WorldWideScience

Sample records for single-step dark fermentation

  1. Potential use of thermophilic dark fermentation effluents in photofermentative hydrogen production by Rhodobacter capsulatus

    Energy Technology Data Exchange (ETDEWEB)

    Ozgura, E.; Afsar, N.; Eroglu, I. [Middle East Technical University, Department of Chemical Engineering, 06531 Ankara (Turkey); De Vrije, T.; Claassen, P.A.M. [Wageningen UR, Agrotechnology and Food Sciences Group, Wageningen UR, P.O. Box 17, 6700 AA Wageningen (Netherlands); Yucel, M.; Gunduz, U. [Middle East Technical University, Department of Biology, 06531 Ankara (Turkey)

    2010-12-15

    Biological hydrogen production by a sequential operation of dark and photofermentation is a promising route to produce hydrogen. The possibility of using renewable resources, like biomass and agro-industrial wastes, provides a dual effect of sustainability in biohydrogen production and simultaneous waste removal. In this study, photofermentative hydrogen production on effluents of thermophilic dark fermentations on glucose, potato steam peels (PSP) hydrolysate and molasses was investigated in indoor, batch operated bioreactors. An extreme thermophile Caldicellulosiruptor saccharolyticus was used in the dark fermentation step, and Rhodobacter capsulatus (DSM1710) was used in the photofermentation step. Addition of buffer, Fe and Mo to dark fermentor effluents (DFEs) improved the overall efficiency of hydrogen production. The initial acetate concentration in the DFE needed to be adjusted to 30-40 mM by dilution to increase the yield of hydrogen in batch light-supported fermentations. The thermophilic DFEs are suitable for photofermentative hydrogen production, provided that they are supplemented with buffer and nutrients. The overall hydrogen yield of the two-step fermentations was higher than the yield of single step dark fermentations.

  2. Biohydrogen production from combined dark-photo fermentation under a high ammonia content in the dark fermentation effluent

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chun-Yen [National Cheng Kung Univ., Tainan, Taiwan (China). Dept. of Chemical Engineering; National Cheng Kung Univ., Tainan, Taiwan (China). Sustainable Environment Research Center; Lo, Yung-Chung; Yeh, Kuei-Ling [National Cheng Kung Univ., Tainan, Taiwan (China). Dept. of Chemical Engineering; Chang, Jo-Shu [National Cheng Kung Univ., Tainan, Taiwan (China). Dept. of Chemical Engineering; National Cheng Kung Univ., Tainan, Taiwan (China). Sustainable Environment Research Center; National Cheng Kung Univ., Tainan, Taiwan (China). Microalgae Biotechnology and Bioengineering Lab.

    2010-07-01

    Integrated dark and photo (two-stage) fermentation was employed to enhance the performance of H{sub 2} production. First, the continuous dark fermentation using indigenous Clostridium butyricum CGS5 was carried out at 12 h HRT and fed with sucrose at a concentration of 18750 mg/l. The overall H{sub 2} production rate and H{sub 2} yield were fairly stable with a mean value of 87.5 ml/l/h and 1.015 mol H{sub 2}/mol sucrose, respectively. In addition, a relatively high ammonia nitrogen content (574 mg/l) in the dark fermentation effluent was observed. The soluble metabolites from dark fermentation, consisting mainly of butyric, lactic and acetic acids, were directly used as the influent of continuous photo-H{sub 2} production process inoculated with Rhodopseudomonas palutris WP 3-5 under the condition of 35oC, 10000 lux irradiation, pH 7.0 and 48 h HRT. The maximum overall hydrogen production rate from photo fermentation was 16.4 ml H{sub 2}/l/h, and the utilization of the soluble metabolites could reach 90%. The maximum H{sub 2} yield dramatically increased from 1.015 mol H{sub 2}/mol sucrose (in dark fermentation only) to 6.04 mol H{sub 2}/mol sucrose in the combined dark and photo fermentation. Surprisingly, the operation strategy applied in this work was able to attain an average NH{sub 3}-N removal efficiency of 92%, implying that our photo-H{sub 2} production system has a higher NH{sub 3}-N tolerance, demonstrating its high applicability in an integrated dark-photo fermentation system. (orig.)

  3. Biological hydrogen production by dark fermentation: challenges and prospects towards scaled-up production.

    Science.gov (United States)

    RenNanqi; GuoWanqian; LiuBingfeng; CaoGuangli; DingJie

    2011-06-01

    Among different technologies of hydrogen production, bio-hydrogen production exhibits perhaps the greatest potential to replace fossil fuels. Based on recent research on dark fermentative hydrogen production, this article reviews the following aspects towards scaled-up application of this technology: bioreactor development and parameter optimization, process modeling and simulation, exploitation of cheaper raw materials and combining dark-fermentation with photo-fermentation. Bioreactors are necessary for dark-fermentation hydrogen production, so the design of reactor type and optimization of parameters are essential. Process modeling and simulation can help engineers design and optimize large-scale systems and operations. Use of cheaper raw materials will surely accelerate the pace of scaled-up production of biological hydrogen. And finally, combining dark-fermentation with photo-fermentation holds considerable promise, and has successfully achieved maximum overall hydrogen yield from a single substrate. Future development of bio-hydrogen production will also be discussed. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Potential use and the energy conversion efficiency analysis of fermentation effluents from photo and dark fermentative bio-hydrogen production.

    Science.gov (United States)

    Zhang, Zhiping; Li, Yameng; Zhang, Huan; He, Chao; Zhang, Quanguo

    2017-12-01

    Effluent of bio-hydrogen production system also can be adopted to produce methane for further fermentation, cogeneration of hydrogen and methane will significantly improve the energy conversion efficiency. Platanus Orientalis leaves were taken as the raw material for photo- and dark-fermentation bio-hydrogen production. The resulting concentrations of acetic, butyric, and propionic acids and ethanol in the photo- and dark-fermentation effluents were 2966mg/L and 624mg/L, 422mg/L and 1624mg/L, 1365mg/L and 558mg/L, and 866mg/L and 1352mg/L, respectively. Subsequently, we calculated the energy conversion efficiency according to the organic contents of the effluents and their energy output when used as raw material for methane production. The overall energy conversion efficiencies increased by 15.17% and 22.28%, respectively, when using the effluents of photo and dark fermentation. This two-step bio-hydrogen and methane production system can significantly improve the energy conversion efficiency of anaerobic biological treatment plants. Copyright © 2017. Published by Elsevier Ltd.

  5. Enhanced energy conversion efficiency from high strength synthetic organic wastewater by sequential dark fermentative hydrogen production and algal lipid accumulation.

    Science.gov (United States)

    Ren, Hong-Yu; Liu, Bing-Feng; Kong, Fanying; Zhao, Lei; Xing, Defeng; Ren, Nan-Qi

    2014-04-01

    A two-stage process of sequential dark fermentative hydrogen production and microalgal cultivation was applied to enhance the energy conversion efficiency from high strength synthetic organic wastewater. Ethanol fermentation bacterium Ethanoligenens harbinense B49 was used as hydrogen producer, and the energy conversion efficiency and chemical oxygen demand (COD) removal efficiency reached 18.6% and 28.3% in dark fermentation. Acetate was the main soluble product in dark fermentative effluent, which was further utilized by microalga Scenedesmus sp. R-16. The final algal biomass concentration reached 1.98gL(-1), and the algal biomass was rich in lipid (40.9%) and low in protein (23.3%) and carbohydrate (11.9%). Compared with single dark fermentation stage, the energy conversion efficiency and COD removal efficiency of two-stage system remarkably increased 101% and 131%, respectively. This research provides a new approach for efficient energy production and wastewater treatment using a two-stage process combining dark fermentation and algal cultivation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Development of a combined bio-hydrogen- and methane-production unit using dark fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Brunstermann, R.; Widmann, R. [Duisburg-Essen Univ. (Germany). Dept. of Urban Water and Waste Management

    2010-07-01

    Hydrogen is regarded as a source of energy of the future. Currently, hydrogen is produced, predominantly, by electrolysis of water by using electricity or by stream reforming of natural gas. So both methods are based on fossil fuels. If the used electricity is recovered from renewable recourses, hydrogen produced by water electrolysis may be a clean solution. At present, the production of hydrogen by biological processes finds more and more attention world far. The biology provides a wide range of approaches to produce hydrogen, including bio-photolysis as well as photo-fermentation and dark-fermentation. Currently these biological technologies are not suitable for solving every day energy problems [1]. But the dark-fermentation is a promising approach to produce hydrogen in a sustainable way and was already examined in some projects. At mesophilic conditions this process provides a high yield of hydrogen by less energy demand, [2]. Short hydraulic retention times (HRT) and high metabolic rates are advantages of the process. The incomplete transformation of the organic components into various organic acids is a disadvantage. Thus a second process step is required. Therefore the well known biogas-technique is used to degrade the organic acids predominantly acetic and butyric acid from the hydrogen-production unit into CH{sub 4} and CO{sub 2}. This paper deals with the development of a combined hydrogen and methane production unit using dark fermentation at mesophilic conditions. The continuous operation of the combined hydrogen and methane production out of DOC loaded sewages and carbohydrate rich biowaste is necessary for the examination of the technical and economical implementation. The hydrogen step shows as first results hydrogen concentration in the biogas between 40 % and 60 %.The operating efficiency of the combined production of hydrogen and methane shall be checked as a complete system. (orig.)

  7. A comprehensive and quantitative review of dark fermentative biohydrogen production

    Directory of Open Access Journals (Sweden)

    Rittmann Simon

    2012-08-01

    Full Text Available Abstract Biohydrogen production (BHP can be achieved by direct or indirect biophotolysis, photo-fermentation and dark fermentation, whereof only the latter does not require the input of light energy. Our motivation to compile this review was to quantify and comprehensively report strains and process performance of dark fermentative BHP. This review summarizes the work done on pure and defined co-culture dark fermentative BHP since the year 1901. Qualitative growth characteristics and quantitative normalized results of H2 production for more than 2000 conditions are presented in a normalized and therefore comparable format to the scientific community. Statistically based evidence shows that thermophilic strains comprise high substrate conversion efficiency, but mesophilic strains achieve high volumetric productivity. Moreover, microbes of Thermoanaerobacterales (Family III have to be preferred when aiming to achieve high substrate conversion efficiency in comparison to the families Clostridiaceae and Enterobacteriaceae. The limited number of results available on dark fermentative BHP from fed-batch cultivations indicates the yet underestimated potential of this bioprocessing application. A Design of Experiments strategy should be preferred for efficient bioprocess development and optimization of BHP aiming at improving medium, cultivation conditions and revealing inhibitory effects. This will enable comparing and optimizing strains and processes independent of initial conditions and scale.

  8. Boosting dark fermentation with co-cultures of extreme thermophiles for biohythane production from garden waste.

    Science.gov (United States)

    Abreu, Angela A; Tavares, Fábio; Alves, Maria Madalena; Pereira, Maria Alcina

    2016-11-01

    Proof of principle of biohythane and potential energy production from garden waste (GW) is demonstrated in this study in a two-step process coupling dark fermentation and anaerobic digestion. The synergistic effect of using co-cultures of extreme thermophiles to intensify biohydrogen dark fermentation is demonstrated using xylose, cellobiose and GW. Co-culture of Caldicellulosiruptor saccharolyticus and Thermotoga maritima showed higher hydrogen production yields from xylose (2.7±0.1molmol(-1) total sugar) and cellobiose (4.8±0.3molmol(-1) total sugar) compared to individual cultures. Co-culture of extreme thermophiles C. saccharolyticus and Caldicellulosiruptor bescii increased synergistically the hydrogen production yield from GW (98.3±6.9Lkg(-1) (VS)) compared to individual cultures and co-culture of T. maritima and C. saccharolyticus. The biochemical methane potential of the fermentation end-products was 322±10Lkg(-1) (CODt). Biohythane, a biogas enriched with 15% hydrogen could be obtained from GW, yielding a potential energy generation of 22.2MJkg(-1) (VS). Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Introducing capnophilic lactic fermentation in a combined dark-photo fermentation process: a route to unparalleled H2 yields.

    Science.gov (United States)

    Dipasquale, L; Adessi, A; d'Ippolito, G; Rossi, F; Fontana, A; De Philippis, R

    2015-01-01

    Two-stage process based on photofermentation of dark fermentation effluents is widely recognized as the most effective method for biological production of hydrogen from organic substrates. Recently, it was described an alternative mechanism, named capnophilic lactic fermentation, for sugar fermentation by the hyperthermophilic bacterium Thermotoga neapolitana in CO2-rich atmosphere. Here, we report the first application of this novel process to two-stage biological production of hydrogen. The microbial system based on T. neapolitana DSM 4359(T) and Rhodopseudomonas palustris 42OL gave 9.4 mol of hydrogen per mole of glucose consumed during the anaerobic process, which is the best production yield so far reported for conventional two-stage batch cultivations. The improvement of hydrogen yield correlates with the increase in lactic production during capnophilic lactic fermentation and takes also advantage of the introduction of original conditions for culturing both microorganisms in minimal media based on diluted sea water. The use of CO2 during the first step of the combined process establishes a novel strategy for biohydrogen technology. Moreover, this study opens the way to cost reduction and use of salt-rich waste as feedstock.

  10. Metabolism in anoxic permeable sediments is dominated by eukaryotic dark fermentation

    Science.gov (United States)

    Bourke, Michael F.; Marriott, Philip J.; Glud, Ronnie N.; Hasler-Sheetal, Harald; Kamalanathan, Manoj; Beardall, John; Greening, Chris; Cook, Perran L. M.

    2017-01-01

    Permeable sediments are common across continental shelves and are critical contributors to marine biogeochemical cycling. Organic matter in permeable sediments is dominated by microalgae, which as eukaryotes have different anaerobic metabolic pathways to bacteria and archaea. Here we present analyses of flow-through reactor experiments showing that dissolved inorganic carbon is produced predominantly as a result of anaerobic eukaryotic metabolic activity. In our experiments, anaerobic production of dissolved inorganic carbon was consistently accompanied by large dissolved H2 production rates, suggesting the presence of fermentation. The production of both dissolved inorganic carbon and H2 persisted following administration of broad spectrum bactericidal antibiotics, but ceased following treatment with metronidazole. Metronidazole inhibits the ferredoxin/hydrogenase pathway of fermentative eukaryotic H2 production, suggesting that pathway as the source of H2 and dissolved inorganic carbon production. Metabolomic analysis showed large increases in lipid production at the onset of anoxia, consistent with documented pathways of anoxic dark fermentation in microalgae. Cell counts revealed a predominance of microalgae in the sediments. H2 production was observed in dark anoxic cultures of diatoms (Fragilariopsis sp.) and a chlorophyte (Pyramimonas) isolated from the study site, substantiating the hypothesis that microalgae undertake fermentation. We conclude that microalgal dark fermentation could be an important energy-conserving pathway in permeable sediments.

  11. Improving hydrogen production from cassava starch by combination of dark and photo fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Su, Huibo; Cheng, Jun; Zhou, Junhu; Song, Wenlu; Cen, Kefa [State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027 (China)

    2009-02-15

    The combination of dark and photo fermentation was studied with cassava starch as the substrate to increase the hydrogen yield and alleviate the environmental pollution. The different raw cassava starch concentrations of 10-25 g/l give different hydrogen yields in the dark fermentation inoculated with the mixed hydrogen-producing bacteria derived from the preheated activated sludge. The maximum hydrogen yield (HY) of 240.4 ml H{sub 2}/g starch is obtained at the starch concentration of 10 g/l and the maximum hydrogen production rate (HPR) of 84.4 ml H{sub 2}/l/h is obtained at the starch concentration of 25 g/l. When the cassava starch, which is gelatinized by heating or hydrolyzed with {alpha}-amylase and glucoamylase, is used as the substrate to produce hydrogen, the maximum HY respectively increases to 258.5 and 276.1 ml H{sub 2}/g starch, and the maximum HPR respectively increases to 172 and 262.4 ml H{sub 2}/l/h. Meanwhile, the lag time ({lambda}) for hydrogen production decreases from 11 h to 8 h and 5 h respectively, and the fermentation duration decreases from 75-110 h to 44-68 h. The metabolite byproducts in the dark fermentation, which are mainly acetate and butyrate, are reused as the substrates in the photo fermentation inoculated with the Rhodopseudomonas palustris bacteria. The maximum HY and HPR are respectively 131.9 ml H{sub 2}/g starch and 16.4 ml H{sub 2}/l/h in the photo fermentation, and the highest utilization ratios of acetate and butyrate are respectively 89.3% and 98.5%. The maximum HY dramatically increases from 240.4 ml H{sub 2}/g starch only in the dark fermentation to 402.3 ml H{sub 2}/g starch in the combined dark and photo fermentation, while the energy conversion efficiency increases from 17.5-18.6% to 26.4-27.1% if only the heat value of cassava starch is considered as the input energy. When the input light energy in the photo fermentation is also taken into account, the whole energy conversion efficiency is 4.46-6.04%. (author)

  12. Continuous energy recovery and nutrients removal from molasses wastewater by synergistic system of dark fermentation and algal culture under various fermentation types.

    Science.gov (United States)

    Ren, Hong-Yu; Kong, Fanying; Ma, Jun; Zhao, Lei; Xie, Guo-Jun; Xing, Defeng; Guo, Wan-Qian; Liu, Bing-Feng; Ren, Nan-Qi

    2018-03-01

    Synergistic system of dark fermentation and algal culture was initially operated at batch mode to investigate the energy production and nutrients removal from molasses wastewater in butyrate-type, ethanol-type and propionate-type fermentations. Butyrate-type fermentation was the most appropriate fermentation type for the synergistic system and exhibited the accumulative hydrogen volume of 658.3 mL L -1 and hydrogen yield of 131.7 mL g -1 COD. By-products from dark fermentation (mainly acetate and butyrate) were further used to cultivate oleaginous microalgae. The maximum algal biomass and lipid content reached 1.01 g L -1 and 38.5%, respectively. In continuous operation, the synergistic system was stable and efficient, and energy production increased from 8.77 kJ L -1  d -1 (dark fermentation) to 17.3 kJ L -1  d -1 (synergistic system). Total COD, TN and TP removal efficiencies in the synergistic system reached 91.1%, 89.1% and 85.7%, respectively. This study shows the potential of the synergistic system in energy recovery and wastewater treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Evaluation of Fermentative Hydrogen Production from Single and Mixed Fruit Wastes

    Directory of Open Access Journals (Sweden)

    Julius Akinbomi

    2015-05-01

    Full Text Available The economic viability of employing dark fermentative hydrogen from whole fruit wastes as a green alternative to fossil fuels is limited by low hydrogen yield due to the inhibitory effect of some metabolites in the fermentation medium. In exploring means of increasing hydrogen production from fruit wastes, including orange, apple, banana, grape and melon, the present study assessed the hydrogen production potential of singly-fermented fruits as compared to the fermentation of mixed fruits. The fruit feedstock was subjected to varying hydraulic retention times (HRTs in a continuous fermentation process at 55 °C for 47 days. The weight distributions of the first, second and third fruit mixtures were 70%, 50% and 20% orange share, respectively, while the residual weight was shared equally by the other fruits. The results indicated that there was an improvement in cumulative hydrogen yield from all of the feedstock when the HRT was five days. Based on the results obtained, apple as a single fruit and a fruit mixture with 20% orange share have the most improved cumulative hydrogen yields of 504 (29.5% of theoretical yield and 513 mL/g volatile solid (VS (30% of theoretical yield , respectively, when compared to other fruits.

  14. Sequential dark-photo fermentation and autotrophic microalgal growth for high-yield and CO{sub 2}-free biohydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Lo, Yung-Chung [Department of Chemical Engineering, National Cheng Kung University, Tainan 701 (China); Chen, Chun-Yen [Department of Chemical Engineering, National Cheng Kung University, Tainan 701 (China); Sustainable Environment Research Center, National Cheng Kung University, Tainan (China); Lee, Chi-Mei [Department of Environmental Engineering, National Chung Hsing University, Taichung (China); Chang, Jo-Shu [Department of Chemical Engineering, National Cheng Kung University, Tainan 701 (China); Sustainable Environment Research Center, National Cheng Kung University, Tainan (China); Center for Biosciences and Biotechnology, National Cheng Kung University, Tainan (China)

    2010-10-15

    Dark fermentation, photo fermentation, and autotrophic microalgae cultivation were integrated to establish a high-yield and CO{sub 2}-free biohydrogen production system by using different feedstock. Among the four carbon sources examined, sucrose was the most effective for the sequential dark (with Clostridium butyricum CGS5) and photo (with Rhodopseudomonas palutris WP3-5) fermentation process. The sequential dark-photo fermentation was stably operated for nearly 80 days, giving a maximum H{sub 2} yield of 11.61 mol H{sub 2}/mol sucrose and a H{sub 2} production rate of 673.93 ml/h/l. The biogas produced from the sequential dark-photo fermentation (containing ca. 40.0% CO{sub 2}) was directly fed into a microalga culture (Chlorella vulgaris C-C) cultivated at 30 C under 60 {mu}mol/m{sup 2}/s illumination. The CO{sub 2} produced from the fermentation processes was completely consumed during the autotrophic growth of C. vulgaris C-C, resulting in a microalgal biomass concentration of 1999 mg/l composed mainly of 48.0% protein, 23.0% carbohydrate and 12.3% lipid. (author)

  15. Batch dark fermentation from enzymatic hydrolyzed food waste for hydrogen production.

    Science.gov (United States)

    Han, Wei; Ye, Min; Zhu, Ai Jun; Zhao, Hong Ting; Li, Yong Feng

    2015-09-01

    A combination bioprocess of solid-state fermentation (SSF) and dark fermentative hydrogen production from food waste was developed. Aspergillus awamori and Aspergillus oryzae were utilized in SSF from food waste to generate glucoamylase and protease which were used to hydrolyze the food waste suspension to get the nutrients-rich (glucose and free amino nitrogen (FAN)) hydrolysate. Both glucose and FAN increased with increasing of food waste mass ratio from 4% to 10% (w/v) and the highest glucose (36.9 g/L) and FAN (361.3mg/L) were observed at food waste mass ratio of 10%. The food waste hydrolysates were then used as the feedstock for dark fermentative hydrogen production by heat pretreated sludge. The best hydrogen yield of 39.14 ml H2/g food waste (219.91 ml H2/VSadded) was achieved at food waste mass ratio of 4%. The proposed combination bioprocess could effectively accelerate the hydrolysis rate, improve raw material utilization and enhance hydrogen yield. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Hydrogen production from sugar beet juice using an integrated biohydrogen process of dark fermentation and microbial electrolysis cell.

    Science.gov (United States)

    Dhar, Bipro Ranjan; Elbeshbishy, Elsayed; Hafez, Hisham; Lee, Hyung-Sool

    2015-12-01

    An integrated dark fermentation and microbial electrochemical cell (MEC) process was evaluated for hydrogen production from sugar beet juice. Different substrate to inoculum (S/X) ratios were tested for dark fermentation, and the maximum hydrogen yield was 13% of initial COD at the S/X ratio of 2 and 4 for dark fermentation. Hydrogen yield was 12% of initial COD in the MEC using fermentation liquid end products as substrate, and butyrate only accumulated in the MEC. The overall hydrogen production from the integrated biohydrogen process was 25% of initial COD (equivalent to 6 mol H2/mol hexoseadded), and the energy recovery from sugar beet juice was 57% using the combined biohydrogen. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Simultaneous hydrogen and ethanol production from cascade utilization of mono-substrate in integrated dark and photo-fermentative reactor.

    Science.gov (United States)

    Liu, Bing-Feng; Xie, Guo-Jun; Wang, Rui-Qing; Xing, De-Feng; Ding, Jie; Zhou, Xu; Ren, Hong-Yu; Ma, Chao; Ren, Nan-Qi

    2015-01-01

    Integrating hydrogen-producing bacteria with complementary capabilities, dark-fermentative bacteria (DFB) and photo-fermentative bacteria (PFB), is a promising way to completely recover bioenergy from waste biomass. However, the current coupled models always suffer from complicated pretreatment of the effluent from dark-fermentation or imbalance between dark and photo-fermentation, respectively. In this work, an integrated dark and photo-fermentative reactor (IDPFR) was developed to completely convert an organic substrate into bioenergy. In the IDPFR, Ethanoligenens harbinese B49 and Rhodopseudomonas faecalis RLD-53 were separated by a membrane into dark and photo chambers, while the acetate produced by E. harbinese B49 in the dark chamber could freely pass through the membrane into the photo chamber and serve as a carbon source for R. faecalis RLD-53. The hydrogen yield increased with increasing working volume of the photo chamber, and reached 3.38 mol H2/mol glucose at the dark-to-photo chamber ratio of 1:4. Hydrogen production by the IDPFR was also significantly affected by phosphate buffer concentration, glucose concentration, and ratio of dark-photo bacteria. The maximum hydrogen yield (4.96 mol H2/mol glucose) was obtained at a phosphate buffer concentration of 20 mmol/L, a glucose concentration of 8 g/L, and a ratio of dark to photo bacteria of 1:20. As the glucose and acetate were used up by E. harbinese B49 and R. faecalis RLD-53, ethanol produced by E. harbinese B49 was the sole end-product in the effluent from the IDPFR, and the ethanol concentration was 36.53 mmol/L with an ethanol yield of 0.82 mol ethanol/mol glucose. The results indicated that the IDPFR not only circumvented complex pretreatments on the effluent in the two-stage process, but also overcame the imbalance of growth and metabolic rate between DFB and PFB in the co-culture process, and effectively enhanced cooperation between E. harbinense B49 and R. faecalis RLD-53. Moreover

  18. Improvement of the energy conversion efficiency of Chlorella pyrenoidosa biomass by a three-stage process comprising dark fermentation, photofermentation, and methanogenesis.

    Science.gov (United States)

    Xia, Ao; Cheng, Jun; Ding, Lingkan; Lin, Richen; Huang, Rui; Zhou, Junhu; Cen, Kefa

    2013-10-01

    The effects of pre-treatment methods on saccharification and hydrogen fermentation of Chlorella pyrenoidosa biomass were investigated. When raw biomass and biomass pre-treated by steam heating, by microwave heating, and by ultrasonication were used as feedstock, the hydrogen yields were only 8.8-12.7 ml/g total volatile solids (TVS) during dark fermentation. When biomass was pre-treated by steam heating with diluted acid and by microwave heating with diluted acid, the dark hydrogen yields significantly increased to 75.6 ml/g TVS and 83.3 ml/g TVS, respectively. Steam heating with diluted acid is the preferred pre-treatment method of C. pyrenoidosa biomass to improve hydrogen yield during dark fermentation and photofermentation, which is followed by methanogenesis to increase energy conversion efficiency (ECE). A total hydrogen yield of 198.3 ml/g TVS and a methane yield of 186.2 ml/g TVS corresponding to an overall ECE of 34.0% were obtained through the three-stage process (dark fermentation, photofermentation, and methanogenesis). Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Enhanced energy recovery from cassava ethanol wastewater through sequential dark hydrogen, photo hydrogen and methane fermentation combined with ammonium removal.

    Science.gov (United States)

    Lin, Richen; Cheng, Jun; Yang, Zongbo; Ding, Lingkan; Zhang, Jiabei; Zhou, Junhu; Cen, Kefa

    2016-08-01

    Cassava ethanol wastewater (CEW) was subjected to sequential dark H2, photo H2 and CH4 fermentation to maximize H2 production and energy yield. A relatively low H2 yield of 23.6mL/g soluble chemical oxygen demand (CODs) was obtained in dark fermentation. To eliminate the inhibition of excessive NH4(+) on sequential photo fermentation, zeolite was used to remove NH4(+) in residual dark solution (86.5% removal efficiency). The treated solution from 5gCODs/L of CEW achieved the highest photo H2 yield of 369.7mL/gCODs, while the solution from 20gCODs/L gave the lowest yield of 259.6mL/gCODs. This can be explained that photo H2 yield was correlated to soluble metabolic products (SMPs) yield in dark fermentation, and specific SMPs yield decreased from 38.0 to 18.1mM/g CODs. The total energy yield significantly increased to 8.39kJ/gCODs by combining methanogenesis with a CH4 yield of 117.9mL/gCODs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Fermentative Hydrogen Production: Influence of Application of Mesophilic and Thermophilic Bacteria on Mass and Energy Balances

    NARCIS (Netherlands)

    Foglia, D.; Wukovits, W.; Friedl, A.; Vrije, de G.J.; Claassen, P.A.M.

    2011-01-01

    Fermentation of biomass residues and second generation biomasses is a possible way to enable a sustainable production of hydrogen. The HYVOLUTION-project investigates the production of hydrogen by a 2-stage fermentation process of biomass. It consists of a dark fermentation step of sugars to produce

  1. Bioconversion of starch to ethanol in a single-step process by coculture of amylolytic yeasts and Saccharomyces cerevisiae 21

    Energy Technology Data Exchange (ETDEWEB)

    Verma, G.; Singh, D.; Chaudhary, K. [CCS Haryana Agricultural Univ., Hisar (India). Dept. of Biotechnology and Molecular Biology; Nigam, P. [Ulster Univ., Coleraine, Northern Ireland (United Kingdom). School of Applied Biological and Chemical Sciences

    2000-05-01

    Ethanol production by a coculture of Saccharomyces diastaticus and Saccharomyces cerevisiae 21 was 24.8 g/l using raw unhydrolysed starch in a single-step fermentation. This was 48% higher than the yield obtained with the monoculture of S. diastaticus (16.8 g/l). The maximum ethanol fermentation efficiency was achieved (93% of the theoretical value) using 60 g/l starch concentration. In another coculture fermentation with E. capsularis and S. cerevisiae 21, maximum ethanol yield was 16.0 g/l, higher than the yield with the monoculture of Endomycopsis capsularis. In batch fermentations using cocultures maximum ethanol production occurred in 48 h of fermentation at 30{sup o}C using 60 g/l starch. Fermentation efficiency was found lower in a two-step process using {alpha}-amylase and glucoamylase-treated starch. (Author)

  2. Promotion of H2 production by microwave-assisted treatment of water hyacinth with dilute H2SO4 through combined dark fermentation and photofermentation

    International Nuclear Information System (INIS)

    Cheng, Jun; Xia, Ao; Su, Huibo; Song, Wenlu; Zhou, Junhu; Cen, Kefa

    2013-01-01

    Highlights: • Water hyacinth is microwaved with dilute H 2 SO 4 to improve enzymatic hydrolysis. • Hydrolyzed hyacinth is fermented by hydrogenogens to improve dark H 2 yield. • Nearly 100% glucose and most arabinose in hydrolysate are used in dark fermentation. • H 2 yield from hyacinth via combined fermentation is 75.2% of theoretical H 2 yield. - Abstract: Water hyacinth was treated with microwave-assisted dilute H 2 SO 4 to improve saccharification before enzymatic hydrolysis and H 2 production during dark fermentation. A maximum reducing sugar (RS) yield of 64.4 g/100 g total volatile solid (TVS) (96.1% of the theoretical RS yield) was achieved when water hyacinth was treated through microwave heating with 1% dilute H 2 SO 4 for 15 min at 140 °C and then enzymatically hydrolyzed for 72 h. During enzymatic hydrolysis, glucose was efficiently produced from the hydrolysis of cellulose that resulted from the disruption of the lignocellulosic structure of water hyacinth after microwave-assisted H 2 SO 4 treatment. When the hydrolyzed water hyacinth was inoculated with H 2 -producing bacteria to produce H 2 during dark fermentation, a maximum H 2 yield of 112.3 ml/g TVS was obtained. The major sugar compositions in the residual solution from dark fermentation were xylose and cellobiose (total RS utilization efficiency: 88.5%). Through a combination of dark fermentation and photofermentation, the maximum H 2 yield from water hyacinth was significantly increased from 112.3 ml/g TVS to 751.5 ml/g TVS, which is 75.2% of the theoretical H 2 yield

  3. Coupling of Spinosad Fermentation and Separation Process via Two-Step Macroporous Resin Adsorption Method.

    Science.gov (United States)

    Zhao, Fanglong; Zhang, Chuanbo; Yin, Jing; Shen, Yueqi; Lu, Wenyu

    2015-08-01

    In this paper, a two-step resin adsorption technology was investigated for spinosad production and separation as follows: the first step resin addition into the fermentor at early cultivation period to decrease the timely product concentration in the broth; the second step of resin addition was used after fermentation to adsorb and extract the spinosad. Based on this, a two-step macroporous resin adsorption-membrane separation process for spinosad fermentation, separation, and purification was established. Spinosad concentration in 5-L fermentor increased by 14.45 % after adding 50 g/L macroporous at the beginning of fermentation. The established two-step macroporous resin adsorption-membrane separation process got the 95.43 % purity and 87 % yield for spinosad, which were both higher than that of the conventional crystallization of spinosad from aqueous phase that were 93.23 and 79.15 % separately. The two-step macroporous resin adsorption method has not only carried out the coupling of spinosad fermentation and separation but also increased spinosad productivity. In addition, the two-step macroporous resin adsorption-membrane separation process performs better in spinosad yield and purity.

  4. Metabolism in anoxic permeable sediments is dominated by eukaryotic dark fermentation

    DEFF Research Database (Denmark)

    Bourke, Michael F.; Marriott, Philip J.; Glud, Ronnie N.

    2017-01-01

    Permeable sediments are common across continental shelves and are critical contributors to marine biogeochemical cycling. Organic matter in permeable sediments is dominated by microalgae, which as eukaryotes have different anaerobic metabolic pathways to prokaryotes such as bacteria and archaea....... Here we present analyses of flow-through reactor experiments showing that dissolved inorganic carbon is produced predominantly as a result of anaerobic eukaryotic metabolic activity. In our experiments, anaerobic production of dissolved inorganic carbon was consistently accompanied by large dissolved H....../hydrogenase pathway of fermentative eukaryotic H2 production, suggesting that pathway as the source of H2 and dissolved inorganic carbon production. Metabolomic analysis showed large increases in lipid production at the onset of anoxia, consistent with documented pathways of anoxic dark fermentation in microalgae...

  5. Engineering strategies for the enhanced photo-H{sub 2} production using effluents of dark fermentation processes as substrate

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chun-Yen; Chang, Jo-Shu [Department of Chemical Engineering, National Cheng Kung University, Tainan (China); Sustainable Environment Research Center, National Cheng Kung University, Tainan (China); Yeh, Kuei-Ling; Lo, Yung-Chung [Department of Chemical Engineering, National Cheng Kung University, Tainan (China); Wang, Hui-Min [Department of Fragrance and Cosmetic Science, Kaohsiung Medical University, Kaohsiung (China)

    2010-12-15

    The major obstacle of combining dark and photo fermentation for high-yield biohydrogen production is substrate inhibition while using dark fermentation effluent as the sole substrate. To solve this problem, the dark fermentation broth was diluted with different dilution ratio to improve photo-H{sub 2} production performance of an indigenous purple nonsulfur bacterium Rhodopseudomonas palustris WP3-5. The best photo-H{sub 2} production performance occurred at a dilution ratio of 1:2, giving a highest overall H{sub 2} production rate of 10.72 ml/l/h and a higher overall H{sub 2} yield of 6.14 mol H{sub 2}/mol sucrose. The maximum H{sub 2} content was about 88.1% during the dilution ratio of 1:2. The photo-H{sub 2} production performance was further improved by supplying yeast extract and glutamic acid as the nutrient. The results indicate that the overall H{sub 2} production rate and H{sub 2} yield increased to 17.02 ml/l/h and 10.25 mol H{sub 2}/mol sucrose, respectively. Using a novel solar-energy-excited optical fiber photobioreactor (SEEOFP) with supplementing tungsten filament lamp (TL) irradiation, the overall H{sub 2} production rate was improved to 17.86 ml/l/h. Meanwhile, the power consumption by combining SEEOFP and TL was about 37.1% lower than using TL alone. This study demonstrates that using optimal light sources and proper dilution of dark fermentation effluent, the performance of photo-H{sub 2} production can be markedly enhanced along with a reduction of power consumption. (author)

  6. A comprehensive review on two-stage integrative schemes for the valorization of dark fermentative effluents.

    Science.gov (United States)

    Sivagurunathan, Periyasamy; Kuppam, Chandrasekhar; Mudhoo, Ackmez; Saratale, Ganesh D; Kadier, Abudukeremu; Zhen, Guangyin; Chatellard, Lucile; Trably, Eric; Kumar, Gopalakrishnan

    2017-12-21

    This review provides the alternative routes towards the valorization of dark H 2 fermentation effluents that are mainly rich in volatile fatty acids such as acetate and butyrate. Various enhancement and alternative routes such as photo fermentation, anaerobic digestion, utilization of microbial electrochemical systems, and algal system towards the generation of bioenergy and electricity and also for efficient organic matter utilization are highlighted. What is more, various integration schemes and two-stage fermentation for the possible scale up are reviewed. Moreover, recent progress for enhanced performance towards waste stabilization and overall utilization of useful and higher COD present in the organic source into value-added products are extensively discussed.

  7. Converting the organic fraction of solid waste from the city of Abu Dhabi to valuable products via dark fermentation – Economic and energy assessment

    International Nuclear Information System (INIS)

    Bonk, Fabian; Bastidas-Oyanedel, Juan-Rodrigo; Schmidt, Jens Ejbye

    2015-01-01

    Graphical abstract: Display Omitted - Highlights: • The cost and energy demand for dark fermentation using OFMSW were established. • Dark fermentation using OFMSW can produce a carbon source for bioprocesses of about 330 USD/t COD . • A maximum purification cost of VFAs from dark fermentation using OFMSW was established to 15 USD/m 3 . • Replacing fossil fuel based products by dark fermentation will probably lead to net energy savings. - Abstract: Landfilling the organic fraction of municipal solid waste (OFMSW) leads to greenhouse gas emissions and loss of valuable resources. Sustainable and cost efficient solutions need to be developed to solve this problem. This study evaluates the feasibility of using dark fermentation (DF) to convert the OFMSW to volatile fatty acids (VFAs), fertilizer and H 2 . The VFAs in the DF effluent can be used directly as substrate for subsequent bioprocesses or purified from the effluent for industrial use. DF of the OFMSW in Abu Dhabi will be economically sustainable once VFA purification can be accomplished on large scale for less than 15 USD/m 3 effluent . With a VFA minimum selling price of 330 USD/t COD , DF provides a competitive carbon source to sugar. Furthermore, DF is likely to use less energy than conventional processes that produce VFAs, fertilizer and H 2 . This makes DF of OFMSW a promising waste treatment technology and biorefinery platform

  8. Single top quarks and dark matter

    Science.gov (United States)

    Pinna, Deborah; Zucchetta, Alberto; Buckley, Matthew R.; Canelli, Florencia

    2017-08-01

    Processes with dark matter interacting with the standard model fermions through new scalars or pseudoscalars with flavor-diagonal couplings proportional to fermion mass are well motivated theoretically, and provide a useful phenomenological model with which to interpret experimental results. Two modes of dark matter production from these models have been considered in the existing literature: pairs of dark matter produced through top quark loops with an associated monojet in the event, and pair production of dark matter with pairs of heavy flavored quarks (tops or bottoms). In this paper, we demonstrate that a third, previously overlooked channel yields a non-negligible contribution to LHC dark matter searches in these models. In spite of a generally lower production cross section at LHC when compared to the associated top-pair channel, non-flavor violating single top quark processes are kinematically favored and can significantly increase the sensitivity to these models. Including dark matter production in association with a single top quark through scalar or pseudoscalar mediators, the exclusion limit set by the LHC searches for dark matter can be improved by 30% up to a factor of two, depending on the mass assumed for the mediator particle.

  9. High-theabrownins instant dark tea product by Aspergillus niger via submerged fermentation: α-glucosidase and pancreatic lipase inhibition and antioxidant activity.

    Science.gov (United States)

    Wang, Yuwan; Zhang, Mingyue; Zhang, Zhengzhu; Lu, Hengqian; Gao, Xueling; Yue, Pengxiang

    2017-12-01

    Theabrownins (TB) are bioactive components that are usually extracted from Chinese dark tea, in which they are present at low concentrations. The present study aimed to produce an instant dark tea high in theabrownins via submerged fermentation by the fungus Aspergillus niger. Three fermentation parameters that affect theabrownins content (i.e. inoculum size, liquid-solid ratio and rotation speed) were optimized using response surface methodology. Optimum fermentation conditions were modeled to be an inoculum of 5.40% (v/v), a liquid-solid ratio of 27.45 mL g -1 and a rotation speed of 184 rpm and were predicted to yield 292.99 g kg -1 TB. Under these experimentally conditions, the TB content of the instant dark tea was 291.93 g kg -1 . The antioxidant capacity and α-glucosidase and pancreatic lipase inhibitory activities of the high-TB instant black tea were higher than four other typical instant dark tea products. The results of the present study show that careful management of culture conditions can produce a dark tea high in theabrownins. Furthermore, high-theabrownins instant dark tea could serve as a source of bioactive products and be used in functional foods as an ingredient imparting antioxidant properties and the ability to inhibit pancreatic lipase and α-glucosidase. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  10. Converting the organic fraction of solid waste from the city of Abu Dhabi to valuable products via dark fermentation – Economic and energy assessment

    Energy Technology Data Exchange (ETDEWEB)

    Bonk, Fabian, E-mail: fbonk@masdar.ac.ae; Bastidas-Oyanedel, Juan-Rodrigo, E-mail: jbastidas@masdar.ac.ae; Schmidt, Jens Ejbye, E-mail: jschmidt@masdar.ac.ae

    2015-06-15

    Graphical abstract: Display Omitted - Highlights: • The cost and energy demand for dark fermentation using OFMSW were established. • Dark fermentation using OFMSW can produce a carbon source for bioprocesses of about 330 USD/t{sub COD}. • A maximum purification cost of VFAs from dark fermentation using OFMSW was established to 15 USD/m{sup 3}. • Replacing fossil fuel based products by dark fermentation will probably lead to net energy savings. - Abstract: Landfilling the organic fraction of municipal solid waste (OFMSW) leads to greenhouse gas emissions and loss of valuable resources. Sustainable and cost efficient solutions need to be developed to solve this problem. This study evaluates the feasibility of using dark fermentation (DF) to convert the OFMSW to volatile fatty acids (VFAs), fertilizer and H{sub 2}. The VFAs in the DF effluent can be used directly as substrate for subsequent bioprocesses or purified from the effluent for industrial use. DF of the OFMSW in Abu Dhabi will be economically sustainable once VFA purification can be accomplished on large scale for less than 15 USD/m{sup 3}{sub effluent}. With a VFA minimum selling price of 330 USD/t{sub COD}, DF provides a competitive carbon source to sugar. Furthermore, DF is likely to use less energy than conventional processes that produce VFAs, fertilizer and H{sub 2}. This makes DF of OFMSW a promising waste treatment technology and biorefinery platform.

  11. Dark fermentative biohydrogen production by mesophilic bacterial consortia isolated from riverbed sediments

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Sneha; Sudhakaran, Anu K.; Sarma, Priyangshu Manab; Subudhi, Sanjukta; Mandal, Ajoy Kumar; Lal, Banwari [Environmental and Industrial Biotechnology Division, The Energy and Resources Institute (TERI), Habitat Place, Darbari Seth Block, Lodhi Road, New Delhi 110003 (India); Gandham, Ganesh [Hindustan Petroleum Corporation Limited, Mumbai Refinery, B. D. Patil Marg, Mahul, Mumbai 400074 (India)

    2010-10-15

    Dark fermentative bacterial strains were isolated from riverbed sediments and investigated for hydrogen production. A series of batch experiments were conducted to study the effect of pH, substrate concentration and temperature on hydrogen production from a selected bacterial consortium, TERI BH05. Batch experiments for fermentative conversion of sucrose, starch, glucose, fructose, and xylose indicated that TERI BH05 effectively utilized all the five sugars to produce fermentative hydrogen. Glucose was the most preferred carbon source indicating highest hydrogen yields of 22.3 mmol/L. Acetic and butyric acid were the major soluble metabolites detected. Investigation on optimization of pH, temperature, and substrate concentration revealed that TERI BH05 produced maximum hydrogen at 37 C, pH 6 with 8 g/L of glucose supplementation and maximum yield of hydrogen production observed was 2.0-2.3 mol H{sub 2}/mol glucose. Characterization of TERI BH05 revealed the presence of two different bacterial strains showing maximum homology to Clostridium butyricum and Clostridium bifermentans. (author)

  12. Biological production of hydrogen by dark fermentation of OFMSW and co-fermentation with slaughterhouse wastes

    Energy Technology Data Exchange (ETDEWEB)

    Moran, A.; Gomez, X.; Cuestos, M. J.

    2005-07-01

    Hydrogen is an ideal, clean and sustainable energy source for the future because of its high conversion and nonpolluting nature (Lin and Lay, 2003). There are different methods for the production of hydrogen, the traditional ones, are the production from fossil fuels. Aiming to reach a development based on sustainable principles the production of hydrogen from renewable sources is a desirable goal. Among the environmental friendly alternatives for the production of hydrogen are the biological means. Dark fermentation as it is known the process when light is not used; it is a preferable option thanks to the knowledge already collected from its homologous process, the anaerobic digestion for the production of methane. There are several studies intended to the evaluation of the production of hydrogen, many are dedicated to the use of pure cultures or the utilization of basic substrates as glucose or sucrose (Lin and Lay, 2003; Chang et al., 2002, Kim et al., 2005). This study is performed to evaluate the fermentation of a mixture of wastes for the production of hydrogen. It is used as substrate the organic fraction of municipal solid wastes (OFMSW) and a mixture of this residue with slaughterhouse waste. (Author)

  13. Exploitation of dark fermented effluent of cheese whey by co-culture of Rhodobacter sphaeroides and Bacillus firmus for photo-hydrogen production.

    Science.gov (United States)

    Pandey, A; Pandey, A

    2017-07-31

    In this study photo-hydrogen production from cheese whey dark fermentation (DF) effluent by the co-culture of Rhodobacter sphaeroides -NMBL-01 and Bacillus firmus - NMBL-03 has been reported. The effect of pH, initial chemical oxygen demand (COD) and the concentration effect of FeSO4.7H2O on photo-hydrogen production have been investigated. The end products of dark fermentation effluent of cheese whey were mainly comprised of soluble organic acids, i.e. butyric acid and lactic acid. The batch process was carried out under light intensity of 2.5 kLux at 32 ± 2oC without any addition of extra carbon and nitrogen source. The single parameter optimization studies revealed optimum pH 6.5, initial COD 4.71 g/L and supplementation of Fe2+ concentration 100 mg/L. The maximum cumulative hydrogen production and yield were found to be 469 ± 45.8 ml H2/L and 146.56 ± 14.31 ml H2/g COD reduced (67.9% reduction in COD) respectively. The mutual interactions among the process parameters were also investigated by three factorial Box-Behnken design of response surface methodology. The optimized experimental values were found concurrent with the calculated values obtained from the theoretical model.

  14. Looking for practical tools to achieve next-future applicability of dark fermentation to produce bio-hydrogen from organic materials in Continuously Stirred Tank Reactors.

    Science.gov (United States)

    Tenca, A; Schievano, A; Lonati, S; Malagutti, L; Oberti, R; Adani, F

    2011-09-01

    This study aimed at finding applicable tools for favouring dark fermentation application in full-scale biogas plants in the next future. Firstly, the focus was obtaining mixed microbial cultures from natural sources (soil-inocula and anaerobically digested materials), able to efficiently produce bio-hydrogen by dark fermentation. Batch reactors with proper substrate (1 gL(glucose)(-1)) and metabolites concentrations, allowed high H(2) yields (2.8 ± 0.66 mol H(2)mol(glucose)(-1)), comparable to pure microbial cultures achievements. The application of this methodology to four organic substrates, of possible interest for full-scale plants, showed promising and repeatable bio-H(2) potential (BHP=202 ± 3 NL(H2)kg(VS)(-1)) from organic fraction of municipal source-separated waste (OFMSW). Nevertheless, the fermentation in a lab-scale CSTR (nowadays the most diffused typology of biogas-plant) of a concentrated organic mixture of OFMSW (126 g(TS)L(-1)) resulted in only 30% of its BHP, showing that further improvements are still needed for future full-scale applications of dark fermentation. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Development of a Photosynthetic Microbial Electrochemical Cell (PMEC Reactor Coupled with Dark Fermentation of Organic Wastes: Medium Term Perspectives

    Directory of Open Access Journals (Sweden)

    Samir Bensaid

    2015-01-01

    Full Text Available In this article the concept, the materials and the exploitation potential of a photosynthetic microbial electrochemical cell for the production of hydrogen driven by solar power are investigated. In a photosynthetic microbial electrochemical cell, which is based on photosynthetic microorganisms confined to an anode and heterotrophic bacteria confined to a cathode, water is split by bacteria hosted in the anode bioactive film. The generated electrons are conveyed through external “bio-appendages” developed by the bacteria to transparent nano-pillars made of indium tin oxide (ITO, Fluorine-doped tin oxide (FTO or other conducting materials, and then transferred to the cathode. On the other hand, the generated protons diffuse to the cathode via a polymer electrolyte membrane, where they are reduced by the electrons by heterotrophic bacteria growing attached to a similar pillared structure as that envisaged for the anode and supplemented with a specific low cost substrate (e.g., organic waste, anaerobic digestion outlet. The generated oxygen is released to the atmosphere or stored, while the produced pure hydrogen leaves the electrode through the porous layers. In addition, the integration of the photosynthetic microbial electrochemical cell system with dark fermentation as acidogenic step of anaerobic digester, which is able to produce additional H2, and the use of microbial fuel cell, feed with the residues of dark fermentation (mainly volatile fatty acids, to produce the necessary extra-bias for the photosynthetic microbial electrochemical cell is here analyzed to reveal the potential benefits to this novel integrated technology.

  16. Integrated hydrogen production process from cellulose by combining dark fermentation, microbial fuel cells, and a microbial electrolysis cell

    KAUST Repository

    Wang, Aijie; Sun, Dan; Cao, Guangli; Wang, Haoyu; Ren, Nanqi; Wu, Wei-Min; Logan, Bruce E.

    2011-01-01

    Hydrogen gas production from cellulose was investigated using an integrated hydrogen production process consisting of a dark fermentation reactor and microbial fuel cells (MFCs) as power sources for a microbial electrolysis cell (MEC). Two MFCs

  17. Investigating the Variation of Volatile Compound Composition in Maotai-Flavoured Liquor During Its Multiple Fermentation Steps Using Statistical Methods

    Directory of Open Access Journals (Sweden)

    Zheng-Yun Wu

    2016-01-01

    Full Text Available The use of multiple fermentations is one of the most specific characteristics of Maotai-flavoured liquor production. In this research, the variation of volatile composition of Maotai-flavoured liquor during its multiple fermentations is investigated using statistical approaches. Cluster analysis shows that the obtained samples are grouped mainly according to the fermentation steps rather than the distillery they originate from, and the samples from the first two fermentation steps show the greatest difference, suggesting that multiple fermentation and distillation steps result in the end in similar volatile composition of the liquor. Back-propagation neural network (BNN models were developed that satisfactorily predict the number of fermentation steps and the organoleptic evaluation scores of liquor samples from their volatile compositions. Mean impact value (MIV analysis shows that ethyl lactate, furfural and some high-boiling-point acids play important roles, while pyrazine contributes much less to the improvement of the flavour and taste of Maotai-flavoured liquor during its production. This study contributes to further understanding of the mechanisms of Maotai-flavoured liquor production.

  18. Microbial Dark Matter Phase II: Stepping deeper into unknown territory

    Energy Technology Data Exchange (ETDEWEB)

    Jarett, Jessica; Dunfield, Peter; Peura, Sari; Wielen, Paul van der; Hedlund, Brian; Elshahed, Mostafa; Kormas, Konstantinos; Stott, Andreas Teske8, Matt; Birkeland, Nils-Kare; Zhang, Chuanlun; Rengefors, Karin; Lindemann, Stephen; Ravin, Nikolai V.; Spear, John; Hallam, Steven; Crowe, Sean; Steele, Jillian; Goudeau, Danielle; Malmstrom, Rex; Kyrpides, Nikos; Stepanauskas, Ramunas; Woyke, Tanja

    2014-10-27

    Currently available microbial genomes are of limited phylogenetic breadth due to our historical inability to cultivate most microorganisms in the laboratory. The first phase of the Microbial Dark Matter project used single-cell genomics to sequence 201 single cells from uncultivated lineages, and was able to resolve new superphyla and reveal novel metabolic features in bacteria and archaea. However, many fundamental questions about the evolution and function of microbes remain unanswered, and many candidate phyla remain uncharacterized. Phase II of the Microbial Dark Matter project will target candidate phyla with no sequenced representatives at a variety of new sites using a combination of single-cell sequencing and shotgun metagenomics approaches.

  19. A review of dark fermentative hydrogen production from biodegradable municipal waste fractions.

    Science.gov (United States)

    De Gioannis, G; Muntoni, A; Polettini, A; Pomi, R

    2013-06-01

    Hydrogen is believed to play a potentially key role in the implementation of sustainable energy production, particularly when it is produced from renewable sources and low energy-demanding processes. In the present paper an attempt was made at critically reviewing more than 80 recent publications, in order to harmonize and compare the available results from different studies on hydrogen production from FW and OFMSW through dark fermentation, and derive reliable information about process yield and stability in view of building related predictive models. The review was focused on the effect of factors, recognized as potentially affecting process evolution (including type of substrate and co-substrate and relative ratio, type of inoculum, food/microorganisms [F/M] ratio, applied pre-treatment, reactor configuration, temperature and pH), on the fermentation yield and kinetics. Statistical analysis of literature data from batch experiments was also conducted, showing that the variables affecting the H2 production yield were ranked in the order: type of co-substrate, type of pre-treatment, operating pH, control of initial pH and fermentation temperature. However, due to the dispersion of data observed in some instances, the ambiguity about the presence of additional hidden variables cannot be resolved. The results from the analysis thus suggest that, for reliable predictive models of fermentative hydrogen production to be derived, a high level of consistency between data is strictly required, claiming for more systematic and comprehensive studies on the subject. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Two-stage conversion of crude glycerol to energy using dark fermentation linked with microbial fuel cell or microbial electrolysis cell.

    Science.gov (United States)

    Chookaew, Teera; Prasertsan, Poonsuk; Ren, Zhiyong Jason

    2014-03-25

    Crude glycerol is a main byproduct of the biodiesel industry, and the beneficial use of waste glycerol has been a major challenge. This study characterises the conversion of crude glycerol into bioenergy such as H2 and electricity using a two-stage process linking dark fermentation with a microbial fuel cell (MFC) or microbial electrolysis cell (MEC). The results showed that fermentation achieved a maximum H2 rate of 332 mL/L and a yield of 0.55 mol H2/mol glycerol, accompanied by 20% of organic removal. Fed with the raw fermentation products with an initial COD of 7610 mg/L, a two-chamber MFC produced 92 mW/m(2) in power density and removed 50% of COD. The Columbic efficiency was 14%. When fed with 50% diluted fermentation product, a similar power output (90m W/m(2)) and COD removal (49%) were obtained, but the CE doubled to 27%. Similar substrates were used to produce H2 in two-chamber MECs, and the diluted influent had a higher performance, with the highest yield at 106 mL H2/g COD and a CE of 24%. These results demonstrate that dark fermentation linked with MFC/MEC can be a feasible option for conversion of waste glycerol into bioenergy. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Effect of light-dark cycles on hydrogen and poly-β-hydroxybutyrate production by a photoheterotrophic culture and Rhodobacter capsulatus using a dark fermentation effluent as substrate.

    Science.gov (United States)

    Montiel Corona, Virginia; Le Borgne, Sylvie; Revah, Sergio; Morales, Marcia

    2017-02-01

    A Rhodobacter capsulatus strain and a photoheterotrophic culture (IZT) were cultivated to produce hydrogen under different light-dark cycles. A dark fermentation effluent (DFE) was used as substrate. It was found that IZT culture had an average cumulative hydrogen production (Paccum H 2 ) of 1300±43mLH 2 L -1 under continuous illumination and light-dark cycles of 30 or 60min. In contrast, R. capsulatus reduced its Paccum H 2 by 20% under 30:30min light-dark cycles, but tripled its poly-β-hydroxybutyrate (PHB) content (308±2mgPHB gdw -1 ) compared to continuous illumination. The highest PHB content by IZT culture was 178±10mgPHB gdw -1 under 15:15min light-dark cycles. PCR-DGGE analysis revealed that the IZT culture was mainly composed of Rhodopseudomonas palustris identified with high nucleotide similarity (99%). The evaluated cultures might be used for hydrogen and PHB production. They might provide energy savings by using light-dark cycles and DFE valorization. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Extended Kalman filter (EKF) application in vitamin C two-step fermentation process.

    Science.gov (United States)

    Wei, D; Yuan, W; Yuan, Z; Yin, G; Chen, M

    1993-01-01

    Based on kinetic model study of vitamin C two-step fermentation, the extended Kalman filter (EKF) theory is conducted for studying the process which is disturbed by white noise to some extent caused by the model, the fermentation system and operation fluctuation. EKF shows that calculated results from estimated process parameters agree with the experimental results considerably better than model prediction without using estimated parameters. Parameter analysis gives a better understanding of the kinetics and provides a basis for state estimation and state prediction.

  3. Single zymomonas mobilis strain for xylose and arabinose fermentation

    Science.gov (United States)

    Zhang, Min; Chou, Yat-Chen; Picataggio, Stephen K.; Finkelstein, Mark

    1998-01-01

    This invention relates to single microorganisms which normally do not ferment pentose sugars which are genetically altered to ferment the pentose sugars, xylose and arabinose, to produce ethanol, and a fermentation process utilizing the same. Examples include Zymomonas mobilis which has been transformed with a combination of E. coli genes for xylose isomerase, xylulokinase, L-arabinose isomerase, L-ribulokinase, L-ribulose 5-phosphate 4-epimerase, transaldolase and transketolase. Expression of added genes are under the control of Z. mobilis promoters. These newly created microorganisms are useful for fermenting glucose, xylose and arabinose, produced by hydrolysis of hemicellulose and cellulose or starch, to produce ethanol.

  4. Dark fermentation, anaerobic digestion and microbial fuel cells: An integrated system to valorize swine manure and rice bran.

    Science.gov (United States)

    Schievano, Andrea; Sciarria, Tommy Pepè; Gao, Yong Chang; Scaglia, Barbara; Salati, Silvia; Zanardo, Marina; Quiao, Wei; Dong, Renjie; Adani, Fabrizio

    2016-10-01

    This work describes how dark fermentation (DF), anaerobic digestion (AD) and microbial fuel cells (MFC) and solid-liquid separation can be integrated to co-produce valuable biochemicals (hydrogen and methane), bioelectricity and biofertilizers. Two integrated systems (System 1: AD+MFC, and System 2: DF+AD+MFC) are described and compared to a traditional one-stage AD system in converting a mixture (COD=124±8.1gO2kg(-1)Fresh Matter) of swine manure and rice bran. System 1 gave a biomethane yield of 182 LCH4kg(-1)COD-added, while System 2 gave L yields of bio-hydrogen and bio-methane of 27.3±7.2LH2kg(-1)COD-added and 154±14LCH4kg(-1)COD-added, respectively. A solid-liquid separation (SLS) step was applied to the digested slurry, giving solid and liquid fractions. The liquid fraction was treated via the MFC-steps, showing power densities of 12-13Wm(-3) (500Ω) and average bioelectricity yields of 39.8Whkg(-1)COD to 54.2Whkg(-1)COD. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Combination of dry dark fermentation and mechanical pretreatment for lignocellulosic deconstruction: An innovative strategy for biofuels and volatile fatty acids recovery

    International Nuclear Information System (INIS)

    Motte, Jean-Charles; Sambusiti, Cecilia; Dumas, Claire; Barakat, Abdellatif

    2015-01-01

    Highlights: • A novel combination of solid-state fermentation and fine milling was developed. • Biological pretreatment produces valuable bioproducts (VFA and biohydrogen). • Solid-state dark fermentation improves considerably the milling efficiency. • Bioethanol yield was higher after a strong particle size reduction. • Substrate conversion was two times higher than conventional processes. - Abstract: In the present study, the feasibility of combining dry dark fermentation and mechanical pretreatment of wheat straw was studied in order to improve substrate valorization, save energy input, decrease the environmental impact and diversify biofuels and volatile fatty acids production. To this end, dark fermentation of wheat straw was performed at 55 °C and 35 °C under solid-state conditions (23% of total solid content) and it was considered as a biological pretreatment. Both biologically treated and raw straws were reduced at four particles size to cover the range of fine (50 < X < 500 μm) and ultrafine milling (<50 μm). Biological pretreatment led to a substrate conversion of 16% and 14%, mainly into volatile fatty acids and biohydrogen. Biological pretreatment improved the substrate grindability with a reduction of mean particle size up to 31% and a reduction of the milling specific energy consumption up to 35% compared to untreated straw. Finally, related to untreated straw, this combination of biological and mechanical treatments improved the bioethanol yield up to 83%, which leads to an enhancement of the overall substrate conversion up to 131%. Based on these high yields, this combination of dry biological–mechanical pretreatments appears more attractive and efficient in terms of bioproducts production, energy efficiency and environmental impact, compared to conventional pretreatments

  6. A review of dark fermentative hydrogen production from biodegradable municipal waste fractions

    International Nuclear Information System (INIS)

    De Gioannis, G.; Muntoni, A.; Polettini, A.; Pomi, R.

    2013-01-01

    Highlights: ► A large number of factors affect fermentative hydrogen production. ► Harmonization and systematic comparison of results from different literature sources are needed. ► More than 80 publications on H 2 production from food waste and OFMSW have been examined. ► Experimental data from the reviewed literature were analyzed using statistical tools. ► For a reliable assessment of the process performance, the use of multiple parameters appears to be recommended. - Abstract: Hydrogen is believed to play a potentially key role in the implementation of sustainable energy production, particularly when it is produced from renewable sources and low energy-demanding processes. In the present paper an attempt was made at critically reviewing more than 80 recent publications, in order to harmonize and compare the available results from different studies on hydrogen production from FW and OFMSW through dark fermentation, and derive reliable information about process yield and stability in view of building related predictive models. The review was focused on the effect of factors, recognized as potentially affecting process evolution (including type of substrate and co-substrate and relative ratio, type of inoculum, food/microorganisms [F/M] ratio, applied pre-treatment, reactor configuration, temperature and pH), on the fermentation yield and kinetics. Statistical analysis of literature data from batch experiments was also conducted, showing that the variables affecting the H 2 production yield were ranked in the order: type of co-substrate, type of pre-treatment, operating pH, control of initial pH and fermentation temperature. However, due to the dispersion of data observed in some instances, the ambiguity about the presence of additional hidden variables cannot be resolved. The results from the analysis thus suggest that, for reliable predictive models of fermentative hydrogen production to be derived, a high level of consistency between data is strictly

  7. A review of dark fermentative hydrogen production from biodegradable municipal waste fractions

    Energy Technology Data Exchange (ETDEWEB)

    De Gioannis, G., E-mail: degioan@unica.it [DICAAR – Department of Civil and Environmental Engineering and Architecture, University of Cagliari, Cagliari (Italy); IGAG-CNR, Environmental Geology and Geoengineering Institute of the National Research Council (Italy); Muntoni, A. [DICAAR – Department of Civil and Environmental Engineering and Architecture, University of Cagliari, Cagliari (Italy); IGAG-CNR, Environmental Geology and Geoengineering Institute of the National Research Council (Italy); Polettini, A.; Pomi, R. [Department of Hydraulics, Transportation and Roads, University of Rome “La Sapienza” (Italy)

    2013-06-15

    Highlights: ► A large number of factors affect fermentative hydrogen production. ► Harmonization and systematic comparison of results from different literature sources are needed. ► More than 80 publications on H{sub 2} production from food waste and OFMSW have been examined. ► Experimental data from the reviewed literature were analyzed using statistical tools. ► For a reliable assessment of the process performance, the use of multiple parameters appears to be recommended. - Abstract: Hydrogen is believed to play a potentially key role in the implementation of sustainable energy production, particularly when it is produced from renewable sources and low energy-demanding processes. In the present paper an attempt was made at critically reviewing more than 80 recent publications, in order to harmonize and compare the available results from different studies on hydrogen production from FW and OFMSW through dark fermentation, and derive reliable information about process yield and stability in view of building related predictive models. The review was focused on the effect of factors, recognized as potentially affecting process evolution (including type of substrate and co-substrate and relative ratio, type of inoculum, food/microorganisms [F/M] ratio, applied pre-treatment, reactor configuration, temperature and pH), on the fermentation yield and kinetics. Statistical analysis of literature data from batch experiments was also conducted, showing that the variables affecting the H{sub 2} production yield were ranked in the order: type of co-substrate, type of pre-treatment, operating pH, control of initial pH and fermentation temperature. However, due to the dispersion of data observed in some instances, the ambiguity about the presence of additional hidden variables cannot be resolved. The results from the analysis thus suggest that, for reliable predictive models of fermentative hydrogen production to be derived, a high level of consistency between data is

  8. Continuous dark fermentative hydrogen production by mesophilic microflora: Principles and progress

    Energy Technology Data Exchange (ETDEWEB)

    Hawkes, Freda R.; Hussy, Ines; Kyazze, Godfrey; Dinsdale, Richard; Hawkes, Dennis L. [School of Applied Sciences, University of Glamorgan, Pontypridd RCT CF37 1DL (United Kingdom)

    2007-02-15

    Continuous, dark fermentative hydrogen production technology using mixed microflora at mesophilic temperatures may be suitable for commercial development. Clostridial-based cultures from natural sources have been widely used, but more information on the need for heat treatment of inocula and conditions leading to germination and sporulation are required. The amount of nutrients given in the literature vary widely. Hydrogen production is reported to proceed without methane production in the reactor in the pH range 4.5-6.7, with hydraulic retention times optimally between a few hours and 3 days depending on substrate. Higher substrate concentrations should be more energy-efficient but there are product inhibition limitations, for example from unionised butyric acid. Inhibition by H{sub 2} can be reduced by stirring, sparging or extraction through membranes. Of the reactor types investigated, while granules have the best performance with soluble substrate, for particulate feedstock biofilm reactors or continuous stirred tank reactors may be most successful. A second stage is required to utilise the fermentation end products which, when cost-effective reactors are developed, may be photofermentation or microbial fuel cell technologies. Anaerobic digestion is a currently-available technology and the two-stage process is reported to give greater conversion efficiency than anaerobic digestion alone. (author)

  9. Recovery of carboxylic acids produced during dark fermentation of food waste by adsorption on Amberlite IRA-67 and activated carbon.

    Science.gov (United States)

    Yousuf, Ahasa; Bonk, Fabian; Bastidas-Oyanedel, Juan-Rodrigo; Schmidt, Jens Ejbye

    2016-10-01

    Amberlite IRA-67 and activated carbon were tested as promising candidates for carboxylic acid recovery by adsorption. Dark fermentation was performed without pH control and without addition of external inoculum at 37°C in batch mode. Lactic, acetic and butyric acids, were obtained, after 7days of fermentation. The maximum acid removal, 74%, from the Amberlite IRA-67 and 63% from activated carbon was obtained from clarified fermentation broth using 200gadsorbent/Lbroth at pH 3.3. The pH has significant effect and pH below the carboxylic acids pKa showed to be beneficial for both the adsorbents. The un-controlled pH fermentation creates acidic environment, aiding in adsorption by eliminating use of chemicals for efficient removal. This study proposes simple and easy valorization of waste to valuable chemicals. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Hydrogen production with effluent from an ethanol–H2-coproducing fermentation reactor using a single-chamber microbial electrolysis cell

    KAUST Repository

    Lu, Lu

    2009-06-01

    Hydrogen can be produced by bacterial fermentation of sugars, but substrate conversion to hydrogen is incomplete. Using a single-chamber microbial electrolysis cell (MEC), we show that additional hydrogen can be produced from the effluent of an ethanol-type dark-fermentation reactor. An overall hydrogen recovery of 83 ± 4% was obtained using a buffered effluent (pH 6.7-7.0), with a hydrogen production rate of 1.41 ± 0.08 m3 H2/m3 reactor/d, at an applied voltage of Eap = 0.6 V. When the MEC was combined with the fermentation system, the overall hydrogen recovery was 96%, with a production rate of 2.11 m3 H2/m3/d, corresponding to an electrical energy efficiency of 287%. High cathodic hydrogen recoveries (70 ± 5% to 94 ± 4%) were obtained at applied voltages of 0.5-0.8 V due to shorter cycle times, and repression of methanogen growth through exposure of the cathode to air after each cycle. Addition of a buffer to the fermentation effluent was critical to MEC performance as there was little hydrogen production using unbuffered effluent (0.0372 m3 H2/m3/d at Eap = 0.6 V, pH 4.5-4.6). These results demonstrate that hydrogen yields from fermentation can be substantially increased by using MECs. © 2009 Elsevier B.V. All rights reserved.

  11. Dark fermentative hydrogen production by defined mixed microbial cultures immobilized on ligno-cellulosic waste materials

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Sanjay K.S. [Microbial Biotechnology and Genomics, Institute of Genomics and Integrative Biology (IGIB), CSIR, Delhi University Campus, Mall Road, Delhi 110007 (India); Department of Biotechnology, University of Pune, Pune 411007 (India); Purohit, Hemant J. [Environmental Genomics Unit, National Environmental Engineering Research Institute (NEERI), CSIR, Nehru Marg, Nagpur 440020 (India); Kalia, Vipin C. [Microbial Biotechnology and Genomics, Institute of Genomics and Integrative Biology (IGIB), CSIR, Delhi University Campus, Mall Road, Delhi 110007 (India)

    2010-10-15

    Mixed microbial cultures (MMCs) based on 11 isolates belonging to Bacillus spp. (Firmicutes), Bordetella avium, Enterobacter aerogenes and Proteus mirabilis (Proteobacteria) were employed to produce hydrogen (H{sub 2}) under dark fermentative conditions. Under daily fed culture conditions (hydraulic retention time of 2 days), MMC6 and MMC4, immobilized on ligno-cellulosic wastes - banana leaves and coconut coir evolved 300-330 mL H{sub 2}/day. Here, H{sub 2} constituted 58-62% of the total biogas evolved. It amounted to a H{sub 2} yield of 1.54-1.65 mol/mol glucose utilized over a period of 60 days of fermentation. The involvement of various Bacillus spp. -Bacillus sp., Bacillus cereus, Bacillus megaterium, Bacillus pumilus and Bacillus thuringiensis as components of the defined MMCs for H{sub 2} production has been reported here for the first time. (author)

  12. Analysis of characteristic aroma of fungal fermented Fuzhuan brick-tea by gas chromatography/mass spectrophotometry

    NARCIS (Netherlands)

    Xu, X.Q.; Mo, H.Z.; Yan, M.C.; Yang Zhu, Yang

    2007-01-01

    Fuzhuan brick-tea is a popular fermented Chinese dark tea because of its typical fungal aroma. Fungal growth during the production process is the key step in achieving the unique colour, aroma and taste of Fuzhuan brick-tea. To further understand the generation of the characteristic aroma, changes

  13. Integrated hydrogen production process from cellulose by combining dark fermentation, microbial fuel cells, and a microbial electrolysis cell

    KAUST Repository

    Wang, Aijie

    2011-03-01

    Hydrogen gas production from cellulose was investigated using an integrated hydrogen production process consisting of a dark fermentation reactor and microbial fuel cells (MFCs) as power sources for a microbial electrolysis cell (MEC). Two MFCs (each 25mL) connected in series to an MEC (72mL) produced a maximum of 0.43V using fermentation effluent as a feed, achieving a hydrogen production rate from the MEC of 0.48m 3 H 2/m 3/d (based on the MEC volume), and a yield of 33.2mmol H 2/g COD removed in the MEC. The overall hydrogen production for the integrated system (fermentation, MFC and MEC) was increased by 41% compared with fermentation alone to 14.3mmol H 2/g cellulose, with a total hydrogen production rate of 0.24m 3 H 2/m 3/d and an overall energy recovery efficiency of 23% (based on cellulose removed) without the need for any external electrical energy input. © 2010 Elsevier Ltd.

  14. Integrated hydrogen production process from cellulose by combining dark fermentation, microbial fuel cells, and a microbial electrolysis cell.

    Science.gov (United States)

    Wang, Aijie; Sun, Dan; Cao, Guangli; Wang, Haoyu; Ren, Nanqi; Wu, Wei-Min; Logan, Bruce E

    2011-03-01

    Hydrogen gas production from cellulose was investigated using an integrated hydrogen production process consisting of a dark fermentation reactor and microbial fuel cells (MFCs) as power sources for a microbial electrolysis cell (MEC). Two MFCs (each 25 mL) connected in series to an MEC (72 mL) produced a maximum of 0.43 V using fermentation effluent as a feed, achieving a hydrogen production rate from the MEC of 0.48 m(3) H(2)/m(3)/d (based on the MEC volume), and a yield of 33.2 mmol H(2)/g COD removed in the MEC. The overall hydrogen production for the integrated system (fermentation, MFC and MEC) was increased by 41% compared with fermentation alone to 14.3 mmol H(2)/g cellulose, with a total hydrogen production rate of 0.24 m(3) H(2)/m(3)/d and an overall energy recovery efficiency of 23% (based on cellulose removed) without the need for any external electrical energy input. Copyright © 2010 Elsevier Ltd. All rights reserved.

  15. Effects of different Pediococcus halophilus level and fermentation time on chemical properties of fermented anchovy paste “terasi ikan”

    Science.gov (United States)

    Lestari, S. D.; Herpandi; Simamora, G. R. R.

    2017-04-01

    The aim of this study was to investigate the Pediococcus halophilus addition on the chemical quality of terasi ikan (fermented anchovy paste) product. Two levels of bacterial concentration (106 CFU/mL and 109 CFU/mL) were used as a single starter culture for the fermentation process. Changes in chemical characteristics were observed at day 7, 14 and 21. No differences (p > 0.05) in moisture and protein content were found in the analysis of variance within terasi ikan samples. The decrease in reducing sugar and L-lysine HCl during the fermentation was attributed to the formation of Maillard Reaction Products (MRPs) which was manifested in dark brown color of the end products. The interaction between P. halophilus and terasi ikan microbiota as well as their enzymatic activities were considered to affect vitamin B synthesis and degradation of protein into amino acids and amines. These findings facilitate further investigations on using P. halophilus as constituent of mixed culture, instead of as a single culture for terasi industry in order to produce products of well-controlled quality and safety.

  16. Comparison of microbial fermentation of high- and low-forage diets in Rusitec, single-flow continuous-culture fermenters and sheep rumen.

    Science.gov (United States)

    Carro, M D; Ranilla, M J; Martín-García, A I; Molina-Alcaide, E

    2009-04-01

    Eight Rusitec and eight single-flow continuous-culture fermenters (SFCCF) were used to compare the ruminal fermentation of two diets composed of alfalfa hay and concentrate in proportions of 80 : 20 (F80) and 20 : 80 (F20). Results were validated with those obtained previously in sheep fed the same diets. Rusitec fermenters were fed once daily and SFCCF twice, but liquid dilution rates were similar in both types of fermenters. Mean values of pH over the 12 h postfeeding were higher (P 0.05) were found in any in vitro system. A more precise control of pH in both types of fermenters and a reduction of concentrate retention time in Rusitec could probably improve the simulation of in vivo fermentation.

  17. Viability and resistance of lactobacilli isolated from cocoa fermentation to simulated gastrointestinal digestive steps in soy yogurt.

    Science.gov (United States)

    Saito, V S T; Dos Santos, T F; Vinderola, C G; Romano, C; Nicoli, J R; Araújo, L S; Costa, M M; Andrioli, J L; Uetanabaro, A P T

    2014-02-01

    To study the potential probiotic characteristics such as decrease of pH, microbial viability, and tolerance to simulated digestive steps of fermented soy beverage ("soy yogurt") produced with lactobacilli isolated from cocoa fermentation (Lactobacillus fermentum TcUESC01 and Lactobacillus plantarum TcUESC02) during fermentation and refrigerated storage. The sensory acceptance of the yogurts was also tested. Samples of soy yogurt produced with L. fermentum TcUESC01 or L. plantarum TcUESC02 were collected during fermentation (0, 4, 8, and 12 h) and refrigerated storage (1, 9, 18, and 27 d), and submitted to pH and bacterial viability determinations. Tolerance to simulated digestion steps was done with refrigerated storage samples at 9 °C. Simulated digestion was performed in 3 successive steps: exposure to pepsin-HCl solution, bile shock, and simulated small intestinal juice. During storage, a decrease in pH and lactobacillus viability was observed. L. fermentum TcUESC01 showed to be more resistant than L. plantarum TcUESC02 to simulated gastrointestinal digestion. All soy yogurts showed acceptable hedonic scores (greater than 5 in a 9-point hedonic scale ranging from "like extremely" to "dislike extremely") in sensory evaluation for flavor, aroma, color, consistency, and overall impression. L. plantarum TcUESC02 and, especially, L. fermentum TcUESC01 showed potential probiotic characteristics when considering pH, cell viability, and tolerance to simulated digestive steps and did not affect the sensory characteristics when supplemented to soy yogurt during storage. © 2014 Institute of Food Technologists®

  18. Considering dominance in reduced single-step genomic evaluations.

    Science.gov (United States)

    Ertl, J; Edel, C; Pimentel, E C G; Emmerling, R; Götz, K-U

    2018-06-01

    Single-step models including dominance can be an enormous computational task and can even be prohibitive for practical application. In this study, we try to answer the question whether a reduced single-step model is able to estimate breeding values of bulls and breeding values, dominance deviations and total genetic values of cows with acceptable quality. Genetic values and phenotypes were simulated (500 repetitions) for a small Fleckvieh pedigree consisting of 371 bulls (180 thereof genotyped) and 553 cows (40 thereof genotyped). This pedigree was virtually extended for 2,407 non-genotyped daughters. Genetic values were estimated with the single-step model and with different reduced single-step models. Including more relatives of genotyped cows in the reduced single-step model resulted in a better agreement of results with the single-step model. Accuracies of genetic values were largest with single-step and smallest with reduced single-step when only the cows genotyped were modelled. The results indicate that a reduced single-step model is suitable to estimate breeding values of bulls and breeding values, dominance deviations and total genetic values of cows with acceptable quality. © 2018 Blackwell Verlag GmbH.

  19. Effects of operational parameters on dark fermentative hydrogen production from biodegradable complex waste biomass.

    Science.gov (United States)

    Ghimire, Anish; Sposito, Fabio; Frunzo, Luigi; Trably, Eric; Escudié, Renaud; Pirozzi, Francesco; Lens, Piet N L; Esposito, Giovanni

    2016-04-01

    This work aimed to investigate the effect of the initial pH, combination of food to microorganism ratio (F/M) and initial pH, substrate pre-treatment and different inoculum sources on the dark fermentative biohydrogen (H2) yields. Three model complex waste biomasses (food waste, olive mill wastewater (OMWW) and rice straw) were used to assess the effect of the aforementioned parameters. The effect of the initial pH between 4.5 and 7.0 was investigated in batch tests carried out with food waste. The highest H2 yields were shown at initial pH 4.5 (60.6 ± 9.0 mL H2/g VS) and pH 5.0 (50.7 ± 0.8 mL H2/g VS). Furthermore, tests carried out with F/M ratios of 0.5, 1.0 and 1.5 at initial pH 5.0 and 6.5 revealed that a lower F/M ratio (0.5 and 1.0) favored the H2 production at an initial pH 5.0 compared to pH 6.5. Alkaline pre-treatment of raw rice straw using 4% and 8% NaOH at 55°C for 24h, increased the H2 yield by 26 and 57-fold, respectively. In the dark fermentation of OMWW, the H2 yield was doubled when heat-shock pre-treated activated sludge was used as inoculum in comparison to anaerobic sludge. Overall, this study shows that the application of different operating parameters to maximize the H2 yields strongly depends on the biodegradability of the substrate. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Microbial electrohydrogenesis linked to dark fermentation as integrated application for enhanced biohydrogen production: A review on process characteristics, experiences and lessons.

    Science.gov (United States)

    Bakonyi, Péter; Kumar, Gopalakrishnan; Koók, László; Tóth, Gábor; Rózsenberszki, Tamás; Bélafi-Bakó, Katalin; Nemestóthy, Nándor

    2018-03-01

    Microbial electrohydrogenesis cells (MECs) are devices that have attracted significant attention from the scientific community to generate hydrogen gas electrochemically with the aid of exoelectrogen microorganisms. It has been demonstrated that MECs are capable to deal with the residual organic materials present in effluents generated along with dark fermentative hydrogen bioproduction (DF). Consequently, MECs stand as attractive post-treatment units to enhance the global H 2 yield as a part of a two-stage, integrated application (DF-MEC). In this review article, it is aimed (i) to assess results communicated in the relevant literature on cascade DF-MEC systems, (ii) describe the characteristics of each steps involved and (iii) discuss the experiences as well as the lessons in order to facilitate knowledge transfer and help the interested readers with the construction of more efficient coupled set-ups, leading eventually to the improvement of overall biohydrogen evolution performances. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Hydrogen Production by Thermophilic Fermentation

    NARCIS (Netherlands)

    Niel, van E.W.J.; Willquist, K.; Zeidan, A.A.; Vrije, de T.; Mars, A.E.; Claassen, P.A.M.

    2012-01-01

    Of the many ways hydrogen can be produced, this chapter focuses on biological hydrogen production by thermophilic bacteria and archaea in dark fermentations. The thermophiles are held as promising candidates for a cost-effective fermentation process, because of their relatively high yields and broad

  2. Biological upgrading of volatile fatty acids, key intermediates for the valorization of biowaste through dark anaerobic fermentation.

    Science.gov (United States)

    Singhania, Reeta Rani; Patel, Anil Kumar; Christophe, Gwendoline; Fontanille, Pierre; Larroche, Christian

    2013-10-01

    VFAs can be obtained from lignocellulosic agro-industrial wastes, sludge, and various biodegradable organic wastes as key intermediates through dark fermentation processes and synthesized through chemical route also. They are building blocks of several organic compounds viz. alcohol, aldehyde, ketones, esters and olefins. These can serve as alternate carbon source for microbial biolipid, biohydrogen, microbial fuel cells productions, methanisation, and for denitrification. Organic wastes are the substrate for VFA platform that is of zero or even negative cost, giving VFA as intermediate product but their separation from the fermentation broth is still a challenge; however, several separation technologies have been developed, membrane separation being the most suitable one. These aspects will be reviewed and results obtained during anaerobic treatment of slaughterhouse wastes with further utilisation of volatile fatty acids for yeast cultivation have been discussed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Effects of concentrate replacement by feed blocks on ruminal fermentation and microbial growth in goats and single-flow continuous-culture fermenters.

    Science.gov (United States)

    Molina-Alcaide, E; Pascual, M R; Cantalapiedra-Hijar, G; Morales-García, E Y; Martín-García, A I

    2009-04-01

    The effect of replacing concentrate with 2 different feed blocks (FB) on ruminal fermentation and microbial growth was evaluated in goats and in single-flow continuous-culture fermenters. Diets consisted of alfalfa hay plus concentrate and alfalfa hay plus concentrate with 1 of the 2 studied FB. Three trials were carried out with 6 rumen-fistulated Granadina goats and 3 incubation runs in 6 single-flow continuous-culture fermenters. Experimental treatments were assigned randomly within each run, with 2 repetitions for each diet. At the end of each in vivo trial, the rumen contents were obtained for inoculating the fermenters. For each incubation run, the fermenters were inoculated with ruminal fluid from goats fed the same diet supplied to the corresponding fermenter flask. The average pH values, total and individual VFA, and NH(3)-N concentrations, and acetate:propionate ratios in the rumen of goats were not affected (P >or= 0.10) by diet, whereas the microbial N flow (MNF) and efficiency were affected (P fermenters, the diet affected pH (Por= 0.05), and total (P=0.02), NH(3) (P=0.005), and non-NH(3) (P=0.02) N flows, whereas the efficiency of VFA production was not affected (P=0.75). The effect of diet on MNF and efficiency depended on the bacterial pellet used as a reference. An effect (Pfermenter contents and effluent were similar (P=0.05). Differences (Pfermentation variables and bacterial pellet compositions were found. Partial replacement of the concentrate with FB did not greatly compromise carbohydrate fermentation in unproductive goats. However, this was not the case for MNF and efficiency. Differences between the results obtained in vivo and in vitro indicate a need to identify conditions in fermenters that allow better simulation of fermentation, microbial growth, and bacterial pellet composition in vivo. Reduced feeding cost could be achieved with the inclusion of FB in the diets of unproductive goats without altering rumen fermentation.

  4. Re-fermentation os spent solids from dark fermentation allows for a substantial increase of hydrogen production from the organic fraction of municipal solid wastes

    International Nuclear Information System (INIS)

    Munoz-Paez, K. M.; Pareja-Camacho, J.; Rios-Leal, E.; Valdez-Vazquez, I.; Poggi Varaldo, H. M.

    2009-01-01

    In the last 10 years, interest on bio hydrogen has resurrected, particularly the research on dark fermentation of solid wastes. In effect, in a context of scarce and expensive fossil fuels, hydrogen can be considered the best energy alternative because it can be produced by biological means, it has the highest energy density, it is versatile since can be used both as a primary or secondary energy source, it is compatible with electrochemical and combustion-based energy conversion processes, and it is environmentally-friendly since water is its main combustion product and no aggressive pollutants are generated. (Author)

  5. Re-fermentation os spent solids from dark fermentation allows for a substantial increase of hydrogen production from the organic fraction of municipal solid wastes

    Energy Technology Data Exchange (ETDEWEB)

    Munoz-Paez, K. M.; Pareja-Camacho, J.; Rios-Leal, E.; Valdez-Vazquez, I.; Poggi Varaldo, H. M.

    2009-07-01

    In the last 10 years, interest on bio hydrogen has resurrected, particularly the research on dark fermentation of solid wastes. In effect, in a context of scarce and expensive fossil fuels, hydrogen can be considered the best energy alternative because it can be produced by biological means, it has the highest energy density, it is versatile since can be used both as a primary or secondary energy source, it is compatible with electrochemical and combustion-based energy conversion processes, and it is environmentally-friendly since water is its main combustion product and no aggressive pollutants are generated. (Author)

  6. Comparison study on mechanical properties single step and three step artificial aging on duralium

    Science.gov (United States)

    Tsamroh, Dewi Izzatus; Puspitasari, Poppy; Andoko, Sasongko, M. Ilman N.; Yazirin, Cepi

    2017-09-01

    Duralium is kind of non-ferro alloy that used widely in industrial. That caused its properties such as mild, high ductility, and resistance from corrosion. This study aimed to know mechanical properties of duralium on single step and three step articial aging process. Mechanical properties that discussed in this study focused on toughness value, tensile strength, and microstructure of duralium. Toughness value of single step artificial aging was 0.082 joule/mm2, and toughness value of three step artificial aging was 0,0721 joule/mm2. Duralium tensile strength of single step artificial aging was 32.36 kgf/mm^2, and duralium tensile strength of three step artificial aging was 32,70 kgf/mm^2. Based on microstructure photo of duralium of single step artificial aging showed that precipitate (θ) was not spreading evenly indicated by black spot which increasing the toughness of material. While microstructure photo of duralium that treated by three step artificial aging showed that it had more precipitate (θ) spread evenly compared with duralium that treated by single step artificial aging.

  7. The development and microbiology of bioprocesses for the production of hydrogen and ethanol by dark fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Koskinen, P.

    2008-07-01

    This work investigated the production of hydrogen and ethanol from carbohydrates by bacterial dark fermentation. Meso and thermophilic fermenters were enriched from the environment, and their H{sub 2} and/or ethanol production in batch determined. Continuous biofilm, suspended-cell and granular-cell processes for H{sub 2} or ethanol+H{sub 2} production from glucose were developed and studied. Dynamics of microbial communities in processes were determined based on the 16S rRNA gene sequence analyses. Mesophilic enrichment, obtained from anaerobic digester sludge, produced 1.24 mol-H{sub 2} mol-glucose-1 in batch assays. Hydrogen production by the enrichment in a mesophilic fluidized-bed bioreactor (FBR) was found to be unstable - prompt onset of H{sub 2} production along with butyrate-acetate was followed by rapid decrease and cease associated with propionate-acetate production. Intermittent batch (semi-continuous) operation allowed a momentary recovery of H{sub 2} production in the FBR. The highest H{sub 2} production rate (HPR) observed in FBR was 28.8 mmol h-1 L-1, which corresponded to a relatively high hydrogen yield (HY) of 1.90 mol-H{sub 2} mol-glucose-1. Mesophilic, completely-mixed column reactor (CMCR), with a similar inoculum and feed as used in the FBR, provided a prolonged H{sub 2} production for 5 months. Highest HPR observed in the CMCR was 18.8 mmol h-1 L-1 (HY of 1.70 mol-H{sub 2} mol-glucose-1), while it in general remained between 1 and 6 mmol h-1 L-1. Hydrogen production in the CMCR was decreased by shifts in microbial community metabolism from initial butyrate-acetate metabolism, first to ethanol-acetate, followed by acetate-dominated metabolism, and finally to propionate-acetate metabolism, which ceased H{sub 2} production. The transitions of dominant metabolisms were successfully detected and visualized by self-organizing maps (SOMs). Developed Clustering hybrid regression (CHR) model, performed well in modeling the HPR based on the data on

  8. Application of a novel enzymatic pretreatment using crude hydrolytic extracellular enzyme solution to microalgal biomass for dark fermentative hydrogen production.

    Science.gov (United States)

    Yun, Yeo-Myeong; Kim, Dong-Hoon; Oh, You-Kwan; Shin, Hang-Sik; Jung, Kyung-Won

    2014-05-01

    In this study, a novel enzymatic pretreatment of Chlorella vulgaris for dark fermentative hydrogen production (DFHP) was performed using crude hydrolytic extracellular enzyme solution (CHEES) extracted from the H2 fermented effluent of food waste. It was found that the enzyme extracted at 52 h had the highest hydrolysis efficiency of microalgal biomass, resulting in the highest H2 yield of 43.1 mL H2/g dry cell weight along with shorter lag periods. Even though a high amount of VFAs was accumulated in CHEES, especially butyrate, the fermentative bacteria on the DFHP was not affected from product inhibition. It also appears that the presence of organic acids, especially lactate and acetate, contained in the CHEES facilitated enhancement of H2 production acted as a co-substrate. Therefore, all of the experimental results suggest that the enhancement of DFHP performance caused by CHEES has a dual role as the hydrolysis enhancer and the co-substrate supplier. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Biohydrogen production by dark fermentation of glycerol using Enterobacter and Citrobacter Sp.

    Science.gov (United States)

    Maru, Biniam T; Constanti, Magda; Stchigel, Alberto M; Medina, Francesc; Sueiras, Jesus E

    2013-01-01

    Glycerol is an attractive substrate for biohydrogen production because, in theory, it can produce 3 mol of hydrogen per mol of glycerol. Moreover, glycerol is produced in substantial amounts as a byproduct of producing biodiesel, the demand for which has increased in recent years. Therefore, hydrogen production from glycerol was studied by dark fermentation using three strains of bacteria: namely, Enterobacter spH1, Enterobacter spH2, and Citrobacter freundii H3 and a mixture thereof (1:1:1). It was found that, when an initial concentration of 20 g/L of glycerol was used, all three strains and their mixture produced substantial amounts of hydrogen ranging from 2400 to 3500 mL/L, being highest for C. freundii H3 (3547 mL/L) and Enterobacter spH1 (3506 mL/L). The main nongaseous fermentation products were ethanol and acetate, albeit in different ratios. For Enterobacter spH1, Enterobacter spH2, C. freundii H3, and the mixture (1:1:1), the ethanol yields (in mol EtOH/mol glycerol consumed) were 0.96, 0.67, 0.31, and 0.66, respectively. Compared to the individual strains, the mixture (1:1:1) did not show a significantly higher hydrogen level, indicating that there was no synergistic effect. Enterobacter spH1 was selected for further investigation because of its higher yield of hydrogen and ethanol. Copyright © 2012 American Institute of Chemical Engineers (AIChE).

  10. Microbial culture selection for bio-hydrogen production from waste ground wheat by dark fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Argun, Hidayet; Kargi, Fikret; Kapdan, Ilgi K. [Department of Environmental Engineering, Dokuz Eylul University, Buca, Izmir (Turkey)

    2009-03-15

    Hydrogen formation performances of different anaerobic bacteria were investigated in batch dark fermentation of waste wheat powder solution (WPS). Serum bottles containing wheat powder were inoculated with pure cultures of Clostridium acetobutylicum (CAB), Clostridium butyricum (CB), Enterobacter aerogenes (EA), heat-treated anaerobic sludge (ANS) and a mixture of those cultures (MIX). Cumulative hydrogen formation (CHF), hydrogen yield (HY) and specific hydrogen production rate (SHPR) were determined for every culture. The heat-treated anaerobic sludge was found to be the most effective culture with a cumulative hydrogen formation of 560 ml, hydrogen yield of 223 ml H{sub 2} g{sup -1} starch and a specific hydrogen production rate of 32.1 ml H{sub 2} g{sup -1} h{sup -1}. (author)

  11. An optimized fed-batch culture strategy integrated with a one-step fermentation improves L-lactic acid production by Rhizopus oryzae.

    Science.gov (United States)

    Fu, Yongqian; Sun, Xiaolong; Zhu, Huayue; Jiang, Ru; Luo, Xi; Yin, Longfei

    2018-05-21

    In previous work, we proposed a novel modified one-step fermentation fed-batch strategy to efficiently generate L-lactic acid (L-LA) using Rhizopus oryzae. In this study, to further enhance efficiency of L-LA production through one-step fermentation in fed-batch cultures, we systematically investigated the initial peptone- and glucose-feeding approaches, including different initial peptone and glucose concentrations and maintained residual glucose levels. Based on the results of this study, culturing R. oryzae with initial peptone and glucose concentrations of 3.0 and 50.0 g/l, respectively, using a fed-batch strategy is an effective approach of producing L-LA through one-step fermentation. Changing the residual glucose had no obvious effect on the generation of L-LA. We determined the maximum LA production and productivity to be 162 g/l and 6.23 g/(l·h), respectively, during the acid production stage. Compared to our previous work, there was almost no change in L-LA production or yield; however, the productivity of L-LA increased by 14.3%.

  12. Electricity generation from fermented primary sludge using single-chamber air-cathode microbial fuel cells

    KAUST Repository

    Yang, Fei; Ren, Lijiao; Pu, Yuepu; Logan, Bruce E.

    2013-01-01

    Single-chamber air-cathode microbial fuel cells (MFCs) were used to generate electricity from fermented primary sludge. Fermentation (30°C, 9days) decreased total suspended solids (26.1-16.5g/L), volatile suspended solids (24.1-15.3g/L) and pH (5

  13. A critical review on factors influencing fermentative hydrogen production.

    Science.gov (United States)

    Kothari, Richa; Kumar, Virendra; Pathak, Vinayak V; Ahmad, Shamshad; Aoyi, Ochieng; Tyagi, V V

    2017-03-01

    Biohydrogen production by dark fermentation of different waste materials is a promising approach to produce bio-energy in terms of renewable energy exploration. This communication has reviewed various influencing factors of dark fermentation process with detailed account of determinants in biohydrogen production. It has also focused on different factors such as improved bacterial strain, reactor design, metabolic engineering and two stage processes to enhance the bioenergy productivity from substrate. The study also suggest that complete utilization of substrates for biological hydrogen production requires the concentrated research and development for efficient functioning of microorganism with integrated application for energy production and bioremediation. Various studies have been taken into account here, to show the comparative efficiency of different substrates and operating conditions with inhibitory factors and pretreatment option for biohydrogen production. The study reveals that an extensive research is needed to observe field efficiency of process using low cost substrates and integration of dark and photo fermentation process. Integrated approach of fermentation process will surely compete with conventional hydrogen process and replace it completely in future.

  14. Factors affecting GEBV accuracy with single-step Bayesian models.

    Science.gov (United States)

    Zhou, Lei; Mrode, Raphael; Zhang, Shengli; Zhang, Qin; Li, Bugao; Liu, Jian-Feng

    2018-01-01

    A single-step approach to obtain genomic prediction was first proposed in 2009. Many studies have investigated the components of GEBV accuracy in genomic selection. However, it is still unclear how the population structure and the relationships between training and validation populations influence GEBV accuracy in terms of single-step analysis. Here, we explored the components of GEBV accuracy in single-step Bayesian analysis with a simulation study. Three scenarios with various numbers of QTL (5, 50, and 500) were simulated. Three models were implemented to analyze the simulated data: single-step genomic best linear unbiased prediction (GBLUP; SSGBLUP), single-step BayesA (SS-BayesA), and single-step BayesB (SS-BayesB). According to our results, GEBV accuracy was influenced by the relationships between the training and validation populations more significantly for ungenotyped animals than for genotyped animals. SS-BayesA/BayesB showed an obvious advantage over SSGBLUP with the scenarios of 5 and 50 QTL. SS-BayesB model obtained the lowest accuracy with the 500 QTL in the simulation. SS-BayesA model was the most efficient and robust considering all QTL scenarios. Generally, both the relationships between training and validation populations and LD between markers and QTL contributed to GEBV accuracy in the single-step analysis, and the advantages of single-step Bayesian models were more apparent when the trait is controlled by fewer QTL.

  15. A two-step fermentation of distillers' grains using Trichoderma viride and Rhodopseudomonas palustris for fish feed.

    Science.gov (United States)

    Zhang, Jian; Zhang, Wen-Xue; Li, Shun-Zhou; You, Ling; Zhang, Chao; Sun, Chuan-Ze; Liu, Xiao-Bin

    2013-10-01

    It is important to provide added value or to make full use of the co-product of grains from ethanol production. In order to convert distillers' grains into a high-quality feed, the Trichoderma viride and Rhodopseudomonas palustris fermentation were combined and investigated in this study. The T. viride fermentation was carried out in an aerobic fermentation installation in favoring of the growth of the fungi and the degradation of the cellulose, and then the fermentation of R. palustris was performed to increase the content of protein with an anaerobic installation. After the two step fermentations, the true protein content of dried distiller' grains increased from 11.4 to 33.6 % (w/w) (the content of crude protein from 14.5 to 39.7 %), the crude fiber content decreased from 21.3 to 7.6 % (w/w), the crude fat content increased from 5.5 to 7.9 % (w/w), the crude ash decreased from 14.6 to 10.2 % (w/w), the total phosphorus content increased from 0.4 to 1.2 % (w/w), and the water content was 11.8 % (w/w). The dried and fermented grains contain the R. palustris viable count of 5.3 × 10¹¹ CFU/g dry matter. The results may support a new application of an active photosynthetic bacteria fish feed in fisheries industry and offer a reference for the further study of lignocellulosic materials as raw materials converting into high-quality feed.

  16. Enhanced dark hydrogen fermentation by addition of ferric oxide nanoparticles using Enterobacter aerogenes.

    Science.gov (United States)

    Lin, Richen; Cheng, Jun; Ding, Lingkan; Song, Wenlu; Liu, Min; Zhou, Junhu; Cen, Kefa

    2016-05-01

    Ferric oxide nanoparticles (FONPs) were used to facilitate dark hydrogen fermentation using Enterobacter aerogenes. The hydrogen yield of glucose increased from 164.5±2.29 to 192.4±1.14mL/g when FONPs concentration increased from 0 to 200mg/L. SEM images of E. aerogenes demonstrated the existence of bacterial nanowire among cells, suggesting FONPs served as electron conduits to enhance electron transfer. TEM showed cellular internalization of FONPs, indicating hydrogenase synthesis and activity was potentially promoted due to the released iron element. When further increasing FONPs concentration to 400mg/L, the hydrogen yield of glucose decreased to 147.2±2.54mL/g. Soluble metabolic products revealed FONPs enhanced acetate pathway of hydrogen production, but weakened ethanol pathway. This shift of metabolic pathways allowed more nicotinamide adenine dinucleotide for reducing proton to hydrogen. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Accuracy of Single-Step versus 2-Step Double-Mix Impression Technique

    DEFF Research Database (Denmark)

    Franco, Eduardo Batista; da Cunha, Leonardo Fernandes; Herrera, Francyle Simões

    2011-01-01

    Objective. To investigate the accuracy of dies obtained from single-step and 2-step double-mix impressions. Material and Methods. Impressions (n = 10) of a stainless steel die simulating a complete crown preparation were performed using a polyether (Impregum Soft Heavy and Light body) and a vinyl...

  18. Monitoring of wheat lactic acid bacteria from the field until the first step of dough fermentation.

    Science.gov (United States)

    Alfonzo, Antonio; Miceli, Claudia; Nasca, Anna; Franciosi, Elena; Ventimiglia, Giusi; Di Gerlando, Rosalia; Tuohy, Kieran; Francesca, Nicola; Moschetti, Giancarlo; Settanni, Luca

    2017-04-01

    The present work was carried out to retrieve the origin of lactic acid bacteria (LAB) in sourdough. To this purpose, wheat LAB were monitored from ear harvest until the first step of fermentation for sourdough development. The influence of the geographical area and variety on LAB species/strain composition was also determined. The ears of four Triticum durum varieties (Duilio, Iride, Saragolla and Simeto) were collected from several fields located within the Palermo province (Sicily, Italy) and microbiologically investigated. In order to trace the transfer of LAB during the consecutive steps of manipulation, ears were transformed aseptically and, after threshing, milling and fermentation, samples of kernels, semolinas and doughs, respectively, were analysed. LAB were not found to dominate the microbial communities of the raw materials. In general, kernels harboured lower levels of microorganisms than ears and ears than semolinas. Several samples showing no development of LAB colonies acidified the enrichment broth suggesting the presence of LAB below the detection limit. After fermentation, LAB loads increased consistently for all doughs, reaching levels of 7.0-7.5 Log CFU/g on M17. The values of pH (5.0) and TTA (5.6 mL NaOH/10 g of dough) indicated the occurrence of the acidification process for several doughs. LAB were phenotypically and genotypically differentiated by randomly amplified polymorphic DNA (RAPD)-PCR into eight groups including 51 strains belonging to the species Lactobacillus brevis, Lactobacillus coryniformis, Lactobacillus plantarum, Lactococcus lactis, Lactococcus garvieae, Enterococcus casseliflavus, Enterococcus faecium, Leuconostoc citreum, and Pediococcus pentosaceus. Lactobacilli constituted a minority the LAB community, while lactococci represented more than 50% of strains. Lower LAB complexity was found on kernels, while a richer biodiversity was observed in semolinas and fermented doughs. For broader microbiota characterisation in

  19. Coculture fermentation of banana agro-waste to ethanol by ...

    African Journals Online (AJOL)

    Banana is a major cash crop of many regions generating good amount of waste after harvest. This agro waste which is left for natural degradation is used as substrate for single step ethanol fermentation by thermophilic, cellulolytic, ethanologenic Clostridium thermocellum CT2, a new culture isolated from elephant ...

  20. Percutaneous Cystgastrostomy as a Single-Step Procedure

    International Nuclear Information System (INIS)

    Curry, L.; Sookur, P.; Low, D.; Bhattacharya, S.; Fotheringham, T.

    2009-01-01

    The purpose of this study was to evaluate the success of percutaneous transgastric cystgastrostomy as a single-step procedure. We performed a retrospective analysis of single-step percutaneous transgastric cystgastrostomy carried out in 12 patients (8 male, 4 female; mean age 44 years; range 21-70 years), between 2002 and 2007, with large symptomatic pancreatic pseudocysts for whom up to 1-year follow-up data (mean 10 months) were available. All pseudocysts were drained by single-step percutaneous cystgastrostomy with the placement of either one or two stents. The procedure was completed successfully in all 12 patients. The pseudocysts showed complete resolution on further imaging in 7 of 12 patients with either enteric passage of the stent or stent removal by endoscopy. In 2 of 12 patients, the pseudocysts showed complete resolution on imaging, with the stents still noted in situ. In 2 of 12 patients, the pseudocysts became infected after 1 month and required surgical intervention. In 1 of 12 patients, the pseudocyst showed partial resolution on imaging, but subsequently reaccumulated and later required external drainage. In our experience, percutaneous cystgastrostomy as a single-step procedure has a high success rate and good short-term outcomes over 1-year follow-up and should be considered in the treatment of large symptomatic cysts.

  1. Anisotropic interactions of a single spin and dark-spin spectroscopy in diamond

    Science.gov (United States)

    Epstein, R. J.; Mendoza, F. M.; Kato, Y. K.; Awschalom, D. D.

    2005-11-01

    Experiments on single nitrogen-vacancy (N-V) centres in diamond, which include electron spin resonance, Rabi oscillations, single-shot spin readout and two-qubit operations with a nearby13C nuclear spin, show the potential of this spin system for solid-state quantum information processing. Moreover, N-V centre ensembles can have spin-coherence times exceeding 50 μs at room temperature. We have developed an angle-resolved magneto-photoluminescence microscope apparatus to investigate the anisotropic electron-spin interactions of single N-V centres at room temperature. We observe negative peaks in the photoluminescence as a function of both magnetic-field magnitude and angle that are explained by coherent spin precession and anisotropic relaxation at spin-level anti-crossings. In addition, precise field alignment unmasks the resonant coupling to neighbouring `dark' nitrogen spins, otherwise undetected by photoluminescence. These results demonstrate the capability of our spectroscopic technique for measuring small numbers of dark spins by means of a single bright spin under ambient conditions.

  2. Comparative analysis of single-step and two-step biodiesel production using supercritical methanol on laboratory-scale

    International Nuclear Information System (INIS)

    Micic, Radoslav D.; Tomić, Milan D.; Kiss, Ferenc E.; Martinovic, Ferenc L.; Simikić, Mirko Ð.; Molnar, Tibor T.

    2016-01-01

    Highlights: • Single-step supercritical transesterification compared to the two-step process. • Two-step process: oil hydrolysis and subsequent supercritical methyl esterification. • Experiments were conducted in a laboratory-scale batch reactor. • Higher biodiesel yields in two-step process at milder reaction conditions. • Two-step process has potential to be cost-competitive with the single-step process. - Abstract: Single-step supercritical transesterification and two-step biodiesel production process consisting of oil hydrolysis and subsequent supercritical methyl esterification were studied and compared. For this purpose, comparative experiments were conducted in a laboratory-scale batch reactor and optimal reaction conditions (temperature, pressure, molar ratio and time) were determined. Results indicate that in comparison to a single-step transesterification, methyl esterification (second step of the two-step process) produces higher biodiesel yields (95 wt% vs. 91 wt%) at lower temperatures (270 °C vs. 350 °C), pressures (8 MPa vs. 12 MPa) and methanol to oil molar ratios (1:20 vs. 1:42). This can be explained by the fact that the reaction system consisting of free fatty acid (FFA) and methanol achieves supercritical condition at milder reaction conditions. Furthermore, the dissolved FFA increases the acidity of supercritical methanol and acts as an acid catalyst that increases the reaction rate. There is a direct correlation between FFA content of the product obtained in hydrolysis and biodiesel yields in methyl esterification. Therefore, the reaction parameters of hydrolysis were optimized to yield the highest FFA content at 12 MPa, 250 °C and 1:20 oil to water molar ratio. Results of direct material and energy costs comparison suggest that the process based on the two-step reaction has the potential to be cost-competitive with the process based on single-step supercritical transesterification. Higher biodiesel yields, similar or lower energy

  3. Influences of environmental and operational factors on dark fermentative hydrogen production: a review

    International Nuclear Information System (INIS)

    Mohammadi, Parviz; Ibrahim, Shaliza; Ghafari, Shahin; Annuar, Mohamad Suffian Mohamad; Vikineswary, Sabaratnam; Zinatizadeh, Ali Akbar

    2012-01-01

    Hydrogen (H 2 ) is one of renewable energy sources known for its non-polluting and environmentally friendly nature, as its end combustion product is water (H 2 O). The biological production of H 2 is a less energy intensive alternative where processes can be operated at ambient temperature and pressure. Dark fermentation by bacterial biomass is one of multitude of approaches to produce hydrogen which is known as the cleanest renewable energy and is thus receiving increasing attention worldwide. The present study briefly reviews the biohydrogen production process with special attention on the effects of several environmental and operational factors towards the process. Factors such as organic loading rate, hydraulic retention time, temperature, and pH studied in published reports were compared and their influences are discussed in this work. This review highlights the variations in examined operating ranges for the factors as well as their reported optimum values. Divergent values observed for the environmental/operational factors merit further exploration in this field. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Influences of environmental and operational factors on dark fermentative hydrogen production: a review

    Energy Technology Data Exchange (ETDEWEB)

    Mohammadi, Parviz [Department of Civil Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur (Malaysia); Department of Environmental Health Engineering, Faculty of Health, Kermanshah University of Medical Sciences, Kermanshah (Iran, Islamic Republic of); Ibrahim, Shaliza; Ghafari, Shahin [Department of Civil Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur (Malaysia); Annuar, Mohamad Suffian Mohamad; Vikineswary, Sabaratnam [Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur (Malaysia); Zinatizadeh, Ali Akbar [Department of Applied Chemistry, Faculty of Chemistry, Razi University, Kermanshah (Iran, Islamic Republic of); Water and Wastewater Research Center (WWRC), Razi University, Kermanshah (Iran, Islamic Republic of)

    2012-11-15

    Hydrogen (H{sub 2}) is one of renewable energy sources known for its non-polluting and environmentally friendly nature, as its end combustion product is water (H{sub 2}O). The biological production of H{sub 2} is a less energy intensive alternative where processes can be operated at ambient temperature and pressure. Dark fermentation by bacterial biomass is one of multitude of approaches to produce hydrogen which is known as the cleanest renewable energy and is thus receiving increasing attention worldwide. The present study briefly reviews the biohydrogen production process with special attention on the effects of several environmental and operational factors towards the process. Factors such as organic loading rate, hydraulic retention time, temperature, and pH studied in published reports were compared and their influences are discussed in this work. This review highlights the variations in examined operating ranges for the factors as well as their reported optimum values. Divergent values observed for the environmental/operational factors merit further exploration in this field. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Clinical benefit and preservation of flavonols in dark chocolate manufacturing.

    Science.gov (United States)

    McShea, Andrew; Ramiro-Puig, Emma; Munro, Sandra B; Casadesus, Gemma; Castell, Margarida; Smith, Mark A

    2008-11-01

    The consumption of high-cacao-content chocolate has been associated with positive health benefits ascribed to flavanol [corrected] antioxidants derived from the ground, fermented cocoa seeds of Theobroma cacao. However, flavanols [corrected] impart a bitter, astringent flavor to foodstuffs, frequently masked in chocolates and confections by aggressive processing and adulteration with other flavors. Recent reports have implied that not all varieties of dark chocolate are created equally, and significant caveats exist regarding its potential health benefits. It is perhaps not surprising that extensive processing, dilution, and the addition of flavor modifiers may improve the palatability of chocolate, but could have negative nutritional and clinical benefits. This article examines the chemical composition of chocolate and the clinical data associated with the consumption of flavonoid-rich cocoa. We review the steps in chocolate manufacturing that directly affect the antioxidant levels in chocolate products, and the caveats associated with claims of health benefits from the consumption of dark chocolate.

  6. Reducing the Bitterness of Tuna (Euthynnus pelamis Dark Meat with Lactobacillus casei subsp. casei ATCC 393

    Directory of Open Access Journals (Sweden)

    Ernani S. Sant’Anna

    2004-01-01

    Full Text Available During the process of canning tuna fish, considerable amounts of dark tuna meat are left over because of its bitterness, which are then used in the production of animal food. Fermentation with Lactobacillus casei subsp. casei ATCC 393 was used as an alternative to reduce this bitter taste. Samples of meat were prepared, vacuum packed and then stored at –18 °C. The frozen dark meat was used immediately after defrosting and the experiment was carried out with 2 and 4 % of NaCl with the addition of 2 and 4 % of glucose, respectively. The dark tuna meat was inoculated with lactic acid bacteria (LAB and fermented at 10 °C for 30 days. The fermentation process was monitored through bacteriological and chemical analyses, when an increase of acidity and the corresponding decrease of pH were observed due to the prevalence of LAB. Sensorial analysis, using a test of multiple comparison, was carried out with pastes of fermented dark tuna meat and presented a significant difference when compared to the paste control, indicating the reduction of bitter taste.

  7. Third Generation Biofuels via Direct Cellulose Fermentation

    Directory of Open Access Journals (Sweden)

    David B. Levin

    2008-07-01

    Full Text Available Consolidated bioprocessing (CBP is a system in which cellulase production, substrate hydrolysis, and fermentation are accomplished in a single process step by cellulolytic microorganisms. CBP offers the potential for lower biofuel production costs due to simpler feedstock processing, lower energy inputs, and higher conversion efficiencies than separate hydrolysis and fermentation processes, and is an economically attractive near-term goal for “third generation” biofuel production. In this review article, production of third generation biofuels from cellulosic feedstocks will be addressed in respect to the metabolism of cellulolytic bacteria and the development of strategies to increase biofuel yields through metabolic engineering.

  8. Inflation, Dark Matter, and Dark Energy in the String Landscape

    OpenAIRE

    Liddle, Andrew R; Ureña-López, L Arturo

    2006-01-01

    We consider the conditions needed to unify the description of dark matter, dark energy and inflation in the context of the string landscape. We find that incomplete decay of the inflaton field gives the possibility that a single field is responsible for all three phenomena. By contrast, unifying dark matter and dark energy into a single field, separate from the inflaton, appears rather difficult.

  9. Stimulation of electro-fermentation in single-chamber microbial electrolysis cells driven by genetically engineered anode biofilms

    Science.gov (United States)

    Awate, Bhushan; Steidl, Rebecca J.; Hamlischer, Thilo; Reguera, Gemma

    2017-07-01

    Unwanted metabolites produced during fermentations reduce titers and productivity and increase the cost of downstream purification of the targeted product. As a result, the economic feasibility of otherwise attractive fermentations is low. Using ethanol fermentation by the consolidated bioprocessing cellulolytic bacterium Cellulomonas uda, we demonstrate the effectiveness of anodic electro-fermentations at maximizing titers and productivity in a single-chamber microbial electrolysis cell (SCMEC) without the need for metabolic engineering of the fermentative microbe. The performance of the SCMEC platform relied on the genetic improvements of anode biofilms of the exoelectrogen Geobacter sulfurreducens that prevented the oxidation of cathodic hydrogen and improved lactate oxidation. Furthermore, a hybrid bioanode was designed that maximized the removal of organic acids in the fermentation broth. The targeted approach increased cellobiose consumption rates and ethanol titers, yields, and productivity three-fold or more, prevented pH imbalances and reduced batch-to-batch variability. In addition, the sugar substrate was fully consumed and ethanol was enriched in the broth during the electro-fermentation, simplifying its downstream purification. Such improvements and the possibility of scaling up SCMEC configurations highlight the potential of anodic electro-fermentations to stimulate fermentative bacteria beyond their natural capacity and to levels required for industrial implementation.

  10. Comparison of single-step and two-step purified coagulants from Moringa oleifera seed for turbidity and DOC removal.

    Science.gov (United States)

    Sánchez-Martín, J; Ghebremichael, K; Beltrán-Heredia, J

    2010-08-01

    The coagulant proteins from Moringa oleifera purified with single-step and two-step ion-exchange processes were used for the coagulation of surface water from Meuse river in The Netherlands. The performances of the two purified coagulants and the crude extract were assessed in terms of turbidity and DOC removal. The results indicated that the optimum dosage of the single-step purified coagulant was more than two times higher compared to the two-step purified coagulant in terms of turbidity removal. And the residual DOC in the two-step purified coagulant was lower than in single-step purified coagulant or crude extract. (c) 2010 Elsevier Ltd. All rights reserved.

  11. Thermodynamic approach and comparison of two-step and single step DME (dimethyl ether) syntheses with carbon dioxide utilization

    International Nuclear Information System (INIS)

    Chen, Wei-Hsin; Hsu, Chih-Liang; Wang, Xiao-Dong

    2016-01-01

    DME (Dimethyl ether) synthesis from syngas with CO_2 utilization through two-step and single step processes is analyzed thermodynamically. The influences of reaction temperature, H_2/CO molar ratio, and CO_2/CO molar ratio on CO and CO_2 conversions, DME selectivity and yield, and thermal behavior are evaluated. Particular attention is paid to the comparison of the performance of DME synthesis between the two different methods. In the two-step method, the addition of CO_2 suppresses the CO conversion during methanol synthesis. An increase in CO_2/CO ratio decreases the CO_2 conversion (negative effect), but increases the total consumption amount of CO_2 (positive effect). At a given reaction temperature with H_2/CO = 4, the maximum DME yield develops at CO_2/CO = 1. In the single step method, over 98% of CO can be converted and the DME yield can be as high as 0.52 mol (mol CO)"−"1 at CO_2/CO = 2. The comparison of the single step and two-step processes indicates that the maximum CO conversion, DME selectivity, and DME yield in the former are higher than those in the latter, whereas an opposite result in the maximum CO_2 conversion is observed. These results reveal that the single step process has lower thermodynamic limitation and is a better option for DME synthesis. From CO_2 utilization point of view, the operation with low temperature, high H_2/CO ratio, and low CO_2/CO ratio results in higher CO_2 conversion, irrespective of two-step or single step DME synthesis. - Highlights: • DME (Dimethyl ether) synthesis with CO_2 utilization is analyzed thermodynamically. • Single step and two-step DME syntheses are studied and compared with each other. • CO_2 addition suppresses CO conversion in MeOH synthesis but increases MeOH yield. • The performance of the single step DME synthesis is better than that of the two-step one. • Increase CO_2/CO ratio decreases CO_2 conversion but increases CO_2 consumption amount.

  12. Effect of organic loading rate on dark fermentative hydrogen production in the continuous stirred tank reactor and continuous mixed immobilized sludge reactor from waste pastry hydrolysate.

    Science.gov (United States)

    Han, Wei; Hu, Yunyi; Li, Shiyi; Nie, Qiulin; Zhao, Hongting; Tang, Junhong

    2016-12-01

    Waste pastry (6%, w/v) was hydrolyzed by the produced glucoamylase and protease to obtain the glucose (19.8g/L) and free amino nitrogen (179mg/L) solution. Then, the effect of organic loading rate (OLR) (8-40kgCOD/(m 3 d)) on dark fermentative hydrogen production in the continuous stirred tank reactor (CSTR) and continuous mixed immobilized sludge reactor (CMISR) from waste pastry hydrolysate was investigated and compared. The maximum hydrogen production rate of CSTR (277.76mL/(hL)) and CMISR (320.2mL/(hL)) were achieved at OLR of 24kgCOD/(m 3 d) and 32kgCOD/(m 3 d), respectively. Carbon recovery ranged from 75.2-84.1% in the CSTR and CMISR with the balance assumed to be converted to biomass. One gram waste pastry could produce 0.33g (1.83mmol) glucose which could be further converted to 79.24mL (3.54mmol) hydrogen in the CMISR or 91.66mL (4.09mmol) hydrogen in the CSTR. This is the first study which reports dark fermentative hydrogen production from waste pastry. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Hydrogen production from cellulose in a two-stage process combining fermentation and electrohydrogenesis

    KAUST Repository

    Lalaurette, Elodie; Thammannagowda, Shivegowda; Mohagheghi, Ali; Maness, Pin-Ching; Logan, Bruce E.

    2009-01-01

    A two-stage dark-fermentation and electrohydrogenesis process was used to convert the recalcitrant lignocellulosic materials into hydrogen gas at high yields and rates. Fermentation using Clostridium thermocellum produced 1.67 mol H2/mol

  14. Comparison of Model Reliabilities from Single-Step and Bivariate Blending Methods

    DEFF Research Database (Denmark)

    Taskinen, Matti; Mäntysaari, Esa; Lidauer, Martin

    2013-01-01

    Model based reliabilities in genetic evaluation are compared between three methods: animal model BLUP, single-step BLUP, and bivariate blending after genomic BLUP. The original bivariate blending is revised in this work to better account animal models. The study data is extracted from...... be calculated. Model reliabilities by the single-step and the bivariate blending methods were higher than by animal model due to genomic information. Compared to the single-step method, the bivariate blending method reliability estimates were, in general, lower. Computationally bivariate blending method was......, on the other hand, lighter than the single-step method....

  15. Fermentation as a first step in carbon and nutrient recovery in regenerative life support systems

    Science.gov (United States)

    Luther, Amanda; Lasseur, Christophe; Rebeyre, Pierre; Clauwaert, Peter; Rabaey, Korneel; Ronsse, Frederik; Zhang, Dong Dong; López Barreiro, Diego; Prins, Wolter

    2016-07-01

    Long term manned space missions, such as the establishment of a base on Mars, will require a regenerative means of supplying the basic resources (i.e., food, water, oxygen) necessary to support human life. The MELiSSA-loop is a closed loop compartmentalized artificial aquatic ecosystem designed to recover water, carbon, and nutrients from solid organic wastes (e.g., inedible food waste and feces) for the regeneration of food and oxygen for humans. The first step in this loop is a strictly anaerobic fermentation unit operated as a membrane bioreactor. In this step the aim is to maximize the hydrolysis of complex organic compounds into simple molecules (CO2, ammonia, volatile fatty acids, …) which can be consumed by plants and bacteria downstream to produce food again. Optimal steady state fermentation of a standardized homogeneous mixture of beets, lettuce, wheat straw, toilet paper, feces, and water was demonstrated to recover approximately 50% of the influent carbon as soluble organics in the effluent through anaerobic fermentation. Approximately 10% of the influent COD was converted to CO2, with the remaining ~40% retained as a mixture of undigested solids and biomass. Approximately 50% of the influent nitrogen was recovered in the effluent, 97% of which was in the form of ammonia. Similar results have been obtained at both lab and pilot scale. With only 10% of the carbon driven to CO2 through this fermentation, a major challenge at this moment for the MELiSSA-loop is closing the carbon cycle, by completely oxidizing the carbon in the organic waste and non-edible parts of the plant into CO2 for higher plants and algae to fix again for food production. To further improve the overall degradation we are investigating the integration of a high temperature and pressure, sub- or near critical water conditions to improve the degradation of fibrous material with the addition of an oxidant (hydrogen peroxide, H2O2) under sub- or near critical conditions to further

  16. Studies on bio-hydrogen production of different biomass fermentation types using molasses wastewater as substrate

    Energy Technology Data Exchange (ETDEWEB)

    Liu, K.; Jiao, A.Y.; Rao, P.H. [Northeast Forestry Univ., Harbin (China). School of Forestry; Li, Y.F. [Northeast Forestry Univ., Harbin (China). School of Forestry; Shanghai Univ. Engineering, Shanghai (China). College of Chemistry and Chemical Engineering; Li, W. [Beijing Normal Univ., Beijing (China)

    2010-07-01

    Anaerobic fermentation technology was used to treat molasses wastewater. This study compared the hydrogen production capability of different fermentation types involving dark fermentation hydrogen production. The paper discussed the experiment including the results. It was found that the fermentation type changed by changing engineered control parameters in a continuous stirred tank reactor (CSTR). It was concluded that ethanol-type fermentation resulted in the largest hydrogen production capability, while butyric acid-type fermentation took second place followed by propionic acid-type fermentation.

  17. Trochoidal X-ray Vector Radiography: Directional dark-field without grating stepping

    Science.gov (United States)

    Sharma, Y.; Bachche, S.; Kageyama, M.; Kuribayashi, M.; Pfeiffer, F.; Lasser, T.; Momose, A.

    2018-03-01

    X-ray Vector Radiography (XVR) is an imaging technique that reveals the orientations of sub-pixel sized structures within a sample. Several dark-field radiographs are acquired by rotating the sample around the beam propagation direction and stepping one of the gratings to several positions for every pose of the sample in an X-ray grating interferometry setup. In this letter, we present a method of performing XVR of a continuously moving sample without the need of any grating motion. We reconstruct the orientations within a sample by analyzing the change in the background moire fringes caused by the sample moving and simultaneously rotating in plane (trochoidal trajectory) across the detector field-of-view. Avoiding the motion of gratings provides significant advantages in terms of stability and repeatability, while the continuous motion of the sample makes this kind of system adaptable for industrial applications such as the scanning of samples on a conveyor belt. Being the first step in the direction of utilizing advanced sample trajectories to replace grating motion, this work also lays the foundations for a full three dimensional reconstruction of scattering function without grating motion.

  18. SEARCH FOR DARK MATTER IN EVENTS WITH A SINGLE BOSON AND MISSING TRANSVERSE MOMENTUM WITH ATLAS

    CERN Document Server

    Brandt, Oleg; The ATLAS collaboration

    2017-01-01

    The presence of a non-baryonic dark matter component in the Universe is inferred from the observation of its gravitational interaction. If dark matter interacts weakly with the Standard Model it would be produced at the LHC, escaping the detector and leaving a large missing transverse momentum as their signature. The results of searches for Dark Matter with a single boson and large missing transverse momentum in 13 TeV will be presented.

  19. Multi-locus genotyping of bottom fermenting yeasts by single nucleotide polymorphisms indicative of brewing characteristics.

    Science.gov (United States)

    Ikushima, Shigehito; Tateishi, Yoshiyuki; Kanai, Keiko; Shimada, Emiko; Tanaka, Misa; Ishiguro, Tatsuji; Mizutani, Satoru; Kobayashi, Osamu

    2012-04-01

    Yeast plays a capital role in brewing fermentation and has a direct impact on flavor and aroma. For the evaluation of competent brewing strains during quality control or development of novel strains it is standard practice to perform fermentation tests, which are costly and time-consuming. Here, we have categorized DNA markers which enable to distinguish and to screen brewing strains more efficiently than ever before. Sequence analysis at 289 loci in the genomes of six bottom fermenting Saccharomyces pastorianus strains revealed that 30 loci contained single nucleotide polymorphisms (SNPs). By determining the nucleotide sequences at the SNP-loci in 26 other S. pastorianus strains and 20 strains of the top fermenting yeast Saccharomyces cerevisiae, almost all these strains could be discriminated solely on the basis of the SNPs. By comparing the fermentative phenotypes of these strains we found that some DNA markers showed a strong association with brewing characteristics, such as the production of ethyl acetate and hydrogen sulphide (H2S). Therefore, the DNA markers we identified will facilitate quality control and the efficient development of brewing yeast strains. Copyright © 2011 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  20. Modelling ethanol production from cellulose: separate hydrolysis and fermentation versus simultaneous saccharification and fermentation

    NARCIS (Netherlands)

    Drissen, R.E.T.; Maas, R.H.W.; Tramper, J.; Beeftink, H.H.

    2009-01-01

    In ethanol production from cellulose, enzymatic hydrolysis, and fermentative conversion may be performed sequentially (separate hydrolysis and fermentation, SHF) or in a single reaction vessel (simultaneous saccharification and fermentation, SSF). Opting for either is essentially a trade-off between

  1. Electricity generation from fermented primary sludge using single-chamber air-cathode microbial fuel cells

    KAUST Repository

    Yang, Fei

    2013-01-01

    Single-chamber air-cathode microbial fuel cells (MFCs) were used to generate electricity from fermented primary sludge. Fermentation (30°C, 9days) decreased total suspended solids (26.1-16.5g/L), volatile suspended solids (24.1-15.3g/L) and pH (5.7-4.5), and increased conductivity (2.4-4.7mS/cm), soluble COD (2.66-15.5g/L), and volatile fatty acids (1.9-10.1g/L). To lower the COD and increase pH, fermentation supernatant was diluted with primary effluent before being used in the MFCs. The maximum power density was 0.32±0.01W/m2, compared to 0.24±0.03W/m2 with only primary effluent. Power densities were higher with phosphate buffer added to the supernatant (1.03±0.06W/m2) or the solution (0.87±0.05W/m2). Coulombic efficiencies ranged from 18% to 57%, and sCOD removals from 84% to 94%. These results demonstrated that sludge can effectively be used for power generation when fermented and then diluted with only primary effluent. © 2012 Elsevier Ltd.

  2. Improving Genetic Evaluation of Litter Size Using a Single-step Model

    DEFF Research Database (Denmark)

    Guo, Xiangyu; Christensen, Ole Fredslund; Ostersen, Tage

    A recently developed single-step method allows genetic evaluation based on information from phenotypes, pedigree and markers simultaneously. This paper compared reliabilities of predicted breeding values obtained from single-step method and the traditional pedigree-based method for two litter size...... traits, total number of piglets born (TNB), and litter size at five days after birth (Ls 5) in Danish Landrace and Yorkshire pigs. The results showed that the single-step method combining phenotypic and genotypic information provided more accurate predictions than the pedigree-based method, not only...

  3. Quantitative X-ray dark-field and phase tomography using single directional speckle scanning technique

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hongchang, E-mail: hongchang.wang@diamond.ac.uk; Kashyap, Yogesh; Sawhney, Kawal [Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE (United Kingdom)

    2016-03-21

    X-ray dark-field contrast tomography can provide important supplementary information inside a sample to the conventional absorption tomography. Recently, the X-ray speckle based technique has been proposed to provide qualitative two-dimensional dark-field imaging with a simple experimental arrangement. In this letter, we deduce a relationship between the second moment of scattering angle distribution and cross-correlation degradation of speckle and establish a quantitative basis of X-ray dark-field tomography using single directional speckle scanning technique. In addition, the phase contrast images can be simultaneously retrieved permitting tomographic reconstruction, which yields enhanced contrast in weakly absorbing materials. Such complementary tomography technique can allow systematic investigation of complex samples containing both soft and hard materials.

  4. Phytosynthesized iron nanoparticles: effects on fermentative ...

    Indian Academy of Sciences (India)

    In recent years the application of metal nanoparticles is gaining attention in various fields. The present study focuses on the additive effect of `green' synthesized iron nanoparticles (FeNPs) on dark fermentative hydrogen (H2) production by a mesophilic soil bacterium Enterobacter cloacae. The FeNPs were synthesized by ...

  5. A single dose of dark chocolate increases parasympathetic modulation and heart rate variability in healthy subjects

    Directory of Open Access Journals (Sweden)

    Ana Amélia Machado DUARTE

    Full Text Available ABSTRACT Objective: The aim of this study was to investigate the acute effect of a single dose of dark chocolate (70% cocoa on blood pressure and heart rate variability. Methods: Thirty-one healthy subjects (aged 18-25 years; both sexes were divided into two groups: 10 subjects in the white chocolate (7.4 g group and 21 in the dark chocolate (10 g group; measurements were performed at the university's physiology lab. An electrocardiogram measured the sympathovagal balance by spectral and symbolic analysis. Results: A single dose of dark chocolate significantly reduced systolic blood pressure and heart rate. After consuming 10 g of dark chocolate, significant increases were observed for heart rate variability, standard deviation of RR intervals standard deviation of all NN intervals, square root of the mean squared differences between adjacent normal RR intervals root mean square of successive differences, and an increase in the high frequency component in absolute values, representing the parasympathetic modulation. Conclusion: In conclusion the importance of our results lies in the magnitude of the response provoked by a single dose of cocoa. Just 10 g of cocoa triggered a significant increase in parasympathetic modulation and heart rate variability. These combined effects can potentially increase life expectancy because a reduction in heart rate variability is associated with several cardiovascular diseases and higher mortality.

  6. Starch-fueled microbial fuel cells by two-step and parallel fermentation using Shewanella oneidensis MR-1 and Streptococcus bovis 148.

    Science.gov (United States)

    Uno, Megumi; Phansroy, Nichanan; Aso, Yuji; Ohara, Hitomi

    2017-08-01

    Shewanella oneidensis MR-1 generates electricity from lactic acid, but cannot utilize starch. On the other hand, Streptococcus bovis 148 metabolizes starch and produces lactic acid. Therefore, two methods were trialed for starch-fueled microbial fuel cell (MFC) in this study. In electric generation by two-step fermentation (EGT) method, starch was first converted to lactic acid by S. bovis 148. The S. bovis 148 were then removed by centrifugation, and the fermented broth was preserved for electricity generation by S. oneidensis MR-1. Another method was electric generation by parallel fermentation (EGP) method. In this method, the cultivation and subsequent fermentation processes of S. bovis 148 and S. oneidensis MR-1 were performed simultaneously. After 1, 2, and 3 terms (5-day intervals) of S. oneidensis MR-1 in the EGT fermented broth of S. bovis 148, the maximum currents at each term were 1.8, 2.4, and 2.8 mA, and the maximum current densities at each term were 41.0, 43.6, and 49.9 mW/m 2 , respectively. In the EGP method, starch was also converted into lactic acid with electricity generation. The maximum current density was 140-200 mA/m 2 , and the maximum power density of this method was 12.1 mW/m 2 . Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  7. Fermentative alcohol production

    Science.gov (United States)

    Wilke, Charles R.; Maiorella, Brian L.; Blanch, Harvey W.; Cysewski, Gerald R.

    1982-01-01

    An improved fermentation process for producing alcohol which includes the combination of vacuum fermentation and vacuum distillation. Preferably, the vacuum distillation is carried out in two phases, one a fermentor proper operated at atmospheric pressure and a flash phase operated at reduced pressure with recycle of fermentation brew having a reduced alcohol content to the fermentor, using vapor recompression heating of the flash-pot recycle stream to heat the flash-pot or the distillation step, and using "water load balancing" (i.e., the molar ratio of water in the fermentor feed is the same as the molar ratio of water in the distillation overhead).

  8. A novel approach of modeling continuous dark hydrogen fermentation.

    Science.gov (United States)

    Alexandropoulou, Maria; Antonopoulou, Georgia; Lyberatos, Gerasimos

    2018-02-01

    In this study a novel modeling approach for describing fermentative hydrogen production in a continuous stirred tank reactor (CSTR) was developed, using the Aquasim modeling platform. This model accounts for the key metabolic reactions taking place in a fermentative hydrogen producing reactor, using fixed stoichiometry but different reaction rates. Biomass yields are determined based on bioenergetics. The model is capable of describing very well the variation in the distribution of metabolic products for a wide range of hydraulic retention times (HRT). The modeling approach is demonstrated using the experimental data obtained from a CSTR, fed with food industry waste (FIW), operating at different HRTs. The kinetic parameters were estimated through fitting to the experimental results. Hydrogen and total biogas production rates were predicted very well by the model, validating the basic assumptions regarding the implicated stoichiometric biochemical reactions and their kinetic rates. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Single-step link of the superdeformed band in 143Eu

    International Nuclear Information System (INIS)

    Atac, A.; Bergstroem, M.H.; Nyberg, J.; Persson, J.; Herskind, B.; Joss, D.T.; Lipoglavsek, M.; Tucek, K.

    1996-01-01

    A discrete γ-ray ransition with an energy of 3360.6 keV deexciting the second lowest SD state in 143 Eu has been discovered. It carries 3.2 % of the full intensity of the band and feeds into a nearly spherical state which is above the I = 35/2 (+) , E x =4947 keV level. The exact placement of the single-step link is, however, not established due to the specially complicated level scheme in the region of interest. The energy of the single-step link agrees well with the previously determined two-step links. (orig.)

  10. Step-to-step spatiotemporal variables and ground reaction forces of intra-individual fastest sprinting in a single session.

    Science.gov (United States)

    Nagahara, Ryu; Mizutani, Mirai; Matsuo, Akifumi; Kanehisa, Hiroaki; Fukunaga, Tetsuo

    2018-06-01

    We aimed to investigate the step-to-step spatiotemporal variables and ground reaction forces during the acceleration phase for characterising intra-individual fastest sprinting within a single session. Step-to-step spatiotemporal variables and ground reaction forces produced by 15 male athletes were measured over a 50-m distance during repeated (three to five) 60-m sprints using a long force platform system. Differences in measured variables between the fastest and slowest trials were examined at each step until the 22nd step using a magnitude-based inferences approach. There were possibly-most likely higher running speed and step frequency (2nd to 22nd steps) and shorter support time (all steps) in the fastest trial than in the slowest trial. Moreover, for the fastest trial there were likely-very likely greater mean propulsive force during the initial four steps and possibly-very likely larger mean net anterior-posterior force until the 17th step. The current results demonstrate that better sprinting performance within a single session is probably achieved by 1) a high step frequency (except the initial step) with short support time at all steps, 2) exerting a greater mean propulsive force during initial acceleration, and 3) producing a greater mean net anterior-posterior force during initial and middle acceleration.

  11. Trichoderma Reesei single cell protein production from rice straw pulp in solid state fermentation

    Science.gov (United States)

    Zaki, M.; Said, S. D.

    2018-04-01

    The dependency on fish meal as a major protein source for animal feed can lead toit priceinstability in line with the increasing in meat production and consumption in Indonesia. In order todeal with this problem, an effort to produce an alternative protein sources production is needed. This scenario is possible due to the abundantavailability of agricultural residues such as rice straw whichcould be utilized as substrate for production of single cell proteins as an alternative proteinsource. This work investigated the potential utilization of rice straw pulp and urea mixture as substrate for the production of local Trichoderma reesei single cell protein in solid state fermentation system. Some parameters have been analyzed to evaluate the effect of ratio of rice straw pulp to urea on mixed single cell protein biomass (mixed SCP biomass) composition, such as total crude protein (analyzed by kjedhal method) and lignin content (TAPPI method).The results showed that crude protein content in mixed SCP biomassincreases with the increasing in fermentation time, otherwise it decreases with the increasing insubstrate carbon to nitrogen (C/N) ratio. Residual lignin content in mixed SCP biomass decreases from 7% to 0.63% during fermentationproceeded of 21 days. The highest crude protein content in mixed SCP biomasswas obtained at substrate C/N ratio 20:1 of 25%.

  12. Hydrogen production from cellulose in a two-stage process combining fermentation and electrohydrogenesis

    KAUST Repository

    Lalaurette, Elodie

    2009-08-01

    A two-stage dark-fermentation and electrohydrogenesis process was used to convert the recalcitrant lignocellulosic materials into hydrogen gas at high yields and rates. Fermentation using Clostridium thermocellum produced 1.67 mol H2/mol-glucose at a rate of 0.25 L H2/L-d with a corn stover lignocellulose feed, and 1.64 mol H2/mol-glucose and 1.65 L H2/L-d with a cellobiose feed. The lignocelluose and cellobiose fermentation effluent consisted primarily of: acetic, lactic, succinic, and formic acids and ethanol. An additional 800 ± 290 mL H2/g-COD was produced from a synthetic effluent with a wastewater inoculum (fermentation effluent inoculum; FEI) by electrohydrogensis using microbial electrolysis cells (MECs). Hydrogen yields were increased to 980 ± 110 mL H2/g-COD with the synthetic effluent by combining in the inoculum samples from multiple microbial fuel cells (MFCs) each pre-acclimated to a single substrate (single substrate inocula; SSI). Hydrogen yields and production rates with SSI and the actual fermentation effluents were 980 ± 110 mL/g-COD and 1.11 ± 0.13 L/L-d (synthetic); 900 ± 140 mL/g-COD and 0.96 ± 0.16 L/L-d (cellobiose); and 750 ± 180 mL/g-COD and 1.00 ± 0.19 L/L-d (lignocellulose). A maximum hydrogen production rate of 1.11 ± 0.13 L H2/L reactor/d was produced with synthetic effluent. Energy efficiencies based on electricity needed for the MEC using SSI were 270 ± 20% for the synthetic effluent, 230 ± 50% for lignocellulose effluent and 220 ± 30% for the cellobiose effluent. COD removals were ∼90% for the synthetic effluents, and 70-85% based on VFA removal (65% COD removal) with the cellobiose and lignocellulose effluent. The overall hydrogen yield was 9.95 mol-H2/mol-glucose for the cellobiose. These results show that pre-acclimation of MFCs to single substrates improves performance with a complex mixture of substrates, and that high hydrogen yields and gas production rates can be achieved using a two-stage fermentation and MEC

  13. Surface Activity of Sulfactin Recovered and Purified from Fermentation Broth Using a Two-Step Ultrafiltration (UF) Process

    International Nuclear Information System (INIS)

    Mohd Hafez Mohd Isa; Frazier, A.R.; Jauregi, P.

    2011-01-01

    B. subtilis under certain types of media and fermentation conditions can produce surfactant, a bio surfactant which belongs to the lipo peptide class. Surfactant has exceptional surfactant activity, and exhibits some interesting biological characteristics such as antibacterial activity, anti tumoral activity against ascites carcinoma cells, and a hypercholesterolaemia activity that inhibits cAMP phosphodiesterase, as well as having anti-HIV properties. A cost effective recovery and purification of surfactant from fermentation broth using a two-step ultrafiltration (UF) process has been developed in order to reduce the cost of surfactant production. In this study, competitive adsorption of surfactant and proteins at the air-water interface was studied using surface pressure measurements. Small volumes of bovine serum albumin (BSA) and β-casein solutions were added to the air-water interface on a Langmuir trough and allowed to stabilise before the addition of surfactant to the sub phase. Contrasting interfacial behaviour of proteins was observed with β-casein showing faster initial adsorption compared to BSA. On introduction of surfactant both proteins were displaced but a longer time were taken to displace β-casein. Overall the results showed surfactant were highly surface-active by forming a β-sheet structure at the air-water interface after reaching its critical micelle concentration (CMC) and were effective in removing both protein films, which can be explained following the orogenic mechanism. Results showed that the two-step UF process was effective to achieve high purity and fully functional surfactant. (author)

  14. Single-step affinity purification for fungal proteomics.

    Science.gov (United States)

    Liu, Hui-Lin; Osmani, Aysha H; Ukil, Leena; Son, Sunghun; Markossian, Sarine; Shen, Kuo-Fang; Govindaraghavan, Meera; Varadaraj, Archana; Hashmi, Shahr B; De Souza, Colin P; Osmani, Stephen A

    2010-05-01

    A single-step protein affinity purification protocol using Aspergillus nidulans is described. Detailed protocols for cell breakage, affinity purification, and depending on the application, methods for protein release from affinity beads are provided. Examples defining the utility of the approaches, which should be widely applicable, are included.

  15. Power-Law-Distributed Dark States are the Main Pathway for Photobleaching of Single Organic Molecules

    OpenAIRE

    Hoogenboom, J.P.; Hoogenboom, Jacob; van Dijk, E.M.H.P.; Hernando Campos, J.; van Hulst, N.F.; Garcia Parajo, M.F.

    2005-01-01

    We exploit the strong excitonic coupling in a superradiant trimer molecule to distinguish between long-lived collective dark states and photobleaching events. The population and depopulation kinetics of the dark states in a single molecule follow power-law statistics over 5 orders of magnitude in time. This result is consistent with the formation of a radical unit via electron tunneling to a time-varying distribution of trapping sites in the surrounding polymer matrix. We furthermore demonstr...

  16. Composition of single-step media used for human embryo culture.

    Science.gov (United States)

    Morbeck, Dean E; Baumann, Nikola A; Oglesbee, Devin

    2017-04-01

    To determine compositions of commercial single-step culture media and test with a murine model whether differences in composition are biologically relevant. Experimental laboratory study. University-based laboratory. Inbred female mice were superovulated and mated with outbred male mice. Amino acid, organic acid, and ions content were determined for single-step culture media: CSC, Global, G-TL, and 1-Step. To determine whether differences in composition of these media are biologically relevant, mouse one-cell embryos were cultured for 96 hours in each culture media at 5% and 20% oxygen in a time-lapse incubator. Compositions of four culture media were analyzed for concentrations of 30 amino acids, organic acids, and ions. Blastocysts at 96 hours of culture and cell cycle timings were calculated, and experiments were repeated in triplicate. Of the more than 30 analytes, concentrations of glucose, lactate, pyruvate, amino acids, phosphate, calcium, and magnesium varied in concentrations. Mouse embryos were differentially affected by oxygen in G-TL and 1-Step. Four single-step culture media have compositions that vary notably in pyruvate, lactate, and amino acids. Blastocyst development was affected by culture media and its interaction with oxygen concentration. Copyright © 2017 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  17. Efficient dark fermentative hydrogen production from enzyme hydrolyzed rice straw by Clostridium pasteurianum (MTCC116).

    Science.gov (United States)

    Srivastava, Neha; Srivastava, Manish; Kushwaha, Deepika; Gupta, Vijai Kumar; Manikanta, Ambepu; Ramteke, P W; Mishra, P K

    2017-08-01

    In the present work, production of hydrogen via dark fermentation has been carried out using the hydrolyzed rice straw and Clostridium pasteurianum (MTCC116). The hydrolysis reaction of 1.0% alkali pretreated rice straw was performed at 70°C and 10% substrate loading via Fe 3 O 4 /Alginate nanocomposite (Fe 3 O 4 /Alginate NCs) treated thermostable crude cellulase enzyme following the previously established method. It is noticed that under the optimized conditions, at 70°C the Fe 3 O 4 /Alginate NCs treated cellulase has produced around 54.18g/L sugars as the rice straw hydrolyzate. Moreover, the efficiency of the process illustrates that using this hydrolyzate, Clostridium pasteurianum (MTCC116) could produce cumulative hydrogen of 2580ml/L in 144h with the maximum production rate of 23.96ml/L/h in 96h. In addition, maximum dry bacterial biomass of 1.02g/L and 1.51g/L was recorded after 96h and 144h, respectively with corresponding initial pH of 6.6 and 3.8, suggesting higher hydrogen production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. The Point Zoro Symmetric Single-Step Procedure for Simultaneous Estimation of Polynomial Zeros

    Directory of Open Access Journals (Sweden)

    Mansor Monsi

    2012-01-01

    Full Text Available The point symmetric single step procedure PSS1 has R-order of convergence at least 3. This procedure is modified by adding another single-step, which is the third step in PSS1. This modified procedure is called the point zoro symmetric single-step PZSS1. It is proven that the R-order of convergence of PZSS1 is at least 4 which is higher than the R-order of convergence of PT1, PS1, and PSS1. Hence, computational time is reduced since this procedure is more efficient for bounding simple zeros simultaneously.

  19. fermentation

    African Journals Online (AJOL)

    user

    2012-05-17

    May 17, 2012 ... genes in glycolysis pathway, trehalose and steroid biosynthesis and heat shock proteins (HSP) in .... com) and prepared for microarray construction and analysis. .... a single time point of the late stage of VHG fermentation.

  20. Gas production in anaerobic dark-fermentation processes from agriculture solid waste

    Science.gov (United States)

    Sriwuryandari, L.; Priantoro, E. A.; Sintawardani, N.

    2017-03-01

    Approximately, Bandung produces agricultural solid waste of 1549 ton/day. This wastes consist of wet-organic matter and can be used for bio-gas production. The research aimed to apply the available agricultural solid waste for bio-hydrogen. Biogas production was done by a serial of batches anaerobic fermentation using mix-culture bacteria as the active microorganism. Fermentation was carried out inside a 30 L bioreactor at room temperature. The analyzed parameters were of pH, total gas, temperature, and COD. Result showed that from 3 kg/day of organic wastes, various total gases of O2, CH4, H2, CO2, and CnHn,O2 was produced.

  1. Comparative study of quality characteristics of Korean soy sauce made with soybeans germinated under dark and light conditions.

    Science.gov (United States)

    Choi, Ung-Kyu; Jeong, Yeon-Shin; Kwon, O-Jun; Park, Jong-Dae; Kim, Young-Chan

    2011-01-01

    This study was conducted to evaluate the effects of germinating soybeans under dark and light conditions on the quality characteristics of Korean soy sauce made with germinated soybeans. The germination rate of soybeans germinated under dark conditions (GSD) was higher than that of soybeans germinated under light conditions (GSL), whereas the lengths of sprouts and relative weights of GSL did not differ from those of GSD. The L, a, b, and ΔT values of GSL were significantly lower than GSD. The color of GSD remained yellow, while GSL changed to a green color due to photosynthesis by chlorophyll. The total amino acid contents in soy sauce fermented with soybeans germinated under dark conditions (SSGD) and soy sauce fermented with soybeans germinated under light conditions (SSGL) were lower than in soy sauce fermented with non-germinated soybeans (SNGS). The levels of isoflavone content in SSGD and SSGL were significantly increased compared to the SNGS. In conclusion, the germination of soybeans under dark and light conditions is not only an increasing organoleptic preference, but also has implications for the health benefits of Korean soy sauce.

  2. Process for the fermentative production of acetone, butanol and ethanol

    Science.gov (United States)

    Glassner, David A.; Jain, Mahendra K.; Datta, Rathin

    1991-01-01

    A process including multistage continuous fermentation followed by batch fermentation with carefully chosen temperatures for each fermentation step, combined with an asporogenic strain of C. acetobutylicum and a high carbohydrate substrate concentration yields extraordinarily high butanol and total solvents concentrations.

  3. Dark matter and dark energy a challenge for modern cosmology

    CERN Document Server

    Gorini, Vittorio; Moschella, Ugo; Matarrese, Sabino

    2011-01-01

    This book brings together reviews from leading international authorities on the developments in the study of dark matter and dark energy, as seen from both their cosmological and particle physics side. Studying the physical and astrophysical properties of the dark components of our Universe is a crucial step towards the ultimate goal of unveiling their nature. The work developed from a doctoral school sponsored by the Italian Society of General Relativity and Gravitation. The book starts with a concise introduction to the standard cosmological model, as well as with a presentation of the theory of linear perturbations around a homogeneous and isotropic background. It covers the particle physics and cosmological aspects of dark matter and (dynamical) dark energy, including a discussion of how modified theories of gravity could provide a possible candidate for dark energy. A detailed presentation is also given of the possible ways of testing the theory in terms of cosmic microwave background, galaxy redshift su...

  4. Separate-stage fermentation of biomass to methane

    Energy Technology Data Exchange (ETDEWEB)

    Clausen, E C; Gaddy, J L

    1978-01-01

    The production of CH/sub 4/ from orchard grass by anaerobic fermentation was separated into three stages and the kinetics and economics of the process were evaluated. The first stage was acid hydrolysis of the grass polysaccharides, the second stage was acid and alcohol formation from the sugars with a mixed sewage culture, and the third was CH/sub 4/ formation, also with enriched sewage cultures, from the effluent from the second stage reactor. Separating the steps showed a significant increase in CH/sub 4/ production per g of grass, but was less economical than a single-stage process.

  5. Foam adsorption as an ex situ capture step for surfactants produced by fermentation.

    Science.gov (United States)

    Anic, Iva; Nath, Arijit; Franco, Pedro; Wichmann, Rolf

    2017-09-20

    In this report, a method for a simultaneous production and separation of a microbially synthesized rhamnolipid biosurfactant is presented. During the aerobic cultivation of flagella-free Pseudomonas putida EM383 in a 3.1L stirred tank reactor on glucose as a sole carbon source, rhamnolipids are produced and excreted into the fermentation liquid. Here, a strategy for biosurfactant capture from rhamnolipid enriched fermentation foam using hydrophobic-hydrophobic interaction was investigated. Five adsorbents were tested independently for the application of this capture technique and the best performing adsorbent was tested in a fermentation process. Cell-containing foam was allowed to flow out of the fermentor through the off-gas line and an adsorption packed bed. Foam was observed to collapse instantly, while the resultant liquid flow-through, which was largely devoid of the target biosurfactant, eluted towards the outlet channel of the packed bed column and was subsequently pumped back into the fermentor. After 48h of simultaneous fermentation and ex situ adsorption of rhamnolipids from the foam, 90% out of 5.5g of total rhamnolipids produced were found in ethanol eluate of the adsorbent material, indicating the suitability of this material for ex situ rhamnolipid capture from fermentation processes. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Ethanol production by extractive fermentation - Process development and technology transfer

    International Nuclear Information System (INIS)

    Daugulis, A.J.; Axford, D.B.; Mau, T.K.

    1991-01-01

    Extractive Fermentation is an ethanol processing strategy in which the operations of fermentation and product recovery are integrated and undertaken simultaneously in a single step. In this process an inert and biocompatible organic solvent is introduced directly into the fermentation vessel to selectively extract the ethanol product. The ethanol is readily recovered from the solvent at high concentration by means of flash vaporization, and the solvent is recycled in a closed loop back to the fermentor. This process is characterized by a high productivity (since ethanol does not build up to inhibitory levels), continuous operation, significantly reduced water consumption, and lower product recovery costs. The technical advantages of this processing strategy have been extensively demonstrated by means of a continuous, fully integrated and computer-controlled Process Demonstration Unit in the authors' laboratory. Numerous features of this technology have been protected by US patent. A thorough economic comparison of Extractive Fermentation relative to modern ethanol technology (continuous with cell recycle) has been completed for both new plants and retrofitting of existing facilities for a capacity of 100 million liters of ethanol per year. Substantial cost savings are possible with Extractive Fermentation ranging, depending on the process configuration, from 5 cents to 16 cents per liter. Activities are under way to transfer this proprietary technology to the private sector

  7. Genomic prediction in a nuclear population of layers using single-step models.

    Science.gov (United States)

    Yan, Yiyuan; Wu, Guiqin; Liu, Aiqiao; Sun, Congjiao; Han, Wenpeng; Li, Guangqi; Yang, Ning

    2018-02-01

    Single-step genomic prediction method has been proposed to improve the accuracy of genomic prediction by incorporating information of both genotyped and ungenotyped animals. The objective of this study is to compare the prediction performance of single-step model with a 2-step models and the pedigree-based models in a nuclear population of layers. A total of 1,344 chickens across 4 generations were genotyped by a 600 K SNP chip. Four traits were analyzed, i.e., body weight at 28 wk (BW28), egg weight at 28 wk (EW28), laying rate at 38 wk (LR38), and Haugh unit at 36 wk (HU36). In predicting offsprings, individuals from generation 1 to 3 were used as training data and females from generation 4 were used as validation set. The accuracies of predicted breeding values by pedigree BLUP (PBLUP), genomic BLUP (GBLUP), SSGBLUP and single-step blending (SSBlending) were compared for both genotyped and ungenotyped individuals. For genotyped females, GBLUP performed no better than PBLUP because of the small size of training data, while the 2 single-step models predicted more accurately than the PBLUP model. The average predictive ability of SSGBLUP and SSBlending were 16.0% and 10.8% higher than the PBLUP model across traits, respectively. Furthermore, the predictive abilities for ungenotyped individuals were also enhanced. The average improvements of prediction abilities were 5.9% and 1.5% for SSGBLUP and SSBlending model, respectively. It was concluded that single-step models, especially the SSGBLUP model, can yield more accurate prediction of genetic merits and are preferable for practical implementation of genomic selection in layers. © 2017 Poultry Science Association Inc.

  8. Effect of total solids content on biohydrogen production and lactic acid accumulation during dark fermentation of organic waste biomass.

    Science.gov (United States)

    Ghimire, Anish; Trably, Eric; Frunzo, Luigi; Pirozzi, Francesco; Lens, Piet N L; Esposito, Giovanni; Cazier, Elisabeth A; Escudié, Renaud

    2018-01-01

    Production of biohydrogen and related metabolic by-products was investigated in Solid State Dark Fermentation (SSDF) of food waste (FW) and wheat straw (WS). The effect of the total solids (TS) content and H 2 partial pressure (pp H2 ), two of the main operating factors of SSDF, were investigated. Batch tests with FW at 10, 15, 20, 25 and 30% TS showed considerable effects of the TS on metabolites distribution. H 2 production was strongly inhibited for TS contents higher than 15% with a concomitant accumulation of lactic acid and a decrease in substrate conversion. Varying the pp H2 had no significant effect on the conversion products and overall degradation of FW and WS, suggesting that pp H2 was not the main limiting factor in SSDF. This study showed that the conversion of complex substrates by SSDF depends on the substrate type and is limited by the TS content. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Enhanced substrate conversion efficiency of fermentation processes

    NARCIS (Netherlands)

    Sanders, J.P.M.; Weusthuis, R.A.; Mooibroek, H.

    2006-01-01

    The present invention relates to the field of fermentation technology. In particular the invention relates to fermentation processes for the production of a first and a second fermentation product by a single production organism wherein the first product is in a more reduced state than the substrate

  10. Enhanced substrate conversion effiency of fermentation processes

    NARCIS (Netherlands)

    Sanders, J.P.M.; Weusthuis, R.A.; Mooibroek, H.

    2008-01-01

    The present invention relates to the field of fermentation technology. In particular the invention relates to fermentation processes for the production of a first and a second fermentation product by a single production organism wherein the first product is in a more reduced state than the substrate

  11. New interactions in the dark sector mediated by dark energy

    International Nuclear Information System (INIS)

    Brookfield, Anthony W.; Bruck, Carsten van de; Hall, Lisa M. H.

    2008-01-01

    Cosmological observations have revealed the existence of a dark matter sector, which is commonly assumed to be made up of one particle species only. However, this sector might be more complicated than we currently believe: there might be more than one dark matter species (for example, two components of cold dark matter or a mixture of hot and cold dark matter) and there may be new interactions between these particles. In this paper we study the possibility of multiple dark matter species and interactions mediated by a dark energy field. We study both the background and the perturbation evolution in these scenarios. We find that the background evolution of a system of multiple dark matter particles (with constant couplings) mimics a single fluid with a time-varying coupling parameter. However, this is no longer true on the perturbative level. We study the case of attractive and repulsive forces as well as a mixture of cold and hot dark matter particles

  12. Pretreatment and fermentation strategies to overcome the toxicity of acetic acid in hemicellulosic hydrolysates

    DEFF Research Database (Denmark)

    Mussatto, Solange I.

    Acetic acid is one of the most important toxic compounds present in hemicellulosic hydrolysates. In order to overcome this problem, several strategies were studied for both biomass pretreatment and fermentation steps. Biomass deacetylation by mild alkaline pretreatment or using high pressure CO2...... where acetic acid can also be integrated as a valuable final product. For the fermentation step, it is well known that hemicellulosic hydrolysates usually need to be detoxified prior use as fermentation medium in order to improve the performance of the microorganism to convert sugars in the product...... of interest. Although detoxification improves the fermentability of hydrolysates, this additional step adds cost and complexity to the process and generates extra waste products. In this sense, the adaptation of the fermenting microorganism to increased concentrations of acetic acid can be considered...

  13. Development of a simple bio-hydrogen production system through dark fermentation by using unique microflora

    Energy Technology Data Exchange (ETDEWEB)

    Ohnishi, Akihiro; Bando, Yukiko; Fujimoto, Naoshi; Suzuki, Masaharu [Department of Fermentation Science, Faculty of Applied Bio-Science, Tokyo University of Agriculture, 1-1 Sakuragaoka 1-chome, Setagaya-ku, Tokyo 156-8502 (Japan)

    2010-08-15

    In order to ensure efficient functioning of hydrogen fermentation systems that use Clostridium as the dominant hydrogen producer, energy-intensive process such as heat pretreatment of inoculum and/or substrate, continuous injection, and control of anaerobic conditions are required. Here, we describe a simple hydrogen fermentation system designed using microflora from leaf-litter cattle-waste compost. Hydrogen and volatile fatty acid production was measured at various hydraulic retention times, and bacterial genera were determined by PCR amplification and sequencing. Although hydrogen fermentation yield was approximately one-third of values reported in previous studies, this system requires no additional treatment and thus may be advantageous in terms of cost and operational control. Interestingly, Clostridium was absent from this system. Instead, Megasphaera elsdenii was the dominant hydrogen-producing bacterium, and lactic acid-producing bacteria (LAB) were prevalent. This study is the first to characterize M. elsdenii as a useful hydrogen producer in hydrogen fermentation systems. These results demonstrate that pretreatment is not necessary for stable hydrogen fermentation using food waste. (author)

  14. Response of single polymers to localized step strains

    NARCIS (Netherlands)

    Panja, D.

    2009-01-01

    In this paper, the response of single three-dimensional phantom and self-avoiding polymers to localized step strains are studied for two cases in the absence of hydrodynamic interactions: (i) Polymers tethered at one end with the strain created at the point of tether, and (ii) free polymers with the

  15. Search for Dark Matter in Events with a Single Boson and Missing Transverse Momentum using the ATLAS Detector

    CERN Document Server

    Okawa, Hideki; The ATLAS collaboration

    2017-01-01

    The presence of a non-baryonic dark matter component in the Universe is inferred from the observation of its gravitational interaction. If dark matter interacts weakly with the Standard Model it would be produced at the LHC, escaping the detector and leaving a large missing transverse momentum as their signature. The results of searches with a single boson and large missing transverse momentum in 13 TeV will be presented.

  16. Hydrogen production with effluent from an ethanol–H2-coproducing fermentation reactor using a single-chamber microbial electrolysis cell

    KAUST Repository

    Lu, Lu; Ren, Nanqi; Xing, Defeng; Logan, Bruce E.

    2009-01-01

    Hydrogen can be produced by bacterial fermentation of sugars, but substrate conversion to hydrogen is incomplete. Using a single-chamber microbial electrolysis cell (MEC), we show that additional hydrogen can be produced from the effluent

  17. Dark field electron holography for strain measurement

    Energy Technology Data Exchange (ETDEWEB)

    Beche, A., E-mail: armand.beche@fei.com [CEA-Grenoble, INAC/SP2M/LEMMA, F-38054 Grenoble (France); Rouviere, J.L. [CEA-Grenoble, INAC/SP2M/LEMMA, F-38054 Grenoble (France); Barnes, J.P.; Cooper, D. [CEA-LETI, Minatec Campus, F-38054 Grenoble (France)

    2011-02-15

    Dark field electron holography is a new TEM-based technique for measuring strain with nanometer scale resolution. Here we present the procedure to align a transmission electron microscope and obtain dark field holograms as well as the theoretical background necessary to reconstruct strain maps from holograms. A series of experimental parameters such as biprism voltage, sample thickness, exposure time, tilt angle and choice of diffracted beam are then investigated on a silicon-germanium layer epitaxially embedded in a silicon matrix in order to obtain optimal dark field holograms over a large field of view with good spatial resolution and strain sensitivity. -- Research Highlights: {yields} Step by step explanation of the dark field electron holography technique. {yields} Presentation of the theoretical equations to obtain quantitative strain map. {yields} Description of experimental parameters influencing dark field holography results. {yields} Quantitative strain measurement on a SiGe layer embedded in a silicon matrix.

  18. Identification and safety evaluation of Bacillus species occurring in high numbers during spontaneous fermentations to produce Gergoush, a traditional Sudanese bread snack

    DEFF Research Database (Denmark)

    Thorsen, Line; Abdelgadir, Warda S.; Rønsbo, Mie Hvillum

    2011-01-01

    Gergoush is a naturally fermented Sudanese Bread snack produced in three fermentation steps (primary starter, adapted starter and final dough), followed by three baking steps for a half to one hour at above 200°C. This study examines the microbiota of two sets of fermentations performed at a trad......Gergoush is a naturally fermented Sudanese Bread snack produced in three fermentation steps (primary starter, adapted starter and final dough), followed by three baking steps for a half to one hour at above 200°C. This study examines the microbiota of two sets of fermentations performed...

  19. Microbial fuel cell treatment of ethanol fermentation process water

    Science.gov (United States)

    Borole, Abhijeet P [Knoxville, TN

    2012-06-05

    The present invention relates to a method for removing inhibitor compounds from a cellulosic biomass-to-ethanol process which includes a pretreatment step of raw cellulosic biomass material and the production of fermentation process water after production and removal of ethanol from a fermentation step, the method comprising contacting said fermentation process water with an anode of a microbial fuel cell, said anode containing microbes thereon which oxidatively degrade one or more of said inhibitor compounds while producing electrical energy or hydrogen from said oxidative degradation, and wherein said anode is in electrical communication with a cathode, and a porous material (such as a porous or cation-permeable membrane) separates said anode and cathode.

  20. The Effects of Multiple-Step and Single-Step Directions on Fourth and Fifth Grade Students' Grammar Assessment Performance

    Science.gov (United States)

    Mazerik, Matthew B.

    2006-01-01

    The mean scores of English Language Learners (ELL) and English Only (EO) students in 4th and 5th grade (N = 110), across the teacher-administered Grammar Skills Test, were examined for differences in participants' scores on assessments containing single-step directions and assessments containing multiple-step directions. The results indicated no…

  1. Saccharification of biomass using whole solid-state fermentation medium to avoid additional separation steps.

    Science.gov (United States)

    Pirota, Rosangela D P B; Baleeiro, Flávio C F; Farinas, Cristiane S

    2013-01-01

    The enzymatic hydrolysis of steam-exploded sugarcane bagasse (SESB) was investigated using enzymatic extracts (EE) and whole fermentation media (WM), produced in-house, from Aspergillus niger 3T5B8 and Trichoderma reesei Rut-C30 cultivated on wheat bran under solid-state fermentation (SSF). A detailed and quantitative comparison of the different hydrolysis conditions tested was carried out using the Chrastil approach for modeling enzymatic reactions by fitting the experimental data of total reducing sugar (TRS) released according to hydrolysis time. Conversion of SESB using A. niger enzymatic complex were up to 3.2-fold higher (in terms of TRS) than T. reesei at similar enzyme loadings, which could be correlated to the higher β-glucosidase levels (up to 35-fold higher) of A. niger enzymatic complex. Conversion yields after 72 h exceeded 40% in terms of TRS when the WM was supplemented with a low dosage of a commercial enzyme preparation. When the combination of WM (from either T. reesei or A. niger) and commercial cellulase was used, the dosage of the commercial enzyme could be reduced by half, while still providing a hydrolysis that was up to 36% more efficient. Furthermore, SESB hydrolysis using either EE or WM resulted in similar yields, indicating that the enzyme extraction/filtration steps could be eliminated from the overall process. This procedure is highly advantageous in terms of reduced enzyme and process costs, and also avoids the generation of unnecessary effluent streams. Thus, the enzymatic conversion of SESB using the WM from SSF is cost-effective and compatible with the biorefinery concept. © 2013 American Institute of Chemical Engineers.

  2. Hydrogen production using Rhodopseudomonas palustris WP 3-5 with hydrogen fermentation reactor effluent

    International Nuclear Information System (INIS)

    Chi-Mei Lee; Kuo-Tsang Hung

    2006-01-01

    The possibility of utilizing the dark hydrogen fermentation stage effluents for photo hydrogen production using purple non-sulfur bacteria should be elucidated. In the previous experiments, Rhodopseudomonas palustris WP3-5 was proven to efficiently produce hydrogen from the effluent of hydrogen fermentation reactors. The highest hydrogen production rate was obtained at a HRT value of 48 h when feeding a 5 fold effluent dilution from anaerobic hydrogen fermentation. Besides, hydrogen production occurred only when the NH 4 + concentration was below 17 mg-NH 4 + /l. Therefore, for successful fermentation effluent utilization, the most important things were to decrease the optimal HRT, increase the optimal substrate concentration and increase the tolerable ammonia concentration. In this study, a lab-scale serial photo-bioreactor was constructed. The reactor overall hydrogen production efficiency with synthetic wastewater exhibiting an organic acid profile identical to that of anaerobic hydrogen fermentation reactor effluent and with effluent from two anaerobic hydrogen fermentation reactors was evaluated. (authors)

  3. Dark-matter decay as a complementary probe of multicomponent dark sectors.

    Science.gov (United States)

    Dienes, Keith R; Kumar, Jason; Thomas, Brooks; Yaylali, David

    2015-02-06

    In single-component theories of dark matter, the 2→2 amplitudes for dark-matter production, annihilation, and scattering can be related to each other through various crossing symmetries. The detection techniques based on these processes are thus complementary. However, multicomponent theories exhibit an additional direction for dark-matter complementarity: the possibility of dark-matter decay from heavier to lighter components. We discuss how this new detection channel may be correlated with the others, and demonstrate that the enhanced complementarity which emerges can be an important ingredient in probing and constraining the parameter spaces of such models.

  4. Cosmological anisotropy from non-comoving dark matter and dark energy

    International Nuclear Information System (INIS)

    Harko, Tiberiu; Lobo, Francisco S. N.

    2013-01-01

    We consider a cosmological model in which the two major fluid components of the Universe, dark energy and dark matter, flow with distinct four-velocities. This cosmological configuration is equivalent to a single anisotropic fluid, expanding with a four-velocity that is an appropriate combination of the two fluid four-velocities. The energy density of the single cosmological fluid is larger than the sum of the energy densities of the two perfect fluids, i.e., dark energy and dark matter, respectively, and contains a correction term due to the anisotropy generated by the differences in the four-velocities. Furthermore, the gravitational field equations of the two-fluid anisotropic cosmological model are obtained for a Bianchi type I geometry. By assuming that the non-comoving motion of the dark energy and dark matter induces small perturbations in the homogeneous and isotropic Friedmann-Lemaitre-Robertson-Walker type cosmological background, and that the anisotropy parameter is small, the equations of the cosmological perturbations due to the non-comoving nature of the two major components are obtained. The time evolution of the metric perturbations is explicitly obtained for the cases of the exponential and power law background cosmological expansion. The imprints of a non-comoving dark energy - dark matter on the Cosmic Microwave Background and on the luminosity distance are briefly discussed, and the temperature anisotropies and the quadrupole are explicitly obtained in terms of the metric perturbations of the flat background metric. Therefore, if there is a slight difference between the four-velocities of the dark energy and dark matter, the Universe would acquire some anisotropic characteristics, and its geometry will deviate from the standard FLRW one. In fact, the recent Planck results show that the presence of an intrinsic large scale anisotropy in the Universe cannot be excluded a priori, so that the model presented in this work can be considered as a

  5. Improving Urogenital Function with Step Training after Spinal Cord Injury

    Science.gov (United States)

    2016-10-01

    closed with suture, the skin closed with Michel clips, and topical antibiotic applied. Animals were single housed on a 12 : 12 light : dark cycle. 2.2...dysfunction are among the highest priorities after injury, yet few studies are being done. Our study uses a clinically relevant chronic SCI animal ...participants that step training can have beneficial outcomes on bladder maintenance, including polyuria (over- production of urine resulting in the need to

  6. Compatibility of pedigree-based and marker-based relationship matrices for single-step genetic evaluation

    DEFF Research Database (Denmark)

    Christensen, Ole Fredslund

    2012-01-01

    Single-step methods for genomic prediction have recently become popular because they are conceptually simple and in practice such a method can completely replace a pedigree-based method for routine genetic evaluation. An issue with single-step methods is compatibility between the marker-based rel...

  7. Lactate production as representative of the fermentation potential of Corynebacterium glutamicum 2262 in a one-step process.

    Science.gov (United States)

    Khuat, Hoang Bao Truc; Kaboré, Abdoul Karim; Olmos, Eric; Fick, Michel; Boudrant, Joseph; Goergen, Jean-Louis; Delaunay, Stéphane; Guedon, Emmanuel

    2014-01-01

    The fermentative properties of thermo-sensitive strain Corynebacterium glutamicum 2262 were investigated in processes coupling aerobic cell growth and the anaerobic fermentation phase. In particular, the influence of two modes of fermentation on the production of lactate, the fermentation product model, was studied. In both processes, lactate was produced in significant amount, 27 g/L in batch culture, and up to 55.8 g/L in fed-batch culture, but the specific production rate in the fed-batch culture was four times lower than that in the batch culture. Compared to other investigated fermentation processes, our strategy resulted in the highest yield of lactic acid from biomass. Lactate production by C. glutamicum 2262 thus revealed the capability of the strain to produce various fermentation products from pyruvate.

  8. Bio-hydrogen production by dark fermentation from organic wastes and residues

    DEFF Research Database (Denmark)

    Liu, Dawei

    Der er stigende opmærksomhed omkring biohydrogen. Ved hydrogen fermentering kan kun en lille del af det organiske materiale eller COD i affald omdannes til hydrogen. Der findes endnu ingen full-skala bio-hydrogen anlæg, eftersom effektive rentable teknologier ikke er udviklet endnu. En to......-trins proces der kombinerer bio-hydrogen og bio-metan produktionen er en attraktiv mulighed til at øge det totale energi-udbytte af fermentering af organisk materiale. I en to-trins proces, med bio-hydrogen som første trin og bio-methan som andet trin, kunne der opnås 43mL-H2/gVSadded ved 37°C fra...... for en hurtig proces opstart og med højt brint effektivitet. Uden berigelseskulturer fejlede processen, på trods af gentagen genpodning. Optimale procesforhold for brint producerende processer blev bestemt. pH optimum af brintproducerende kulturer var 7.0 og acetat var hæmmende for brintproduktionen...

  9. Improved fermentative alcohol production. [Patent application

    Science.gov (United States)

    Wilke, C.R.; Maiorella, B.L.; Blanch, H.W.; Cysewski, G.R.

    1980-11-26

    An improved fermentation process is described for producing alcohol which includes the combination of vacuum fermentation and vacuum distillation. Preferably, the vacuum distillation is carried out in two phases, one a fermentor proper operated at atmospheric pressure and a flash phase operated at reduced pressure with recycle of fermentation brew having a reduced alcohol content to the fermentor, using vapor recompression heating of the flash-pot recycle stream to heat the flash-pot or the distillation step, and using water load balancing (i.e., the molar ratio of water in the fermentor feed is the same as the molar ratio of water in the distillation overhead).

  10. Single-Step Affinity Purification for Fungal Proteomics ▿ †

    OpenAIRE

    Liu, Hui-Lin; Osmani, Aysha H.; Ukil, Leena; Son, Sunghun; Markossian, Sarine; Shen, Kuo-Fang; Govindaraghavan, Meera; Varadaraj, Archana; Hashmi, Shahr B.; De Souza, Colin P.; Osmani, Stephen A.

    2010-01-01

    A single-step protein affinity purification protocol using Aspergillus nidulans is described. Detailed protocols for cell breakage, affinity purification, and depending on the application, methods for protein release from affinity beads are provided. Examples defining the utility of the approaches, which should be widely applicable, are included.

  11. Enhanced substrate conversion effiency of fermentation processes

    OpenAIRE

    Sanders, J.P.M.; Weusthuis, R.A.; Mooibroek, H.

    2008-01-01

    The present invention relates to the field of fermentation technology. In particular the invention relates to fermentation processes for the production of a first and a second fermentation product by a single production organism wherein the first product is in a more reduced state than the substrate and the second fermentation product is in a more oxidised state than the substrate yet in a less oxidised state than the final oxidation product CO2, such that the concurrent synthesis of the firs...

  12. Single-step reinitialization and extending algorithms for level-set based multi-phase flow simulations

    Science.gov (United States)

    Fu, Lin; Hu, Xiangyu Y.; Adams, Nikolaus A.

    2017-12-01

    We propose efficient single-step formulations for reinitialization and extending algorithms, which are critical components of level-set based interface-tracking methods. The level-set field is reinitialized with a single-step (non iterative) "forward tracing" algorithm. A minimum set of cells is defined that describes the interface, and reinitialization employs only data from these cells. Fluid states are extrapolated or extended across the interface by a single-step "backward tracing" algorithm. Both algorithms, which are motivated by analogy to ray-tracing, avoid multiple block-boundary data exchanges that are inevitable for iterative reinitialization and extending approaches within a parallel-computing environment. The single-step algorithms are combined with a multi-resolution conservative sharp-interface method and validated by a wide range of benchmark test cases. We demonstrate that the proposed reinitialization method achieves second-order accuracy in conserving the volume of each phase. The interface location is invariant to reapplication of the single-step reinitialization. Generally, we observe smaller absolute errors than for standard iterative reinitialization on the same grid. The computational efficiency is higher than for the standard and typical high-order iterative reinitialization methods. We observe a 2- to 6-times efficiency improvement over the standard method for serial execution. The proposed single-step extending algorithm, which is commonly employed for assigning data to ghost cells with ghost-fluid or conservative interface interaction methods, shows about 10-times efficiency improvement over the standard method while maintaining same accuracy. Despite their simplicity, the proposed algorithms offer an efficient and robust alternative to iterative reinitialization and extending methods for level-set based multi-phase simulations.

  13. Influence of nitrogen sources on growth and fermentation performance of different wine yeast species during alcoholic fermentation

    DEFF Research Database (Denmark)

    Kemsawasd, Varongsiri; Monteiro Lomba Viana, Tiago; Ardö, Ylva

    2015-01-01

    -Saccharomyces yeast species (Lachancea thermotolerans, Metschnikowia pulcherrima, Hanseniaspora uvarum and Torulaspora delbrueckii) was investigated during alcoholic fermentation. Briefly, the N-sources with beneficial effects on all performance parameters (or for the majority of them) for each yeast species were...... for L. thermotolerans, H. uvarum and M. pulcherrima, single amino acids affected growth and fermentation performance to the same extent as the mixtures. Moreover, we found groups of N-sources with similar effects on the growth and/or fermentation performance of two or more yeast species. Finally...... species under oxygen-limited conditions, which, in turn, may be used to, e.g. optimize growth and fermentation performance of the given yeast upon N-source supplementation during wine fermentations....

  14. Effect of total solid content and pretreatment on the production of lactic acid from mixed culture dark fermentation of food waste.

    Science.gov (United States)

    Yousuf, Ahasa; Bastidas-Oyanedel, Juan-Rodrigo; Schmidt, Jens Ejbye

    2018-04-28

    Food waste landfilling causes environmental degradation, and this work assesses a sustainable food valorization technique. In this study, food waste is converted into lactic acid in a batch assembly by dark fermentation without pH control and without the addition of external inoculum at 37 °C. The effect of total solid (TS), enzymatic and aeration pretreatment was investigated on liquid products concentration and product yield. The maximum possible TS content was 34% of enzymatic pretreated waste, and showed the highest lactic acid concentration of 52 g/L, with a lactic acid selectivity of 0.6 g lactic /g totalacids . The results indicated that aeration pretreatment does not significantly improve product concentration or yield. Non-pretreated waste in a 29% TS system showed a lactic acid concentration of 31 g/L. The results showed that enzymatic pretreated waste at TS of 34% results in the highest production of lactic acid. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. An untargeted metabolomic assessment of cocoa beans during fermentation

    OpenAIRE

    Mayorga Gross, Ana Lucía; Quirós Guerrero, Luis Manuel; Fourny, G.; Vaillant Barka, Fabrice

    2016-01-01

    Fermentation is a critical step in the processing of high quality cocoa; however, the biochemistry behind is still not well understood at a molecular level. In this research, using a non-targeted approach, the main metabolomic changes that occur throughout the fermentation process were explored. Genetically undefined cocoa varieties from Trinidad and Tobago (n = 3), Costa Rica (n = 1) and one clone IMC-67 (n = 3) were subjected to spontaneous fermentation using farm-based and pilot plant cont...

  16. Amplitude distributions of dark counts and photon counts in NbN superconducting single-photon detectors integrated with the HEMT readout

    Energy Technology Data Exchange (ETDEWEB)

    Kitaygorsky, J. [Kavli Institute of Nanoscience Delft, Delft University of Technology, 2600 GA Delft (Netherlands); Department of Electrical and Computer Engineering and Laboratory for Laser Energetics, University of Rochester, Rochester, NY 14627-0231 (United States); Słysz, W., E-mail: wslysz@ite.waw.pl [Institute of Electron Technology, PL-02 668 Warsaw (Poland); Shouten, R.; Dorenbos, S.; Reiger, E.; Zwiller, V. [Kavli Institute of Nanoscience Delft, Delft University of Technology, 2600 GA Delft (Netherlands); Sobolewski, Roman [Department of Electrical and Computer Engineering and Laboratory for Laser Energetics, University of Rochester, Rochester, NY 14627-0231 (United States)

    2017-01-15

    Highlights: • A new operation regime of NbN superconducting single-photon detectors (SSPDs). • A better understanding of the origin of dark counts generated by the detector. • A promise of PNR functionality in SSPD measurements. - Abstract: We present a new operation regime of NbN superconducting single-photon detectors (SSPDs) by integrating them with a low-noise cryogenic high-electron-mobility transistor and a high-load resistor. The integrated sensors are designed to get a better understanding of the origin of dark counts triggered by the detector, as our scheme allows us to distinguish the origin of dark pulses from the actual photon pulses in SSPDs. The presented approach is based on a statistical analysis of amplitude distributions of recorded trains of the SSPD photoresponse transients. It also enables to obtain information on energy of the incident photons, as well as demonstrates some photon-number-resolving capability of meander-type SSPDs.

  17. Cosmeceutical potentials and bioactive compounds of rice bran fermented with single and mix culture of Aspergillus oryzae and Rhizopus oryzae

    Directory of Open Access Journals (Sweden)

    Dang Lelamurni Abd Razak

    2017-04-01

    Full Text Available In the present study, rice bran, one of the most abundant agricultural by-products in Malaysia, was fermented with single and mixed cultures of Aspergillus oryzae and Rhizopus oryzae. The fermented rice bran extracts were tested for their functional properties and compared to the non-fermented counterparts. Antioxidant activities as well as phenolics and organic acid contents were evaluated. Skincare-related functionalities were also tested by evaluating tyrosinase and elastase inhibition activities. Tyrosinase inhibition activity, measured to determine the anti-pigmentation effect of extracts, was found to be the highest in the extract of rice bran fermented with A. oryzae (56.18% compared to other extracts. In determining the anti-aging effect of fermented rice bran extracts, the same extract showed the highest elastase inhibition activity with a value of 60.52%. Antioxidant activities were found to be highest in the mix-cultured rice bran extract. The results of phenolic and organic acid content were varied; the major phenolic acid detected was ferulic acid with a value of 43.19 μg/ml in the mix-cultured rice bran extract. On the other hand, citric acid was the major organic acid detected, with the highest content found in the same extract (214.6 mg/g. The results of this study suggest that the fermented rice bran extracts may have the potential to be further exploited as ingredients in cosmetics as well as in antioxidant-rich products.

  18. Single-cell analysis of S. cerevisiae growth recovery after a sublethal heat-stress applied during an alcoholic fermentation.

    Science.gov (United States)

    Tibayrenc, Pierre; Preziosi-Belloy, Laurence; Ghommidh, Charles

    2011-06-01

    Interest in bioethanol production has experienced a resurgence in the last few years. Poor temperature control in industrial fermentation tanks exposes the yeast cells used for this production to intermittent heat stress which impairs fermentation efficiency. Therefore, there is a need for yeast strains with improved tolerance, able to recover from such temperature variations. Accordingly, this paper reports the development of methods for the characterization of Saccharomyces cerevisiae growth recovery after a sublethal heat stress. Single-cell measurements were carried out in order to detect cell-to-cell variability. Alcoholic batch fermentations were performed on a defined medium in a 2 l instrumented bioreactor. A rapid temperature shift from 33 to 43 °C was applied when ethanol concentration reached 50 g l⁻¹. Samples were collected at different times after the temperature shift. Single cell growth capability, lag-time and initial growth rate were determined by monitoring the growth of a statistically significant number of cells after agar medium plating. The rapid temperature shift resulted in an immediate arrest of growth and triggered a progressive loss of cultivability from 100 to 0.0001% within 8 h. Heat-injured cells were able to recover their growth capability on agar medium after a lag phase. Lag-time was longer and more widely distributed as the time of heat exposure increased. Thus, lag-time distribution gives an insight into strain sensitivity to heat-stress, and could be helpful for the selection of yeast strains of technological interest.

  19. Characteristics of fermented plant beverages in southern Thailand

    Directory of Open Access Journals (Sweden)

    Charernjiratrakul, W.

    2005-05-01

    Full Text Available The characteristics of fermented plant beverages based on a sensory test, physico-chemical properties, enumeration of microorganisms present and their microbiological quality were investigated. A total of 19 samples of beverages collected from various sources in southern Thailand were examined. It was found that odor, color and clarity and the presence of Cu, Zn, K and Na were mainly dependent on the types of plant used and the additive of sugar or honey. Therefore, the appearance of the beverages was light brown and dark brown. An ester smell was occasionally detected. The fermented plant beverages had sour flavor that developed during fermentation and a little sweetness from residual sugar. The taste was related to the amounts of organic acid and sugar as measured in the ranges of 0.98-7.13% (pH 2.63-3.72 and 0.21-4.20%, respectively. The levels of alcohols measured as ethanol were between 0.03-3.32% and methanol in a range of 0.019 0.084%. Methanol production was dependent on both the fermentation process and the plant used. Total coliforms and Escherichia coli were not detected in any sample, whereas other microbes were detected in some samples as were total bacterial count, lactic acid bacteria, yeast and mold in amounts that differed depending on the fermentation time and also the level of sanitation of the production process.

  20. A Single-Batch Fermentation System to Simulate Human Colonic Microbiota for High-Throughput Evaluation of Prebiotics

    Science.gov (United States)

    Sasaki, Daisuke; Fukuda, Itsuko; Tanaka, Kosei; Yoshida, Ken-ichi; Kondo, Akihiko; Osawa, Ro

    2016-01-01

    We devised a single-batch fermentation system to simulate human colonic microbiota from fecal samples, enabling the complex mixture of microorganisms to achieve densities of up to 1011 cells/mL in 24 h. 16S rRNA gene sequence analysis of bacteria grown in the system revealed that representatives of the major phyla, including Bacteroidetes, Firmicutes, and Actinobacteria, as well as overall species diversity, were consistent with those of the original feces. On the earlier stages of fermentation (up to 9 h), trace mixtures of acetate, lactate, and succinate were detectable; on the later stages (after 24 h), larger amounts of acetate accumulated along with some of propionate and butyrate. These patterns were similar to those observed in the original feces. Thus, this system could serve as a simple model to simulate the diversity as well as the metabolism of human colonic microbiota. Supplementation of the system with several prebiotic oligosaccharides (including fructo-, galacto-, isomalto-, and xylo-oligosaccharides; lactulose; and lactosucrose) resulted in an increased population in genus Bifidobacterium, concomitant with significant increases in acetate production. The results suggested that this fermentation system may be useful for in vitro, pre-clinical evaluation of the effects of prebiotics prior to testing in humans. PMID:27483470

  1. New alternatives for the fermentation process in the ethanol production from sugarcane: Extractive and low temperature fermentation

    International Nuclear Information System (INIS)

    Palacios-Bereche, Reynaldo; Ensinas, Adriano; Modesto, Marcelo; Nebra, Silvia A.

    2014-01-01

    Ethanol is produced in large scale from sugarcane in Brazil by fermentation of sugars and distillation. This is currently considered as an efficient biofuel technology, leading to significant reduction on greenhouse gases emissions. However, some improvements in the process can be introduced in order to improve the use of energy. In current distilleries, a significant fraction of the energy consumption occurs in the purification step – distillation and dehydration – since conventional fermentation systems employed in the industry require low substrate concentration, which must be distilled, consequently with high energy consumption. In this study, alternatives to the conventional fermentation processes are assessed, through computer simulation: low temperature fermentation and vacuum extractive fermentation. The aim of this study is to assess the incorporation of these alternative fermentation processes in ethanol production, energy consumption and electricity surplus produced in the cogeneration system. Several cases were evaluated. Thermal integration technique was applied. Results shown that the ethanol production increases between 3.3% and 4.8% and a reduction in steam consumption happens of up to 36%. About the electricity surplus, a value of 85 kWh/t of cane can be achieved when condensing – extracting steam turbines are used. - Highlights: • Increasing the wine concentration in the ethanol production from sugarcane. • Alternatives to the conventional fermentation process. • Low temperature fermentation and vacuum extractive fermentation. • Reduction of steam consumption through the thermal integration of the processes. • Different configurations of cogeneration system maximizing the electricity surplus

  2. Physico-chemical and microbiological properties of raw fermented sausages are not influenced by color differences of turkey breast meat.

    Science.gov (United States)

    Popp, J; Krischek, C; Janisch, S; Wicke, M; Klein, G

    2013-05-01

    It has been suggested that the color of turkey breast meat influences both physico-chemical and microbiological properties of raw fermented sausages. In this study, raw fermented sausages were produced with turkey breast meat in 3 different colors (pale, normal, or dark), which were obtained from 2 fast-growing-genetic-line toms at 2 slaughterhouses. Prior to the sausage production, the breast muscles were sorted into color groups according to the lightness values determined at 24 h postmortem. This meat was subsequently processed to raw fermented sausages using 1.5 or 2.5% curing salt (CS). The pale meat had higher lightness, electrical conductivity, and drip loss, whereas the dark meat showed a darker color only. The physico-chemical (pH, water activity), visual (lightness, redness), and microbial (total plate count) properties of the sausages were not influenced by the color of the turkey breast meat. The sausage made with 2.5% CS had lower aw and higher ash and hardness values than the sausages produced with 1.5% CS. In conclusion, processing of differently colored turkey meat to raw fermented sausages does not influence the quality characteristics of the products. Based on these findings, there is no reason for the sausage producer to separate turkey breast muscles by color before producing raw fermented sausages.

  3. Evaluation of accuracy in implant site preparation performed in single- or multi-step drilling procedures.

    Science.gov (United States)

    Marheineke, Nadine; Scherer, Uta; Rücker, Martin; von See, Constantin; Rahlf, Björn; Gellrich, Nils-Claudius; Stoetzer, Marcus

    2018-06-01

    Dental implant failure and insufficient osseointegration are proven results of mechanical and thermal damage during the surgery process. We herein performed a comparative study of a less invasive single-step drilling preparation protocol and a conventional multiple drilling sequence. Accuracy of drilling holes was precisely analyzed and the influence of different levels of expertise of the handlers and additional use of drill template guidance was evaluated. Six experimental groups, deployed in an osseous study model, were representing template-guided and freehanded drilling actions in a stepwise drilling procedure in comparison to a single-drill protocol. Each experimental condition was studied by the drilling actions of respectively three persons without surgical knowledge as well as three highly experienced oral surgeons. Drilling actions were performed and diameters were recorded with a precision measuring instrument. Less experienced operators were able to significantly increase the drilling accuracy using a guiding template, especially when multi-step preparations are performed. Improved accuracy without template guidance was observed when experienced operators were executing single-step versus multi-step technique. Single-step drilling protocols have shown to produce more accurate results than multi-step procedures. The outcome of any protocol can be further improved by use of guiding templates. Operator experience can be a contributing factor. Single-step preparations are less invasive and are promoting osseointegration. Even highly experienced surgeons are achieving higher levels of accuracy by combining this technique with template guidance. Hereby template guidance enables a reduction of hands-on time and side effects during surgery and lead to a more predictable clinical diameter.

  4. Kinetics of two-stage fermentation process for the production of hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Nath, Kaushik [Department of Chemical Engineering, G.H. Patel College of Engineering and Technology, Vallabh Vidyanagar 388 120, Gujarat (India); Muthukumar, Manoj; Kumar, Anish; Das, Debabrata [Fermentation Technology Laboratory, Department of Biotechnology, Indian Institute of Technology, Kharagpur 721302 (India)

    2008-02-15

    Two-stage process described in the present work is a combination of dark and photofermentation in a sequential batch mode. In the first stage glucose is fermented to acetate, CO{sub 2} and H{sub 2} in an anaerobic dark fermentation by Enterobacter cloacae DM11. This is followed by a successive second stage where acetate is converted to H{sub 2} and CO{sub 2} in a photobioreactor by photosynthetic bacteria, Rhodobacter sphaeroides O.U. 001. The yield of hydrogen in the first stage was about 3.31molH{sub 2}(molglucose){sup -1} (approximately 82% of theoretical) and that in the second stage was about 1.5-1.72molH{sub 2}(molaceticacid){sup -1} (approximately 37-43% of theoretical). The overall yield of hydrogen in two-stage process considering glucose as preliminary substrate was found to be higher compared to a single stage process. Monod model, with incorporation of substrate inhibition term, has been used to determine the growth kinetic parameters for the first stage. The values of maximum specific growth rate ({mu} {sub max}) and K{sub s} (saturation constant) were 0.398h{sup -1} and 5.509gl{sup -1}, respectively, using glucose as substrate. The experimental substrate and biomass concentration profiles have good resemblance with those obtained by kinetic model predictions. A model based on logistic equation has been developed to describe the growth of R. sphaeroides O.U 001 in the second stage. Modified Gompertz equation was applied to estimate the hydrogen production potential, rate and lag phase time in a batch process for various initial concentration of glucose, based on the cumulative hydrogen production curves. Both the curve fitting and statistical analysis showed that the equation was suitable to describe the progress of cumulative hydrogen production. (author)

  5. The dark cube: dark and light character profiles

    Directory of Open Access Journals (Sweden)

    Danilo Garcia

    2016-02-01

    Full Text Available Background. Research addressing distinctions and similarities between people’s malevolent character traits (i.e., the Dark Triad: Machiavellianism, narcissism, and psychopathy has detected inconsistent linear associations to temperament traits. Additionally, these dark traits seem to have a common core expressed as uncooperativeness. Hence, some researchers suggest that the dark traits are best represented as one global construct (i.e., the unification argument rather than as ternary construct (i.e., the uniqueness argument. We put forward the dark cube (cf. Cloninger’s character cube comprising eight dark profiles that can be used to compare individuals who differ in one dark character trait while holding the other two constant. Our aim was to investigate in which circumstances individuals who are high in each one of the dark character traits differ in Cloninger’s “light” character traits: self-directedness, cooperativeness, and self-transcendence. We also investigated if people’s dark character profiles were associated to their light character profiles. Method. A total of 997 participants recruited from Amazon’s Mechanical Turk (MTurk responded to the Short Dark Triad and the Short Character Inventory. Participants were allocated to eight different dark profiles and eight light profiles based on their scores in each of the traits and any possible combination of high and low scores. We used three-way interaction regression analyses and t-tests to investigate differences in light character traits between individuals with different dark profiles. As a second step, we compared the individuals’ dark profile with her/his character profile using an exact cell-wise analysis conducted in the ROPstat software (http://www.ropstat.com. Results. Individuals who expressed high levels of Machiavellianism and those who expressed high levels of psychopathy also expressed low self-directedness and low cooperativeness. Individuals with high

  6. Amylolysis of raw corn by Aspergillus niger for simultaneous ethanol fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Han, I.Y.; Steinberg, M.P.

    1987-01-01

    The novelty of this approach was hydrolysis of the raw starch in ground corn to fermentable sugars that are simultaneously fermented to ethanol by yeast in a nonsterile environment. Thus, the conventional cooking step can be eliminated for energy conservation. A koji of Aspergillus niger grown on whole corn for 3 days was the crude enzyme source. A ratio of 0.2 g dry koji/g total solids was found sufficient. Optimum pH was 4.2. Ethanol concentration was 7.7% (w/w) in the aqueous phase with 92% raw starch conversion. Agitation increased rate. Sacharification was the rate-limiting step. The initial ethanol concentration preventing fermentation was estimated to be 8.3% by weight. (Refs. 96).

  7. Consumer Acceptability of Cucumber Pickles Produced by Fermentation in Calcium Chloride Brine for Reduced Environmental Impact.

    Science.gov (United States)

    Wilson, Emily M; Johanningsmeier, Suzanne D; Osborne, Jason A

    2015-06-01

    Fermentation of cucumbers in calcium chloride (CaCl2 ) brine has been proposed as an alternative process to reduce the environmental impact of traditional, high salt fermentations. The objective of this research was to determine whether consumer acceptability of pickle products would be impacted by fermentation and storage of cucumbers in CaCl2 brine. Cucumbers were fermented and stored with 0.1M CaCl2 or 1M sodium chloride (NaCl) in open-air, 3000 gal tanks at a commercial facility and processed into hamburger dill chips containing 0.38M NaCl. Cucumbers fermented in CaCl2 required additional desalting to reduce CaCl2 concentrations to that of current products. Consumers (n = 101) showed no significant preference for pickles from different fermentation treatments, whether stored for 2 mo (P = 0.75) or 8 mo (P = 0.68) prior to processing. In contrast, NaCl fermented pickles were preferred over CaCl2 fermented pickles stored for 10 mo and desalted only once (P consumer preference, and the 50% detection threshold of CaCl2 in dill pickle chips was found to be 61.8 ± 7.6 mM, indicating that processors could potentially use CaCl2 fermentations with a single desalting step. Consumer liking of flavor (n = 73) was not influenced by fermentation in CaCl2 or by 23 or 35 mM CaCl2 in finished products (P > 0.05), but variability in texture decreased consumer liking (P < 0.05). Although promising, individual fermentation variability and texture quality of CaCl2 fermented products should be further evaluated prior to broad implementation of this process. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.

  8. A Traditional Turkish Fermented Non-Alcoholic Grape-Based Beverage, “Hardaliye”

    Directory of Open Access Journals (Sweden)

    Fatma Coskun

    2017-01-01

    Full Text Available Hardaliye is a non-alcoholic fermented beverage produced in a traditional way in Thrace, the European part of Turkey. The nutritional value of hardaliye is derived from the grapes and the fermentation process. Health benefits of hardaliye are also related to etheric oils present in mustard seeds. Hardaliye is a lactic acid fermented traditional beverage produced from grape juice and crushed grapes with the addition of different concentrations of whole/ground or heat-treated mustard seeds and sour cherry leaves. The color of hardaliye reflects the original color of the grapes and has a characteristic aroma. Dark red grape is preferred. Benzoic acid is used as preservative during production. Benzoic acid inhibits or decreases alcohol production by affecting the yeast. Fermentation occurs at room temperature for 7–10 days. If the ambient temperature is low, fermentation process can be extended until 20 days. Once fermented, the hardaliye is stored at 4 °C for three to four months. The hardaliye is consumed either fresh or aged. If it is aged, hardaliye may contain alcohol. The industrial production is just in small-scale and it must be developed. More studies are required to determine characteristic properties of hardaliye. Identification of the product properties will supply improvement for industrial production.

  9. Dark matter and dark energy from the solution of the strong CP problem.

    Science.gov (United States)

    Mainini, Roberto; Bonometto, Silvio A

    2004-09-17

    The Peccei-Quinn (PQ) solution of the strong CP problem requires the existence of axions, which are viable candidates for dark matter. If the Nambu-Goldstone potential of the PQ model is replaced by a potential V(|Phi|) admitting a tracker solution, the scalar field |Phi| can account for dark energy, while the phase of Phi yields axion dark matter. If V is a supergravity (SUGRA) potential, the model essentially depends on a single parameter, the energy scale Lambda. Once we set Lambda approximately equal to 10(10) GeV at the quark-hadron transition, |Phi| naturally passes through values suitable to solve the strong CP problem, later growing to values providing fair amounts of dark matter and dark energy.

  10. Computing single step operators of logic programming in radial basis function neural networks

    Science.gov (United States)

    Hamadneh, Nawaf; Sathasivam, Saratha; Choon, Ong Hong

    2014-07-01

    Logic programming is the process that leads from an original formulation of a computing problem to executable programs. A normal logic program consists of a finite set of clauses. A valuation I of logic programming is a mapping from ground atoms to false or true. The single step operator of any logic programming is defined as a function (Tp:I→I). Logic programming is well-suited to building the artificial intelligence systems. In this study, we established a new technique to compute the single step operators of logic programming in the radial basis function neural networks. To do that, we proposed a new technique to generate the training data sets of single step operators. The training data sets are used to build the neural networks. We used the recurrent radial basis function neural networks to get to the steady state (the fixed point of the operators). To improve the performance of the neural networks, we used the particle swarm optimization algorithm to train the networks.

  11. Computing single step operators of logic programming in radial basis function neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Hamadneh, Nawaf; Sathasivam, Saratha; Choon, Ong Hong [School of Mathematical Sciences, Universiti Sains Malaysia, 11800 USM, Penang (Malaysia)

    2014-07-10

    Logic programming is the process that leads from an original formulation of a computing problem to executable programs. A normal logic program consists of a finite set of clauses. A valuation I of logic programming is a mapping from ground atoms to false or true. The single step operator of any logic programming is defined as a function (T{sub p}:I→I). Logic programming is well-suited to building the artificial intelligence systems. In this study, we established a new technique to compute the single step operators of logic programming in the radial basis function neural networks. To do that, we proposed a new technique to generate the training data sets of single step operators. The training data sets are used to build the neural networks. We used the recurrent radial basis function neural networks to get to the steady state (the fixed point of the operators). To improve the performance of the neural networks, we used the particle swarm optimization algorithm to train the networks.

  12. Computing single step operators of logic programming in radial basis function neural networks

    International Nuclear Information System (INIS)

    Hamadneh, Nawaf; Sathasivam, Saratha; Choon, Ong Hong

    2014-01-01

    Logic programming is the process that leads from an original formulation of a computing problem to executable programs. A normal logic program consists of a finite set of clauses. A valuation I of logic programming is a mapping from ground atoms to false or true. The single step operator of any logic programming is defined as a function (T p :I→I). Logic programming is well-suited to building the artificial intelligence systems. In this study, we established a new technique to compute the single step operators of logic programming in the radial basis function neural networks. To do that, we proposed a new technique to generate the training data sets of single step operators. The training data sets are used to build the neural networks. We used the recurrent radial basis function neural networks to get to the steady state (the fixed point of the operators). To improve the performance of the neural networks, we used the particle swarm optimization algorithm to train the networks

  13. An argument that the dark matter is axions

    International Nuclear Information System (INIS)

    Sikivie, P.

    2014-01-01

    An argument is presented that the dark matter is axions, at least in part. It has 3 steps. First, axions behave differently from the other forms of cold dark matter because they form a re-thermalizing Bose-Einstein condensate (BEC)). Second, there is a tool to distinguish axion BEC from the other dark matter candidates on the basis of observation, namely the study of the inner caustics of galactic halos. Third, the observational evidence for caustic rings of dark matter is consistent in every aspect with axion BEC, but not with the other proposed forms of dark matter. (author)

  14. Single-step colloidal quantum dot films for infrared solar harvesting

    KAUST Repository

    Kiani, Amirreza; Sutherland, Brandon R.; Kim, Younghoon; Ouellette, Olivier; Levina, Larissa; Walters, Grant; Dinh, Cao Thang; Liu, Mengxia; Voznyy, Oleksandr; Lan, Xinzheng; Labelle, Andre J.; Ip, Alexander H.; Proppe, Andrew; Ahmed, Ghada H.; Mohammed, Omar F.; Hoogland, Sjoerd; Sargent, Edward H.

    2016-01-01

    . To date, IR CQD solar cells have been made using a wasteful and complex sequential layer-by-layer process. Here, we demonstrate ∼1 eV bandgap solar-harvesting CQD films deposited in a single step. By engineering a fast-drying solvent mixture for metal

  15. Single-step linking transition from superdeformed to spherical states in {sup 143}Eu

    Energy Technology Data Exchange (ETDEWEB)

    Atac, A.; Axelsson, A.; Persson, J. [Uppsala Univ. (Sweden)] [and others

    1996-12-31

    A discrete {gamma}-ray transition which connects the second lowest SD state with a normally deformed one in {sup 143}Eu has been discovered. It has an energy of 3360.6 keV and carries 3.2 % of the full intensity of the SD band. It feeds into a nearly spherical state which is above the I = 35/2{sup +}, E=4947 keV level. The exact placement of the single-step link could, however, not be established due to the especially complicated level scheme in the region of interest. The angular correlation study favours a stretched dipole character for the 3360.6 keV transition. The single-step link agrees well with the previously determined two-step links, both with respect to energy and spin.

  16. Single-step production of the simvastatin precursor monacolin J by engineering of an industrial strain of Aspergillus terreus.

    Science.gov (United States)

    Huang, Xuenian; Liang, Yajing; Yang, Yong; Lu, Xuefeng

    2017-07-01

    Monacolin J is a key precursor for the synthesis of simvastatin (Zocor), an important drug for treating hypercholesterolemia. Industrially, monacolin J is manufactured through alkaline hydrolysis of lovastatin, a fungal polyketide produced by Aspergillus terreus. Multistep chemical processes for the conversion of lovastatin to simvastatin are laborious, cost expensive and environmentally unfriendly. A biocatalysis process for monacolin J conversion to simvastatin has been developed. However, direct bioproduction of monacolin J has not yet been achieved. Here, we identified a lovastatin hydrolase from Penicillium chrysogenum, which displays a 232-fold higher catalytic efficiency for the in vitro hydrolysis of lovastatin compared to a previously patented hydrolase, but no activity for simvastatin. Furthermore, we showed that an industrial A. terreus strain heterologously expressing this lovastatin hydrolase can produce monacolin J through single-step fermentation with high efficiency, approximately 95% of the biosynthesized lovastatin was hydrolyzed to monacolin J. Our results demonstrate a simple and green technical route for the production of monacolin J, which makes complete bioproduction of the cholesterol-lowering drug simvastatin feasible and promising. Copyright © 2017 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  17. Nanopatterning of magnetic disks by single-step Ar+ Ion projection

    NARCIS (Netherlands)

    Dietzel, A.H.; Berger, R.; Loeschner, H.; Platzgummer, E.; Stengl, G.; Bruenger, W.H.; Letzkus, F.

    2003-01-01

    Large-area Ar+ projection has been used to generate planar magnetic nanostructures on a 1¿-format hard disk in a single step (see Figure). The recording pattern was transferred to a Co/Pt multilayer without resist processes or any other contact to the delicate media surface. It is conceivable that

  18. Towards single step production of multi-layer inorganic hollow fibers

    NARCIS (Netherlands)

    de Jong, J.; Benes, Nieck Edwin; Koops, G.H.; Wessling, Matthias

    2004-01-01

    In this work we propose a generic synthesis route for the single step production of multi-layer inorganic hollow fibers, based on polymer wet spinning combined with a heat treatment. With this new method, membranes with a high surface area per unit volume ratio can be produced, while production time

  19. Effect of fermentation and drying on cocoa polyphenols.

    Science.gov (United States)

    Albertini, Barbara; Schoubben, Aurélie; Guarnaccia, Davide; Pinelli, Filippo; Della Vecchia, Mirco; Ricci, Maurizio; Di Renzo, Gian Carlo; Blasi, Paolo

    2015-11-18

    Cocoa seed polyphenols have demonstrated interesting beneficial effects in humans. Most polyphenols contained in fresh seeds are chemically modified during fermentation, drying, and cocoa powder or chocolate production. The improvement of these procedures to obtain a high-polyphenol-content cocoa is highly desirable. To this aim, a field investigation on the effect of fermentation and natural drying on fine flavor National cocoa (cacao Nacional) was performed. Cocoa seeds were fermented for 6 days and, every day, samples were sun-dried and analyzed for polyphenol content and antioxidant power. During the first 2 days of fermentation, Folin-Ciocalteu and FRAP tests evidenced a significant reduction of polyphenol content and antioxidant capacity, respectively. Changes during the following days of fermentation were less significant. Epicatechin, the most studied member of the catechin family, followed a similar pathway of degradation. Data confirmed the high impact of fermentation and drying on cocoa seed polyphenols. Fermentation and drying are, on the one hand, necessary to obtain cocoa flavor and palatability but, on the other hand, are responsible for greatly compromising polyphenol content. To obtain high-polyphenol-content cocoa, the existing fermentation, drying, and manufacturing protocols should be scientifically reviewed to understand and modify the critical steps.

  20. Recovery of succinic acid produced by fermentation of a metabolically engineered Mannheimia succiniciproducens strain.

    Science.gov (United States)

    Song, Hyohak; Huh, Yun Suk; Lee, Sang Yup; Hong, Won Hi; Hong, Yeon Ki

    2007-12-01

    There have recently been much advances in the production of succinic acid, an important four-carbon dicarboxylic acid for many industrial applications, by fermentation of several natural and engineered bacterial strains. Mannheimia succiniciproducens MBEL55E isolated from bovine rumen is able to produce succinic acid with high efficiency, but also produces acetic, formic and lactic acids just like other anaerobic succinic acid producers. We recently reported the development of an engineered M. succiniciproducens LPK7 strain which produces succinic acid as a major fermentation product while producing much reduced by-products. Having an improved succinic acid producer developed, it is equally important to develop a cost-effective downstream process for the recovery of succinic acid. In this paper, we report the development of a simpler and more efficient method for the recovery of succinic acid. For the recovery of succinic acid from the fermentation broth of LPK7 strain, a simple process composed of a single reactive extraction, vacuum distillation, and crystallization yielded highly purified succinic acid (greater than 99.5% purity, wt%) with a high yield of 67.05wt%. When the same recovery process or even multiple reactive extraction steps were applied to the fermentation broth of MBEL55E, lower purity and yield of succinic acid were obtained. These results suggest that succinic acid can be purified in a cost-effective manner by using the fermentation broth of engineered LPK7 strain, showing the importance of integrating the strain development, fermentation and downstream process for optimizing the whole processes for succinic acid production.

  1. Structural comparison of anodic nanoporous-titania fabricated from single-step and three-step of anodization using two paralleled-electrodes anodizing cell

    Directory of Open Access Journals (Sweden)

    Mallika Thabuot

    2016-02-01

    Full Text Available Anodization of Ti sheet in the ethylene glycol electrolyte containing 0.38wt% NH4F with the addition of 1.79wt% H2O at room temperature was studied. Applied potential of 10-60 V and anodizing time of 1-3 h were conducted by single-step and three-step of anodization within the two paralleled-electrodes anodizing cell. Their structural and textural properties were investigated by X-ray diffraction (XRD and scanning electron microscopy (SEM. After annealing at 600°C in the air furnace for 3 h, TiO2-nanotubes was transformed to the higher proportion of anatase crystal phase. Also crystallization of anatase phase was enhanced as the duration of anodization as the final step increased. By using single-step of anodization, pore texture of oxide film was started to reveal at the applied potential of 30 V. Better orderly arrangement of the TiO2-nanotubes array with larger pore size was obtained with the increase of applied potential. The applied potential of 60 V was selected for the three-step of anodization with anodizing time of 1-3 h. Results showed that the well-smooth surface coverage with higher density of porous-TiO2 was achieved using prolonging time at the first and second step, however, discontinuity tube in length was produced instead of the long-vertical tube. Layer thickness of anodic oxide film depended on the anodizing time at the last step of anodization. More well arrangement of nanostructured-TiO2 was produced using three-step of anodization under 60 V with 3 h for each step.

  2. Dark group: dark energy and dark matter

    International Nuclear Information System (INIS)

    Macorra, A. de la

    2004-01-01

    We study the possibility that a dark group, a gauge group with particles interacting with the standard model particles only via gravity, is responsible for containing the dark energy and dark matter required by present day observations. We show that it is indeed possible and we determine the constrains for the dark group. The non-perturbative effects generated by a strong gauge coupling constant can de determined and a inverse power law scalar potential IPL for the dark meson fields is generated parameterizing the dark energy. On the other hand it is the massive particles, e.g., dark baryons, of the dark gauge group that give the corresponding dark matter. The mass of the dark particles is of the order of the condensation scale Λ c and the temperature is smaller then the photon's temperature. The dark matter is of the warm matter type. The only parameters of the model are the number of particles of the dark group. The allowed values of the different parameters are severely restricted. The dark group energy density at Λ c must be Ω DGc ≤0.17 and the evolution and acceptable values of dark matter and dark energy leads to a constrain of Λ c and the IPL parameter n giving Λ c =O(1-10 3 ) eV and 0.28≤n≤1.04

  3. Converting the organic fraction of solid waste from the city of Abu Dhabi to valuable products via dark fermentation--Economic and energy assessment.

    Science.gov (United States)

    Bonk, Fabian; Bastidas-Oyanedel, Juan-Rodrigo; Schmidt, Jens Ejbye

    2015-06-01

    Landfilling the organic fraction of municipal solid waste (OFMSW) leads to greenhouse gas emissions and loss of valuable resources. Sustainable and cost efficient solutions need to be developed to solve this problem. This study evaluates the feasibility of using dark fermentation (DF) to convert the OFMSW to volatile fatty acids (VFAs), fertilizer and H2. The VFAs in the DF effluent can be used directly as substrate for subsequent bioprocesses or purified from the effluent for industrial use. DF of the OFMSW in Abu Dhabi will be economically sustainable once VFA purification can be accomplished on large scale for less than 15USD/m(3)(effluent). With a VFA minimum selling price of 330 USD/tCOD, DF provides a competitive carbon source to sugar. Furthermore, DF is likely to use less energy than conventional processes that produce VFAs, fertilizer and H2. This makes DF of OFMSW a promising waste treatment technology and biorefinery platform. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Differences in Lower Extremity and Trunk Kinematics between Single Leg Squat and Step Down Tasks.

    Directory of Open Access Journals (Sweden)

    Cara L Lewis

    Full Text Available The single leg squat and single leg step down are two commonly used functional tasks to assess movement patterns. It is unknown how kinematics compare between these tasks. The purpose of this study was to identify kinematic differences in the lower extremity, pelvis and trunk between the single leg squat and the step down. Fourteen healthy individuals participated in this research and performed the functional tasks while kinematic data were collected for the trunk, pelvis, and lower extremities using a motion capture system. For the single leg squat task, the participant was instructed to squat as low as possible. For the step down task, the participant was instructed to stand on top of a box, slowly lower him/herself until the non-stance heel touched the ground, and return to standing. This was done from two different heights (16 cm and 24 cm. The kinematics were evaluated at peak knee flexion as well as at 60° of knee flexion. Pearson correlation coefficients (r between the angles at those two time points were also calculated to better understand the relationship between each task. The tasks resulted in kinematics differences at the knee, hip, pelvis, and trunk at both time points. The single leg squat was performed with less hip adduction (p ≤ 0.003, but more hip external rotation and knee abduction (p ≤ 0.030, than the step down tasks at 60° of knee flexion. These differences were maintained at peak knee flexion except hip external rotation was only significant in the 24 cm step down task (p ≤ 0.029. While there were multiple differences between the two step heights at peak knee flexion, the only difference at 60° of knee flexion was in trunk flexion (p < 0.001. Angles at the knee and hip had a moderate to excellent correlation (r = 0.51-0.98, but less consistently so at the pelvis and trunk (r = 0.21-0.96. The differences in movement patterns between the single leg squat and the step down should be considered when selecting a

  5. A high-order positivity-preserving single-stage single-step method for the ideal magnetohydrodynamic equations

    Science.gov (United States)

    Christlieb, Andrew J.; Feng, Xiao; Seal, David C.; Tang, Qi

    2016-07-01

    We propose a high-order finite difference weighted ENO (WENO) method for the ideal magnetohydrodynamics (MHD) equations. The proposed method is single-stage (i.e., it has no internal stages to store), single-step (i.e., it has no time history that needs to be stored), maintains a discrete divergence-free condition on the magnetic field, and has the capacity to preserve the positivity of the density and pressure. To accomplish this, we use a Taylor discretization of the Picard integral formulation (PIF) of the finite difference WENO method proposed in Christlieb et al. (2015) [23], where the focus is on a high-order discretization of the fluxes (as opposed to the conserved variables). We use the version where fluxes are expanded to third-order accuracy in time, and for the fluid variables space is discretized using the classical fifth-order finite difference WENO discretization. We use constrained transport in order to obtain divergence-free magnetic fields, which means that we simultaneously evolve the magnetohydrodynamic (that has an evolution equation for the magnetic field) and magnetic potential equations alongside each other, and set the magnetic field to be the (discrete) curl of the magnetic potential after each time step. In this work, we compute these derivatives to fourth-order accuracy. In order to retain a single-stage, single-step method, we develop a novel Lax-Wendroff discretization for the evolution of the magnetic potential, where we start with technology used for Hamilton-Jacobi equations in order to construct a non-oscillatory magnetic field. The end result is an algorithm that is similar to our previous work Christlieb et al. (2014) [8], but this time the time stepping is replaced through a Taylor method with the addition of a positivity-preserving limiter. Finally, positivity preservation is realized by introducing a parameterized flux limiter that considers a linear combination of high and low-order numerical fluxes. The choice of the free

  6. The continuous tower of scalar fields as a system of interacting dark matter–dark energy

    International Nuclear Information System (INIS)

    Santos, Paulo

    2015-01-01

    This paper aims to introduce a new parameterisation for the coupling Q in interacting dark matter and dark energy models by connecting said models with the Continuous Tower of Scalar Fields model. Based upon the existence of a dark matter and a dark energy sectors in the Continuous Tower of Scalar Fields, a simplification is considered for the evolution of a single scalar field from the tower, validated in this paper. This allows for the results obtained with the Continuous Tower of Scalar Fields model to match those of an interacting dark matter–dark energy system, considering that the energy transferred from one fluid to the other is given by the energy of the scalar fields that start oscillating at a given time, rather than considering that the energy transference depends on properties of the whole fluids that are interacting.

  7. Microbiology and optimization of hydrogen fermentation and bioelectricity production

    Energy Technology Data Exchange (ETDEWEB)

    Makinen, A.

    2013-11-01

    This work investigated dark fermentative hydrogen (H{sub 2}) and bioelectricity production from carbohydrates. Meso- and thermophilic fermentative and mesophilic exoelectrogenic bacteria were enriched from different natural sources. The H{sub 2} production from different hexoses and pentoses, them main constituents of lignocellulose, was studied in batch assays. H{sub 2} production from xylose was examined in continuous stirred tank reactor (CSTR). Operational parameters for H{sub 2} production were optimized. Bioelectricity production was studied in microbial fuel cells and process parameters were optimized. Dynamics of microbial communities in H{sub 2} and bioelectricity production processes were determined. A novel thermophilic dark fermentative H{sub 2} producing bacterium, Thermovorax subterraneus, was enriched and isolated from geothermal underground mine. T. subterraneus had the optimum growth temperature of 72 deg C and the maximum H{sub 2} yield of 1.4 mol/mol glucose in batch assay. The main soluble fermentative end products of T. subterraneus were acetate and ethanol. Thermophilic dark fermentative mixed culture enriched from hot spring (Hisarlan, Turkey) had the maximum H{sub 2} yield of 1.7 mol/mol glucose. The optimal environmental parameters to maximize H{sub 2} yield were temperature 52 deg C, initial pH 6.5, 40 mg/L Fe{sup 2+}, 4.5 g/L yeast extract and glucose concentration of 4 g/L. Increasing the glucose concentration to 18 g/L increased the maximum H{sub 2} production rate to 56.2 mmol H{sub 2}/h/L. Environmental parameters had a significant effect on metabolic pathways of fermentation. Another hot spring (Hisarkoy, Turkey) enrichment culture was able to ferment different sugars to H{sub 2} favoring pentoses over hexoses. The best H{sub 2} yields in batch assays were obtained from pentoses: xylose, arabinose and ribose yielded 21, 15 and 8 % of the theoretical yield, respectively; whilst on glucose the yield was only 2 % of the theoretical

  8. Production of xylose, furfural, fermentable sugars and ethanol from agricultural residues

    Energy Technology Data Exchange (ETDEWEB)

    Singh, A.; Das, K.; Sharma, D.K.

    1984-02-01

    With the developing shortage of petroleum, reliance on biomass as a source of chemicals and fuels will increase. In the present work, bagasse and rice husk were subjected to dilute acid (H2SO4) hydrolysis using pressurised water to obtain furfural and fermentable sugars. Various process conditions such as particle size, solid-liquid ratio, acid concentration, reaction time and temperature have been studied to optimise yields of furfural, xylose and other fermentable sugars. The use of particle sizes smaller than 495 mu m did not further increase the yield of reducing sugars. A solid-liquid ratio of 1:15 was found to be the most suitable for production of reducing sugars. Hydrolysis using 0.4% H2SO4 at 453 K resulted in selective yields (g per 100 g of dried agricultural residues) of xylose from bagasse (22.5%) and rice husk (21.5%). A maximum yield of furfural was obtained using 0.4% H2SO4 at 473 K from bagasse (11.5%) and rice husk (10.9%). It was also found that hydrolysis using 1% H2SO4 at 493 K resulted in maximum yields of total reducing sugar from bagasse (53.5%) and rice husk (50%). The reducing sugars obtained were fermented to ethanol after removal of furfural. The effect of furfural on the fermentation of sugars to ethanol was also studied. Based on these studies, an integrated two-step process for the production of furfural and fermentable sugars could be envisaged. In the first step, using 0.4% H2SO4 at 473 K, furfural could be obtained, while in the second step, the use of 1% H2SO4 at 493 K should result in the production of fermentable sugars. (Refs. 22).

  9. A single-step method for rapid extraction of total lipids from green microalgae.

    Directory of Open Access Journals (Sweden)

    Martin Axelsson

    Full Text Available Microalgae produce a wide range of lipid compounds of potential commercial interest. Total lipid extraction performed by conventional extraction methods, relying on the chloroform-methanol solvent system are too laborious and time consuming for screening large numbers of samples. In this study, three previous extraction methods devised by Folch et al. (1957, Bligh and Dyer (1959 and Selstam and Öquist (1985 were compared and a faster single-step procedure was developed for extraction of total lipids from green microalgae. In the single-step procedure, 8 ml of a 2∶1 chloroform-methanol (v/v mixture was added to fresh or frozen microalgal paste or pulverized dry algal biomass contained in a glass centrifuge tube. The biomass was manually suspended by vigorously shaking the tube for a few seconds and 2 ml of a 0.73% NaCl water solution was added. Phase separation was facilitated by 2 min of centrifugation at 350 g and the lower phase was recovered for analysis. An uncharacterized microalgal polyculture and the green microalgae Scenedesmus dimorphus, Selenastrum minutum, and Chlorella protothecoides were subjected to the different extraction methods and various techniques of biomass homogenization. The less labour intensive single-step procedure presented here allowed simultaneous recovery of total lipid extracts from multiple samples of green microalgae with quantitative yields and fatty acid profiles comparable to those of the previous methods. While the single-step procedure is highly correlated in lipid extractability (r² = 0.985 to the previous method of Folch et al. (1957, it allowed at least five times higher sample throughput.

  10. Single step synthesis, characterization and applications of curcumin functionalized iron oxide magnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Bhandari, Rohit; Gupta, Prachi; Dziubla, Thomas; Hilt, J. Zach, E-mail: zach.hilt@uky.edu

    2016-10-01

    Magnetic iron oxide nanoparticles have been well known for their applications in magnetic resonance imaging (MRI), hyperthermia, targeted drug delivery, etc. The surface modification of these magnetic nanoparticles has been explored extensively to achieve functionalized materials with potential application in biomedical, environmental and catalysis field. Herein, we report a novel and versatile single step methodology for developing curcumin functionalized magnetic Fe{sub 3}O{sub 4} nanoparticles without any additional linkers, using a simple coprecipitation technique. The magnetic nanoparticles (MNPs) were characterized using transmission electron microscopy, X-ray diffraction, fourier transform infrared spectroscopy and thermogravimetric analysis. The developed MNPs were employed in a cellular application for protection against an inflammatory agent, a polychlorinated biphenyl (PCB) molecule. - Graphical abstract: Novel single step curcumin coated magnetic Fe{sub 3}O{sub 4} nanoparticles without any additional linkers for medical, environmental, and other applications. Display Omitted - Highlights: • A novel and versatile single step methodology for developing curcumin functionalized magnetic Fe{sub 3}O{sub 4} nanoparticles is reported. • The magnetic nanoparticles (MNPs) were characterized using TEM, XRD, FTIR and TGA. • The developed MNPs were employed in a cellular application for protection against an inflammatory agent, a polychlorinated biphenyl (PCB).

  11. Generalizing a unified model of dark matter, dark energy, and inflation with a noncanonical kinetic term

    International Nuclear Information System (INIS)

    De-Santiago, Josue; Cervantes-Cota, Jorge L.

    2011-01-01

    We study a unification model for dark energy, dark matter, and inflation with a single scalar field with noncanonical kinetic term. In this model, the kinetic term of the Lagrangian accounts for the dark matter and dark energy, and at early epochs, a quadratic potential accounts for slow roll inflation. The present work is an extension to the work by Bose and Majumdar [Phys. Rev. D 79, 103517 (2009).] with a more general kinetic term that was proposed by Chimento in Phys. Rev. D 69, 123517 (2004). We demonstrate that the model is viable at the background and linear perturbation levels.

  12. The stepping behavior analysis of pedestrians from different age groups via a single-file experiment

    Science.gov (United States)

    Cao, Shuchao; Zhang, Jun; Song, Weiguo; Shi, Chang'an; Zhang, Ruifang

    2018-03-01

    The stepping behavior of pedestrians with different age compositions in single-file experiment is investigated in this paper. The relation between step length, step width and stepping time are analyzed by using the step measurement method based on the calculation of curvature of the trajectory. The relations of velocity-step width, velocity-step length and velocity-stepping time for different age groups are discussed and compared with previous studies. Finally effects of pedestrian gender and height on stepping laws and fundamental diagrams are analyzed. The study is helpful for understanding pedestrian dynamics of movement. Meanwhile, it offers experimental data to develop a microscopic model of pedestrian movement by considering stepping behavior.

  13. The dark components of the Universe are slowly clarified

    Energy Technology Data Exchange (ETDEWEB)

    Burdyuzha, V. V., E-mail: burdyuzh@asc.rssi.ru [Russian Academy of Sciences, Astro-Space Center, Lebedev Physical Institute (Russian Federation)

    2017-02-15

    The dark sector of the Universe is beginning to be clarified step by step. If the dark energy is vacuum energy, then 123 orders of this energy are reduced by ordinary physical processes. For many years, these unexplained orders were called a crisis of physics. There was indeed a “crisis” before the introduction of the holographic principle and entropic force in physics. The vacuum energy was spent on the generation of new quantum states during the entire life of the Universe, but in the initial period of its evolution the vacuum energy (78 orders) were reduced more effectively by the vacuum condensates produced by phase transitions, because the Universe lost the high symmetry during its expansion. Important problems of physical cosmology can be solved if the quarks, leptons, and gauge bosons are composite particles. The dark matter, partially or all consisting of familon-type pseudo-Goldstone bosons with a mass of 10{sup —5}–10{sup –3} eV, can be explained in the composite model. Three generations of elementary particles are absolutely necessary in this model. In addition, this model realizes three relativistic phase transitions in a medium of familons at different redshifts, forming a large-scale structure of dark matter that was “repeated” by baryons. We predict the detection of dark energy dynamics, the detection of familons as dark matter particles, and the development of spectroscopy for the dark medium due to the probable presence of dark atoms in it. Other viewpoints on the dark components of the Universe are also discussed briefly.

  14. The dark components of the Universe are slowly clarified

    International Nuclear Information System (INIS)

    Burdyuzha, V. V.

    2017-01-01

    The dark sector of the Universe is beginning to be clarified step by step. If the dark energy is vacuum energy, then 123 orders of this energy are reduced by ordinary physical processes. For many years, these unexplained orders were called a crisis of physics. There was indeed a “crisis” before the introduction of the holographic principle and entropic force in physics. The vacuum energy was spent on the generation of new quantum states during the entire life of the Universe, but in the initial period of its evolution the vacuum energy (78 orders) were reduced more effectively by the vacuum condensates produced by phase transitions, because the Universe lost the high symmetry during its expansion. Important problems of physical cosmology can be solved if the quarks, leptons, and gauge bosons are composite particles. The dark matter, partially or all consisting of familon-type pseudo-Goldstone bosons with a mass of 10"—"5–10"–"3 eV, can be explained in the composite model. Three generations of elementary particles are absolutely necessary in this model. In addition, this model realizes three relativistic phase transitions in a medium of familons at different redshifts, forming a large-scale structure of dark matter that was “repeated” by baryons. We predict the detection of dark energy dynamics, the detection of familons as dark matter particles, and the development of spectroscopy for the dark medium due to the probable presence of dark atoms in it. Other viewpoints on the dark components of the Universe are also discussed briefly.

  15. The dark components of the Universe are slowly clarified

    Science.gov (United States)

    Burdyuzha, V. V.

    2017-02-01

    The dark sector of the Universe is beginning to be clarified step by step. If the dark energy is vacuum energy, then 123 orders of this energy are reduced by ordinary physical processes. For many years, these unexplained orders were called a crisis of physics. There was indeed a "crisis" before the introduction of the holographic principle and entropic force in physics. The vacuum energy was spent on the generation of new quantum states during the entire life of the Universe, but in the initial period of its evolution the vacuum energy (78 orders) were reduced more effectively by the vacuum condensates produced by phase transitions, because the Universe lost the high symmetry during its expansion. Important problems of physical cosmology can be solved if the quarks, leptons, and gauge bosons are composite particles. The dark matter, partially or all consisting of familon-type pseudo-Goldstone bosons with a mass of 10—5-10-3 eV, can be explained in the composite model. Three generations of elementary particles are absolutely necessary in this model. In addition, this model realizes three relativistic phase transitions in a medium of familons at different redshifts, forming a large-scale structure of dark matter that was "repeated" by baryons. We predict the detection of dark energy dynamics, the detection of familons as dark matter particles, and the development of spectroscopy for the dark medium due to the probable presence of dark atoms in it. Other viewpoints on the dark components of the Universe are also discussed briefly.

  16. Pre-treatment step with Leuconostoc mesenteroides or L. pseudomesenteroides strains removes furfural from Zymomonas mobilis ethanolic fermentation broth.

    Science.gov (United States)

    Hunter, William J; Manter, Daniel K

    2014-10-01

    Furfural is an inhibitor of growth and ethanol production by Zymomonas mobilis. This study used a naturally occurring (not GMO) biological pre-treatment to reduce that amount of furfural in a model fermentation broth. Pre-treatment involved inoculating and incubating the fermentation broth with strains of Leuconostoc mesenteroides or Leuconostoc pseudomesenteroides. The Leuconostoc strains converted furfural to furfuryl alcohol without consuming large amounts of dextrose in the process. Coupling this pre-treatment to ethanolic fermentation reduced furfural in the broth and improved growth, dextrose uptake and ethanol formation. Pre-treatment permitted ethanol formation in the presence of 5.2 g L(-1) furfural, which was otherwise inhibitive. The pre-treatment and presence of the Leuconostoc strains in the fermentation broth did not interfere with Z. mobilis ethanolic fermentation or the amounts of ethanol produced. The method suggests a possible technique for reducing the effect that furfural has on the production of ethanol for use as a biofuel. Published by Elsevier Ltd.

  17. Rheology of corn stover slurries during fermentation to ethanol

    Science.gov (United States)

    Ghosh, Sanchari; Epps, Brenden; Lynd, Lee

    2017-11-01

    In typical processes that convert cellulosic biomass into ethanol fuel, solubilization of the biomass is carried out by saccharolytic enzymes; however, these enzymes require an expensive pretreatment step to make the biomass accessible for solubilization (and subsequent fermentation). We have proposed a potentially-less-expensive approach using the bacterium Clostridium thermocellum, which can initiate fermentation without pretreatment. Moreover, we have proposed a ``cotreatment'' process, in which fermentation and mechanical milling occur alternately so as to achieve the highest ethanol yield for the least milling energy input. In order to inform the energetic requirements of cotreatment, we experimentally characterized the rheological properties of corn stover slurries at various stages of fermentation. Results show that a corn stover slurry is a yield stress fluid, with shear thinning behavior well described by a power law model. Viscosity decreases dramatically upon fermentation, controlling for variables such as solids concentration and particle size distribution. To the authors' knowledge, this is the first study to characterize the changes in the physical properties of biomass during fermentation by a thermophilic bacterium.

  18. Modeling cereal starch hydrolysis during simultaneous saccharification and lactic acid fermentation; case of a sorghum-based fermented beverage, gowé.

    Science.gov (United States)

    Mestres, Christian; Bettencourt, Munanga de J C; Loiseau, Gérard; Matignon, Brigitte; Grabulos, Joël; Achir, Nawel

    2017-10-01

    Gowé is an acidic beverage obtained after simultaneous saccharification and fermentation (SSF) of sorghum. A previous paper focused on modeling the growth of lactic acid bacteria during gowé processing. This paper focuses on modeling starch amylolysis to build an aggregated SSF model. The activity of α-amylase was modeled as a function of temperature and pH, and the hydrolysis rates of both native and soluble starch were modeled via a Michaelis-Menten equation taking into account the maltose and glucose inhibition constants. The robustness of the parameter estimators was ensured by step by step identification in sets of experiments conducted with different proportions of native and gelatinized starch by modifying the pre-cooking temperature. The aggregated model was validated on experimental data and showed that both the pre-cooking and fermentation parameters, particularly temperature, are significant levers for controlling not only acid and sugar contents but also the expected viscosity of the final product. This generic approach could be used as a tool to optimize the sanitary and sensory quality of fermentation of other starchy products. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. PERUBAHAN KOMPONEN VOLATIL SELAMA FERMENTASI KECAP [Change Volatile Components During Soy Sauce Fermentation

    Directory of Open Access Journals (Sweden)

    Anton Apriyantono1

    2004-08-01

    Full Text Available A study has been conducted to investigate changes of volatile components during soy sauce fermentation. During the fermentation, many volatile components produced may contribute to soy sauce flavor. THe volatile identified by GC-MS werw classified into hydrocarbon (15, alcohol (15, aldehyde (14, ester (14, ketone (9, benzene derivative (11, fatty acid (9, furan (5, terpenoid (18, pyrazine (3, thiazole (1, pyridine (1 and sulfur containing compound (2.Concentration of compounds found in almost all fermentation steps, such as hexanal and benzaldehyde did. These compounds may be derived from raw soybean, since they were all present in raw soybean and their concentration did not change during fermentation. Concentration of palmitic acid and benzeneacetaldehyde, in general, increased during all fermentation steps. They are probably derived from lipid degradation or microorganism activities. Concentrations of some fatty acids, esters and hydrocarbons, such as linoleic acid, methyl palmitate and heptadecane increased during salt fermentation only. Concentration of some other compounds, such as 2,4 decadienal decreased or undetected during fermentation.The absence of some volatile compounds, e.g. (E-nerolidol and (E,E-famesol in boiled soybean which were previously present in raw soybean may be due to evaporation of these compounds during boiling. Some volatile compounds such as, methyl heptadecanoate and few aromatic alcohols are likely derived from Aspergillus sojae, since these compounds were identified only in 0 day koji

  20. The dark universe dark matter and dark energy

    CERN Multimedia

    CERN. Geneva

    2008-01-01

    According to the standard cosmological model, 95% of the present mass density of the universe is dark: roughly 70% of the total in the form of dark energy and 25% in the form of dark matter. In a series of four lectures, I will begin by presenting a brief review of cosmology, and then I will review the observational evidence for dark matter and dark energy. I will discuss some of the proposals for dark matter and dark energy, and connect them to high-energy physics. I will also present an overview of an observational program to quantify the properties of dark energy.

  1. Physiological and fermentation properties of Bacillus coagulans and a mutant lacking fermentative lactate dehydrogenase activity.

    Science.gov (United States)

    Su, Yue; Rhee, Mun Su; Ingram, Lonnie O; Shanmugam, K T

    2011-03-01

    Bacillus coagulans, a sporogenic lactic acid bacterium, grows optimally at 50-55 °C and produces lactic acid as the primary fermentation product from both hexoses and pentoses. The amount of fungal cellulases required for simultaneous saccharification and fermentation (SSF) at 55 °C was previously reported to be three to four times lower than for SSF at the optimum growth temperature for Saccharomyces cerevisiae of 35 °C. An ethanologenic B. coagulans is expected to lower the cellulase loading and production cost of cellulosic ethanol due to SSF at 55 °C. As a first step towards developing B. coagulans as an ethanologenic microbial biocatalyst, activity of the primary fermentation enzyme L-lactate dehydrogenase was removed by mutation (strain Suy27). Strain Suy27 produced ethanol as the main fermentation product from glucose during growth at pH 7.0 (0.33 g ethanol per g glucose fermented). Pyruvate dehydrogenase (PDH) and alcohol dehydrogenase (ADH) acting in series contributed to about 55% of the ethanol produced by this mutant while pyruvate formate lyase and ADH were responsible for the remainder. Due to the absence of PDH activity in B. coagulans during fermentative growth at pH 5.0, the l-ldh mutant failed to grow anaerobically at pH 5.0. Strain Suy27-13, a derivative of the l-ldh mutant strain Suy27, that produced PDH activity during anaerobic growth at pH 5.0 grew at this pH and also produced ethanol as the fermentation product (0.39 g per g glucose). These results show that construction of an ethanologenic B. coagulans requires optimal expression of PDH activity in addition to the removal of the LDH activity to support growth and ethanol production.

  2. Piezo-Catalytic Effect on the Enhancement of the Ultra-High Degradation Activity in the Dark by Single- and Few-Layers MoS2 Nanoflowers.

    Science.gov (United States)

    Wu, Jyh Ming; Chang, Wei En; Chang, Yu Ting; Chang, Chih-Kai

    2016-05-01

    Single- and few-layer MoS2 nanoflowers are first discovered to have a piezo-catalyst effect, exhibiting an ultra-high degradation activity in the dark by introducing external mechanical strains. The degradation ratio of the Rhodamine-B dye solution reaches 93% within 60 s under ultrasonic-wave assistance in the dark. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Special Beer obtained by Synchronous Alcoholic Fermentation of Two Different Origin Substrates

    Directory of Open Access Journals (Sweden)

    Elena MUDURA

    2016-11-01

    Full Text Available Beer is the most consumed alcoholic beverage worldwide. Both beer and wine are  recognized since ancient times for their health benefits. Nowadays, these beverages are consumed for its sensory, social interaction, and recently even in culinary dishes. In addition, studies showed the benefits of beer moderate consumption on health. Beer is a low-alcohol beverage and also presents many nutritional properties outlined by its nutritional content rich in vitamins, minerals and antioxidants that come from the raw material (malt and hop. Wishing to attract as many niches of consumers, brewers tend to produce every year new and innovative beers. The purpose of this study was to develop the technology for an innovative special beer. The synchronous alcoholic fermentation of two different origin substrates – wort and grape must - was monitored and their composition was assessed in order to obtain special beer with superior sensory properties. Technological process was developed in the Winery Pilot Station of the UASVM Cluj-Napoca. Special beer was obtained by alcoholic fermentation of hopped dark wort with grape must from the autochthonous Feteasca neagra grapes variety. Second fermentation process was followed by the maturation (3 weeks at 5oC in order to harmonize sensory qualities. The entire process was monitored considering fermentation and final products physicochemical parameters. The optimized ratio of the two fermentation substrates was of 2.5:3 on primary raw materials – beer wort and grapes must. The process was monitored on optimizing the fermentation process. The best fermentation yield was obtained when lower fermentation extracts were used. This study demonstrated that the simultaneous fermentation of the two substrates with different glucidic origin may proceed under controlled conditions and may be carried out so as to obtain the desired fermentation products with improved sensorial properties and increased health benefits.

  4. Oxygen and diverse nutrients influence the water kefir fermentation process.

    Science.gov (United States)

    Laureys, David; Aerts, Maarten; Vandamme, Peter; De Vuyst, Luc

    2018-08-01

    Eight water kefir fermentation series differing in the presence of oxygen, the nutrient concentration, and the nutrient source were studied during eight consecutive backslopping steps. The presence of oxygen allowed the proliferation of acetic acid bacteria, resulting in high concentrations of acetic acid, and decreased the relative abundance of Bifidobacterium aquikefiri. Low nutrient concentrations resulted in slow water kefir fermentation and high pH values, which allowed the growth of Comamonas testosteroni/thiooxydans. Further, low nutrient concentrations favored the growth of Lactobacillus hilgardii and Dekkera bruxellensis, whereas high nutrient concentrations favored the growth of Lactobacillus nagelii and Saccharomyces cerevisiae. Dried figs, dried apricots, and raisins resulted in stable water kefir fermentation. Water kefir fermentation with dried apricots resulted in the highest pH and water kefir grain growth, whereas that with raisins resulted in the lowest pH and water kefir grain growth. Further, water kefir fermentation with raisins resembled fermentations with low nutrient concentrations, that with dried apricots resembled fermentations with normal nutrient concentrations, and that with fresh figs or a mixture of yeast extract and peptone resembled fermentations with high nutrient concentrations. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Effect of light intensity and initial pH during hydrogen production by an integrated dark and photofermentation process

    Energy Technology Data Exchange (ETDEWEB)

    Nath, Kaushik [Department of Chemical Engineering, GH Patel College of Engineering and Technology, Vallabh Vidyanagar 388 120, Gujarat (India); Das, Debabrata [Fermentation Technology Laboratory, Department of Biotechnology, Indian Institute of Technology, Kharagpur 721302 (India)

    2009-09-15

    Photofermentation was carried out with the spent fermentation broth obtained from the anaerobic dark fermentation in a two-stage process. For the first stage, i.e. dark fermentation Enterobacter cloacae DM 11 was used as hydrogen producing microorganism. For photofermentation Rhodobacter sphaeroides O.U. 001, a photo-heterotrophic purple non-sulfur bacterium, was used. pH study revealed that cumulative hydrogen production was maximum at initial medium pH of 7.0 {+-} 0.2. Biomass yield was also high at the vicinity of pH 7.0 and it decreased as the pH increased from 7.0 to 8.0. Increased light intensity resulted in an increase in the total volume of hydrogen evolved and also hydrogen production rate. However, light conversion efficiency decreased by increasing light intensity. A four-fold increase in light intensity resulted in a three-fold decrease in light conversion efficiency although the cumulative volume of hydrogen gas production increased. It was observed that only a maximum of 0.51% light conversion efficiency could be achieved but at the expense of very low light intensity of 2500 lux (3.75 W m{sup -2}). (author)

  6. Introduction to fermentation technology. Einfuehrung in die Fermentationstechnik

    Energy Technology Data Exchange (ETDEWEB)

    Muttzall, K [Karlsruhe Univ. (T.H.) (Germany). Fakultaet fuer Chemieingenieurwesen

    1993-01-01

    The book is an introduction to industrial fermentation technology, e.g. biological processes for producing ethanol, baker's yeast, single-cell protein, and penicillin. In spite of all technical process, it is still impossible to describe all details of the behaviour of living cells. The textbook gives an outline of the cost and economic efficiency of fermentation processes. (EF)

  7. Multi-stage continuous alcohol fermentation with cane molasses

    Energy Technology Data Exchange (ETDEWEB)

    Chu, C J; Chiou, C J; Ng, A K; Lin, T C; Hwang, E C; Rao, C H

    1970-01-01

    It was reported that 6 to 7% ethanol was produced by single-stage continuous 12-hour cycle fermentation of molasses containing 12% sugar using a new strain, Saccharomyces formensensis, isolated from a stock culture. A higher yield of ethanol was obtained from 2-stage and 3-stage continuous fermentation of molasses containing more sugar at 24- and 36-hour cycles, respectively. In the 2-stage 24-hour cycle continuous fermentation of molasses containing 15% sugar with an agitation speed 300 rpm, 9.2% ethanol resulted. Only 3% sugar remained unconsumed. In the 3-stage 36-hour cycle continuous fermentation of molasses containing 15% sugar with 300 rpm agitation, 12.5% ethanol resulted.

  8. Out of the picture: a study of family drawings by children from step-, single-parent, and non-step families.

    Science.gov (United States)

    Dunn, Judy; O'Connor, Thomas G; Levy, Irit

    2002-12-01

    Investigated the family drawings of 180 children ages 5 to 7 years in various family settings, including stepfather, single-parent, complex stepfamilies, and 2-parent control families. The relations of family type and biological relatedness to omission of family members and grouping of parents were examined. Children from step- and single-parent families were more likely to exclude family members than children from "control" non-step families, and exclusion was predicted from biological relatedness. Children who were biologically related to both resident parents were also more likely to group their parents together. Omission of family members was found to be associated with children's adjustment (specifically more externalizing and internalizing behavior) as reported by teachers and parents. The results indicate that biological relatedness is a salient aspect of very young children's representations of their families. The association between adjustment and exclusion of family members and grouping of parents indicates that family drawings may be useful research and clinical tools, when used in combination with other methods of assessment.

  9. Reducing the Bitterness of Tuna (Euthynnus pelamis) Dark Meat with Lactobacillus casei subsp. casei ATCC 393

    OpenAIRE

    Ernani S. Sant’Anna; Luiz H. Beirão; Fabiano Cleber Bertoldi

    2004-01-01

    During the process of canning tuna fish, considerable amounts of dark tuna meat are left over because of its bitterness, which are then used in the production of animal food. Fermentation with Lactobacillus casei subsp. casei ATCC 393 was used as an alternative to reduce this bitter taste. Samples of meat were prepared, vacuum packed and then stored at –18 °C. The frozen dark meat was used immediately after defrosting and the experiment was carried out with 2 and 4 % of NaCl with the addition...

  10. Clustering properties of dynamical dark energy models

    International Nuclear Information System (INIS)

    Avelino, P. P.; Beca, L. M. G.; Martins, C. J. A. P.

    2008-01-01

    We provide a generic but physically clear discussion of the clustering properties of dark energy models. We explicitly show that in quintessence-type models the dark energy fluctuations, on scales smaller than the Hubble radius, are of the order of the perturbations to the Newtonian gravitational potential, hence necessarily small on cosmological scales. Moreover, comparable fluctuations are associated with different gauge choices. We also demonstrate that the often used homogeneous approximation is unrealistic, and that the so-called dark energy mutation is a trivial artifact of an effective, single fluid description. Finally, we discuss the particular case where the dark energy fluid is nonminimally coupled to dark matter

  11. Biohythane system using two steps of POME fermentation process for supplying electrical energi : economic evaluation

    Science.gov (United States)

    Zuldian, P.; Hastuti, Z. D.; Murti, S. D. S.; Adiarso

    2018-03-01

    Indonesia as the largest producer of palm oil in the world has the prospective to generate additional benefits such as electricity by utilizing Palm Oil Mill Effluent (POME). The high Chemical Oxygen Demand (COD) content of 35,000 ppm POME is a great potential for conversion to hydrogen and methane through a fermentation process. In this study, two stages of fermentation using a microbial consortium have been performed in the 1 m3 BioHythane reactor system to produce biohydrogen and biomethane. After two-stage fermentation process for 24 hours in this system, the microbial consortium succeeds in producing biohydrogen and biomethane of 32 and 60 vol. %, respectively. This gas product after the purification process could be converted to electricity to be 0.02 and 0.75 kWe, respectively. Furthermore, as result of economic calculation analysis, this biohythane system showed up the value of Capital Expenditures (CAPEX) of US 26,39540 and Operating Expenses (OPEX) of US 14,712 per year, and resulted total generated electricity cost of US 2.478 / kWh.

  12. Capturing prokaryotic dark matter genomes.

    Science.gov (United States)

    Gasc, Cyrielle; Ribière, Céline; Parisot, Nicolas; Beugnot, Réjane; Defois, Clémence; Petit-Biderre, Corinne; Boucher, Delphine; Peyretaillade, Eric; Peyret, Pierre

    2015-12-01

    Prokaryotes are the most diverse and abundant cellular life forms on Earth. Most of them, identified by indirect molecular approaches, belong to microbial dark matter. The advent of metagenomic and single-cell genomic approaches has highlighted the metabolic capabilities of numerous members of this dark matter through genome reconstruction. Thus, linking functions back to the species has revolutionized our understanding of how ecosystem function is sustained by the microbial world. This review will present discoveries acquired through the illumination of prokaryotic dark matter genomes by these innovative approaches. Copyright © 2015 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  13. Applying meta-pathway analyses through metagenomics to identify the functional properties of the major bacterial communities of a single spontaneous cocoa bean fermentation process sample.

    Science.gov (United States)

    Illeghems, Koen; Weckx, Stefan; De Vuyst, Luc

    2015-09-01

    A high-resolution functional metagenomic analysis of a representative single sample of a Brazilian spontaneous cocoa bean fermentation process was carried out to gain insight into its bacterial community functioning. By reconstruction of microbial meta-pathways based on metagenomic data, the current knowledge about the metabolic capabilities of bacterial members involved in the cocoa bean fermentation ecosystem was extended. Functional meta-pathway analysis revealed the distribution of the metabolic pathways between the bacterial members involved. The metabolic capabilities of the lactic acid bacteria present were most associated with the heterolactic fermentation and citrate assimilation pathways. The role of Enterobacteriaceae in the conversion of substrates was shown through the use of the mixed-acid fermentation and methylglyoxal detoxification pathways. Furthermore, several other potential functional roles for Enterobacteriaceae were indicated, such as pectinolysis and citrate assimilation. Concerning acetic acid bacteria, metabolic pathways were partially reconstructed, in particular those related to responses toward stress, explaining their metabolic activities during cocoa bean fermentation processes. Further, the in-depth metagenomic analysis unveiled functionalities involved in bacterial competitiveness, such as the occurrence of CRISPRs and potential bacteriocin production. Finally, comparative analysis of the metagenomic data with bacterial genomes of cocoa bean fermentation isolates revealed the applicability of the selected strains as functional starter cultures. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Application of forward osmosis technology in crude glycerol fermentation biorefinery-potential and challenges

    DEFF Research Database (Denmark)

    Kalafatakis, S.; Braekevelt, S.; Lymperatou, A.

    2018-01-01

    feedstock, without the need for an energy-intensive regeneration step (e.g. RO), has been investigated. Butanol production during crude glycerol fermentation by Clostridium pasteurianum, has been selected as a model process and the effect of cross-flow velocity and the dilution of draw solution on the water...... flux during short-term experiments (200 min), were investigated. Statistical analysis revealed that the dilution of the draw solution is the most influential factor for the water flux. Subsequent modelling of an integrated FO-fermentation process, showed that water recoveries could lead to substantial...... extensively studied; however, regeneration of the draw solution (thereby generating clean water) requires application of an energy-intensive process step like reverse osmosis (RO). In this study, the potential of applying FO for direct water recirculation from diluted fermentation effluent to concentrated...

  15. Two-step single slope/SAR ADC with error correction for CMOS image sensor.

    Science.gov (United States)

    Tang, Fang; Bermak, Amine; Amira, Abbes; Amor Benammar, Mohieddine; He, Debiao; Zhao, Xiaojin

    2014-01-01

    Conventional two-step ADC for CMOS image sensor requires full resolution noise performance in the first stage single slope ADC, leading to high power consumption and large chip area. This paper presents an 11-bit two-step single slope/successive approximation register (SAR) ADC scheme for CMOS image sensor applications. The first stage single slope ADC generates a 3-bit data and 1 redundant bit. The redundant bit is combined with the following 8-bit SAR ADC output code using a proposed error correction algorithm. Instead of requiring full resolution noise performance, the first stage single slope circuit of the proposed ADC can tolerate up to 3.125% quantization noise. With the proposed error correction mechanism, the power consumption and chip area of the single slope ADC are significantly reduced. The prototype ADC is fabricated using 0.18 μ m CMOS technology. The chip area of the proposed ADC is 7 μ m × 500 μ m. The measurement results show that the energy efficiency figure-of-merit (FOM) of the proposed ADC core is only 125 pJ/sample under 1.4 V power supply and the chip area efficiency is 84 k  μ m(2) · cycles/sample.

  16. Two-Step Single Slope/SAR ADC with Error Correction for CMOS Image Sensor

    Directory of Open Access Journals (Sweden)

    Fang Tang

    2014-01-01

    Full Text Available Conventional two-step ADC for CMOS image sensor requires full resolution noise performance in the first stage single slope ADC, leading to high power consumption and large chip area. This paper presents an 11-bit two-step single slope/successive approximation register (SAR ADC scheme for CMOS image sensor applications. The first stage single slope ADC generates a 3-bit data and 1 redundant bit. The redundant bit is combined with the following 8-bit SAR ADC output code using a proposed error correction algorithm. Instead of requiring full resolution noise performance, the first stage single slope circuit of the proposed ADC can tolerate up to 3.125% quantization noise. With the proposed error correction mechanism, the power consumption and chip area of the single slope ADC are significantly reduced. The prototype ADC is fabricated using 0.18 μm CMOS technology. The chip area of the proposed ADC is 7 μm × 500 μm. The measurement results show that the energy efficiency figure-of-merit (FOM of the proposed ADC core is only 125 pJ/sample under 1.4 V power supply and the chip area efficiency is 84 k μm2·cycles/sample.

  17. Modeling single-file diffusion with step fractional Brownian motion and a generalized fractional Langevin equation

    International Nuclear Information System (INIS)

    Lim, S C; Teo, L P

    2009-01-01

    Single-file diffusion behaves as normal diffusion at small time and as subdiffusion at large time. These properties can be described in terms of fractional Brownian motion with variable Hurst exponent or multifractional Brownian motion. We introduce a new stochastic process called Riemann–Liouville step fractional Brownian motion which can be regarded as a special case of multifractional Brownian motion with a step function type of Hurst exponent tailored for single-file diffusion. Such a step fractional Brownian motion can be obtained as a solution of the fractional Langevin equation with zero damping. Various kinds of fractional Langevin equations and their generalizations are then considered in order to decide whether their solutions provide the correct description of the long and short time behaviors of single-file diffusion. The cases where the dissipative memory kernel is a Dirac delta function, a power-law function and a combination of these functions are studied in detail. In addition to the case where the short time behavior of single-file diffusion behaves as normal diffusion, we also consider the possibility of a process that begins as ballistic motion

  18. Dispersed single-phase-step Michelson interferometer for Doppler imaging using sunlight.

    Science.gov (United States)

    Wan, Xiaoke; Ge, Jian

    2012-09-15

    A Michelson interferometer is dispersed with a fiber array-fed spectrograph, providing 59 Doppler sensing channels using sunlight in the 510-570 nm wavelength region. The interferometer operates at a single-phase-step mode, which is particularly advantageous in multiplexing and data processing compared to the phase-stepping mode of other interferometer spectrometer instruments. Spectral templates are prepared using a standard solar spectrum and simulated interferometer modulations, such that the correlation function with a measured 1D spectrum determines the Doppler shift. Doppler imaging of a rotating cylinder is demonstrated. The average Doppler sensitivity is ~12 m/s, with some channels reaching ~5 m/s.

  19. Expression of three Trichoderma reesei cellulase genes in Saccharomyces pastorianus for the development of a two-step process of hydrolysis and fermentation of cellulose.

    Science.gov (United States)

    Fitzpatrick, J; Kricka, W; James, T C; Bond, U

    2014-07-01

    To compare the production of recombinant cellulase enzymes in two Saccharomyces species so as to ascertain the most suitable heterologous host for the degradation of cellulose-based biomass and its conversion into bioethanol. cDNA copies of genes representing the three major classes of cellulases (Endoglucanases, Cellobiohydrolases and β-glucosidases) from Trichoderma reesei were expressed in Saccharomyces pastorianus and Saccharomyces cerevisiae. The recombinant enzymes were secreted by the yeast hosts into the medium and were shown to act in synergy to hydrolyse cellulose. The conditions required to achieve maximum release of glucose from cellulose by the recombinant enzymes were defined and the activity of the recombinant enzymes was compared to a commercial cocktail of T. reesei cellulases. We demonstrate that significantly higher levels of cellulase activity were achieved by expression of the genes in S. pastorianus compared to S. cerevisiae. Hydrolysis of cellulose by the combined activity of the recombinant enzymes was significantly better at 50°C than at 30°C, the temperature used for mesophilic yeast fermentations, reflecting the known temperature profiles of the native enzymes. The results demonstrate that host choice is important for the heterologous production of cellulases. On the basis of the low activity of the T. reesei recombinant enzymes at fermentation temperatures, we propose a two-step process for the hydrolysis of cellulose and its fermentation into alcohol using cellulases produced in situ. © 2014 The Society for Applied Microbiology.

  20. Dark energy and dark matter

    International Nuclear Information System (INIS)

    Comelli, D.; Pietroni, M.; Riotto, A.

    2003-01-01

    It is a puzzle why the densities of dark matter and dark energy are nearly equal today when they scale so differently during the expansion of the universe. This conundrum may be solved if there is a coupling between the two dark sectors. In this Letter we assume that dark matter is made of cold relics with masses depending exponentially on the scalar field associated to dark energy. Since the dynamics of the system is dominated by an attractor solution, the dark matter particle mass is forced to change with time as to ensure that the ratio between the energy densities of dark matter and dark energy become a constant at late times and one readily realizes that the present-day dark matter abundance is not very sensitive to its value when dark matter particles decouple from the thermal bath. We show that the dependence of the present abundance of cold dark matter on the parameters of the model differs drastically from the familiar results where no connection between dark energy and dark matter is present. In particular, we analyze the case in which the cold dark matter particle is the lightest supersymmetric particle

  1. Comparison on genomic predictions using GBLUP models and two single-step blending methods with different relationship matrices in the Nordic Holstein population

    DEFF Research Database (Denmark)

    Gao, Hongding; Christensen, Ole Fredslund; Madsen, Per

    2012-01-01

    Background A single-step blending approach allows genomic prediction using information of genotyped and non-genotyped animals simultaneously. However, the combined relationship matrix in a single-step method may need to be adjusted because marker-based and pedigree-based relationship matrices may...... not be on the same scale. The same may apply when a GBLUP model includes both genomic breeding values and residual polygenic effects. The objective of this study was to compare single-step blending methods and GBLUP methods with and without adjustment of the genomic relationship matrix for genomic prediction of 16......) a simple GBLUP method, 2) a GBLUP method with a polygenic effect, 3) an adjusted GBLUP method with a polygenic effect, 4) a single-step blending method, and 5) an adjusted single-step blending method. In the adjusted GBLUP and single-step methods, the genomic relationship matrix was adjusted...

  2. Isolation of lactic acid bacteria from kantong, a condiment produced from the fermentation of kapok (Ceiba pentandra) seeds and cassava (Manihot esculentum) flour

    DEFF Research Database (Denmark)

    Kpikpi, Elmer Nayra; Glover, Richard L.K.; Dzogbefia, Victoria Pearl

    2010-01-01

    in the initial pH from 6.9 before fermentation to 4.9 after fermentation with change in color of the product from grayish to dark brown as well as the development of a more desirable flavor. Lactic acid bacteria (LAB) with counts between 106 and 109 cfu/g were isolated on MRS agar and subjected to Gram, catalase...

  3. Dynamic modeling and analyses of simultaneous saccharification and fermentation process to produce bio-ethanol from rice straw.

    Science.gov (United States)

    Ko, Jordon; Su, Wen-Jun; Chien, I-Lung; Chang, Der-Ming; Chou, Sheng-Hsin; Zhan, Rui-Yu

    2010-02-01

    The rice straw, an agricultural waste from Asians' main provision, was collected as feedstock to convert cellulose into ethanol through the enzymatic hydrolysis and followed by the fermentation process. When the two process steps are performed sequentially, it is referred to as separate hydrolysis and fermentation (SHF). The steps can also be performed simultaneously, i.e., simultaneous saccharification and fermentation (SSF). In this research, the kinetic model parameters of the cellulose saccharification process step using the rice straw as feedstock is obtained from real experimental data of cellulase hydrolysis. Furthermore, this model can be combined with a fermentation model at high glucose and ethanol concentrations to form a SSF model. The fermentation model is based on cybernetic approach from a paper in the literature with an extension of including both the glucose and ethanol inhibition terms to approach more to the actual plants. Dynamic effects of the operating variables in the enzymatic hydrolysis and the fermentation models will be analyzed. The operation of the SSF process will be compared to the SHF process. It is shown that the SSF process is better in reducing the processing time when the product (ethanol) concentration is high. The means to improve the productivity of the overall SSF process, by properly using aeration during the batch operation will also be discussed.

  4. Gravitational wave signals of electroweak phase transition triggered by dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Chao, Wei [Center for Advanced Quantum Studies, Department of Physics, Beijing Normal University, Beijing, 100875 (China); Guo, Huai-Ke; Shu, Jing, E-mail: chaowei@bnu.edu.cn, E-mail: ghk@itp.ac.cn, E-mail: jshu@itp.ac.cn [CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190 (China)

    2017-09-01

    We study in this work a scenario that the universe undergoes a two step phase transition with the first step happened to the dark matter sector and the second step being the transition between the dark matter and the electroweak vacuums, where the barrier between the two vacuums, that is necessary for a strongly first order electroweak phase transition (EWPT) as required by the electroweak baryogenesis mechanism, arises at the tree-level. We illustrate this idea by working with the standard model (SM) augmented by a scalar singlet dark matter and an extra scalar singlet which mixes with the SM Higgs boson. We study the conditions for such pattern of phase transition to occur and especially for the strongly first order EWPT to take place, as well as its compatibility with the basic requirements of a successful dark matter, such as observed relic density and constraints of direct detections. We further explore the discovery possibility of this pattern EWPT by searching for the gravitational waves generated during this process in spaced based interferometer, by showing a representative benchmark point of the parameter space that the generated gravitational waves fall within the sensitivity of eLISA, DECIGO and BBO.

  5. Yeast species associated with the spontaneous fermentation of cider.

    Science.gov (United States)

    Valles, Belén Suárez; Bedriñana, Rosa Pando; Tascón, Norman Fernández; Simón, Amparo Querol; Madrera, Roberto Rodríguez

    2007-02-01

    This paper reports the influence of cider-making technology (pneumatic and traditional pressing) on the dynamics of wild yeast populations. Yeast colonies isolated from apple juice before and throughout fermentation at a cider cellar of Asturias (Spain), during two consecutive years were studied. The yeast strains were identified by restriction fragment length polymorphism analysis of the 5.8S rRNA gene and the two flanking internal transcribed sequences (ITS). The musts obtained by pneumatic pressing were dominated by non-Saccharomyces yeasts (Hanseniaspora genus and Metschnikowia pulcherrima) whereas in the apple juices obtained by traditional pressing Saccharomyces together with non-Saccharomyces, were always present. The species Saccharomyces present were S. cerevisiae and S. bayanus. Apparently S. bayanus, was the predominant species at the beginning and the middle fermentation steps of the fermentation process, reaching a percentage of isolation between 33% and 41%, whereas S. cerevisiae took over the process in the final stages of fermentation. During the 2001 harvest, with independence of cider-making technology, the species Hanseniaspora valbyensis was always isolated at the end of fermentations.

  6. Accelerated fermentation of cheese whey. Developing the system

    Energy Technology Data Exchange (ETDEWEB)

    Bechtle, R M; Claydon, T J

    1971-01-01

    A system for accelerated fermentation of cheese wheys requires a mixed yeast and lactose-fermenting bacterial culture. The air flow required (110 ml/min/1./1% of lactose) was proportional to the concentration of wheys in the media. Yeast cell-mass production by accelerated fermentation was equal to or greater than the whey concentration factor when compared with yeast production of single yeast strain production on unconcentrated wheys. Generally, on triple strength wheys, yeast production was approximately 1 lb/gallon of medium. Fermentation media formulas were developed with whey analysis, shake culture, and fermentor trials. The formula used with a specific whey must be adequate to supplement the mineral deficiencies in the whey and to provide trace elements and nutrients essential for maximum microbial growth. High-rate aeration was required for both respiration of the microbial culture and to purge the ferment of volatile metabolites, whose presence depressed microbial cell synthesis.

  7. Biohydrogen production by anaerobic fermentation of waste. Final project report

    Energy Technology Data Exchange (ETDEWEB)

    Karakashev, D.; Angelidaki, I.

    2009-01-15

    The objective of this project was to investigate and increase dark fermentative hydrogen production from organic wastes by optimizing important process parameters (reactor type, pH, temperature, organic loading, retention time, inoculation strategy, microbial composition). Labscale experiments were carried out at the Department of Environmental Engineering, Technical University of Denmark. A two steps process for hydrogen production in the first step and methane production in the second step in serial connected fully mixed reactors was developed and could successfully convert organic matter to approx. 20-25 % hydrogen and 15-80 % to methane. Sparging with methane produced in the second stage could significantly increase the hydrogen production. Additionally it was shown that upflow anaerobic sludge blanket (UASB) reactor system was very promising for high effective biohydrogen production from glucose at 70 deg C. Glucose-fed biofilm reactors filled with plastic carriers demonstrated high efficient extreme thermophilic biohydrogen production with mixed cultures. Repeated batch cultivations via exposure of the cultures to increased concentrations of household solid waste was found to be most useful method to enhance hydrogen production rate and reduce lag phase of extreme thermophilic fermentation process. Low level of pH (5.5) at 3-day HRT was enough to inhibit completely the methanogenesis and resulted in stable extreme thermophilic hydrogen production. Homoacetogenisis was proven to be an alternative competitor to biohydrogen production from organic acids under thermophilic (55 deg. C) conditions. With respect to microbiology, 16S rRNA targeted oligonucleotide probes were designed to monitor the spatial distribution of hydrogen producing bacteria in sludge and granules from anaerobic reactors. An extreme thermophilic (70 deg. C), strict anaerobic, mixed microbial culture with high hydrogen producing potential was enriched from digested household waste. Culture

  8. Comparison of single-entry and double-entry two-step couple screening for cystic fibrosis carriers

    NARCIS (Netherlands)

    tenKate, LP; Verheij, JBGM; Wildhagen, MF; Hilderink, HBM; Kooij, L; Verzijl, JG; Habbema, JDF

    1996-01-01

    Both single-entry two-step (SETS) couple screening and double-entry two-step (DETS) couple screening have been recommended as methods to screen for cystic fibrosis gene carriers. In this paper we compare the expected results from both types of screening. In general, DETS results in a higher

  9. A systematic effective operator analysis of semi-annihilating dark matter

    International Nuclear Information System (INIS)

    Cai, Yi; Spray, Andrew

    2017-01-01

    Semi-annihilation is a generic feature of dark matter theories stabilized by symmetries larger than a ℤ 2 . It contributes to thermal freeze out, but is irrelevant for direct and collider searches. This allows semi-annihilating dark matter to avoid those limits in a natural way. We use an effective operator approach to make the first model-independent study of the associated phenomenology. We enumerate all possible operators that contribute to 2→2 semi-annihilation up to dimension 6, plus leading terms at dimension 7. We find that when the only light states charged under the dark symmetry are dark matter, the model space is highly constrained. Only fifteen operators exist, and just two for single-component dark sectors. If there can be additional light, unstable “dark partner” states the possible phenomenology greatly increases, at the cost of additional model dependence in the dark partner decay modes. We also derive the irreducible constraints on models with single-component dark matter from cosmic ray searches and astrophysical observations. We find that for semi-annihilation to electrons and light quarks, the thermal relic cross sections can be excluded for dark matter masses up to 100 GeV. However, significant model space for semi-annihilating dark matter remains.

  10. Weak lensing: Dark Matter, Dark Energy and Dark Gravity

    International Nuclear Information System (INIS)

    Heavens, Alan

    2009-01-01

    In this non-specialist review I look at how weak lensing can provide information on the dark sector of the Universe. The review concentrates on what can be learned about Dark Matter, Dark Energy and Dark Gravity, and why. On Dark Matter, results on the confrontation of theoretical profiles with observation are reviewed, and measurements of neutrino masses discussed. On Dark Energy, the interest is whether this could be Einstein's cosmological constant, and prospects for high-precision studies of the equation of state are considered. On Dark Gravity, we consider the exciting prospects for future weak lensing surveys to distinguish General Relativity from extra-dimensional or other gravity theories.

  11. Sterile neutrinos as dark matter

    International Nuclear Information System (INIS)

    Dodelson, S.; Widrow, L.M.

    1994-01-01

    The simplest model that can accommodate a viable nonbaryonic dark matter candidate is the standard electroweak theory with the addition of right-handed (sterile) neutrinos. We consider a single generation of neutrinos with a Dirac mass μ and a Majorana mass M for the right-handed component. If M much-gt μ (standard hot dark matter corresponds to M=0), then sterile neutrinos are produced via oscillations in the early Universe with energy density independent of M. However, M is crucial in determining the large scale structure of the Universe; for M∼100 eV, sterile neutrinos make an excellent warm dark matter candidate

  12. Image analysis and mathematical modelling for the supervision of the dough fermentation process

    Science.gov (United States)

    Zettel, Viktoria; Paquet-Durand, Olivier; Hecker, Florian; Hitzmann, Bernd

    2016-10-01

    The fermentation (proof) process of dough is one of the quality-determining steps in the production of baking goods. Beside the fluffiness, whose fundaments are built during fermentation, the flavour of the final product is influenced very much during this production stage. However, until now no on-line measurement system is available, which can supervise this important process step. In this investigation the potential of an image analysis system is evaluated, that enables the determination of the volume of fermented dough pieces. The camera is moving around the fermenting pieces and collects images from the objects by means of different angles (360° range). Using image analysis algorithms the volume increase of individual dough pieces is determined. Based on a detailed mathematical description of the volume increase, which based on the Bernoulli equation, carbon dioxide production rate of yeast cells and the diffusion processes of carbon dioxide, the fermentation process is supervised. Important process parameters, like the carbon dioxide production rate of the yeast cells and the dough viscosity can be estimated just after 300 s of proofing. The mean percentage error for forecasting the further evolution of the relative volume of the dough pieces is just 2.3 %. Therefore, a forecast of the further evolution can be performed and used for fault detection.

  13. Single-Stage Step up/down Driver for Permanent-Magnet Synchronous Machines

    Science.gov (United States)

    Chen, T. R.; Juan, Y. L.; Huang, C. Y.; Kuo, C. T.

    2017-11-01

    The two-stage circuit composed of a step up/down dc converter and a three-phase voltage source inverter is usually adopted as the electric vehicle’s motor driver. The conventional topology is more complicated. Additional power loss resulted from twice power conversion would also cause lower efficiency. A single-stage step up/down Permanent-Magnet Synchronous Motor driver for Brushless DC (BLDC) Motor is proposed in this study. The number components and circuit complexity are reduced. The low frequency six-step square-wave control is used to reduce the switching losses. In the proposed topology, only one active switch is gated with a high frequency PWM signal for adjusting the rotation speed. The rotor position signals are fed back to calculate the motor speed for digital close-loop control in a MCU. A 600W prototype circuit is constructed to drive a BLDC motor with rated speed 3000 rpm, and can control the speed of six sections.

  14. The (mis)measurement of the Dark Triad Dirty Dozen: exploitation at the core of the scale.

    Science.gov (United States)

    Kajonius, Petri J; Persson, Björn N; Rosenberg, Patricia; Garcia, Danilo

    2016-01-01

    Background. The dark side of human character has been conceptualized in the Dark Triad Model: Machiavellianism, psychopathy, and narcissism. These three dark traits are often measured using single long instruments for each one of the traits. Nevertheless, there is a necessity of short and valid personality measures in psychological research. As an independent research group, we replicated the factor structure, convergent validity and item response for one of the most recent and widely used short measures to operationalize these malevolent traits, namely, Jonason's Dark Triad Dirty Dozen. We aimed to expand the understanding of what the Dirty Dozen really captures because the mixed results on construct validity in previous research. Method. We used the largest sample to date to respond to the Dirty Dozen (N = 3,698). We firstly investigated the factor structure using Confirmatory Factor Analysis and an exploratory distribution analysis of the items in the Dirty Dozen. Secondly, using a sub-sample (n = 500) and correlation analyses, we investigated the Dirty Dozen dark traits convergent validity to Machiavellianism measured by the Mach-IV, psychopathy measured by Eysenck's Personality Questionnaire Revised, narcissism using the Narcissism Personality Inventory, and both neuroticism and extraversion from the Eysenck's questionnaire. Finally, besides these Classic Test Theory analyses, we analyzed the responses for each Dirty Dozen item using Item Response Theory (IRT). Results. The results confirmed previous findings of a bi-factor model fit: one latent core dark trait and three dark traits. All three Dirty Dozen traits had a striking bi-modal distribution, which might indicate unconcealed social undesirability with the items. The three Dirty Dozen traits did converge too, although not strongly, with the contiguous single Dark Triad scales (r between .41 and .49). The probabilities of filling out steps on the Dirty Dozen narcissism-items were much higher than on the

  15. Genome features of "Dark-fly", a Drosophila line reared long-term in a dark environment.

    Directory of Open Access Journals (Sweden)

    Minako Izutsu

    Full Text Available Organisms are remarkably adapted to diverse environments by specialized metabolisms, morphology, or behaviors. To address the molecular mechanisms underlying environmental adaptation, we have utilized a Drosophila melanogaster line, termed "Dark-fly", which has been maintained in constant dark conditions for 57 years (1400 generations. We found that Dark-fly exhibited higher fecundity in dark than in light conditions, indicating that Dark-fly possesses some traits advantageous in darkness. Using next-generation sequencing technology, we determined the whole genome sequence of Dark-fly and identified approximately 220,000 single nucleotide polymorphisms (SNPs and 4,700 insertions or deletions (InDels in the Dark-fly genome compared to the genome of the Oregon-R-S strain, a control strain. 1.8% of SNPs were classified as non-synonymous SNPs (nsSNPs: i.e., they alter the amino acid sequence of gene products. Among them, we detected 28 nonsense mutations (i.e., they produce a stop codon in the protein sequence in the Dark-fly genome. These included genes encoding an olfactory receptor and a light receptor. We also searched runs of homozygosity (ROH regions as putative regions selected during the population history, and found 21 ROH regions in the Dark-fly genome. We identified 241 genes carrying nsSNPs or InDels in the ROH regions. These include a cluster of alpha-esterase genes that are involved in detoxification processes. Furthermore, analysis of structural variants in the Dark-fly genome showed the deletion of a gene related to fatty acid metabolism. Our results revealed unique features of the Dark-fly genome and provided a list of potential candidate genes involved in environmental adaptation.

  16. Dark matter dynamics in Abell 3827: new data consistent with standard cold dark matter

    Science.gov (United States)

    Massey, Richard; Harvey, David; Liesenborgs, Jori; Richard, Johan; Stach, Stuart; Swinbank, Mark; Taylor, Peter; Williams, Liliya; Clowe, Douglas; Courbin, Frédéric; Edge, Alastair; Israel, Holger; Jauzac, Mathilde; Joseph, Rémy; Jullo, Eric; Kitching, Thomas D.; Leonard, Adrienne; Merten, Julian; Nagai, Daisuke; Nightingale, James; Robertson, Andrew; Romualdez, Luis Javier; Saha, Prasenjit; Smit, Renske; Tam, Sut-Ieng; Tittley, Eric

    2018-06-01

    We present integral field spectroscopy of galaxy cluster Abell 3827, using Atacama Large Millimetre Array (ALMA) and Very Large Telescope/Multi-Unit Spectroscopic Explorer. It reveals an unusual configuration of strong gravitational lensing in the cluster core, with at least seven lensed images of a single background spiral galaxy. Lens modelling based on Hubble Space Telescope imaging had suggested that the dark matter associated with one of the cluster's central galaxies may be offset. The new spectroscopic data enable better subtraction of foreground light, and better identification of multiple background images. The inferred distribution of dark matter is consistent with being centred on the galaxies, as expected by Λ cold dark matter. Each galaxy's dark matter also appears to be symmetric. Whilst, we do not find an offset between mass and light (suggestive of self-interacting dark matter) as previously reported, the numerical simulations that have been performed to calibrate Abell 3827 indicate that offsets and asymmetry are still worth looking for in collisions with particular geometries. Meanwhile, ALMA proves exceptionally useful for strong lens image identifications.

  17. Fermentation and antimicrobial characteristics of Lactobacillus plantarum and Candida tropicalis from Nigerian fermented maize (akamu

    Directory of Open Access Journals (Sweden)

    Patience Chisa Obinna-Echem

    2014-10-01

    Full Text Available This study investigated the ability of Lactobacillus plantarum strains (NGL5 and NGL7 and Candida tropicalis (NGY1 previously identified from akamu-a Nigerian fermented maize food with probiotic L. plantarum LpTx and Saccharomyces boulardii SB20 to ferment ground maize slurries based on pH, acidity, microbial biomass, levels of sugars and organic acids, and their antimicrobial activity against Salmonella enterica serovar Enteritidis NCTC 5188, Escherichia coli NCTC 11560, Bacillus cereus NCIMB 11925, Staphylococcus aureus NCTC 3750 and Listeria monocytogenes NCTC 7973 using an agar spot assay. L. plantarum strains either as single or mixed starter cultures with the yeasts had growth rates ≥0.15 h-1,with pH significantly (p≤0.05 decreased to ≤3.93 after 12 h and then to ≤3.52 after 72 h and lactic acid >84 mmol L-1. The yeasts had growth rates ≥0.18 h-1 but pH was ≥4.57 with lactic acid levels ≤20.23 mmol L-1 after 72 h in the single culture fermentation. There was no inhibition in modified MRS agar: 0.2% glucose and 0.2% glucose without Tween 80. Inhibition halos in MRS agar varied from 10.6 to 23.9 mm. S. bourladii was more inhibitory towards L. monocytogenes (8.6 mm and B. cereus (5.4 mm than was C. tropicalis (1.1 and 3.3 mm for L. monocytogenes NCTC 7973 and B. cereus NCIMB 11925 respectively (0.9 mm in malt extract agar. This study showed that C. tropicalis was less inhibitory to the pathogens while antimicrobial activities of the L. plantarum strains were mainly due to acidity and the L. plantarum strains either as single or mixed cultures with the yeasts demonstrated strong fermentation ability, with significant decrease in pH which is vital in the choice of starter for product safety.

  18. Corncob hydrolysate, an efficient substrate for Monascus pigment production through submerged fermentation.

    Science.gov (United States)

    Zhou, Zhongxin; Yin, Zheng; Hu, Xiaoqing

    2014-01-01

    Monascus pigment has traditionally been produced by the fermentation of Monascus using rice powder or glucose as a culture substrate. Submerged fermentation can produce stable Monascus pigment yield and control the accumulation of the by-product, citrinin, which can then be more easily removed. To reduce the cost of Monascus submerged fermentation, the feasibility of corncob hydrolysate as an alternative substrate was investigated. Results showed that, when compared with a conventional glucose medium, the corncob hydrolysate medium produced an equivalent pigment yield without stimulating citrinin accumulation. Furthermore, the corncob hydrolysate medium and cultivation conditions were optimized to enhance pigment production and decrease citrinin synthesis. When Monascus sp. was cultured under dark conditions in the presence of caprylic acid, pigment production was increased to 25.8 ± 0.8 UA500 /mL, which was higher than that achieved in a glucose medium (24.0 ± 0.9 UA500 /mL), and those obtained in previously reported Monascus submerged fermentations using the same yield unit; on the other hand, citrinin accumulation was decreased to 26.2 ± 1.9 µg/L, which was significantly lower than that generated in the glucose control (44.3 ± 2.2 µg/L) and in those previously reported fermentations. Thus, corncob hydrolysate was proved to be an efficient alternative substrate for Monascus pigment production through submerged fermentation, which showed significant advantages over a conventional glucose substrate. © 2014 International Union of Biochemistry and Molecular Biology, Inc.

  19. Influence of label information on dark chocolate acceptability.

    Science.gov (United States)

    Torres-Moreno, M; Tarrega, A; Torrescasana, E; Blanch, C

    2012-04-01

    The aim of the present work was to study how the information on product labels influences consumer expectations and their acceptance and purchase intention of dark chocolate. Six samples of dark chocolate, varying in brand (premium and store brand) and in type of product (regular dark chocolate, single cocoa origin dark chocolate and high percentage of cocoa dark chocolate), were evaluated by 109 consumers who scored their liking and purchase intention under three conditions: blind (only tasting the products), expected (observing product label information) and informed (tasting the products together with provision of the label information). In the expected condition, consumer liking was mainly affected by the brand. In the blind condition, differences in liking were due to the type of product; the samples with a high percentage of cocoa were those less preferred by consumers. Under the informed condition, liking of dark chocolates varied depending on both brand and type of product. Premium brand chocolates generated high consumer expectations of chocolate acceptability, which were fulfilled by the sensory characteristics of the products. Store brand chocolates created lower expectations, but when they were tasted they were as acceptable as premium chocolates. Claims of a high percentage of cocoa and single cocoa origin on labels did not generate higher expectations than regular dark chocolates. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Fluctuations and dark count rates in superconducting NbN single-photon detectors

    International Nuclear Information System (INIS)

    Engel, Andreas; Semenov, Alexei; Huebers, Heinz-Wilhelm; Il'in, Kostya; Siegel, Michael

    2005-01-01

    We measured the temperature- and current-dependence of dark count rates of a superconducting singlephoton detector. The detector's key element is a 84 nm wide meander strip line fabricated from a 5 nm thick NbN film. Due to its reduced dimensions various types of fluctuations can cause temporal and localized transitions into a resistive state leading to dark count events. Adopting a recent refinement of the hotspot model we achieve a satisfying description of the experimental dark count rates taking into account fluctuations of the Cooper-pair density and current-assisted unbinding of vortex-antivortex pairs. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  1. Effect of Brönsted acidic ionic liquid 1-(1-propylsulfonic)-3-methylimidazolium chloride on growth and co-fermentation of glucose, xylose and arabinose by Zymomonas mobilis AX101.

    Science.gov (United States)

    Gyamerah, M; Ampaw-Asiedu, M; Mackey, J; Menezes, B; Woldesenbet, S

    2018-06-01

    The potential of large-scale lignocellulosic biomass hydrolysis to fermentable sugars using ionic liquids has increased interest in this green chemistry route to fermentation for fuel-ethanol production. The ionic liquid 1-(1-propylsulfonic)-3-methylimidazolium chloride compared to other reported ionic liquids has the advantage of hydrolysing lignocellulosic biomass to reducing sugars at catalytic concentrations (≤0·032 mol l -1 ) in a single step. However, effects of this ionic liquid on co-fermentation of glucose, xylose and arabinose to ethanol by recombinant Zymomonas mobilisAX101 has not been studied. Authentic glucose, xylose and arabinose were used to formulate fermentation media at varying catalytic 1-(1-propylsulfonic)-3-methylimidazolium chloride concentrations for batch co-fermentation of the sugars using Z. mobilisAX101. The results showed that at 0·008, 0·016 and 0·032 mol l -1 ionic liquid in the culture medium, cell growth decreased by 10, 27 and 67% respectively compared to the control. Ethanol yields were 62·6, 61·8, 50·5 and 23·1% for the control, 0·008, 0·016 and 0·032 mol l -1 ionic liquid respectively. The results indicate that lignocellulosic biomass hydrolysed using 0·008 mol l -1 of 1-(1-propylsulfonic)-3-methylimidazolium chloride would eliminate an additional separation step and provide a ready to use fermentation substrate. This is the first reported study of the effect of the Brönsted acidic ionic liquid 1-(1-propylsulfonic)-3-methylimidazolium chloride on growth and co-fermentation of glucose, xylose and arabinose by Zymomonas mobilisAX101 in batch culture. Growth on and co-fermentation of the sugars by Z. mobilisAX 101 with no significant inhibition by the ionic liquid at the same catalytic amounts of 0·008 mol l -1 used to hydrolyse lignocellulosic biomass to reducing sugars overcome two major hurdles that adversely affect the process economics of large-scale industrial cellulosic fuel ethanol production

  2. Optimization of solid-state fermentation conditions for Trichoderma harzianum using an orthogonal test.

    Science.gov (United States)

    Zhang, J D; Yang, Q

    2015-03-13

    The aim of this study was to develop a protocol for the production of fungal bio-pesticides with high efficiency, low cost, and non-polluting fermentation, while also increasing their survival rate under field conditions. This is the first study to develop biocontrol Trichoderma harzianum transformants TS1 that are resistant to benzimidazole fungicides. Agricultural corn stover and wheat bran waste were used as a medium and inducing carbon source for solid fermentation. Spore production was observed, and the method was optimized using single-factor tests with 4 factors at 3 levels in an orthogonal experimental design to determine the optimal culture conditions for T. harzianum TS1. In this step, we determined the best conditions for fermenting the biocontrol fungi. The optimal culture conditions for T. harzianum TS1 were cultivated for 8 days, a ratio of straw to wheat bran of 1:3, ammonium persulfate as the nitrogen source, and a water content of 30 mL. Under optimal culture conditions, the sporulation of T. harzianum TS1 reached 1.49 x 10(10) CFU/g, which was 1.46-fold higher than that achieved before optimization. Increased sporulation of T. harzianum TS1 results in better utilization of space and nutrients to achieve control of plant pathogens. This method allows for the recycling of agricultural waste straw.

  3. Peyton’s four-step approach: differential effects of single instructional steps on procedural and memory performance – a clarification study

    Directory of Open Access Journals (Sweden)

    Krautter M

    2015-05-01

    Full Text Available Markus Krautter,1 Ronja Dittrich,2 Annette Safi,2 Justine Krautter,1 Imad Maatouk,2 Andreas Moeltner,2 Wolfgang Herzog,2 Christoph Nikendei2 1Department of Nephrology, 2Department of General Internal and Psychosomatic Medicine, University of Heidelberg Medical Hospital, Heidelberg, Germany Background: Although Peyton’s four-step approach is a widely used method for skills-lab training in undergraduate medical education and has been shown to be more effective than standard instruction, it is unclear whether its superiority can be attributed to a specific single step. Purpose: We conducted a randomized controlled trial to investigate the differential learning outcomes of the separate steps of Peyton’s four-step approach. Methods: Volunteer medical students were randomly assigned to four different groups. Step-1 group received Peyton’s Step 1, Step-2 group received Peyton’s Steps 1 and 2, Step-3 group received Peyton’s Steps 1, 2, and 3, and Step-3mod group received Peyton’s Steps 1 and 2, followed by a repetition of Step 2. Following the training, the first independent performance of a central venous catheter (CVC insertion using a manikin was video-recorded and scored by independent video assessors using binary checklists. The day after the training, memory performance during delayed recall was assessed with an incidental free recall test. Results: A total of 97 participants agreed to participate in the trial. There were no statistically significant group differences with regard to age, sex, completed education in a medical profession, completed medical clerkships, preliminary memory tests, or self-efficacy ratings. Regarding checklist ratings, Step-2 group showed a superior first independent performance of CVC placement compared to Step-1 group (P<0.001, and Step-3 group showed a superior performance to Step-2 group (P<0.009, while Step-2 group and Step-3mod group did not differ (P=0.055. The findings were similar in the incidental

  4. Dark matter and dark radiation

    International Nuclear Information System (INIS)

    Ackerman, Lotty; Buckley, Matthew R.; Carroll, Sean M.; Kamionkowski, Marc

    2009-01-01

    We explore the feasibility and astrophysical consequences of a new long-range U(1) gauge field ('dark electromagnetism') that couples only to dark matter, not to the standard model. The dark matter consists of an equal number of positive and negative charges under the new force, but annihilations are suppressed if the dark-matter mass is sufficiently high and the dark fine-structure constant α-circumflex is sufficiently small. The correct relic abundance can be obtained if the dark matter also couples to the conventional weak interactions, and we verify that this is consistent with particle-physics constraints. The primary limit on α-circumflex comes from the demand that the dark matter be effectively collisionless in galactic dynamics, which implies α-circumflex -3 for TeV-scale dark matter. These values are easily compatible with constraints from structure formation and primordial nucleosynthesis. We raise the prospect of interesting new plasma effects in dark-matter dynamics, which remain to be explored.

  5. One-Step Partially Purified Lipases (ScLipA and ScLipB from Schizophyllum commune UTARA1 Obtained via Solid State Fermentation and Their Applications

    Directory of Open Access Journals (Sweden)

    Yew Chee Kam

    2017-12-01

    Full Text Available Lipases with unique characteristics are of value in industrial applications, especially those targeting cost-effectiveness and less downstream processes. The aims of this research were to: (i optimize the fermentation parameters via solid state fermentation (SSF; and (ii study the performance in hydrolysis and esterification processes of the one-step partially purified Schizophyllum commune UTARA1 lipases. Lipase was produced by cultivating S. commune UTARA1 on sugarcane bagasse (SB with used cooking oil (UCO via SSF and its production was optimized using Design-Expert® 7.0.0. Fractions 30% (ScLipA and 70% (ScLipB which contained high lipase activity were obtained by stepwise (NH42SO4 precipitation. Crude fish oil, coconut oil and butter were used to investigate the lipase hydrolysis capabilities by a free glycerol assay. Results showed that ScLipA has affinities for long, medium and short chain triglycerides, as all the oils investigated were degraded, whereas ScLipB has affinities for long chain triglycerides as it only degrades crude fish oil. During esterification, ScLipA was able to synthesize trilaurin and triacetin. Conversely, ScLipB was specific towards the formation of 2-mono-olein and triacetin. From the results obtained, it was determined that ScLipA and ScLipB are sn-2 regioselective lipases. Hence, the one-step partial purification strategy proved to be feasible for partial purification of S. commune UTARA1 lipases that has potential use in industrial applications.

  6. Dynamics of quintessence models of dark energy with exponential coupling to dark matter

    International Nuclear Information System (INIS)

    Gonzalez, Tame; Leon, Genly; Quiros, Israel

    2006-01-01

    We explore quintessence models of dark energy which exhibit non-minimal coupling between the dark matter and dark energy components of the cosmic fluid. The kind of coupling chosen is inspired by scalar-tensor theories of gravity. We impose a suitable dynamics of the expansion allowing us to derive exact Friedmann-Robertson-Walker solutions once the coupling function is given as input. Self-interaction potentials of single and double exponential types emerge as a result of our choice of the coupling function. The stability and existence of the solutions are discussed in some detail. Although, in general, models with appropriate interaction between the components of the cosmic mixture are useful for handling the coincidence problem, in the present study this problem cannot be avoided due to the choice of solution generating ansatz

  7. The (mismeasurement of the Dark Triad Dirty Dozen: exploitation at the core of the scale

    Directory of Open Access Journals (Sweden)

    Petri J. Kajonius

    2016-03-01

    Full Text Available Background. The dark side of human character has been conceptualized in the Dark Triad Model: Machiavellianism, psychopathy, and narcissism. These three dark traits are often measured using single long instruments for each one of the traits. Nevertheless, there is a necessity of short and valid personality measures in psychological research. As an independent research group, we replicated the factor structure, convergent validity and item response for one of the most recent and widely used short measures to operationalize these malevolent traits, namely, Jonason’s Dark Triad Dirty Dozen. We aimed to expand the understanding of what the Dirty Dozen really captures because the mixed results on construct validity in previous research. Method. We used the largest sample to date to respond to the Dirty Dozen (N = 3,698. We firstly investigated the factor structure using Confirmatory Factor Analysis and an exploratory distribution analysis of the items in the Dirty Dozen. Secondly, using a sub-sample (n = 500 and correlation analyses, we investigated the Dirty Dozen dark traits convergent validity to Machiavellianism measured by the Mach-IV, psychopathy measured by Eysenck’s Personality Questionnaire Revised, narcissism using the Narcissism Personality Inventory, and both neuroticism and extraversion from the Eysenck’s questionnaire. Finally, besides these Classic Test Theory analyses, we analyzed the responses for each Dirty Dozen item using Item Response Theory (IRT. Results. The results confirmed previous findings of a bi-factor model fit: one latent core dark trait and three dark traits. All three Dirty Dozen traits had a striking bi-modal distribution, which might indicate unconcealed social undesirability with the items. The three Dirty Dozen traits did converge too, although not strongly, with the contiguous single Dark Triad scales (r between .41 and .49. The probabilities of filling out steps on the Dirty Dozen narcissism-items were

  8. A three-step vehicle detection framework for range estimation using a single camera

    CSIR Research Space (South Africa)

    Kanjee, R

    2015-12-01

    Full Text Available This paper proposes and validates a real-time onroad vehicle detection system, which uses a single camera for the purpose of intelligent driver assistance. A three-step vehicle detection framework is presented to detect and track the target vehicle...

  9. An integrated platform for gas-diffusion separation and electrochemical determination of ethanol on fermentation broths

    Energy Technology Data Exchange (ETDEWEB)

    Giordano, Gabriela Furlan [Microfabrication Laboratory, Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP 13083-970 (Brazil); Department of Analytical Chemistry, Institute of Chemistry – UNICAMP, Campinas, SP 13083-970 (Brazil); National Institute of Science and Technology of Bioanalytics, Institute of Chemistry – UNICAMP, Campinas, SP 13083-970 (Brazil); Vieira, Luis Carlos Silveira; Gobbi, Angelo Luiz [Microfabrication Laboratory, Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP 13083-970 (Brazil); Lima, Renato Sousa [Microfabrication Laboratory, Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP 13083-970 (Brazil); Department of Analytical Chemistry, Institute of Chemistry – UNICAMP, Campinas, SP 13083-970 (Brazil); National Institute of Science and Technology of Bioanalytics, Institute of Chemistry – UNICAMP, Campinas, SP 13083-970 (Brazil); Kubota, Lauro Tatsuo, E-mail: kubota@iqm.unicamp.br [Department of Analytical Chemistry, Institute of Chemistry – UNICAMP, Campinas, SP 13083-970 (Brazil); National Institute of Science and Technology of Bioanalytics, Institute of Chemistry – UNICAMP, Campinas, SP 13083-970 (Brazil)

    2015-05-22

    Highlights: • Integrated platform was developed to determine ethanol in fermentation broths. • The designed system integrates gas diffusion separation with voltammetric detection. • Detector relied on Ni(OH){sub 2}-modified electrode stabilized by Co{sup 2+} and Cd{sup 2+} insertion. • Separation was made by PTFE membrane separating sample from electrolyte (receptor). • Despite the sample complexity, accurate tests were achieved by direct interpolation. - Abstract: An integrated platform was developed for point-of-use determination of ethanol in sugar cane fermentation broths. Such analysis is important because ethanol reduces its fuel production efficiency by altering the alcoholic fermentation step when in excess. The custom-designed platform integrates gas diffusion separation with voltammetric detection in a single analysis module. The detector relied on a Ni(OH){sub 2}-modified electrode. It was stabilized by uniformly depositing cobalt and cadmium hydroxides as shown by XPS measurements. Such tests were in accordance with the hypothesis related to stabilization of the Ni(OH){sub 2} structure by insertion of Co{sup 2+} and Cd{sup 2+} ions in this structure. The separation step, in turn, was based on a hydrophobic PTFE membrane, which separates the sample from receptor solution (electrolyte) where the electrodes were placed. Parameters of limit of detection and analytical sensitivity were estimated to be 0.2% v/v and 2.90 μA % (v/v){sup −1}, respectively. Samples of fermentation broth were analyzed by both standard addition method and direct interpolation in saline medium based-analytical curve. In this case, the saline solution exhibited ionic strength similar to those of the samples intended to surpass the tonometry colligative effect of the samples over analyte concentration data by attributing the reduction in quantity of diffused ethanol vapor majorly to the electrolyte. The approach of analytical curve provided rapid, simple and accurate

  10. Quickest single-step one pot mechanosynthesis and characterization of ZnTe quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Patra, S. [Dept of Physics, University of Burdwan, Golapbag, Burdwan, West Bengal 713104 (India); Pradhan, S.K., E-mail: skp_bu@yahoo.com [Dept of Physics, University of Burdwan, Golapbag, Burdwan, West Bengal 713104 (India)

    2011-05-05

    Research highlights: > First time quickest mechanosynthesis of ZnTe QDs starting from Zn and Te powders. > Cubic ZnTe are formed in a single pot at RT in a single step within 1 h of milling. > The existence of stacking faults and twin faults are evident from HRTEM images. > Distinct blue shift has been observed in UV-vis absorption spectra. > First time report that ZnTe QDs with faults can also show the quantum size effect. - Abstract: ZnTe quantum dots (QDs) are synthesized at room temperature in a single step by mechanical alloying the stoichiometric equimolar mixture (1:1 mol) of Zn and Te powders under Ar within 1 h of milling. Both XRD and HRTEM characterizations reveal that these QDs having size {approx}5 nm contain stacking faults of different kinds. A distinct blue-shift in absorption spectra with decreasing particle size of QDs confirms the quantum size confinement effect (QSCE). It is observed for first time that the QDs with considerable amount of faults can also show the QSCE. Optical band gaps of these QDs increase with increasing milling time and their band gaps can be fine-tuned easily by varying milling time of QDs.

  11. The influence of total solids content and initial pH on batch biohydrogen production by solid substrate fermentation of agroindustrial wastes.

    Science.gov (United States)

    Robledo-Narváez, Paula N; Muñoz-Páez, Karla M; Poggi-Varaldo, Hector M; Ríos-Leal, Elvira; Calva-Calva, Graciano; Ortega-Clemente, L Alfredo; Rinderknecht-Seijas, Noemí; Estrada-Vázquez, Carlos; Ponce-Noyola, M Teresa; Salazar-Montoya, J Alfredo

    2013-10-15

    Hydrogen is a valuable clean energy source, and its production by biological processes is attractive and environmentally sound and friendly. In México 5 million tons/yr of agroindustrial wastes are generated; these residues are rich in fermentable organic matter that can be used for hydrogen production. On the other hand, batch, intermittently vented, solid substrate fermentation of organic waste has attracted interest in the last 10 years. Thus the objective of our work was to determine the effect of initial total solids content and initial pH on H2 production in batch fermentation of a substrate that consisted of a mixture of sugarcane bagasse, pineapple peelings, and waste activated sludge. The experiment was a response surface based on 2(2) factorial with central and axial points with initial TS (15-35%) and initial pH (6.5-7.5) as factors. Fermentation was carried out at 35 °C, with intermittent venting of minireactors and periodic flushing with inert N2 gas. Up to 5 cycles of H2 production were observed; the best treatment in our work showed cumulative H2 productions (ca. 3 mmol H2/gds) with 18% and 6.65 initial TS and pH, respectively. There was a significant effect of TS on production of hydrogen, the latter decreased with initial TS increase from 18% onwards. Cumulative H2 productions achieved in this work were higher than those reported for organic fraction of municipal solid waste (OFMSW) and mixtures of OFMSW and fruit peels waste from fruit juice industry, using the same process. Specific energetic potential due to H2 in our work was attractive and fell in the high side of the range of reported results in the open literature. Batch dark fermentation of agrowastes as practiced in our work could be useful for future biorefineries that generate biohydrogen as a first step and could influence the management of this type of agricultural wastes in México and other countries and regions as well. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. A multi-phase approach to select new wine yeast strains with enhanced fermentative fitness and glutathione production.

    Science.gov (United States)

    Bonciani, Tommaso; De Vero, Luciana; Mezzetti, Francesco; Fay, Justin C; Giudici, Paolo

    2018-03-01

    The genetic improvement of winemaking yeasts is a virtually infinite process, as the design of new strains must always cope with varied and ever-evolving production contexts. Good wine yeasts must feature both good primary traits, which are related to the overall fermentative fitness of the strain, and secondary traits, which provide accessory features augmenting its technological value. In this context, the superiority of "blind," genetic improvement techniques, as those based on the direct selection of the desired phenotype without prior knowledge of the genotype, was widely proven. Blind techniques such as adaptive evolution strategies were implemented for the enhancement of many traits of interest in the winemaking field. However, these strategies usually focus on single traits: this possibly leads to genetic tradeoff phenomena, where the selection of enhanced secondary traits might lead to sub-optimal primary fermentation traits. To circumvent this phenomenon, we applied a multi-step and strongly directed genetic improvement strategy aimed at combining a strong fermentative aptitude (primary trait) with an enhanced production of glutathione (secondary trait). We exploited the random genetic recombination associated to a library of 69 monosporic clones of strain UMCC 855 (Saccharomyces cerevisiae) to search for new candidates possessing both traits. This was achieved by consecutively applying three directional selective criteria: molybdate resistance (1), fermentative aptitude (2), and glutathione production (3). The strategy brought to the selection of strain 21T2-D58, which produces a high concentration of glutathione, comparable to that of other glutathione high-producers, still with a much greater fermentative aptitude.

  13. Dark matter from gravitational particle production at reheating

    Energy Technology Data Exchange (ETDEWEB)

    Markkanen, Tommi [Department of Physics, King' s College London, Strand, London WC2R 2LS (United Kingdom); Nurmi, Sami, E-mail: tommi.markkanen@kcl.ac.uk, E-mail: sami.t.nurmi@jyu.fi [Department of Physics, University of Jyväskylä, P.O. Box 35, FI-40014 University of Jyväskylä (Finland)

    2017-02-01

    We show that curvature induced particle production at reheating generates adiabatic dark matter if there are non-minimally coupled spectator scalars weakly coupled to visible matter. The observed dark matter abundance implies an upper bound on spectator masses m and non-minimal coupling values ξ. For example, assuming quadratic inflation, instant reheating and a single spectator scalar with only gravitational couplings, the observed dark matter abundance is obtained for m ∼ 0.1 GeV and ξ ∼ 1. Larger mass and coupling values of the spectator are excluded as they would lead to overproduction of dark matter.

  14. Dark matter from gravitational particle production at reheating

    International Nuclear Information System (INIS)

    Markkanen, Tommi; Nurmi, Sami

    2017-01-01

    We show that curvature induced particle production at reheating generates adiabatic dark matter if there are non-minimally coupled spectator scalars weakly coupled to visible matter. The observed dark matter abundance implies an upper bound on spectator masses m and non-minimal coupling values ξ. For example, assuming quadratic inflation, instant reheating and a single spectator scalar with only gravitational couplings, the observed dark matter abundance is obtained for m ∼ 0.1 GeV and ξ ∼ 1. Larger mass and coupling values of the spectator are excluded as they would lead to overproduction of dark matter.

  15. A double stage dry-wet-fermentation process for a fast and safe digestion of different kinds of organic material

    International Nuclear Information System (INIS)

    Busch, G.; Sieber, M.; Buschmann, J.; Burkhardat, M.

    2009-01-01

    The fermentation of organic material is a four-step-process. It is admissible to merge the first two steps (hydrolysis and acidification) to hydrolysis in general and the last two steps (aceto genesis and methano genesis) to methano genesis. The Brandenburg University of Technology in Cottbus has devised a double stage dry-wet-fermentation process for fast and safe anaerobic degradation. Using these processes, it is possible to decompose different kinds of organic material like renewable material (e. g. maize silage), waste (e. g. household-waste) and industrial material (e. g. glycerine). (Author)

  16. A dark-field microscope for background-free detection of resonance fluorescence from single semiconductor quantum dots operating in a set-and-forget mode.

    Science.gov (United States)

    Kuhlmann, Andreas V; Houel, Julien; Brunner, Daniel; Ludwig, Arne; Reuter, Dirk; Wieck, Andreas D; Warburton, Richard J

    2013-07-01

    Optically active quantum dots, for instance self-assembled InGaAs quantum dots, are potentially excellent single photon sources. The fidelity of the single photons is much improved using resonant rather than non-resonant excitation. With resonant excitation, the challenge is to distinguish between resonance fluorescence and scattered laser light. We have met this challenge by creating a polarization-based dark-field microscope to measure the resonance fluorescence from a single quantum dot at low temperature. We achieve a suppression of the scattered laser exceeding a factor of 10(7) and background-free detection of resonance fluorescence. The same optical setup operates over the entire quantum dot emission range (920-980 nm) and also in high magnetic fields. The major development is the outstanding long-term stability: once the dark-field point has been established, the microscope operates for days without alignment. The mechanical and optical designs of the microscope are presented, as well as exemplary resonance fluorescence spectroscopy results on individual quantum dots to underline the microscope's excellent performance.

  17. A dark-field microscope for background-free detection of resonance fluorescence from single semiconductor quantum dots operating in a set-and-forget mode

    International Nuclear Information System (INIS)

    Kuhlmann, Andreas V.; Houel, Julien; Warburton, Richard J.; Brunner, Daniel; Ludwig, Arne; Reuter, Dirk; Wieck, Andreas D.

    2013-01-01

    Optically active quantum dots, for instance self-assembled InGaAs quantum dots, are potentially excellent single photon sources. The fidelity of the single photons is much improved using resonant rather than non-resonant excitation. With resonant excitation, the challenge is to distinguish between resonance fluorescence and scattered laser light. We have met this challenge by creating a polarization-based dark-field microscope to measure the resonance fluorescence from a single quantum dot at low temperature. We achieve a suppression of the scattered laser exceeding a factor of 10 7 and background-free detection of resonance fluorescence. The same optical setup operates over the entire quantum dot emission range (920–980 nm) and also in high magnetic fields. The major development is the outstanding long-term stability: once the dark-field point has been established, the microscope operates for days without alignment. The mechanical and optical designs of the microscope are presented, as well as exemplary resonance fluorescence spectroscopy results on individual quantum dots to underline the microscope's excellent performance

  18. Dark forces in the sky: signals from Z{sup ′} and the dark Higgs

    Energy Technology Data Exchange (ETDEWEB)

    Bell, Nicole F.; Cai, Yi; Leane, Rebecca K. [ARC Centre of Excellence for Particle Physics at the Terascale, School of Physics,The University of Melbourne,Victoria 3010 (Australia)

    2016-08-01

    We consider the indirect detection signals for a self-consistent hidden U(1) model containing a Majorana dark matter candidate, χ, a dark gauge boson, Z{sup ′}, and a dark Higgs, s. Compared with a model containing only a dark matter candidate and Z{sup ′} mediator, the addition of the scalar provides a mass generation mechanism for the dark sector particles and is required in order to avoid unitarity violation at high energies. We find that the inclusion of the two mediators opens up a new two-body s-wave annihilation channel, χχ→sZ{sup ′}. This new process, which is missed in the usual single-mediator simplified model approach, can be the dominant annihilation channel. This provides rich phenomenology for indirect detection searches, allows indirect searches to explore regions of parameter space not accessible with other commonly considered s-wave annihilation processes, and enables both the Z{sup ′} and scalar couplings to be probed. We examine the phenomenology of the sector with a focus on this new process, and determine the limits on the model parameter space from Fermi data on dwarf spheriodal galaxies and other relevant experiments.

  19. Dust of dark energy

    International Nuclear Information System (INIS)

    Lim, Eugene A.; Sawicki, Ignacy; Vikman, Alexander

    2010-01-01

    We introduce a novel class of field theories where energy always flows along timelike geodesics, mimicking in that respect dust, yet which possess non-zero pressure. This theory comprises two scalar fields, one of which is a Lagrange multiplier enforcing a constraint between the other's field value and derivative. We show that this system possesses no wave-like modes but retains a single dynamical degree of freedom. Thus, the sound speed is always identically zero on all backgrounds. In particular, cosmological perturbations reproduce the standard behaviour for hydrodynamics in the limit of vanishing sound speed. Using all these properties we propose a model unifying Dark Matter and Dark Energy in a single degree of freedom. In a certain limit this model exactly reproduces the evolution history of ΛCDM, while deviations away from the standard expansion history produce a potentially measurable difference in the evolution of structure

  20. Dark energy observational evidence and theoretical models

    CERN Document Server

    Novosyadlyj, B; Shtanov, Yu; Zhuk, A

    2013-01-01

    The book elucidates the current state of the dark energy problem and presents the results of the authors, who work in this area. It describes the observational evidence for the existence of dark energy, the methods and results of constraining of its parameters, modeling of dark energy by scalar fields, the space-times with extra spatial dimensions, especially Kaluza---Klein models, the braneworld models with a single extra dimension as well as the problems of positive definition of gravitational energy in General Relativity, energy conditions and consequences of their violation in the presence of dark energy. This monograph is intended for science professionals, educators and graduate students, specializing in general relativity, cosmology, field theory and particle physics.

  1. Dark Matter searches with the ATLAS Detector

    CERN Document Server

    Suchek, Stanislav; The ATLAS collaboration

    2017-01-01

    Dark Matter composes almost 25% of our Universe, but its identity is still unknown which makes it a large challenge for current fundamental physics. A lot of approaches are used to discover the identity of Dark Matter and one of them, collider searches, are discussed in this talk. The latest results on Dark Matter search at ATLAS using 2015 and 2016 data are presented. Results from searches for new physics in the events with final states containing large missing transverse energy and a single photon or Higgs boson are shown. Higgs to invisible and dijet searches are used in sense of complementarity to constrain properties of Dark Matter. Results and perspectives for all these searches are presented.

  2. Dark energy and dark matter from hidden symmetry of gravity model with a non-Riemannian volume form

    Energy Technology Data Exchange (ETDEWEB)

    Guendelman, Eduardo [Ben-Gurion University of the Negev, Department of Physics, Beersheba (Israel); Nissimov, Emil; Pacheva, Svetlana [Bulgarian Academy of Sciences, Institute for Nuclear Research and Nuclear Energy, Sofia (Bulgaria)

    2015-10-15

    We show that dark energy and dark matter can be described simultaneously by ordinary Einstein gravity interacting with a single scalar field provided the scalar field Lagrangian couples in a symmetric fashion to two different spacetime volume forms (covariant integration measure densities) on the spacetime manifold - one standard Riemannian given by √(-g) (square root of the determinant of the pertinent Riemannian metric) and another non-Riemannian volume form independent of the Riemannian metric, defined in terms of an auxiliary antisymmetric tensor gauge field of maximal rank. Integration of the equations of motion of the latter auxiliary gauge field produce an a priori arbitrary integration constant that plays the role of a dynamically generated cosmological constant or dark energy. Moreover, the above modified scalar field action turns out to possess a hidden Noether symmetry whose associated conserved current describes a pressureless ''dust'' fluid which we can identify with the dark matter completely decoupled from the dark energy. The form of both the dark energy and dark matter that results from the above class of models is insensitive to the specific form of the scalar field Lagrangian. By adding an appropriate perturbation, which breaks the above hidden symmetry and along with this couples dark matter and dark energy, we also suggest a way to obtain growing dark energy in the present universe's epoch without evolution pathologies. (orig.)

  3. Monitoring and Evaluation of Alcoholic Fermentation Processes Using a Chemocapacitor Sensor Array

    Science.gov (United States)

    Oikonomou, Petros; Raptis, Ioannis; Sanopoulou, Merope

    2014-01-01

    The alcoholic fermentation of Savatiano must variety was initiated under laboratory conditions and monitored daily with a gas sensor array without any pre-treatment steps. The sensor array consisted of eight interdigitated chemocapacitors (IDCs) coated with specific polymers. Two batches of fermented must were tested and also subjected daily to standard chemical analysis. The chemical composition of the two fermenting musts differed from day one of laboratory monitoring (due to different storage conditions of the musts) and due to a deliberate increase of the acetic acid content of one of the musts, during the course of the process, in an effort to spoil the fermenting medium. Sensor array responses to the headspace of the fermenting medium were compared with those obtained either for pure or contaminated samples with controlled concentrations of standard ethanol solutions of impurities. Results of data processing with Principal Component Analysis (PCA), demonstrate that this sensing system could discriminate between a normal and a potential spoiled grape must fermentation process, so this gas sensing system could be potentially applied during wine production as an auxiliary qualitative control instrument. PMID:25184490

  4. Assessment of Monacolin in the Fermented Products Using Monascus purpureus FTC5391

    Directory of Open Access Journals (Sweden)

    Zahra Ajdari

    2011-01-01

    Full Text Available Monacolins, as natural statins, form a class of fungal secondary metabolites and act as the specific inhibitors of HMG-CoA reductase. The interest in using the fermented products as the natural source of monacolins, instead of statin drugs, is increasing enormously with its increasing demand. In this study, the fermented products were produced by Monascus purpureus FTC5391 using submerged and solid state fermentations. Two commercial Monascus-fermented products were also evaluated for comparison. Improved methods of monacolins extraction and identification were developed for the assessment of monacolins in the fermented products. Methanol and ethanol were found to be the most favorable solvents for monacolins extraction due to their ability to extract higher amount of monacolin K and higher numbers of monacolin derivatives. Problem related to false-positive results during monacolins identification was solved by adding monacolin lactonization step in the assessment method. Using this improved method, monacolin derivatives were not detected in all Monascus-fermented products tested in this study, suggesting that their hypocholesterolemic effects may be due to other compounds other than monacolins.

  5. Metabolic and microbial community dynamics during the hydrolytic and acidogenic fermentation in a leach-bed process

    Energy Technology Data Exchange (ETDEWEB)

    Straeuber, Heike; Kleinsteuber, Sabine [UFZ - Helmholtz Centre for Environmental Research, Leipzig (Germany). Dept. of Bioenergy; UFZ - Helmholtz Centre for Environmental Research, Leipzig (Germany). Dept. of Environmental Microbiology; Schroeder, Martina [UFZ - Helmholtz Centre for Environmental Research, Leipzig (Germany). Dept. of Bioenergy

    2012-12-15

    Biogas production from lignocellulosic feedstock not competing with food production can contribute to a sustainable bioenergy system. The hydrolysis is the rate-limiting step in the anaerobic digestion of solid substrates such as straw. Hence, a detailed understanding of the metabolic processes during the steps of hydrolysis and acidogenesis is required to improve process control strategies. The fermentation products formed during the acidogenic fermentation of maize silage as a model substrate in a leach-bed process were determined by gas and liquid chromatography. The bacterial community dynamics was monitored by terminal restriction fragment length polymorphism analysis. The community profiles were correlated with the process data using multivariate statistics. The batch process comprised three metabolic phases characterized by different fermentation products. The bacterial community dynamics correlated with the production of the respective metabolites. In phase 1, lactic and acetic acid fermentations dominated. Accordingly, bacteria of the genera Lactobacillus and Acetobacter were detected. In phase 2, the metabolic pathways shifted to butyric acid fermentation, accompanied by the production of hydrogen and carbon dioxide and a dominance of the genus Clostridium. In phase 3, phylotypes affiliated with Ruminococcaceae and Lachnospiraceae prevailed, accompanied by the formation of caproic and acetic acids, and a high gas production rate. A clostridial butyric type of fermentation was predominant in the acidogenic fermentation of maize silage, whereas propionic-type fermentation was marginal. As the metabolite composition resulting from acidogenesis affects the subsequent methanogenic performance, process control should focus on hydrolysis/acidogenesis when solid substrates are digested. (orig.)

  6. Quantum Field Theory of Interacting Dark Matter/Dark Energy: Dark Monodromies

    CERN Document Server

    D'Amico, Guido; Kaloper, Nemanja

    2016-11-28

    We discuss how to formulate a quantum field theory of dark energy interacting with dark matter. We show that the proposals based on the assumption that dark matter is made up of heavy particles with masses which are very sensitive to the value of dark energy are strongly constrained. Quintessence-generated long range forces and radiative stability of the quintessence potential require that such dark matter and dark energy are completely decoupled. However, if dark energy and a fraction of dark matter are very light axions, they can have significant mixings which are radiatively stable and perfectly consistent with quantum field theory. Such models can naturally occur in multi-axion realizations of monodromies. The mixings yield interesting signatures which are observable and are within current cosmological limits but could be constrained further by future observations.

  7. Single-step fabrication of quantum funnels via centrifugal colloidal casting of nanoparticle films

    Science.gov (United States)

    Kim, Jin Young; Adinolfi, Valerio; Sutherland, Brandon R.; Voznyy, Oleksandr; Kwon, S. Joon; Kim, Tae Wu; Kim, Jeongho; Ihee, Hyotcherl; Kemp, Kyle; Adachi, Michael; Yuan, Mingjian; Kramer, Illan; Zhitomirsky, David; Hoogland, Sjoerd; Sargent, Edward H.

    2015-01-01

    Centrifugal casting of composites and ceramics has been widely employed to improve the mechanical and thermal properties of functional materials. This powerful method has yet to be deployed in the context of nanoparticles—yet size–effect tuning of quantum dots is among their most distinctive and application-relevant features. Here we report the first gradient nanoparticle films to be constructed in a single step. By creating a stable colloid of nanoparticles that are capped with electronic-conduction-compatible ligands we were able to leverage centrifugal casting for thin-films devices. This new method, termed centrifugal colloidal casting, is demonstrated to form films in a bandgap-ordered manner with efficient carrier funnelling towards the lowest energy layer. We constructed the first quantum-gradient photodiode to be formed in a single deposition step and, as a result of the gradient-enhanced electric field, experimentally measured the highest normalized detectivity of any colloidal quantum dot photodetector. PMID:26165185

  8. Single-step fabrication of quantum funnels via centrifugal colloidal casting of nanoparticle films.

    KAUST Repository

    Kim, Jin Young; Adinolfi, Valerio; Sutherland, Brandon R; Voznyy, Oleksandr; Kwon, S Joon; Kim, Tae Wu; Kim, Jeongho; Ihee, Hyotcherl; Kemp, Kyle; Adachi, Michael; Yuan, Mingjian; Kramer, Illan; Zhitomirsky, David; Hoogland, Sjoerd; Sargent, Edward H

    2015-01-01

    Centrifugal casting of composites and ceramics has been widely employed to improve the mechanical and thermal properties of functional materials. This powerful method has yet to be deployed in the context of nanoparticles--yet size-effect tuning of quantum dots is among their most distinctive and application-relevant features. Here we report the first gradient nanoparticle films to be constructed in a single step. By creating a stable colloid of nanoparticles that are capped with electronic-conduction-compatible ligands we were able to leverage centrifugal casting for thin-films devices. This new method, termed centrifugal colloidal casting, is demonstrated to form films in a bandgap-ordered manner with efficient carrier funnelling towards the lowest energy layer. We constructed the first quantum-gradient photodiode to be formed in a single deposition step and, as a result of the gradient-enhanced electric field, experimentally measured the highest normalized detectivity of any colloidal quantum dot photodetector.

  9. Single-step fabrication of quantum funnels via centrifugal colloidal casting of nanoparticle films.

    KAUST Repository

    Kim, Jin Young

    2015-07-13

    Centrifugal casting of composites and ceramics has been widely employed to improve the mechanical and thermal properties of functional materials. This powerful method has yet to be deployed in the context of nanoparticles--yet size-effect tuning of quantum dots is among their most distinctive and application-relevant features. Here we report the first gradient nanoparticle films to be constructed in a single step. By creating a stable colloid of nanoparticles that are capped with electronic-conduction-compatible ligands we were able to leverage centrifugal casting for thin-films devices. This new method, termed centrifugal colloidal casting, is demonstrated to form films in a bandgap-ordered manner with efficient carrier funnelling towards the lowest energy layer. We constructed the first quantum-gradient photodiode to be formed in a single deposition step and, as a result of the gradient-enhanced electric field, experimentally measured the highest normalized detectivity of any colloidal quantum dot photodetector.

  10. Development of single step RT-PCR for detection of Kyasanur forest disease virus from clinical samples

    Directory of Open Access Journals (Sweden)

    Gouri Chaubal

    2018-02-01

    Discussion and conclusion: The previously published sensitive real time RT-PCR assay requires higher cost in terms of reagents and machine setup and technical expertise has been the primary reason for development of this assay. A single step RT-PCR is relatively easy to perform and more cost effective than real time RT-PCR in smaller setups in the absence of Biosafety Level-3 facility. This study reports the development and optimization of single step RT-PCR assay which is more sensitive and less time-consuming than nested RT-PCR and cost effective for rapid diagnosis of KFD viral RNA.

  11. Microbioligical Hazard Contamination in Fermented Vegetables Sold in Local Markets in Cambodia.

    Science.gov (United States)

    Chrun, Rithy; Hosotani, Yukie; Kawasaki, Susumu; Inatsu, Yasuhiro

    2017-01-01

     Fermented vegetables are common part of Cambodian diet. The food safety status for these foods has not been investigated. This study was conducted to evaluate the microbiological hazards that contaminated fermented vegetables. A total of 68 samples of fermented vegetables were purchased randomly from five wet markets in Phnom Penh. The conventional culture methods for microbiological analysis were used. Coliform bacteria (Escherichia coli, Cronobactersakazakii, and Enterobacter spp.), opportunistic non-Entrobacteriaceae, Enterococcus spp., Staphylococcus spp., and Listeria spp. were found in these fermented foods. The highest contamination rate of Enterococcus spp. was 34% of total fermented vegetable samples, followed by Bacillus spp. coliform bacteria and E. coli (31%, 24% and 10%, respectively). The potential foodborne pathogen, C. sakazakii, was identified in one sample. Fermented mixed vegetables showed higher contamination rate of coliform bacteria (50%) than fermented single-type vegetables (13%). The results showed that fermented vegetables sold in wet market are poor in hygiene. The stage in the processing chain where contamination occurred should be identified and basic sanitary practice should be enforced to improve the food safety of fermented vegetables in Cambodia.

  12. Dynamics of Cocoa Bean Pulp Degradation during Cocoa Bean Fermentation: Effects of Yeast Starter Culture Addition

    Directory of Open Access Journals (Sweden)

    Laras Cempaka

    2014-07-01

    Full Text Available Fermentation is a crucial step in the post-harvest processing of cocoa beans. This process comprises mixed culture microbial activities on the cocoa bean pulp, producing metabolites that act as important precursors for cocoa flavour development. Variations in the microbial population dynamics during the fermentation process may induce changes in the overall process. Thus, the introduction of a specific microbial starter culture may improve the quality of the fermentation. This article discusses the effects ofthe addition of Saccharomyces cerevisae var. Chevalieri starter culture on cocoa bean fermentation. The dynamics in the yeast concentration, sugary pulp compounds and metabolic products were measured during fermentation. The alterations in the dynamic metabolite profile were significant, although only a slight difference was observed in the yeast population. A higher fermentation index was measured for the cocoa bean fermentation with yeast starter culture, 1.13 compared to 0.84. In conclusion, this method can potentially be applied to shorten the cocoa bean fermentation time.

  13. Comparison of bio-hydrogen production yield capacity between asynchronous and simultaneous saccharification and fermentation processes from agricultural residue by mixed anaerobic cultures.

    Science.gov (United States)

    Li, Yameng; Zhang, Zhiping; Zhu, Shengnan; Zhang, Huan; Zhang, Yang; Zhang, Tian; Zhang, Quanguo

    2018-01-01

    Taken common agricultural residues as substrate, dark fermentation bio-hydrogen yield capacity from asynchronous saccharification and fermentation (ASF) and simultaneous saccharification and fermentation (SSF) was investigated. The highest hydrogen yield of 472.75mL was achieved with corncob using ASF. Hydrogen yield from corn straw, rice straw, corncob and sorghum stalk by SSF were 20.54%,10.31%,13.99% and 5.92% higher than ASF, respectively. The experimental data fitted well to the modified Gompertz model. SSF offered a distinct advantage over ASF with respect to reducing overall process time (60h of SSF, 108h of ASF). Meanwhile, SSF performed better than SSF with respect to shortening the lag-stage. The major metabolites of anaerobic fermentation hydrogen production by ASF and SSF were butyric acid and acetic acid. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. FERMENTATION ACTIVITY OF LACTOSE-FERMENTATION YEAST IN WHEY-MALT WORT

    Directory of Open Access Journals (Sweden)

    E. V. Greek

    2013-04-01

    Full Text Available The main parameters of fermentation of whey-malt wort with the use of different strains of lactose-fermentation yeast was investigated experimentally. According to the findings of investigation of fermentive activity for different types of lactose-fermentation microorganisms in whey-malt wort it was found that the most active spirituous fermentation for all parameters was in wort fermented by microorganisms Zygosaccharomyces lactis 868-K and Saccharomyces lactis 95. High capacity for utilization of malt carbohydrates represented by easily metabolized carbohydrates of malt extract was determined. Also organoleptic analysis of fermented whey drinks derived from the renewed mixtures of dry whey and fermented malt and yeast Zygosaccharomyces lactis 868-K and Saccharomyces lactis 95 was carried out. It was found that the drink fermented with yeast Zygosaccharomyces lactis 868-K had intense refreshing flavor of rye bread with fruit tones. Intensity growth of aromatization for complex of sample with microorganisms Saccharomyces lactis 95, indicating high organoleptic indexes of the drink was observed.

  15. Mechanistic simulation of batch acetone-butanol-ethanol (ABE) fermentation with in situ gas stripping using Aspen Plus™.

    Science.gov (United States)

    Darkwah, Kwabena; Nokes, Sue E; Seay, Jeffrey R; Knutson, Barbara L

    2018-05-22

    Process simulations of batch fermentations with in situ product separation traditionally decouple these interdependent steps by simulating a separate "steady state" continuous fermentation and separation units. In this study, an integrated batch fermentation and separation process was simulated for a model system of acetone-butanol-ethanol (ABE) fermentation with in situ gas stripping, such that the fermentation kinetics are linked in real-time to the gas stripping process. A time-dependent cell growth, substrate utilization, and product production is translated to an Aspen Plus batch reactor. This approach capitalizes on the phase equilibria calculations of Aspen Plus to predict the effect of stripping on the ABE fermentation kinetics. The product profiles of the integrated fermentation and separation are shown to be sensitive to gas flow rate, unlike separate steady state fermentation and separation simulations. This study demonstrates the importance of coupled fermentation and separation simulation approaches for the systematic analyses of unsteady state processes.

  16. Evaluation of the effect of process variables on the fatty acid profile of single cell oil produced by Mortierella using solid-state fermentation.

    Science.gov (United States)

    Asadi, Seyedeh Zeinab; Khosravi-Darani, Kianoush; Nikoopour, Houshang; Bakhoda, Hossein

    2015-03-01

    This article reviews some of the aspects of single cell oil (SCO) production using solid-state fermentation (SSF) by fungi of the genus Mortierella. This article provides an overview of the advantages of SSF for SCO formation by the aforementioned fungus and demonstrates that the content of the polyunsaturated fatty acids (PUFA) depend on the type of fermentation media and culture conditions. Process variables that influence lipid accumulation by Mortierella spp. and the profile of the fatty acids are discussed, including incubation temperature, time, aeration, growth phase of the mycelium, particle size of the substrate, carbon to nitrogen ratio, initial moisture content and pH as well as supplementation of the substrate with nitrogen and oil. Finally, the article highlights future research trends for the scaled-up production of PUFAs in SSF.

  17. Dynamics of lumps and dark-dark solitons in the multi-component long-wave-short-wave resonance interaction system

    Science.gov (United States)

    Rao, Jiguang; Porsezian, Kuppuswamy; He, Jingsong; Kanna, Thambithurai

    2018-01-01

    General semi-rational solutions of an integrable multi-component (2+1)-dimensional long-wave-short-wave resonance interaction system comprising multiple short waves and a single long wave are obtained by employing the bilinear method. These solutions describe the interactions between various types of solutions, including line rogue waves, lumps, breathers and dark solitons. We only focus on the dynamical behaviours of the interactions between lumps and dark solitons in this paper. Our detailed study reveals two different types of excitation phenomena: fusion and fission. It is shown that the fundamental (simplest) semi-rational solutions can exhibit fission of a dark soliton into a lump and a dark soliton or fusion of one lump and one dark soliton into a dark soliton. The non-fundamental semi-rational solutions are further classified into three subclasses: higher-order, multi- and mixed-type semi-rational solutions. The higher-order semi-rational solutions show the process of annihilation (production) of two or more lumps into (from) one dark soliton. The multi-semi-rational solutions describe N(N≥2) lumps annihilating into or producing from N-dark solitons. The mixed-type semi-rational solutions are a hybrid of higher-order semi-rational solutions and multi-semi-rational solutions. For the mixed-type semi-rational solutions, we demonstrate an interesting dynamical behaviour that is characterized by partial suppression or creation of lumps from the dark solitons.

  18. Dynamics of lumps and dark-dark solitons in the multi-component long-wave-short-wave resonance interaction system.

    Science.gov (United States)

    Rao, Jiguang; Porsezian, Kuppuswamy; He, Jingsong; Kanna, Thambithurai

    2018-01-01

    General semi-rational solutions of an integrable multi-component (2+1)-dimensional long-wave-short-wave resonance interaction system comprising multiple short waves and a single long wave are obtained by employing the bilinear method. These solutions describe the interactions between various types of solutions, including line rogue waves, lumps, breathers and dark solitons. We only focus on the dynamical behaviours of the interactions between lumps and dark solitons in this paper. Our detailed study reveals two different types of excitation phenomena: fusion and fission. It is shown that the fundamental (simplest) semi-rational solutions can exhibit fission of a dark soliton into a lump and a dark soliton or fusion of one lump and one dark soliton into a dark soliton. The non-fundamental semi-rational solutions are further classified into three subclasses: higher-order, multi- and mixed-type semi-rational solutions. The higher-order semi-rational solutions show the process of annihilation (production) of two or more lumps into (from) one dark soliton. The multi-semi-rational solutions describe N ( N ≥2) lumps annihilating into or producing from N -dark solitons. The mixed-type semi-rational solutions are a hybrid of higher-order semi-rational solutions and multi-semi-rational solutions. For the mixed-type semi-rational solutions, we demonstrate an interesting dynamical behaviour that is characterized by partial suppression or creation of lumps from the dark solitons.

  19. Single-Camera-Based Method for Step Length Symmetry Measurement in Unconstrained Elderly Home Monitoring.

    Science.gov (United States)

    Cai, Xi; Han, Guang; Song, Xin; Wang, Jinkuan

    2017-11-01

    single-camera-based gait monitoring is unobtrusive, inexpensive, and easy-to-use to monitor daily gait of seniors in their homes. However, most studies require subjects to walk perpendicularly to camera's optical axis or along some specified routes, which limits its application in elderly home monitoring. To build unconstrained monitoring environments, we propose a method to measure step length symmetry ratio (a useful gait parameter representing gait symmetry without significant relationship with age) from unconstrained straight walking using a single camera, without strict restrictions on walking directions or routes. according to projective geometry theory, we first develop a calculation formula of step length ratio for the case of unconstrained straight-line walking. Then, to adapt to general cases, we propose to modify noncollinear footprints, and accordingly provide general procedure for step length ratio extraction from unconstrained straight walking. Our method achieves a mean absolute percentage error (MAPE) of 1.9547% for 15 subjects' normal and abnormal side-view gaits, and also obtains satisfactory MAPEs for non-side-view gaits (2.4026% for 45°-view gaits and 3.9721% for 30°-view gaits). The performance is much better than a well-established monocular gait measurement system suitable only for side-view gaits with a MAPE of 3.5538%. Independently of walking directions, our method can accurately estimate step length ratios from unconstrained straight walking. This demonstrates our method is applicable for elders' daily gait monitoring to provide valuable information for elderly health care, such as abnormal gait recognition, fall risk assessment, etc. single-camera-based gait monitoring is unobtrusive, inexpensive, and easy-to-use to monitor daily gait of seniors in their homes. However, most studies require subjects to walk perpendicularly to camera's optical axis or along some specified routes, which limits its application in elderly home monitoring

  20. A theory of the stepped leader in lightning

    International Nuclear Information System (INIS)

    Lowke, J.J.

    1999-01-01

    There is no generally accepted explanation of the stepped leader behaviour in terms of basic physical processes. Existing theories generally involve significant gas heating within the stepped leader. In the present paper, the stepped nature of the leader is proposed to arise due to a combination of two physical phenomena. Electron transport is dominant over ion transport, during the luminous step stage, because electron mobilities are about 100 times larger than ion mobilities, and the streamer front velocity is determined by electron ionization effects. During the dark time between steps, there are only ions and charge transport is very much slower. The second effect leading to stepped behaviour arises because the electric field required for electric breakdown in air prior to a discharge is ∼30kV/cm, and is very much higher than the electric field of 5kV/cm that is required to sustain a glow discharge in air. During the luminous step stage, electrons tend to produce space charges to make a uniform field in the streamer of ∼5kV/cm. During the dark time between steps, there are no electrons but only ions. Time is required for ion drift to produce a space charge sheath of negative ions at the head of the streamer to produce a field of ∼30kV/cm sufficient for electron ionization to produce a new luminous step

  1. Fabrication of Polydimethylsiloxane Microlenses Utilizing Hydrogel Shrinkage and a Single Molding Step

    Directory of Open Access Journals (Sweden)

    Bader Aldalali

    2014-05-01

    Full Text Available We report on polydimethlysiloxane (PDMS microlenses and microlens arrays on flat and curved substrates fabricated via a relatively simple process combining liquid-phase photopolymerization and a single molding step. The mold for the formation of the PDMS lenses is fabricated by photopolymerizing a polyacrylamide (PAAm pre-hydrogel. The shrinkage of PAAm after its polymerization forms concave lenses. The lenses are then transferred to PDMS by a single step molding to form PDMS microlens array on a flat substrate. The PAAm concave lenses are also transferred to PDMS and another flexible polymer, Solaris, to realize artificial compound eyes. The resultant microlenses and microlens arrays possess good uniformity and optical properties. The focal length of the lenses is inversely proportional to the shrinkage time. The microlens mold can also be rehydrated to change the focal length of the ultimate PDMS microlenses. The spherical aberration is 2.85 μm and the surface roughness is on the order of 204 nm. The microlenses can resolve 10.10 line pairs per mm (lp/mm and have an f-number range between f/2.9 and f/56.5. For the compound eye, the field of view is 113°.

  2. The effect of Maillard reaction products and yeast strain on the synthesis of key higher alcohols and esters in beer fermentations.

    Science.gov (United States)

    Dack, Rachael E; Black, Gary W; Koutsidis, Georgios; Usher, St John

    2017-10-01

    The effect of Maillard reaction products (MRPs), formed during the production of dark malts, on the synthesis of higher alcohols and esters in beer fermentations was investigated by headspace solid-phase microextraction GC-MS. Higher alcohol levels were significantly (p<0.05) higher in dark malt fermentations, while the synthesis of esters was inhibited, due to possible suppression of enzyme activity and/or gene expression linked to ester synthesis. Yeast strain also affected flavour synthesis with Saccharomyces cerevisiae strain A01 producing considerably lower levels of higher alcohols and esters than S288c and L04. S288c produced approximately double the higher alcohol levels and around twenty times more esters compared to L04. Further investigations into malt type-yeast strain interactions in relation to flavour development are required to gain better understanding of flavour synthesis that could assist in the development of new products and reduce R&D costs for the industry. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Effect of the processing steps on compositions of table olive since harvesting time to pasteurization.

    Science.gov (United States)

    Nikzad, Nasim; Sahari, Mohammad A; Vanak, Zahra Piravi; Safafar, Hamed; Boland-nazar, Seyed A

    2013-08-01

    Weight, oil, fatty acids, tocopherol, polyphenol, and sterol properties of 5 olive cultivars (Zard, Fishomi, Ascolana, Amigdalolia, and Conservalia) during crude, lye treatment, washing, fermentation, and pasteurization steps were studied. Results showed: oil percent was higher and lower in Ascolana (crude step) and in Fishomi (pasteurization step), respectively; during processing steps, in all cultivars, oleic, palmitic, linoleic, and stearic acids were higher; the highest changes in saturated and unsaturated fatty acids were in fermentation step; the highest and the lowest ratios of ω3 / ω6 were in Ascolana (washing step) and in Zard (pasteurization step), respectively; the highest and the lowest tocopherol were in Amigdalolia and Fishomi, respectively, and major damage occurred in lye step; the highest and the lowest polyphenols were in Ascolana (crude step) and in Zard and Ascolana (pasteurization step), respectively; the major damage among cultivars occurred during lye step, in which the polyphenol reduced to 1/10 of first content; sterol did not undergo changes during steps. Reviewing of olive patents shows that many compositions of fruits such as oil quality, fatty acids, quantity and its fraction can be changed by alteration in cultivar and process.

  4. Recovery of Acetic Acid from An Ethanol Fermentation Broth by Liquid-Liquid Extraction (LLE) Using Various Solvents

    International Nuclear Information System (INIS)

    Pham, Thi Thu Huong; Kim, Tae Hyun; Um, Byung Hwan

    2015-01-01

    Liquid-liquid extraction (LLE) using various solvents was studied for recovery of acetic acid from a synthetic ethanol fermentation broth. The microbial fermentation of sugars presented in hydrolyzate gives rise to acetic acid as a byproduct. In order to obtain pure ethanol for use as a biofuel, fermentation broth should be subjected to acetic acid removal step and the recovered acetic acid can be put to industrial use. Herein, batch LLE experiments were carried out at 25°C using a synthetic fermentation broth comprising 20.0 g l -1 acetic acid and 5.0 g l -1 ethanol. Ethyl acetate (EtOAc), tri-n-octylphosphine oxide (TOPO), tri-n-octylamine (TOA), and tri-n-alkylphosphine oxide (TAPO) were utilized as solvents, and the extraction potential of each solvent was evaluated by varying the organic phase-to-aqueous phase ratios as 0.2, 0.5, 1.0, 2.0, and 4.0. The highest acetic acid extraction yield was achieved with TAPO; however, the lowest ethanol-to-acetic acid extraction ratio was obtained using TOPO. In a single-stage batch extraction, 97.0 % and 92.4 % of acetic acid could be extracted using TAPO and TOPO when the ratio of organic-to-aqueous phases is 4:1 respectively. A higher solvent-to-feed ratio resulted in an increase in the ethanol-to-acetic acid ratio, which decreased both acetic acid purity and acetic acid extraction yield.

  5. A comprehensive overview on light independent fermentative hydrogen production from wastewater feedstock and possible integrative options

    International Nuclear Information System (INIS)

    Kumar, Gopalakrishnan; Sivagurunathan, Periyasamy; Pugazhendhi, Arivalagan; Thi, Ngoc Bao Dung; Zhen, Guangyin; Chandrasekhar, Kuppam; Kadier, Abudukeremu

    2017-01-01

    Highlights: • Hydrogen production from various wastewaters has been reviewed. • Physico-chemical composition of the wastewater influences the H_2 yield. • Sugar rich wastewaters could be a feasible source for dark fermentative H_2 production. - Abstract: This review focuses on the current developments and new insights in the field of dark fermentation technologies using wastewater as carbon and nutrient source. It has begun with the type of wastewaters (sugar rich, toxic and industrial) employed in the H_2 production and their production performances with pure (or) mixed microbiota as seeding source in the batch reactors. Secondly, well-documented continuous system performances and their failure reasons were examined along with the enhancement possibilities in ways of strategies. A SWOT analysis has been performed to validate the strength and weakness of the continuous systems towards its industrialization and possible scheme of the integration methods have been illustrated. Additionally, an outlook has been provided with enlightening the remedies for its success. Moreover, the practical perspectives of the continuous systems are highlighted and challenges towards scale up are mentioned. Finally, the possible integrative approaches along with continuous systems towards the bioH_2 technologies implementation are enlightened.

  6. Single step radiolytic synthesis of iridium nanoparticles onto graphene oxide

    International Nuclear Information System (INIS)

    Rojas, J.V.; Molina Higgins, M.C.; Toro Gonzalez, M.; Castano, C.E.

    2015-01-01

    Graphical abstract: - Highlights: • Ir nanoparticles were synthesized through a single step gamma irradiation process. • Homogeneously distributed Ir nanoparticles on graphene oxide are ∼2.3 nm in size. • Ir−O bonds evidenced the interaction of the nanoparticles with the support. - Abstract: In this work a new approach to synthesize iridium nanoparticles on reduced graphene oxide is presented. The nanoparticles were directly deposited and grown on the surface of the carbon-based support using a single step reduction method through gamma irradiation. In this process, an aqueous isopropanol solution containing the iridium precursor, graphene oxide, and sodium dodecyl sulfate was initially prepared and sonicated thoroughly to obtain a homogeneous dispersion. The samples were irradiated with gamma rays with energies of 1.17 and 1.33 MeV emitted from the spontaneous decay of the 60 Co irradiator. The interaction of gamma rays with water in the presence of isopropanol generates highly reducing species homogeneously distributed in the solution that can reduce the Ir precursor down to a zero valence state. An absorbed dose of 60 kGy was used, which according to the yield of reducing species is sufficient to reduce the total amount of precursor present in the solution. This novel approach leads to the formation of 2.3 ± 0.5 nm Ir nanoparticles distributed along the surface of the support. The oxygenated functionalities of graphene oxide served as nucleation sites for the formation of Ir nuclei and their subsequent growth. XPS results revealed that the interaction of Ir with the support occurs through Ir−O bonds.

  7. Optimization of Fermentation Conditions for the Production of Bacteriocin Fermentate

    Science.gov (United States)

    2015-03-30

    FERMENTATION CONDITIONS FOR THE PRODUCTION OF BACTERIOCIN “ FERMENTATE ” by Anthony Sikes Wayne Muller and Claire Lee March 2015...From - To) October 2010 – November 2013 4. TITLE AND SUBTITLE OPTIMIZATION OF FERMENTATION CONDITIONS FOR THE PRODUCTION OF BACTERIOCIN “ FERMENTATE ...nisin and pediocin. Whey + yeast extract was the best performing whey fermentation media. The nisin producer strain Lactococcus. lactis ssp. lactis was

  8. Utilization of agroindustrial residues for lipase production by solid-state fermentation

    OpenAIRE

    Damaso, M?nica Caramez Triches; Passianoto, Mois?s Augusto; de Freitas, Sidin?a Cordeiro; Freire, Denise Maria Guimar?es; Lago, Regina Celi Araujo; Couri, Sonia

    2008-01-01

    The aim of this work was to produce lipases by solid-state fermentation (SSF) using, as substrate, agroindustrial residue supplemented with by-products from corn oil refining process or olive oil. For a group of ten fungi strains selected in the first steps, the lipase activity obtained by SSF varied from 7.7 to 58.6 U/g of dry substrate (gds). Among the evaluated strains, the Aspergillus niger mutant 11T53A14 was selected by presenting the best enzymatic production. For the fermentation test...

  9. Stillage reflux in food waste ethanol fermentation and its by-product accumulation.

    Science.gov (United States)

    Ma, Hongzhi; Yang, Jian; Jia, Yan; Wang, Qunhui; Tashiro, Yukihiro; Sonomoto, Kenji

    2016-06-01

    Raw materials and pollution control are key issues for the ethanol fermentation industry. To address these concerns, food waste was selected as fermentation substrate, and stillage reflux was carried out in this study. Reflux was used seven times during fermentation. Corresponding ethanol and reducing sugar were detected. Accumulation of by-products, such as organic acid, sodium chloride, and glycerol, was investigated. Lactic acid was observed to accumulate up to 120g/L, and sodium chloride reached 0.14mol/L. Other by-products did not accumulate. The first five cycles of reflux increased ethanol concentration, which prolonged fermentation time. Further increases in reflux time negatively influenced ethanol fermentation. Single-factor analysis with lactic acid and sodium chloride demonstrated that both factors affected ethanol fermentation, but lactic acid induced more effects. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Dark-Matter Particles without Weak-Scale Masses or Weak Interactions

    International Nuclear Information System (INIS)

    Feng, Jonathan L.; Kumar, Jason

    2008-01-01

    We propose that dark matter is composed of particles that naturally have the correct thermal relic density, but have neither weak-scale masses nor weak interactions. These models emerge naturally from gauge-mediated supersymmetry breaking, where they elegantly solve the dark-matter problem. The framework accommodates single or multiple component dark matter, dark-matter masses from 10 MeV to 10 TeV, and interaction strengths from gravitational to strong. These candidates enhance many direct and indirect signals relative to weakly interacting massive particles and have qualitatively new implications for dark-matter searches and cosmological implications for colliders

  11. Consistent scalar and tensor perturbation power spectra in single fluid matter bounce with dark energy era

    Science.gov (United States)

    Bacalhau, Anna Paula; Pinto-Neto, Nelson; Vitenti, Sandro Dias Pinto

    2018-04-01

    perturbations and also for the ratio between tensor and scalar amplitudes, r =T /S ≲0.1 . The amplification of scalar perturbations over tensor perturbations takes place only around the bounce, due to quantum effects, and it would not occur if General Relativity has remained valid throughout this phase. Hence, this is a bouncing model in which a single field induces not only an expanding background dark energy phase but also produces all observed features of cosmological perturbations of quantum mechanical origin at linear order.

  12. Analyses of fungal community by Illumina MiSeq platforms and characterization of Eurotium species on Liupao tea, a distinctive post-fermented tea from China.

    Science.gov (United States)

    Mao, Yan; Wei, BaoYao; Teng, JianWen; Huang, Li; Xia, Ning

    2017-09-01

    Liupao tea is a distinctive Chinese dark tea obtained by indigenous tea fermentation facilitated by the symbiotic association of bacteria and fungi. The composition of fungal community in 4 Liupao tea samples stored for several years under natural microbial fermentation was evaluated by MiSeq sequencing. Taxonomic analysis revealed 3 phyla, 6 families, 8 genera. The genera Eurotium and Aspergillus were dominant fungi in almost all the samples. A total of 85 strains found in 41 other tea samples were species of Eurotium. amstelodami, Eurotium. niveoglaucum, Eurotium. repens, Eurotium. rubrum, Eurotium. tonophilum and Eurotium. cristatum by culture-dependent method. Of these species, E. repens, E. rubrum and E. tonophilum have not been previously associated with Liupao tea. This report is the first to reveal fungal flora composition using Illumina-based sequencing and provide useful information for relevant studies on the isolation of Eurotium species in Liupao tea. The predominant molds are Eurotium species, and the comparison of fungal diversity in dark teas is worth considering. The taxonomic analysis of the microbial community would also aid the further study of functional genes and metabolic pathways of Liupao tea fermentation. Copyright © 2017. Published by Elsevier Ltd.

  13. Site-selective substitutional doping with atomic precision on stepped Al (111) surface by single-atom manipulation.

    Science.gov (United States)

    Chen, Chang; Zhang, Jinhu; Dong, Guofeng; Shao, Hezhu; Ning, Bo-Yuan; Zhao, Li; Ning, Xi-Jing; Zhuang, Jun

    2014-01-01

    In fabrication of nano- and quantum devices, it is sometimes critical to position individual dopants at certain sites precisely to obtain the specific or enhanced functionalities. With first-principles simulations, we propose a method for substitutional doping of individual atom at a certain position on a stepped metal surface by single-atom manipulation. A selected atom at the step of Al (111) surface could be extracted vertically with an Al trimer-apex tip, and then the dopant atom will be positioned to this site. The details of the entire process including potential energy curves are given, which suggests the reliability of the proposed single-atom doping method.

  14. Dark matter that can form dark stars

    International Nuclear Information System (INIS)

    Gondolo, Paolo; Huh, Ji-Haeng; Kim, Hyung Do; Scopel, Stefano

    2010-01-01

    The first stars to form in the Universe may be powered by the annihilation of weakly interacting dark matter particles. These so-called dark stars, if observed, may give us a clue about the nature of dark matter. Here we examine which models for particle dark matter satisfy the conditions for the formation of dark stars. We find that in general models with thermal dark matter lead to the formation of dark stars, with few notable exceptions: heavy neutralinos in the presence of coannihilations, annihilations that are resonant at dark matter freeze-out but not in dark stars, some models of neutrinophilic dark matter annihilating into neutrinos only and lighter than about 50 GeV. In particular, we find that a thermal DM candidate in standard Cosmology always forms a dark star as long as its mass is heavier than ≅ 50 GeV and the thermal average of its annihilation cross section is the same at the decoupling temperature and during the dark star formation, as for instance in the case of an annihilation cross section with a non-vanishing s-wave contribution

  15. Asymmetric dark matter and baryogenesis from pseudoscalar inflation

    Energy Technology Data Exchange (ETDEWEB)

    Cado, Yann; Sabancilar, Eray, E-mail: yann.cado@epfl.ch, E-mail: eray.sabancilar@epfl.ch [Laboratory of Particle Physics and Cosmology, Institute of Physics, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne (Switzerland)

    2017-04-01

    We show that both the baryon asymmetry of the Universe and the dark matter abundance can be explained within a single framework that makes use of maximally helical hypermagnetic fields produced during pseudoscalar inflation and the chiral anomaly in the Standard Model. We consider a minimal asymmetric dark matter model free from anomalies and constraints. We find that the observed baryon and the dark matter abundances are achieved for a wide range of inflationary parameters, and the dark matter mass ranges between 7–15 GeV . The novelty of our mechanism stems from the fact that the same source of CP violation occurring during inflation explains both baryonic and dark matter in the Universe with two inflationary parameters, hence addressing all the initial condition problems in an economical way.

  16. Single mode step-index polymer optical fiber for humidity insensitive high temperature fiber Bragg grating sensors

    DEFF Research Database (Denmark)

    Woyessa, Getinet; Fasano, Andrea; Stefani, Alessio

    2016-01-01

    We have fabricated the first single-mode step-index and humidity insensitive polymer optical fiber operating in the 850 nm wavelength ranges. The step-index preform is fabricated using injection molding, which is an efficient method for cost effective, flexible and fast preparation of the fiber...... preform. The fabricated single-mode step-index (SI) polymer optical fiber (POF) has a 4.8µm core made from TOPAS grade 5013S-04 with a glass transition temperature of 134°C and a 150 µm cladding made from ZEONEX grade 480R with a glass transition temperature of 138°C. The key advantages of the proposed...... SIPOF are low water absorption, high operating temperature and chemical inertness to acids and bases and many polar solvents as compared to the conventional poly-methyl-methacrylate (PMMA) and polystyrene based POFs. In addition, the fiber Bragg grating writing time is short compared to microstructured...

  17. Inoculated fermentation of green olives with potential probiotic Lactobacillus pentosus and Lactobacillus plantarum starter cultures isolated from industrially fermented olives.

    Science.gov (United States)

    Blana, Vasiliki A; Grounta, Athena; Tassou, Chrysoula C; Nychas, George-John E; Panagou, Efstathios Z

    2014-04-01

    The performance of two strains of lactic acid bacteria (LAB), namely Lactobacillus pentosus B281 and Lactobacillus plantarum B282, previously isolated from industrially fermented table olives and screened in vitro for probiotic potential, was investigated as starter cultures in Spanish style fermentation of cv. Halkidiki green olives. Fermentation was undertaken at room temperature in two different initial salt concentrations (8% and 10%, w/v, NaCl) in the brines. The strains were inoculated as single and combined cultures and the dynamics of their population on the surface of olives was monitored for a period of 114 days. The survival of inoculated strains on olives was determined using Pulsed Field Gel Electrophoresis (PFGE). Both probiotic strains successfully colonized the olive surface at populations ranged from 6.0 to 7.0 log CFU/g throughout fermentation. PFGE analysis revealed that L. pentosus B281 presented higher colonization in both salt levels at the end of fermentation (81.2% and 93.3% in 8% and 10% NaCl brines, respectively). For L. plantarum B282 a high survival rate (83.3%) was observed in 8% NaCl brines, but in 10% NaCl the strain could not colonize the surface of olives. L. pentosus B281 also dominated over L. plantarum B282 in inoculated fermentations when the two strains were used as combined culture. The biochemical profile (pH, organic acids, volatile compounds) attained during fermentation and the sensory analysis of the final product indicated a typical lactic acid fermentation process of green olives. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Multiscale 3D characterization with dark-field x-ray microscopy

    DEFF Research Database (Denmark)

    Simons, Hugh; Jakobsen, Anders Clemen; Ahl, Sonja Rosenlund

    2016-01-01

    Dark-field x-ray microscopy is a new way to three-dimensionally map lattice strain and orientation in crystalline matter. It is analogous to dark-field electron microscopy in that an objective lens magnifies diffracting features of the sample; however, the use of high-energy synchrotron x-rays me......, multiscale phenomena in situ is a key step toward formulating and validating multiscale models that account for the entire heterogeneity of materials....

  19. Aureobasidium pullulans Fermented Feruloyl Oligosaccharide: Optimization of Production, Preliminary Characterization, and Antioxidant Activity

    OpenAIRE

    Xiaohong Yu; Zhenxin Gu

    2013-01-01

    Wheat bran (WB) was subjected to processing with Aureobasidium pullulans (A. pullulans) under selected conditions to partially break down the xylan into soluble products (mainly feruloyl oligosaccharides, FOs). The objective of this study was to investigate the technology for one-step fermentation of WB by A. pullulans without melanin secretion to produce FOs as well as to determine their structural features and antioxidant activity. Initial pH, inoculation quantity, and fermentation temperat...

  20. Real-time imaging systems for superconducting nanowire single-photon detector arrays

    Energy Technology Data Exchange (ETDEWEB)

    Hofherr, Matthias

    2014-07-01

    Superconducting nanowire singe-photon detectors (SNSPD) are promising detectors in the field of applications, where single-photon resolution is required like in quantum optics, spectroscopy or astronomy. These cryogenic detectors gain from a broad spectrum in the optical and infrared range and deliver low dark counts and low jitter. This work provides a piece of deeper physical understanding of detector functionality in combination with highly engineered readout development. A detailed analysis focuses on the intrinsic detection mechanism of SNSPDs related to the detection in the infrared regime and the evolution of dark counts. With this fundamental knowledge, the next step is the development of a multi-pixel readout at cryogenic conditions. It is demonstrated, how two auspicious multi-pixel readout concepts can be realized, which enables statistical framing like in imaging applications using RSFQ electronics with fast framing rates and the readout of a detector array with continuous real-time single-photon resolution.

  1. Designed optimization of a single-step extraction of fucose-containing sulfated polysaccharides from Sargassum sp

    DEFF Research Database (Denmark)

    Ale, Marcel Tutor; Mikkelsen, Jørn Dalgaard; Meyer, Anne S.

    2012-01-01

    Fucose-containing sulfated polysaccharides can be extracted from the brown seaweed, Sargassum sp. It has been reported that fucose-rich sulfated polysaccharides from brown seaweeds exert different beneficial biological activities including anti-inflammatory, anticoagulant, and anti-viral effects....... Classical extraction of fucose-containing sulfated polysaccharides from brown seaweed species typically involves extended, multiple-step, hot acid, or CaCl2 treatments, each step lasting several hours. In this work, we systematically examined the influence of acid concentration (HCl), time, and temperature...... on the yield of fucosecontaining sulfated polysaccharides (FCSPs) in statistically designed two-step and single-step multifactorial extraction experiments. All extraction factors had significant effects on the fucose-containing sulfated polysaccharides yield, with the temperature and time exerting positive...

  2. Bio-hydrogen production from waste fermentation. Mixing and static conditions

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, X.; Cuetos, M.J.; Prieto, J.I.; Moran, A. [Chemical Engineering Dept. IRENA, University of Leon, Avda. de Portugal 41, 24071 Leon (Spain)

    2009-04-15

    One of the main disadvantages of the dark fermentation process is the cost associated with the stages needed for obtaining H{sub 2} producing microorganisms. Using anaerobic microflora in fermentation systems directly is an alternative which is gaining special interest when considering the implementation of large-scale plants and the use of wastes as substrate material. The performance of two H{sub 2} producing microflora obtained from different anaerobic cultures was studied in this paper. Inoculum obtained from a waste sludge digester and from a laboratory digester treating slaughterhouse wastes were used to start up H{sub 2} fermentation systems. Inoculum acclimatized to slaughterhouse wastes gave better performance in terms of stability. However, due to the limited availability of this seed material, further work was performed to study the behaviour of the inoculum obtained from the municipal wastewater treatment plant. The process was evaluated under static and mixing conditions. It was found that application of a low organic loading rate favoured the performance of the fermentation systems, and that agitation of the reacting mass could alleviate unsteady performance. Specific H{sub 2} production obtained was in the range of 19-26 L/kg SV{sub fed} with maximum peak production of 38-67 L/kg SV{sub fed}. Although the performance of the systems was unsteady, recovery could be achieved by suspending the feeding process and controlling the pH in the range of 5.0-5.5. Testing the recovery capacity of the systems under temperature shocks resulted in total stoppage of H{sub 2} production. (author)

  3. Search for a dark matter candidate produced in association with a single top quark in pp collisions at √[s]=1.96  TeV.

    Science.gov (United States)

    Aaltonen, T; Alvarez González, B; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Anzá, F; Apollinari, G; Appel, J A; Arisawa, T; Artikov, A; Asaadi, J; Ashmanskas, W; Auerbach, B; Aurisano, A; Azfar, F; Badgett, W; Bae, T; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Barria, P; Bartos, P; Bauce, M; Bedeschi, F; Behari, S; Bellettini, G; Bellinger, J; Benjamin, D; Beretvas, A; Bhatti, A; Bisello, D; Bizjak, I; Bland, K R; Blumenfeld, B; Bocci, A; Bodek, A; Bortoletto, D; Boudreau, J; Boveia, A; Brigliadori, L; Bromberg, C; Brucken, E; Budagov, J; Budd, H S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Calamba, A; Calancha, C; Camarda, S; Campanelli, M; Campbell, M; Canelli, F; Carls, B; Carlsmith, D; Carosi, R; Carrillo, S; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavaliere, V; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, K; Chokheli, D; Chung, W H; Chung, Y S; Ciocci, M A; Clark, A; Clarke, C; Compostella, G; Convery, M E; Conway, J; Corbo, M; Cordelli, M; Cox, C A; Cox, D J; Crescioli, F; Cuevas, J; Culbertson, R; Dagenhart, D; d'Ascenzo, N; Datta, M; de Barbaro, P; Dell'Orso, M; Demortier, L; Deninno, M; Devoto, F; d'Errico, M; Di Canto, A; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Donati, S; Dong, P; Dorigo, M; Dorigo, T; Ebina, K; Elagin, A; Eppig, A; Erbacher, R; Errede, S; Ershaidat, N; Eusebi, R; Farrington, S; Feindt, M; Fernandez, J P; Field, R; Flanagan, G; Forrest, R; Frank, M J; Franklin, M; Freeman, J C; Fuks, B; Funakoshi, Y; Furic, I; Gallinaro, M; Garcia, J E; Garfinkel, A F; Garosi, P; Gerberich, H; Gerchtein, E; Giagu, S; Giakoumopoulou, V; Giannetti, P; Gibson, K; Ginsburg, C M; Giokaris, N; Giromini, P; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldin, D; Goldschmidt, N; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Grinstein, S; Grosso-Pilcher, C; Group, R C; Guimaraes da Costa, J; Hahn, S R; Halkiadakis, E; Hamaguchi, A; Han, J Y; Happacher, F; Hara, K; Hare, D; Hare, M; Harr, R F; Hatakeyama, K; Hays, C; Heck, M; Heinrich, J; Herndon, M; Hewamanage, S; Hocker, A; Hopkins, W; Horn, D; Hou, S; Hughes, R E; Hurwitz, M; Husemann, U; Hussain, N; Hussein, M; Huston, J; Introzzi, G; Iori, M; Ivanov, A; James, E; Jang, D; Jayatilaka, B; Jeon, E J; Jindariani, S; Jones, M; Joo, K K; Jun, S Y; Junk, T R; Kamon, T; Karchin, P E; Kasmi, A; Kato, Y; Ketchum, W; Keung, J; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kim, Y J; Kimura, N; Kirby, M; Klimenko, S; Knoepfel, K; Kondo, K; Kong, D J; Konigsberg, J; Kotwal, A V; Kreps, M; Kroll, J; Krop, D; Kruse, M; Krutelyov, V; Kuhr, T; Kurata, M; Kwang, S; Laasanen, A T; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; LeCompte, T; Lee, E; Lee, H S; Lee, J S; Lee, S W; Leo, S; Leone, S; Lewis, J D; Limosani, A; Lin, C-J; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, C; Liu, H; Liu, Q; Liu, T; Lockwitz, S; Loginov, A; Lucchesi, D; Lueck, J; Lujan, P; Lukens, P; Lungu, G; Lys, J; Lysak, R; Madrak, R; Maeshima, K; Maestro, P; Malik, S; Manca, G; Manousakis-Katsikakis, A; Margaroli, F; Marino, C; Martínez, M; Mastrandrea, P; Matera, K; Mattson, M E; Mazzacane, A; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Mesropian, C; Miao, T; Mietlicki, D; Mitra, A; Miyake, H; Moed, S; Moggi, N; Mondragon, M N; Moon, C S; Moore, R; Morello, M J; Morlock, J; Movilla Fernandez, P; Mukherjee, A; Muller, Th; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Naganoma, J; Nakano, I; Napier, A; Nett, J; Neu, C; Neubauer, M S; Nielsen, J; Nodulman, L; Noh, S Y; Norniella, O; Oakes, L; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Orava, R; Ortolan, L; Pagan Griso, S; Pagliarone, C; Palencia, E; Papadimitriou, V; Paramonov, A A; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Pianori, E; Pilot, J; Pitts, K; Plager, C; Pondrom, L; Poprocki, S; Potamianos, K; Prokoshin, F; Pranko, A; Ptohos, F; Punzi, G; Rahaman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Renton, P; Rescigno, M; Riddick, T; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rodriguez, T; Rogers, E; Rolli, S; Roser, R; Ruffini, F; Ruiz, A; Russ, J; Rusu, V; Safonov, A; Sakumoto, W K; Sakurai, Y; Santi, L; Sato, K; Saveliev, V; Savoy-Navarro, A; Schlabach, P; Schmidt, A; Schmidt, E E; Schwarz, T; Scodellaro, L; Scribano, A; Scuri, F; Seidel, S; Seiya, Y; Semenov, A; Sforza, F; Shalhout, S Z; Shears, T; Shepard, P F; Shimojima, M; Shochet, M; Shreyber-Tecker, I; Simonenko, A; Sinervo, P; Sliwa, K; Smith, J R; Snider, F D; Soha, A; Sorin, V; Song, H; Squillacioti, P; Stancari, M; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Strycker, G L; Sudo, Y; Sukhanov, A; Suslov, I; Takemasa, K; Takeuchi, Y; Tang, J; Tecchio, M; Teng, P K; Thom, J; Thome, J; Thompson, G A; Thomson, E; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Totaro, P; Trovato, M; Ukegawa, F; Uozumi, S; Varganov, A; Vázquez, F; Velev, G; Vellidis, C; Vidal, M; Vila, I; Vilar, R; Vizán, J; Vogel, M; Volpi, G; Wagner, P; Wagner, R L; Wakisaka, T; Wallny, R; Wang, S M; Warburton, A; Waters, D; Wester, W C; Whiteson, D; Wicklund, A B; Wicklund, E; Wilbur, S; Wick, F; Williams, H H; Wilson, J S; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, H; Wright, T; Wu, X; Wu, Z; Yamamoto, K; Yamato, D; Yang, T; Yang, U K; Yang, Y C; Yao, W-M; Yeh, G P; Yi, K; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanetti, A; Zeng, Y; Zhou, C; Zucchelli, S

    2012-05-18

    We report a new search for dark matter in a data sample of an integrated luminosity of 7.7  fb-1 of Tevatron pp[over ¯] collisions at √[s]=1.96  TeV, collected by the CDF II detector. We search for production of a dark-matter candidate, D, in association with a single top quark. We consider the hadronic decay mode of the top quark exclusively, yielding a final state of three jets with missing transverse energy. The data are consistent with the standard model; we thus set 95% confidence level upper limits on the cross section of the process pp[over ¯]→t+D as a function of the mass of the dark-matter candidate. The limits are approximately 0.5 pb for a dark-matter particle with mass in the range of 0-150  GeV/c2.

  4. Fermentation of biomass sugars to ethanol using native industrial yeast strains.

    Science.gov (United States)

    Yuan, Dawei; Rao, Kripa; Relue, Patricia; Varanasi, Sasidhar

    2011-02-01

    In this paper, the feasibility of a technology for fermenting sugar mixtures representative of cellulosic biomass hydrolyzates with native industrial yeast strains is demonstrated. This paper explores the isomerization of xylose to xylulose using a bi-layered enzyme pellet system capable of sustaining a micro-environmental pH gradient. This ability allows for considerable flexibility in conducting the isomerization and fermentation steps. With this method, the isomerization and fermentation could be conducted sequentially, in fed-batch, or simultaneously to maximize utilization of both C5 and C6 sugars and ethanol yield. This system takes advantage of a pH-dependent complexation of xylulose with a supplemented additive to achieve up to 86% isomerization of xylose at fermentation conditions. Commercially-proven Saccharomyces cerevisiae strains from the corn-ethanol industry were used and shown to be very effective in implementation of the technology for ethanol production. Copyright © 2010 Elsevier Ltd. All rights reserved.

  5. Matter-wave dark solitons in optical lattices

    International Nuclear Information System (INIS)

    Louis, Pearl J Y; Ostrovskaya, Elena A; Kivshar, Yuri S

    2004-01-01

    We analyse the Floquet-Bloch spectrum of matter waves in Bose-Einstein condensates loaded into single-periodic optical lattices and double-periodic superlattices. In the framework of the Gross-Pitaevskii equation, we describe the structure and analyse the mobility properties of matter-wave dark solitons residing on backgrounds of extended nonlinear Bloch-type states. We demonstrate that interactions between dark solitons can be effectively controlled in optical superlattices

  6. Isolation, selection and evaluation of yeasts for use in fermentation of coffee beans by the wet process.

    Science.gov (United States)

    de Melo Pereira, Gilberto Vinícius; Soccol, Vanete Thomaz; Pandey, Ashok; Medeiros, Adriane Bianchi Pedroni; Andrade Lara, João Marcos Rodrigues; Gollo, André Luiz; Soccol, Carlos Ricardo

    2014-10-01

    During wet processing of coffee, the ripe cherries are pulped, then fermented and dried. This study reports an experimental approach for target identification and selection of indigenous coffee yeasts and their potential use as starter cultures during the fermentation step of wet processing. A total of 144 yeast isolates originating from spontaneously fermenting coffee beans were identified by molecular approaches and screened for their capacity to grow under coffee-associated stress conditions. According to ITS-rRNA gene sequencing, Pichia fermentans and Pichia kluyveri were the most frequent isolates, followed by Candida Candida glabrata, quercitrusa, Saccharomyces sp., Pichia guilliermondii, Pichia caribbica and Hanseniaspora opuntiae. Nine stress-tolerant yeast strains were evaluated for their ability to produce aromatic compounds in a coffee pulp simulation medium and for their pectinolytic activity. P. fermentans YC5.2 produced the highest concentrations of flavor-active ester compounds (viz., ethyl acetate and isoamyl acetate), while Saccharomyces sp. YC9.15 was the best pectinase-producing strain. The potential impact of these selected yeast strains to promote flavor development in coffee beverages was investigated for inoculating coffee beans during wet fermentation trials at laboratory scale. Inoculation of a single culture of P. fermentans YC5.2 and co-culture of P. fermentans YC5.2 and Saccharomyces sp. YC9.15 enhanced significantly the formation of volatile aroma compounds during the fermentation process compared to un-inoculated control. The sensory analysis indicated that the flavor of coffee beverages was influenced by the starter cultures, being rated as having the higher sensory scores for fruity, buttery and fermented aroma. This demonstrates a complementary role of yeasts associated with coffee quality through the synthesis of yeast-specific volatile constituents. The yeast strains P. fermentans YC5.2 and Saccharomyces sp. YC9.15 have a great

  7. Electro-Fermentation - Merging Electrochemistry with Fermentation in Industrial Applications.

    Science.gov (United States)

    Schievano, Andrea; Pepé Sciarria, Tommy; Vanbroekhoven, Karolien; De Wever, Heleen; Puig, Sebastià; Andersen, Stephen J; Rabaey, Korneel; Pant, Deepak

    2016-11-01

    Electro-fermentation (EF) merges traditional industrial fermentation with electrochemistry. An imposed electrical field influences the fermentation environment and microbial metabolism in either a reductive or oxidative manner. The benefit of this approach is to produce target biochemicals with improved selectivity, increase carbon efficiency, limit the use of additives for redox balance or pH control, enhance microbial growth, or in some cases enhance product recovery. We discuss the principles of electrically driven fermentations and how EF can be used to steer both pure culture and microbiota-based fermentations. An overview is given on which advantages EF may bring to both existing and innovative industrial fermentation processes, and which doors might be opened in waste biomass utilization towards added-value biorefineries. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Decaying dark matter from dark instantons

    International Nuclear Information System (INIS)

    Carone, Christopher D.; Erlich, Joshua; Primulando, Reinard

    2010-01-01

    We construct an explicit, TeV-scale model of decaying dark matter in which the approximate stability of the dark matter candidate is a consequence of a global symmetry that is broken only by instanton-induced operators generated by a non-Abelian dark gauge group. The dominant dark matter decay channels are to standard model leptons. Annihilation of the dark matter to standard model states occurs primarily through the Higgs portal. We show that the mass and lifetime of the dark matter candidate in this model can be chosen to be consistent with the values favored by fits to data from the PAMELA and Fermi-LAT experiments.

  9. Probing light nonthermal dark matter at the LHC

    Science.gov (United States)

    Dutta, Bhaskar; Gao, Yu; Kamon, Teruki

    2014-05-01

    This paper investigates the collider phenomenology of a minimal nonthermal dark matter model with a 1-GeV dark matter candidate, which naturally explains baryogenesis. Since the light dark matter is not parity protected, it can be singly produced at the LHC. This leads to large missing energy associated with an energetic jet whose transverse momentum distribution is featured by a Jacobian-like shape. The monojet, dijet, paired dijet, and two jets + missing energy channels are studied. Currently existing data at the Tevatron and LHC offer significant bounds on our model.

  10. Signatures of top flavour-changing dark matter

    International Nuclear Information System (INIS)

    Hondt, Jorgen d'; Mariotti, Alberto; Moortgat, Seth; Tziveloglou, Pantelis

    2015-12-01

    We develop the phenomenology of scenarios in which a dark matter candidate interacts with a top quark through flavour-changing couplings, employing a simplified dark matter model with an s-channel vector-like mediator. We study in detail the top-charm flavour-changing interaction, by investigating the single top plus large missing energy signature at the LHC as well as constraints from the relic density and direct and indirect dark matter detection experiments. We present strategies to distinguish between the top-charm and top-up flavour-changing models by taking advantage of the lepton charge asymmetry as well as by using charm-tagging techniques on an extra jet. We also show the complementarity between the LHC and canonical dark matter experiments in exploring the viable parameter space of the models.

  11. Signatures of top flavour-changing dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Hondt, Jorgen d' ; Mariotti, Alberto; Moortgat, Seth; Tziveloglou, Pantelis [Vrieje Univ. Brussel (Belgium). Theoretische Natuurkunde and IIHE/ELEM; Mawatari, Kentarou [Vrieje Univ. Brussel (Belgium). Theoretische Natuurkunde and IIHE/ELEM; Grenoble-Alpes Univ., CNRS/IN2P3 (France). Lab. de Physique Subatomique et de Cosmologie; Onsem, Gerrit van [Vrieje Univ. Brussel (Belgium). Theoretische Natuurkunde and IIHE/ELEM; Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2015-12-15

    We develop the phenomenology of scenarios in which a dark matter candidate interacts with a top quark through flavour-changing couplings, employing a simplified dark matter model with an s-channel vector-like mediator. We study in detail the top-charm flavour-changing interaction, by investigating the single top plus large missing energy signature at the LHC as well as constraints from the relic density and direct and indirect dark matter detection experiments. We present strategies to distinguish between the top-charm and top-up flavour-changing models by taking advantage of the lepton charge asymmetry as well as by using charm-tagging techniques on an extra jet. We also show the complementarity between the LHC and canonical dark matter experiments in exploring the viable parameter space of the models.

  12. Decreased production of higher alcohols by Saccharomyces cerevisiae for Chinese rice wine fermentation by deletion of Bat aminotransferases.

    Science.gov (United States)

    Zhang, Cui-Ying; Qi, Ya-Nan; Ma, Hong-Xia; Li, Wei; Dai, Long-Hai; Xiao, Dong-Guang

    2015-04-01

    An appropriate level of higher alcohols produced by yeast during the fermentation is one of the most important factors influencing Chinese rice wine quality. In this study, BAT1 and BAT2 single- and double-gene-deletion mutant strains were constructed from an industrial yeast strain RY1 to decrease higher alcohols during Chinese rice wine fermentation. The results showed that the BAT2 single-gene-deletion mutant strain produced best improvement in the production of higher alcohols while remaining showed normal growth and fermentation characteristics. Furthermore, a BAT2 single-gene-deletion diploid engineered strain RY1-Δbat2 was constructed and produced low levels of isobutanol and isoamylol (isoamyl alcohol and active amyl alcohol) in simulated fermentation of Chinese rice wine, 92.40 and 303.31 mg/L, respectively, which were 33.00 and 14.20 % lower than those of the parental strain RY1. The differences in fermentation performance between RY1-Δbat2 and RY1 were minor. Therefore, construction of this yeast strain is important in future development in Chinese wine industry and provides insights on generating yeast strains for other fermented alcoholic beverages.

  13. Controlling alchohol fermentations

    Energy Technology Data Exchange (ETDEWEB)

    Leedham, P A; Tubb, R S

    1983-09-21

    In the initial stages of a fermentation of carbohydrate to EtOH, the growth of the yeast is controlled by monitoring the pH of a fermenting liquid or wort and controlling the supply of O/sub 2/ in accordance with the pH. The temperature of the fermenting liquid is also controlled in dependence upon the pH. The control of the fermentation process is carried out automatically by an apparatus including a fermentation vessel, a pH sensor arranged to provide an output signal representative of the pH of the liquid in the vessel, memory means to store information on the required pH with regard to the fermentation time, means to inject O/sub 2/ into the fermenting liquid and control means to compare the output signal of the pH sensor at a particular time with that of the required pH at that time, and in the event of the pH of the fermenting liquid lagging behind that required, actuate the means to inject O/sub 2/ into the fermenting liquid to increase the O/sub 2/ content of the fermenting liquid.

  14. Enhanced production of lovastatin by Omphalotus olearius (DC.) Singer in solid state fermentation.

    Science.gov (United States)

    Atlı, Burcu; Yamaç, Mustafa; Yıldız, Zeki; Isikhuemnen, Omoanghe S

    2015-01-01

    Although lovastatin production has been reported for different microorganism species, there is limited information about lovastatin production by basidiomycetes. The optimization of culture parameters that enhances lovastatin production by Omphalotus olearius OBCC 2002 was investigated, using statistically based experimental designs under solid state fermentation. The Plackett Burman design was used in the first step to test the relative importance of the variables affecting production of lovastatin. Amount and particle size of barley were identified as efficient variables. In the latter step, the interactive effects of selected efficient variables were studied with a full factorial design. A maximum lovastatin yield of 139.47mg/g substrate was achieved by the fermentation of 5g of barley, 1-2mm particle diam., at 28°C. This study showed that O. olearius OBCC 2002 has a high capacity for lovastatin production which could be enhanced by using solid state fermentation with novel and cost-effective substrates, such as barley. Copyright © 2013 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.

  15. Yeast diversity during the fermentation of Andean chicha: A comparison of high-throughput sequencing and culture-dependent approaches.

    Science.gov (United States)

    Mendoza, Lucía M; Neef, Alexander; Vignolo, Graciela; Belloch, Carmela

    2017-10-01

    Diversity and dynamics of yeasts associated with the fermentation of Argentinian maize-based beverage chicha was investigated. Samples taken at different stages from two chicha productions were analyzed by culture-dependent and culture-independent methods. Five hundred and ninety six yeasts were isolated by classical microbiological methods and 16 species identified by RFLPs and sequencing of D1/D2 26S rRNA gene. Genetic typing of isolates from the dominant species, Saccharomyces cerevisiae, by PCR of delta elements revealed up to 42 different patterns. High-throughput sequencing (HTS) of D1/D2 26S rRNA gene amplicons from chicha samples detected more than one hundred yeast species and almost fifty filamentous fungi taxa. Analysis of the data revealed that yeasts dominated the fermentation, although, a significant percentage of filamentous fungi appeared in the first step of the process. Statistical analysis of results showed that very few taxa were represented by more than 1% of the reads per sample at any step of the process. S. cerevisiae represented more than 90% of the reads in the fermentative samples. Other yeast species dominated the pre-fermentative steps and abounded in fermented samples when S. cerevisiae was in percentages below 90%. Most yeasts species detected by pyrosequencing were not recovered by cultivation. In contrast, the cultivation-based methodology detected very few yeast taxa, and most of them corresponded with very few reads in the pyrosequencing analysis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Improving the detection of cocoa bean fermentation-related changes using image fusion

    Science.gov (United States)

    Ochoa, Daniel; Criollo, Ronald; Liao, Wenzhi; Cevallos-Cevallos, Juan; Castro, Rodrigo; Bayona, Oswaldo

    2017-05-01

    Complex chemical processes occur in during cocoa bean fermentation. To select well-fermented beans, experts take a sample of beans, cut them in half and visually check its color. Often farmers mix high and low quality beans therefore, chocolate properties are difficult to control. In this paper, we explore how close-range hyper- spectral (HS) data can be used to characterize the fermentation process of two types of cocoa beans (CCN51 and National). Our aim is to find spectral differences to allow bean classification. The main issue is to extract reliable spectral data as openings resulting from the loss of water during fermentation, can cover up to 40% of the bean surface. We exploit HS pan-sharpening techniques to increase the spatial resolution of HS images and filter out uneven surface regions. In particular, the guided filter PCA approach which has proved suitable to use high-resolution RGB data as guide image. Our preliminary results show that this pre-processing step improves the separability of classes corresponding to each fermentation stage compared to using the average spectrum of the bean surface.

  17. Optimization of fermentation conditions for the production of curcumin by engineered Escherichia coli.

    Science.gov (United States)

    Couto, Márcia R; Rodrigues, Joana L; Rodrigues, Lígia R

    2017-08-01

    Curcumin is a plant secondary metabolite with outstanding therapeutic effects. Therefore, there is a great interest in developing new strategies to produce this high-value compound in a cheaper and environmentally friendly way. Curcumin heterologous production in Escherichia coli using artificial biosynthetic pathways was previously demonstrated using synthetic biology approaches. However, the culturing conditions to produce this compound were not optimized and so far only a two-step fermentation process involving the exchange of culture medium allowed high concentrations of curcumin to be obtained, which limits its production at an industrial scale. In this study, the culturing conditions to produce curcumin were evaluated and optimized. In addition, it was concluded that E. coli BL21 allows higher concentrations of curcumin to be produced than E. coli K-12 strains. Different isopropyl β-d-thiogalactopyranoside concentrations, time of protein expression induction and substrate type and concentration were also evaluated. The highest curcumin production obtained was 959.3 µM (95.93% of per cent yield), which was 3.1-fold higher than the highest concentration previously reported. This concentration was obtained using a two-stage fermentation with lysogeny broth (LB) and M9. Moreover, terrific broth was also demonstrated to be a very interesting alternative medium to produce curcumin because it also led to high concentrations (817.7 µM). The use of this single fermentation medium represents an advantage at industrial scale and, although the final production is lower than that obtained with the LB-M9 combination, it leads to a significantly higher production of curcumin in the first 24 h of fermentation. This study allowed obtaining the highest concentrations of curcumin reported so far in a heterologous organism and is of interest for all of those working with the heterologous production of curcuminoids, other complex polyphenolic compounds or plant secondary

  18. A Novel Millet-Based Probiotic Fermented Food for the Developing World

    Directory of Open Access Journals (Sweden)

    Elisa Di Stefano

    2017-05-01

    Full Text Available Probiotic yogurt, comprised of a Fiti sachet containing Lactobacillus rhamnosus GR-1 and Streptococcus thermophilus C106, has been used in the developing world, notably Africa, to alleviate malnutrition and disease. In sub-Saharan African countries, fermentation of cereals such as millet, is culturally significant. The aim of this study was to investigate the fermentation capability of millet when one gram of the Fiti sachet consortium was added. An increase of 1.8 and 1.4 log CFU/mL was observed for S. thermophilus C106 and L. rhamnosus GR-1 when grown in 8% millet in water. Single cultures of L. rhamnosus GR-1 showed the highest μmax when grown in the presence of dextrose, galactose and fructose. Single cultures of S. thermophilus C106 showed the highest μmax when grown in the presence of sucrose and lactose. All tested recipes reached viable counts of the probiotic bacteria, with counts greater than 106 colony-forming units (CFU/mL. Notably, a number of organic acids were quantified, in particular phytic acid, which was shown to decrease when fermentation time increased, thereby improving the bioavailability of specific micronutrients. Millet fermented in milk proved to be the most favorable, according to a sensory evaluation. In conclusion, this study has shown that sachets being provided to African communities to produce fermented milk, can also be used to produce fermented millet. This provides an option for when milk supplies are short, or if communities wish to utilize the nutrient-rich qualities of locally-grown millet.

  19. Voluntary stepping behavior under single- and dual-task conditions in chronic stroke survivors: A comparison between the involved and uninvolved legs.

    Science.gov (United States)

    Melzer, Itshak; Goldring, Melissa; Melzer, Yehudit; Green, Elad; Tzedek, Irit

    2010-12-01

    If balance is lost, quick step execution can prevent falls. Research has shown that speed of voluntary stepping was able to predict future falls in old adults. The aim of the study was to investigate voluntary stepping behavior, as well as to compare timing and leg push-off force-time relation parameters of involved and uninvolved legs in stroke survivors during single- and dual-task conditions. We also aimed to compare timing and leg push-off force-time relation parameters between stroke survivors and healthy individuals in both task conditions. Ten stroke survivors performed a voluntary step execution test with their involved and uninvolved legs under two conditions: while focusing only on the stepping task and while a separate attention-demanding task was performed simultaneously. Temporal parameters related to the step time were measured including the duration of the step initiation phase, the preparatory phase, the swing phase, and the total step time. In addition, force-time parameters representing the push-off power during stepping were calculated from ground reaction data and compared with 10 healthy controls. The involved legs of stroke survivors had a significantly slower stepping time than uninvolved legs due to increased swing phase duration during both single- and dual-task conditions. For dual compared to single task, the stepping time increased significantly due to a significant increase in the duration of step initiation. In general, the force time parameters were significantly different in both legs of stroke survivors as compared to healthy controls, with no significant effect of dual compared with single-task conditions in both groups. The inability of stroke survivors to swing the involved leg quickly may be the most significant factor contributing to the large number of falls to the paretic side. The results suggest that stroke survivors were unable to rapidly produce muscle force in fast actions. This may be the mechanism of delayed execution

  20. Novel Bacillus subtilis IND19 cell factory for the simultaneous production of carboxy methyl cellulase and protease using cow dung substrate in solid-substrate fermentation.

    Science.gov (United States)

    Vijayaraghavan, Ponnuswamy; Arun, Arumugaperumal; Al-Dhabi, Naif Abdullah; Vincent, Samuel Gnana Prakash; Arasu, Mariadhas Valan; Choi, Ki Choon

    2016-01-01

    Hydrolytic enzymes, such as cellulases and proteases, have various applications, including bioethanol production, extraction of fruit and vegetable juice, detergent formulation, and leather processing. Solid-substrate fermentation has been an emerging method to utilize low-cost agricultural residues for the production of these enzymes. Although the production of carboxy methyl cellulase (CMCase) and protease in solid state fermentation (SSF) have been studied extensively, research investigating multienzyme production in a single fermentation process is limited. The production of multienzymes from a single fermentation system could reduce the overall production cost of enzymes. In order to achieve enhanced production of enzymes, the response surface methodology (RSM) was applied. Bacillus subtilis IND19 utilized cow dung substrates for the production of CMCase and protease. A central composite design and a RSM were used to determine the optimal concentrations of peptone, NaH2PO4, and medium pH. Maximum productions of CMCase and protease were observed at 0.9 % peptone, 0.78 % NaH2PO4, and medium pH of 8.41, and 1 % peptone, 0.72 % NaH2PO4, and medium pH of 8.11, respectively. Under the optimized conditions, the experimental yield of CMCase and protease reached 473.01 and 4643 U/g, which were notably close to the predicted response (485.05 and 4710 U/g). These findings corresponded to an overall increase of 2.1- and 2.5-fold in CMCase and protease productions, respectively. Utilization of cow dung for the production of enzymes is critical to producing multienzymes in a single fermentation step. Cow dung is available in large quantity throughout the year. This report is the first to describe simultaneous production of CMCase and protease using cow dung. This substrate could be directly used as the culture medium without any pretreatment for the production of these enzymes at an industrial scale.

  1. Fermentation of pretreated corncob hemicellulose hydrolysate to ...

    African Journals Online (AJOL)

    academicjournal

    single carbon source because the ethanol conversion of glucose was higher than that of xylose. Using parallel fermentation of corncob hemicellulose acid hydrolysate and the artificially prepared hydrolysate, it was found that complex components in the corncob hemicellulose acid hydrolysate probably promoted ethanol ...

  2. Suitability of aspenwood biologically delignified with Pheblia tremellosus for fermentation to ethanol or butanediol

    Energy Technology Data Exchange (ETDEWEB)

    Mes-Hartree, M.; Yu, E.K.C.; Saddler, J.N.; Reid, I.D.

    1987-05-01

    Enzymatic conversion of lignocellulosic materials to fuels and chemicals depends on an initial pretreatment to render the cellulose more susceptible to enzymatic attack. Biological delignification of aspenwood with the fungus Phlebia tremellosus was compared to steaming as a pretreatment method. The biologically delignified aspenwood (BDA) had a high pentosan content and did not contain inhibitors of enzymatic hydrolysis or subsequent fermentation. In contrast, the steamed aspenwood required a water-extraction step to remove the inhibitory material and this step also removed most of the pentosan. The yield of treated material was 90% from biological delignification and 70% from steaming. The cellulose in the BDA was less accessible to the cellulase enzymes than the steamed aspenwood. Combined hydrolysis and fermentation with Saccharomyces cerevisiae gave a lower yield of ethanol from BDA than from the steamed aspenwood, but the yields based on the weight of substrate before pretreatment were comparable. Combined hydrolysis and fermentation with Klebsiella pneumoniae gave higher yields of butanediol from BDA than from steamed aspenwood, because Klebsiella can ferment the xylose which was present in the biologically treated aspenwood. Trichoderma harzianum produced lower levels of cellulase enzymes when grown on BDA than when grown on steamed aspenwood and this was related to the xylan found in the biologically treated material.

  3. Cellobiohydrolase 1 from Trichoderma reesei degrades cellulose in single cellobiose steps

    Science.gov (United States)

    Brady, Sonia K.; Sreelatha, Sarangapani; Feng, Yinnian; Chundawat, Shishir P. S.; Lang, Matthew J.

    2015-12-01

    Cellobiohydrolase 1 from Trichoderma reesei (TrCel7A) processively hydrolyses cellulose into cellobiose. Although enzymatic techniques have been established as promising tools in biofuel production, a clear understanding of the motor's mechanistic action has yet to be revealed. Here, we develop an optical tweezers-based single-molecule (SM) motility assay for precision tracking of TrCel7A. Direct observation of motility during degradation reveals processive runs and distinct steps on the scale of 1 nm. Our studies suggest TrCel7A is not mechanically limited, can work against 20 pN loads and speeds up when assisted. Temperature-dependent kinetic studies establish the energy requirements for the fundamental stepping cycle, which likely includes energy from glycosidic bonds and other sources. Through SM measurements of isolated TrCel7A domains, we determine that the catalytic domain alone is sufficient for processive motion, providing insight into TrCel7A's molecular motility mechanism.

  4. Orientational imaging of a single plasmonic nanoparticle using dark-field hyperspectral imaging

    Science.gov (United States)

    Mehta, Nishir; Mahigir, Amirreza; Veronis, Georgios; Gartia, Manas Ranjan

    2017-08-01

    Orientation of plasmonic nanostructures is an important feature in many nanoscale applications such as catalyst, biosensors DNA interactions, protein detections, hotspot of surface enhanced Raman spectroscopy (SERS), and fluorescence resonant energy transfer (FRET) experiments. However, due to diffraction limit, it is challenging to obtain the exact orientation of the nanostructure using standard optical microscope. Hyperspectral Imaging Microscopy is a state-of-the-art visualization technology that combines modern optics with hyperspectral imaging and computer system to provide the identification and quantitative spectral analysis of nano- and microscale structures. In this work, initially we use transmitted dark field imaging technique to locate single nanoparticle on a glass substrate. Then we employ hyperspectral imaging technique at the same spot to investigate orientation of single nanoparticle. No special tagging or staining of nanoparticle has been done, as more likely required in traditional microscopy techniques. Different orientations have been identified by carefully understanding and calibrating shift in spectral response from each different orientations of similar sized nanoparticles. Wavelengths recorded are between 300 nm to 900 nm. The orientations measured by hyperspectral microscopy was validated using finite difference time domain (FDTD) electrodynamics calculations and scanning electron microscopy (SEM) analysis. The combination of high resolution nanometer-scale imaging techniques and the modern numerical modeling capacities thus enables a meaningful advance in our knowledge of manipulating and fabricating shaped nanostructures. This work will advance our understanding of the behavior of small nanoparticle clusters useful for sensing, nanomedicine, and surface sciences.

  5. Effect of Rhizopus oryzae Fermentation on Kenaf-Based Polylactic Acid’s Monomer

    OpenAIRE

    Nur Aimi Mohd Nasir; Mohd Adlan Mustafa Kamalbahrin; Nurhafizah Mohamad; Hazleen Anuar; Maizirwan Mel; and Rashidi Othman

    2011-01-01

    Kenaf biomass is the potential as raw materials used to produce polylactic acid's monomer which is lactic acid via fermentation by Rhizopus oryzae. Kenaf biomass' structure is complex due to its lignin and cellulose content. This matter had encouraged it to undergo pre- treatment process as the initial step before fermentation process can be done. In this paper, kenaf biomass was treated with dilute sulphuric acid (H2SO4) to hydrolyze the cellulose content in it as well as to convert the cell...

  6. Assessment of cocoa (Theobroma cacao L.) butter content and composition throughout fermentations.

    Science.gov (United States)

    Servent, Adrien; Boulanger, Renaud; Davrieux, Fabrice; Pinot, Marie-Neige; Tardan, Eric; Forestier-Chiron, Nelly; Hue, Clotilde

    2018-05-01

    Cocoa fermentation is a crucial step for the development of cocoa aroma and precursors of high quality cocoa and by-products. This bioprocess has been studied for years to understand cocoa chemical changes but some matters concerning changes in fat content remain that are investigated in this work. Changes in the quantity (free and total fat), extractability and composition of cocoa butter were assessed in samples from Madagascar, the Dominican Republic and Ecuador. Increases in free fat content were highlighted in samples from each origin thanks to the use of the 'soxtec' solvent method, which preserves the integrity of the butter. A 4.71% increase in free fat was measured in the Ecuadorian samples fermented for 144 h. Conversely, total fat content remained stable throughout fermentation. Protein and polyphenol contents decreases were linked to fat content augmentation by a strong negative interaction. Triglyceride and total and linked fatty acid kinetics (0 to 6 days) of the butter remained statistically stable during fermentation, as did unsaponifiable matter. The origin of fermentation had a predominant and significant impact on composition, revealed by PCA. This work underlines and explains the importance of fermentation process in improving yield of fat that can be extracted while preserving the composition of this cocoa butter. This study highlights an interaction in cocoa unfermented or partially fermented beans. This phenomenon causes butter content retention but is slowly broken after 72 h fermentation. Therefore, fermentation appears to be also necessary to enhance the cocoa butter content extracted from the nibs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Dark Matter Cores in the Fornax and Sculptor Dwarf Galaxies

    DEFF Research Database (Denmark)

    C. Amorisco, Nicola; Zavala Franco, Jesus; J. L. de Boer, Thomas

    2014-01-01

    We combine the detailed Star Formation Histories of the Fornax and Sculptor dwarf Spheroidals with the mass assembly history of their dark matter halo progenitors to estimate if the energy deposited by Supernova type II (SNeII) is sufficient to create a substantial dark matter core. Assuming...... the efficiency of energy injection of the SNeII into dark matter particles is \\epsilon=0.05, we find that a single early episode, z...

  8. Single-step controlled-NOT logic from any exchange interaction

    Science.gov (United States)

    Galiautdinov, Andrei

    2007-11-01

    A self-contained approach to studying the unitary evolution of coupled qubits is introduced, capable of addressing a variety of physical systems described by exchange Hamiltonians containing Rabi terms. The method automatically determines both the Weyl chamber steering trajectory and the accompanying local rotations. Particular attention is paid to the case of anisotropic exchange with tracking controls, which is solved analytically. It is shown that, if computational subspace is well isolated, any exchange interaction can always generate high fidelity, single-step controlled-NOT (CNOT) logic, provided that both qubits can be individually manipulated. The results are then applied to superconducting qubit architectures, for which several CNOT gate implementations are identified. The paper concludes with consideration of two CNOT gate designs having high efficiency and operating with no significant leakage to higher-lying noncomputational states.

  9. Quasilocal variables in spherical symmetry: Numerical applications to dark matter and dark energy sources

    International Nuclear Information System (INIS)

    Sussman, Roberto A.

    2009-01-01

    A numerical approach is considered for spherically symmetric spacetimes that generalize Lemaitre-Tolman-Bondi dust solutions to nonzero pressure ('LTB spacetimes'). We introduce quasilocal (QL) variables that are covariant LTB objects satisfying evolution equations of Friedman-Lemaitre-Robertson-Walker (FLRW) cosmologies. We prove rigorously that relative deviations of the local covariant scalars from the QL scalars are nonlinear, gauge invariant and covariant perturbations on a FLRW formal background given by the QL scalars. The dynamics of LTB spacetimes is completely determined by the QL scalars and these exact perturbations. Since LTB spacetimes are compatible with a wide variety of ''equations of state,'' either single fluids or mixtures, a large number of known solutions with dark matter and dark energy sources in a FLRW framework (or with linear perturbations) can be readily examined under idealized but nontrivial inhomogeneous conditions. Coordinate choices and initial conditions are derived for a numerical treatment of the perturbation equations, allowing us to study nonlinear effects in a variety of phenomena, such as gravitational collapse, nonlocal effects, void formation, dark matter and dark energy couplings, and particle creation. In particular, the embedding of inhomogeneous regions can be performed by a smooth matching with a suitable FLRW solution, thus generalizing the Newtonian 'top hat' models that are widely used in astrophysical literature. As examples of the application of the formalism, we examine numerically the formation of a black hole in an expanding Chaplygin gas FLRW universe, as well as the evolution of density clumps and voids in an interactive mixture of cold dark matter and dark energy.

  10. Selection of potential microorganism for sago starch fermentation

    Directory of Open Access Journals (Sweden)

    RUTH MELLIAWATI

    2006-02-01

    Full Text Available Fermentation process of sago starch for the production of bioproduct requires potential microorganism that have ability to hydrolyze sago starch. The purpose of this research was to get the potential of amylolytic microorganisms for their capability of amyloglucosidase activity and to know the sugar strains of the fermentation result. Eleven amylolytic microorganisms (9 strains of mold and 2 strains of yeast were obtained from the collection Research Centre for Biotechnology – Indonesian Institute of Sciences (LIPI, Cibinong-Bogor were used. The selection step was carried out based on their capability of starch hydrolysis to reducing sugar. The best result indicates that the production of reducing sugar reached the highest 18.485 ppm and amyloglucosidase activities was 3.583 units by KTU-1 strain. The highest total acid obtained was 5.85 mg/mL by Rhizopus IFO.R5442. The cell biomass was obtained between 0.5 to 1.74 g dry weight/100 mL and pH of the final fermentation (72 h were 3.57 to 8.38.

  11. Single-Step Fabrication of High-Density Microdroplet Arrays of Low-Surface-Tension Liquids.

    Science.gov (United States)

    Feng, Wenqian; Li, Linxian; Du, Xin; Welle, Alexander; Levkin, Pavel A

    2016-04-01

    A facile approach for surface patterning that enables single-step fabrication of high-density arrays of low-surface-tension organic-liquid microdroplets is described. This approach enables miniaturized and parallel high-throughput screenings in organic solvents, formation of homogeneous arrays of hydrophobic nanoparticles, polymer micropads of specific shapes, and polymer microlens arrays. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Low-field multi-step magnetization of GaV4S8 single crystal

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, H; Kajinami, Y; Tabata, Y [Department of Materials Science and Engineering, Kyoto University, Kyoto 606-8501 (Japan); Ikeno, R; Motoyama, G; Kohara, T, E-mail: h.nakamura@ht8.ecs.kyoto-u.ac.j [Graduate School of Material Science, University of Hyogo, Kamigori, Hyogo 678-1297 (Japan)

    2009-01-01

    The magnetization process of single crystalline GaV4S8 including tetrahedral magnetic clusters was measured in the magnetically ordered state below T{sub C} {approx_equal} 13 K. Just below TC, steps were observed at very low fields of the order of 100 Oe, suggesting the competition of several intra- and inter-cluster interactions in a low energy range.

  13. Diffusion welding. [heat treatment of nickel alloys following single step vacuum welding process

    Science.gov (United States)

    Holko, K. H. (Inventor)

    1974-01-01

    Dispersion-strengthened nickel alloys are sanded on one side and chemically polished. This is followed by a single-step welding process wherein the polished surfaces are forced into intimate contact at 1,400 F for one hour in a vacuum. Diffusion, recrystallization, and grain growth across the original weld interface are obtained during postheating at 2,150 F for two hours in hydrogen.

  14. Physico-chemical and microbiological characterization of spontaneous fermentation of Cellina di Nardò and Leccino table olives

    Directory of Open Access Journals (Sweden)

    Gianluca eBleve

    2014-10-01

    Full Text Available Table olives are one of the most important traditional fermented vegetables in Europe and their world consumption is constantly increasing. In the Greek style, table olives are obtained by spontaneous fermentations, without any chemical debittering treatment. Evolution of sugars, organic acids, alcohols, mono and polyphenol compounds and volatile compounds associated with the fermentative metabolism of yeasts and bacteria throughout the natural fermentation process of the two Italian olive cultivars Cellina di Nardò and Leccino were determined. A protocol was developed and applied aimed at the technological characterization of LAB and yeast strains as possible candidate autochthonous starters for table olive fermentation from Cellina di Nardò and Leccino cultivars. The study of the main physic-chemical parameters and volatile compounds during fermentation helped to determine chemical descriptors that may be suitable for monitoring olive fermentation. In both the analyzed table olive cultivars, aldehydes proved to be closely related to the first stage of fermentation (30 days, while higher alcohols (2-methyl-1-propanol; 3-methyl-1-butanol, styrene, and o-cymene were associated with the middle stage of fermentation (90 days and acetate esters with the final step of olive fermentation (180 days.

  15. Characterization of fermented black soybean natto inoculated with Bacillus natto during fermentation.

    Science.gov (United States)

    Hu, Yongjin; Ge, Changrong; Yuan, Wei; Zhu, Renjun; Zhang, Wujiu; Du, Lijuan; Xue, Jie

    2010-05-01

    To make nutrients more accessible and further increase biological activity, cooked black soybeans were inoculated with Bacillus natto and fermented at 37 degrees C for 48 h. The changes in physiochemical properties of fermented black soybean natto were investigated. The inoculation procedure significantly increased moisture, viscosity, color, polyphenol compounds and anthocyanin, and significantly decreased hardness after 48 h fermentation. Fibrinolytic and caseinolytic protease, beta-glucosidase activities, TCA-soluble nitrogen, and ammonia nitrogen contents in the inoculated samples significantly increased as fermentation time increased. Genistin and daidzin concentrations gradually decreased with increased fermentation time. However, genistein and daidzein increased with fermentation time, which reached 316.8 and 305.2 microg g(-1) during 48 h fermentation, respectively. DPPH radical scavenging activities of the fermented black soybeans increased linearly with fermentation time and concentration. Compared with the soaked black soybeans and cooked black soybeans, the fermented black soybeans with B. natto resulted in higher scavenging activity towards DPPH radicals, which correlated well with the content of total phenols (r = 0.9254, P natto fermented by B. natto has the potential to become a functional food because of its high antioxidant activity.

  16. Extraction of hemicelluloses from wood in a pulp biorefinery, and subsequent fermentation into ethanol

    International Nuclear Information System (INIS)

    Boucher, Jérémy; Chirat, Christine; Lachenal, Dominique

    2014-01-01

    Highlights: • Hemicellulosic ethanol from softwood hemicelluloses in a pulp mill. • Comparison of acid hydrolysis and autohydrolysis to extract hemicelluloses. • Effects of the extraction process conditions on inhibitors concentrations. • Effects of inhibitors on fermentation. - Abstract: This study deals with the production of ethanol and paper pulp in a kraft pulp mill. The use of an acid hydrolysis or a two-step treatment composed of an autohydrolysis followed by a secondary acid hydrolysis was studied. Acid hydrolysis allowed the extraction of higher quantities of sugars but led also to higher degradations of these sugars into inhibitors of fermentation. The direct fermentation of a hydrolysate resulting from an acid hydrolysis gave excellent yields after 24 h. However, the fermentation of hydrolysates after their concentration proved to be impossible. The study of the impact of the inhibitors on the fermentations showed that organic acids, and more specifically formic acid and acetic acid were greatly involved in the inhibition

  17. General N-Dark Soliton Solutions of the Multi-Component Mel'nikov System

    Science.gov (United States)

    Han, Zhong; Chen, Yong; Chen, Junchao

    2017-07-01

    A general form of N-dark soliton solutions of the multi-component Mel'nikov system are presented. Taking the coupled Mel'nikov system comprised of two-component short waves and one-component long wave as an example, its general N-dark-dark soliton solutions in Gram determinant form are constructed through the KP hierarchy reduction method. The dynamics of single dark-dark soliton and two dark-dark solitons are discussed in detail. It can be shown that the collisions of dark-dark solitons are elastic and energies of the solitons in different components completely transmit through. In addition, the dark-dark soliton bound states including both stationary and moving cases are also investigated. An interesting feature for the coupled Mel'nikov system is that the stationary dark-dark soliton bound states can exist for all possible combinations of nonlinearity coefficients including positive, negative and mixed types, while the moving case are possible when nonlinearity coefficients take opposite signs or they are both negative.

  18. Single-step colloidal quantum dot films for infrared solar harvesting

    KAUST Repository

    Kiani, Amirreza

    2016-11-01

    Semiconductors with bandgaps in the near- to mid-infrared can harvest solar light that is otherwise wasted by conventional single-junction solar cell architectures. In particular, colloidal quantum dots (CQDs) are promising materials since they are cost-effective, processed from solution, and have a bandgap that can be tuned into the infrared (IR) via the quantum size effect. These characteristics enable them to harvest the infrared portion of the solar spectrum to which silicon is transparent. To date, IR CQD solar cells have been made using a wasteful and complex sequential layer-by-layer process. Here, we demonstrate ∼1 eV bandgap solar-harvesting CQD films deposited in a single step. By engineering a fast-drying solvent mixture for metal iodide-capped CQDs, we deposited active layers greater than 200 nm in thickness having a mean roughness less than 1 nm. We integrated these films into infrared solar cells that are stable in air and exhibit power conversion efficiencies of 3.5% under illumination by the full solar spectrum, and 0.4% through a simulated silicon solar cell filter.

  19. Dark matter haloes: a multistream view

    Science.gov (United States)

    Ramachandra, Nesar S.; Shandarin, Sergei F.

    2017-09-01

    Mysterious dark matter constitutes about 85 per cent of all masses in the Universe. Clustering of dark matter plays a dominant role in the formation of all observed structures on scales from a fraction to a few hundreds of Mega-parsecs. Galaxies play a role of lights illuminating these structures so they can be observed. The observations in the last several decades have unveiled opulent geometry of these structures currently known as the cosmic web. Haloes are the highest concentrations of dark matter and host luminous galaxies. Currently the most accurate modelling of dark matter haloes is achieved in cosmological N-body simulations. Identifying the haloes from the distribution of particles in N-body simulations is one of the problems attracting both considerable interest and efforts. We propose a novel framework for detecting potential dark matter haloes using the field unique for dark matter-multistream field. The multistream field emerges at the non-linear stage of the growth of perturbations because the dark matter is collisionless. Counting the number of velocity streams in gravitational collapses supplements our knowledge of spatial clustering. We assume that the virialized haloes have convex boundaries. Closed and convex regions of the multistream field are hence isolated by imposing a positivity condition on all three eigenvalues of the Hessian estimated on the smoothed multistream field. In a single-scale analysis of high multistream field resolution and low softening length, the halo substructures with local multistream maxima are isolated as individual halo sites.

  20. Bridge flap technique as a single-step solution to mucogingival problems: A case series

    Directory of Open Access Journals (Sweden)

    Vivek Gupta

    2011-01-01

    Full Text Available Shallow vestibule, gingival recession, inadequate width of attached gingiva (AG and aberrant frenum pull are an array of mucogingival problems for which several independent and effective surgical solutions are reported in the literature. This case series reports the effectiveness of the bridge flap technique as a single-step surgical entity for increasing the depth of the vestibule, root coverage, increasing the width of the AG and solving the problem of abnormal frenum pull. Eight patients with 18 teeth altogether having Millers class I, II or III recession along with problems of shallow vestibule, inadequate width of AG and with or without frenum pull underwent this surgical procedure and were followed-up till 9 months post-operatively. The mean root coverage obtained was 55% and the mean average gain in width of the AG was 3.5 mm. The mean percentage gain in clinical attachment level was 41%. The bridge flap technique can be an effective single-step solution for the aforementioned mucogingival problems if present simultaneously in any case, and offers considerable advantages over other mucogingival surgical techniques in terms of simplicity, limited chair-time for the patient and the operator, single surgical intervention for manifold mucogingival problems and low morbidity because of the absence of palatal donor tissue.

  1. Incorporation of causative quantitative trait nucleotides in single-step GBLUP.

    Science.gov (United States)

    Fragomeni, Breno O; Lourenco, Daniela A L; Masuda, Yutaka; Legarra, Andres; Misztal, Ignacy

    2017-07-26

    Much effort is put into identifying causative quantitative trait nucleotides (QTN) in animal breeding, empowered by the availability of dense single nucleotide polymorphism (SNP) information. Genomic selection using traditional SNP information is easily implemented for any number of genotyped individuals using single-step genomic best linear unbiased predictor (ssGBLUP) with the algorithm for proven and young (APY). Our aim was to investigate whether ssGBLUP is useful for genomic prediction when some or all QTN are known. Simulations included 180,000 animals across 11 generations. Phenotypes were available for all animals in generations 6 to 10. Genotypes for 60,000 SNPs across 10 chromosomes were available for 29,000 individuals. The genetic variance was fully accounted for by 100 or 1000 biallelic QTN. Raw genomic relationship matrices (GRM) were computed from (a) unweighted SNPs, (b) unweighted SNPs and causative QTN, (c) SNPs and causative QTN weighted with results obtained with genome-wide association studies, (d) unweighted SNPs and causative QTN with simulated weights, (e) only unweighted causative QTN, (f-h) as in (b-d) but using only the top 10% causative QTN, and (i) using only causative QTN with simulated weight. Predictions were computed by pedigree-based BLUP (PBLUP) and ssGBLUP. Raw GRM were blended with 1 or 5% of the numerator relationship matrix, or 1% of the identity matrix. Inverses of GRM were obtained directly or with APY. Accuracy of breeding values for 5000 genotyped animals in the last generation with PBLUP was 0.32, and for ssGBLUP it increased to 0.49 with an unweighted GRM, 0.53 after adding unweighted QTN, 0.63 when QTN weights were estimated, and 0.89 when QTN weights were based on true effects known from the simulation. When the GRM was constructed from causative QTN only, accuracy was 0.95 and 0.99 with blending at 5 and 1%, respectively. Accuracies simulating 1000 QTN were generally lower, with a similar trend. Accuracies using the

  2. Unification of inflation, dark energy, and dark matter within the Salam-Sezgin cosmological model

    International Nuclear Information System (INIS)

    Henriques, Alfredo B.; Potting, Robertus; Sa, Paulo M.

    2009-01-01

    We investigate a cosmological model, based on the Salam-Sezgin six-dimensional supergravity theory and on previous work by Anchordoqui, Goldberg, Nawata, and Nunez. Assuming a period of warm inflation, we show that it is possible to extend the evolution of the model back in time, to include the inflationary period, thus unifying inflation, dark matter, and dark energy within a single framework. Like the previous authors, we were not able to obtain the full dark matter content of the universe from the Salam-Sezgin scalar fields. However, even if only partially successful, this work shows that present-day theories, based on superstrings and supergravity, may eventually lead to a comprehensive modeling of the evolution of the universe. We find that the gravitational-wave spectrum of the model has a nonconstant negative slope in the frequency range (10 -15 -10 6 ) rad/s, and that, unlike standard (cold) inflation models, it shows no structure in the MHz/GHz range of frequencies.

  3. Synthesis and Application of Amine Functionalized Iron Oxide Nanoparticles on Menaquinone-7 Fermentation: A Step towards Process Intensification

    Directory of Open Access Journals (Sweden)

    Alireza Ebrahiminezhad

    2015-12-01

    Full Text Available Industrial production of menaquione-7 by Bacillus subtilis natto is associated with major drawbacks. To address the current challenges in menaquione-7 fermentation, studying the effect of magnetic nanoparticles on the bacterial cells can open up a new domain for intensified menqainone-7 process. This article introduces the new concept of production and application of l-lysine coated iron oxide nanoparticles (l-Lys@IONs as a novel tool for menaquinone-7 biosynthesis. l-Lys@IONs with the average size of 7 nm were successfully fabricated and were examined in a fermentation process of l-Lys@IONs decorated Bacillus subtilis natto. Based on the results, higher menaquinone-7 specific yield was observed for l-Lys@IONs decorated bacterial cells as compared to untreated bacteria. In addition, more than 92% removal efficacy was achieved by using integrated magnetic separation process. The present study demonstrates that l-Lys@IONs can be successfully applied during a fermentation of menaquinone-7 without any negative consequences on the culture conditions. This study provides a novel biotechnological application for IONs and their future role in bioprocess intensification.

  4. Dark matter and dark energy: The critical questions

    International Nuclear Information System (INIS)

    Michael S. Turner

    2002-01-01

    Stars account for only about 0.5% of the content of the Universe; the bulk of the Universe is optically dark. The dark side of the Universe is comprised of: at least 0.1% light neutrinos; 3.5% ± 1% baryons; 29% ± 4% cold dark matter; and 66% ± 6% dark energy. Now that we have characterized the dark side of the Universe, the challenge is to understand it. The critical questions are: (1) What form do the dark baryons take? (2) What is (are) the constituent(s) of the cold dark matter? (3) What is the nature of the mysterious dark energy that is causing the Universe to speed up

  5. Numerical Convergence in the Dark Matter Halos Properties Using Cosmological Simulations

    Science.gov (United States)

    Mosquera-Escobar, X. E.; Muñoz-Cuartas, J. C.

    2017-07-01

    Nowadays, the accepted cosmological model is the so called -Cold Dark Matter (CDM). In such model, the universe is considered to be homogeneous and isotropic, composed of diverse components as the dark matter and dark energy, where the latter is the most abundant one. Dark matter plays an important role because it is responsible for the generation of gravitational potential wells, commonly called dark matter halos. At the end, dark matter halos are characterized by a set of parameters (mass, radius, concentration, spin parameter), these parameters provide valuable information for different studies, such as galaxy formation, gravitational lensing, etc. In this work we use the publicly available code Gadget2 to perform cosmological simulations to find to what extent the numerical parameters of the simu- lations, such as gravitational softening, integration time step and force calculation accuracy affect the physical properties of the dark matter halos. We ran a suite of simulations where these parameters were varied in a systematic way in order to explore accurately their impact on the structural parameters of dark matter halos. We show that the variations on the numerical parameters affect the structural pa- rameters of dark matter halos, such as concentration, virial radius, and concentration. We show that these modifications emerged when structures become non- linear (at redshift 2) for the scale of our simulations, such that these variations affected the formation and evolution structure of halos mainly at later cosmic times. As a quantitative result, we propose which would be the most appropriate values for the numerical parameters of the simulations, such that they do not affect the halo properties that are formed. For force calculation accuracy we suggest values smaller or equal to 0.0001, integration time step smaller o equal to 0.005 and for gravitational softening we propose equal to 1/60th of the mean interparticle distance, these values, correspond to the

  6. Dark Dark Wood

    DEFF Research Database (Denmark)

    2017-01-01

    2017 student Bachelor film. Synopsis: Young princess Maria has had about enough of her royal life – it’s all lesson, responsibilities and duties on top of each other, every hour of every day. Overwhelmed Maria is swept away on an adventure into the monster-filled dark, dark woods. During 2017...

  7. Direct fermentation of sweet sorghum juice by Clostridium acetobutylicum and Clostridium tetanomorphum to produce bio-butanol and organic acids

    Directory of Open Access Journals (Sweden)

    B. Ndaba

    2015-06-01

    Full Text Available Single- and co-culture clostridial fermentation was conducted to obtain organic alcohols and acids from sweet sorghum juice as a low cost feedstock. Different inoculum concentrations of single cultures (3, 5, 10 v/v % as well as different ratios of C. acetobutylicum to C. tetanomorphum (3:10, 10:3, 6.5:6.5, 3:3, and 10:10 v/v %, respectively were utilized for the fermentation. The maximum butanol concentration of 6.49 g/L was obtained after 96 h fermentation with 10 % v/v C. acetobutylicum as a single culture. The fermentation with 10% v/v C. tetanomorphum resulted in more than 5 g/l butyric acid production. Major organic acid concentration (lactic acid of 2.7 g/L was produced when an inoculum ratio of 6.5: 6.5 %v/v C. acetobutylicum to C. tetanomorphum was used.

  8. Characterization of cyclic deformation behaviour of tempered and quenched 42CrMoS4 at single step and variable amplitude loading

    International Nuclear Information System (INIS)

    Schelp, M.; Eifler, D.

    2000-01-01

    Cyclic single steps tests were performed on tempered and quenched specimens of the steel 42CrMoS4. Strain, temperature and electrical resistance measurements yielded an empirical prediction of fatigue life according to Coffin, Manson and Morrow. All measured values are based on physical processes and therefore show a strong interaction. A new testing procedure was developed permitting hysteresis measurements to be used for the characterization and description of fatigue behaviour under variable amplitude loading. The basic idea is to combine fatigue tests with any kind of load spectrum with single step tests. This offers the possibility to apply lifetime prediction methods normally used for single step tests for those with random or service loading. (orig.)

  9. The Performance of by Turns Fermentation- Dryer for Vanilla (Vanilla Planifolia Andrews Processing

    Directory of Open Access Journals (Sweden)

    Haerani Haerani

    2011-05-01

    Full Text Available The drying and fermentation are the processing steps which influence the quality of vanilla. Thus, an effort to produce instrument which can dry and ferment vanilla by turns automatically was done. Based on the test result on the instrument, it was known that the heater and heat-exchanger can function excellently. It can be seen from the increase of temperature after passing heater and heat-exchanger; and the decrease of air humidity in the drying chamber. The small differences of air flow speed between racks proved the uniformity of air flow speed in the drying chamber. The time and temperature control system showed temperature stability on drying process (i.e. 60°C and on fermentation process (i.e. 40°C; moreover, temperature response reached 60°C and did not exceed the setting time (maximum 30 minutes. The water percentage depletion from 88% to 55% is relatively slow (in 5 days fermentation-drying process. The depletion is appropriate with the recommendation for fermentation-drying vanilla processing.

  10. New limit on logotropic unified dark energy models

    Directory of Open Access Journals (Sweden)

    V.M.C. Ferreira

    2017-07-01

    Full Text Available A unification of dark matter and dark energy in terms of a logotropic perfect dark fluid has recently been proposed, where deviations with respect to the standard ΛCDM model are dependent on a single parameter B. In this paper we show that the requirement that the linear growth of cosmic structures on comoving scales larger than 8h−1Mpc is not significantly affected with respect to the standard ΛCDM result provides the strongest limit to date on the model (B<6×10−7, an improvement of more than three orders of magnitude over previous upper limits on the value of B. We further show that this limit rules out the logotropic Unified Dark Energy model as a possible solution to the small scale problems of the ΛCDM model, including the cusp problem of Dark Matter halos or the missing satellite problem, as well as the original version of the model where the Planck energy density was taken as one of the two parameters characterizing the logotropic dark fluid.

  11. Single-step syngas-to-distillates (S2D) process based on biomass-derived syngas--a techno-economic analysis.

    Science.gov (United States)

    Zhu, Yunhua; Jones, Susanne B; Biddy, Mary J; Dagle, Robert A; Palo, Daniel R

    2012-08-01

    This study compared biomass gasification based syngas-to-distillate (S2D) systems using techno-economic analysis (TEA). Three cases, state of technology (SOT), goal, and conventional, were compared in terms of performance and cost. The SOT case represented the best available experimental results for a process starting with syngas using a single-step dual-catalyst reactor for distillate generation. The conventional case mirrored a conventional two-step S2D process consisting of separate syngas-to-methanol and methanol-to-gasoline (MTG) processes. The goal case assumed the same performance as the conventional, but with a single-step S2D technology. TEA results revealed that the SOT was more expensive than the conventional and goal cases. The SOT case suffers from low one-pass yield and high selectivity to light hydrocarbons, both of which drive up production cost. Sensitivity analysis indicated that light hydrocarbon yield and single pass conversion efficiency were the key factors driving the high cost for the SOT case. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Modified dark matter: Relating dark energy, dark matter and baryonic matter

    Science.gov (United States)

    Edmonds, Douglas; Farrah, Duncan; Minic, Djordje; Ng, Y. Jack; Takeuchi, Tatsu

    Modified dark matter (MDM) is a phenomenological model of dark matter, inspired by gravitational thermodynamics. For an accelerating universe with positive cosmological constant (Λ), such phenomenological considerations lead to the emergence of a critical acceleration parameter related to Λ. Such a critical acceleration is an effective phenomenological manifestation of MDM, and it is found in correlations between dark matter and baryonic matter in galaxy rotation curves. The resulting MDM mass profiles, which are sensitive to Λ, are consistent with observational data at both the galactic and cluster scales. In particular, the same critical acceleration appears both in the galactic and cluster data fits based on MDM. Furthermore, using some robust qualitative arguments, MDM appears to work well on cosmological scales, even though quantitative studies are still lacking. Finally, we comment on certain nonlocal aspects of the quanta of modified dark matter, which may lead to novel nonparticle phenomenology and which may explain why, so far, dark matter detection experiments have failed to detect dark matter particles.

  13. Towards Single-Step Biofabrication of Organs on a Chip via 3D Printing.

    Science.gov (United States)

    Knowlton, Stephanie; Yenilmez, Bekir; Tasoglu, Savas

    2016-09-01

    Organ-on-a-chip engineering employs microfabrication of living tissues within microscale fluid channels to create constructs that closely mimic human organs. With the advent of 3D printing, we predict that single-step fabrication of these devices will enable rapid design and cost-effective iterations in the development stage, facilitating rapid innovation in this field. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Single-step electrochemical method for producing very sharp Au scanning tunneling microscopy tips

    International Nuclear Information System (INIS)

    Gingery, David; Buehlmann, Philippe

    2007-01-01

    A single-step electrochemical method for making sharp gold scanning tunneling microscopy tips is described. 3.0M NaCl in 1% perchloric acid is compared to several previously reported etchants. The addition of perchloric acid to sodium chloride solutions drastically shortens etching times and is shown by transmission electron microscopy to produce very sharp tips with a mean radius of curvature of 15 nm

  15. Single-step solution processing of small-molecule organic semiconductor field-effect transistors at high yield

    NARCIS (Netherlands)

    Yu, Liyang; Li, X.; Pavlica, E.; Loth, M.A.; Anthony, J.E.; Bratina, G.; Kjellander, B.K.C.; Gelinck, G.H.; Stutzmann, N.

    2011-01-01

    Here, we report a simple, alternative route towards high-mobility structures of the small-molecular semiconductor 5,11-bis(triethyl silylethynyl) anthradithiophene that requires one single processing step without the need for any post-deposition processing. The method relies on careful control of

  16. Fermentation of enset (Ensete ventricosum) in the Gamo highlands of Ethiopia: Physicochemical and microbial community dynamics.

    Science.gov (United States)

    Andeta, A F; Vandeweyer, D; Woldesenbet, F; Eshetu, F; Hailemicael, A; Woldeyes, F; Crauwels, S; Lievens, B; Ceusters, J; Vancampenhout, K; Van Campenhout, L

    2018-08-01

    Enset (Ensete ventricosum) provides staple food for 15 million people in Ethiopia after fermentation into kocho. The fermentation process has hardly been investigated and is prone to optimization. The aim of this study was to investigate the physicochemical and microbial dynamics of fermentation practices in the Gamo highlands. These practices show local variation, but two steps were omnipresent: scraping of the pseudostem and fermenting it in a pit or a bamboo basket. Enset plants were fragmented and fermented for two months in order to investigate the physicochemical (temperature, moisture content, pH and titratable acidity) and microbial dynamics (total viable aerobic counts, counts of Enterobacteriaceae, lactic acid bacteria, yeasts and moulds and Clostridium spores counts, and Illumina Miseq sequencing). Samples were taken on days 1, 7, 15, 17, 31 and 60. The pH decreased, whereas the titratable acidity increased during fermentation. Of all counts those of lactic acid bacteria and Clostridium spores increased during fermentation. Leuconostoc mesenteroides initiated the fermentation. Later on, Prevotella paludivivens, Lactobacillus sp. and Bifidobacterium minimum dominated. These three species are potential candidates for the development of a starter culture. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Immunomodulation properties of multi-species fermented milks.

    Science.gov (United States)

    Foligné, Benoît; Parayre, Sandrine; Cheddani, Redouane; Famelart, Marie-Hélène; Madec, Marie-Noëlle; Plé, Coline; Breton, Jérôme; Dewulf, Joëlle; Jan, Gwénaël; Deutsch, Stéphanie-Marie

    2016-02-01

    Dairy propionibacteria (PAB) are used as a ripening starter in combination with Lactic acid bacteria (LAB) for dairy products such as Swiss-type cheese. LAB and PAB have also been studied for their probiotic properties but little is still known about their individual and/or synergistic beneficial effects within dairy matrices. In the context of a rising incidence of Inflammatory Bowel Diseases, it has become crucial to evaluate the immunomodulatory potential of bacteria ingested in large numbers via dairy products. We therefore selected different strains and combinations of technological LAB and PAB. We determined their immunomodulatory potential by IL-10 and IL-12 induction, in human peripheral blood mononuclear cells, on either single or mixed cultures, grown on laboratory medium or directly in milk. Milk was fermented with selected anti-inflammatory strains of LAB or PAB/LAB mixed cultures and the resulting bacterial fractions were also evaluated for these properties, together with starter viability and optimum technological aspects. The most promising fermented milks were evaluated in the context of TNBS- or DSS-induced colitis in mice. The improvement in inflammatory parameters evidenced an alleviation of colitis symptoms as a result of fermented milk consumption. This effect was clearly strain-dependent and modulated by growth within a fermented dairy product. These findings offer new tools and perspectives for the development of immunomodulatory fermented dairy products for targeted populations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Dark-Bright Soliton Dynamics Beyond the Mean-Field Approximation

    Science.gov (United States)

    Katsimiga, Garyfallia; Koutentakis, Georgios; Mistakidis, Simeon; Kevrekidis, Panagiotis; Schmelcher, Peter; Theory Group of Fundamental Processes in Quantum Physics Team

    2017-04-01

    The dynamics of dark bright solitons beyond the mean-field approximation is investigated. We first examine the case of a single dark-bright soliton and its oscillations within a parabolic trap. Subsequently, we move to the setting of collisions, comparing the mean-field approximation to that involving multiple orbitals in both the dark and the bright component. Fragmentation is present and significantly affects the dynamics, especially in the case of slower solitons and in that of lower atom numbers. It is shown that the presence of fragmentation allows for bipartite entanglement between the distinguishable species. Most importantly the interplay between fragmentation and entanglement leads to the decay of each of the initial mean-field dark-bright solitons into fast and slow fragmented dark-bright structures. A variety of excitations including dark-bright solitons in multiple (concurrently populated) orbitals is observed. Dark-antidark states and domain-wall-bright soliton complexes can also be observed to arise spontaneously in the beyond mean-field dynamics. Deutsche Forschungsgemeinschaft (DFG) in the framework of the SFB 925 ``Light induced dynamics and control of correlated quantum systems''.

  19. Interacting dark matter disguised as warm dark matter

    International Nuclear Information System (INIS)

    Boehm, Celine; Riazuelo, Alain; Hansen, Steen H.; Schaeffer, Richard

    2002-01-01

    We explore some of the consequences of dark-matter-photon interactions on structure formation, focusing on the evolution of cosmological perturbations and performing both an analytical and a numerical study. We compute the cosmic microwave background anisotropies and matter power spectrum in this class of models. We find, as the main result, that when dark matter and photons are coupled, dark matter perturbations can experience a new damping regime in addition to the usual collisional Silk damping effect. Such dark matter particles (having quite large photon interactions) behave like cold dark matter or warm dark matter as far as the cosmic microwave background anisotropies or matter power spectrum are concerned, respectively. These dark-matter-photon interactions leave specific imprints at sufficiently small scales on both of these two spectra, which may allow us to put new constraints on the acceptable photon-dark-matter interactions. Under the conservative assumption that the abundance of 10 12 M · galaxies is correctly given by the cold dark matter, and without any knowledge of the abundance of smaller objects, we obtain the limit on the ratio of the dark-matter-photon cross section to the dark matter mass σ γ-DM /m DM -6 σ Th /(100 GeV)≅6x10 -33 cm 2 GeV -1

  20. Dark fluid: A complex scalar field to unify dark energy and dark matter

    International Nuclear Information System (INIS)

    Arbey, Alexandre

    2006-01-01

    In this article, we examine a model which proposes a common explanation for the presence of additional attractive gravitational effects - generally considered to be due to dark matter - in galaxies and in clusters, and for the presence of a repulsive effect at cosmological scales - generally taken as an indication of the presence of dark energy. We therefore consider the behavior of a so-called dark fluid based on a complex scalar field with a conserved U(1)-charge and associated to a specific potential, and show that it can at the same time account for dark matter in galaxies and in clusters, and agree with the cosmological observations and constraints on dark energy and dark matter

  1. Study of continuous acetone-butanol fermentation by Clostridium acetobutylicum

    Energy Technology Data Exchange (ETDEWEB)

    Yarovenko, V L; Nakhmanovich, B M; Shcheblykin, N P; Senkevich, V V

    1960-01-01

    Prophylactic sterilization of small scale equipment (2 fermenters, 3.5 cu. m. each) permitted continuous fermentation through 6 cycles (28 days), each with a new inoculum of C. acetobutylicum. Single cycles could be prolonged to 6 to 11 days without sterilization. Contamination, usually with lactic acid bacteria, sometimes preceded exhaustion of the culture. Input of flour mash at 0.6 to 1.2 cu. m./hr. and withdrawal of products were continuous; acetone yield 6.6 to 7.1 g./l.; residual sugars 0.63 to 0.79%.

  2. Dark Mass Creation During EWPT Via Dark Energy Interaction

    OpenAIRE

    Kisslinger, Leonard S.; Casper, Steven

    2013-01-01

    We add Dark Matter Dark Energy terms with a quintessence field interacting with a Dark Matter field to a MSSM EW Lagrangian previously used to calculate the magnetic field created during the EWPT. From the expectation value of the quintessence field we estimate the Dark Matter mass for parameters used in previous work on Dark Matter-Dark Energy interactions.

  3. Quality of fermented whey beverage with milk

    Directory of Open Access Journals (Sweden)

    Rakin Marica B.

    2016-01-01

    Full Text Available One of the most economical ways of whey processing is the production of beverages, that represents a single process that exploits all the potential of whey as a raw material. Functional and sensory characteristics of whey based beverages are a criterion that is crucial to the marketing of products and win over consumers. The aim of this study was to determine nutritional and functional characteristics of fermented whey beverage with milk and commercial ABY-6 culture. The results showed that the applied starter culture can be used for the production of fermented whey based beverage with satisfactory nutritional properties. Addition of milk was important not only in the nutritional quality of the resulting product, but also improved the taste, the homogeneity and stability. Analysis of the chemical composition of fermented whey based beverage and nutritional information about it indicates that the product is a good source of protein and calcium. Fermented beverage contained 8.07 log (CFU/mL, showed antioxidant activity of at least 38.1% and the titratable acidity of 28.2°SH corresponding to the acidity of the product in this category. [Projekat Ministarstva nauke Republike Srbije, br. TR 31017 i br. 451-03-00605/2012-16/85

  4. Dark matter as a weakly coupled dark baryon

    Science.gov (United States)

    Mitridate, Andrea; Redi, Michele; Smirnov, Juri; Strumia, Alessandro

    2017-10-01

    Dark Matter might be an accidentally stable baryon of a new confining gauge interaction. We extend previous studies exploring the possibility that the DM is made of dark quarks heavier than the dark confinement scale. The resulting phenomenology contains new unusual elements: a two-stage DM cosmology (freeze-out followed by dark condensation), a large DM annihilation cross section through recombination of dark quarks (allowing to fit the positron excess). Light dark glue-balls are relatively long lived and give extra cosmological effects; DM itself can remain radioactive.

  5. Accounting for Dark Current Accumulated during Readout of Hubble's ACS/WFC Detectors

    Science.gov (United States)

    Ryon, Jenna E.; Grogin, Norman A.; Coe, Dan A.; ACS Team

    2018-06-01

    We investigate the properties of excess dark current accumulated during the 100-second full-frame readout of the Advanced Camera for Surveys (ACS) Wide Field Channel (WFC) detectors. This excess dark current, called "readout dark", gives rise to ambient background gradients and hot columns in each ACS/WFC image. While readout dark signal is removed from science images during the bias correction step in CALACS, the additional noise from the readout dark is currently not taken into account. We develop a method to estimate the readout dark noise properties in ACS/WFC observations. We update the error (ERR) extensions of superbias images to include the appropriate noise from the ambient readout dark gradient and stable hot columns. In recent data, this amounts to about 5 e-/pixel added variance in the rows farthest from the WFC serial registers, and about 7 to 30 e-/pixel added variance along the stable hot columns. We also flag unstable hot columns in the superbias data quality (DQ) extensions. The new reference file pipeline for ACS/WFC implements these updates to our superbias creation process.

  6. AN EFFICIENT ANALYSIS FOR ABSORPTION AND GAIN COEFFICIENTS IN 'SINGLE STEP-INDEX WAVEGUIDE'S BY USING THE ALPHA METHOD

    Directory of Open Access Journals (Sweden)

    Mustafa TEMİZ

    2008-02-01

    Full Text Available In this study, some design parameters such as normalized frequency and especially normalized propagation constant have been obtained, depending on some parameters which are functions of energy eigenvalues of the carriers such as electrons and holes confined in a single step-index waveguide laser (SSIWGL or single stepindex waveguide (SSIWG. Some optical expressions about the optical power and probability quantities for the active region and cladding layers of the SSIWG or SSIWGL have been investigated. Investigations have been undertaken in terms of these parameters and also individually the optical even and odd electric field waves with the lowest-modes were theoretically computed. Especially absorption coefficients and loss coefficients addition to some important quantities of the single step-index waveguide lasers for the even and odd electric field waves are evaluated.

  7. Early-matter-like dark energy and the cosmic microwave background

    International Nuclear Information System (INIS)

    Aurich, R.; Lustig, S.

    2016-01-01

    Early-matter-like dark energy is defined as a dark energy component whose equation of state approaches that of cold dark matter (CDM) at early times. Such a component is an ingredient of unified dark matter (UDM) models, which unify the cold dark matter and the cosmological constant of the ΛCDM concordance model into a single dark fluid. Power series expansions in conformal time of the perturbations of the various components for a model with early-matter-like dark energy are provided. They allow the calculation of the cosmic microwave background (CMB) anisotropy from the primordial initial values of the perturbations. For a phenomenological UDM model, which agrees with the observations of the local Universe, the CMB anisotropy is computed and compared with the CMB data. It is found that a match to the CMB observations is possible if the so-called effective velocity of sound c eff of the early-matter-like dark energy component is very close to zero. The modifications on the CMB temperature and polarization power spectra caused by varying the effective velocity of sound are studied

  8. Dark energy and dark matter in galaxy halos

    International Nuclear Information System (INIS)

    Tetradis, N.

    2006-01-01

    We consider the possibility that the dark matter is coupled through its mass to a scalar field associated with the dark energy of the Universe. In order for such a field to play a role at the present cosmological distances, it must be effectively massless at galactic length scales. We discuss the effect of the field on the distribution of dark matter in galaxy halos. We show that the profile of the distribution outside the galaxy core remains largely unaffected and the approximately flat rotation curves persist. The dispersion of the dark matter velocity is enhanced by a potentially large factor relative to the case of zero coupling between dark energy and dark matter. The counting rates in terrestrial dark matter detectors are similarly enhanced. Existing bounds on the properties of dark matter candidates can be extended to the coupled case, by taking into account the enhancement factor

  9. DarkSide search for dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, T.; Alton, D.; Arisaka, K.; Back, H. O.; Beltrame, P.; Benziger, J.; Bonfini, G.; Brigatti, A.; Brodsky, J.; Bussino, S.; Cadonati, L.; Calaprice, F.; Candela, A.; Cao, H.; Cavalcante, P.; Chepurnov, A.; Chidzik, S.; Cocco, A. G.; Condon, C.; D' Angelo, D.; Davini, S.; Vincenzi, M. De; Haas, E. De; Derbin, A.; Pietro, G. Di; Dratchnev, I.; Durben, D.; Empl, A.; Etenko, A.; Fan, A.; Fiorillo, G.; Franco, D.; Fomenko, K.; Forster, G.; Gabriele, F.; Galbiati, C.; Gazzana, S.; Ghiano, C.; Goretti, A.; Grandi, L.; Gromov, M.; Guan, M.; Guo, C.; Guray, G.; Hungerford, E. V.; Ianni, Al; Ianni, An; Joliet, C.; Kayunov, A.; Keeter, K.; Kendziora, C.; Kidner, S.; Klemmer, R.; Kobychev, V.; Koh, G.; Komor, M.; Korablev, D.; Korga, G.; Li, P.; Loer, B.; Lombardi, P.; Love, C.; Ludhova, L.; Luitz, S.; Lukyanchenko, L.; Lund, A.; Lung, K.; Ma, Y.; Machulin, I.; Mari, S.; Maricic, J.; Martoff, C. J.; Meregaglia, A.; Meroni, E.; Meyers, P.; Mohayai, T.; Montanari, D.; Montuschi, M.; Monzani, M. E.; Mosteiro, P.; Mount, B.; Muratova, V.; Nelson, A.; Nemtzow, A.; Nurakhov, N.; Orsini, M.; Ortica, F.; Pallavicini, M.; Pantic, E.; Parmeggiano, S.; Parsells, R.; Pelliccia, N.; Perasso, L.; Perasso, S.; Perfetto, F.; Pinsky, L.; Pocar, A.; Pordes, S.; Randle, K.; Ranucci, G.; Razeto, A.; Romani, A.; Rossi, B.; Rossi, N.; Rountree, S. D.; Saggese, P.; Saldanha, R.; Salvo, C.; Sands, W.; Seigar, M.; Semenov, D.; Shields, E.; Skorokhvatov, M.; Smirnov, O.; Sotnikov, A.; Sukhotin, S.; Suvarov, Y.; Tartaglia, R.; Tatarowicz, J.; Testera, G.; Thompson, J.; Tonazzo, A.; Unzhakov, E.; Vogelaar, R. B.; Wang, H.; Westerdale, S.; Wojcik, M.; Wright, A.; Xu, J.; Yang, C.; Zavatarelli, S.; Zehfus, M.; Zhong, W.; Zuzel, G.

    2013-11-22

    The DarkSide staged program utilizes a two-phase time projection chamber (TPC) with liquid argon as the target material for the scattering of dark matter particles. Efficient background reduction is achieved using low radioactivity underground argon as well as several experimental handles such as pulse shape, ratio of ionization over scintillation signal, 3D event reconstruction, and active neutron and muon vetos. The DarkSide-10 prototype detector has proven high scintillation light yield, which is a particularly important parameter as it sets the energy threshold for the pulse shape discrimination technique. The DarkSide-50 detector system, currently in commissioning phase at the Gran Sasso Underground Laboratory, will reach a sensitivity to dark matter spin-independent scattering cross section of 10-45 cm2 within 3 years of operation.

  10. Influence of pre-fermentation cold maceration treatment on aroma compounds of Cabernet Sauvignon wines fermented in different industrial scale fermenters.

    Science.gov (United States)

    Cai, Jian; Zhu, Bao-Qing; Wang, Yun-He; Lu, Lin; Lan, Yi-Bin; Reeves, Malcolm J; Duan, Chang-Qing

    2014-07-01

    The influence of pre-fermentation cold maceration (CM) on Cabernet Sauvignon wines fermented in two different industrial-scale fermenters was studied. CM treatment had different effects on wine aroma depending on the types of fermenter, being more effective for automatic pumping-over tank (PO-tank) than automatic punching-down tank (PD-tank). When PO-tank was used, CM-treated wine showed a decrease in some fusel alcohols (isobutanol and isopentanol) and an increase in some esters (especially acetate esters). However, no significant changes were detected in these compounds when PD-tank was used. Ethyl 2-hexenoate and diethyl succinate were decreased, while geranylacetone was increased by the CM treatment in both fermenters. β-Damascenone was increased by the CM treatment in PO-tank fermented wines but decreased in PD-tank fermented wines. The fruity, caramel and floral aroma series were enhanced while chemical series were decreased by the CM treatment in PO-tank fermented wines. The content of (Z)-6-nonen-1-ol in the final wines was positively correlated to CM treatment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Effects of Two-stage Controlled pH and Temperature vs. One-step Process for Hemicellulase Biosynthesis and Feruloyl Oligosaccharide Fermentation using Aureobasidium pullulans

    Directory of Open Access Journals (Sweden)

    Xiaohong Yu

    2016-04-01

    Full Text Available A two-stage, pH- and temperature-controlled wheat bran fermentation method using Aureobasidium pullulans was investigated for feruloyl oligosaccharides (FOs production and the activities of xylanase, xylosidase, and ferulic acid esterase (FAE. A. pullulans secreted xylanase, xylosidase, and FAE at high levels in the initial pH of 4.0 to 5.0 and a fermentation liquid temperature of 31 °C to 33 °C. FOs production via two-stage fermentation (FOs 2 reached 1123 nmol/L after fermentation for 96 h, by controlling the initial pH at 4.0 and the initial temperature at 33 °C, and then changing the pH to 6.0 and the temperature to 29 °C at the same time at 36 h. This process was 12 h shorter and 219 nmol/L higher than a one-stage fermentation for producing FOs 1. Xylanase, xylosidase, and FAE activities were highly correlated with controlled pH and temperature and FOs biosynthesis rate. Thus, the combination of two-stage controlled pH and temperature could support mass production of FOs.

  12. GUT FERMENTATION SYNDROME

    African Journals Online (AJOL)

    boaz

    individuals who became intoxicated after consuming carbohydrates, which became fermented in the gastrointestinal tract. These claims of intoxication without drinking alcohol, and the findings on endogenous alcohol fermentation are now called Gut. Fermentation Syndrome. This review will concentrate on understanding ...

  13. Is Self-Interacting Dark Matter Undergoing Dark Fusion?

    Energy Technology Data Exchange (ETDEWEB)

    McDermott, Samuel D.

    2017-11-02

    We suggest that two-to-two dark matter fusion may be the relaxation process that resolves the small-scale structure problems of the cold collisionless dark matter paradigm. In order for the fusion cross section to scale correctly across many decades of astrophysical masses from dwarf galaxies to galaxy clusters, we require the fractional binding energy released to be greater than v^n ~ [10^{-(2-3)}]^n, where n=1,2 depends on local dark sector chemistry. The size of the dark-sector interaction cross sections must be sigma ~ 0.1-1 barn, moderately larger than for Standard Model deuteron fusion, indicating a dark nuclear scale Lambda ~ O(100 MeV). Dark fusion firmly predicts constant sigma v below the characteristic velocities of galaxy clusters. Observations of the inner structure of galaxy groups with velocity dispersion of several hundred kilometer per second, of which a handful have been identified, could differentiate dark fusion from a dark photon model.

  14. High solid simultaneous saccharification and fermentation of wet oxidized corn stover to ethanol

    DEFF Research Database (Denmark)

    Varga, E.; Klinke, H.B.; Reczey, K.

    2004-01-01

    In this study ethanol was produced from corn stover pretreated by alkaline and acidic wet oxidation (WO) (195 degreesC, 15 min, 12 bar oxygen) followed by nonisothermal simultaneous saccharification and fermentation (SSF). In the first step of the SSF, small amounts of cellulases were added at 50...... increase of substrate concentration reduced the ethanol yield significant as a result of insufficient mass transfer. It was also shown that the fermentation could be followed with an easy monitoring system based on the weight loss of the produced CO2. (C) 2004 Wiley Periodicals, Inc....

  15. Influence of thermally processed carbohydrate/amino acid mixtures on the fermentation by Saccharomyces cerevisiae.

    Science.gov (United States)

    Tauer, Andreas; Elss, Sandra; Frischmann, Matthias; Tellez, Patricia; Pischetsrieder, Monika

    2004-04-07

    The production of alcoholic beverages such as Tequila, Mezcal, whiskey, or beer includes the fermentation of a mash containing Maillard reaction products. Because excessive heating of the mash can lead to complications during the following fermentation step, the impact of Maillard products on the metabolism of Saccharomyces cerevisiae was investigated. For this purpose, fermentation was carried out in a model system in the presence and absence of Maillard reaction products and formation of ethanol served as a marker for the progression of fermentation. We found that increasing amounts of Maillard products reduced the formation of ethanol up to 80%. This effect was dependent on the pH value during the Maillard reaction, reaction time, as well as the carbohydrate and amino acid component used for the generation of Maillard reaction products. Another important factor is the pH value during fermentation: The inhibitory effect of Maillard products was not detectable at a pH of 4 and increased with higher pH-values. These findings might be of relevance for the production of above-mentioned beverages.

  16. Fermentation for Disinfesting Fruit Waste From Drosophila Species (Diptera: Drosophilidae).

    Science.gov (United States)

    Noble, R; Dobrovin-Pennington, A; Shaw, B; Buss, D S; Cross, J V; Fountain, M T

    2017-08-01

    Economic losses in a range of fruit crops due to the Drosophila suzukii (Matsumura) have become severe. Removal and treatment of fruit waste, which may harbor D. suzukii, is a key step in preventing reinfestation of fruit production. Natural fermentation for disinfesting fruit wastes from D. suzukii was examined at ambient air temperatures of 12-20 °C. Soft and stone fruit wastes infested with eggs, larvae, and pupae of Drosophila melanogaster (Meigen) or D. suzukii were placed in sealed vessels containing fruit wastes, and samples were retrieved at intervals and tested for the emergence of adults. Mean temperatures of the fruit waste in the sealed vessels during fermentation were 15-23 °C. Fermentation for 3 d was effective in disinfesting waste from different life stages of D. suzukii. Treatment for 4 d also ensured that the waste was free of viable life stages of D. melanogaster, which could be used as an indicator species for disinfestation of waste from D. suzukii owing to its greater tolerance of fermentation. The O2 concentration of the headspace air in the vessels became undetectable after 13-16 h, with a corresponding increase in CO2 concentration, which exceeded 80% vol/vol. The resulting hypoxia and hypercapnia may explain the efficacy of the fermentation treatment in disinfesting the waste. Fermented fruit remained attractive to D. suzukii and retained its capacity to rear a life cycle. Covering or mixing fermented fruit with a sufficient depth (0.1 m) or volume (×9) of soil or coir prevented the reinfestation of treated waste. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Redox reactions in food fermentations

    DEFF Research Database (Denmark)

    Hansen, Egon Bech

    2018-01-01

    involves oxidative steps in the early part of the pathways whereas a multitude of different reactions are used as compensating reductions. Much of the diversity seen between food fermentations arise from the different routes and the different electron acceptors used by microorganisms to counterbalance...... and this contributes to the diversity in flavor, color, texture, and shelf life. The review concludes that these reactions are still only incompletely understood and that they represent an interesting area for fundamental research and also represent a fertile field for product development through a more conscious use...... of the redox properties of strains used to compose food cultures....

  18. Probiotic attributes of indigenous Lactobacillus spp. isolated from traditional fermented foods and beverages of north-western Himalayas using in vitro screening and principal component analysis

    OpenAIRE

    Kumari, Anila; Angmo, Kunzes; Monika; Bhalla, Tek Chand

    2016-01-01

    The present research was designed to explore indigenous probiotic Lactic acid bacteria from traditional fermented foods and beverages of North-western Himalayas for their probiotic potential. It was achieved through a step-by step approach focused on the technological characterization, evaluation of the probiotic traits and adherence ability. Fifty one LAB isolates from traditional fermented foods and beverages were initially screened for their technological properties and among them twenty i...

  19. Coupling q-Deformed Dark Energy to Dark Matter

    Directory of Open Access Journals (Sweden)

    Emre Dil

    2016-01-01

    Full Text Available We propose a novel coupled dark energy model which is assumed to occur as a q-deformed scalar field and investigate whether it will provide an expanding universe phase. We consider the q-deformed dark energy as coupled to dark matter inhomogeneities. We perform the phase-space analysis of the model by numerical methods and find the late-time accelerated attractor solutions. The attractor solutions imply that the coupled q-deformed dark energy model is consistent with the conventional dark energy models satisfying an acceleration phase of universe. At the end, we compare the cosmological parameters of deformed and standard dark energy models and interpret the implications.

  20. Dark matters

    International Nuclear Information System (INIS)

    Silk, Joseph

    2010-01-01

    One of the greatest mysteries in the cosmos is that it is mostly dark. That is, not only is the night sky dark, but also most of the matter and the energy in the universe is dark. For every atom visible in planets, stars and galaxies today there exists at least five or six times as much 'Dark Matter' in the universe. Astronomers and particle physicists today are seeking to unravel the nature of this mysterious but pervasive dark matter, which has profoundly influenced the formation of structure in the universe. Dark energy remains even more elusive, as we lack candidate fields that emerge from well established physics. I will describe various attempts to measure dark matter by direct and indirect means, and discuss the prospects for progress in unravelling dark energy.

  1. Quantitative measurement of vitamin K2 (menaquinones) in various fermented dairy products using a reliable high-performance liquid chromatography method.

    Science.gov (United States)

    Manoury, E; Jourdon, K; Boyaval, P; Fourcassié, P

    2013-03-01

    We evaluated menaquinone contents in a large set of 62 fermented dairy products samples by using a new liquid chromatography method for accurate quantification of lipo-soluble vitamin K(2), including distribution of individual menaquinones. The method used a simple and rapid purification step to remove matrix components in various fermented dairy products 3 times faster than a reference preparation step. Moreover, the chromatography elution time was significantly shortened and resolution and efficiency were optimized. We observed wide diversity of vitamin K(2) contents in the set of fermented dairy products, from undetectable to 1,100 ng/g of product, and a remarkable diversity of menaquinone forms among products. These observations relate to the main microorganism species currently in the different fermented product technologies. The major form in this large set of fermented dairy products was menaquinone (MK)-9, and contents of MK-9 and MK-8 forms were correlated, that of MK-9 being around 4 times that of MK-8, suggesting that microorganisms able to produce MK-9 also produce MK-8. This was not the case for the other menaquinones, which were produced independently of each other. Finally, no obvious link was established between MK-9 content and fat content or pH of the fermented dairy products. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  2. Dark Flow, Depression and Multiline Slot Machine Play.

    Science.gov (United States)

    Dixon, Mike J; Stange, Madison; Larche, Chanel J; Graydon, Candice; Fugelsang, Jonathan A; Harrigan, Kevin A

    2018-03-01

    Multiline slot machines allow for a unique outcome type referred to as a loss disguised as a win (LDW). An LDW occurs when a player gains credits on a spin, but fewer credits than their original wager (e.g. 15-cent gain on a 20-cent wager). These outcomes alter the gambler's play experience by providing frequent, albeit smaller, credit gains throughout a playing session that are in fact net losses. Despite this negative overall value, research has shown that players physiologically respond to LDWs as if they are wins, not losses. These outcomes also create a "smoother" experience for the player that seems to promote a highly absorbing, flow-like state that we have called "dark flow". Past research has indicated that there may be a relationship between problem gambling status and dark flow, as well as between dark flow, depression, and gambling expectancies. In this study, we sought to further understand these relationships, while examining the influence of LDWs on game preference in the context of single versus multiline slots play. We used a realistic slot machine simulator equipped with a force transducer to measure how hard players pressed the spin button following different outcomes. This measure of arousal showed that LDWs were treated similarly to small wins. Participants overwhelmingly preferred the multiline game and experienced more positive affect while playing it, compared to the single-line game. Problem gambling severity index scores were related to dark flow in both games, but this relationship was stronger for the multiline game. Additionally, depression symptomatology and dark flow were strongly correlated in the multiline game, with significant relationships between depression and gambling expectancy, and gambling expectancy and dark flow ratings also emerging.

  3. Single-step digital backpropagation for nonlinearity mitigation

    DEFF Research Database (Denmark)

    Secondini, Marco; Rommel, Simon; Meloni, Gianluca

    2015-01-01

    Nonlinearity mitigation based on the enhanced split-step Fourier method (ESSFM) for the implementation of low-complexity digital backpropagation (DBP) is investigated and experimentally demonstrated. After reviewing the main computational aspects of DBP and of the conventional split-step Fourier...... in the computational complexity, power consumption, and latency with respect to a simple feed-forward equalizer for bulk dispersion compensation....

  4. Binary Factorization in Hopfield-Like Neural Networks: Single-Step Approximation and Computer Simulations

    Czech Academy of Sciences Publication Activity Database

    Frolov, A. A.; Sirota, A.M.; Húsek, Dušan; Muraviev, I. P.

    2004-01-01

    Roč. 14, č. 2 (2004), s. 139-152 ISSN 1210-0552 R&D Projects: GA ČR GA201/01/1192 Grant - others:BARRANDE(EU) 99010-2/99053; Intellectual computer Systems(EU) Grant 2.45 Institutional research plan: CEZ:AV0Z1030915 Keywords : nonlinear binary factor analysis * feature extraction * recurrent neural network * Single-Step approximation * neurodynamics simulation * attraction basins * Hebbian learning * unsupervised learning * neuroscience * brain function modeling Subject RIV: BA - General Mathematics

  5. Kombucha tea fermentation: Microbial and biochemical dynamics.

    Science.gov (United States)

    Chakravorty, Somnath; Bhattacharya, Semantee; Chatzinotas, Antonis; Chakraborty, Writachit; Bhattacharya, Debanjana; Gachhui, Ratan

    2016-03-02

    Kombucha tea, a non-alcoholic beverage, is acquiring significant interest due to its claimed beneficial properties. The microbial community of Kombucha tea consists of bacteria and yeast which thrive in two mutually non-exclusive compartments: the soup or the beverage and the biofilm floating on it. The microbial community and the biochemical properties of the beverage have so far mostly been described in separate studies. This, however, may prevent understanding the causal links between the microbial communities and the beneficial properties of Kombucha tea. Moreover, an extensive study into the microbial and biochemical dynamics has also been missing. In this study, we thus explored the structure and dynamics of the microbial community along with the biochemical properties of Kombucha tea at different time points up to 21 days of fermentation. We hypothesized that several biochemical properties will change during the course of fermentation along with the shifts in the yeast and bacterial communities. The yeast community of the biofilm did not show much variation over time and was dominated by Candida sp. (73.5-83%). The soup however, showed a significant shift in dominance from Candida sp. to Lachancea sp. on the 7th day of fermentation. This is the first report showing Candida as the most dominating yeast genus during Kombucha fermentation. Komagateibacter was identified as the single largest bacterial genus present in both the biofilm and the soup (~50%). The bacterial diversity was higher in the soup than in the biofilm with a peak on the seventh day of fermentation. The biochemical properties changed with the progression of the fermentation, i.e., beneficial properties of the beverage such as the radical scavenging ability increased significantly with a maximum increase at day 7. We further observed a significantly higher D-saccharic acid-1,4-lactone content and caffeine degradation property compared to previously described Kombucha tea fermentations. Our

  6. THE INFLUENCE OF THE COMPOSITION OF THE CULTURE MEDIUM ON THE DEVELOPMENT OF LEUCONOSTOC LACTIS PRE-FERMENTATION

    Directory of Open Access Journals (Sweden)

    V. V. Kondratenko

    2017-01-01

    Full Text Available The regularity of the influence of the culture medium (substrate on the development of microflora at the stage of preliminary fermentation of the model medium on the basis of white cabbage varieties "Parus" was studied. During the research, strains of lactic acid microorganisms Leuconostoc lactis were used. Step-by-step mathematical processing of the experimental data was carried out. Functional dependencies are obtained that most adequately approximate experimental data for modified (MMC and basic (BMS model media. Analysis of the experimental data showed that, depending on the type (composition of the medium, the same species of microorganisms exhibit different dynamics of titer growth. In connection with this, an algorithm was developed to determine the optimal duration of pre-fermentation – «stop points». As a result of the research, it can be seen that the modification of the model medium with the addition of table salt and ascorbic acid to it promotes the formation of positive dynamics of the comparison indicator. This dynamics has three extremes, but only extremes are of practical significance, which were in the interval of the monotonic decrease of the titer. For successful development of the starting culture of the stage of the main fermentation, one of the conditions is a relatively small amount of the titer of the first culture at the end of the preliminary fermentation step to exclude competition. Thus, the position of the «stop-point» position corresponds to the period after the last peak of the comparison indicator. The investigated regularity of the effect of the preliminary cultivation of gram-positive microorganisms on the activity of lactic acid microorganisms in the process of fermentation is topical, since the whole process and the production of high-quality products fully depend on this approach.

  7. Blastocyst utilization rates after continuous culture in two commercial single-step media: a prospective randomized study with sibling oocytes.

    Science.gov (United States)

    Sfontouris, Ioannis A; Kolibianakis, Efstratios M; Lainas, George T; Venetis, Christos A; Petsas, George K; Tarlatzis, Basil C; Lainas, Tryfon G

    2017-10-01

    The aim of this study is to determine whether blastocyst utilization rates are different after continuous culture in two different commercial single-step media. This is a paired randomized controlled trial with sibling oocytes conducted in infertility patients, aged ≤40 years with ≥10 oocytes retrieved assigned to blastocyst culture and transfer. Retrieved oocytes were randomly allocated to continuous culture in either Sage one-step medium (Origio) or Continuous Single Culture (CSC) medium (Irvine Scientific) without medium renewal up to day 5 post oocyte retrieval. Main outcome measure was the proportion of embryos suitable for clinical use (utilization rate). A total of 502 oocytes from 33 women were randomly allocated to continuous culture in either Sage one-step medium (n = 250) or CSC medium (n = 252). Fertilization was performed by either in vitro fertilization or intracytoplasmic sperm injection, and embryo transfers were performed on day 5. Two patients had all blastocysts frozen due to the occurrence of severe ovarian hyperstimulation syndrome. Fertilization and cleavage rates, as well as embryo quality on day 3, were similar in the two media. Blastocyst utilization rates (%, 95% CI) [55.4% (46.4-64.1) vs 54.7% (44.9-64.6), p = 0.717], blastocyst formation rates [53.6% (44.6-62.5) vs 51.9 (42.2-61.6), p = 0.755], and proportion of good quality blastocysts [36.8% (28.1-45.4) vs 36.1% (27.2-45.0), p = 0.850] were similar in Sage one-step and CSC media, respectively. Continuous culture of embryos in Sage one-step and CSC media is associated with similar blastocyst development and utilization rates. Both single-step media appear to provide adequate support during in vitro preimplantation embryo development. Whether these observations are also valid for other continuous single medium protocols remains to be determined. NCT02302638.

  8. Mapping misoriented fibers using X-ray dark field tomography

    DEFF Research Database (Denmark)

    Lauridsen, Torsten; Lauridsen, Erik Mejdal; Feidenhans’l, Robert

    2014-01-01

    such tomograms on a highly nonisotropic sample, i.e. a five layer “sandwich” of oriented carbon fibers. The fibers are parallel within the individual sandwich layers, but perpendicular to the fibers in the adjacent layers. We show that by choosing a rotation axis parallel to the grating stepping direction (i.......e. a horizontal rotation axis in most setup configurations) it is possible to produce a darkfield tomogram where fibers parallel to the probed scattering direction appear to have no dark field signal. The method produces a tomogram in the form of a scalar field of dark field scattering values....

  9. Can strong gravitational lensing constrain dark energy?

    International Nuclear Information System (INIS)

    Lee, Seokcheon; Ng, K.-W.

    2007-01-01

    We discuss the ratio of the angular diameter distances from the source to the lens, D ds , and to the observer at present, D s , for various dark energy models. It is well known that the difference of D s s between the models is apparent and this quantity is used for the analysis of Type Ia supernovae. However we investigate the difference between the ratio of the angular diameter distances for a cosmological constant, (D ds /D s ) Λ , and that for other dark energy models, (D ds /D s ) other , in this paper. It has been known that there is lens model degeneracy in using strong gravitational lensing. Thus, we investigate the model independent observable quantity, Einstein radius (θ E ), which is proportional to both D ds /D s and velocity dispersion squared, σ v 2 . D ds /D s values depend on the parameters of each dark energy model individually. However, (D ds /D s ) Λ -(D ds /D s ) other for the various dark energy models, is well within the error of σ v for most of the parameter spaces of the dark energy models. Thus, a single strong gravitational lensing by use of the Einstein radius may not be a proper method to investigate the property of dark energy. However, better understanding to the mass profile of clusters in the future or other methods related to arc statistics rather than the distances may be used for constraints on dark energy

  10. Sub-horizon evolution of cold dark matter perturbations through dark matter-dark energy equivalence epoch

    International Nuclear Information System (INIS)

    Piattella, O.F.; Martins, D.L.A.; Casarini, L.

    2014-01-01

    We consider a cosmological model of the late universe constituted by standard cold dark matter plus a dark energy component with constant equation of state w and constant effective speed of sound. By neglecting fluctuations in the dark energy component, we obtain an equation describing the evolution of sub-horizon cold dark matter perturbations through the epoch of dark matter-dark energy equality. We explore its analytic solutions and calculate an exact w-dependent correction for the dark matter growth function, logarithmic growth function and growth index parameter through the epoch considered. We test our analytic approximation with the numerical solution and find that the discrepancy is less than 1% for 0k = during the cosmic evolution up to a = 100

  11. Dark-field X-ray microscopy for multiscale structural characterization

    DEFF Research Database (Denmark)

    Simons, Hugh; King, A.; Ludwig, W.

    2015-01-01

    of the interactions between crystalline elements is a key step towards the formulation and validation of multiscale models that account for the entire heterogeneity of a material. Furthermore, dark-field X-ray microscopy is well suited to applied topics, where the structural evolution of internal nanoscale elements...

  12. Dark clouds in particle physics and cosmology: the issues of dark matter and dark energy

    International Nuclear Information System (INIS)

    Zhang Xinmin

    2011-01-01

    Unveiling the nature of dark matter and dark energy is one of the main tasks of particle physics and cosmology in the 21st century. We first present an overview of the history and current status of research in cosmology, at the same time emphasizing the new challenges in particle physics. Then we focus on the scientific issues of dark energy, dark matter and anti-matter, and review the recent progress made in these fields. Finally, we discuss the prospects for future research on the experimental probing of dark matter and dark energy in China. (authors)

  13. Characteristic of Fermented Drink from Whey Cheese with Addition of Mango (Mangifera x odorata) Juice

    Science.gov (United States)

    Desnilasari, D.; Kumalasari, R.

    2017-12-01

    Whey cheese could be utilized become product such as fermented drink which is added by mango kweni juice to improve their acceptance. The aim of this research was to characterized physicochemical, sensory, and microbiology of fermented drink based on whey cheese with addition different concentration mango kweni juice of (0%, 5%, 10%, and 15%) by Lactobacillus casei. Color scale, viscosity, pH, total soluble solid, total free acid, fat, protein, total L. casei and sensory evaluation from panelist were examined after 24 hour of fermentation. Result showed that addition mango juice significantly affects the color scale, viscosity, pH, protein and number of L. casei of the product. The color of the product becomes more dark, red, and yellow. The product becomes more viscous. pH of the product become more acid and reduces protein content. Respectively total number of L. casei of the product increased 1 log. But addition of mango juice significantly did not affect sensory acceptance, total soluble solid, total free acid, and fat of the product. Sensory acceptance of the product range in dislike slightly and slightly like score that means formulation of the product need to be improved again.

  14. Unification of dark energy and dark matter

    International Nuclear Information System (INIS)

    Takahashi, Fuminobu; Yanagida, T.T.

    2006-01-01

    We propose a scenario in which dark energy and dark matter are described in a unified manner. The ultralight pseudo-Nambu-Goldstone (pNG) boson, A, naturally explains the observed magnitude of dark energy, while the bosonic supersymmetry partner of the pNG boson, B, can be a dominant component of dark matter. The decay of B into a pair of electron and positron may explain the 511 keV γ ray from the Galactic Center

  15. Irradiation effects on the alcohol fermentation ability of saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Sadi, Suharni

    1987-01-01

    Irradiation effects on the alcohol fermentation ability of saccharomyces cerevisiae. S. cerevisiae suspensions of 1.5x10 8 clls/ml were exposed to single and fractionated doses of gamma irradiation, i.e. 0; 0.30; 0.60; 0.90; and 1.20 kGy in aerobic condition at dose rate of 1.63 kGy/hour. The fractionated doses were given with time interval of 15, 30 and 45 minutes. The fermentation was held at 30 0 C for 40 hours. It is seen that an increase of alcohol production was obtained when cells were irradiated at 0.60 kGy, although the result has no significant difference statistically with control. At the dose of 1.20 kGy the alcohol fermentation ability of S. cerevisiae decreased drastically as compared to control. Irradiation using single or fractionated doses with time interval of 15-45 minutes did not influence the alcohol production. Comparing the time interval of 45 minutes at 0.60 kGy and at 1.20 kGy, it appeared that the yield of alcohol was different. (author). 17 refs.; 4 figs

  16. Real-time, single-step bioassay using nanoplasmonic resonator with ultra-high sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiang; Ellman, Jonathan A; Chen, Fanqing Frank; Su, Kai-Hang; Wei, Qi-Huo; Sun, Cheng

    2014-04-01

    A nanoplasmonic resonator (NPR) comprising a metallic nanodisk with alternating shielding layer(s), having a tagged biomolecule conjugated or tethered to the surface of the nanoplasmonic resonator for highly sensitive measurement of enzymatic activity. NPRs enhance Raman signals in a highly reproducible manner, enabling fast detection of protease and enzyme activity, such as Prostate Specific Antigen (paPSA), in real-time, at picomolar sensitivity levels. Experiments on extracellular fluid (ECF) from paPSA-positive cells demonstrate specific detection in a complex bio-fluid background in real-time single-step detection in very small sample volumes.

  17. Tales from the dark side: Privacy dark strategies and privacy dark patterns

    DEFF Research Database (Denmark)

    Bösch, Christoph; Erb, Benjamin; Kargl, Frank

    2016-01-01

    Privacy strategies and privacy patterns are fundamental concepts of the privacy-by-design engineering approach. While they support a privacy-aware development process for IT systems, the concepts used by malicious, privacy-threatening parties are generally less understood and known. We argue...... that understanding the “dark side”, namely how personal data is abused, is of equal importance. In this paper, we introduce the concept of privacy dark strategies and privacy dark patterns and present a framework that collects, documents, and analyzes such malicious concepts. In addition, we investigate from...... a psychological perspective why privacy dark strategies are effective. The resulting framework allows for a better understanding of these dark concepts, fosters awareness, and supports the development of countermeasures. We aim to contribute to an easier detection and successive removal of such approaches from...

  18. Free-running InGaAs single photon detector with 1 dark count per second at 10% efficiency

    Science.gov (United States)

    Korzh, B.; Walenta, N.; Lunghi, T.; Gisin, N.; Zbinden, H.

    2014-02-01

    We present a free-running single photon detector for telecom wavelengths based on a negative feedback avalanche photodiode (NFAD). A dark count rate as low as 1 cps was obtained at a detection efficiency of 10%, with an afterpulse probability of 2.2% for 20 μs of deadtime. This was achieved by using an active hold-off circuit and cooling the NFAD with a free-piston stirling cooler down to temperatures of -110 °C. We integrated two detectors into a practical, 625 MHz clocked quantum key distribution system. Stable, real-time key distribution in the presence of 30 dB channel loss was possible, yielding a secret key rate of 350 bps.

  19. Realization of microcontroller-based process control systems examplified on process state monitor for anaerobic biogas fermentation; Realisierung mikrocontrollerbasierter Prozessfuehrungssysteme am Beispiel eines Prozesszustandsmonitors fuer die anaerobe Biogasfermentation

    Energy Technology Data Exchange (ETDEWEB)

    Patzwahl, S.; Kramer, K.D. [Hochschule Harz, Wernigerode (Germany). Fachbereich Automatisierung und Informatik; Nacke, T. [Institut fuer Bioprozess- und Analysenmesstechnik e.V., Heilbad Heiligenstadt (Germany)

    2004-07-01

    This paper describes possibilities to realize microcontroller-based process control systems with use strategies of computational intelligence. All design steps are comprised in a design process with direct interface to the process. A further issue is a development system for firmware, which was programmed especially for main steps of the design process. The process of anaerobic fermentation in biogas plants serves as an sample for a control application. By using the design process and the programmed software a process state monitor was developed for this fermentation process. The system is able to classify the process state online in biogas fermentation plants. (orig.)

  20. Virtual substitution scan via single-step free energy perturbation.

    Science.gov (United States)

    Chiang, Ying-Chih; Wang, Yi

    2016-02-05

    With the rapid expansion of our computing power, molecular dynamics (MD) simulations ranging from hundreds of nanoseconds to microseconds or even milliseconds have become increasingly common. The majority of these long trajectories are obtained from plain (vanilla) MD simulations, where no enhanced sampling or free energy calculation method is employed. To promote the 'recycling' of these trajectories, we developed the Virtual Substitution Scan (VSS) toolkit as a plugin of the open-source visualization and analysis software VMD. Based on the single-step free energy perturbation (sFEP) method, VSS enables the user to post-process a vanilla MD trajectory for a fast free energy scan of substituting aryl hydrogens by small functional groups. Dihedrals of the functional groups are sampled explicitly in VSS, which improves the performance of the calculation and is found particularly important for certain groups. As a proof-of-concept demonstration, we employ VSS to compute the solvation free energy change upon substituting the hydrogen of a benzene molecule by 12 small functional groups frequently considered in lead optimization. Additionally, VSS is used to compute the relative binding free energy of four selected ligands of the T4 lysozyme. Overall, the computational cost of VSS is only a fraction of the corresponding multi-step FEP (mFEP) calculation, while its results agree reasonably well with those of mFEP, indicating that VSS offers a promising tool for rapid free energy scan of small functional group substitutions. This article is protected by copyright. All rights reserved. © 2016 Wiley Periodicals, Inc.

  1. Lactose fermentation by engineered Saccharomyces cerevisiae capable of fermenting cellobiose.

    Science.gov (United States)

    Liu, Jing-Jing; Zhang, Guo-Chang; Oh, Eun Joong; Pathanibul, Panchalee; Turner, Timothy L; Jin, Yong-Su

    2016-09-20

    Lactose is an inevitable byproduct of the dairy industry. In addition to cheese manufacturing, the growing Greek yogurt industry generates excess acid whey, which contains lactose. Therefore, rapid and efficient conversion of lactose to fuels and chemicals would be useful for recycling the otherwise harmful acid whey. Saccharomyces cerevisiae, a popular metabolic engineering host, cannot natively utilize lactose. However, we discovered that an engineered S. cerevisiae strain (EJ2) capable of fermenting cellobiose can also ferment lactose. This finding suggests that a cellobiose transporter (CDT-1) can transport lactose and a β-glucosidase (GH1-1) can hydrolyze lactose by acting as a β-galactosidase. While the lactose fermentation by the EJ2 strain was much slower than the cellobiose fermentation, a faster lactose-fermenting strain (EJ2e8) was obtained through serial subcultures on lactose. The EJ2e8 strain fermented lactose with a consumption rate of 2.16g/Lh. The improved lactose fermentation by the EJ2e8 strain was due to the increased copy number of cdt-1 and gh1-1 genes. Looking ahead, the EJ2e8 strain could be exploited for the production of other non-ethanol fuels and chemicals from lactose through further metabolic engineering. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Yeast multistress resistance and lag-phase characterisation during wine fermentation.

    Science.gov (United States)

    Ferreira, David; Galeote, Virginie; Sanchez, Isabelle; Legras, Jean-Luc; Ortiz-Julien, Anne; Dequin, Sylvie

    2017-09-01

    Saccharomyces cerevisiae has been used to perform wine fermentation for several millennia due to its endurance and unmatched qualities. Nevertheless, at the moment of inoculation, wine yeasts must cope with specific stress factors that still challenge wine makers by slowing down or compromising the fermentation process. To better assess the role of genetic and environmental factors that govern multistress resistance during the wine fermentation lag phase, we used a factorial plan to characterise the individual and combined impact of relevant stress factors on eight S. cerevisiae and two non-S. cerevisiae wine yeast strains that are currently commercialised. The S. cerevisiae strains are very genetically diverse, belonging to the wine and flor groups, and frequently contain a previously described XVIVIII translocation that confers increased resistance to sulphites. We found that low temperature and osmotic stress substantially affected all strains, promoting considerably extended lag phases. SO2 addition had a partially temperature-dependent effect, whereas low phytosterol and thiamine concentrations impacted the lag phase in a strain-dependent manner. No major synergic effects of multistress were detected. The diversity of lag-phase durations and stress responses observed among wine strains offer new insights to better control this critical step of fermentation. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Quality and Composition of Red Wine Fermented with Schizosaccharomyces pombe as Sole Fermentative Yeast, and in Mixed and Sequential Fermentations with Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Felipe Palomero

    2014-01-01

    Full Text Available This work examines the physiology of Schizosaccharomyces pombe (represented by strain 938 in the production of red wine, as the sole fermentative yeast, and in mixed and sequential fermentations with Saccharomyces cerevisiae 796. For further comparison, fermentations in which Saccharomyces cerevisiae was the sole fermentative yeast were also performed; in these fermentations a commercial lactic acid bacterium was used to perform malolactic fermentation once alcoholic fermentation was complete (unlike S. cerevisiae, the Sc. pombe performs maloalcoholic fermentation and therefore removes malic acid without such help. Relative density, acetic, malic and pyruvic acid concentrations, primary amino nitrogen and urea concentrations, and pH of the musts were measured over the entire fermentation period. In all fermentations in which Sc. pombe 938 was involved, nearly all the malic acid was consumed from an initial concentration of 5.5 g/L, and moderate acetic acid concentrations below 0.4 g/L were formed. The urea content of these wines was notably lower, showing a tenfold reduction when compared with those that were made with S. cerevisiae 796 alone. The sensorial properties of the different final wines varied widely. The wines fermented with Sc. pombe 938 had maximum aroma intensity and quality, and they were preferred by the tasters.

  4. Protein concentrations of sweet soysauces from Rhizopus oryzae and R. oligosporus fermentation without moromi fermentation

    Directory of Open Access Journals (Sweden)

    NOOR SOESANTI HANDAJANI

    2007-07-01

    Full Text Available Soy sauce was produce from soybean that fermented with koji/tempeh fungi and thenfermented under salt solution or moromi fermentation. The objectives of this experiment was to compare of protein (total and soluble content of sweet soy sauce that produced from soybean fermented with Rhizopus oryzae and R. oligosporus without moromi fermentation to the sweet soysauce with moromi fermentation one. The total and soluble proteins of sweet soy sauces that produce from soybean without moromi fermentation were higher that sweet soy sauces that produce with moromi fermentation. Soluble protein of sweet soy sauce that produced from soybean fermented with R. oligosporus without moromi fermentation was 8.2% and meet to the highest quality of sweet soy sweet sauce based on Indonesia Industrial Standard. Soluble protein of sweet soy sauce that produced from soybean fermented with R. oryzae without moromi fermentation was 4.1% and meet to the medium quality of sweet soy sweet sauce based on Indonesia Industrial Standard.

  5. Revival of the unified dark energy-dark matter model?

    International Nuclear Information System (INIS)

    Bento, M.C.; Bertolami, O.; Sen, A.A.

    2004-01-01

    We consider the generalized Chaplygin gas (GCG) proposal for unification of dark energy and dark matter and show that it admits an unique decomposition into dark energy and dark matter components once phantomlike dark energy is excluded. Within this framework, we study structure formation and show that difficulties associated to unphysical oscillations or blowup in the matter power spectrum can be circumvented. Furthermore, we show that the dominance of dark energy is related to the time when energy density fluctuations start deviating from the linear δ∼a behavior

  6. Differences between flocculating yeast and regular industrial yeast in transcription and metabolite profiling during ethanol fermentation

    Directory of Open Access Journals (Sweden)

    Lili Li

    2017-03-01

    Full Text Available Objectives: To improve ethanolic fermentation performance of self-flocculating yeast, difference between a flocculating yeast strain and a regular industrial yeast strain was analyzed by transcriptional and metabolic approaches. Results: The number of down-regulated (industrial yeast YIC10 vs. flocculating yeast GIM2.71 and up-regulated genes were 4503 and 228, respectively. It is the economic regulation for YIC10 that non-essential genes were down-regulated, and cells put more “energy” into growth and ethanol production. Hexose transport and phosphorylation were not the limiting-steps in ethanol fermentation for GIM2.71 compared to YIC10, whereas the reaction of 1,3-disphosphoglycerate to 3-phosphoglycerate, the decarboxylation of pyruvate to acetaldehyde and its subsequent reduction to ethanol were the most limiting steps. GIM2.71 had stronger stress response than non-flocculating yeast and much more carbohydrate was distributed to other bypass, such as glycerol, acetate and trehalose synthesis. Conclusions: Differences between flocculating yeast and regular industrial yeast in transcription and metabolite profiling will provide clues for improving the fermentation performance of GIM2.71.

  7. What do we really know about dark energy?

    Science.gov (United States)

    Durrer, Ruth

    2011-12-28

    In this paper, we discuss what we truly know about dark energy. I shall argue that, to date, our single indication for the existence of dark energy comes from distance measurements and their relation to redshift. Supernovae, cosmic microwave background anisotropies and observations of baryon acoustic oscillations simply tell us that the observed distance to a given redshift z is larger than the one expected from a Friedmann-Lemaître universe with matter only and the locally measured Hubble parameter.

  8. Single and combined effects of acetic acid, furfural, and sugars on the growth of the pentose-fermenting yeast Meyerozyma guilliermondii.

    Science.gov (United States)

    Perna, Michelle Dos Santos Cordeiro; Bastos, Reinaldo Gaspar; Ceccato-Antonini, Sandra Regina

    2018-02-01

    The tolerance of the pentose-fermenting yeast Meyerozyma guilliermondii to the inhibitors released after the biomass hydrolysis, such as acetic acid and furfural, was surveyed. We first verified the effects of acetic acid and cell concentrations and initial pH on the growth of a M. guilliermondii strain in a semi-synthetic medium containing acetic acid as the sole carbon source. Second, the single and combined effects of furfural, acetic acid, and sugars (xylose, arabinose, and glucose) on the sugar uptake, cell growth, and ethanol production were also analysed. Growth inhibition occurred in concentrations higher than 10.5 g l -1 acetic acid and initial pH 3.5. The maximum specific growth rate (µ) was 0.023 h -1 and the saturation constant (ks) was 0.75 g l -1 acetic acid. Initial cell concentration also influenced µ. Acetic acid (initial concentration 5 g l -1 ) was co-consumed with sugars even in the presence of 20 mg l -1 furfural without inhibition to the yeast growth. The yeast grew and fermented sugars in a sugar-based medium with acetic acid and furfural in concentrations much higher than those usually found in hemicellulosic hydrolysates.

  9. Cold dark matter plus not-so-clumpy dark relics

    International Nuclear Information System (INIS)

    Diamanti, Roberta; Ando, Shin'ichiro; Weniger, Christoph; Gariazzo, Stefano; Mena, Olga

    2017-01-01

    Various particle physics models suggest that, besides the (nearly) cold dark matter that accounts for current observations, additional but sub-dominant dark relics might exist. These could be warm, hot, or even contribute as dark radiation. We present here a comprehensive study of two-component dark matter scenarios, where the first component is assumed to be cold, and the second is a non-cold thermal relic. Considering the cases where the non-cold dark matter species could be either a fermion or a boson, we derive consistent upper limits on the non-cold dark relic energy density for a very large range of velocity dispersions, covering the entire range from dark radiation to cold dark matter. To this end, we employ the latest Planck Cosmic Microwave Background data, the recent BOSS DR11 and other Baryon Acoustic Oscillation measurements, and also constraints on the number of Milky Way satellites, the latter of which provides a measure of the suppression of the matter power spectrum at the smallest scales due to the free-streaming of the non-cold dark matter component. We present the results on the fraction f ncdm of non-cold dark matter with respect to the total dark matter for different ranges of the non-cold dark matter masses. We find that the 2σ limits for non-cold dark matter particles with masses in the range 1–10 keV are f ncdm ≤0.29 (0.23) for fermions (bosons), and for masses in the 10–100 keV range they are f ncdm ≤0.43 (0.45), respectively.

  10. Cold dark matter plus not-so-clumpy dark relics

    Energy Technology Data Exchange (ETDEWEB)

    Diamanti, Roberta; Ando, Shin' ichiro; Weniger, Christoph [GRAPPA, Institute of Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam (Netherlands); Gariazzo, Stefano; Mena, Olga, E-mail: r.diamanti@uva.nl, E-mail: s.ando@uva.nl, E-mail: gariazzo@to.infn.it, E-mail: omena@ific.uv.es, E-mail: c.weniger@uva.nl [Instituto de Física Corpuscular (IFIC), CSIC-Universitat de Valencia, Apartado de Correos 22085, E-46071, Valencia (Spain)

    2017-06-01

    Various particle physics models suggest that, besides the (nearly) cold dark matter that accounts for current observations, additional but sub-dominant dark relics might exist. These could be warm, hot, or even contribute as dark radiation. We present here a comprehensive study of two-component dark matter scenarios, where the first component is assumed to be cold, and the second is a non-cold thermal relic. Considering the cases where the non-cold dark matter species could be either a fermion or a boson, we derive consistent upper limits on the non-cold dark relic energy density for a very large range of velocity dispersions, covering the entire range from dark radiation to cold dark matter. To this end, we employ the latest Planck Cosmic Microwave Background data, the recent BOSS DR11 and other Baryon Acoustic Oscillation measurements, and also constraints on the number of Milky Way satellites, the latter of which provides a measure of the suppression of the matter power spectrum at the smallest scales due to the free-streaming of the non-cold dark matter component. We present the results on the fraction f {sub ncdm} of non-cold dark matter with respect to the total dark matter for different ranges of the non-cold dark matter masses. We find that the 2σ limits for non-cold dark matter particles with masses in the range 1–10 keV are f {sub ncdm}≤0.29 (0.23) for fermions (bosons), and for masses in the 10–100 keV range they are f {sub ncdm}≤0.43 (0.45), respectively.

  11. Fermented Dairy Products in the Nutrition of Infants in the Russian Federation: Past and Present

    Directory of Open Access Journals (Sweden)

    Tatiana E. Borovik

    2016-01-01

    Full Text Available Fermented dairy products have a high nutritional and biological value and functional properties beneficial to human health; they are very diverse and have a long history. Fermentation of milk is a complex technological, physical and biochemical process that occurs under the influence of two enzymes of lactic acid bacteria — -galactosidase and lactate dehydrogenase. Requirements for biological properties of starter microorganisms and fermentation technology are strictly regulated. Based on the starter cultures used, we can single out fermented dairy products of lactic acid and mixed (lactic acid and alcohol fermentation. There are adapted, partially adapted and non-adapted cultured milk products for children, some of which are enriched with pro- and prebiotics to enhance functional properties. The article provides information about one of the first Russian non-adapted fermented milk products for infants enriched with inulin, fruit and cereals.

  12. The dark side of cosmology: dark matter and dark energy.

    Science.gov (United States)

    Spergel, David N

    2015-03-06

    A simple model with only six parameters (the age of the universe, the density of atoms, the density of matter, the amplitude of the initial fluctuations, the scale dependence of this amplitude, and the epoch of first star formation) fits all of our cosmological data . Although simple, this standard model is strange. The model implies that most of the matter in our Galaxy is in the form of "dark matter," a new type of particle not yet detected in the laboratory, and most of the energy in the universe is in the form of "dark energy," energy associated with empty space. Both dark matter and dark energy require extensions to our current understanding of particle physics or point toward a breakdown of general relativity on cosmological scales. Copyright © 2015, American Association for the Advancement of Science.

  13. Effect of milk fermentation by kefir grains and selected single strains of lactic acid bacteria on the survival of Mycobacterium bovis BCG.

    Science.gov (United States)

    Macuamule, C L S; Wiid, I J; van Helden, P D; Tanner, M; Witthuhn, R C

    2016-01-18

    Mycobacterium bovis that causes Bovine tuberculosis (BTB) can be transmitted to humans thought consumption of raw and raw fermented milk products from diseased animals. Lactic acid bacteria (LAB) used in popular traditional milk products in Africa produce anti-microbial compounds that inhibit some pathogenic and spoilage bacteria. M. bovis BCG is an attenuated non-pathogenic vaccine strain of M. bovis and the aim of the study was to determine the effect of the fermentation process on the survival of M. bovis BCG in milk. M. bovis BCG at concentrations of 6 log CFU/ml was added to products of kefir fermentation. The survival of M. bovis BCG was monitored at 12-h intervals for 72 h by enumerating viable cells on Middlebrook 7H10 agar plates enriched with 2% BD BACTEC PANTA™. M. bovis BCG was increasingly reduced in sterile kefir that was fermented for a period of 24h and longer. In the milk fermented with kefir grains, Lactobacillus paracasei subsp. paracasei or Lactobacillus casei, the viability of M. bovis BCG was reduced by 0.4 logs after 24h and by 2 logs after 48 h of fermentation. No viable M. bovis BCG was detected after 60 h of fermentation. Results from this study show that long term fermentation under certain conditions may have the potential to inactivate M. bovis BCG present in the milk. However, to ensure safety of fermented milk in Africa, fermentation should be combined with other hurdle technologies such as boiling and milk pasteurisation. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Improving fermented quality of cider vinegar via rational nutrient feeding strategy.

    Science.gov (United States)

    Qi, Zhengliang; Dong, Die; Yang, Hailin; Xia, Xiaole

    2017-06-01

    This work aimed to find a rational nutrient feeding strategy for cider vinegar fermentation based on adequate information on the nutritional requirement of acetic acid bacteria. Through single nutrient lack experiment assay, necessary nutrient recipe for Acetobacter pasteurianus CICIM B7003 in acetous fermentation was confirmed. Compounds from the essential nutrient recipe were tested further to find out the key substrates significantly influencing cider vinegar fermentation. The findings showed that aspartate, glutamate, proline and tryptophan should be considered in detail for optimizing nutritional composition of cider. Finally, a nutrient feeding strategy that simultaneously adds proline, glutamate, aspartate and tryptophan to form final concentrations of 0.02g/L, 0.03g/L, 0.01g/L and 0.005g/L in cider was achieved by orthogonal experiment design. Comparing to the original fermentation, the yield of acetic acid from alcohol reached 93.3% and the concentration of most volatile flavor compounds increased with the rational nutrient feeding strategy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Solid substrate fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Tengerdy, R P

    1985-04-01

    Solid Substrate Fermentation (SSF) describes the microbiological tranformation of biological materials in their natural state, in contrast with liquid or submerged fermentations which are carried out in dilute solutions or slurries. The most important industrial microorganisms used in SSF are filamentous fungi and the critical factors in their growth are the control of the moisture level and the temperature. Traditionally, most SSFs are conducted in shallow trays (so that heat build up is avoided) and stacked in a moist chamber, however, the modern SSF should be able to mix large amounts of substrate for a uniform fermentation, maximum automization scale-up of the process, continuous operation and fermentation control and a promising new design is the Helical screw fermenter. At the present time SSF is used in the production of foods (e.g. mushrooms and oriental foods) in municipal, agricultural and industrial solid waste disposal and in the production of enzymes and speciality chemicals but it does not seem likely that it will replace prevalent liquid fermentation technologies. 29 references.

  16. Defective quiescence entry promotes the fermentation performance of bottom-fermenting brewer's yeast.

    Science.gov (United States)

    Oomuro, Mayu; Kato, Taku; Zhou, Yan; Watanabe, Daisuke; Motoyama, Yasuo; Yamagishi, Hiromi; Akao, Takeshi; Aizawa, Masayuki

    2016-11-01

    One of the key processes in making beer is fermentation. In the fermentation process, brewer's yeast plays an essential role in both the production of ethanol and the flavor profile of beer. Therefore, the mechanism of ethanol fermentation by of brewer's yeast is attracting much attention. The high ethanol productivity of sake yeast has provided a good basis from which to investigate the factors that regulate the fermentation rates of brewer's yeast. Recent studies found that the elevated fermentation rate of sake Saccharomyces cerevisiae species is closely related to a defective transition from vegetative growth to the quiescent (G 0 ) state. In the present study, to clarify the relationship between the fermentation rate of brewer's yeast and entry into G 0 , we constructed two types of mutant of the bottom-fermenting brewer's yeast Saccharomyces pastorianus Weihenstephan 34/70: a RIM15 gene disruptant that was defective in entry into G 0 ; and a CLN3ΔPEST mutant, in which the G 1 cyclin Cln3p accumulated at high levels. Both strains exhibited higher fermentation rates under high-maltose medium or high-gravity wort conditions (20° Plato) as compared with the wild-type strain. Furthermore, G 1 arrest and/or G 0 entry were defective in both the RIM15 disruptant and the CLN3ΔPEST mutant as compared with the wild-type strain. Taken together, these results indicate that regulation of the G 0 /G 1 transition might govern the fermentation rate of bottom-fermenting brewer's yeast in high-gravity wort. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  17. Cold dark matter plus not-so-clumpy dark relics

    NARCIS (Netherlands)

    Diamanti, R.; Ando, S.; Gariazzo, S.; Mena, O.; Weniger, C.

    Various particle physics models suggest that, besides the (nearly) cold dark matter that accounts for current observations, additional but sub-dominant dark relics might exist. These could be warm, hot, or even contribute as dark radiation. We present here a comprehensive study of two-component dark

  18. Supplying Dark Energy from Scalar Field Dark Matter

    OpenAIRE

    Gogberashvili, Merab; Sakharov, Alexander S.

    2017-01-01

    We consider the hypothesis that dark matter and dark energy consists of ultra-light self-interacting scalar particles. It is found that the Klein-Gordon equation with only two free parameters (mass and self-coupling) on a Schwarzschild background, at the galactic length-scales has the solution which corresponds to Bose-Einstein condensate, behaving as dark matter, while the constant solution at supra-galactic scales can explain dark energy.

  19. Dark stars

    DEFF Research Database (Denmark)

    Maselli, Andrea; Pnigouras, Pantelis; Nielsen, Niklas Grønlund

    2017-01-01

    to the formation of compact objects predominantly made of dark matter. Considering both fermionic and bosonic (scalar φ4) equations of state, we construct the equilibrium structure of rotating dark stars, focusing on their bulk properties and comparing them with baryonic neutron stars. We also show that these dark......Theoretical models of self-interacting dark matter represent a promising answer to a series of open problems within the so-called collisionless cold dark matter paradigm. In case of asymmetric dark matter, self-interactions might facilitate gravitational collapse and potentially lead...... objects admit the I-Love-Q universal relations, which link their moments of inertia, tidal deformabilities, and quadrupole moments. Finally, we prove that stars built with a dark matter equation of state are not compact enough to mimic black holes in general relativity, thus making them distinguishable...

  20. Effect of different ratios of cow manure and corn straw on the mixed anaerobic fermentation rate

    Directory of Open Access Journals (Sweden)

    Zongshan JIANG

    2016-08-01

    Full Text Available In order to study the effect of the different ratios on the anaerobic fermentation rate is investigated, and the rate-limiting factors are preliminarily determined, at mesophilic (38±1℃ condition, with anaerobic granular sludge as inoculums, different ratios of cow manure and corn straw are used as substrate for mixed anaerobic fermentation. By measuring daily biogas production, the concentrations of CH4 and CO2 in the marsh gas, TC, the concentration of VFAs and pH value, The results show that under the mixture ratio of 2∶1, the hydrolysis rate constants, cumulative biogas yield and biodegradability CH4 reach their high limits, which are 0.043 7 d-1, 271.93 mL/g and 71.59%, respectively. Moreover, it is found that the concentration of acetic acid is proportional to the amount of cow manure at the beginning (the first day of mixed fermentation, and the concentration of propionicacid is proportional to the amount of corn straw in medium fermentation stage (the fifth day. In addition, rate-limiting step of biogas production is related to the ratio of cow manure and corn in fermentation material. With the increasing of corn straw proportion, on the 1st day, it tends to hydrolysis acidogenesis; from the 2th day to 15th day, it tends to hydrogen-production acetogenisis; and from the 16th day to 30th day, it is hydrolysis acidogenesis. The paper focuses on the relationship between the ratio of cow manure and corn straw and the rate-limiting step for biogas production, which could provide a theoretical and experimental support for improving the efficiency of biogas production in mixed fermentation.

  1. Dark nebulae, dark lanes, and dust belts

    CERN Document Server

    Cooke, Antony

    2012-01-01

    As probably the only book of its type, this work is aimed at the observer who wants to spend time with something less conventional than the usual fare. Because we usually see objects in space by means of illumination of one kind or another, it has become routine to see them only in these terms. However, part of almost everything that we see is the defining dimension of dark shading, or even the complete obscuration of entire regions in space. Thus this book is focused on everything dark in space: those dark voids in the stellar fabric that mystified astronomers of old; the dark lanes reported in many star clusters; the magical dust belts or dusty regions that have given so many galaxies their identities; the great swirling 'folds' that we associate with bright nebulae; the small dark feature detectable even in some planetary nebulae; and more. Many observers pay scant attention to dark objects and details. Perhaps they are insufficiently aware of them or of the viewing potential they hold, but also it may be...

  2. Evaluation of factors that may influence the simultaneous saccharification-fermentation process for the production of ethanol from amylaceous materials

    International Nuclear Information System (INIS)

    Miranda Morales, Barbara; Molina Cordoba, Manuel

    2015-01-01

    The possibility of performing the steps of saccharification and fermentation simultaneously, was evaluated in order to reduce the time of production of ethanol from starch. Factors such as type and concentration of starch, concentration of ethanol, time and temperature of saccharification, presence of ethanol and nutrients (K_2HPO_4, MgSO_4• 7H_2O, NH_4NO_3 y peptone) were evaluated during the hydrolysis step of the starch, fermentation temperature. The yield of reducing sugars was measured using a type of starch and its concentration without being significantly affected. Furthermore, the activity of the enzyme AMG neither was affected with the presence of ethanol in concentrations of 0% and up to 12% v/v during the saccharification at temperatures of 60 degrees and 32 degrees. The time of saccharification affect significantly the production of reducing sugars. Nutrients at concentrations usual for a fermentation were added to the enzyme AMG during the hydrolysis of the starch without affecting its activity. To increase the yield of reducing sugars we conclude that the best combination of temperature and time of saccharification was: 60 degrees and 2 h. Also, it was concluded that the saccharification and fermentation steps may take place simultaneously even when operating at 32 degrees. The results of concentration of ethanol obtained (6.0 to 7.5) % v/v are comparable to those values in industry. (author) [es

  3. Dynamics in population heterogeneity during batch and continuous fermentation of Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Heins, Anna-Lena; Lencastre Fernandes, Rita; Lundin, L.

    2012-01-01

    Traditionally, microbial populations in optimization studies of fermentation processes have been considered homogeneous. However, research has shown that a typical microbial population in fermentation is heterogeneous. There are indications that this heterogeneity may be both beneficial...... (facilitates quick adaptation to new conditions) and harmful (reduces yields and productivities)[1,2]. Typically, gradients of e.g. dissolved oxygen, substrates, and pH are observed in industrial scale fermentation processes. Consequently, microbial cells circulating throughout a bioreactor experience rapid...... distribution during different growth stages. To further simulate which effect gradients have on population heterogeneity, glucose and ethanol perturbations during continuous cultivation were performed. Physiological changes were analyzed on single cell level by using flow cytometry followed by cell sorting...

  4. Sourcing dark matter and dark energy from α-attractors

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, Swagat S.; Sahni, Varun [Inter-University Centre for Astronomy and Astrophysics, Post Bag 4, Ganeshkhind, Pune 411 007 (India); Shtanov, Yuri, E-mail: swagat@iucaa.in, E-mail: varun@iucaa.in, E-mail: shtanov@bitp.kiev.ua [Bogolyubov Institute for Theoretical Physics, Kiev 03680 (Ukraine)

    2017-06-01

    In [1], Kallosh and Linde drew attention to a new family of superconformal inflationary potentials, subsequently called α-attractors [2]. The α-attractor family can interpolate between a large class of inflationary models. It also has an important theoretical underpinning within the framework of supergravity. We demonstrate that the α-attractors have an even wider appeal since they may describe dark matter and perhaps even dark energy. The dark matter associated with the α-attractors, which we call α-dark matter (αDM), shares many of the attractive features of fuzzy dark matter, with V (φ) = ½ m {sup 2}φ{sup 2}, while having none of its drawbacks. Like fuzzy dark matter, αDM can have a large Jeans length which could resolve the cusp-core and substructure problems faced by standard cold dark matter. αDM also has an appealing tracker property which enables it to converge to the late-time dark matter asymptote, ( w ) ≅ 0, from a wide range of initial conditions. It thus avoids the enormous fine-tuning problems faced by the m {sup 2}φ{sup 2} potential in describing dark matter.

  5. Sourcing dark matter and dark energy from α-attractors

    International Nuclear Information System (INIS)

    Mishra, Swagat S.; Sahni, Varun; Shtanov, Yuri

    2017-01-01

    In [1], Kallosh and Linde drew attention to a new family of superconformal inflationary potentials, subsequently called α-attractors [2]. The α-attractor family can interpolate between a large class of inflationary models. It also has an important theoretical underpinning within the framework of supergravity. We demonstrate that the α-attractors have an even wider appeal since they may describe dark matter and perhaps even dark energy. The dark matter associated with the α-attractors, which we call α-dark matter (αDM), shares many of the attractive features of fuzzy dark matter, with V (φ) = ½ m 2 φ 2 , while having none of its drawbacks. Like fuzzy dark matter, αDM can have a large Jeans length which could resolve the cusp-core and substructure problems faced by standard cold dark matter. αDM also has an appealing tracker property which enables it to converge to the late-time dark matter asymptote, ( w ) ≅ 0, from a wide range of initial conditions. It thus avoids the enormous fine-tuning problems faced by the m 2 φ 2 potential in describing dark matter.

  6. The dark triad: Emotional and interpersonal characteristics

    Directory of Open Access Journals (Sweden)

    Tomić Katarina N.

    2016-01-01

    Full Text Available The Dark triad is a construct of pathological personality traits, which consists of three components conceptually different, but still with significant empirical overlap: narcissism, Machiavellianism and subclinical psychopathy. The concept of Dark Triad found its place in the current structural models of personality, such as the Big-five and HEXACO model, and also an Interpersonal circumplex, within which the personal qualities project itselves into certain patterns of interpersonal behavior. This paper provides a brief theoretical overview of the basic elements of the Dark Triad, and an overview of current research related to (un justified observation of the three constituent dimensions as a single construct in theoretical and empirical terms. Also, the paper presents an overview of the emotional dysfunctions typical for the triad, as well as the problems and consequences in the area of interpersonal and social relations.

  7. Gravitational wave from dark sector with dark pion

    Energy Technology Data Exchange (ETDEWEB)

    Tsumura, Koji [Department of Physics, Kyoto University, Kyoto 606-8502 (Japan); Yamada, Masatoshi [Institut für Theoretische Physik, Universität Heidelberg, Philosophenweg 16, 69120 Heidelberg (Germany); Yamaguchi, Yuya, E-mail: ko2@gauge.scphys.kyoto-u.ac.jp, E-mail: m.yamada@thphys.uni-heidelberg.de, E-mail: yy@particle.sci.hokudai.ac.jp [Department of Physics, Faculty of Science, Hokkaido University, Sapporo 060-0810 (Japan)

    2017-07-01

    In this work, we investigate the spectra of gravitational waves produced by chiral symmetry breaking in dark quantum chromodynamics (dQCD) sector. The dark pion (π) can be a dark matter candidate as weakly interacting massive particle (WIMP) or strongly interacting massive particle (SIMP). For a WIMP scenario, we introduce the dQCD sector coupled to the standard model (SM) sector with classical scale invariance and investigate the annihilation process of the dark pion via the 2π → 2 SM process. For a SIMP scenario, we investigate the 3π → 2π annihilation process of the dark pion as a SIMP using chiral perturbation theory. We find that in the WIMP scenario the gravitational wave background spectra can be observed by future space gravitational wave antennas. On the other hand, when the dark pion is the SIMP dark matter with the constraints for the chiral perturbative limit and pion-pion scattering cross section, the chiral phase transition becomes crossover and then the gravitational waves are not produced.

  8. Electric field dependent paramagnetic defect creation in single step implanted Simox films

    International Nuclear Information System (INIS)

    Leray, J.L.; Margail, J.

    1991-01-01

    X irradiation induced oxygen-vacancy defect creation has been studied in SIMOX produced by single step implantation and annealing. It is shown that SIMOX is substantially more radiation sensitive (for these defects) than thermal or bulk oxide. Irradiation in the presence of an electric field 0.5 -1 MV cm -1 is found to enhance the rate of defect creation by ≥ 2 times. Further enhanced defect creation is observed in SIMOX samples whose substrate has been chemically thinned prior to irradiation. This enhancement is attributed to modification of the network induced by hydrogen introduced during the thinning process

  9. Dark Matter

    Directory of Open Access Journals (Sweden)

    Einasto J.

    2011-06-01

    Full Text Available I give a review of the development of the concept of dark matter. The dark matter story passed through several stages from a minor observational puzzle to a major challenge for theory of elementary particles. Modern data suggest that dark matter is the dominant matter component in the Universe, and that it consists of some unknown non-baryonic particles. Dark matter is the dominant matter component in the Universe, thus properties of dark matter particles determine the structure of the cosmic web.

  10. First direct detection limits on sub-GeV dark matter from XENON10.

    Science.gov (United States)

    Essig, Rouven; Manalaysay, Aaron; Mardon, Jeremy; Sorensen, Peter; Volansky, Tomer

    2012-07-13

    The first direct detection limits on dark matter in the MeV to GeV mass range are presented, using XENON10 data. Such light dark matter can scatter with electrons, causing ionization of atoms in a detector target material and leading to single- or few-electron events. We use 15  kg day of data acquired in 2006 to set limits on the dark-matter-electron scattering cross section. The strongest bound is obtained at 100 MeV where σ(e)dark-matter masses between 20 MeV and 1 GeV are bounded by σ(e)dark-matter candidates with masses well below the GeV scale.

  11. Dark Energy vs. Dark Matter: Towards a Unifying Scalar Field?

    OpenAIRE

    Arbey, A.

    2008-01-01

    The standard model of cosmology suggests the existence of two components, "dark matter" and "dark energy", which determine the fate of the Universe. Their nature is still under investigation, and no direct proof of their existences has emerged yet. There exist alternative models which reinterpret the cosmological observations, for example by replacing the dark energy/dark matter hypothesis by the existence of a unique dark component, the dark fluid, which is able to mimic the behaviour of bot...

  12. Enzymes in Fermented Fish.

    Science.gov (United States)

    Giyatmi; Irianto, H E

    Fermented fish products are very popular particularly in Southeast Asian countries. These products have unique characteristics, especially in terms of aroma, flavor, and texture developing during fermentation process. Proteolytic enzymes have a main role in hydrolyzing protein into simpler compounds. Fermentation process of fish relies both on naturally occurring enzymes (in the muscle or the intestinal tract) as well as bacteria. Fermented fish products processed using the whole fish show a different characteristic compared to those prepared from headed and gutted fish. Endogenous enzymes like trypsin, chymotrypsin, elastase, and aminopeptidase are the most involved in the fermentation process. Muscle tissue enzymes like cathepsins, peptidases, transaminases, amidases, amino acid decarboxylases, glutamic dehydrogenases, and related enzymes may also play a role in fish fermentation. Due to the decreased bacterial number during fermentation, contribution of microbial enzymes to proteolysis may be expected prior to salting of fish. Commercial enzymes are supplemented during processing for specific purposes, such as quality improvement and process acceleration. In the case of fish sauce, efforts to accelerate fermentation process and to improve product quality have been studied by addition of enzymes such as papain, bromelain, trypsin, pepsin, and chymotrypsin. © 2017 Elsevier Inc. All rights reserved.

  13. Genetic barcoding of dark-spored myxomycetes (Amoebozoa)

    DEFF Research Database (Denmark)

    Dahl, Mathilde Borg; Brejnrod, Asker Daniel; Unterseher, Martin

    2018-01-01

    Unicellular, eukaryotic organisms (protists) play a key role in soil food webs as major predators of microorganisms. However, due to the polyphyletic nature of protists, no single universal barcode can be established for this group, and the structure of many protistean communities remains...... unresolved. Plasmodial slime moulds (Myxogastria or Myxomycetes) stand out among protists by their formation of fruit bodies, which allow for a morphological species concept. By Sanger sequencing of a large collection of morphospecies, this study presents the largest database to date of dark...... match, thus thought to represent undiscovered diversity of dark-spored myxomycetes....

  14. Conformal Gravity: Dark Matter and Dark Energy

    Directory of Open Access Journals (Sweden)

    Robert K. Nesbet

    2013-01-01

    Full Text Available This short review examines recent progress in understanding dark matter, dark energy, and galactic halos using theory that departs minimally from standard particle physics and cosmology. Strict conformal symmetry (local Weyl scaling covariance, postulated for all elementary massless fields, retains standard fermion and gauge boson theory but modifies Einstein–Hilbert general relativity and the Higgs scalar field model, with no new physical fields. Subgalactic phenomenology is retained. Without invoking dark matter, conformal gravity and a conformal Higgs model fit empirical data on galactic rotational velocities, galactic halos, and Hubble expansion including dark energy.

  15. A comparison of ethanol and methane fermentation of currant-and sultana-washing wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Athanasopoulos, Nikolaos (Patras Univ. (Greece). Dept. of Chemistry)

    1994-01-01

    Wastewater from currant- and sultana-washing processes was successfully treated in an ethanol fermenter at 33[sup o]C; the pH of the wash water was controlled at 2.8; the reducing sugar content was 38.8 g/litre; commercial baker's yeast was used as inoculum at a concentration of 2.5 g/litre; formaldehyde at a concentration of 150 mg/litre was used as antiseptic; the ethanol yield was 70.6% of the theoretical value in 24 h; the COD removal after a single distillation was 84%. The overall economics of ethanol fermentation are very promising compared to methane fermentation. (author)

  16. Single-Step Generation of Conditional Knockout Mouse Embryonic Stem Cells

    Directory of Open Access Journals (Sweden)

    Matyas Flemr

    2015-07-01

    Full Text Available Induction of double-strand DNA breaks (DSBs by engineered nucleases, such as CRISPR/Cas9 or transcription activator-like effector nucleases (TALENs, stimulates knockin of exogenous DNA fragments via homologous recombination (HR. However, the knockin efficiencies reported so far have not allowed more complex in vitro genome modifications such as, for instance, simultaneous integration of a DNA fragment at two distinct genomic sites. We developed a reporter system to enrich for cells with engineered nuclease-assisted HR events. Using this system in mouse embryonic stem cells (mESCs, we achieve single-step biallelic and seamless integration of two loxP sites for Cre recombinase-mediated inducible gene knockout, as well as biallelic endogenous gene tagging with high efficiency. Our approach reduces the time and resources required for conditional knockout mESC generation dramatically.

  17. Studying generalised dark matter interactions with extended halo-independent methods

    Energy Technology Data Exchange (ETDEWEB)

    Kahlhoefer, Felix [DESY, Notkestraße 85,D-22607 Hamburg (Germany); Wild, Sebastian [Physik-Department T30d, Technische Universität München,James-Franck-Straße 1, D-85748 Garching (Germany)

    2016-10-20

    The interpretation of dark matter direct detection experiments is complicated by the fact that neither the astrophysical distribution of dark matter nor the properties of its particle physics interactions with nuclei are known in detail. To address both of these issues in a very general way we develop a new framework that combines the full formalism of non-relativistic effective interactions with state-of-the-art halo-independent methods. This approach makes it possible to analyse direct detection experiments for arbitrary dark matter interactions and quantify the goodness-of-fit independent of astrophysical uncertainties. We employ this method in order to demonstrate that the degeneracy between astrophysical uncertainties and particle physics unknowns is not complete. Certain models can be distinguished in a halo-independent way using a single ton-scale experiment based on liquid xenon, while other models are indistinguishable with a single experiment but can be separated using combined information from several target elements.

  18. Studying generalised dark matter interactions with extended halo-independent methods

    International Nuclear Information System (INIS)

    Kahlhoefer, Felix; Wild, Sebastian

    2016-07-01

    The interpretation of dark matter direct detection experiments is complicated by the fact that neither the astrophysical distribution of dark matter nor the properties of its particle physics interactions with nuclei are known in detail. To address both of these issues in a very general way we develop a new framework that combines the full formalism of non-relativistic effective interactions with state-of-the-art halo-independent methods. This approach makes it possible to analyse direct detection experiments for arbitrary dark matter interactions and quantify the goodness-of-fit independent of astrophysical uncertainties. We employ this method in order to demonstrate that the degeneracy between astrophysical uncertainties and particle physics unknowns is not complete. Certain models can be distinguished in a halo-independent way using a single ton-scale experiment based on liquid xenon, while other models are indistinguishable with a single experiment but can be separated using combined information from several target elements.

  19. Probiotic fermented dairy products

    OpenAIRE

    Adnan Tamime; Rajka Božanić; Irena Rogelj

    2003-01-01

    Fermented dairy products are the most popular vehicle used in theindustry for the implantation of the probiotic microflora in humans. Therefore this paper provides an overview of new knowledge on probiotic fermented dairy products. It involves historical developments, commercial probiotic microorganisms and products, and their therapeutic properties, possibilities of quality improvement of different types of newly developed fermented dairy products together with fermented goat’s milk products.

  20. Free-running InGaAs single photon detector with 1 dark count per second at 10% efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Korzh, B., E-mail: Boris.Korzh@unige.ch; Walenta, N.; Lunghi, T.; Gisin, N.; Zbinden, H. [Group of Applied Physics, University of Geneva, Chemin de Pinchat 22, CH-1211 Geneva 4 (Switzerland)

    2014-02-24

    We present a free-running single photon detector for telecom wavelengths based on a negative feedback avalanche photodiode (NFAD). A dark count rate as low as 1 cps was obtained at a detection efficiency of 10%, with an afterpulse probability of 2.2% for 20 μs of deadtime. This was achieved by using an active hold-off circuit and cooling the NFAD with a free-piston stirling cooler down to temperatures of −110 °C. We integrated two detectors into a practical, 625 MHz clocked quantum key distribution system. Stable, real-time key distribution in the presence of 30 dB channel loss was possible, yielding a secret key rate of 350 bps.

  1. Electro-Fermentation in Aid of Bioenergy and Biopolymers

    Directory of Open Access Journals (Sweden)

    Prasun Kumar

    2018-02-01

    Full Text Available The soaring levels of industrialization and rapid progress towards urbanization across the world have elevated the demand for energy besides generating a massive amount of waste. The latter is responsible for poisoning the ecosystem in an exponential manner, owing to the hazardous and toxic chemicals released by them. In the past few decades, there has been a paradigm shift from “waste to wealth”, keeping the value of high organic content available in the wastes of biological origin. The most practiced processes are that of anaerobic digestion, leading to the production of methane. However; such bioconversion has limited net energy yields. Industrial fermentation targeting value-added bioproducts such as—H2, butanediols; polyhydroxyalkanoates, citric acid, vitamins, enzymes, etc. from biowastes/lignocellulosic substrates have been planned to flourish in a multi-step process or as a “Biorefinery”. Electro-fermentation (EF is one such technology that has attracted much interest due to its ability to boost the microbial metabolism through extracellular electron transfer during fermentation. It has been studied on various acetogens and methanogens, where the enhancement in the biogas yield reached up to 2-fold. EF holds the potential to be used with complex organic materials, leading to the biosynthesis of value-added products at an industrial scale.

  2. Effective dark energy equation of state in interacting dark energy models

    International Nuclear Information System (INIS)

    Avelino, P.P.; Silva, H.M.R. da

    2012-01-01

    In models where dark matter and dark energy interact non-minimally, the total amount of matter in a fixed comoving volume may vary from the time of recombination to the present time due to energy transfer between the two components. This implies that, in interacting dark energy models, the fractional matter density estimated using the cosmic microwave background assuming no interaction between dark matter and dark energy will in general be shifted with respect to its true value. This may result in an incorrect determination of the equation of state of dark energy if the interaction between dark matter and dark energy is not properly accounted for, even if the evolution of the Hubble parameter as a function of redshift is known with arbitrary precision. In this Letter we find an exact expression, as well as a simple analytical approximation, for the evolution of the effective equation of state of dark energy, assuming that the energy transfer rate between dark matter and dark energy is described by a simple two-parameter model. We also provide analytical examples where non-phantom interacting dark energy models mimic the background evolution and primary cosmic microwave background anisotropies of phantom dark energy models.

  3. Effective dark energy equation of state in interacting dark energy models

    Energy Technology Data Exchange (ETDEWEB)

    Avelino, P.P., E-mail: ppavelin@fc.up.pt [Centro de Astrofisica da Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal); Departamento de Fisica e Astronomia da Faculdade de Ciencias da Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto (Portugal); Silva, H.M.R. da, E-mail: hilberto.silva@gmail.com [Departamento de Fisica e Astronomia da Faculdade de Ciencias da Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto (Portugal)

    2012-07-24

    In models where dark matter and dark energy interact non-minimally, the total amount of matter in a fixed comoving volume may vary from the time of recombination to the present time due to energy transfer between the two components. This implies that, in interacting dark energy models, the fractional matter density estimated using the cosmic microwave background assuming no interaction between dark matter and dark energy will in general be shifted with respect to its true value. This may result in an incorrect determination of the equation of state of dark energy if the interaction between dark matter and dark energy is not properly accounted for, even if the evolution of the Hubble parameter as a function of redshift is known with arbitrary precision. In this Letter we find an exact expression, as well as a simple analytical approximation, for the evolution of the effective equation of state of dark energy, assuming that the energy transfer rate between dark matter and dark energy is described by a simple two-parameter model. We also provide analytical examples where non-phantom interacting dark energy models mimic the background evolution and primary cosmic microwave background anisotropies of phantom dark energy models.

  4. Impeded Dark Matter

    Energy Technology Data Exchange (ETDEWEB)

    Kopp, Joachim; Liu, Jia [PRISMA Cluster of Excellence & Mainz Institute for Theoretical Physics,Johannes Gutenberg University,Staudingerweg 7, 55099 Mainz (Germany); Slatyer, Tracy R. [Center for Theoretical Physics, Massachusetts Institute of Technology,Cambridge, MA 02139 (United States); Wang, Xiao-Ping [PRISMA Cluster of Excellence & Mainz Institute for Theoretical Physics,Johannes Gutenberg University,Staudingerweg 7, 55099 Mainz (Germany); Xue, Wei [Center for Theoretical Physics, Massachusetts Institute of Technology,Cambridge, MA 02139 (United States)

    2016-12-12

    We consider dark matter models in which the mass splitting between the dark matter particles and their annihilation products is tiny. Compared to the previously proposed Forbidden Dark Matter scenario, the mass splittings we consider are much smaller, and are allowed to be either positive or negative. To emphasize this modification, we dub our scenario “Impeded Dark Matter”. We demonstrate that Impeded Dark Matter can be easily realized without requiring tuning of model parameters. For negative mass splitting, we demonstrate that the annihilation cross-section for Impeded Dark Matter depends linearly on the dark matter velocity or may even be kinematically forbidden, making this scenario almost insensitive to constraints from the cosmic microwave background and from observations of dwarf galaxies. Accordingly, it may be possible for Impeded Dark Matter to yield observable signals in clusters or the Galactic center, with no corresponding signal in dwarfs. For positive mass splitting, we show that the annihilation cross-section is suppressed by the small mass splitting, which helps light dark matter to survive increasingly stringent constraints from indirect searches. As specific realizations for Impeded Dark Matter, we introduce a model of vector dark matter from a hidden SU(2) sector, and a composite dark matter scenario based on a QCD-like dark sector.

  5. Impeded Dark Matter

    International Nuclear Information System (INIS)

    Kopp, Joachim; Liu, Jia; Slatyer, Tracy R.; Wang, Xiao-Ping; Xue, Wei

    2016-01-01

    We consider dark matter models in which the mass splitting between the dark matter particles and their annihilation products is tiny. Compared to the previously proposed Forbidden Dark Matter scenario, the mass splittings we consider are much smaller, and are allowed to be either positive or negative. To emphasize this modification, we dub our scenario “Impeded Dark Matter”. We demonstrate that Impeded Dark Matter can be easily realized without requiring tuning of model parameters. For negative mass splitting, we demonstrate that the annihilation cross-section for Impeded Dark Matter depends linearly on the dark matter velocity or may even be kinematically forbidden, making this scenario almost insensitive to constraints from the cosmic microwave background and from observations of dwarf galaxies. Accordingly, it may be possible for Impeded Dark Matter to yield observable signals in clusters or the Galactic center, with no corresponding signal in dwarfs. For positive mass splitting, we show that the annihilation cross-section is suppressed by the small mass splitting, which helps light dark matter to survive increasingly stringent constraints from indirect searches. As specific realizations for Impeded Dark Matter, we introduce a model of vector dark matter from a hidden SU(2) sector, and a composite dark matter scenario based on a QCD-like dark sector.

  6. Glycerol production by fermenting yeast cells is essential for optimal bread dough fermentation.

    Science.gov (United States)

    Aslankoohi, Elham; Rezaei, Mohammad Naser; Vervoort, Yannick; Courtin, Christophe M; Verstrepen, Kevin J

    2015-01-01

    Glycerol is the main compatible solute in yeast Saccharomyces cerevisiae. When faced with osmotic stress, for example during semi-solid state bread dough fermentation, yeast cells produce and accumulate glycerol in order to prevent dehydration by balancing the intracellular osmolarity with that of the environment. However, increased glycerol production also results in decreased CO2 production, which may reduce dough leavening. We investigated the effect of yeast glycerol production level on bread dough fermentation capacity of a commercial bakery strain and a laboratory strain. We find that Δgpd1 mutants that show decreased glycerol production show impaired dough fermentation. In contrast, overexpression of GPD1 in the laboratory strain results in increased fermentation rates in high-sugar dough and improved gas retention in the fermenting bread dough. Together, our results reveal the crucial role of glycerol production level by fermenting yeast cells in dough fermentation efficiency as well as gas retention in dough, thereby opening up new routes for the selection of improved commercial bakery yeasts.

  7. Characterization of volatile compounds in Fen-Daqu - a traditional Chinese liquor fermentation starter

    NARCIS (Netherlands)

    Van-Diep, L.; Zheng, X.; Chen, J.Y.; Han, B.Z.

    2012-01-01

    Fen-Daqu is a saccharifying agent and fermentation starter for the production of Chinese liquor Fen (alcoholic spirit) and Fen traditional vinegar. The volatile compounds produced at seven incubation steps were analysed by HS-SPME-GC-MS. A total of 83 major volatile compounds were identified,

  8. Turning off the lights: How dark is dark matter?

    International Nuclear Information System (INIS)

    McDermott, Samuel D.; Yu Haibo; Zurek, Kathryn M.

    2011-01-01

    We consider current observational constraints on the electromagnetic charge of dark matter. The velocity dependence of the scattering cross section through the photon gives rise to qualitatively different constraints than standard dark matter scattering through massive force carriers. In particular, recombination epoch observations of dark matter density perturbations require that ε, the ratio of the dark matter to electronic charge, is less than 10 -6 for m X =1 GeV, rising to ε -4 for m X =10 TeV. Though naively one would expect that dark matter carrying a charge well below this constraint could still give rise to large scattering in current direct detection experiments, we show that charged dark matter particles that could be detected with upcoming experiments are expected to be evacuated from the Galactic disk by the Galactic magnetic fields and supernova shock waves and hence will not give rise to a signal. Thus dark matter with a small charge is likely not a source of a signal in current or upcoming dark matter direct detection experiments.

  9. EFFECT OF FERMENTED CACAO POD SUPPLEMENTATION ON SHEEP RUMEN MICROBIAL FERMENTATION

    Directory of Open Access Journals (Sweden)

    S. Wulandari

    2015-09-01

    Full Text Available The objective of this research was to improve beneficial value of cacao pod as sheep feedingredients comprising up to 50% total feed. This research was conducted in two stages. Stage 1 wascacao pod fermentation. Completely randomized design with 3x3 factorial patterns was used in thisstage, in which factor I was microbial inoculum dosage of 0%, 0.05% and 0.1% and factor II wasincubation period of 0, 3 and 6 days. Result demonstrated that six-day fermentation with 0.05%microbial inoculum could lower cacao NDF, ADF and theobromine. The optimum inoculum dosage andfermentation time from stage 1 was applied to stage 2. Stage 2 was rumen microbial fermentation test.This research administrated 3x3 of latin square design. In period I sheep were fed with CF0 (nonfermentedcomplete feed, in period II sheep were given CF 1 (complete feed containing fermentedcacao pod and in period III sheep were given CF2 (fermented complete feed based cacao pod. Resultdemonstrated that pH value of sheep microbial liquid in treatment of CF0, CF1 and CF2 was in normalpH range and did not affect volatile fatty acids (VFA and ammonia. In conclusion, supplementing up to 50% of feed with complete feed containing fermented or non-fermented cacao pod did not affect theprocess of rumen microbial fermentation.

  10. Thin film complementary metal oxide semiconductor (CMOS) device using a single-step deposition of the channel layer

    KAUST Repository

    Nayak, Pradipta K.; Caraveo-Frescas, J. A.; Wang, Zhenwei; Hedhili, Mohamed N.; Wang, Q. X.; Alshareef, Husam N.

    2014-01-01

    We report, for the first time, the use of a single step deposition of semiconductor channel layer to simultaneously achieve both n-and p-type transport in transparent oxide thin film transistors (TFTs). This effect is achieved by controlling

  11. Hessence: a new view of quintom dark energy

    International Nuclear Information System (INIS)

    Wei Hao; Cai Ronggen; Zeng Dingfang

    2005-01-01

    Recently a lot of attention has been given to building a dark energy model in which the equation-of-state parameter w can cross the phantom divide w = -1. One of the models to realize crossing the phantom divide is called the quintom model, in which two real scalar fields appear, one is a normal scalar field and the other is a phantom-type scalar field. In this paper we propose a non-canonical complex scalar field as the dark energy, which we dub 'hessence', to implement crossing the phantom divide, in a similar sense as the quintom dark energy model. In the hessence model, the dark energy is described by a single field with an internal degree of freedom rather than two independent real scalar fields. However, the hessence is different from an ordinary complex scalar field, we show that the hessence can avoid the difficulty of the Q-ball formation which gives trouble to the spintessence model (an ordinary complex scalar field acts as the dark energy). Furthermore, we find that, by choosing a proper potential, the hessence could correspond to a Chaplygin gas at late times

  12. Can tonne-scale direct detection experiments discover nuclear dark matter?

    Energy Technology Data Exchange (ETDEWEB)

    Butcher, Alistair; Kirk, Russell; Monroe, Jocelyn; West, Stephen M., E-mail: Alistair.Butcher.2010@live.rhul.ac.uk, E-mail: Russell.Kirk.2008@live.rhul.ac.uk, E-mail: Jocelyn.Monroe@rhul.ac.uk, E-mail: Stephen.West@rhul.ac.uk [Department of Physics, Royal Holloway University of London, Egham, Surrey, TW20 0EX (United Kingdom)

    2017-10-01

    Models of nuclear dark matter propose that the dark sector contains large composite states consisting of dark nucleons in analogy to Standard Model nuclei. We examine the direct detection phenomenology of a particular class of nuclear dark matter model at the current generation of tonne-scale liquid noble experiments, in particular DEAP-3600 and XENON1T. In our chosen nuclear dark matter scenario distinctive features arise in the recoil energy spectra due to the non-point-like nature of the composite dark matter state. We calculate the number of events required to distinguish these spectra from those of a standard point-like WIMP state with a decaying exponential recoil spectrum. In the most favourable regions of nuclear dark matter parameter space, we find that a few tens of events are needed to distinguish nuclear dark matter from WIMPs at the 3 σ level in a single experiment. Given the total exposure time of DEAP-3600 and XENON1T we find that at best a 2 σ distinction is possible by these experiments individually, while 3 σ sensitivity is reached for a range of parameters by the combination of the two experiments. We show that future upgrades of these experiments have potential to distinguish a large range of nuclear dark matter models from that of a WIMP at greater than 3 σ .

  13. Can tonne-scale direct detection experiments discover nuclear dark matter?

    International Nuclear Information System (INIS)

    Butcher, Alistair; Kirk, Russell; Monroe, Jocelyn; West, Stephen M.

    2017-01-01

    Models of nuclear dark matter propose that the dark sector contains large composite states consisting of dark nucleons in analogy to Standard Model nuclei. We examine the direct detection phenomenology of a particular class of nuclear dark matter model at the current generation of tonne-scale liquid noble experiments, in particular DEAP-3600 and XENON1T. In our chosen nuclear dark matter scenario distinctive features arise in the recoil energy spectra due to the non-point-like nature of the composite dark matter state. We calculate the number of events required to distinguish these spectra from those of a standard point-like WIMP state with a decaying exponential recoil spectrum. In the most favourable regions of nuclear dark matter parameter space, we find that a few tens of events are needed to distinguish nuclear dark matter from WIMPs at the 3 σ level in a single experiment. Given the total exposure time of DEAP-3600 and XENON1T we find that at best a 2 σ distinction is possible by these experiments individually, while 3 σ sensitivity is reached for a range of parameters by the combination of the two experiments. We show that future upgrades of these experiments have potential to distinguish a large range of nuclear dark matter models from that of a WIMP at greater than 3 σ .

  14. Separation and purification of γ-aminobutyric acid from fermentation broth by flocculation and chromatographic methodologies.

    Science.gov (United States)

    Gao, Qiang; Duan, Qiang; Wang, Depei; Zhang, Yunze; Zheng, Chunyang

    2013-02-27

    To date, the multifunctional γ-aminobutyric acid (GABA) is mainly produced by microbial fermentation in industry. The purpose of this study was to find an effective method for separation and purification of 31.2 g/L initial GABA from the fermentation broth of Enterococcus raffinosus TCCC11660. To remove the impurities from fermentation broth, flocculation pretreatment using chitosan and sodium alginate was first implemented to facilitate subsequent filtration. Ultrafiltration followed two discontinuous diafiltration steps to effectively remove proteins and macromolecular pigments, and the resulting permeate was further decolored by DA201-CII resin at a high decoloration ratio and GABA recovery. Subsequently, ion exchange chromatography (IEC) with Amberlite 200C resin and gradient elution were applied for GABA separation from glutamate and arginine. Finally, GABA crystals of 99.1% purity were prepared via warm ethanol precipitation twice. Overall, our results reveal that the successive process including flocculation, filtration, ultrafiltration, decoloration, IEC, and crystallization is promising for scale-up GABA extraction from fermentation broth.

  15. Unified dark energy and dust dark matter dual to quadratic purely kinetic K-essence

    International Nuclear Information System (INIS)

    Guendelman, Eduardo; Nissimov, Emil; Pacheva, Svetlana

    2016-01-01

    We consider a modified gravity plus single scalar-field model, where the scalar Lagrangian couples symmetrically both to the standard Riemannian volume-form (spacetime integration measure density) given by the square root of the determinant of the Riemannian metric, as well as to another non-Riemannian volume-form in terms of an auxiliary maximal-rank antisymmetric tensor gauge field. As shown in a previous paper, the pertinent scalar-field dynamics provides an exact unified description of both dark energy via dynamical generation of a cosmological constant, and dark matter as a ''dust'' fluid with geodesic flow as a result of a hidden Noether symmetry. Here we extend the discussion by considering a non-trivial modification of the purely gravitational action in the form of f(R) = R -αR 2 generalized gravity. Upon deriving the corresponding ''Einstein-frame'' effective action of the latter modified gravity-scalar-field theory we find explicit duality (in the sense of weak versus strong coupling) between the original model of unified dynamical dark energy and dust fluid dark matter, on one hand, and a specific quadratic purely kinetic ''k-essence'' gravity-matter model with special dependence of its coupling constants on only two independent parameters, on the other hand. The canonical Hamiltonian treatment and Wheeler-DeWitt quantization of the dual purely kinetic ''k-essence'' gravity-matter model is also briefly discussed. (orig.)

  16. Searching for WISPy cold dark matter with a dish antenna

    Energy Technology Data Exchange (ETDEWEB)

    Horns, Dieter [Hamburg Univ. (Germany). Inst. fuer Experimentalphysik; Jaeckel, Joerg [Heidelberg Univ. (Germany). Inst. fuer Theoretische Physik; Durham Univ. (United Kingdom). Inst. for Particle Physics Phenomenology; Lindner, Axel; Ringwald, Andreas [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Lobanov, Andrei [Max-Planck-Institut fuer Radioastronomie, Bonn (Germany); Redondo, Javier [Muenchen Univ. (Germany). Arnold Sommerfeld Center; Max-Planck-Institut fuer Physik, Muenchen (Germany)

    2012-12-15

    The cold dark matter of the Universe may be comprised of very light and very weakly interacting particles, so-called WISPs. Two prominent examples are hidden photons and axion-like particles. In this note we propose a new technique to sensitively search for this type of dark matter with dish antennas. The technique is broadband and allows to explore a whole range of masses in a single measurement.

  17. Angiotensin-converting enzyme inhibitory activity of Lactobacillus helveticus strains from traditional fermented dairy foods and antihypertensive effect of fermented milk of strain H9.

    Science.gov (United States)

    Chen, Yongfu; Liu, Wenjun; Xue, Jiangang; Yang, Jie; Chen, Xia; Shao, Yuyu; Kwok, Lai-yu; Bilige, Menghe; Mang, Lai; Zhang, Heping

    2014-11-01

    Hypertension is a major global health issue which elevates the risk of a large world population to chronic life-threatening diseases. The inhibition of angiotensin-converting enzyme (ACE) is an effective target to manage essential hypertension. In this study, the fermentation properties (titratable acidity, free amino nitrogen, and fermentation time) and ACE-inhibitory (ACEI) activity of fermented milks produced by 259 Lactobacillus helveticus strains previously isolated from traditional Chinese and Mongolian fermented foods were determined. Among them, 37 strains had an ACEI activity of over 50%. The concentrations of the antihypertensive peptides, Ile-Pro-Pro and Val-Pro-Pro, were further determined by ultra performance liquid chromatography with quadrupole-time-of-flight mass spectrometry. The change of ACEI activity of the fermented milks of 3 strains exhibiting the highest ACEI activity upon gastrointestinal protease treatment was assayed. Fermented milks produced by strain H9 (IMAU60208) had the highest in vitro ACEI activity (86.4 ± 1.5%), relatively short fermentation time (7.5 h), and detectable Val-Pro-Pro (2.409 ± 0.229 µM) and Ile-Pro-Pro (1.612 ± 0.114 µM) concentrations. Compared with the control, a single oral dose of H9-fermented milk significantly attenuated the systolic, diastolic, and mean blood pressure of spontaneously hypertensive rats (SHR) by 15 to 18 mmHg during the 6 to 12 h after treatment. The long-term daily H9-fermented milk intake over 7 wk exerted significant antihypertensive effect to SHR, but not normotensive rats, and the systolic and diastolic blood pressure were significantly lower, by 12 and 10 mmHg, respectively, compared with the control receiving saline. The feeding of H9-fermented milk to SHR resulted in a significantly higher weight gain at wk 7 compared with groups receiving saline, commercial yogurt, and captopril. Our study identified a novel probiotic L. helveticus strain originated from kurut sampled from Tibet

  18. Unified Description of Dark Energy and Dark Matter

    OpenAIRE

    Petry, Walter

    2008-01-01

    Dark energy in the universe is assumed to be vacuum energy. The energy-momentum of vacuum is described by a scale-dependent cosmological constant. The equations of motion imply for the density of matter (dust) the sum of the usual matter density (luminous matter) and an additional matter density (dark matter) similar to the dark energy. The scale-dependent cosmological constant is given up to an exponent which is approximated by the experimentally decided density parameters of dark matter and...

  19. Dark energy and dark matter from primordial QGP

    Energy Technology Data Exchange (ETDEWEB)

    Vaidya, Vaishali, E-mail: vaidvavaishali24@gmail.com; Upadhyaya, G. K., E-mail: gopalujiain@yahoo.co.in [School of Studies in Physics, Vikram University Ujjain (India)

    2015-07-31

    Coloured relics servived after hadronization might have given birth to dark matter and dark energy. Theoretical ideas to solve mystery of cosmic acceleration, its origin and its status with reference to recent past are of much interest and are being proposed by many workers. In the present paper, we present a critical review of work done to understand the earliest appearance of dark matter and dark energy in the scenario of primordial quark gluon plasma (QGP) phase after Big Bang.

  20. Distinct Domestication Trajectories in Top-Fermenting Beer Yeasts and Wine Yeasts.

    Science.gov (United States)

    Gonçalves, Margarida; Pontes, Ana; Almeida, Pedro; Barbosa, Raquel; Serra, Marta; Libkind, Diego; Hutzler, Mathias; Gonçalves, Paula; Sampaio, José Paulo

    2016-10-24

    Beer is one of the oldest alcoholic beverages and is produced by the fermentation of sugars derived from starches present in cereal grains. Contrary to lager beers, made by bottom-fermenting strains of Saccharomyces pastorianus, a hybrid yeast, ale beers are closer to the ancient beer type and are fermented by S. cerevisiae, a top-fermenting yeast. Here, we use population genomics to investigate (1) the closest relatives of top-fermenting beer yeasts; (2) whether top-fermenting yeasts represent an independent domestication event separate from those already described; (3) whether single or multiple beer yeast domestication events can be inferred; and (4) whether top-fermenting yeasts represent non-recombinant or recombinant lineages. Our results revealed that top-fermenting beer yeasts are polyphyletic, with a main clade composed of at least three subgroups, dominantly represented by the German, British, and wheat beer strains. Other beer strains were phylogenetically close to sake, wine, or bread yeasts. We detected genetic signatures of beer yeast domestication by investigating genes previously linked to brewing and using genome-wide scans. We propose that the emergence of the main clade of beer yeasts is related with a domestication event distinct from the previously known cases of wine and sake yeast domestication. The nucleotide diversity of the main beer clade more than doubled that of wine yeasts, which might be a consequence of fundamental differences in the modes of beer and wine yeast domestication. The higher diversity of beer strains could be due to the more intense and different selection regimes associated to brewing. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Combinatorial pretreatment and fermentation optimization enabled a record yield on lignin bioconversion.

    Science.gov (United States)

    Liu, Zhi-Hua; Xie, Shangxian; Lin, Furong; Jin, Mingjie; Yuan, Joshua S

    2018-01-01

    Lignin valorization has recently been considered to be an essential process for sustainable and cost-effective biorefineries. Lignin represents a potential new feedstock for value-added products. Oleaginous bacteria such as Rhodococcus opacus can produce intracellular lipids from biodegradation of aromatic substrates. These lipids can be used for biofuel production, which can potentially replace petroleum-derived chemicals. However, the low reactivity of lignin produced from pretreatment and the underdeveloped fermentation technology hindered lignin bioconversion to lipids. In this study, combinatorial pretreatment with an optimized fermentation strategy was evaluated to improve lignin valorization into lipids using R. opacus PD630. As opposed to single pretreatment, combinatorial pretreatment produced a 12.8-75.6% higher lipid concentration in fermentation using lignin as the carbon source. Gas chromatography-mass spectrometry analysis showed that combinatorial pretreatment released more aromatic monomers, which could be more readily utilized by lignin-degrading strains. Three detoxification strategies were used to remove potential inhibitors produced from pretreatment. After heating detoxification of the lignin stream, the lipid concentration further increased by 2.9-9.7%. Different fermentation strategies were evaluated in scale-up lipid fermentation using a 2.0-l fermenter. With laccase treatment of the lignin stream produced from combinatorial pretreatment, the highest cell dry weight and lipid concentration were 10.1 and 1.83 g/l, respectively, in fed-batch fermentation, with a total soluble substrate concentration of 40 g/l. The improvement of the lipid fermentation performance may have resulted from lignin depolymerization by the combinatorial pretreatment and laccase treatment, reduced inhibition effects by fed-batch fermentation, adequate oxygen supply, and an accurate pH control in the fermenter. Overall, these results demonstrate that combinatorial

  2. Track theory and nuclear photographic emulsions for Dark Matter searches

    International Nuclear Information System (INIS)

    Ditlov, V.A.

    2013-01-01

    This work is devoted to the analysis of possibilities of nuclear emulsions for Dark Matter search, particles of which can produce slow recoil-nuclei. Tracks of such recoil-nuclei in developed nuclear emulsion consist from several emulsion grains. The analysis was carried out with Monte-Carlo calculations made on the basis of the Track Theory and the various factors influencing Dark Matter particles registration efficiency were investigated. Problems, which should be solved for optimal utilization of nuclear emulsions in Dark Matter search, were formulated. B ody - Highlights: ► Specific features of Dark Matter Search in nuclear photographic emulsions. ► Track theory for WIMP search in nuclear emulsions. ► Primary efficiency for single WIMP registration. ► Properties of primary WIMP registration efficiency. ► Primary registration efficiency of WIMP flow

  3. Codecaying Dark Matter.

    Science.gov (United States)

    Dror, Jeff Asaf; Kuflik, Eric; Ng, Wee Hao

    2016-11-18

    We propose a new mechanism for thermal dark matter freeze-out, called codecaying dark matter. Multicomponent dark sectors with degenerate particles and out-of-equilibrium decays can codecay to obtain the observed relic density. The dark matter density is exponentially depleted through the decay of nearly degenerate particles rather than from Boltzmann suppression. The relic abundance is set by the dark matter annihilation cross section, which is predicted to be boosted, and the decay rate of the dark sector particles. The mechanism is viable in a broad range of dark matter parameter space, with a robust prediction of an enhanced indirect detection signal. Finally, we present a simple model that realizes codecaying dark matter.

  4. Interactions between dark energy and dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Baldi, Marco

    2009-03-20

    We have investigated interacting dark energy cosmologies both concerning their impact on the background evolution of the Universe and their effects on cosmological structure growth. For the former aspect, we have developed a cosmological model featuring a matter species consisting of particles with a mass that increases with time. In such model the appearance of a Growing Matter component, which is negligible in early cosmology, dramatically slows down the evolution of the dark energy scalar field at a redshift around six, and triggers the onset of the accelerated expansion of the Universe, therefore addressing the Coincidence Problem. We propose to identify this Growing Matter component with cosmic neutrinos, in which case the present dark energy density can be related to the measured average mass of neutrinos. For the latter aspect, we have implemented the new physical features of interacting dark energy models into the cosmological N-body code GADGET-2, and we present the results of a series of high-resolution simulations for a simple realization of dark energy interaction. As a consequence of the new physics, cold dark matter and baryon distributions evolve differently both in the linear and in the non-linear regime of structure formation. Already on large scales, a linear bias develops between these two components, which is further enhanced by the non-linear evolution. We also find, in contrast with previous work, that the density profiles of cold dark matter halos are less concentrated in coupled dark energy cosmologies compared with {lambda}{sub CDM}. Also, the baryon fraction in halos in the coupled models is significantly reduced below the universal baryon fraction. These features alleviate tensions between observations and the {lambda}{sub CDM} model on small scales. Our methodology is ideally suited to explore the predictions of coupled dark energy models in the fully non-linear regime, which can provide powerful constraints for the viable parameter

  5. Interactions between dark energy and dark matter

    International Nuclear Information System (INIS)

    Baldi, Marco

    2009-01-01

    We have investigated interacting dark energy cosmologies both concerning their impact on the background evolution of the Universe and their effects on cosmological structure growth. For the former aspect, we have developed a cosmological model featuring a matter species consisting of particles with a mass that increases with time. In such model the appearance of a Growing Matter component, which is negligible in early cosmology, dramatically slows down the evolution of the dark energy scalar field at a redshift around six, and triggers the onset of the accelerated expansion of the Universe, therefore addressing the Coincidence Problem. We propose to identify this Growing Matter component with cosmic neutrinos, in which case the present dark energy density can be related to the measured average mass of neutrinos. For the latter aspect, we have implemented the new physical features of interacting dark energy models into the cosmological N-body code GADGET-2, and we present the results of a series of high-resolution simulations for a simple realization of dark energy interaction. As a consequence of the new physics, cold dark matter and baryon distributions evolve differently both in the linear and in the non-linear regime of structure formation. Already on large scales, a linear bias develops between these two components, which is further enhanced by the non-linear evolution. We also find, in contrast with previous work, that the density profiles of cold dark matter halos are less concentrated in coupled dark energy cosmologies compared with Λ CDM . Also, the baryon fraction in halos in the coupled models is significantly reduced below the universal baryon fraction. These features alleviate tensions between observations and the Λ CDM model on small scales. Our methodology is ideally suited to explore the predictions of coupled dark energy models in the fully non-linear regime, which can provide powerful constraints for the viable parameter space of such scenarios

  6. Fermentation performance optimization in an ectopic fermentation system.

    Science.gov (United States)

    Yang, Xiaotong; Geng, Bing; Zhu, Changxiong; Li, Hongna; He, Buwei; Guo, Hui

    2018-07-01

    Ectopic fermentation systems (EFSs) were developed for wastewater treatment. Previous studies have investigated the ability of thermophilic bacteria to improve fermentation performance in EFS. Continuing this research, we evaluated EFS performance using principle component analysis and investigated the addition of different proportions of cow dung. Viable bacteria communities were clustered and identified using BOX-AIR-based repetitive extragenic palindromic-PCR and 16S rDNA analysis. The results revealed optimal conditions for the padding were maize straw inoculated with thermophilic bacteria. Adding 20% cow dung yielded the best pH values (6.94-8.56), higher temperatures, increased wastewater absorption, improved litter quality, and greater microbial quantities. The viable bacteria groups were enriched by the addition of thermophilic consortium, and exogenous strains G21, G14, G4-1, and CR-15 were detected in fermentation process. The proportion of Bacillus species in treatment groups reached 70.37% after fermentation, demonstrating that thermophilic bacteria, especially Bacillus, have an important role in EFS, supporting previous predictions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Unified dark energy-dark matter model with inverse quintessence

    Energy Technology Data Exchange (ETDEWEB)

    Ansoldi, Stefano [ICRA — International Center for Relativistic Astrophysics, INFN — Istituto Nazionale di Fisica Nucleare, and Dipartimento di Matematica e Informatica, Università degli Studi di Udine, via delle Scienze 206, I-33100 Udine (UD) (Italy); Guendelman, Eduardo I., E-mail: ansoldi@fulbrightmail.org, E-mail: guendel@bgu.ac.il [Department of Physics, Ben-Gurion University of the Negeev, Beer-Sheva 84105 (Israel)

    2013-05-01

    We consider a model where both dark energy and dark matter originate from the coupling of a scalar field with a non-canonical kinetic term to, both, a metric measure and a non-metric measure. An interacting dark energy/dark matter scenario can be obtained by introducing an additional scalar that can produce non constant vacuum energy and associated variations in dark matter. The phenomenology is most interesting when the kinetic term of the additional scalar field is ghost-type, since in this case the dark energy vanishes in the early universe and then grows with time. This constitutes an ''inverse quintessence scenario'', where the universe starts from a zero vacuum energy density state, instead of approaching it in the future.

  8. Unified dark energy-dark matter model with inverse quintessence

    International Nuclear Information System (INIS)

    Ansoldi, Stefano; Guendelman, Eduardo I.

    2013-01-01

    We consider a model where both dark energy and dark matter originate from the coupling of a scalar field with a non-canonical kinetic term to, both, a metric measure and a non-metric measure. An interacting dark energy/dark matter scenario can be obtained by introducing an additional scalar that can produce non constant vacuum energy and associated variations in dark matter. The phenomenology is most interesting when the kinetic term of the additional scalar field is ghost-type, since in this case the dark energy vanishes in the early universe and then grows with time. This constitutes an ''inverse quintessence scenario'', where the universe starts from a zero vacuum energy density state, instead of approaching it in the future

  9. Dark matter spin determination with directional direct detection experiments

    Science.gov (United States)

    Catena, Riccardo; Conrad, Jan; Döring, Christian; Ferella, Alfredo Davide; Krauss, Martin B.

    2018-01-01

    If dark matter has spin 0, only two WIMP-nucleon interaction operators can arise as leading operators from the nonrelativistic reduction of renormalizable single-mediator models for dark matter-quark interactions. Based on this crucial observation, we show that about 100 signal events at next generation directional detection experiments can be enough to enable a 2 σ rejection of the spin 0 dark matter hypothesis in favor of alternative hypotheses where the dark matter particle has spin 1 /2 or 1. In this context, directional sensitivity is crucial since anisotropy patterns in the sphere of nuclear recoil directions depend on the spin of the dark matter particle. For comparison, about 100 signal events are expected in a CF4 detector operating at a pressure of 30 torr with an exposure of approximately 26,000 cubic-meter-detector days for WIMPs of 100 GeV mass and a WIMP-fluorine scattering cross section of 0.25 pb. Comparable exposures require an array of cubic meter time projection chamber detectors.

  10. Constraining the interaction between dark sectors with future HI intensity mapping observations

    Science.gov (United States)

    Xu, Xiaodong; Ma, Yin-Zhe; Weltman, Amanda

    2018-04-01

    We study a model of interacting dark matter and dark energy, in which the two components are coupled. We calculate the predictions for the 21-cm intensity mapping power spectra, and forecast the detectability with future single-dish intensity mapping surveys (BINGO, FAST and SKA-I). Since dark energy is turned on at z ˜1 , which falls into the sensitivity range of these radio surveys, the HI intensity mapping technique is an efficient tool to constrain the interaction. By comparing with current constraints on dark sector interactions, we find that future radio surveys will produce tight and reliable constraints on the coupling parameters.

  11. Measuring the speed of dark: Detecting dark energy perturbations

    International Nuclear Information System (INIS)

    Putter, Roland de; Huterer, Dragan; Linder, Eric V.

    2010-01-01

    The nature of dark energy can be probed not only through its equation of state but also through its microphysics, characterized by the sound speed of perturbations to the dark energy density and pressure. As the sound speed drops below the speed of light, dark energy inhomogeneities increase, affecting both cosmic microwave background and matter power spectra. We show that current data can put no significant constraints on the value of the sound speed when dark energy is purely a recent phenomenon, but can begin to show more interesting results for early dark energy models. For example, the best fit model for current data has a slight preference for dynamics [w(a)≠-1], degrees of freedom distinct from quintessence (c s ≠1), and early presence of dark energy [Ω de (a<<1)≠0]. Future data may open a new window on dark energy by measuring its spatial as well as time variation.

  12. Dark matter properties implied by gamma ray interstellar emission models

    Energy Technology Data Exchange (ETDEWEB)

    Balázs, Csaba; Li, Tong, E-mail: csaba.balazs@monash.edu, E-mail: tong.li@monash.edu [ARC Centre of Excellence for Particle Physics at the Tera-scale, School of Physics and Astronomy, Monash University, Melbourne, Victoria 3800 (Australia)

    2017-02-01

    We infer dark matter properties from gamma ray residuals extracted using eight different interstellar emission scenarios proposed by the Fermi-LAT Collaboration to explain the Galactic Center gamma ray excess. Adopting the most plausible simplified ansatz, we assume that the dark matter particle is a Majorana fermion interacting with standard fermions via a scalar mediator. To trivially respect flavor constraints, we only couple the mediator to third generation fermions. Using this theoretical hypothesis, and the Fermi residuals, we calculate Bayesian evidences, including Fermi-LAT exclusion limits from 15 dwarf spheroidal galaxies as well. Our evidence ratios single out one of the Fermi scenarios as most compatible with the simplified dark matter model. In this scenario the dark matter (mediator) mass is in the 25-200 (1-1000) GeV range and its annihilation is dominated by bottom quark final state. Our conclusion is that the properties of dark matter extracted from gamma ray data are highly sensitive to the modeling of the interstellar emission.

  13. Is Self-Interacting Dark Matter Undergoing Dark Fusion?

    OpenAIRE

    McDermott, Samuel D.

    2018-01-01

    We suggest that two-to-two dark matter fusion may be the relaxation process that resolves the small-scale structure problems of the cold collisionless dark matter paradigm. In order for the fusion cross section to scale correctly across many decades of astrophysical masses from dwarf galaxies to galaxy clusters, we require the fractional binding energy released to be greater than vn∼(10−(2−3))n, where n=1, 2 depends on local dark sector chemistry. The size of the dark-sector interaction cross...

  14. Quantum foam, gravitational thermodynamics, and the dark sector

    International Nuclear Information System (INIS)

    Ng, Y. Jack

    2017-01-01

    Is it possible that the dark sector (dark energy in the form of an effective dynamical cosmological constant, and dark matter) has its origin in quantum gravity? This talk sketches a positive response. Here specifically quantum gravity refers to the combined effect of quantum foam (or spacetime foam due to quantum fluctuations of spacetime) and gravitational thermodynamics. We use two simple independent gedankan experiments to show that the holographic principle can be understood intuitively as having its origin in the quantum fluctuations of spacetime. Applied to cosmology, this consideration leads to a dynamical cosmological constant of the observed magnitude, a result that can also be obtained for the present and recent cosmic eras by using unimodular gravity and causal set theory. Next we generalize the concept of gravitational thermodynamics to a spacetime with positive cosmological constant (like ours) to reveal the natural emergence, in galactic dynamics, of a critical acceleration parameter related to the cosmological constant. We are then led to construct a phenomenological model of dark matter which we call “modified dark matter” (MDM) in which the dark matter density profile depends on both the cosmological constant and ordinary matter. We provide observational tests of MDM by fitting the rotation curves to a sample of 30 local spiral galaxies with a single free parameter and by showing that the dynamical and observed masses agree in a sample of 93 galactic clusters. We also give a brief discussion of the possibility that quanta of both dark energy and dark matter are non-local, obeying quantum Boltzmann statistics (also called infinite statistics) as described by a curious average of the bosonic and fermionic algebras. If such a scenario is correct, we can expect some novel particle phenomenology involving dark matter interactions. This may explain why so far no dark matter detection experiments have been able to claim convincingly to have detected

  15. Quantum foam, gravitational thermodynamics, and the dark sector

    Science.gov (United States)

    Ng, Y. Jack

    2017-05-01

    Is it possible that the dark sector (dark energy in the form of an effective dynamical cosmological constant, and dark matter) has its origin in quantum gravity? This talk sketches a positive response. Here specifically quantum gravity refers to the combined effect of quantum foam (or spacetime foam due to quantum fluctuations of spacetime) and gravitational thermodynamics. We use two simple independent gedankan experiments to show that the holographic principle can be understood intuitively as having its origin in the quantum fluctuations of spacetime. Applied to cosmology, this consideration leads to a dynamical cosmological constant of the observed magnitude, a result that can also be obtained for the present and recent cosmic eras by using unimodular gravity and causal set theory. Next we generalize the concept of gravitational thermodynamics to a spacetime with positive cosmological constant (like ours) to reveal the natural emergence, in galactic dynamics, of a critical acceleration parameter related to the cosmological constant. We are then led to construct a phenomenological model of dark matter which we call “modified dark matter” (MDM) in which the dark matter density profile depends on both the cosmological constant and ordinary matter. We provide observational tests of MDM by fitting the rotation curves to a sample of 30 local spiral galaxies with a single free parameter and by showing that the dynamical and observed masses agree in a sample of 93 galactic clusters. We also give a brief discussion of the possibility that quanta of both dark energy and dark matter are non-local, obeying quantum Boltzmann statistics (also called infinite statistics) as described by a curious average of the bosonic and fermionic algebras. If such a scenario is correct, we can expect some novel particle phenomenology involving dark matter interactions. This may explain why so far no dark matter detection experiments have been able to claim convincingly to have detected

  16. Biochemicals from food waste and recalcitrant biomass via syngas fermentation: A review.

    Science.gov (United States)

    Wainaina, Steven; Horváth, Ilona Sárvári; Taherzadeh, Mohammad J

    2018-01-01

    An effective method for the production of value-added chemicals from food waste and lignocellulosic materials is a hybrid thermal-biological process, which involves gasification of the solid materials to syngas (primarily CO and H 2 ) followed by fermentation. This paper reviews the recent advances in this process. The special focus is on the cultivation methods that involve the use of single strains, defined mixed cultures and undefined mixed cultures for production of carboxylic acids and higher alcohols. A rate limiting step in these processes is the low mass transfer between the gas and the liquid phases. Therefore, novel techniques that can enhance the gas-liquid mass transfer including membrane- and trickle-bed bioreactors were discussed. Such bioreactors have shown promising results in increasing the volumetric mass transfer coefficient (k L a). High gas pressure also influences the mass transfer in certain batch processes, although the presence of impurities in the gas would impede the process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Penerapan Metode Diagnosis Cepat Virus Avian Influenza H5N1 dengan Metode Single Step Multiplex RT-PCR

    Directory of Open Access Journals (Sweden)

    Aris Haryanto

    2010-12-01

    Full Text Available Avian influenza (AI virus is a segmented single stranded (ss RNA virus with negative polarity andbelong to the Orthomyxoviridae family. Diagnose of AI virus can be performed using conventional methodsbut it has low sensitivity and specificity. The objective of the research was to apply rapid, precise, andaccurate diagnostic method for AI virus and also to determine its type and subtype based on the SingleStep Multiplex Reverse Transcriptase-Polymerase Chain Reaction targeting M, H5, and N1 genes. In thismethod M, H5 and NI genes were simultaneously amplified in one PCR tube. The steps of this researchconsist of collecting viral RNAs from 10 different AI samples originated from Maros Disease InvestigationCenter during 2007. DNA Amplification was conducted by Simplex RT-PCR using M primer set. Then, bysingle step multiplex RT-PCR were conducted simultaneously using M, H5 and N1 primers set. The RTPCRproducts were then separated on 1.5% agarose gel, stained by ethidum bromide and visualized underUV transilluminator. Results showed that 8 of 10 RNA virus samples could be amplified by Simplex RTPCRfor M gene which generating a DNA fragment of 276 bp. Amplification using multiplex RT-PCRmethod showed two of 10 samples were AI positive using multiplex RT-PCR, three DNA fragments weregenerated consisting of 276 bp for M gene, 189 bp for H5 gene, and 131 bp for N1. In this study, rapid andeffective diagnosis method for AI virus can be conducted by using simultaneous Single Step Multiplex RTPCR.By this technique type and subtype of AI virus, can also be determined, especially H5N1.

  18. Glycerol production by fermenting yeast cells is essential for optimal bread dough fermentation.

    Directory of Open Access Journals (Sweden)

    Elham Aslankoohi

    Full Text Available Glycerol is the main compatible solute in yeast Saccharomyces cerevisiae. When faced with osmotic stress, for example during semi-solid state bread dough fermentation, yeast cells produce and accumulate glycerol in order to prevent dehydration by balancing the intracellular osmolarity with that of the environment. However, increased glycerol production also results in decreased CO2 production, which may reduce dough leavening. We investigated the effect of yeast glycerol production level on bread dough fermentation capacity of a commercial bakery strain and a laboratory strain. We find that Δgpd1 mutants that show decreased glycerol production show impaired dough fermentation. In contrast, overexpression of GPD1 in the laboratory strain results in increased fermentation rates in high-sugar dough and improved gas retention in the fermenting bread dough. Together, our results reveal the crucial role of glycerol production level by fermenting yeast cells in dough fermentation efficiency as well as gas retention in dough, thereby opening up new routes for the selection of improved commercial bakery yeasts.

  19. Search for a dark matter candidate produced in association with a single top quark in pp-bar collisions at √s=1.96 TeV

    Czech Academy of Sciences Publication Activity Database

    Aaltonen, T.; Gonzalez, B.A.; Amerio, S.; Lysák, Roman

    2012-01-01

    Roč. 108, č. 20 (2012), "201802-1"-"201802-7" ISSN 0031-9007 R&D Projects: GA MŠk LC527 Institutional research plan: CEZ:AV0Z10100502 Keywords : CDF * Batavia TEVATRON * dark matter * top single production * associated production Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 7.943, year: 2012 http://arxiv.org/abs/arXiv:1202.5653

  20. Yeast diversity isolated from grape musts during spontaneous fermentation from a Brazilian winery.

    Science.gov (United States)

    Bezerra-Bussoli, Carolina; Baffi, Milla Alves; Gomes, Eleni; Da-Silva, Roberto

    2013-09-01

    Saccharomyces and non-Saccharomyces yeast species from a winery located in Brazil were identified by ribosomal gene-sequencing analysis. A total of 130 yeast strains were isolated from grape surfaces and musts during alcoholic fermentation from Isabel, Bordeaux, and Cabernet Sauvignon varieties. Samples were submitted to PCR-RFLP analysis and genomic sequencing. Thirteen species were identified: Candida quercitrusa, Candida stellata, Cryptococcus flavescens, Cryptococcus laurentii, Hanseniaspora uvarum, Issatchenkia occidentalis, Issatchenkia orientalis, Issatchenkia terricola, Pichia kluyveri, Pichia guilliermondii, Pichia sp., Saccharomyces cerevisiae, and Sporidiobolus pararoseus. A sequential substitution of species during the different stages of fermentation, with a dominance of non-Saccharomyces yeasts at the beginning, and a successive replacement of species by S. cerevisiae strains at the final steps were observed. This is the first report about the yeast distribution present throughout the alcoholic fermentation in a Brazilian winery, providing supportive information for future studies on their contribution to wine quality.

  1. Nonlocal astrophysics dark matter, dark energy and physical vacuum

    CERN Document Server

    Alexeev, Boris V

    2017-01-01

    Non-Local Astrophysics: Dark Matter, Dark Energy and Physical Vacuum highlights the most significant features of non-local theory, a highly effective tool for solving many physical problems in areas where classical local theory runs into difficulties. The book provides the fundamental science behind new non-local astrophysics, discussing non-local kinetic and generalized hydrodynamic equations, non-local parameters in several physical systems, dark matter, dark energy, black holes and gravitational waves. Devoted to the solution of astrophysical problems from the position of non-local physics Provides a solution for dark matter and dark energy Discusses cosmological aspects of the theory of non-local physics Includes a solution for the problem of the Hubble Universe expansion, and of the dependence of the orbital velocity from the center of gravity

  2. A novel single-step, multipoint calibration method for instrumented Lab-on-Chip systems

    DEFF Research Database (Denmark)

    Pfreundt, Andrea; Patou, François; Zulfiqar, Azeem

    2014-01-01

    for instrument-based PoC blood biomarker analysis systems. Motivated by the complexity of associating high-accuracy biosensing using silicon nanowire field effect transistors with ease of use for the PoC system user, we propose a novel one-step, multipoint calibration method for LoC-based systems. Our approach...... specifically addresses the important interfaces between a novel microfluidic unit to integrate the sensor array and a mobile-device hardware accessory. A multi-point calibration curve is obtained by generating a defined set of reference concentrations from a single input. By consecutively splitting the flow...

  3. Twin Higgs Asymmetric Dark Matter.

    Science.gov (United States)

    García García, Isabel; Lasenby, Robert; March-Russell, John

    2015-09-18

    We study asymmetric dark matter (ADM) in the context of the minimal (fraternal) twin Higgs solution to the little hierarchy problem, with a twin sector with gauged SU(3)^{'}×SU(2)^{'}, a twin Higgs doublet, and only third-generation twin fermions. Naturalness requires the QCD^{'} scale Λ_{QCD}^{'}≃0.5-20  GeV, and that t^{'} is heavy. We focus on the light b^{'} quark regime, m_{b^{'}}≲Λ_{QCD}^{'}, where QCD^{'} is characterized by a single scale Λ_{QCD}^{'} with no light pions. A twin baryon number asymmetry leads to a successful dark matter (DM) candidate: the spin-3/2 twin baryon, Δ^{'}∼b^{'}b^{'}b^{'}, with a dynamically determined mass (∼5Λ_{QCD}^{'}) in the preferred range for the DM-to-baryon ratio Ω_{DM}/Ω_{baryon}≃5. Gauging the U(1)^{'} group leads to twin atoms (Δ^{'}-τ^{'}[over ¯] bound states) that are successful ADM candidates in significant regions of parameter space, sometimes with observable changes to DM halo properties. Direct detection signatures satisfy current bounds, at times modified by dark form factors.

  4. Dark-dark-soliton dynamics in two density-coupled Bose-Einstein condensates

    Science.gov (United States)

    Morera, I.; Mateo, A. Muñoz; Polls, A.; Juliá-Díaz, B.

    2018-04-01

    We study the one-dimensional dynamics of dark-dark solitons in the miscible regime of two density-coupled Bose-Einstein condensates having repulsive interparticle interactions within each condensate (g >0 ). By using an adiabatic perturbation theory in the parameter g12/g , we show that, contrary to the case of two solitons in scalar condensates, the interactions between solitons are attractive when the interparticle interactions between condensates are repulsive g12>0 . As a result, the relative motion of dark solitons with equal chemical potential μ is well approximated by harmonic oscillations of angular frequency wr=(μ /ℏ ) √{(8 /15 ) g12/g } . We also show that, in finite systems, the resonance of this anomalous excitation mode with the spin-density mode of lowest energy gives rise to alternating dynamical instability and stability fringes as a function of the perturbative parameter. In the presence of harmonic trapping (with angular frequency Ω ) the solitons are driven by the superposition of two harmonic motions at a frequency given by w2=(Ω/√{2 }) 2+wr2 . When g12<0 , these two oscillators compete to give rise to an overall effective potential that can be either single well or double well through a pitchfork bifurcation. All our theoretical results are compared with numerical solutions of the Gross-Pitaevskii equation for the dynamics and the Bogoliubov equations for the linear stability. A good agreement is found between them.

  5. Rapid, single-step most-probable-number method for enumerating fecal coliforms in effluents from sewage treatment plants

    Science.gov (United States)

    Munoz, E. F.; Silverman, M. P.

    1979-01-01

    A single-step most-probable-number method for determining the number of fecal coliform bacteria present in sewage treatment plant effluents is discussed. A single growth medium based on that of Reasoner et al. (1976) and consisting of 5.0 gr. proteose peptone, 3.0 gr. yeast extract, 10.0 gr. lactose, 7.5 gr. NaCl, 0.2 gr. sodium lauryl sulfate, and 0.1 gr. sodium desoxycholate per liter is used. The pH is adjusted to 6.5, and samples are incubated at 44.5 deg C. Bacterial growth is detected either by measuring the increase with time in the electrical impedance ratio between the innoculated sample vial and an uninnoculated reference vial or by visual examination for turbidity. Results obtained by the single-step method for chlorinated and unchlorinated effluent samples are in excellent agreement with those obtained by the standard method. It is suggested that in automated treatment plants impedance ratio data could be automatically matched by computer programs with the appropriate dilution factors and most probable number tables already in the computer memory, with the corresponding result displayed as fecal coliforms per 100 ml of effluent.

  6. The Dark Cube: dark character profiles and OCEAN

    Directory of Open Access Journals (Sweden)

    Danilo Garcia

    2017-09-01

    Full Text Available Background The Big Five traits (i.e., openness, conscientiousness, extraversion, agreeableness, and neuroticism: OCEAN have been suggested to provide a meaningful taxonomy for studying the Dark Triad: Machiavellianism, narcissism, and psychopathy. Nevertheless, current research consists of mixed and inconsistent associations between the Dark Triad and OCEAN. Here we used the Dark Cube (Garcia & Rosenberg, 2016, a model of malevolent character theoretically based on Cloninger’s biopsychosocial model of personality and in the assumption of a ternary structure of malevolent character. We use the dark cube profiles to investigate differences in OCEAN between individuals who differ in one dark character trait while holding the other two constant (i.e., conditional relationships. Method Participants (N = 330 responded to the Short Dark Triad Inventory and the Big Five Inventory and were grouped according to the eight possible combinations using their dark trait scores (M, high Machiavellianism; m, low Machiavellianism; N, high narcissism; n, low narcissism; P, high psychopathy; p, low psychopathy: MNP “maleficent”, MNp “manipulative narcissistic”, MnP “anti-social”, Mnp “Machiavellian”, mNP “psychopathic narcissistic”, mNp “narcissistic”, mnP “psychopathic”, and mnp “benevolent”. Results High narcissism-high extraversion and high psychopathy-low agreeableness were consistently associated across comparisons. The rest of the comparisons showed a complex interaction. For example, high Machiavellianism-high neuroticism only when both narcissism and psychopathy were low (Mnp vs. mnp, high narcissism-high conscientiousness only when both Machiavellianism and psychopathy were also high (MNP vs. MnP, and high psychopathy-high neuroticism only when Machiavellianism was low and narcissism was high (mNP vs. mNp. Conclusions We suggest that the Dark Cube is a useful tool in the investigation of a consistent Dark Triad Theory

  7. The Dark Cube: dark character profiles and OCEAN.

    Science.gov (United States)

    Garcia, Danilo; González Moraga, Fernando R

    2017-01-01

    The Big Five traits (i.e., openness, conscientiousness, extraversion, agreeableness, and neuroticism: OCEAN) have been suggested to provide a meaningful taxonomy for studying the Dark Triad: Machiavellianism, narcissism, and psychopathy. Nevertheless, current research consists of mixed and inconsistent associations between the Dark Triad and OCEAN. Here we used the Dark Cube (Garcia & Rosenberg, 2016), a model of malevolent character theoretically based on Cloninger's biopsychosocial model of personality and in the assumption of a ternary structure of malevolent character. We use the dark cube profiles to investigate differences in OCEAN between individuals who differ in one dark character trait while holding the other two constant (i.e., conditional relationships). Participants ( N  = 330) responded to the Short Dark Triad Inventory and the Big Five Inventory and were grouped according to the eight possible combinations using their dark trait scores (M, high Machiavellianism; m, low Machiavellianism; N, high narcissism; n, low narcissism; P, high psychopathy; p, low psychopathy): MNP "maleficent", MNp "manipulative narcissistic", MnP "anti-social", Mnp "Machiavellian", mNP "psychopathic narcissistic", mNp "narcissistic", mnP "psychopathic", and mnp "benevolent". High narcissism-high extraversion and high psychopathy-low agreeableness were consistently associated across comparisons. The rest of the comparisons showed a complex interaction. For example, high Machiavellianism-high neuroticism only when both narcissism and psychopathy were low (Mnp vs. mnp), high narcissism-high conscientiousness only when both Machiavellianism and psychopathy were also high (MNP vs. MnP), and high psychopathy-high neuroticism only when Machiavellianism was low and narcissism was high (mNP vs. mNp). We suggest that the Dark Cube is a useful tool in the investigation of a consistent Dark Triad Theory. This approach suggests that the only clear relationships were narcissism

  8. Fermentation couples Chloroflexi and sulfate-reducing bacteria to Cyanobacteria in hypersaline microbial mats

    Directory of Open Access Journals (Sweden)

    Jackson Z Lee

    2014-02-01

    Full Text Available Past studies of hydrogen cycling in hypersaline microbial mats have shown an active nighttime cycle, with production largely from Cyanobacteria and consumption from sulfate-reducing bacteria (SRB. However, the mechanisms and magnitude of hydrogen cycling have not been extensively studied. Two mats types near Guerrero Negro, Mexico -- permanently submerged Microcoleus microbial mats (GN-S, and intertidal Lyngbya microbial mats (GN-I -- were used in microcosm diel manipulation experiments with 3-(3,4-dichlorophenyl-1,1-dimethylurea (DCMU, molybdate, ammonium addition, and physical disruption to understand the processes responsible for hydrogen cycling between mat microbes. Across microcosms, H2 production occurred under dark anoxic conditions with simultaneous production of a suite of organic acids. H2 production was not significantly affected by inhibition of nitrogen fixation, but rather appears to result from constitutive fermentation of photosynthetic storage products by oxygenic phototrophs. Comparison to accumulated glycogen and to CO2 flux indicated that, in the GN-I mat, fermentation released almost all of the carbon fixed via photosynthesis during the preceding day, primarily as organic acids. Across mats, although oxygenic and anoxygenic phototrophs were detected, cyanobacterial [NiFe]-hydrogenase transcripts predominated. Molybdate inhibition experiments indicated that SRBs from a wide distribution of dsrA phylotypes were responsible for H2 consumption. Incubation with 13C-acetate and nanoSIMS (secondary ion mass-spectrometry indicated higher uptake in both Chloroflexi and SRBs relative to other filamentous bacteria. These manipulations and diel incubations confirm that Cyanobacteria were the main fermenters in Guerrero Negro mats and that the net flux of nighttime fermentation byproducts (not only hydrogen was largely regulated by the interplay between Cyanobacteria, SRBs, and Chloroflexi.

  9. Interacting agegraphic dark energy

    International Nuclear Information System (INIS)

    Wei, Hao; Cai, Rong-Gen

    2009-01-01

    A new dark energy model, named ''agegraphic dark energy'', has been proposed recently, based on the so-called Karolyhazy uncertainty relation, which arises from quantum mechanics together with general relativity. In this note, we extend the original agegraphic dark energy model by including the interaction between agegraphic dark energy and pressureless (dark) matter. In the interacting agegraphic dark energy model, there are many interesting features different from the original agegraphic dark energy model and holographic dark energy model. The similarity and difference between agegraphic dark energy and holographic dark energy are also discussed. (orig.)

  10. Effect of starch fermentation in the rumen on voluntary intake of ...

    African Journals Online (AJOL)

    The effect of starch fermentation in the rumen on the kinetics of roughage digestion, was studied using 12 sheep fed three roughages, viz. lucerne hay, maize cob leaves and wheat straw. The amount of starch infused per day was increased from o to 600 g/d in steps of 20 g/d over 30 days. The amount of starch infused was ...

  11. The interaction between dark energy and dark matter

    International Nuclear Information System (INIS)

    He Jianhua; Wang Bin

    2010-01-01

    In this review we first present a general formalism to study the growth of dark matter perturbations in the presence of interactions between dark matter(DM) and dark energy(DE). We also study the signature of such interaction on the temperature anisotropies of the large scale cosmic microwave background (CMB). We find that the effect of such interaction has significant signature on both the growth of dark matter structure and the late Integrated Sachs Wolfe effect(ISW). We further discuss the potential possibility to detect the coupling by cross-correlating CMB maps with tracers of the large scale structure. We finally confront this interacting model with WMAP 5-year data as well as other data sets. We find that in the 1σ range, the constrained coupling between dark sectors can solve the coincidence problem.

  12. Dark matter detectors

    International Nuclear Information System (INIS)

    Forster, G.

    1995-01-01

    A fundamental question of astrophysics and cosmology is the nature of dark matter. Astrophysical observations show clearly the existence of some kind of dark matter, though they cannot yet reveal its nature. Dark matter can consist of baryonic particles, or of other (known or unknown) elementary particles. Baryonic dark matter probably exists in the form of dust, gas, or small stars. Other elementary particles constituting the dark matter can possibly be measured in terrestrial experiments. Possibilities for dark matter particles are neutrinos, axions and weakly interacting massive particles (WIMPs). While a direct detection of relic neutrinos seems at the moment impossible, there are experiments looking for baryonic dark matter in the form of Massive Compact Halo Objects, and for particle dark matter in the form of axions and WIMPS. (orig.)

  13. Dark information of black hole radiation raised by dark energy

    Science.gov (United States)

    Ma, Yu-Han; Chen, Jin-Fu; Sun, Chang-Pu

    2018-06-01

    The "lost" information of black hole through the Hawking radiation was discovered being stored in the correlation among the non-thermally radiated particles (Parikh and Wilczek, 2000 [31], Zhang et al., 2009 [16]). This correlation information, which has not yet been proved locally observable in principle, is named by dark information. In this paper, we systematically study the influences of dark energy on black hole radiation, especially on the dark information. Calculating the radiation spectrum in the existence of dark energy by the approach of canonical typicality, which is reconfirmed by the quantum tunneling method, we find that the dark energy will effectively lower the Hawking temperature, and thus makes the black hole has longer life time. It is also discovered that the non-thermal effect of the black hole radiation is enhanced by dark energy so that the dark information of the radiation is increased. Our observation shows that, besides the mechanical effect (e.g., gravitational lensing effect), the dark energy rises the stored dark information, which could be probed by a non-local coincidence measurement similar to the coincidence counting of the Hanbury-Brown-Twiss experiment in quantum optics.

  14. Dark chocolate administration improves working memory in students

    Directory of Open Access Journals (Sweden)

    Nawanto Agung Prastowo

    2016-04-01

    Dark chocolate as a single dose is capable of improving verbal working memory in students, 3 hours after its consumption. Since cocoa contains multiple bioactive compounds, one approach might be to examine the neurocognitive effects of combinations of potential functional ingredients.

  15. Signatures of dark radiation in neutrino and dark matter detectors

    Science.gov (United States)

    Cui, Yanou; Pospelov, Maxim; Pradler, Josef

    2018-05-01

    We consider the generic possibility that the Universe's energy budget includes some form of relativistic or semi-relativistic dark radiation (DR) with nongravitational interactions with standard model (SM) particles. Such dark radiation may consist of SM singlets or a nonthermal, energetic component of neutrinos. If such DR is created at a relatively recent epoch, it can carry sufficient energy to leave a detectable imprint in experiments designed to search for very weakly interacting particles: dark matter and underground neutrino experiments. We analyze this possibility in some generality, assuming that the interactive dark radiation is sourced by late decays of an unstable particle, potentially a component of dark matter, and considering a variety of possible interactions between the dark radiation and SM particles. Concentrating on the sub-GeV energy region, we derive constraints on different forms of DR using the results of the most sensitive neutrino and dark matter direct detection experiments. In particular, for interacting dark radiation carrying a typical momentum of ˜30 MeV /c , both types of experiments provide competitive constraints. This study also demonstrates that non-standard sources of neutrino emission (e.g., via dark matter decay) are capable of creating a "neutrino floor" for dark matter direct detection that is closer to current bounds than is expected from standard neutrino sources.

  16. Valorization of industrial waste and by-product streams via fermentation for the production of chemicals and biopolymers.

    Science.gov (United States)

    Koutinas, Apostolis A; Vlysidis, Anestis; Pleissner, Daniel; Kopsahelis, Nikolaos; Lopez Garcia, Isabel; Kookos, Ioannis K; Papanikolaou, Seraphim; Kwan, Tsz Him; Lin, Carol Sze Ki

    2014-04-21

    The transition from a fossil fuel-based economy to a bio-based economy necessitates the exploitation of synergies, scientific innovations and breakthroughs, and step changes in the infrastructure of chemical industry. Sustainable production of chemicals and biopolymers should be dependent entirely on renewable carbon. White biotechnology could provide the necessary tools for the evolution of microbial bioconversion into a key unit operation in future biorefineries. Waste and by-product streams from existing industrial sectors (e.g., food industry, pulp and paper industry, biodiesel and bioethanol production) could be used as renewable resources for both biorefinery development and production of nutrient-complete fermentation feedstocks. This review focuses on the potential of utilizing waste and by-product streams from current industrial activities for the production of chemicals and biopolymers via microbial bioconversion. The first part of this review presents the current status and prospects on fermentative production of important platform chemicals (i.e., selected C2-C6 metabolic products and single cell oil) and biopolymers (i.e., polyhydroxyalkanoates and bacterial cellulose). In the second part, the qualitative and quantitative characteristics of waste and by-product streams from existing industrial sectors are presented. In the third part, the techno-economic aspects of bioconversion processes are critically reviewed. Four case studies showing the potential of case-specific waste and by-product streams for the production of succinic acid and polyhydroxyalkanoates are presented. It is evident that fermentative production of chemicals and biopolymers via refining of waste and by-product streams is a highly important research area with significant prospects for industrial applications.

  17. Dark energy and extended dark matter halos

    Science.gov (United States)

    Chernin, A. D.; Teerikorpi, P.; Valtonen, M. J.; Dolgachev, V. P.; Domozhilova, L. M.; Byrd, G. G.

    2012-03-01

    The cosmological mean matter (dark and baryonic) density measured in the units of the critical density is Ωm = 0.27. Independently, the local mean density is estimated to be Ωloc = 0.08-0.23 from recent data on galaxy groups at redshifts up to z = 0.01-0.03 (as published by Crook et al. 2007, ApJ, 655, 790 and Makarov & Karachentsev 2011, MNRAS, 412, 2498). If the lower values of Ωloc are reliable, as Makarov & Karachentsev and some other observers prefer, does this mean that the Local Universe of 100-300 Mpc across is an underdensity in the cosmic matter distribution? Or could it nevertheless be representative of the mean cosmic density or even be an overdensity due to the Local Supercluster therein. We focus on dark matter halos of groups of galaxies and check how much dark mass the invisible outer layers of the halos are able to host. The outer layers are usually devoid of bright galaxies and cannot be seen at large distances. The key factor which bounds the size of an isolated halo is the local antigravity produced by the omnipresent background of dark energy. A gravitationally bound halo does not extend beyond the zero-gravity surface where the gravity of matter and the antigravity of dark energy balance, thus defining a natural upper size of a system. We use our theory of local dynamical effects of dark energy to estimate the maximal sizes and masses of the extended dark halos. Using data from three recent catalogs of galaxy groups, we show that the calculated mass bounds conform with the assumption that a significant amount of dark matter is located in the invisible outer parts of the extended halos, sufficient to fill the gap between the observed and expected local matter density. Nearby groups of galaxies and the Virgo cluster have dark halos which seem to extend up to their zero-gravity surfaces. If the extended halo is a common feature of gravitationally bound systems on scales of galaxy groups and clusters, the Local Universe could be typical or even

  18. Development of Jerusalem artichoke resource for efficient one-step fermentation of poly-(γ-glutamic acid) using a novel strain Bacillus amyloliquefaciens NX-2S.

    Science.gov (United States)

    Qiu, Yibin; Sha, Yuanyuan; Zhang, Yatao; Xu, Zongqi; Li, Sha; Lei, Peng; Xu, Zheng; Feng, Xiaohai; Xu, Hong

    2017-09-01

    This study aimed to develop non-food fermentation for the cost-effective production of poly-(γ-glutamic acid) (γ-PGA) using a novel strain of Bacillus amyloliquefaciens NX-2S. The new isolate assimilated inulin more efficiently than other carbohydrates from Jerusalem artichoke, without hydrolytic treatment. To investigate the effect of inulin on γ-PGA production, the transcript levels of γ-PGA synthetase genes (pgsB, pgsC, pgsA), regulatory genes (comA, degQ, degS), and the glutamic acid biosynthesis gene (glnA) were analyzed; inulin addition upregulated these key genes. Without exogenous glutamate, strain NX-2S could produce 6.85±0.22g/L of γ-PGA during fermentation. Exogenous glutamate greatly enhances the γ-PGA yield (39.4±0.38g/L) and productivity (0.43±0.05g/L/h) in batch fermentation. Our study revealed a potential method of non-food fermentation to produce high-value products. Copyright © 2017. Published by Elsevier Ltd.

  19. Asymmetric Dark Matter and Dark Radiation

    International Nuclear Information System (INIS)

    Blennow, Mattias; Martinez, Enrique Fernandez; Mena, Olga; Redondo, Javier; Serra, Paolo

    2012-01-01

    Asymmetric Dark Matter (ADM) models invoke a particle-antiparticle asymmetry, similar to the one observed in the Baryon sector, to account for the Dark Matter (DM) abundance. Both asymmetries are usually generated by the same mechanism and generally related, thus predicting DM masses around 5 GeV in order to obtain the correct density. The main challenge for successful models is to ensure efficient annihilation of the thermally produced symmetric component of such a light DM candidate without violating constraints from collider or direct searches. A common way to overcome this involves a light mediator, into which DM can efficiently annihilate and which subsequently decays into Standard Model particles. Here we explore the scenario where the light mediator decays instead into lighter degrees of freedom in the dark sector that act as radiation in the early Universe. While this assumption makes indirect DM searches challenging, it leads to signals of extra radiation at BBN and CMB. Under certain conditions, precise measurements of the number of relativistic species, such as those expected from the Planck satellite, can provide information on the structure of the dark sector. We also discuss the constraints of the interactions between DM and Dark Radiation from their imprint in the matter power spectrum

  20. Fermentation of starch by Klebsiella oxytoca P2, containing plasmids with {alpha}-amylase and pullulanase genes

    Energy Technology Data Exchange (ETDEWEB)

    Santos, V.L. dos; Araujo, E.F.; Barros, E.G. de; Guimaraes, W.V.

    1999-12-20

    Klebsiella oxytoca P2(pC46), an ethanol-producing recombinant, has been evaluated in fermentation of maltose and starch. The maximum ethanol produced by P2(pC46) was 0.34 g ethanol/g maltose and 0.38, 0.40, or 0.36 g ethanol/g starch in fermentation of 1, 2, or 4% starch, representing 68, 71, and 64% the theoretical yield. The pC46 plasmid transformed to cells of K. oxytoca P2 reduced the ethanol production from maltose and starch. In fermentation of starch after its digestion at 60 C for 24 h, in two-step fermentation, the time for maximum ethanol production was reduced to 12--24 h and the theoretical yield was around 90%. The increase in starch concentration resulted in lower {alpha}-amylase activity but in higher pullulanase activity. The high activity and thermostability of the amylolytic enzymes from this transformant suggest that it has a potential for amylolytic enzymes source.