the implanted As (97 to 99%) incroporated onto lattice sites. The analysis indicates that the samples are essentially defect free and have complete electrical recovery

  20. Near-Complete Genome Sequence of a Novel Single-Stranded RNA Virus Discovered in Indoor Air.

    Science.gov (United States)

    Rosario, Karyna; Fierer, Noah; Breitbart, Mya

    2018-03-22

    Viral metagenomic analysis of heating, ventilation, and air conditioning (HVAC) filters recovered the near-complete genome sequence of a novel virus, named HVAC-associated R NA v irus 1 (HVAC-RV1). The HVAC-RV1 genome is most similar to those of picorna-like viruses identified in arthropods but encodes a small domain observed only in negative-sense single-stranded RNA viruses. Copyright © 2018 Rosario et al.

  1. The single-strand DNA binding activity of human PC4 preventsmutagenesis and killing by oxidative DNA damage

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jen-Yeu; Sarker, Altaf Hossain; Cooper, Priscilla K.; Volkert, Michael R.

    2004-02-01

    Human positive cofactor 4 (PC4) is a transcriptional coactivator with a highly conserved single-strand DNA (ssDNA) binding domain of unknown function. We identified PC4 as a suppressor of the oxidative mutator phenotype of the Escherichia coli fpg mutY mutant and demonstrate that this suppression requires its ssDNA binding activity. Yeast mutants lacking their PC4 ortholog Sub1 are sensitive to hydrogen peroxide and exhibit spontaneous and peroxide induced hypermutability. PC4 expression suppresses the peroxide sensitivity of the yeast sub l{Delta} mutant, suggesting that the human protein has a similar function. A role for yeast and human proteins in DNA repair is suggested by the demonstration that Sub1 acts in a peroxide-resistance pathway involving Rad2 and by the physical interaction of PC4 with the human Rad2 homolog XPG. We show XPG recruits PC4 to a bubble-containing DNA substrate with resulting displacement of XPG and formation of a PC4-DNA complex. We discuss the possible requirement for PC4 in either global or transcription-coupled repair of oxidative DNA damage to mediate the release of XPG bound to its substrate.

  2. Zinc(II) and the single-stranded DNA binding protein of bacteriophage T4

    International Nuclear Information System (INIS)

    Gauss, P.; Krassa, K.B.; McPheeters, D.S.; Nelson, M.A.; Gold, L.

    1987-01-01

    The DNA binding domain of the gene 32 protein of the bacteriophage T4 contains a single zinc-finger sequence. The gene 32 protein is an extensively studied member of a class of proteins that bind relatively nonspecifically to single-stranded DNA. The authors have sequenced and characterized mutations in gene 32 whose defective proteins are activated by increasing the Zn(II) concentration in the growth medium. The results identify a role for the gene 32 protein in activation of T4 late transcription. Several eukaryotic proteins with zinc fingers participate in activation of transcription, and the gene 32 protein of T4 should provide a simple, well-characterized system in which genetics can be utilized to study the role of a zinc finger in nucleic acid binding and gene expression

  3. Xrcc1-dependent and Ku-dependent DNA double-strand break repair kinetics in Arabidopsis plants.

    Science.gov (United States)

    Charbonnel, Cyril; Gallego, Maria E; White, Charles I

    2010-10-01

    Double-strand breakage (DSB) of DNA involves loss of information on the two strands of the DNA fibre and thus cannot be repaired by simple copying of the complementary strand which is possible with single-strand DNA damage. Homologous recombination (HR) can precisely repair DSB using another copy of the genome as template and non-homologous recombination (NHR) permits repair of DSB with little or no dependence on DNA sequence homology. In addition to the well-characterised Ku-dependent non-homologous end-joining (NHEJ) pathway, much recent attention has been focused on Ku-independent NHR. The complex interrelationships and regulation of NHR pathways remain poorly understood, even more so in the case of plants, and we present here an analysis of Ku-dependent and Ku-independent repair of DSB in Arabidopsis thaliana. We have characterised an Arabidopsis xrcc1 mutant and developed quantitative analysis of the kinetics of appearance and loss of γ-H2AX foci as a tool to measure DSB repair in dividing root tip cells of γ-irradiated plants in vivo. This approach has permitted determination of DSB repair kinetics in planta following a short pulse of γ-irradiation, establishing the existence of a Ku-independent, Xrcc1-dependent DSB repair pathway. Furthermore, our data show a role for Ku80 during the first minutes post-irradiation and that Xrcc1 also plays such a role, but only in the absence of Ku. The importance of Xrcc1 is, however, clearly visible at later times in the presence of Ku, showing that alternative end-joining plays an important role in DSB repair even in the presence of active NHEJ. © 2010 The Authors. Journal compilation © 2010 Blackwell Publishing Ltd.

  4. Singularities of 28Si electrical activation in a single crystal and epitaxial GaAs under radiation annealing

    International Nuclear Information System (INIS)

    Ardyshev, V.M.; Ardyshev, M.V.; Khludkov, S.S.

    2000-01-01

    Using the voltage-capacitance characteristics method, the concentration profiles of 28 Si that is implanted in monocrystal and epitaxial GaAs after fast thermal annealing (FTA) (825, 870, 950 deg C, 12 s) have been studied; using Van-der-Paw method, the electron Hall mobility temperature dependence in the range of 70-400 K has been measured. Unlike thermal annealing (800 deg C, 30 min), the silicon diffusion depth redistribution into GaAs is shown to occur for both types of material. The coefficient of diffusion of Si in the single crystal is 2 times greater, but the electrical activation efficiency is somewhat less than in the epitaxial GaAs for each of the temperatures of FTA. The analysis of the temperature dependence of the electron mobility in ion-implanted layers after FTA gives the evidence about the significantly lower concentration of defects restricting the mobility in comparison with results obtained at thermal annealing during 30 min [ru

  5. Electrical signatures of single-stranded DNA with single base mutations in a nanopore capacitor

    International Nuclear Information System (INIS)

    Gracheva, Maria E; Aksimentiev, Aleksei; Leburton, Jean-Pierre

    2006-01-01

    In this paper, we evaluate the magnitude of the electrical signals produced by DNA translocation through a 1 nm diameter nanopore in a capacitor membrane with a numerical multi-scale approach, and assess the possibility of resolving individual nucleotides as well as their types in the absence of conformational disorder. We show that the maximum recorded voltage caused by the DNA translocation is about 35 mV, while the maximum voltage signal due to the DNA backbone is about 30 mV, and the maximum voltage of a DNA base is about 8 mV. Signals from individual nucleotides can be identified in the recorded voltage traces, suggesting a 1 nm diameter pore in a capacitor can be used to accurately count the number of nucleotides in a DNA strand. Furthermore, we study the effect of a single base substitution on the voltage trace, and calculate the differences among the voltage traces due to a single base mutation for the sequences C 3 AC 7 , C 3 CC 7 , C 3 GC 7 and C 3 TC 7 . The calculated voltage differences are in the 5-10 mV range. The calculated maximum voltage caused by the translocation of individual bases varies from 2 to 9 mV, which is experimentally detectable

  6. Molecular mechanism of protein assembly on DNA double-strand breaks in the non-homologous end-joining pathway

    International Nuclear Information System (INIS)

    Yano, Ken-ichi; Morotomi-Yano, Keiko; Adachi, Noritaka; Akiyama, Hidenori

    2009-01-01

    Non-homologous end-joining (NHEJ) is the major repair pathway for DNA double-strand breaks (DSBs) in mammalian species. Upon DSB induction, a living cell quickly activates the NHEJ pathway comprising of multiple molecular events. However, it has been difficult to analyze the initial phase of DSB responses in living cells, primarily due to technical limitations. Recent advances in real-time imaging and site-directed DSB induction using laser microbeam allow us to monitor the spatiotemporal dynamics of NHEJ factors in the immediate-early phase after DSB induction. These new approaches, together with the use of cell lines deficient in each essential NHEJ factor, provide novel mechanistic insights into DSB recognition and protein assembly on DSBs in the NHEJ pathway. In this review, we provide an overview of recent progresses in the imaging analyses of the NHEJ core factors. These studies strongly suggest that the NHEJ core factors are pre-assembled into a large complex on DSBs prior to the progression of the biochemical reactions in the NHEJ pathway. Instead of the traditional step-by-step assembly model from the static view of NHEJ, a novel model for dynamic protein assembly in the NHEJ pathway is proposed. This new model provides important mechanistic insights into the protein assembly at DSBs and the regulation of DSB repair. (author)

  7. Single-strand conformation polymorphism analysis of ribosomal DNA for detection of Phytophthora ramorum directly from plant tissues

    Science.gov (United States)

    Ping Kong; Patricia A. Richardson; Chuanxue Hong; Thomas L. Kubisiak

    2006-01-01

    At the first Sudden Oak Death Science Symposium, we reported on the use of a single strand conformation polymorphism (SSCP) analysis for rapid identification of Phytophthora ramorum in culture. We have since assessed and improved the fingerprinting technique for detecting this pathogen directly from plant tissues. The improved SSCP protocol uses a...

  8. Schizosaccharomyces pombe Rad22A and Rad22B have similar biochemical properties and form multimeric structures

    Energy Technology Data Exchange (ETDEWEB)

    Vries, Femke A.T. de [Department of Toxicogenetics, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden (Netherlands); Zonneveld, Jose B.M. [Department of Toxicogenetics, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden (Netherlands); Groot, Anton J. de [Department of Toxicogenetics, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden (Netherlands); Koning, Roman I. [Department of Molecular Cell Biology, Leiden University Medical Center, Leiden (Netherlands); Zeeland, Albert A. van [Department of Toxicogenetics, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden (Netherlands); Pastink, Albert [Department of Toxicogenetics, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden (Netherlands)]. E-mail: A.Pastink@lumc.nl

    2007-02-03

    The Saccharomyces cerevisiae Rad52 protein has a crucial role in the repair of DNA double-strand breaks by homologous recombination. In vitro, Rad52 displays DNA binding and strand annealing activities and promotes Rad51-mediated strand exchange. Schizosaccharomyces pombe has two Rad52 homologues, Rad22A and Rad22B. Whereas rad22A deficient strains exhibit severe defects in repair and recombination, rad22B mutants have a much less severe phenotype. To better understand the role of Rad22A and Rad22B in double-strand break repair, both proteins were purified to near homogeneity. Using gel retardation and filter binding assays, binding of Rad22A and Rad22B to short single-stranded DNAs was demonstrated. Binding of Rad22A to double-stranded oligonucleotides or linearized plasmid molecules containing blunt ends or short single-stranded overhangs could not be detected. Rad22B also does not bind efficiently to short duplex oligonucleotides but binds readily to DNA fragments containing 3'-overhangs. Rad22A as well as Rad22B efficiently promote annealing of complementary single-stranded DNAs. In the presence of Rad22A annealing of complementary DNAs is almost 90%. Whereas in reactions containing Rad22B the maximum level of annealing is 60%, most likely due to inhibition of the reaction by duplex DNA. Gel-filtration experiments and electron microscopic analyses indicate self-association of Rad22A and Rad22B and the formation of multimeric structures as has been observed for Rad52 in yeast and man.

  9. Alkyladenine DNA glycosylase (AAG) localizes to mitochondria and interacts with mitochondrial single-stranded binding protein (mtSSB).

    Science.gov (United States)

    van Loon, Barbara; Samson, Leona D

    2013-03-01

    Due to a harsh environment mitochondrial genomes accumulate high levels of DNA damage, in particular oxidation, hydrolytic deamination, and alkylation adducts. While repair of alkylated bases in nuclear DNA has been explored in detail, much less is known about the repair of DNA alkylation damage in mitochondria. Alkyladenine DNA glycosylase (AAG) recognizes and removes numerous alkylated bases, but to date AAG has only been detected in the nucleus, even though mammalian mitochondria are known to repair DNA lesions that are specific substrates of AAG. Here we use immunofluorescence to show that AAG localizes to mitochondria, and we find that native AAG is present in purified human mitochondrial extracts, as well as that exposure to alkylating agent promotes AAG accumulation in the mitochondria. We identify mitochondrial single-stranded binding protein (mtSSB) as a novel interacting partner of AAG; interaction between mtSSB and AAG is direct and increases upon methyl methanesulfonate (MMS) treatment. The consequence of this interaction is specific inhibition of AAG glycosylase activity in the context of a single-stranded DNA (ssDNA), but not a double-stranded DNA (dsDNA) substrate. By inhibiting AAG-initiated processing of damaged bases, mtSSB potentially prevents formation of DNA breaks in ssDNA, ensuring that base removal primarily occurs in dsDNA. In summary, our findings suggest the existence of AAG-initiated BER in mitochondria and further support a role for mtSSB in DNA repair. Copyright © 2012. Published by Elsevier B.V.

  10. PARP inhibition versus PARP-1 silencing: different outcomes in terms of single-strand break repair and radiation susceptibility

    International Nuclear Information System (INIS)

    Godon, C.; Cordelieres, F.P.; Giocanti, N.; Megnin-Chanet, F.; Hall, J.; Favaudon, V.; Godon, C.; Giocanti, N.; Megnin-Chanet, F.; Hall, J.; Favaudon, V.; Cordelieres, F.P.; Cordelieres, F.P.; Biard, D.

    2008-01-01

    The consequences of PARP-1 disruption or inhibition on DNA single-strand break repair (SSBR) and radio-induced lethality were determined in synchronized, iso-genic HeLa cells stably silenced or not for poly(ADP-ribose) polymerase-1 (PARP-1) (PARP-1(KD)) or XRCC1 (XRCC1(KD)). PARP-1 inhibition prevented XRCC1-YFP recruitment at sites of 405 nm laser micro irradiation, slowed SSBR 10-fold and triggered the accumulation of large persistent foci of GFP-PARP-1 and GFP-PCNA at photo damaged sites. These aggregates are presumed to hinder the recruitment of other effectors of the base excision repair (BER) pathway.PARP-1 silencing also prevented XRCC1-YFP recruitment but did not lengthen the lifetime of GFP-PCNA foci. Moreover, PARP-1(KD) and XRCC1(KD) cells in S phase completed SSBR as rapidly as controls, while SSBR was delayed in G1. Taken together, the data demonstrate that a PARP-1- and XRCC1-independent SSBR pathway operates when the short patch repair branch of the BER is deficient. Long patch repair is the likely mechanism, as GFP-PCNA recruitment at photo-damaged sites was normal in PARP-1(KD) cells. PARP-1 silencing elicited hyper-radiosensitivity, while radiosensitization by a PARP inhibitor reportedly occurs only in those cells treated in S phase. PARP-1 inhibition and deletion thus have different outcomes in terms of SSBR and radiosensitivity. (authors)

  11. Chemical and morphological modifications of single layer graphene submitted to annealing in water vapor

    Science.gov (United States)

    Rolim, Guilherme Koszeniewski; Corrêa, Silma Alberton; Galves, Lauren Aranha; Lopes, João Marcelo J.; Soares, Gabriel Vieira; Radtke, Cláudio

    2018-01-01

    Modifications of single layer graphene transferred to SiO2/Si substrates resulting from annealing in water vapor were investigated. Near edge X-ray absorption fine structure spectroscopy evidenced graphene puckering between 400 and 500 °C. Synchrotron radiation based X-ray photoelectron spectroscopy showed variation of sp2 and sp3C bonding configurations specially in this same temperature range. Moreover, oxygen related functionalities are formed as a result of water vapor annealing. Based on these results and complementary Raman and nuclear reaction analysis, one distinguishes three different regimes of water interaction with graphene concerning modifications of the graphene layer. In the low temperature range (200-400 °C), no prominent modification of graphene itself is observed. At higher temperatures (400-500 °C), to accommodate newly formed oxygen functionalities, the flat and continuous sp2 bonding network of graphene is disrupted, giving rise to a puckered layer. For 600 °C and above, shrinking of graphene domains and a higher doping level take place.

  12. Distinct spatio temporal patterns and PARP dependence of XRCC1 recruitment to single-strand break and base excision repair

    International Nuclear Information System (INIS)

    Campalans, Anna; Kortulewski, Thierry; Amouroux, Rachel; Radicella, J. Pablo; Menoni, Herve; Vermeulen, Wim

    2013-01-01

    Single-strand break repair (SSBR) and base excision repair (BER) of modified bases and abasic sites share several players. Among them is XRCC1, an essential scaffold protein with no enzymatic activity, required for the coordination of both pathways. XRCC1 is recruited to SSBR by PARP-1, responsible for the initial recognition of the break. The recruitment of XRCC1 to BER is still poorly understood. Here we show by using both local and global induction of oxidative DNA base damage that XRCC1 participation in BER complexes can be distinguished from that in SSBR by several criteria. We show first that XRCC1 recruitment to BER is independent of PARP. Second, unlike SSBR complexes that are assembled within minutes after global damage induction, XRCC1 is detected later in BER patches, with kinetics consistent with the repair of oxidized bases. Third, while XRCC1-containing foci associated with SSBR are formed both in eu- and heterochromatin domains, BER complexes are assembled in patches that are essentially excluded from heterochromatin and where the oxidized bases are detected. (authors)

  13. C-terminal phenylalanine of bacteriophage T7 single-stranded DNA-binding protein is essential for strand displacement synthesis by T7 DNA polymerase at a nick in DNA.

    Science.gov (United States)

    Ghosh, Sharmistha; Marintcheva, Boriana; Takahashi, Masateru; Richardson, Charles C

    2009-10-30

    Single-stranded DNA-binding protein (gp2.5), encoded by gene 2.5 of bacteriophage T7, plays an essential role in DNA replication. Not only does it remove impediments of secondary structure in the DNA, it also modulates the activities of the other replication proteins. The acidic C-terminal tail of gp2.5, bearing a C-terminal phenylalanine, physically and functionally interacts with the helicase and DNA polymerase. Deletion of the phenylalanine or substitution with a nonaromatic amino acid gives rise to a dominant lethal phenotype, and the altered gp2.5 has reduced affinity for T7 DNA polymerase. Suppressors of the dominant lethal phenotype have led to the identification of mutations in gene 5 that encodes the T7 DNA polymerase. The altered residues in the polymerase are solvent-exposed and lie in regions that are adjacent to the bound DNA. gp2.5 lacking the C-terminal phenylalanine has a lower affinity for gp5-thioredoxin relative to the wild-type gp2.5, and this affinity is partially restored by the suppressor mutations in DNA polymerase. gp2.5 enables T7 DNA polymerase to catalyze strand displacement DNA synthesis at a nick in DNA. The resulting 5'-single-stranded DNA tail provides a loading site for T7 DNA helicase. gp2.5 lacking the C-terminal phenylalanine does not support this event with wild-type DNA polymerase but does to a limited extent with T7 DNA polymerase harboring the suppressor mutations.

  14. C-terminal Phenylalanine of Bacteriophage T7 Single-stranded DNA-binding Protein Is Essential for Strand Displacement Synthesis by T7 DNA Polymerase at a Nick in DNA*

    Science.gov (United States)

    Ghosh, Sharmistha; Marintcheva, Boriana; Takahashi, Masateru; Richardson, Charles C.

    2009-01-01

    Single-stranded DNA-binding protein (gp2.5), encoded by gene 2.5 of bacteriophage T7, plays an essential role in DNA replication. Not only does it remove impediments of secondary structure in the DNA, it also modulates the activities of the other replication proteins. The acidic C-terminal tail of gp2.5, bearing a C-terminal phenylalanine, physically and functionally interacts with the helicase and DNA polymerase. Deletion of the phenylalanine or substitution with a nonaromatic amino acid gives rise to a dominant lethal phenotype, and the altered gp2.5 has reduced affinity for T7 DNA polymerase. Suppressors of the dominant lethal phenotype have led to the identification of mutations in gene 5 that encodes the T7 DNA polymerase. The altered residues in the polymerase are solvent-exposed and lie in regions that are adjacent to the bound DNA. gp2.5 lacking the C-terminal phenylalanine has a lower affinity for gp5-thioredoxin relative to the wild-type gp2.5, and this affinity is partially restored by the suppressor mutations in DNA polymerase. gp2.5 enables T7 DNA polymerase to catalyze strand displacement DNA synthesis at a nick in DNA. The resulting 5′-single-stranded DNA tail provides a loading site for T7 DNA helicase. gp2.5 lacking the C-terminal phenylalanine does not support this event with wild-type DNA polymerase but does to a limited extent with T7 DNA polymerase harboring the suppressor mutations. PMID:19726688

  15. Pathways for double-strand break repair in genetically unstable Z-DNA-forming sequences.

    Science.gov (United States)

    Kha, Diem T; Wang, Guliang; Natrajan, Nithya; Harrison, Lynn; Vasquez, Karen M

    2010-05-14

    DNA can adopt many structures that differ from the canonical B-form, and several of these non-canonical DNA structures have been implicated in genetic instability associated with human disease. Earlier, we found that Z-DNA causes DNA double-strand breaks (DSBs) in mammalian cells that can result in large-scale deletions and rearrangements. In contrast, the same Z-DNA-forming CG repeat in Escherichia coli resulted in only small contractions or expansions within the repeat. This difference in the Z-DNA-induced mutation spectrum between mammals and bacteria might be due to different mechanisms for DSB repair; in mammalian cells, non-homologous end-joining (NHEJ) is a major DSB repair pathway, while E. coli do not contain this system and typically use homologous recombination (HR) to process DSBs. To test the extent to which the different DSB repair pathways influenced the Z-DNA-induced mutagenesis, we engineered bacterial E.coli strains to express an inducible NHEJ system, to mimic the situation in mammalian cells. Mycobacterium tuberculosis NHEJ proteins Ku and ligase D (LigD) were expressed in E.coli cells in the presence or absence of HR, and the Z-DNA-induced mutations were characterized. We found that the presence of the NHEJ mechanism markedly shifted the mutation spectrum from small deletions/insertions to large-scale deletions (from 2% to 24%). Our results demonstrate that NHEJ plays a role in the generation of Z-DNA-induced large-scale deletions, suggesting that this pathway is associated with DNA structure-induced destabilization of genomes from prokaryotes to eukaryotes. (c) 2010 Elsevier Ltd. All rights reserved.

  16. Annealing as grown large volume CZT single crystals for increased spectral resolution

    International Nuclear Information System (INIS)

    Li, Longxia

    2008-01-01

    The spectroscopic performance of current large-volume Cadmium 10% Zinc Telluride, Cd 0.9 Zn 0.1 Te, (CZT) detectors is impaired by cumulative effect of tellurium precipitates (secondary phases) presented in CZT single-crystal grown by low-pressure Bridgman techniques(1). This statistical effect may limit the energy resolution of large-volume CZT detectors (typically 2-5% at 662 keV for 12-mm thick devices). The stochastic nature of the interaction prevents the use of any electronic or digital charge correction techniques without a significant reduction in the detector efficiency. This volume constraint hampers the utility of CZT since the detectors are inefficient at detecting photons >1MeV and/or in low fluency situations. During the project, seven runs CZT ingots have been grown, in these ingots the indium dopant concentrations have been changed in the range between 0.5ppm to 6ppm. The I-R mapping imaging method has been employed to study the Te-precipitates. The Teprecipitates in as-grown CZT wafers, and after annealing wafers have been systematically studied by using I-R mapping system (home installed, resolution of 1.5 (micro)m). We employed our I-R standard annealing CZT (Zn=4%) procedure or two-steps annealing into radiation CZT (Zn=10%), we achieved the 'non'-Te precipitates (size 10 9-10 (Omega)-cm. We believe that the Te-precipitates are the p-type defects, its reducing number causes the CZT became n+-type, therefore we varied or reduced the indium dapant concentration during the growth and changed the Te-precipitates size and density by using different Cd-temperature and different annealing procedures. We have made the comparisons among Te-precipitates size, density and Indium dopant concentrations, and we found that the CZT with smaller size of Te-precipitates is suitable for radiation uses but non-Te precipitates is impossible to be used in the radiation detectors, because the CZT would became un-dopant or 'intrinsic' with non radiation affection (we

  17. Breaks in plasmid DNA strand induced by laser radiation at a wavelength of 193 nm

    International Nuclear Information System (INIS)

    Gurzadyan, G.G.; Shul'te Frolinde, D.

    1996-01-01

    DNA of plasmid pB322 irradiated with laser at a wavelength of 193 nm was treated with an extract containing proteins from E.coli K12 AB1157 (wild-type). The enzymes were found to produce single- and double-strand DNA breaks, which was interpreted as a transformation of a portion of cyclobutane pyrimidine dimers and (6-4) photoproducts into nonrepairable single-strand DNA breaks. The products resulted from ionization of DNA, in particular, single-strand breaks, transform to double-strand breaks. A comparison of these data with the data on survival of plasmid upon transformation of E.coli K12 AB1157 enables one to assess the biological significance of single- and double-strand breaks. The inactivation of the plasmid is mainly determined by the number of directly formed laser-induced single-strand breaks. 26 refs.; 2 figs

  18. Chemo-mechanical pushing of proteins along single-stranded DNA.

    Science.gov (United States)

    Sokoloski, Joshua E; Kozlov, Alexander G; Galletto, Roberto; Lohman, Timothy M

    2016-05-31

    Single-stranded (ss)DNA binding (SSB) proteins bind with high affinity to ssDNA generated during DNA replication, recombination, and repair; however, these SSBs must eventually be displaced from or reorganized along the ssDNA. One potential mechanism for reorganization is for an ssDNA translocase (ATP-dependent motor) to push the SSB along ssDNA. Here we use single molecule total internal reflection fluorescence microscopy to detect such pushing events. When Cy5-labeled Escherichia coli (Ec) SSB is bound to surface-immobilized 3'-Cy3-labeled ssDNA, a fluctuating FRET signal is observed, consistent with random diffusion of SSB along the ssDNA. Addition of Saccharomyces cerevisiae Pif1, a 5' to 3' ssDNA translocase, results in the appearance of isolated, irregularly spaced saw-tooth FRET spikes only in the presence of ATP. These FRET spikes result from translocase-induced directional (5' to 3') pushing of the SSB toward the 3' ssDNA end, followed by displacement of the SSB from the DNA end. Similar ATP-dependent pushing events, but in the opposite (3' to 5') direction, are observed with EcRep and EcUvrD (both 3' to 5' ssDNA translocases). Simulations indicate that these events reflect active pushing by the translocase. The ability of translocases to chemo-mechanically push heterologous SSB proteins along ssDNA provides a potential mechanism for reorganization and clearance of tightly bound SSBs from ssDNA.

  19. Micronuclei, DNA single-strand breaks and DNA-repair activity in mice exposed to 1,3-butadiene by inhalation

    Czech Academy of Sciences Publication Activity Database

    Vodička, Pavel; Štětina, R.; Šmerák, P.; Vodičková, Ludmila; Naccarati, Alessio; Bárta, I.; Hemminki, K.

    2006-01-01

    Roč. 608, - (2006), s. 49-57 ISSN 1383-5718 R&D Projects: GA ČR(CZ) GA310/01/0802 Institutional research plan: CEZ:AV0Z50390512 Keywords : Single-strand DNA breaks * Micronucleus formation * DNA-repair activity Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.122, year: 2006

  20. The importance of becoming double-stranded: Innate immunity and the kinetic model of HIV-1 central plus strand synthesis

    International Nuclear Information System (INIS)

    Poeschla, Eric

    2013-01-01

    Central initiation of plus strand synthesis is a conserved feature of lentiviruses and certain other retroelements. This complication of the standard reverse transcription mechanism produces a transient “central DNA flap” in the viral cDNA, which has been proposed to mediate its subsequent nuclear import. This model has assumed that the important feature is the flapped DNA structure itself rather than the process that produces it. Recently, an alternative kinetic model was proposed. It posits that central plus strand synthesis functions to accelerate conversion to the double-stranded state, thereby helping HIV-1 to evade single-strand DNA-targeting antiviral restrictions such as APOBEC3 proteins, and perhaps to avoid innate immune sensor mechanisms. The model is consistent with evidence that lentiviruses must often synthesize their cDNAs when dNTP concentrations are limiting and with data linking reverse transcription and uncoating. There may be additional kinetic advantages for the artificial genomes of lentiviral gene therapy vectors. - Highlights: • Two main functional models for HIV central plus strand synthesis have been proposed. • In one, a transient central DNA flap in the viral cDNA mediates HIV-1 nuclear import. • In the other, multiple kinetic consequences are emphasized. • One is defense against APOBEC3G, which deaminates single-stranded DNA. • Future questions pertain to antiviral restriction, uncoating and nuclear import

  1. On the Formation of Thymine Photodimers in Thymine Single Strands and Calf Thymus DNA

    DEFF Research Database (Denmark)

    Baggesen, Lisbeth Munksgård; Hoffmann, S.V.; Nielsen, Steen Brøndsted

    2014-01-01

    a principal component analysis of the CD spectra, we extract fingerprint spectra of both the cyclobutane pyrimidine dimer (CPD) and the pyrimidine (6-4) pyrimidone photoadduct (64PP). Extending the CD measurements to the vacuum ultraviolet region in combination with systematic examinations of size effects...... of terminal thymines, i.e., the reaction does not occur preferentially at the extremities of the single strands as previously stated. It is even possible to form two dimers with only two bridging thymines. Finally, experiments conducted on calf thymus DNA provided a similar signature of the photodimer...

  2. Examination of the effect of the annealing cation on higher order structures containing guanine or isoguanine repeats

    Science.gov (United States)

    Pierce, Sarah E.; Wang, Junmei; Jayawickramarajah, Janarthanan; Hamilton, Andrew D.; Brodbelt, Jennifer S.

    2010-01-01

    Isoguanine (2-oxo-6-amino-guanine), a natural but non-standard base, exhibits unique self-association properties compared to its isomer, guanine, and results in formation of different higher order DNA structures. In this work, the higher order structures formed by oligonucleotides containing guanine repeats or isoguanine repeats after annealing in solutions containing various cations are evaluated by electrospray ionization mass spectrometry (ESI-MS) and circular dichroism (CD) spectroscopy. The guanine-containing strand (G9) consistently formed quadruplexes upon annealing, whereas the isoguanine strand (Ig9) formed both pentaplexes and quadruplexes depending on the annealing cation. Quadruplex formation with G9 showed some dependence on the identity of the cation present during annealing with high relative quadruplex formation detected with six of ten cations. Analogous annealing experiments with Ig9 resulted in complex formation with all ten cations, and the majority of the resulting complexes were pentaplexes. CD results indicated most of the original complexes survived the desalting process necessary for ESI-MS analysis. In addition, several complexes, especially the pentaplexes, were found to be capable of cation exchange with ammonium ions. Ab initio calculations were conducted for isoguanine tetrads and pentads coordinated with all ten cations to predict the most energetically stable structures of the complexes in the gas phase. The observed preference of forming quadruplexes versus pentaplexes as a function of the coordinated cation can be interpreted by the calculated reaction energies of both the tetrads and pentads in combination with the distortion energies of tetrads. PMID:19746468

  3. Role of microRNA Pathway in Mental Retardation

    Science.gov (United States)

    Qurashi, Abrar; Chang, Shuang; Jin, Peng

    2007-01-01

    Deficits in cognitive functions lead to mental retardation (MR). Understanding the genetic basis of inherited MR has provided insights into the pathogenesis of MR. Fragile X syndrome is one of the most common forms of inherited MR, caused by the loss of functional Fragile X Mental Retardation Protein (FMRP). MicroRNAs (miRNAs) are endogenous, single-stranded RNAs between 18 and 25 nucleotides in length, which have been implicated in diversified biological pathways. Recent studies have linked the miRNA pathway to fragile X syndrome. Here we review the role of the miRNA pathway in fragile X syndrome and discuss its implication in MR in general. PMID:17982588

  4. RPA coordinates DNA end resection and prevents formation of DNA hairpins.

    Science.gov (United States)

    Chen, Huan; Lisby, Michael; Symington, Lorraine S

    2013-05-23

    Replication protein A (RPA) is an essential eukaryotic single-stranded DNA binding protein with a central role in DNA metabolism. RPA directly participates in DNA double-strand break repair by stimulating 5'-3' end resection by the Sgs1/BLM helicase and Dna2 endonuclease in vitro. Here we investigated the role of RPA in end resection in vivo, using a heat-inducible degron system that allows rapid conditional depletion of RPA in Saccharomyces cerevisiae. We found that RPA depletion eliminated both the Sgs1-Dna2- and Exo1-dependent extensive resection pathways and synergized with mre11Δ to prevent end resection. The short single-stranded DNA tails formed in the absence of RPA were unstable due to 3' strand loss and the formation of fold-back hairpin structures that required resection initiation and Pol32-dependent DNA synthesis. Thus, RPA is required to generate ssDNA, and also to protect ssDNA from degradation and inappropriate annealing that could lead to genome rearrangements. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. DNA strand breakage by 125I-decay in oligoDNA

    International Nuclear Information System (INIS)

    Lobachevsky, P.; Martin, R.F.

    1996-01-01

    Full text: A double-stranded oligodeoxynucleotide containing 125 I-dC in a defined location, with 5'- or 3'- 32 P-end-labelling of either strand, was used to investigate DNA strand breakage resulting from 125 I decay. Samples of the 32 P-end-labelled and 125 I-dC containing oligoDNA were incubated in 20 mM phosphate buffer (PB), or PB + 2 M dimethylsulphoxide (DMSO) at 4 deg during 18-20 days. The 32 P-end-labelled DNA fragments produced by 125 I decays were separated on denaturing polyacrylamide gels, and the 3P activity in each fragment was determined by scintillation counting after elution from the gel. The fragment size distribution was then converted to a distribution of single stranded break probabilities at each nucleotide position. The results indicate that each 125 I decay event produces at least one break in the 125 I-dC containing strand, and causes breakage of the opposite strand in 75-80% of events. Thus, the double stranded break is produced by 125 I decay with probability ∼0.8. Most of single stranded breaks (around 90%) occurred within 5-6 nucleotides of the 125 I-dC, however DNA breaks were detected up to 18-20 nucleotides from the decay site. The average numbers of single stranded breaks per decay are 3.7 (PB) and 3.3 (PB+DMSO) in 125 I-dC containing strand, and 1.5 (PB) and 1.3 (PB+DMSO) in the opposite strand. Deconvolution of strand break probabilities as a function of separation from the 125 I, in terms of both distance (to target deoxyribosyl carbon atoms, in B-DNA) and nucleotide number, show that the latter is an important parameter for the shorter-range damage. This could indicate a role for attenuation/dissipation of damage through the stacked bases. In summary, the results represent a much more extensive set of data than available from earlier experiments on DNA breakage from l25 I-decay, and may provide new mechanistic insights

  6. Annealing and surface conduction on Hydrogen peroxide treated bulk melt-grown, single crystal ZnO

    International Nuclear Information System (INIS)

    Mtangi, W.; Nel, J.M.; Auret, F.D.; Chawanda, A.; Diale, M.; Nyamhere, C.

    2012-01-01

    We report on the studies carried out on hydrogen peroxide treated melt-grown, bulk single crystal ZnO samples. Results show the existence of two shallow donors in the as-received ZnO samples with energy levels (37.8±0.3) meV that has been suggested as Zn i related and possibly H-complex related and (54.5±0.9) meV, which has been assigned to an Al-related donor. Annealing studies performed on the hydrogen peroxide treated samples reveal the existence of a conductive channel in the samples in which new energy levels have been observed, Zn vacancies, related to the Group I elements, X Zn . The surface donor volume concentration of the conductive channel was calculated from a theory developed by Look (2007) . Results indicate an increase in the surface volume concentration with increasing annealing temperature from 60×10 17 cm −3 at 200 °C to 4.37×10 18 cm -3 at 800 °C.

  7. A novel technique using DNA denaturation to detect multiply induced single-strand breaks in a hydrated plasmid DNA molecule by X-ray and 4He2+ ion irradiation

    International Nuclear Information System (INIS)

    Yokoya, A.; Shikazono, N.; Fujii, K.; Noguchi, M.; Urushibara, A.

    2011-01-01

    To detect multiple single-strand breaks (SSBs) produced in plasmid DNA molecules by direct energy deposition from radiation tracks, we have developed a novel technique using DNA denaturation by which irradiated DNA is analysed as single-strand DNA (SS-DNA). The multiple SSBs that arise in both strands of DNA, but do not induce a double-strand break, are quantified as loss of SS-DNA using agarose gel electrophoresis. We have applied this method to X-ray and 4 He 2+ ion-irradiated samples of fully hydrated pUC18 plasmid DNA. The fractions of both SS-DNA and closed circular DNA (CC-DNA) exponentially decrease with the increasing dose of X rays and 4 He 2+ ions. The efficiency of the loss of SS-DNA was half that of CC-DNA for both types of irradiation, indicating that one of two strands in DNA is not broken when one SSB is produced in CC-DNA by irradiation. Contrary to our initial expectation, these results indicate that SSBs are not multiply induced even by high linear energy transfer radiation distributed in both strands. (authors)

  8. Reparation in unicellular green algae during chronic exposure to the action of mutagenic factors. II. Restoration of single-stranded DNA breaks following exposure of Chlamydomonas reinchardii to gamma-irradiation

    International Nuclear Information System (INIS)

    Sergeeva, S.A.; Ptitsina, S.N.; Shevchenko, V.A.

    1986-01-01

    The restoration of single-stranded breaks in the DNA in different strains of unicellular green algae (chlamydomonads) during chronic exposure to the action of mutagenic factors following γ-irradiation was investigated. It was shown that the restoration of DNA breaks was most effective in the case of strain M γ/sup mt + /, which is resistant to radiation. Strains, that were sensitive to UV irradiation showed a similar order of DNA break restoration as the wild-type strain. Strain UVS-1 showed a higher level of restoration than the wild-type strain. The data indicated that chlamydomonads have different pathways of reparation, which lead to the restoration of breaks induced by γ-irradiation and UV-rays

  9. Radioimmunoassay of single-stranded DNA antibodies for control of diagnosis and therapy

    Energy Technology Data Exchange (ETDEWEB)

    Meffert, H; Boehm, F; Soennichsen, N; Gens, J [Humboldt-Universitaet, Berlin (German Democratic Republic). Bereich Medizin (Charite)

    1980-10-01

    Several years experience in quantitative determination of single-stranded DNA antibodies is reported and the normal range as well as the diagnostic hit rate of the method is outlined. In the controls the mean DNA attachment rate was 1.5% and the upper normal range limit was 12.8%, the risk of erroneous rejection being 1%. The DNA binding rate was greater than 12.8% in 74.7% of untreated patients suffering from lupus erythematodes visceralis, in 47.6% of patients with circumscribed sclerodermia, in 14.4% of patients with progressive sclerodermia, and in 10.3% of those suffering from lupus erythematodes chronicus. The findings emphasize the importance of regulatory mechanisms of the immune system to the process of autosensitization.

  10. Radioimmunoassay of single-stranded DNA antibodies for control of diagnosis and therapy

    International Nuclear Information System (INIS)

    Meffert, H.; Boehm, F.; Soennichsen, N.; Gens, J.

    1980-01-01

    Several years experience in quantitative determination of single-stranded DNA antibodies is reported and the normal range as well as the diagnostic hit rate of the method is outlined. In the controls the mean DNA attachment rate was 1.5% and the upper normal range limit was 12.8%, the risk of erroneous rejection being 1%. The DNA binding rate was greater than 12.8% in 74.7% of untreated patients suffering from lupus erythematodes visceralis, in 47.6% of patients with circumscribed sclerodermia, in 14.4% of patients with progressive sclerodermia, and in 10.3% of those suffering from lupus erythematodes chronicus. The findings emphasize the importance of regulatory mechanisms of the immune system to the process of autosensitization

  11. Sequence Dependent Interactions Between DNA and Single-Walled Carbon Nanotubes

    Science.gov (United States)

    Roxbury, Daniel

    It is known that single-stranded DNA adopts a helical wrap around a single-walled carbon nanotube (SWCNT), forming a water-dispersible hybrid molecule. The ability to sort mixtures of SWCNTs based on chirality (electronic species) has recently been demonstrated using special short DNA sequences that recognize certain matching SWCNTs of specific chirality. This thesis investigates the intricacies of DNA-SWCNT sequence-specific interactions through both experimental and molecular simulation studies. The DNA-SWCNT binding strengths were experimentally quantified by studying the kinetics of DNA replacement by a surfactant on the surface of particular SWCNTs. Recognition ability was found to correlate strongly with measured binding strength, e.g. DNA sequence (TAT)4 was found to bind 20 times stronger to the (6,5)-SWCNT than sequence (TAT)4T. Next, using replica exchange molecular dynamics (REMD) simulations, equilibrium structures formed by (a) single-strands and (b) multiple-strands of 12-mer oligonucleotides adsorbed on various SWCNTs were explored. A number of structural motifs were discovered in which the DNA strand wraps around the SWCNT and 'stitches' to itself via hydrogen bonding. Great variability among equilibrium structures was observed and shown to be directly influenced by DNA sequence and SWCNT type. For example, the (6,5)-SWCNT DNA recognition sequence, (TAT)4, was found to wrap in a tight single-stranded right-handed helical conformation. In contrast, DNA sequence T12 forms a beta-barrel left-handed structure on the same SWCNT. These are the first theoretical indications that DNA-based SWCNT selectivity can arise on a molecular level. In a biomedical collaboration with the Mayo Clinic, pathways for DNA-SWCNT internalization into healthy human endothelial cells were explored. Through absorbance spectroscopy, TEM imaging, and confocal fluorescence microscopy, we showed that intracellular concentrations of SWCNTs far exceeded those of the incubation

  12. Magnetization and loss measurements on Nb3Sn and NbTi strands for ITER and LHC

    International Nuclear Information System (INIS)

    Foitl, M.

    2001-05-01

    this work, magnetization and loss measurements on 20 different strand samples which were taken from different billets supplied by two manufacturers of NbTi strands are reported, which with the use of an Integrating Coil Magnetometer as well as micro Hall sensors magnetization loops of single strands were studied. Variations in the strand magnetization could be either correlated with systematical irregularities in the strand characteristics (e.g. filament diameter) or with variations of the strand's critical current density jC. The second part of this work is related to the annealing process of superconducting magnets manufactured from internal tin Nb3Sn strands to be used for the magnetic confinement of fusion plasma. After the successful generation of plasma burning pulses of several seconds duration (Joint European Torus, JET), magnetic fusion energy research has reached a point where a tokamak burning plasma facility, in which the thermonuclear heating balances transport and radiation losses for periods of 500 s or longer, can be seriously contemplated as a next step. Achieving this goal would be a major step forward, both in science and technology, towards the ultimate goal of magnetic fusion generation of electrical power. Therefore the main objectives of the International Thermonuclear Experimental Reactor (ITER) will be the demonstration of the scientific and technological feasibility of fusion energy on a scale close to that of an eventual thermonuclear power reactor. The magnitude of the magnetic field (∼ 11.8 T) needed to confine stable a plasma of sufficient pressure to generate ∼ 0.5 GW of fusion power is comparable to the limiting magnetic fields that a toroidal superconducting magnet system can produce. In order to achieve the best magnet performance possible, the toroidal field (TF) coils made of superconducting Nb3Sn cable-in-conduit type conductors have to be optimized with respect to the maximum transport current and transient field losses

  13. The Effect of Basepair Mismatch on DNA Strand Displacement

    OpenAIRE

    Broadwater, D.?W.?Bo; Kim, Harold?D.

    2016-01-01

    DNA strand displacement is a key reaction in DNA homologous recombination and DNA mismatch repair and is also heavily utilized in DNA-based computation and locomotion. Despite its ubiquity in science and engineering, sequence-dependent effects of displacement kinetics have not been extensively characterized. Here, we measured toehold-mediated strand displacement kinetics using single-molecule fluorescence in the presence of a single base pair mismatch. The apparent displacement rate varied si...

  14. Annealing of RF-magnetron sputtered SnS{sub 2} precursors as a new route for single phase SnS thin films

    Energy Technology Data Exchange (ETDEWEB)

    Sousa, M.G., E-mail: martasousa@ua.pt [AIN, I3N and Departamento de Física, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro (Portugal); Cunha, A.F. da, E-mail: antonio.cunha@ua.pt [AIN, I3N and Departamento de Física, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro (Portugal); Fernandes, P.A., E-mail: pafernandes@ua.pt [AIN, I3N and Departamento de Física, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro (Portugal); Departamento de Física, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4200-072 Porto (Portugal)

    2014-04-01

    Tin sulphide thin films have been grown on soda-lime glass substrates through the annealing of RF-magnetron sputtered SnS{sub 2} precursors. Three different approaches to the annealing were compared and the resulting films thoroughly studied. One series of precursors was annealed in a tubular furnace directly exposed to a flux of sulphur vapour plus forming gas, N{sub 2} + 5%H{sub 2}, and at a constant pressure of 500 mbar. The other two series of identical precursors were annealed in the same furnace but inside a graphite box with and without elemental sulphur evaporation again in the presence of N{sub 2} + 5%H{sub 2} and at the same pressure as for the sulphur flux experiments. Different maximum annealing temperatures for each set of samples, in the range of 300–570 °C, were tested to study their effects on the properties of the final films. The resulting phases were structurally investigated by X-Ray Diffraction (XRD) and Raman spectroscopy. Annealing of SnS{sub 2} precursors in sulphur flux produced films where SnS{sub 2} was dominant for temperatures up to 480 °C. Increasing the temperature to 530 °C and 570 °C led to films where the dominant phase became Sn{sub 2}S{sub 3}. Annealing of SnS{sub 2} precursors in a graphite box with sulphur vapour at temperatures in the range between 300 °C and 480 °C the films are multi-phase, containing Sn{sub 2}S{sub 3}, SnS{sub 2} and SnS. For high annealing temperatures of 530 °C and 570 °C the films have SnS as the dominant phase. Annealing of SnS{sub 2} precursors in a graphite box without sulphur vapour at 300 °C and 360 °C the films are essentially amorphous, at 420 °C SnS{sub 2} is the dominant phase. For temperatures of 480 °C and 530 °C SnS is the dominant phase but also same residual SnS{sub 2} and Sn{sub 2}S{sub 3} phases are observed. For annealing at 570 °C, according to the XRD results the films appear to be single phase SnS. The composition was studied using energy dispersive spectroscopy being

  15. Genetic effects and reparation of single-stranded DNA breaks in Arabidopsis thaliana populations growing in the vicinity of the Chernobyl Nuclear Power Station

    International Nuclear Information System (INIS)

    Abramov, V.I.; Sergeeva, S.A.; Ptitsyna, S.N.; Semov, A.B.; Shevchenko, V.A.

    1992-01-01

    The genetic effects and efficiency of repair of single-stranded DNA breaks in natural populations of Arabidopsis growing within a thirty-kilometer zone of the Chernobyl Nuclear Power Station were studied. A direct relationship was found between the level of radioactive contamination and the frequency of embryonal lethal mutations in the Arabidopsis populations studied. A decrease in the efficiency of reparation of single-stranded DNA breaks was found in Arabidopsis plants growing in the contaminated sites. The level of efficiency of DNA reparation was dependent on the duration for which the Arabidopsis population had been growing in the contaminated sites and on the degree of radioactive contamination of the sites. 9 refs., 4 tabs

  16. Viral interference with DNA repair by targeting of the single-stranded DNA binding protein RPA.

    Science.gov (United States)

    Banerjee, Pubali; DeJesus, Rowena; Gjoerup, Ole; Schaffhausen, Brian S

    2013-10-01

    Correct repair of damaged DNA is critical for genomic integrity. Deficiencies in DNA repair are linked with human cancer. Here we report a novel mechanism by which a virus manipulates DNA damage responses. Infection with murine polyomavirus sensitizes cells to DNA damage by UV and etoposide. Polyomavirus large T antigen (LT) alone is sufficient to sensitize cells 100 fold to UV and other kinds of DNA damage. This results in activated stress responses and apoptosis. Genetic analysis shows that LT sensitizes via the binding of its origin-binding domain (OBD) to the single-stranded DNA binding protein replication protein A (RPA). Overexpression of RPA protects cells expressing OBD from damage, and knockdown of RPA mimics the LT phenotype. LT prevents recruitment of RPA to nuclear foci after DNA damage. This leads to failure to recruit repair proteins such as Rad51 or Rad9, explaining why LT prevents repair of double strand DNA breaks by homologous recombination. A targeted intervention directed at RPA based on this viral mechanism could be useful in circumventing the resistance of cancer cells to therapy.

  17. Genetics of x-ray induced double strand break repair in saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Budd, M.E.

    1982-07-01

    The possible fates of x-ray-induced double-strand breaks in Saccharomyces cerevisiae were examined. One possible pathway which breaks can follow, the repair pathway, was studied by assaying strains with mutations in the RAD51, RAD54, and RAD57 loci for double-strand break repair. In order of increasing radiation sensitivity one finds: rad57-1(23 0 )> rad51-1(30 0 )> rad54-3(36 0 ). At 36 0 , rad54-3 cells cannot repair double-strand breaks, while 23 0 , they can. Strains with the rad57-1 mutation can rejoin broken chromosomes at both temperatures. However, the low survival at 36 0 shows that the assay is not distinguishing large DNA fragments which allow cell survival from those which cause cell death. A rad51-1 strain could also rejoin broken chromosomes, and was thus capable of incomplete repair. The data can be explained with the hypothesis that rad54-3 cells are blocked in an early step of repair, while rad51-1 and rad57-1 strains are blocked in a later step of repair. The fate of double-strand breaks when they are left unrepaired was investigated with the rad54-3 mutation. If breaks are prevented from entering the RAD54 repair pathway they become uncommitted lesions. These lesions are repaired slower than the original breaks. One possible fate for an uncommitted lesion is conversion into a fixed lesion, which is likely to be an unrepairable or misrepaired double-strand break. The presence of protein synthesis after irradiation increases the probability that a break will enter the repair pathway. Evidence shows that increased probability of repair results from enhanced synthesis of repair proteins shortly after radiation

  18. Precision Photothermal Annealing of Nanoporous Gold Thin Films for the Microfabrication of a Single-chip Material Libraries

    Energy Technology Data Exchange (ETDEWEB)

    Harris, C. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Shen, N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Rubenchik, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Demos, S. G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Matthews, M. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-06-30

    Single-chip material libraries of thin films of nanostructured materials are a promising approach for high throughput studies of structure-property relationship in the fields of physics and biology. Nanoporous gold (np-Au), produced by an alloy corrosion process, is a nanostructured material of specific interest in both these fields. One attractive property of np-Au is its self-similar coarsening behavior by thermally induced surface diffusion. However, traditional heat application techniques for the modification of np-Au are bulk processes that cannot be used to generate a library of different pore sizes on a single chip. Laser micromachining offers an attractive solution to this problem by providing a means to apply energy with high spatial and temporal resolution. In the present study we use finite element multiphysics simulations to predict the effects of laser mode (continuous-wave vs. pulsed) and supporting substrate thermal conductivity on the local np-Au film temperatures during photothermal annealing and subsequently investigate the mechanisms by which the np-Au network is coarsening. Our simulations predict that continuous-wave mode laser irradiation on a silicon supporting substrate supports the widest range of morphologies that can be created through the photothermal annealing of thin film np-Au. Using this result we successfully fabricate a single-chip material library consisting of 81 np-Au samples of 9 different morphologies for use in increased throughput material interaction studies.

  19. Investigations of radiation-induced strand breaks of poly(U) in aqueous solutions

    International Nuclear Information System (INIS)

    Lemaire, D.G.E.

    1984-01-01

    DNA strand breaks induced by γ irradiation were studied in polyuridylic acid (Poly(U)), a single-strand model substance with a single base. Poly(U) in diluted, aqueous solution was irradiated in a Co-γ source, and the 100 eV yields of strand breaks (Cr values) were determined on the basis of the loss of molecular weight. The molecular weight was determined by small-angle laser light scattering. (orig./PW) [de

  20. Localization of specific sequences and DNA single-strand breaks in individual UV-A-irradiated human lymphocytes by COMET FISH

    Science.gov (United States)

    Bock, Claudia; Rapp, Alexander; Dittmar, Heike; Monajembashi, Shamci; Greulich, Karl-Otto

    1999-01-01

    The COMET assay, a single cell electrophoresis technique which allows to separate electrophoretically fractionated DNA according to size has been combined with fluorescence in situ hybridization (FISH) which allows to localize specific genes or gene regions. This combination (COMET FISH) allows the detection of DNA single strand breaks in specific regions of the genome of human lymphocytes at the single cell level. Various types of DNA probes, e.g. centromere-, (alpha) - satellite-, telomere-, whole chromosome-, single copy- and region specific DNA probes have been used to investigate whether the UV-A induced DNA single strand breaks are distributed randomly all over the human genome or induced at specific sites ('hot spots'). In the investigated human peripheral blood lymphocytes all but one centromere reveal low sensitivity for UV-A irradiation (500 kJ/m2), while telomeres are randomly distributed over COMET heads and tails. The human chromosome 1 is fractionated by irradiation, but remains in the COMET head, indicating an only moderate degree of fractionation. Among three tested single copy probes, c- myc, p53 and p58, the p53 gene located on chromosome 17p13.1 and the p58 gene (1p36) appear to be located in UV-A stable regions of the human genome in 95% of 65 investigated lymphocytes. In contrast, the c-myc proto-oncogene (8q24) is found in the COMET tail in 90% of the 27 investigated lymphocytes and thus appears to be more sensitive to UV-A irradiation.

  1. Replication Protein A (RPA) deficiency activates the Fanconi anemia DNA repair pathway.

    Science.gov (United States)

    Jang, Seok-Won; Jung, Jin Ki; Kim, Jung Min

    2016-09-01

    The Fanconi anemia (FA) pathway regulates DNA inter-strand crosslink (ICL) repair. Despite our greater understanding of the role of FA in ICL repair, its function in the preventing spontaneous genome instability is not well understood. Here, we show that depletion of replication protein A (RPA) activates the FA pathway. RPA1 deficiency increases chromatin recruitment of FA core complex, leading to FANCD2 monoubiquitination (FANCD2-Ub) and foci formation in the absence of DNA damaging agents. Importantly, ATR depletion, but not ATM, abolished RPA1 depletion-induced FANCD2-Ub, suggesting that ATR activation mediated FANCD2-Ub. Interestingly, we found that depletion of hSSB1/2-INTS3, a single-stranded DNA-binding protein complex, induces FANCD2-Ub, like RPA1 depletion. More interestingly, depletion of either RPA1 or INTS3 caused increased accumulation of DNA damage in FA pathway deficient cell lines. Taken together, these results indicate that RPA deficiency induces activation of the FA pathway in an ATR-dependent manner, which may play a role in the genome maintenance.

  2. The Effect of Basepair Mismatch on DNA Strand Displacement.

    Science.gov (United States)

    Broadwater, D W Bo; Kim, Harold D

    2016-04-12

    DNA strand displacement is a key reaction in DNA homologous recombination and DNA mismatch repair and is also heavily utilized in DNA-based computation and locomotion. Despite its ubiquity in science and engineering, sequence-dependent effects of displacement kinetics have not been extensively characterized. Here, we measured toehold-mediated strand displacement kinetics using single-molecule fluorescence in the presence of a single basepair mismatch. The apparent displacement rate varied significantly when the mismatch was introduced in the invading DNA strand. The rate generally decreased as the mismatch in the invader was encountered earlier in displacement. Our data indicate that a single base pair mismatch in the invader stalls branch migration and displacement occurs via direct dissociation of the destabilized incumbent strand from the substrate strand. We combined both branch migration and direct dissociation into a model, which we term the concurrent displacement model, and used the first passage time approach to quantitatively explain the salient features of the observed relationship. We also introduce the concept of splitting probabilities to justify that the concurrent model can be simplified into a three-step sequential model in the presence of an invader mismatch. We expect our model to become a powerful tool to design DNA-based reaction schemes with broad functionality. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  3. Yield of radiation-induced DNA single-strand breaks in Escherichia coli and superinfecting phage lambda at different dose rates. Repair of strand breaks in different buffers

    International Nuclear Information System (INIS)

    Boye, E.; Johansen, I.; Brustad, T.

    1976-01-01

    Cells of E. coli K-12 strain AB 1886 were irradiated in oxygenated phosphate buffered saline at 2 0 C with electrons from a 4-MeV linear accelerator. The yield of DNA single-strand breaks was determined as a function of the dose rate between 2.5 and 21,000 krad/min. For dose rates over 100 krad/min the yield was found to be constant. Below 10 krad/min the yield of breaks decreases drastically. This is explained by rejoining of breaks during irradiation. Twenty percent of the breaks induced by acute exposure are repaired within 3 min at 2 0 C. Superinfecting phage lambda DNA is repaired at the same rate as chromosomal DNA. In contrast to the results obtained with phosphate-buffered saline, an increase in the number of breaks after irradiation is observed when the bacteria are suspended in tris buffer. It is suggested that buffers of low ionic strength facilitate the leakage through the membrane of a small-molecular-weight component(s) necessary for DNA strand rejoining

  4. On the biophysics and kinetics of toehold-mediated DNA strand displacement.

    Science.gov (United States)

    Srinivas, Niranjan; Ouldridge, Thomas E; Sulc, Petr; Schaeffer, Joseph M; Yurke, Bernard; Louis, Ard A; Doye, Jonathan P K; Winfree, Erik

    2013-12-01

    Dynamic DNA nanotechnology often uses toehold-mediated strand displacement for controlling reaction kinetics. Although the dependence of strand displacement kinetics on toehold length has been experimentally characterized and phenomenologically modeled, detailed biophysical understanding has remained elusive. Here, we study strand displacement at multiple levels of detail, using an intuitive model of a random walk on a 1D energy landscape, a secondary structure kinetics model with single base-pair steps and a coarse-grained molecular model that incorporates 3D geometric and steric effects. Further, we experimentally investigate the thermodynamics of three-way branch migration. Two factors explain the dependence of strand displacement kinetics on toehold length: (i) the physical process by which a single step of branch migration occurs is significantly slower than the fraying of a single base pair and (ii) initiating branch migration incurs a thermodynamic penalty, not captured by state-of-the-art nearest neighbor models of DNA, due to the additional overhang it engenders at the junction. Our findings are consistent with previously measured or inferred rates for hybridization, fraying and branch migration, and they provide a biophysical explanation of strand displacement kinetics. Our work paves the way for accurate modeling of strand displacement cascades, which would facilitate the simulation and construction of more complex molecular systems.

  5. Effect of annealing temperature on a single step processed Cu{sub 2}ZnSnS{sub 4} thin film via solution method

    Energy Technology Data Exchange (ETDEWEB)

    Prabeesh, P.; Selvam, I. Packia; Potty, S.N.

    2016-05-01

    Cu{sub 2}ZnSnS{sub 4} (CZTS) is a promising material for thin film solar cell applications because of its excellent photovoltaic properties, high abundance and non-toxicity. Thin films of CZTS are generally fabricated by vacuum based techniques or by using toxic solvents and these routes reduce its attention as a low cost and environmental friendly material. In this study, we have prepared CZTS through a solution based single step approach using non-toxic chemicals by spin coating and studied the effect of annealing temperature in the range 350–550 °C in nitrogen atmosphere on structural, optical and electrical properties. XRD results revealed the formation of kesterite phase at all annealing temperatures, while the Raman studies indicated Cu{sub 2}SnS{sub 2} impurity phase in the film annealed at 550 °C. Band gap of the films annealed in nitrogen varies from 1.46 eV to 1.56 eV, depending on the annealing temperature. Optimum properties, such as, good crystallinity, dense structure, ideal band gap (1.49 eV) and good absorption coefficient (10{sup 4} cm{sup −1}), were obtained for the film annealed at 500 °C for 30 min in nitrogen. - Highlights: • Prepared CZTS film through one-step liquid based approach using non-toxic chemicals. • Studied the effect of N{sub 2} annealing on structural, optical and electrical properties. • The phase pure CZTS absorber film exhibited excellent photovoltaic properties • The film annealed at 500 °C for 30 min in nitrogen exhibited optimum properties.

  6. The hepatitis C virus Core protein is a potent nucleic acid chaperone that directs dimerization of the viral (+) strand RNA in vitro.

    Science.gov (United States)

    Cristofari, Gaël; Ivanyi-Nagy, Roland; Gabus, Caroline; Boulant, Steeve; Lavergne, Jean-Pierre; Penin, François; Darlix, Jean-Luc

    2004-01-01

    The hepatitis C virus (HCV) is an important human pathogen causing chronic hepatitis, liver cirrhosis and hepatocellular carcinoma. HCV is an enveloped virus with a positive-sense, single-stranded RNA genome encoding a single polyprotein that is processed to generate viral proteins. Several hundred molecules of the structural Core protein are thought to coat the genome in the viral particle, as do nucleocapsid (NC) protein molecules in Retroviruses, another class of enveloped viruses containing a positive-sense RNA genome. Retroviral NC proteins also possess nucleic acid chaperone properties that play critical roles in the structural remodelling of the genome during retrovirus replication. This analogy between HCV Core and retroviral NC proteins prompted us to investigate the putative nucleic acid chaperoning properties of the HCV Core protein. Here we report that Core protein chaperones the annealing of complementary DNA and RNA sequences and the formation of the most stable duplex by strand exchange. These results show that the HCV Core is a nucleic acid chaperone similar to retroviral NC proteins. We also find that the Core protein directs dimerization of HCV (+) RNA 3' untranslated region which is promoted by a conserved palindromic sequence possibly involved at several stages of virus replication.

  7. The multiple personalities of Watson and Crick strands.

    Science.gov (United States)

    Cartwright, Reed A; Graur, Dan

    2011-02-08

    In genetics it is customary to refer to double-stranded DNA as containing a "Watson strand" and a "Crick strand." However, there seems to be no consensus in the literature on the exact meaning of these two terms, and the many usages contradict one another as well as the original definition. Here, we review the history of the terminology and suggest retaining a single sense that is currently the most useful and consistent. The Saccharomyces Genome Database defines the Watson strand as the strand which has its 5'-end at the short-arm telomere and the Crick strand as its complement. The Watson strand is always used as the reference strand in their database. Using this as the basis of our standard, we recommend that Watson and Crick strand terminology only be used in the context of genomics. When possible, the centromere or other genomic feature should be used as a reference point, dividing the chromosome into two arms of unequal lengths. Under our proposal, the Watson strand is standardized as the strand whose 5'-end is on the short arm of the chromosome, and the Crick strand as the one whose 5'-end is on the long arm. Furthermore, the Watson strand should be retained as the reference (plus) strand in a genomic database. This usage not only makes the determination of Watson and Crick unambiguous, but also allows unambiguous selection of reference stands for genomics. This article was reviewed by John M. Logsdon, Igor B. Rogozin (nominated by Andrey Rzhetsky), and William Martin.

  8. The multiple personalities of Watson and Crick strands

    Directory of Open Access Journals (Sweden)

    Graur Dan

    2011-02-01

    Full Text Available Abstract Background In genetics it is customary to refer to double-stranded DNA as containing a "Watson strand" and a "Crick strand." However, there seems to be no consensus in the literature on the exact meaning of these two terms, and the many usages contradict one another as well as the original definition. Here, we review the history of the terminology and suggest retaining a single sense that is currently the most useful and consistent. Proposal The Saccharomyces Genome Database defines the Watson strand as the strand which has its 5'-end at the short-arm telomere and the Crick strand as its complement. The Watson strand is always used as the reference strand in their database. Using this as the basis of our standard, we recommend that Watson and Crick strand terminology only be used in the context of genomics. When possible, the centromere or other genomic feature should be used as a reference point, dividing the chromosome into two arms of unequal lengths. Under our proposal, the Watson strand is standardized as the strand whose 5'-end is on the short arm of the chromosome, and the Crick strand as the one whose 5'-end is on the long arm. Furthermore, the Watson strand should be retained as the reference (plus strand in a genomic database. This usage not only makes the determination of Watson and Crick unambiguous, but also allows unambiguous selection of reference stands for genomics. Reviewers This article was reviewed by John M. Logsdon, Igor B. Rogozin (nominated by Andrey Rzhetsky, and William Martin.

  9. Annealing and surface conduction on Hydrogen peroxide treated bulk melt-grown, single crystal ZnO

    Energy Technology Data Exchange (ETDEWEB)

    Mtangi, W., E-mail: wilbert.mtangi@up.ac.za [University of Pretoria, Physics Department, Pretoria 0002 (South Africa); Nel, J.M.; Auret, F.D.; Chawanda, A.; Diale, M. [University of Pretoria, Physics Department, Pretoria 0002 (South Africa); Nyamhere, C. [Nelson Mandela Metropolitan University, Physics Department, P.O. Box 77000, Port Elizabeth 6031 (South Africa)

    2012-05-15

    We report on the studies carried out on hydrogen peroxide treated melt-grown, bulk single crystal ZnO samples. Results show the existence of two shallow donors in the as-received ZnO samples with energy levels (37.8{+-}0.3) meV that has been suggested as Zn{sub i} related and possibly H-complex related and (54.5{+-}0.9) meV, which has been assigned to an Al-related donor. Annealing studies performed on the hydrogen peroxide treated samples reveal the existence of a conductive channel in the samples in which new energy levels have been observed, Zn vacancies, related to the Group I elements, X{sub Zn}. The surface donor volume concentration of the conductive channel was calculated from a theory developed by Look (2007) . Results indicate an increase in the surface volume concentration with increasing annealing temperature from 60 Multiplication-Sign 10{sup 17} cm{sup -3} at 200 Degree-Sign C to 4.37 Multiplication-Sign 10{sup 18} cm{sup -3} at 800 Degree-Sign C.

  10. In Vitro Selection of a Single-Stranded DNA Molecular Recognition Element Specific for Bromacil

    Directory of Open Access Journals (Sweden)

    Ryan M. Williams

    2014-01-01

    Full Text Available Bromacil is a widely used herbicide that is known to contaminate environmental systems. Due to the hazards it presents and inefficient detection methods, it is necessary to create a rapid and efficient sensing device. Towards this end, we have utilized a stringent in vitro selection method to identify single-stranded DNA molecular recognition elements (MRE specific for bromacil. We have identified one MRE with high affinity (Kd=9.6 nM and specificity for bromacil compared to negative targets of selection and other pesticides. The selected ssDNA MRE will be useful as the sensing element in a field-deployable bromacil detection device.

  11. Two-dimensional numerical simulation of flow around three-stranded rope

    Science.gov (United States)

    Wang, Xinxin; Wan, Rong; Huang, Liuyi; Zhao, Fenfang; Sun, Peng

    2016-08-01

    Three-stranded rope is widely used in fishing gear and mooring system. Results of numerical simulation are presented for flow around a three-stranded rope in uniform flow. The simulation was carried out to study the hydrodynamic characteristics of pressure and velocity fields of steady incompressible laminar and turbulent wakes behind a three-stranded rope. A three-cylinder configuration and single circular cylinder configuration are used to model the three-stranded rope in the two-dimensional simulation. The governing equations, Navier-Stokes equations, are solved by using two-dimensional finite volume method. The turbulence flow is simulated using Standard κ-ɛ model and Shear-Stress Transport κ-ω (SST) model. The drag of the three-cylinder model and single cylinder model is calculated for different Reynolds numbers by using control volume analysis method. The pressure coefficient is also calculated for the turbulent model and laminar model based on the control surface method. From the comparison of the drag coefficient and the pressure of the single cylinder and three-cylinder models, it is found that the drag coefficients of the three-cylinder model are generally 1.3-1.5 times those of the single circular cylinder for different Reynolds numbers. Comparing the numerical results with water tank test data, the results of the three-cylinder model are closer to the experiment results than the single cylinder model results.

  12. CdS nanowires formed by chemical synthesis using conjugated single-stranded DNA molecules

    Science.gov (United States)

    Sarangi, S. N.; Sahu, S. N.; Nozaki, S.

    2018-03-01

    CdS nanowires were successfully grown by chemical synthesis using two conjugated single-stranded (ss) DNA molecules, poly G (30) and poly C (30), as templates. During the early stage of the synthesis with the DNA molecules, the Cd 2+ interacts with Poly G and Poly C and produces the (Cd 2+)-Poly GC complex. As the growth proceeds, it results in nanowires. The structural analysis by grazing angle x-ray diffraction and transmission electron microscopy confirmed the zinc-blende CdS nanowires with the growth direction of . Although the nanowires are well surface-passivated with the DNA molecules, the photoluminescence quenching was caused by the electron transfer from the nanowires to the DNA molecules. The quenching can be used to detect and label the DNAs.

  13. Nanocrystalline Si pathway induced unipolar resistive switching behavior from annealed Si-rich SiN{sub x}/SiN{sub y} multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Xiaofan; Ma, Zhongyuan, E-mail: zyma@nju.edu.cn; Yang, Huafeng; Yu, Jie; Wang, Wen; Zhang, Wenping; Li, Wei; Xu, Jun; Xu, Ling; Chen, Kunji; Huang, Xinfan; Feng, Duan [National Laboratory of Solid State Microstructures, Jiangsu Provincial Key Laboratory of Photonic Electronic Materials Sciences and Technology, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093 (China)

    2014-09-28

    Adding a resistive switching functionality to a silicon microelectronic chip is a new challenge in materials research. Here, we demonstrate that unipolar and electrode-independent resistive switching effects can be realized in the annealed Si-rich SiN{sub x}/SiN{sub y} multilayers with high on/off ratio of 10{sup 9}. High resolution transmission electron microscopy reveals that for the high resistance state broken pathways composed of discrete nanocrystalline silicon (nc-Si) exist in the Si nitride multilayers. While for the low resistance state the discrete nc-Si regions is connected, forming continuous nc-Si pathways. Based on the analysis of the temperature dependent I-V characteristics and HRTEM photos, we found that the break-and-bridge evolution of nc-Si pathway is the origin of resistive switching memory behavior. Our findings provide insights into the mechanism of the resistive switching behavior in nc-Si films, opening a way for it to be utilized as a material in Si-based memories.

  14. Push back to respond better: regulatory inhibition of the DNA double-strand break response.

    Science.gov (United States)

    Panier, Stephanie; Durocher, Daniel

    2013-10-01

    Single DNA lesions such as DNA double-strand breaks (DSBs) can cause cell death or trigger genome rearrangements that have oncogenic potential, and so the pathways that mend and signal DNA damage must be highly sensitive but, at the same time, selective and reversible. When initiated, boundaries must be set to restrict the DSB response to the site of the lesion. The integration of positive and, crucially, negative control points involving post-translational modifications such as phosphorylation, ubiquitylation and acetylation is key for building fast, effective responses to DNA damage and for mitigating the impact of DNA lesions on genome integrity.

  15. Replication of UV-irradiated single-stranded DNA by DNA polymerase III holoenzyme of Escherichia coli: evidence for bypass of pyrimidine photodimers

    International Nuclear Information System (INIS)

    Livneh, Z.

    1986-01-01

    Replication of UV-irradiated circular single-stranded phage M13 DNA by Escherichia coli RNA polymerase (EC 2.7.7.6) and DNA polymerase III holoenzyme (EC 2.7.7.7) in the presence of single-stranded DNA binding protein yielded full-length as well as partially replicated products. A similar result was obtained with phage G4 DNA primed with E. coli DNA primase, and phage phi X174 DNA primed with a synthetic oligonucleotide. The fraction of full-length DNA was several orders of magnitude higher than predicted if pyrimidine photodimers were to constitute absolute blocks to DNA replication. Recent models have suggested that pyrimidine photodimers are absolute blocks to DNA replication and that SOS-induced proteins are required to allow their bypass. Our results demonstrate that, under in vitro replication conditions, E. coli DNA polymerase III holoenzyme can insert nucleotides opposite pyrimidine dimers to a significant extent, even in the absence of SOS-induced proteins

  16. Design and Characterization of DNA Strand-Displacement Circuits in Serum-Supplemented Cell Medium.

    Science.gov (United States)

    Fern, Joshua; Schulman, Rebecca

    2017-09-15

    The functional stability and lifetimes of synthetic molecular circuits in biological environments are important for long-term, stable sensors or controllers of cell or tissue behavior. DNA-based molecular circuits, in particular DNA strand-displacement circuits, provide simple and effective biocompatible control mechanisms and sensors, but are vulnerable to digestion by nucleases present in living tissues and serum-supplemented cell culture. The stability of double-stranded and single-stranded DNA circuit components in serum-supplemented cell medium and the corresponding effect of nuclease-mediated degradation on circuit performance were characterized to determine the major routes of degradation and DNA strand-displacement circuit failure. Simple circuit design choices, such as the use of 5' toeholds within the DNA complexes used as reactants in the strand-displacement reactions and the termination of single-stranded components with DNA hairpin domains at the 3' termini, significantly increase the functional lifetime of the circuit components in the presence of nucleases. Simulations of multireaction circuits, guided by the experimentally measured operation of single-reaction circuits, enable predictive realization of multilayer and competitive-reaction circuit behavior. Together, these results provide a basic route to increased DNA circuit stability in cell culture environments.

  17. Annealing cycles and the self-organization of functionalized colloids

    Science.gov (United States)

    Dias, Cristóvão S.; Araújo, Nuno A. M.; Telo da Gama, Margarida M.

    2018-01-01

    The self-assembly of functionalized (patchy) particles with directional interactions into target structures is still a challenge, despite the significant experimental advances in their synthesis. Self-assembly pathways are typically characterized by high energy barriers that hinder access to stable (equilibrium) structures. A possible strategy to tackle this challenge is to perform annealing cycles. By periodically switching on and off the inter-particle bonds, one expects to smooth-out the kinetic pathways and favor the assembly of targeted structures. Preliminary results have shown that the efficiency of annealing cycles depends strongly on their frequency. Here, we study numerically how this frequency-dependence scales with the strength of the directional interactions (size of the patch σ). We use analytical arguments to show that the scaling results from the statistics of a random walk in configurational space.

  18. Coal transitions in China's power sector: A plant-level assessment of stranded assets and retirement pathways

    International Nuclear Information System (INIS)

    Spencer, Thomas; Berghmans, Nicolas; Sartor, Oliver

    2017-11-01

    This paper estimates the potential scale of stranded assets in the coal power sector in China under different policy scenarios. A number of factors are putting significant pressure on the coal-power sector: a recent investment bubble in new capacity, structural slowing in electricity demand growth, upcoming moves to liberalize electricity markets and introduce a carbon market, and continued support for renewable and low-carbon sources of electricity. Stranded assets in the Chinese coal-fired power sector are estimated at 90 billion USD 2015 under the current policy trajectory (NDC-Style Scenario). This situation threatens to increase the political economy challenges of China's electricity sector transition to a low-carbon system. This situation is not unique to China: other countries will also face coal-sector stress due to the competitiveness of renewables, and therefore managing existing coal power capacities needs to move to the forefront of climate and energy policy efforts. To turn this situation around, Chinese authorities should have a strategy for a managed phase-down of coal power assets. All new construction of coal power plants should cease: recent project cancellations have been a step in the right direction. A planned retirement schedule for old coal plants that have already made a return on investment should be developed to 2030. Existing, newer coal plants should be prepared to play a role and receive revenues for balancing a high renewables system. A managed 2 deg. C-compatible climate mitigation scenario, in which old plant are retired after 30 years, both puts China's electricity sector on an accelerated pathway to decarbonization, as well as lowering the risks of stranded assets compared to the NDC-Style Scenario, by a total of 12 billion USD 2015. Banking sector exposure to stranded assets in the Managed 2 deg. C Scenario are estimated at less than 10% of the banking sector's loan loss provisions: risks of financial disruption are

  19. Study of a steel strand tension sensor with difference single bypass excitation structure based on the magneto-elastic effect

    International Nuclear Information System (INIS)

    Tang Dedong; Huang Shanglian; Chen Weimin; Jiang Jianshan

    2008-01-01

    With many steel strands used in various important machines and architectural structures, health monitoring of strand tension becomes more and more important to ensure the equipment or structures' safety. Contrasted with the method of vibration frequency and strain gages, the method of measuring the steel strand tension based on the magneto-elastic effect is more capable of meeting the requirements of health monitoring. Yet the structure of the sensor is mainly a sleeve structure, and the steel strand to be measured serves as the core of primary and secondary solenoids. This structure is very difficult to fix and maintain. On the other hand, a change of temperature will strongly affect measurement results, and experiments prove that temperature error compensation by using a temperature compensation curve is not effective enough. Therefore in this paper the principle of a cable tension sensor based on the magneto-elastic effect is expounded, the theory of temperature influence is explored, a difference structure by single bypass excitation is devised, its magnetic loop is analyzed, an experiment is designed, and experiments on temperature compensation and pulling tension are carried out. The experiment results indicated that the structure of the sensor is feasible, temperature errors can be compensated for automatically, after which temperature errors become less than 0.012 MPa °C −1 , and repeating errors of tension are less than 0.15%, which meet the measurement requirements

  20. Assembly and melting of DNA nanotubes from single-sequence tiles

    International Nuclear Information System (INIS)

    Sobey, T L; Renner, S; Simmel, F C

    2009-01-01

    DNA melting and renaturation studies are an extremely valuable tool to study the kinetics and thermodynamics of duplex dissociation and reassociation reactions. These are important not only in a biological or biotechnological context, but also for DNA nanotechnology which aims at the construction of molecular materials by DNA self-assembly. We here study experimentally the formation and melting of a DNA nanotube structure, which is composed of many copies of an oligonucleotide containing several palindromic sequences. This is done using temperature-controlled UV absorption measurements correlated with atomic force microscopy, fluorescence microscopy and transmission electron microscopy techniques. In the melting studies, important factors such as DNA strand concentration, hierarchy of assembly and annealing protocol are investigated. Assembly and melting of the nanotubes are shown to proceed via different pathways. Whereas assembly occurs in several hierarchical steps related to the formation of tiles, lattices and tubes, melting of DNA nanotubes appears to occur in a single step. This is proposed to relate to fundamental differences between closed, three-dimensional tube-like structures and open, two-dimensional lattices. DNA melting studies can lead to a better understanding of the many factors that affect the assembly process which will be essential for the assembly of increasingly complex DNA nanostructures.

  1. Coupled aggregation of mitochondrial single-strand DNA-binding protein tagged with Eos fluorescent protein visualizes synchronized activity of mitochondrial nucleoids

    Czech Academy of Sciences Publication Activity Database

    Olejár, Tomáš; Pajuelo-Reguera, David; Alán, Lukáš; Dlasková, Andrea; Ježek, Petr

    2015-01-01

    Roč. 12, č. 4 (2015), s. 5185-5190 ISSN 1791-2997 R&D Projects: GA ČR(CZ) GAP302/10/0346; GA MŠk(CZ) EE2.3.30.0025 Institutional support: RVO:67985823 Keywords : mitochondrial nucleoid * single-stranded DNA-binding protein * photoconvertible fluorescent protein Eos Subject RIV: EA - Cell Biology Impact factor: 1.559, year: 2015

  2. GeO2/Ge structure submitted to annealing in deuterium: Incorporation pathways and associated oxide modifications

    Science.gov (United States)

    Bom, N. M.; Soares, G. V.; Hartmann, S.; Bordin, A.; Radtke, C.

    2014-10-01

    Deuterium (D) incorporation in GeO2/Ge structures following D2 annealing was investigated. Higher D concentrations were obtained for GeO2/Ge samples in comparison to their SiO2/Si counterparts annealed in the same conditions. Oxygen vacancies produced during the annealing step in D2 constitute defect sites for D incorporation, analogous to defects at the SiO2/Si interfacial region. Besides D incorporation, volatilization of the oxide layer is also observed as a consequence of D2 annealing, especially in the high temperature regime of the present study (>450 °C). In parallel to this volatilization, the stoichiometry and chemical structure of remnant oxide are modified as well. These results evidence the broader impact of forming gas annealing in dielectric/Ge structures with respect to SiO2/Si counterparts.

  3. Evolutionary implications of inversions that have caused intra-strand parity in DNA

    Directory of Open Access Journals (Sweden)

    Wei John

    2007-06-01

    Full Text Available Abstract Background Chargaff's rule of DNA base composition, stating that DNA comprises equal amounts of adenine and thymine (%A = %T and of guanine and cytosine (%C = %G, is well known because it was fundamental to the conception of the Watson-Crick model of DNA structure. His second parity rule stating that the base proportions of double-stranded DNA are also reflected in single-stranded DNA (%A = %T, %C = %G is more obscure, likely because its biological basis and significance are still unresolved. Within each strand, the symmetry of single nucleotide composition extends even further, being demonstrated in the balance of di-, tri-, and multi-nucleotides with their respective complementary oligonucleotides. Results Here, we propose that inversions are sufficient to account for the symmetry within each single-stranded DNA. Human mitochondrial DNA does not demonstrate such intra-strand parity, and we consider how its different functional drivers may relate to our theory. This concept is supported by the recent observation that inversions occur frequently. Conclusion Along with chromosomal duplications, inversions must have been shaping the architecture of genomes since the origin of life.

  4. Pleolipoviridae, a newly proposed family comprising archaeal pleomorphic viruses with single-stranded or double-stranded DNA genomes.

    Science.gov (United States)

    Pietilä, Maija K; Roine, Elina; Sencilo, Ana; Bamford, Dennis H; Oksanen, Hanna M

    2016-01-01

    Viruses infecting archaea show a variety of virion morphotypes, and they are currently classified into more than ten viral families or corresponding groups. A pleomorphic virus morphotype is very common among haloarchaeal viruses, and to date, several such viruses have been isolated. Here, we propose the classification of eight such viruses and formation of a new family, Pleolipoviridae (from the Greek pleo for more or many and lipos for lipid), containing three genera, Alpha-, Beta-, and Gammapleolipovirus. The proposal is currently under review by the International Committee on Taxonomy of Viruses (ICTV). The members of the proposed family Pleolipoviridae infect halophilic archaea and are nonlytic. They share structural and genomic features and differ from any other classified virus. The virion of pleolipoviruses is composed of a pleomorphic membrane vesicle enclosing the genome. All pleolipoviruses have two major structural protein species, internal membrane and spike proteins. Although the genomes of the pleolipoviruses are single- or double-stranded, linear or circular DNA molecules, they share the same genome organization and gene synteny and show significant similarity at the amino acid level. The canonical features common to all members of the proposed family Pleolipoviridae show that they are closely related and thus form a new viral family.

  5. Opposing roles of RNF8/RNF168 and deubiquitinating enzymes in ubiquitination-dependent DNA double-strand break response signaling and DNA-repair pathway choice

    International Nuclear Information System (INIS)

    Nakada, Shinichiro

    2016-01-01

    The E3 ubiquitin ligases ring finger protein (RNF) 8 and RNF168 transduce the DNA double-strand break (DSB) response (DDR) signal by ubiquitinating DSB sites. The depletion of RNF8 or RNF168 suppresses the accumulation of DNA-repair regulating factors such as 53BP1 and RAP80 at DSB sites, suggesting roles for RNF8- and RNF168-mediated ubiquitination in DSB repair. This mini-review provides a brief overview of the RNF8- and RNF168-dependent DDR-signaling and DNA-repair pathways. The choice of DNA-repair pathway when RNF8- and RNF168-mediated ubiquitination-dependent DDR signaling is negatively regulated by deubiquitinating enzymes (DUBs) is reviewed to clarify how the opposing roles of RNF8/RNF168 and DUBs regulate ubiquitination-dependent DDR signaling and the choice of DNA-repair pathway

  6. Cdc45-induced loading of human RPA onto single-stranded DNA.

    Science.gov (United States)

    Szambowska, Anna; Tessmer, Ingrid; Prus, Piotr; Schlott, Bernhard; Pospiech, Helmut; Grosse, Frank

    2017-04-07

    Cell division cycle protein 45 (Cdc45) is an essential component of the eukaryotic replicative DNA helicase. We found that human Cdc45 forms a complex with the single-stranded DNA (ssDNA) binding protein RPA. Moreover, it actively loads RPA onto nascent ssDNA. Pull-down assays and surface plasmon resonance studies revealed that Cdc45-bound RPA complexed with ssDNA in the 8-10 nucleotide binding mode, but dissociated when RPA covered a 30-mer. Real-time analysis of RPA-ssDNA binding demonstrated that Cdc45 catalytically loaded RPA onto ssDNA. This placement reaction required physical contacts of Cdc45 with the RPA70A subdomain. Our results imply that Cdc45 controlled stabilization of the 8-nt RPA binding mode, the subsequent RPA transition into 30-mer mode and facilitated an ordered binding to ssDNA. We propose that a Cdc45-mediated loading guarantees a seamless deposition of RPA on newly emerging ssDNA at the nascent replication fork. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  7. Human FAN1 promotes strand incision in 5'-flapped DNA complexed with RPA.

    Science.gov (United States)

    Takahashi, Daisuke; Sato, Koichi; Hirayama, Emiko; Takata, Minoru; Kurumizaka, Hitoshi

    2015-09-01

    Fanconi anaemia (FA) is a human infantile recessive disorder. Seventeen FA causal proteins cooperatively function in the DNA interstrand crosslink (ICL) repair pathway. Dual DNA strand incisions around the crosslink are critical steps in ICL repair. FA-associated nuclease 1 (FAN1) is a DNA structure-specific endonuclease that is considered to be involved in DNA incision at the stalled replication fork. Replication protein A (RPA) rapidly assembles on the single-stranded DNA region of the stalled fork. However, the effect of RPA on the FAN1-mediated DNA incision has not been determined. In this study, we purified human FAN1, as a bacterially expressed recombinant protein. FAN1 exhibited robust endonuclease activity with 5'-flapped DNA, which is formed at the stalled replication fork. We found that FAN1 efficiently promoted DNA incision at the proper site of RPA-coated 5'-flapped DNA. Therefore, FAN1 possesses the ability to promote the ICL repair of 5'-flapped DNA covered by RPA. © The Authors 2015. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  8. Detection of bacteriophage phi 6 minus-strand RNA and novel mRNA isoconformers synthesized in vivo and in vitro, by strand-separating agarose gels

    International Nuclear Information System (INIS)

    Pagratis, N.; Revel, H.R.

    1990-01-01

    Two urea-free agarose gel protocols that resolve the six individual strands of bacteriophage phi 6 dsRNA were developed and used to analyze phage RNA synthesis in vivo and in vitro. Citrate gels separate strands of the large and medium chromosomes while Tris-borate-EDTA (TBE) gels resolve the medium and small dsRNA segments. Minus strands migrate faster than plus strands on citrate gels but are retarded on TBE gels. A study of electrophoretic conditions showed that pH affects strand resolution on citrate gels, and that voltage gradient, agarose concentration, and ethidium bromide significantly alter strand migration on TBE gels. Analysis of native phi 6 RNA synthesized in vivo and in vitro showed that the large and medium message RNAs comigrate with the corresponding plus strands of denatured virion dsRNA. The small messenger RNA is exceptional. Native small mRNA was detected as three isoconformers in vivo and in vitro. The isoconformers were converted by heat denaturation to a single RNA species that comigrates with the virion s+ strand. Minus strands labeled in vivo were detected only after heat denaturation. Minus strand synthesis was detected also in heat-denatured samples from in vitro phi 6 nucleocapsid RNA polymerase reactions at pH values suboptimal for transcription

  9. Hot topic: Bovine milk samples yielding negative or nonspecific results in bacterial culturing--the possible role of PCR-single strand conformation polymorphism in mastitis diagnosis.

    Science.gov (United States)

    Schwaiger, K; Wimmer, M; Huber-Schlenstedt, R; Fehlings, K; Hölzel, C S; Bauer, J

    2012-01-01

    A large proportion of mastitis milk samples yield negative or nonspecific results (i.e., no mastitis pathogen can be identified) in bacterial culturing. Therefore, the culture-independent PCR-single strand conformation polymorphism method was applied to the investigation of bovine mastitis milk samples. In addition to the known mastitis pathogens, the method was suitable for the detection of fastidious bacteria such as Mycoplasma spp., which are often missed by conventional culturing methods. The detection of Helcococcus ovis in 4 samples might indicate an involvement of this species in pathogenesis of bovine mastitis. In conclusion, PCR-single-strand conformation polymorphism is a promising tool for gaining new insights into the bacteriological etiology of mastitis. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  10. The early UL31 gene of equine herpesvirus 1 encodes a single-stranded DNA-binding protein that has a nuclear localization signal sequence at the C-terminus

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seongman; Chul Ahn, Byung; O' Callaghan, Dennis J. [Department of Microbiology and Immunology, Center for Molecular and Tumor Virology, Louisiana State University Health Sciences Center, Shreveport, LA 71130-3932 (United States); Kim, Seong Kee, E-mail: skim1@lsuhsc.edu [Department of Microbiology and Immunology, Center for Molecular and Tumor Virology, Louisiana State University Health Sciences Center, Shreveport, LA 71130-3932 (United States)

    2012-10-25

    The amino acid sequence of the UL31 protein (UL31P) of equine herpesvirus 1 (EHV-1) has homology to that of the ICP8 of herpes simplex virus type 1 (HSV-1). Here we show that the UL31 gene is synergistically trans-activated by the IEP and the UL5P (EICP27). Detection of the UL31 RNA transcript and the UL31P in EHV-1-infected cells at 6 h post-infection (hpi) as well as metabolic inhibition assays indicated that UL31 is an early gene. The UL31P preferentially bound to single-stranded DNA over double-stranded DNA in gel shift assays. Subcellular localization of the green fluorescent protein (GFP)-UL31 fusion proteins revealed that the C-terminal 32 amino acid residues of the UL31P are responsible for the nuclear localization. These findings may contribute to defining the role of the UL31P single-stranded DNA-binding protein in EHV-1 DNA replication.

  11. The early UL31 gene of equine herpesvirus 1 encodes a single-stranded DNA-binding protein that has a nuclear localization signal sequence at the C-terminus

    International Nuclear Information System (INIS)

    Kim, Seongman; Chul Ahn, Byung; O’Callaghan, Dennis J.; Kim, Seong Kee

    2012-01-01

    The amino acid sequence of the UL31 protein (UL31P) of equine herpesvirus 1 (EHV-1) has homology to that of the ICP8 of herpes simplex virus type 1 (HSV-1). Here we show that the UL31 gene is synergistically trans-activated by the IEP and the UL5P (EICP27). Detection of the UL31 RNA transcript and the UL31P in EHV-1-infected cells at 6 h post-infection (hpi) as well as metabolic inhibition assays indicated that UL31 is an early gene. The UL31P preferentially bound to single-stranded DNA over double-stranded DNA in gel shift assays. Subcellular localization of the green fluorescent protein (GFP)–UL31 fusion proteins revealed that the C-terminal 32 amino acid residues of the UL31P are responsible for the nuclear localization. These findings may contribute to defining the role of the UL31P single-stranded DNA-binding protein in EHV-1 DNA replication.

  12. Colocalization of multiple DNA double-strand breaks at a single Rad52 repair centre

    DEFF Research Database (Denmark)

    Lisby, M.; Mortensen, Uffe Hasbro; Rothstein, R.

    2003-01-01

    DNA double-strand break repair (DSBR) is an essential process for preserving genomic integrity in all organisms. To investigate this process at the cellular level, we engineered a system of fluorescently marked DNA double-strand breaks (DSBs) in the yeast Saccharomyces cerevisiae to visualize in ...

  13. Nucleotide fluctuation of radiation-resistant Halobacterium sp. NRC-1 single-stranded DNA-binding protein (RPA) genes

    Science.gov (United States)

    Holden, Todd; Tremberger, G., Jr.; Cheung, E.; Subramaniam, R.; Gadura, N.; Schneider, P.; Sullivan, R.; Flamholz, A.; Lieberman, D.; Cheung, T. D.

    2009-08-01

    The Single-Stranded DNA-Binding Protein (RPA) Genes in gamma ray radiation-resistant halophilic archaeon Halobacterium sp. NRC-1 were analyzed in terms of their nucleotide fluctuations. In an ATCG sequence, each base was assigned a number equal to its atomic number. The resulting numerical sequence was the basis of the statistical analysis in this study. Fractal analysis using the Higuchi method gave fractal dimensions of 2.04 and 2.06 for the gene sequences VNG2160 and VNG2162, respectively. The 16S rRNA sequence has a fractal dimension of 1.99. The di-nucleotide Shannon entropy values were found to be negatively correlated with the observed fractal dimensions (R2~ 0.992, N=3). Inclusion of Deinococcus radiodurans Rad-A in the regression analysis decreases the R2 slightly to 0.98 (N=4). A third VNG2163 RPA gene of unknown function but with upregulation activity under irradiation was found to have a fractal dimension of 2.05 and a Shannon entropy of 3.77 bits. The above results are similar to those found in bacterial Deinococcus radiodurans and suggest that their high radiation resistance property would have favored selection of CG di-nucleotide pairs. The two transcription factors TbpD (VNG7114) and TfbA (VNG 2184) were also studied. Using VNG7114, VNG2184, and VNG2163; the regression analysis of fractal dimension versus Shannon entropy shows that R2 ~ 0.997 for N =3. The VNG2163 unknown function may be related to the pathways with transcriptions closely regulated to sequences VNG7114 and VNG2184.

  14. Kinetics of repair of DNA single-strand breaks in cultured mammalian cells

    International Nuclear Information System (INIS)

    Vexler, F.B.; Eidus, L.Kh.; Vexler, A.M.

    1984-01-01

    Postirradiation treatment of Chinese hamster cells with cysteamine (MEA), caffeine-benzoate (CB) and caffeine sharply inhibits the repair of DNA single-strand breaks in the first five minutes. This inhibition is reversible since removing of the agent leads immediately to the resumption of the repair. The rate of the repair is decreased with prolongation of treatment and increasing concentration of the modifying agent. The efficiency of the substances studied depends not only on their concentration in the medium. For MEA and CB, which are weak electrolytes, it is also pH-dependent. This is explained by the theory of dissociation of weak electrolytes and their distribution between the cell and medium. It is shown that intracellular concentration of the substances is the most important factor determining their efficiency. All the three substances exert practically the same effect when compared at equal intracellular concentration. The above presented data serve as evidence for the existence of an unspecific mechanism of the effect of the substances studied. (author)

  15. Contribution of single-strand breaks and alkali-labile bonds to the loss of infectivity of γ-irradiated phiX174 RF-DNA in E. coli cells mutant in various repair functions

    International Nuclear Information System (INIS)

    McKee, R.H.

    1975-01-01

    Twenty-one radiation sensitive mutants have been examined for their capacity to support gamma-irradiated phiX174 RF-DNA. The survival of phiX174 RF-DNA was reduced in essentially all of the sensitive mutants. The irradiated phiX174 RF-DNA was then separated into populations containing either single-strand breaks or alkali-labile bonds to examine the capacity of the mutants to repair each of the classes of lesions. It was found that all E. coli strains are unable to repair 22 percent of the single-strand breaks and all sensitive mutants are unable to repair an additional 10 percent of the breaks. All the repair functions examined are involved in single-strand break repair and none are more or less necessary than any of the others. PhiX174 RF-DNA is also inactivated by alkali-labile bonds. In the normal strains the inactivation efficiency is 0.16 lethal events per lesion with a threshold dose of 15 to 20 krads. The mutants are divided into two classes by their sensitivity to alkali-labile bonds. Both classes of mutants are also inactivated by alkali-labile bonds with efficiencies of about 0.17 and 0.29 lethal events per lesion, respectively. It is proposed that the differences seen in survival curves of phiX174 measured in the sensitive mutants is due to this difference. Although in normal cells the efficiency of inactivation of phiX174 by single-strand breaks is 50 percent greater than by alkali-labile bonds, alkali-labile bonds are produced at approximately twice the rate of single-strand breaks so alkali-labile bonds account for about 61 percent of the overall inactivation. In the mutants of least sensitivity alkali-labile bonds account for about 54 percent of the inactivating events and in the most sensitive about 67 percent

  16. Automated methods for single-stranded DNA isolation and dideoxynucleotide DNA sequencing reactions on a robotic workstation

    International Nuclear Information System (INIS)

    Mardis, E.R.; Roe, B.A.

    1989-01-01

    Automated procedures have been developed for both the simultaneous isolation of 96 single-stranded M13 chimeric template DNAs in less than two hours, and for simultaneously pipetting 24 dideoxynucleotide sequencing reactions on a commercially available laboratory workstation. The DNA sequencing results obtained by either radiolabeled or fluorescent methods are consistent with the premise that automation of these portions of DNA sequencing projects will improve the reproducibility of the DNA isolation and the procedures for these normally labor-intensive steps provides an approach for rapid acquisition of large amounts of high quality, reproducible DNA sequence data

  17. The effects of radioprotective agents on the radiation-induced DNA single strand breaks

    International Nuclear Information System (INIS)

    Rhiu, Sung Ryul; Ko, Kyung Hwan; Jung, In Yong; Cho, Chul Ku; Kim, Tae Hwan; Park, Woo Wiun; Kim, Sung Ho; Ji, Young Hoon; Kim, Kyung Jung; Bang, Hio Chang; Jung, Young Suk; Choi, Moon Sik

    1992-04-01

    With the increased use of atomic energy in science, industry, medicine and public power production, the probability of nuclear accidents certainly appears to be on the increase. Therefore, early medical diagnosis and first-aid are needed urgently to establish an efficient treatment. We carried out the studies of radiation protector such as DDC, MEA, WR-2721 and variety of decontaminator with a view to establishing the protective measure and diagnostic standards for safety of worker and neighbors living around the radiation area in case of occurring the accidental contamination. In this experiment, we examined radiation-induced DNA single strand breaks as one of the study on molecular biology of the response of cells to radiation because an understanding of the radiation-induced damage in molecular level would add to our knowledge of radiation protection and treatment. (Author)

  18. Effects of post-annealing and cobalt co-doping on superconducting properties of (Ca,Pr)Fe{sub 2}As{sub 2} single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Okada, T., E-mail: 8781303601@mail.ecc.u-tokyo.ac.jp; Ogino, H.; Yakita, H.; Yamamoto, A.; Kishio, K.; Shimoyama, J.

    2014-10-15

    Highlights: • Post-annealing at 400 °C killed superconductivity for Co-free sample. • Pr,Co co-doped samples maintained superconductivity even after annealing. • Two-step superconducting transition was observed via magnetization measurement. • Bulk superconductivity of low-T{sub c} component was confirmed. • Superconducting volume fraction of high-T{sub c} component was always small. - Abstract: In order to clarify the origin of anomalous superconductivity in (Ca,RE)Fe{sub 2}As{sub 2} system, Pr doped and Pr,Co co-doped CaFe{sub 2}As{sub 2} single crystals were grown by the FeAs flux method. These samples showed two-step superconducting transition with T{sub c1} = 25–42 K, and T{sub c2} < 16 K, suggesting that (Ca,RE)Fe{sub 2}As{sub 2} system has two superconducting components. Post-annealing performed for these crystals in evacuated quartz ampoules at various temperatures revealed that post-annealing at ∼400 °C increased the c-axis length for all samples. This indicates that as-grown crystals have a certain level of strain, which is released by post-annealing at ∼400 °C. Superconducting properties also changed dramatically by post-annealing. After annealing at 400 °C, some of the co-doped samples showed large superconducting volume fraction corresponding to the perfect diamagnetism below T{sub c2} and high J{sub c} values of 10{sup 4}–10{sup 5} A cm{sup −2} at 2 K in low field, indicating the bulk superconductivity of (Ca,RE)Fe{sub 2}As{sub 2} phase occurred below T{sub c2}. On the contrary, the superconducting volume fraction above T{sub c2} was always very small, suggesting that 40 K-class superconductivity observed in this system is originating in the local superconductivity in the crystal.

  19. Synthesis of a wild-type and three mutant Cucurbita maxima trypsin inhibitor-encoding genes by a single-strand approach.

    Science.gov (United States)

    Botes, D P; Qobose, M D; Corfield, V A

    1991-09-15

    A single-strand approach to gene assembly, based on a modification of an in vitro complementary oligodeoxyribonucleotide template-directed ligation of the desired sequence to a linearized vector [Chen et al., Nucleic Acids Res. 18 (1990) 871-878], is described. The gene coding for the wild-type Cucurbita maxima trypsin inhibitor of 29 amino acid residues [Bode et al., FEBS Lett. 242 (1989) 285-292], as well as three mutant forms of the gene, in which two of the three disulfide bonds have been replaced singly or as a pair, have been synthesized in a single synthesis run with minimal manual intervention. Subsequent to ligation to pUC9 and in vivo gapped duplex repair by Escherichia coli, their sequences have been verified.

  20. Reconstitution of DNA strand exchange mediated by Rhp51 recombinase and two mediators.

    Directory of Open Access Journals (Sweden)

    Yumiko Kurokawa

    2008-04-01

    Full Text Available In the fission yeast Schizosaccharomyces pombe, genetic evidence suggests that two mediators, Rad22 (the S. pombe Rad52 homolog and the Swi5-Sfr1 complex, participate in a common pathway of Rhp51 (the S. pombe Rad51 homolog-mediated homologous recombination (HR and HR repair. Here, we have demonstrated an in vitro reconstitution of the central step of DNA strand exchange during HR. Our system consists entirely of homogeneously purified proteins, including Rhp51, the two mediators, and replication protein A (RPA, which reflects genetic requirements in vivo. Using this system, we present the first robust biochemical evidence that concerted action of the two mediators directs the loading of Rhp51 onto single-stranded DNA (ssDNA precoated with RPA. Dissection of the reaction reveals that Rad22 overcomes the inhibitory effect of RPA on Rhp51-Swi5-Sfr1-mediated strand exchange. In addition, Rad22 negates the requirement for a strict order of protein addition to the in vitro system. However, despite the presence of Rad22, Swi5-Sfr1 is still essential for strand exchange. Importantly, Rhp51, but neither Rad22 nor the Swi5-Sfr1 mediator, is the factor that displaces RPA from ssDNA. Swi5-Sfr1 stabilizes Rhp51-ssDNA filaments in an ATP-dependent manner, and this stabilization is correlated with activation of Rhp51 for the strand exchange reaction. Rad22 alone cannot activate the Rhp51 presynaptic filament. AMP-PNP, a nonhydrolyzable ATP analog, induces a similar stabilization of Rhp51, but this stabilization is independent of Swi5-Sfr1. However, hydrolysis of ATP is required for processive strand transfer, which results in the formation of a long heteroduplex. Our in vitro reconstitution system has revealed that the two mediators have indispensable, but distinct, roles for mediating Rhp51 loading onto RPA-precoated ssDNA.

  1. Control of DNA strand displacement kinetics using toehold exchange.

    Science.gov (United States)

    Zhang, David Yu; Winfree, Erik

    2009-12-02

    DNA is increasingly being used as the engineering material of choice for the construction of nanoscale circuits, structures, and motors. Many of these enzyme-free constructions function by DNA strand displacement reactions. The kinetics of strand displacement can be modulated by toeholds, short single-stranded segments of DNA that colocalize reactant DNA molecules. Recently, the toehold exchange process was introduced as a method for designing fast and reversible strand displacement reactions. Here, we characterize the kinetics of DNA toehold exchange and model it as a three-step process. This model is simple and quantitatively predicts the kinetics of 85 different strand displacement reactions from the DNA sequences. Furthermore, we use toehold exchange to construct a simple catalytic reaction. This work improves the understanding of the kinetics of nucleic acid reactions and will be useful in the rational design of dynamic DNA and RNA circuits and nanodevices.

  2. Using DNA origami nanostructures to determine absolute cross sections for UV photon-induced DNA strand breakage.

    Science.gov (United States)

    Vogel, Stefanie; Rackwitz, Jenny; Schürman, Robin; Prinz, Julia; Milosavljević, Aleksandar R; Réfrégiers, Matthieu; Giuliani, Alexandre; Bald, Ilko

    2015-11-19

    We have characterized ultraviolet (UV) photon-induced DNA strand break processes by determination of absolute cross sections for photoabsorption and for sequence-specific DNA single strand breakage induced by photons in an energy range from 6.50 to 8.94 eV. These represent the lowest-energy photons able to induce DNA strand breaks. Oligonucleotide targets are immobilized on a UV transparent substrate in controlled quantities through attachment to DNA origami templates. Photon-induced dissociation of single DNA strands is visualized and quantified using atomic force microscopy. The obtained quantum yields for strand breakage vary between 0.06 and 0.5, indicating highly efficient DNA strand breakage by UV photons, which is clearly dependent on the photon energy. Above the ionization threshold strand breakage becomes clearly the dominant form of DNA radiation damage, which is then also dependent on the nucleotide sequence.

  3. Low temperature thermal annealing in fast neutron-irradiated potassium permanganate

    Energy Technology Data Exchange (ETDEWEB)

    Owens, C W; Lecington, W C [New Hampshire Univ., Durham (USA). Dept. of Chemistry

    1975-01-01

    The effect of thermal annealing on the retention of recoil /sup 54/Mn as permanganate in crystalline KMnO/sub 4/ irradiated with fast neutrons at liquid nitrogen temperature has been studied. The retention after 4 hrs of annealing increases from about 8% at -196/sup 0/ to a maximum of 61% at 180/sup 0/, then decreases at higher temperatures. A single activation energy (approximately 0.01 eV) applies to the thermal annealing process between -196/sup 0/ and -40/sup 0/. Extrapolation of the data suggests that below -229/sup 0/ no thermal annealing would occur.

  4. On-site detection of Phytophthora spp.—single-stranded target DNA as the limiting factor to improve on-chip hybridization

    International Nuclear Information System (INIS)

    Schwenkbier, Lydia; Pollok, Sibyll; Popp, Jürgen; Weber, Karina; König, Stephan; Wagner, Stefan; Werres, Sabine; Weber, Jörg; Hentschel, Martin

    2014-01-01

    We report on a lab-on-a-chip approach for on-site detection of Phytophthora species that allows visual signal readout. The results demonstrate the significance of single-stranded DNA (ssDNA) generation in terms of improving the intensity of the hybridization signal and to improve the reliability of the method. Conventional PCR with subsequent heat denaturation, sodium hydroxide-based denaturation, lambda exonuclease digestion and two asymmetric PCR methods were investigated for the species P. fragariae, P. kernoviae, and P. ramorum. The positioning of the capture probe within the amplified yeast GTP-binding protein (YPT1) target DNA was also of interest because it significantly influences the intensity of the signal. Statistical tests were used to validate the impact of the ssDNA generation methods and the capture-target probe position. The single-stranded target DNA generated by Linear-After-The-Exponential PCR (LATE-PCR) was found to produce signal intensities comparable to post-PCR exonuclease treatment. The LATE-PCR is the best method for the on-site detection of Phytophthora because the enzymatic digestion after PCR is more laborious and time-consuming. (author)

  5. Formation of DNA single-strand breaks by near-ultraviolet and gamma-rays in normal and Bloom's syndrome skin fibroblasts

    International Nuclear Information System (INIS)

    Hirschi, M.; Netrawali, M.S.; Remsen, J.F.; Cerutti, P.A.

    1981-01-01

    The formation of single-strand breaks by near-ultraviolet light at 313 nm and by aerobic gamma-rays was compared for skin fibroblast monolayer cultures from 4 normal donors (NF) and 8 patients with Bloom's syndrome (BS) by the alkaline elution method. In 6 of 8 BS strains, the number of breaks induced by near-ultraviolet light, 2.25 kJ/sq m, at 0 degrees was comparable to NF, while elevated breakage was observed in BS strains HG 369 and HG 916. Breakage frequencies were increased substantially in 6 of 8 BS strains relative to NF when the near-ultraviolet light exposure was at 37 degrees. BS strain GM 2520 represents an exception since normal breakage frequencies were induced both at 0 degrees and 37 degrees. Aerobic gamma-rays (75 R) induced comparable numbers of single-strand breaks in BS and NF strains at 0 degrees. The breakage frequencies were reduced an average of 17% in NF when the same dose was given at 30 degrees followed by 6 min incubation. Under the same conditions, the breakage frequencies were on the average reduced by 42% relative to 0 degrees in the BS strains, indicating that they possess normal or possibly slightly increased capacities for the rejoining of gamma-ray-induced breaks

  6. Histone H3.3 promotes IgV gene diversification by?enhancing formation of AID?accessible single?stranded DNA

    OpenAIRE

    Romanello, Marina; Schiavone, Davide; Frey, Alexander; Sale, Julian E

    2016-01-01

    Abstract Immunoglobulin diversification is driven by activation?induced deaminase (AID), which converts cytidine to uracil within the Ig variable (IgV) regions. Central to the recruitment of AID to the IgV genes are factors that regulate the generation of single?stranded DNA (ssDNA), the enzymatic substrate of AID. Here, we report that chicken DT40 cells lacking variant histone H3.3 exhibit reduced IgV sequence diversification. We show that this results from impairment of the ability of AID t...

  7. Pulsed electron-beam annealing of selenium-implanted gallium arsenide

    International Nuclear Information System (INIS)

    Inada, T.; Tokunaga, K.; Taka, S.

    1979-01-01

    Electrical properties of selenium-implanted gallium arsenide annealed by a single shot of high-power pulsed electron beams have been investigated by differential Hall-effect and sheet-resistivity measurements. It has been shown that higher electrical activation of implanted selenium can be obtained after electron-beam annealing at an incident energy density of 1.2 J/cm 2 , independent of heating of GaAs substrate during implantation. Measured carrier concentrations exhibit uniformly distributed profiles having carrier concentrations of 2--3 x 10 19 /cm 3 , which is difficult to realize by conventional thermal annealing

  8. Annealing of chemical radiation damage in zirconium nitrate

    International Nuclear Information System (INIS)

    Mahamood, Aysha; Chandunni, E.; Nair, S.M.K.

    1979-01-01

    A kinetic study of the annealing of γ-irradiation damage in zirconium nitrate is presented. The annealing can be represented as a combination of a first order and a second order process. It is considered that the first order process is the combination of close correlated pairs of Osup(-) and NO fragments and the second order process involves the single reaction of random recombination of the fragments throughout the crystal. (auth.)

  9. Equilibrious Strand Exchange Promoted by DNA Conformational Switching

    Science.gov (United States)

    Wu, Zhiguo; Xie, Xiao; Li, Puzhen; Zhao, Jiayi; Huang, Lili; Zhou, Xiang

    2013-01-01

    Most of DNA strand exchange reactions in vitro are based on toehold strategy which is generally nonequilibrium, and intracellular strand exchange mediated by proteins shows little sequence specificity. Herein, a new strand exchange promoted by equilibrious DNA conformational switching is verified. Duplexes containing c-myc sequence which is potentially converted into G-quadruplex are designed in this strategy. The dynamic equilibrium between duplex and G4-DNA is response to the specific exchange of homologous single-stranded DNA (ssDNA). The SER is enzyme free and sequence specific. No ATP is needed and the displaced ssDNAs are identical to the homologous ssDNAs. The SER products and exchange kenetics are analyzed by PAGE and the RecA mediated SER is performed as the contrast. This SER is a new feature of G4-DNAs and a novel strategy to utilize the dynamic equilibrium of DNA conformations.

  10. DFT investigations of phosphotriesters hydrolysis in aqueous solution: a model for DNA single strand scission induced by N-nitrosoureas.

    Science.gov (United States)

    Liu, Tingting; Zhao, Lijiao; Zhong, Rugang

    2013-02-01

    DNA phosphotriester adducts are common alkylation products of DNA phosphodiester moiety induced by N-nitrosoureas. The 2-hydroxyethyl phosphotriester was reported to hydrolyze more rapidly than other alkyl phosphotriesters both in neutral and in alkaline conditions, which can cause DNA single strand scission. In this work, DFT calculations have been employed to map out the four lowest activation free-energy profiles for neutral and alkaline hydrolysis of triethyl phosphate (TEP) and diethyl 2-hydroxyethyl phosphate (DEHEP). All the hydrolysis pathways were illuminated to be stepwise involving an acyclic or cyclic phosphorane intermediate for TEP or DEHEP, respectively. The rate-limiting step for all the hydrolysis reactions was found to be the formation of phosphorane intermediate, with the exception of DEHEP hydrolysis in alkaline conditions that the decomposition process turned out to be the rate-limiting step, owing to the extraordinary low formation barrier of cyclic phosphorane intermediate catalyzed by hydroxide. The rate-limiting barriers obtained for the four reactions are all consistent with the available experimental information concerning the corresponding hydrolysis reactions of phosphotriesters. Our calculations performed on the phosphate triesters hydrolysis predict that the lower formation barriers of cyclic phosphorane intermediates compared to its acyclic counter-part should be the dominant factor governing the hydrolysis rate enhancement of DEHEP relative to TEP both in neutral and in alkaline conditions.

  11. The Human L1 Element Causes DNA Double-Strand Breaks in Breast Cancer

    Science.gov (United States)

    2006-08-01

    cancer is complex. However, defects in DNA repair genes in the double-strand break repair pathway are cancer predisposing. My lab has characterized...a new potentially important source of double-strand breaks (DSBs) in human cells and are interested in characterizing which DNA repair genes act on...this particular source of DNA damage. Selfish DNA accounts for 45% of the human genome. We have recently demonstrated that one particular selfish

  12. Capillary Electrophoresis Single-Strand Conformational Polymorphisms as a Method to Differentiate Algal Species

    Directory of Open Access Journals (Sweden)

    Alice Jernigan

    2015-01-01

    Full Text Available Capillary electrophoresis single-strand conformational polymorphism (CE-SSCP was explored as a fast and inexpensive method to differentiate both prokaryotic (blue-green and eukaryotic (green and brown algae. A selection of two blue-green algae (Nostoc muscorum and Anabaena inaequalis, five green algae (Chlorella vulgaris, Oedogonium foveolatum, Mougeotia sp., Scenedesmus quadricauda, and Ulothrix fimbriata, and one brown algae (Ectocarpus sp. were examined and CE-SSCP electropherogram “fingerprints” were compared to each other for two variable regions of either the 16S or 18S rDNA gene. The electropherogram patterns were remarkably stable and consistent for each particular species. The patterns were unique to each species, although some common features were observed between the different types of algae. CE-SSCP could be a useful method for monitoring changes in an algae species over time as potential shifts in species occurred.

  13. Effect of the annealing temperature for the hydrogen Q-degradation on superconducting cavities

    International Nuclear Information System (INIS)

    Ota, Tomoko; Sukenobu, Satoru; Tanabe, Yoshio; Onishi, Yoshimichi; Noguchi, Shuichi; Ono, Masaaki; Saito, Kenji; Shishido, Toshio; Yamazaki, Yoshishige

    1997-01-01

    Hydrogen Q-degradation was studied in niobium superconducting cavities prepared by barrel polishing, and electropolishing without annealing, though a fast cooling down of cavities. Cavity performance with various annealing temperature were tested using a 1.3GHz single-cell cavity to compare the effects of annealing temperature for hydrogen Q-degradation. (author)

  14. Offshore Earthquakes Do Not Influence Marine Mammal Stranding Risk on the Washington and Oregon Coasts

    Science.gov (United States)

    Grant, Rachel A.; Savirina, Anna

    2018-01-01

    Simple Summary Marine mammals stranding on coastal beaches is not unusual. However, there appears to be no single cause for this, with several causes being probable, such as starvation, contact with humans (for example boat strike or entanglement with fishing gear), disease, and parasitism. We evaluated marine mammal stranding off the Washington and Oregon coasts and looked at offshore earthquakes as a possible contributing factor. Our analysis showed that offshore earthquakes did not make marine mammals more likely to strand. We also analysed a subset of data from the north of Washington State and found that non-adult animals made up a large proportion of stranded animals, and for dead animals the commonest cause of death was disease, traumatic injury, or starvation. Abstract The causes of marine mammals stranding on coastal beaches are not well understood, but may relate to topography, currents, wind, water temperature, disease, toxic algal blooms, and anthropogenic activity. Offshore earthquakes are a source of intense sound and disturbance and could be a contributing factor to stranding probability. We tested the hypothesis that the probability of marine mammal stranding events on the coasts of Washington and Oregon, USA is increased by the occurrence of offshore earthquakes in the nearby Cascadia subduction zone. The analysis carried out here indicated that earthquakes are at most, a very minor predictor of either single, or large (six or more animals) stranding events, at least for the study period and location. We also tested whether earthquakes inhibit stranding and again, there was no link. Although we did not find a substantial association of earthquakes with strandings in this study, it is likely that there are many factors influencing stranding of marine mammals and a single cause is unlikely to be responsible. Analysis of a subset of data for which detailed descriptions were available showed that most live stranded animals were pups, calves, or

  15. Molecular dosimetry of DNA damage caused by alkylation. I. Single-strand breaks induced by ethylating agents in cultured mammalian cells in relation to survival

    NARCIS (Netherlands)

    Abbondandolo, A.; Dogliotti, E.; Lohman, P.H.M.; Berends, F.

    1982-01-01

    Cultured Chinese hamster ovary cells were treated with ethylating agents. DNA lesions giving rise to single-strand breaks (ssb) or alkali-labile sites were measured by centrifugation in alkaline sucrose gradients after lysis in alkali. 4 agents with different tendencies to ethylate preferentially

  16. MgO magnetic tunnel junctions of enduring F-type upon annealing

    International Nuclear Information System (INIS)

    Schleicher, F; Halisdemir, U; Urbain, E; Gallart, M; Boukari, S; Beaurepaire, E; Gilliot, P; Bowen, M; Lacour, D; Montaigne, F; Hehn, M

    2015-01-01

    The authors performed magnetotransport experiments to determine whether annealing alters the oxygen vacancy-mediated tunnelling potential landscape of the central portion of a MgO ultrathin film within sputtered CoFeB/MgO/CoFeB magnetic tunnel junctions. Using the Î rel method reveals a temperature-dependent tunnelling barrier height for a non-annealed barrier that arises from single oxygen vacancies (F centres) and is qualitatively identical to that found for its partly and fully annealed counterparts. Thus these MTJs with F centres remain of F-type upon annealing. This explicitly confirms that the large tunnel-magnetoresistance (TMR) increase upon annealing results mainly from structural modifications of MgO and CoFeB and not from vacancy pairing within the barrier. Photoluminescence spectra performed on both annealed and non-annealed thin MgO films grown on CoFeB electrodes support this conclusion. This work should promote renewed scrutiny over the precise impact of annealing on tunnelling magnetotransport across MgO. (paper)

  17. An Engineered Kinetic Amplification Mechanism for Single Nucleotide Variant Discrimination by DNA Hybridization Probes.

    Science.gov (United States)

    Chen, Sherry Xi; Seelig, Georg

    2016-04-20

    Even a single-nucleotide difference between the sequences of two otherwise identical biological nucleic acids can have dramatic functional consequences. Here, we use model-guided reaction pathway engineering to quantitatively improve the performance of selective hybridization probes in recognizing single nucleotide variants (SNVs). Specifically, we build a detection system that combines discrimination by competition with DNA strand displacement-based catalytic amplification. We show, both mathematically and experimentally, that the single nucleotide selectivity of such a system in binding to single-stranded DNA and RNA is quadratically better than discrimination due to competitive hybridization alone. As an additional benefit the integrated circuit inherits the property of amplification and provides at least 10-fold better sensitivity than standard hybridization probes. Moreover, we demonstrate how the detection mechanism can be tuned such that the detection reaction is agnostic to the position of the SNV within the target sequence. in contrast, prior strand displacement-based probes designed for kinetic discrimination are highly sensitive to position effects. We apply our system to reliably discriminate between different members of the let-7 microRNA family that differ in only a single base position. Our results demonstrate the power of systematic reaction network design to quantitatively improve biotechnology.

  18. Replication stress-induced chromosome breakage is correlated with replication fork progression and is preceded by single-stranded DNA formation.

    Science.gov (United States)

    Feng, Wenyi; Di Rienzi, Sara C; Raghuraman, M K; Brewer, Bonita J

    2011-10-01

    Chromosome breakage as a result of replication stress has been hypothesized to be the direct consequence of defective replication fork progression, or "collapsed" replication forks. However, direct and genome-wide evidence that collapsed replication forks give rise to chromosome breakage is still lacking. Previously we showed that a yeast replication checkpoint mutant mec1-1, after transient exposure to replication impediment imposed by hydroxyurea (HU), failed to complete DNA replication, accumulated single-stranded DNA (ssDNA) at the replication forks, and fragmented its chromosomes. In this study, by following replication fork progression genome-wide via ssDNA detection and by direct mapping of chromosome breakage after HU exposure, we have tested the hypothesis that the chromosome breakage in mec1 cells occurs at collapsed replication forks. We demonstrate that sites of chromosome breakage indeed correlate with replication fork locations. Moreover, ssDNA can be detected prior to chromosome breakage, suggesting that ssDNA accumulation is the common precursor to double strand breaks at collapsed replication forks.

  19. Electron microscopic comparison of the sequences of single-stranded genomes of mammalian parvoviruses by heteroduplex mapping

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, P.T.; Olson, W.H.; Allison, D.P.; Bates, R.C.; Snyder, C.E.; Mitra, S.

    1983-01-01

    The sequence homologies among the linear single-stranded genomes of several mammalian parvoviruses have been studied by electron microscopic analysis of tthe heteroduplexes produced by reannealing the complementary strands of their DNAs. The genomes of Kilham rat virus, H-1, minute virus of ice and LuIII, which are antigenically distinct non-defective parvoviruses, have considerable homology: about 70% of their sequences are conserved. The homologous regions map at similar locations in the left halves (from the 3' ends) of the genomes. No sequence homology, however, is observed between the DNAs of these nondefective parvoviruses and that of bovine parvovirus, another non-defective virus, or that of defective adenoassociated virus, nor between the genomes of bovine parvovirus and adenoassociated virus. This suggests that only very short, if any, homologous regions are present. From these results, an evolutionary relationship among Kilham rat virus, H-1, minute virus of mice and LuIII is predicted. It is interesting to note that, although LuIII was originally isolated from a human cell line and is specific for human cells in vitro, its genome has sequences in common only with the rodent viruses Kilham rat virus, minute virus of mice and H-1, and not with the other two mammalian parvoviruses tested.

  20. Charge Enhancement of Single-Stranded DNA in Negative Electrospray Ionization Using the Supercharging Reagent Meta-nitrobenzyl Alcohol

    Science.gov (United States)

    Brahim, Bessem; Alves, Sandra; Cole, Richard B.; Tabet, Jean-Claude

    2013-12-01

    Charge enhancement of single-stranded oligonucleotide ions in negative ESI mode is investigated. The employed reagent, meta-nitrobenzyl alcohol (m-NBA), was found to improve total signal intensity (Itot), increase the highest observed charge states (zhigh), and raise the average charge states (zavg) of all tested oligonucleotides analyzed in negative ESI. To quantify these increases, signal enhancement ratios (SER1%) and charge enhancement coefficients (CEC1%) were introduced. The SER1%, (defined as the quotient of total oligonucleotide ion abundances with 1 % m-NBA divided by total oligonucleotide abundance without m-NBA) was found to be greater than unity for every oligonucleotide tested. The CEC1% values (defined as the average charge state in the presence of 1 % m-NBA minus the average charge state in the absence of m-NBA) were found to be uniformly positive. Upon close inspection, the degree of charge enhancement for longer oligonucleotides was found to be dependent upon thymine density (i.e., the number and the location of phospho-thymidine units). A correlation between the charge enhancement induced by the presence of m-NBA and the apparent gas-phase acidity (largely determined by the sequence of thymine units but also by the presence of protons on other nucleobases) of multiply deprotonated oligonucleotide species, was thus established. Ammonium cations appeared to be directly involved in the m-NBA supercharging mechanism, and their role seems to be consistent with previously postulated ESI mechanisms describing desorption/ionization of single-stranded DNA into the gas phase.

  1. Breaking DNA strands by extreme-ultraviolet laser pulses in vacuum

    Czech Academy of Sciences Publication Activity Database

    Nováková, Eva; Vyšín, Luděk; Burian, Tomáš; Juha, Libor; Davídková, Marie; Múčka, V.; Čuba, V.; Grisham, M. E.; Heinbuch, S.; Rocca, J.J.

    2015-01-01

    Roč. 91, č. 4 (2015), "042718-1"-"042718-8" ISSN 1539-3755 R&D Projects: GA ČR(CZ) GBP108/12/G108; GA ČR GA13-28721S Institutional support: RVO:68378271 ; RVO:61389005 Keywords : XUV * DNA damages * single- strand breaks (SSBs) * double- strand breaks (DSBs) Subject RIV: BO - Biophysics Impact factor: 2.288, year: 2014

  2. DNA turnover and strand breaks in Escherichia coli

    International Nuclear Information System (INIS)

    Hanawalt, P.; Grivell, A.; Nakayama, H.

    1975-01-01

    The extent of DNA turnover has been measured in a dnaB mutant of Escherichia coli, temperature sensitive for semiconservative DNA replication. At the nonpermissive temperature about 0.02 percent of the deoxynucleotides in DNA are exchanged per generation period. This turnover rate is markedly depressed in the presence of rifampicin. During thymine starvation strand breaks accumulate in the DNA of E. coli strains that are susceptible to thymineless death. Rifampicin suppresses the appearance of these breaks, consistent with our hypothesis that transcription may be accompanied by repairable single-strand breaks in DNA. DNA turnover is enhanced severalfold in strands containing 5-bromodeoxyuridine in place of thymidine, possibly because the analog (or the deoxyuridine, following debromination) is sometimes recognized and excised

  3. Delayed repair of DNA single-strand breaks does not increase cytogenetic damage

    International Nuclear Information System (INIS)

    Morgan, W.F.; Djordjevic, M.C.; Jostes, R.F.; Pantelias, G.E.

    1985-01-01

    DNA damage and cytogenetic effects of ionizing radiation were investigated in Chinese hamster ovary (CHO) cells and unstimulated human peripheral blood lymphocytes. DNA damage and repair were analysed by alkaline elution under conditions that predominantly measured DNA single-strand breaks (ssb). X-radiation (2.5 Gy) induced ssb in both CHO cells and unstimulated lymphocytes, and the breaks were repaired within 30 and 90 min, respectively. This rapid repair was delayed by the poly(ADP-ribose) polymerase inhibitor, 3-aminobenzamide (3AB). The cytogenetic effects of the 3AB-induced delay in DNA repair were examined by analysing sister chromatid exchange (SCE) frequency in CHO cells and fragmentation of prematurely condensed chromosomes (PCC) in unstimulated human lymphocytes after 2.5 Gy of X-rays. Although 3AB delayed the rejoining of DNA ssb, this delay did not result in increased cytogenetic damage manifested as either SCE or fragmentation of PCC. These results indicate that the rapidly rejoining DNA ssb are not important in the production of chromosome damage. (author)

  4. Untangling the Strands of the Fourteenth Amendment.

    Science.gov (United States)

    Lupu, Ira C.

    1979-01-01

    Explores trends in the Court's interpretation of the libertarian and egalitarian dimensions of the Fourteenth Amendment and offers a theory of the two strands. Available from Michigan Law Review, Hutchins Hall, Ann Arbor, MI 48109; single issues $3.50. (Author/IRT)

  5. Histone H3.3 promotes IgV gene diversification by enhancing formation of AID-accessible single-stranded DNA.

    Science.gov (United States)

    Romanello, Marina; Schiavone, Davide; Frey, Alexander; Sale, Julian E

    2016-07-01

    Immunoglobulin diversification is driven by activation-induced deaminase (AID), which converts cytidine to uracil within the Ig variable (IgV) regions. Central to the recruitment of AID to the IgV genes are factors that regulate the generation of single-stranded DNA (ssDNA), the enzymatic substrate of AID Here, we report that chicken DT40 cells lacking variant histone H3.3 exhibit reduced IgV sequence diversification. We show that this results from impairment of the ability of AID to access the IgV genes due to reduced formation of ssDNA during IgV transcription. Loss of H3.3 also diminishes IgV R-loop formation. However, reducing IgV R-loops by RNase HI overexpression in wild-type cells does not affect IgV diversification, showing that these structures are not necessary intermediates for AID access. Importantly, the reduction in the formation of AID-accessible ssDNA in cells lacking H3.3 is independent of any effect on the level of transcription or the kinetics of RNAPII elongation, suggesting the presence of H3.3 in the nucleosomes of the IgV genes increases the chances of the IgV DNA becoming single-stranded, thereby creating an effective AID substrate. © 2016 MRC Laboratory of Molecular Biology. Published under the terms of the CC BY 4.0 license.

  6. Visualization of DNA double-strand break repair: From molecules to cells

    NARCIS (Netherlands)

    Krawczyk, Przemek M.; Stap, Jan; Aten, Jacob A.

    2008-01-01

    DNA double-strand break (DSB) signaling and repair processes are positioned at the crossroad of nuclear pathways that regulate DNA replication, cell division, senescence and apoptosis. Importantly, errors in DSB repair may lead to lethal or potentially tumorigenic chromosome rearrangements.

  7. DNA strand breakage repair in ataxia telangiectasia fibroblast-like cells

    Energy Technology Data Exchange (ETDEWEB)

    Vincent, Jr, R A; Sheridan, III, R B; Huang, P C [Johns Hopkins Univ., Baltimore, Md. (USA). Dept. of Environmental and Biophysical Sciences

    1975-12-01

    Human diploid fibroblast-like cells derived from four patients with the genetic disease ataxia telangiectasia and from two non-mutant donors were examined for the repair of x-ray induced strand breaks in DNA. The ataxia telangiectasia cultures showed no significant differences from the non-mutant cultures in the kinetics and extent of strand repair. This suggests that the increased spontaneous and x-ray induced chromatid aberrations observed in ataxia telangiectasia cells are not caused by a defect in the repair of single strand breaks as might be suspected from a general model of aberration production.

  8. Single-session Gamma Knife radiosurgery for optic pathway/hypothalamic gliomas.

    Science.gov (United States)

    El-Shehaby, Amr M N; Reda, Wael A; Abdel Karim, Khaled M; Emad Eldin, Reem M; Nabeel, Ahmed M

    2016-12-01

    OBJECTIVE Because of their critical and central location, it is deemed necessary to fractionate when considering irradiating optic pathway/hypothalamic gliomas. Stereotactic fractionated radiotherapy is considered safer when dealing with gliomas in this location. In this study, the safety and efficacy of single-session stereotactic radiosurgery for optic pathway/hypothalamic gliomas were reviewed. METHODS Between December 2004 and June 2014, 22 patients with optic pathway/hypothalamic gliomas were treated by single-session Gamma Knife radiosurgery. Twenty patients were available for follow-up for a minimum of 1 year after treatment. The patients were 5 to 43 years (median 16 years) of age. The tumor volume was 0.15 to 18.2 cm 3 (median 3.1 cm 3 ). The prescription dose ranged from 8 to 14 Gy (median 11.5 Gy). RESULTS The mean follow-up period was 43 months. Five tumors involved the optic nerve only, and 15 tumors involved the chiasm/hypothalamus. Two patients died during the follow-up period. The tumors shrank in 12 cases, remained stable in 6 cases, and progressed in 2 cases, thereby making the tumor control rate 90%. Vision remained stable in 12 cases, improved in 6 cases, and worsened in 2 cases in which there was tumor progression. Progression-free survival was 83% at 3 years. CONCLUSIONS The initial results indicate that single-session Gamma Knife radiosurgery is a safe and effective treatment option for optic pathway/hypothalamic gliomas.

  9. Annealing effects on electron-beam evaporated Al2O3 films

    International Nuclear Information System (INIS)

    Shang Shuzhen; Chen Lei; Hou Haihong; Yi Kui; Fan Zhengxiu; Shao Jianda

    2005-01-01

    The effects of post-deposited annealing on structure and optical properties of electron-beam evaporated Al 2 O 3 single layers were investigated. The films were annealed in air for 1.5 h at different temperatures from 250 to 400 deg. C. The optical constants and cut-off wavelength were deduced. Microstructure of the samples was characterized by X-ray diffraction (XRD). Profile and surface roughness measurement instrument was used to determine the rms surface roughness. It was found that the cut-off wavelength shifted to short wavelength as the annealing temperature increased and the total optical loss decreased. The film structure remained amorphous even after annealing at 400 deg. C temperature and the samples annealed at higher temperature had the higher rms surface roughness. The decreasing total optical loss with annealing temperature was attributed to the reduction of absorption owing to oxidation of the film by annealing. Guidance to reduce the optical loss of excimer laser mirrors was given

  10. Annealing effects on electron-beam evaporated Al 2O 3 films

    Science.gov (United States)

    Shuzhen, Shang; Lei, Chen; Haihong, Hou; Kui, Yi; Zhengxiu, Fan; Jianda, Shao

    2005-04-01

    The effects of post-deposited annealing on structure and optical properties of electron-beam evaporated Al 2O 3 single layers were investigated. The films were annealed in air for 1.5 h at different temperatures from 250 to 400 °C. The optical constants and cut-off wavelength were deduced. Microstructure of the samples was characterized by X-ray diffraction (XRD). Profile and surface roughness measurement instrument was used to determine the rms surface roughness. It was found that the cut-off wavelength shifted to short wavelength as the annealing temperature increased and the total optical loss decreased. The film structure remained amorphous even after annealing at 400 °C temperature and the samples annealed at higher temperature had the higher rms surface roughness. The decreasing total optical loss with annealing temperature was attributed to the reduction of absorption owing to oxidation of the film by annealing. Guidance to reduce the optical loss of excimer laser mirrors was given.

  11. A Role for BLM in Double-Strand Break Repair Pathway Choice: Prevention of CtIP/Mre11-Mediated Alternative Nonhomologous End-Joining

    DEFF Research Database (Denmark)

    Grabarz, Anastazja; Guirouilh-Barbat, Josée; Barascu, Aurelia

    2013-01-01

    The choice of the appropriate double-strand break (DSB) repair pathway is essential for the maintenance of genomic stability. Here, we show that the Bloom syndrome gene product, BLM, counteracts CtIP/MRE11-dependent long-range deletions (>200 bp) generated by alternative end-joining (A-EJ). BLM...... represses A-EJ in an epistatic manner with 53BP1 and RIF1 and is required for ionizing-radiation-induced 53BP1 focus assembly. Conversely, in the absence of 53BP1 or RIF1, BLM promotes formation of A-EJ long deletions, consistent with a role for BLM in DSB end resection. These data highlight a dual role...... for BLM that influences the DSB repair pathway choice: (1) protection against CtIP/MRE11 long-range deletions associated with A-EJ and (2) promotion of DNA resection. These antagonist roles can be regulated, according to cell-cycle stage, by interacting partners such as 53BP1 and TopIII, to avoid...

  12. Two pathways of DNA double-strand break repair in G1 cells of Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Glazunov, A.V.

    1988-01-01

    The G1 cells of the diploid yeast Saccharomyces cerevislae are known to be capable of a slow repair of DNA double-strand breaks (DSB) during holding the cells in a non-nutrient medium. In the present paper, it has been shown that S. cerevislae cells γ-irradiated in the G1 phase of cell cycle are capable of fast repair of DNA DSB; this process is completed within 30-40 min of holding the cells in water at 28 deg C. For this reason, the kinetics of DNA DSB repair during holding the cells in a non-nutrient medium are biphasic, i.e., the first, ''fast'' phase is completed within 30-40 min; wheras the second, ''slow'' one, within 48 h. Mutations rad51, rad52, rad54 and rad55 inhibit the fast repair of DNA DSB, whereas mutations rad50, rad53 and rad57 do not practically influence this process. It has been shown that the observed fast and slow repair of DNA DSB in the G1 diploid cells of S, cerevislae are separate pathways of DNA DSB repair in yeast

  13. Influence of RNA Strand Rigidity on Polyion Complex Formation with Block Catiomers.

    Science.gov (United States)

    Hayashi, Kotaro; Chaya, Hiroyuki; Fukushima, Shigeto; Watanabe, Sumiyo; Takemoto, Hiroyasu; Osada, Kensuke; Nishiyama, Nobuhiro; Miyata, Kanjiro; Kataoka, Kazunori

    2016-03-01

    Polyion complexes (b-PICs) are prepared by mixing single- or double-stranded oligo RNA (aniomer) with poly(ethylene glycol)-b-poly(L-lysine) (PEG-PLL) (block catiomer) to clarify the effect of aniomer chain rigidity on association behaviors at varying concentrations. Here, a 21-mer single-stranded RNA (ssRNA) (persistence length: 1.0 nm) and a 21-mer double-stranded RNA (small interfering RNA, siRNA) (persistence length: 62 nm) are compared. Both oligo RNAs form a minimal charge-neutralized ionomer pair with a single PEG-PLL chain, termed unit b-PIC (uPIC), at low concentrations (<≈ 0.01 mg mL(-1)). Above the critical association concentration (≈ 0.01 mg mL(-1)), ssRNA b-PICs form secondary associates, PIC micelles, with sizes up to 30-70 nm, while no such multimolecular assembly is observed for siRNA b-PICs. The entropy gain associated with the formation of a segregated PIC phase in the multimolecular PIC micelles may not be large enough for rigid siRNA strands to compensate with appreciably high steric repulsion derived from PEG chains. Chain rigidity appears to be a critical parameter in polyion complex association. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Genetic transformation of Neisseria gonorrhoeae shows a strand preference

    OpenAIRE

    Duffin, Paul M.; Seifert, H. Steven

    2012-01-01

    Natural transformation is the main means of horizontal genetic exchange in the obligate human pathogen Neisseria gonorrhoeae. Neisseria spp. have been shown to preferentially take up and transform their own DNA by recognizing a non-palindromic 10 or 12 nucleotide DNA uptake sequence (DUS10 or DUS12). We investigated the ability of the DUS12 to enhance single-stranded DNA (ssDNA) transformation. Given the non-palindromic nature of the DUS12, we tested whether both strands of the DUS equally en...

  15. Comparison of DNA strand-break simulated with different DNA models

    International Nuclear Information System (INIS)

    Xie, Wenzhang; Li, Junli; Qiu, Rui; Yan, Congchong; Zeng, Zhi; Li, Chunyan

    2013-01-01

    Full text of the publication follows. In Monte Carlo simulation of DNA damage, the geometric model of DNA is of great importance. To study the influence of DNA model on the simulation of DNA damage, three DNA models were created in this paper. They were a volume model and two atomic models with different parameters. Direct DNA strand-break induced by low-energy electrons were simulated respectively with the three models. The results show that most of the energy depositions in the DNA segments do not lead to strand-breaks. The simple single strand-break (SSB) tends to be the predominant damage type, and the contribution of complex double strand-break (DSB) to the total DSB cannot be neglected. Among the yields of all the three DNA target models applied here, the yields of the volume model are the highest, the yields of the atomic model with double van der Waals radii (r) take the second place, whereas the yields of the atomic model with single r come last. On average, the ratios of SSB yields are approximately equivalent to the corresponding ratios of the models' volume. However, there seems to be no clear relationship between the DSB yields and the models' volume. (authors)

  16. Managing Single-Stranded DNA during Replication Stress in Fission Yeast

    Directory of Open Access Journals (Sweden)

    Sarah A. Sabatinos

    2015-09-01

    Full Text Available Replication fork stalling generates a variety of responses, most of which cause an increase in single-stranded DNA. ssDNA is a primary signal of replication distress that activates cellular checkpoints. It is also a potential source of genome instability and a substrate for mutation and recombination. Therefore, managing ssDNA levels is crucial to chromosome integrity. Limited ssDNA accumulation occurs in wild-type cells under stress. In contrast, cells lacking the replication checkpoint cannot arrest forks properly and accumulate large amounts of ssDNA. This likely occurs when the replication fork polymerase and helicase units are uncoupled. Some cells with mutations in the replication helicase (mcm-ts mimic checkpoint-deficient cells, and accumulate extensive areas of ssDNA to trigger the G2-checkpoint. Another category of helicase mutant (mcm4-degron causes fork stalling in early S-phase due to immediate loss of helicase function. Intriguingly, cells realize that ssDNA is present, but fail to detect that they accumulate ssDNA, and continue to divide. Thus, the cellular response to replication stalling depends on checkpoint activity and the time that replication stress occurs in S-phase. In this review we describe the signs, signals, and symptoms of replication arrest from an ssDNA perspective. We explore the possible mechanisms for these effects. We also advise the need for caution when detecting and interpreting data related to the accumulation of ssDNA.

  17. Missed cleavage opportunities by FEN1 lead to Okazaki fragment maturation via the long-flap pathway

    KAUST Repository

    Zaher, Manal S.; Rashid, Fahad; Song, Bo; Joudeh, Luay I; Sobhy, Mohamed Abdelmaboud; Tehseen, Muhammad; Hingorani, Manju M; Hamdan, Samir

    2018-01-01

    RNA-DNA hybrid primers synthesized by low fidelity DNA polymerase α to initiate eukaryotic lagging strand synthesis must be removed efficiently during Okazaki fragment (OF) maturation to complete DNA replication. In this process, each OF primer is displaced and the resulting 5'-single-stranded flap is cleaved by structure-specific 5'-nucleases, mainly Flap Endonuclease 1 (FEN1), to generate a ligatable nick. At least two models have been proposed to describe primer removal, namely short- and long-flap pathways that involve FEN1 or FEN1 along with Replication Protein A (RPA) and Dna2 helicase/nuclease, respectively. We addressed the question of pathway choice by studying the kinetic mechanism of FEN1 action on short- and long-flap DNA substrates. Using single molecule FRET and rapid quench-flow bulk cleavage assays, we showed that unlike short-flap substrates, which are bound, bent and cleaved within the first encounter between FEN1 and DNA, long-flap substrates can escape cleavage even after DNA binding and bending. Notably, FEN1 can access both substrates in the presence of RPA, but bending and cleavage of long-flap DNA is specifically inhibited. We propose that FEN1 attempts to process both short and long flaps, but occasional missed cleavage of the latter allows RPA binding and triggers the long-flap OF maturation pathway.

  18. Missed cleavage opportunities by FEN1 lead to Okazaki fragment maturation via the long-flap pathway

    KAUST Repository

    Zaher, Manal S.

    2018-01-27

    RNA-DNA hybrid primers synthesized by low fidelity DNA polymerase α to initiate eukaryotic lagging strand synthesis must be removed efficiently during Okazaki fragment (OF) maturation to complete DNA replication. In this process, each OF primer is displaced and the resulting 5\\'-single-stranded flap is cleaved by structure-specific 5\\'-nucleases, mainly Flap Endonuclease 1 (FEN1), to generate a ligatable nick. At least two models have been proposed to describe primer removal, namely short- and long-flap pathways that involve FEN1 or FEN1 along with Replication Protein A (RPA) and Dna2 helicase/nuclease, respectively. We addressed the question of pathway choice by studying the kinetic mechanism of FEN1 action on short- and long-flap DNA substrates. Using single molecule FRET and rapid quench-flow bulk cleavage assays, we showed that unlike short-flap substrates, which are bound, bent and cleaved within the first encounter between FEN1 and DNA, long-flap substrates can escape cleavage even after DNA binding and bending. Notably, FEN1 can access both substrates in the presence of RPA, but bending and cleavage of long-flap DNA is specifically inhibited. We propose that FEN1 attempts to process both short and long flaps, but occasional missed cleavage of the latter allows RPA binding and triggers the long-flap OF maturation pathway.

  19. Single-Stranded Nucleic Acids Bind to the Tetramer Interface of SAMHD1 and Prevent Formation of the Catalytic Homotetramer.

    Science.gov (United States)

    Seamon, Kyle J; Bumpus, Namandjé N; Stivers, James T

    2016-11-08

    Sterile alpha motif and HD domain protein 1 (SAMHD1) is a unique enzyme that plays important roles in nucleic acid metabolism, viral restriction, and the pathogenesis of autoimmune diseases and cancer. Although much attention has been focused on its dNTP triphosphohydrolase activity in viral restriction and disease, SAMHD1 also binds to single-stranded RNA and DNA. Here we utilize a UV cross-linking method using 5-bromodeoxyuridine-substituted oligonucleotides coupled with high-resolution mass spectrometry to identify the binding site for single-stranded nucleic acids (ssNAs) on SAMHD1. Mapping cross-linked amino acids on the surface of existing crystal structures demonstrated that the ssNA binding site lies largely along the dimer-dimer interface, sterically blocking the formation of the homotetramer required for dNTPase activity. Surprisingly, the disordered C-terminus of SAMHD1 (residues 583-626) was also implicated in ssNA binding. An interaction between this region and ssNA was confirmed in binding studies using the purified SAMHD1 583-626 peptide. Despite a recent report that SAMHD1 possesses polyribonucleotide phosphorylase activity, we did not detect any such activity in the presence of inorganic phosphate, indicating that nucleic acid binding is unrelated to this proposed activity. These data suggest an antagonistic regulatory mechanism in which the mutually exclusive oligomeric state requirements for ssNA binding and dNTP hydrolase activity modulate these two functions of SAMHD1 within the cell.

  20. Selection and characterization of single stranded DNA aptamers recognizing fumonisin B1

    International Nuclear Information System (INIS)

    Chen, Xiujuan; Huang, Yukun; Duan, Nuo; Wu, Shijia; Xia, Yu; Ma, Xiaoyuan; Ding, Zhansheng; Wang, Zhouping; Zhu, Changqing; Jiang, Yuan

    2014-01-01

    We present an improved method for the selection of single-stranded DNA aptamers that can recognize fumonisin B 1 (FB 1 ). FB 1 is a carcinogenic mycotoxin mainly found in corn and corn-based food products worldwide, posing a global threat to feed and food safety. Selection was based on the mag-SELEX (magnetic bead systematic evolution of ligands by exponential enrichment) technology modified by adopting free analogs of targets rather than immobilized targets for counter selections. Firstly, aptamer candidates for FB 1 were selected from an 80 nt random DNA library after 13 rounds of selection. Next, binding assays were performed for affinity evaluation, and circular dichroism spectroscopy was used to investigate their conformation. A high-affinity aptamer designated as F10 (with a dissociation constant of 62 ± 5 nM) was identified and tested for its specificity by competitive binding assays. The results demonstrate that this improved mag-SELEX technology facilitates aptamer screening because it avoids the tedious immobilization of counter-selection molecules on magnetic beads. The aptamers obtained by this technique open new possibilities for the detection of FB 1 via aptasensors. (author)

  1. P-type single-crystalline ZnO films obtained by (N,O) dual implantation through dynamic annealing process

    Science.gov (United States)

    Zhang, Zhiyuan; Huang, Jingyun; Chen, Shanshan; Pan, Xinhua; Chen, Lingxiang; Ye, Zhizhen

    2016-12-01

    Single-crystalline ZnO films were grown on a-plane sapphire substrates by plasma-assisted molecular beam epitaxy technique. The films have been implanted with fixed fluence of 120 keV N and 130 keV O ions at 460 °C. Hall measurements show that the dually-implanted single-crystalline ZnO films exhibit p-type characteristics with hole concentration in the range of 2.1 × 1018-1.1 × 1019 cm-3, hole mobilities between 1.6 and 1.9 cm2 V-1 s-1, and resistivities in the range of 0.353-1.555 Ω cm. The ZnO films exhibit (002) (c-plane) orientation as identified by the X-ray diffraction pattern. It is confirmed that N ions were effectively implanted by SIMS results. Raman spectra, polarized Raman spectra, and X-ray photoelectron spectroscopy results reflect that the concentration of oxygen vacancies is reduced, which is attributed to O ion implantation. It is concluded that N and O implantation and dynamic annealing play a critical role in forming p-type single-crystalline ZnO films.

  2. Single-crystal-like GdNdOx thin films on silicon substrates by magnetron sputtering and high-temperature annealing for crystal seed layer application

    Directory of Open Access Journals (Sweden)

    Ziwei Wang

    2016-06-01

    Full Text Available Single-crystal-like rare earth oxide thin films on silicon (Si substrates were fabricated by magnetron sputtering and high-temperature annealing processes. A 30-nm-thick high-quality GdNdOx (GNO film was deposited using a high-temperature sputtering process at 500°C. A Gd2O3 and Nd2O3 mixture was used as the sputtering target, in which the proportions of Gd2O3 and Nd2O3 were controlled to make the GNO’s lattice parameter match that of the Si substrate. To further improve the quality of the GNO film, a post-deposition annealing process was performed at a temperature of 1000°C. The GNO films exhibited a strong preferred orientation on the Si substrate. In addition, an Al/GNO/Si capacitor was fabricated to evaluate the dielectric constant and leakage current of the GNO films. It was determined that the single-crystal-like GNO films on the Si substrates have potential for use as an insulator layer for semiconductor-on-insulator and semiconductor/insulator multilayer applications.

  3. Pulsed Q-switched ruby laser annealing of Bi implanted Si crystals investigated by channeling

    International Nuclear Information System (INIS)

    Deutch, B.I.; Shih-Chang, T.; Shang-Hwai, L.; Zu-Yao, Z.; Jia-Zeng, H.; Ren-Zhi, D.; Te-Chang, C.; De-Xin, C.

    1979-01-01

    Channeling was used to investigate pulsed, Q switched ruby-laser annealed and thermally annealed Si single crystals implanted with 40-keV Bi ions to a dose of 10 15 atoms/cm 2 . After thermal annealing, residual damage decreased with increasing annealing temperature to a minimum value of 30% at 900 0 C. The Bi atoms in substitutional sites reached a maximum value (50%) after annealing at 750 0 C but decreased with increasing annealing temperature. Out diffusion of Bi atoms occurred at temperatures higher than 625 0 C. For comparison, the residual damage disappeared almost completely after pulsed-laser annealing (30 ns pulse width, Energy, E = 3J/cm 2 ). The concentration of Bi in Si exceeded its solid solubility by an order of magnitude; 95% of Bi atoms were annealed to substitutional sites. Laser pulses of different energies were used to investigate the efficiency of annealing. (author)

  4. Comparison of the electrophoretic method with the sedimentation method for the analysis of DNA strand breaks

    International Nuclear Information System (INIS)

    Yamamoto, Osamu; Ogawa, Masaaki; Hoshi, Masaharu

    1982-01-01

    Application of electrophoresis to the analysis of DNA strand breaks was studied comparing with the sedimentation analysis. A BRL gel electrophoresis system (Type V16) was used for this study. Calf thymus DNA (1 mg/ml) irradiated with 60 Co gamma-rays in SSC solution was applied to both the electrophoretic analysis and the sedimentation analysis. Lamda phage DNA and its fragments were employed as the standard size molecules. In a range from 1 k base pairs to 6 k base pairs in length for double stranded DNA or from 2 k bases to 12 k bases for single stranded DNA, the calculated average molecular weight from the electrophoresis coincided with that from the sedimentation. Number of single strand breaks and double strand breaks were 1.34 x 10 11 breaks/mg/rad (G = 0.215) and 0.48 x 10 5 breaks/mg/rad 2 , respectively. (author)

  5. 1,4 Naphthoquinone protects radiation induced cell death and DNA damage in lymphocytes by activation Nrf2/are pathway and enhancing DNA repair

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Nazir M; Sandur, Santosh K; Checker, Rahul; Sharma, Deepak; Poduval, T.B., E-mail: nazirbiotech@rediffmail.com [Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai (India)

    2012-07-01

    1,4-Naphthoquinone (NQ) is the parent molecule of many clinically approved anticancer, anti-infective, and antiparasitic drugs such as anthracycline, mitomycin, daunorubicin, doxorubicin, diospyrin, and malarone. Presence of NQ during a-irradiation (4Gy) significantly reduced the death of irradiated murine splenic lymphocytes in a dose dependent manner (0.05-liM), with complete protection at liM as assessed by PI staining. Radioprotection by NQ was further confirmed by inhibition of caspase activation, decrease in cell size, DNA-fragmentation, nuclear-blebbing and clonogenic assay. All trans retinoic acid which is inhibitor of Nrf-2 pathway, completely abrogated the radioprotective effect of NQ, suggesting that radioprotective activity of NQ may be due to activation of Nrf-2 signaling pathways. Further, addition of NQ to lymphocytes activated Nrf-2 in time dependent manner as shown by confocal microscopy, electrophoretic mobility shift assay and quantitative real time PCR. It also increased the expression of Nrf-2 dependent cytoprotective genes like hemeoxygenase-1, MnSOD, catalse as demonstrated by real time PCR and flowcytometry. NQ protected lymphocytes significantly against radiation-induced cell death even when added after irradiation. Complete protection was observed by addition of NQ up to 2 h after irradiation. However, percentage protection decreased with increasing time interval. These results suggested that NQ may offer protection to lymphocytes activating repair pathways. Repair of radiation induced DNA strand breaks was studied by comet assay. Pretreatment of lymphocytes with NQ induced single strand breaks up to 6h but not double strand breaks in DNA. However, NQ mediated single strand breaks were repaired completely at longer time intervals. Addition of NQ to lymphocytes prior to 4 Gy a-radiation exposure showed decrease in the yield of DNA double strand breaks. The observed time-dependent decrease in the DNA strand breaks could be attributed to

  6. Annealing of ion implanted silicon

    International Nuclear Information System (INIS)

    Chivers, D.; Smith, B.J.; Stephen, J.; Fisher, M.

    1980-09-01

    The newer uses of ion implantation require a higher dose rate. This has led to the introduction of high beam current implanters; the wafers move in front of a stationary beam to give a scanning effect. This can lead to non-uniform heating of the wafer. Variations in the sheet resistance of the layers can be very non-uniform following thermal annealing. Non-uniformity in the effective doping both over a single wafer and from one wafer to another, can affect the usefulness of ion implantation in high dose rate applications. Experiments to determine the extent of non-uniformity in sheet resistance, and to see if it is correlated to the annealing scheme have been carried out. Details of the implantation parameters are given. It was found that best results were obtained when layers were annealed at the maximum possible temperature. For arsenic, phosphorus and antimony layers, improvements were observed up to 1200 0 C and boron up to 950 0 C. Usually, it is best to heat the layer directly to the maximum temperature to produce the most uniform layer; with phosphorus layers however it is better to pre-heat to 1050 0 C. (U.K.)

  7. Rapid thermal pulse annealing

    International Nuclear Information System (INIS)

    Miller, M.G.; Koehn, B.W.; Chaplin, R.L.

    1976-01-01

    Characteristics of recovery processes have been investigated for cases of heating a sample to successively higher temperatures by means of isochronal annealing or by using a rapid pulse annealing. A recovery spectra shows the same features independent of which annealing procedure is used. In order to determine which technique provides the best resolution, a study was made of how two independent first-order processes are separated for different heating rates and time increments of the annealing pulses. It is shown that the pulse anneal method offers definite advantages over isochronal annealing when annealing for short time increments. Experimental data by means of the pulse anneal techniques are given for the various substages of stage I of aluminium. (author)

  8. Single-strand breaks induced in Bacillus subtilis DNA by ultraviolet light: action spectrum and properties

    International Nuclear Information System (INIS)

    Peak, M.J.; Peak, J.G.

    1982-01-01

    The induction of single-strand breaks (alkali-labile bonds plus frank breaks) in the DNA of Bacillus subtilis irradiated in vivo by monochromatic UV light at wavelengths from 254 to 434nm was measured. The spectrum consists of a major far-UV (below 320nm) component and a minor near-UV shoulder. A mutant deficient in DNA polymerase I accumulates breaks caused by near-UV (above 320nm) wavelengths faster than the wild-type strain proficient in polymerase I. Measurable breaks in extracted DNA are induced at a higher frequency than those induced in vivo. Anoxia, glycerol, and diazobicyclo (2.2.2.) octane inhibit break formation in extracted DNA. Alkali-labile bonds induced by 365-nm UV radiation are largely (78%) covalent bond chain breaks, the remainder consists of true alkali-labile bonds, probably apurinic and apyrimidinic sites. (author)

  9. A model capturing novel strand symmetries in bacterial DNA

    International Nuclear Information System (INIS)

    Sobottka, Marcelo; Hart, Andrew G.

    2011-01-01

    Highlights: → We propose a simple stochastic model to construct primitive DNA sequences. → The model provide an explanation for Chargaff's second parity rule in primitive DNA sequences. → The model is also used to predict a novel type of strand symmetry in primitive DNA sequences. → We extend the results for bacterial DNA sequences and compare distributional properties intrinsic to the model to statistical estimates from 1049 bacterial genomes. → We find out statistical evidences that the novel type of strand symmetry holds for bacterial DNA sequences. -- Abstract: Chargaff's second parity rule for short oligonucleotides states that the frequency of any short nucleotide sequence on a strand is approximately equal to the frequency of its reverse complement on the same strand. Recent studies have shown that, with the exception of organellar DNA, this parity rule generally holds for double-stranded DNA genomes and fails to hold for single-stranded genomes. While Chargaff's first parity rule is fully explained by the Watson-Crick pairing in the DNA double helix, a definitive explanation for the second parity rule has not yet been determined. In this work, we propose a model based on a hidden Markov process for approximating the distributional structure of primitive DNA sequences. Then, we use the model to provide another possible theoretical explanation for Chargaff's second parity rule, and to predict novel distributional aspects of bacterial DNA sequences.

  10. Programming chemical kinetics: engineering dynamic reaction networks with DNA strand displacement

    Science.gov (United States)

    Srinivas, Niranjan

    Over the last century, the silicon revolution has enabled us to build faster, smaller and more sophisticated computers. Today, these computers control phones, cars, satellites, assembly lines, and other electromechanical devices. Just as electrical wiring controls electromechanical devices, living organisms employ "chemical wiring" to make decisions about their environment and control physical processes. Currently, the big difference between these two substrates is that while we have the abstractions, design principles, verification and fabrication techniques in place for programming with silicon, we have no comparable understanding or expertise for programming chemistry. In this thesis we take a small step towards the goal of learning how to systematically engineer prescribed non-equilibrium dynamical behaviors in chemical systems. We use the formalism of chemical reaction networks (CRNs), combined with mass-action kinetics, as our programming language for specifying dynamical behaviors. Leveraging the tools of nucleic acid nanotechnology (introduced in Chapter 1), we employ synthetic DNA molecules as our molecular architecture and toehold-mediated DNA strand displacement as our reaction primitive. Abstraction, modular design and systematic fabrication can work only with well-understood and quantitatively characterized tools. Therefore, we embark on a detailed study of the "device physics" of DNA strand displacement (Chapter 2). We present a unified view of strand displacement biophysics and kinetics by studying the process at multiple levels of detail, using an intuitive model of a random walk on a 1-dimensional energy landscape, a secondary structure kinetics model with single base-pair steps, and a coarse-grained molecular model that incorporates three-dimensional geometric and steric effects. Further, we experimentally investigate the thermodynamics of three-way branch migration. Our findings are consistent with previously measured or inferred rates for

  11. Cdc45 (cell division cycle protein 45) guards the gate of the Eukaryote Replisome helicase stabilizing leading strand engagement

    Science.gov (United States)

    Petojevic, Tatjana; Pesavento, James J.; Costa, Alessandro; Liang, Jingdan; Wang, Zhijun; Berger, James M.; Botchan, Michael R.

    2015-01-01

    DNA replication licensing is now understood to be the pathway that leads to the assembly of double hexamers of minichromosome maintenance (Mcm2–7) at origin sites. Cell division control protein 45 (Cdc45) and GINS proteins activate the latent Mcm2–7 helicase by inducing allosteric changes through binding, forming a Cdc45/Mcm2-7/GINS (CMG) complex that is competent to unwind duplex DNA. The CMG has an active gate between subunits Mcm2 and Mcm5 that opens and closes in response to nucleotide binding. The consequences of inappropriate Mcm2/5 gate actuation and the role of a side channel formed between GINS/Cdc45 and the outer edge of the Mcm2–7 ring for unwinding have remained unexplored. Here we uncover a novel function for Cdc45. Cross-linking studies trace the path of the DNA with the CMG complex at a fork junction between duplex and single strands with the bound CMG in an open or closed gate conformation. In the closed state, the lagging strand does not pass through the side channel, but in the open state, the leading strand surprisingly interacts with Cdc45. Mutations in the recombination protein J fold of Cdc45 that ablate this interaction diminish helicase activity. These data indicate that Cdc45 serves as a shield to guard against occasional slippage of the leading strand from the core channel. PMID:25561522

  12. Laser annealing heals radiation damage in avalanche photodiodes

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Jin Gyu [University of Waterloo, Institute for Quantum Computing, Waterloo, ON (Canada); University of Waterloo, Department of Electrical and Computer Engineering, Waterloo, ON (Canada); Anisimova, Elena; Higgins, Brendon L.; Bourgoin, Jean-Philippe [University of Waterloo, Institute for Quantum Computing, Waterloo, ON (Canada); University of Waterloo, Department of Physics and Astronomy, Waterloo, ON (Canada); Jennewein, Thomas [University of Waterloo, Institute for Quantum Computing, Waterloo, ON (Canada); University of Waterloo, Department of Physics and Astronomy, Waterloo, ON (Canada); Canadian Institute for Advanced Research, Quantum Information Science Program, Toronto, ON (Canada); Makarov, Vadim [University of Waterloo, Institute for Quantum Computing, Waterloo, ON (Canada); University of Waterloo, Department of Electrical and Computer Engineering, Waterloo, ON (Canada); University of Waterloo, Department of Physics and Astronomy, Waterloo, ON (Canada)

    2017-12-15

    Avalanche photodiodes (APDs) are a practical option for space-based quantum communications requiring single-photon detection. However, radiation damage to APDs significantly increases their dark count rates and thus reduces their useful lifetimes in orbit. We show that high-power laser annealing of irradiated APDs of three different models (Excelitas C30902SH, Excelitas SLiK, and Laser Components SAP500S2) heals the radiation damage and several APDs are restored to typical pre-radiation dark count rates. Of nine samples we test, six APDs were thermally annealed in a previous experiment as another solution to mitigate the radiation damage. Laser annealing reduces the dark count rates further in all samples with the maximum dark count rate reduction factor varying between 5.3 and 758 when operating at -80 C. This indicates that laser annealing is a more effective method than thermal annealing. The illumination power to reach these reduction factors ranges from 0.8 to 1.6 W. Other photon detection characteristics, such as photon detection efficiency, timing jitter, and afterpulsing probability, fluctuate but the overall performance of quantum communications should be largely unaffected by these variations. These results herald a promising method to extend the lifetime of a quantum satellite equipped with APDs. (orig.)

  13. Multicopy Single-Stranded DNA Directs Intestinal Colonization of Enteric Pathogens

    Energy Technology Data Exchange (ETDEWEB)

    Elfenbein, Johanna R.; Knodler, Leigh A.; Nakayasu, Ernesto S.; Ansong, Charles; Brewer, Heather M.; Bogomolnaya, Lydia; Adams, L. Garry; McClelland, Michael; Adkins, Joshua N.; Andrews-Polymenis, Helene L.; Fang, Ferric C.

    2015-09-14

    Multicopy single-stranded DNAs (msDNAs) are hybrid RNA-DNA molecules encoded on retroelements called retrons and produced by the action of retron reverse transcriptases. Retrons are widespread in bacteria but the natural function of msDNA has remained elusive despite 30 years of study. The major roadblock to elucidation of the function of these unique molecules has been the lack of any identifiable phenotypes for mutants unable to make msDNA. We report that msDNA of the zoonotic pathogen Salmonella Typhimurium is necessary for colonization of the intestine. Similarly, we observed a defect in intestinal persistence in an enteropathogenic E. coli mutant lacking its retron reverse transcriptase. Under anaerobic conditions in the absence of msDNA, proteins of central anaerobic metabolism needed for Salmonella colonization of the intestine are dysregulated. We show that the msDNA-deficient mutant can utilize nitrate but not other alternate electron acceptors in anaerobic conditions. Consistent with the availability of nitrate in the inflamed gut, a neutrophilic inflammatory response partially rescued the ability of a mutant lacking msDNA to colonize the intestine. These findings together indicate that the mechanistic basis of msDNA function during Salmonella colonization of the intestine is proper production of proteins needed for anaerobic metabolism. We further conclude that a natural function of msDNA is to regulate protein abundance, the first attributable function for any msDNA. Our data provide novel insight into the function of this mysterious molecule that likely represents a new class of regulatory molecules.

  14. Annealing of radiation-induced defects in vanadium and vanadium-titanium alloys

    International Nuclear Information System (INIS)

    Leguey, T.

    1996-01-01

    The annealing of defects induced by electron irradiation up to a dose of 6.10 21 m -2 at T<293 K has been investigated in single-crystals of pure vanadium and in vanadium-titanium alloys with compositions 0.3, 1 and 5 at.% Ti using positron annihilation spectroscopy. The recovery of the positron annihilation parameters in V single-crystals indicates that the defect annealing takes place in the temperature range 410-470 K without formation of microvoids for the present irradiation conditions. For the alloys the recovery onset is shifted to 460 K, the width of the annealing stage is gradually broadened with increasing Ti content, and microvoids are formed for annealing temperatures at the end of the recovery stage. The results show that the vacancy release from vacancy-interstitial impurity pairs and subsequent recombination with interstitial loops is the mechanism of the recovery in pure V. For V-Ti alloys, vacancy-Ti-interstitial impurity complexes and vacancy-Ti pairs appear to be the defects responsible for the positron trapping. The broadening of the recovery stage with increasing Ti content indicates that solute Ti is a very effective trap for vacancies in V. (orig.)

  15. Detection of single-nucleotide polymorphisms using an ON-OFF switching of regenerated biosensor based on a locked nucleic acid-integrated and toehold-mediated strand displacement reaction.

    Science.gov (United States)

    Gao, Zhong Feng; Ling, Yu; Lu, Lu; Chen, Ning Yu; Luo, Hong Qun; Li, Nian Bing

    2014-03-04

    Although various strategies have been reported for single-nucleotide polymorphisms (SNPs) detection, development of a time-saving, specific, and regenerated electrochemical sensing platform still remains a realistic goal. In this study, an ON-OFF switching of a regenerated biosensor based on a locked nucleic acid (LNA)-integrated and toehold-mediated strand displacement reaction technique is constructed for detection of SNPs. The LNA-integrated and methylene blue-labeled capture probe with an external toehold is designed to switch on the sensing system. The mutant-type DNA probe completes complementary with the capture probe to trigger the strand displacement reaction, which switches off the sensing system. However, when the single-base mismatched wild-type DNA probe is presented, the strand displacement reaction cannot be achieved; therefore, the sensing system still keeps the ON state. This DNA sensor is stable over five reuses. We further testify that the LNA-integrated sequence has better recognition ability for SNPs detection compared to the DNA-integrated sequence. Moreover, this DNA senor exhibits a remarkable discrimination capability of SNPs among abundant wild-type targets and 6000-fold (m/m) excess of genomic DNA. In addition, it is selective enough in complex and contaminant-ridden samples, such as human urine, soil, saliva, and beer. Overall, these results demonstrate that this reliable DNA sensor is easy to be fabricated, simple to operate, and stable enough to be readily regenerated.

  16. Single-strand conformation polymorphism (SSCP)-based mutation scanning approaches to fingerprint sequence variation in ribosomal DNA of ascaridoid nematodes.

    Science.gov (United States)

    Zhu, X Q; Gasser, R B

    1998-06-01

    In this study, we assessed single-strand conformation polymorphism (SSCP)-based approaches for their capacity to fingerprint sequence variation in ribosomal DNA (rDNA) of ascaridoid nematodes of veterinary and/or human health significance. The second internal transcribed spacer region (ITS-2) of rDNA was utilised as the target region because it is known to provide species-specific markers for this group of parasites. ITS-2 was amplified by PCR from genomic DNA derived from individual parasites and subjected to analysis. Direct SSCP analysis of amplicons from seven taxa (Toxocara vitulorum, Toxocara cati, Toxocara canis, Toxascaris leonina, Baylisascaris procyonis, Ascaris suum and Parascaris equorum) showed that the single-strand (ss) ITS-2 patterns produced allowed their unequivocal identification to species. While no variation in SSCP patterns was detected in the ITS-2 within four species for which multiple samples were available, the method allowed the direct display of four distinct sequence types of ITS-2 among individual worms of T. cati. Comparison of SSCP/sequencing with the methods of dideoxy fingerprinting (ddF) and restriction endonuclease fingerprinting (REF) revealed that also ddF allowed the definition of the four sequence types, whereas REF displayed three of four. The findings indicate the usefulness of the SSCP-based approaches for the identification of ascaridoid nematodes to species, the direct display of sequence variation in rDNA and the detection of population variation. The ability to fingerprint microheterogeneity in ITS-2 rDNA using such approaches also has implications for studying fundamental aspects relating to mutational change in rDNA.

  17. Mechanical properties of rubberwood oriented strand lumber (OSL: The effect of strand length

    Directory of Open Access Journals (Sweden)

    Buhnnum Kyokong

    2005-09-01

    Full Text Available Effect of strand length on mechanical properties (tension, compression and bending of oriented strand lumber (OSL made of rubberwood (Hevea brasiliensis Muell. Arg. was reported. Three strand lengths of 50 mm, 100 mm, and 150 mm with 1 mm thickness and 15 mm width were used. The strands were mixed with 5% pMDI glue (weight basis in a tumble mixer. The OSL specimens were formed by hot pressing process of unidirectionally aligned strands. Average specific gravity and moisture content were 0.76 and 8.34%, respectively. Tension and compression tests were carried out for directions both parallel and perpendicular to grain while bending test was performed only in parallel direction. Ultimate stresses and moduli of elasticity were examined from the stress-strain curves. It was found that for the parallel-to-grain direction, the longer strand OSL gave higher strength. The role of the strand length did not appear for the direction normal to the grain. The relationship between the mechanical properties of OSL and strand length was well described by the modified Hankinson formula.

  18. Real-time monitoring of enzyme-free strand displacement cascades by colorimetric assays

    Science.gov (United States)

    Duan, Ruixue; Wang, Boya; Hong, Fan; Zhang, Tianchi; Jia, Yongmei; Huang, Jiayu; Hakeem, Abdul; Liu, Nannan; Lou, Xiaoding; Xia, Fan

    2015-03-01

    The enzyme-free toehold-mediated strand displacement reaction has shown potential for building programmable DNA circuits, biosensors, molecular machines and chemical reaction networks. Here we report a simple colorimetric method using gold nanoparticles as signal generators for the real-time detection of the product of the strand displacement cascade. During the process the assembled gold nanoparticles can be separated, resulting in a color change of the solution. This assay can also be applied in complex mixtures, fetal bovine serum, and to detect single-base mismatches. These results suggest that this method could be of general utility to monitor more complex enzyme-free strand displacement reaction-based programmable systems or for further low-cost diagnostic applications.The enzyme-free toehold-mediated strand displacement reaction has shown potential for building programmable DNA circuits, biosensors, molecular machines and chemical reaction networks. Here we report a simple colorimetric method using gold nanoparticles as signal generators for the real-time detection of the product of the strand displacement cascade. During the process the assembled gold nanoparticles can be separated, resulting in a color change of the solution. This assay can also be applied in complex mixtures, fetal bovine serum, and to detect single-base mismatches. These results suggest that this method could be of general utility to monitor more complex enzyme-free strand displacement reaction-based programmable systems or for further low-cost diagnostic applications. Electronic supplementary information (ESI) available: Experimental procedures and analytical data are provided. See DOI: 10.1039/c5nr00697j

  19. DNA fragments assembly based on nicking enzyme system.

    Directory of Open Access Journals (Sweden)

    Rui-Yan Wang

    Full Text Available A couple of DNA ligation-independent cloning (LIC methods have been reported to meet various requirements in metabolic engineering and synthetic biology. The principle of LIC is the assembly of multiple overlapping DNA fragments by single-stranded (ss DNA overlaps annealing. Here we present a method to generate single-stranded DNA overlaps based on Nicking Endonucleases (NEases for LIC, the method was termed NE-LIC. Factors related to cloning efficiency were optimized in this study. This NE-LIC allows generating 3'-end or 5'-end ss DNA overlaps of various lengths for fragments assembly. We demonstrated that the 10 bp/15 bp overlaps had the highest DNA fragments assembling efficiency, while 5 bp/10 bp overlaps showed the highest efficiency when T4 DNA ligase was added. Its advantage over Sequence and Ligation Independent Cloning (SLIC and Uracil-Specific Excision Reagent (USER was obvious. The mechanism can be applied to many other LIC strategies. Finally, the NEases based LIC (NE-LIC was successfully applied to assemble a pathway of six gene fragments responsible for synthesizing microbial poly-3-hydroxybutyrate (PHB.

  20. Electrical properties and annealing kinetics study of laser-annealed ion-implanted silicon

    International Nuclear Information System (INIS)

    Wang, K.L.; Liu, Y.S.; Kirkpatrick, C.G.; Possin, G.E.

    1979-01-01

    This paper describes measurements of electrical properties and the regrowth behavior of ion-implanted silicon annealed with an 80-ns (FWHM) laser pulse at 1.06 μm. The experimental results include: (1) a determination of threshold energy density required for melting using a transient optical reflectivity technique, (2) measurements of dopant distribution using Rutherford backscattering spectroscopy, (3) characterization of electrical properties by measuring reverse leakage current densities of laser-annealed and thermal-annealed mesa diodes, (4) determination of annealed junction depth using an electron-beam-induced-current technique, and (5) a deep-level-transient spectroscopic study of residual defects. In particular, by measuring these properties of a diode annealed at a condition near the threshold energy density for liquid phase epitaxial regrowth, we have found certain correlations among these various annealing behaviors and electrical properties of laser-annealed ion-implanted silicon diodes

  1. Atomic scale imaging of structural changes in solid electrolyte lanthanum lithium niobate upon annealing

    International Nuclear Information System (INIS)

    Hu, Xiaobing; Fisher, Craig A.J.; Kobayashi, Shunsuke; Ikuhara, Yumi H.; Fujiwara, Yasuyuki; Hoshikawa, Keigo; Moriwake, Hiroki; Kohama, Keiichi; Iba, Hideki; Ikuhara, Yuichi

    2017-01-01

    La (1-x)/3 Li x NbO 3 (LLNbO) is a promising electrolyte material for solid-state lithium-ion batteries because it is stable in contact with Li metal and contains a high concentration of intrinsic Li-ion vacancies. One strategy for improving its ionic conductivity and making it more competitive with other solid-state Li-ion electrolytes is to disorder the Li-ion vacancies by appropriate post-synthesis heat treatment, e.g., annealing. In this study, we examine the effects of annealing on single crystals of LLNbO with Li contents x = 0.07 and 0.13 based on simultaneous atomic resolution high angle annular dark field and annular bright field imaging methods using state-of-the-art aberration corrected scanning transmission electron microscopes. It is found that La modulation within A1 layers of the cation-deficient layered perovskite structure becomes more diffuse after annealing. In addition, some La atoms move to A-site positions and O4 window positions in the nominally vacant A2 layer, while O atom columns in this layer become rumpled in the [001] p direction, indicating that the NbO 6 octahedra are more heavily distorted after annealing. The observed crystal structure differences between as-prepared and annealed single crystals explain the drop in Li-ion conductivities of LLNbO single crystals after heat treatment.

  2. Single helically folded aromatic oligoamides that mimic the charge surface of double-stranded B-DNA

    Science.gov (United States)

    Ziach, Krzysztof; Chollet, Céline; Parissi, Vincent; Prabhakaran, Panchami; Marchivie, Mathieu; Corvaglia, Valentina; Bose, Partha Pratim; Laxmi-Reddy, Katta; Godde, Frédéric; Schmitter, Jean-Marie; Chaignepain, Stéphane; Pourquier, Philippe; Huc, Ivan

    2018-05-01

    Numerous essential biomolecular processes require the recognition of DNA surface features by proteins. Molecules mimicking these features could potentially act as decoys and interfere with pharmacologically or therapeutically relevant protein-DNA interactions. Although naturally occurring DNA-mimicking proteins have been described, synthetic tunable molecules that mimic the charge surface of double-stranded DNA are not known. Here, we report the design, synthesis and structural characterization of aromatic oligoamides that fold into single helical conformations and display a double helical array of negatively charged residues in positions that match the phosphate moieties in B-DNA. These molecules were able to inhibit several enzymes possessing non-sequence-selective DNA-binding properties, including topoisomerase 1 and HIV-1 integrase, presumably through specific foldamer-protein interactions, whereas sequence-selective enzymes were not inhibited. Such modular and synthetically accessible DNA mimics provide a versatile platform to design novel inhibitors of protein-DNA interactions.

  3. The Effects of Annealing Parameters on the Crystallization and Morphology of Cu(In,GaSe2 Absorber Layers Prepared by Annealing Stacked Metallic Precursors

    Directory of Open Access Journals (Sweden)

    Chia-Ho Huang

    2014-01-01

    Full Text Available CIGS films are prepared by single-stage annealing of the solid Se-coated In/Cu-Ga bilayer precursor. The annealing processes were performed using various Ar pressures, heating rates, and soaking times. A higher Ar pressure is needed to fabricate highly crystalline CIGS films, as no extra Se-vapor source is supplied. As the heating rate increases, the surface morphologies of the CIGS films become looser and some cracks are observed. However, the influence of soaking time is insignificant and the selenization process only requires a short time when the precursors are selenized at a higher temperature with a lower heating rate and a higher Ar pressure. In this study, a dense chalcopyrite CIGS film with a thickness of about 1.5-1.6 μm, with large grains (~1.2 μm and no cracking or peeling is obtained after selenizing at a temperature of 550°C, an Ar pressure of 300 Torr, a heating rate of 60°C/min, and a soaking time of 20 min. By adequate design of the stacked precursor and controlling the annealing parameters, single-stage annealing of the solid Se-coated In/Cu-Ga bilayer precursor is simplified for the fabrication of a fully crystallized chalcopyrite CIGS absorber layers with good crystallization and large grains.

  4. Effect of vitamin E on cytotoxicity, DNA single strand breaks, chromosomal aberrations, and mutation in Chinese hamster V-79 cells exposed to ultraviolet-B light

    International Nuclear Information System (INIS)

    Sugiyama, M.; Tsuzuki, K.; Matsumoto, K.; Ogura, R.

    1992-01-01

    The effect of pretreatment with vitamin E on cytotoxicity, DNA single strand breaks, and chromosomal aberrations as well as on mutation induced by ultraviolet-B light (UV-B) was investigated in Chinese hamster V-79 cells. Cellular pretreatment with non-toxic levels of 25 μM α-tocopherol succinate (vitamin E) for 24h prior to exposure resulted in a 10-fold increase in cellular levels of α-tocopherol. Using a colony-forming assay, this pretreatment decreased the cytotoxicity of UV-B light. However, alkaline elution assays demonstrated that pretreatment with vitamin E did not affect the number of DNA single strand breaks caused by UV-B light. UV-B exposure produced a dose-dependent induction of chromosomal aberrations and mutations at the HGPRT locus, and neither of these actions of UV-B was influenced by pretreatment with the vitamin. These results suggest that vitamin E protects cells from UV-B-induced cytotoxicity, possibly through its ability to scavenge free radicals. The genotoxicity induced by UV-B light may not correlate directly with the cytotoxic action of this wavelength region in sunlight. (author)

  5. P-type single-crystalline ZnO films obtained by (Na,N) dual implantation through dynamic annealing process

    Science.gov (United States)

    Zhang, Zhiyuan; Huang, Jingyun; Chen, Shanshan; Pan, Xinhua; Chen, Lingxiang; Ye, Zhizhen

    2018-02-01

    Single-crystalline ZnO films were grown by plasma-assisted molecular beam epitaxy technique on c-plane sapphire substrates. The films have been implanted with fixed fluence of 130 keV Na and 90 keV N ions at 460 °C. It is observed that dually-implanted single crystalline ZnO films exhibit p-type characteristics with hole concentration in the range of 1.24 × 1016-1.34 × 1017 cm-3, hole mobilities between 0.65 and 8.37 cm2 V-1 s-1, and resistivities in the range of 53.3-80.7 Ω cm by Hall-effect measurements. There are no other secondary phase appearing, with (0 0 2) (c-plane) orientation after ion implantation as identified by the X-ray diffraction pattern. It is obtained that Na and N ions were successfully implanted and activated as acceptors measured by XPS and SIMS results. Also compared to other similar studies, lower amount of Na and N ions make p-type characteristics excellent as others deposited by traditional techniques. It is concluded that Na and N ion implantation and dynamic annealing are essential in forming p-type single-crystalline ZnO films.

  6. Mass strandings of various ommastrephid squid species have been ...

    African Journals Online (AJOL)

    spamer

    escape reaction, to jet backwards at speed, is commonly observed. Appearing to ... on the occasion of a single mass stranding (La Pylaie, as cited in Lane 1957). ..... have also been associated with the displacement of major water masses ...

  7. Sequence-specific RNA Photocleavage by Single-stranded DNA in Presence of Riboflavin

    Science.gov (United States)

    Zhao, Yongyun; Chen, Gangyi; Yuan, Yi; Li, Na; Dong, Juan; Huang, Xin; Cui, Xin; Tang, Zhuo

    2015-10-01

    Constant efforts have been made to develop new method to realize sequence-specific RNA degradation, which could cause inhibition of the expression of targeted gene. Herein, by using an unmodified short DNA oligonucleotide for sequence recognition and endogenic small molecue, vitamin B2 (riboflavin) as photosensitizer, we report a simple strategy to realize the sequence-specific photocleavage of targeted RNA. The DNA strand is complimentary to the target sequence to form DNA/RNA duplex containing a G•U wobble in the middle. The cleavage reaction goes through oxidative elimination mechanism at the nucleoside downstream of U of the G•U wobble in duplex to obtain unnatural RNA terminal, and the whole process is under tight control by using light as switch, which means the cleavage could be carried out according to specific spatial and temporal requirements. The biocompatibility of this method makes the DNA strand in combination with riboflavin a promising molecular tool for RNA manipulation.

  8. Checkpoint Kinase Rad53 Couples Leading- and Lagging-Strand DNA Synthesis under Replication Stress.

    Science.gov (United States)

    Gan, Haiyun; Yu, Chuanhe; Devbhandari, Sujan; Sharma, Sushma; Han, Junhong; Chabes, Andrei; Remus, Dirk; Zhang, Zhiguo

    2017-10-19

    The checkpoint kinase Rad53 is activated during replication stress to prevent fork collapse, an essential but poorly understood process. Here we show that Rad53 couples leading- and lagging-strand synthesis under replication stress. In rad53-1 cells stressed by dNTP depletion, the replicative DNA helicase, MCM, and the leading-strand DNA polymerase, Pol ε, move beyond the site of DNA synthesis, likely unwinding template DNA. Remarkably, DNA synthesis progresses further along the lagging strand than the leading strand, resulting in the exposure of long stretches of single-stranded leading-strand template. The asymmetric DNA synthesis in rad53-1 cells is suppressed by elevated levels of dNTPs in vivo, and the activity of Pol ε is compromised more than lagging-strand polymerase Pol δ at low dNTP concentrations in vitro. Therefore, we propose that Rad53 prevents the generation of excessive ssDNA under replication stress by coordinating DNA unwinding with synthesis of both strands. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Radiation induced strand breaks and time scale for repair of broken strands in superinfecting phage lambda DNA in Escherichia coli lysogenic for lambda

    International Nuclear Information System (INIS)

    Johansen, I.; Boye, E.; Brustad, T.

    1975-01-01

    The production of the first radiation induced break in covalent lambda DNA molecules in pol + and pol A 1 lysogenic host cells was measured after exposure to electrons from a linear accelerator and transfer to alkaline detergent within 100 ms from the onset of irradiation. The results revealed the presence of an oxygen effect in DNA strand breakage. In both pol + and pol A 1 host cells the rate of production in nitrogen was 1.2x10 -12 DNA single strand breaks per rad per dalton as compared to 5x10 -12 in oxygen. The yields of strand breaks in lambda DNA in pol + host cells under oxygenated or anoxic conditions are independent of whether the cells are irradiated in buffer at room temperature, in buffer at ice temperature, or in growth medium at 37 0 C. These results indicate that enzymic repair of DNA strand breaks before analysis is insignificant in these experiments. The presence of an oxygen effect in DNA strand breakage under these conditions suggest that an actual difference exists between initial number of breaks produced in nitrogen and in oxygen. The kinetics of rejoining of broken molecules under optimal growth conditions was measured by incubating the irradiated host cells prior to lysis. In pol + host cells 50% of the lambda DNA molecules broken in presence of oxygen are rejoined within 10 to 20 seconds of incubation. A significantly lower recovery is seen in pol + host cells after irradiation in nitrogen. The rejoining of broken lambda DNA strands in pol A 1 host cells is impaired after irradiation in presence of oxygen as well as under anoxia. These results show that DNA polymerase I is needed for the rapid rejoining of radiation induced strand breaks in the DNA, and that oxygen promoted strand breaks are more easily rejoined than are those produced in nitrogen. (author)

  10. REV7 counteracts DNA double-strand break resection and affects PARP inhibition

    NARCIS (Netherlands)

    Xu, Guotai; Chapman, J. Ross; Brandsma, Inger; Yuan, Jingsong; Mistrik, Martin; Bouwman, Peter; Bartkova, Jirina; Gogola, Ewa; Warmerdam, Daniël; Barazas, Marco; Jaspers, Janneke E.; Watanabe, Kenji; Pieterse, Mark; Kersbergen, Ariena; Sol, Wendy; Celie, Patrick H. N.; Schouten, Philip C.; van den Broek, Bram; Salman, Ahmed; Nieuwland, Marja; de Rink, Iris; de Ronde, Jorma; Jalink, Kees; Boulton, Simon J.; Chen, Junjie; van Gent, Dik C.; Bartek, Jiri; Jonkers, Jos; Borst, Piet; Rottenberg, Sven

    2015-01-01

    Error-free repair of DNA double-strand breaks (DSBs) is achieved by homologous recombination (HR), and BRCA1 is an important factor for this repair pathway(1). In the absence of BRCA1-mediated HR, the administration of PARP inhibitors induces synthetic lethality of tumour cells of patients with

  11. Enzyme-free colorimetric detection systems based on the DNA strand displacement competition reaction

    Science.gov (United States)

    Zhang, Z.; Birkedal, V.; Gothelf, K. V.

    2016-05-01

    The strand displacement competition assay is based on the dynamic equilibrium of the competitive hybridization of two oligonucleotides (A and B) to a third oligonucleotide (S). In the presence of an analyte that binds to a specific affinity-moiety conjugated to strand B, the equilibrium shifts, which can be detected by a shift in the fluorescence resonance energy transfer signal between dyes attached to the DNA strands. In the present study we have integrated an ATP aptamer in the strand B and demonstrated the optical detection of ATP. Furthermore we explore a new readout method using a split G-quadruplex DNAzyme for colorimetric readout of the detection of streptavidin by the naked eye. Finally, we integrate the whole G-quadruplex DNAzyme system in a single DNA strand and show that it is applicable to colorimetric detection.

  12. Enzyme-free colorimetric detection systems based on the DNA strand displacement competition reaction

    DEFF Research Database (Denmark)

    Zhang, Zhao; Birkedal, Victoria; Gothelf, Kurt Vesterager

    2016-01-01

    The strand displacement competition assay is based on the dynamic equilibrium of the competitive hybridization of two oligonucleotides (A and B) to a third oligonucleotide (S). In the presence of an analyte that binds to a specific affinity-moiety conjugated to strand B, the equilibrium shifts, w...... G-quadruplex DNAzyme for colorimetric readout of the detection of streptavidin by the naked eye. Finally, we integrate the whole G-quadruplex DNAzyme system in a single DNA strand and show that it is applicable to colorimetric detection......., which can be detected by a shift in the fluorescence resonance energy transfer signal between dyes attached to the DNA strands. In the present study we have integrated an ATP aptamer in the strand B and demonstrated the optical detection of ATP. Furthermore we explore a new readout method using a split...

  13. Development of library preparation method able to correct gene expression levels in rice anther and isolate a trace expression gene mediated in cold-resistance

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, Tomoya; Koike, Setsuo [Tohoku National Agricultural Experiment Station, Morioka (Japan)

    2000-02-01

    When cDNA library is prepared by a previously developed method, genes of which expression level is high are apt to be cloned at a high frequency, whereas genes of which expression level are low, are difficult to be cloned. A low-expression gene has been cloned at very low frequency. Therefore, the gene encoding the key enzyme that is involved in growth disturbance of rice pollen has not been identified. In this study, development of a library preparing method able to correct the expression level was attempted using highly sensitive detection method with radioisotope and some genes related to cold-resistance of rice were isolated. Double strand DNAs were synthesized using mRNA extract from rice anthers and annealed following heat-denaturation. It has been known that single strand DNA molecules abundantly existing in DNA solution can easily aggregate to form double strand DNA, but single stranded DNA molecules poor in the solution are apt to still remain as single strand after annealing. Thus, the amount of single strand DNA would be balanced in the solution between abundant DNA and poor DNA species. The authors succeeded to prepare a gene library including low and high expression genes at similar proportions. Moreover, spin trap method that allows RI labeling of DNA bound to latex particle, was developed to detect with high sensitivity, especially for genes that are expressed at low level. The present method could be used for recovery, detection and quantitative analysis of radiolabeled single strand DNA. Thus, it was demonstrated that the stage from tetrad sperm to small sperm might be easily affected by cold stress. The present results suggest that the expressions of {beta}-1 and {beta}-3 glucanase, which are involved in the release of small sperms following meiosis in the pollen formation, might be easily affected by cold stress. (M.N.)

  14. Development of library preparation method able to correct gene expression levels in rice anther and isolate a trace expression gene mediated in cold-resistance

    International Nuclear Information System (INIS)

    Yamaguchi, Tomoya; Koike, Setsuo

    2000-01-01

    When cDNA library is prepared by a previously developed method, genes of which expression level is high are apt to be cloned at a high frequency, whereas genes of which expression level are low, are difficult to be cloned. A low-expression gene has been cloned at very low frequency. Therefore, the gene encoding the key enzyme that is involved in growth disturbance of rice pollen has not been identified. In this study, development of a library preparing method able to correct the expression level was attempted using highly sensitive detection method with radioisotope and some genes related to cold-resistance of rice were isolated. Double strand DNAs were synthesized using mRNA extract from rice anthers and annealed following heat-denaturation. It has been known that single strand DNA molecules abundantly existing in DNA solution can easily aggregate to form double strand DNA, but single stranded DNA molecules poor in the solution are apt to still remain as single strand after annealing. Thus, the amount of single strand DNA would be balanced in the solution between abundant DNA and poor DNA species. The authors succeeded to prepare a gene library including low and high expression genes at similar proportions. Moreover, spin trap method that allows RI labeling of DNA bound to latex particle, was developed to detect with high sensitivity, especially for genes that are expressed at low level. The present method could be used for recovery, detection and quantitative analysis of radiolabeled single strand DNA. Thus, it was demonstrated that the stage from tetrad sperm to small sperm might be easily affected by cold stress. The present results suggest that the expressions of β-1 and β-3 glucanase, which are involved in the release of small sperms following meiosis in the pollen formation, might be easily affected by cold stress. (M.N.)

  15. Thermal annealing behaviour of Pd Schottky contacts on melt-grown single crystal ZnO studied by IV and CV measurements

    International Nuclear Information System (INIS)

    Mtangi, W.; Auret, F.D.; Chawanda, A.; Janse van Rensburg, P.J.; Coelho, S.M.M.; Nel, J.M.; Diale, M.; Schalkwyk, L. van; Nyamhere, C.

    2012-01-01

    Highlights: ► Highly rectifying Pd/ZnO contacts have been fabricated. ► The rectification behaviour decrease with annealing temperature. ► The surface donor concentration increases with increase in annealing temperature. ► The depletion layer width at a specific reverse voltage decreases with increase in annealing temperature. - Abstract: Current–voltage (IV) and capacitance–voltage (CV) measurement techniques have successfully been employed to study the effects of annealing highly rectifying Pd/ZnO Schottky contacts. IV results reveal a decrease in the contact quality with increasing annealing temperature as confirmed by a decrease in the zero bias barrier height and an increase in the reverse current measured at −1.5 V. An average barrier height of (0.77 ± 0.02) eV has been calculated by assuming pure thermionic emission for the as-deposited material and as (0.56 ± 0.03) eV after annealing at 550 °C. The reverse current has been measured as (2.10 ± 0.01) × 10 −10 A for the as-deposited and increases by 5 orders of magnitude after annealing at 550 °C to (1.56 ± 0.01) × 10 −5 A. The depletion layer width measured at −2.0 V has shown a strong dependence on thermal annealing as it decreases from 1.09 μm after annealing at 200 °C to 0.24 μm after annealing at 500 °C, resulting in the modification of the dopant concentration within the depletion region and hence the current flowing through the interface from pure thermionic emission to thermionic field emission with the donor concentrations increasing from 6.90 × 10 15 cm −3 at 200 °C to 6.06 × 10 16 cm −3 after annealing at 550 °C. This increase in the volume concentration has been explained as an effect of a conductive channel that shifts closer to the surface after sample annealing. The series resistance has been observed to decrease with increase in annealing temperature. The Pd contacts have shown high stability up to an annealing temperature of 250 °C as revealed by the IV

  16. Thermal annealing behaviour of Pd Schottky contacts on melt-grown single crystal ZnO studied by IV and CV measurements

    Energy Technology Data Exchange (ETDEWEB)

    Mtangi, W., E-mail: wilbert.mtangi@up.ac.za [Department of Physics, University of Pretoria, Private Bag X20, Hatfield 0028 (South Africa); Auret, F.D.; Chawanda, A.; Janse van Rensburg, P.J.; Coelho, S.M.M.; Nel, J.M.; Diale, M.; Schalkwyk, L. van [Department of Physics, University of Pretoria, Private Bag X20, Hatfield 0028 (South Africa); Nyamhere, C. [Department of Physics, P.O. Box 77000, Nelson Mandela Metropolitan University, Port Elizabeth 6031 (South Africa)

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer Highly rectifying Pd/ZnO contacts have been fabricated. Black-Right-Pointing-Pointer The rectification behaviour decrease with annealing temperature. Black-Right-Pointing-Pointer The surface donor concentration increases with increase in annealing temperature. Black-Right-Pointing-Pointer The depletion layer width at a specific reverse voltage decreases with increase in annealing temperature. - Abstract: Current-voltage (IV) and capacitance-voltage (CV) measurement techniques have successfully been employed to study the effects of annealing highly rectifying Pd/ZnO Schottky contacts. IV results reveal a decrease in the contact quality with increasing annealing temperature as confirmed by a decrease in the zero bias barrier height and an increase in the reverse current measured at -1.5 V. An average barrier height of (0.77 {+-} 0.02) eV has been calculated by assuming pure thermionic emission for the as-deposited material and as (0.56 {+-} 0.03) eV after annealing at 550 Degree-Sign C. The reverse current has been measured as (2.10 {+-} 0.01) Multiplication-Sign 10{sup -10} A for the as-deposited and increases by 5 orders of magnitude after annealing at 550 Degree-Sign C to (1.56 {+-} 0.01) Multiplication-Sign 10{sup -5} A. The depletion layer width measured at -2.0 V has shown a strong dependence on thermal annealing as it decreases from 1.09 {mu}m after annealing at 200 Degree-Sign C to 0.24 {mu}m after annealing at 500 Degree-Sign C, resulting in the modification of the dopant concentration within the depletion region and hence the current flowing through the interface from pure thermionic emission to thermionic field emission with the donor concentrations increasing from 6.90 Multiplication-Sign 10{sup 15} cm{sup -3} at 200 Degree-Sign C to 6.06 Multiplication-Sign 10{sup 16} cm{sup -3} after annealing at 550 Degree-Sign C. This increase in the volume concentration has been explained as an effect of a conductive channel

  17. Single-strand breaks in the DNA of the uvrA and uvrB strains of Escherichia coli K-12 after ultraviolet irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Youngs, D A; Smith, K C [Stanford Univ., Calif. (USA). Dept. of Radiology

    1976-12-01

    DNA single-strand breaks were produced in uvrA and uvrB strains of E.coli K-12 after UV (254 nm) irradiation. These breaks appeared to be produced both directly by photochemical events, and by a temperature-dependent process. Cyclobutane-type pyrimidine dimers are probably not the photoproducts that lead to the temperature-dependent breaks, since photoreactivation had no detectable effect on the final yield of breaks. The DNA strand breaks appeared to be repairable by a process that requires DNA polymerase I and polynucleotide ligase, but not the recA, recB, recF, lexA101 or uvrD gene products. It is hypothesized that these temperature-dependent breaks occur either as a result of breakdown of a thermolabile photoproduct, or as the initial endonucleolytic event of a uvrA, uvrB-independent excision repair process that acts on a UV photoproduct other than the cyclobutane-type pyrimidine dimer.

  18. Selection and characterization of single stranded DNA aptamers recognizing fumonisin B{sub 1}

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xiujuan; Huang, Yukun; Duan, Nuo; Wu, Shijia; Xia, Yu; Ma, Xiaoyuan; Ding, Zhansheng; Wang, Zhouping [State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University, Wuxi, 214122 (China); Zhu, Changqing; Jiang, Yuan [Animal, Plant and Food Inspection Centre, Jiangsu Entry-Exit Inspection and Quarantine Bureau, Nanjing, 210001 (China)

    2014-08-01

    We present an improved method for the selection of single-stranded DNA aptamers that can recognize fumonisin B{sub 1} (FB{sub 1}). FB{sub 1} is a carcinogenic mycotoxin mainly found in corn and corn-based food products worldwide, posing a global threat to feed and food safety. Selection was based on the mag-SELEX (magnetic bead systematic evolution of ligands by exponential enrichment) technology modified by adopting free analogs of targets rather than immobilized targets for counter selections. Firstly, aptamer candidates for FB{sub 1} were selected from an 80 nt random DNA library after 13 rounds of selection. Next, binding assays were performed for affinity evaluation, and circular dichroism spectroscopy was used to investigate their conformation. A high-affinity aptamer designated as F10 (with a dissociation constant of 62 ± 5 nM) was identified and tested for its specificity by competitive binding assays. The results demonstrate that this improved mag-SELEX technology facilitates aptamer screening because it avoids the tedious immobilization of counter-selection molecules on magnetic beads. The aptamers obtained by this technique open new possibilities for the detection of FB{sub 1} via aptasensors. (author)

  19. Stranded costs and exit fees

    International Nuclear Information System (INIS)

    2002-01-01

    The New Brunswick Market Design Committee has been directed to examine the issue of stranded costs since it is a major component of restructuring within the electricity sector. When regulated monopolies are faced with competition, they could find that some of their embedded costs cannot be recovered. These costs are referred to as stranded costs. Common sources include large capital investments in uneconomic plants or expensive power purchase contracts or fuel supply contracts. In general, stranded costs do not include gains or losses associated with normal business risks experienced by regulated utilities. This report presents recommendations for mitigation of stranded costs, valuation methodologies and cost-recovery mechanisms. It also presents a summary of experience with stranded costs in other jurisdictions such as California, Rhode Island, Pennsylvania and Ontario. Stranded costs are often recovered through an obligatory charge on all customers, particularly in jurisdictions where retail competition exists. In the New Brunswick market, however, the only customers who can create stranded costs are those eligible to choose their own suppliers. It is argued that since most customers will not have a choice of electricity suppliers, they cannot generate stranded costs and therefore, should not have to pay costs stranded by others. A method to quantify stranded costs is presented, along with a review of transmission-related stranded costs in New Brunswick. Expansion of self-generation in New Brunswick could strand transmission assets. Currently, self-generators only contribute a small amount to fixed charges of the transmission system. However, under new recommended tariffs, the amount could increase. It is likely that the net amount of stranded transmission costs will not be large. 2 refs., 1 fig

  20. A critical role for topoisomerase IIb and DNA double strand breaks in transcription.

    Science.gov (United States)

    Calderwood, Stuart K

    2016-05-26

    Recent studies have indicated a novel role for topoisomerase IIb in transcription. Transcription of heat shock genes, serum-induced immediate early genes and nuclear receptor-activated genes, each required DNA double strands generated by topoisomerase IIb. Such strand breaks seemed both necessary and sufficient for transcriptional activation. In addition, such transcription was associated with initiation of the DNA damage response pathways, including the activation of the enzymes: ataxia-telangiectasia mutated (ATM), DNA-dependent protein kinase and poly (ADP ribose) polymerase 1. DNA damage response signaling was involved both in transcription and in repair of DNA breaks generated by topoisomerase IIb.

  1. Intramolecular binding mode of the C-terminus of Escherichia coli single-stranded DNA binding protein determined by nuclear magnetic resonance spectroscopy

    OpenAIRE

    Shishmarev, Dmitry; Wang, Yao; Mason, Claire E.; Su, Xun-Cheng; Oakley, Aaron J.; Graham, Bim; Huber, Thomas; Dixon, Nicholas E.; Otting, Gottfried

    2013-01-01

    Single-stranded DNA (ssDNA) binding protein (SSB) is an essential protein to protect ssDNA and recruit specific ssDNA-processing proteins. Escherichia coli SSB forms a tetramer at neutral pH, comprising a structurally well-defined ssDNA binding domain (OB-domain) and a disordered C-terminal domain (C-domain) of ∼64 amino acid residues. The C-terminal eight-residue segment of SSB (C-peptide) has been shown to interact with the OB-domain, but crystal structures failed to reveal any electron den...

  2. Non-vacuum, single-step conductive transparent ZnO patterning by ultra-short pulsed laser annealing of solution-deposited nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Daeho; Pan, Heng; Kim, Eunpa; Grigoropoulos, Costas P. [University of California, Department of Mechanical Engineering, Berkeley, CA (United States); Ko, Seung Hwan [Korea Advanced Institute of Science and Technology (KAIST), Department of Mechanical Engineering, Daejeon (Korea, Republic of); Park, Hee K. [AppliFlex LLC, Sunnyvale, CA (United States)

    2012-04-15

    A solution-processable, high-concentration transparent ZnO nanoparticle (NP) solution was successfully synthesized in a new process. A highly transparent ZnO thin film was fabricated by spin coating without vacuum deposition. Subsequent ultra-short-pulsed laser annealing at room temperature was performed to change the film properties without using a blanket high temperature heating process. Although the as-deposited NP thin film was not electrically conductive, laser annealing imparted a large conductivity increase and furthermore enabled selective annealing to write conductive patterns directly on the NP thin film without a photolithographic process. Conductivity enhancement could be obtained by altering the laser annealing parameters. Parametric studies including the sheet resistance and optical transmittance of the annealed ZnO NP thin film were conducted for various laser powers, scanning speeds and background gas conditions. The lowest resistivity from laser-annealed ZnO thin film was about 4.75 x 10{sup -2} {omega} cm, exhibiting a factor of 10{sup 5} higher conductivity than the previously reported furnace-annealed ZnO NP film and is even comparable to that of vacuum-deposited, impurity-doped ZnO films within a factor of 10. The process developed in this work was applied to the fabrication of a thin film transistor (TFT) device that showed enhanced performance compared with furnace-annealed devices. A ZnO TFT performance test revealed that by just changing the laser parameters, the solution-deposited ZnO thin film can also perform as a semiconductor, demonstrating that laser annealing offers tunability of ZnO thin film properties for both transparent conductors and semiconductors. (orig.)

  3. Genotyping of human parvovirus B19 in clinical samples from Brazil and Paraguay using heteroduplex mobility assay, single-stranded conformation polymorphism and nucleotide sequencing

    Directory of Open Access Journals (Sweden)

    Marcos César Lima de Mendonça

    2011-06-01

    Full Text Available Heteroduplex mobility assay, single-stranded conformation polymorphism and nucleotide sequencing were utilised to genotype human parvovirus B19 samples from Brazil and Paraguay. Ninety-seven serum samples were collected from individuals presenting with abortion or erythema infectiosum, arthropathies, severe anaemia and transient aplastic crisis; two additional skin samples were collected by biopsy. After the procedure, all clinical samples were classified as genotype 1.

  4. Enzymatic quantification of strand breaks of DNA induced by vacuum-UV radiation

    International Nuclear Information System (INIS)

    Ito, Takashi

    1986-01-01

    Hind3 digested plasmid DNA dried on an aluminum plate was irradiated by vacuum-UV at 160 and 195 nm using a synchrotron irradiation system. A change induced in the DNA, presumably a single strand break, was quantified by the aid of the strand break-derived stimulation of poly(ADP-ribose) synthetase activity. The end group of strand breaks so induced was recognized by the enzyme as effectively as that by DNase 1 treatment, suggesting a nicking as the major lesion inflicted on the DNA. The fluence (UV) dependent stimulation of poly(ADP-ribose) synthetase activity was much higher upon 160 nm irradiation than upon 195 nm irradiation. (Auth.)

  5. Initiation and termination of the bacteriophage phi X174 rolling circle DNA replication in vivo: packaging of plasmid single-stranded DNA into bacteriophage phi X174 coats

    NARCIS (Netherlands)

    van der Ende, A.; Teertstra, R.; Weisbeek, P. J.

    1982-01-01

    The bacteriophage phi X174 viral (+) origin when inserted in a plasmid can interact in vivo with the A protein produced by infecting phi X174 phages. A consequence of this interaction is packaging of single-stranded plasmid DNA into preformed phage coats resulting in infective particles (1). This

  6. DNA strand scission by the novel antitumor antibiotic leinamycin

    International Nuclear Information System (INIS)

    Hara, Mitsunobu; Saitoh, Yutaka; Nakano, Hirofumi

    1990-01-01

    Leinamycin is a recently discovered antitumor antibiotic with an unusual 1,3-dioxo-1,2-dithiolane structure. It preferentially inhibits the incorporation of [ 3 H]thymidine into the acid-insoluble fraction of Bacillus subtilis. In vitro, leinamycin causes single-strand cleavage of supercoiled double-helical pBR322 DNA in the presence of thiol cofactors. Scavengers of oxygen radical did not suppress the DNA-cleaving activity. Thiol-activated leinamycin binds calf thymus DNA at 4 degree C and thermal treatment of the leinamycin-DNA adduct released a chemically modified leinamycin from the complex. The lack of cytotoxicity and DNA-cleaving activity for S-deoxyleinamycin indicates that the 1,3-dioxo-1,2-dithiolane moiety is essential for the activity of leinamycin. Thus, the primary cellular target of leinamycin appears to be DNA. It binds DNA and causes single-strand break at low concentrations, which may account for the potent antitumor activity

  7. Reductive nanocomplex encapsulation of cRGD-siRNA conjugates for enhanced targeting to cancer cells

    Directory of Open Access Journals (Sweden)

    Zhou Z

    2017-10-01

    Full Text Available Zhaoxiu Zhou,* Shuang Liu,* Yanfen Zhang, Xiantao Yang, Yuan Ma, Zhu Guan, Yun Wu, Lihe Zhang, Zhenjun Yang State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, People’s Republic of China *These authors contributed equally to this work Abstract: In this study, through covalent conjugation and lipid material entrapment, a combined modification strategy was established for effective delivery of small interfering RNA (siRNA. Single strands of siRNA targeting to BRAFV600E gene (siMB3 conjugated with cRGD peptide at 3'-terminus or 5'-terminus via cleavable disulfide bond was synthesized and then annealed with corresponding strands to obtain single and bis-cRGD-siRNA conjugates. A cationic lipid material (CLD developed by our laboratory was mixed with the conjugates to generate nanocomplexes; their uniformity and electrical property were revealed by particle size and zeta potential measurement. Compared with CLD/siBraf, CLD/cRGD-siBraf achieved higher cell uptake and more excellent tumor-targeting ability, especially 21 (sense-5′/antisense-3″-cRGD-congjugate nanocomplex. Moreover, they can regulate multiple pathways to varying degree and reduce acidification of endosome. Compared with the gene silencing of different conjugates, single or bis-cRGD-conjugated siRNA showed little differences except 22 (5/5 which cRGD was conjugated at 5'-terminus of antisense strand and sense strand. However bis-cRGD conjugate 21 nanocomplex exhibited better specific target gene silencing at multiple time points. Furthermore, the serum stabilities of the bis-cRGD conjugates were higher than those of the single-cRGD conjugates. In conclusion, all these data suggested that CLD/bis-conjugates, especially CLD/21, can be an effective system for delivery of siRNA to target BRAFV600E gene for therapy of melanoma. Keywords: cRGD-siRNA conjugates, cationic lipids, targeting, silencing, intracellular pathways

  8. Evaluation of the neutral comet assay for detection of alpha-particle induced DNA-double-strand-breaks

    International Nuclear Information System (INIS)

    Hofbauer, Daniela

    2010-01-01

    Aim of this study was to differentiate DNA-double-strand-breaks from DNA-single-strand-breaks on a single cell level, using the comet assay after α- and γ-irradiation. Americium-241 was used as a alpha-irradiation-source, Caesium-137 was used for γ-irradiation. Because of technical problems with both the neutral and alkaline comet assay after irradiation of gastric cancer cells and human lymphocytes, no definite differentiation of DNA-damage was possible.

  9. Scalable effective-temperature reduction for quantum annealers via nested quantum annealing correction

    Science.gov (United States)

    Vinci, Walter; Lidar, Daniel A.

    2018-02-01

    Nested quantum annealing correction (NQAC) is an error-correcting scheme for quantum annealing that allows for the encoding of a logical qubit into an arbitrarily large number of physical qubits. The encoding replaces each logical qubit by a complete graph of degree C . The nesting level C represents the distance of the error-correcting code and controls the amount of protection against thermal and control errors. Theoretical mean-field analyses and empirical data obtained with a D-Wave Two quantum annealer (supporting up to 512 qubits) showed that NQAC has the potential to achieve a scalable effective-temperature reduction, Teff˜C-η , with 0 temperature of a quantum annealer. Such effective-temperature reduction is relevant for machine-learning applications. Since we demonstrate that NQAC achieves error correction via a reduction of the effective-temperature of the quantum annealing device, our results address the problem of the "temperature scaling law for quantum annealers," which requires the temperature of quantum annealers to be reduced as problems of larger sizes are attempted to be solved.

  10. Competitive annealing of multiple DNA origami: formation of chimeric origami

    International Nuclear Information System (INIS)

    Majikes, Jacob M; Nash, Jessica A; LaBean, Thomas H

    2016-01-01

    Scaffolded DNA origami are a robust tool for building discrete nanoscale objects at high yield. This strategy ensures, in the design process, that the desired nanostructure is the minimum free energy state for the designed set of DNA sequences. Despite aiming for the minimum free energy structure, the folding process which leads to that conformation is difficult to characterize, although it has been the subject of much research. In order to shed light on the molecular folding pathways, this study intentionally frustrates the folding process of these systems by simultaneously annealing the staple pools for multiple target or parent origami structures, forcing competition. A surprising result of these competitive, simultaneous anneals is the formation of chimeric DNA origami which inherit structural regions from both parent origami. By comparing the regions inherited from the parent origami, relative stability of substructures were compared. This allowed examination of the folding process with typical characterization techniques and materials. Anneal curves were then used as a means to rapidly generate a phase diagram of anticipated behavior as a function of staple excess and parent staple ratio. This initial study shows that competitive anneals provide an exciting way to create diverse new nanostructures and may be used to examine the relative stability of various structural motifs. (paper)

  11. Application of Single Strand Conformational Polymorphism (PCR-SSCP) in Identification of Some Beta-Globin Gene Mutations in A Group of Egyptian Beta-Thalassemia Patients and Carriers

    International Nuclear Information System (INIS)

    Somaya, E.T.; Soliman, M.D

    2010-01-01

    The present study investigated whether the single-strand conformational polymorphism (SSCP) method could be employed to identify (rather than simply detect) four of the most common beta-globin gene mutations in the Egyptian population: IVS-I-110, IVS-I-6, the IVS-I-1, and Codon 39. Using DNA from 90 beta-thalassemia patients and carriers, by PCR the appropriate 238-bp region of the human beta-globin gene was amplified, the reaction products (Single-stranded DNA) were analyzed by none denaturing polyacrylamide gel electrophoresis, and the bands visualized by silver staining. Single-stranded DNA (ssDNA) fragments showed reproducible pattern of bands that were characteristic of the mutations present. With the use of control samples containing six of the 10 possible combinations of the four beta-globin gene mutations under study, we were able to predict the mutations present in 23 out of 90 (26.4%) of the patients studied. These predictions were confirmed independently by the amplification refractory mutation system (ARMS) method. It is concluded that this non-radioactive PCR-SSCP method can be used to reliably identify mutations in beta-thalassemia patients, provided that suitable controls are available. However, usefulness of this method for determining the genotype of beta-thalassaemic individuals is obviously limited by the great number of controls required. Moreover, the ability to detect mutations by SSCP is in general lower compared to other methods, ARMS, DGGE or DHPLC, which are reported to detect 49.5% to 73% of the mutations present. The SSCP method is nevertheless much easier to employ than other methods and is especially successful for beta-thalassemia carriers. This method would thus be particularly useful for an initial screening of target groups (prenatal diagnosis)

  12. Double-strand breaks in genome-sized DNA caused by mechanical stress under mixing: Quantitative evaluation through single-molecule observation

    Science.gov (United States)

    Kikuchi, Hayato; Nose, Keiji; Yoshikawa, Yuko; Yoshikawa, Kenichi

    2018-06-01

    It is becoming increasingly apparent that changes in the higher-order structure of genome-sized DNA molecules of more than several tens kbp play important roles in the self-control of genome activity in living cells. Unfortunately, it has been rather difficult to prepare genome-sized DNA molecules without damage or fragmentation. Here, we evaluated the degree of double-strand breaks (DSBs) caused by mechanical mixing by single-molecule observation with fluorescence microscopy. The results show that DNA breaks are most significant for the first second after the initiation of mechanical agitation. Based on such observation, we propose a novel mixing procedure to significantly decrease DSBs.

  13. Cascade annealing: an overview

    International Nuclear Information System (INIS)

    Doran, D.G.; Schiffgens, J.O.

    1976-04-01

    Concepts and an overview of radiation displacement damage modeling and annealing kinetics are presented. Short-term annealing methodology is described and results of annealing simulations performed on damage cascades generated using the Marlowe and Cascade programs are included. Observations concerning the inconsistencies and inadequacies of current methods are presented along with simulation of high energy cascades and simulation of longer-term annealing

  14. A rule of seven in Watson-Crick base-pairing of mismatched sequences.

    Science.gov (United States)

    Cisse, Ibrahim I; Kim, Hajin; Ha, Taekjip

    2012-05-13

    Sequence recognition through base-pairing is essential for DNA repair and gene regulation, but the basic rules governing this process remain elusive. In particular, the kinetics of annealing between two imperfectly matched strands is not well characterized, despite its potential importance in nucleic acid-based biotechnologies and gene silencing. Here we use single-molecule fluorescence to visualize the multiple annealing and melting reactions of two untethered strands inside a porous vesicle, allowing us to precisely quantify the annealing and melting rates. The data as a function of mismatch position suggest that seven contiguous base pairs are needed for rapid annealing of DNA and RNA. This phenomenological rule of seven may underlie the requirement for seven nucleotides of complementarity to seed gene silencing by small noncoding RNA and may help guide performance improvement in DNA- and RNA-based bio- and nanotechnologies, in which off-target effects can be detrimental.

  15. Effect of annealing on bulk heterojunction organic solar cells based on copper phthalocyanine and perylene derivative

    KAUST Repository

    Kim, Inho

    2012-02-01

    We investigated the effects of annealing on device performances of bulk heterojunction organic solar cells based on copper phthalocyanine (CuPc) and N,N′-3,4,9,10-perylenetetracarboxylic diimide (PTCDI-C6). Blended films of CuPc and PTCDI-C6 with annealing at elevated temperature were characterized by measuring optical absorption, photoluminescence, and X-ray diffraction. Enhanced molecular ordering and increments in domain sizes of donor and acceptor for the blended films were observed, and their influences on device performances were discussed. Annealing led to substantial improvements in photocurrent owing to enhanced molecular ordering and formation of percolation pathways. © 2011 Elsevier B.V. All rights reserved.

  16. An automated ion implant/pulse anneal machine for low cost silicon cell production

    International Nuclear Information System (INIS)

    Armini, A.J.; Bunker, S.N.; Spitzer, M.B.

    1982-01-01

    The continuing development of a high throughput ion implanter and a pulsed electron beam annealer designed for dedicated silicon solar cell manufacture is reviewed. This equipment is intended for production of junctions in 10 cm wide wafers at a throughput up to 10 MWsub(p) per year. The principal features of the implanter are the lack of mass analysis and defocusing utilizing electrostatic deflection. The implanted surface is annealed by liquid phase epitaxy resulting from a single burst of a large area electron beam. Cells with non-mass analyzed ion implantation have yielded AM1 cell efficiencies in excess of 15%. Pulse annealed Czochralski cells have been made with AM1 efficiencies of 13% vs. 15% for a furnace annealed group. Results of pulse annealing of polycrystalline materials indicate that cell performance comparable to diffusion can be obtained. (Auth.)

  17. Protective effects of pulmonary epithelial lining fluid on oxidative stress and DNA single-strand breaks caused by ultrafine carbon black, ferrous sulphate and organic extract of diesel exhaust particles

    Energy Technology Data Exchange (ETDEWEB)

    Chuang, Hsiao-Chi [School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan (China); Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan (China); Cheng, Yi-Ling; Lei, Yu-Chen [Institute of Occupational Medicine and Industrial Hygiene, College of Public Health, National Taiwan University, Taipei, Taiwan (China); Chang, Hui-Hsien [Institute of Environmental Health, College of Public Health, National Taiwan University, Taipei, Taiwan (China); Cheng, Tsun-Jen, E-mail: tcheng@ntu.edu.tw [Institute of Occupational Medicine and Industrial Hygiene, College of Public Health, National Taiwan University, Taipei, Taiwan (China); Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan (China)

    2013-02-01

    Pulmonary epithelial lining fluid (ELF) is the first substance to make contact with inhaled particulate matter (PM) and interacts chemically with PM components. The objective of this study was to determine the role of ELF in oxidative stress, DNA damage and the production of proinflammatory cytokines following physicochemical exposure to PM. Ultrafine carbon black (ufCB, 15 nm; a model carbonaceous core), ferrous sulphate (FeSO{sub 4}; a model transition metal) and a diesel exhaust particle (DEP) extract (a model organic compound) were used to examine the acellular oxidative potential of synthetic ELF and non-ELF systems. We compared the effects of exposure to ufCB, FeSO{sub 4} and DEP extract on human alveolar epithelial Type II (A549) cells to determine the levels of oxidative stress, DNA single-strand breaks and interleukin-8 (IL-8) production in ELF and non-ELF systems. The effects of ufCB and FeSO{sub 4} on the acellular oxidative potential, cellular oxidative stress and DNA single-strand breakage were mitigated significantly by the addition of ELF, whereas there was no decrease following treatment with the DEP extract. There was no significant effect on IL-8 production following exposure to samples that were suspended in ELF/non-ELF systems. The results of the present study indicate that ELF plays an important role in the initial defence against PM in the pulmonary environment. Experimental components, such as ufCB and FeSO{sub 4}, induced the production of oxidative stress and led to DNA single-strand breaks, which were moderately prevented by the addition of ELF. These findings suggest that ELF plays a protective role against PM-driven oxidative stress and DNA damage. -- Highlights: ► To determine the role of ELF in ROS, DNA damage and IL-8 after exposure to PM. ► ufCB, FeSO{sub 4} and DEP extract were used to examine the protective effects of ELF. ► PM-driven oxidative stress and DNA single-strand breakage were mitigated by ELF. ► The findings

  18. Reconstitution of RPA-covered single-stranded DNA-activated ATR-Chk1 signaling.

    Science.gov (United States)

    Choi, Jun-Hyuk; Lindsey-Boltz, Laura A; Kemp, Michael; Mason, Aaron C; Wold, Marc S; Sancar, Aziz

    2010-08-03

    ATR kinase is a critical upstream regulator of the checkpoint response to various forms of DNA damage. Previous studies have shown that ATR is recruited via its binding partner ATR-interacting protein (ATRIP) to replication protein A (RPA)-covered single-stranded DNA (RPA-ssDNA) generated at sites of DNA damage where ATR is then activated by TopBP1 to phosphorylate downstream targets including the Chk1 signal transducing kinase. However, this critical feature of the human ATR-initiated DNA damage checkpoint signaling has not been demonstrated in a defined system. Here we describe an in vitro checkpoint system in which RPA-ssDNA and TopBP1 are essential for phosphorylation of Chk1 by the purified ATR-ATRIP complex. Checkpoint defective RPA mutants fail to activate ATR kinase in this system, supporting the conclusion that this system is a faithful representation of the in vivo reaction. Interestingly, we find that an alternative form of RPA (aRPA), which does not support DNA replication, can substitute for the checkpoint function of RPA in vitro, thus revealing a potential role for aRPA in the activation of ATR kinase. We also find that TopBP1 is recruited to RPA-ssDNA in a manner dependent on ATRIP and that the N terminus of TopBP1 is required for efficient recruitment and activation of ATR kinase.

  19. Toehold-mediated strand displacement reaction-dependent fluorescent strategy for sensitive detection of uracil-DNA glycosylase activity.

    Science.gov (United States)

    Wu, Yushu; Wang, Lei; Jiang, Wei

    2017-03-15

    Sensitive detection of uracil-DNA glycosylase (UDG) activity is beneficial for evaluating the repairing process of DNA lesions. Here, toehold-mediated strand displacement reaction (TSDR)-dependent fluorescent strategy was constructed for sensitive detection of UDG activity. A single-stranded DNA (ssDNA) probe with two uracil bases and a trigger sequence were designed. A hairpin probe with toehold domain was designed, and a reporter probe was also designed. Under the action of UDG, two uracil bases were removed from ssDNA probe, generating apurinic/apyrimidinic (AP) sites. Then, the AP sites could inhibit the TSDR between ssDNA probe and hairpin probe, leaving the trigger sequence in ssDNA probe still free. Subsequently, the trigger sequence was annealed with the reporter probe, initiating the polymerization and nicking amplification reaction. As a result, numerous G-quadruplex (G4) structures were formed, which could bind with N-methyl-mesoporphyrin IX (NMM) to generate enhanced fluorescent signal. In the absence of UDG, the ssDNA probe could hybridize with the toehold domain of the hairpin probe to initiate TSDR, blocking the trigger sequence, and then the subsequent amplification reaction would not occur. The proposed strategy was successfully implemented for detecting UDG activity with a detection limit of 2.7×10 -5 U/mL. Moreover, the strategy could distinguish UDG well from other interference enzymes. Furthermore, the strategy was also applied for detecting UDG activity in HeLa cells lysate with low effect of cellular components. These results indicated that the proposed strategy offered a promising tool for sensitive quantification of UDG activity in UDG-related function study and disease prognosis. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Systematic analysis of DNA damage induction and DNA repair pathway activation by continuous wave visible light laser micro-irradiation

    Directory of Open Access Journals (Sweden)

    Britta Muster

    2017-02-01

    Full Text Available Laser micro-irradiation can be used to induce DNA damage with high spatial and temporal resolution, representing a powerful tool to analyze DNA repair in vivo in the context of chromatin. However, most lasers induce a mixture of DNA damage leading to the activation of multiple DNA repair pathways and making it impossible to study individual repair processes. Hence, we aimed to establish and validate micro-irradiation conditions together with inhibition of several key proteins to discriminate different types of DNA damage and repair pathways using lasers commonly available in confocal microscopes. Using time-lapse analysis of cells expressing fluorescently tagged repair proteins and also validation of the DNA damage generated by micro-irradiation using several key damage markers, we show that irradiation with a 405 nm continuous wave laser lead to the activation of all repair pathways even in the absence of exogenous sensitization. In contrast, we found that irradiation with 488 nm laser lead to the selective activation of non-processive short-patch base excision and single strand break repair, which were further validated by PARP inhibition and metoxyamine treatment. We conclude that these low energy conditions discriminated against processive long-patch base excision repair, nucleotide excision repair as well as double strand break repair pathways.

  1. Influence of alloying and secondary annealing on anneal hardening ...

    Indian Academy of Sciences (India)

    Unknown

    Influence of alloying and secondary annealing on anneal hardening effect at sintered copper alloys. SVETLANA NESTOROVIC. Technical Faculty Bor, University of Belgrade, Bor, Yugoslavia. MS received 11 February 2004; revised 29 October 2004. Abstract. This paper reports results of investigation carried out on sintered ...

  2. RDE-1 slicer activity is required only for passenger-strand cleavage during RNAi in Caenorhabditis elegans.

    NARCIS (Netherlands)

    Steiner, F.A.; Okihara, K.L.; Hoogstrate, S.W.; Sijen, T.; Ketting, R.F.

    2009-01-01

    RNA interference (RNAi) is a process in which double-stranded RNA is cleaved into small interfering RNAs (siRNAs) that induce the destruction of homologous single-stranded mRNAs. Argonaute proteins are essential components of this silencing process; they bind siRNAs directly and can cleave RNA

  3. Magnetization Losses of Roebel Cable Samples with 2G YBCO Coated Conductor Strands

    CERN Document Server

    Yang, Y.; Falorio, I.; Young, E.A.; Kario, A.; Goldacker, W.; Dhallé, M. M. J.; van Nugteren, J.; Kirby, G.; Bottura, L.; Ballarino, A.

    2016-01-01

    Roebel cable with 2G YBCO strands is one of the promising HTS solutions of fully transposed high current conductors for high field accelerator magnets. Following the considerable research effort on the manufacturing of Roebel cables in recent years, sample conductors are now available in useful lengths with reproducible performances to allow detailed characterizations beyond the standard critical current measurements. The ac loss and strands coupling are of significant interest for the field quality of the accelerator magnets. We report a set of systematic ac loss measurements on two different Roebel cable samples prepared for the EuCARD2 collaboration. The measurements were performed over a wide range of temperature between 5 K and 90 K and the results were analyzed in the context of strands architecture and coupling. The results show that the transposed bundles are partially decoupled and the strands in transposition sections behave as an isolated single tape if the strands are insulated.

  4. The annealing of radiation damage in type Ia diamond

    International Nuclear Information System (INIS)

    Collins, Alan T; Kiflawi, Isaac

    2009-01-01

    The kinetics of the recovery of radiation damage in type Ia diamond has been investigated using isothermal annealing at 600 deg. C. In diamonds having a reasonably homogeneous distribution of nitrogen the decay of the vacancy concentration with time can be approximately described by a single exponential. Previous investigations have identified 'fast' and 'slow' components in the annealing, and we show that the existence of more than one time constant is associated with inhomogeneous nitrogen concentrations. The measurements show further that, in order to obtain the oscillator strengths of nitrogen-vacancy centres, studies must be restricted to diamonds with moderately high nitrogen concentrations.

  5. The effects of lithium counterdoping on radiation damage and annealing in n(+)p silicon solar cells

    Science.gov (United States)

    Weinberg, I.; Brandhorst, H. W., Jr.; Mehta, S.; Swartz, C. K.

    1984-01-01

    Boron-doped silicon n(+)p solar cells were counterdoped with lithium by ion implantation and the resultant n(+)p cells irradiated by 1 MeV electrons. Performance parameters were determined as a function of fluence and a deep level transient spectroscopy (DLTS) study was conducted. The lithium counterdoped cells exhibited significantly increased radiation resistance when compared to boron doped control cells. Isochronal annealing studies of cell performance indicate that significant annealing occurs at 100 C. Isochronal annealing of the deep level defects showed a correlation between a single defect at E sub v + 0.43 eV and the annealing behavior of short circuit current in the counterdoped cells. The annealing behavior was controlled by dissociation and recombination of this defect. The DLTS studies showed that counterdoping with lithium eliminated three deep level defects and resulted in three new defects. The increased radiation resistance of the counterdoped cells is due to the interaction of lithium with oxygen, single vacancies and divacancies. The lithium-oxygen interaction is the most effective in contributing to the increased radiation resistance.

  6. Packaging signals in single-stranded RNA viruses: nature's alternative to a purely electrostatic assembly mechanism.

    Science.gov (United States)

    Stockley, Peter G; Twarock, Reidun; Bakker, Saskia E; Barker, Amy M; Borodavka, Alexander; Dykeman, Eric; Ford, Robert J; Pearson, Arwen R; Phillips, Simon E V; Ranson, Neil A; Tuma, Roman

    2013-03-01

    The formation of a protective protein container is an essential step in the life-cycle of most viruses. In the case of single-stranded (ss)RNA viruses, this step occurs in parallel with genome packaging in a co-assembly process. Previously, it had been thought that this process can be explained entirely by electrostatics. Inspired by recent single-molecule fluorescence experiments that recapitulate the RNA packaging specificity seen in vivo for two model viruses, we present an alternative theory, which recognizes the important cooperative roles played by RNA-coat protein interactions, at sites we have termed packaging signals. The hypothesis is that multiple copies of packaging signals, repeated according to capsid symmetry, aid formation of the required capsid protein conformers at defined positions, resulting in significantly enhanced assembly efficiency. The precise mechanistic roles of packaging signal interactions may vary between viruses, as we have demonstrated for MS2 and STNV. We quantify the impact of packaging signals on capsid assembly efficiency using a dodecahedral model system, showing that heterogeneous affinity distributions of packaging signals for capsid protein out-compete those of homogeneous affinities. These insights pave the way to a new anti-viral therapy, reducing capsid assembly efficiency by targeting of the vital roles of the packaging signals, and opens up new avenues for the efficient construction of protein nanocontainers in bionanotechnology.

  7. Targeting abnormal DNA double strand break repair in cancer

    OpenAIRE

    Rassool, Feyruz V.; Tomkinson, Alan E.

    2010-01-01

    A major challenge in cancer treatment is the development of therapies that target cancer cells with little or no toxicity to normal tissues and cells. Alterations in DNA double strand break (DSB) repair in cancer cells include both elevated and reduced levels of key repair proteins and changes in the relative contributions of the various DSB repair pathways. These differences can result in increased sensitivity to DSB-inducing agents and increased genomic instability. The development of agent...

  8. DNA translocation by human uracil DNA glycosylase: the case of single-stranded DNA and clustered uracils.

    Science.gov (United States)

    Schonhoft, Joseph D; Stivers, James T

    2013-04-16

    Human uracil DNA glycosylase (hUNG) plays a central role in DNA repair and programmed mutagenesis of Ig genes, requiring it to act on sparsely or densely spaced uracil bases located in a variety of contexts, including U/A and U/G base pairs, and potentially uracils within single-stranded DNA (ssDNA). An interesting question is whether the facilitated search mode of hUNG, which includes both DNA sliding and hopping, changes in these different contexts. Here we find that hUNG uses an enhanced local search mode when it acts on uracils in ssDNA, and also, in a context where uracils are densely clustered in duplex DNA. In the context of ssDNA, hUNG performs an enhanced local search by sliding with a mean sliding length larger than that of double-stranded DNA (dsDNA). In the context of duplex DNA, insertion of high-affinity abasic product sites between two uracil lesions serves to significantly extend the apparent sliding length on dsDNA from 4 to 20 bp and, in some cases, leads to directionally biased 3' → 5' sliding. The presence of intervening abasic product sites mimics the situation where hUNG acts iteratively on densely spaced uracils. The findings suggest that intervening product sites serve to increase the amount of time the enzyme remains associated with DNA as compared to nonspecific DNA, which in turn increases the likelihood of sliding as opposed to falling off the DNA. These findings illustrate how the search mechanism of hUNG is not predetermined but, instead, depends on the context in which the uracils are located.

  9. Self-cytoplasmic DNA upregulates the mutator enzyme APOBEC3A leading to chromosomal DNA damage.

    Science.gov (United States)

    Suspène, Rodolphe; Mussil, Bianka; Laude, Hélène; Caval, Vincent; Berry, Noémie; Bouzidi, Mohamed S; Thiers, Valérie; Wain-Hobson, Simon; Vartanian, Jean-Pierre

    2017-04-07

    Foreign and self-cytoplasmic DNA are recognized by numerous DNA sensor molecules leading to the production of type I interferons. Such DNA agonists should be degraded otherwise cells would be chronically stressed. Most human APOBEC3 cytidine deaminases can initiate catabolism of cytoplasmic mitochondrial DNA. Using the human myeloid cell line THP-1 with an interferon inducible APOBEC3A gene, we show that cytoplasmic DNA triggers interferon α and β production through the RNA polymerase III transcription/RIG-I pathway leading to massive upregulation of APOBEC3A. By catalyzing C→U editing in single stranded DNA fragments, the enzyme prevents them from re-annealing so attenuating the danger signal. The price to pay is chromosomal DNA damage in the form of CG→TA mutations and double stranded DNA breaks which, in the context of chronic inflammation, could drive cells down the path toward cancer. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  10. Yeast Srs2 Helicase Promotes Redistribution of Single-Stranded DNA-Bound RPA and Rad52 in Homologous Recombination Regulation

    Directory of Open Access Journals (Sweden)

    Luisina De Tullio

    2017-10-01

    Full Text Available Srs2 is a super-family 1 helicase that promotes genome stability by dismantling toxic DNA recombination intermediates. However, the mechanisms by which Srs2 remodels or resolves recombination intermediates remain poorly understood. Here, single-molecule imaging is used to visualize Srs2 in real time as it acts on single-stranded DNA (ssDNA bound by protein factors that function in recombination. We demonstrate that Srs2 is highly processive and translocates rapidly (∼170 nt per second in the 3′→5′ direction along ssDNA saturated with replication protein A (RPA. We show that RPA is evicted from DNA during the passage of Srs2. Remarkably, Srs2 also readily removes the recombination mediator Rad52 from RPA-ssDNA and, in doing so, promotes rapid redistribution of both Rad52 and RPA. These findings have important mechanistic implications for understanding how Srs2 and related nucleic acid motor proteins resolve potentially pathogenic nucleoprotein intermediates.

  11. Single and repeated moderate consumption of native or dealcoholized red wine show different effects on antioxidant parameters in blood and DNA strand breaks in peripheral leukocytes in healthy volunteers: a randomized controlled trial [ISRCTN68505294

    Directory of Open Access Journals (Sweden)

    Spengler Ulrich

    2005-11-01

    Full Text Available Abstract Background Red wine (RW is rich in antioxidant polyphenols that might protect from oxidative stress related diseases, such as cardiovascular disease and cancer. Antioxidant effects after single ingestion of RW or dealcoholized RW (DRW have been observed in several studies, but results after regular consumption are contradictory. Thus, we examined if single or repeated consumption of moderate amounts of RW or DRW exert antioxidant activity in vivo. Methods Total phenolic content and concentration of other antioxidants in plasma/serum, total antioxidant capacity (TEAC in plasma as well as DNA strand breaks in peripheral leukocytes were measured in healthy non-smokers A before, 90 and 360 min after ingestion of one glass of RW, DRW or water; B before and after consumption of one glass of RW or DRW daily for 6 weeks. DNA strand breaks (SB were determined by single cell gel electrophoresis (Comet Assay in untreated cells and after induction of oxidative stress ex vivo with H2O2 (300 μM, 20 min. Results Both RW and DRW transiently increased total phenolic content in plasma after single consumption, but only RW lead to a sustained increase if consumed regularly. Plasma antioxidant capacity was not affected by single or regular consumption of RW or DRW. Effects of RW and DRW on DNA SB were conflicting. DNA strand breaks in untreated cells increased after a single dose of RW and DRW, whereas H2O2 induced SB were reduced after DRW. In contrast, regular RW consumption reduced SB in untreated cells but did not affect H2O2 induced SB. Conclusion The results suggest that consumption of both RW and DRW leads to an accumulation of phenolic compounds in plasma without increasing plasma antioxidant capacity. Red wine and DRW seem to affect the occurrence of DNA strand breaks, but this cannot be referred to antioxidant effects.

  12. Analysis of DNA strand break induction and repair in plants from the vicinity of Chernobyl

    International Nuclear Information System (INIS)

    Syomov, A.B.; Ptitsyna, S.N.; Sergeeva, S.A.

    1992-01-01

    For 3 years following the Chernobyl accident DNA repair efficiency was studied in irradiated and control populations of various plan species. Compared with the control populations, some irradiated populations exhibited increases in the yield of DNA single-strand breaks per unit dose of challenge radiation. The effect was registered in low-dose-rate alpha-irradiated populations, but was absent in plant populations growing in conditions of low-dose-rate beta-irradiation. The efficiency of single-strand DNA repair was identical in control and irradiated populations and approximated 100%. (author). 12 refs.; 1 fig.; 2 tabs

  13. DNA repair pathways involved in determining the level of cytotoxicity of environmentally relevant UV radiation

    International Nuclear Information System (INIS)

    Carpenter, L.

    2000-01-01

    The sensitivity of cell lines with defects in various DNA repair processes to different wavelengths of UV has been assessed in order to determine the importance of these repair pathways to the cytotoxicity of UV light. The cell lines used in this work were xrs-6 (a Chinese Hamster Ovary (CHO) cell line) mutant for XRCC5/Ku80, EM9 a CHO cell line mutant for XRCC1, UV61 a CHO cell line mutant for ERCC6/CSB, and E3p53-/-, a mouse embryonic fibroblast cell line null for p53. Xrs-6 (defective in Non Homologous End-Joining) was found to be sensitive to the cytotoxic effects of broadband UVA, but not narrowband UVA or narrowband UVB. EM9 (defective in Base Excision Repair/Single-Strand Break Repair) was not sensitive to the cytotoxic effects of both broadband and narrowband UVA, narrowband UVB or narrowband UVC. UV61 (defective in the Transcription Coupled Repair branch of Nucleotide Excision Repair) was sensitive to the cytotoxic effects of narrowband UVA, UVB and UVC. E3p53-/- was sensitive to the cytotoxic effects of narrowband UVA and UVB. Broadband UVA was found to induce high levels of chromosomal damage in xrs-6, as quantified by the micronucleus assay, most likely as a result of this cell lines inability to repair DNA double strand breaks. EM9 was found to be defective in the repair of broadband UVA-induced single strand breaks, as measured by the alkaline gel electrophoresis ('comet') assay. UV61 was unable to repair broadband UVB-induced DNA damage as measured by the alkaline gel electrophoresis ('comet') assay. These results provide evidence that: 1. DNA double-strand breaks contribute to the cytotoxicity of UVA to a greater extent than single-strand breaks. 2. Repair mechanisms that operate in response to UVA may be coupled to transcription. 3. UVB may directly induce SSBs. 4. P53 is involved in the response of the cell to both UVA and UVB radiation. (author)

  14. Simple design for DNA nanotubes from a minimal set of unmodified strands: rapid, room-temperature assembly and readily tunable structure.

    Science.gov (United States)

    Hamblin, Graham D; Hariri, Amani A; Carneiro, Karina M M; Lau, Kai L; Cosa, Gonzalo; Sleiman, Hanadi F

    2013-04-23

    DNA nanotubes have great potential as nanoscale scaffolds for the organization of materials and the templation of nanowires and as drug delivery vehicles. Current methods for making DNA nanotubes either rely on a tile-based step-growth polymerization mechanism or use a large number of component strands and long annealing times. Step-growth polymerization gives little control over length, is sensitive to stoichiometry, and is slow to generate long products. Here, we present a design strategy for DNA nanotubes that uses an alternative, more controlled growth mechanism, while using just five unmodified component strands and a long enzymatically produced backbone. These tubes form rapidly at room temperature and have numerous, orthogonal sites available for the programmable incorporation of arrays of cargo along their length. As a proof-of-concept, cyanine dyes were organized into two distinct patterns by inclusion into these DNA nanotubes.

  15. Effect of transient annealing on patterned CoFeB-based magnetic tunnel junctions

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Kuo-Ming; Huang, Chao-Hsien; Lin, Shiao-Chi; Wu, Jong-Ching [Department of Physics and Taiwan SPIN Research Center, National Changhua University of Education, Changhua 50007 (China); Kao, Ming-Jer; Tsai, Ming-Jinn [Industrial Technology Research Institute, Hsinchu 31040 (China); Horng, Lance

    2007-12-15

    In this study, the transient annealing effect on the switching behavior of microstructured Co{sub 60}Fe{sub 20}B{sub 20}-based magnetic tunnel junctions has been studied through magnetoresistance measurements (R-H loop). Elliptical shape of devices with long/short axis of 4/2 micrometers was patterned out of sheet film stack of: Ta(20)/PtMn(15)/CoFeB(3)/Al(0.7)-oxide/CoFeB(2)/Ru(8)/Ta(40) (thickness unit in nanometers) after a conventional long time field cooling annealing. The transient annealing was then executed by sample loading into a furnace with pre-set temperatures ranging from 100 to 400 C for only 5 minutes in the absence of any external magnetic field. The vortex-like reverse of free layer in as-etched MTJ evidently changes to single-domain-like reverser after 200{proportional_to}250 C transient annealing. The magnetoresistance was found to increase with increasing annealing temperatures up to 265 C and then slowly decrease at higher annealing temperatures. The transient thermal annealing creates obvious efforts to repair magnetic properties of MTJ cell befor 265 C annealing and results in less damage at temperature of 350 C and 400 C. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  16. Effect of transient annealing on patterned CoFeB-based magnetic tunnel junctions

    International Nuclear Information System (INIS)

    Wu, Kuo-Ming; Huang, Chao-Hsien; Lin, Shiao-Chi; Wu, Jong-Ching; Kao, Ming-Jer; Tsai, Ming-Jinn; Horng, Lance

    2007-01-01

    In this study, the transient annealing effect on the switching behavior of microstructured Co 60 Fe 20 B 20 -based magnetic tunnel junctions has been studied through magnetoresistance measurements (R-H loop). Elliptical shape of devices with long/short axis of 4/2 micrometers was patterned out of sheet film stack of: Ta(20)/PtMn(15)/CoFeB(3)/Al(0.7)-oxide/CoFeB(2)/Ru(8)/Ta(40) (thickness unit in nanometers) after a conventional long time field cooling annealing. The transient annealing was then executed by sample loading into a furnace with pre-set temperatures ranging from 100 to 400 C for only 5 minutes in the absence of any external magnetic field. The vortex-like reverse of free layer in as-etched MTJ evidently changes to single-domain-like reverser after 200∝250 C transient annealing. The magnetoresistance was found to increase with increasing annealing temperatures up to 265 C and then slowly decrease at higher annealing temperatures. The transient thermal annealing creates obvious efforts to repair magnetic properties of MTJ cell befor 265 C annealing and results in less damage at temperature of 350 C and 400 C. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  17. Defect annealing in Mn/Fe-implanted TiO2 (rutile)

    International Nuclear Information System (INIS)

    Gunnlaugsson, H P; Svane, A; Weyer, G; Mantovan, R; Masenda, H; Naidoo, D; Mølholt, T E; Gislason, H; Ólafsson, S; Johnston, K; Bharuth-Ram, K; Langouche, G

    2014-01-01

    A study of the annealing processes and charge state of dilute Fe in rutile TiO 2 single crystals was performed in the temperature range 143–662 K, utilizing online 57 Fe emission Mössbauer spectroscopy following low concentrations (<10 −3  at%) implantation of 57 Mn (T 1/2  = 1.5 min). Both Fe 3+ and Fe 2+ were detected throughout the temperature range. Three annealing stages were distinguished: (i) a broad annealing stage below room temperature leading to an increased Fe 3+ fraction; (ii) a sharp annealing stage at ∼330 K characterized by conversion of Fe 3+ to Fe 2+ and changes in the hyperfine parameters of Fe 2+ , attributed to the annealing of Ti vacancies in the vicinity of the probe atoms; and (iii) an annealing stage in the temperature range from 550 to 600 K, where all Fe ions are transformed to Fe 3+ , attributed to the annealing of the nearby O vacancies. The dissociation energy of Mn Ti –V O pairs was estimated to be 1.60(15) eV. Fe 2+ is found in an environment where it can probe the lattice structure through the nuclear quadrupole interaction evidencing the extreme radiation hardness of rutile TiO 2 . Fe 3+ is found in a paramagnetic state with slow spin–lattice relaxation which follows a ∼T n temperature dependence with 4.1 < n < 6.3 at T > 350 K. (paper)

  18. A device for routine studies of nuclear track annealing in mineral grains

    International Nuclear Information System (INIS)

    Jha, R.; Lal, D.

    1984-01-01

    For studies of annealing of nuclear tracks in common rock-forming minerals, we have devised a simple heating system that provides a highly stable hot environment characterized by a large temperature gradient. The temperature can be maintained at the desired values within +- 2 deg C over a period of several months. The system allows placing of samples at eight different temperature points in the temperature range of 350 to 550 deg C in a single setting. This range essentially encompasses the entire temperature range normally used in laboratory track annealing of mineral grains with annealing duration of a few minutes to a couple of months. Lower as well as higher temperatures and different ranges are possible by changing the material used for the heating system and its geometry. However, for annealing at high temperature, and for short duration we found that it is more convenient to heat samples in the appropriate region of the cone of a large gas flame. We present, as an example, results of cosmic-ray track annealing studies in hypersthene grains from the Johnstown meteorite. The simplicity and reproducibility of the technique allows an in-depth study of annealing characteristics of different minerals. (author)

  19. Effects of annealing on electrical and optical properties of a multilayer InAs/GaAs quantum dots system

    Directory of Open Access Journals (Sweden)

    Adenilson José Chiquito

    2004-09-01

    Full Text Available A systematic investigation of the properties of the InAs/GaAs self-assembled quantum dots (SAQDs system subjected to a post-growth annealing using capacitance-voltage, Raman scattering and photoluminescence measurements is presented. The application of both electrical and optical methods allowed us to obtain reliable information on the microscopic structural evolution of this system. The single layer and the multilayer quantum dots were found to respond differently to the annealing process, due to the differences in strain that occur in both systems. The diffusion activated by strain provoked the appearance of an InGaAs alloy layer in substitution to the quantum dots layers; this change occurred at the annealing temperature T = 600 ºC in the multilayer system. A single dot layer, however, was observed even after the annealing at T = 700 ºC. Moreover, the low temperature annealing was found to improve the homogeneity of the multilayer system and to decrease the electrical interlayer coupling.

  20. Multi-scale coarse-graining for the study of assembly pathways in DNA-brick self-assembly

    Science.gov (United States)

    Fonseca, Pedro; Romano, Flavio; Schreck, John S.; Ouldridge, Thomas E.; Doye, Jonathan P. K.; Louis, Ard A.

    2018-04-01

    Inspired by recent successes using single-stranded DNA tiles to produce complex structures, we develop a two-step coarse-graining approach that uses detailed thermodynamic calculations with oxDNA, a nucleotide-based model of DNA, to parametrize a coarser kinetic model that can reach the time and length scales needed to study the assembly mechanisms of these structures. We test the model by performing a detailed study of the assembly pathways for a two-dimensional target structure made up of 334 unique strands each of which are 42 nucleotides long. Without adjustable parameters, the model reproduces a critical temperature for the formation of the assembly that is close to the temperature at which assembly first occurs in experiments. Furthermore, the model allows us to investigate in detail the nucleation barriers and the distribution of critical nucleus shapes for the assembly of a single target structure. The assembly intermediates are compact and highly connected (although not maximally so), and classical nucleation theory provides a good fit to the height and shape of the nucleation barrier at temperatures close to where assembly first occurs.

  1. Reactor pressure vessel thermal annealing

    International Nuclear Information System (INIS)

    Lee, A.D.

    1997-01-01

    The steel plates and/or forgings and welds in the beltline region of a reactor pressure vessel (RPV) are subject to embrittlement from neutron irradiation. This embrittlement causes the fracture toughness of the beltline materials to be less than the fracture toughness of the unirradiated material. Material properties of RPVs that have been irradiated and embrittled are recoverable through thermal annealing of the vessel. The amount of recovery primarily depends on the level of the irradiation embrittlement, the chemical composition of the steel, and the annealing temperature and time. Since annealing is an option for extending the service lives of RPVs or establishing less restrictive pressure-temperature (P-T) limits; the industry, the Department of Energy (DOE) and the Nuclear Regulatory Commission (NRC) have assisted in efforts to determine the viability of thermal annealing for embrittlement recovery. General guidance for in-service annealing is provided in American Society for Testing and Materials (ASTM) Standard E 509-86. In addition, the American Society of Mechanical Engineers (ASME) Code Case N-557 addresses annealing conditions (temperature and duration), temperature monitoring, evaluation of loadings, and non-destructive examination techniques. The NRC thermal annealing rule (10 CFR 50.66) was approved by the Commission and published in the Federal Register on December 19, 1995. The Regulatory Guide on thermal annealing (RG 1.162) was processed in parallel with the rule package and was published on February 15, 1996. RG 1.162 contains a listing of issues that need to be addressed for thermal annealing of an RPV. The RG also provides alternatives for predicting re-embrittlement trends after the thermal anneal has been completed. This paper gives an overview of methodology and recent technical references that are associated with thermal annealing. Results from the DOE annealing prototype demonstration project, as well as NRC activities related to the

  2. Single-crystal-like GdNdO{sub x} thin films on silicon substrates by magnetron sputtering and high-temperature annealing for crystal seed layer application

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ziwei; Xiao, Lei; Liang, Renrong, E-mail: wang-j@tsinghua.edu.cn, E-mail: liangrr@tsinghua.edu.cn; Shen, Shanshan; Xu, Jun; Wang, Jing, E-mail: wang-j@tsinghua.edu.cn, E-mail: liangrr@tsinghua.edu.cn [Tsinghua National Laboratory for Information Science and Technology, Institute of Microelectronics, Tsinghua University, Beijing 100084 (China)

    2016-06-15

    Single-crystal-like rare earth oxide thin films on silicon (Si) substrates were fabricated by magnetron sputtering and high-temperature annealing processes. A 30-nm-thick high-quality GdNdO{sub x} (GNO) film was deposited using a high-temperature sputtering process at 500°C. A Gd{sub 2}O{sub 3} and Nd{sub 2}O{sub 3} mixture was used as the sputtering target, in which the proportions of Gd{sub 2}O{sub 3} and Nd{sub 2}O{sub 3} were controlled to make the GNO’s lattice parameter match that of the Si substrate. To further improve the quality of the GNO film, a post-deposition annealing process was performed at a temperature of 1000°C. The GNO films exhibited a strong preferred orientation on the Si substrate. In addition, an Al/GNO/Si capacitor was fabricated to evaluate the dielectric constant and leakage current of the GNO films. It was determined that the single-crystal-like GNO films on the Si substrates have potential for use as an insulator layer for semiconductor-on-insulator and semiconductor/insulator multilayer applications.

  3. Isothermal annealing kinetics of X-irradiated pyrene by EPR

    International Nuclear Information System (INIS)

    Partiti, C.S.M.; Pontuschka, W.M.; Fazzio, A.; Piccini, A.

    1989-07-01

    The annealing behavior of X-irradiated stable free radicals found in Pyrene (C 16 H 10 ) single crystals was studied by EPR. Two processes of thermal decay kinetics were found, both with the same activation energy (1.9±0.1) ev. (author) [pt

  4. Pathway-engineering for highly-aligned block copolymer arrays.

    Science.gov (United States)

    Choo, Youngwoo; Majewski, Paweł W; Fukuto, Masafumi; Osuji, Chinedum O; Yager, Kevin G

    2017-12-21

    While the ultimate driving force in self-assembly is energy minimization and the corresponding evolution towards equilibrium, kinetic effects can also play a very strong role. These kinetic effects, such as trapping in metastable states, slow coarsening kinetics, and pathway-dependent assembly, are often viewed as complications to be overcome. Here, we instead exploit these effects to engineer a desired final nano-structure in a block copolymer thin film, by selecting a particular ordering pathway through the self-assembly energy landscape. In particular, we combine photothermal shearing with high-temperature annealing to yield hexagonal arrays of block copolymer cylinders that are aligned in a single prescribed direction over macroscopic sample dimensions. Photothermal shearing is first used to generate a highly-aligned horizontal cylinder state, with subsequent thermal processing used to reorient the morphology to the vertical cylinder state in a templated manner. Finally, we demonstrate the successful transfer of engineered morphologies into inorganic replicas.

  5. Complementarily addressed modification and cleavage of a single-stranded fragment of DNA with the aid of alkylating derivatives of oligonucleotides

    International Nuclear Information System (INIS)

    Brosalina, E.B.; Vlasov, V.V.; Kutyavin, I.V.; Mamaev, S.V.; Pletnev, A.G.; Podyminogin, M.A.

    1986-01-01

    The chemical modification of a 303-nucleotide single-stranded fragment of DNA by alkylating oligonucleotide derivatives bearing 4-[N-methyl-N-(2-chloroethyl)amino]benzyl groups in the 5'-terminal phosphate of the 3'-terminal ribose residue has been investigated. It has been shown that under the conditions of the formation of a complex with the DNA fragment both types of derivatives specifically alkylate nucleotides of the DNA fragments that are located directly adjacent to the sections complementary to the oligonucleotides bearing the reactive groups. Alkylation takes place with a high efficiency, and the DNA fragment can be cleaved specifically at the position of the alkylated nucleotides

  6. Tolerance of DNA Mismatches in Dmc1 Recombinase-mediated DNA Strand Exchange*

    Science.gov (United States)

    Borgogno, María V.; Monti, Mariela R.; Zhao, Weixing; Sung, Patrick; Argaraña, Carlos E.; Pezza, Roberto J.

    2016-01-01

    Recombination between homologous chromosomes is required for the faithful meiotic segregation of chromosomes and leads to the generation of genetic diversity. The conserved meiosis-specific Dmc1 recombinase catalyzes homologous recombination triggered by DNA double strand breaks through the exchange of parental DNA sequences. Although providing an efficient rate of DNA strand exchange between polymorphic alleles, Dmc1 must also guard against recombination between divergent sequences. How DNA mismatches affect Dmc1-mediated DNA strand exchange is not understood. We have used fluorescence resonance energy transfer to study the mechanism of Dmc1-mediated strand exchange between DNA oligonucleotides with different degrees of heterology. The efficiency of strand exchange is highly sensitive to the location, type, and distribution of mismatches. Mismatches near the 3′ end of the initiating DNA strand have a small effect, whereas most mismatches near the 5′ end impede strand exchange dramatically. The Hop2-Mnd1 protein complex stimulates Dmc1-catalyzed strand exchange on homologous DNA or containing a single mismatch. We observed that Dmc1 can reject divergent DNA sequences while bypassing a few mismatches in the DNA sequence. Our findings have important implications in understanding meiotic recombination. First, Dmc1 acts as an initial barrier for heterologous recombination, with the mismatch repair system providing a second level of proofreading, to ensure that ectopic sequences are not recombined. Second, Dmc1 stepping over infrequent mismatches is likely critical for allowing recombination between the polymorphic sequences of homologous chromosomes, thus contributing to gene conversion and genetic diversity. PMID:26709229

  7. Very fast simulated re-annealing

    OpenAIRE

    L. Ingber

    1989-01-01

    Draft An algorithm is developed to statistically find the best global fit of a nonlinear non-convex cost-function over a D-dimensional space. It is argued that this algorithm permits an annealing schedule for ‘‘temperature’’ T decreasing exponentially in annealing-time k, T = T0 exp(−ck1/D). The introduction of re-annealing also permits adaptation to changing sensitivities in the multidimensional parameter-space. This annealing schedule is faster than fast Cauchy annealing, ...

  8. Very bright, near-infrared single photon emitters in diamond

    Directory of Open Access Journals (Sweden)

    D. W. M. Lau

    2013-09-01

    Full Text Available We demonstrate activation of bright diamond single photon emitters in the near infrared range by thermal annealing alone, i.e., without ion implantation. The activation is crucially dependent on the annealing ambient. The activation of the single photon emitters is only observed when the sample is annealed in forming gas (4% H2 in Ar above temperatures of 1000 °C. By contrast, no emitters are activated by annealing in vacuum, oxygen, argon or deuterium. The emitters activated by annealing in forming gas exhibit very bright emission in the 730-760 nm wavelength range and have linewidths of ∼1.5-2.5 nm at room temperature.

  9. Fanconi anemia complementation group A (FANCA) protein has intrinsic affinity for nucleic acids with preference for single-stranded forms.

    Science.gov (United States)

    Yuan, Fenghua; Qian, Liangyue; Zhao, Xinliang; Liu, Jesse Y; Song, Limin; D'Urso, Gennaro; Jain, Chaitanya; Zhang, Yanbin

    2012-02-10

    The Fanconi anemia complementation group A (FANCA) gene is one of 15 disease-causing genes and has been found to be mutated in ∼60% of Fanconi anemia patients. Using purified protein, we report that human FANCA has intrinsic affinity for nucleic acids. FANCA binds to both single-stranded (ssDNA) and double-stranded (dsDNA) DNAs; however, its affinity for ssDNA is significantly higher than for dsDNA in an electrophoretic mobility shift assay. FANCA also binds to RNA with an intriguingly higher affinity than its DNA counterpart. FANCA requires a certain length of nucleic acids for optimal binding. Using DNA and RNA ladders, we determined that the minimum number of nucleotides required for FANCA recognition is ∼30 for both DNA and RNA. By testing the affinity between FANCA and a variety of DNA structures, we found that a 5'-flap or 5'-tail on DNA facilitates its interaction with FANCA. A patient-derived FANCA truncation mutant (Q772X) has diminished affinity for both DNA and RNA. In contrast, the complementing C-terminal fragment of Q772X, C772-1455, retains the differentiated nucleic acid-binding activity (RNA > ssDNA > dsDNA), indicating that the nucleic acid-binding domain of FANCA is located primarily at its C terminus, where most disease-causing mutations are found.

  10. Fanconi Anemia Complementation Group A (FANCA) Protein Has Intrinsic Affinity for Nucleic Acids with Preference for Single-stranded Forms*

    Science.gov (United States)

    Yuan, Fenghua; Qian, Liangyue; Zhao, Xinliang; Liu, Jesse Y.; Song, Limin; D'Urso, Gennaro; Jain, Chaitanya; Zhang, Yanbin

    2012-01-01

    The Fanconi anemia complementation group A (FANCA) gene is one of 15 disease-causing genes and has been found to be mutated in ∼60% of Fanconi anemia patients. Using purified protein, we report that human FANCA has intrinsic affinity for nucleic acids. FANCA binds to both single-stranded (ssDNA) and double-stranded (dsDNA) DNAs; however, its affinity for ssDNA is significantly higher than for dsDNA in an electrophoretic mobility shift assay. FANCA also binds to RNA with an intriguingly higher affinity than its DNA counterpart. FANCA requires a certain length of nucleic acids for optimal binding. Using DNA and RNA ladders, we determined that the minimum number of nucleotides required for FANCA recognition is ∼30 for both DNA and RNA. By testing the affinity between FANCA and a variety of DNA structures, we found that a 5′-flap or 5′-tail on DNA facilitates its interaction with FANCA. A patient-derived FANCA truncation mutant (Q772X) has diminished affinity for both DNA and RNA. In contrast, the complementing C-terminal fragment of Q772X, C772–1455, retains the differentiated nucleic acid-binding activity (RNA > ssDNA > dsDNA), indicating that the nucleic acid-binding domain of FANCA is located primarily at its C terminus, where most disease-causing mutations are found. PMID:22194614

  11. Assembly of presynaptic filaments. Factors affecting the assembly of RecA protein onto single-stranded DNA

    DEFF Research Database (Denmark)

    Thresher, RJ; Christiansen, Gunna; Griffith, JD

    1988-01-01

    We have previously shown that the assembly of RecA protein onto single-stranded DNA (ssDNA) facilitated by SSB protein occurs in three steps: (1) rapid binding of SSB protein to the ssDNA; (2) nucleation of RecA protein onto this template; and (3) co-operative polymerization of additional Rec......M in the presence of 12 mM-Mg2+), and relatively low concentrations of SSB protein (1 monomer per 18 nucleotides). Assembly was depressed threefold when SSB protein was added to one monomer per nine nucleotides. These effects appeared to be exerted at the nucleation step. Following nucleation, RecA protein...... assembled onto ssDNA at net rates that varied from 250 to 900 RecA protein monomers per minute, with the rate inversely related to the concentration of SSB protein. Combined sucrose sedimentation and electron microscope analysis established that SSB protein was displaced from the ssDNA during RecA protein...

  12. Velocity and processivity of helicase unwinding of double-stranded nucleic acids

    International Nuclear Information System (INIS)

    Betterton, M D; Juelicher, F

    2005-01-01

    Helicases are molecular motors which unwind double-stranded nucleic acids (dsNA) in cells. Many helicases move with directional bias on single-stranded (ss) nucleic acids, and couple their directional translocation to strand separation. A model of the coupling between translocation and unwinding uses an interaction potential to represent passive and active helicase mechanisms. A passive helicase must wait for thermal fluctuations to open dsNA base pairs before it can advance and inhibit NA closing. An active helicase directly destabilizes dsNA base pairs, accelerating the opening rate. Here we extend this model to include helicase unbinding from the nucleic-acid strand. The helicase processivity depends on the form of the interaction potential. A passive helicase has a mean attachment time which does not change between ss translocation and ds unwinding, while an active helicase in general shows a decrease in attachment time during unwinding relative to ss translocation. In addition, we describe how helicase unwinding velocity and processivity vary if the base-pair binding free energy is changed

  13. The binding efficiency of RPA to telomeric G-strands folded into contiguous G-quadruplexes is independent of the number of G4 units.

    Science.gov (United States)

    Lancrey, Astrid; Safa, Layal; Chatain, Jean; Delagoutte, Emmanuelle; Riou, Jean-François; Alberti, Patrizia; Saintomé, Carole

    2018-03-01

    Replication protein A (RPA) is a single-stranded DNA binding protein involved in replication and in telomere maintenance. During telomere replication, G-quadruplexes (G4) can accumulate on the lagging strand template and need to be resolved. It has been shown that human RPA is able to unfold a single G4. Nevertheless, the G-strand of human telomeres is prone to fold into higher-order structures formed by contiguous G-quadruplexes. To understand how RPA deals with these structures, we studied its interaction with telomeric G-strands folding into an increasing number of contiguous G4s. The aim of this study was to determine whether the efficiency of binding/unfolding of hRPA to telomeric G-strands depends on the number of G4 units. Our data show that the number n of contiguous G4 units (n ≥ 2) does not affect the efficiency of hRPA to coat transiently exposed single-stranded telomeric G-strands. This feature may be essential in preventing instability due to G4 structures during telomere replication. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  14. Relevance of DNA repair pathways on ascorbic acid effects on Echerichia Coli K-12 cells

    International Nuclear Information System (INIS)

    Slyus, M.A. van; Oliveira, R.L.B. da C.; Felzenszwalb, I.; Gomes, R.A.; Menck, C.F.

    1985-01-01

    Inactivation kinetics were performed with repair proficient and deficient Escherichia coli K-12 cells treated with oxidized solutions of ascorbic acid. The repair pathways controlled by the recA and uvrA gene products are essential for cell survival to the treatment. However, SOS chromotest result indicates that the SOS functions are only induced at high and toxic concentrations of the drug. Moreover, single strand breaks in DNA from treated cells are detected, demonstrating genome damage promoted by oxidized solutions of ascorbate. (M.A.C.) [pt

  15. Polymorphisms of LIG4, BTBD2, HMGA2, and RTEL1 genes involved in the double-strand break repair pathway predict glioblastoma survival.

    Science.gov (United States)

    Liu, Yanhong; Shete, Sanjay; Etzel, Carol J; Scheurer, Michael; Alexiou, George; Armstrong, Georgina; Tsavachidis, Spyros; Liang, Fu-Wen; Gilbert, Mark; Aldape, Ken; Armstrong, Terri; Houlston, Richard; Hosking, Fay; Robertson, Lindsay; Xiao, Yuanyuan; Wiencke, John; Wrensch, Margaret; Andersson, Ulrika; Melin, Beatrice S; Bondy, Melissa

    2010-05-10

    Glioblastoma (GBM) is the most common and aggressive type of glioma and has the poorest survival. However, a small percentage of patients with GBM survive well beyond the established median. Therefore, identifying the genetic variants that influence this small number of unusually long-term survivors may provide important insight into tumor biology and treatment. Among 590 patients with primary GBM, we evaluated associations of survival with the 100 top-ranking glioma susceptibility single nucleotide polymorphisms from our previous genome-wide association study using Cox regression models. We also compared differences in genetic variation between short-term survivors (STS; or= 36 months), and explored classification and regression tree analysis for survival data. We tested results using two independent series totaling 543 GBMs. We identified LIG4 rs7325927 and BTBD2 rs11670188 as predictors of STS in GBM and CCDC26 rs10464870 and rs891835, HMGA2 rs1563834, and RTEL1 rs2297440 as predictors of LTS. Further survival tree analysis revealed that patients >or= 50 years old with LIG4 rs7325927 (V) had the worst survival (median survival time, 1.2 years) and exhibited the highest risk of death (hazard ratio, 17.53; 95% CI, 4.27 to 71.97) compared with younger patients with combined RTEL1 rs2297440 (V) and HMGA2 rs1563834 (V) genotypes (median survival time, 7.8 years). Polymorphisms in the LIG4, BTBD2, HMGA2, and RTEL1 genes, which are involved in the double-strand break repair pathway, are associated with GBM survival.

  16. Two modes of interaction of the single-stranded DNA-binding protein of bacteriophage T7 with the DNA polymerase-thioredoxin complex

    KAUST Repository

    Ghosh, Sharmistha; Hamdan, Samir; Richardson, Charles C.

    2010-01-01

    The DNA polymerase encoded by bacteriophage T7 has low processivity. Escherichia coli thioredoxin binds to a segment of 76 residues in the thumb subdomain of the polymerase and increases the processivity. The binding of thioredoxin leads to the formation of two basic loops, loops A and B, located within the thioredoxin-binding domain (TBD). Both loops interact with the acidic C terminus of the T7 helicase. A relatively weak electrostatic mode involves the C-terminal tail of the helicase and the TBD, whereas a high affinity interaction that does not involve the C-terminal tail occurs when the polymerase is in a polymerization mode. T7 gene 2.5 single-stranded DNA-binding protein (gp2.5) also has an acidic C-terminal tail. gp2.5 also has two modes of interaction with the polymerase, but both involve the C-terminal tail of gp2.5. An electrostatic interaction requires the basic residues in loops A and B, and gp2.5 binds to both loops with similar affinity as measured by surface plasmon resonance. When the polymerase is in a polymerization mode, the C terminus of gene 2.5 protein interacts with the polymerase in regions outside the TBD.gp2.5 increases the processivity of the polymerase-helicase complex during leading strand synthesis. When loop B of the TBD is altered, abortive DNA products are observed during leading strand synthesis. Loop B appears to play an important role in communication with the helicase and gp2.5, whereas loop A plays a stabilizing role in these interactions. © 2010 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Two modes of interaction of the single-stranded DNA-binding protein of bacteriophage T7 with the DNA polymerase-thioredoxin complex

    KAUST Repository

    Ghosh, Sharmistha

    2010-04-06

    The DNA polymerase encoded by bacteriophage T7 has low processivity. Escherichia coli thioredoxin binds to a segment of 76 residues in the thumb subdomain of the polymerase and increases the processivity. The binding of thioredoxin leads to the formation of two basic loops, loops A and B, located within the thioredoxin-binding domain (TBD). Both loops interact with the acidic C terminus of the T7 helicase. A relatively weak electrostatic mode involves the C-terminal tail of the helicase and the TBD, whereas a high affinity interaction that does not involve the C-terminal tail occurs when the polymerase is in a polymerization mode. T7 gene 2.5 single-stranded DNA-binding protein (gp2.5) also has an acidic C-terminal tail. gp2.5 also has two modes of interaction with the polymerase, but both involve the C-terminal tail of gp2.5. An electrostatic interaction requires the basic residues in loops A and B, and gp2.5 binds to both loops with similar affinity as measured by surface plasmon resonance. When the polymerase is in a polymerization mode, the C terminus of gene 2.5 protein interacts with the polymerase in regions outside the TBD.gp2.5 increases the processivity of the polymerase-helicase complex during leading strand synthesis. When loop B of the TBD is altered, abortive DNA products are observed during leading strand synthesis. Loop B appears to play an important role in communication with the helicase and gp2.5, whereas loop A plays a stabilizing role in these interactions. © 2010 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. KARAKTERISTIK ORIENTED STRAND BOARD DARI KAYU AKASIA DAN AFRIKA BERDASARKAN PENYUSUNAN ARAH STRAND

    Directory of Open Access Journals (Sweden)

    Nurhaida

    2008-04-01

    Full Text Available The research objectives arc to evaluate physical and mechanical properties of OSB based on strands orientation; and to evaluate physical and mechanical properties of OSB made from akasia wood (Acacia mangium Wild and afrika wood (Maesopsis eminii Engl. Akasia and afrika wood are used for OSB strand material with phenol formaldehyde (PF as adhesives and addition of paraffin. OSB made in this research is consist of three plies whereas are differed into eight (8 strand orientations. In the making process, hot press was carried out at 160OC and pressure 25kg.cm-2 for 15 minutes. Determination of OSB physical and mechanical properties is referred to JIS A 5908-2003. Result showed that strand orientations has no affect to OSB physical properties except for linicr swelling 24h, but it significantly influence all mechanical properties of OSB. Wood species have an effect on mechanical properties of OSB in the dry test, wet MOE lengthwise test and OSB physical properties, particularly to OSB density and water absorbing capability at 2h and 24h. All of OSB physical properties arc meet JIS A 5908-2003 standard, but not all of the mechanical properties such as dry MOE lengthwise, dry MOE and MOR widthwise. The best physical and mechanical properties is presented by OSB made from akasia wood in strand orientation F, G, Band C whereas all parameters meet JIS A 5908-2003 standard. In comparation with strand orientation B that is frequent used in industry, strand orientation F and G arc proficient to raise the modulus elasticity value (MOE and strength (MOR as much as 167.81-231.65% and 89.73-109.87%, respectively; especially in widthwise board application. Furthermore, strand orientation F and G arc more flexible as structural components

  19. Programmed Switching of Single Polymer Conformation on DNA Origami

    DEFF Research Database (Denmark)

    Krissanaprasit, Abhichart; Madsen, Mikael; Knudsen, Jakob Bach

    2016-01-01

    -molecule conjugated polymer. The polymer is functionalized with short single-stranded (ss) DNA strands that extend from the backbone of the polymer and serve as handles. The DNA polymer conjugate can be aligned on DNA origami in three well-defined geometries (straight line, left-turned, and right-turned pattern......) by DNA hybridization directed by single-stranded guiding strands and ssDNA tracks extending from the origami surface and polymer handle. We demonstrate switching of a conjugated organic polymer conformation between left- and right-turned conformations of the polymer on DNA origami based on toehold...

  20. Defect annealing in Mn/Fe-implanted TiO2(rutile)

    CERN Document Server

    Gunnlaugsson, H P; Masenda, H; Mølholt, T E; Johnston, K; Bharuth-Ram, K; Gislason, H; Langouche, G; Naidoo, D; Ólafsson, S; Svane, A; Weyer, G

    2014-01-01

    A study of the annealing processes and charge state of dilute Fe in rutile TiO2 single crystals was performed in the temperature range 143-662 K, utilizing online 57Fe emission Mossbauer spectroscopy following low concentrations ( 350 K.

  1. Impact of high temperature and short period annealing on SnS films deposited by E-beam evaporation

    International Nuclear Information System (INIS)

    Gedi, Sreedevi; Reddy, Vasudeva Reddy Minnam; Kang, Jeong-yoon; Jeon, Chan-Wook

    2017-01-01

    Highlights: • Preparation SnS films using electron beam evaporation at room temperature. • SnS films were annealed at a high temperaure for different short period of times. • The films showed highly oriented (111) planes with orthorhombic crystal structure. • Surface morphology showed bigger and faceted grains embedded in orthorombic. • The TEM confirmed that big orthorombic slabs had single-crystalline nature. - Abstract: Thin films of SnS were deposited on Mo-substrate using electron beam evaporation at room temperature. As-deposited SnS films were annealed at a constant high temperaure of 860 K for different short period of times, 1 min, 3 min, and 5 min. The impact of heat treatment period on the physical properties of SnS films was investigated using appropriate characterization tools. XRD analysis revealed that the films were highly oriented along (111) plane with orthorhombic crystal structure. Surface morphology of as-deposited SnS films showed an identical leaf texture where as the annealed films showed large orthorombic slab shape grains in adidition to the leaf shape grains, which indicates the significance of short period annealing at high temperature. The transmission electron microscopy confirmed that those large orthorombic slabs had single-crystalline nature. The results emphasized that the short period annealing treatment at high temperature stimulated the growth of film towards the single crystallinity.

  2. Impact of high temperature and short period annealing on SnS films deposited by E-beam evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Gedi, Sreedevi; Reddy, Vasudeva Reddy Minnam; Kang, Jeong-yoon; Jeon, Chan-Wook, E-mail: cwjeon@ynu.ac.kr

    2017-04-30

    Highlights: • Preparation SnS films using electron beam evaporation at room temperature. • SnS films were annealed at a high temperaure for different short period of times. • The films showed highly oriented (111) planes with orthorhombic crystal structure. • Surface morphology showed bigger and faceted grains embedded in orthorombic. • The TEM confirmed that big orthorombic slabs had single-crystalline nature. - Abstract: Thin films of SnS were deposited on Mo-substrate using electron beam evaporation at room temperature. As-deposited SnS films were annealed at a constant high temperaure of 860 K for different short period of times, 1 min, 3 min, and 5 min. The impact of heat treatment period on the physical properties of SnS films was investigated using appropriate characterization tools. XRD analysis revealed that the films were highly oriented along (111) plane with orthorhombic crystal structure. Surface morphology of as-deposited SnS films showed an identical leaf texture where as the annealed films showed large orthorombic slab shape grains in adidition to the leaf shape grains, which indicates the significance of short period annealing at high temperature. The transmission electron microscopy confirmed that those large orthorombic slabs had single-crystalline nature. The results emphasized that the short period annealing treatment at high temperature stimulated the growth of film towards the single crystallinity.

  3. Modelling the growth of ZnO thin films by PVD methods and the effects of post-annealing.

    Science.gov (United States)

    Blackwell, Sabrina; Smith, Roger; Kenny, Steven D; Walls, John M; Sanz-Navarro, Carlos F

    2013-04-03

    Results are presented for modelling of the evaporation and magnetron sputter deposition of Zn(x)O(y) onto an O-terminated ZnO (0001¯) wurtzite surface. Growth was simulated through a combination of molecular dynamics (MD) and an on-the-fly kinetic Monte Carlo (otf-KMC) method, which finds diffusion pathways and barriers without prior knowledge of transitions. We examine the effects of varying experimental parameters, such as substrate bias, distribution of the deposition species and annealing temperature. It was found when comparing evaporation and sputtering growth that the latter process results in a denser and more crystalline structure, due to the higher deposition energy of the arriving species. The evaporation growth also exhibits more stacking faults than the sputtered growth. Post-annealing at 770 K did not allow complete recrystallization, resulting in films which still had stacking faults where monolayers formed in the zinc blende phase, whereas annealing at 920 K enabled the complete recrystallization of some films to the wurtzite structure. At the latter temperature atoms could also sometimes be locked in the zinc blende phase after annealing. When full recrystallization did not take place, both wurtzite and zinc blende phases were seen in the same layer, resulting in a phase boundary. Investigation of the various distributions of deposition species showed that, during evaporation, the best quality film resulted from a stoichiometric distribution where only ZnO clusters were deposited. During sputtering, however, the best quality film resulted from a slightly O rich distribution. Two stoichiometric distributions, one involving mainly ZnO clusters and the other involving mainly single species, showed that the distribution of deposition species makes a huge impact on the grown film. The deposition of predominantly single species causes many more O atoms at the surface to be sputtered or reflected, resulting in an O deficiency of up to 18% in the

  4. Strand-Specific Analysis of DNA Synthesis and Proteins Association with DNA Replication Forks in Budding Yeast.

    Science.gov (United States)

    Yu, Chuanhe; Gan, Haiyun; Zhang, Zhiguo

    2018-01-01

    DNA replication initiates at DNA replication origins after unwinding of double-strand DNA(dsDNA) by replicative helicase to generate single-stranded DNA (ssDNA) templates for the continuous synthesis of leading-strand and the discontinuous synthesis of lagging-strand. Therefore, methods capable of detecting strand-specific information will likely yield insight into the association of proteins at leading and lagging strand of DNA replication forks and the regulation of leading and lagging strand synthesis during DNA replication. The enrichment and Sequencing of Protein-Associated Nascent DNA (eSPAN), which measure the relative amounts of proteins at nascent leading and lagging strands of DNA replication forks, is a step-wise procedure involving the chromatin immunoprecipitation (ChIP) of a protein of interest followed by the enrichment of protein-associated nascent DNA through BrdU immunoprecipitation. The isolated ssDNA is then subjected to strand-specific sequencing. This method can detect whether a protein is enriched at leading or lagging strand of DNA replication forks. In addition to eSPAN, two other strand-specific methods, (ChIP-ssSeq), which detects potential protein-ssDNA binding and BrdU-IP-ssSeq, which can measure synthesis of both leading and lagging strand, were developed along the way. These methods can provide strand-specific and complementary information about the association of the target protein with DNA replication forks as well as synthesis of leading and lagging strands genome wide. Below, we describe the detailed eSPAN, ChIP-ssSeq, and BrdU-IP-ssSeq protocols.

  5. Strand exchange of telomeric DNA catalyzed by the Werner syndrome protein (WRN) is specifically stimulated by TRF2

    Science.gov (United States)

    Edwards, Deanna N.; Orren, David K.; Machwe, Amrita

    2014-01-01

    Werner syndrome (WS), caused by loss of function of the RecQ helicase WRN, is a hereditary disease characterized by premature aging and elevated cancer incidence. WRN has DNA binding, exonuclease, ATPase, helicase and strand annealing activities, suggesting possible roles in recombination-related processes. Evidence indicates that WRN deficiency causes telomeric abnormalities that likely underlie early onset of aging phenotypes in WS. Furthermore, TRF2, a protein essential for telomere protection, interacts with WRN and influences its basic helicase and exonuclease activities. However, these studies provided little insight into WRN's specific function at telomeres. Here, we explored the possibility that WRN and TRF2 cooperate during telomeric recombination processes. Our results indicate that TRF2, through its interactions with both WRN and telomeric DNA, stimulates WRN-mediated strand exchange specifically between telomeric substrates; TRF2's basic domain is particularly important for this stimulation. Although TRF1 binds telomeric DNA with similar affinity, it has minimal effects on WRN-mediated strand exchange of telomeric DNA. Moreover, TRF2 is displaced from telomeric DNA by WRN, independent of its ATPase and helicase activities. Together, these results suggest that TRF2 and WRN act coordinately during telomeric recombination processes, consistent with certain telomeric abnormalities associated with alteration of WRN function. PMID:24880691

  6. Five-Strand versus Four-Strand Hamstring Tendon Graft Technique for Anterior Cruciate Ligament Reconstruction: A Biomechanical Comparison.

    Science.gov (United States)

    Vaillant, Eric R; Parks, Brent G; Camire, Lyn M; Hinton, Richard Y

    2017-11-01

    The aim of this article is to compare diameter and stiffness, displacement, and strain in a five-strand versus four-strand hamstring graft for anterior cruciate ligament reconstruction. Eight matched pairs of lower extremities underwent four-strand or five-strand hamstring graft reconstruction. Diameter was significantly higher in the five-strand versus the four-strand construct ( p  = 0.002). No significant difference was found between the groups in construct displacement or stiffness. Significantly higher strain was observed in the inner limb versus the outer limb in the four-strand construct ( p  = 0.001) and in the inner limb versus the fifth limb in the 5-strand construct ( p  = 0.004). A fifth limb added to a four-strand hamstring graft significantly increased graft diameter but did not significantly change stiffness or displacement, suggesting that attachment of additional graft material via suture did not provide for full incorporation of the added limb into the graft at time zero. The inner limb in both constructs absorbed significantly greater load than did other limbs. The use of suture to attach additional material to a four-strand hamstring graft may not contribute to improved biomechanical qualities of the graft at time zero. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  7. A Single-Machine Two-Agent Scheduling Problem by a Branch-and-Bound and Three Simulated Annealing Algorithms

    Directory of Open Access Journals (Sweden)

    Shangchia Liu

    2015-01-01

    Full Text Available In the field of distributed decision making, different agents share a common processing resource, and each agent wants to minimize a cost function depending on its jobs only. These issues arise in different application contexts, including real-time systems, integrated service networks, industrial districts, and telecommunication systems. Motivated by its importance on practical applications, we consider two-agent scheduling on a single machine where the objective is to minimize the total completion time of the jobs of the first agent with the restriction that an upper bound is allowed the total completion time of the jobs for the second agent. For solving the proposed problem, a branch-and-bound and three simulated annealing algorithms are developed for the optimal solution, respectively. In addition, the extensive computational experiments are also conducted to test the performance of the algorithms.

  8. Tolerance of DNA Mismatches in Dmc1 Recombinase-mediated DNA Strand Exchange.

    Science.gov (United States)

    Borgogno, María V; Monti, Mariela R; Zhao, Weixing; Sung, Patrick; Argaraña, Carlos E; Pezza, Roberto J

    2016-03-04

    Recombination between homologous chromosomes is required for the faithful meiotic segregation of chromosomes and leads to the generation of genetic diversity. The conserved meiosis-specific Dmc1 recombinase catalyzes homologous recombination triggered by DNA double strand breaks through the exchange of parental DNA sequences. Although providing an efficient rate of DNA strand exchange between polymorphic alleles, Dmc1 must also guard against recombination between divergent sequences. How DNA mismatches affect Dmc1-mediated DNA strand exchange is not understood. We have used fluorescence resonance energy transfer to study the mechanism of Dmc1-mediated strand exchange between DNA oligonucleotides with different degrees of heterology. The efficiency of strand exchange is highly sensitive to the location, type, and distribution of mismatches. Mismatches near the 3' end of the initiating DNA strand have a small effect, whereas most mismatches near the 5' end impede strand exchange dramatically. The Hop2-Mnd1 protein complex stimulates Dmc1-catalyzed strand exchange on homologous DNA or containing a single mismatch. We observed that Dmc1 can reject divergent DNA sequences while bypassing a few mismatches in the DNA sequence. Our findings have important implications in understanding meiotic recombination. First, Dmc1 acts as an initial barrier for heterologous recombination, with the mismatch repair system providing a second level of proofreading, to ensure that ectopic sequences are not recombined. Second, Dmc1 stepping over infrequent mismatches is likely critical for allowing recombination between the polymorphic sequences of homologous chromosomes, thus contributing to gene conversion and genetic diversity. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Strong white photoluminescence from annealed zeolites

    International Nuclear Information System (INIS)

    Bai, Zhenhua; Fujii, Minoru; Imakita, Kenji; Hayashi, Shinji

    2014-01-01

    The optical properties of zeolites annealed at various temperatures are investigated for the first time. The annealed zeolites exhibit strong white photoluminescence (PL) under ultraviolet light excitation. With increasing annealing temperature, the emission intensity of annealed zeolites first increases and then decreases. At the same time, the PL peak red-shifts from 495 nm to 530 nm, and then returns to 500 nm. The strongest emission appears when the annealing temperature is 500 °C. The quantum yield of the sample is measured to be ∼10%. The PL lifetime monotonously increases from 223 μs to 251 μs with increasing annealing temperature. The origin of white PL is ascribed to oxygen vacancies formed during the annealing process. -- Highlights: • The optical properties of zeolites annealed at various temperatures are investigated. • The annealed zeolites exhibit strong white photoluminescence. • The maximum PL enhancement reaches as large as 62 times. • The lifetime shows little dependence on annealing temperature. • The origin of white emission is ascribed to the oxygen vacancies

  10. Sequential strand displacement beacon for detection of DNA coverage on functionalized gold nanoparticles.

    Science.gov (United States)

    Paliwoda, Rebecca E; Li, Feng; Reid, Michael S; Lin, Yanwen; Le, X Chris

    2014-06-17

    Functionalizing nanomaterials for diverse analytical, biomedical, and therapeutic applications requires determination of surface coverage (or density) of DNA on nanomaterials. We describe a sequential strand displacement beacon assay that is able to quantify specific DNA sequences conjugated or coconjugated onto gold nanoparticles (AuNPs). Unlike the conventional fluorescence assay that requires the target DNA to be fluorescently labeled, the sequential strand displacement beacon method is able to quantify multiple unlabeled DNA oligonucleotides using a single (universal) strand displacement beacon. This unique feature is achieved by introducing two short unlabeled DNA probes for each specific DNA sequence and by performing sequential DNA strand displacement reactions. Varying the relative amounts of the specific DNA sequences and spacing DNA sequences during their coconjugation onto AuNPs results in different densities of the specific DNA on AuNP, ranging from 90 to 230 DNA molecules per AuNP. Results obtained from our sequential strand displacement beacon assay are consistent with those obtained from the conventional fluorescence assays. However, labeling of DNA with some fluorescent dyes, e.g., tetramethylrhodamine, alters DNA density on AuNP. The strand displacement strategy overcomes this problem by obviating direct labeling of the target DNA. This method has broad potential to facilitate more efficient design and characterization of novel multifunctional materials for diverse applications.

  11. DOE's annealing prototype demonstration projects

    International Nuclear Information System (INIS)

    Warren, J.; Nakos, J.; Rochau, G.

    1997-01-01

    One of the challenges U.S. utilities face in addressing technical issues associated with the aging of nuclear power plants is the long-term effect of plant operation on reactor pressure vessels (RPVs). As a nuclear plant operates, its RPV is exposed to neutrons. For certain plants, this neutron exposure can cause embrittlement of some of the RPV welds which can shorten the useful life of the RPV. This RPV embrittlement issue has the potential to affect the continued operation of a number of operating U.S. pressurized water reactor (PWR) plants. However, RPV material properties affected by long-term irradiation are recoverable through a thermal annealing treatment of the RPV. Although a dozen Russian-designed RPVs and several U.S. military vessels have been successfully annealed, U.S. utilities have stated that a successful annealing demonstration of a U.S. RPV is a prerequisite for annealing a licensed U.S. nuclear power plant. In May 1995, the Department of Energy's Sandia National Laboratories awarded two cost-shared contracts to evaluate the feasibility of annealing U.S. licensed plants by conducting an anneal of an installed RPV using two different heating technologies. The contracts were awarded to the American Society of Mechanical Engineers (ASME) Center for Research and Technology Development (CRTD) and MPR Associates (MPR). The ASME team completed its annealing prototype demonstration in July 1996, using an indirect gas furnace at the uncompleted Public Service of Indiana's Marble Hill nuclear power plant. The MPR team's annealing prototype demonstration was scheduled to be completed in early 1997, using a direct heat electrical furnace at the uncompleted Consumers Power Company's nuclear power plant at Midland, Michigan. This paper describes the Department's annealing prototype demonstration goals and objectives; the tasks, deliverables, and results to date for each annealing prototype demonstration; and the remaining annealing technology challenges

  12. Yeast Srs2 Helicase Promotes Redistribution of Single-Stranded DNA-Bound RPA and Rad52 in Homologous Recombination Regulation.

    Science.gov (United States)

    De Tullio, Luisina; Kaniecki, Kyle; Kwon, Youngho; Crickard, J Brooks; Sung, Patrick; Greene, Eric C

    2017-10-17

    Srs2 is a super-family 1 helicase that promotes genome stability by dismantling toxic DNA recombination intermediates. However, the mechanisms by which Srs2 remodels or resolves recombination intermediates remain poorly understood. Here, single-molecule imaging is used to visualize Srs2 in real time as it acts on single-stranded DNA (ssDNA) bound by protein factors that function in recombination. We demonstrate that Srs2 is highly processive and translocates rapidly (∼170 nt per second) in the 3'→5' direction along ssDNA saturated with replication protein A (RPA). We show that RPA is evicted from DNA during the passage of Srs2. Remarkably, Srs2 also readily removes the recombination mediator Rad52 from RPA-ssDNA and, in doing so, promotes rapid redistribution of both Rad52 and RPA. These findings have important mechanistic implications for understanding how Srs2 and related nucleic acid motor proteins resolve potentially pathogenic nucleoprotein intermediates. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  13. Precise gene modification mediated by TALEN and single-stranded oligodeoxynucleotides in human cells.

    Directory of Open Access Journals (Sweden)

    Xiaoling Wang

    Full Text Available The development of human embryonic stem cells (ESCs and induced pluripotent stem cells (iPSCs facilitates in vitro studies of human disease mechanisms, speeds up the process of drug screening, and raises the feasibility of using cell replacement therapy in clinics. However, the study of genotype-phenotype relationships in ESCs or iPSCs is hampered by the low efficiency of site-specific gene editing. Transcription activator-like effector nucleases (TALENs spurred interest due to the ease of assembly, high efficiency and faithful gene targeting. In this study, we optimized the TALEN design to maximize its genomic cutting efficiency. We showed that using optimized TALENs in conjunction with single-strand oligodeoxynucleotide (ssODN allowed efficient gene editing in human cells. Gene mutations and gene deletions for up to 7.8 kb can be accomplished at high efficiencies. We established human tumor cell lines and H9 ESC lines with homozygous deletion of the microRNA-21 (miR-21 gene and miR-9-2 gene. These cell lines provide a robust platform to dissect the roles these genes play during cell differentiation and tumorigenesis. We also observed that the endogenous homologous chromosome can serve as a donor template for gene editing. Overall, our studies demonstrate the versatility of using ssODN and TALEN to establish genetically modified cells for research and therapeutic application.

  14. Electron microscopic visualization of the RecA protein-mediated pairing and branch migration phases of DNA strand exchange

    DEFF Research Database (Denmark)

    Register, JC; Christiansen, Gunna; Griffith, J

    1987-01-01

    examined by electron microscopy: supertwisted double-stranded (ds) DNA and linear single-stranded (ss) DNA, linear dsDNA and circular ssDNA, and linear dsDNA and colinear ssDNA. Several major observations were: (i) with RecA protein bound to the DNA, plectonemic joints were ultrastructurally...

  15. Temperature distribution in graphite during annealing in air cooled reactors

    International Nuclear Information System (INIS)

    Oliveira Avila, C.R. de.

    1989-01-01

    A model for the evaluation temperature distributions in graphite during annealing operation in graphite. Moderated an-cooled reactors, is presented. One single channel and one dimension for air and graphite were considered. A numerical method based on finite control volumes was used for partioning the mathematical equations. The problem solution involves the use of unsteady equations of mass, momentum and energy conservation for air, and energy conservation for graphite. The source term was considered as stored energy release during annealing for describing energy conservation in the graphite. The coupling of energy conservation equations in air and graphite is performed by the heat transfer term betwen air and graphite. The results agree with experimental data. A sensitivity analysis shown that the termal conductivity of graphite and the maximum inlet channel temperature have great effect on the maximum temperature reached in graphite during the annealing. (author)

  16. Radiolysis of chromatin extracted from cultured mammalian cells: production of alkali-labile strand damage in DNA

    International Nuclear Information System (INIS)

    Mee, L.K.; Adelstein, S.J.; Stein, G.

    1978-01-01

    Chromatin has been isolated from cultured Chinese-hamster lung fibroblasts as an expanded aqueous gel. The DNA in isolated chromatin has been examined by sedimentation on alkaline sucrose gradients. The average molecular weight of the DNA has been determined to be 50 million. γ -irradiation of isolated chromatin degraded the DNA to lower molecular weight. The yield of single-strand breaks in the DNA was 0.02 single-strand breaks per krad-10 6 dalton, calculated from a dose-range of 1 to 400 krad and covering a DNA molecular weight range of 2 x 10 7 to 1.4 x 10 5 . There was a considerable difference in the efficiency of the formation of single-strand breaks in DNA irradiated as isolated chromatin compared with chromatin irradiated in whole cells before isolation. For isolated chromatin, values of 6 eV per break have been calculated compared with about 80 eV per break for chromatin irradiated in whole cells, which suggest a large contribution from indirect action by aqueous radicals in isolated chromatin. (author)

  17. Coronavirus minus-strand RNA synthesis and effect of cycloheximide on coronavirus RNA synthesis

    International Nuclear Information System (INIS)

    Sawicki, S.G.; Sawicki, D.L.

    1986-01-01

    The temporal sequence of coronavirus plus-strand and minus-strand RNA synthesis was determined in 17CL1 cells infected with the A59 strain of mouse hepatitis virus (MHV). MHV-induced fusion was prevented by keeping the pH of the medium below pH 6.8. This had no effect on the MHV replication cycle, but gave 5- to 10-fold-greater titers of infectious virus and delayed the detachment of cells from the monolayer which permitted viral RNA synthesis to be studied conveniently until at least 10 h postinfection. Seven species of poly(A)-containing viral RNAs were synthesized at early and late times infection, in nonequal but constant ratios. MHV minus-strand RNA synthesis was first detected at about 3 h after infection and was found exclusively in the viral replicative intermediates and was not detected in 60S single-stranded form in infected cells. Early in the replication cycle, from 45 to 65% of the [ 3 H]uridine pulse-labeled RF core of purified MHV replicative intermediates was in minus-strand RNA. The rate of minus-strand synthesis peaked at 5 to 6 h postinfection and then declined to about 20% of the maximum rate. The addition of cycloheximide before 3 h postinfection prevented viral RNA synthesis, whereas the addition of cycloheximide after viral RNA synthesis had begun resulted in the inhibition of viral RNA synthesis. The synthesis of both genome and subgenomic mRNAs and of viral minus strands required continued protein synthesis, and minis-strand RNA synthesis was three- to fourfold more sensitive to inhibition of cycloheximide than was plus-strand synthesis

  18. Non-homologous end joining is the responsible pathway for the repair of fludarabine-induced DNA double strand breaks in mammalian cells

    International Nuclear Information System (INIS)

    Campos-Nebel, Marcelo de; Larripa, Irene; Gonzalez-Cid, Marcela

    2008-01-01

    Fludarabine (FLU), an analogue of adenosine, interferes with DNA synthesis and inhibits the chain elongation leading to replication arrest and DNA double strand break (DSB) formation. Mammalian cells use two main pathways of DSB repair to maintain genomic stability: homologous recombination (HR) and non-homologous end joining (NHEJ). The aim of the present work was to evaluate the repair pathways employed in the restoration of DSB formed following replication arrest induced by FLU in mammalian cells. Replication inhibition was induced in human lymphocytes and fibroblasts by FLU. DSB occurred in a dose-dependent manner on early/middle S-phase cells, as detected by γH2AX foci formation. To test whether conservative HR participates in FLU-induced DSB repair, we measured the kinetics of Rad51 nuclear foci formation in human fibroblasts. There was no significant induction of Rad51 foci after FLU treatment. To further confirm these results, we analyzed the frequency of sister chromatid exchanges (SCE) in both human cells. We did not find increased frequencies of SCE after FLU treatment. To assess the participation of NHEJ pathway in the repair of FLU-induced damage, we used two chemical inhibitors of the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs), vanillin and wortmannin. Human fibroblasts pretreated with DNA-PKcs inhibitors showed increased levels of chromosome breakages and became more sensitive to cell death. An active role of NHEJ pathway was also suggested from the analysis of Chinese hamster cell lines. XR-C1 (DNA-PKcs-deficient) and XR-V15B (Ku80-deficient) cells showed hypersensitivity to FLU as evidenced by the increased frequency of chromosome aberrations, decreased mitotic index and impaired survival rates. In contrast, CL-V4B (Rad51C-deficient) and V-C8 (Brca2-deficient) cell lines displayed a FLU-resistant phenotype. Together, our results suggest a major role for NHEJ repair in the preservation of genome integrity against FLU-induced DSB

  19. Non-homologous end joining is the responsible pathway for the repair of fludarabine-induced DNA double strand breaks in mammalian cells

    Energy Technology Data Exchange (ETDEWEB)

    Campos-Nebel, Marcelo de [Departamento de Genetica, Instituto de Investigaciones Hematologicas Mariano R. Castex, Academia Nacional de Medicina, Buenos Aires (Argentina)], E-mail: mnebel@hematologia.anm.edu.ar; Larripa, Irene; Gonzalez-Cid, Marcela [Departamento de Genetica, Instituto de Investigaciones Hematologicas Mariano R. Castex, Academia Nacional de Medicina, Buenos Aires (Argentina)

    2008-11-10

    Fludarabine (FLU), an analogue of adenosine, interferes with DNA synthesis and inhibits the chain elongation leading to replication arrest and DNA double strand break (DSB) formation. Mammalian cells use two main pathways of DSB repair to maintain genomic stability: homologous recombination (HR) and non-homologous end joining (NHEJ). The aim of the present work was to evaluate the repair pathways employed in the restoration of DSB formed following replication arrest induced by FLU in mammalian cells. Replication inhibition was induced in human lymphocytes and fibroblasts by FLU. DSB occurred in a dose-dependent manner on early/middle S-phase cells, as detected by {gamma}H2AX foci formation. To test whether conservative HR participates in FLU-induced DSB repair, we measured the kinetics of Rad51 nuclear foci formation in human fibroblasts. There was no significant induction of Rad51 foci after FLU treatment. To further confirm these results, we analyzed the frequency of sister chromatid exchanges (SCE) in both human cells. We did not find increased frequencies of SCE after FLU treatment. To assess the participation of NHEJ pathway in the repair of FLU-induced damage, we used two chemical inhibitors of the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs), vanillin and wortmannin. Human fibroblasts pretreated with DNA-PKcs inhibitors showed increased levels of chromosome breakages and became more sensitive to cell death. An active role of NHEJ pathway was also suggested from the analysis of Chinese hamster cell lines. XR-C1 (DNA-PKcs-deficient) and XR-V15B (Ku80-deficient) cells showed hypersensitivity to FLU as evidenced by the increased frequency of chromosome aberrations, decreased mitotic index and impaired survival rates. In contrast, CL-V4B (Rad51C-deficient) and V-C8 (Brca2-deficient) cell lines displayed a FLU-resistant phenotype. Together, our results suggest a major role for NHEJ repair in the preservation of genome integrity against FLU

  20. Role of DNA repair in repair of cytogenetic damages. Contribution of repair of single-strand DNA breaks to cytogenetic damages repair

    International Nuclear Information System (INIS)

    Rozanova, O.M.; Zaichkina, S.I.; Aptikaev, G.F.; Ganassi, E.Eh.

    1989-01-01

    The comparison was made between the results of the effect of poly(ADP-ribosylation) ingibitors (e.g. nicotinamide and 3-aminobenzamide) and a chromatin proteinase ingibitor, phenylmethylsulfonylfluoride, on the cytogenetic damages repair, by a micronuclear test, and DNA repair in Chinese hamster fibroblasts. The values of the repair half-periods (5-7 min for the cytogenetic damages and 5 min for the rapidly repaired DNA damages) and a similar modyfying effect with regard to radiation cytogenetic damages and kynetics of DNA damages repair were found to be close. This confirms the contribution of repair of DNA single-strand breaks in the initiation of structural damages to chromosomes

  1. Effects of nucleic acid local structure and magnesium ions on minus-strand transfer mediated by the nucleic acid chaperone activity of HIV-1 nucleocapsid protein

    OpenAIRE

    Wu, Tiyun; Heilman-Miller, Susan L.; Levin, Judith G.

    2007-01-01

    HIV-1 nucleocapsid protein (NC) is a nucleic acid chaperone, which is required for highly specific and efficient reverse transcription. Here, we demonstrate that local structure of acceptor RNA at a potential nucleation site, rather than overall thermodynamic stability, is a critical determinant for the minus-strand transfer step (annealing of acceptor RNA to (−) strong-stop DNA followed by reverse transcriptase (RT)-catalyzed DNA extension). In our system, destabilization of a stem-loop stru...

  2. Annealing helicase HARP closes RPA-stabilized DNA bubbles non-processively

    NARCIS (Netherlands)

    Burnham, D.R.; Nijholt, B.; de Vlaminck, I.; Quan, Jinhua; Yusufzai, Timur; Dekker, C.

    2017-01-01

    We investigate the mechanistic nature of the Snf2 family protein HARP, mutations of which are responsible for Schimke immuno-osseous dysplasia. Using a single-molecule magnetic tweezers assay, we construct RPA-stabilized DNA bubbles within torsionally constrained DNA to investigate the annealing

  3. Distinct genetic control of homologous recombination repair of Cas9-induced double-strand breaks, nicks and paired nicks

    NARCIS (Netherlands)

    Vriend, Lianne E. M.; Prakash, Rohit; Chen, Chun-Chin; Vanoli, Fabio; Cavallo, Francesca; Zhang, Yu; Jasin, Maria; Krawczyk, Przemek M.

    2016-01-01

    DNA double-strand breaks (DSBs) are known to be powerful inducers of homologous recombination (HR), but single-strand breaks (nicks) have also been shown to trigger HR. Both DSB- and nick-induced HR ((nick)HR) are exploited in advanced genome-engineering approaches based on the bacterial RNA-guided

  4. Luminescence lifetimes in quartz: dependence on annealing temperature prior to beta irradiation

    International Nuclear Information System (INIS)

    Galloway, R.B.

    2002-01-01

    It is well known that the thermal history of a quartz sample influences the optically stimulated luminescence sensitivity of the quartz. It is found that the optically stimulated luminescence lifetime, determined from time resolved spectra obtained with pulsed stimulation, also depends on past thermal treatment. For samples at 20 deg. C during stimulation, the lifetime depends on beta dose and on duration of preheating at 220 deg. C prior to stimulation for quartz annealed at 600 deg. C and above, but is independent of these factors for quartz annealed at 500 deg. C and below. For stimulation at higher temperatures, the lifetime becomes shorter if the sample is held at temperatures above 125 deg. C during stimulation, in a manner consistent with thermal quenching. A single exponential decay is all that is required to fit the time resolved spectra for un-annealed quartz regardless of the temperature during stimulation (20-175 deg. C), or to fit the time resolved spectra from all samples held at 20 deg. C during stimulation, regardless of annealing temperature (20-1000 deg. C). An additional shorter lifetime is found for some combinations of annealing temperature and temperature during stimulation. The results are discussed in terms of a model previously used to explain thermal sensitisation. The luminescence lifetime data are best explained by the presence of two principal luminescence centres, their relative importance depending on the annealing temperature, with a third centre involved for limited combinations of annealing temperature and temperature during stimulation

  5. Electrophoresis examination of strand breaks in plasmid DNA induced by low-energy nitrogen ion irradiation

    International Nuclear Information System (INIS)

    Zhao Yong; Tan Zheng; Du Yanhua; Qiu Guanying

    2003-01-01

    To study the effect on plasmid DNA of heavy ion in the energy range of keV where nuclear stopping interaction becomes more important or even predominant, thin film of plasmid pGEM-3Zf(-) DNA was prepared on aluminum surface and irradiated in vacuum ( -3 Pa) by low-energy nitrogen ions with energy of 30 keV (LET=285 keV/μm) at various fluence ranging from 2 x 10 10 to 8.2 x 10 13 ions/cm 2 . DNA strand breaks were analyzed by neutral electrophoresis followed by quantification with image analysis software. Low-energy nitrogen ion irradiation induced single-, double- and multiple double-strand breaks (DSB) and multiple DSB as the dominating form of DNA damages. Moreover, the linear fluence-response relationship at a low fluence range suggests that DSBs are induced predominantly by single ion track. However, strand break production is limited to a short range in the irradiated samples

  6. Simulated annealing model of acupuncture

    Science.gov (United States)

    Shang, Charles; Szu, Harold

    2015-05-01

    The growth control singularity model suggests that acupuncture points (acupoints) originate from organizers in embryogenesis. Organizers are singular points in growth control. Acupuncture can cause perturbation of a system with effects similar to simulated annealing. In clinical trial, the goal of a treatment is to relieve certain disorder which corresponds to reaching certain local optimum in simulated annealing. The self-organizing effect of the system is limited and related to the person's general health and age. Perturbation at acupoints can lead a stronger local excitation (analogous to higher annealing temperature) compared to perturbation at non-singular points (placebo control points). Such difference diminishes as the number of perturbed points increases due to the wider distribution of the limited self-organizing activity. This model explains the following facts from systematic reviews of acupuncture trials: 1. Properly chosen single acupoint treatment for certain disorder can lead to highly repeatable efficacy above placebo 2. When multiple acupoints are used, the result can be highly repeatable if the patients are relatively healthy and young but are usually mixed if the patients are old, frail and have multiple disorders at the same time as the number of local optima or comorbidities increases. 3. As number of acupoints used increases, the efficacy difference between sham and real acupuncture often diminishes. It predicted that the efficacy of acupuncture is negatively correlated to the disease chronicity, severity and patient's age. This is the first biological - physical model of acupuncture which can predict and guide clinical acupuncture research.

  7. Semiconductor annealing

    International Nuclear Information System (INIS)

    Young, J.M.; Scovell, P.D.

    1982-01-01

    A process for annealing crystal damage in ion implanted semiconductor devices in which the device is rapidly heated to a temperature between 450 and 900 0 C and allowed to cool. It has been found that such heating of the device to these relatively low temperatures results in rapid annealing. In one application the device may be heated on a graphite element mounted between electrodes in an inert atmosphere in a chamber. (author)

  8. A universal and label-free impedimetric biosensing platform for discrimination of single nucleotide substitutions in long nucleic acid strands.

    Science.gov (United States)

    Mills, Dawn M; Martin, Christopher P; Armas, Stephanie M; Calvo-Marzal, Percy; Kolpashchikov, Dmitry M; Chumbimuni-Torres, Karin Y

    2018-06-30

    We report a label-free universal biosensing platform for highly selective detection of long nucleic acid strands. The sensor consists of an electrode-immobilized universal stem-loop (USL) probe and two adaptor strands that form a 4J structure in the presence of a specific DNA/RNA analyte. The sensor was characterized by electrochemical impedance spectroscopy (EIS) using K 3 [Fe(CN) 6 ]/K 4 [Fe(CN) 6 ] redox couple in solution. An increase in charge transfer resistance (R CT ) was observed upon 4J structure formation, the value of which depends on the analyte length. Cyclic voltammetry (CV) was used to further characterize the sensor and monitor the electrochemical reaction in conjunction with thickness measurements of the mixed DNA monolayer obtained using spectroscopic ellipsometry. In addition, the electron transfer was calculated at the electrode/electrolyte interface using a rotating disk electrode. Limits of detection in the femtomolar range were achieved for nucleic acid targets of different lengths (22 nt, 60 nt, 200 nt). The sensor produced only a background signal in the presence of single base mismatched analytes, even in hundred times excess in concentration. This label-free and highly selective biosensing platform is versatile and can be used for universal detection of nucleic acids of varied lengths which could revolutionize point of care diagnostics for applications such as bacterial or cancer screening. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Rigidity of the polypeptide backbone in the triple-stranded collagen molecule.

    Science.gov (United States)

    Nemethy, G

    1981-02-01

    Conformational energy computations were carried out on collagen-like triple-stranded conformations of several polytripeptides with the structure CH3CO(GXY)3NHCH3, where X and Y can be Pro, Ala, or Gly. The computed minimum-energy conformations for various sequences are compared with that computed earlier for poly(Gly-Pro-Pro). Usually, substitution of Ala or Gly residues for Pro does not cause any strain or distortion of the conformation of the triple-stranded complex. Thus, the structure is a very stable and essentially rigid one. Unfavorable interactions were found only in the case of CH3CO(Gly-Ala-Pro)NHCH3. These interactions are a consequence of differences between the residue geometry of Ala and Pro. They result in small changes of some backbone dihedral angles and in an increase of intra- and interchain energies. The presence of a single Gly-Ala-Pro tripeptide within a sequence of Gly-Pro-Pro tripeptides is not sufficient, however, to cause even a small distoration of the triple strand. No deviation of the peptide groups from planarity is required to stabilize the triple-stranded structure.

  10. Interaction with Single-stranded DNA-binding Protein Stimulates Escherichia coli Ribonuclease HI Enzymatic Activity.

    Science.gov (United States)

    Petzold, Christine; Marceau, Aimee H; Miller, Katherine H; Marqusee, Susan; Keck, James L

    2015-06-05

    Single-stranded (ss) DNA-binding proteins (SSBs) bind and protect ssDNA intermediates formed during replication, recombination, and repair reactions. SSBs also directly interact with many different genome maintenance proteins to stimulate their enzymatic activities and/or mediate their proper cellular localization. We have identified an interaction formed between Escherichia coli SSB and ribonuclease HI (RNase HI), an enzyme that hydrolyzes RNA in RNA/DNA hybrids. The RNase HI·SSB complex forms by RNase HI binding the intrinsically disordered C terminus of SSB (SSB-Ct), a mode of interaction that is shared among all SSB interaction partners examined to date. Residues that comprise the SSB-Ct binding site are conserved among bacterial RNase HI enzymes, suggesting that RNase HI·SSB complexes are present in many bacterial species and that retaining the interaction is important for its cellular function. A steady-state kinetic analysis shows that interaction with SSB stimulates RNase HI activity by lowering the reaction Km. SSB or RNase HI protein variants that disrupt complex formation nullify this effect. Collectively our findings identify a direct RNase HI/SSB interaction that could play a role in targeting RNase HI activity to RNA/DNA hybrid substrates within the genome. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Interaction with Single-stranded DNA-binding Protein Stimulates Escherichia coli Ribonuclease HI Enzymatic Activity*

    Science.gov (United States)

    Petzold, Christine; Marceau, Aimee H.; Miller, Katherine H.; Marqusee, Susan; Keck, James L.

    2015-01-01

    Single-stranded (ss) DNA-binding proteins (SSBs) bind and protect ssDNA intermediates formed during replication, recombination, and repair reactions. SSBs also directly interact with many different genome maintenance proteins to stimulate their enzymatic activities and/or mediate their proper cellular localization. We have identified an interaction formed between Escherichia coli SSB and ribonuclease HI (RNase HI), an enzyme that hydrolyzes RNA in RNA/DNA hybrids. The RNase HI·SSB complex forms by RNase HI binding the intrinsically disordered C terminus of SSB (SSB-Ct), a mode of interaction that is shared among all SSB interaction partners examined to date. Residues that comprise the SSB-Ct binding site are conserved among bacterial RNase HI enzymes, suggesting that RNase HI·SSB complexes are present in many bacterial species and that retaining the interaction is important for its cellular function. A steady-state kinetic analysis shows that interaction with SSB stimulates RNase HI activity by lowering the reaction Km. SSB or RNase HI protein variants that disrupt complex formation nullify this effect. Collectively our findings identify a direct RNase HI/SSB interaction that could play a role in targeting RNase HI activity to RNA/DNA hybrid substrates within the genome. PMID:25903123

  12. Fragment-based modelling of single stranded RNA bound to RNA recognition motif containing proteins

    Science.gov (United States)

    de Beauchene, Isaure Chauvot; de Vries, Sjoerd J.; Zacharias, Martin

    2016-01-01

    Abstract Protein-RNA complexes are important for many biological processes. However, structural modeling of such complexes is hampered by the high flexibility of RNA. Particularly challenging is the docking of single-stranded RNA (ssRNA). We have developed a fragment-based approach to model the structure of ssRNA bound to a protein, based on only the protein structure, the RNA sequence and conserved contacts. The conformational diversity of each RNA fragment is sampled by an exhaustive library of trinucleotides extracted from all known experimental protein–RNA complexes. The method was applied to ssRNA with up to 12 nucleotides which bind to dimers of the RNA recognition motifs (RRMs), a highly abundant eukaryotic RNA-binding domain. The fragment based docking allows a precise de novo atomic modeling of protein-bound ssRNA chains. On a benchmark of seven experimental ssRNA–RRM complexes, near-native models (with a mean heavy-atom deviation of <3 Å from experiment) were generated for six out of seven bound RNA chains, and even more precise models (deviation < 2 Å) were obtained for five out of seven cases, a significant improvement compared to the state of the art. The method is not restricted to RRMs but was also successfully applied to Pumilio RNA binding proteins. PMID:27131381

  13. New Method for Differentiation of Granuloviruses (Betabaculoviruses Based on Multitemperature Single Stranded Conformational Polymorphism

    Directory of Open Access Journals (Sweden)

    Martyna Krejmer-Rabalska

    2017-12-01

    Full Text Available Baculoviruses have been used as biopesticides for decades. Recently, due to the excessive use of chemical pesticides there is a need for finding new agents that may be useful in biological protection. Sometimes few isolates or species are discovered in one host. In the past few years, many new baculovirus species have been isolated from environmental samples, thoroughly characterized and thanks to next generation sequencing methods their genomes are being deposited in the GenBank database. Next generation sequencing (NGS methodology is the most certain way of detection, but it has many disadvantages. During our studies, we have developed a method based on Polymerase chain reaction (PCR followed by Multitemperature Single Stranded Conformational Polymorphism (MSSCP which allows for distinguishing new granulovirus isolates in only a few hours and at low-cost. On the basis of phylogenetic analysis of betabaculoviruses, representative species have been chosen. The alignment of highly conserved genes—granulin and late expression factor-9, was performed and the degenerate primers were designed to amplify the most variable, short DNA fragments flanked with the most conserved sequences. Afterwards, products of PCR reaction were analysed by MSSCP technique. In our opinion, the proposed method may be used for screening of new isolates derived from environmental samples.

  14. Annealing of dislocation loops in neutron-irradiated copper investigated by positron annihilation

    International Nuclear Information System (INIS)

    Gauster, W.B.; Mantl, S.; Schober, T.; Triftshauser, W.

    1975-01-01

    Positron annihilation angular correlation measurements were carried out on neutron-irradiated copper as a function of annealing temperature. Two types of specimens were used: single crystals irradiated with fast neutrons, and 10 B-doped polycrystalline samples irradiated with thermal neutrons. All irradiations were at approximately 320 0 K. A structure in the annealing curve, not previously observed by other techniques, indicates that between 460 and 600 0 K the dislocation loops present after irradiation dissociate and more effective positron trapping sites are formed. (auth)

  15. Preparation of (Bi, Pb)-2223/Ag tapes by high temperature sintering and post-annealing process

    DEFF Research Database (Denmark)

    Hua, L.; Grivel, Jean-Claude; Andersen, L.G.

    2002-01-01

    A novel heat treatment process was developed to fabricate (Bi, Pb)-2223/Ag tapes with high critical current density (J(c)). The process can be divided into two parts: reformation and post-annealing. Tapes were first heated to the maximum temperature (830-860 degreesC) followed by slow cooling...... (reformation). Then, tape, were annealed between 760 and 820 degreesC (post-annealing). Reformation is expected to produce a large amount of liquid phase which may heat microcracks, decrease porosity, and improve grain growth. However, since the sintering temperature is beyond the Bi-2223 single-phase region......-energy synchrotron XRD and SEM/EDX. Some process parameters e.g. sintering temperature. cooling rate. and post-annealing time were optimised. (C) 2002 Elsevier Science B.V. All rights reserved....

  16. Repair of γ-irradiation-induced DNA single-strand breaks in human bone marrow cells. Analysis of unfractionated and CD34+ cells using single-cell gel electrophoresis

    International Nuclear Information System (INIS)

    Lankinen, Maarit H.; Vilpo, Juhani A.

    1997-01-01

    Human bone marrow mononuclear cells (BMMNCs) were separated by density gradient centrifugation, and a subpopulation of progenitor cells was further isolated using anti-CD34-coated magnetic beads. The cells were irradiated with γ-rays (0.93-5.43 Gy) from a 137 Cs source. The extent of DNA damage, i.e., single-strand breaks (SSBs) and alkali-labile lesions of individual cells, was investigated using the alkaline single-cell gel electrophoresis technique. The irradiation resulted in a dose-dependent increase in DNA migration, reflecting the number of detectable DNA lesions. An approximately similar extent of SSB formation was observed in BMMNCs and CD34+ cells. Damage was repaired when the cells were incubated at 37C: a fast initial repair phase was followed by a slower rejoining of SSBs in both BMMNC and CD34+ cell populations. A significantly longer time was required to repair the lesions caused by 5.43 Gy than those caused by 0.93 Gy. In the present work we report, for the first time, the induction and repair of DNA SSBs at the level of single human bone marrow cells when exposed to ionizing radiation at clinically relevant doses. These data, together with our previous results with human blood granulocytes and lymphocytes, indicate an approximately similar extent of formation and repair of γ-irradiation-induced DNA SSBs in immature and mature human hematopoietic cells

  17. Changes in the infrared microspectroscopic characteristics of DNA caused by cationic elements, different base richness and single-stranded form.

    Directory of Open Access Journals (Sweden)

    Maria Luiza S Mello

    Full Text Available BACKGROUND: The infrared (IR analysis of dried samples of DNA and DNA-polypeptide complexes is still scarce. Here we have studied the FT-IR profiles of these components to further the understanding of the FT-IR signatures of chromatin and cell nuclei. METHODOLOGY/PRINCIPAL FINDINGS: Calf thymus and salmon testis DNA, and complexes of histone H1, protamine, poly-L-lysine and poly-L-arginine (histone-mimic macromolecules with DNA were analyzed in an IR microspectroscope equipped with an attenuated total reflection diamond objective and Grams software. Conditions including polypeptides bound to the DNA, DNA base composition, and single-stranded form were found to differently affect the vibrational characteristics of the chemical groups (especially, PO(2(- in the nucleic acid. The antisymmetric stretching (ν(as of the DNA PO(2(- was greater than the symmetric stretching (ν(s of these groups and increased in the polypeptide-DNA complexes. A shift of the ν(as of the DNA PO(2(- to a lower frequency and an increased intensity of this vibration were induced especially by lysine-rich histones. Lysine richness additionally contributed to an increase in the vibrational stretching of the amide I group. Even in simple molecules such as inorganic phosphates, the vibrational characteristics of the phosphate anions were differently affected by different cations. As a result of the optimization of the DNA conformation by binding to arginine-rich polypeptides, enhancements of the vibrational characteristics in the FT-IR fingerprint could be detected. Although different profiles were obtained for the DNA with different base compositions, this situation was no longer verified in the polypeptide-DNA complexes and most likely in isolated chromatin or cell nuclei. However, the ν(as PO(2(-/ν(s PO(2(- ratio could discriminate DNA with different base compositions and DNA in a single-stranded form. CONCLUSIONS/SIGNIFICANCE: FT-IR spectral profiles are a valuable tool

  18. A Novel Single-Strand RNAi Therapeutic Agent Targeting the (Pro)renin Receptor Suppresses Ocular Inflammation.

    Science.gov (United States)

    Kanda, Atsuhiro; Ishizuka, Erdal Tan; Shibata, Atsushi; Matsumoto, Takahiro; Toyofuku, Hidekazu; Noda, Kousuke; Namba, Kenichi; Ishida, Susumu

    2017-06-16

    The receptor-associated prorenin system (RAPS) refers to the pathogenic mechanism whereby prorenin binding to the (pro)renin receptor [(P)RR] dually activates the tissue renin-angiotensin system (RAS) and RAS-independent intracellular signaling. Here we revealed significant upregulation of prorenin and soluble (P)RR levels in the vitreous fluid of patients with uveitis compared to non-inflammatory controls, together with a positive correlation between these RAPS components and monocyte chemotactic protein-1 among several upregulated cytokines. Moreover, we developed a novel single-strand RNAi agent, proline-modified short hairpin RNA directed against human and mouse (P)RR [(P)RR-PshRNA], and we determined its safety and efficacy in vitro and in vivo. Application of (P)RR-PshRNA in mice caused significant amelioration of acute (uveitic) and chronic (diabetic) models of ocular inflammation with no apparent adverse effects. Our findings demonstrate the significant implication of RAPS in the pathogenesis of human uveitis and the potential usefulness of (P)RR-PshRNA as a therapeutic agent to reduce ocular inflammation. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Short Communication A near mass stranding of cetaceans in St ...

    African Journals Online (AJOL)

    A group of 70 false killer whales Pseudorca crassidens and 124 bottlenose dolphins Tursiops sp., and a separate group of 13 Risso's dolphins Grampus griseus, assembled close inshore off a known mass-stranding site in St Helena Bay, South Africa, in October 2003. However, only a single Risso's dolphin attempted to ...

  20. Effect of annealing ambient on anisotropic retraction of film edges during solid-state dewetting of thin single crystal films

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Gye Hyun; Thompson, Carl V., E-mail: cthomp@mit.edu [Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 01239 (United States); Ma, Wen [Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 01239 (United States); Yildiz, Bilge [Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 01239 (United States); Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 01239 (United States)

    2016-08-21

    During solid-state dewetting of thin single crystal films, film edges retract at a rate that is strongly dependent on their crystallographic orientations. Edges with kinetically stable in-plane orientations remain straight as they retract, while those with other in-plane orientations develop in-plane facets as they retract. Kinetically stable edges have retraction rates that are lower than edges with other orientations and thus determine the shape of the natural holes that form during solid-state dewetting. In this paper, measurements of the retraction rates of kinetically stable edges for single crystal (110) and (100) Ni films on MgO are presented. Relative retraction rates of kinetically stable edges with different crystallographic orientations are observed to change under different annealing conditions, and this accordingly changes the initial shapes of growing holes. The surfaces of (110) and (100) films were also characterized using low energy electron diffraction, and different surface reconstructions were observed under different ambient conditions. The observed surface structures were found to correlate with the observed changes in the relative retraction rates of the kinetically stable edges.

  1. Role of radiation chemical and enzymatic processes on single-strand breaks at short times after irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Sapora, O; Loverock, P S; Fielden, E M [Institute of Cancer Research, Sutton (UK). Surrey Branch

    1976-10-01

    A rapid mixing lysis technique has been used to study the effects of irradiation at different temperatures on two strains of E.coli K12, one lacking in the polymerase I activity (W3110), and the other carrying a ligase temperature-sensitive mutation (DY179), which had full ligase activity at 30/sup 0/C and none at 46/sup 0/C. The results provided direct evidence for the absence of any ligase-dependent repair of SSB at short times. The addition of 5 x 10/sup -3/M cysteine to heat-treated W3110 cells before irradiation in anoxic conditions practically removed the increase in yield of SSB per single strand genome shown by the heat-treated cells; the response was very close to that of normal cells in anoxia. The important contribution of sulphydryl compounds to the anoxic radio-biological response is thereby demonstrated. The basic difference in damage obtained by irradiation under oxic or anoxic conditions is due not to preferential enzymic (ligase) repair but to differences in radiation chemical events.

  2. Theoretical analysis on ac loss properties of two-strand parallel conductors composed of superconducting multifilamentary strands

    CERN Document Server

    Iwakuma, M; Funaki, K

    2002-01-01

    The ac loss properties of two-strand parallel conductors composed of superconducting multifilamentary strands were theoretically investigated. The constituent strands generally need to be insulated and transposed for the sake of uniform current distribution and low ac loss. In case the transposition points deviate from the optimum ones, shielding current is induced according to the interlinkage magnetic flux of the twisted loop enclosed by the insulated strands and the contact resistances at the terminals. It produces an additional ac loss. Supposing a simple situation where a two-strand parallel conductor with one-point transposition is exposed to a uniform ac magnetic field, the basic equations for the magnetic field were proposed and the theoretical expressions of the additional ac losses derived. As a result, the following features were shown. The additional ac loss in the non-saturation case, where the induced shielding current is less than the critical current of a strand, is proportional to the square ...

  3. A cascade autocatalytic strand displacement amplification and hybridization chain reaction event for label-free and ultrasensitive electrochemical nucleic acid biosensing.

    Science.gov (United States)

    Chen, Zhiqiang; Liu, Ying; Xin, Chen; Zhao, Jikuan; Liu, Shufeng

    2018-04-23

    Herein, an autocatalytic strand displacement amplification (ASDA) strategy was proposed for the first time, which was further ingeniously coupled with hybridization chain reaction (HCR) event for the isothermal, label-free and multiple amplification toward nucleic acid detection. During the ASDA module, the target recognition opens the immobilized hairpin probe (IP) and initiates the annealing of the auxiliary DNA strand (AS) with the opened IP for the successive polymerization and nicking reaction in the presence of DNA polymerase and nicking endonuclease. This induces the target recycling and generation of a large amount of intermediate DNA sequences, which can be used as target analogy to execute the autocatalytic strand displacement amplification. Simultaneously, the introduced AS strand can propagate the HCR between two hairpins (H1 and H2) to form a linear DNA concatamer with cytosine (C)-rich loop region, which can facilitate the in-situ synthesis of silver nanoclusters (AgNCs) as electrochemical tags for further amplification toward target responses. With current cascade ASDA and HCR strategy, the detection of target DNA could be achieved with a low detection limit of about 0.16 fM and a good selectivity. The developed biosensor also exhibits the distinct advantages of flexibility and simplicity in probe design and biosensor fabrication, and label-free electrochemical detection, thus opens a promising avenue for the detection of nucleic acid with low abundance in bioanalysis and clinical biomedicine. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Influences of annealing temperature on sprayed CuFeO2 thin films

    Science.gov (United States)

    Abdelwahab, H. M.; Ratep, A.; Abo Elsoud, A. M.; Boshta, M.; Osman, M. B. S.

    2018-06-01

    Delafossite CuFeO2 thin films were successfully prepared onto quartz substrates using simple spray pyrolysis technique. Post annealing under nitrogen atmosphere for 2 h was necessary to form delafossite CuFeO2 phase. The effect of alteration in annealing temperature (TA) 800, 850 and 900 °C was study on structural, morphology and optical properties. The XRD results for thin film annealed at TA = 850 °C show single phase CuFeO2 with rhombohedral crystal system and R 3 bar m space group with preferred orientation along (0 1 2). The prepared copper iron oxide thin films have an optical transmission ranged ∼40% in the visible region. The optical direct optical band gap of the prepared thin films was ranged ∼2.9 eV.

  5. Structural, morphological and optical properties of thermal annealed TiO thin films

    International Nuclear Information System (INIS)

    Zribi, M.; Kanzari, M.; Rezig, B.

    2008-01-01

    Structural, morphological and optical properties of TiO thin films grown by single source thermal evaporation method were studied. The films were annealed from 300 to 520 deg. C in air after evaporation. Qualitative film analysis was performed with X-ray diffraction, atomic force microscopy and optical transmittance and reflectance spectra. A correlation was established between the optical properties, surface roughness and growth morphology of the evaporated TiO thin films. The X-ray diffraction spectra indicated the presence of the TiO 2 phase for the annealing temperature above 400 deg. C

  6. Isothermal and isochronal annealing methodology to study post-irradiation temperature activated phenomena

    International Nuclear Information System (INIS)

    Chabrerie, C.; Autran, J.L.; Paillet, P.; Flament, O.; Leray, J.L.; Boudenot, J.C.

    1997-01-01

    In this work, the evolution of the oxide trapped charge has been modeled, to predict post-irradiation behavior for arbitrary anneal conditions (i.e., arbitrary temperature-time profiles). Using experimental data obtained from a single isochronal anneal, the method consists of calculating the evolution of the energy distribution of the oxide trapped charge, in the framework of a thermally activated charge detrapping model. This methodology is illustrated in this paper by the prediction of experimental isothermal data from isochronal measurements. The implications of these results to hardness assurance test methods are discussed

  7. Quantitation of the repair of gamma-radiation-induced double-strand DNA breaks in human fibroblasts

    International Nuclear Information System (INIS)

    Woods, W.G.

    1981-01-01

    The quantitation and repair of double-strand DNA breaks in human fibroblasts has been determined using a method involving the nondenaturing elution of DNA from a filter. DNA from cells from two human fibroblast lines exposed to γ-radiation from 0 to 10000 rad showed increasing retention on a filter with decreasing radiation dose, and the data suggest a linear relationship between double-strand breaks induced and radiation dose. The ability of normal human fibroblasts to repair double-strand breaks with various doses of radiation was demonstrated, with a tsub(1/2) of 10 min for repair of 5000 rad exposure and 39 min for repair of 10000 rad damage. The kinetics of the DNA rejoining were not linear and suggest that, as in the repair of single-strand breaks, both an initial fast and a later slow mechanism may be involved. (Auth.)

  8. Detection of DNA damage in cells exposed to ionizing radiation by use of antisingle-stranded-DNA monoclonal antibody

    International Nuclear Information System (INIS)

    Schans, G.P. van der; Loon, A.A.W.M. van; Groenendijk, R.H.; Baan, R.A.

    1989-03-01

    An immunochemical method has been developed for quantitative detection of DNA damage in mammalian cells. The method is based on the binding of a monoclonal antibody to single-stranded DNA. The clone producing this antibody, D1B, was obtained as a by-product from fusion of mouse myeloma cells with spleen cells isolated from a mouse immunized with chemically modified DNA. The technique is based upon the determination of the percentage single-strandedness resulting from the partial umwinding of cellular DNA under alkaline conditions, a time-dependent process. Single-strand and double-strand DNA breaks, or lesions converted into such breaks in alkaline medium, form initiation points for the unwinding. The extent of unwinding under controlled conditions is a measure, therefore, of the amount of such sites. The method is rapid, does not require radioactive labelling of DNA or physical separation of single- from double-stranded molecules, is sufficiently sensitive to detect damage induced by 1 Gu of ionizing radiation and needs only small amounts of cells. The usefulness of the technique was demonstrated in a study on the induction of damage and its repair in unlabelled cultured Chinese hamster cells and in DNA-containing cells of human blood, both after exposure to 60 Co-γ-rays, and in white blood cells and bone marrow cells of X-irradiated mice. A dose-related degree of unwinding was observed and repair could be observed up to 60 min after irradiation. (author). 19 refs.; 3 figs.; 1 tab

  9. Asymmetric strand segregation: epigenetic costs of genetic fidelity?

    Directory of Open Access Journals (Sweden)

    Diane P Genereux

    2009-06-01

    Full Text Available Asymmetric strand segregation has been proposed as a mechanism to minimize effective mutation rates in epithelial tissues. Under asymmetric strand segregation, the double-stranded molecule that contains the oldest DNA strand is preferentially targeted to the somatic stem cell after each round of DNA replication. This oldest DNA strand is expected to have fewer errors than younger strands because some of the errors that arise on daughter strands during their synthesis fail to be repaired. Empirical findings suggest the possibility of asymmetric strand segregation in a subset of mammalian cell lineages, indicating that it may indeed function to increase genetic fidelity. However, the implications of asymmetric strand segregation for the fidelity of epigenetic information remain unexplored. Here, I explore the impact of strand-segregation dynamics on epigenetic fidelity using a mathematical-modelling approach that draws on the known molecular mechanisms of DNA methylation and existing rate estimates from empirical methylation data. I find that, for a wide range of starting methylation densities, asymmetric -- but not symmetric -- strand segregation leads to systematic increases in methylation levels if parent strands are subject to de novo methylation events. I found that epigenetic fidelity can be compromised when enhanced genetic fidelity is achieved through asymmetric strand segregation. Strand segregation dynamics could thus explain the increased DNA methylation densities that are observed in structured cellular populations during aging and in disease.

  10. Selection and Characterization of Single Stranded DNA Aptamers for the Hormone Abscisic Acid

    Science.gov (United States)

    Gonzalez, Victor M.; Millo, Enrico; Sturla, Laura; Vigliarolo, Tiziana; Bagnasco, Luca; Guida, Lucrezia; D'Arrigo, Cristina; De Flora, Antonio; Salis, Annalisa; Martin, Elena M.; Bellotti, Marta; Zocchi, Elena

    2013-01-01

    The hormone abscisic acid (ABA) is a small molecule involved in pivotal physiological functions in higher plants. Recently, ABA has been also identified as an endogenous hormone in mammals, regulating different cell functions including inflammatory processes, stem cell expansion, insulin release, and glucose uptake. Aptamers are short, single-stranded (ss) oligonucleotidesable to recognize target molecules with high affinity. The small size of the ABA molecule represented a challenge for aptamer development and the aim of this study was to develop specific anti-ABA DNA aptamers. Biotinylated abscisic acid (bio-ABA) was immobilized on streptavidin-coated magnetic beads. DNA aptamers against bio-ABA were selected with 7 iterative rounds of the systematic evolution of ligands by exponential enrichment method (SELEX), each round comprising incubation of the ABA-binding beads with the ssDNA sequences, DNA elution, electrophoresis, and polymerase chain reaction (PCR) amplification. The PCR product was cloned and sequenced. The binding affinity of several clones was determined using bio-ABA immobilized on streptavidin-coated plates. Aptamer 2 and aptamer 9 showed the highest binding affinity, with dissociation constants values of 0.98±0.14 μM and 0.80±0.07 μM, respectively. Aptamers 2 and 9 were also able to bind free, unmodified ABA and to discriminate between different ABA enantiomers and isomers. Our findings indicate that ssDNA aptamers can selectively bind ABA and could be used for the development of ABA quantitation assays. PMID:23971905

  11. A robust network of double-strand break repair pathways governs genome integrity during C. elegans development.

    NARCIS (Netherlands)

    Pontier, D.B.; Tijsterman, M.

    2009-01-01

    To preserve genomic integrity, various mechanisms have evolved to repair DNA double-strand breaks (DSBs). Depending on cell type or cell cycle phase, DSBs can be repaired error-free, by homologous recombination, or with concomitant loss of sequence information, via nonhomologous end-joining (NHEJ)

  12. Structural change upon annealing of amorphous GeSbTe grown on Si(111)

    Energy Technology Data Exchange (ETDEWEB)

    Bragaglia, V., E-mail: bragaglia@pdi-berlin.de; Jenichen, B.; Giussani, A.; Perumal, K.; Riechert, H.; Calarco, R. [Paul-Drude-Institut für Festkörperelektronik, Hausvogteiplatz 5-7, 10117 Berlin (Germany)

    2014-08-07

    The structural change upon annealing of an amorphous GeSbTe (GST) film deposited by molecular beam epitaxy on a Si(111) substrate is studied by means of X-ray diffraction (XRD), X-ray reflectivity (XRR), and atomic force microscopy (AFM). XRD profiles reveal that both metastable cubic and stable hexagonal phases are obtained with a single out-of-plane orientation. XRR study shows a density increase and consequent thickness decrease upon annealing, in accordance with literature. From both, the XRD and the AFM study, it emerges that the crystalline substrate acts as a template for the film, favoring the crystallization of the amorphous GST into the [111] oriented metastable cubic phase, and the latter turns into the [0001] stable hexagonal phase for higher annealing temperature.

  13. Alkaline gel electrophoresis assay to detect DNA strand breaks and repair mechanisms in Escherichia coli

    International Nuclear Information System (INIS)

    Mattos, Jose Carlos Pelielo de; Motta, Ellen Serri da; Oliveira, Marcia Betania Nunes de; Dantas, Flavio Jose da Silva; Araujo, Adriano Caldeira de

    2008-01-01

    Reactive oxygen species (ROS) can induce lesions in different cellular targets, including DNA. Stannous chloride (SnCl 2 ) is a ROS generator, leading to lethality in Escherichia coli (E. coli), with the base excision repair (BER) mechanism playing a role in this process. Many techniques have been developed to detect genotoxicity, as comet assay, in eukaryotic cells, and plasmid DNA agarose gel electrophoresis. In this study, an adaptation of the alkaline gel electrophoresis method was carried out to ascertain the induction of strand breaks by SnCl 2 in bacterial DNA, from E. coli BER mutants, and its repair pathway. Results obtained show that SnCl 2 was able to induce DNA strand breaks in all strains tested. Moreover, endonuclease IV and exonuclease III play a role in DNA repair. On the whole, data has shown that the alkaline gel electrophoresis assay could be used both for studying DNA strand breaks induction and for associated repair mechanisms. (author)

  14. Alkaline gel electrophoresis assay to detect DNA strand breaks and repair mechanisms in Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Mattos, Jose Carlos Pelielo de; Motta, Ellen Serri da; Oliveira, Marcia Betania Nunes de; Dantas, Flavio Jose da Silva; Araujo, Adriano Caldeira de [Universidade do Estado do Rio de Janeiro (UERJ), RJ (Brazil). Dept. de Biofisica e Biometria. Lab. de Radio e Fotobiologia]. E-mail: jcmattos@uerj.br

    2008-12-15

    Reactive oxygen species (ROS) can induce lesions in different cellular targets, including DNA. Stannous chloride (SnCl{sub 2}) is a ROS generator, leading to lethality in Escherichia coli (E. coli), with the base excision repair (BER) mechanism playing a role in this process. Many techniques have been developed to detect genotoxicity, as comet assay, in eukaryotic cells, and plasmid DNA agarose gel electrophoresis. In this study, an adaptation of the alkaline gel electrophoresis method was carried out to ascertain the induction of strand breaks by SnCl{sub 2} in bacterial DNA, from E. coli BER mutants, and its repair pathway. Results obtained show that SnCl{sub 2} was able to induce DNA strand breaks in all strains tested. Moreover, endonuclease IV and exonuclease III play a role in DNA repair. On the whole, data has shown that the alkaline gel electrophoresis assay could be used both for studying DNA strand breaks induction and for associated repair mechanisms. (author)

  15. Sequential multiple-step europium ion implantation and annealing of GaN

    KAUST Repository

    Miranda, S. M C; Edwards, Paul R.; O'Donnell, Kevin Peter; Boćkowski, Michał X.; Alves, Eduardo Jorge; Roqan, Iman S.; Vantomme, André ; Lorenz, Katharina

    2014-01-01

    Sequential multiple Eu ion implantations at low fluence (1×1013 cm-2 at 300 keV) and subsequent rapid thermal annealing (RTA) steps (30 s at 1000 °C or 1100 °C) were performed on high quality nominally undoped GaN films grown by metal organic chemical vapour deposition (MOCVD) and medium quality GaN:Mg grown by hydride vapour phase epitaxy (HVPE). Compared to samples implanted in a single step, multiple implantation/annealing shows only marginal structural improvement for the MOCVD samples, but a significant improvement of crystal quality and optical activation of Eu was achieved in the HVPE films. This improvement is attributed to the lower crystalline quality of the starting material, which probably enhances the diffusion of defects and acts to facilitate the annealing of implantation damage and the effective incorporation of the Eu ions in the crystal structure. Optical activation of Eu3+ ions in the HVPE samples was further improved by high temperature and high pressure annealing (HTHP) up to 1400 °C. After HTHP annealing the main room temperature cathodo- and photoluminescence line in Mg-doped samples lies at ∼ 619 nm, characteristic of a known Mg-related Eu3+ centre, while after RTA treatment the dominant line lies at ∼ 622 nm, typical for undoped GaN:Eu. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Sequential multiple-step europium ion implantation and annealing of GaN

    KAUST Repository

    Miranda, S. M C

    2014-01-20

    Sequential multiple Eu ion implantations at low fluence (1×1013 cm-2 at 300 keV) and subsequent rapid thermal annealing (RTA) steps (30 s at 1000 °C or 1100 °C) were performed on high quality nominally undoped GaN films grown by metal organic chemical vapour deposition (MOCVD) and medium quality GaN:Mg grown by hydride vapour phase epitaxy (HVPE). Compared to samples implanted in a single step, multiple implantation/annealing shows only marginal structural improvement for the MOCVD samples, but a significant improvement of crystal quality and optical activation of Eu was achieved in the HVPE films. This improvement is attributed to the lower crystalline quality of the starting material, which probably enhances the diffusion of defects and acts to facilitate the annealing of implantation damage and the effective incorporation of the Eu ions in the crystal structure. Optical activation of Eu3+ ions in the HVPE samples was further improved by high temperature and high pressure annealing (HTHP) up to 1400 °C. After HTHP annealing the main room temperature cathodo- and photoluminescence line in Mg-doped samples lies at ∼ 619 nm, characteristic of a known Mg-related Eu3+ centre, while after RTA treatment the dominant line lies at ∼ 622 nm, typical for undoped GaN:Eu. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Defects Identification and Effects of Annealing on Lu2(1-xY2xSiO5 (LYSO Single Crystals for Scintillation Application

    Directory of Open Access Journals (Sweden)

    Samuel Blahuta

    2011-07-01

    Full Text Available The nature, properties and relative concentrations of electronic defects were investigated by Thermoluminescence (TL in Lu2(1-xY2xSiO5 (LYSO single crystals. Ce and Tb-doped single crystals, grown by the Czochralski technique (CZ, revealed similar traps in TL. LYSO:Ce single crystals were grown by the Floating-Zone technique (FZ with increasing oxygen concentration in the growth atmosphere. TL intensity is strongly dependent on the oxygen content of the material, and oxygen vacancies are proven to be the main electronic defects in LYSO. The effects of oxidizing and reducing annealing post-treatment on these defects were investigated. While oxidizing treatments efficiently reduce the amount of electronic defects, reducing treatments increase the amount of existing traps. In a thermally assisted tunneling mechanism, the localization of oxygen vacancies around the dopant is discussed. They are shown to be in the close vicinity of the dopant, though not in first neighbor positions.

  18. Single molecular biology: coming of age in DNA replication.

    Science.gov (United States)

    Liu, Xiao-Jing; Lou, Hui-Qiang

    2017-09-20

    DNA replication is an essential process of the living organisms. To achieve precise and reliable replication, DNA polymerases play a central role in DNA synthesis. Previous investigations have shown that the average rates of DNA synthesis on the leading and lagging strands in a replisome must be similar to avoid the formation of significant gaps in the nascent strands. The underlying mechanism has been assumed to be coordination between leading- and lagging-strand polymerases. However, Kowalczykowski's lab members recently performed single molecule techniques in E. coli and showed the real-time behavior of a replisome. The leading- and lagging-strand polymerases function stochastically and independently. Furthermore, when a DNA polymerase is paused, the helicase slows down in a self-regulating fail-safe mechanism, akin to a ''dead-man's switch''. Based on the real-time single-molecular observation, the authors propose that leading- and lagging-strand polymerases synthesize DNA stochastically within a Gaussian distribution. Along with the development and application of single-molecule techniques, we will witness a new age of DNA replication and other biological researches.

  19. Double-step annealing and ambient effects on phosphorus implanted emitters in silicon

    International Nuclear Information System (INIS)

    Koji, T.; Tseng, W.F.; Mayer, J.W.; Suganuma, T.

    1979-01-01

    Emitters of npn silicon bipolar transistors have been made by a phosphorus implantation at 50 keV P + to a dose of 1 x 10 16 cm -2 . This was followed by high temperature processes to reduce lattice disorder, to drive-in the phosphorus atoms, and to form oxide layers. The first process step was carried out by using single- and double-step anneals in various ambients (dry N 2 , dry 0 2 and steam) while the drive-in and oxidation steps were common for all structures. Electrical measurements on emitter/base leakage current, low frequency (popcorn) noise and current gain showed that the annealing ambient had a major influence. The transistors with implanted emitters annealed in a dry N 2 ambient are comparable to commercial ones with thermally-diffused emitters. Transmission electron microscopy observations on samples annealed in steam ambients revealed dislocations extending into the sidewall of the emitter/base junction. This sidewell penetration of dislocations is the main origin of the degradation of the emitter/base junction characteristics. (author)

  20. The effect of annealing ambient on surface segregation in indium implanted sapphire

    International Nuclear Information System (INIS)

    Sood, D.K.; Victoria University of Technology, Melbourne; Zhou, W.; Victoria University of Technology, Melbourne; Academia Sinica, Shanghai Institute of Metallurgy; Cao, D.X.; Victoria University of Technology, Melbourne; Academia Sinica, Shanghai, SH

    1991-01-01

    A systematic study of the effect of annealing ambient on both indium surface segregation and lattice damage recovery of single crystal Al 2 O 3 has been done by performing 1 hour anneals at 800 deg C for the samples identically implanted with indium ions at 100keV energy to a high dose of 5x10 16 ions/cm 2 . Following solid phase epitaxial re-crystallization of amorphous layer, the indium dopant shows rapid thermal migration. The indium redistribution consists of 2 parts: 1. appreciable broadening corresponding to diffusion within the amorphous layer, and 2. indium segregation to the free surface to form In 2 O 3 , or escape out of the surface to sublime into the surrounding ambient. Lattice damage recovery depends on indium concentration profile in amorphous layer of Al 2 O 3 which is directly influenced by the annealing ambient. It is confirmed that the presence of moisture or oxygen in annealing ambient results in In 2 O 3 formation on the surface. (author). 6 refs.; 3 figs.; 1 tab