WorldWideScience

Sample records for single-stage eehg fel

  1. EEHG at FLASH and DELTA

    Energy Technology Data Exchange (ETDEWEB)

    Molo, Robert; Hoener, Markus; Huck, Holger; Hacker, Kirsten; Khan, Shaukat; Schick, Andreas; Ungelenk, Peter; Zeinalzadeh, Maryam [Center for Synchrotron Radiation (DELTA), TU Dortmund University (Germany); Meulen, Peter van der; Salen, Peter [Stockholm University (Sweden); Angelova Hamberg, Gergana; Ziemann, Volker [Uppsala University (Sweden)

    2013-07-01

    The echo-enabled harmonic generation (EEHG) scheme utilizes two modulators with two magnetic chicanes in order to generate an electron density modulation with high harmonic content. In contrast to free-electron lasers (FEL) based on self-amplified spontaneous emission (SASE), the radiation of an EEHG FEL has better longitudinal coherence and is naturally synchronized with an external laser, which is advantageous for pump-probe applications. At the free-electron laser in Hamburg (FLASH), an EEHG experiment is currently under preparation. The short-pulse facility at DELTA (a 1.5-GeV synchrotron light source operated by the TU Dortmund University) based on coherent harmonic generation (CHG) will be upgraded using the EEHG technique in order to reach shorter wavelengths.

  2. Feasibility study of generating ultra-high harmonic radiation with a single stage echo-enabled harmonic generation scheme

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Kaishang, E-mail: zhoukaishang@sinap.ac.cn; Feng, Chao, E-mail: fengchao@sinap.ac.cn; Wang, Dong, E-mail: wangdong@sinap.ac.cn

    2016-10-21

    The echo enabled harmonic generation (EEHG) scheme holds the ability for the generation of fully coherent soft x-ray free-electron laser (FEL) pulses directly from external UV seeding sources. In this paper, we study the feasibility of using a single stage EEHG to generate coherent radiation in the “water window” and beyond. Using the high-order operating modes of the EEHG scheme, intensive numerical simulations have been performed considering various three-dimensional effects. The simulation results demonstrated that coherent soft x-ray radiation at 150th harmonic (1.77 nm) of the seed can be produced by a single stage EEHG. The decreasing of the final bunching factor at the desired harmonic caused by intra beam scattering (IBS) effect has also been analyzed.

  3. Analytical studies of constraints on the performance for EEHG FEL seed lasers

    Energy Technology Data Exchange (ETDEWEB)

    Geloni, Gianluca [European XFEL GmbH, Hamburg (Germany); Kocharyan, Vitali; Saldin, Evgeni [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2011-11-15

    Laser seeding technique have been envisioned to produce nearly transform-limited pulses at soft X-ray FELs. Echo-Enabled Harmonic Generation (EEHG) is a promising, recent technique for harmonic generation with an excellent up-conversion to very high harmonics, from the standpoint of electron beam physics. This paper explores the constraints on seed laser performance for reaching wavelengths of 1 nm. We show that the main challenge in implementing the EEHG scheme at extreme harmonic factors is the requirement for accurate control of temporal and spatial quality of the seed laser pulse. For example, if the phase of the laser pulse is chirped before conversion to an UV seed pulse, the chirp in the electron beam microbunch turns out to be roughly multiplied by the harmonic factor. In the case of a Ti:Sa seed laser, such factor is about 800. For such large harmonic numbers, generation of nearly transform-limited soft X-ray pulses results in challenging constraints on the Ti:Sa laser. In fact, the relative discrepancy of the time-bandwidth product of the seed-laser pulse from the ideal transform-limited performance should be no more than one in a million. The generated electron beam microbunching is also very sensitive to distortions of the seed laser wavefront, which are also multiplied by the harmonic factor. In order to have minimal reduction of the FEL input coupling factor, it is desirable that the size-angular bandwidth product of the UV seed laser beam be very close to the ideal i.e. diffraction-limited performance in the waist plane at the middle of the modulator undulator. (orig.)

  4. Analytical studies of constraints on the performance for EEHG FEL seed lasers

    International Nuclear Information System (INIS)

    Geloni, Gianluca; Kocharyan, Vitali; Saldin, Evgeni

    2011-11-01

    Laser seeding technique have been envisioned to produce nearly transform-limited pulses at soft X-ray FELs. Echo-Enabled Harmonic Generation (EEHG) is a promising, recent technique for harmonic generation with an excellent up-conversion to very high harmonics, from the standpoint of electron beam physics. This paper explores the constraints on seed laser performance for reaching wavelengths of 1 nm. We show that the main challenge in implementing the EEHG scheme at extreme harmonic factors is the requirement for accurate control of temporal and spatial quality of the seed laser pulse. For example, if the phase of the laser pulse is chirped before conversion to an UV seed pulse, the chirp in the electron beam microbunch turns out to be roughly multiplied by the harmonic factor. In the case of a Ti:Sa seed laser, such factor is about 800. For such large harmonic numbers, generation of nearly transform-limited soft X-ray pulses results in challenging constraints on the Ti:Sa laser. In fact, the relative discrepancy of the time-bandwidth product of the seed-laser pulse from the ideal transform-limited performance should be no more than one in a million. The generated electron beam microbunching is also very sensitive to distortions of the seed laser wavefront, which are also multiplied by the harmonic factor. In order to have minimal reduction of the FEL input coupling factor, it is desirable that the size-angular bandwidth product of the UV seed laser beam be very close to the ideal i.e. diffraction-limited performance in the waist plane at the middle of the modulator undulator. (orig.)

  5. Beam energy distribution influences on density modulation efficiency in seeded free-electron lasers

    Directory of Open Access Journals (Sweden)

    Guanglei Wang

    2015-06-01

    Full Text Available The beam energy spread at the entrance of an undulator system is of paramount importance for efficient density modulation in high-gain seeded free-electron lasers (FELs. In this paper, the dependences of high harmonic bunching efficiency in high-gain harmonic generation (HGHG, echo-enabled harmonic generation (EEHG and phase-merging enhanced harmonic generation (PEHG schemes on the electron beam energy spread distribution are studied. Theoretical investigations and multidimensional numerical simulations are applied to the cases of uniform and saddle beam energy distributions and compared to a traditional Gaussian distribution. It shows that the uniform and saddle electron energy distributions significantly enhance the bunching performance of HGHG FELs, while they almost have no influence on EEHG and PEHG schemes. A further start-to-end simulation example demonstrated that, with the saddle distribution of sliced beam energy spread controlled by a laser heater, the 30th harmonic can be directly generated by a single-stage HGHG scheme for a soft x-ray FEL facility.

  6. EEHG Performance and Scaling Laws

    OpenAIRE

    Penn, Gregory

    2013-01-01

    This note will calculate the idealized performance of echo-enabled harmonic generation performance (EEHG), explore the parameter settings, and look at constraints determined by incoherent synchrotron radiation (ISR) and intrabeam scattering (IBS). Another important effect, time-of-flight variations related to transverse emittance, is included here but without detailed explanation because it has been described previously. The importance of ISR and IBS is that they lead to ...

  7. The echo-enabled harmonic generation options for FLASH II

    International Nuclear Information System (INIS)

    Deng, Haixiao; Decking, Winfried; Faatz, Bart

    2011-03-01

    FLASH II is an upgrade to the existing free electron laser (FEL) FLASH. The echo-enabled harmonic generation (EEHG) scheme is proposed to be a potential seeding option of FLASH II. In this paper, the possibility of EEHG operation of FLASH II is investigated for the first time. With a combination of existing numerical codes, i.e. a laser-beam interaction code in an undulator (LBICU), a beam tracking code in a chicane (ELEGANT) and an universal FEL simulating code (GENESIS), the effects of beam energy chirp and coherent synchrotron radiation (CSR) on EEHG operation are studied as well. In addition, several interesting issues concerning EEHG simulation are discussed. (orig.)

  8. Generation of a few femtoseconds pulses in seeded FELs using a seed laser with small transverse size

    Energy Technology Data Exchange (ETDEWEB)

    Li, Heting, E-mail: liheting@ustc.edu.cn; Jia, Qika

    2016-09-11

    We propose a simple method to generate a few femtosecond pulses in seeded FELs. We use a longitudinal energy-chirped electron beam passing through a dogleg where transverse dispersion will generate a horizontal energy chirp, then in the modulator, a seed laser with narrow beam radius will only modulate the center portion of the electron beam and then short pulses at high harmonics will be generated in the radiator. Using a representative realistic set of parameters, we show that 30 nm XUV pulse based on the HGHG scheme and 9 nm soft x-ray pulse based on the EEHG scheme with duration of about 8 fs (FWHM) and peak power of GW level can be generated from a 180 nm UV seed laser with beam waist of 75 μm. This new scheme can provide an optional operation mode for the existing seeded FEL facilities to meet the requirement of short-pulse FEL.

  9. Tunable Soft X-Ray Oscillators

    International Nuclear Information System (INIS)

    Wurtele, Jonathan; Gandhi, Punut; Gu, X.-W.; Fawley, William M.; Reinsch, Matthia; Penn, Gregory; Kim, K.-J.; Lindberg, Ryan; Zholents, Alexander

    2010-01-01

    A concept for a tunable soft x-ray free electron laser (FEL) photon source is presented and studied numerically. The concept is based on echo-enabled harmonic generation (EEHG), wherein two modulator-chicane sections impose high harmonic structure with much greater efficacy as compared to conventional high harmonic FELs that use only one modulator-chicane section. The idea proposed here is to replace the external laser power sources in the EEHG modulators with FEL oscillators, and to combine the bunching of the beam with the production of radiation. Tunability is accomplished by adjusting the magnetic chicanes while the two oscillators remain at a fixed frequency. This scheme eliminates the need to develop coherent sources with the requisite power, pulse length, and stability requirements by exploiting the MHz bunch repetition rates of FEL continuous wave (CW) sources driven by superconducting (SC) linacs. We present time-dependent GINGER simulation results for an EEHG scheme with an oscillator modulator at 43 nm employing 50percent reflective dielectric mirrors and a second modulator employing an external, 215-nm drive laser. Peak output of order 300 MW is obtained at 2.7 nm, corresponding to the 80th harmonic of 215 nm. An alternative single-cavity echo-oscillator scheme based on a 13.4 nm oscillator is investigated with time-independent simulations that a 180-MW peak power at final wavelength of 1.12 nm. Three alternate configurations that use separate bunches to produce the radiation for EEHG microbunching are also presented. Our results show that oscillator-based soft x-ray FELs driven by CWSC linacs are extremely attractive because of their potential to produce tunable radiation at high average power together with excellent longitudinal coherence and narrow spectral bandwidth.

  10. Tunable Soft X-Ray Oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Wurtele, Jonathan; Gandhi, Punut; Gu, X-W; Fawley, William M; Reinsch, Matthia; Penn, Gregory; Kim, K-J; Lindberg, Ryan; Zholents, Alexander

    2010-09-17

    A concept for a tunable soft x-ray free electron laser (FEL) photon source is presented and studied numerically. The concept is based on echo-enabled harmonic generation (EEHG), wherein two modulator-chicane sections impose high harmonic structure with much greater efficacy as compared to conventional high harmonic FELs that use only one modulator-chicane section. The idea proposed here is to replace the external laser power sources in the EEHG modulators with FEL oscillators, and to combine the bunching of the beam with the production of radiation. Tunability is accomplished by adjusting the magnetic chicanes while the two oscillators remain at a fixed frequency. This scheme eliminates the need to develop coherent sources with the requisite power, pulse length, and stability requirements by exploiting the MHz bunch repetition rates of FEL continuous wave (CW) sources driven by superconducting (SC) linacs. We present time-dependent GINGER simulation results for an EEHG scheme with an oscillator modulator at 43 nm employing 50percent reflective dielectric mirrors and a second modulator employing an external, 215-nm drive laser. Peak output of order 300 MW is obtained at 2.7 nm, corresponding to the 80th harmonic of 215 nm. An alternative single-cavity echo-oscillator scheme based on a 13.4 nm oscillator is investigated with time-independent simulations that a 180-MW peak power at final wavelength of 1.12 nm. Three alternate configurations that use separate bunches to produce the radiation for EEHG microbunching are also presented. Our results show that oscillator-based soft x-ray FELs driven by CWSC linacs are extremely attractive because of their potential to produce tunable radiation at high average power together with excellent longitudinal coherence and narrow spectral bandwidth.

  11. A single-particle calculation of the FEL-Cerenkov gain

    International Nuclear Information System (INIS)

    Dattoli, G.; Doria, A.; Gallerano, G.P.; Renieri, A.; Schettini, G.; Torre, A.

    1988-01-01

    In this work it is shown that the basic FEL-Cerenkov dynamics can be modelled using a pendulumlike equation in close analogy with FEL undulator case. The analysis, including the inhomogeneous broadening effects, is worked out in the hypothesis of single-slab geometry. Two-dimensional motion dynamics effects are also included

  12. The 'Fresh-Bunch' technique in FELs

    International Nuclear Information System (INIS)

    Ben-Zvi, I.; Yang, K.M.; Yu, L.H.

    1991-01-01

    The 'Fresh Bunch' technique is being proposed as a method of increasing the gain and power of FEL amplifiers in which the length of the optical radiation pulse is shorter than the length of the electron bunch. In multi-stage FEL, electron beam energy spread is increased by the FEL interaction in the early stages. In the 'Fresh Bunch' technique, the low energy spread of the electron beam is recovered by shifting the radiation pulse to an undisturbed part of the electron bunch, thus improving the gain and trapping fraction in later stages. A test case for the application of the Fresh Bunch method is demonstrated by numerical simulation. In this particular example we examine a subharmonically seeded VUV Free-Electron Laser. We begin with the generation of harmonic radiation, which takes place over one part of the electron bunch. Then the radiation is shifted by means of a strong dispersive section to a fresh part of the bunch for exponential amplification and tapered wiggler amplification. By starting over with a new ensemble of electrons, the energy spread introduced by the bunching in the fundamental is removed, leading to an increased gain. Furthermore, it is possible to use a much stronger seed in the fundamental without incurring the penalty of a large energy spread later on. We note that more than a single application of the 'Fresh Bunch' method may be done in a single FEL multiplier-amplifier. Thus x-ray wavelengths may be reached by successive multiplication in a chain of FEL amplifiers starting from a tunable seed laser. 5 refs., 2 figs., 2 tabs

  13. Milestone experiments for single pass UV/X-ray FELs

    Science.gov (United States)

    Ben-Zvi, Ilan

    1995-04-01

    In the past decade, significant advances have been made in the theory and technology of high brightness electron beams and single pass FELs. These developments facilitate the construction of practical UV and X-ray FELs and has prompted proposals to the DOE for the construction of such facilities. There are several important experiments to be performed before committing to the construction of dedicated user facilities. Two experiments are under construction in the IR, the UCLA self-amplified spontaneous emission experiment and the BNL laser seeded harmonic generation experiment. A multi-institution collaboration is being organized about a 210 MeV electron linac available at BNL and the 10 m long NISUS wiggler. This experiment will be done in the UV and will test various experimental aspects of electron beam dynamics, FEL exponential regime with gain guiding, start-up from noise, seeding and harmonic generation. These experiments will advance the state of FEL research and lead towards future dedicated users' facilities.

  14. Milestone experiments for single pass UV/X-ray FELs

    International Nuclear Information System (INIS)

    Ben-Zvi, I.

    1994-01-01

    In the past decade, significant advances have been made in the theory and technology of high brightness electron beams and single pass FELS. These developments facilitate the construction of practical UV and X-ray FELs and has prompted proposals to the DOE for the construction of such facilities. There are several important experiments to be performed before committing to the construction of dedicated user facilities. Two experiments are under construction in the IR, the UCLA Self Amplified Spontaneous Emission experiment and the BNL laser seeded Harmonic Generation experiment. A multi-institution collaboration is being organized about a 210 MeV electron linac available at BNL and the 10 meter tong NISUS wiggler. This experiment will be done in the UV and will test various experimental aspects of electron beam dynamics, FEL exponential regime with gain guiding, start up from noise, seeding and harmonic generation. These experiments will advance the state of FEL research and lead towards future dedicated users' facilities

  15. Development of an alternative testing strategy for the fish early life-stage (FELS) test using the AOP framework

    Science.gov (United States)

    Currently, the fish early life-stage (FELS) test (OECD 210) is the primary guideline used to estimate chronic toxicity of regulated chemicals. Although already more cost-efficient than adult fish tests, the FELS test has some important drawbacks. Both industry and regulatory inst...

  16. Benefits from the BESSY FEL Higher Harmonic Radiation

    CERN Document Server

    Goldammer, K

    2005-01-01

    In the FEL process, bunching and coherent radiation is produced at the fundamental frequency as well as its higher harmonics. BESSY proposes a linac-based cascaded High-Gain Harmonic-Generation (HGHG) free electron laser (FEL) multi-user facility. The BESSY soft X-ray FEL will be seeded by three lasers spanning the spectral range of 230nm to 460nm. Two to four HGHG stages downconvert the seed wavelength to the desired radiation range of 1.24nm to 51nm using higher harmonic bunching. As a surplus, higher harmonic radiation is intrinsically produced in each FEL stage. Radiation on a higher harmonic of the FEL frequency is of high interest because it yields the possibility to reduce the number of FEL stages. This paper details extensive studies of the higher harmonic content of the BESSY FEL radiation. Important aspects of FEL interaction on higher harmonics as resulting from theory and from numerical simulations are discussed. For the case of the BESSY FEL, methods for improving the harmonic content are present...

  17. The Israeli EA-FEL Upgrade Towards Long Pulse Operation for Ultra-High Resolution Single Pulse Coherent Spectroscopy

    CERN Document Server

    Gover, A; Kanter, M; Kapilevich, B; Litvak, B; Peleg, S; Socol, Y; Volshonok, M

    2005-01-01

    The Israeli Electrostatic Accelerator FEL (EA-FEL) is now being upgraded towards long pulse (1005s) operation and ultra-high resolution (10(-6)) single pulse coherent spectroscopy. We present quantitative estimations regarding the applications of controlled radiation chirp for spectroscopic applications with pulse-time Fourier Transform limited spectral resolution. Additionally, we describe a novel extraction-efficiency-improving scheme based on increase of accelerating voltage (boosting) after saturation is achieved. The efficiency of the proposed scheme is confirmed by theoretical and numerical calculations. The latter are performed using software, based on 3D space-frequency domain model. The presentation provides an overview of the upgrade status: the high-voltage terminal is being reconfigured to accept the accelerating voltage boost system; a new broad band low-loss resonator is being manufactured; multi-stage depressed collector is assembled.

  18. SOFT X-RAY FEL BY CASCADING STAGES OF HIGH GAIN HARMONIC GENERATION.

    Energy Technology Data Exchange (ETDEWEB)

    YU,L.H.

    2003-04-17

    Short wavelength Free-Electron Lasers are perceived as the next generation of synchrotron light sources. In the past decade, significant advances have been made in the theory and technology of high brightness electron beams and single pass FELs. These developments facilitate the construction of practical VUV FELs and make x-ray FELs possible. Self-Amplified Spontaneous Emission (SASE) and High Gain Harmonic Generation (HGHG)[17-19] are the two leading candidates for x-ray FELs. The first lasing of HGHG proof-of-principle experiment succeeded in August, 1999 in Brookhaven National Laboratory. The experimental results agree with the theory prediction. Compared with SASE FEL, the following advantages of HGHG FEL were confirmed; (1) Better longitudinal coherence, and hence, much narrower bandwidth than SASE. (2) More stable central wavelength, (3) More stable output energy. In this introduction, we will first briefly describe the principle of HGHG in Section A. Then in Section B, we give a general description about how to produce soft x-ray by cascading HGHG scheme. In section 2, we give a detailed description of the system design. Then, in section 3, we give a description of an analytical estimate for the HGHG process, and the calculation of the parameters of different parts of the system. The estimate is found to agree with simulation within about a factor 2 for most cases we studied. The stability issue, the sensitivity to parameter variation, the harmonic contents of the final output, and the noise degradation issue of such HGHG scheme are discussed in Section 4. The results are presented in Section 4. Finally, in Section 5, we will give some discussion of the challenges in development of the system. The conclusion is given in Section 6.

  19. THE SECOND STAGE OF FERMI at ELETTRA: A SEEDED FEL IN THE SOFT X-RAY SPECTRAL RANGE

    International Nuclear Information System (INIS)

    Allaria, E.; DeNinno, G.; Fawley, W.M.

    2009-01-01

    The second stage of the FERMI FEL, named FEL-2, is based on the principle of high-gain harmonic generation and relies on a double-seeded cascade. Recent developments stimulated a revision of the original setup, which was designed to cover the spectral range between 40 and 10 nm. The numerical simulations we present here show that the nominal (expected) electron-beam performance allows extension of the FEL spectral range down to 4 nm. A significant amount of third harmonic power can be also expected. We also show that the proposed setup is flexible enough for exploiting future developments of new seed sources, e.g., high harmonic generation in gases.

  20. A high-power compact regenerative amplifier FEL

    International Nuclear Information System (INIS)

    Nguyen, D.C.; Sheffield, R.L.; Fortgang, C.M.; Kinross-Wright, J.M.; Ebrahim, N.A.; Goldstein, J.C.

    1997-01-01

    The Regenerative Amplifier FEL (RAFEL) is a new FEL approach aimed at achieving the highest optical power from a compact rf-linac FEL. The key idea is to feed back a small fraction ( 5 in single pass) wiggler to enable the FEL to reach saturation in a few passes. This paper summarizes the design of a high-power compact regenerative amplifier FEL and describes the first experimental demonstration of the RAFEL concept

  1. Status of the Novosibirsk high-power terahertz FEL

    International Nuclear Information System (INIS)

    Gavrilov, N.G.; Knyazev, B.A.; Kolobanov, E.I.; Kotenkov, V.V.; Kubarev, V.V.; Kulipanov, G.N.; Matveenko, A.N.; Medvedev, L.E.; Miginsky, S.V.; Mironenko, L.A.; Oreshkov, A.D.; Ovchar, V.K.; Popik, V.M.; Salikova, T.V.; Scheglov, M.A.; Serednyakov, S.S.; Shevchenko, O.A.; Skrinsky, A.N.; Tcheskidov, V.G.; Vinokurov, N.A.

    2007-01-01

    The first stage of Novosibirsk high-power free electron laser (FEL) was commissioned in 2003. It is based on the normal conducting CW energy recovery linac (ERL). Now the FEL provides electromagnetic radiation in the wavelength range 120-230 μm. The maximum average power is 400 W. The minimum measured linewidth is 0.3%, which is close to the Fourier-transform limit. Four user stations are in operation now. Manufacturing of the second stage of the FEL (based on the four-turn ERL) is in progress

  2. The Harmonically Coupled 2-Beam FEL

    CERN Document Server

    McNeil, Brian W J

    2004-01-01

    A 1-D model of a 2-beam Free Electron Laser amplifier is presented. The two co-propagating electron beams have different energies, chosen so that the fundamental resonant FEL interaction of the higher energy beam is at an harmonic of the lower energy beam. In this way, a coupling between the FEL interactions of the two beams occurs via the harmonic components of the electron bunching and radiation emission of the lower energy interaction. Such resonantly coupled FEL interactions may offer potential benefits over existing single beam FEL schemes. A simple example is presented where the lower energy FEL interaction only is seeded with radiation at its fundamental resonant wavelength. It is predicted that the coherence properties of this seed field are transfered via the resonantly coupled FEL interaction to the un-seeded higher energy FEL interaction, thereby improving its coherence properties over that of a SASE interaction alone. This method may offer an alternative seeding scheme for FELs operating in the XU...

  3. Towards diffractive imaging with single pulses of FEL radiation. Dynamics within irradiatied samples and their influence on the analysis of imaging data

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Fenglin

    2010-08-15

    3D single particle coherent diffraction imaging (CDI) of bioparticles (such as proteins, macromolecules and viruses) is one of the main possible applications of the new generation of light sources: free-electron lasers (FELs), which are now available at FLASH (Hamburg, Germany) and LCLS (Stanford, U.S.A.). The extremely bright and ultrashort FEL pulses potentially enable CDI to achieve high resolution down to subnanometer length scale. However, intense FEL pulses cause serious radiation damage in bioparticles, even during single shots, which may set the resolution limits for CDI with FELs. Currently, since the signal-to-noise ratio is very low for small biological particles, direct experimental study of radiation damage in the single particle imaging is fairly difficult. Single atomic (noble gas) clusters become good objects to reveal effects of radiation damage processes on CDI with FEL radiation. This thesis studies three aspects of the radiation damage problem, which are treated in three independent chapters: (1) Molecular Dynamics simulations to quantitively describe radiation damage processes within irradiated atomic clusters during single pulses; (2) reconstruction analysis of single-shot CDI diffraction patterns of atomic clusters, which may potentially help to understand the radiation damage occurring in biological samples; and (3) testing the effects of coating water layers in CDI, which is supposed to minimize the radiation damage in irradiated bioparticles. (orig.)

  4. Discovering and annotating fish early life-stage (FELS) adverse outcome pathways: Putting the research strategy into practice

    Science.gov (United States)

    In May 2012, a HESI-sponsored expert workshop yielded a proposed research strategy for systematically discovering, characterizing, and annotating fish early life-stage (FELS) adverse outcome pathways (AOPs) as well as prioritizing AOP development in light of current restrictions ...

  5. Concept of a staged FEL enabled by fast synchrotron radiation cooling of laser-plasma accelerated beam by solenoidal magnetic fields in plasma bubble

    Science.gov (United States)

    Seryi, Andrei; Lesz, Zsolt; Andreev, Alexander; Konoplev, Ivan

    2017-03-01

    A novel method for generating GigaGauss solenoidal fields in a laser-plasma bubble, using screw-shaped laser pulses, has been recently presented. Such magnetic fields enable fast synchrotron radiation cooling of the beam emittance of laser-plasma accelerated leptons. This recent finding opens a novel approach for design of laser-plasma FELs or colliders, where the acceleration stages are interleaved with laser-plasma emittance cooling stages. In this concept paper, we present an outline of what a staged plasma-acceleration FEL could look like, and discuss further studies needed to investigate the feasibility of the concept in detail.

  6. Contributions to the FEL2005 conference

    Energy Technology Data Exchange (ETDEWEB)

    Grimm, O. (comp.)

    2005-07-01

    The following topics were dealt with: First lasing at 32 nm of the VUV-FEL at DESY, properties of the radiation from VUV-FEL at DESY, accelerator lay out and physics of X-ray free-electron lasers, bunch compression stability dependence on RF parameters, undulator systems and photon diagnostic for the European XFEL project, electron beam characterization at PITZ and the VUV-FEL at DESY, high precision optical synchronization systems for X-ray free electron lasers, optical laser synnchronized for the DESY VUV-FEL for two-color pump probe experiments, properties of the third harmonic of the SASE FEL radiation, detector response and beam line transmission measurements with far-infrared radiation, upgrades of the laser beam-line at PITZ, bunch length measurements using a Martin-Puplett interferometer at the VUV-FEL, next generation synchronization system for the VUV-FEL at DESY, transverse electron beam diagnostics at the VYV-FEL at DESY, the infrared undulator project at the VUV-FEL, misconceptions regarding second harmonic generation in X-ray free-electron lasers, influence of an energy chirp on SASE FEL operation, design considerations for the 4GLS XUV-FEL, broadband single shot spectrometer, commissioning of TTF2 bunch compressors for 20 fs SASE source, observation of femtosecond bunch length using a transverse deflecting structure, measurement of slice-emittance using a transverse deflecting structure, the injector of the VUV-FEL at DESY, spectral decoding electro-optic measurements for longitudinal bunch diagnostics at the DESY VUV-FEL, longitudinal phase space studies at PITZ, modelling the transverse phase space and core emittance studies at PITZ, measurements of thermal emittance for cesium telluride photocathodes at PITZ, status and first results from the upgraded PITZ facility, commissioning of the SPARC movable emittance meter and its first operation at PITZ. (HSI)

  7. Contributions to the FEL2005 conference

    International Nuclear Information System (INIS)

    Grimm, O.

    2005-01-01

    The following topics were dealt with: First lasing at 32 nm of the VUV-FEL at DESY, properties of the radiation from VUV-FEL at DESY, accelerator lay out and physics of X-ray free-electron lasers, bunch compression stability dependence on RF parameters, undulator systems and photon diagnostic for the European XFEL project, electron beam characterization at PITZ and the VUV-FEL at DESY, high precision optical synchronization systems for X-ray free electron lasers, optical laser synnchronized for the DESY VUV-FEL for two-color pump probe experiments, properties of the third harmonic of the SASE FEL radiation, detector response and beam line transmission measurements with far-infrared radiation, upgrades of the laser beam-line at PITZ, bunch length measurements using a Martin-Puplett interferometer at the VUV-FEL, next generation synchronization system for the VUV-FEL at DESY, transverse electron beam diagnostics at the VYV-FEL at DESY, the infrared undulator project at the VUV-FEL, misconceptions regarding second harmonic generation in X-ray free-electron lasers, influence of an energy chirp on SASE FEL operation, design considerations for the 4GLS XUV-FEL, broadband single shot spectrometer, commissioning of TTF2 bunch compressors for 20 fs SASE source, observation of femtosecond bunch length using a transverse deflecting structure, measurement of slice-emittance using a transverse deflecting structure, the injector of the VUV-FEL at DESY, spectral decoding electro-optic measurements for longitudinal bunch diagnostics at the DESY VUV-FEL, longitudinal phase space studies at PITZ, modelling the transverse phase space and core emittance studies at PITZ, measurements of thermal emittance for cesium telluride photocathodes at PITZ, status and first results from the upgraded PITZ facility, commissioning of the SPARC movable emittance meter and its first operation at PITZ. (HSI)

  8. FERMI @ Elettra A Seeded Harmonic Cascade FEL for EUV and Soft X-Rays

    CERN Document Server

    Bocchetta, C J; Craievich, P; D'Auria, G; Danailov, M B; De Ninno, G; Di Mitri, S; Diviacco, B; Ferianis, M; Gomezel, A; Iazzourene, F; Karantzoulis, E; Penco, G; Trovò, M

    2005-01-01

    We describe the machine layout and major performance parameters for the FERMI FEL project funded for construction at Sincrotrone Trieste, Italy. The project will be the first user facility based on seeded harmonic cascade FELs, providing controlled, high peak-power pulses. With a high-brightness rf photocathode gun, and using the existing 1.2 GeV S-band linac, the facility will provide tunable output over a range from ~100 nm to ~10 nm, with pulse duration from 40 fs to ~ 1ps, and with fully variable output polarization. Initially, two FEL cascades are planned; a single-stage harmonic generation to operate > 40 nm, and a two-stage cascade operating from ~40 nm to ~10 nm or shorter wavelength. The output is spatially and temporally coherent, with peak power in the GW range. Lasers provide modulation to the electron beam, as well as driving the photocathode and other systems, and the facility will integrate laser systems with the accelerator infrastructure, including a state-of-the-art optical timing sys...

  9. Bunching phase and constraints on echo enabled harmonic generation

    Science.gov (United States)

    Hemsing, E.

    2018-05-01

    A simple mathematical description is developed for the bunching spectrum in echo enabled harmonic generation (EEHG) that incorporates the effect of additional electron beam energy modulations. Under common assumptions, they are shown to contribute purely through the phase of the longitudinal bunching factor, which allows the spectral moments of the bunching to be calculated directly from the known energy modulations. In particular, the second moment (spectral bandwidth) serves as simple constraint on the amplitude of the energy modulations to maintain a transform-limited seed. We show that, in general, the impact on the spectrum of energy distortions that develop between the EEHG chicanes scales like the harmonic number compared to distortions that occur upstream. This may limit the parameters that will allow EEHG to reach short wavelengths in high brightness FELs.

  10. Optimization Studies of the FERMI at ELETTRA FEL Design

    CERN Document Server

    De Ninno, G

    2005-01-01

    The FERMI at ELETTRA project at Sincotrone Trieste involves two FEL's, each based upon the principle of a seeded harmonic cascade and using the existing ELETTRA injection linac at 1.2 GeV beam energy. Scheduled to be completed in 2008, FEL-1 will operate in the 40-100 nm wavelength range and will involve one stage of harmonic up-conversion. The second phase, FEL-2, will begin operation two years later in the 10-40 nm wavelength range and will involve two cascade stages. FEL design assumes wavelength tunability over the full wavelength range and polarization tunability of the output radiation including helical polarization. The design considers focusing properties and segmentation of realizable undulators and available input seed lasers. We discuss how the interplay between various limitations and self-consistent accelerator simulations [1,2] have led to our current design. We present results of simulations using GENESIS and GINGER simulation codes including studies of various shot-to-shot fluctuations and und...

  11. Dynamical aspects on FEL interaction in single passage and storage ring devices

    Energy Technology Data Exchange (ETDEWEB)

    Dattoli, G.; Renieri, A. [ENEA, Frascati (Italy)

    1995-12-31

    The dynamical behaviour of the free-electron lasers is investigated using appropriate scaling relations valid for devices operating in the low and high gain regimes, including saturation. The analysis is applied to both single passage and storage ring configurations. In the latter case the interplay between the interaction of the electron bean with the laser field and with the accelerator environment is investigated. In particular we discuss the effect of FEL interaction on the microwave instability.

  12. Optimization Studies of the FERMI at ELETTRA FEL Design

    International Nuclear Information System (INIS)

    De Ninno, Giovanni; Fawley, William M.; Penn, Gregory E.; Graves, William

    2005-01-01

    The FERMI at ELETTRA project at Sincotrone Trieste involves two FEL's, each based upon the principle of seeded harmonic generation and using the existing ELETTRA injection linac at 1.2 GeV beam energy. Scheduled to be completed in 2008, FEL-1 will operate in 40-100 nm wavelength range and will involve one stage of harmonic up-conversion. The second undulator line, FEL-2, will begin operation two years later in the 10-40 nm wavelength range and use two harmonic stages operating as a cascade. The FEL design assumes continuous wavelength tunability over the full wavelength range, and polarization tunability of the output radiation including vertical or horizontal linear as well as helical polarization. The design considers focusing properties and segmentation of realizable undulators and available input seed lasers. We review the studies that have led to our current design. We present results of simulations using GENESIS and GINGER simulation codes including studies of various shot-to-shot fluctuations and undulator errors. Findings for the expected output radiation in terms of the power, transverse and longitudinal coherence are reported

  13. Nonlinear harmonic generation and proposed experimental verification in SASE FELs

    CERN Document Server

    Freund, H P; Milton, S V

    2000-01-01

    Recently, a 3D, polychromatic, nonlinear simulation code was developed to study the growth of nonlinear harmonics in self-amplified spontaneous emission (SASE) free-electron lasers (FELs). The simulation was applied to the parameters for each stage of the Advanced Photon Source (APS) SASE FEL, intended for operation in the visible, UV, and short UV wavelength regimes, respectively, to study the presence of nonlinear harmonic generation. Significant nonlinear harmonic growth is seen. Here, a discussion of the code development, the APS SASE FEL, the simulations and results, and, finally, the proposed experimental procedure for verification of such nonlinear harmonic generation at the APS SASE FEL will be given.

  14. Introduction: a short-wavelength-FEL/storage-ring complex

    International Nuclear Information System (INIS)

    Sessler, A.M.

    1984-01-01

    We believe that, in view of the present state of FEL understanding, it is now proper to construct a research facility devoted to the use of coherent radiation and the advancement of FEL physics technology at wavelengths shorter than 1000 A. We show a possible layout of such a facility, which will be referred to as a Coherent xuv Facility (CXF), where research can be conducted on several techniques for generating coherent radiation. Undulators are already well understood and will generate broadly tunable, spatially coherent radiation of bandwidth lambda /Δlambda approx. = 10 2 . A crossed undulator system will extend the undulator capability to include variable polarization. For full coherence, in spatial as well as in longitudinal directions, it is necessary to induce and exploit density modulation in electron beams, as is the case in the transverse optical klystrons (TOKs) and FELs. In TOKs, coherent radiation is generated at harmonics of an input laser frequency, with the electron beam playing the role of a nonlinear medium. Ultimately, FELS would deliver intense, tunable x rays and vuv radiation of extremely narrow spectral width. There are two possible routes to an FEL, one based on feedback by end mirrors, the other based on development of a high-gain, single-pass device. It can be seen, from this paper, that the photon flux increases monotonically, or the wavelength decreases monotonically, as one goes through (1) undulator radiation, (2) TOK radiation, (3) FEL oscillator radiation, to (4) FEL single-pass radiation. Each of these will demand considerable quality development effort. Each will result in photon fluxes of increased value to the users

  15. THz Imaging by a Wide-band Compact FEL

    CERN Document Server

    Uk Jeong Young; Cheol Lee Byung; Hee-Park, S

    2004-01-01

    We have developed a laboratory-scale users facility with a compact THz FEL. The FEL operates in the wide wavelength range of 100–1200 μm, which corresponds to 0.3-3 THz. THz radiation from the FEL shows well collimated Gaussian spatial distribution and narrow spectral width of 0.3 μm, which is Fourier transform limited by the estimated pulse duration of 20 ps. The main application of the FEL is THz imaging for bio-medical researches. We are developing THz imaging techniques by 2-D scanning, single pulse capturing with the electro-optic method, and 3-D holography. High power, coherent, and pulsed feature of the FEL radiation is expected to show much better performance in advanced THz imaging of 3-D tomography by comparing with incoherent and weak THz sources. By controlling the optical delay between reference beam and scattered light from an object, we can get its 3-D tomography by the holograms. The coherent and pulse length of the FEL beam is measured to be 3-6 mm. In this paper we will show a...

  16. A Next Generation Light Source Facility at LBNL

    Energy Technology Data Exchange (ETDEWEB)

    Corlett, J.N.; Austin, B.; Baptiste, K.M.; Byrd, J.M.; Denes, P.; Donahue, R.; Doolittle, L.; Falcone, R.W.; Filippetto, D.; Fournier, S.; Li, D.; Padmore, H.A.; Papadopoulos, C.; Pappas, C.; Penn, G.; Placidi, M.; Prestemon, S.; Prosnitz, D.; Qiang, J.; Ratti, A.; Reinsch, M.; Sannibale, F.; Schlueter, R.; Schoenlein, R.W.; Staples, J.W.; Vecchione, T.; Venturini, M.; Wells, R.; Wilcox, R.; Wurtele, J.; Charman, A.; Kur, E.; Zholents, A.A.

    2011-03-23

    The Next Generation Light Source (NGLS) is a design concept, under development at LBNL, for a multibeamline soft x-ray FEL array powered by a ~;;2 GeV superconducting linear accelerator, operating with a 1 MHz bunch repetition rate. The CW superconducting linear accelerator is supplied by a high-brightness, highrepetition- rate photocathode electron gun. Electron bunches are distributed from the linac to the array of independently configurable FEL beamlines with nominal bunch rates up to 100 kHz in each FEL, and with even pulse spacing. Individual FELs may be configured for EEHG, HGHG, SASE, or oscillator mode of operation, and will produce high peak and average brightness x-rays with a flexible pulse format, with pulse durations ranging from sub-femtoseconds to hundreds of femtoseconds.

  17. Two-stage free electron laser research

    Science.gov (United States)

    Segall, S. B.

    1984-10-01

    KMS Fusion, Inc. began studying the feasibility of two-stage free electron lasers for the Office of Naval Research in June, 1980. At that time, the two-stage FEL was only a concept that had been proposed by Luis Elias. The range of parameters over which such a laser could be successfully operated, attainable power output, and constraints on laser operation were not known. The primary reason for supporting this research at that time was that it had the potential for producing short-wavelength radiation using a relatively low voltage electron beam. One advantage of a low-voltage two-stage FEL would be that shielding requirements would be greatly reduced compared with single-stage short-wavelength FEL's. If the electron energy were kept below about 10 MeV, X-rays, generated by electrons striking the beam line wall, would not excite neutron resonance in atomic nuclei. These resonances cause the emission of neutrons with subsequent induced radioactivity. Therefore, above about 10 MeV, a meter or more of concrete shielding is required for the system, whereas below 10 MeV, a few millimeters of lead would be adequate.

  18. A Next Generation Light Source Facility at LBNL

    International Nuclear Information System (INIS)

    Corlett, J.N.; Austin, B.; Baptiste, K.M.; Byrd, J.M.; Denes, P.; Donahue, R.; Doolittle, L.; Falcone, R.W.; Filippetto, D.; Fournier, S.; Li, D.; Padmore, H.A.; Papadopoulos, C.; Pappas, C.; Penn, G.; Placidi, M.; Prestemon, S.; Prosnitz, D.; Qiang, J.; Ratti, A.; Reinsch, M.; Sannibale, F.; Schlueter, R.; Schoenlein, R.W.; Staples, J.W.; Vecchione, T.; Venturini, M.; Wells, R.; Wilcox, R.; Wurtele, J.; Charman, A.; Kur, E.; Zholents, A.A.

    2011-01-01

    The Next Generation Light Source (NGLS) is a design concept, under development at LBNL, for a multibeamline soft x-ray FEL array powered by a ∼2 GeV superconducting linear accelerator, operating with a 1 MHz bunch repetition rate. The CW superconducting linear accelerator is supplied by a high-brightness, high-repetition-rate photocathode electron gun. Electron bunches are distributed from the linac to the array of independently configurable FEL beamlines with nominal bunch rates up to 100 kHz in each FEL, and with even pulse spacing. Individual FELs may be configured for EEHG, HGHG, SASE, or oscillator mode of operation, and will produce high peak and average brightness x-rays with a flexible pulse format, with pulse durations ranging from sub-femtoseconds to hundreds of femtoseconds.

  19. The SwissFEL Experimental Laser facility.

    Science.gov (United States)

    Erny, Christian; Hauri, Christoph Peter

    2016-09-01

    The hard X-ray laser SwissFEL at the Paul Scherrer Institute is currently being commissioned and will soon become available for users. In the current article the laser facility is presented, an integral part of the user facility, as most time-resolved experiments will require a versatile optical laser infrastructure and precise information about the relative delay between the X-ray and optical pulse. The important key parameters are a high availability and long-term stability while providing advanced laser performance in the wavelength range from ultraviolet to terahertz. The concept of integrating a Ti:sapphire laser amplifier system with subsequent frequency conversion stages and drift compensation into the SwissFEL facility environment for successful 24 h/7 d user operation is described.

  20. The FEL development at the Advanced Photon Source

    International Nuclear Information System (INIS)

    Arnold, N. D.; Benson, C.; Berg, S.; Berg, W.; Biedron, S. G.; Chae, Y. C.; Crosbie, E. A.; Decker, G.; Dejus, R. J.; Den Hartog, P.; Deriy, B.; Dortwegt, R.; Edrmann, M.; Freund, H. P.; Friedsam, H.; Galayda, J. N.; Gluskin, E.; Goeppner, G. A.; Grelick, A.; Huang, Z.; Jones, J.; Kang, Y.; Kim, K.-J.; Kim, S.; Kinoshita, K.; Lewellen, J. W.; Lill, R.; Lumpkin, A. H.; Makarov, O.; Markovich, G. M.; Milton, S. V.; Moog, E. R.; Nassiri, A.; Ogurtsov, V.; Pasky, S.; Power, J.; Tieman, B.; Trakhtenberg, E.; Travish, G.; Vasserman, I.; Walters, D. R.; Wang, J.; Xu, S.; Yang, B.

    1999-01-01

    Construction of a single-pass free-electron laser (FEL) based on the self-amplified spontaneous emission (SASE) mode of operation is nearing completion at the Advanced Photon Source (APS) with initial experiments imminent. The APS SASE FEL is a proof-of-principle fourth-generation light source. As of January 1999 the undulator hall, end-station building, necessary transfer lines, electron and optical diagnostics, injectors, and initial undulatory have been constructed and, with the exception of the undulatory, installed. All preliminary code development and simulations have also been completed. The undulator hall is now ready to accept first beam for characterization of the output radiation. It is the project goal to push towards fill FEL saturation, initially in the visible, but ultimately to W and VUV, wavelengths

  1. Accelerator Physics Challenges of X-Ray FEL SASE Sources

    Energy Technology Data Exchange (ETDEWEB)

    Emma, Paul J

    2002-05-30

    A great deal of international interest has recently focused on the design and construction of free-electron lasers (FEL) operating in the x-ray region ({approx}1 {angstrom}). At present, a linac-based machine utilizing the principle of self-amplified spontaneous emission (SASE) appears to be the most promising approach. This new class of FEL achieves lasing in a single pass of a high brightness electron beam through a long undulator. The requirements on electron beam quality become more demanding as the FEL radiation wavelength decreases, with the 1-{angstrom} goal still 3-orders of magnitude below the shortest wavelength operational SASE FEL (TTF-FEL at DESY [1]). The subpicosecond bunch length drives damaging effects such as coherent synchrotron radiation, and undulator vacuum chamber wakefields. Unlike linear colliders, beam brightness needs to be maintained only over a small ''slice'' of the bunch length, so the concepts of bunch integrated emittance and energy spread are less relevant than their high-frequency (or ''time-sliced'') counterparts, also adding a challenge to phase space diagnostics. Some of the challenges associated with the generation, preservation, measurement, and stability of high brightness FEL electron beams are discussed here.

  2. FEL diagnostics and user control

    International Nuclear Information System (INIS)

    Knippels, G.M.H.; Meer, A.F.G. van der

    1998-01-01

    The most recent upgrades and improvements to the free-electron laser (FEL) facility FELIX are presented. Special attention is paid to the improved beam-handling and diagnostic station. In this evacuated beam station a device is implemented that is capable of selecting single micropulses with measured efficiencies of more than 50% over the whole wavelength range of FELIX (5-110 μm). Furthermore, the broadband autocorrelator for micropulse length measurements and the planned continuous polarization rotator based on reflective optics are discussed. Recent additions to the ancillary equipment available to FEL users are presented briefly. The most important ones are the mirror-dispersion-controlled 10-fs Ti:sapphire laser and the 40-T magnet. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  3. RF linacs for FELs

    International Nuclear Information System (INIS)

    Schwettman, H.A.

    1992-01-01

    There are twenty rf linac-driven Free Electron Lasers (FELs) existing or under construction throughout the world and proposals for several more. A number of these FELs have recently been established as facilities to produce coherent optical beams for materials and biomedical research. Both short pulse low duty factor and long pulse high duty factor linac-driven FELs will be discussed. Accelerator issues that influence the performance of an FEL as a scientific instrument will be indicated. (Author) 6 refs., 6 figs., 2 tabs

  4. Harmonic Content of the BESSY FEL Radiation

    CERN Document Server

    Meseck, Atoosa

    2005-01-01

    BESSY proposes a linac-based cascaded High-Gain Harmonic-Generation (HGHG) free electron laser (FEL) multi-user facility. The BESSY soft X-ray FEL will consist of three undulator lines. The associated tunable lasers will cover the spectral range of 230nm to 460nm. Two to four HGHG stages reduce the seed wavelength to the desired radiation range of 1.24nm < λ < 51nm. The harmonic content of the high-intensity radiator output can be used to reduce the number of necessary HGHG stages. Moreover the higher harmonic content of the final output extends the offered spectral range and thus is of high interest for the user community. In this paper, the higher harmonic content of the final output as well as of the output of several radiators are investigated. The main parameters such as output power, pulse duration and bandwidth as well as their suitability for seeding are discussed.

  5. Generation and characterization of ultra-short electron beams for single spike infrared FEL radiation at SPARC_LAB

    Science.gov (United States)

    Villa, F.; Anania, M. P.; Artioli, M.; Bacci, A.; Bellaveglia, M.; Bisesto, F. G.; Biagioni, A.; Carpanese, M.; Cardelli, F.; Castorina, G.; Chiadroni, E.; Cianchi, A.; Ciocci, F.; Croia, M.; Curcio, A.; Dattoli, G.; Gallo, A.; Di Giovenale, D.; Di Palma, E.; Di Pirro, G.; Ferrario, M.; Filippi, F.; Giannessi, L.; Giribono, A.; Marocchino, A.; Massimo, F.; Mostacci, A.; Petralia, A.; Petrarca, M.; Petrillo, V.; Piersanti, L.; Pioli, S.; Pompili, R.; Romeo, S.; Rossi, A. R.; Scifo, J.; Shpakov, V.; Vaccarezza, C.

    2017-09-01

    The technique for producing and measuring few tens of femtosecond electron beams, and the consequent generation of few tens femtoseconds single spike FEL radiation pulses at SPARC_LAB is presented. The undulator has been used in the double role of radiation source and diagnostic tool for the characterization of the electron beam. The connection between the electron bunch length and the radiation bandwidth is analyzed.

  6. PixFEL: developing a fine pitch, fast 2D X-ray imager for the next generation X-FELs

    International Nuclear Information System (INIS)

    Ratti, L.; Comotti, D.; Fabris, L.; Grassi, M.; Lodola, L.; Malcovati, P.; Manghisoni, M.; Re, V.; Traversi, G.; Vacchi, C.; Bettarini, S.; Casarosa, G.; Forti, F.; Morsani, F.; Paladino, A.; Paoloni, E.; Rizzo, G.; Benkechkache, M.A.; Dalla Betta, G.-F.; Mendicino, R.

    2015-01-01

    The PixFEL project is conceived as the first stage of a long term research program aiming at the development of advanced X-ray imaging instrumentation for applications at the free electron laser (FEL) facilities. The project aims at substantially advancing the state-of-the-art in the field of 2D X-ray imaging by exploring cutting-edge solutions for sensor development, for integration processes and for readout channel architectures. The main focus is on the development of the fundamental microelectronic building blocks for detector readout and on the technologies for the assembly of a multilayer module with minimum dead area. This work serves the purpose of introducing the main features of the project, together with the simulation results leading to the first prototyping run

  7. R and D for a Soft X-Ray Free Electron Laser Facility

    International Nuclear Information System (INIS)

    Corlett, John; Attwood, David; Byrd, John; Denes, Peter; Falcone, Roger; Heimann, Phil; Leemans, Wim; Padmore, Howard; Prestemon, Soren; Sannibale, Fernando; Schlueter, Ross; Schroeder, Carl; Staples, John; Venturini, Marco; Warwick, Tony; Wells, Russell; Wilcox, Russell; Zholent, Alexander; Adolphsen, Chris; Arthur, John; Bergmann, Uwe; Cai, Yunhai; Colby, Eric; Dowell, David; Emma, Paul; Fox, John; Frisch, Josef; Galayda, John; Hettel, Robert; Huang, Zhirong; Phinney, Nan; Rabedeau, Tom; Raubenheimer, Tor; Reis, David; Schmerge, John; Stoehr, Joachim; Stupakov, Gennady; White, Bill; Xiang, Dao

    2009-01-01

    Several recent reports have identified the scientific requirements for a future soft x-ray light source, and a high-repetition-rate free-electron laser (FEL) facility that is responsive to these requirements is now on the horizon. R and D in some critical areas is needed, however, to demonstrate technical performance, thus reducing technical risks and construction costs. Such a facility most likely will be based on a CW superconducting linear accelerator with beam supplied by a high-brightness, high-repetition-rate photocathode electron gun operating in CW mode, and on an array of FELs to which the accelerated beam is distributed, each operating at high repetition rate and with even pulse spacing. Dependent on experimental requirements, the individual FELs can be configured for either self-amplified spontaneous emission (SASE), seeded, or oscillator mode of operation, including the use of high-gain harmonic generation (HGHG), echo-enhanced harmonic generation (EEHG), harmonic cascade, or other configurations. In this White Paper we identify the overall accelerator R and D needs, and highlight the most important pre-construction R and D tasks required to value-engineer the design configuration and deliverables for such a facility. In Section 1.4 we identify the comprehensive R and D ultimately needed. We identify below the highest-priority requirements for understanding machine performance and reduce risk and costs at this pre-conceptual design stage. Details of implementing the required tasks will be the subject of future evaluation. Our highest-priority R and D program is the injector, which must be capable of delivering a beam with bunches up to a nanocoulomb at MHz repetition rate and with normalized emittance (le) 1 mm · mrad. This will require integrated accelerating structure, cathode, and laser systems development. Cathode materials will impact the choice of laser technology in wavelength and energy per pulse, as well as vacuum requirements in the

  8. R&D for a Soft X-Ray Free Electron Laser Facility

    Energy Technology Data Exchange (ETDEWEB)

    Corlett, John; Attwood, David; Byrd, John; Denes, Peter; Falcone, Roger; Heimann, Phil; Leemans, Wim; Padmore, Howard; Prestemon, Soren; Sannibale, Fernando; Schlueter, Ross; Schroeder, Carl; Staples, John; Venturini, Marco; Warwick, Tony; Wells, Russell; Wilcox, Russell; Zholent, Alexander; Adolphsen, Chris; Arthur, John; Bergmann, Uwe; Cai, Yunhai; Colby, Eric; Dowell, David; Emma, Paul; Fox, John; Frisch, Josef; Galayda, John; Hettel, Robert; Huang, Zhirong; Phinney, Nan; Rabedeau, Tom; Raubenheimer, Tor; Reis, David; Schmerge, John; Stohr, Joachim; Stupakov, Gennady; White, Bill; Xiang, Dao

    2009-06-08

    Several recent reports have identified the scientific requirements for a future soft x-ray light source, and a high-repetition-rate free-electron laser (FEL) facility that is responsive to these requirements is now on the horizon. R&D in some critical areas is needed, however, to demonstrate technical performance, thus reducing technical risks and construction costs. Such a facility most likely will be based on a CW superconducting linear accelerator with beam supplied by a high-brightness, high-repetition-rate photocathode electron gun operating in CW mode, and on an array of FELs to which the accelerated beam is distributed, each operating at high repetition rate and with even pulse spacing. Dependent on experimental requirements, the individual FELs can be configured for either self-amplified spontaneous emission (SASE), seeded, or oscillator mode of operation, including the use of high-gain harmonic generation (HGHG), echo-enhanced harmonic generation (EEHG), harmonic cascade, or other configurations. In this White Paper we identify the overall accelerator R&D needs, and highlight the most important pre-construction R&D tasks required to value-engineer the design configuration and deliverables for such a facility. In Section 1.4 we identify the comprehensive R&D ultimately needed. We identify below the highest-priority requirements for understanding machine performance and reduce risk and costs at this pre-conceptual design stage. Details of implementing the required tasks will be the subject of future evaluation. Our highest-priority R&D program is the injector, which must be capable of delivering a beam with bunches up to a nanocoulomb at MHz repetition rate and with normalized emittance {le} 1 mm {center_dot} mrad. This will require integrated accelerating structure, cathode, and laser systems development. Cathode materials will impact the choice of laser technology in wavelength and energy per pulse, as well as vacuum requirements in the accelerating

  9. HIGH AVERAGE POWER OPTICAL FEL AMPLIFIERS

    International Nuclear Information System (INIS)

    2005-01-01

    Historically, the first demonstration of the optical FEL was in an amplifier configuration at Stanford University [l]. There were other notable instances of amplifying a seed laser, such as the LLNL PALADIN amplifier [2] and the BNL ATF High-Gain Harmonic Generation FEL [3]. However, for the most part FELs are operated as oscillators or self amplified spontaneous emission devices. Yet, in wavelength regimes where a conventional laser seed can be used, the FEL can be used as an amplifier. One promising application is for very high average power generation, for instance FEL's with average power of 100 kW or more. The high electron beam power, high brightness and high efficiency that can be achieved with photoinjectors and superconducting Energy Recovery Linacs (ERL) combine well with the high-gain FEL amplifier to produce unprecedented average power FELs. This combination has a number of advantages. In particular, we show that for a given FEL power, an FEL amplifier can introduce lower energy spread in the beam as compared to a traditional oscillator. This properly gives the ERL based FEL amplifier a great wall-plug to optical power efficiency advantage. The optics for an amplifier is simple and compact. In addition to the general features of the high average power FEL amplifier, we will look at a 100 kW class FEL amplifier is being designed to operate on the 0.5 ampere Energy Recovery Linac which is under construction at Brookhaven National Laboratory's Collider-Accelerator Department

  10. A study of phase control in the FEL [free electron laser] two-beam accelerator

    International Nuclear Information System (INIS)

    Sessler, A.M.; Whittum, D.H.; Wurtele, J.S.

    1989-08-01

    A formalism is developed for the analysis of a steady-state free electron laser (FEL) and is applied to the two-beam accelerator (TBA). Conditions are derived for the design of a FEL TBA with rf output power and phase insensitive to errors in both beam current and energy. An example is presented of a suitably phase insensitive TBA design with 100 reaccelerations employing untapered FEL sections and with low power rf input to each section. The theoretical analysis is confirmed by a single particle FEL simulations. 9 refs., 2 tabs

  11. Short wavelength FELs using the SLAC linac

    International Nuclear Information System (INIS)

    Winick, H.; Bane, K.; Boyce, R.

    1993-08-01

    Recent technological developments have opened the possibility to construct a device which we call a Linac Coherent Light Source (LCLS); a fourth generation light source, with brightness, coherence, and peak power far exceeding other sources. Operating on the principle of the free electron laser (FEL), the LCLS would extend the range of FEL operation to much aborter wavelength than the 240 mn that has so far been reached. We report the results of studies of the use of the SLAC linac to drive an LCLS at wavelengths from about 3-100 nm initially and possibly even shorter wavelengths in the future. Lasing would be achieved in a single pass of a low emittance, high peak current, high energy electron beam through a long undulator. Most present FELs use an optical cavity to build up the intensity of the light to achieve lasing action in a low gain oscillator configuration. By eliminating the optical cavity, which is difficult to make at short wavelengths, laser action can be extended to shorter wavelengths by Self-Amplified-Spontaneous-Emission (SASE), or by harmonic generation from a longer wavelength seed laser. Short wavelength, single pass lasers have been extensively studied at several laboratories and at recent workshops

  12. Quantum SASE FEL with a Laser Wiggler

    CERN Document Server

    Bonifacio, R

    2005-01-01

    Quantum effects in high-gain FELs become relevant when ρ'=ρ(mcγ/ ћ k)<1. The quantum FEL parameter ρ' rules the maximum number of photons emitted per electrons. It has been shown that when ρ'<1 a "quantum purification" of the SASE regime occurs: in fact, the spectrum of the emitted radiation (randomly spiky in the usual classical SASE regime) shrinks to a very narrow single line, leading to a high degree of temporal coherence. From the definition of ρ it appears that in order to achieve the quantum regime, small values of ρ, beam energy and radiation wavelength are necessary. These requirements can be met only using a laser wiggler. In this work we state the scaling laws necessary to operate a SASE FEL in the Angstrom region. All physical quantities are expressed in terms of the normalized emittance and of two parameters: the ratio between laser and electron beam spot sizes and the ratio between Rayleigh range and electron ...

  13. Coherence and linewidth studies of a 4-nm high power FEL

    International Nuclear Information System (INIS)

    Fawley, W.M.; Sessler, A.M.; Scharlemann, E.T.

    1993-05-01

    Recently the SSRL/SLAC and its collaborators elsewhere have considered the merits of a 2 to 4-nm high power FEL utilizing the SLAC linac electron beam. The FEL would be a single pass amplifier excited by spontaneous emission rather than an oscillator, in order to eliminate the need for a soft X-ray resonant cavity. We have used GINGER, a multifrequency 2D FEL simulation code, to study the expected linewidth and coherence properties of the FEL, in both the exponential and saturated gain regimes. We present results concerning the effective shot noise input power and mode shape, the expected subpercent output line widths, photon flux, and the field temporal and spatial correlation functions. We also discuss the effects of tapering the wiggler upon the output power and line width

  14. Real time diagnostic for operation at a CW low voltage FEL

    Energy Technology Data Exchange (ETDEWEB)

    Balfour, C.; Shaw, A.; Mayhew, S.E. [and others

    1995-12-31

    At Liverpool University, a system for single user control of an FEL has been designed to satisfy the low voltage FEL (ie 200kV) operational requirements. This system incorporates many aspects of computer automation for beam diagnostics, radiation detection and vacuum system management. In this paper the results of the development of safety critical control systems critical control systems are reported.

  15. FERMI(at)Elettra FEL Design Technical Optimization Final Report

    International Nuclear Information System (INIS)

    Fawley, William; Penn, Gregory; Allaria, Enrico; De Ninno, Giovanni; Graves, William

    2006-01-01

    This is the final report of the FEL Design Group for the Technical Optimization Study for the FERMI(at)ELETTRA project. The FERMI(at)ELETTRA project is based on the principle of harmonic upshifting of an initial ''seed'' signal in a single pass, FEL amplifier employing multiple undulators. There are a number of FEL physics principles which underlie this approach to obtaining short wavelength output: (1) the energy modulation of the electron beam via the resonant interaction with an external laser seed (2) the use of a chromatic dispersive section to then develop a strong density modulation with large harmonic overtones (3) the production of coherent radiation by the microbunched beam in a downstream radiator. Within the context of the FERMI project, we discuss each of these elements in turn

  16. The PixFEL project: development of advanced X-ray pixel detectors for application at future FEL facilities

    International Nuclear Information System (INIS)

    Rizzo, G.; Batignani, G.; Bettarini, S.; Casarosa, G.; Forti, F.; Paladino, A.; Paoloni, E.; Comotti, D.; Grassi, M.; Lodola, L.; Malcovati, P.; Ratti, L.; Vacchi, C.; Fabris, L.; Manghisoni, M.; Re, V.; Traversi, G.; Morsani, F.; Betta, G.-F. Dalla; Pancheri, L.

    2015-01-01

    The PixFEL project aims to develop an advanced X-ray camera for imaging suited for the demanding requirements of next generation free electron laser (FEL) facilities. New technologies can be deployed to boost the performance of imaging detectors as well as future pixel devices for tracking. In the first phase of the PixFEL project, approved by the INFN, the focus will be on the development of the microelectronic building blocks, carried out with a 65 nm CMOS technology, implementing a low noise analog front-end channel with high dynamic range and compression features, a low power ADC and high density memory. At the same time PixFEL will investigate and implement some of the enabling technologies to assembly a seamless large area X-ray camera composed by a matrix of multilayer four-side buttable tiles. A pixel matrix with active edge will be developed to minimize the dead area of the sensor layer. Vertical interconnection of two CMOS tiers will be explored to build a four-side buttable readout chip with small pixel pitch and all the on-board required functionalities. The ambitious target requirements of the new pixel device are: single photon resolution, 1 to 10 4 photons @ 1 keV to 10 keV input dynamic range, 10-bit analog to digital conversion up to 5 MHz, 1 kevent in-pixel memory and 100 μm pixel pitch. The long term goal of PixFEL will be the development of a versatile X-ray camera to be operated either in burst mode (European XFEL), or in continuous mode to cope with the high frame rates foreseen for the upgrade phase of the LCLS-II at SLAC

  17. Towards short wavelengths FELs workshop

    International Nuclear Information System (INIS)

    Ben-Zvi, I.; Winick, H.

    1993-01-01

    This workshop was caged because of the growing perception in the FEL source community that recent advances have made it possible to extend FEL operation to wavelengths about two orders of magnitude shorter than the 240 nm that has been achieved to date. In addition short wavelength FELs offer the possibilities of extremely high peak power (several gigawatts) and very short pulses (of the order of 100 fs). Several groups in the USA are developing plans for such short wavelength FEL facilities. However, reviewers of these plans have pointed out that it would be highly desirable to first carry out proof-of-principle experiments at longer wavelengths to increase confidence that the shorter wavelength devices will indeed perform as calculated. The need for such experiments has now been broadly accepted by the FEL community. Such experiments were the main focus of this workshop as described in the following objectives distributed to attendees: (1) Define measurements needed to gain confidence that short wavelength FELs will perform as calculated. (2) List possible hardware that could be used to carry out these measurements in the near term. (3) Define a prioritized FEL physics experimental program and suggested timetable. (4) Form collaborative teams to carry out this program

  18. Towards short wavelengths FELs workshop

    Science.gov (United States)

    Ben-Zvi, I.; Winick, H.

    1993-11-01

    This workshop was caged because of the growing perception in the FEL source community that recent advances have made it possible to extend FEL operation to wavelengths about two orders of magnitude shorter than the 240 nm that has been achieved to date. In addition short wavelength FEL's offer the possibilities of extremely high peak power (several gigawatts) and very short pulses (of the order of 100 fs). Several groups in the USA are developing plans for such short wavelength FEL facilities. However, reviewers of these plans have pointed out that it would be highly desirable to first carry out proof-of-principle experiments at longer wavelengths to increase confidence that the shorter wavelength devices will indeed perform as calculated. The need for such experiments has now been broadly accepted by the FEL community. Such experiments were the main focus of this workshop as described in the following objectives distributed to attendees: (1) Define measurements needed to gain confidence that short wavelength FEL's will perform as calculated. (2) List possible hardware that could be used to carry out these measurements in the near term. (3) Define a prioritized FEL physics experimental program and suggested timetable. (4) Form collaborative teams to carry out this program.

  19. Optics-free x-ray FEL oscillator

    International Nuclear Information System (INIS)

    Litvinenko, V.N.; Hao, Y.; Kayran, D.; Trbojevic, D.

    2011-01-01

    There is a need for an Optics-Free FEL Oscillators (OFFELO) to further the advantages of free-electron lasers and turning them in fully coherent light sources. While SASE (Self-Amplified Spontaneous Emission) FELs demonstrated the capability of providing very high gain and short pulses of radiation and scalability to the X-ray range, the spectra of SASE FELs remains rather wide (∼0.5%-1%) compared with typical short wavelengths FEL-oscillators (0.01%-0.0003% in OK-4 FEL). Absence of good optics in VUV and X-ray ranges makes traditional oscillator schemes with very high average and peak spectral brightness either very complex or, strictly speaking, impossible. In this paper, we discuss lattice of the X-ray optics-free FEL oscillator and present results of initial computer simulations of the feedback process and the evolution of FEL spectrum in X-ray OFFELO. We also discuss main limiting factors and feasibility of X-ray OFFELO.

  20. Optics-free x-ray FEL oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Litvinenko, V.N.; Hao, Y.; Kayran, D.; Trbojevic, D.

    2011-03-28

    There is a need for an Optics-Free FEL Oscillators (OFFELO) to further the advantages of free-electron lasers and turning them in fully coherent light sources. While SASE (Self-Amplified Spontaneous Emission) FELs demonstrated the capability of providing very high gain and short pulses of radiation and scalability to the X-ray range, the spectra of SASE FELs remains rather wide ({approx}0.5%-1%) compared with typical short wavelengths FEL-oscillators (0.01%-0.0003% in OK-4 FEL). Absence of good optics in VUV and X-ray ranges makes traditional oscillator schemes with very high average and peak spectral brightness either very complex or, strictly speaking, impossible. In this paper, we discuss lattice of the X-ray optics-free FEL oscillator and present results of initial computer simulations of the feedback process and the evolution of FEL spectrum in X-ray OFFELO. We also discuss main limiting factors and feasibility of X-ray OFFELO.

  1. SwissFEL injector conceptual design report. Accelerator test facility for SwissFEL

    International Nuclear Information System (INIS)

    Pedrozzi, M.

    2010-07-01

    This comprehensive report issued by the Paul Scherrer Institute (PSI) in Switzerland takes a look at the design concepts behind the institute's SwissFEL X-ray Laser facility - in particular concerning the conceptual design of the injector system. The SwissFEL X-ray FEL project at PSI, involves the development of an injector complex that enables operation of a FEL system operating at 0.1 - 7 nm with permanent-magnet undulator technology and minimum beam energy. The injector pre-project was motivated by the challenging electron beam requirements necessary to drive the SwissFEL accelerator facility. The report takes a look at the mission of the test facility and its performance goals. The accelerator layout and the electron source are described, as are the low-level radio-frequency power systems and the synchronisation concept. The general strategy for beam diagnostics is introduced. Low energy electron beam diagnostics, the linear accelerator (Linac) and bunch compressor diagnostics are discussed, as are high-energy electron beam diagnostics. Wavelength selection for the laser system and UV pulse shaping are discussed. The laser room for the SwissFEL Injector and constructional concepts such as the girder system and alignment concepts involved are looked at. A further chapter deals with beam dynamics, simulated performance and injector optimisation. The facility's commissioning and operation program is examined, as are operating regimes, software applications and data storage. The control system structure and architecture is discussed and special subsystems are described. Radiation safety, protection systems and shielding calculations are presented and the lateral shielding of the silo roof examined

  2. Fast synchrotron and FEL beam monitors based on single-crystal diamond detectors and InGaAs/InAlAs quantum well devices

    Science.gov (United States)

    Antonelli, M.; Di Fraia, M.; Carrato, S.; Cautero, G.; Menk, R. H.; Jark, W. H.; Ganbold, T.; Biasiol, G.; Callegari, C.; Coreno, M.; De Sio, A.; Pace, E.

    2013-12-01

    Simultaneous photon-beam position and intensity monitoring is becoming of increasing importance for new-generation synchrotron radiation sources and free-electron lasers (FEL). Thus, novel concepts of beam diagnostics are required in order to keep such beams under control. From this perspective diamond is a promising material for the production of semitransparent in situ photon beam monitors, which can withstand the high dose rates occurring in such radiation facilities. Here, we report on the development of freestanding, single-crystal chemical-vapor-deposited diamond detectors with segmented electrodes. Due to their direct, low-energy band gap, InGaAs quantum well devices operated at room temperature may also be used as fast detectors for photons ranging from visible to X-ray. These features are valuable in low-energy and time-resolved FEL applications. In particular, a novel segmented InGaAs/InAlAs device has been developed and will be discussed. Dedicated measurements carried out on both these devices at the Elettra Synchrotron show their capability to monitor the position and the intensity of the photon beam with bunch-by-bunch temporal performances. Furthermore, preliminary tests have been performed on diamond detectors at the Fermi FEL, extracting quantitative intensity and position information for 100-fs-wide FEL pulses with a photon energy of 28.8 eV.

  3. Transverse effects in UV FELs

    International Nuclear Information System (INIS)

    Small, D.W.; Wong, R.K.; Colson, W.B.

    1995-01-01

    In an ultraviolet Free Electron Laser (UV FEL), the electron beam size can be approximately the same as the optical mode size. The performance of a UV FEL is studied including the effect of emittance, betatron focusing, and external focusing of the electron beam on the transverse optical mode. The results are applied to the Industrial Laser Consortium's UV FEL

  4. The FEL-TNO uniform open systems model

    NARCIS (Netherlands)

    Luiijf, H.A.M.; Overbeek, P.L.

    1989-01-01

    The FEL-TNO Uniform Open Systems Model is based upon the IS0/0SI Basic Reference Model and integrates operating systems, (OSI) networks, equipment and media into one single uniform nodel. Usage of the model stimulates the development of operating systen and network independent applications and puts

  5. Viability of infrared FEL facilities

    International Nuclear Information System (INIS)

    Schwettman, H.A.

    2004-01-01

    Infrared FELs have broken important ground in optical science in the past decade. The rapid development of optical parametric amplifiers and oscillators, and THz sources, however, has changed the competitive landscape and compelled FEL facilities to identify and exploit their unique advantages. The viability of infrared FEL facilities depends on targeting unique world-class science and providing adequate experimental beam time at competitive costs

  6. Performance of the FEL cryomodules

    International Nuclear Information System (INIS)

    Drury, M.; Fischer, J.; Preble, J.

    1998-01-01

    The Thomas Jefferson National Accelerator Facility (Jefferson Lab, formerly known as CEBAF) is building a highly efficient, kilowatt-level infrared free-electron laser, the IR Demo FEL. The IR FEL uses superconducting radio-frequency (SRF) cavities to accelerate the electron beam that provides energy for the laser. These cavities provide the high-gradient acceleration for the high average currents necessary for a compact FEL design. Currently, a quarter cryomodule injector and a full eight-cavity cryomodule have been installed in the FEL linac. These units were tested as part of the IR FEL commissioning process. The main focus of these tests was to determine the maximum stable operating gradient. The average maximum gradient reached by these ten cavities was 11 Mv/m. Other tests include measurement of cavity parameters such as the unloaded Q (Qo) vs. gradient, the input coupling, calibration of field probes and behavior of the tuner mechanisms. This paper presents the results of those tests

  7. Tapered undulators for SASE FELs

    CERN Document Server

    Fawley, W M; Vinokurov, N A

    2002-01-01

    We discuss the use of tapered undulators to enhance the performance of free-electron lasers (FELs) based upon self-amplified spontaneous emission, where the radiation tends to have a relatively broad bandwidth and limited temporal coherence. Using the polychromatic FEL simulation code GINGER, we numerically demonstrate the effectiveness of tapered undulators for parameters corresponding to the Argonne low-energy undulator test line FEL and the proposed linac coherent light source.

  8. Proposed uv-FEL user facility at BNL

    International Nuclear Information System (INIS)

    Ben-Zvi, I.; Di Mauro, L.F.; Krinsky, S.; White, M.G.; Yu, L.H.; Batchelor, K.; Friedman, A.; Fisher, A.S.; Halama, H.; Ingold, G.; Johnson, E.D.; Kramer, S.; Rogers, J.T.; Solomon, L.; Wachtel, J.; Zhang, X.

    1991-01-01

    The NSLS at Brookhaven National Laboratory is proposing the construction of a UV-FEL operating in the wavelength range from visible to 750 Angstrom. Nano-Coulomb electron pulses will be generated at a laser photo-cathode RF gun at a repetition rate of 10 KHz. The 6 ps pulses will be accelerated to 250 MeV in a superconducting linac. The FEL output will serve four stations with independent wavelength tuning, using two wigglers and two rotating mirror beam switches. Seed radiation for the FEL amplifiers will be provided by conventional tunable lasers, and the final frequency multiplication from the visible or near UV to the VUV will be carried out in the FEL itself. Each FEL will comprise of an initial wiggler resonant to the seed wavelength, a dispersion section, and a second wiggler resonant to the output wavelength. The facility will provide pump probe capability, FEL or FEL, and FEL on synchrotron light from an insersion device on the NSLS X-Ray ring. 15 refs., 2 figs., 3 tabs

  9. The "TEU-FEL" project

    OpenAIRE

    Ernst, G.J.; Witteman, W.J.; Verschuur, Jeroen W.J.; Mols, R.F.X.A.M.; Mols, R.F.X.A.M.; van Oerle, B.M.; van Oerle, B.M.; Bouman, A.F.M.; Botman, J.I.M.; Hagedoorn, H.L.; Delhez, J.L.; Kleeven, W.J.G.M.

    1995-01-01

    The free-electron laser of the TEU-FEL project will be based on a 6 MeV photo-cathode linac as injector, a 25 MeV race-track microtron as main accelerator and a hybrid, 25 mm period undulator. The project will be carried out in two phases. In phase one only the 6 MeV linac will be used, The FEL will then produce tunable radiation around 200 µm. In phase two the linac will be used as an injector for the microtron. The FEL will then produce tunable radiation around 10 µm. Technical information ...

  10. FEL mirror response to shipboard vibrations

    OpenAIRE

    Beauvais, Joshua A.

    2011-01-01

    The Optical cavity of a Free Electron Laser (FEL) is composed of components that must be maintained to very tight tolerances. The shipboard environment is one that will preclude a direct coupling of FEL components to the ship. This thesis will explore the basis for these tight tolerances, and how to isolate them from the FEL. A solid model of a potential FEL system will be developed using SolidWorks. This model will then be converted to a finite element model in ANSYS. The finite element ...

  11. FULL ELECTROMAGNETIC FEL SIMULATION VIA THE LORENTZ-BOOSTED FRAME TRANSFORMATION

    International Nuclear Information System (INIS)

    Fawley, William; Vay, Jean-Luc

    2010-01-01

    Numerical electromagnetic simulation of some systems containing charged particles with highly relativistic directed motion can by speeded up by orders of magnitude by choice of the proper Lorentz-boosted frame. A particularly good application for calculation in a boosted frame isthat of short wavelength free-electron lasers (FELs) where a high energy electron beam with small fractional energy spread interacts with a static magnetic undulator. In the optimal boost frame (i.e., the ponderomotive rest frame), the red-shifted FEL radiation and blue-shifted undulator field have identical wavelengths and the number of required longitudinal grid cells and time-steps for fully electromagnetic simulation (relative to the laboratory frame) decrease by factors of gamma 2 each. In theory, boosted frame EM codes permit direct study of FEL problems for which the eikonal approximation for propagation of the radiation field and wiggler-period-averaging for the particle-field interaction may be suspect. We have adapted the WARP code to apply this method to several electromagnetic FEL problems including spontaneous emission, strong exponential gain in a seeded, single pass amplifier configuration, and emission from e-beams in undulators with multiple harmonic components. WARP has a standard relativistic macroparticle mover and a fully 3-D electromagnetic field solver. We discuss our boosted frame results and compare with those obtained using the 'standard' eikonal FEL simulation approach.

  12. FEL-principles, techniques and its progress

    International Nuclear Information System (INIS)

    Zhao Xiaofeng; Yang Fujia

    1992-01-01

    The basic principles of free electron laser (FEL) and its operation modes are presented. The state of the art is described for accelerator technology and laser systems. Some comparisons are made between FEL and conventional laser with regard to power capability, short-wavelength operation, and tunability. The application prospects of FEL are discussed

  13. Technological Challenges to X-Ray FELs

    Energy Technology Data Exchange (ETDEWEB)

    Nuhn, Heinz-Dieter

    1999-09-16

    There is strong interest in the development of x-ray free electron lasers (x-ray FELs). The interest is driven by the scientific opportunities provided by intense, coherent x-rays. An x-ray FEL has all the characteristics of a fourth-generation source: brightness several orders of magnitude greater than presently achieved in third-generation sources, full transverse coherence, and sub-picosecond long pulses. The SLAC and DESY laboratories have presented detailed design studies for X-Ray FEL user facilities around the 0.1 nm wavelength-regime (LCLS at SLAC, TESLA X-Ray FEL at DESY). Both laboratories are engaged in proof-of-principle experiments are longer wavelengths (TTF FEL Phase I at 71 nm, VISA at 600-800 nm) with results expected in 1999. The technologies needed to achieve the proposed performances are those of bright electron sources, of acceleration systems capable of preserving the brightness of the source, and of undulators capable of meeting the magnetic and mechanical tolerances that are required for operation in the SASE mode. This paper discusses the technological challenges presented by the X-Ray FEL projects.

  14. Optimization of a high efficiency FEL amplifier

    International Nuclear Information System (INIS)

    Schneidmiller, E.A.; Yurkov, M.V.

    2014-10-01

    The problem of an efficiency increase of an FEL amplifier is now of great practical importance. Technique of undulator tapering in the post-saturation regime is used at the existing X-ray FELs LCLS and SACLA, and is planned for use at the European XFEL, Swiss FEL, and PAL XFEL. There are also discussions on the future of high peak and average power FELs for scientific and industrial applications. In this paper we perform detailed analysis of the tapering strategies for high power seeded FEL amplifiers. Application of similarity techniques allows us to derive universal law of the undulator tapering.

  15. Summary of the working group on FEL theory

    International Nuclear Information System (INIS)

    Pellegrini, C.

    1984-01-01

    The working group on FEL theory dedicated most of its discussions to topics relevant to the high gain regime in a free electron laser. In addition the area of interest was mainly restricted to FELs for the production of XUV radiation (<1000 A). A list of the topics that were felt to be relevant is: (1) characterization of the FEL high gain regime; (2) the amplified spontaneous emission mode of operation (ASE); (3) superradiance in FELs; (4) diffraction effects for high gain FELs; (5) noise and start-up; (6) coherence properties of the radiation for the ASE and superradiant FELS. 9 references

  16. Summary of the working group on FEL theory

    Energy Technology Data Exchange (ETDEWEB)

    Pellegrini, C.

    1984-01-01

    The working group on FEL theory dedicated most of its discussions to topics relevant to the high gain regime in a free electron laser. In addition the area of interest was mainly restricted to FELs for the production of XUV radiation (<1000 A). A list of the topics that were felt to be relevant is: (1) characterization of the FEL high gain regime; (2) the amplified spontaneous emission mode of operation (ASE); (3) superradiance in FELs; (4) diffraction effects for high gain FELs; (5) noise and start-up; (6) coherence properties of the radiation for the ASE and superradiant FELS. 9 references.

  17. A Cherenkov radiator for FEL-synchronized VUV-pulses at a linac-based FEL

    NARCIS (Netherlands)

    Goloviznin, V. V.; Oepts, D.; van der Wiel, M. J.

    1997-01-01

    A possible way to carry out two-color IR+VUV pump-probe experiments at linac-based FELs is proposed. The idea is to supply an FEL facility with a gas cell filled with helium or hydrogen, so that the electron beam, upon passage through the undulator, could be used to generate ultraviolet Cherenkov

  18. A Cherenkov radiator for FEL-synchronized VUV-pulses at a linac-based FEL

    NARCIS (Netherlands)

    Goloviznin, V.V.; Oepts, W.; Wiel, van der M.J.

    1997-01-01

    A possible way to carry out two-color IR + VUV pump-probe experiments at linac-based FELs is proposed. The idea is to supply an FEL facility with a gas cell filled with helium or hydrogen, so that the electron beam, upon passage through the undulator, could be used to generate ultraviolet Cherenkov

  19. Multi-mode interactions in an FEL oscillator

    CERN Document Server

    Dong Zhi Wei; Masuda, K; Yamazaki, T; Yoshikawa, K

    2000-01-01

    A 3D time-dependent FEL oscillator simulation code has been developed by using the transverse mode spectral method to analyze interaction among transverse modes. The competition among them in an FEL oscillator was investigated based on the parameters of LANL FEL experiments. It is found that under typical FEL oscillator operation conditions, the TEM sub 0 sub 0 mode is dominant, and the effects of other transverse modes can be negligible.

  20. FEL radiation power available in electron storage rings

    International Nuclear Information System (INIS)

    Miyahara, Yoshikazu

    1994-01-01

    FEL radiation power available in electron storage rings was studied in the small signal regime in considering the increase of the energy spread of the electron beam caused by the FEL interaction and the decrease of the FEL gain with the increase of the energy spread in addition to the radiation damping and the quantum excitation. All these effects were considered separately, and combined with FEL power equations. The radiation power available was expressed explicitly with the parameters of the storage ring, the wiggler and the mirrors. The transient process of FEL lasing is simulated with the power equations. A rough estimation is made of the radiation power available by the FEL at different beam energies, and optimization of FEL parameters for a higher radiation power is discussed. ((orig.))

  1. Review of High Gain FELs

    International Nuclear Information System (INIS)

    Shintake, Tsumoru

    2007-01-01

    For understanding on basic radiation mechanism of the high-gain FEL based on SASE, the author presents electron-crystal interpretation of FEL radiation. In the electron-crystal, electrons are localized at regularly spaced multi-layers, which represents micro-bunching, whose spacing is equal to the radiation wavelength, and the multi-layers are perpendicular to beam axis, thus, diffracted wave creates Bragg's spots in forward and backward directions. Due to the Doppler's effect, frequency of the back-scattered wave is up-converted, generates forwardly focused X-ray. The Bragg's effect contributes focusing the X-ray beam into a spot, thus peak power becomes extremely higher by factor of typically 107. This is the FEL radiation. As well known, the total numbers of scattered photons in Bragg's spots is equal to the total elastic scattering photons from the atoms contained in the crystal. Therefore, total power in the FEL laser is same as the spontaneous radiation power from the undulator for the same beam parameter. The FEL radiation phenomenon is simple interference effect. In today's presentations, we use the laser pointer, and we frequently experience difficulty in pointing precisely or steadily in one place on the screen, since the laser spot is very small and does not spread. Exactly same to this, X-ray FEL is a highly focused beam, and pointing stability dominates productivity of experiment, thus we need special care on beam stability from linear accelerator

  2. Design study of a longer wavelength FEL for FELIX

    International Nuclear Information System (INIS)

    Lin, L.; Oepts, D.; Meer, A.F.G. van der

    1995-01-01

    We present a design study of FEL3, which will extend the FELIX spectral range towards a few hundred microns. A rectangular waveguide will be used to reduce diffraction losses. Calculations show that with a waveguide gap of 1 cm, only one sinusoidal mode along the guided direction can exist within the FEL gain bandwidth, thus excluding group velocity dispersion and lengthening of short radiation pulses. To incorporate FEL3 in the existing FELIX facility, two options are being considered: to combine FEL3 with FEL1 by insertion of a waveguide into FEL1, and to build a dedicated third beam line for FEL3 after the two linacs. Expected FEL performance: gain, spectrum, power, pulse shape, etc., will be presented based on numerical simulations

  3. The "TEU-FEL" project

    NARCIS (Netherlands)

    Ernst, G.J.; Witteman, W.J.; Verschuur, Jeroen W.J.; Mols, R.F.X.A.M.; Mols, R.F.X.A.M.; van Oerle, B.M.; van Oerle, B.M.; Bouman, A.F.M.; Botman, J.I.M.; Hagedoorn, H.L.; Delhez, J.L.; Kleeven, W.J.G.M.

    1995-01-01

    The free-electron laser of the TEU-FEL project will be based on a 6 MeV photo-cathode linac as injector, a 25 MeV race-track microtron as main accelerator and a hybrid, 25 mm period undulator. The project will be carried out in two phases. In phase one only the 6 MeV linac will be used, The FEL will

  4. JAERI FEL applications in nuclear energy industries

    International Nuclear Information System (INIS)

    Minehara, Eisuke J.

    2005-01-01

    The JAERI FEL has first discovered the new FEL lasing of 255fs ultra fast pulse, 6-9% high efficiency, 1GW high peak power, a few kilowatts average power, and wide tunability of medium and far infrared wavelength regions at the same time. Using the new lasing and energy-recovery linac technology, we could extend a more powerful and more efficient free-electron laser (FEL) than 10kW and 25%, respectively, for nuclear energy industries, and others. In order to realize such a tunable, highly-efficient, high average power, high peak power and ultra-short pulse FEL, we need the efficient and powerful FEL driven by the JAERI compact, stand alone and zero boil-off super-conducting RF linac with an energy-recovery geometry. Our discussions on the FEL will cover the application of non-thermal peeling, cutting, and drilling to prevent cold-worked stress-corrosion cracking failures in nuclear energy and other heavy industries. (author)

  5. A high-average power tapered FEL amplifier at submillimeter frequencies using sheet electron beams and short-period wigglers

    International Nuclear Information System (INIS)

    Bidwell, S.W.; Radack, D.J.; Antonsen, T.M. Jr.; Booske, J.H.; Carmel, Y.; Destler, W.W.; Granatstein, V.L.; Levush, B.; Latham, P.E.; Zhang, Z.X.

    1990-01-01

    A high-average-power FEL amplifier operating at submillimeter frequencies is under development at the University of Maryland. Program goals are to produce a CW, ∼1 MW, FEL amplifier source at frequencies between 280 GHz and 560 GHz. To this end, a high-gain, high-efficiency, tapered FEL amplifier using a sheet electron beam and a short-period (superconducting) wiggler has been chosen. Development of this amplifier is progressing in three stages: (1) beam propagation through a long length (∼1 m) of short period (λ ω = 1 cm) wiggler, (2) demonstration of a proof-of-principle amplifier experiment at 98 GHz, and (3) designs of a superconducting tapered FEL amplifier meeting the ultimate design goal specifications. 17 refs., 1 fig., 1 tab

  6. FEL components and diagnostics

    International Nuclear Information System (INIS)

    Carr, R.

    1997-01-01

    FEL hardware includes undulators, alignment systems, electron beam diagnostics, and mechanical and vacuum systems. While most FEL close-quote s employ conventional undulators, there is some interest in novel types, particularly where conventional designs cannot be used, as at very short periods and high fields. For these areas, superconducting technology is indicated. The most serious issue facing long FEL undulators is that of alignment; mechanical techniques may not be accurate enough, and beam-based strategies must be considered. To maintain alignment and control the electron trajectory, beam position monitors with micron precision are required. Beam size monitors are also required to assure control of emittance. The talks given in the working group sessions touch on undulators, alignment, and electron beam diagnostics, and they are summarized here. copyright 1997 American Institute of Physics

  7. Wavelength and power stability measurements of the Stanford SCA/FEL

    International Nuclear Information System (INIS)

    van der Geer, B.; de Loos, M.J.; Conde, M.E.; Leemans, W.P.

    1994-08-01

    Wavelength and power stability of the Stanford infrared SCA/FEL operating with the TRW wiggler have been measured using a high-resolution spectrometer and an image dissector system. The image dissector is capable of reading the spectrum of every single micropulse at 12 MHz throughout a macropulse of up to 2 ms duration. The intrinsic wavelength and power stability of the SCA/FEL are found to be δλ/λ=0.035% and δP/P=18%. The use of a feedback control system to stabilize the wavelength, and an acousto-optic modulator for output power smoothing, improves the performance to δλ/λ=0.012% and δP/P=7%

  8. Analysis of the FEL-RF interaction in recirculating, energy-recovering linacs with an FEL

    International Nuclear Information System (INIS)

    Merminga, L.; Alexeev, P.; Benson, S.; Bolshakov, A.; Doolittle, L.; Neil, G.

    1999-01-01

    Recirculating, energy-recovering linacs can be used as driver accelerators for high power FELs. Instabilities which arise from fluctuations of the cavity fields are investigated. Energy changes can cause beam loss on apertures, phase oscillations and optical cavity detuning. These effects in turn cause changes in the laser output power through a time-varying FEL gain function. All three effects change the beam-induced voltage in the cavities and can lead to unstable variations of the accelerating field and output laser power. We have developed a model of the coupled system and solved it both analytically and numerically. It includes the beam-cavity interaction, low level RF feedback, and the electron-photon interaction. The latter includes the FEL gain function in terms of cavity detuning, energy offset, and is valid both in the small signal gain and in the saturated regimes. We have demonstrated that in the limit of small perturbations, the linear theory agrees with the numerical solutions and have performed numerical simulations for the IR FEL presently being commissioned at Jefferson Lab

  9. Analysis of the FEL-RF interaction in recirculating energy-recovering linacs with an FEL

    International Nuclear Information System (INIS)

    Merminga, Lia; Alexeev, P.; Benson, Steve; Bolshakov, A.; Doolittle, Lawrence; Neil, George

    1999-01-01

    Recirculating, energy-recovering linacs can be used as driver accelerators for high power FELs. Instabilities which arise from fluctuations of the cavity fields are investigated. Energy changes can cause beam loss on apertures, phase oscillations and optical cavity detuning. These effects in turn cause changes in the laser output power through a time-varying FEL gain function. All three effects change the beam-induced voltage in the cavities and can lead to unstable variations of the accelerating field and output laser power. We have developed a model of the coupled system and solved it both analytically and numerically. It includes the beam-cavity interaction, low level RF feedback, and the electron-photon interaction. The latter includes the FEL gain function in terms of cavity detuning, energy offset, and is valid both in the small signal gain and in the saturated regimes. We have demonstrated that in the limit of small perturbations, the linear theory agrees with the numerical solutions and have performed numerical simulations for the IR FEL presently being commissioned at Jefferson Lab

  10. Analysis of the FEL-RF interaction in recirculating, energy-recovering linacs with an FEL

    Energy Technology Data Exchange (ETDEWEB)

    Merminga, L. E-mail: merminga@jlab.org; Alexeev, P.; Benson, S.; Bolshakov, A.; Doolittle, L.; Neil, G

    1999-06-01

    Recirculating, energy-recovering linacs can be used as driver accelerators for high power FELs. Instabilities which arise from fluctuations of the cavity fields are investigated. Energy changes can cause beam loss on apertures, phase oscillations and optical cavity detuning. These effects in turn cause changes in the laser output power through a time-varying FEL gain function. All three effects change the beam-induced voltage in the cavities and can lead to unstable variations of the accelerating field and output laser power. We have developed a model of the coupled system and solved it both analytically and numerically. It includes the beam-cavity interaction, low level RF feedback, and the electron-photon interaction. The latter includes the FEL gain function in terms of cavity detuning, energy offset, and is valid both in the small signal gain and in the saturated regimes. We have demonstrated that in the limit of small perturbations, the linear theory agrees with the numerical solutions and have performed numerical simulations for the IR FEL presently being commissioned at Jefferson Lab.

  11. FELs, nice toys or efficient tools?

    CERN Document Server

    Van der Meer, Alex F G

    2004-01-01

    An FEL is an intrinsically interesting device and pushing its performance presents a natural challenge to a physicist. Nonetheless, the main justification for doing FEL research is of course its potential as a unique, versatile source of radiation to be employed for something useful. After 25 years of FEL research, one may wonder how efficient these tools have become. In this paper, I will reflect on this issue from the perspective of 10 years of operation of FELIX as a user facility.

  12. Super ACO FEL oscillation at 300 nm

    CERN Document Server

    Nutarelli, D; Renault, E; Nahon, L; Couprie, Marie Emmanuelle

    2000-01-01

    Some recent improvements, involving both the optical cavity mirrors and the positron beam dynamics in the storage ring, have allowed us to achieve a laser oscillation at 300 nm on the Super ACO Storage Ring FEL. The Super ACO storage ring is operated at 800 MeV which is the nominal energy for the usual synchrotron radiation users, and the highest energy for a storage ring FEL. The lasing at 300 nm could be kept during 2 h per injection, with a stored current ranging between 30 and 60 mA. The FEL characteristics are presented here. The longitudinal stability and the FEL optics behaviour are also discussed.

  13. Duke storage rink UV/VUV FEL: Status and prospects

    Energy Technology Data Exchange (ETDEWEB)

    Litvinenko, V.N.; Burnham, B.; Madey, J.M.J. [Duke Univ., Durham, NC (United States)] [and others

    1995-12-31

    The 1 GeV Duke storage ring was successfully commissioned with parameters exceeding initial specification. The OK-4 FEL has arrived at the Duke FEL laboratory from the Novosibirsk Institute of Nuclear Physics. The OK-4 installation and commissioning is in progress. In this paper we describe the up-to-date status of the Duke storage ring and the OK-4 FEL. The projected performance of the OK-4 UV/VUV FEL is presented based on the electron beam parameters achieved. Initial plans to operate the OK-4 UV/VUV FEL at the Duke 1 GeV storage ring are outlined. Future plans and prospects of both the OK-4 FEL and the Duke storage ring are discussed.

  14. FEL small signal dynamics and electron beam prebunching

    International Nuclear Information System (INIS)

    Dattoli, G.

    1993-01-01

    A seed signal and/or a pre-bunched electron beam may provide the start up of a free electron laser (FEL). Recently, interest has grown around FEL's operating with pre-bunched electron beams; this paper is, therefore, devoted to the analysis of the dynamic features of FEL's operating in such a configuration. It exploits a slightly modified form of the FEL high gain equation to derive quantities of practical interest like the dependence of the system growth rate on the bunching coefficients

  15. FEL based photon collider of TeV energy range

    International Nuclear Information System (INIS)

    Saldin, E.L.; Shnejdmiller, E.A.; Sarantsev, V.P.; Yurkov, M.V.

    1994-01-01

    Physical principles of operation of high energy photon linear colliders (PLC) based on the Compton backscattering of laser photons on high energy electrons are discussed. The main emphasis is put on the analysis of a possibility to construct the PLC with the center of mass energy 0.5-2 TeV. Free electron laser (FEL) is considered as a source of primary photons. Proposed FEL system consists of a tunable FEL oscillator (output power ∼ 1 - 10 MW) with subsequent amplification of the master signal in a FEL amplifier up to the power ∼ 3 x 10 11 W. The FEL parameters are optimized, restrictions on the electron beam and FEL magnetic system parameters are formulated and problems of technical realization are discussed. It is shown that the FEL technique provides the most suitable way to construct photon linear collider on the base of future generation linear collider. 22 refs., 10 figs., 2 tabs

  16. The Present Applications of IR FEL at Peking University

    CERN Document Server

    Yang Li Min; Zhao, Kui

    2004-01-01

    In this study the sections of human tissues were treated under 9.5 μm FEL in the BFEL based on the vibrational spectroscopic investigation that significant differences occur between normal and malignant tissues. Under the defocus condition, the burning of tissue section at some part while other part remains unchanged, suggesting that the FEL can selectively destroy some part of tissue. Vibrational spectroscopic and microscopic methods have shown that the FEL can induce decomposition of malignant tissues. The application of FEL whose wavelength is on the characteristic bands of malignant tissues may provide a new method to kill cancer cells with higher selectivity. For understanding the interactions between FEL and biological tissues, structure changes of substances under irradiation by FEL of 9.414 μm and 6.228 μm were measured using FTIR spectroscopy. The samples include ATP, ADP, AMP, and D-ribose, etc. The FTIR spectra of the molecules before and after irradiation of FEL indicate...

  17. Commissioning experience and beam physics measurements at the SwissFEL Injector test Facility

    CERN Document Server

    Schietinger, T.; Aiba, M.; Arsov, V.; Bettoni, S.; Beutner, B.; Calvi, M.; Craievich, P.; Dehler, M.; Frei, F.; Ganter, R.; Hauri, C. P.; Ischebeck, R.; Ivanisenko, Y.; Janousch, M.; Kaiser, M.; Keil, B.; Löhl, F.; Orlandi, G. L.; Ozkan Loch, C.; Peier, P.; Prat, E.; Raguin, J.-Y.; Reiche, S.; Schilcher, T.; Wiegand, P.; Zimoch, E.; Anicic, D.; Armstrong, D.; Baldinger, M.; Baldinger, R.; Bertrand, A.; Bitterli, K.; Bopp, M.; Brands, H.; Braun, H. H.; Brönnimann, M.; Brunnenkant, I.; Chevtsov, P.; Chrin, J.; Citterio, A.; Csatari Divall, M.; Dach, M.; Dax, A.; Ditter, R.; Divall, E.; Falone, A.; Fitze, H.; Geiselhart, C.; Guetg, M. W.; Hämmerli, F.; Hauff, A.; Heiniger, M.; Higgs, C.; Hugentobler, W.; Hunziker, S.; Janser, G.; Kalantari, B.; Kalt, R.; Kim, Y.; Koprek, W.; Korhonen, T.; Krempaska, R.; Laznovsky, M.; Lehner, S.; Le Pimpec, F.; Lippuner, T.; Lutz, H.; Mair, S.; Marcellini, F.; Marinkovic, G.; Menzel, R.; Milas, N.; Pal, T.; Pollet, P.; Portmann, W.; Rezaeizadeh, A.; Ritt, S.; Rohrer, M.; Schär, M.; Schebacher, L.; Scherrer, St.; Schlott, V.; Schmidt, T.; Schulz, L.; Smit, B.; Stadler, M.; Steffen, Bernd; Stingelin, L.; Sturzenegger, W.; Treyer, D. M.; Trisorio, A.; Tron, W.; Vicario, C.; Zennaro, R.; Zimoch, D.

    2016-10-26

    The SwissFEL Injector Test Facility operated at the Paul Scherrer Institute between 2010 and 2014, serving as a pilot plant and test bed for the development and realization of SwissFEL, the x-ray Free Electron Laser facility under construction at the same institute. The test facility consisted of a laser-driven rf electron gun followed by an S-band booster linac, a magnetic bunch compression chicane and a diagnostic section including atransverse deflecting rf cavity. It delivered electron bunchesof up to200 pC chargeand up to 250 MeV beam energy at a repetition rate of 10 Hz. The measurements performed at the test facility not only demonstrated the beam parameters required to drive the first stage of a FEL facility, but also led to significant advances in instrumentation technologies, beam characterization methods and the generation, transport and compression of ultralow-emittance beams. We give a comprehensive overview of the commissioning experience of the principal subsystems and the beam physics measureme...

  18. Status of the tandem FEL project development in Israel

    International Nuclear Information System (INIS)

    Benzvi, I.; Sokolowski, J.; Jerby, E.; Chomski, D.; Ruschin, S.

    1989-01-01

    The authors report the status of a collaborative research project development aimed toward construction of an IR FEL based on the EN tandem electrostatic accelerator of the Weizmann Institute of Science. A preliminary feasibility demonstration project yielded encouraging progress in three aspects: (1) Electron gun and accelerator conversion: A 50-kV 1-A electron gun injector was designed, built, tested, and assembled on the 6-MeV tandem accelerator which was previously converted and conditioned to operate as an electron accelerator in a positively charged HV terminal configuration. Contrary to the configuration of the only electrostatic accelerator FEL demonstrated so far, the electron gun and multistage depressed collector are connected to the ground, and the wiggler is placed in the HV terminal of the straight geometry tandem accelerator. This configuration promises to provide a high current high quality e-beam. (2) Electron-beam transport: The first installation of the electron optical beam recovery system yielded transport efficiency of 80%. Substantial improvement is expected with planned electron optics modifications. An effect, highly significant for realizing long pulse (quasi-cw) FEL operation, was observed experimentally. Due to the damping effect of the accelerator column capacitance network, the voltage terminal stayed constant for milliseconds even with poor beam transport efficiency. This points to the possibility of developing a long pulse FEL which may operate at a single longitudinal mode. (3) Wiggler development: A conventional 4.4-cm period SmCo planar wiggler was acquired and evaluated using a recently constructed floating wire magnetic field measurement setup

  19. The APS SASE FEL: modeling and code comparison

    International Nuclear Information System (INIS)

    Biedron, S. G.

    1999-01-01

    A self-amplified spontaneous emission (SASE) free-electron laser (FEL) is under construction at the Advanced Photon Source (APS). Five FEL simulation codes were used in the design phase: GENESIS, GINGER, MEDUSA, RON, and TDA3D. Initial comparisons between each of these independent formulations show good agreement for the parameters of the APS SASE FEL

  20. Start-Up of FEL Oscillator from Shot Noise

    International Nuclear Information System (INIS)

    Kumar, V.; Krishnagopal, S.; Fawley, W.M.

    2007-01-01

    In free-electron laser (FEL) oscillators, as in self-amplified spontaneous emission (SASE) FELs, the buildup of cavity power starts from shot noise resulting from the discreteness of electronic charge. It is important to do the start-up analysis for the build-up of cavity power in order to fix the macropulse width from the electron accelerator such that the system reaches saturation. In this paper, we use the time-dependent simulation code GINGER [1]to perform this analysis. We present results of this analysis for the parameters of the Compact Ultrafast TErahertz FEL (CUTE-FEL) [2] being built at RRCAT

  1. FEL in transverse optical klystron regime

    International Nuclear Information System (INIS)

    Scarlat, F.; Baltateanu, N.

    1994-01-01

    Among all operational regimes of free electron laser (FEL), the transverse optical regime (TOK) requires the least stringent electron beam parameters. The device associated to this regime, also defined as FEL with two or more components, consists of two or more identical interaction sections separated by one or more drift distances among themselves. Starting from the motion equations which describe the interaction between an electron and the radiation inside the undulator, one can obtain some practical expressions for the calculation of the efficiency of the energy transfer from the electron to the radiation, and the gain of the external coherent radiation for a FEL in TOK with three cavities. (Author)

  2. Harmonic lasing in X-ray FELs

    Energy Technology Data Exchange (ETDEWEB)

    Schneidmiller, E.A.; Yurkov, M.V.

    2012-05-15

    Harmonic lasing in a free electron laser with a planar undulator (under the condition that the fundamental frequency is suppressed) might be a cheap and efficient way of extension of wavelength ranges of existing and planned X-ray FEL facilities. Contrary to nonlinear harmonic generation, harmonic lasing can provide much more intense, stable, and narrow-band FEL beam which is easier to handle due to the suppressed fundamental frequency. In this paper we perform a parametrization of the solution of the eigenvalue equation for lasing at odd harmonics, and present an explicit expression for FEL gain length, taking into account all essential effects. We propose and discuss methods for suppression of the fundamental harmonic. We also suggest a combined use of harmonic lasing and lasing at the retuned fundamental wavelength in order to reduce bandwidth and to increase brilliance of X-ray beam at saturation. Considering 3rd harmonic lasing as a practical example, we come to the conclusion that it is much more robust than usually thought, and can be widely used in the existing or planned X-ray FEL facilities. In particular, LCLS after a minor modification can lase to saturation at the 3rd harmonic up to the photon energy of 25-30 keV providing multi-gigawatt power level and narrow bandwidth. As for the European XFEL, harmonic lasing would allow to extend operating range (ultimately up to 100 keV), to reduce FEL bandwidth and to increase brilliance, to enable two-color operation for pump-probe experiments, and to provide more flexible operation at different electron energies. Similar improvements can be realized in other X-ray FEL facilities with gap-tunable undulators like FLASH II, SACLA, LCLS II, etc. Harmonic lasing can be an attractive option for compact X-ray FELs (driven by electron beams with a relatively low energy), allowing the use of the standard undulator technology instead of small-gap in-vacuum devices. Finally, in this paper we discover that in a part of the

  3. SwissFEL - Conceptual design report

    International Nuclear Information System (INIS)

    Ganter, R.

    2010-07-01

    This report issued by the Paul Scherrer Institute (PSI) in Switzerland takes a look at the design concepts behind the institute's SwissFEL X-ray Laser facility. The goal of SwissFEL is to provide a source of extremely bright and short X-ray pulses enabling scientific discoveries in a wide range of disciplines to be made, from fundamental research through to applied science. The eminent scientific need for such an X-ray source which is well documented in the SwissFEL Science Case Report is noted. The technical design of SwissFEL has to keep a delicate balance between the demand by experimentalists for breathtaking performance in terms of photon beam properties on the one hand, and essential requirements for a user facility, such as confidence in technical feasibility, reliable and stable functioning and economy of installation and operation on the other hand. The baseline design which has been defined is discussed. This relies entirely on state-of-the-art technologies without fundamental feasibility issues. This SwissFEL Conceptual Design Report describes the technical concepts and parameters used for this baseline design. The report discusses the design strategy, the choice of parameters and the simulation of the accelerator unit and undulator. The photon beam layout is discussed, as is the installation's tera hertz pump source. The components of the facility, including the laser and radio-frequency systems, timing and synchronisation systems, magnets, undulators, and mechanical support systems are discussed. Further, the concepts behind electron beam diagnostics, vacuum equipment as well as control and feedback systems are discussed. The building layout is described and safety issues are discussed. An appendix completes the report

  4. High-gain Seeded FEL Amplifier Tunable in the Terahertz Range

    CERN Document Server

    Sung, C; Pellegrini, C; Ralph, J E; Reiche, S; Rosenzweig, J B; Tochitsky, Sergei Ya

    2005-01-01

    The lack of a high-power, relatively low-cost and compact terahertz (THz) source in the range 0.3-3x10(12) Hz is the major obstacle in progressing on biomedical and material studies at these wavelengths. A high-gain, single pass seeded FEL technique allows to obtain high power THz pulses of a high spectral brightness. We describe an ongoing project at the Neptune laboratory where a ~ 1kW seed pulse generated by difference frequency mixing of CO2 laser lines in a GaAs nonlinear crystal is injected into a waveguide FEL amplifier. The FEL is driven by a 5 ps (r.m.s) long electron pulse with a peak current up to 100A provided by a regular S-band photoinjector. According to 3-D, time dependent simulations, up to ~ 10 MW THz power can be generated using a 2 meter long planar undulator. By mixing different pairs of CO2 laser lines and matching resonant energy of the electron beam, tunability in the 100-400 mm range is expected. A tunable Fabri-Perot interferometer will be used to select a high-power 5ps THz pulse. T...

  5. The PixFEL project: Progress towards a fine pitch X-ray imaging camera for next generation FEL facilities

    Energy Technology Data Exchange (ETDEWEB)

    Rizzo, G., E-mail: giuliana.rizzo@pi.infn.it [Università di Pisa, Dipartimento di Fisica, I-56127 Pisa (Italy); INFN, Sezione di Pisa, I-56127 Pisa (Italy); Batignani, G. [Università di Pisa, Dipartimento di Fisica, I-56127 Pisa (Italy); INFN, Sezione di Pisa, I-56127 Pisa (Italy); Benkechkache, M.A. [Università di Trento, Dipartimento di Ingegneria Industriale, I-38123 Trento (Italy); University Constantine 1, Department of Electronics in the Science and Technology Faculty, I-25017, Constantine (Algeria); Bettarini, S.; Casarosa, G. [Università di Pisa, Dipartimento di Fisica, I-56127 Pisa (Italy); INFN, Sezione di Pisa, I-56127 Pisa (Italy); Comotti, D. [Università di Pavia, Dipartimento di Ingegneria Industriale e dell' Informazione, I-27100 Pavia (Italy); INFN Sezione di Pavia, I-27100 Pavia (Italy); Dalla Betta, G.-F. [Università di Trento, Dipartimento di Ingegneria Industriale, I-38123 Trento (Italy); TIFPA INFN, I-38123 Trento (Italy); Fabris, L. [INFN Sezione di Pavia, I-27100 Pavia (Italy); Università di Bergamo, Dipartimento di Ingegneria e Scienze Applicate, I-24044 Dalmine (Italy); Forti, F. [Università di Pisa, Dipartimento di Fisica, I-56127 Pisa (Italy); INFN, Sezione di Pisa, I-56127 Pisa (Italy); Grassi, M.; Lodola, L.; Malcovati, P. [Università di Pavia, Dipartimento di Ingegneria Industriale e dell' Informazione, I-27100 Pavia (Italy); INFN Sezione di Pavia, I-27100 Pavia (Italy); Manghisoni, M. [INFN Sezione di Pavia, I-27100 Pavia (Italy); Università di Bergamo, Dipartimento di Ingegneria e Scienze Applicate, I-24044 Dalmine (Italy); and others

    2016-07-11

    The INFN PixFEL project is developing the fundamental building blocks for a large area X-ray imaging camera to be deployed at next generation free electron laser (FEL) facilities with unprecedented intensity. Improvement in performance beyond the state of art in imaging instrumentation will be explored adopting advanced technologies like active edge sensors, a 65 nm node CMOS process and vertical integration. These are the key ingredients of the PixFEL project to realize a seamless large area focal plane instrument composed by a matrix of multilayer four-side buttable tiles. In order to minimize the dead area and reduce ambiguities in image reconstruction, a fine pitch active edge thick sensor is being optimized to cope with very high intensity photon flux, up to 10{sup 4} photons per pixel, in the range from 1 to 10 keV. A low noise analog front-end channel with this wide dynamic range and a novel dynamic compression feature, together with a low power 10 bit analog to digital conversion up to 5 MHz, has been realized in a 110 μm pitch with a 65 nm CMOS process. Vertical interconnection of two CMOS tiers will be also explored in the future to build a four-side buttable readout chip with high density memories. In the long run the objective of the PixFEL project is to build a flexible X-ray imaging camera for operation both in burst mode, like at the European X-FEL, or in continuous mode with the high frame rates anticipated for future FEL facilities.

  6. The PixFEL project: Progress towards a fine pitch X-ray imaging camera for next generation FEL facilities

    International Nuclear Information System (INIS)

    Rizzo, G.; Batignani, G.; Benkechkache, M.A.; Bettarini, S.; Casarosa, G.; Comotti, D.; Dalla Betta, G.-F.; Fabris, L.; Forti, F.; Grassi, M.; Lodola, L.; Malcovati, P.; Manghisoni, M.

    2016-01-01

    The INFN PixFEL project is developing the fundamental building blocks for a large area X-ray imaging camera to be deployed at next generation free electron laser (FEL) facilities with unprecedented intensity. Improvement in performance beyond the state of art in imaging instrumentation will be explored adopting advanced technologies like active edge sensors, a 65 nm node CMOS process and vertical integration. These are the key ingredients of the PixFEL project to realize a seamless large area focal plane instrument composed by a matrix of multilayer four-side buttable tiles. In order to minimize the dead area and reduce ambiguities in image reconstruction, a fine pitch active edge thick sensor is being optimized to cope with very high intensity photon flux, up to 10"4 photons per pixel, in the range from 1 to 10 keV. A low noise analog front-end channel with this wide dynamic range and a novel dynamic compression feature, together with a low power 10 bit analog to digital conversion up to 5 MHz, has been realized in a 110 μm pitch with a 65 nm CMOS process. Vertical interconnection of two CMOS tiers will be also explored in the future to build a four-side buttable readout chip with high density memories. In the long run the objective of the PixFEL project is to build a flexible X-ray imaging camera for operation both in burst mode, like at the European X-FEL, or in continuous mode with the high frame rates anticipated for future FEL facilities.

  7. Undulator systems for the TESLA X-FEL

    International Nuclear Information System (INIS)

    Pflueger, J.; Tischer, M.

    2002-01-01

    A large X-ray FEL lab is under consideration within the TESLA project and is supposed to be operated in parallel with the TESLA linear collider. There will be five SASE FELs and five conventional spontaneous undulators. A conceptual design study has been made for the undulator systems for these X-FELs. It includes segmentation into 6.1 m long undulator 'cells'. Each consists of a 5 m long undulator 'segment', a separate quadrupole, one horizontal and one vertical corrector, and a phase shifter. These items are presented and discussed

  8. Issues at a university based FEL center

    International Nuclear Information System (INIS)

    Smith, T.I.; Schwettman, H.A.

    1998-01-01

    The Stanford FEL Center was established in September 1990. In this paper, the FEL itself, the Center infrastructure, the interaction with experimenters and the educational mission are described. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  9. Analysis of the FEL-RF interaction in recirculating, energy-recovering linacs with an FEL

    CERN Document Server

    Merminga, L; Benson, S; Bolshakov, A; Doolittle, L; Neil, George R

    1999-01-01

    Recirculating, energy-recovering linacs can be used as driver accelerators for high power FELs. Instabilities which arise from fluctuations of the cavity fields are investigated. Energy changes can cause beam loss on apertures, phase oscillations and optical cavity detuning. These effects in turn cause changes in the laser output power through a time-varying FEL gain function. All three effects change the beam-induced voltage in the cavities and can lead to unstable variations of the accelerating field and output laser power. We have developed a model of the coupled system and solved it both analytically and numerically. It includes the beam-cavity interaction, low level RF feedback, and the electron-photon interaction. The latter includes the FEL gain function in terms of cavity detuning, energy offset, and is valid both in the small signal gain and in the saturated regimes. We have demonstrated that in the limit of small perturbations, the linear theory agrees with the numerical solutions and have performed...

  10. The JAERI superconducting RF linac-based FELS and THEIR cryogenics

    International Nuclear Information System (INIS)

    Minehara, Eisuke J.

    2003-01-01

    In the 21st century, we need a powerful and efficient free-electron laser (FEL) for academic and industrial uses in almost all fields. In order to realize such a tunable, highly-efficient, high average power, high peak power and ultra-short pulse FEL, the JAERI FEL group and I have developed an industrial FEL driven by a compact, stand-alone and zero-boil off super-conducting rf linac with an energy-recovery geometry. Our discussions on the JAERI FEL and cryogenics will cover market-requirements for the industrial FELs, some answers from the JAERI compact, stand-alone and zero-boil off cryostat concept and operational experiences over these 9 years, our discovery of the new, highly-efficient, high-power, and ultra-short pulse lasing mode, and the energy-recovery geometry. (author)

  11. A superconducting short period undulator for a harmonic generation FEL experiment

    International Nuclear Information System (INIS)

    Ingold, G.; Solomon, L.; Ben-Zvi, I.; Krinsky, S.; Li, D.; Lynch, D.; Sheehan, J.; Woodle, M.; Qiu, X.Z.; Yu, L.H.

    1993-01-01

    A three stage superconducting (SC) undulator for a high gain harmonic generation (HGE) FEL experiment in the infrared is under construction at the NSLS in collaboration with Grumman Corporation. A novel undulator technology suitable for short period (6-40mm) undulators will be employed for all three stages, the modulator, the dispersive section and the radiator. The undulator triples the frequency of a 10.4μm CO 2 seed laser. So far a 27 period (one third of the final radiator) prototype radiator has been designed, built and tested

  12. Status of the SXFEL Facility

    Directory of Open Access Journals (Sweden)

    Zhentang Zhao

    2017-06-01

    Full Text Available The Shanghai soft X-ray Free-Electron Laser facility (SXFEL is being developed in two steps; the SXFEL test facility (SXFEL-TF, and the SXFEL user facility (SXFEL-UF. The SXFEL-TF is a critical development step towards the construction a soft X-ray FEL user facility in China, and is under commissioning at the Shanghai Synchrotron Radiation Facility (SSRF campus. The test facility is going to generate 8.8 nm FEL radiation using an 840 MeV electron linac passing through the two-stage cascaded HGHG-HGHG or EEHG-HGHG (high-gain harmonic generation, echo-enabled harmonic generation scheme. The construction of the SXFEL-TF started at the end of 2014. Its accelerator tunnel and klystron gallery were ready for equipment installation in April 2016, and the installation of the SXFEL-TF linac and radiator undulators were completed by the end of 2016. In the meantime, the SXFEL-UF, with a designated wavelength in the water window region, began construction in November 2016. This was based on upgrading the linac energy to 1.5 GeV, and the building of a second undulator line and five experimental end-stations. Construction status and the future plans of the SXFEL are reported in this paper.

  13. Lattice Design for a High-Power Infrared FEL

    Science.gov (United States)

    Douglas, D. R.

    1997-05-01

    A 1 kW infrared FEL, funded by the U.S. Navy, is under construction at Jefferson Lab. This device will be driven by a compact, 42 MeV, 5 mA, energy-recovering, CW SRF-based linear accelerator to produce light in the 3-6.6 μm range. The machine concept comprises a 10 MeV injector, a linac based on a single high-gradient Jefferson Lab accelerator cryomodule, a wiggler and optical cavity, and an energy-recovery recirculation arc. Energy recovery limits cost and technical risk by reducing the RF power requirements in the driver accelerator. Following deceleration to 10 MeV, the beam is dumped. Stringent phase space requirements at the wiggler, low beam energy, and high beam current subject the accelerator lattice to numerous constraints. Principal considerations include: transport and delivery to the FEL of a high-quality, high-current beam; the impact of coherent synchrotron radiation (CSR) during beam recirculation transport; beam optics aberration control, to provide low-loss energy-recovery transport of a 5% relative momentum spread, high-current beam; attention to possible beam breakup (BBU) instabilities in the recirculating accelerator; and longitudinal phase space management during beam transport, to optimize RF drive system control during energy recovery and FEL operation. The presentation will address the design process and design solution for an accelerator transport lattice that meets the requirements imposed by these physical phenomena and operational necessities.

  14. Design and implementation of Web-based SDUV-FEL engineering database system

    International Nuclear Information System (INIS)

    Sun Xiaoying; Shen Liren; Dai Zhimin; Xie Dong

    2006-01-01

    A design of Web-based SDUV-FEL engineering database and its implementation are introduced. This system will save and offer static data and archived data of SDUV-FEL, and build a proper and effective platform for share of SDUV-FEL data. It offers usable and reliable SDUV-FEL data for operators and scientists. (authors)

  15. Gain length dependence on phase shake in the VUV-FEL at the TESLA Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Pflueger, J. [DESY/HASYLAB, Hamburg (Germany); Schneidmiller, E.A. [Automatic Systems Corporation, Samara (Russian Federation); Pierini, P. [INFN, Milano (Italy)

    1995-12-31

    The TTF VUV FEL, which is in its design stage at DESY, consists of a 30 m long SASE FEL which will radiate around 6 nm, driven by a superconducting linac with final energy of 1 GeV. One of the important issues in its design is the undulator performance, which is studied in this paper. The present setup, including FODO lattice, is discussed in this paper. Results of simulations, including the realistic wiggler field errors and beam stearing, are presented. Dependence of the performance, in particular the gain and saturation length as well as the saturation peak power, on the wiggler field errors is discussed.

  16. Progress toward a soft X-ray FEL

    International Nuclear Information System (INIS)

    Pellegrini, C.

    1988-01-01

    We review the FEL physics and obtain scaling laws for the extension of its operation to the soft X-ray region. We also discuss the properties of an electron beam needed to drive such an FEL, and the present state of the art for the beam production. (orig.)

  17. Tunability and Power Characteristics of the LEBRA Infrared FEL

    CERN Document Server

    Tanaka, Toshinari; Hayakawa, Yasushi; Mori, Akira; Nogami, Kyoko; Sato, Isamu; Yokoyama, Kazue

    2004-01-01

    Application of the infrared (IR) Free-Electron Laser (FEL) was started in October 2003 at the Laboratory for Electron Beam Research and Application (LEBRA) of Nihon University. The FEL system consisted of silver-coated copper mirrors has demonstrated wavelength tunability ranged from 940 to 6100 nm as a function of the electron energy and the undulator K-value. Wavelength dependence of the FEL output power has been measured in term of different electron beam currents, electron energies and the undulator K-values. Approximate 25 mJ/macropulse has been obtained in the range 2 to 3 microns, which corresponds to peak power of 2 MW, provided that the FEL pulse length is 0.4 ps as resulted from the measurement by an interferometric method. The power decrease observed in the longer wavelength range is due to a large diffraction loss in the FEL guiding optics and the vacuum ducts.

  18. Computer modelling of statistical properties of SASE FEL radiation

    International Nuclear Information System (INIS)

    Saldin, E. L.; Schneidmiller, E. A.; Yurkov, M. V.

    1997-01-01

    The paper describes an approach to computer modelling of statistical properties of the radiation from self amplified spontaneous emission free electron laser (SASE FEL). The present approach allows one to calculate the following statistical properties of the SASE FEL radiation: time and spectral field correlation functions, distribution of the fluctuations of the instantaneous radiation power, distribution of the energy in the electron bunch, distribution of the radiation energy after monochromator installed at the FEL amplifier exit and the radiation spectrum. All numerical results presented in the paper have been calculated for the 70 nm SASE FEL at the TESLA Test Facility being under construction at DESY

  19. Diode readout electronics for beam intensity and position monitors for FELs

    International Nuclear Information System (INIS)

    Herrmann, S; Hart, P; Freytag, M; Pines, J; Weaver, M; Sapozhnikov, L; Nelson, S; Koglin, J; Carini, G A; Tomada, A; Haller, G

    2014-01-01

    LCLS uses Intensity-Position Monitors (IPM) to measure intensity and position of the FEL x-ray pulses. The primary beam passes through a silicon nitride film and four diodes, arranged in quadrants, detect the backscattered x-ray photons. The position is derived from the relative intensity of the four diodes, while the sum provides beam intensity information. In contrast to traditional synchrotron beam monitors, where diodes measure a DC current signal, the LCLS beam monitors have to cope with the pulsed nature of the FEL, which requires a large single shot dynamic range. A key component of these beam monitors is the readout electronics. The first generation of beam monitors showed some limitations. A new scheme with upgraded electronics, firmware and software was implemented resulting in a more robust and reliable measuring tool.

  20. FEL polarization control studies on Dalian coherent light source

    International Nuclear Information System (INIS)

    Zhang Tong; Deng Haixiao; Wang Dong; Zhao Zhentang; Zhang Weiqing; Wu Guorong; Dai Dongxu; Yang Xueming

    2013-01-01

    The polarization switch of a free-electron laser (FEL) is of great importance to the user scientific community. In this paper, we investigate the generation of controllable polarization FEL from two well-known approaches for Dalian coherent light source, i.e., crossed planar undulator and elliptical permanent undulator. In order to perform a fair comparative study, a one-dimensional time-dependent FEL code has been developed, in which the imperfection effects of an elliptical permanent undulator are taken into account. Comprehensive simulation results indicate that the residual beam energy chirp and the intrinsic FEL gain may contribute to the degradation of the polarization performance for the crossed planar undulator. The elliptical permanent undulator is not very sensitive to the undulator errors and beam imperfections. Meanwhile, with proper configurations of the main planar undulators and additional elliptical permanent undulator section, circular polarized FEL with pulse energy exceeding 100 μJ could be achieved at Dalian coherent light source. (authors)

  1. FEL induced molecular operation on cultured fibroblast and cholesterol ester

    International Nuclear Information System (INIS)

    Awazu, Kunio; Ogino, Seiji; Nishimura, Eiichi; Tomimasu, Takio; Yasumoto, Masato.

    1997-01-01

    Free Electron Lasers can be used to molecular operation such as the delivery of a number of molecules into cells or the separation of cholesterol ester. First, cultured NIH3T3 cells are exposed to high-intensity short pulse Free Electron Laser (FEL). The FEL is tuned to an absorption maximum wavelength, 6.1 μm, which was measured by microscopic FTIR. A fluorescence dye in the cell suspension is more absorbed into the cell with the FEL exposure due to the FEL-induced mechanical stress to the cell membrane. A quantitative fluorescence microscopy is used to determine the efficiency of delivery. Second, as a compound in a lipid cell, cholesterol ester was exposed to 5.75 μm FEL. FTIR measurement was done to evaluate the modification of the cholesterol ester. The result showed that the fluorescence intensity of sample cells were higher than that of control cells, and there was significant difference between the control and the sample group. Blebbing and the colony formation of the cells were observed for cells with mechanical stress. As for the cholesterol ester, it can be modified by the FEL irradiation. These results showed that FEL can be used as a molecular operational tool by photo-chemical and photo-mechanical interaction. (author)

  2. Renewal of KU-FEL Facility

    CERN Document Server

    Kii, Toshiteru; Masuda, Kai; Murakami, Shio; Ohgaki, Hideaki; Yamazaki, Tetsuo; Yoshikawa, Kiyoshi; Zen, Heishun

    2004-01-01

    Users demands to a high power tunable IR laser are increasing in Japan in energy-related science, such as basic study of high-efficiency solar cells, generation of new energy source of alcohol and/or H2 from polluted gas, and separation of DNA and/or RNA. To satisfy these demands, we decided to renew our FEL facility more user friendly and to operate more flexibly. Construction and fundamental studies on the KU-FEL have been carried out at a building of Institute of Chemical Research where few other accelerators are operating. Therefore, available machine time for our experiments is quite limited. We are now modifying the room by adding concrete walls of 2-m thickness and some space for users will be available. The present FEL system will be moved to the room A photocathode RF-gun system will be nearly added to the system and the present thermionic RF-gun will be used ternatively according to the demands of users. The photocathode material will be Cs2Te. The room with the shielding will be completed in June, ...

  3. Scheme for generation of fully-coherent, TW power level hard X-ray pulses from baseline undulators at the European X-ray FEL

    International Nuclear Information System (INIS)

    Geloni, Gianluca; Kocharyan, Vitali; Saldin, Evgeni

    2010-07-01

    The most promising way to increase the output power of an X-ray FEL (XFEL) is by tapering the magnetic field of the undulator. Also, significant increase in power is achievable by starting the FEL process from a monochromatic seed rather than from noise. This report proposes to make use of a cascade self-seeding scheme with wake monochromators in a tunable-gap baseline undulator at the European XFEL to create a source capable of delivering coherent radiation of unprecedented characteristics at hard X-ray wavelengths. Compared with SASE X-ray FEL parameters, the radiation from the new source has three truly unique aspects: complete longitudinal and transverse coherence, and a peak brightness three orders of magnitude higher than what is presently available at LCLS. Additionally, the new source will generate hard X-ray beam at extraordinary peak (TW) and average (kW) power level. The proposed source can thus revolutionize fields like single biomolecule imaging, inelastic scattering and nuclear resonant scattering. The self-seeding scheme with the wake monochromator is extremely compact, and takes almost no cost and time to be implemented. The upgrade proposed in this paper could take place during the commissioning stage of the European XFEL, opening a vast new range of applications from the very beginning of operations.We present feasibility study and examplifications for the SASE2 line of the European XFEL. (orig.)

  4. A HIGH REPETITION RATE VUV-SOFT X-RAY FEL CONCEPT

    International Nuclear Information System (INIS)

    Corlett, J.; Byrd, J.; Fawley, W.M.; Gullans, M.; Li, D.; Lidia, S.M.; Padmore, H.; Penn, G.; Pogorelov, I.; Qiang, J.; Robin, D.; Sannibale, F.; Staples, J.W.; Steier, C.; Venturini, M.; Virostek, S.; Wan, W.; Wells, R.; Wilcox, R.; Wurtele, J.; Zholents, A.

    2007-01-01

    We report on design studies for a seeded FEL light source that is responsive to the scientific needs of the future. The FEL process increases radiation flux by several orders of magnitude above existing incoherent sources, and offers the additional enhancements attainable by optical manipulations of the electron beam: control of the temporal duration and bandwidth of the coherent output, reduced gain length in the FEL, utilization of harmonics to attain shorter wavelengths, and precise synchronization of the x-ray pulse with seed laser systems. We describe an FEL facility concept based on a high repetition rate RF photocathode gun, that would allow simultaneous operation of multiple independent FEL's, each producing high average brightness, tunable over the VUV-soft x-ray range, and each with individual performance characteristics determined by the configuration of the FEL. SASE, enhanced-SASE (ESASE), seeded, harmonic generation, and other configurations making use of optical manipulations of the electron beam may be employed, providing a wide range of photon beam properties to meet varied user demands

  5. Experimental results of two stage harmonic generation with picosecond pulses on the Stanford Mark III FEL

    International Nuclear Information System (INIS)

    Hooper, B.A.; Utah Univ., Salt Lake City; Stanford Univ., CA; Benson, S.V.; Madey, M.J.; Cutolo, A.; Naples Univ.

    1988-01-01

    We report experimental results on upper harmonic conversion using a lithium niobate and a beta barium borate crystal to quadruple the FEL light up into the visible and near infrared. The effects of finite linewidth, birefringent walk-off, and group velocity walk-off on conversion efficiency will be discussed with reference to the experimental results. (orig.)

  6. High-power FEL design issues - a critical review

    Energy Technology Data Exchange (ETDEWEB)

    Litvinenko, V.N.; Madey, J.M.J.; O`Shea, P.G. [Duke Univ., Durham, NC (United States)

    1995-12-31

    The high-average power capability of FELs has been much advertised but little realized. In this paper we provide a critical analysis of the technological and economic issues associated with high-average power FEL operation from the UV to near IR. The project of IR FEL for the Siberian Center of photochemical researches is described. The distinguished features of this project are the use of the race-track microtron-recuperator and the {open_quotes}electron output of radiation{close_quotes}. The building for the machine is under reconstruction now. About half of hardware has been manufactured. The assembly of installation began.

  7. Present status and future directions of the JAERI superconducting RF linac-based FEL

    International Nuclear Information System (INIS)

    Minehara, EJ.; Yamauchi, T.; Sugimori, M.; Sawamura, M.; Hajima, R.; Nagai, R.; Kikuzawa, N.; Nishimori, N.; Shizuma, T.

    2000-01-01

    The JAERI superconducting rf linac based FEL has successfully been lased to produce a 2.34kW FEL light and l00kW electron beam output in quasi continuous wave operation in February 2000. Twice larger output than the present program goal of 1kW was achieved to improve the optical out coupling method in the FEL optical resonator, the electron gun, and the electron beam optics in the JAERI FEL driver. As our next 2 years program goal is the 100kW class FEL light and a few MW class electron beam output in average, quasi continuous wave operation of the light and electron beam will be planned in the JAERI superconducting rf linac based FEL facility. Conceptual and engineering design options needed for such a very high power operation will be discussed to improve and to upgrade the existing facility. Finally, several applications, table-top superconducting rf linac based FELs, and an X-ray FEL R and D will be discussed as a next-five years program at JAERI-FEL laboratory. (author)

  8. THE VISA FEL UNDULATOR

    International Nuclear Information System (INIS)

    CARR, R.; CORNACCHIA, M.; EMMA, P.; NUHN, H.D.; FULAND, R.; JOHNSON, E.; RAKOWSKY, G.; LIDIA, S.; BERTOLINI, L.; LIBKIND, M.; FRIGOLA, P.; PELLEGRINI, C.; ROSENZWEIG, J.

    1998-01-01

    The Visible-Infrared SASE Amplifier (VISA) FEL is an experimental device designed to show Self Amplified Spontaneous Emission (SASE) to saturation in the visible light energy range. It will generate a resonant wavelength output from 800--600 nm, so that silicon detectors may be used to characterize the optical properties of the FEL radiation. VISA is the first SASE FEL designed to reach saturation, and its diagnostics will provide important checks of theory. This paper includes a description of the VISA undulator, the magnet measuring and shimming system, and the alignment strategy. VISA will have a 4 m pure permanent magnet undulator comprising four 99 cm segments, each with 55 periods of 18 mm length. The undulator has distributed focusing built into it, to reduce the average beta function of the 70--85 MeV electron beam to about 30 cm. There are four FODO cells per segment. The permanent magnet focusing lattice consists of blocks mounted on either side of the electron beam, in the undulator gap. The most important undulator error parameter for a free electron laser is the trajectory walkoff or lack of overlap of the photon and electron beams. Using pulsed wire magnet measurements and magnet shimming, the authors expect to be able to control trajectory walkoff to less than ±50 pm per field gain length

  9. Commissioning experience and beam physics measurements at the SwissFEL Injector Test Facility

    Directory of Open Access Journals (Sweden)

    T. Schietinger

    2016-10-01

    Full Text Available The SwissFEL Injector Test Facility operated at the Paul Scherrer Institute between 2010 and 2014, serving as a pilot plant and test bed for the development and realization of SwissFEL, the x-ray Free-Electron Laser facility under construction at the same institute. The test facility consisted of a laser-driven rf electron gun followed by an S-band booster linac, a magnetic bunch compression chicane and a diagnostic section including a transverse deflecting rf cavity. It delivered electron bunches of up to 200 pC charge and up to 250 MeV beam energy at a repetition rate of 10 Hz. The measurements performed at the test facility not only demonstrated the beam parameters required to drive the first stage of an FEL facility, but also led to significant advances in instrumentation technologies, beam characterization methods and the generation, transport and compression of ultralow-emittance beams. We give a comprehensive overview of the commissioning experience of the principal subsystems and the beam physics measurements performed during the operation of the test facility, including the results of the test of an in-vacuum undulator prototype generating radiation in the vacuum ultraviolet and optical range.

  10. ETHERNET BASED EMBEDDED SYSTEM FOR FEL DIAGNOSTICS AND CONTROLS

    International Nuclear Information System (INIS)

    Jianxun Yan; Daniel Sexton; Steven Moore; Albert Grippo; Kevin Jordan

    2006-01-01

    An Ethernet based embedded system has been developed to upgrade the Beam Viewer and Beam Position Monitor (BPM) systems within the free-electron laser (FEL) project at Jefferson Lab. The embedded microcontroller was mounted on the front-end I/O cards with software packages such as Experimental Physics and Industrial Control System (EPICS) and Real Time Executive for Multiprocessor System (RTEMS) running as an Input/Output Controller (IOC). By cross compiling with the EPICS, the RTEMS kernel, IOC device supports, and databases all of these can be downloaded into the microcontroller. The first version of the BPM electronics based on the embedded controller was built and is currently running in our FEL system. The new version of BPM that will use a Single Board IOC (SBIOC), which integrates with an Field Programming Gate Array (FPGA) and a ColdFire embedded microcontroller, is presently under development. The new system has the features of a low cost IOC, an open source real-time operating system, plug and play-like ease of installation and flexibility, and provides a much more localized solution

  11. An Experimental Study of an FEL Oscillator with a Linear Taper

    International Nuclear Information System (INIS)

    Benson, S.; Gubeli, J.; Neil, G.R.

    2001-01-01

    Motivated by the work of Saldin, Schneidmiller and Yurkov, we have measured the detuning curve widths, spectral characteristics, efficiency, and energy spread as a function of the taper for low and high Q resonators in the IR Demo FEL at Jefferson Lab. Both positive and negative tapers were used. Gain and frequency agreed reasonably well with the predictions of a single mode theory. The efficiency agreed reasonably well for a negative taper with a high Q resonator but disagreed for lower Q values due to the large slippage parameter and the non-ideal resonator Q. We saw better efficiency for a negative taper than for the same positive taper. The energy spread induced in the beam, normalized to the efficiency is larger for the positive taper than for the corresponding negative taper. This indicates that a negative taper is preferred over a positive taper in an energy recovery FEL

  12. Towards the Fourier limit on the super-ACO Storage Ring FEL

    International Nuclear Information System (INIS)

    Couprie, M.E.; De Ninno, G.; Moneron, G.; Nutarelli, D.; Hirsch, M.; Garzella, D.; Renault, E.; Roux, R.; Thomas, C.

    2001-01-01

    Systematic studies on the Free Electron Laser (FEL) line and micropulse have been performed on the Super-ACO storage ring FEL with a monochromator and a double-sweep streak camera under various conditions of operation (detuning, 'CW' and Q-switched mode). From these data, it appears that the FEL is usually operated very close to the Fourier limit

  13. Towards the Fourier limit on the super-ACO Storage Ring FEL

    CERN Document Server

    Couprie, Marie Emmanuelle; Garzella, D; Hirsch, M; Moneron, G; Nutarelli, D; Renault, E; Roux, R; Thomas, C

    2001-01-01

    Systematic studies on the Free Electron Laser (FEL) line and micropulse have been performed on the Super-ACO storage ring FEL with a monochromator and a double-sweep streak camera under various conditions of operation (detuning, 'CW' and Q-switched mode). From these data, it appears that the FEL is usually operated very close to the Fourier limit.

  14. Mode Dynamics in the Bragg FEL Based on Coupling of Propagating and Trapped Waves

    CERN Document Server

    Ginzburg, N S; Peskov, N Yu; Rozental, R M; Sergeev, A; Zaslavsky, V Yu

    2005-01-01

    A novel Bragg FEL scheme is discussed in which an electron beam synchronously interacts with a propagating wave, and the latter is coupled to a quasi cut-off mode. This coupling is realized by either helical or asimuthally symmetric corrugation of the waveguide walls. The quasi cut-off mode provides feedback in the system leading to self-excitation of the whole system while the efficiency in steady-state regime of generation is almost completely determined by the propagating mode, synchronous to the beam. Analysis based on averaged time domain approach as well as on direct PIC code simulation shows that the efficiency of such a device in the single mode single frequency regime can be rather high. The main advantage of the novel Bragg resonator is provision of higher selectivity over transverse index than traditional scheme of Bragg FEL. The cold microwave testing of the Bragg structure based on coupling of propagating and trapped waves in the Ka band demonstrated a good agreement with theoretical consideratio...

  15. Optical properties of infrared FELs from the FELI Facility II

    Energy Technology Data Exchange (ETDEWEB)

    Saeki, K.; Okuma, S.; Oshita, E. [Free Electron Laser Institute, Osaka (Japan)] [and others

    1995-12-31

    The FELI Facility II has succeeded in infrared FEL oscillation at 1.91 {mu} m using a 68-MeV, 40-A electron beam from the FELI S-band linac in February 27, 1995. The FELI Facility II is composed of a 3-m vertical type undulator ({lambda}u=3.8cm, N=78, Km a x=1.4, gap length {ge}20mm) and a 6.72-m optical cavity. It can cover the wavelength range of 1-5{mu}m. The FELs can be delivered from the optical cavity to the diagnostics room through a 40-m evacuated optical pipeline. Wavelength and cavity length dependences of optical properties such as peak power, average power, spectrum width, FEL macropulse, FEL transverse profile are reported.

  16. Electron beam optics for the FEL experiment and IFEL experiment

    International Nuclear Information System (INIS)

    van Steenbergen, A.

    1990-01-01

    Electron beam transport system parameters for the FEL experiment and for the FEL experiment are given. The perturbation of the ''interaction region'' optics due to wiggler focussing is taken into account and a range of solutions are provided for relevant Twiss parameters in the FEL or IFEL region. Modifications of the transport optics in specific sections of the overall beam transport lines, for reasons of enhanced diagnostic capability or enhanced beam momentum analysis resolution, is also presented

  17. X-FEL revolution - X-ray lasers to probe matter

    International Nuclear Information System (INIS)

    Collet, E.; Cammarata, M.; Harmand, M.; Couprie, M.E.

    2015-01-01

    X-ray free electron lasers (X-FEL) are now able to generate X-ray pulses of a few femto-seconds (1 fs = 10"-"1"5 s), which allows the real-time observation of the movements of atoms. The changes in the structure of a material can be seen whatever the material, this is illustrated with the PYP protein (that is the photo-receptor of a bacterium), the changes between an initial state and 100 ps after light excitation show the displacement of the atoms of the protein. The brightness of X-FEL can be so high that it allows the study of nano-metric structures but it enables X-FEL radiation to ionize matter and the crystal sample may be destroyed, this becomes the new limit of X-FEL applied to crystallography. Another application of X-FEL to structure studies is to allow the study of systems that are not crystal systems like macromolecules, proteins or even viruses. Hundreds of patterns of X-ray diffractions of an object are combined to form a 3-dimensional image of the object in the wave vector space and it is then possible but very complex to deduce the real 3-dimensional structure of the object. (A.C.)

  18. Research opportunities at the proposed Los Alamos XUV-FEL user facility

    International Nuclear Information System (INIS)

    Conradson, S.D.; Newman, B.E.

    1990-01-01

    This paper reports that within the last several years a number of meetings and conferences have addressed the unique scientific opportunities which would result from the development of an RF-linac FEL user facility accessing the XUV and mid-IR spectral regions. The capabilities of a number of linear and nonlinear spectroscopies would be enhanced by one or more features of the FEL output, e.g., its free tunability in these regions, transform-limited linewidth, high peak power and brightness, time structure, and the possibility of multi-color pump-probe experiments utilizing the coordinated output from more than one FEL oscillator. These advances would in turn benefit a variety of scientific areas. In the realm of basic science, experiments or measurements which ether require an FEL or where increased sensitivity would be advantageous can be found in quantum, atomic, cluster, molecular, and condensed matter physics, magnetic materials, surface science and catalysis, non-linear spectroscopy, and biophysics and -chemistry and physics, advanced fabrication processes, medical applications, and others. These applications form the basis for the specifications of the FEL and for the design of the laboratories for the proposed FEL user facility at Los Alamos

  19. Observation of superradiance in a short-pulse FEL oscillator

    NARCIS (Netherlands)

    Jaroszynski, D. A.; Chaix, P.; Piovella, N.; Oepts, D.; Knippels, G.M.H.; van der Meer, A. F. G.; Weits, H. H.

    1997-01-01

    Superradiance has been experimentally studied, in a short-pulse free-electron laser (FEL) oscillator. Superradiance is the optimal way of extracting optical radiation from an FEL and can be characterised by the following scale laws: peak optical power P, scales as the square of electron charge, Q,

  20. Optical klystron FELs based on tandem electrostatic accelerators

    International Nuclear Information System (INIS)

    Gover, A.; Friedman, A.

    1989-01-01

    The operation of tandem electrostatic accelerator FELs in an optical klystron configuration makes it possible to take advantage of the high quality (low emittance and low energy spread) of the electron beam in electrostatic accelerators. With evolving microwiggler technology, state-of-the-art moderate energy (6-14-MeV) tandem electrostatic accelerators may be used for the development of highly coherent tunable radiation sources in the entire IR region. The authors present the general design considerations and the predicted operating characteristics of such devices and refer in specifics to a design of a 10-1000-μm FEL based on the parameters of a 5-6-MeV high current tandem accelerator. The operating wavelength of FELs is determined by the Doppler shift formula

  1. Generation of doublet spectral lines at self-seeded X-ray FELs

    Energy Technology Data Exchange (ETDEWEB)

    Geloni, Gianluca [European XFEL GmbH, Hamburg (Germany); Kocharyan, Vitali; Saldin, Evgeni [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2010-11-15

    Self-seeding schemes, consisting of two undulators with a monochromator in between, aim to reduce the bandwidth of SASE X-ray FELs. We recently proposed to use a new method of monochromatization exploiting a single crystal in Braggtransmission geometry for self-seeding in the hard X-ray range. The obvious and technically possible extension is to use such kind of monochromator setup with two -or more- crystals arranged in a series to spectrally filter the SASE radiation at two -or more- closely-spaced wavelengths within the FEL gain band. This allows for the production of doublet- or multiplet-spectral lines. Applications exist over a broad range of hard X-ray wavelengths involving any process where there is a large change in cross section over a narrow wavelength range, as in multiple wavelength anomalous diffraction techniques (MAD). In this paper we consider the simultaneous operation of the LCLS hard X-ray FEL at two closely spaced wavelengths. We present simulation results for the LCLS baseline, and we show that this method can produce fully coherent radiation shared between two longitudinal modes. Mode spacing can be easily tuned within the FEL gain band, i.e. within 10 eV. An interesting aspect of the proposed scheme is a way of modulating the electron bunch at optical frequencies without a seed quantum laser. In fact, the XFEL output intensity contains an oscillating ''mode-beat'' component whose frequency is related to the frequency difference between the pair of longitudinal modes considered. Thus, at saturation one obtains FEL-induced modulations of energy loss and energy spread in the electron bunch at optical frequency. These modulations can be converted into density modulation at the same optical frequency with the help of a weak chicane installed behind the baseline undulator. Powerful coherent radiation can then be generated with the help of an optical transition radiation (OTR) station,which have important applications. In this paper we briefly

  2. Generation of doublet spectral lines at self-seeded X-ray FELs

    International Nuclear Information System (INIS)

    Geloni, Gianluca; Kocharyan, Vitali; Saldin, Evgeni

    2010-11-01

    Self-seeding schemes, consisting of two undulators with a monochromator in between, aim to reduce the bandwidth of SASE X-ray FELs. We recently proposed to use a new method of monochromatization exploiting a single crystal in Braggtransmission geometry for self-seeding in the hard X-ray range. The obvious and technically possible extension is to use such kind of monochromator setup with two -or more- crystals arranged in a series to spectrally filter the SASE radiation at two -or more- closely-spaced wavelengths within the FEL gain band. This allows for the production of doublet- or multiplet-spectral lines. Applications exist over a broad range of hard X-ray wavelengths involving any process where there is a large change in cross section over a narrow wavelength range, as in multiple wavelength anomalous diffraction techniques (MAD). In this paper we consider the simultaneous operation of the LCLS hard X-ray FEL at two closely spaced wavelengths. We present simulation results for the LCLS baseline, and we show that this method can produce fully coherent radiation shared between two longitudinal modes. Mode spacing can be easily tuned within the FEL gain band, i.e. within 10 eV. An interesting aspect of the proposed scheme is a way of modulating the electron bunch at optical frequencies without a seed quantum laser. In fact, the XFEL output intensity contains an oscillating ''mode-beat'' component whose frequency is related to the frequency difference between the pair of longitudinal modes considered. Thus, at saturation one obtains FEL-induced modulations of energy loss and energy spread in the electron bunch at optical frequency. These modulations can be converted into density modulation at the same optical frequency with the help of a weak chicane installed behind the baseline undulator. Powerful coherent radiation can then be generated with the help of an optical transition radiation (OTR) station,which have important applications. In this paper we briefly

  3. R and D Requirements, RF Gun Mode Studies, FEL-2 Steady-State Studies, Preliminary FEL-1 Time-Dependent Studies, and Preliminary Layout Option Investigation

    International Nuclear Information System (INIS)

    Byrd, John; Corlett, John; Doolittle, Larry; Fawley, William; Lidia, Steven; Penn, Gregory; Ratti, Alex; Staples, John; Wilcox Russell; Wurtele, Jonathan; Zholents, Alexander

    2005-01-01

    This report constitutes the third deliverable of LBNLs contracted role in the FERMI (at) Elettra Technical Optimization study. It describes proposed RandD activities for the baseline design of the Technical Optimization Study, initial studies of the RF gun mode-coupling and potential effects on beam dynamics, steady-state studies of FEL-2 performance to 10 nm, preliminary studies of time-dependent FEL-1 performance using electron bunch distribution from the start-to-end studies, and a preliminary investigation of a configuration with FEL sinclined at a small angle from the line of the linac

  4. FELI linac for IR- and UV-FEL facilities

    International Nuclear Information System (INIS)

    Tomimasu, T.; Morii, Y.; Abe, S.

    1995-01-01

    FELI linac and IR-FEL facilities are now under construction and electron beams of 30-75MeV will be used for FIR- and IR-FEL experiments in this summer. It is composed of a 5-MeV electron injector and seven ETL type accelerating waveguides with a length of 2.93m (2π/3 mode, linearly tapered type). The injector consists of a 150-kV DC thermoionic triode gun operated by a 178.5-MHz and 500-ps pulser, a 714-MHz prebuncher (SHB), and a 2856-MHz standing wave type buncher (SWB). The linac is operated in three modes of 24μs, 12.5μs and 0.5μs. With a choice of three modes, the maximum beam loaded energy can be changed from 165 MeV to 288 MeV. The linac beam is sent to four vertical type undulators using S-type BT systems installed at 30-MeV, 75-MeV, 120-MeV, and 165-MeV sections at a 24-μs pulse beam load. The beam, once used for lasing at 30-MeV section or at 75-MeV section, can be bent back to the following accelerating waveguide and is reaccelerated and reused for lasing. Parameters of four undulators and intended FEL applications are shown. FEL spectral widths and wavelength limitations are also reviewed and discussed for 0.3μm FEL oscillations FELI is aiming at by the end of 1996. (author)

  5. Proceedings of the 3rd topical meeting on FEL and high power radiation

    International Nuclear Information System (INIS)

    Hiramatsu, Shigenori

    1994-01-01

    The meeting was held on June 10 and 11, 1993, at the National Laboratory for High Energy Physics. This is the joint study meeting with 31st large power microwave-milliwave study meeting. At the meeting, lectures were given on the report of 1st Asia FEL study meeting, infrared free electron laser (FEL) project in JAERI, present state of Free Electron Laser Research Institute Inc., infrared FEL experiment in the Institute of Scientific and Industrial Research, Osaka University, FEL experiment in UVSOR storage ring, NIJI-4 SRFEL, simulation of FEL oscillation in photo-klystron, vacuum UVFEL in PF, beam characteristics of small photon storage ring, micro-cherenkov FEL using field emission array, coherent spontaneous emission and radiation build-up in FEL oscillator, stability of soft X-ray multilayers under exposure to multipole Wigger radiation, long life Zn 2 excimer excited with relativistic electron beam, development of large power klystron in KEK, design of 1 THz gyrotron and first experiment, experiment of relativistic peniotron, experiments of 3rd and 10th cyclotron harmonic peniotron oscillators and others. (K.I.)

  6. A proposed visible FEL Facility at Boeing

    Energy Technology Data Exchange (ETDEWEB)

    Dowell, D.H.; Adamski, J.L.; Hayward, T.D. [Boeing Defense & Space Group, Seattle, WA (United States)] [and others

    1995-12-31

    A 1-kW average power, visible wavelength FEL is described, based on a 120-MeV, 0.1. A macropulse average current linac operating at a duty factor of 0. 6% and having average beam power of 70 kW. The accelerator will employ a demonstrated photoinjector, 18-MeV, 433-MHz linac as an injector, followed by a 1300-MHz longitudinal phase space {open_quotes} linearizer,{close_quotes} a magnetic buncher chicane, and seven 1300-MHz, pulsed traveling wave linac sections. The magnets used to transport the beam from the linac to the FEL centerline, the 5-m THUNDER wiggler, and the optical resonator will be reclaimed from previous FEL demonstration experiments. We expect to attain pulse lengths of 7 ps for 3.5 nC, with minimal distortion of the pulse profile and normalized rms emittance of 7.5 {+-} 2.5 {pi} mm-mr. FELEX projects a laser conversion efficiency of 4.3 %, yielding average output of 3 kW.

  7. Options for the Cryogenic System for the BESSY-FEL

    International Nuclear Information System (INIS)

    Kutzschbach, A.; Quack, H.; Haberstroh, Ch.; Knobloch, J.; Anders, W.; Pflueckhahn, D.

    2004-01-01

    The Berliner Elektronenspeicherring-Gesellschaft fuer Synchrotronstrahlung (BESSY GmbH), in January 1999, started operation of BESSY II, a third-generation synchrotron light source delivering world-class, high-brilliance photon beams in the VUV to XUV spectral range. Based on this experience, BESSY has recently proposed the construction of a free-electron laser (FEL), covering a photon-energy range from 20 eV to 1 keV.To reduce the development time and cost, BESSY intends to use proven cavity and cryostat technology developed for the TESLA linear collider. However, the cryogenic load per cavity is approximately 15 to 20 times higher than that anticipated for the (pulsed) TESLA operation. This paper describes possible modifications of the cryostat design to accommodate these additional losses.Superconducting RF cavities are the basis of the FEL accelerator providing the driving electron beam with 2.25 GeV. The accelerator consists of five cold sections separated by warm sections reserved for bunch compression and beam extraction. The total refrigeration load will be covered by a single refrigerator. Several possible layouts of the cryogenic system are described and their advantages and disadvantages are discussed

  8. Present and next steps of the JAERI superconducting rf linac based FEL program

    International Nuclear Information System (INIS)

    Minehara, E.J.; Yamauchi, T.; Sugimoto, M.

    2000-01-01

    The JAERI superconducting rf linac based FEL has successfully been lased to produce a 0.3 kW FEL light and 100 kW or larger electron beam output in quasi continuous wave operation in 1999. The 1 kW class output as our present program goal will be achieved to improve the optical out coupling method in the FEL optical resonator, the electron gun, and the electron beam optics in the JAERI FEL driver. As our next 5 year program goal is the 100 kW class FEL light and a few tens MW class electron beam output in average, quasi continuous wave operation of the light and electron beam will be planned in the JAERI superconducting rf linac based FEL facility. Conceptual design options needed for such a very high power operation and shorter wavelength light sources will be discussed to improve and to upgrade the exciting facility. (author)

  9. Validity and reliability of the Fels physical activity questionnaire for children.

    Science.gov (United States)

    Treuth, Margarita S; Hou, Ningqi; Young, Deborah R; Maynard, L Michele

    2005-03-01

    The aim was to evaluate the reliability and validity of the Fels physical activity questionnaire (PAQ) for children 7-19 yr of age. A cross-sectional study was conducted among 130 girls and 99 boys in elementary (N=70), middle (N=81), and high (N=78) schools in rural Maryland. Weight and height were measured on the initial school visit. All the children then wore an Actiwatch accelerometer for 6 d. The Fels PAQ for children was given on two separate occasions to evaluate reliability and was compared with accelerometry data to evaluate validity. The reliability of the Fels PAQ for the girls, boys, and the elementary, middle, and high school age groups range was r=0.48-0.76. For the elementary school children, the correlation coefficient examining validity between the Fels PAQ total score and Actiwatch (counts per minute) was 0.34 (P=0.004). The correlation coefficients were lower in middle school (r=0.11, P=0.31) and high school (r=0.21, P=0.006) adolescents. The sport index of the Fels PAQ for children had the highest validity in the high school participants (r=0.34, P=0.002). The Fels PAQ for children is moderately reliable for all age groups of children. Validity of the Fels PAQ for children is acceptable for elementary and high school students when the total activity score or the sport index is used. The sport index was similar to the total score for elementary students but was a better measure of physical activity among high school students.

  10. Design considerations for single-stage and two-stage pneumatic pellet injectors

    International Nuclear Information System (INIS)

    Gouge, M.J.; Combs, S.K.; Fisher, P.W.; Milora, S.L.

    1988-09-01

    Performance of single-stage pneumatic pellet injectors is compared with several models for one-dimensional, compressible fluid flow. Agreement is quite good for models that reflect actual breech chamber geometry and incorporate nonideal effects such as gas friction. Several methods of improving the performance of single-stage pneumatic pellet injectors in the near term are outlined. The design and performance of two-stage pneumatic pellet injectors are discussed, and initial data from the two-stage pneumatic pellet injector test facility at Oak Ridge National Laboratory are presented. Finally, a concept for a repeating two-stage pneumatic pellet injector is described. 27 refs., 8 figs., 3 tabs

  11. Prospects for a soft x-ray FEL powered by a relativistic-klystron high-gradient accelerator (RK-HGA)

    International Nuclear Information System (INIS)

    Shay, H.D.; Barletta, W.A.; Yu, S.S.; Schlueter, R.; Deis, G.A.

    1989-01-01

    We present here the concept of x-ray FELs using high gain, single-pass amplifiers with electron beams accelerated in high gradient structures powered by relativistic klystrons. Other authors have also considered x-ray FELs; the unique aspect of this paper is the use of high gradient acceleration. One of the authors has previously presented preliminary studies on this concept. The intent in this paper is to display the results of a top level design study on a high gain FEL, to present its sensitivity to a variety of fabrication and tuning errors, to discuss several mechanisms for increasing gain yet more, and to present explicitly the output characteristics of such an FEL. The philosophy of the design study is to find a plausible operating point which employs existing or nearly existing state-of-the-art technologies while minimizing the accelerator and wiggler lengths. The notion is to distribute the technical risk as evenly as possible over the several technologies so that each must advance only slightly in order to make this design feasible. This study entailed no systematic investigation of possible costs so that, for example, the sole criterion for balancing the trade-off between beam energy and wiggler length is that the two components have comparable lengths. 20 refs., 10 figs., 1 tab

  12. Elements of a realistic 17 GHz FEL/TBA design

    International Nuclear Information System (INIS)

    Hopkins, D.B.; Halbach, K.; Hoyer, E.H.; Sessler, A.M.; Sternbach, E.J.

    1989-01-01

    Recently, renewed interest in an FEL version of a two-beam accelerator (TBA) has prompted a study of practical system and structure designs for achieving the specified physics goals. This paper presents elements of a realistic design for an FEL/TBA suitable for a 1 TeV, 17 GHz linear collider. 13 refs., 8 figs., 2 tabs

  13. UV-VUV FEL program at DUKE storage ring with OK-4 optical klystron

    International Nuclear Information System (INIS)

    Litvinenko, V.N.; Madey, J.M.J.; Vinokurov, N.A.

    1993-01-01

    A 1 GeV electron storage ring dedicated for UV-VUV FEL operation is under construction at the Duke University Free Electron Laser Laboratory. The UV-VUV-FEL project, based on the collaboration of the Duke FEL Laboratory and Budker Institute for Nuclear Physics is described. The main parameters of the DFELL storage ring, of the OK-4 optical klystron, and the experimental set-up are presented. The parameters of UV-VUV FEL are given and the possible future upgrades to this system are discussed

  14. Study of Coherence Limits and Chirp Control in Long Pulse FEL Oscillator

    CERN Document Server

    Gover, Avraham; Socol, Yehoshua; Volshonok, Mark

    2004-01-01

    Electrostatic Accelerator FELs have the capacity to generate long pulses of tens microseconds and more, that in principle can be elongated indefinitely (CW operation). This allows the generation of very coherent radiation. The fundamental linewidth is extremely narrow [1], and in practice the spectral width is limited by the pulse duration (Fourier transform limit) and e-beam stability. Practical problems such as the accelerator terminal voltage drop due to a non-ideal electron beam transport may reduce the length of the radiation pulse and hence create a limiting factor for coherence measurement. The current status of the Israeli Tandem Electrostatic Accelerator FEL allows the generation of pulses of tens microseconds duration. It has been operated recently past saturation, and produces single mode coherent radiation of relative linewidth ~Δf/f=10-5 at frequencies near 100GHz. A clear frequency chirp is observed during pulses of tens of microseconds (0.1-1 MHz/mS), and is directly proportional to th...

  15. FEL Trajectory Analysis for the VISA Experiment

    International Nuclear Information System (INIS)

    Nuhn, Heinz-Dieter

    1998-01-01

    The Visual to Infrared SASE Amplifier (VISA) [1] FEL is designed to achieve saturation at radiation wavelengths between 800 and 600 nm with a 4-m pure permanent magnet undulator. The undulator comprises four 99-cm segments each of which has four FODO focusing cells superposed on the beam by means of permanent magnets in the gap alongside the beam. Each segment will also have two beam position monitors and two sets of x-y dipole correctors. The trajectory walk-off in each segment will be reduced to a value smaller than the rms beam radius by means of magnet sorting, precise fabrication, and post-fabrication shimming and trim magnets. However, this leaves possible inter-segment alignment errors. A trajectory analysis code has been used in combination with the FRED3D [2] FEL code to simulate the effect of the shimming procedure and segment alignment errors on the electron beam trajectory and to determine the sensitivity of the FEL gain process to trajectory errors. The paper describes the technique used to establish tolerances for the segment alignment

  16. Industrial Applications of High Average Power FELS

    CERN Document Server

    Shinn, Michelle D

    2005-01-01

    The use of lasers for material processing continues to expand, and the annual sales of such lasers exceeds $1 B (US). Large scale (many m2) processing of materials require the economical production of laser powers of the tens of kilowatts, and therefore are not yet commercial processes, although they have been demonstrated. The development of FELs based on superconducting RF (SRF) linac technology provides a scaleable path to laser outputs above 50 kW in the IR, rendering these applications economically viable, since the cost/photon drops as the output power increases. This approach also enables high average power ~ 1 kW output in the UV spectrum. Such FELs will provide quasi-cw (PRFs in the tens of MHz), of ultrafast (pulsewidth ~ 1 ps) output with very high beam quality. This talk will provide an overview of applications tests by our facility's users such as pulsed laser deposition, laser ablation, and laser surface modification, as well as present plans that will be tested with our upgraded FELs. These upg...

  17. Towards attosecond X-ray pulses from the FEL

    International Nuclear Information System (INIS)

    Zholents, Alexander A.; Fawley, William M.

    2004-01-01

    The ability to study ultrafast phenomena has been recently advanced by the demonstrated production and measurement of a single, 650-attosecond (10 18 sec), VUV x-ray pulse[1] and, latter, a 250-attosecond pulse[2]. The next frontier is a production of the x-ray pulses with shorter wavelengths and in a broader spectral range. Several techniques for a generation of an isolated, attosecond duration, short-wavelength x-ray pulse based upon the ponderomotive laser acceleration [3], SASE and harmonic cascade FELs ([4] - [6]) had been already proposed. In this paper we briefly review a technique proposed in [5] and present some new results

  18. Femtosecond resolution timing jitter correction on a TW scale Ti:sapphire laser system for FEL pump-probe experiments.

    Science.gov (United States)

    Csatari Divall, Marta; Mutter, Patrick; Divall, Edwin J; Hauri, Christoph P

    2015-11-16

    Intense ultrashort pulse lasers are used for fs resolution pump-probe experiments more and more at large scale facilities, such as free electron lasers (FEL). Measurement of the arrival time of the laser pulses and stabilization to the machine or other sub-systems on the target, is crucial for high time-resolution measurements. In this work we report on a single shot, spectrally resolved, non-collinear cross-correlator with sub-fs resolution. With a feedback applied we keep the output of the TW class Ti:sapphire amplifier chain in time with the seed oscillator to ~3 fs RMS level for several hours. This is well below the typical pulse duration used at FELs and supports fs resolution pump-probe experiments. Short term jitter and long term timing drift measurements are presented. Applicability to other wavelengths and integration into the timing infrastructure of the FEL are also covered to show the full potential of the device.

  19. FEL for the polymer processing industries

    Science.gov (United States)

    Kelley, Michael J.

    1997-05-01

    Polymers are everywhere in modern life because of their unique combination of end-use functionalities, ease of processing, recycling potential and modest cost. The physical and economic scope of the infrastructure committed to present polymers makes the introduction of entirely new chemistry unlikely. Rather, the breadth of commercial offerings more likely to shrink in the face of the widening mandate for recycling, especially of packaging. Improved performance and new functionality must therefore come by routes such as surface modification. However they must come with little environmental impact and at painfully low cost. Processing with strongly absorbed light offers unique advantages. The journal and patent literatures disclose a number of examples of benefits that can be achieved, principally by use of excimer lasers or special UV lamps. Examples of commercialization are few, however, because of the unit cost and maximum scale of existing light sources. A FEL, however, offers unique advantages: tunability to the optimum wavelength, potential for scale up to high average power, and a path to attractively low unit cost of light. A business analysis of prospective applications defines the technical and economic requirements a FEL for polymer surface processing must meet. These are compared to FEL technology as it now stands and as it is envisioned.

  20. Statistical properties of SASE FEL radiation: experimental results from the VUV FEL at the TESLA test facility at DESY

    International Nuclear Information System (INIS)

    Yurkov, M.V.

    2002-01-01

    This paper presents an experimental study of the statistical properties of the radiation from a SASE FEL. The experiments were performed at the TESLA Test Facility VUV SASE FEL at DESY operating in a high-gain linear regime with a gain of about 10 6 . It is shown that fluctuations of the output radiation energy follows a gamma-distribution. We also measured for the first time the probability distribution of SASE radiation energy after a narrow-band monochromator. The experimental results are in good agreement with theoretical predictions, the energy fluctuations after the monochromator follow a negative exponential distribution

  1. Production of transform-limited X-ray pulses through self-seeding at the European X-ray FEL

    Energy Technology Data Exchange (ETDEWEB)

    Geloni, Gianluca [European XFEL GmbH, Hamburg (Germany); Kocharyan, Vitali; Saldin, Evgeni [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2011-09-15

    An important goal for any advanced X-ray FEL is an option for providing Fourier-limited X-ray pulses. In this way, no monochromator is needed in the experimental hall. Self-seeding is a promising approach to significantly narrow the SASE bandwidth to produce nearly transform-limited pulses. These are important for many experiments including 3D diffraction imaging.We discuss the implementation of a single-crystal self-seeding scheme in the hard X-ray lines of the European XFEL. For this facility, transform-limited pulses are particularly valuable since they naturally support the extraction of more FEL power than at saturation by exploiting tapering in the tunable-gap baseline undulators. Tapering consists of a stepwise change of the undulator gap from segment to segment. Based on start-to-end simulations dealing with the up-to-date parameters of the European XFEL, we show that the FEL power reaches about 400 GW, or one order of magnitude higher power than the SASE saturation level (20 GW). This analysis indicates that our self-seeding scheme is not significantly affected by non-ideal electron phase-space distribution, and yields about the same performance as in the case for an electron beam with ideal parameters. The self-seeding scheme with a single crystal monochromator is extremely compact (about 5 m long), and cost estimations are low enough to consider adding it to the European XFEL capabilities from the very beginning of the operation phase. (orig.)

  2. Production of transform-limited X-ray pulses through self-seeding at the European X-ray FEL

    International Nuclear Information System (INIS)

    Geloni, Gianluca; Kocharyan, Vitali; Saldin, Evgeni

    2011-09-01

    An important goal for any advanced X-ray FEL is an option for providing Fourier-limited X-ray pulses. In this way, no monochromator is needed in the experimental hall. Self-seeding is a promising approach to significantly narrow the SASE bandwidth to produce nearly transform-limited pulses. These are important for many experiments including 3D diffraction imaging.We discuss the implementation of a single-crystal self-seeding scheme in the hard X-ray lines of the European XFEL. For this facility, transform-limited pulses are particularly valuable since they naturally support the extraction of more FEL power than at saturation by exploiting tapering in the tunable-gap baseline undulators. Tapering consists of a stepwise change of the undulator gap from segment to segment. Based on start-to-end simulations dealing with the up-to-date parameters of the European XFEL, we show that the FEL power reaches about 400 GW, or one order of magnitude higher power than the SASE saturation level (20 GW). This analysis indicates that our self-seeding scheme is not significantly affected by non-ideal electron phase-space distribution, and yields about the same performance as in the case for an electron beam with ideal parameters. The self-seeding scheme with a single crystal monochromator is extremely compact (about 5 m long), and cost estimations are low enough to consider adding it to the European XFEL capabilities from the very beginning of the operation phase. (orig.)

  3. FEL system with homogeneous average output

    Energy Technology Data Exchange (ETDEWEB)

    Douglas, David R.; Legg, Robert; Whitney, R. Roy; Neil, George; Powers, Thomas Joseph

    2018-01-16

    A method of varying the output of a free electron laser (FEL) on very short time scales to produce a slightly broader, but smooth, time-averaged wavelength spectrum. The method includes injecting into an accelerator a sequence of bunch trains at phase offsets from crest. Accelerating the particles to full energy to result in distinct and independently controlled, by the choice of phase offset, phase-energy correlations or chirps on each bunch train. The earlier trains will be more strongly chirped, the later trains less chirped. For an energy recovered linac (ERL), the beam may be recirculated using a transport system with linear and nonlinear momentum compactions M.sub.56, which are selected to compress all three bunch trains at the FEL with higher order terms managed.

  4. GINGER simulations of short-pulse effects in the LEUTL FEL

    International Nuclear Information System (INIS)

    Huang, Z.; Fawley, W.M.

    2001-01-01

    While the long-pulse, coasting beam model is often used in analysis and simulation of self-amplified spontaneous emission (SASE) free-electron lasers (FELs), many current SASE demonstration experiments employ relatively short electron bunches whose pulse length is on the order of the radiation slippage length. In particular, the low-energy undulator test line (LEUTL) FEL at the Advanced Photon Source has recently lased and nominally saturated in both visible and near-ultraviolet wavelength regions with a sub-ps pulse length that is somewhat shorter than the total slippage length in the 22-m undulator system. In this paper we explore several characteristics of the short pulse regime for SASE FELs with the multidimensional, time-dependent simulation code GINGER, concentrating on making a direct comparison with the experimental results from LEUTL. Items of interest include the radiation gain length, pulse energy, saturation position, and spectral bandwidth. We address the importance of short-pulse effects when scaling the LEUTL results to proposed x-ray FELs and also briefly discuss the possible importance of coherent spontaneous emission at startup

  5. Face expressive lifting (FEL): an original surgical concept combined with bipolar radiofrequency.

    Science.gov (United States)

    Divaris, Marc; Blugerman, Guillermo; Paul, Malcolm D

    2014-01-01

    Aging can lead to changes in facial expressions, transforming the positive youth expression of happiness to negative expressions as sadness, tiredness, and disgust. Local skin distension is another consequence of aging, which can be difficult to treat with rejuvenation procedures. The "face expressive lifting" (FEL) is an original concept in facial rejuvenation surgery. On the one hand, FEL integrates established convergent surgical techniques aiming to correct the age-related negative facial expressions. On the other hand, FEL incorporates novel bipolar RF technology aiming to correct local skin distension. One hundred twenty-six patients underwent FEL procedure. Facial expression and local skin distension were assessed with 2 years follow-up. There was a correction of negative facial expression for 96 patients (76 %) and a tightening of local skin distension in 100 % of cases. FEL is an effective procedure taking into account and able to correct both age-related negative changes in facial expression and local skin distension using radiofrequency. Level of Evidence: Level IV, therapeutic study.

  6. Los Alamos free-electron laser (FEL) rf system

    International Nuclear Information System (INIS)

    Tallerico, P.J.; Lynch, M.T.

    1985-01-01

    The FEL rf system was designed for 3.6-MW rf pulses from two klystrons to drive two linacs and one deflection cavity at 1300 MHz. Two 108.33-MHz subharmonic buncher cavities and one fundamental buncher were also built, each powered by a 5-kW amplifier. A single phase-coherent source drives the various amplifiers as well as the grid of the electron gun, which is pulsed at 21.67 MHz. The initial buncher system did not work as well as expected, and the first linac tank required more rf power than anticipated. The light output was extremely sensitive to amplitude and phase errors. More powerful klystrons were developed and installed, and a method was discovered for operating a single subharmonic buncher and allowing the first linac to complete the bunching process. This paper shows the actual configuration used to operate the laser and discusses future improvements

  7. Beam profile diagnostics system for SDUV-FEL

    International Nuclear Information System (INIS)

    Xu Yichao; Han Lifeng; Chen Yongzhong

    2010-01-01

    A new beam profile diagnostics system for Shanghai Deep Ultraviolet Free Electron Laser (SDUV-FEL) has been developed based on industrial Ethernet, with good versatility and scalability. The system includes three major subsystems for image acquisition,pneumatic control and stepper motor control, respectively. Virtual instrument technology is adopted to drive the devices, and to develop the measurement software. In this paper,we describe the system structure, and its hardware and software design. The results of system commissioning are given as well. As an important diagnostic tool and data acquisition method, the system has been successfully applied to the measurement and control of the SDUV-FEL.(authors)

  8. Observation of SASE in LEBRA FEL system

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, T. E-mail: tanaka@lebra.nihon-u.ac.jp; Hayakawa, K.; Sato, I.; Hayakawa, Y.; Yokoyama, K

    2004-08-01

    A large enhancement of spontaneous undulator radiation has been observed during FEL lasing experiments at LEBRA. The enhancement has been observed only with the detector for the infrared fundamental radiation. The detector output signal showed spikes during the electron beam pulse, yet no apparent enhancement was observed with a CCD camera monitoring the visible harmonic radiations. An enhancement factor greater than 10 has been obtained with a 2.4 m long undulator with a completely detuned FEL optical cavity length and depends strongly on the parameters of the linac RF system. This implies that the SASE operation is possible even with a conventional electron beam by achieving suitable bunch compression.

  9. Status and Future Plans of JAERI Eergy-Recovery Linac FEL

    CERN Document Server

    Hajima, R; Kikuzawa, N; Minehara, E J; Nagai, R; Nishimori, N; Nishitani, T; Sawamura, M; Yamauchi, T

    2005-01-01

    An energy-recovery linac for a high-power free-electron laser is in operation at Japan Atomic Energy Research Institute (JAERI). In this paper, we report results of research activities and future plans of JAERI ERL-FEL, which are the construction of FEL transport line, the operation of newly-installed RF controller and IOTs, the development of super-lattice photo cathode.

  10. Electron beam acceleration and compression for short wavelength FELs

    International Nuclear Information System (INIS)

    Raubenheimer, T.O.

    1994-11-01

    A single pass UV or X-ray FEL will require a low emittance electron beam with high peak current and relatively high beam energy, a few hundred MeV to many GeV. To achieve the necessary peak current and beam energy, the beams must be bunch compressed and they must be accelerated in long transport lines where dispersive and wakefield emittance dilutions are important. In this paper, we will describe the sources and significance of the dilutions during acceleration, bunch compression, and transport through the undulator. In addition, we will discuss sources of jitter, especially effects arising from the bunch compressions, and the possible cancellation techniques

  11. Suppression of mode-beating in a saturated hole-coupled FEL oscillator

    International Nuclear Information System (INIS)

    Krishnagopal, S.; Xie, M.; Kim, K.J.

    1992-08-01

    In a hole-coupled resonator, either empty or loaded with a linear FEL gain medium, the phenomenon of mode-degeneracy and mode-beating have been studied. When the magnitudes of the eigenvalues, derived from a linear analysis, are equal for two or more dominant eigenmodes, the system cannot achieve a stable beam-profile. We investigate this phenomenon when a saturated FEL is present within the cavity, thus introducing non-linearity. We use a three-dimensional FEL oscillator code, based on the amplifier code TDA, and show that mode-beating is completely suppressed in the nonlinear saturated regime. We suggest a simple, qualitative model for the mechanism responsible for this suppression

  12. Start-to-end simulations of SASE FEL at the TESLA Test Facility

    International Nuclear Information System (INIS)

    Dohlus, M.; Floettmann, K.; Limberg, T.; Saldin, E.L; Schneidmiller, E.A.; Kozlov, O.S.; Yurkov, M.V.; Piot, Ph.

    2004-01-01

    VUV SASE FEL at the TESLA Test Facility (Phase 1) was successfully running and reached saturation in the wavelength range 80-120 nm. We present a posteriori start-to-end simulations of this machine. The codes Astra and elegant are used to track particle distribution from the cathode to the undulator entrance. An independent simulation of the beam dynamics in the bunch compressor is performed with the code CSRtrack. SASE FEL process is simulated with the code FAST. The simulation results are in good agreement with the measured properties of SASE FEL radiation. It is shown that the beam dynamics after the bunch compressor is mainly defined by space charge fields. FEL radiation is produced by the head of the electron bunch having a peak current of about 3 kA and a duration of 100 fs

  13. Development of a pump-probe facility with sub-picosecond time resolution combining a high-power ultraviolet regenerative FEL amplifier and a soft X-ray SASE FEL

    International Nuclear Information System (INIS)

    Faatz, B.; Fateev, A.A.; Feldhaus, J.; Krzywinski, J.; Pflueger, J.; Rossbach, J.; Saldin, E.L.; Schneidmiller, E.A.; Yurkov, M.V.

    2001-01-01

    This paper presents the conceptual design of a high power radiation source with laser-like characteristics in the ultraviolet spectral range at the TESLA Test Facility (TTF). The concept is based on the generation of radiation in a regenerative FEL amplifier (RAFEL). The RAFEL described in this paper covers a wavelength range of 200-400 nm and provides 200 fs pulses with 2 mJ of optical energy per pulse. The linac operates at 1% duty factor and the average output radiation power exceeds 100 W. The RAFEL will be driven by the spent electron beam leaving the soft X-ray FEL, thus providing minimal interference between these two devices. The RAFEL output radiation has the same time structure as the X-ray FEL and the UV pulses are naturally synchronized with the soft X-ray pulses from the TTF FEL. Therefore, it should be possible to achieve synchronization close to the duration of the radiation pulses (200 fs) for pump-probe techniques using either an UV pulse as a pump and soft X-ray pulse as a probe, or vice versa

  14. Rational design of hypoallergens applied to the major cat allergen Fel d 1.

    Science.gov (United States)

    Saarne, T; Kaiser, L; Grönlund, H; Rasool, O; Gafvelin, G; van Hage-Hamsten, M

    2005-05-01

    Allergen-specific immunotherapy is the only treatment for allergic disease providing long-lasting symptom relief. Currently, it is mainly based on the use of crude allergen extracts. The treatment may be improved by the use of genetically engineered allergens, hypoallergens, aiming at a more effective and safer therapy. The aim of this study was to provide a rational design of hypoallergen candidates for immunotherapy by using structural information and knowledge of B and T cell epitopes of an allergen. The three-dimensional structure of the major cat allergen Fel d 1 was systematically altered by duplication of selected T cell epitopes and disruption of disulphide bonds. Seven Fel d 1 derivatives were generated and screened for allergenic reactivity in comparison with recombinant Fel d 1 in competition-ELISA. The allergenicity was further evaluated in basophil activation experiments and T cell reactivity was assessed in a lymphoproliferation assay. Three out of seven Fel d 1 derivatives, with two duplicated T cell epitopes and one or two disulphide bonds disrupted, were carefully evaluated. The three derivatives displayed a strong reduction in allergenicity with 400-900 times lower IgE-binding capacity than recombinant Fel d 1. In addition, they induced a lower degree of basophil activation and similar or stronger T cell proliferation than recombinant Fel d 1. By a rational approach, we have constructed three Fel d 1 hypoallergens with reduced IgE-binding capacities and retained T cell reactivities. This strategy may be applied to any well-characterized allergen to improve immunotherapy for allergic patients.

  15. Seeded quantum FEL at 478 keV

    Energy Technology Data Exchange (ETDEWEB)

    Guenther, Marc [Max-Planck-Institut fuer Quantenoptik, Garching (Germany); Thirolf, Peter; Seggebrock, Thorben [Ludwig-Maximilians-Universitaet Muenchen, Garching (Germany); Habs, Dietrich [Max-Planck-Institut fuer Quantenoptik, Garching (Germany); Ludwig-Maximilians-Universitaet Muenchen, Garching (Germany)

    2012-07-01

    We present for the first time a concept for a seeded {gamma} quantum Free Electron Laser (QFEL) at 478 keV (transition in {sup 7}Li). To produce a highly intense and coherent {gamma} beam, we intend to use a seeded FEL scheme. Important for the production of a highly brilliant and coherent {gamma} beam are novel refractive {gamma} lenses for focusing and an efficient monochromator, allowing to generate a very intense and coherent seed beam. To realize such a coherent {gamma} beam at 478 keV (1/38 A), it is suitable to use a quantum FEL design based on a new ''asymmetric'' laser-electron Compton back scattering scheme as pursued for the MeGaRay and ELI-NP facilities. Here the pulse length of the laser is much longer than the electron bunch length, equivalent to a {gamma}-FEL with laser wiggler. The coherence of a seeded QFEL can open up totally new areas of fundamental physics and applications. Especially, 478 keV can be attractive for ''green energy'' and life-science research, such as the detection of Li deposition in the brain for manic-depressive psychosis treatment with high spatial resolution or isotope-specific nuclear waste management and treatment.

  16. Heat treatment of long pulse operation for the JAERI ERL-FEL

    International Nuclear Information System (INIS)

    Sawamura, Masaru; Nagai, Ryoji; Kikuzawa, Nobuhiro; Hajima, Ryoichi; Minehara, Eisuke

    2005-01-01

    RF power sources are replaced from all-solid-state amplifiers to IOT amplifiers for the superconducting accelerators (SCAs) and a vacuum tube amplifier for the SHB of the JAERI ERL-FEL. A long pulse operation increased the pressure in the cryostat of the SCA. The single-cell SCA can be operated in 9% duty according to the time constant of the pressure decay in the cryostat. SHB can be operated in 4% duty which is limited by the frequency range of the tuners. The result of the ABAQUS calculation shows the more duty operation. (author)

  17. Short wavelength FELS

    International Nuclear Information System (INIS)

    Sheffield, R.L.

    1991-01-01

    The generation of coherent ultraviolet and shorter wavelength light is presently limited to synchrotron sources. The recent progress in the development of brighter electron beams enables the use of much lower energy electron rf linacs to reach short-wavelengths than previously considered possible. This paper will summarize the present results obtained with synchrotron sources, review proposed short- wavelength FEL designs and then present a new design which is capable of over an order of magnitude higher power to the extreme ultraviolet. 17 refs., 10 figs

  18. Short wavelength FELS

    Energy Technology Data Exchange (ETDEWEB)

    Sheffield, R.L.

    1991-01-01

    The generation of coherent ultraviolet and shorter wavelength light is presently limited to synchrotron sources. The recent progress in the development of brighter electron beams enables the use of much lower energy electron rf linacs to reach short-wavelengths than previously considered possible. This paper will summarize the present results obtained with synchrotron sources, review proposed short- wavelength FEL designs and then present a new design which is capable of over an order of magnitude higher power to the extreme ultraviolet. 17 refs., 10 figs.

  19. Sustained lasing of HHG-seeded FEL by using EOS-based timing control

    International Nuclear Information System (INIS)

    Watanabe, Takahiro; Okayasu, Yuichi; Togashi, Tadashi; Hara, Toru; Tomizawa, Hiromitsu; Matsubara, Shinichi; Aoyama, Makoto; Yamakawa, Koichi; Iwasaki, Atsushi; Ohwada, Shigeki; Sato, Takahiro; Yamauchi, Kaoru; Otake, Yuji; Ohshima, Takashi; Ogawa, Kanade; Togawa, Kazuaki; Tanaka, Takashi; Takahashi, Eiji; Midorikawa, Katsumi; Yabashi, Makina; Tanaka, Hitoshi; Ishikawa, Tetsuya

    2013-01-01

    High-harmonic-generation (HHG) based seeded FEL experiments were demonstrated at SCSS, SPring-8. Seeded FEL has advantageous features against SASE such that there is no intrinsic nature of shot-noise fluctuation and output FEL pulses are in principle fully coherent in both transverse and longitudinal axes. In practical user experiments, however, an overlap between electron bunches and seed laser pulses in six-dimensional phase space needs to be precisely maintained for securing the stable lasing. Otherwise, the overlap could be quickly lost and the lasing is no more sustained. For the stable lasing, we have developed an EO (electro-optic) based timing control system, which enables to observe a timing drift between electron bunches and laser pulses, and compensate for it. Experimental results of the seeded FEL with and without the EO timing control are compared, and the effectiveness of the timing system is discussed. (author)

  20. Mode distortion measurements on the Jefferson lab IR FEL

    CERN Document Server

    Benson, S V; Shinn, M

    2002-01-01

    We have previously reported on the analytical calculations of mirror distortion in a high-power FEL with a near-concentric cavity. This analysis allowed us to estimate the power level at which the FEL interaction would be affected, though no exact theory of FEL power vs. distortion exists at this point. Recently we have directly measured the mode size and beam quality as a function of power using a resonator with a center wavelength of 5 mu m. The resonator mirrors were calcium fluoride. This particular material exhibits a large amount of distortion for a given power but, due to the negative slope of refractive index vs. temperature, adds almost no optical phase distortion on the laser output. The mode in the cavity can thus be directly calculated from the measurements at the resonator output. The presence of angular jitter produced raw measurements inconsistent with cold cavity expectations. Removing the effects of the angular jitter, we derive results in agreement with cold cavity measurements. The result i...

  1. Start-To-End Simulations of the Energy Recovery Linac Prototype FEL

    CERN Document Server

    Gerth, Christopher; Muratori, Bruno; Owen, Hywel; Thompson, Neil R

    2004-01-01

    Daresbury Laboratory is currently building an Energy Recovery Linac Prototype (ERLP) that serves as a testbed for the study of beam dynamics and accelerator technology important for the design and construction of the proposed 4th Generation Light Source (4GLS) project. Two major objectives for the ERLP are the operation of an oscillator infra-red FEL and demonstration of energy recovery from an electron bunch with an energy spread induced by the FEL. In this paper we present start-to-end simulations including the FEL of the ERLP. The beam dynamics in the high-brightness injector, which consists of a DC photocathode gun and a super-conducting booster, have been modelled using the particle tracking code ASTRA. After the main linac, in which the particles are accelerated to 35 MeV, particles have been tracked with the code ELEGANT. The 3D code GENESIS was used to model the FEL interaction with the electron beam. Different modes of operation and their impact on the design of the ERLP are discussed.

  2. On FEL integral equation and electron energy loss in intermediate gain regime

    International Nuclear Information System (INIS)

    Takao, Masaru

    1994-03-01

    The FEL pendulum equation in a intermediate gain small signal regime is investigated. By calculating the energy loss of the electron beam in terms of the solution of the pendulum equation, we confirm the consistency of the FEL equation in intermediate gain regime. (author)

  3. Multi-mode competition in an FEL oscillator at perfect synchronism of an optical cavity

    CERN Document Server

    Dong, Z W; Kii, T; Yamazaki, T; Yoshikawa, K

    2002-01-01

    The sustained saturation in a short pulse free electron laser (FEL) oscillator at perfect synchronism of an optical cavity has been observed recently by Japan Atomic Energy Research Institute (JAERI) FEL group by using their super-conducting linac (Phys. Rev. Lett., in preparation). The experiments have clearly shown that FEL efficiency becomes maximum at perfect synchronism, although it has been considered that only a transient state exists at perfect synchronism due to the lethargy effect. Through careful analyses of the experimental condition of JAERI FEL, we found that, in spite of the short length of the electron micro-bunch, the saturation appears due to the following features, which were different from other FEL experiments: (1) very large ratio of the small signal gain to losses, (2) very long electron macro-bunch which can tolerate a slow start up. The saturation and high efficiency at perfect synchronism were benefited from the contribution of the weak sideband instability. In order to analyse these...

  4. A Mode Locked UV-FEL

    CERN Document Server

    Parvin, Parviz

    2004-01-01

    An appropriate resonator has been designed to generate femtosecond mode locked pulses in a UV FEL with the modulator performance based on the gain switching. The gain broadening due to electron energy spread affects on the gain parameters, small signal gain (γ0) and saturation intensity (Is), to determine the optimum output coupling as small.

  5. Comparisons of single-stage and two-stage approaches to genomic selection.

    Science.gov (United States)

    Schulz-Streeck, Torben; Ogutu, Joseph O; Piepho, Hans-Peter

    2013-01-01

    Genomic selection (GS) is a method for predicting breeding values of plants or animals using many molecular markers that is commonly implemented in two stages. In plant breeding the first stage usually involves computation of adjusted means for genotypes which are then used to predict genomic breeding values in the second stage. We compared two classical stage-wise approaches, which either ignore or approximate correlations among the means by a diagonal matrix, and a new method, to a single-stage analysis for GS using ridge regression best linear unbiased prediction (RR-BLUP). The new stage-wise method rotates (orthogonalizes) the adjusted means from the first stage before submitting them to the second stage. This makes the errors approximately independently and identically normally distributed, which is a prerequisite for many procedures that are potentially useful for GS such as machine learning methods (e.g. boosting) and regularized regression methods (e.g. lasso). This is illustrated in this paper using componentwise boosting. The componentwise boosting method minimizes squared error loss using least squares and iteratively and automatically selects markers that are most predictive of genomic breeding values. Results are compared with those of RR-BLUP using fivefold cross-validation. The new stage-wise approach with rotated means was slightly more similar to the single-stage analysis than the classical two-stage approaches based on non-rotated means for two unbalanced datasets. This suggests that rotation is a worthwhile pre-processing step in GS for the two-stage approaches for unbalanced datasets. Moreover, the predictive accuracy of stage-wise RR-BLUP was higher (5.0-6.1%) than that of componentwise boosting.

  6. Comments on advanced, time-resolved imaging techniques for free-electron laser (FEL) experiments

    Energy Technology Data Exchange (ETDEWEB)

    Lumpkin, A.H.

    1992-01-01

    An extensive set of time-resolved imaging experiments has been performed on rf-linac driven free-electron lasers (FELs) over the past few years. These experiments have addressed both micropulse and macropulse timescales on both the charged-particle beam and the wiggler/undulator outputs (spontaneous emission and lasing). A brief review of first measurements on photoinjecter micropulse elongation, submacropulse phase slew in drive lasers, submacropulse wavelength shifts in lasers, etc. is presented. This is followed by discussions of new measurements of 35-MeV electron beam micropulse bunch length (<10 ps) using optical transition radiation, some of the first single bend synchrotron radiation beam profile measurements at gamma <80, and comments on the low-jitter synchroscan streak camera tuner. These techniques will be further developed on the 200-650 MeV linac test stand at the Advanced Photon Source (APS) in the next few years. Such techniques should be adaptable to many of the present FEL designs and to some aspects of the next generation of light sources.

  7. Comments on advanced, time-resolved imaging techniques for free-electron laser (FEL) experiments

    Energy Technology Data Exchange (ETDEWEB)

    Lumpkin, A.H.

    1992-11-01

    An extensive set of time-resolved imaging experiments has been performed on rf-linac driven free-electron lasers (FELs) over the past few years. These experiments have addressed both micropulse and macropulse timescales on both the charged-particle beam and the wiggler/undulator outputs (spontaneous emission and lasing). A brief review of first measurements on photoinjecter micropulse elongation, submacropulse phase slew in drive lasers, submacropulse wavelength shifts in lasers, etc. is presented. This is followed by discussions of new measurements of 35-MeV electron beam micropulse bunch length (<10 ps) using optical transition radiation, some of the first single bend synchrotron radiation beam profile measurements at gamma <80, and comments on the low-jitter synchroscan streak camera tuner. These techniques will be further developed on the 200-650 MeV linac test stand at the Advanced Photon Source (APS) in the next few years. Such techniques should be adaptable to many of the present FEL designs and to some aspects of the next generation of light sources.

  8. Beam transport design for a recirculating-linac FEL driver

    International Nuclear Information System (INIS)

    Neuffer, D.; Douglas, D.; Li, Z.; Cornacchia, M.; Garren, A.

    1996-01-01

    The beam transport system for the CEBAF Industrial FEL includes a two-pass transport of the beam with acceleration from injector to wiggler, followed by energy recovery transport from wiggler to dump. From that context, the authors discuss the general problem of multi-pass energy-recovery beam transport for FELs. Tunable, nearly-isochronous, large-momentum-acceptance transport systems are required. The entire transport must preserve beam quality, particularly in the acceleration transport to the wiggler, and have low losses throughout the entire system. Various possible designs are presented, and results of dynamic analyses are discussed

  9. Design considerations of a MW-scale, high-efficiency, industrial-use, ultraviolet FEL amplifier

    International Nuclear Information System (INIS)

    Pagani, C.; Saldin, E.L.; Schneidmiller, E.A.; Yurkov, M.V.

    2000-01-01

    Theoretical and experimental work in free electron laser (FEL) physics, and the physics of particle accelerators over the last 10 years has pointed to the possibility of the generation of MW-level optical beams with laser-like characteristics in the ultraviolet (UV) spectral range. The concept is based on generation of the radiation in the master oscillator-power FEL amplifier (MOPA) configuration. The FEL amplifier concept eliminates the need for an optical cavity. As a result, there are no thermal loading limitations to increase the average output power of this device up to the MW-level. The problem of a tunable master oscillator can be solved with available conventional quantum lasers. The use of a superconducting energy-recovery linac could produce a major, cost-effective facility with wall plug power to output optical power efficiency of about 20% that spans wavelengths from the visible to the deep ultraviolet regime. The stringent electron beam qualities required for UV FEL amplifier operation can be met with a conservative injector design (using a conventional thermionic gun and subharmonic bunchers) and the beam compression and linear acceleration technology, recently developed in connection with high-energy linear collider and X-ray FEL programs

  10. Quasi-real-time photon pulse duration measurement by analysis of FEL radiation spectra

    Energy Technology Data Exchange (ETDEWEB)

    Engel, Robin, E-mail: robin.engel@uni-oldenburg.de [Deutsches Elektronen-Synchrotron, Notkestrasse 85, D-22603 Hamburg (Germany); Institut für Physik, Carl von Ossietzky Universität Oldenburg, D-26111 Oldenburg (Germany); Institut für Laser und Optik, Hochschule Emden/Leer, University of Applied Sciences, Constantiaplatz 4, D-26723 Emden (Germany); Düsterer, Stefan; Brenner, Günter [Deutsches Elektronen-Synchrotron, Notkestrasse 85, D-22603 Hamburg (Germany); Teubner, Ulrich [Deutsches Elektronen-Synchrotron, Notkestrasse 85, D-22603 Hamburg (Germany); Institut für Physik, Carl von Ossietzky Universität Oldenburg, D-26111 Oldenburg (Germany); Institut für Laser und Optik, Hochschule Emden/Leer, University of Applied Sciences, Constantiaplatz 4, D-26723 Emden (Germany)

    2016-01-01

    Considering the second-order spectral correlation function of SASE-FEL radiation allows a real-time observation of the photon pulse duration during spectra acquisition. For photon diagnostics at free-electron lasers (FELs), the determination of the photon pulse duration is an important challenge and a complex task. This is especially true for SASE FELs with strongly fluctuating pulse parameters. However, most techniques require an extensive experimental setup, data acquisition and evaluation time, limiting the usability in all-day operation. In contrast, the presented work uses an existing approach based on the analysis of statistical properties of measured SASE FEL spectra and implements it as a software tool, integrated in FLASH’s data acquisition system. This allows the calculation of the average pulse durations from a set of measured spectral distributions with only seconds of delay, whenever high-resolution spectra are recorded.

  11. Comparison of single-stage and temperature-phased two-stage anaerobic digestion of oily food waste

    International Nuclear Information System (INIS)

    Wu, Li-Jie; Kobayashi, Takuro; Li, Yu-You; Xu, Kai-Qin

    2015-01-01

    Highlights: • A single-stage and two two-stage anaerobic systems were synchronously operated. • Similar methane production 0.44 L/g VS_a_d_d_e_d from oily food waste was achieved. • The first stage of the two-stage process became inefficient due to serious pH drop. • Recycle favored the hythan production in the two-stage digestion. • The conversion of unsaturated fatty acids was enhanced by recycle introduction. - Abstract: Anaerobic digestion is an effective technology to recover energy from oily food waste. A single-stage system and temperature-phased two-stage systems with and without recycle for anaerobic digestion of oily food waste were constructed to compare the operation performances. The synchronous operation indicated the similar ability to produce methane in the three systems, with a methane yield of 0.44 L/g VS_a_d_d_e_d. The pH drop to less than 4.0 in the first stage of two-stage system without recycle resulted in poor hydrolysis, and methane or hydrogen was not produced in this stage. Alkalinity supplement from the second stage of two-stage system with recycle improved pH in the first stage to 5.4. Consequently, 35.3% of the particulate COD in the influent was reduced in the first stage of two-stage system with recycle according to a COD mass balance, and hydrogen was produced with a percentage of 31.7%, accordingly. Similar solids and organic matter were removed in the single-stage system and two-stage system without recycle. More lipid degradation and the conversion of long-chain fatty acids were achieved in the single-stage system. Recycling was proved to be effective in promoting the conversion of unsaturated long-chain fatty acids into saturated fatty acids in the two-stage system.

  12. Photoionization of atoms and molecules by intense EUV-FEL pulses and FEL seeded by high-order harmonic of ultrashort laser pulses

    International Nuclear Information System (INIS)

    Iwasaki, Atsushi; Owada, Shigeki; Yamanouchi, Kaoru; Sato, Takahiro; Nagasono, Mitsuru; Yabashi, Makina; Ishikawa, Tetsuya; Togashi, Tadashi; Takahashi, Eiji J.; Midorikawa, Katsumi; Aoyama, Makoto; Yamakawa, Koichi; Kannari, Fumihiko; Yagishita, Akira

    2012-01-01

    The advantages of SPring-8 Compact SASE Source as a light source for spectroscopic measurements in the extreme ultraviolet (EUV) wavelength region are introduced by referring to our recent study of non-linear photoionization processes of He, in which the absolute two-photon ionization cross sections of He at four different wavelengths in the 54 - 62 nm region were determined using intense pulses of the free-election laser (FEL). In addition, our recent effort to generate intense full-coherent EUV light pulses are introduced, in which significant amplification of the 13th harmonic of ultrashort laser pulses at 800 nm was achieved by FEL seeded with the 13th harmonic. (author)

  13. Dielectric Wakefield Accelerator to drive the future FEL Light Source.

    Energy Technology Data Exchange (ETDEWEB)

    Jing, C.; Power, J.; Zholents, A. (Accelerator Systems Division (APS)); ( HEP); (LLC)

    2011-04-20

    X-ray free-electron lasers (FELs) are expensive instruments and a large part of the cost of the entire facility is driven by the accelerator. Using a high-energy gain dielectric wake-field accelerator (DWA) instead of the conventional accelerator may provide a significant cost saving and reduction of the facility size. In this article, we investigate using a collinear dielectric wakefield accelerator to provide a high repetition rate, high current, high energy beam to drive a future FEL x-ray light source. As an initial case study, a {approx}100 MV/m loaded gradient, 850 GHz quartz dielectric based 2-stage, wakefield accelerator is proposed to generate a main electron beam of 8 GeV, 50 pC/bunch, {approx}1.2 kA of peak current, 10 x 10 kHz (10 beamlines) in just 100 meters with the fill factor and beam loading considered. This scheme provides 10 parallel main beams with one 100 kHz drive beam. A drive-to-main beam efficiency {approx}38.5% can be achieved with an advanced transformer ratio enhancement technique. rf power dissipation in the structure is only 5 W/cm{sup 2} in the high repetition rate, high gradient operation mode, which is in the range of advanced water cooling capability. Details of study presented in the article include the overall layout, the transform ratio enhancement scheme used to increase the drive to main beam efficiency, main wakefield linac design, cooling of the structure, etc.

  14. Preliminary evaluation of 1′-[18F]fluoroethyl-β-D-lactose ([18F]FEL) for detection of pancreatic cancer in nude mouse orthotopic xenografts

    International Nuclear Information System (INIS)

    Arumugam, Thiruvengadam; Paolillo, Vincenzo; Young, Daniel; Wen, XiaoXia; Logsdon, Craig D.; De Palatis, Louis; Alauddin, Mian M.

    2014-01-01

    binding and HIP/PAP expression. Conclusion: [ 18 F]FEL may be useful for non-invasive imaging of early-stage pancreatic tumours by PET. The results warrant further studies

  15. Control of Single-Stage Single-Phase PV inverter

    DEFF Research Database (Denmark)

    Ciobotaru, Mihai; Teodorescu, Remus; Blaabjerg, Frede

    2005-01-01

    In this paper the issue of control strategies for single-stage photovoltaic (PV) inverter is addressed. Two different current controllers have been implemented and an experimental comparison between them has been made. A complete control structure for the single-phase PV system is also presented......-forward; - and the grid current controller implemented in two different ways, using the classical proportional integral (PI) and the novel proportional resonant (PR) controllers. The control strategy was tested experimentally on 1.5 kW PV inverter....

  16. Growth of transverse coherence in SASE FELs

    International Nuclear Information System (INIS)

    Kumar, Vinit; Krishnagopal, Srinivas

    2000-01-01

    We introduce the correlation function between the electric field at two different points in the transverse plane as a parameter to quantify the degree of transverse coherence. We also propose a more realistic model for the initialization of the radiation in computer codes used to study SASE FELs. We make these modifications in the code TDA and use it to study the growth of transverse coherence as a function of electron beam size, beam current and transverse emittance. Our results show explicitly that the onset of full transverse coherence in SASE takes place much before the power saturates. With the more realistic model the onset of the exponential growth regime is delayed, and to get a given power from the FEL one needs a longer undulator than would be predicted by the original TDA code

  17. The CSU Accelerator and FEL Facility

    NARCIS (Netherlands)

    Milton, S.V.; Biedron, S.G.; Burleson, T.; Carrico, C.; Edelenbos, J.; Hall, C.; Horovitz, K.; Morin, A.; Rand, L.; Sipahi, N.; Sipahi, T.; van der Slot, P.; Yehudah, H.; Dong, A.; Tanaka, T.; Schaa, V.R.W.

    2013-01-01

    The Colorado State University (CSU) Accelerator Facility will include a 6-MeV L-Band electron linear accelerator (linac) with a free-electron laser (FEL) system capable of producing Terahertz (THz) radiation, a laser laboratory, a microwave test stand, and a magnetic test stand. The photocathode

  18. The GALAXIE all-optical FEL project

    Energy Technology Data Exchange (ETDEWEB)

    Rosenzweig, J. B.; Arab, E.; Andonian, G.; Cahill, A.; Fitzmorris, K.; Fukusawa, A.; Hoang, P.; Jovanovic, I.; Marcus, G.; Marinelli, A.; Murokh, A.; Musumeci, P.; Naranjo, B.; O' Shea, B.; O' Shea, F.; Ovodenko, A.; Pogorelsky, I.; Putterman, S.; Roberts, K.; Shumail, M. [Dept. of Physics and Astronomy, University of California, Los Angeles, 405 Hilgard Ave., Los Angeles, CA 90034 (United States); Dept. of Mechanical and Nuclear Engineering, Pennsylvania State University, University Park, PA 16802 (United States); Dept. of Physics and Astronomy, University of California, Los Angeles, 405 Hilgard Ave., Los Angeles, CA 90034 (United States); and others

    2012-12-21

    We describe a comprehensive project, funded under the DARPA AXiS program, to develop an all-optical table-top X-ray FEL based on dielectric acceleration and electromagnetic undulators, yielding a compact source of coherent X-rays for medical and related applications. The compactness of this source demands that high field (>GV/m) acceleration and undulation-inducing fields be employed, thus giving rise to the project's acronym: GV/m AcceLerator And X-ray Integrated Experiment (GALAXIE). There are numerous physics and technical hurdles to surmount in this ambitious scenario, and the integrated solutions include: a biharmonic photonic TW structure, 200 micron wavelength electromagnetic undulators, 5 {mu}m laser development, ultra-high brightness magnetized/asymmetric emittance electron beam generation, and SASE FEL operation. We describe the overall design philosophy of the project, the innovative approaches to addressing the challenges presented by the design, and the significant progress towards realization of these approaches in the nine months since project initialization.

  19. The ARC-EN-CIEL FEL Proposal

    CERN Document Server

    Couprie, M E

    2005-01-01

    ARC-EN-CIEL (Accelerator-Radiation for Enhanced Coherent Intense Extended Light), the French project of a fourth generation light source aims at providing the user community with coherent femtosecond light pulses covering from UV to soft X ray. It is based on a CW 1 GeV superconducting linear accelerator delivering high charge, subpicosecond, low emittance electron bunches with a high repetition rate. The FEL is based on in the injection of High Harmonics in Gases in a High Gain Harmonic Generation scheme, leading to a rather compact solution. The produced radiation extending down to 0.8 nm with the Non Linear Harmonic reproduces the good longitudinal and transverse coherence of the harmonics in gas. Optional beam loops are foreseen to increase the beam current or the energy. They will accommodate fs synchrotron radiation sources in the IR, VUV and X ray ranges and a FEL oscillator in the 10 nm range. An important synergy is expected between accelerator and laser communities. Indeed, electron plasma accelerat...

  20. X-ray Production by Cascading Stages of a High-Gain Harmonic Generation Free-Electron Laser II: Special Topics

    Energy Technology Data Exchange (ETDEWEB)

    Wu, J

    2004-09-01

    In this paper, we study the tolerance of a new approach to produce coherent x-ray by cascading several stages of a High-Gain Harmonic Generation (HGHG) Free-Electron Laser (FEL). Being a harmonic generation process, a small noise in the initial fundamental signal will lead to a significant noise-to-signal (NTS) ratio in the final harmonic, so the noise issue is studied in this paper. We study two sources of noise: the incoherent undulator radiation, which is a noise with respect to the seed laser; and the noise of the seed laser itself. In reality, the electron beam longitudinal current profile is not uniform. Since the electron beam is the amplification medium for the FEL, this non- uniformity will induce phase error in the FEL. Therefore, this effect is studied. Phase error due to the wakefield and electron beam self-field is also studied. Synchrotronization of the electron beam and the seed laser is an important issue determining the success of the HGHG. We study the timing jitter induced frequency jitter in this paper. We also show that an HGHG FEL poses a less stringent requirement on the emittance than a SASE FEL does, due to a Natural Emittance Effect Reduction (NEER) mechanism. This NEER mechanism suggests a new operation mode, i.e., the HGHG FEL could adopt a high current, though unavoidable, a high emittance electron beam. Study in this paper shows that, production of hard x-rays with good longitudinal coherence by cascading stages of a HGHG FEL is promising. However, technical improvement is demanded.

  1. Development of intense terahertz coherent synchrotron radiation at KU-FEL

    Energy Technology Data Exchange (ETDEWEB)

    Sei, Norihiro, E-mail: sei.n@aist.go.jp [Research Institute for Measurement and Analytical Instrumentation, National Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono, Umezono, Tsukuba, Ibaraki 305-8568 (Japan); Zen, Heishun; Ohgaki, Hideaki [Institute for Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan)

    2016-10-01

    We produced intense coherent synchrotron radiation (CSR) in the terahertz (THz) region using an S-band linac at the Kyoto University Free Electron Laser (KU-FEL), which is a mid-infrared free-electron laser facility. The CSR beam was emitted from short-pulse electron bunches compressed by a 180° arc, and was transferred to air at a large solid angle of 0.10 rad. The measured CSR energy was 55 μJ per 7 μs macropulse, and KU-FEL was one of the most powerful CSR sources in normal conducting linear accelerator facilities. The CSR spectra were measured using an uncooled pyroelectric detector and a Michelson-type interferometer designed specifically for the KU-FEL electron beam, and had a maximum at a frequency of 0.11 THz. We found that adjusting the energy slit enhanced the CSR energy and shortened the electron beam bunch length in the CSR spectra measurements. Our results demonstrated that the efficient use of the energy slit can help improve the characteristics of CSR. - Highlights: • We have developed intense coherent synchrotron radiation (CSR) at KU-FEL. • The elevation angle of the CSR was correctly measured by a new technique. • The CSR power extracted to the air was 55 μJ per 7 μs macropulse. • It was demonstrated that an energy slit was effective to improve the CSR properties.

  2. Development of intense terahertz coherent synchrotron radiation at KU-FEL

    International Nuclear Information System (INIS)

    Sei, Norihiro; Zen, Heishun; Ohgaki, Hideaki

    2016-01-01

    We produced intense coherent synchrotron radiation (CSR) in the terahertz (THz) region using an S-band linac at the Kyoto University Free Electron Laser (KU-FEL), which is a mid-infrared free-electron laser facility. The CSR beam was emitted from short-pulse electron bunches compressed by a 180° arc, and was transferred to air at a large solid angle of 0.10 rad. The measured CSR energy was 55 μJ per 7 μs macropulse, and KU-FEL was one of the most powerful CSR sources in normal conducting linear accelerator facilities. The CSR spectra were measured using an uncooled pyroelectric detector and a Michelson-type interferometer designed specifically for the KU-FEL electron beam, and had a maximum at a frequency of 0.11 THz. We found that adjusting the energy slit enhanced the CSR energy and shortened the electron beam bunch length in the CSR spectra measurements. Our results demonstrated that the efficient use of the energy slit can help improve the characteristics of CSR. - Highlights: • We have developed intense coherent synchrotron radiation (CSR) at KU-FEL. • The elevation angle of the CSR was correctly measured by a new technique. • The CSR power extracted to the air was 55 μJ per 7 μs macropulse. • It was demonstrated that an energy slit was effective to improve the CSR properties.

  3. Locking Lasers to RF in an Ultrafast FEL

    International Nuclear Information System (INIS)

    Wilcox, R.; Huang, G.; Doolittle, L.; White, W.; Frisch, J.; Coffee, R.

    2010-01-01

    Using a novel, phase-stabilized RF-over-fiber scheme, they transmit 3GHz over 300m with 27fs RMS error in 250kHz bandwidth over 12 hours, and phase lock a laser to enable ultrafast pump-probe experiments. Free-electron lasers (FELs) are capable of producing short-duration (< 10fs), high-energy X-ray pulses for a range of scientific applications. The recently activated Linac Coherent Light Source (LCLS) FEL facility at SLAC will support experiments which require synchronized light pulses for pump-probe schemes. They developed and operated a fiber optic RF transmission system to synchronize lasers to the emitted X-ray pulses, which was used to enable the first pump-probe experiments at the LCLS.

  4. JAERI 10kW High Power ERL-FEL and Its Applications in Nuclear Energy Industries

    CERN Document Server

    Minehara, E J; Iijima, H; Kikuzawa, N; Nagai, R; Nishimori, N; Nishitani, T; Sawamura, M; Yamauchi, T

    2005-01-01

    The JAERI high power ERL-FEL has been extended to the more powerful and efficient free-electron laser (FEL) than 10kW for nuclear energy industries, and other heavy industries like defense, shipbuilding, chemical industries, environmental sciences, space-debris, and power beaming and so on. In order to realize such a tunable, highly-efficient, high average power, high peak power and ultra-short pulse FEL, we need the efficient and powerful FEL driven by the JAERI compact, stand-alone and zero boil-off super-conducting RF linac with an energy-recovery geometry. Our discussions on the ERL-FEL will cover the current status of the 10kW upgrading and its applications of non-thermal peeling, cutting, and drilling to decommission the nuclear power plants, and to demonstrate successfully the proof of principle prevention of cold-worked stress-corrosion cracking failures in nuclear power reactors under routine operation using small cubic low-Carbon stainless steel samples.

  5. Field Encapsulation Library The FEL 2.2 User Guide

    Science.gov (United States)

    Moran, Patrick J.; Henze, Chris; Ellsworth, David

    1999-01-01

    This document describes version 2.2 of the Field Encapsulation Library (FEL), a library of mesh and field classes. FEL is a library for programmers - it is a "building block" enabling the rapid development of applications by a user. Since FEL is a library intended for code development, it is essential that enough technical detail be provided so that one can make full use of the code. Providing such detail requires some assumptions with respect to the reader's familiarity with the library implementation language, C++, particularly C++ with templates. We have done our best to make the explanations accessible to those who may not be completely C++ literate. Nevertheless, familiarity with the language will certainly help one's understanding of how and why things work the way they do. One consolation is that the level of understanding essential for using the library is significantly less than the level that one should have in order to modify or extend the library. One more remark on C++ templates: Templates have been a source of both joy and frustration for us. The frustration stems from the lack of mature or complete implementations that one has to work with. Template problems rear their ugly head particularly when porting. When porting C code, successfully compiling to a set of object files typically means that one is almost done. With templated C++ and the current state of the compilers and linkers, generating the object files is often only the beginning of the fun. On the other hand, templates are quite powerful. Used judiciously, templates enable more succinct designs and more efficient code. Templates also help with code maintenance. Designers can avoid creating objects that are the same in many respects, but not exactly the same. For example, FEL fields are templated by node type, thus the code for scalar fields and vector fields is shared. Furthermore, node type templating allows the library user to instantiate fields with data types not provided by the FEL

  6. Bunch compression for an FEL at NLCTA

    International Nuclear Information System (INIS)

    Zimmermann, F.

    1997-04-01

    As part of the design effort for a free electron laser driven by the Next Linear Collider Test Accelerator (NLCTA), the author reports studies of bunch-length compression utilizing the existing infrastructure and hardware. In one possible version of the NLCTA FEL, bunches with 900-microm FWHM length, generated by an S-band photo-injector, would be compressed to an rms length of 60--120 microm before entering the FEL undulator. It is shown that, using the present magnetic chicane, the bunch compression is essentially straightforward, and that almost all emittance-diluting effects, e.g. wakefields, chromaticity, or space charge in the bending magnets, are small. The only exception to this finding is the predicted increase of the horizontal emittance due to coherent synchrotron radiation (CSR). Estimates based on existing theories of coherent synchrotron radiation suggest a tripling or quadrupling of the initial emittance, which seems to preclude bunch compression during regular FEL operation. Serendipitously, the magnitude of the predicted emittance growth would, on the other hand, make the NLCTA chicane an excellent tool for measuring the effects of coherent synchrotron radiation. This will be of considerable interest to many future projects, in particular to the Linac Coherent Light Source (LCLS). As an aside, it is shown that coherent synchrotron radiation in a bending magnet gives rise to a minimum possible bunch length, which is very reminiscent of the Oide limit on the vertical spot size at the interaction point of a linear collider

  7. Future metrology needs for FEL reflective optics

    International Nuclear Information System (INIS)

    Assoufid, L.

    2000-01-01

    An International Workshop on Metrology for X-ray and Neutron Optics has been held March 16-17, 2000, at the Advanced Photon Source, Argonne National Laboratory, near Chicago, Illinois (USA). The workshop gathered engineers and scientists from both the U.S. and around the world to evaluate metrology instrumentation and methods used to characterize surface figure and finish for long grazing incidence optics used in beamlines at synchrotrons radiation sources. This two-day workshop was motivated by the rapid evolution in the performance of x-ray and neutron sources along with requirements in optics figure and finish. More specifically, the performance of future light sources, such as free-electron laser (FEL)-based x-ray sources, is being pushed to new limits in term of both brilliance and coherence. As a consequence, tolerances on surface figure and finish of the next generation of optics are expected to become tighter. The timing of the workshop provided an excellent opportunity to study the problem, evaluate the state of the art in metrology instrumentation, and stimulate innovation on future metrology instruments and techniques to be used to characterize these optics. This paper focuses on FEL optics and metrology needs. (A more comprehensive summary of the workshop can be found elsewhere.) The performance and limitations of current metrology instrumentation will be discussed and recommendations from the workshop on future metrology development to meet the FEL challenges will be detailed

  8. Future metrology needs for FEL reflective optics.

    Energy Technology Data Exchange (ETDEWEB)

    Assoufid, L.

    2000-09-21

    An International Workshop on Metrology for X-ray and Neutron Optics has been held March 16-17, 2000, at the Advanced Photon Source, Argonne National Laboratory, near Chicago, Illinois (USA). The workshop gathered engineers and scientists from both the U.S. and around the world to evaluate metrology instrumentation and methods used to characterize surface figure and finish for long grazing incidence optics used in beamlines at synchrotrons radiation sources. This two-day workshop was motivated by the rapid evolution in the performance of x-ray and neutron sources along with requirements in optics figure and finish. More specifically, the performance of future light sources, such as free-electron laser (FEL)-based x-ray sources, is being pushed to new limits in term of both brilliance and coherence. As a consequence, tolerances on surface figure and finish of the next generation of optics are expected to become tighter. The timing of the workshop provided an excellent opportunity to study the problem, evaluate the state of the art in metrology instrumentation, and stimulate innovation on future metrology instruments and techniques to be used to characterize these optics. This paper focuses on FEL optics and metrology needs. (A more comprehensive summary of the workshop can be found elsewhere.) The performance and limitations of current metrology instrumentation will be discussed and recommendations from the workshop on future metrology development to meet the FEL challenges will be detailed.

  9. Scientific opportunities for FEL amplifier based VUV and X-ray research

    International Nuclear Information System (INIS)

    Johnson, E.D.

    1994-01-01

    It has become increasingly clear to a wide cross section of the synchrotron radiation research community that FELs will be the cornerstone of Fourth Generation Radiation Sources. Through the coherent generation of radiation, they provide as much as 12 orders of magnitude increase in peak power over the third generation storage ring machines of today. Facilities have been proposed which will extend the operating wavelength of these devices well beyond the reach of existing solid state laser technology. In addition, it appears possible to generate pulses of unprecedented brevity, down to a few femtoseconds, with mJ pulse energies. The combination of these attributes has stimulated considerable interest in short wavelength FELs for experiments in chemical, surface, and solid state physics, biology and materials science. This paper provides a brief overview of how the features of these FEL's relate to the experimental opportunities

  10. Analyses of superradiance and spiking-mode lasing observed at JAERI-FEL

    CERN Document Server

    Hajima, R; Nagai, R; Minehara, E J

    2001-01-01

    Japan Atomic Energy Research Institute (JAERI)-FEL has achieved quasi-CW lasing with an average power of 1.7 kW, the initial goal of the R and D program. The FEL extraction efficiency obtained completely exceeds the well-known limit for non-bunched beam, which is determined by the number of undulator periods. We have conducted numerical studies to characterize lasing dynamics observed at JAERI-FEL. Cavity-length detuning curves numerically obtained show good agreement with experimental results. Lasing behavior numerically obtained exhibits chaotic spiking-mode and superradiance as the cavity-length detuning approaches zero. Broadening of lasing spectrum observed in the experiments is explained by these lasing dynamics. The extraction efficiency becomes maximal at the perfect synchronization of the cavity length, where the lasing is quasi-stationary superradiance. We also compare these results with analytical theory previously reported.

  11. Alternatives to the Fish Early Life-Stage Test: A Research Strategy for Discovering and Annotating Adverse Outcome Pathways During Fish Development

    Science.gov (United States)

    The OECD 210 fish early life]stage (FELS) test is the primary guideline test used to estimate chronic fish toxicity, as well as support ecological risk assessments and chemical management programs around the world. As a step toward developing alternatives to the FELS test, a HES...

  12. FEL-Oscillator simulations with Genesis 1.3

    NARCIS (Netherlands)

    Karssenberg, J.G.; van der Slot, Petrus J.M.; Verschuur, Jeroen W.J.; Volokhine, I.; Boller, Klaus J.

    2006-01-01

    Modeling free-electron laser (FEL) oscillators requires calculation of both the light-beam interaction within the undulator and the propagation of the light outside the undulator. We present a paraxial Optical Propagation Code (OPC) based on the Spectral Method and Fresnel Diffraction Integral,

  13. High-power, high-efficiency FELs

    International Nuclear Information System (INIS)

    Sessler, A.M.

    1989-04-01

    High power, high efficiency FELs require tapering, as the particles loose energy, so as to maintain resonance between the electromagnetic wave and the particles. They also require focusing of the particles (usually done with curved pole faces) and focusing of the electromagnetic wave (i.e. optical guiding). In addition, one must avoid transverse beam instabilities (primarily resistive wall) and longitudinal instabilities (i.e sidebands). 18 refs., 7 figs., 3 tabs

  14. Electron bunch length measurement at the Vanderbilt FEL

    Energy Technology Data Exchange (ETDEWEB)

    Amirmadhi, F.; Brau, C.A.; Mendenhall, M. [Vanderbilt Free-Electron-Laser Center, Nashville, TN (United States)] [and others

    1995-12-31

    During the past few years, a number of experiments have been performed to demonstrate the possibility to extract the longitudinal charge distribution from spectroscopic measurements of the coherent far-infrared radiation emitted as transition radiation or synchrotron radiation. Coherent emission occurs in a spectral region where the wavelength is comparable to or longer than the bunch length, leading to an enhancement of the radiation intensity that is on the order of the number of particles per bunch, as compared to incoherent radiation. This technique is particularly useful in the region of mm and sub-mm bunch lengths, a range where streak-cameras cannot be used for beam diagnostics due to their limited time resolution. Here we report on experiments that go beyond the proof of principle of this technique by applying it to the study and optimization of FEL performance. We investigated the longitudinal bunch length of the Vanderbilt FEL by analyzing the spectrum of coherent transition radiation emitted by the electron bunches. By monitoring the bunch length while applying a bunch-compression technique, the amount of the compression could be easily observed. This enabled us to perform a systematic study of the FEL performance, especially gain and optical pulse width, as a function of the longitudinal electron distribution in the bunch. The results of this study will be presented and discussed.

  15. An advanced UV optical cavity for the European FEL project

    CERN Document Server

    Poole, M W; Chesworth, A A; Clarke, J A; Fell, B; Hill, C; Marl, R; Mullacrane, I D; Reid, R J

    2000-01-01

    A European collaboration is constructing a short wavelength FEL for the ELETTRA storage ring. The optical cavity has been designed and constructed at Daresbury Laboratory for delivery to Sincrotrone Trieste in Autumn 1999, following commissioning tests over the Summer. Initial FEL operation will be at 350 nm but subsequently down to 200 nm or less and mirrors will be 40 mm diameter. The 32 m optical cavity is controllable to 0.01 mu rad in mirror pitch and yaw using digital piezo translators. A novel feature is the simultaneous presence of three remotely interchangeable mirrors to extend the tuning range and also to interchange damaged mirrors immediately. In addition, a transfer arm and load-lock arrangement will permit a mirror to be withdrawn from the chamber and replaced without disruption to the UHV system. The FEL is designed to operate at high power (1-10 W) and multi-watt spontaneous emission is also present: power loading has been investigated by FEA analysis and has necessitated specification of a w...

  16. A photocathode rf gun design for a mm-wave linac-based FEL

    Energy Technology Data Exchange (ETDEWEB)

    Nassiri, A.; Berenc, T,; Foster, J.; Waldschmidt, G.; Zhou, J.

    1995-07-01

    In recent years, advances in the rf gun technology have made it possible to produce small beam emittances suitable for short period microundulators which take advantage of the low emittance beam to reduce the wavelength of FELs. At the Advanced Photon Source, we are studying the design of a compact 50-MeV superconducting mm-wave linac-based FEL for the production of short wavelengths ({approximately}300 nm) to carry out FEL demonstration experiments. The electron source considered for the linac is a 30- GHz, 3 1/2-cell {pi}-mode photocathode rf gun. For cold model rf measurements a 15-GHz prototype structure was fabricated. Here we report on the design, numerical modelling and the initial cold-model rf measurement results on the 15-GHz prototype structure.

  17. A photocathode rf gun design for a mm-wave linac-based FEL

    International Nuclear Information System (INIS)

    Nassiri, A.; Berenc, T.; Foster, J.; Waldschmidt, G.; Zhou, J.

    1995-01-01

    In recent years, advances in the rf gun technology have made it possible to produce small beam emittances suitable for short period microundulators which take advantage of the low emittance beam to reduce the wavelength of FELs. At the Advanced Photon Source, we are studying the design of a compact 50-MeV superconducting mm-wave linac-based FEL for the production of short wavelengths (∼300 nm) to carry out FEL demonstration experiments. The electron source considered for the linac is a 30- GHz, 3 1/2-cell π-mode photocathode rf gun. For cold model rf measurements a 15-GHz prototype structure was fabricated. Here we report on the design, numerical modelling and the initial cold-model rf measurement results on the 15-GHz prototype structure

  18. PFM2: a 32 × 32 processor for X-ray diffraction imaging at FELs

    Science.gov (United States)

    Manghisoni, M.; Fabris, L.; Re, V.; Traversi, G.; Ratti, L.; Grassi, M.; Lodola, L.; Malcovati, P.; Vacchi, C.; Pancheri, L.; Benkechcache, M. E. A.; Dalla Betta, G.-F.; Xu, H.; Verzellesi, G.; Ronchin, S.; Boscardin, M.; Batignani, G.; Bettarini, S.; Casarosa, G.; Forti, F.; Giorgi, M.; Paladino, A.; Paoloni, E.; Rizzo, G.; Morsani, F.

    2016-11-01

    This work is concerned with the design of a readout chip for application to experiments at the next generation X-ray Free Electron Lasers (FEL). The ASIC, named PixFEL Matrix (PFM2), has been designed in a 65 nm CMOS technology and consists of 32 × 32 pixels. Each cell covers an area of 110 × 110 μm2 and includes a low-noise charge sensitive amplifier (CSA) with dynamic signal compression, a time-variant shaper used to process the preamplifier output signal, a 10-bit successive approximation register (SAR) analog-to-digital converter (ADC) and digital circuitry for channel control and data readout. Two different solutions for the readout channel, based on different versions of the time-variant filter, have been integrated in the chip. Both solutions can be operated in such a way to cope with the high frame rate (exceeding 1 MHz) foreseen for future X-ray FEL machines. The ASIC will be bump bonded to a slim/active edge pixel sensor to form the first demonstrator for the PixFEL X-ray imager. This work has been carried out in the frame of the PixFEL project funded by Istituto Nazionale di Fisica Nucleare (INFN), Italy.

  19. Energy stability in a high average power FEL

    International Nuclear Information System (INIS)

    Mermings, L.; Bisognano, J.; Delayen, J.

    1995-01-01

    Recirculating, energy-recovering linacs can be used as driver accelerators for high power FELs. Instabilities which arise from fluctuations of the cavity fields or beam current are investigated. Energy changes can cause beam loss on apertures, or, when coupled to M, phase oscillations. Both effects change the beam induced voltage in the cavities and can lead to unstable variations of the accelerating field. Stability analysis for small perturbations from equilibrium is performed and threshold currents are determined. Furthermore, the analytical model is extended to include feedback. Comparison with simulation results derived from direct integration of the equations of motion is presented. Design strategies to increase the instability threshold are discussed and the UV Demo FEL, proposed for construction at CEBAF, and the INP Recuperatron at Novosibirsk are used as examples

  20. A 300-nm compact mm-wave linac FEL design

    Energy Technology Data Exchange (ETDEWEB)

    Nassiri, A.; Kustom, R.L.; Kang, Y.W. [Argonne National Lab., IL (United States)

    1995-12-31

    Microfabrication technology offers an alternative method for fabricating precision, miniature-size components suitable for use in accelerator physics and commercial applications. The original R&D work at Argonne, in collaboration with the University of Illinois at Chicago, has produced encouraging results in the area of rf accelerating structure design, optical and x-ray masks production, deep x-ray lithography (LIGA exposures), and precision structural alignments. In this paper we will present a design study for a compact single pass mm-linac FEL to produce short wavelength radiation. This system will consists of a photocathode rf gun operated at 30 GHz, a 50-MeV superconducting constant gradient structure operated at 60 GHz, and a microundulator with 1-mm period. Initial experimental results on a scale model rf gun and microundulator will be presented.

  1. Scaling of gain with energy spread and energy in the PEP FEL

    International Nuclear Information System (INIS)

    Fisher, A.S.

    1992-01-01

    The Sag Harbor paper on the PEP FEL discusses the scaling of various FEL parameters with energy spread σ var-epsilon . I will repeat some of this material here and then examine the benefit of increasing the energy spread. How much energy spread can be achieved with damping wigglers is the next topic. Finally, I consider the dependence of gain and saturation length on beam energy and undulator field

  2. Development of a novel thermionic RF electron gun applied on a compact THz-FEL facility

    Science.gov (United States)

    Hu, T. N.; Pei, Y. J.; Qin, B.; Liu, K. F.; Feng, G. Y.

    2018-04-01

    The current requirements from civil and commercial applications lead to the development of compact free-electron laser (FEL)-based terahertz (THz) radiation sources. A picosecond electron gun plays an important role in an FEL-THz facility and attracts significant attention, as machine performance is very sensitive to initial conditions. A novel thermionic gun with an external cathode (EC) and two independently tunable cavities (ITCs) has been found to be a promising alternative to conventional electron sources due to its remarkable characteristics, and correspondingly an FEL injector can achieve a balance between a compact layout and high brightness benefitting from the velocity bunching properties and RF focusing effects in the EC-ITC gun. Nevertheless, the EC-ITC gun has not been extensively examined as part of the FEL injector in the past years. In this regard, to fill this gap, a development focusing on the experimental setup of an FEL injector based on an EC-ITC gun is described in detail. Before assembly, dynamic beam simulations were performed to investigate the optimal mounting position for the Linac associated with the focusing coils, and a suitable radio-frequency (RF) system was established based on a power coupling design and allocation. The testing bench proved to be fully functional through basic experiments using typical diagnostic approaches for estimating primary parameters. Associated with dynamic beam calculations, a performance evaluation for an EC-ITC gun was established while providing indirect testing results for an FEL injector.

  3. Study on wavelength shortening and upgrading of the free electron laser (FEL)

    International Nuclear Information System (INIS)

    Yamazaki, Tetsuo; Yamada, Kawakatsu; Sei, Norihiro; Ohgaki, Hideaki; Sugiyama, Suguru; Mikado, Tomohisa

    1997-01-01

    This study is a task of ''Comprehensive study'' in ''nuclear energy basic technology research'', which is promoted under cooperation of four research institutes. The Electrotechnical Laboratory conducted, in 1991 in the first period of colaboration, on successful oscillation at visible region (598 nm) as the first case in Japan, construction of small type accumulation ring NIJI-IV for FEL, successful oscillation of visible range from 595 to 488 nm by installing optical krystron with maximum frequency in the world, and successful emittance lowering of accumulation beam by wide improvement of the ring. In the optical resonator, studies on minute loss measuring technique and on recovery from mirror deterioration were promoted. In the second period started from fiscal year of 1994, studies on FEL oscillation technique in short wavelength and upgrading of FEL corresponding to a frontier area were started, to succeed an oscillation experiment at 350 nm in ultraviolet area on April, 1994. Then, studies on generation of high luminescence x-ray owing to laser Compton scattering using FEL as a future plan, on design of a new accumulation ring and on the others as well as studies on further quality improvement of electron beam and on optical resonator have been promoted. (G.K.)

  4. IR-FEL-induced green fluorescence protein (GFP) gene transfer into plant cell

    CERN Document Server

    Awazu, K; Tamiya, E

    2002-01-01

    A Free Electron Laser (FEL) holds potential for various biotechnological applications due to its characteristics such as flexible wavelength tunability, short pulse and high peak power. We could successfully introduce the Green Fluorescent Protein (GFP) gene into tobacco BY2 cells by IR-FEL laser irradiation. The irradiated area of the solution containing BY2 cells and plasmid was about 0.1 mm sup 2. FEL irradiation at a wavelength of 5.75 and 6.1 mu m, targeting absorption by the ester bond of the lipid and the amide I bond of the protein, respectively, was shown to cause the introduction of the fluorescent dye into the cell. On the other hand, transient expression of the GFP fluorescence was only observed after irradiation at 5.75 mu m. The maximum transfer efficiency was about 0.5%.

  5. EXPERIENCE AND PLANS OF THE JLAB FEL FACILITY AS A USER FACILITY

    Energy Technology Data Exchange (ETDEWEB)

    Michelle D. Shinn

    2007-08-26

    Jefferson Lab's IR Upgrade FEL building was planned from the beginning to be a user facility, and includes an associated 600 m2 area containing seven laboratories. The high average power capability (multikilowatt-level) in the near-infrared (1-3 microns), and many hundreds of watts at longer wavelengths, along with an ultrafast (~ 1 ps) high PRF (10's MHz) temporal structure makes this laser a unique source for both applied and basic research. In addition to the FEL, we have a dedicated laboratory capable of delivering high power (many tens of watts) of broadband THz light. After commissioning the IR Upgrade, we once again began delivering beam to users in 2005. In this presentation, I will give an overview of the FEL facility and its current performance, lessons learned over the last two years, and a synopsis of current and future experiments.

  6. Status of FEL-SUT project, and the experimental setup for multiphoton dissociation and isotope separation in the gaseous phase

    CERN Document Server

    Chernyshev, A V; Petrov, A K; Kawai, M; Toyoda, K; Nakai, K; Kuroda, H

    2001-01-01

    The IR FEL Research Center of the Science University of Tokyo (FEL-SUT) is open for users to develop new applications of IR FEL in a wide field of material science, chemical technology and bio-chemical applications. The FEL is based on 35 MeV linac operated at the frequency of 2856 MHz (s-band). The FEL covers the wavelength range from 5 to 16 mu m with the micropulse duration of 1-2 ps, macropulse duration of 1 mu s, macropulse repetition rate of 10 Hz and the overall average power of 1 W. We report the present status of the Center and an experimental setup designed and constructed for the experiments on multiphoton dissociation and isotope separation.

  7. Spontaneous emission in Cherenkov FEL devices

    International Nuclear Information System (INIS)

    Ciocci, F.; Dattoli, G.; Doria, A.; Schettini, G.; Torre, A.; Walsh, J.E.

    1987-01-01

    The main features of the spectral characteristics of the spontaneously emitted Cherenkov light in circular and rectangular wave-guides filled with dielectric are discussed. The characteristics of the radiation emitted by an electron beam moving near and parallel to the surface of a dielectric slab are also analysed. Finally, the relevance of these results to a possible FEL-Cherenkov operation is briefly discussed

  8. Design and optimization of the grating monochromator for soft X-ray self-seeding FELs

    Energy Technology Data Exchange (ETDEWEB)

    Serkez, Svitozar

    2015-10-15

    The emergence of Free Electron Lasers (FEL) as a fourth generation of light sources is a breakthrough. FELs operating in the X-ray range (XFEL) allow one to carry out completely new experiments that probably most of the natural sciences would benefit. Self-amplified spontaneous emission (SASE) is the baseline FEL operation mode: the radiation pulse starts as a spontaneous emission from the electron bunch and is being amplified during an FEL process until it reaches saturation. The SASE FEL radiation usually has poor properties in terms of a spectral bandwidth or, on the other side, longitudinal coherence. Self-seeding is a promising approach to narrow the SASE bandwidth of XFELs significantly in order to produce nearly transformlimited pulses. It is achieved by the radiation pulse monochromatization in the middle of an FEL amplification process. Following the successful demonstration of the self-seeding setup in the hard X-ray range at the LCLS, there is a need for a self-seeding extension into the soft X-ray range. Here a numerical method to simulate the soft X-ray self seeding (SXRSS) monochromator performance is presented. It allows one to perform start-to-end self-seeded FEL simulations along with (in our case) GENESIS simulation code. Based on this method, the performance of the LCLS self-seeded operation was simulated showing a good agreement with an experiment. Also the SXRSS monochromator design developed in SLAC was adapted for the SASE3 type undulator beamline at the European XFEL. The optical system was studied using Gaussian beam optics, wave optics propagation method and ray tracing to evaluate the performance of the monochromator itself. Wave optics analysis takes into account the actual beam wavefront of the radiation from the coherent FEL source, third order aberrations and height errors from each optical element. The monochromator design is based on a toroidal VLS grating working at a fixed incidence angle mounting without both entrance and exit

  9. Design and optimization of the grating monochromator for soft X-ray self-seeding FELs

    International Nuclear Information System (INIS)

    Serkez, Svitozar

    2015-10-01

    The emergence of Free Electron Lasers (FEL) as a fourth generation of light sources is a breakthrough. FELs operating in the X-ray range (XFEL) allow one to carry out completely new experiments that probably most of the natural sciences would benefit. Self-amplified spontaneous emission (SASE) is the baseline FEL operation mode: the radiation pulse starts as a spontaneous emission from the electron bunch and is being amplified during an FEL process until it reaches saturation. The SASE FEL radiation usually has poor properties in terms of a spectral bandwidth or, on the other side, longitudinal coherence. Self-seeding is a promising approach to narrow the SASE bandwidth of XFELs significantly in order to produce nearly transformlimited pulses. It is achieved by the radiation pulse monochromatization in the middle of an FEL amplification process. Following the successful demonstration of the self-seeding setup in the hard X-ray range at the LCLS, there is a need for a self-seeding extension into the soft X-ray range. Here a numerical method to simulate the soft X-ray self seeding (SXRSS) monochromator performance is presented. It allows one to perform start-to-end self-seeded FEL simulations along with (in our case) GENESIS simulation code. Based on this method, the performance of the LCLS self-seeded operation was simulated showing a good agreement with an experiment. Also the SXRSS monochromator design developed in SLAC was adapted for the SASE3 type undulator beamline at the European XFEL. The optical system was studied using Gaussian beam optics, wave optics propagation method and ray tracing to evaluate the performance of the monochromator itself. Wave optics analysis takes into account the actual beam wavefront of the radiation from the coherent FEL source, third order aberrations and height errors from each optical element. The monochromator design is based on a toroidal VLS grating working at a fixed incidence angle mounting without both entrance and exit

  10. Face expressive lifting (FEL): an original surgical concept combined with bipolar radiofrequency

    OpenAIRE

    Divaris, Marc; Blugerman, Guillermo; Paul, Malcolm D.

    2013-01-01

    Background Aging can lead to changes in facial expressions, transforming the positive youth expression of happiness to negative expressions as sadness, tiredness, and disgust. Local skin distension is another consequence of aging, which can be difficult to treat with rejuvenation procedures. The “face expressive lifting” (FEL) is an original concept in facial rejuvenation surgery. On the one hand, FEL integrates established convergent surgical techniques aiming to correct the age-related nega...

  11. Delayed Single Stage Perineal Posterior Urethroplasty.

    Science.gov (United States)

    Ali, Shahzad; Shahnawaz; Shahzad, Iqbal; Baloch, Muhammad Umar

    2015-06-01

    To determine the delayed single stage perineal posterior urethroplasty for treatment of posterior urethral stricture/distraction defect. Descriptive case series. Department of Urology, Jinnah Postgraduate Medical Centre, Karachi, from January 2009 to December 2011. Patients were selected for delayed single stage perineal posterior urethroplasty for treatment of posterior urethral stricture / distraction defect. All were initially suprapubically catheterized followed by definitive surgery after at least 3 months. Thirty male patients were analyzed with a mean follow-up of 10 months, 2 patients were excluded as they developed failure in first 3 months postoperatively. Mean patient's age was 26.25 ± 7.9 years. On follow-up, 7 patients (23.3%) experienced recurrent stricture during first 10 months. Five (16.6%) patients were treated successfully with single direct visual internal urethrotomy. Two patients (6.6%) had more than one direct visual internal urethrotomy and considered failed. Re-do perineal urethroplasty was eventually performed. The overall success rate was 93.3% with permissive criteria allowing single direct visual internal urethrotomy and 76.6% with strict criteria allowing no more procedures postoperatively. Posterior anastomotic urethroplasty offers excellent long-term results to patients with posterior urethral trauma and distraction defect even after multiple prior procedures.

  12. Status report on the development of a high-power UV/IR FEL at CEBAF

    Energy Technology Data Exchange (ETDEWEB)

    Benson, S.; Bohn, C.; Dylla, H.F. [Continuous Electron Beam Accelerator Facility, Newport News, VA (United States)] [and others

    1995-12-31

    Last year we presented a design for a kilowatt industrial UV FEL based on a superconducting RF accelerator delivering 5 mA of electron-beam current at 200 MeV with energy recovery to enhance efficiency. Since then, we have progressed toward resolving several issues associated with that design. More exact simulations of the injector have resulted in a more accurate estimate of the injector performance. A new injection method has reduced the longitudinal and transverse emittance at the linac entrance. A more compact lattice has been designed for the UV FEL, and a new recirculation scheme has been identified which greatly increases the threshold for longitudinal instabilities. We decided to use a wiggler from the Advanced Photon Source which leads to a robust high-gain FEL. Analysis of the stability of an RF control system based on CEBAF control modules indicates that only minor modifications will be needed to apply them to this FEL. Detailed magnet specifications, vacuum-chamber beam apertures, and diagnostic specifications have been developed for the recirculation arcs. The design of the optical cavity has been conceptualized, and control systems have been devised to regulate mirror distortion. A half-scale model of one of the end-corner cubes has been built and tested. Finally, three-dimensional simulations have been carried out which indicate that the FEL should exceed its minimum design goals with adequate performance margin.

  13. Cavity-mirror degradation in the deep-UV FEL

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, K.; Yamazaki, T.; Sei, N. [Electrotechnical Lab., Ibaraki (Japan)] [and others

    1995-12-31

    It is known that the degradation of dielectric multilayer mirrors used in short wavelength free-electron lasers (FELs) is caused by the carbon contamination on the mirror surface and the defects inside the dielectrics. We reported last year that the degraded dielectric multilayer mirrors can be repaired with both surface treatment by RF-induced oxygen plasma and thermal annealing. However, such a mirror degradation is still one of the most critical issues in the deep ultraviolet (UV) FELs, because the fundamental undulator radiation resonating in the laser cavity, the intensity of which is much higher than that of higher harmonics, can be sufficiently energetic to cause the mirror degradation through photochemical reactions. We are investigating the mirror degradation mainly in the deep UV region down to 240 nm. The experimental results will be shown. The mirror degradation mechanism will be discussed.

  14. Obtaining high degree of circular polarization at X-ray FELs via a reverse undulator taper

    Energy Technology Data Exchange (ETDEWEB)

    Schneidmiller, E.A.; Yurkov, M.V.

    2013-08-15

    Baseline design of a typical X-ray FEL undulator assumes a planar configuration which results in a linear polarization of the FEL radiation. However, many experiments at X-ray FEL user facilities would profit from using a circularly polarized radiation. As a cheap upgrade one can consider an installation of a short helical (or cross-planar) afterburner, but then one should have an efficient method to suppress powerful linearly polarized background from the main undulator. In this paper we propose a new method for such a suppression: an application of the reverse taper in the main undulator. We discover that in a certain range of the taper strength, the density modulation (bunching) at saturation is practically the same as in the case of non-tapered undulator while the power of linearly polarized radiation is suppressed by orders of magnitude. Then strongly modulated electron beam radiates at full power in the afterburner. Considering SASE3 undulator of the European XFEL as a practical example, we demonstrate that soft X-ray radiation pulses with peak power in excess of 100 GW and an ultimately high degree of circular polarization can be produced. The proposed method is rather universal, i.e. it can be used at SASE FELs and seeded (self-seeded) FELs, with any wavelength of interest, in a wide range of electron beam parameters, and with any repetition rate. It can be used at different X-ray FEL facilities, in particular at LCLS after installation of the helical afterburner in the near future.

  15. Coherent harmonic production using a two-section undulator FEL

    Energy Technology Data Exchange (ETDEWEB)

    Jaroszynski, D.A. [Commissariat a l`Energie, Bruyeres-le-Chatel (France); Prazeres, R.; Glotin, F. [Centre Universitaire Paris-Sud (France)] [and others

    1995-12-31

    We present measurements and a theoretical analysis of a new method of generating harmonic radiation in a free-electron laser oscillator with a two section undulator in a single optical cavity. To produce coherent harmonic radiation the undulator is arranged so that the downstream undulator section resonance frequency matches a harmonic of the upstream undulator. Both the fundamental and the harmonic optical fields evolve in the same optical cavity and are coupled out with different extraction fractions using a hole in one of the cavity mirrors. We present measurements that show that the optical power at the second and third harmonic can be enhanced by more than an order of magnitude in this fundamental/harmonic configuration. We compare the production of harmonic radiation of a two sectioned fundamental/harmonic undulator with that produced from a FEL operating at its highest efficiency with a step-tapered undulator, where the bunching at the end of the first section is very large. We examine, the dependence of the harmonic power on the intracavity power by adjusting the optical cavity desynchronism, {delta}L. We also examine the evolution of the fundamental and harmonic powers as a function of cavity roundtrip number to evaluate the importance of the small signal gain at the harmonic. We compare our measurements with predictions of a multi-electron numerical model that follows the evolution of fundamental and harmonic power to saturation. This fundamental/harmonic mode, of operation of the FEL may have useful applications in the production of coherent X-ray and VUV radiation, a spectral range where high reflectivity optical cavity mirrors are difficult or impossible to manufacture.

  16. Status and prospects of a compact FIR FEL driven by a magnetron-based microtron

    International Nuclear Information System (INIS)

    Jeong, Young Uk; Kazakevitch, Grigori M.; Lee, Byung Cheol; Kim, Sun Kook; Cho, Sung Oh; Gavrilov, Nicolai G.; Lee, Jongmin

    2002-01-01

    A magnetron-based microtron as a driver of FIR FEL has several prominent advantages in cost, size, beam quality and operation convenience. However, it has some disadvantages due to the instability of the RF frequency and a low current. In order to overcome these disadvantages, the frequency stability of the magnetron was improved, and the interaction between the electron beam and the FIR radiation was enhanced by using a high-performance undulator and a low-loss waveguide-mode optical resonator. The FEL is now under upgrade in order to extend the wavelength range to cover 90-300 μm, which can be done by increasing the energy range of electron beam to 4.3-7 MeV. In this paper, we report the results of investigations on output characteristics of the FEL depending on cavity detuning, electron beam matching, and RF instability. Based on the results, we discuss the prospects of wide-band FIR FELs driven by magnetron-based microtrons as potent sources of radiation for scientific applications

  17. Thermodynamic analysis of single-stage and multi-stage adsorption refrigeration cycles with activated carbon–ammonia working pair

    International Nuclear Information System (INIS)

    Xu, S.Z.; Wang, L.W.; Wang, R.Z.

    2016-01-01

    Highlights: • Activated carbon–ammonia multi-stage adsorption refrigerator was analyzed. • COP, exergetic efficiency and entropy production of cycles were calculated. • Single-stage cycle usually has the advantages of simple structure and high COP. • Multi-stage cycles adapt to critical conditions better than single-stage cycle. • Boundary conditions for choosing optimal cycle were summarized as tables. - Abstract: Activated carbon–ammonia multi-stage adsorption refrigeration cycle was analyzed in this article, which realized deep-freezing for evaporating temperature under −18 °C with heating source temperature much lower than 100 °C. Cycle mathematical models for single, two and three-stage cycles were established on the basis of thorough thermodynamic analysis. According to simulation results of thermodynamic evaluation indicators such as COP (coefficient of performance), exergetic efficiency and cycle entropy production, multi-stage cycle adapts to high condensing temperature, low evaporating temperature and low heating source temperature well. Proposed cycle with selected working pair can theoretically work under very severe conditions, such as −25 °C evaporating temperature, 40 °C condensing temperature, and 70 °C heating source temperature, but under these working conditions it has the drawback of low cycle adsorption quantity. It was found that both COP and exergetic efficiency are of great reference value in the choice of cycle, whereas entropy production is not so useful for cycle stage selection. Finally, the application boundary conditions of single-stage, two-stage, and three-stage cycles were summarized as tables according to the simulation results, which provides reference for choosing optimal cycle under different conditions.

  18. Performance of a Combined System Using an X-Ray FEL Oscillator and a High-Gain FEL Amplifier

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, L.; Lindberg, R.; Kim, K. -J.

    2017-06-01

    The LCLS-II at SLAC will feature a 4 GeV CW superconducting (SC) RF linac [1] that can potentially drive a 5th harmonic X-Ray FEL Oscillator (XFELO) to produce fully coherent, 1 MW photon pulses with a 5 meV bandwidth at 14.4 keV [2]. The XFELO output can serve as the input seed signal for a high-gain FEL amplifier employing fs electron beams from the normal conducting SLAC linac, thereby generating coherent, fs x-ray pulses with TW peak powers using a tapered undulator after saturation [3]. Coherent, intense output at several tens of keV will also be feasible if one considers a harmonic generation scheme. Thus, one can potentially reach the 42 keV photon energy required for the MaRIE project [4] by beginning with an XFELO operating at the 3rd harmonic to produce 14.0 keV photons using a 12 GeV SCRF linac, and then subsequently using the high-gain harmonic generation scheme to generate and amplify the 3th harmonic at 42 keV [5]. We report extensive GINGER simulations that determine an optimized parameter set for the combined system.

  19. High-harmonic relativistic gyrotron as an alternative to FEL

    Energy Technology Data Exchange (ETDEWEB)

    Bratman, V L; Kalynov, Yu K; Kolganov, N G; Manuilov, V N; Ofitserov, M M; Samsonov, S V; Volkov, A B [Russian Academy of Sciences, Nizhny Novgorod (Russian Federation). Inst. of Applid Physics

    1997-12-31

    A submillimeter wave gyrotron operating at moderately relativistic electron energies of 200-300 keV is proposed as a simple alternative to FEL. It is shown that high pulsed magnetic fields of 20-30 T and selective excitation of separate modes for resonances up to the 5-7 th harmonics will make it possible to obtain in a single device the coherent radiation with broadband frequency step tuning within the whole submillimeter wavelength range. At large pitch angles the coupling of the electron beam with cavity modes at higher harmonics should be as strong as at the fundamental one. In order to check the theoretical predictions, two gyrotrons were designed: LOG-1 (250 kV, 10 A, 10 ms) with a thermionic emission cathode and LOG-2 (350 kV, 35 A, 20 ns) with an explosive emission cathode. (J.U.). 7 refs.

  20. The SPARX Project R&D Activity towards X-rays FEL Sources

    CERN Document Server

    Alesini, David; Bertolucci, Sergio; Biagini, M E; Boni, R; Boscolo, Manuela; Castellano, Michele; Clozza, A; Di Pirro, G; Drago, A; Esposito, A; Ferrario, Massimo; Filippetto, D; Fusco, V; Gallo, A; Ghigo, A; Guiducci, Susanna; Incurvati, M; Ligi, C; Marcellini, F; Migliorati, Mauro; Mostacci, Andrea; Palumbo, Luigi; Pellegrino, L; Preger, Miro; Raimondi, Pantaleo; Ricci, R; Sanelli, C; Serio, Mario; Sgamma, F; Spataro, Bruno; Stecchi, A; Stella, A; Tazzioli, Franco; Vaccarezza, Cristina; Vescovi, Mario; Vicario, C

    2004-01-01

    SPARX is an evolutionary project proposed by a collaboration among ENEA-INFN-CNR-Università di Roma Tor Vergata aiming at the construction of a FEL-SASE X-ray source in the Tor Vergata Campus. The first phase of the SPARX project, funded by Government Agencies, will be focused on the R&D activity on critical components and techniques for future X-ray facilities. The R&D plans for the FEL source will be developped along two lines: (a) use of the SPARC high brightness photo-injector to develop experimental test on RF compression techniques and other beam physics issues, like emittance degradation in magnetic compressors due to CSR; (b) development of new undulator design concepts and up-grading of the FEL SPARC source to enhance the non linear harmonic generation mechanism, design and test of e-beam conditioning, prebunching and seeding. A parallel program will be aimed at the development of high repetition rate S-band gun, high Quantum Efficiency cathodes, high gradient X-band RF acceleratin...

  1. Delayed Single Stage Perineal Posterior Urethroplasty

    International Nuclear Information System (INIS)

    Ali, S.; Shahnawaz; Shahzad, I.; Baloch, M. U.

    2015-01-01

    Objective: To determine the delayed single stage perineal posterior urethroplasty for treatment of posterior urethral stricture/distraction defect. Study Design: Descriptive case series. Place and Duration of Study: Department of Urology, Jinnah Postgraduate Medical Centre, Karachi, from January 2009 to December 2011. Methodology: Patients were selected for delayed single stage perineal posterior urethroplasty for treatment of posterior urethral stricture / distraction defect. All were initially suprapubically catheterized followed by definitive surgery after at least 3 months. Results: Thirty male patients were analyzed with a mean follow-up of 10 months, 2 patients were excluded as they developed failure in first 3 months postoperatively. Mean patients age was 26.25 ± 7.9 years. On follow-up, 7 patients (23.3 percentage) experienced recurrent stricture during first 10 months. Five (16.6 percentage) patients were treated successfully with single direct visual internal urethrotomy. Two patients (6.6 percentage) had more than one direct visual internal urethrotomy and considered failed. Re-do perineal urethroplasty was eventually performed. The overall success rate was 93.3 percentage with permissive criteria allowing single direct visual internal urethrotomy and 76.6% with strict criteria allowing no more procedures postoperatively. Conclusion: Posterior anastomotic urethroplasty offers excellent long-term results to patients with posterior urethral trauma and distraction defect even after multiple prior procedures. (author)

  2. A wiggler magnet for FEL low voltage operation

    Energy Technology Data Exchange (ETDEWEB)

    Al-Shamma`a, A.; Stuart, R.A.; Lucas, J.

    1995-12-31

    In low voltage FELs (ie, 200kV), operation is necessarily in the microwave frequency range for wiggler periods of the order of cms., so that a waveguide system is mandatory. Also, because of the relatively low velocity of the electron beam, the wiggle amplitude of the electron beam can be much larger than is normal for highly relativistic FELs. Both these factors mean that the electron trajectory must be carefully controlled to avoid beam collision with the waveguide walls. A wiggler system with half poles at entrance and exit is not an acceptable solution because of the offset is gives rise to the electron trajectory. Consequently, we have designed and constructed a wiggler magnet with exponential entrance and exit tapers for a minimal deflection and displacement of the electron beam. Simulations and experimental measurements showed that an on axis trajectory is easily obtainable.

  3. Single conversion stage amplifier - SICAM

    Energy Technology Data Exchange (ETDEWEB)

    Ljusev, P.

    2005-12-15

    This Ph.D. thesis presents a thorough analysis of the so called SICAM - SIngle Converter stage AMplifier approach to building direct energy conversion audio power amplifiers. The mainstream approach for building isolated audio power amplifiers today consists of isolated DC power supply and Class D amplifier, which essentially represents a two stage solution, where each of the components can be viewed as separate and independent part. The proposed SICAM solution strives for direct energy conversion from the mains to the audio output, by dedicating the operation of the components one to another and integrating their functions, so that the final audio power amplifier represents a single-stage topology with higher efficiency, lower volume, less board space, lower component count and subsequently lower cost. The SICAM approach is both applicable to non-isolated and isolated audio power amplifiers, but the problems encountered in these two cases are different. Non-isolated SICAM solutions are intended for both AC mains-connected and battery-powered devices. In non-isolated mains-connected SICAMs the main idea is to simplify the power supply or even provide integrated power factor correction (PFC) functions, while still maintaining low component stress and good audio performance by generally decreasing the input voltage level to the Class D audio power amplifier. On the other hand, non-isolated battery-powered SICAMs have to cope with the ever changing battery voltage and provide output voltage levels which are both lower and higher than the battery voltage, while still being simple and single-stage energy conversion solutions. In isolated SICAMs the isolation transformer adjusts the voltage level on the secondary side to the desired level, so the main challenges here are decreasing the size of the magnetic core and reducing the number and size of bulky reactive components as much as possible. The main focus of this thesis is directed towards the isolated SICAMs and

  4. A high-power rf linear accelerator for FELS [free-electron lasers

    International Nuclear Information System (INIS)

    Sheffield, R.L.; Watson, J.M.

    1987-01-01

    This paper describes the design of a high average current rf linear accelerator suitable for driving short-wavelength free-electron lasers (FEL). It is concluded that the design of a room-temperature rf linear acelerator that can meet the stringent requirements of a high-power short-wavelength FEL appears possible. The accelerator requires the use of an advanced photoelectric injector that is under development; the accelerator components, however, do not require appreciable development. At these large beam currents, low-frequency, large-bore room-temperature cavities can be highly efficient and give all specified performance with minimal risk. 20 refs

  5. A hybrid type undulator for far-infrared FELs at FELI

    Energy Technology Data Exchange (ETDEWEB)

    Zako, A.; Miyauchi, Y.; Koga, A. [Free Electron Laser Research Institute, Inc., Osaka (Japan)] [and others

    1995-12-31

    Two FEL facilities of the FELI are now operating in the wavelength range of 1-20 {mu}m. A 3.2-m hybrid type undulator ({lambda}{sub u}=80mm, N=40) has been designed for far-infrared FELs and will be installed in December. It can cover the wavelength of 20-60 {mu}m by changing K-value from 1 to 2.7 for a 28.0-MeV electron beam. It is composed of ferrite magnetic poles and Sm-Co permanent magnets. Commonly wound coils induce alternating magnetic field in ferrite poles. Combination of the induced field and the permanent magnet field can controls the magnetic field between the undulator gap.

  6. High average power CW FELs [Free Electron Laser] for application to plasma heating: Designs and experiments

    International Nuclear Information System (INIS)

    Booske, J.H.; Granatstein, V.L.; Radack, D.J.; Antonsen, T.M. Jr.; Bidwell, S.; Carmel, Y.; Destler, W.W.; Latham, P.E.; Levush, B.; Mayergoyz, I.D.; Zhang, Z.X.

    1989-01-01

    A short period wiggler (period ∼ 1 cm), sheet beam FEL has been proposed as a low-cost source of high average power (1 MW) millimeter-wave radiation for plasma heating and space-based radar applications. Recent calculation and experiments have confirmed the feasibility of this concept in such critical areas as rf wall heating, intercepted beam (''body'') current, and high voltage (0.5 - 1 MV) sheet beam generation and propagation. Results of preliminary low-gain sheet beam FEL oscillator experiments using a field emission diode and pulse line accelerator have verified that lasing occurs at the predicted FEL frequency. Measured start oscillation currents also appear consistent with theoretical estimates. Finally, we consider the possibilities of using a short-period, superconducting planar wiggler for improved beam confinement, as well as access to the high gain, strong pump Compton regime with its potential for highly efficient FEL operation

  7. Initial observations of high-charge, low-emittance electron beams at HIBAF (High Brightness Accelerator FEL)

    Energy Technology Data Exchange (ETDEWEB)

    Lumpkin, A.H.; Feldman, R.B.; Carsten, B.E.; Feldman, D.W.; Sheffield, R.L.; Stein, W.E.; Johnson, W.J.; Thode, L.E.; Bender, S.C.; Busch, G.E.

    1990-01-01

    We report our initial measurements of bright (high-charge, low-emittance) electron beams generated at the Los Alamos High Brightness Accelerator FEL (HIBAF) Facility. Normalized emittance values of less than 50 {pi} mm-mrad for charges ranging from 0.7 to 8.7 nC were obtained for single micropulses at a y-waist and at an energy of 14.7 MeV. These measurements were part of the commissioning campaign on the HIBAF photoelectric injector. Macropulse measurements have also been performed and are compared with PARMELA simulations. 5 refs., 8 figs., 3 tabs.

  8. Colorado State University (CSU) accelerator and FEL facility

    NARCIS (Netherlands)

    Milton, S.; Biedron, S.; Harris, J.; Martinez, J.; D'Audney, A.; Edelen, J.; Einstein, J.; Hall, C.; Horovitz, K.; Morin, A.; Sipahi, N.; Sipahi, T.; Williams, J.; Carrico, C.; Van Der Slot, P. J M

    2014-01-01

    The Colorado State University (CSU) Accelerator Facility will include a 6-MeV L-Band (1.3 GHz) electron linear accelerator (linac) with a free-electron laser (FEL) system capable of producing Terahertz (THz) radiation, a laser laboratory, a microwave test laboratory, and a magnetic test laboratory.

  9. Advanced Electron Beam Diagnostics for the FERMI FEL

    CERN Document Server

    Ferianis, M; D'Auria, G; Di Mitri, S

    2005-01-01

    Fermi is the fourth generation light source currently under design at ELETTRA: based on the Harmonic Generation (HG) scheme it will generate FEL radiation in the 100-10nm range. The successful implementation of the HG scheme calls also for precise knowledge of electron beam emittances and energy spread as well as for very accurate control on the photon to electron interaction, in the Undulator sections. In this paper we present our design for two fundamental Diagnostics foreseen for the new FERMI LINAC: the Beam Position Monitors (BPM) and the Transverse Deflecting cavity set-up. Sensitivity studies on transverse beam displacement effects on global stability of FEL output radiation dictate the ultimate performance to be provided by the BPM system. Due to non negligible longitudinal occupancy of a cavity type BPM, some efforts have been put to study compact cavity BPM configuration. A proper set-up of RF deflecting cavity combined with the vertical ramp foreseen at the end of the LINAC provide a powerful tool ...

  10. PFM2: a 32 × 32 processor for X-ray diffraction imaging at FELs

    International Nuclear Information System (INIS)

    Manghisoni, M.; Re, V.; Traversi, G.; Fabris, L.; Ratti, L.; Grassi, M.; Lodola, L.; Malcovati, P.; Vacchi, C.; Pancheri, L.; Benkechcache, M. E. A.; Dalla Betta, G.-F.; Xu, H.; Verzellesi, G.; Ronchin, S.; Boscardin, M.; Batignani, G.; Bettarini, S.; Casarosa, G.; Forti, F.

    2016-01-01

    This work is concerned with the design of a readout chip for application to experiments at the next generation X-ray Free Electron Lasers (FEL). The ASIC, named PixFEL Matrix (PFM2), has been designed in a 65 nm CMOS technology and consists of 32 × 32 pixels. Each cell covers an area of 110 × 110 μm 2 and includes a low-noise charge sensitive amplifier (CSA) with dynamic signal compression, a time-variant shaper used to process the preamplifier output signal, a 10-bit successive approximation register (SAR) analog-to-digital converter (ADC) and digital circuitry for channel control and data readout. Two different solutions for the readout channel, based on different versions of the time-variant filter, have been integrated in the chip. Both solutions can be operated in such a way to cope with the high frame rate (exceeding 1 MHz) foreseen for future X-ray FEL machines. The ASIC will be bump bonded to a slim/active edge pixel sensor to form the first demonstrator for the PixFEL X-ray imager. This work has been carried out in the frame of the PixFEL project funded by Istituto Nazionale di Fisica Nucleare (INFN), Italy.

  11. VUV Optics Development for the Elettra Storage Ring FEL

    CERN Document Server

    Guenster, Stefan

    2004-01-01

    Vacuum ultraviolet optical components for the storage ring FEL at Elettra are under continuous development in the European research consortium EUFELE. Target of the project is the progress to shorter lasing wavelengths in the VUV spectral range. The current status allows lasing with oxide mirror systems down to 190 nm. The main obstacles for the development of optical coatings for shorter wavelengths is the high energetic background of the synchrotron radiation impinging onto the front mirror in the laser cavity. Investigations in single layer systems and multilayer stacks of oxide or fluoride materials demonstrate that fluoride mirrors reach highest reflectivity values down to 140 nm, and oxide coatings possess a satisfactory resistance against the high energetic background irradiation. However, pure oxide multilayer stacks exhibit significant absorption below 190 nm and pure fluoride stacks suffer from strong degradation effects under synchrotron radiation. A solution could be hybrid systems, combining fluo...

  12. LCLS X-Ray FEL Output Performance in the Presence of Highly Time-Dependent Undulator Wakefields

    CERN Document Server

    Fawley, W M; Emma, P; Huang, Z; Nuhn, H D; Reiche, S; Stupakov, G

    2005-01-01

    Energy loss due to wakefields within a long undulator, if not compensated by an appropriate tapering of the magnetic field strength, can degrade the FEL process by detuning the resonant FEL frequency. The wakefields arise from the vacuum chamber wall resistivity, its surface roughness, and abrupt changes in its aperture. For LCLS parameters, the resistive component is the most critical and depends upon the chamber wall material (e.g. Cu) and its radius. Of recent interest [1] is the so-called "AC" component of the resistive wake which can lead to strong variations on very short timescales (e.g. ~20 fs). To study the expected performance of the LCLS in the presence of these wakefields, we have made an extensive series of start-to-end SASE simulations with tracking codes PARMELA and ELEGANT, and time-dependent FEL simulation codes GENESIS1.3 and GINGER. We discuss the impact of the wakefield losses upon output energy, spectral bandwidth, and temporal envelope of the output FEL pulse, as well a...

  13. Characteristics of the FEL project for the MUH experiment; Stato del progetto FEL per l`esperimeto MUH

    Energy Technology Data Exchange (ETDEWEB)

    Ciocci, F.; Doria, A.; Fascetti, M.; Gallerano, G.P.; Giannessi, L.; Giovenale, E.; Messina, G.; Picardi, L.; Renieri, A.; Ronci, G.; Ronsivalle, C.; Vignati, A. [ENEA, Centro Ricerche Frascati, Rome (Italy). Dip. Innovazione

    1999-01-01

    The design characteristics of a compact Free Electron Laser (FEL) operating in the far infrared spectral range between 200 and 600 {mu}m are presented in this report. The device can be employed in a fundamental physics experiment to be performed in collaboration with INFN-Trieste and the Paul Sherrer Institute- Villigen. Spectroscopic measurements in the above spectral region will allow one to determine the energy difference between the levels 3D-3P in the {mu}P system with great accuracy. [Italiano] In questo rapporto vengono presentate le caratteristiche di progetto di un Laser ad Elettroni Liberi (FEL) compatto operante nel lontano infrarosso a lunghezze d`onda comprese tra 200 e 600 {mu}m. Tale laser potra` essere impiegato in un esperimento di fisica fondamentale su idrogeno muonico in collaborazione con INFN-Trieste ed il Paul Sherrer Institute-Villigen. Le misure spettroscopiche nella regione spettrale del lontano infrarosso consentiranno di determinare con grande accuratezza la differenza di energia dei livelli 3D-3P nel sistema {mu}P. Attraverso la misura di questa transizione sara` possibile effettuare un test delle correzioni di Meccanica Quantistica (QED) alle energie di legame, migliorando di un ordine di grandezza l`accuratezza della misura della polarizzazione del vuoto.

  14. Towards imaging of ultrafast molecular dynamics using FELs

    NARCIS (Netherlands)

    Rouzee, A.; Johnsson, P.; Rading, L.; Siu, W.; Huismans, Y.; Duesterer, S.; Redlin, H.; Tavella, F.; Stojanovic, N.; Al-Shemmary, A.; Lepine, F.; Holland, D. M. P.; Schlathölter, Thomas; Hoekstra, R.; Fukuzawa, H.; Ueda, K.; Vrakking, M. J. J.; Hundertmark, A.

    2013-01-01

    The dissociation dynamics induced by a 100 fs, 400 nm laser pulse in a rotationally cold Br-2 sample was characterized by Coulomb explosion imaging (CEI) using a time-delayed extreme ultra-violet (XUV) FEL pulse, obtained from the Free electron LASer in Hamburg (FLASH). The momentum distribution of

  15. Experimental results of a sheet-beam, high power, FEL amplifier with application to magnetic fusion research

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, S.; Destler, W.W.; Granatstein, V.L. [Univ. of Maryland, College Park, MD (United States)] [and others

    1995-12-31

    The experimental study of sheet-beam FELs as candidate millimeter-wave sources for heating magnetic fusion plasmas has achieved a major milestone. In a proof-of-principle, pulsed experiment, saturated FEL amplifier operation was achieved with 250 kW of output power at 86 GHz. Input microwave power was 1 kW, beam voltage was 450 kV and beam current was 17 A. The planar wiggler had a peak value of 3.8 kG, a period of 0.96 cm and was 71 cm long. The linear gain of 30 dB, saturated gain of 24 dB and saturated efficiency of 3% all are in good agreement with theoretical prediction. Follow-on work would include development of a thermionic sheet-beam electron-gun compatible with CW FEL operation, adding a section of tapered wiggler to increase the output power to levels in excess of 1 megawatt, and increasing the FEL frequency.

  16. Enhancement of Permeation in Transdermal Drug Delivery System by 6μm Wavelength Area Using an MIR-FEL

    Science.gov (United States)

    Uchizono, T.; Ishii, K.; Iwao, Y.; Itou, Y.; Maruo, H.; Hori, M.; Awazu, K.

    2005-03-01

    Ablation of the stratum corneum (SC) by pulsed-laser irradiation is one method of enhancing transdermal drug delivery (TD). For non-invasive laser TD treatment, we have tried to enhance TD without ablation of the SC using an MIR-FEL (6-μm wavelength) (FEL : free electron laser). Lidocaine was used as the drug in this study. The enhancement of TD was measured by HPLC. It was found that the lidocaine TD of the sample irradiated by MIR-FEL was enhanced 10 fold faster than the non-irradiated sample with a flux at 0.5 μg/cm2/h, measured by HPLC. We have demonstrated the effectiveness of TD enhancement by an MIR-FEL (6-μm wavelength) irradiation.

  17. A helical optical for circular polarized UV-FEL project at the UVSOR

    Energy Technology Data Exchange (ETDEWEB)

    Hama, Hiroyuki [Institute for Molecular Science, Okazaki (Japan)

    1995-12-31

    Most of existing storage ring free electron lasers (SRFEL) are restricted those performances by degradation of mirrors in optical cavities. In general, the SRFEL gain at the short wavelength region with high energy electrons is quite low, and the high reflectivity mirrors such as dielectric multilayer mirrors are therefore required. The mirror degradation is considered as a result of irradiation of higher harmonic photons that are simultaneously emitted from planar optical klystron (OK) type undulators, which are commonly used in SRFEL. This problem is getting severer as the lasing wavelength becomes shorter. The UVSOR-FEL had been originally scheduled to be shutdown by 1996 because another undulator project for spectroscopic studies with circular polarized photon would take the FEL`s place. According to suggestion of the insertion device group of the SPring-8, we have designed a helical undulator that is able to vary degree and direction of the polarization easily. In addition, the undulator can be converted into a helical OK by replacing magnets at the center part of undulator in order to coexist with further FEL experiments. Using a calculated magnetic field for magnet configurations of the OK mode, the radiation spectrum at wide wavelength range was simulated by a Fourier transform of Lienard-Wiechert potentials. As a matter of course, some higher harmonics are radiated on the off-axis angle. However it was found out that the higher harmonics is almost negligible as far as inside a solid angle of the Gaussian laser mode. Moreover the gain at the UV region of 250 nm is expected to be much higher than our present FEL because of high brilliant fundamental radiation. The calculated spatial distribution of higher harmonics and the estimated instantaneous gain is presented. Advantages of the helical OK for SRFEL will be discussed in view of our experience, and a possibility of application two-color experiment with SR will be also mentioned.

  18. Influence of an imperfect energy profile on a seeded free electron laser performance

    Directory of Open Access Journals (Sweden)

    Botao Jia

    2010-06-01

    Full Text Available A single-pass high-gain x-ray free electron laser (FEL calls for a high quality electron bunch. In particular, for a seeded FEL amplifier and for a harmonic generation FEL, the electron bunch initial energy profile uniformity is crucial for generating an FEL with a narrow bandwidth. After the acceleration, compression, and transportation, the electron bunch energy profile entering the undulator can acquire temporal nonuniformity. We study the influence of the electron bunch initial energy profile nonuniformity on the FEL performance. Intrinsically, for a harmonic generation FEL, the harmonic generation FEL in the final radiator starts with an electron bunch having energy modulation acquired in the previous stages, due to the FEL interaction at those FEL wavelengths and their harmonics. The influence of this electron bunch energy nonuniformity on the harmonic generation FEL in the final radiator is then studied.

  19. Single-stage-to-orbit versus two-stage-two-orbit: A cost perspective

    Science.gov (United States)

    Hamaker, Joseph W.

    1996-03-01

    This paper considers the possible life-cycle costs of single-stage-to-orbit (SSTO) and two-stage-to-orbit (TSTO) reusable launch vehicles (RLV's). The analysis parametrically addresses the issue such that the preferred economic choice comes down to the relative complexity of the TSTO compared to the SSTO. The analysis defines the boundary complexity conditions at which the two configurations have equal life-cycle costs, and finally, makes a case for the economic preference of SSTO over TSTO.

  20. Planar undulator motion excited by a fixed traveling wave. Quasiperiodic averaging normal forms and the FEL pendulum

    Energy Technology Data Exchange (ETDEWEB)

    Ellison, James A.; Heinemann, Klaus [New Mexico Univ., Albuquerque, NM (United States). Dept. of Mathematics and Statistics; Vogt, Mathias [Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany); Gooden, Matthew [North Carolina State Univ., Raleigh, NC (United States). Dept. of Physics

    2013-03-15

    We present a mathematical analysis of planar motion of energetic electrons moving through a planar dipole undulator, excited by a fixed planar polarized plane wave Maxwell field in the X-Ray FEL regime. Our starting point is the 6D Lorentz system, which allows planar motions, and we examine this dynamical system as the wave length {lambda} of the traveling wave varies. By scalings and transformations the 6D system is reduced, without approximation, to a 2D system in a form for a rigorous asymptotic analysis using the Method of Averaging (MoA), a long time perturbation theory. The two dependent variables are a scaled energy deviation and a generalization of the so- called ponderomotive phase. As {lambda} varies the system passes through resonant and nonresonant (NR) zones and we develop NR and near-to-resonant (NtoR) MoA normal form approximations. The NtoR normal forms contain a parameter which measures the distance from a resonance. For a special initial condition, for the planar motion and on resonance, the NtoR normal form reduces to the well known FEL pendulum system. We then state and prove NR and NtoR first-order averaging theorems which give explicit error bounds for the normal form approximations. We prove the theorems in great detail, giving the interested reader a tutorial on mathematically rigorous perturbation theory in a context where the proofs are easily understood. The proofs are novel in that they do not use a near identity transformation and they use a system of differential inequalities. The NR case is an example of quasiperiodic averaging where the small divisor problem enters in the simplest possible way. To our knowledge the planar prob- lem has not been analyzed with the generality we aspire to here nor has the standard FEL pendulum system been derived with associated error bounds as we do here. We briefly discuss the low gain theory in light of our NtoR normal form. Our mathematical treatment of the noncollective FEL beam dynamics problem in

  1. Planar undulator motion excited by a fixed traveling wave. Quasiperiodic averaging normal forms and the FEL pendulum

    International Nuclear Information System (INIS)

    Ellison, James A.; Heinemann, Klaus; Gooden, Matthew

    2013-03-01

    We present a mathematical analysis of planar motion of energetic electrons moving through a planar dipole undulator, excited by a fixed planar polarized plane wave Maxwell field in the X-Ray FEL regime. Our starting point is the 6D Lorentz system, which allows planar motions, and we examine this dynamical system as the wave length λ of the traveling wave varies. By scalings and transformations the 6D system is reduced, without approximation, to a 2D system in a form for a rigorous asymptotic analysis using the Method of Averaging (MoA), a long time perturbation theory. The two dependent variables are a scaled energy deviation and a generalization of the so- called ponderomotive phase. As λ varies the system passes through resonant and nonresonant (NR) zones and we develop NR and near-to-resonant (NtoR) MoA normal form approximations. The NtoR normal forms contain a parameter which measures the distance from a resonance. For a special initial condition, for the planar motion and on resonance, the NtoR normal form reduces to the well known FEL pendulum system. We then state and prove NR and NtoR first-order averaging theorems which give explicit error bounds for the normal form approximations. We prove the theorems in great detail, giving the interested reader a tutorial on mathematically rigorous perturbation theory in a context where the proofs are easily understood. The proofs are novel in that they do not use a near identity transformation and they use a system of differential inequalities. The NR case is an example of quasiperiodic averaging where the small divisor problem enters in the simplest possible way. To our knowledge the planar prob- lem has not been analyzed with the generality we aspire to here nor has the standard FEL pendulum system been derived with associated error bounds as we do here. We briefly discuss the low gain theory in light of our NtoR normal form. Our mathematical treatment of the noncollective FEL beam dynamics problem in the

  2. Inverse Compton gamma-ray source for nuclear physics and related applications at the Duke FEL

    International Nuclear Information System (INIS)

    O'Shea, P.G.; Litvinenko, V.N.; Madey, J.M.J.

    1995-01-01

    In recent years the development of intense, short-wavelength FEL light sources has opened opportunities for the development new applications of high-energy Compton-backscattered photons. These applications range from medical imaging with X-ray photons to high-energy physics with γγ colliders. In this paper we discuss the possibilities for nuclear physics studies using polarized Compton backscattered γ-rays from the Duke storage-ring-driven UV-FEL. There are currently a number of projects that produce polarized γ-rays for nuclear physics studies. All of these facilities operate by scattering conventional laser-light against electrons circulating in a storage ring. In our scheme, intra-cavity scattering of the UV-FEL light will produce a γ-flux enhancement of approximately 10 3 over existing sources. The Duke ring can operate at energies up to 1.2 GeV and can produce FEL photons up to 12.5 eV. We plan to generate γ-rays up to 200 MeV in energy with an average flux in excess of 10 7 /s/MeV, using a modest scattering beam of 10-mA average stored current. The γ-ray energy may be tuned by varying the FEL wavelength or by adjusting the stored electron beam energy. Because of the intense flux, we can eliminate the need for photon energy tagging by collimating of the γ-ray beam. We will discuss the characteristics of the device and its research opportunities

  3. Single stage reconstruction of complex anterior urethral strictures

    Directory of Open Access Journals (Sweden)

    Deepak Dubey

    2001-01-01

    Full Text Available Purpose: Single stage reconstruction of long, com-plex urethral strictures is technically demanding and may require the use of more than one tissue transfer technique. We describe our experience in the manage-ment of such strictures with a variety of urethroplasty techniques. Materials and Methods: Between 1989 and 1999, 25 men (mean age 38.5 years underwent single stage re-construction of panurethral, multiple segment or focally dense strictures [mean length 11.2 cm (range 8-17 cm]. 8 patients had combined substitution urethroplasty with a circumpenile fasciocutaneous flap and a free graft of bladder/buccal mucosa or tunica vaginalis . flap. In 10 patients a single tissue transfer technique was used. 3 patients underwent an augmented roof/floor strip ure-throplasty with a penile skin flap. 4 patients with multi-ple segment strictures (separate pendulous and bulbar underwent distal onlay flap and proximal anastomotic urethroplasty. Results: The median ,follow-up was 46.5 months (range 6-88 months. The mean postoperative flow rate improved to 22.5 ml/sec. 2 patients developed fistulae requiring repair. Recurrent stricture developed in 5 (20.8% patients, of which 2 were managed with visual internal urethrotomy, 2 with anastomotic urethroplasty and 1 with a two-stage procedure. Pseudodiverticulum and post-void dribbling were seen in 6 (25% patients. Conclusions: Successful outcome of single stage re-construction of long complex strictures can be achieved with a combination of various tissue transfer methods. The urologist who has a thorough knowledge of penile skin and urethral vascular anatomy and a wide array of substitution techniques in his armamentarium can un-dertake approach to such strictures.

  4. Single-shot spectro-temporal characterization of XUV pulses from a seeded free-electron laser

    Science.gov (United States)

    de Ninno, Giovanni; Gauthier, David; Mahieu, Benoît; Ribič, Primož Rebernik; Allaria, Enrico; Cinquegrana, Paolo; Danailov, Miltcho Bojanov; Demidovich, Alexander; Ferrari, Eugenio; Giannessi, Luca; Penco, Giuseppe; Sigalotti, Paolo; Stupar, Matija

    2015-08-01

    Intense ultrashort X-ray pulses produced by modern free-electron lasers (FELs) allow one to probe biological systems, inorganic materials and molecular reaction dynamics with nanoscale spatial and femtoscale temporal resolution. These experiments require the knowledge, and possibly the control, of the spectro-temporal content of individual pulses. FELs relying on seeding have the potential to produce spatially and temporally fully coherent pulses. Here we propose and implement an interferometric method, which allows us to carry out the first complete single-shot spectro-temporal characterization of the pulses, generated by an FEL in the extreme ultraviolet spectral range. Moreover, we provide the first direct evidence of the temporal coherence of a seeded FEL working in the extreme ultraviolet spectral range and show the way to control the light generation process to produce Fourier-limited pulses. Experiments are carried out at the FERMI FEL in Trieste.

  5. Fish early life stage: Developing AOPs to support targeted reduction and replacement

    Science.gov (United States)

    There is an interest in developing alternatives to the fish early-life stage (FELS) test (OECD test guideline 210), for predicting adverse chronic toxicity outcomes (e.g., impacts on growth and survival). Development and characterization of adverse outcome pathways (AOPs) related...

  6. Sensitivity of echo enabled harmonic generation to sinusoidal electron beam energy structure

    Directory of Open Access Journals (Sweden)

    E. Hemsing

    2017-06-01

    Full Text Available We analytically examine the bunching factor spectrum of a relativistic electron beam with sinusoidal energy structure that then undergoes an echo-enabled harmonic generation (EEHG transformation to produce high harmonics. The performance is found to be described primarily by a simple scaling parameter. The dependence of the bunching amplitude on fluctuations of critical parameters is derived analytically, and compared with simulations. Where applicable, EEHG is also compared with high gain harmonic generation (HGHG and we find that EEHG is generally less sensitive to several types of energy structure. In the presence of intermediate frequency modulations like those produced by the microbunching instability, EEHG has a substantially narrower intrinsic bunching pedestal.

  7. Comparative assessment of single-stage and two-stage anaerobic digestion for the treatment of thin stillage.

    Science.gov (United States)

    Nasr, Noha; Elbeshbishy, Elsayed; Hafez, Hisham; Nakhla, George; El Naggar, M Hesham

    2012-05-01

    A comparative evaluation of single-stage and two-stage anaerobic digestion processes for biomethane and biohydrogen production using thin stillage was performed to assess the impact of separating the acidogenic and methanogenic stages on anaerobic digestion. Thin stillage, the main by-product from ethanol production, was characterized by high total chemical oxygen demand (TCOD) of 122 g/L and total volatile fatty acids (TVFAs) of 12 g/L. A maximum methane yield of 0.33 L CH(4)/gCOD(added) (STP) was achieved in the two-stage process while a single-stage process achieved a maximum yield of only 0.26 L CH(4)/gCOD(added) (STP). The separation of acidification stage increased the TVFAs to TCOD ratio from 10% in the raw thin stillage to 54% due to the conversion of carbohydrates into hydrogen and VFAs. Comparison of the two processes based on energy outcome revealed that an increase of 18.5% in the total energy yield was achieved using two-stage anaerobic digestion. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Primary experimental studies on mid-infrared FEL irradiation on dental substances at BFEL

    CERN Document Server

    Biao, Z J; Gao Xue Ju; He Wei; Huang Yu Ying; Li Yong Gui; LiuNianQing; Wang Min Kai; Wu Gan; Yan Xue Pin; Zhang Guo Qing

    2001-01-01

    A free electron laser (FEL) with its characteristics of wide wavelength tunability, ultrashort pulse time structure, and high peak power density is predominantly superior to all other conventional lasers in applications. Several experimental studies on mid-infrared FEL irradiation on dental enamel and dentine were performed at the Beijing FEL. Experimental aims were to investigate changes in the hardness, ratios of P to Ca and Cs before and after irradiation on samples with a characteristic absorption wavelength of 9.66 mu m, in the colors of these sample surfaces after irradiation with different wavelengths around the peak wavelength. The time dependence of temperature of the dentine sample was measured with its ps pulse effects compared to that with a continuous CO sub 2 laser. FTIR absorption spectra in the range of 2.5-15.4 mu m for samples of these hard dental substances and pure hydroxyapatite were first examined to decide their chemical components and absorption maximums. Primary experimental results w...

  9. design, construction and measured performance of a single-stage

    African Journals Online (AJOL)

    2012-11-03

    Nov 3, 2012 ... Abstract. The design philosophy, construction and measured performances of a single stage, single entry centrifugal pump .... the tachometer spindle to be held against a recess in the motor shaft. The constructed centrifugal ...

  10. Efficacy of single-stage and two-stage Fowler–Stephens laparoscopic orchidopexy in the treatment of intraabdominal high testis

    Directory of Open Access Journals (Sweden)

    Chang-Yuan Wang

    2017-11-01

    Conclusion: In the case of testis with good collateral circulation, single-stage F-S laparoscopic orchidopexy had the same safety and efficacy as the two-stage F-S procedure. Surgical options should be based on comprehensive consideration of intraoperative testicular location, testicular ischemia test, and collateral circumstances surrounding the testes. Under the appropriate conditions, we propose single-stage F-S laparoscopic orchidopexy be preferred. It may be appropriate to avoid unnecessary application of the two-stage procedure that has a higher cost and causes more pain for patients.

  11. FEL gain optimisation and spontaneous radiation

    Energy Technology Data Exchange (ETDEWEB)

    Bali, L.M.; Srivastava, A.; Pandya, T.P. [Lucknow Univ. (India)] [and others

    1995-12-31

    Colson have evaluated FEL gains for small deviations from perfect electron beam injection, with radiation of the same polarisation as that of the wiggler fields. We find that for optimum gain the polarisation of the optical field should be the same as that of the spontaneous emission under these conditions. With a helical wiggler the axial oscillations resulting from small departures from perfect electron beam injection lead to injection dependent unequal amplitudes and phases of the spontaneous radiation in the two transverse directions. Viewed along the axis therefore the spontaneous emission is elliptically polarised. The azimuth of the ellipse varies with the difference of phase of the two transverse components of spontaneous emission but the eccentricity remains the same. With planar wigglers the spontaneous emission viewed in the axial direction is linearly polarised, again with an injection dependent azimuth. For optimum coherent gain of a radiation field its polarisation characteristics must be the same as those of the spontaneous radiation with both types of wiggler. Thus, with a helical wiggler and the data reported earlier, an increase of 10% in the FEL gain at the fundamental frequency and of 11% at the fifth harmonic has been calculated in the small gain per pass limit. Larger enhancements in gain may result from more favourable values of input parameters.

  12. Comparison of a ZGP OPO with a Mark-III FEL as a Potential Replacement for Mid-Infrared Soft Tissue Ablation Applications

    CERN Document Server

    Mackanos, M A

    2005-01-01

    A Mark-III FEL, tuned to 6.45 μm has demonstrated minimal collateral damage and high ablation yield in soft tissue. Further clinical advances are limited due to the overhead associated with an FEL; alternative mid-IR sources are needed. The FEL parameters needed to carry out efficient ablation with minimal damage must be determined. Studies by this author have shown that the unique pulse structure of the FEL does not play a role in this process [1]. We focused on comparing the macropulse duration of the FEL with a ZGP-OPO. No difference in pulse structure between the two laser sources with respect to the ablation threshold of water and mouse dermis was seen. There is a difference between the sources with respect to the crater depths in gelatin and mouse dermis. At 6.1 μm, the OPO craters are 8 times the depth of the FEL ones. Brightfield imaging shows the classic ablation mechanism. The timescale of the crater formation, ejection, and collapse occurs on a faster scale for the OPO. Histology ...

  13. Optimization of the LCLS X-Rray FEL Output Performance in the Presence of Strong Undulator Wakefields

    CERN Document Server

    Reiche, Sven; Emma, Paul; Fawley, William M; Huang, Zhirong; Nuhn, Heinz-Dieter; Stupakov, Gennady

    2005-01-01

    The Linac Coherent Light Source (LCLS) Free-Electron Laser will operate in the wavelength range of 1.5 to 15 Angstroms. Energy loss due to wakefields within the long undulator can degrade the FEL process by detuning the resonant FEL frequency. The wakefields arise from the vacuum chamber wall resistivity, its surface roughness, and abrupt changes in its aperture. For LCLS parameters, the resistive component is the most critical and depends upon the chamber material (e.g. Cu) and its radius. To study the expected performance in the presence of these wakefields, we make a series of "start-to-end" simulations with tracking codes PARMELA and ELEGANT and time-dependent FEL simulation codes Genesis 1.3 and Ginger. We discuss the impact of the wakefield on output energy, spectral bandwidth, and temporal envelope of the output FEL pulse, as well as the benefits of a partial compensation obtained with a slight z dependent taper in the undulator field. We compare these results to those obtained by decreasing the bunch ...

  14. Ultrafast phenomena at the nanoscale: science opportunities at the SwissFEL X-ray laser

    International Nuclear Information System (INIS)

    Abela, R.; Braun, H.; Ming, P.; Pedrozzi, M.; Quitmann, Ch.; Reiche, S.; Daalen, M. van; Veen, J.F. van der; Mesot, J.; Mesot, J.; Shiroka, T.; Veen, J.F. van der; Mesot, J.

    2009-09-01

    In today's fast-moving society, standing still is effectively synonymous with being left behind. If it is to maintain, beyond the coming 10-15 years, its high international standing as a complex of large research infrastructures, the Paul Scherrer Institute (PSI) must now lay the foundation for a competitive future. Experts worldwide foresee a strongly growing demand within science and technology for photon sources delivering ultra-short, coherent X-ray pulses. Such a source, called a free electron laser (FEL), is nothing less than a gigantic flash camera, allowing us to take a deeper look into matter than with any other machine before. By literally seeing molecules in action, scientists will be able not only to capture chemical and biological processes of direct relevance and benefit to society but also to improve them. It is a dream coming true. For the first time, it will not only be possible to take pictures of molecular structures, we will be able to make movies of their motion. The new X-ray laser project at PSI, known as SwissFEL, will be an important addition to the existing complex of PSI facilities that serve interdisciplinary and international research teams from academia and industry. The SwissFEL is an essential element of Switzerland's strategic focus and will prolong our nation's leading position in scientific research for years to come. It will attract top scientists from Switzerland and abroad, and will strengthen the position of PSI as a world-class research institute. This new high-tech facility will also provide an important incentive for Swiss industry, through which existing highly-qualified jobs will be maintained and new ones created. In this report we present a wide range of important, open questions within science and engineering disciplines that SwissFEL will contribute towards solving. These questions, which form the 'scientific case' for SwissFEL, have been identified through a range of workshops organized over the past few years and by

  15. Photocathode driven linac at UCLA for FEL and plasma wakefield acceleration experiments

    International Nuclear Information System (INIS)

    Hartman, S.; Aghamir, F.; Barletta, W.; Cline, D.; Dodd, J.; Katsouleas, T.; Kolonko, J.; Park, S.; Pellegrini, C.; Rosenzweig, J.; Smolin, J.; Terrien, J.; Davis, J.; Hairapetian, G.; Joshi, C.; Luhmann, N. Jr.; McDermott, D.

    1991-01-01

    The UCLA compact 20-MeV/c electron linear accelerator is designed to produce a single electron bunch with a peak current of 200 A, an rms energy spread of 0.2% or less, and a short 1.2 picosecond rms pulse duration. The linac is also designed to minimize emittance growth down the beamline so as to obtain emittances of the order of 8πmm-mrad in the experimental region. The linac will feed two beamlines, the first will run straight into the undulator for FEL experiments while the second will be used for diagnostics, longitudinal bunch compression, and other electron beam experiments. Here the authors describe the considerations put into the design of the accelerating structures and the transport to the experimental areas

  16. Transient absorption spectroscopy in biology using the Super-ACO storage ring FEL and the synchrotron radiation combination

    CERN Document Server

    Renault, E; De Ninno, G; Garzella, D; Hirsch, M; Nahon, L; Nutarelli, D

    2001-01-01

    The Super-ACO storage ring FEL, covering the UV range down to 300 nm with a high average power (300 mW at 350 nm) together with a high stability and long lifetime, is a unique tool for the performance of users applications. We present here the first pump-probe two color experiments on biological species using a storage ring FEL coupled to the synchrotron radiation. The intense UV pulse of the Super-ACO FEL is used to prepare a high initial concentration of chromophores in their first singlet electronic excited state. The nearby bending magnet synchrotron radiation provides, on the other hand a pulsed, white light continuum (UV-IR), naturally synchronized with the FEL pulses and used to probe the photochemical subsequent events and the associated transient species. We have demonstrated the feasibility with a dye molecule (POPOP) observing a two-color effect, signature of excited state absorption and a temporal signature with Acridine. Applications on various chromophores of biological interest are carried out,...

  17. Picked FEL Micro Pulse for Nano-Second Interaction with Bio-Molecule

    CERN Document Server

    Suzuki, Sachiko; Ishii, Katsonuri; Kanai, T; Naito, Y

    2004-01-01

    Laser pulse duration is a very important parameter to determine the threshold between thermal and nonthermal effects in laser surgery of biomedical tissue. Free Electron Laser (FEL) at Osaka University, Japan, has a pulse structure in which a macropulse (pulse width : 15μs) consists of equally separated micropulses, whose width and interval are ~5ps and 44.8ns, respectively. Precise control of micropulse train may establish fast optic processes because thermal relaxation time in the tissue is about 1us. A pulse-picking system was designed in order to extract single or a few micropulses from an entire macropulse using an acousto-optic modulator (AOM) in which the light path can be temporally diffracted by an external gate signal. An extracted micropulse train was monitored by a mercury-cadmium-telluride (MCT) photodetector with ~1ns response time and recorded on digital oscilloscope. A single micropulse was extracted as a result of adjusting duration of the RF wave to 50 ns which is nearly equal to the ...

  18. Los Alamos High-Brightness Accelerator FEL (HIBAF) facility

    Energy Technology Data Exchange (ETDEWEB)

    Cornelius, W.D.; Bender, S.; Meier, K.; Thode, L.E.; Watson, J.M.

    1989-01-01

    The 10-/mu/m Los Alamos free-electron laser (FEL) facility is being upgraded. The conventional electron gun and bunchers have been replaced with a much more compact 6-MeV photoinjector accelerator. By adding existing parts from previous experiments, the primary beam energy will be doubled to 40 MeV. With the existing 1-m wiggler (/lambda//sub w/ = 2.7 cm) and resonator, the facility can produce photons with wavelengths from 3 to 100 /mu/m when lasing on the fundamental mode and produce photons in the visible spectrum with short-period wigglers or harmonic operation. After installation of a 150/degree/ bend, a second wiggler will be added as an amplifier. The installation of laser transport tubes between the accelerator vault and an upstairs laboratory will provide experimenters with a radiation-free environment for experiments. Although the initial experimental program of the upgraded facility will be to test the single accelerator-master oscillator/power amplifier configuration, some portion of the operational time of the facility can be dedicated to user experiments. 13 refs., 5 figs., 6 tabs.

  19. Formation of disulfide bonds and homodimers of the major cat allergen Fel d 1 equivalent to the natural allergen by expression in Escherichia coli.

    Science.gov (United States)

    Grönlund, Hans; Bergman, Tomas; Sandström, Kristofer; Alvelius, Gunvor; Reininger, Renate; Verdino, Petra; Hauswirth, Alexander; Liderot, Karin; Valent, Peter; Spitzauer, Susanne; Keller, Walter; Valenta, Rudolf; van Hage-Hamsten, Marianne

    2003-10-10

    Dander from the domestic cat (Felis domesticus) is one of the most common causes of IgE-mediated allergy. Attempts to produce tetrameric folded major allergen Fel d 1 by recombinant methods with structural features similar to the natural allergen have been only partially successful. In this study, a recombinant folded Fel d 1 with molecular and biological properties similar to the natural counterpart was produced. A synthetic gene coding for direct fusion of the Fel d 1 chain 2 N-terminally to chain 1 was constructed by overlapping oligonucleotides in PCR. Escherichia coli expression resulted in a non-covalently associated homodimer with an apparent molecular mass of 30 kDa defined by size exclusion chromatography. Furthermore, each 19,177-Da subunit displayed a disulfide pattern identical to that found in the natural Fel d 1, i.e. Cys3(1) Cys73(2), Cys44(1)-Cys48(2), Cys70(1)-Cys7(2), as determined by electrospray mass spectrometry after tryptic digestion. Circular dichroism analysis showed identical folds of natural and recombinant Fel d 1. Furthermore, recombinant Fel d l reacted specifically with serum IgE, inducing expression of CD203c on basophils and lymphoproliferative responses in cat-allergic patients. The results show that the overall fold and immunological properties of the recombinant Fel d 1 are very similar to those of natural Fel d 1. Moreover, the recombinant Fel d 1 construct provides a tool for defining the three-dimensional structure of Fel d 1 and represents a reagent for diagnosis and allergen-specific immunotherapy of cat allergy.

  20. 85,000-GPM, single-stage, single-suction LMFBR intermediate centrifugal pump

    International Nuclear Information System (INIS)

    Fair, C.E.; Cook, M.E.; Huber, K.A.; Rohde, R.

    1983-01-01

    The mechanical and hydraulic design features of the 85,000-gpm, single-stage, single-suction pump test article, which is designed to circulate liquid-sodium coolant in the intermediate heat-transport system of a Large-Scale Liquid Metal Fast Breeder Reactor (LS-LMFBR), are described. The design and analytical considerations used to satisfy the pump performance and operability requirements are presented. The validation of pump hydraulic performance using a hydraulic scale-model pump is discussed, as is the featute test for the mechanical-shaft seal system

  1. Dispersion relations for 1D high-gain FELs

    International Nuclear Information System (INIS)

    Webb, S.D.; Litvinenko, V.N.

    2010-01-01

    We present analytical results for the one-dimensional dispersion relation for high-gain FELs. Using kappa-n distributions, we obtain analytical relations between the dispersion relations for various order kappa distributions. Since an exact solution exists for the kappa-1 (Lorentzian) distribution, this provides some insight into the number of modes on the way to the Gaussian distribution.

  2. Physical optics simulations with PHASE for SwissFEL beamlines

    Energy Technology Data Exchange (ETDEWEB)

    Flechsig, U.; Follath, R.; Reiche, S. [Paul Scherrer Institut, Swiss Light Source, 5232 Villigen PSI (Switzerland); Bahrdt, J. [Helmholtz Zentrum Berlin (Germany)

    2016-07-27

    PHASE is a software tool for physical optics simulation based on the stationary phase approximation method. The code is under continuous development since about 20 years and has been used for instance for fundamental studies and ray tracing of various beamlines at the Swiss Light Source. Along with the planning for SwissFEL a new hard X-ray free electron laser under construction, new features have been added to permit practical performance predictions including diffraction effects which emerge with the fully coherent source. We present the application of the package on the example of the ARAMIS 1 beamline at SwissFEL. The X-ray pulse calculated with GENESIS and given as an electrical field distribution has been propagated through the beamline to the sample position. We demonstrate the new features of PHASE like the treatment of measured figure errors, apertures and coatings of the mirrors and the application of Fourier optics propagators for free space propagation.

  3. Ultrahigh harmonics generation in a FEL with a seed laser

    International Nuclear Information System (INIS)

    Goloviznin, V.V.; Amersfoort, P.W. van

    1995-01-01

    One of the most challenging problems in modern FEL technology is to operate in the X-ray region, especially in the open-quotes water windowclose quotes. Because of the absence of optical resonators in this range of wavelengths, only a single-pass device may be suitable for this task. The Self-Amplified Spontaneous Emission (SASE) mechanism is now under active discussion as a realistic way to provide high-power coherent emission in the X-ray range. Both the undulator parameters and the electron beam parameters required for the lasing are achieveable at today's technological level. On the other hand, the SASE approach implies a very long and expensive periodic magnetic structure, typically several tens of meters long. This is mainly because of the rather long build-up time necessary to establish a coherent mode from incoherent noise. A mechanism of shortening this time would be therefore highly desirable. In the present paper we consider a scheme using two undulators and a seed-laser to produce coherent X-ray emission. The first undulator and the seed-laser provide a pre-modulation of the beam while the second undulator serves as a source of coherent spontaneous radiation at a very high harmonic of the seed-laser frequency; the whole scheme may then be considered to be an FEL-based frequency upconvertor. The total length of the periodic magnetic structure is shown to be of the order of several meters, nearly an order of magnitude shorter than in the SASE case. For the same beam quality as in the SASE scheme and with realistic seed-laser parameters, the efficiency of the beam pre-modulation at the 50-th (exclamation point) harmonic is shown to be as high as 15%. The output radiation is tunable between discrete harmonics of the seed-frequency

  4. Methodology of theory of stage-by-stage long-term preparation of sportsmen in single combats

    Directory of Open Access Journals (Sweden)

    Arziutov G.

    2010-04-01

    Full Text Available Results over of researches are brought on methodology of theory of stage-by-stage preparation of sportsmen in single combats. The structuralness of theory lies in possibility simple verifications of its substantive provisions, principles and laws. Development of methodology enables to begin creation of map of trainer on the stages of long-term preparation. Laws, conformities to law, principles and rules, must be collected in a map. A map enables the trainers of reserve sport to use its content during all stages of preparation of sportsman.

  5. The FERMI-Elettra FEL Photon Transport System

    International Nuclear Information System (INIS)

    Zangrando, M.; Cudin, I.; Fava, C.; Godnig, R.; Kiskinova, M.; Masciovecchio, C.; Parmigiani, F.; Rumiz, L.; Svetina, C.; Turchet, A.; Cocco, D.

    2010-01-01

    The FERMI-Elettra free electron laser (FEL) user facility is under construction at Sincrotrone Trieste (Italy), and it will be operative in late 2010. It is based on a seeded scheme providing an almost perfect transform-limited and fully spatially coherent photon beam. FERMI-Elettra will cover the wavelength range 100 to 3 nm with the fundamental harmonics, and down to 1 nm with higher harmonics. We present the layout of the photon beam transport system that includes: the first common part providing on-line and shot-to-shot beam diagnostics, called PADReS (Photon Analysis Delivery and Reduction System), and 3 independent beamlines feeding the experimental stations. Particular emphasis is given to the solutions adopted to preserve the wavefront, and to avoid damage on the different optical elements. Peculiar FEL devices, not common in the Synchrotron Radiation facilities, are described in more detail, e.g. the online photon energy spectrometer measuring shot-by-shot the spectrum of the emitted radiation, the beam splitting and delay line system dedicated to cross/auto correlation and pump-probe experiments, and the wavefront preserving active optics adapting the shape and size of the focused spot to meet the needs of the different experiments.

  6. Feedback Control Of Dynamical Instabilities In Classical Lasers And Fels

    CERN Document Server

    Bielawski, S; Szwaj, C

    2005-01-01

    Dynamical instabilities lead to unwanted full-scale power oscillations in many classical lasers and FEL oscillators. For a long time, applications requiring stable operation were typically performed by working outside the problematic parameter regions. A breakthrough occurred in the nineties [1], when emphasis was made on the practical importance of unstable states (stationary or periodic) that coexist with unwanted oscillatory states. Indeed, although not observable in usual experiments, unstable states can be stabilized, using a feedback control involving arbitrarily small perturbations of a parameter. This observation stimulated a set of works leading to successful suppression of dynamical instabilities (initially chaos) in lasers, sometimes with surprisingly simple feedback devices [2]. We will review a set of key results, including in particular the recent works on the stabilization of mode-locked lasers, and of the super-ACO, ELETTRA and UVSOR FELs [3].

  7. FTIR Spectroscopy on Basic Materials in THz Region for Compact FEL-Based Imaging

    CERN Document Server

    Cha, H J; Lee, B C; Park, S H

    2005-01-01

    We are making experiments on THz(terahertz) imaging using a compact high power FEL (free-electron laser) which is operating as a users facility at KAERI. The wavelength range of output pulses is 100~1200 μm, which corresponds to 0.3~3 THz in the frequency region. We should select the optimum wavelength for the constituents of specimens to realize the imaging based on the THz FEL. A FTIR (Fourier-transform infrared) spectrometer was modified to measure the optical constants of the specimens in THz region. A polyester film of which thickness is 3.7 μm was used as a beam splitter of the spectrometer. In the case of normal incidence, the transmittance of the film was measured to be more than 90%, and the estimated loss by absorption was approximately 2% at the FEL frequency of 3 THz. Several tens of nanometer-thick-silver was coated on the polyester film to balance both transmission and reflection of THz waves in the beam splitter. We investigated FTIR spectroscopy on air, vapor and liquid water...

  8. A Coherent Compton Backscattering High Gain FEL using an X-Band Microwave Undulator

    CERN Document Server

    Pellegrini, C; Travish, G

    2005-01-01

    We describe a proposed high-gain FEL using an X-band microwave undulator and operating at a wavelength of about 0.5 μm. The FEL electron beam energy is 65 MeV. The beam is produced by the NLCTA X-band linac at SLAC, using an S-band high-brightness photoinjector. The undulator consists of a circular waveguide with an rf wave counter-propagating with respect to the electron beam. The undulator is powered with two high-power X-band klystrons and a dual-moded pulse compressor recently developed at SLAC. This system is capable of delivering flat-top rf pulses of up to 400 ns and a few hundred megawatts. The equivalent undulator period is 1.4 cm, the radius of the circular pipe is 1 cm, and the undulator parameter is about 0.4 for a helical undulator configuration, obtained using two cross-polarized TE modes, or larger for a planar configuration, using one rf polarization. The undulator is about four meters long. The FEL will reach saturation within this distance when operated in a SASE mode. We describe t...

  9. Nearly copropagating sheared laser pulse FEL undulator for soft x-rays

    International Nuclear Information System (INIS)

    Lawler, J E; Yavuz, D; Bisognano, J; Bosch, R A; Chiang, T C; Green, M A; Jacobs, K; Miller, T; Wehlitz, R; York, R C

    2013-01-01

    A conceptual design for a soft x-ray free-electron laser (FEL) using a short-pulsed, high energy near infrared laser undulator and a low-emittance modest-energy (∼170 MeV) electron beam is described. This low-cost design uses the laser undulator beam in a nearly copropagating fashion with respect to the electron beam, instead of the traditional ‘head-on’ fashion. The nearly copropagating geometry reduces the Doppler shift of scattered radiation to yield soft, rather than hard x-rays. To increase the FEL gain a sheared laser pulse from a Ti : sapphire or other broadband laser is used to extend the otherwise short interaction time of the nearly copropagating laser undulator beam with a relativistic electron beam. (paper)

  10. LCLS X-Ray FEL Output Performance in the Presence of Highly Time-Dependent Undulator Wakefields

    International Nuclear Information System (INIS)

    Bane, Karl L.F.; Emma, Paul; Huang, Heinz-Dieter Nuhn; Stupakov, Gennady; Fawley, William M.; Reiche, Sven

    2005-01-01

    Energy loss due to wakefields within a long undulator, if not compensated by an appropriate tapering of the magnetic field strength, can degrade the FEL process by detuning the resonant FEL frequency. The wakefields arise from the vacuum chamber wall resistivity, its surface roughness, and abrupt changes in its aperture. For LCLS parameters, the resistive-wall component is the most critical and depends upon the chamber material (e.g., Cu) and its radius. Of recent interest[1] is the so-called ''AC'' component of the resistive-wall wake which can lead to strong variations on very short timescales (e.g., ∼ 20 0fs). To study the expected performance of the LCLS in the presence of these wakefields, we have made an extensive series of start-to-end SASE simulations with tracking codes PARMELA and ELEGANT, and time-dependent FEL simulation codes GENESIS1.3 and GINGER. We discuss the impact of the wakefield losses upon output energy, spectral bandwidth, and temporal envelope of the output FEL pulse, as well as the benefits of a partial compensation of the time-dependent wake losses obtained with a slight z-dependent taper in the undulator field. We compare the taper results to those predicted analytically[2

  11. Single-session versus staged procedures for elective multivessel percutaneous coronary intervention.

    Science.gov (United States)

    Toyota, Toshiaki; Morimoto, Takeshi; Shiomi, Hiroki; Yamaji, Kyohei; Ando, Kenji; Ono, Koh; Shizuta, Satoshi; Saito, Naritatsu; Kato, Takao; Kaji, Shuichiro; Furukawa, Yutaka; Nakagawa, Yoshihisa; Kadota, Kazushige; Horie, Minoru; Kimura, Takeshi

    2018-06-01

    To clarify the effect of single-session multivessel percutaneous coronary intervention (PCI) strategy relative to the staged multivessel strategy on clinical outcomes in patients with stable coronary artery disease (CAD) or non-ST-elevation acute coronary syndrome. In the Coronary REvascularisation Demonstrating Outcome Study in Kyoto PCI/coronary artery bypass grafting registry cohort-2, there were 2018 patients who underwent elective multivessel PCI. Primary outcome measure was composite of all-cause death, myocardial infarction and stroke at 5-year follow-up. Single-session multivessel PCI and staged multivessel PCI were performed in 707 patients (35.0%) and 1311 patients (65.0%), respectively. The cumulative 5-year incidence of and adjusted risk for the primary outcome measure were not significantly different between the single-session and staged groups (26.7% vs 23.0%, p=0.45; HR 0.91, 95% CI 0.72 to 1.16, p=0.47). The 30-day incidence of all-cause death was significantly higher in the single-session group than in the staged group (1.1% vs 0.2%, p=0.009). However, the causes of death in 11 patients who died within 30 days were generally not related to the procedural complications, but related to the serious clinical status before PCI. For the subgroup analyses including age, gender, extent of CAD, severe chronic kidney disease and heart failure, there was no significant interaction between the subgroup factors and the effect of the single-session strategy relative to the staged strategy for the primary outcome measure. The single-session multivessel PCI strategy was associated with at least comparable 5-year clinical outcomes compared with the staged multivessel PCI, although the prevalence of the single-session strategy was low in the present study. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  12. A non-destructive electron beam diagnostic for a SASE FEL using coherent off-axis undulator radiation

    International Nuclear Information System (INIS)

    Neuman, C.P.; Ponds, M.L.; Barnett, G.A.; Madey, J.M.J.; O'Shea, P.G.

    1999-01-01

    We show that by observing coherent off-axis undulator radiation (COUR) from a short diagnostic wiggler, it may be possible to determine the length and structure of a short electron bunch. Typically the on-axis undulator radiation is incoherent, but at angles of a few degrees, the wavelength of the emitted radiation may be comparable to the length of a short electron bunch, and thus coherence effects emerge. Due to such coherence effects, the intensity of the emitted radiation may change by up to a factor of 10 9 as the angle of observation is increased. The radiation becomes coherent in a way which depends on the length and structure of the electron bunch. Observing COUR disturbs the electron bunch negligibly. Thus, COUR can be used as a non-destructive diagnostic which would allow for optimization of FEL performance while an FEL is operating. Such a diagnostic could be used for proposed SASE FELs, which use short electron bunches. We present two methods to describe the theory for COUR, and we use these methods to calculate the expected outcome of a COUR experiment. We propose an experiment to demonstrate COUR effects and their applications to SASE FELs

  13. Ultrafast phenomena at the nanoscale: science opportunities at the SwissFEL X-ray laser

    Energy Technology Data Exchange (ETDEWEB)

    Abela, R.; Braun, H.; Ming, P.; Pedrozzi, M.; Quitmann, Ch.; Reiche, S.; Daalen, M. van; Veen, J.F. van der; Mesot, J. [Paul Scherrer Intitute (PSI), Villigen (Switzerland); Mesot, J.; Shiroka, T.; Veen, J.F. van der [Swiss Federal Institute of Technology (ETHZ), Zuerich (Switzerland); Mesot, J. [Swiss Federal Institute of Technology (EPFL), Lausanne (Switzerland)

    2009-09-15

    In today's fast-moving society, standing still is effectively synonymous with being left behind. If it is to maintain, beyond the coming 10-15 years, its high international standing as a complex of large research infrastructures, the Paul Scherrer Institute (PSI) must now lay the foundation for a competitive future. Experts worldwide foresee a strongly growing demand within science and technology for photon sources delivering ultra-short, coherent X-ray pulses. Such a source, called a free electron laser (FEL), is nothing less than a gigantic flash camera, allowing us to take a deeper look into matter than with any other machine before. By literally seeing molecules in action, scientists will be able not only to capture chemical and biological processes of direct relevance and benefit to society but also to improve them. It is a dream coming true. For the first time, it will not only be possible to take pictures of molecular structures, we will be able to make movies of their motion. The new X-ray laser project at PSI, known as SwissFEL, will be an important addition to the existing complex of PSI facilities that serve interdisciplinary and international research teams from academia and industry. The SwissFEL is an essential element of Switzerland's strategic focus and will prolong our nation's leading position in scientific research for years to come. It will attract top scientists from Switzerland and abroad, and will strengthen the position of PSI as a world-class research institute. This new high-tech facility will also provide an important incentive for Swiss industry, through which existing highly-qualified jobs will be maintained and new ones created. In this report we present a wide range of important, open questions within science and engineering disciplines that SwissFEL will contribute towards solving. These questions, which form the 'scientific case' for SwissFEL, have been identified through a range of workshops organized over

  14. Transient absorption spectroscopy in biology using the Super-ACO storage ring FEL and the synchrotron radiation combination

    International Nuclear Information System (INIS)

    Renault, Eric; Nahon, Laurent; Garzella, David; Nutarelli, Daniele; De Ninno, Giovanni; Hirsch, Matthias; Couprie, Marie Emmanuelle

    2001-01-01

    The Super-ACO storage ring FEL, covering the UV range down to 300 nm with a high average power (300 mW at 350 nm) together with a high stability and long lifetime, is a unique tool for the performance of users applications. We present here the first pump-probe two color experiments on biological species using a storage ring FEL coupled to the synchrotron radiation. The intense UV pulse of the Super-ACO FEL is used to prepare a high initial concentration of chromophores in their first singlet electronic excited state. The nearby bending magnet synchrotron radiation provides, on the other hand a pulsed, white light continuum (UV-IR), naturally synchronized with the FEL pulses and used to probe the photochemical subsequent events and the associated transient species. We have demonstrated the feasibility with a dye molecule (POPOP) observing a two-color effect, signature of excited state absorption and a temporal signature with Acridine. Applications on various chromophores of biological interest are carried out, such as the time-resolved absorption study of the first excited state of Acridine

  15. Feasibility of an XUV FEL Oscillator Driven by a SCRF Linear Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Lumpkin, A. H.; Freund, H. P.; Reinsch, M.

    2014-01-01

    The Advanced Superconducting Test Accelerator (ASTA) facility is currently under construction at Fermi National Accelerator Laboratory. Using a1-ms-long macropulse composed of up to 3000 micropulses, and with beam energies projected from 45 to 800 MeV, the possibility for an extreme ultraviolet (XUV) free-electron laser oscillator (FELO) with the higher energy is evaluated. We have used both GINGER with an oscillator module and the MEDUSA/OPC code to assess FELO saturation prospects at 120 nm, 40 nm, and 13.4 nm. The results support saturation at all of these wavelengths which are also shorter than the demonstrated shortest wavelength record of 176 nm from a storage-ring-based FELO. This indicates linac-driven FELOs can be extended into this XUV wavelength regime previously only reached with single-pass FEL configurations.

  16. CW 100MW microwave power transfer in space

    International Nuclear Information System (INIS)

    Takayama, K.; Hiramatsu, S.; Shiho, M.

    1991-01-01

    A linear multistage MFEL has been considered as a possible power source for future linear colliders; however, the single-stage experiment cannot be straightforwardly extrapolated to the multistage MFEL. Nevertheless, extensive theoretical and computational studies have demonstrated the feasibility of multistaging. Based on the authors current understanding of the MFEL, they developed the idea of a circular microwave power station (MPS) driven with a single high current beam where many FEL stages are placed along a circle and the remarkable high power of microwave (mw) is generated at each stage. The total power produced is linearly proportional to the number of FEL stages. This huge mw power can be emitted from a large parabola antenna; propagates in space and can be received by a receiver such as parabola antenna or rectenna

  17. Comparing a single-stage geocoding method to a multi-stage geocoding method: how much and where do they disagree?

    Directory of Open Access Journals (Sweden)

    Rice Kenneth

    2007-03-01

    Full Text Available Abstract Background Geocoding methods vary among spatial epidemiology studies. Errors in the geocoding process and differential match rates may reduce study validity. We compared two geocoding methods using 8,157 Washington State addresses. The multi-stage geocoding method implemented by the state health department used a sequence of local and national reference files. The single-stage method used a single national reference file. For each address geocoded by both methods, we measured the distance between the locations assigned by each method. Area-level characteristics were collected from census data, and modeled as predictors of the discordance between geocoded address coordinates. Results The multi-stage method had a higher match rate than the single-stage method: 99% versus 95%. Of 7,686 addresses were geocoded by both methods, 96% were geocoded to the same census tract by both methods and 98% were geocoded to locations within 1 km of each other by the two methods. The distance between geocoded coordinates for the same address was higher in sparsely populated and low poverty areas, and counties with local reference files. Conclusion The multi-stage geocoding method had a higher match rate than the single-stage method. An examination of differences in the location assigned to the same address suggested that study results may be most sensitive to the choice of geocoding method in sparsely populated or low-poverty areas.

  18. Single-stage Acetabular Revision During Two-stage THA Revision for Infection is Effective in Selected Patients.

    Science.gov (United States)

    Fink, Bernd; Schlumberger, Michael; Oremek, Damian

    2017-08-01

    The treatment of periprosthetic infections of hip arthroplasties typically involves use of either a single- or two-stage (with implantation of a temporary spacer) revision surgery. In patients with severe acetabular bone deficiencies, either already present or after component removal, spacers cannot be safely implanted. In such hips where it is impossible to use spacers and yet a two-stage revision of the prosthetic stem is recommended, we have combined a two-stage revision of the stem with a single revision of the cup. To our knowledge, this approach has not been reported before. (1) What proportion of patients treated with single-stage acetabular reconstruction as part of a two-stage revision for an infected THA remain free from infection at 2 or more years? (2) What are the Harris hip scores after the first stage and at 2 years or more after the definitive reimplantation? Between June 2009 and June 2014, we treated all patients undergoing surgical treatment for an infected THA using a single-stage acetabular revision as part of a two-stage THA exchange if the acetabular defect classification was Paprosky Types 2B, 2C, 3A, 3B, or pelvic discontinuity and a two-stage procedure was preferred for the femur. The procedure included removal of all components, joint débridement, definitive acetabular reconstruction (with a cage to bridge the defect, and a cemented socket), and a temporary cemented femoral component at the first stage; the second stage consisted of repeat joint and femoral débridement and exchange of the femoral component to a cementless device. During the period noted, 35 patients met those definitions and were treated with this approach. No patients were lost to followup before 2 years; mean followup was 42 months (range, 24-84 months). The clinical evaluation was performed with the Harris hip scores and resolution of infection was assessed by the absence of clinical signs of infection and a C-reactive protein level less than 10 mg/L. All

  19. Technical Design and Optimization Study for the FERMI at Elettra FEL Photoinjector

    International Nuclear Information System (INIS)

    Lidia, Steven M.; Penco, Giuseppe; Trovo', Mauro

    2006-01-01

    The FERMI (at) Elettra FEL project will provide a novel, x-ray free electron laser user facility at Sincrotrone Trieste based on seeded and cascade FEL techniques. The electron beam source and injector systems play a crucial role in the success of the facility by providing the highest quality electron beams to the linac and FEL undulators. This Technical Note examines the critical technology components that make up the injector system, and demonstrates optimum beam dynamics solutions to achieve the required high quality electron beams. Section 2 provides an overview of the various systems and subsystems that comprise the photoinjector. The different operating modes of the injector are described as they pertain to the different linac configurations driven by the FEL and experimental design. For each mode, the required electron beam parameters are given. Sections 3 and 4 describe the critical beamline elements in the injector complex: the photocathode and drive laser, and the RF gun. The required drive laser parameters are given at the end of Section 3. Additional details on the design of the photoinjector drive laser systems are presented in a separate Technical Note. Design considerations for the RF gun are extensively presented in Section 4. There, we describe the variation of the cavity geometry to optimize the efficiency of the energy transfer to the electron beam. A study of the power coupling into the various cavity modes that interact within the bandwidth of the RF drive pulse is presented, followed by a study of the transient cavity response under several models and, finally, the effects on extracted beam quality. Section 5 describes the initial design for the low energy, off-axis diagnostic beamline. Beam dynamics simulations using ASTRA, elegant, and MAD are presented. Section 6 presents the optimization studies for the beam dynamics in the various operating modes. The optimized baseline configurations for the beamline and incident drive laser pulse are

  20. Design of a high average-power FEL driven by an existing 20 MV electrostatic-accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Kimel, I.; Elias, L.R. [Univ. of Central Florida, Orlando, FL (United States)

    1995-12-31

    There are some important applications where high average-power radiation is required. Two examples are industrial machining and space power-beaming. Unfortunately, up to date no FEL has been able to show more than 10 Watts of average power. To remedy this situation we started a program geared towards the development of high average-power FELs. As a first step we are building in our CREOL laboratory, a compact FEL which will generate close to 1 kW in CW operation. As the next step we are also engaged in the design of a much higher average-power system based on a 20 MV electrostatic accelerator. This FEL will be capable of operating CW with a power output of 60 kW. The idea is to perform a high power demonstration using the existing 20 MV electrostatic accelerator at the Tandar facility in Buenos Aires. This machine has been dedicated to accelerate heavy ions for experiments and applications in nuclear and atomic physics. The necessary adaptations required to utilize the machine to accelerate electrons will be described. An important aspect of the design of the 20 MV system, is the electron beam optics through almost 30 meters of accelerating and decelerating tubes as well as the undulator. Of equal importance is a careful design of the long resonator with mirrors able to withstand high power loading with proper heat dissipation features.

  1. Theoretical analysis of experimental results on SG-1 FEL

    International Nuclear Information System (INIS)

    Yang Zhenhua; Wu Shangqing; Tian Shihong; Dong Zhiwei; Wu Yupu

    1994-01-01

    In order to study the SG-1 FEL and the beam transport thoroughly, and draw certain quantitative conclusions, we developed 3-D WAGFEL code to describe the FEL evolution and 3-D CEBQ code to describe the beam transport. The CEBQ code can simulate the 3-D transport of the electron beam in the modulation section with linear approximation of space charge. According to the first ASE experiments results, the LIA provided a 2 kA, 3.0 MeV beam with a normalized emittance of 0.6 πrad·cm, an energy spread (FWHM) of 4%, resulting in a beam brightness nearly 10 8 A/(πm·rad) 2 . The numerical simulation showed that the quality of the beam was good enough to abandon the 9-m long beam line and substitute it with a 2-m long drifting and focusing region. The second series of ASE and amplifier experiments began in October 1992. The beam transport section was modified. The ASE output power, the amplifier output power and detuning curve was measured. We analysed the experimental results using the WAGFEL and CEBQ codes with parameters equal to those of experiments. Firstly we followed 4096 electrons to simulate the transport process of the beam in the beam line under the condition of I = 2 kA, r b = 1 cm, γ = 6.8, Δγ/γ 4%, ε rms = 0.6 (πrad·cm). Through the simulation, we predicted that the beam current injected into the wiggler was about 611 A. Based on these beam parameters at the entrance of the wiggler, we simulated the FEL process with P in = 300 W. The results are also in Fig.7,8,9

  2. Parametric x-ray FEL operating with external Bragg reflectors

    International Nuclear Information System (INIS)

    Baryshevsky, V.G.; Batrakov, K.G.; Dubovskaya, I.Ya.

    1995-01-01

    In the crystal X-ray FELs using channeling and parametric quasi-Cherenkov mechanisms of spontaneous radiation were considered as versions of FEL allowing, in principle, to obtain coherent X-ray source. In this case a crystal is both radiator and resonator for X-rays emitted by a particle beam passing through crystal. However, it is well-known that a beam current density required for lasing is extremely high in X-ray spectral range for any radiation mechanisms and it is very important to find a way to lower its magnitude. The application of three-dimensional distributed feedback formed by dynamical diffraction of emitted photons permitted to reduce starting beam current density 10 2 -10 4 times up to 10 9 . One of ways to lower the starting current is the formation of multi-wave distributed feedback the another one is the application of external reflectors. The thing is that lasing regime was shown to be produced at frequencies in the vicinity of degeneration point for roots of dispersion equation describing radiation modes excited in an active medium (crystal plus particle beam). Unfortunately, in case of parametric quasi-Cherenkov FEL this region coincides with the region of strong self-absorption of radiation inside a crystal. That fact, obviously, increases the starting beam current. In this report we have shown that the application of external Bragg reflectors gives the possibility to lower radiation self-absorption inside a crystal by modifying radiation modes excited in the active medium under consideration. The corresponding dispersion equation and the expression for excited modes are derived. The generation equation determining starting conditions for lasing is obtained. Using these expressions we have shown that the application of external Bragg reflectors permits to reduce starting beam current density more than 10 times

  3. Investigation of Advanced Propellants to Enable Single Stage to Orbit Launch Vehicles

    National Research Council Canada - National Science Library

    Mossman, Jason

    2006-01-01

    Single-Stage-To-Orbit (SSTO) launch vehicles designs offer the promise of reduced complexity and cost compared to multi-stage vehicles, as only one stage need be developed, produced, and maintained...

  4. FAST: a three-dimensional time-dependent FEL simulation code

    International Nuclear Information System (INIS)

    Saldin, E.L.; Schneidmiller, E.A.; Yurkov, M.V.

    1999-01-01

    In this report we briefly describe the three-dimensional, time-dependent FEL simulation code FAST. The equations of motion of the particles and Maxwell's equations are solved simultaneously taking into account the slippage effect. Radiation fields are calculated using an integral solution of Maxwell's equations. A special technique has been developed for fast calculations of the radiation field, drastically reducing the required CPU time. As a result, the developed code allows one to use a personal computer for time-dependent simulations. The code allows one to simulate the radiation from the electron bunch of any transverse and longitudinal bunch shape; to simulate simultaneously an external seed with superimposed noise in the electron beam; to take into account energy spread in the electron beam and the space charge fields; and to simulate a high-gain, high-efficiency FEL amplifier with a tapered undulator. It is important to note that there are no significant memory limitations in the developed code and an electron bunch of any length can be simulated

  5. Direct experimental observation of the gas density depression effect using a two-bunch X-ray FEL beam.

    Science.gov (United States)

    Feng, Y; Schafer, D W; Song, S; Sun, Y; Zhu, D; Krzywinski, J; Robert, A; Wu, J; Decker, F J

    2018-01-01

    The experimental observation of the depression effect in gas devices designed for X-ray free-electron lasers (FELs) is reported. The measurements were carried out at the Linac Coherent Light Source using a two-bunch FEL beam at 6.5 keV with 122.5 ns separation passing through an argon gas cell. The relative intensities of the two pulses of the two-bunch beam were measured, after and before the gas cell, from X-ray scattering off thin targets by using fast diodes with sufficient temporal resolution. At a cell pressure of 140 hPa, it was found that the after-to-before ratio of the intensities of the second pulse was about 17% ± 6% higher than that of the first pulse, revealing lower effective attenuation of the gas cell due to heating by the first pulse and subsequent gas density reduction in the beam path. This measurement is important in guiding the design and/or mitigating the adverse effects in gas devices for high-repetition-rate FELs such as the LCLS-II and the European XFEL or other future high-repetition-rate upgrades to existing FEL facilities.

  6. EUV stimulated emission from MgO pumped by FEL pulses

    Directory of Open Access Journals (Sweden)

    Philippe Jonnard

    2017-09-01

    Full Text Available Stimulated emission is a fundamental process in nature that deserves to be investigated and understood in the extreme ultra-violet (EUV and x-ray regimes. Today, this is definitely possible through high energy density free electron laser (FEL beams. In this context, we give evidence for soft-x-ray stimulated emission from a magnesium oxide solid target pumped by EUV FEL pulses formed in the regime of travelling-wave amplified spontaneous emission in backward geometry. Our results combine two effects separately reported in previous works: emission in a privileged direction and existence of a material-dependent threshold for the stimulated emission. We develop a novel theoretical framework, based on coupled rate and transport equations taking into account the solid-density plasma state of the target. Our model accounts for both observed mechanisms that are the privileged direction for the stimulated emission of the Mg L2,3 characteristic emission and the pumping threshold.

  7. Temporal characterization of FEL micropulses as function of cavity length detuning using frequency-resolved optical gating

    Energy Technology Data Exchange (ETDEWEB)

    Richman, B.A. [Stanford Univ., CA (United States); DeLong, K.W.; Trebino, R. [Sandia National Lab., Livermore, CA (United States)

    1995-12-31

    Results of frequency resolved optical gating (FROG) measurements on the Stanford mid-IR FEL system show the effect of FEL cavity length detuning on the micropulse temporal structure. The FROG technique enables the acquisition of complete and uniquely invertible amplitude and phase temporal dependence of optical pulses. Unambiguous phase and amplitude profiles are recovered from the data. The optical pulses are nearly transform limited, and the pulse length increases with cavity length detuning.

  8. Effect of FEL induced ionization on X-ray reflectivity of multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Ksenzov, Dmitriy; Grigorian, Souren; Pietsch, Ullrich [University of Siegen (Germany)

    2009-07-01

    The VUV-FEL in Hamburg (FLASH) emits short-pulse radiation with wavelengths from 6 to 30 nm and a pulse length of 10-50 fs. The FLASH wavelength allows x-ray diffraction experiments at periodical multilayer's structures acting as 1D crystal. The probe of depth selective interaction of the high-intense x-ray short pulse with these objects can be used to obtain information about possible electronic excitation and various recombination processes inside multilayers. As known from recent experiments at FLASH, the later ones are most likely using highly intense FEL radiation. The ML reflectivity is analyzed for case of that the optical parameters are changing as function of the depth of the penetrating incident pulse into the multilayer. The response is studied for the model system La/B{sub 4}C using two experimental conditions both at fixed incidence angle: 1) the energy of the incident pulses, E, coincides with the energy of the 1st order multilayer Bragg peak, E{sub B}, of the reflection curve, and 2) the energy of incident pulse differs by a small dE from E{sub B}. The ML response to a given sub-pulse differs for both conditions. However, there is a clear fingerprint of ionization for both conditions for the case that E is close to the K-absorption edge of B-atoms. Our results support respective efforts to measure the optical parameters of solids under high-intense FEL radiation.

  9. Preliminary Design of a Synchronized Narrow Bandwidth FEL for Taiwan Light Source

    CERN Document Server

    Keung Lau Wai; Ching Fan, Tai; Zone Hsiao Feng; Tung Hsu Kuo; Hwang, Ching Shiang; Cheng Kuo Chin; Huei Luo Guo; Jen Wang Duan; Ping Wang Jau; Huey Wang Min

    2004-01-01

    Design study of a narrow line-width, high power IR-FEL facility has been carried out at NSRRC. This machine is designed to synchronize with the U9 undulator radiation of Taiwan Light Source and therefore provide new opportunity for chemical dynamics and condensed matter research. It has been proposed to use a super-conducting linac to provide a 60 MeV high quality electron beam to drive a 2.5-10 microns FEL oscillator with U5 undulator. Operating this linac in energy recovery mode will also be considered as an option to improve overall system effeciency and reduce heat loss and radiation dosage at the beam dump. Performance requirements and outcomes from this preliminary design study will be reported.

  10. Numerical Simulation of single-stage axial fan operation under dusty flow conditions

    Science.gov (United States)

    Minkov, L. L.; Pikushchak, E. V.

    2017-11-01

    Assessment of the aerodynamic efficiency of the single-stage axial flow fan under dusty flow conditions based on a numerical simulation using the computational package Ansys-Fluent is proposed. The influence of dust volume fraction on the dependences of the air volume flow rate and the pressure drop on the rotational speed of rotor is demonstrated. Matching functions for formulas describing a pressure drop and volume flow rate in dependence on the rotor speed and dust content are obtained by numerical simulation for the single-stage axial fan. It is shown that the aerodynamic efficiency of the single-stage axial flow fan decreases exponentially with increasing volume content of dust in the air.

  11. Wavelength dependent delay in the onset of FEL tissue ablation

    International Nuclear Information System (INIS)

    Tribble, J.A.; Edwards, G.S.; Lamb, J.A.

    1995-01-01

    We are investigating the wavelength dependence of the onset of laser tissue ablation in the IR Visible and UV ranges. Toward this end, we have made simultaneous measurements of the ejected material (using a HeNe probe beam tangential to the front surface) and the residual stress transient in the tissue (using traditional piezoelectric detection behind the thin samples). For the IR studies we have used the Vanderbilt FEL and for the UV and Vis range we have used a Q-switched ND:Yag with frequency doubling and quadrupling. To satisfy the conditions of the near field limit for the detection of the stress transient, the duration of the IR FEL macropulse must be as short as possible. We have obtained macropulses as short as 100 ns using Pockels Cell technology. The recording of the signals from both the photodiode monitoring the HeNe probe beam and the acoustic detector are synchronized with the arrival of the 100 ns macropulse. With subablative intensities, the resulting stress transient is bipolar with its positive peak separated from its negative peak by 100 ns in agreement with theory. Of particular interest is the comparison of ablative results using 3 μm and 6.45 μm pulses. Both the stress transient and the ejection of material suffer a greater delay (with respect to the arrival of the 100 ns pulse) when the FEL is tuned to 3 μm as compared to 6.45 μm. A comparison of IR Vis and UV data will be discussed in terms of microscopic mechanisms governing the laser ablation process

  12. First lasings at IR-and FIR range using hybrid type undulator (FEL facility 4) and Halbach type undulator

    International Nuclear Information System (INIS)

    Takii, T.; Oshita, E.; Okuma, S.; Wakita, K.; Koga, A.; Tomimasu, T.; Ohasi, K.

    1997-01-01

    First lasing at 18μm was achieved by using a 2.7-m long hybrid type undulator (undulator 4) for far-infrared FELs and a 6.72-m long optical cavity installed at the 33-MeV beam line of the downstream of the FEL facility 1 (FEL-1). We are challenged at two-color FEL oscillation in mid-infrared range using the undulator 1 (λ u=3.4mm) and in far-infrared range using the undulator 4 (λ u=9mm). At first, a 30-MeV, 60-A beam passed through the undulator 1 without lasing is transported using a QFQDBQFQDBQFQDQF system and is used for lasing at the undulator 4. However, six pairs of steering coils had to be attached on the beam duct to reduce the deviation of the electron beam trajectory due to the vertical field distribution induced by the built-in electromagnets. The minimum gap of the undulator 4 was designed to be 35mm. However, the steering coils attached on the beam duct increased the gap up to 52mm. Therefore, the hybrid type undulator was replaced by a new Halbach type one (λ u=8mm, N=30) after the first lasing at 18μm on October 24, '96. The New FEL facility 4 was installed in the middle of December and first lasing at 18.6μm was achieved on December 26, within 10 hours operation. (author)

  13. Promising results after single-stage reconstruction of the nipple and areola complex

    DEFF Research Database (Denmark)

    Børsen-Koch, Mikkel; Bille, Camilla; Thomsen, Jørn B

    2013-01-01

    Introduction: Reconstruction of the nipple-areola complex (NAC) traditionally marks the end of breast reconstruction. Several different surgical techniques have been described, but most are staged procedures. This paper describes a simple single-stage approach. Material and Methods: We used...... reconstruction was 43 min. (30-50 min.). Conclusion: This simple single-stage NAC reconstruction seems beneficial for both patient and surgeon as it seems to be associated with faster reconstruction and reduced procedure-related time without compromising the aesthetic outcome or the morbidity associated...

  14. Development of BPM Electronics at the JLAB FEL

    Science.gov (United States)

    Sexton, D.; Evtushenko, P.; Jordan, K.; Yan, J.; Dutton, S.; Moore, W.; Evans, R.; Coleman, J.

    2006-11-01

    A new version of BPM electronics based on the AD8362 RMS detector, which is a direct RF to DC converter, is under development at the JLAB FEL. Each of these new BPM electronics utilizes an embedded ColdFire Microprocessor for data processing and communication with the EPICS control system via TCP/IP. The ColdFire runs RTEMS, which is an open source real-time operating system. The JLAB FEL is a SRF Energy Recovery LINAC capable of running up to 10 mA CW beam with a 74.85 MHz micropulse frequency. For diagnostic reasons and for machine tune up, the micropulse frequency can be reduced to 1.17 MHz, which corresponds to about 160 μA of beam current. It is required that the BPM system would be functional for all micropulse frequencies. By taking into account the headroom for the beam steering and current variations the dynamic range of the RF front end is required to be about 60 dB. A BPM resolution of at least 100 μm is required, whereas better resolution is very desirable to make it possible for more accurate measurements of the electron beam optics. Some results of the RF front end development are presented as well as the first measurements made with an electron beam.

  15. Status of the project of Novosibirsk high power FEL

    Energy Technology Data Exchange (ETDEWEB)

    Pinayev, I.V.; Erg, G.I.; Gavrilov, N.G. [Budker Institute of Nuclear Physics, Novosibirsk (Russian Federation)] [and others

    1995-12-31

    The project of IR FEL for the Siberian Center of photochemical researches is described. The distinguished features of this project are the use of the race-track microtron-recuperator and the {open_quotes}electron output of radiation{close_quotes}. The building for the machine is under reconstruction now. About half of hardware has been manufactured. The assembly of installation began.

  16. Single-stage Modified Duhamel procedure for Hirschsprung′s disease : Our experience

    Directory of Open Access Journals (Sweden)

    Paras R Kothari

    2012-01-01

    Full Text Available Introduction: Primary single-stage pull-through for Hirschsprung′s disease (HD has been reported to give comparable surgical outcomes to staged operations with less morbidity. Herein, we present our experience with single-stage Modified Duhamel procedure for management of HD. Patients and Methods: This was a review of 48 cases of HD who underwent single-stage Modified Duhamel procedure without a protective colostomy. Results: The age at surgery ranged from 6 months to 10 years (median - 9 months, mean - 2.3 years. The average weight of the child was 7.2 kg (range, 4.9-22 kg. 38 (79.2% patients had classical rectosigmoid HD, the rest being long segment HD (the proximal most level being the splenic flexure. The average duration of surgery was 175 minutes (range, 130-245 minutes. The average blood loss was 45 ml. The average hospital stay was 7.2 days (range: 6-10 days. The major postoperative complications (n=3 included postoperative adhesive intestinal obstruction, anastomotic leak and persistent constipation due to residual aganglionosis. Each required a re-exploration. Minor complications included surgical site infection (n=3 and post-operative enterocolitis (n=3, which were managed conservatively. Six patients had constipation for a limited period post-operatively. All patients have a satisfactory functional outcome and normal development and growth. Conclusions: For HD, we recommend that single-stage Modified Duhamel procedure should be the preferred approach in view of its low morbidity, satisfactory functional outcome and avoidance of stoma, multiple surgeries and economic benefit in view of decreased hospital stay.

  17. Lot-sizing for a single-stage single-product production system with rework of perishable production defectives

    NARCIS (Netherlands)

    Teunter, R.; Flapper, S.D.P.

    2003-01-01

    We consider a single-stage single-product production system. Produced units may be non-defective, reworkable defective, or non-reworkable defective. The system switches between production and rework. After producing a fixed number (N) of units, all reworkable defective units are reworked. Reworkable

  18. Evaluation of hypothesized adverse outcome pathway linking thyroid peroxidase inhibition to fish early life stage toxicity

    Science.gov (United States)

    There is an interest in developing alternatives to the fish early-life stage (FELS) test (OECD test guideline 210), for predicting adverse outcomes (e.g., impacts on growth and survival) using less resource-intensive methods. Development and characterization of adverse outcome pa...

  19. Energy stability in recirculating, energy-recovering linacs in the presence of a FEL

    International Nuclear Information System (INIS)

    Merminga, L.; Bisognano, J.; Delayen, J.R.

    1996-01-01

    Recirculating, energy-recovering linacs can be used as driver accelerators for high power FELs (free electron lasers). Instabilities which arise from fluctuations of the cavity fields are investigated. Energy changes can cause beam loss on apertures, or, when coupled to M 56 , phase oscillations. Both effects change the beam induced voltage in the cavities and can lead to unstable variations of the accelerating field. An analytical model which includes amplitude and phase feedback, has been developed to study the stability of the system for small perturbations from equilibrium. The interaction of the electron beam with the FEL is a major perturbation which affects both the stability of the system and development of startup and recovery scenarios. To simulate the system's response to such large parameter variations, a numerical model of the beam-cavity interaction has been developed which includes low level rf feedback, phase oscillations and beam loss instabilities and the FEL interaction. Agreement between the numerical model and the linear theory has been demonstrated in the limit of small perturbations. In addition, the model has been benchmarked against experimental data obtained during CEBAF's high current operation. Numerical simulations have been performed for the high power IR DEMO approved for construction at CEBAF

  20. First operation of a powerful FEL with two-dimensional distributed feedback

    CERN Document Server

    Agarin, N V; Bobylev, V B; Ginzburg, N S; Ivanenko, V G; Kalinin, P V; Kuznetsov, S A; Peskov, N Yu; Sergeev, A S; Sinitsky, S L; Stepanov, V D

    2000-01-01

    A W-band (75 GHz) FEL of planar geometry driven by a sheet electron beam was realised using the pulse accelerator ELMI (0.8 MeV/3 kA/5 mu s). To provide the spatial coherence of radiation from different parts of the electron beam with a cross-section of 0.4x12 cm two-dimensional distributed feedback systems have been employed using a 2-D Bragg resonator of planar geometry. The resonator consisted of two 2-D Bragg reflectors separated by a regular waveguide section. The total energy in the microwave pulse of microsecond duration was 100 J corresponding to a power of approx 100 MW. The main component of the FEL radiation spectrum was at 75 GHz that corresponded to the zone of effective Bragg reflection found from 'cold' microwave testing of the resonator. The experimental data compared well with the results of theoretical analysis.

  1. Single-stage versus two-stage anaerobic fluidized bed bioreactors in treating municipal wastewater: Performance, foulant characteristics, and microbial community.

    Science.gov (United States)

    Wu, Bing; Li, Yifei; Lim, Weikang; Lee, Shi Lin; Guo, Qiming; Fane, Anthony G; Liu, Yu

    2017-03-01

    This study examined the receptive performance, membrane foulant characteristics, and microbial community in the single-stage and two-stage anaerobic fluidized membrane bioreactor (AFMBR) treating settled raw municipal wastewater with the aims to explore fouling mechanisms and microbial community structure in both systems. Both AFMBRs exhibited comparable organic removal efficiency and membrane performances. In the single-stage AFMBR, less soluble organic substances were removed through biosorption by GAC and biodegradation than those in the two-stage AFMBR. Compared to the two-stage AFMBR, the formation of cake layer was the main cause of the observed membrane fouling in the single-stage AFMBR at the same employed flux. The accumulation rate of the biopolymers was linearly correlated with the membrane fouling rate. In the chemical-cleaned foulants, humic acid-like substances and silicon were identified as the predominant organic and inorganic fouants respectively. As such, the fluidized GAC particles might not be effective in removing these substances from the membrane surfaces. High-throughout pyrosequencing analysis further revealed that beta-Proteobacteria were predominant members in both AFMBRs, which contributed to the development of biofilms on the fluidized GAC and membrane surfaces. However, it was also noted that the abundance of the identified dominant in the membrane surface-associated biofilm seemed to be related to the permeate flux and reactor configuration. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Single-stage anterior high sacrectomy for locally recurrent rectal cancer.

    Science.gov (United States)

    Fawaz, Khaled; Khaled, Fawaz; Smith, Myles J; Moises, Cukier; Smith, Andrew J; Yee, Albert J M

    2014-03-01

    A review of prospectively collected data on a consecutive series of patients undergoing single-stage anterior high sacrectomy for locally recurrent rectal carcinoma (LRRC). To determine the clinical outcome of patients who underwent anterior high sacrectomy for LRRC. High sacrectomy for oncological resection remains technically challenging. Surgery has the potential to achieve cure in carefully selected patients. Complete (R0) tumor excision in LRRC may require sacrectomy. High sacral resections (S3 and above) typically require a combined anterior/supine and posterior/prone procedure. We investigated our experience performing single-stage anterior high sacrectomy for LRRC. A consecutive series of patients with LRRC without systemic metastases who underwent resection with curative intent requiring high sacrectomy were identified. A review of a prospectively maintained colorectal and spine cancer database data was performed. An oblique dome high sacral osteotomy was performed during a single-stage anterior procedure. Outcome measures included surgical resection margin status, hospital length of stay, postoperative complications, physical functioning status, and overall survival. Nineteen consecutive patients were treated between 2002 and 2011. High sacrectomy was performed at sacral level S1-S2 in 4 patients, S2-S3 in 9 patients, and through S3 in 6 patients. An R0 resection margin was achieved histologically in all 19 cases. There was 1 early (<30 d) postoperative death (1/19, 5%). At median follow-up of 38 months, 13 patients had no evidence of residual disease, 1 was alive with disease, and 4 had died of disease. Morbidities occurred in 15 of the 19 patients (79%). Although high sacrectomy may require a combined anterior and posterior surgical approach, our series demonstrates the feasibility of performing single-stage anterior high sacrectomy in LRRC, with acceptable risks and outcomes compared with the literature. The procedure described by us for LRRC lessens

  3. Optical techniques for electron-beam characterizations on the APS SASE FEL project

    International Nuclear Information System (INIS)

    Lumpkin, A.H.; Yang, B.X.; Berg, W.J.; White, M.; Lewellen, J.W.; Milton, S.V.

    1998-01-01

    At the Advanced Photon Source (APS) the injector linac's DC thermionic gun is being supplemented by a low-emittance rf thermionic gun that will support the SASE FEL project. To address the anticipated smaller beam sizes, the standard Chromox beam-profiling screens are being complemented by optical transition radiation (OTR) and Ce-doped YAG single-crystal converters. Direct comparisons of the effective conversion efficiency, spatial resolution, and time response of the three converter screen types have been performed using the DC thermionic gun's beam accelerated to 400 to 650 MeV. An apparent blurring of observed beam size with increasing incident charge areal density in the YAG crystal was observed for the first time. Only the OTR was prompt enough for the few-ps domain micropulse bunch length measurements performed with a stream camera. Initial beam images of the rf-thermionic gun beam have also been obtained

  4. FEL options for power beaming

    International Nuclear Information System (INIS)

    Kim, K.J.; Zholents, A.A.; Zolotorev, M.S.; Vinokurov, N.A.

    1997-10-01

    The demand for the output power of communication satellites has been increasing exponentially. The satellite power is generated from solar panels which collect the sunlight and convert it to electrical power. The power per satellite is limited due to the limit in the practical size of the solar panel. One way to meet the power demand is to employ multiple satellites (up to 10) per the internationally agreed-upon ''slot'' in the geosynchronous earth orbit (GEO). However, this approach is very expensive due to the high cost of sending a satellite into a GEO orbit. An alternative approach is power beaming, i.e., to illuminate the solar panels with high power, highly-directed laser beams from earth. The power beaming generates more power per satellite for the same area of the solar panel. The minimum optical beam power, interesting for power beaming application, is P L = 200kW. The wavelength is chosen to be λ 0.84 microm, so that it is within one of the transmission windows of the air, and at the same time near the peak of the photo-voltaic conversion efficiency of Si, which is the commonly used material for the solar panels. Free electron lasers (FELs) are well suited for the power beaming application because they can provide high power with coherent wavefront, but without high energy density in media. In this article the authors discuss some principal issues, such as the choice of accelerator and electron gun, the choice of beam parameters, radiation hazards, technological availability, and overall efficiency and reliability of the installation. They also attempt to highlight the compromise between the cost of the primary installation, the operation cost, and the choice of technology, and its maturity. They then present several schemes for the accelerator-FEL systems based on RF accelerators. The initial electron beam accelerator up to the energy of a few MeV is more or less common for all these schemes

  5. Performance of an undulator for visible and UV FELs at FELI

    Energy Technology Data Exchange (ETDEWEB)

    Miyauchi, Y.; Zako, A.; Koga, A. [Free Electron Laser Research Institute, Inc., Osaka (Japan)] [and others

    1995-12-31

    Two infrared free electron lasers (FELs) of the FELI project are now operating in the wavelength range of 1-20{mu}m. A 2.68-m undulator has been constructed for visible and UV FELs covering the wavelength of 1-0.2{mu}m for 100-165 MeV electron beams. It generates alternating, horizontal magnetic field, and wiggles electron beam on a vertical plane. The undulator length and period are 2.68m and 40mm, respectively. The gap of undulator magnets can be changed remotely by using servomotors with an accuracy of 1 {mu}m from the control room. The maximum K-value and related magnetic field strength are 1.9 and 0.5T, respectively, when its gap is set to the minimum value of 16mm. In order to minimize magnetic field reduction due to radiation damage, Sm-Co permanent magnet was adopted. Its structure and the results of magnetic field measurement will be reported.

  6. End-to-end simulation of a visible 1 kW FEL

    International Nuclear Information System (INIS)

    Parazzoli, Claudio G.; Koltenbah, Benjamin E.C.

    2000-01-01

    In this paper we present the complete numerical simulation of the 1 kW visible Free Electron Laser under construction in Seattle. We show that the goal of producing 1.0 kW at 0.7 μm is well within the hardware capabilities. We simulate in detail the evolution of the electron bunch phase space in the entire e-beam line. The e-beam line includes the photo-injector cavities, the 433.33 MHz accelerator, the magnetic buncher, the 1300 MHz accelerator, the 180 deg. bend and the matching optics into the wiggler. The computed phase space is input for a three-dimensional time-dependent code that predicts the FEL performance. All the computations are based on state of the art software, and the limitations of the current software are discussed. We believe that this is the first time that such a thorough numerical simulation has been carried out and that such a realistic electron phase space has been used in FEL performance calculations

  7. System and method for single-phase, single-stage grid-interactive inverter

    Science.gov (United States)

    Liu, Liming; Li, Hui

    2015-09-01

    The present invention provides for the integration of distributed renewable energy sources/storages utilizing a cascaded DC-AC inverter, thereby eliminating the need for a DC-DC converter. The ability to segment the energy sources and energy storages improves the maintenance capability and system reliability of the distributed generation system, as well as achieve wide range reactive power compensation. In the absence of a DC-DC converter, single stage energy conversion can be achieved to enhance energy conversion efficiency.

  8. Lattice design for a high-power infrared FEL

    International Nuclear Information System (INIS)

    Douglas, D.R.

    1997-01-01

    A 1 kW infrared FEL, funded by the U.S. Navy, is being built at Jefferson Lab. It will be driven by a compact energy-recovering CW superconducting radio-frequency (SRF)-based linear accelerator. Stringent phase space requirements at the wiggler, low beam energy, and high beam current subject the design to numerous constraints. This report addresses these issues and presents a design solution for an accelerator transport lattice meeting the requirements imposed by physical phenomena and operational necessities

  9. Strategies and limits in multi-stage single-point incremental forming

    DEFF Research Database (Denmark)

    Skjødt, Martin; Silva, M.B.; Martins, P. A. F.

    2010-01-01

    paths. The results also reveal that the sequence of multi-stage forming has a large effect on the location of strain points in the principal strain space. Strain paths are linear in the first stage and highly non-linear in the subsequent forming stages. The overall results show that the experimentally......Multi-stage single-point incremental forming (SPIF) is a state-of-the-art manufacturing process that allows small-quantity production of complex sheet metal parts with vertical walls. This paper is focused on the application of multi-stage SPIF with the objective of producing cylindrical cups......-limit curves and fracture forming-limit curves (FFLCs), numerical simulation, and experimentation, namely the evaluation of strain paths and fracture strains in actual multi-stage parts. Assessment of numerical simulation with experimentation shows good agreement between computed and measured strain and strain...

  10. A soft x-ray free electron laser (FEL) using a two-beam elliptical pill-box wake-field cavity

    International Nuclear Information System (INIS)

    Kim, S.H.; Chen, K.W.

    1988-01-01

    Stimulated bremsstrahlung in an undulating electric field in the lasing beam direction (electric wiggler) was shown to be possible from the quantum- mechanical viewpoint. Herein, this possibility is scrutinized from the viewpoint of classical electrodynamics. It is found that if stimulated bremsstrahlung in a transverse undulating magnetic field (magnetic wiggler) occurs, stimulated bremsstrahlung in the electric wiggler must also occur. We further show that a free electron laser (FEL) using a magnetic wiggler to provide a catalyzer field for stimulated bremsstrahlung cannot serve as a practical FEL operating in the soft x-ray region from both theoretical and experimental viewpoints. On the other hand, the authors demonstrate that the FEL using a traveling wake field in a two-beam elliptical pill-box cavity is well suited as a source of coherent radiation in the soft x-ray region

  11. Evaluation of an automated single-channel sleep staging algorithm

    Directory of Open Access Journals (Sweden)

    Wang Y

    2015-09-01

    Full Text Available Ying Wang,1 Kenneth A Loparo,1,2 Monica R Kelly,3 Richard F Kaplan1 1General Sleep Corporation, Euclid, OH, 2Department of Electrical Engineering and Computer Science, Case Western Reserve University, Cleveland, OH, 3Department of Psychology, University of Arizona, Tucson, AZ, USA Background: We previously published the performance evaluation of an automated electroencephalography (EEG-based single-channel sleep–wake detection algorithm called Z-ALG used by the Zmachine® sleep monitoring system. The objective of this paper is to evaluate the performance of a new algorithm called Z-PLUS, which further differentiates sleep as detected by Z-ALG into Light Sleep, Deep Sleep, and Rapid Eye Movement (REM Sleep, against laboratory polysomnography (PSG using a consensus of expert visual scorers. Methods: Single night, in-lab PSG recordings from 99 subjects (52F/47M, 18–60 years, median age 32.7 years, including both normal sleepers and those reporting a variety of sleep complaints consistent with chronic insomnia, sleep apnea, and restless leg syndrome, as well as those taking selective serotonin reuptake inhibitor/serotonin–norepinephrine reuptake inhibitor antidepressant medications, previously evaluated using Z-ALG were re-examined using Z-PLUS. EEG data collected from electrodes placed at the differential-mastoids (A1–A2 were processed by Z-ALG to determine wake and sleep, then those epochs detected as sleep were further processed by Z-PLUS to differentiate into Light Sleep, Deep Sleep, and REM. EEG data were visually scored by multiple certified polysomnographic technologists according to the Rechtschaffen and Kales criterion, and then combined using a majority-voting rule to create a PSG Consensus score file for each of the 99 subjects. Z-PLUS output was compared to the PSG Consensus score files for both epoch-by-epoch (eg, sensitivity, specificity, and kappa and sleep stage-related statistics (eg, Latency to Deep Sleep, Latency to REM

  12. Harmonic Inverse FEL Interaction at 800nm

    CERN Document Server

    Sears, C M S; Siemann, R; Spencer, J E

    2005-01-01

    The inverse Free Electron Laser (IFEL) interaction has recently been proposed and demonstrated as a premodulator for High Gain Harmonic Generation (HGHG) experiments. These experiments utilized the fundamental of the interaction between the laser field and electron bunch. In the current experiment, we explore the higher order resonances of the IFEL interaction from a 3 period, 1.8 centimeter wavelength undulator with a picosecond, 0.25 mJ/pulse laser at 800nm. The resonances are observed by adjusting the gap of the undulator while keeping the beam energy constant. The harmonic IFEL can add flexibility to HGHG FEL design.

  13. The Posterior Sustained Negativity Revisited—An SPN Reanalysis of Jacobsen and Höfel (2003

    Directory of Open Access Journals (Sweden)

    Thomas Jacobsen

    2018-01-01

    Full Text Available Symmetry is an important cue for the aesthetic judgment of beauty. Using a binary forced-choice format in a cued mixed design, Jacobsen and Höfel (2003 compared aesthetic judgments of beauty and symmetry judgments of novel graphic patterns. A late posterior sustained negativity elicited by symmetric patterns was observed in the symmetry judgment condition, but not in the beauty judgement condition. Therefore, this negativity appeared to be mainly driven by the task.In a series of studies, Bertamini, Makin, and colleagues observed a comparable sustained posterior negativity (SPN to symmetric stimuli, mainly taken to reflect obligatory symmetry processing independent of task requirements. We reanalyzed the data by Jacobsen and Höfel (2003 using similar parameters for data analysis as Bertamini, Makin, and colleagues to examine these apparent differences. The reanalysis confirmed both a task-driven effect on the posterior sustained negativity/SPN to symmetric patterns in the symmetry judgment condition and a strong symmetry-driven SPN to symmetric patterns. Differences between the references used for analyses of the electroencephalogram (EEG had an effect. Based on the reanalysis, the Jacobsen and Höfel (2003 data also fit well with Bertamini’s, Makin’s, and colleagues’ account of obligatory symmetry processing.

  14. Effects of Energy Chirp on Echo-Enabled Harmonic Generation Free-Electron Lasers

    International Nuclear Information System (INIS)

    Huang, Z.

    2009-01-01

    We study effects of energy chirp on echo-enabled harmonic generation (EEHG). Analytical expressions are compared with numerical simulations for both harmonic and bunching factors. We also discuss the EEHG free-electron laser bandwidth increase due to an energy-modulated beam and its pulse length dependence on the electron energy chirp

  15. Use of skin stretchers for single-stage bilateral mastectomies in a dog and a cat.

    Science.gov (United States)

    Miyazaki, Yuta; Aikawa, Takeshi; Shimatsu, Taichi; Nishimura, Masaaki; Sadahiro, Shigeo

    2018-04-01

    To describe the application of skin stretchers for closure of single-stage bilateral mastectomies in a dog and a cat. Clinical case report. A 12-year-old intact female Miniature Dachshund and a 13-year-old spayed female domestic short-hair cat. Skin stretchers were applied to the site of the skin adjacent to mammary glands for 2-4 days before surgery. Cable tension was adjusted every 6-8 hours to elongate the skin and to achieve primary closure of single-stage bilateral mastectomy without tension. Wound closure after single-stage bilateral mastectomy was achieved without tension or major complication in both animals. Use of skin stretchers allows primary closure of single-stage bilateral mastectomy in dogs and cats. © 2017 The American College of Veterinary Surgeons.

  16. BEAM OPTIMIZATION STUDY FOR AN X-RAY FEL OSCILLATOR AT THE LCLS-II

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Weilun; Huang, S.; Liu, K.X.; Huang, Z; Ding, Y.; Maxwell, T.J.; Kim, K.-J.

    2016-06-01

    The 4 GeV LCLS-II superconducting linac with high repetition beam rate enables the possibility to drive an X-Ray FEL oscillator at harmonic frequencies *. Compared to the regular LCLS-II machine setup, the oscillator mode requires a much longer bunch length with a relatively lower current. Also a flat longitudinal phase space distribution is critical to maintain the FEL gain since the X-ray cavity has extremely narrow bandwidth. In this paper, we study the longitudinal phase space optimization including shaping the initial beam from the injector and optimizing the bunch compressor and dechirper parameters. We obtain a bunch with a flat energy chirp over 400 fs in the core part with current above 100 A. The optimization was based on LiTrack and Elegant simulations using LCLS-II beam parameters.

  17. A non-destructive electron beam diagnostic for a SASE FEL using coherent off-axis undulator radiation

    CERN Document Server

    Neuman, C P; Barnett, G A; Madey, J M J; O'Shea, P G

    1999-01-01

    We show that by observing coherent off-axis undulator radiation (COUR) from a short diagnostic wiggler, it may be possible to determine the length and structure of a short electron bunch. Typically the on-axis undulator radiation is incoherent, but at angles of a few degrees, the wavelength of the emitted radiation may be comparable to the length of a short electron bunch, and thus coherence effects emerge. Due to such coherence effects, the intensity of the emitted radiation may change by up to a factor of 10 sup 9 as the angle of observation is increased. The radiation becomes coherent in a way which depends on the length and structure of the electron bunch. Observing COUR disturbs the electron bunch negligibly. Thus, COUR can be used as a non-destructive diagnostic which would allow for optimization of FEL performance while an FEL is operating. Such a diagnostic could be used for proposed SASE FELs, which use short electron bunches. We present two methods to describe the theory for COUR, and we use these m...

  18. The efficacy of single-stage open intramedullary nailing of neglected femur fractures.

    Science.gov (United States)

    Boopalan, P R J V C; Sait, Azad; Jepegnanam, Thilak Samuel; Matthai, Thomas; Varghese, Viju Daniel

    2014-02-01

    Neglected femur fractures are not rare in the developing world. Treatment options include single-stage open reduction and intramedullary nailing, or open release, skeletal traction, and then second-stage open intramedullary nailing, with bone grafting. Single-stage procedures have the potential advantage of avoiding neurovascular complications secondary to acute lengthening, but they require a second operation, with potentially increased resource use and infection risk. We sought to determine the (1) likelihood of union, (2) complications and reoperations, and (3) functional results with single-stage open intramedullary nailing without bone grafting in patients with neglected femur fractures. Between January 2003 and December 2007, 17 consecutive patients presented to our practice with neglected femoral shaft fractures. All were treated with single-stage nailing without bone grafting. There were 15 men and two women with a median age of 27 years. The average time from fracture to treatment was 13 weeks (range, 4-44 weeks). Eleven patients underwent open nailing with interlocked nails and six were treated with cloverleaf Kuntscher nails. Patients were followed for a minimum of 6 months (mean, 33 months; range, 6-72 months). The mean preoperative ROM of the knee was 28° (range, 10°-150°) and femoral length discrepancy was 3.1 cm (range, 1-5 cm). All fractures united and the mean time to union was 16 weeks (range, 7-32 weeks). There were no neurologic complications secondary to acute lengthening. The mean postoperative ROM of the knee was 130° (range, 60°-150°). All patients were able to return to preinjury work. Sixteen patients regained their original femoral length. One-stage open intramedullary nailing of neglected femoral diaphyseal fractures without bone grafting was safe and effective, and obviated the need for a two-stage approach. Although the findings need to be replicated in larger numbers of patients, we believe this technique may be useful in

  19. Generation of coherent soft x-rays using a single-pass free-electron laser amplifier

    International Nuclear Information System (INIS)

    Wang, T.F.; Goldstein, J.C.; Newnam, B.E.; McVey, B.D.

    1988-01-01

    We consider a single-pass free-electron laser (FEL) amplifier, driven by an rf-linac followed by a damping ring for reduced emittance, for use in generating coherent light in the soft x-ray region. The dependence of the optical gain on electron-beam quality, studied with the three-dimensional FEL simulation code FELEX, is given and related to the expected power of self-amplified spontaneous emission. We discuss issues for the damping ring designed to achieve the required electron beam quality. The idea of a multipass regenerative amplifier is also presented

  20. Another cat and mouse game: Deciphering the evolution of the SCGB superfamily and exploring the molecular similarity of major cat allergen Fel d 1 and mouse ABP using computational approaches.

    Science.gov (United States)

    Durairaj, Rajesh; Pageat, Patrick; Bienboire-Frosini, Cécile

    2018-01-01

    The mammalian secretoglobin (SCGB) superfamily contains functionally diverse members, among which the major cat allergen Fel d 1 and mouse salivary androgen-binding protein (ABP) display similar subunits. We searched for molecular similarities between Fel d 1 and ABP to examine the possibility that they play similar roles. We aimed to i) cluster the evolutionary relationships of the SCGB superfamily; ii) identify divergence patterns, structural overlap, and protein-protein docking between Fel d 1 and ABP dimers; and iii) explore the residual interaction between ABP dimers and steroid binding in chemical communication using computational approaches. We also report that the evolutionary tree of the SCGB superfamily comprises seven unique palm-like clusters, showing the evolutionary pattern and divergence time tree of Fel d 1 with 28 ABP paralogs. Three ABP subunits (A27, BG27, and BG26) share phylogenetic relationships with Fel d 1 chains. The Fel d 1 and ABP subunits show similarities in terms of sequence conservation, identical motifs and binding site clefts. Topologically equivalent positions were visualized through superimposition of ABP A27:BG27 (AB) and ABP A27:BG26 (AG) dimers on a heterodimeric Fel d 1 model. In docking, Fel d 1-ABP dimers exhibit the maximum surface binding ability of AG compared with that of AB dimers and the several polar interactions between ABP dimers with steroids. Hence, cat Fel d 1 is an ABP-like molecule in which monomeric chains 1 and 2 are the equivalent of the ABPA and ABPBG monomers, respectively. These findings suggest that the biological and molecular function of Fel d 1 is similar to that of ABP in chemical communication, possibly via pheromone and/or steroid binding.

  1. Another cat and mouse game: Deciphering the evolution of the SCGB superfamily and exploring the molecular similarity of major cat allergen Fel d 1 and mouse ABP using computational approaches

    Science.gov (United States)

    Pageat, Patrick; Bienboire-Frosini, Cécile

    2018-01-01

    The mammalian secretoglobin (SCGB) superfamily contains functionally diverse members, among which the major cat allergen Fel d 1 and mouse salivary androgen-binding protein (ABP) display similar subunits. We searched for molecular similarities between Fel d 1 and ABP to examine the possibility that they play similar roles. We aimed to i) cluster the evolutionary relationships of the SCGB superfamily; ii) identify divergence patterns, structural overlap, and protein-protein docking between Fel d 1 and ABP dimers; and iii) explore the residual interaction between ABP dimers and steroid binding in chemical communication using computational approaches. We also report that the evolutionary tree of the SCGB superfamily comprises seven unique palm-like clusters, showing the evolutionary pattern and divergence time tree of Fel d 1 with 28 ABP paralogs. Three ABP subunits (A27, BG27, and BG26) share phylogenetic relationships with Fel d 1 chains. The Fel d 1 and ABP subunits show similarities in terms of sequence conservation, identical motifs and binding site clefts. Topologically equivalent positions were visualized through superimposition of ABP A27:BG27 (AB) and ABP A27:BG26 (AG) dimers on a heterodimeric Fel d 1 model. In docking, Fel d 1-ABP dimers exhibit the maximum surface binding ability of AG compared with that of AB dimers and the several polar interactions between ABP dimers with steroids. Hence, cat Fel d 1 is an ABP-like molecule in which monomeric chains 1 and 2 are the equivalent of the ABPA and ABPBG monomers, respectively. These findings suggest that the biological and molecular function of Fel d 1 is similar to that of ABP in chemical communication, possibly via pheromone and/or steroid binding. PMID:29771985

  2. Two-bunch operation with ns temporal separation at the FERMI FEL facility

    Science.gov (United States)

    Penco, Giuseppe; Allaria, Enrico; Bassanese, Silvano; Cinquegrana, Paolo; Cleva, Stefano; Danailov, Miltcho B.; Demidovich, Alexander; Ferianis, Mario; Gaio, Giulio; Giannessi, Luca; Masciovecchio, Claudio; Predonzani, Mauro; Rossi, Fabio; Roussel, Eleonore; Spampinati, Simone; Trovò, Mauro

    2018-05-01

    In the last decade, a continuous effort has been dedicated to extending the capabilities of existing free-electron lasers (FELs) operating in the x-ray and vacuum ultraviolet regimes. In this framework, the generation of two-color (or multi-color) temporally separated FEL pulses, has paved the way to new x-ray pump and probe experiments and several two-color two-pulse schemes have been implemented at the main facilities, but with a generally limited time-separation between the pulses, from 0 to few hundreds of fs. This limitation may be overcome by generating light with two independent electron bunches, temporally separated by integral multiples of the radio-frequency period. This solution was investigated at FERMI, measurements and characterization of this two-bunch mode of operation are presented, including trajectory control, impact of longitudinal and transverse wakefields, manipulation of the longitudinal phase space and finally a demonstration of suitability of the scheme to provide extreme ultraviolet light by using both bunches.

  3. Incorporation of a PbSe Array Based Spectrograph into EPICS using LabView at the JLab FEL Facility

    International Nuclear Information System (INIS)

    Hardy, D.; Benson, S.V.; Shinn, M.D.; Zhang, S.

    2005-01-01

    A real-time spectrograph with a 1Hz update rate was designed and installed at the JLab FEL facility using a Cal Sensors PbSe array and a Roper Scientific SpectraPro 300 monochrometer. This paper describes the implementation of EPICS channel access on a remote PC running LabView with modification of vendor supplied LabView VI's to allow display of FEL light spectra in real-time on a remote workstation. This allows PC based diagnostics to be used in EPICS

  4. The early stages of oxidation of magnesium single crystal surfaces

    International Nuclear Information System (INIS)

    Hayden, B.E.; Schweizer, E.; Koetz, R.; Bradshaw, A.M.

    1981-01-01

    The early stages of oxidation of Mg(001) and Mg(100) single crystal surfaces at 300 K have been investigated by LEED, ELS, work function and ellipsometric measurements. A sharp decrease in work function on both surfaces during the first 12 L exposure indicates the incorporation of oxygen in the earliest stages of the interaction. The incorporated oxygen on Mg(001) gives rise to a broadening of the integral order LEED spots for an exposure 3 L. (orig.)

  5. 8-channel, FPGA based, DSP integrated cavity simulator and controller for VUV-FEL. SIMCON 3.0 Ver. 3.0. rev. 1, 06.2005 - Hardware manual

    International Nuclear Information System (INIS)

    Pozniak, K.T.; Czarski, T.; Koprek, W.; Giergusiewicz, W.; Romaniuk, R.S.

    2005-01-01

    The note describes integrated, eight channel system of hardware controller and simulator of the resonant superconducting, narrowband niobium cavity, originally considered for the TTF and TESLA in DESY, Hamburg (now tested for the VUV FEL and developed for X-Ray FEL). The controller bases on a programmable circuit Xilinx VirtexII V4000. The solution uses DSP EMBEDDED BOARD module positioned on a Modular LLRF Control Platform. The algorithm and FPGA circuit configuration was done in the VHDL language. The internal hardware multiplication components, present in Virtex II chips, were used, to improve the floating point calculation efficiency. The implementation was achieved of a device working in the real time, according to the demands of the LLRF control system for the TESLA Test Facility (now associated with the VUV FEL machine). The device under consideration will be referred to as superconducting cavity (SCCav) SIMCON throughout this work. The manual describes hardware features of SIMCON, ver. 3.0 in modular solution. The following components are described here in detail: functional layer, parameter programming, foundations of control of particular blocks and monitoring of the real time processes. This note is accompanied by the one describing the multichannel DOOCS interface for the described hardware system. The interface was prepared in DOOCS for Solaris and in Windows. The hardware and software of 8-channel SIMCON was tested in CHECIA and ACC1 module of VUV FEL linac. The measurements results are presented. While giving all necessary technical details required to understand the work of the integrated hardware controller and simulator and to enable its practical copying, this document is a unity with other TESLA technical notes published by the same team on the subject. Thus, some modeling and other subjects were omitted, as they were addressed in detail in the quoted references. Keywords: Super conducting cavity, cavity simulator, CAVITIES CONTROLLER, SIMCON

  6. Design of single piece sabot for a single stage gas gun

    Science.gov (United States)

    Vemparala, Vignesh; Mathew, Arun Tom; Rao Koka, Tirumala

    2017-11-01

    Single piece sabot is a vital part in single stage gas guns for impact testing in aerospace industries. Depending on the type of projectile used the design of sabot varies to accommodate the testing equipment. The velocity of the projectile exiting the barrel is dependent on the material and shape of the sabot used. The material selected for the design of sabot is rigid polyurethane foam, due to their low elastic modulus and low density. Two samples of rigid PU foam is taken and tests are performed to get their exact material properties. These properties are incorporated in numerical simulation to determine the best fit for practical use. Since the PU foams has a wide range of porosity which plays a prominent role in deciding the exit velocity and accuracy of the projectile coming out of the barrel. By optimisation, to the best suitable material sample can be determined.

  7. X-Ray Production by Cascading Stages of a High-Gain Harmonic Generation Free-Electron Laser I: Basic Theory

    Energy Technology Data Exchange (ETDEWEB)

    Wu, J

    2004-07-02

    We study a new approach to produce x-ray by cascading several stages of a High-Gain Harmonic Generation (HGHG) Free-Electron Laser (FEL). Besides the merits of a Self-Amplified Spontaneous Emission (SASE) scheme, an HGHG scheme could also provide much better stability of the radiation power, controllable short pulse length, more stable central wavelength, and radiation with better longitudinal coherence. Detailed design and optimization scheme, simulation results and analytical estimate formulae are presented. To lay results on a realistic basis, the electron bunch parameters used in this paper are restricted to be those of DESY TTF and SLAC LCLS projects; however, such sets of parameters are not necessary to be optimized for an HGHG FEL.

  8. Optical modeling of the Jefferson Lab IR Demo FEL

    International Nuclear Information System (INIS)

    Neil, G.; Benson, S.; Shinn, M.; Davidson, P.; Kloppel, P.

    1997-01-01

    The Thomas Jefferson National Accelerator Facility (formerly known as CEBAF) has embarked on the construction of a 1 kW free-electron laser operating initially at 3 microns that is designed for laser-material interaction experiments and to explore the feasibility of scaling the system in power and wavelength for industrial and Navy defense applications. The superconducting radio-frequency linac, and single-pass transport which accelerates the beam from injector to wiggler, followed by energy-recovery deceleration to a dump. The electron and optical beam time structure in the design consists of a train of pecosecond pulses at a 37.425 MHz pulse repetition rate. The initial optical configuration is a conventional near-concentric resonator with transmissive outcoupling. Future upgrades of the system will increase the power and shorten the operating wavelength, and utilize a more advanced resonator system capable of scaling to high powers. The optical system of the laser has been mode led using the GLAD code by using a Beer's-law region to mimic the FEL interaction. Effects such as mirror heating have been calculated and compared with analytical treatments. The magnitude of the distorium for several materials and wavelengths has been estimated. The advantages as well as the limitations of this approach are discussed

  9. Nitrite reduction and methanogenesis in a single-stage UASB reactor.

    Science.gov (United States)

    Borges, L I; López-Vazquez, C M; García, H; van Lier, J B

    2015-01-01

    In this study, nitrite reduction and methanogenesis in a single-stage upflow anaerobic sludge blanket (UASB) reactor was investigated, using high-strength synthetic domestic wastewater as substrate. To assess long-term effects and evaluate the mechanisms that allow successful nitrite reduction and methanogenesis in a single-stage UASB, sludge was exposed to relatively high nitrite loading rates (315 ± 13 mgNO(2)(-)-N/(l.d)), using a chemical oxygen demand (COD) to nitrogen ratio of 18 gCOD/gNO(2)(-)-N, and an organic loading rate of 5.4 ± 0.2 gCOD/(l.d). In parallel, the effects of sludge morphology on methanogenesis inhibition were studied by performing short-term batch activity tests at different COD/NO(2)(-)-N ratios with anaerobic sludge samples. In long-term tests, denitrification was practically complete and COD removal efficiency did not change significantly after nitrite addition. Furthermore, methane production only decreased by 13%, agreeing with the reducing equivalents requirement for complete NO(2)(-) reduction to N₂. Apparently, the spatial separation of denitrification and methanogenesis zones inside the UASB reactor allowed nitrite reduction and methanogenesis to occur at the same moment. Batch tests showed that granules seem to protect methanogens from nitrite inhibition, probably due to transport limitations. Combined COD and N removal via nitrite in a single-stage UASB reactor could be a feasible technology to treat high-strength domestic wastewater.

  10. Help system for control of JAERI FEL (Free Electron laser)

    International Nuclear Information System (INIS)

    Sugimoto, Masayoshi

    1993-01-01

    The control system of JAERI FEL (Free Electron Laser) has a help system to provide the information necessary to operate the machine and to develop the new user interface. As the control software is constructed on the MS-Windows 3.x, the hyper-text feature of the Windows help system can be accessed. It consists of three major parts: (1) on-line help, (2) full document, and (3) tutorial system. (author)

  11. Characteristics of the FEL project for the MUH experiment

    International Nuclear Information System (INIS)

    Ciocci, F.; Doria, A.; Fascetti, M.; Gallerano, G.P.; Giannessi, L.; Giovenale, E.; Messina, G.; Picardi, L.; Renieri, A.; Ronci, G.; Ronsivalle, C.; Vignati, A.

    1999-01-01

    The design characteristics of a compact Free Electron Laser (FEL) operating in the far infrared spectral range between 200 and 600 μm are presented in this report. The device can be employed in a fundamental physics experiment to be performed in collaboration with INFN-Trieste and the Paul Sherrer Institute- Villigen. Spectroscopic measurements in the above spectral region will allow one to determine the energy difference between the levels 3D-3P in the μP system with great accuracy [it

  12. Magnetic measurement, sorting optimization and adjustment of SDUV-FEL hybrid undulator

    International Nuclear Information System (INIS)

    Wang Tao; Jia Qika

    2007-01-01

    Construction of an undulator includes magnet block measurement, sorting, field measurement and adjustment. Optimizing SDUV-FEL undulator by simulated annealing algorithm using measurement results of the magnet blocks by Helmholtz coil before installing undulator magnets, the cost function can be reduced by three orders of magnitude. The practical parameters of one segment meet the design specifications after adjusting the magnetic field. (authors)

  13. NOFBX Single-Stage-to-Orbit Mars Ascent Vehicle Engine, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose the continuation of our research and development of a Nitrous Oxide Fuel Blend (NOFBXTM) Single-Stage-to-Orbit (SSTO) monopropellant propulsion system for...

  14. A pixelated x-ray detector for diffraction imaging at next-generation high-rate FEL sources

    Science.gov (United States)

    Lodola, L.; Ratti, L.; Comotti, D.; Fabris, L.; Grassi, M.; Malcovati, P.; Manghisoni, M.; Re, V.; Traversi, G.; Vacchi, C.; Batignani, G.; Bettarini, S.; Forti, F.; Casarosa, G.; Morsani, F.; Paladino, A.; Paoloni, E.; Rizzo, G.; Benkechkache, M. A.; Dalla Betta, G.-F.; Mendicino, R.; Pancheri, L.; Verzellesi, G.; Xu, H.

    2017-08-01

    The PixFEL collaboration has developed the building blocks for an X-ray imager to be used in applications at FELs. In particular, slim edge pixel detectors with high detection efficiency over a broad energy range, from 1 to 12 keV, have been developed. Moreover, a multichannel readout chip, called PFM2 (PixFEL front-end Matrix 2) and consisting of 32 × 32 cells, has been designed and fabricated in a 65 nm CMOS technology. The pixel pitch is 110 μm, the overall area is around 16 mm2. In the chip, different solutions have been implemented for the readout channel, which includes a charge sensitive amplifier (CSA) with dynamic signal compression, a time-variant shaper and an A-to-D converter with a 10 bit resolution. The CSA can be configured in four different gain modes, so as to comply with photon energies in the 1 to 10 keV range. The paper will describe in detail the channel architecture and present the results from the characterization of PFM2. It will discuss the design of a new version of the chip, called PFM3, suitable for post-processing with peripheral, under-pad through silicon vias (TSVs), which are needed to develop four-side buttable chips and cover large surfaces with minimum inactive area.

  15. Design considerations of 10 kW-scale, extreme ultraviolet SASE FEL for lithography

    CERN Document Server

    Pagani, C; Schneidmiller, E A; Yurkov, M V

    2001-01-01

    The semiconductor industry growth is driven to a large extent by steady advancements in microlithography. According to the newly updated industry road map, the 70 nm generation is anticipated to be available in the year 2008. However, the path to get there is not clear. The problem of construction of extreme ultraviolet (EUV) quantum lasers for lithography is still unsolved: progress in this field is rather moderate and we cannot expect a significant breakthrough in the near future. Nevertheless, there is clear path for optical lithography to take us to sub-100 nm dimensions. Theoretical and experimental work in Self-Amplified Spontaneous Emission (SASE) Free Electron Lasers (FEL) physics and the physics of superconducting linear accelerators over the last 10 years has pointed to the possibility of the generation of high-power optical beams with laser-like characteristics in the EUV spectral range. Recently, there have been important advances in demonstrating a high-gain SASE FEL at 100 nm wavelength (J. Andr...

  16. Single-pass high-gain tapered free-electron laser with transverse diffraction in the postsaturation regime

    Directory of Open Access Journals (Sweden)

    Cheng-Ying Tsai

    2018-06-01

    Full Text Available It has been well known that the resonant interaction of an ultrarelativistic electron beam and the radiation field in the single-pass high-gain free electron laser (FEL amplifier leads to the optical gain guiding. The transverse Laplacian term of the slowly varying wave equation in the linear regime can be approximated as a constant detuning parameter, i.e., |∇_{⊥}^{2}|∼k_{R}/z_{R} where k_{R} is the resonant wave number and z_{R} is the Rayleigh range of the laser. In the post-saturation regime, the radiation power begins to oscillate about an equilibrium for the untapered case while continues to grow by undulator tapering. Moreover, in this regime the gain guiding decreases and the simple constant detune is no longer valid. In this paper we study the single-pass high-gain FEL performance in the post-saturation regime with inclusion of diffraction effect and undulator tapering. Our analysis relies upon two constants of motion, one from the energy conservation and the other from the adiabatic invariant of the action variable. By constructing a two-dimensional axisymmetric wave equation and the coupled one-dimensional electron dynamical equations, the performance of a tapered FEL in the postsaturation regime can be analyzed, including the fundamental mode profile, the power efficiency and the scaled energy spread. We begin the analytical investigation with two different axisymmetric electron beam profiles, the uniform and bounded parabolic ones. It is found that the tapered FEL power efficiency can be smaller but close to the taper ratio provided the resonant phase remains constant and the beam-wave is properly matched. Such a tapered efficiency is nearly independent of transverse electron beam size before significant electron detrapping occurs. This is essentially different from the untapered case, where the power extraction efficiency is around the essential FEL gain bandwidth (or ρ, the Pierce or FEL parameter and depends on the beam

  17. Single-stage posterior transforaminal lumbar interbody fusion, debridement, limited decompression, 3-column reconstruction, and posterior instrumentation in surgical treatment for single-segment lumbar spinal tuberculosis

    OpenAIRE

    Zeng, Hao; Wang, Xiyang; Zhang, Penghui; Peng, Wei; Zhang, Yupeng; Liu, Zheng

    2015-01-01

    Objective: The aim of this study is to determine the feasibility and efficacy of surgical management of single-segment lumbar spinal tuberculosis (TB) by using single-stage posterior transforaminal lumbar interbody fusion, debridement, limited decompression, 3-column reconstruction, and posterior instrumentation.Methods: Seventeen cases of single-segment lumbar TB were treated with single-stage posterior transforaminal lumbar interbody fusion, debridement, limited decompression, 3-column reco...

  18. Practical Considerations Concerning the Interleaved Transition Mode Single-stage Ballast

    DEFF Research Database (Denmark)

    Teodorescu, Remus; Kjær, Søren Bækhøj; Munk-Nielsen, Stig

    2002-01-01

    The aim of this paper is to present a novel single-stage interleaved ballast focusing on practical design aspects like: key current expression, overall losses, harmonic analysis of the differential-mode EMI current and preheating ballast function. A new preheating method is also presented. A PSPICE...

  19. A portable high-power diode laser-based single-stage ceramic tile grout sealing system

    Science.gov (United States)

    Lawrence, J.; Schmidt, M. J. J.; Li, L.; Edwards, R. E.; Gale, A. W.

    2002-02-01

    By means of a 60 W high-power diode laser (HPDL) and a specially developed grout material the void between adjoining ceramic tiles has been successfully sealed. A single-stage process has been developed which uses a crushed ceramic tile mix to act as a tough, inexpensive bulk substrate and a glazed enamel surface to provide an impervious surface glaze. The single-stage ceramic tile grout sealing process yielded seals produced in normal atmospheric conditions that displayed no discernible cracks and porosities. The single-stage grout is simple to formulate and easy to apply. Tiles were successfully sealed with power densities as low as 200 kW/ mm2 and at rates of up to 600 mm/ min. Bonding of the enamel to the crushed ceramic tile mix was identified as being primarily due to van der Waals forces and, on a very small scale, some of the crushed ceramic tile mix material dissolving into the glaze. In terms of mechanical, physical and chemical characteristics, the single-stage ceramic tile grout was found to be far superior to the conventional epoxy tile grout and, in many instances, matched and occasionally surpassed that of the ceramic tiles themselves. What is more, the development of a hand-held HPDL beam delivery unit and the related procedures necessary to lead to the commercialisation of the single-stage ceramic tile grout sealing process are presented. Further, an appraisal of the potential hazards associated with the use of the HPDL in an industrial environment and the solutions implemented to ensure that the system complies with the relevant safety standards are given.

  20. Investigating Alternatives to the Fish Early Life-Stage Test: A Strategy for Discovering and Annotating Adverse Outcome Pathways for Early Fish Development

    Science.gov (United States)

    The fish early life-stage (FELS) test (OECD Test Guideline 210) is the primary test used internationally to estimate chronic fish toxicity in support of ecological risk assessments and chemical management programs. As part of an on-going effort to develop efficient and cost-effec...

  1. Single-staged uniportal VATS in the supine position for simultaneous bilateral primary spontaneous pneumothorax.

    Science.gov (United States)

    Kim, Kyung Soo

    2017-05-15

    Simultaneous bilateral primary spontaneous pneumothorax (SBPSP) is rare, but requires surgery on both sides, in patients with definite bilateral bullae to prevent life-threatening conditions. Recently, uniportal video-assisted thoracoscopic surgery (VATS) has been widely accepted as a less invasive technique for the treatment of pneumothorax. Thus, we introduced single-staged uniportal VATS technique in the supine position, for the management of two cases of SBPSP. A 17-year-old boy presented with bilateral spontaneous pneumothorax and he underwent single-staged uniportal VATS in the supine position. Single wide draping in consecutive bilateral approaches removes the needs of changing patients' position. Whole thoracoscopic procedure for wedge resection of bullae lesions was conducted without difficulty. The total operation time took 65 min and the patient discharged 3 days after the operation. The patient was followed for 24 months without recurrence of both sides. Another 18-year-old boy was admitted with bilateral spontaneous pneumothorax and single-staged uniportal VATS was also performed in the supine position. The total operation time took 79 min and the patient discharged on postoperative day 4. He was followed for 19 months without recurrence of both sides. Single-staged uniportal VATS approach yielded satisfactory results from simplicity that not requires position change compared to conventional multi-ports VATS in the lateral position, and with better cosmetics. This technique is thought to be a feasible procedure in selective patients with SBPSP or with contralateral bullae for preventive role.

  2. Microbunching Instability Effect Studies and Laser Heater Optimization for the SPARX FEL Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Vaccarezza, C.; Chiadroni, E.; Ferrario, M.; Giannessi, L.; Quattromini, M.; Ronsivalle, C.; Venturini, C.; Migliorati, M.; Dattoli, G.

    2010-05-23

    The effects of microbunching instability for the SPARX accelerator have been analyzed by means of numerical simulations. The laser heater counteracting action has been addressed in order to optimize the parameters of the compression system, either hybrid RF plus magnetic chicane or only magnetic, and possibly enhance the FEL performance.

  3. Surgical reconstruction of pressure ulcer defects: a single- or two-stage procedure?

    LENUS (Irish Health Repository)

    Laing, Tereze A

    2012-02-01

    BACKGROUND: The surgical management of pressure ulcers traditionally involved staged procedures, with initial debridement of necrotic or infected material followed by reconstruction at a later date when the wound was deemed viable and free of gross infection. However, over the past decade, it has been suggested that a single-stage procedure, combining initial debridement and definitive reconstruction, may provide advantages over staged surgery. We present our experience with the staged approach and review the current evidence for both methods. SUBJECTS AND SETTINGS: : We reviewed medical records of all patients referred to our service for pressure ulcer management between October 2001 and October 2007. The National Rehabilitation Hospital is the national center in Ireland for primary rehabilitation of adults and children suffering from spinal and brain injury, serving patients locally and from around the country. METHODS: All subjects who were managed surgically underwent a 2-stage procedure, with initial debridement and subsequent reconstruction. The main outcome measures were length of hospital stay, postoperative morbidity and mortality, and time to complete ulcer healing. RESULTS: Forty-one of 108 patients with 58 pressure ulcers were managed surgically. All patients underwent initial surgical debridement and 20 patients underwent subsequent pressure ulcer reconstruction. Postreconstructive complications occurred in 5 patients (20%). The mean time to complete ulcer healing was 17.4 weeks. Partial flap necrosis occurred in 3 patients, but there were no episodes of flap failure. CONCLUSIONS: We achieved favorable results with a 2-stage reconstruction technique and suggest that the paucity of evidence related to single-stage procedures does not support a change in surgical management.

  4. Influence of the partial temporal coherence of short FEL pulses on two-colour photoionization and photoinduced Auger decay of atoms

    International Nuclear Information System (INIS)

    Kazansky, A K; Sazhina, I P; Kabachnik, N M

    2013-01-01

    The influence of the partial temporal coherence of free electron laser (FEL) radiation on the sidebands arising in the electron spectra of laser-assisted photoionization and photoinduced Auger decay of atoms is theoretically analysed. A simple model is developed which describes the inner-shell photoionization by a short (femtosecond) FEL pulse and the following Auger decay in a strong field of an infrared laser. The model is based on the time-dependent approach and uses the strong field approximation for both photo- and Auger electrons. Particular calculations have been carried out for Ne 1s photoionization and KLL Auger emission. We demonstrate that the temporal coherence of FEL pulses influences the line widths in the photoelectron spectrum. For a small coherence time the sidebands in this spectrum cannot be resolved. On the other hand, our calculations show that in the Auger electron spectrum the sidebands are practically independent of the coherence time of the ionizing pulse.

  5. Self-seeding scheme with gas monochromator for narrow-bandwidth soft X-ray FELs

    Energy Technology Data Exchange (ETDEWEB)

    Geloni, Gianluca [European XFEL GmbH, Hamburg (Germany); Kocharyan, Vitali; Saldin, Evgeni [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2011-03-15

    Self-seeding schemes, consisting of two undulators with a monochromator in between, aim at reducing the bandwidth of SASE X-ray FELs. We recently proposed to use a new method of monochromatization exploiting a single crystal in Bragg transmission geometry for self-seeding in the hard X-ray range. Here we consider a possible extension of this method to the soft X-ray range using a cell filled with resonantly absorbing gas as monochromator. The transmittance spectrum in the gas exhibits an absorbing resonance with narrow bandwidth. Then, similarly to the hard X-ray case, the temporal waveform of the transmitted radiation pulse is characterized by a long monochromatic wake. In fact, the FEL pulse forces the gas atoms to oscillate in a way consistent with a forward-propagating, monochromatic radiation beam. The radiation power within this wake is much larger than the equivalent shot noise power in the electron bunch. Further on, the monochromatic wake of the radiation pulse is combined with the delayed electron bunch and amplified in the second undulator. The proposed setup is extremely simple, and composed of as few as two simple elements. These are the gas cell, to be filled with noble gas, and a short magnetic chicane. The installation of the magnetic chicane does not perturb the undulator focusing system and does not interfere with the baseline mode of operation. In this paper we assess the features of gas monochromator based on the use of He and Ne.We analyze the processes in the monochromator gas cell and outside it, touching upon the performance of the differential pumping system as well. We study the feasibility of using the proposed self-seeding technique to generate narrow bandwidth soft X-ray radiation in the LCLS-II soft X-ray beam line. We present conceptual design, technical implementation and expected performances of the gas monochromator self-seeding scheme. (orig.)

  6. Self-seeding scheme with gas monochromator for narrow-bandwidth soft X-ray FELs

    International Nuclear Information System (INIS)

    Geloni, Gianluca; Kocharyan, Vitali; Saldin, Evgeni

    2011-03-01

    Self-seeding schemes, consisting of two undulators with a monochromator in between, aim at reducing the bandwidth of SASE X-ray FELs. We recently proposed to use a new method of monochromatization exploiting a single crystal in Bragg transmission geometry for self-seeding in the hard X-ray range. Here we consider a possible extension of this method to the soft X-ray range using a cell filled with resonantly absorbing gas as monochromator. The transmittance spectrum in the gas exhibits an absorbing resonance with narrow bandwidth. Then, similarly to the hard X-ray case, the temporal waveform of the transmitted radiation pulse is characterized by a long monochromatic wake. In fact, the FEL pulse forces the gas atoms to oscillate in a way consistent with a forward-propagating, monochromatic radiation beam. The radiation power within this wake is much larger than the equivalent shot noise power in the electron bunch. Further on, the monochromatic wake of the radiation pulse is combined with the delayed electron bunch and amplified in the second undulator. The proposed setup is extremely simple, and composed of as few as two simple elements. These are the gas cell, to be filled with noble gas, and a short magnetic chicane. The installation of the magnetic chicane does not perturb the undulator focusing system and does not interfere with the baseline mode of operation. In this paper we assess the features of gas monochromator based on the use of He and Ne.We analyze the processes in the monochromator gas cell and outside it, touching upon the performance of the differential pumping system as well. We study the feasibility of using the proposed self-seeding technique to generate narrow bandwidth soft X-ray radiation in the LCLS-II soft X-ray beam line. We present conceptual design, technical implementation and expected performances of the gas monochromator self-seeding scheme. (orig.)

  7. CeB6 electron gun for the soft X-ray FEL project at SPring-8

    International Nuclear Information System (INIS)

    Togawa, K.; Baba, H.; Onoe, K.; Inagaki, T.; Shintake, T.; Matsumoto, H.

    2004-01-01

    A pulsed high-voltage electron gun with a thermionic cathode is under development for the injector system of the soft X-ray FEL project at SPring-8 (SCSS project). A CeB 6 single crystal of 3 mm diameter was chosen as a thermionic cathode because of its excellent emission properties, i.e., high resistance against contamination, uniform emission density and smooth surface. The CeB 6 cathode can produce a 3 A beam with 2 μs FWHM. A gun voltage of -500 kV was chosen as a compromise between the need for controlling emittance growth and minimizing the risks of high-voltage arcing. We have constructed a 500 kV electron gun test stand and have begun performance tests. This paper describes the basic design and the current status of the hardware R and D on the CeB 6 gun

  8. Development of a Pump-Probe System using a Non-Coated ZnSe Beam Splitter Cube for an MIR-FEL

    CERN Document Server

    Heya, Manabu; Horiike, Hiroshi; Ishii, Katsonuri; Suzuki, Sachiko

    2004-01-01

    A pump-probe technique is essential for a proper understanding of laser interaction with tissue and material. Our pump-probe system divides the incident mid-infrared Free Electron Laser (MIR-FEL) into two beams with equal intensity, and crosses simultaneously the two incoming beams at the same position. One is for a pump beam, another is for a probe beam. Time-resolved absorption spectroscopy involving this technique gives us information on the vibrational dynamics of molecules. We have developed this system for an MIR-FEL using a non-coating ZnSe beam splitter cube. The beam splitter cube is composed of two ZnSe prisms in the shape like a trapezoid. The two pulses with equal intensity are generated due to Fresnel reflection and transmission at the boundary between two prisms, then are reflected due to total reflection at other side boundaries between each prism and air, and illuminate simultaneously the same spot. We have conducted a proof-of-concept of experiment of this system using an MIR-FEL. We showed t...

  9. Design of a nondestructive two-in-one instrument for measuring the polarization and energy spectrum at an X-ray FEL facility

    Science.gov (United States)

    Zhang, Qingmin; Deng, Bangjie; Chen, Yuanmiaoliang; Liu, Bochao; Chen, Shaofei; Fan, Jinquan; Feng, Lie; Deng, Haixiao; Liu, Bo; Wang, Dong

    2017-10-01

    The free electron laser (FEL), as a next-generation light source, is an attractive tool in scientific frontier research because of its advantages of full coherence, ultra-short pulse duration, and controllable polarization. Owing to the demand of real-time bunch diagnosis during FEL experiments, precise nondestructive measurements of the polarization and X-ray energy spectrum using one instrument are preferred. In this paper, such an instrument based on the electron time-of-flight technique is proposed. By considering the complexity and nonlinearity, a numerical model in the framework of Geant4 has been developed for optimization. Taking the Shanghai Soft X-ray FEL user facility as an example, its measurement performances' dependence on the critical parameters was studied systematically, and, finally, an optimal design was obtained, achieving resolutions of 0.5% for the polarization degree and 0.3 eV for the X-ray energy spectrum.

  10. Conditioning of BPM pickup signals for operations of the Duke storage ring with a wide range of single-bunch current

    Science.gov (United States)

    Xu, Wei; Li, Jing-Yi; Huang, Sen-Lin; Z. Wu, W.; Hao, H.; P., Wang; K. Wu, Y.

    2014-10-01

    The Duke storage ring is a dedicated driver for the storage ring based oscillator free-electron lasers (FELs), and the High Intensity Gamma-ray Source (HIGS). It is operated with a beam current ranging from about 1 mA to 100 mA per bunch for various operations and accelerator physics studies. High performance operations of the FEL and γ-ray source require a stable electron beam orbit, which has been realized by the global orbit feedback system. As a critical part of the orbit feedback system, the electron beam position monitors (BPMs) are required to be able to precisely measure the electron beam orbit in a wide range of the single-bunch current. However, the high peak voltage of the BPM pickups associated with high single-bunch current degrades the performance of the BPM electronics, and can potentially damage the BPM electronics. A signal conditioning method using low pass filters is developed to reduce the peak voltage to protect the BPM electronics, and to make the BPMs capable of working with a wide range of single-bunch current. Simulations and electron beam based tests are performed. The results show that the Duke storage ring BPM system is capable of providing precise orbit measurements to ensure highly stable FEL and HIGS operations.

  11. Design of RF chopper system for improving beam quality in FEL injector with thermionic gun

    International Nuclear Information System (INIS)

    Chen, Q.; Qin, B.; Tan, P.; Hu, T.; Pei, Y.; Zhang, F.

    2014-01-01

    For a linac-based Free Electron Laser (FEL), good beam quality largely contributes to the success of the final radiation. An imperfection confronted with the HUST THz-FEL facility is the long beam tail that emerges in the electron gun and exists through the whole beam line. This paper proposes to deploy a chopper system after the electron gun to truncate the beam tails before they enter into the linac. Physical dimensions of the chopper cavity are discussed in detail and we have developed and derived new analytical expressions applying to all frequencies for the optimal design. Also, technical issues of the cavity are considered. Beam dynamic simulation is performed to examine the truncation effect and the results show that more than 78% of the beam tail can be removed effectively, while preserving the emittance and energy spread in acceptable level

  12. Millimeter-wave FEL-oscillator with a new type Bragg resonator: advantages in efficiency and selectivity

    CERN Document Server

    Ginzburg, N S; Kaminsky, A K; Peskov, N Yu; Sedykh, S N; Sergeev, A P

    2000-01-01

    An FEL-oscillator with a new type of Bragg resonator was realized on the basis of linac LIU-3000 (JINR, Dubna) (0.8 MeV/200 A/200 ns). This resonator consists of two corrugated waveguide sections having a step of phase pi between the corrugations at the point of connection. The selective properties of a resonator of this type are significantly improved in comparison with a traditional two-mirror Bragg resonator. The output power was about 50 MW at a frequency of 30.7 GHz with the optimal parameters of the resonator, which corresponds to the efficiency of 35%, which is the highest for millimeter wavelength FEL. Radiation at the fundamental mode and the two side modes with the frequencies coincided to the 'cold' microwave testing was separately observed depending on the magnetic fields of the wiggler and solenoid.

  13. Mode-Locked Multichromatic X-Rays in a Seeded Free-Electron Laser for Single-Shot X-Ray Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Xiang, Dao; Ding, Yuantao; Raubenheimer, Tor; Wu, Juhao; /SLAC

    2012-05-10

    We present the promise of generating gigawatt mode-locked multichromatic x rays in a seeded free-electron laser (FEL). We show that, by using a laser to imprint periodic modulation in electron beam phase space, a single-frequency coherent seed can be amplified and further translated to a mode-locked multichromatic output in an FEL. With this configuration the FEL output consists of a train of mode-locked ultrashort pulses which span a wide frequency gap with a series of equally spaced sharp lines. These gigawatt multichromatic x rays may potentially allow one to explore the structure and dynamics of a large number of atomic states simultaneously. The feasibility of generating mode-locked x rays ranging from carbon K edge ({approx}284 eV) to copper L{sub 3} edge ({approx}931 eV) is confirmed with numerical simulation using the realistic parameters of the linac coherent light source (LCLS) and LCLS-II. We anticipate that the mode-locked multichromatic x rays in FELs may open up new opportunities in x-ray spectroscopy (i.e. resonant inelastic x-ray scattering, time-resolved scattering and spectroscopy, etc.).

  14. High-power free-electron laser amplifier using a scalloped electron beam and a two-stage wiggler

    Directory of Open Access Journals (Sweden)

    D. C. Nguyen

    2006-05-01

    Full Text Available High-power free-electron laser (FEL amplifiers present many practical design and construction problems. One such problem is possible damage to any optical beam control elements beyond the wiggler. The ability to increase the optical beam’s divergence angle after the wiggler, thereby reducing the intensity on the first optical element, is important to minimize such damage. One proposal to accomplish this optical beam spreading is to pinch the electron beam thereby focusing the radiation as well. In this paper, we analyze an approach that relies on the natural betatron motion to pinch the electron beam near the end of the wiggler. We also consider a step-tapered, two-stage wiggler to enhance the efficiency. The combination of a pinched electron beam and step-taper wiggler leads to additional optical guiding of the optical beam. This novel configuration is studied in simulation using the MEDUSA code. For a representative set of beam and wiggler parameters, we discuss (i the effect of the scalloped beam on the interaction in the FEL and on the focusing and propagation of the radiation, and (ii the efficiency enhancement in the two-stage wiggler.

  15. Status of RF system for the JAERI energy-recovery linac FEL

    International Nuclear Information System (INIS)

    Sawamura, Masaru; Nagai, Ryoji

    2006-01-01

    The two types of the RF sources are used for the JAERI ERL-FEL. One is an all-solid state amplifier and the other is an inductive output tube (IOT). There are advantages of little failure and wide bandwidth for the all-solid state amplifier, low cost and high efficiency for IOT. The property of low cost with the IOT is suitable for a large machine like an energy recovery linac (ERL)

  16. Femtosecond X-ray Pulses from a Spatially Chirped Electron Bunch in a SASE FEL

    Energy Technology Data Exchange (ETDEWEB)

    Emma, P.

    2003-01-14

    We propose a simple method to produce short x-ray pulses using a spatially chirped electron bunch in a SASE FEL. The spatial chirp is generated using an rf deflector which produces a transverse offset (in y and/or y') correlated with the longitudinal bunch position. Since the FEL gain is very sensitive to an initial offset in the transverse phase space at the entrance of the undulator, only a small portion of the electron bunch with relatively small transverse offset will interact significantly with the radiation, resulting in an x-ray pulse length much shorter than the electron bunch length. The x-ray pulse is also naturally phase locked to the rf deflector and so allows high precision timing synchronization. We discuss the generation and transport of such a spatially chirped electron beam and show that tens of femtosecond long pulse can be generated for the linac coherent light source (LCLS).

  17. Amplification of a bi-phase shift-key modulated signal by a mm-wave FEL

    International Nuclear Information System (INIS)

    Prosnitz, D.; Scharlemann, E.T.; Sheaffer, M.K.

    1991-10-01

    Bi-phase shift keying (BPSK) is a modulation scheme used in communications and radar in which the phase of a transmitted rf signal is switched in a coded pattern between discrete values differing by π radians. The transmitted information rate (in communications) or resolution (in imaging radar) depends on the rate at which the transmitted signal can be modulated. Modulation rates of greater than 1 GHz are generally desired. Although the instantaneous gain bandwidth of a mm-wave FEL amplifier can be much greater than 10 GHz, slippage may limit the BPSK modulation rate that can be amplified. Qualitative slippage arguments would limit the modulation rate to relatively low values; nevertheless, simulations with a time-dependent FEL code (GINGER) indicate that rates of 2 GHz or more are amplified without much loss in modulation integrity. In this paper we describe the effects of slippage in the simulations and discuss the limits of simple arguments

  18. Digital low level RF control system for the DESY TTF VUV-FEL Linac

    International Nuclear Information System (INIS)

    Ayvazyan, V.; Choroba, S.; Matyushin, A.; Moeller, G.; Petrosyan, G.; Rehlich, K.; Simrock, S.N.; Vetrov, P.

    2005-01-01

    In the RF system for the Vacuum Ultraviolet Free Electron Laser (VUV-FEL) Linac each klystron supplies RF power to up to 32 cavities. The superconducting cavities are operated in pulsed mode and high accelerating gradients close to the performance limit. The RF control of the cavity fields to the level of 10 -4 for amplitude and 0.1 degree for phase however presents a significant technical challenge due to the narrow bandwidth of the cavities which results in high sensitivity to perturbations of the resonance frequency by mechanical vibrations (microphonics) and Lorenz force detuning. The VUV-FEL Linac RF control system employs a completely digital feedback system to provide flexibility in the control algorithms, precise calibration of the accelerating field vector-sum, and extensive diagnostics and exception handling capabilities. The RF control algorithm is implemented in DSP (Digital Signal Processor) firmware and DOOCS (Distributed Object Oriented Control System) servers. The RF control system design objectives are discussed. Hardware and software design of the DSP based RF control are presented. (orig.)

  19. Digital low level RF control system for the DESY TTF VUV-FEL Linac

    Energy Technology Data Exchange (ETDEWEB)

    Ayvazyan, V.; Choroba, S.; Matyushin, A.; Moeller, G.; Petrosyan, G.; Rehlich, K.; Simrock, S.N.; Vetrov, P.

    2005-07-01

    In the RF system for the Vacuum Ultraviolet Free Electron Laser (VUV-FEL) Linac each klystron supplies RF power to up to 32 cavities. The superconducting cavities are operated in pulsed mode and high accelerating gradients close to the performance limit. The RF control of the cavity fields to the level of 10{sup -4} for amplitude and 0.1 degree for phase however presents a significant technical challenge due to the narrow bandwidth of the cavities which results in high sensitivity to perturbations of the resonance frequency by mechanical vibrations (microphonics) and Lorenz force detuning. The VUV-FEL Linac RF control system employs a completely digital feedback system to provide flexibility in the control algorithms, precise calibration of the accelerating field vector-sum, and extensive diagnostics and exception handling capabilities. The RF control algorithm is implemented in DSP (Digital Signal Processor) firmware and DOOCS (Distributed Object Oriented Control System) servers. The RF control system design objectives are discussed. Hardware and software design of the DSP based RF control are presented. (orig.)

  20. Single-stage osseointegrated implants for nasal prosthodontic rehabilitation: A clinical report.

    Science.gov (United States)

    de Carvalho, Bruna M D F; Freitas-Pontes, Karina M; de Negreiros, Wagner A; Verde, Marcus A R L

    2015-08-01

    Malignant tumors in the nasal region may be treated by means of invasive surgical procedures, with large facial losses. Nasal prostheses, retained by osseointegrated facial implants, instead of plastic surgery, will, in most patients, offer good biomechanical and cosmetic results. This clinical report describes the prosthetic rehabilitation of a patient with nasal cancer who had the entire nasal vestibule removed in a single-stage surgical procedure in order to shorten the rehabilitation time. The nasal prosthesis was built on a 3-magnet bar and was made of platinum silicone with intrinsic pigmentation, thereby restoring the patient's appearance and self-esteem. The authors concluded that single-stage implants may reduce the rehabilitation time to as little as 1 month, and the correct use of materials and techniques may significantly improve the nasal prosthesis. Copyright © 2015 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  1. Neutron dose rate at the SwissFEL injector test facility: first measurements

    International Nuclear Information System (INIS)

    Hohmann, E.; Frey, N.; Fuchs, A.; Harm, C.; Hoedlmoser, H.; Luescher, R.; Mayer, S.; Morath, O.; Philipp, R.; Rehmann, A.; Schietinger, T.

    2014-01-01

    At the Paul Scherrer Institute, the new SwissFEL Free Electron Laser facility is currently in the design phase. It is foreseen to accelerate electrons up to a maximum energy of 7 GeV with a pulsed time structure. An injector test facility is operated at a maximum energy of 300 MeV and serves as the principal test and demonstration plant for the SwissFEL project. Secondary radiation is created in unavoidable interactions of the primary beam with beamline components. The resulting ambient dose-equivalent rate due to neutrons was measured along the beamline with different commercially available survey instruments. The present study compares the readings of these neutron detectors (one of them is specifically designed for measurements in pulsed fields). The experiments were carried out in both, a normal and a diagnostic mode of operation of the injector. Measurements were taken at the SwissFEL injector test facility using three different types of commercially available survey instruments for normal and diagnostic mode of operation at different positions inside the accelerator vault. During normal operation, the doses indicated by the different instruments agree within the measurement uncertainty except for the beam dump region. There, due to its limited energy range and high sensitivity, the LB6411 shows significantly lower dose values than the other instruments. The photon background in the vault associated with each pulse causes the scintillator used by the LB6419 to saturate. As a result, only the channel using the delayed 12 C(n,p)12-reaction could be used during the measurements. The highest doses per pulse were measured next to the beam dump and the bunch compressor. For the optimisation of the accelerator, luminescent screens can be inserted into the beam path causing a dose distributed over several metres depending on the screen type. The dose arise to 40 % from neutrons with energies of >20 MeV. Although the charge of each pulse were reduced to decrease

  2. Recording single neurons' action potentials from freely moving pigeons across three stages of learning.

    Science.gov (United States)

    Starosta, Sarah; Stüttgen, Maik C; Güntürkün, Onur

    2014-06-02

    While the subject of learning has attracted immense interest from both behavioral and neural scientists, only relatively few investigators have observed single-neuron activity while animals are acquiring an operantly conditioned response, or when that response is extinguished. But even in these cases, observation periods usually encompass only a single stage of learning, i.e. acquisition or extinction, but not both (exceptions include protocols employing reversal learning; see Bingman et al.(1) for an example). However, acquisition and extinction entail different learning mechanisms and are therefore expected to be accompanied by different types and/or loci of neural plasticity. Accordingly, we developed a behavioral paradigm which institutes three stages of learning in a single behavioral session and which is well suited for the simultaneous recording of single neurons' action potentials. Animals are trained on a single-interval forced choice task which requires mapping each of two possible choice responses to the presentation of different novel visual stimuli (acquisition). After having reached a predefined performance criterion, one of the two choice responses is no longer reinforced (extinction). Following a certain decrement in performance level, correct responses are reinforced again (reacquisition). By using a new set of stimuli in every session, animals can undergo the acquisition-extinction-reacquisition process repeatedly. Because all three stages of learning occur in a single behavioral session, the paradigm is ideal for the simultaneous observation of the spiking output of multiple single neurons. We use pigeons as model systems, but the task can easily be adapted to any other species capable of conditioned discrimination learning.

  3. Two-stage single-volume exchange transfusion in severe hemolytic disease of the newborn.

    Science.gov (United States)

    Abbas, Wael; Attia, Nayera I; Hassanein, Sahar M A

    2012-07-01

    Evaluation of two-stage single-volume exchange transfusion (TSSV-ET) in decreasing the post-exchange rebound increase in serum bilirubin level, with subsequent reduction of the need for repeated exchange transfusions. The study included 104 neonates with hyperbilirubinemia needing exchange transfusion. They were randomly enrolled into two equal groups, each group comprised 52 neonates. TSSV-ET was performed for the 52 neonates and the traditional single-stage double-volume exchange transfusion (SSDV-ET) was performed to 52 neonates. TSSV-ET significantly lowered rebound serum bilirubin level (12.7 ± 1.1 mg/dL), compared to SSDV-ET (17.3 ± 1.7 mg/dL), p < 0.001. Need for repeated exchange transfusions was significantly lower in TSSV-ET group (13.5%), compared to 32.7% in SSDV-ET group, p < 0.05. No significant difference was found between the two groups as regards the morbidity (11.5% and 9.6%, respectively) and the mortality (1.9% for both groups). Two-stage single-volume exchange transfusion proved to be more effective in reducing rebound serum bilirubin level post-exchange and in decreasing the need for repeated exchange transfusions.

  4. Single-stage micro-scale solvent extraction in parallel microbore tubes using MDIMJ

    International Nuclear Information System (INIS)

    Darekar, Mayur; Singh, K.K.; Joshi, J.M.; Mukhopadhyay, S.; Shenoy, K.T.

    2016-01-01

    Single-stage micro-scale solvent extraction of U(VI) from simulated lean streams is explored using micro-scale contactor comprising of a MDIMJ (Monoblock Distributor with Integrated Microfluidic Junction) and PTFE microbore tubes. 30% (v/v) TBP in dodecane has been used as the extracting phase. The objective of the study is to demonstrate numbering up approach for scale-up of micro-scale extraction using indigenously conceptualized and fabricated MDIMJ. First the performance of MIDIMJ for equal flow distribution is tested. Then the effects of inlet flow rate and O/A ratio on stage efficiency and percentage extraction are studied. The experiments show that it is easy to scale-up single-stage micro-scale solvent extraction by using MDIMJ for numbering up approach. Maximum capacity tested is 4.8 LPH. With O/A = 2/1, more than 90% extraction is achieved in a very short contact time of less than 3s. The study thus demonstrates possibility of process intensification and easy scale-up of micro-scale solvent extraction

  5. Wakefield issue and its impact on X-ray photon pulse in the SXFEL test facility

    Energy Technology Data Exchange (ETDEWEB)

    Song, Minghao; Li, Kai [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Feng, Chao [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Deng, Haixiao, E-mail: denghaixiao@sinap.ac.cn [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Liu, Bo; Wang, Dong [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China)

    2016-06-21

    Besides the designed beam acceleration, the energy of electrons is changed by the longitudinal wakefields in a real free-electron laser (FEL) facility, which may degrade FEL performances from the theoretical expectation. In this paper, with the help of simulation codes, the wakefields induced beam energy loss in the sophisticated undulator section is calculated for Shanghai soft X-ray FEL, which is a two-stage seeded FEL test facility. While the 1st stage 44 nm FEL output is almost not affected by the wakefields, it is found that a beam energy loss about 0.8 MeV degrades the peak brightness of the 2nd stage 8.8 nm FEL by a factor of 1.6, which however can be compensated by a magnetic field fine tuning of each undulator segment. And the longitudinal coherence of the 8.8 nm FEL output illustrates a slight degradation, because of the beam energy curvatures induced by the wakefields.

  6. Luminescence from ZnSe excited by picosecond mid-infrared FEL pulses

    International Nuclear Information System (INIS)

    Mitsuyu, T.; Suzuki, T.; Tomimasu, T.

    1998-01-01

    We have observed blue band-edge emission from a ZnSe crystal under irradiation of mid-infrared picosecond free electron laser (FEL) pulses. The emission characteristics including spectrum, excitation power dependence, excitation wavelength dependence, and decay time have been investigated. The experimental results have indicated that it is difficult to understand the excitation process by multiphoton excitation, thermal excitation, or excitation through mid-gap levels. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  7. Electron gun for the Fel Clio

    International Nuclear Information System (INIS)

    Chaput, R.

    1990-01-01

    A triode electron gun has been developed and manufactured at LURE (Laboratoire pour l'Utilisation du Rayonnement Electromagnetique) and LAL (Laboratoire de l'Accelerateur Lineaire) for the free electron laser CLIO 1 (Collaboration pour un laser a electrons libres dans l'infrarouge a Orsay) now under construction: this gun involves a grid-cathode assembly manufactured by EIMAC, currently used in the SLAC gun family. For the FEL requirements, the gun must be able to yield a train of short pulses at accuracy frequency or a continuous pulse. Driving together the cathode and the grid the gun produces a continous beam of 12 μs or a pulsed beam of very short pulse of 1 ns at 250 MHz, 125 MHz, 62.5 MHz or 31.25 MHz. The performances of the gun has been tested on a testing bench. A peak current of 1 Amp. for 1 ns width at any frequencies was achieved at an injection voltage of 90 kV

  8. A modular and compact portable mini-endstation for high-precision, high-speed fixed target serial crystallography at FEL and synchrotron sources

    Energy Technology Data Exchange (ETDEWEB)

    Sherrell, Darren A., E-mail: darren.sherrell@diamond.ac.uk; Foster, Andrew J.; Hudson, Lee; Nutter, Brian; O’Hea, James [Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 ODE (United Kingdom); Nelson, Silke [SLAC National Laboratory, Menlo Park, CA 94025 (United States); Paré-Labrosse, Olivier; Oghbaey, Saeed [University of Toronto, 80 St George St, Toronto, ON M5S 1A8 (Canada); Miller, R. J. Dwayne [University of Toronto, 80 St George St, Toronto, ON M5S 1A8 (Canada); and Hamburg Centre for Ultrafast Imaging, CFEL Building 99, Luruper Chaussee 149, Hamburg 22761 (Germany); Owen, Robin L., E-mail: darren.sherrell@diamond.ac.uk [Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 ODE (United Kingdom)

    2015-10-06

    A portable sample viewing and alignment system is described which provides fast and reliable motion positioning for fixed target arrays at synchrotrons and free-electron laser sources. The design and implementation of a compact and portable sample alignment system suitable for use at both synchrotron and free-electron laser (FEL) sources and its performance are described. The system provides the ability to quickly and reliably deliver large numbers of samples using the minimum amount of sample possible, through positioning of fixed target arrays into the X-ray beam. The combination of high-precision stages, high-quality sample viewing, a fast controller and a software layer overcome many of the challenges associated with sample alignment. A straightforward interface that minimizes setup and sample changeover time as well as simplifying communication with the stages during the experiment is also described, together with an intuitive naming convention for defining, tracking and locating sample positions. The setup allows the precise delivery of samples in predefined locations to a specific position in space and time, reliably and simply.

  9. Upgrade of a control system for the JAERI ERL-FEL

    International Nuclear Information System (INIS)

    Kikuzawa, Nobuhiro

    2004-01-01

    The accelerator control system used for the JAERI ERL-FEL is a PC-based distributed control system that has been in operation since 1992. Since an interface bus of the PCs is obsolete, interface boards for the PCs are difficult to obtain in recent years. Thus we have been developing the CAMAC controller with μITRON operating system to replace the old PCs connected with CAMAC. We will introduce a Java and CORBA environment in the new control system. The control system upgrade, including hardware upgrading and applications rewriting, is described in this paper. (author)

  10. Investigating alternatives to the fish early-life stage test: a strategy for discovering and annotating adverse outcome pathways for early fish development.

    Science.gov (United States)

    Villeneuve, Daniel; Volz, David C; Embry, Michelle R; Ankley, Gerald T; Belanger, Scott E; Léonard, Marc; Schirmer, Kristin; Tanguay, Robert; Truong, Lisa; Wehmas, Leah

    2014-01-01

    The fish early-life stage (FELS) test (Organisation for Economic Co-operation and Development [OECD] test guideline 210) is the primary test used internationally to estimate chronic fish toxicity in support of ecological risk assessments and chemical management programs. As part of an ongoing effort to develop efficient and cost-effective alternatives to the FELS test, there is a need to identify and describe potential adverse outcome pathways (AOPs) relevant to FELS toxicity. To support this endeavor, the authors outline and illustrate an overall strategy for the discovery and annotation of FELS AOPs. Key events represented by major developmental landmarks were organized into a preliminary conceptual model of fish development. Using swim bladder inflation as an example, a weight-of-evidence-based approach was used to support linkage of key molecular initiating events to adverse phenotypic outcomes and reduced young-of-year survival. Based on an iterative approach, the feasibility of using key events as the foundation for expanding a network of plausible linkages and AOP knowledge was explored and, in the process, important knowledge gaps were identified. Given the scope and scale of the task, prioritization of AOP development was recommended and key research objectives were defined relative to factors such as current animal-use restrictions in the European Union and increased demands for fish toxicity data in chemical management programs globally. The example and strategy described are intended to guide collective efforts to define FELS-related AOPs and develop resource-efficient predictive assays that address the toxicological domain of the OECD 210 test. © 2013 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of Society of Environmental Toxicology & Chemistry (SETAC).

  11. Selected applications of planar permanent magnet multipoles in FEL insertion device design

    International Nuclear Information System (INIS)

    Tatchyn, R.

    1993-08-01

    In recent work, a new class of magnetic multipoles based on planar configurations of permanent magnet (PM) material has been developed. These structures, in particular the quadrupole and sextupole, feature fully open horizontal apertures, and are comparable in effectiveness to conventional iron multipole structures. In this paper results of recent measurements of planar PM quadrupoles and sextupoles are reported and selected applications to FEL insertion device design are considered

  12. Studies of a Linac Driver for a High Repetition Rate X-Ray FEL

    International Nuclear Information System (INIS)

    Venturini, M.; Corlett, J.; Doolittle, L.; Filippetto, D.; Papadopoulos, C.; Penn, G.; Prosnitz, D.; Qiang, J.; Reinsch, M.; Ryne, R.; Sannibale, F.; Staples, J.; Wells, R.; Wurtele, J.; Zolotorev, M.; Zholents, A.

    2011-01-01

    We report on on-going studies of a superconducting CW linac driver intended to support a high repetition rate FEL operating in the soft x-rays spectrum. We present a pointdesign for a 1.8 GeV machine tuned for 300 pC bunches and delivering low-emittance, low-energy spread beams as needed for the SASE and seeded beamlines.

  13. Plasma Wakefield Accelerated Beams for Demonstration of FEL Gain at FLASHForward

    OpenAIRE

    Niknejadi, Pardis; Aschikhin, Alexander; Hu, Zhanghu; Karstensen, Sven; Knetsch, Alexander; Kononenko, Olena; Libov, Vladyslav; Ludwig, Kai; Martinez de la Ossa, Alberto; Marutzky, Frank; Mehrling, Timon; Osterhoff, Jens; Behrens, Christopher; Palmer, Charlotte; Poder, Kristjan

    2017-01-01

    FLASHForward is the Future-ORiented Wakefield Accelerator Research and Development project at the DESY free-electron laser (FEL) facility FLASH. It aims to produce high-quality, GeV-energy electron beams over a plasma cell of a few centimeters. The plasma is created by means of a 25 TW Ti:Sapphire laser system. The plasma wakefield will be driven by high-current-density electron beams extracted from the FLASH accelerator. The project focuses on the advancement of plasma-based particle acceler...

  14. Callus Distraction Versus Single-Stage Lengthening With Bone Graft for Treatment of Brachymetatarsia: A Systematic Review.

    Science.gov (United States)

    Jones, Marc D; Pinegar, David M; Rincker, Sarah A

    2015-01-01

    Brachymetatarsia deformity is a cosmetically displeasing anomaly that can become physically symptomatic. The surgical techniques most commonly used to repair the anomaly include single-stage lengthening with a bone graft, callus distraction, or a combination of bone grafting and callus distraction. A systematic review of the published data was performed to compare the outcomes of these 3 surgical procedures. A total of 61 studies reporting the use of callus distraction or single-stage lengthening, or both, for the treatment of brachymetatarsia were included in the present review. The incidence of major postoperative complications after callus distraction, single-stage lengthening, and the combination procedure was 49 (12.62%), 13 (3.72%), and 3 (33.33%), respectively. The number of minor complications with callus distraction, single-stage lengthening, and the combination procedure was 152 (39.18%), 55 (15.76%), and 1 (11.11%); the mean percentage of the original length achieved was 37.36%, 25.98% and 36.00%; and the mean length achieved was 17.5, 13.2, and 14.0 mm, respectively. The healing index (mo/cm) and healing time was 2.31 and 16.04 weeks, 1.90 and 9.35 weeks, and 3.93 and 14.62 weeks for callus distraction, single-stage lengthening, and the combination procedure, respectively. Our findings indicate that the callus distraction technique is associated with greater length gained but results in greater complication rates and requires almost twice the time to heal. Single-stage lengthening with a bone graft was associated with fewer complications and faster healing times than callus distraction but with lesser gains in length. From the information reported in the studies we reviewed, the prevalence of bilateral brachymetatarsia was 44.52%, and the female/male ratio was 13.7:1. Both of these findings seem to contradict the usual data given (72% for bilateral brachymetatarsia and a female/male ratio of 25:1). Copyright © 2015 American College of Foot and

  15. Opportunities and challenges for photon diagnostics at the soft X-ray FEL FLASH in simultaneous operation mode (Conference Presentation)

    Science.gov (United States)

    Kuhlmann, Marion; Treusch, Rolf; Plönjes-Palm, Elke; Faatz, Bart; Tiedtke, Kai; Braune, Markus; Keitel, Barbara

    2017-06-01

    FLASH operates two distinguished undulator sections driven by one linear accelerator. In the 11th year of user operation the grown demands for detailed photon beam performances are doubled approached. The more complex machine settings and setup times require a more and more efficient determination of its characteristics concerning electron- and photon-beams. The photon diagnostics systems, e.g. gas monitor detection, photon-ion spectroscopy, or diffractive tools, not only have to deal on a regular basis with fundamental wavelengths between 4nm and 90nm, also they have to be reliable from 1µJ up to 1mJ of average single pulse energy. For the success of the experiments the error bars of many diagnostics measurements need to be pushed into their current limits and developments to go further are always issued. Especial, the pulse duration in conjunction with the spectral width has been accessed in the last year. Direct approaches of fundamental wavelengths below the Nitrogene K-edge and higher harmonics in and below the water window were achieved. While in principal distinguished to each other, the photon diagnostics tools of FLASH1 and FLASH2 add-up to a more complete understanding of the other. Together they allow for a better perspective towards further developments and a more suitable use of beam times. The intermingled knowledge of electron- and photon-beams is essential for an FEL particular in simultaneous operation mode. Examples out of regular user operation and distinguished FEL-studies are given to illustrate the current state of the photon diagnostics at FLASH.

  16. Novel active signal compression in low-noise analog readout at future X-ray FEL facilities

    Science.gov (United States)

    Manghisoni, M.; Comotti, D.; Gaioni, L.; Lodola, L.; Ratti, L.; Re, V.; Traversi, G.; Vacchi, C.

    2015-04-01

    This work presents the design of a low-noise front-end implementing a novel active signal compression technique. This feature can be exploited in the design of analog readout channels for application to the next generation free electron laser (FEL) experiments. The readout architecture includes the low-noise charge sensitive amplifier (CSA) with dynamic signal compression, a time variant shaper used to process the signal at the preamplifier output and a 10-bit successive approximation register (SAR) analog-to-digital converter (ADC). The channel will be operated in such a way to cope with the high frame rate (exceeding 1 MHz) foreseen for future XFEL machines. The choice of a 65 nm CMOS technology has been made in order to include all the building blocks in the target pixel pitch of 100 μm. This work has been carried out in the frame of the PixFEL Project funded by the Istituto Nazionale di Fisica Nucleare (INFN), Italy.

  17. Comprehensive z-dependent measurements of electron-beam microbunching using COTR in a saturated SASE FEL

    CERN Document Server

    Lumpkin, Alex H; Lewellen, J W; Berg, W; Biedron, S G; Borland, M; Chae, Y; Erdmann, M; Huang, Z; Kim, K J; Li, Y; Milton, S V; Moog, E; Rule, D W; Sajaev, Vadim; Yang, B X

    2002-01-01

    We report the initial, comprehensive set of z-dependent measurements of electron-beam microbunching using coherent optical transition radiation (Cot) in a saturated self-amplified spontaneous emission (SASE) free-electron laser (FEL) experiment. In this case the FEL was operated near 530 nm using an enhanced facility including a bunch-compressed photocathode gun electron beam, linac, and 21.6 m of undulator length. The longitudinal microbunching was tracked by inserting a metal foil and mirror after each of the nine 2.4-m-long undulators and measuring the visible COTR spectra, intensity, angular, distribution, and spot size. We observed for the first time the z-dependent transition of the COTR spectra from simple lines to complex structure/sidebands near saturation. We also observed the change in the microbunching fraction after saturation, multiple fringes in the COTR interferogram that are consistent with involvement of a smaller core of the e-beam transverse distribution, and the second harmonic content of...

  18. Undulators to FELs: Nanometers, Femtoseconds, Coherence and Applications

    Energy Technology Data Exchange (ETDEWEB)

    Attwood, David [University of California Berkeley

    2011-11-30

    For scientists in many fields, from material science to the life sciences and archeology, synchrotron radiation, and in particular undulator radiation, has provide an intense source of x-rays which are tunable to the absorption edges of particular elements of interest, often permitting studies at high spatial and spectral resolution. Now a close cousin to the undulator, the x-ray free electron laser (XFEL) has emerged with improved spatial coherence and, perhaps more importantly, femtosecond pulse durations which permit dynamical studies. In the future attosecond x-ray capabilities are anticipated. In this colloqium we will describe some state of the art undulator studies, how undulators work, the evolution to FELs, their pulse and coherence properties, and the types of experiments envisioned.

  19. Fill Rates of Single-Stage and Multistage Supply Systems

    OpenAIRE

    Matthew J. Sobel

    2004-01-01

    A supply system's fill rate is the fraction of demand that is met from on-hand inventory. This paper presents formulas for the fill rate of periodic review supply systems that use base-stock-level policies. The first part of the paper contains fill-rate formulas for a single-stage system and general distributions of demand. When demand is normally distributed, an exact expression uses only the standard normal distribution and density functions, and a good approximation uses only the standard ...

  20. Bunch by bunch beam monitoring in 3rd and 4th generation light sources by means of single crystal diamond detectors and quantum well devices

    Science.gov (United States)

    Antonelli, M.; Di Fraia, M.; Tallaire, A.; Achard, J.; Carrato, S.; Menk, R. H.; Cautero, G.; Giuressi, D.; Jark, W. H.; Biasiol, G.; Ganbold, T.; Oliver, K.; Callegari, C.; Coreno, M.; De Sio, A.; Pace, E.

    2012-10-01

    New generation Synchrotron Radiation (SR) sources and Free Electron Lasers (FEL) require novel concepts of beam diagnostics to keep photon beams under surveillance, asking for simultaneous position and intensity monitoring. To deal with high power load and short time pulses provided by these sources, novel materials and methods are needed for the next generation BPMs. Diamond is a promising material for the production of semitransparent in situ X-ray BPMs withstanding the high dose rates of SR rings and high energy FELs. We report on the development of freestanding, single crystal CVD diamond detectors. Performances in both low and radio frequency SR beam monitoring are presented. For the former, sensitivity deviation was found to be approximately 2%; a 0.05% relative precision in the intensity measurements and a 0.1-μm precision in the position encoding have been estimated. For the latter, single-shot characterizations revealed sub-nanosecond rise-times and spatial precisions below 6 μm, which allowed bunch-by-bunch monitoring in multi-bunch operation. Preliminary measurements at the Fermi FEL have been performed with this detector, extracting quantitative intensity and position information for FEL pulses (~ 100 fs, energy 12 ÷ 60 eV), with a long-term spatial precision of about 85 μm results on FEL radiation damages are also reported. Due to their direct, low-energy band gap, InGaAs quantum well devices too may be used as fast detectors for photons ranging from visible to X-ray. Results are reported which show the capability of a novel InGaAs/InAlAs device to detect intensity and position of 100-fs-wide laser pulses.

  1. High peak-power kilohertz laser system employing single-stage multi-pass amplification

    Science.gov (United States)

    Shan, Bing; Wang, Chun; Chang, Zenghu

    2006-05-23

    The present invention describes a technique for achieving high peak power output in a laser employing single-stage, multi-pass amplification. High gain is achieved by employing a very small "seed" beam diameter in gain medium, and maintaining the small beam diameter for multiple high-gain pre-amplification passes through a pumped gain medium, then leading the beam out of the amplifier cavity, changing the beam diameter and sending it back to the amplifier cavity for additional, high-power amplification passes through the gain medium. In these power amplification passes, the beam diameter in gain medium is increased and carefully matched to the pump laser's beam diameter for high efficiency extraction of energy from the pumped gain medium. A method of "grooming" the beam by means of a far-field spatial filter in the process of changing the beam size within the single-stage amplifier is also described.

  2. Theoretical evaluation of the efficiency of gas single-stage reciprocating compressor medium pressure units

    Science.gov (United States)

    Busarov, S. S.; Vasil'ev, V. K.; Busarov, I. S.; Titov, D. S.; Panin, Ju. N.

    2017-08-01

    Developed earlier and tested in such working fluid as air, the technology of calculating the operating processes of slow-speed long-stroke reciprocating stages let the authors to obtain successful results concerning compression of gases to medium pressures in one stage. In this connection, the question of the efficiency of the application of slow-speed long-stroke stages in various fields of technology and the national economy, where the working fluid is other gas or gas mixture, is topical. The article presents the results of the efficiency evaluation of single-stage compressor units on the basis of such stages for cases when ammonia, hydrogen, helium or propane-butane mixture is used as the working fluid.

  3. Bunching phase evolution of short-pulse FEL oscillator system

    CERN Document Server

    Song, S B; Choi, D I

    2000-01-01

    We studied numerically the short-pulse FEL oscillator system using properly defined bunching phase theta sub B and PSI sub B. In stable operation, we have found that the optical field 'locks' the phase to pi/2 at the trailing edge, which gives the maximum gain. Moreover, electrons can be detrapped from ponderomotive bucket due to the spatial variation of the optical field, and this detrapping effect is a major cause of the limit cycle oscillation of the system. The 'bump' of the output power during the amplification usually exists at the near-perfect cavity synchronism regime, which can be explained as the change of the matching condition between electron micropulse and optical pulse.

  4. Jefferson Lab IR demo FEL photocathode quantum efficiency scanner

    CERN Document Server

    Gubeli, J; Grippo, A; Jordan, K; Shinn, M; Siggins, T

    2001-01-01

    Jefferson Laboratory's Free Electron Laser (FEL) incorporates a cesiated gallium arsenide (GaAs) DC photocathode gun as its electron source. By using a set of scanning mirrors, the surface of the GaAs wafer is illuminated with a 543.5nm helium-neon laser. Measuring the current flow across the biased photocathode generates a quantum efficiency (QE) map of the 1-in. diameter wafer surface. The resulting QE map provides a very detailed picture of the efficiency of the wafer surface. By generating a QE map in a matter of minutes, the photocathode scanner has proven to be an exceptional tool in quickly determining sensitivity and availability of the photocathode for operation.

  5. Mass-transfer in extraction and reextraction as a single-stage process

    International Nuclear Information System (INIS)

    Rodriguez del Cerro, M.; Trilleros, J.A.; Otero de la Gandara, J.L.

    1987-01-01

    The rate of mass transfer between water and naftenic acid and threebutilphosphate in kerosen are studied in the two possibilities to or from water. The two insoluble phases are brought in to intimate contact with dispersed phase droplets, in a single-stage process. The evolution of the equilibrium distribution of solute is taken in consideration. (author)

  6. Millijoule Pulse Energy Second Harmonic Generation With Single-Stage Photonic Bandgap Rod Fiber Laser

    DEFF Research Database (Denmark)

    Laurila, Marko; Saby, Julien; Alkeskjold, Thomas Tanggaard

    2011-01-01

    In this paper, we demonstrate, for the first time, a single-stage Q-switched single-mode (SM) ytterbium-doped rod fiber laser delivering record breaking pulse energies at visible and UV light. We use a photonic bandgap rod fiber with a mode field diameter of 59μm based on a new distributed...

  7. Analytic model of bunched beams for harmonic generation in the low-gain free electron laser regime

    Directory of Open Access Journals (Sweden)

    G. Penn

    2006-06-01

    Full Text Available One scheme for harmonic generation employs free electron lasers (FELs with two undulators: the first uses a seed laser to modulate the energy of the electron beam; following a dispersive element which acts to bunch the beam, the second undulator radiates at a higher harmonic. These processes are currently evaluated using extensive calculations or simulation codes which can be slow to evaluate and difficult to set up. We describe a simple algorithm to predict the output of a harmonic generation beam line in the low-gain FEL regime, based on trial functions for the output radiation. Full three-dimensional effects are included. This method has been implemented as a Mathematica® package, named CAMPANILE, which runs rapidly and can be generalized to include effects such as asymmetric beams and misalignments. This method is compared with simulation results using the FEL code GENESIS, both for single stages of harmonic generation and for the LUX project, a design concept for an ultrafast x-ray facility, where multiple stages upshift the input laser frequency by factors of up to 200.

  8. A high-order positivity-preserving single-stage single-step method for the ideal magnetohydrodynamic equations

    Science.gov (United States)

    Christlieb, Andrew J.; Feng, Xiao; Seal, David C.; Tang, Qi

    2016-07-01

    We propose a high-order finite difference weighted ENO (WENO) method for the ideal magnetohydrodynamics (MHD) equations. The proposed method is single-stage (i.e., it has no internal stages to store), single-step (i.e., it has no time history that needs to be stored), maintains a discrete divergence-free condition on the magnetic field, and has the capacity to preserve the positivity of the density and pressure. To accomplish this, we use a Taylor discretization of the Picard integral formulation (PIF) of the finite difference WENO method proposed in Christlieb et al. (2015) [23], where the focus is on a high-order discretization of the fluxes (as opposed to the conserved variables). We use the version where fluxes are expanded to third-order accuracy in time, and for the fluid variables space is discretized using the classical fifth-order finite difference WENO discretization. We use constrained transport in order to obtain divergence-free magnetic fields, which means that we simultaneously evolve the magnetohydrodynamic (that has an evolution equation for the magnetic field) and magnetic potential equations alongside each other, and set the magnetic field to be the (discrete) curl of the magnetic potential after each time step. In this work, we compute these derivatives to fourth-order accuracy. In order to retain a single-stage, single-step method, we develop a novel Lax-Wendroff discretization for the evolution of the magnetic potential, where we start with technology used for Hamilton-Jacobi equations in order to construct a non-oscillatory magnetic field. The end result is an algorithm that is similar to our previous work Christlieb et al. (2014) [8], but this time the time stepping is replaced through a Taylor method with the addition of a positivity-preserving limiter. Finally, positivity preservation is realized by introducing a parameterized flux limiter that considers a linear combination of high and low-order numerical fluxes. The choice of the free

  9. High-efficiency FEL with Bragg resonator driven by linear induction accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Ginzburg, N S; Kaminskij, A A; Kaminskij, A K; Peskov, N Yu; Sedykh, S N; Sergeev, A P; Sergeev, A S [Russian Academy of Sciences, Nizhny Novgorod (Russian Federation). Inst. of Applied Physics

    1997-12-31

    A narrow-band high-efficiency FEL-oscillator with a Bragg resonator was constructed based on a linear induction accelerator which formed a 1 MeV, 200 A, 200 ns electron beam. At the frequency of 31 GHz, radiation with a power of 31 MW and efficiency of 25% was measured. A high efficiency and a narrow width of the spectrum were achieved owing to the selective properties of the Bragg resonator in combination with the high quality of the helical electron beam formed in the reversed guide field regime. (author). 3 figs., 3 refs.

  10. Real-time monitoring of longitudinal electron bunch parameters by intensity-integrated and spectroscopic measurements of single coherent THz pulses

    International Nuclear Information System (INIS)

    Wesch, Stephan

    2012-12-01

    High-gain free-electron lasers (FELs) generate intense and monochromatic photon pulses with few tens of femtosecond duration. For this purpose, electron beams are accelerated to relativistic energies and shrunk longitudinally down to micrometer size.The diagnosis of theses compressed electron bunches is a challenge especially for MHz bunch repetition rates as provided by the FEL FLASH in Hamburg. In this thesis, coherently emitted THz radiation of single electron bunches were investigated, on which the longitudinal structure is imprinted. Two instruments were used: First, the FLASH bunch compression monitors, relying on the integrated intensity measurement of diffraction radiation, were modified to determine the overall length of every bunch behind the two bunch compressors (BC). A model was developed showing that their response is independent of the exact bunch shape for lengths below 200 μm (rms). This could experimentally be verified in the range between 50 and 190 μm within 7% accuracy for themonitor behind the last BC by comparison with measurements with the transverse deflecting structure (TDS). Second, a single-shot spectrometer with five staged reflective blazed gratings has been designed, build and commissioned. With its two grating sets, the wavelength ranges from 5.5 to 44 μm and 45 to 440 μm can be simultaneously detected by 118 fast pyroelectric elements. Measurements based on transition radiation spectra were compared with profiles recorded by the TDS.The shape of the spectra as well as the reconstructed temporal profiles (using the Kramers-Kronig relation for phase retrieval) are in excellent agreement. For bunches with a charge of 50 pC, bunch lengths down to 5 μm (fhwm) could be detected.

  11. Split-And-Delay Unit for FEL Interferometry in the XUV Spectral Range

    Directory of Open Access Journals (Sweden)

    Sergey Usenko

    2017-05-01

    Full Text Available In this work we present a reflective split-and-delay unit (SDU developed for interferometric time-resolved experiments utilizing an (extreme ultraviolet XUV pump–XUV probe scheme with focused free-electron laser beams. The developed SDU overcomes limitations for phase-resolved measurements inherent to conventional two-element split mirrors by a special design using two reflective lamellar gratings. The gratings produce a high-contrast interference signal controlled by the grating displacement in every diffraction order. The orders are separated in the focal plane of the focusing optics, which enables one to avoid phase averaging by spatially selective detection of a single interference state of the two light fields. Interferometry requires a precise relative phase control of the light fields, which presents a challenge at short wavelengths. In our setup the phase delay is determined by an in-vacuum white light interferometer (WLI that monitors the surface profile of the SDU in real time and thus measures the delay for each laser shot. The precision of the WLI is 1 nm as determined by optical laser interferometry. In the presented experimental geometry it corresponds to a time delay accuracy of 3 as, which enables phase-resolved XUV pump–XUV probe experiments at free-electron laser (FEL repetition rates up to 60 Hz.

  12. Single-stage posterior transforaminal lumbar interbody fusion, debridement, limited decompression, 3-column reconstruction, and posterior instrumentation in surgical treatment for single-segment lumbar spinal tuberculosis.

    Science.gov (United States)

    Zeng, Hao; Wang, Xiyang; Zhang, Penghui; Peng, Wei; Liu, Zheng; Zhang, Yupeng

    2015-01-01

    The aim of this study is to determine the feasibility and efficacy of surgical management of single-segment lumbar spinal tuberculosis (TB) by using single-stage posterior transforaminal lumbar interbody fusion, debridement, limited decompression, 3-column reconstruction, and posterior instrumentation. Seventeen cases of single-segment lumbar TB were treated with single-stage posterior transforaminal lumbar interbody fusion, debridement, limited decompression, 3-column reconstruction, and posterior instrumentation. The mean follow-up was 36.9 months (range: 24-62 months). The kyphotic angle ranged from 15.2-35.1° preoperatively, with an average measurement of 27.8°. The American Spinal Injury Association (ASIA) score system was used to evaluate the neurological deficits and erythrocyte sedimentation rate (ESR) used to judge the activity of TB. Spinal TB was completely cured in all 17 patients. There was no recurrent TB infection. The postoperative kyphotic angle was 6.6-10.2°, 8.1° in average, and there was no significant loss of the correction at final follow-up. Solid fusion was achieved in all cases. Neurological condition in all patients was improved after surgery. Single-stage posterior transforaminal lumbar interbody fusion, debridement, limited decompression, 3-column reconstruction, and posterior instrumentation can be a feasible and effective method the in treatment of single-segment lumbar spinal TB.

  13. Tunable driver for the LLNL FEL experiment

    International Nuclear Information System (INIS)

    Guss, W.C.; Basten, M.A.; Kreischer, K.E.; Temkin, R.J.

    1991-07-01

    This report describes main activities undertaken during the period 1 June 1990 to 1 June 1991 by MIT to support the Lawrence Livermore National Laboratory tunable FEL driver project. The goal of this research was to further characterize a tunable microwave source (already identified as a BWO-gyrotron) of moderate output power (10--20 kW). In the 1989 fiscal year, the source was assembled at MIT and initial tests were conducted. Proposed for the fiscal year 1990 were analysis of the previous experimental results, and the performance of new experiments designed to increase the voltage tuning range, the output efficiency, and magnetic field tuning. During the report period the previous experimental results were analyzed and compared to computational results and new components were designed, to make the BWO ready for further experiments. In addition, the BWO-gyrotron was mounted in a new superconducting magnet and initial magnetic field profile measurements were made

  14. Quadrupole magnets for IR-FEL at RRCAT

    International Nuclear Information System (INIS)

    Ruwali, Kailash; Singh, Kushraj; Mishra, Anil Kumar; Biswas, Bhaskar

    2013-01-01

    The IR-FEL project at RRCAT needs quadrupole magnets for focusing 15 to 35 MeV electron beam through a dog-leg type beam line. This bend needs tighter relative tolerances on the central quadrupole triplet . The magnetic design, fabrication and magnetic characterization of five quadrupole magnets were carried out. The poles are detachable and wider than the coils. This significantly improves the good field region of the magnet. The magnet cross-section was optimized using 2D POISON code and entry-exit tapers were optimized using 3D code TOSCA.. The aperture radius of the magnet is 30 mm and the total core length is 180 mm. The integrated gradient of magnet is 0.51 T. The magnetic measurements were carried out using Danfysik make rotating coil bench model 690. Integrated gradient and multipoles present in the magnet aperture were measured at various excitation levels. The details of magnetic development and the magnetic measurements are discussed in this paper. (author)

  15. Metabolic profiling and in vitro assessment of anthelmintic fractions of Picria fel-terrae Lour.

    Directory of Open Access Journals (Sweden)

    Rasika Kumarasingha

    2016-12-01

    Full Text Available Anthelmintic resistance is widespread in gastrointestinal nematode populations, such that there is a consistent need to search for new anthelmintics. However, the cost of screening for new compounds is high and has a very low success rate. Using the knowledge of traditional healers from Borneo Rainforests (Sarawak, Malaysia, we have previously shown that some traditional medicinal plants are a rich source of potential new anthelmintic drug candidates. In this study, Picria fel-terrae Lour. plant extract, which has previously shown promising anthelmintic activities, was fractionated via the use of a solid phase extraction cartridge and each isolated fraction was then tested on free-living nematode Caenorhabditis elegans and the parasitic nematode Haemonchus contortus. We found that a single fraction was enriched for nematocidal activity, killing ≥90% of C. elegans adults and inhibiting the motility of exsheathed L3 of H. contortus, while having minimal cytotoxic activity in mammalian cell culture. Metabolic profiling and chemometric analysis of the effective fraction indicated medium chained fatty acids and phenolic acids were highly represented.

  16. Adaptive kanban control mechanism for a single-stage hybrid system

    Science.gov (United States)

    Korugan, Aybek; Gupta, Surendra M.

    2002-02-01

    In this paper, we consider a hybrid manufacturing system with two discrete production lines. Here the output of either production line can satisfy the demand for the same type of product without any penalties. The interarrival times for demand occurrences and service completions are exponentially distributed i.i.d. variables. In order to control this type of manufacturing system we suggest a single stage pull type control mechanism with adaptive kanbans and state independent routing of the production information.

  17. Lasing attempts with a microwiggler on the Los Alamos FEL

    International Nuclear Information System (INIS)

    Warren, R.W.; O'Shea, P.G.; Bender, S.C.; Carlsten, B.E.; Early, J.W.; Feldman, D.W.; Fortgang, C.M.; Goldstein, J.C.; Schmitt, M.J.; Stein, W.E.; Wilke, M.D.; Zaugg, T.J.; Newnam, B.E.; Sheffield, R.L.

    1992-01-01

    The APEX FEL normally lases near a wavelength of 3μm using a permanent magnet wiggler with a 2.7-cm period and a linear accelerator of 40-MeV energy. Los Alamos National Laboratory is conducting a series of experiments with the goal of lasing at significantly shorter wavelengths with the same accelerator and the same kind of near-concentric resonator, but using a novel pulsed microwiggler of 0.5-cm period capable of generating a peak field of several tesla. We plan to lase on a fundamental wavelength of ∼0.8 μm and on the third harmonic at 0.25 μm

  18. New current control based MPPT technique for single stage grid connected PV systems

    International Nuclear Information System (INIS)

    Jain, Sachin; Agarwal, Vivek

    2007-01-01

    This paper presents a new maximum power point tracking algorithm based on current control for a single stage grid connected photovoltaic system. The main advantage of this algorithm comes from its ability to predict the approximate amplitude of the reference current waveform or power that can be derived from the PV array with the help of an intermediate variable β. A variable step size for the change in reference amplitude during initial tracking helps in fast tracking. It is observed that if the reference current amplitude is greater than the array capacity, the system gets unstable (i.e. moves into the positive slope region of the p-v characteristics of the array). The proposed algorithm prevents the PV system from entering the positive slope region of the p-v characteristics. It is also capable of restoring stability if the system goes unstable due to a sudden environmental change. The proposed algorithm has been tested on a new single stage grid connected PV configuration recently developed by the authors to feed sinusoidal current into the grid. The system is operated in a continuous conduction mode to realize advantages such as low device current stress, high efficiency and low EMI. A fast MPPT tracker with single stage inverter topology operating in CCM makes the overall system highly efficient. Specific cases of the system, operating in just discontinuous current mode and discontinuous current mode and their relative merits and demerits are also discussed

  19. Compressed gas combined single- and two-stage light-gas gun

    Science.gov (United States)

    Lamberson, L. E.; Boettcher, P. A.

    2018-02-01

    With more than 1 trillion artificial objects smaller than 1 μm in low and geostationary Earth orbit, space assets are subject to the constant threat of space debris impact. These collisions occur at hypervelocity or speeds greater than 3 km/s. In order to characterize material behavior under this extreme event as well as study next-generation materials for space exploration, this paper presents a unique two-stage light-gas gun capable of replicating hypervelocity impacts. While a limited number of these types of facilities exist, they typically are extremely large and can be costly and dangerous to operate. The design presented in this paper is novel in two distinct ways. First, it does not use a form of combustion in the first stage. The projectile is accelerated from a pressure differential using air and inert gases (or purely inert gases), firing a projectile in a nominal range of 1-4 km/s. Second, the design is modular in that the first stage sits on a track sled and can be pulled back and used in itself to study lower speed impacts without any further modifications, with the first stage piston as the impactor. The modularity of the instrument allows the ability to investigate three orders of magnitude of impact velocities or between 101 and 103 m/s in a single, relatively small, cost effective instrument.

  20. The Incidence of Complications in Single-stage Endoscopic Stone Removal for Patients with Common Bile Duct Stones: A Propensity Score Analysis.

    Science.gov (United States)

    Saito, Hirokazu; Kadono, Yoshihiro; Kamikawa, Kentaro; Urata, Atsushi; Imamura, Haruo; Matsushita, Ikuo; Kakuma, Tatsuyuki; Tada, Shuji

    2018-02-15

    Objective Single-stage endoscopic stone removal for choledocholithiasis is an advantageous approach because it is associated with a shorter hospital stay; however, few studies have reported the incidence of complications related to this procedure in detail. The aim of this study was to examine the incidence of complications and efficacy of this procedure. Methods This retrospective study investigated the incidence of complications in 345 patients with naive papilla who underwent therapeutic endoscopic retrograde cholangiopancreatography (ERCP) for choledocholithiasis at three institutions between April 2014 and March 2016 by a propensity score analysis. The efficacy of single-stage endoscopic stone removal was assessed based on a hospital stay of within 7 days and the number of ERCP attempts. Results Among 114 patients who underwent single-stage endoscopic stone removal, 15 patients (13.2%) experienced complications. Among the remaining 231 patients in the two-stage endoscopic stone removal group, complications were observed in 17 patients (7.4%). The propensity score analysis, which was adjusted for confounding factors, revealed that single-stage endoscopic stone removal was not a significant risk factor for complications (p=0.52). In patients in whom >10 min was required for deep cannulation, single-stage endoscopic stone removal was not a significant risk factor for complications in the propensity score analysis (p=0.37). In the single-stage group, the proportion of patients with a hospital stay of within 7 days was significantly higher and the number of ERCP attempts was significantly lower in comparison to the two-stage group (p <0.0001 and <0.0001, respectively). Conclusion Single-stage endoscopic stone removal did not increase the incidence of complications associated with ERCP and was effective for reducing the hospital stay and the number of ERCP attempts.

  1. A tetrad of bicuspid aortic valve association: A single-stage repair

    Science.gov (United States)

    Barik, Ramachandra; Patnaik, A. N.; Mishra, Ramesh C.; Kumari, N. Rama; Gulati, A. S.

    2012-01-01

    We report a 27 years old male who presented with a combination of both congenital and acquired cardiac defects. This syndrome complex includes congenital bicuspid aortic valve, Seller's grade II aortic regurgitation, juxta- subclavian coarctation, stenosis of ostium of left subclavian artery and ruptured sinus of Valsalva aneurysm without any evidence of infective endocarditis. This type of constellation is extremely rare. Neither coarctation of aorta with left subclavian artery stenosis nor the rupture of sinus Valsalva had a favorable pathology for percutaneus intervention. Taking account into morbidity associated with repeated surgery and anesthesia patient underwent a single stage surgical repair of both the defects by two surgical incisions. The approaches include median sternotomy for rupture of sinus of Valsalva and lateral thoracotomy for coarctation with left subclavian artery stenosis. The surgery was uneventful. After three months follow up echocardiography showed mild residual gradient across the repaired coarctation segment, mild aortic regurgitation and no residual left to right shunt. This patient is under follow up. This is an extremely rare case of single stage successful repair of coarctation and rupture of sinus of Valsalva associated with congenital bicuspid aortic valve. PMID:22629035

  2. Large Conization and Laparoendoscopic Single-Port Pelvic Lymphadenectomy in Early-Stage Cervical Cancer for Fertility Preservation

    Directory of Open Access Journals (Sweden)

    Polat Dursun

    2013-01-01

    Full Text Available Fertility preservation in early-stage cervical cancer is a hot topic in gynecologic oncology. Although radical vaginal trachelectomy (RVT is suggested as a fertility preserving approach, there are some serious concerns like cervical stenosis, second trimester loss, preterm delivery in survivors, and lack of residual tumor in the majority of the surgical specimens. Therefore, less radical surgical operations have been proposed in early-stage cervical carcinomas. On the other hand, single-incision laparoscopic surgery (SILS is an evolving endoscopic approach for minimal access surgery. In this report, we present a case with early-stage cervical cancer who wishes to preserve fertility. We successfully performed single-port pelvic lymphadenectomy and large conization to preserve fertility potential of the patient. We think that combination of less radical approach like conization and single-port pelvic lymphadenectomy might be less minimally invasive and is still an effective surgical approach in well-selected cases with cervical carcinomas. Incorporation of single-port laparoscopy into the minimally invasive fertility sparing management of the cervical cancer will improve patients outcome with less complications and better cosmesis. Further studies are needed to reach a clear conclusion.

  3. Development of web database system for JAERI ERL-FEL

    International Nuclear Information System (INIS)

    Kikuzawa, Nobuhiro

    2005-01-01

    The accelerator control system for the JAERI ERL-FEL is a PC-based distributed control system. The accelerator status record is stored automatically through the control system to analyze the influence on the electron beam. In order to handle effectively a large number of stored data, it is necessary that the required data can be searched and visualized in easy operation. For this reason, a web database (DB) system which can search of the required data and display visually on a web browser was developed by using open source software. With introduction of this system, accelerator operators can monitor real-time information anytime, anywhere through a web browser. Development of the web DB system is described in this paper. (author)

  4. Development of web database system for JAERI ERL-FEL

    Energy Technology Data Exchange (ETDEWEB)

    Kikuzawa, Nobuhiro [Japan Atomic Energy Research Inst., Kansai Research Establishment, Advanced Photon Research Center, Tokai, Ibaraki (Japan)

    2005-06-01

    The accelerator control system for the JAERI ERL-FEL is a PC-based distributed control system. The accelerator status record is stored automatically through the control system to analyze the influence on the electron beam. In order to handle effectively a large number of stored data, it is necessary that the required data can be searched and visualized in easy operation. For this reason, a web database (DB) system which can search of the required data and display visually on a web browser was developed by using open source software. With introduction of this system, accelerator operators can monitor real-time information anytime, anywhere through a web browser. Development of the web DB system is described in this paper. (author)

  5. Grid Integration of Single Stage Solar PV System using Three-level Voltage Source Converter

    Science.gov (United States)

    Hussain, Ikhlaq; Kandpal, Maulik; Singh, Bhim

    2016-08-01

    This paper presents a single stage solar PV (photovoltaic) grid integrated power generating system using a three level voltage source converter (VSC) operating at low switching frequency of 900 Hz with robust synchronizing phase locked loop (RS-PLL) based control algorithm. To track the maximum power from solar PV array, an incremental conductance algorithm is used and this maximum power is fed to the grid via three-level VSC. The use of single stage system with three level VSC offers the advantage of low switching losses and the operation at high voltages and high power which results in enhancement of power quality in the proposed system. Simulated results validate the design and control algorithm under steady state and dynamic conditions.

  6. Modular version of SIMCON, FPGA based, DSP integrated, LLRF control system for TESLA FEL part II: measurement of SIMCON 3.0 DSP daughterboard

    Science.gov (United States)

    Giergusiewicz, Wojciech; Koprek, Waldemar; Jalmuzna, Wojciech; Pozniak, Krzysztof T.; Romaniuk, Ryszard S.

    2006-02-01

    The paper describes design, construction and initial measurements of an eight channel electronic LLRF device predicted for building of the control system for the W-FEL accelerator at DESY (Hamburg). The device, referred in the paper to as the SIMCON 3.0 (from the SC cavity simulator and controller) consists of a 16 layer, VME size, PCB, a large FPGA chip (VirtexII-4000 by Xilinx), eight fast ADCs and four DACs (by Analog Devices). To our knowledge, the proposed device is the first of this kind for the accelerator technology in which there was achieved (the FPGA based) DSP latency below 200 ns. With the optimized data transmission system, the overall LLRF system latency can be as low as 500 ns. The SIMCON 3.0 sub-system was applied for initial tests with the ACCl module of the VUV FEL accelerator (eight channels) and with the CHECHIA test stand (single channel), both at the DESY. The promising results with the SIMCON 3.0. encouraged us to enter the design of SIMCON 3.1. possessing 10 measurement and control channels and some additional features to be reported in the next technical note. SIMCON 3.0. is a modular solution, while SIMCON 3.1. will be an integrated board of the all-in-one type. Two design approaches - modular and all-in-one - after branching off in this version of the Simcon, will be continued.

  7. Magnetic Measurement of the 10 kW, IR FEL Dipole Magnets

    International Nuclear Information System (INIS)

    Tommy Hiatt; Kenneth Baggett; J. Beck; George Biallas; David Douglas; Kevin Sullivan; C. Tennant

    2003-01-01

    Magnetic measurements have been performed on several families of dipoles for the 10 kW IR-FEL presently under construction at the Thomas Jefferson National Accelerator Facility. The requirements for these magnets include varying field strengths, large horizontal apertures and parts in 10,000 field homogeneity as well as setability of core and integrated field. Measurements were made to quantify the magnets according to these requirements and to determine the hysteresis protocol, ramp rate dependence, and field clamp settings that are used. This paper will describe the results of these measurements and the procedures used to accomplish them

  8. Attainability and minimum energy of single-stage membrane and membrane/distillation hybrid processes

    KAUST Repository

    Alshehri, Ali

    2014-12-01

    As an energy-efficient separation method, membrane technology has attracted more and more attentions in many challenging separation processes. The attainability and the energy consumption of a membrane process are the two basic fundamental questions that need to be answered. This report aims to use process simulations to find: (1) at what conditions a single-stage membrane process can meet the separation task that is defined by product purity and recovery ratio and (2) what are the most important parameters that determine the energy consumption. To perform a certain separation task, it was found that both membrane selectivity and pressure ratio exhibit a minimum value that is defined only by product purity and recovery ratio. The membrane/distillation hybrid system was used to study the energy consumption. A shortcut method was developed to calculate the minimum practical separation energy (MPSE) of the membrane process and the distillation process. It was found that the MPSE of the hybrid system is only determined by the membrane selectivity and the applied transmembrane pressure ratio in three stages. At the first stage when selectivity is low, the membrane process is not competitive to the distillation process. Adding a membrane unit to a distillation tower will not help in reducing energy. At the second medium selectivity stage, the membrane/distillation hybrid system can help reduce the energy consumption, and the higher the membrane selectivity, the lower is the energy. The energy conservation is further improved as pressure ratio increases. At the third stage when both selectivity and pressure ratio are high, the hybrid system will change to a single-stage membrane unit and this change will cause significant reduction in energy consumption. The energy at this stage keeps decreasing with selectivity at slow rate, but slightly increases with pressure ratio. Overall, the higher the membrane selectivity, the more the energy is saved. Therefore, the two

  9. Start-effect measurement of high FEL [free-electron laser] electric fields in MTX [Microwave Tokamak Experiment] by laser-aided particle-probe spectroscopy

    International Nuclear Information System (INIS)

    Oda, T.; Takiyama, K.; Odajima, K.; Ohasa, K.; Shiho, M.; Mizuno, K.; Foote, J.H.; Nilson, D.G.

    1990-01-01

    We are constructing a diagnostic system to measure the electric field (>100 kV/cm) of a free-electron laser (FEL) beam when injected into the plasma of the Microwave Tokamak Experiment (MTX). The apparatus allows a crossed-beam measurement, with 2-cm spatial resolution in the plasma, involving the FEL beam (with 140-GHz, ∼1-GW ECH pulses), a neutral-helium beam, and a dye-laser beam. After the laser beam pumps metastable helium atoms to higher excited states, their decay light is detected by an efficient optical system. Because of the Stark effect arising from the FEL electric field (rvec E), a forbidden transition can be strongly induced. The intensity of emitted light resulting from the forbidden transition is proportional to E 2 . Because photon counting rates are estimated to be low, extra effort is made to minimize background and noise levels. It is possible that the lower rvec E of an MTX gyrotron-produced ECH beam with its longer-duration pulses can also be measured using this method. Other applications of the apparatus described here may include measurements of ion temperature (using charge-exchange recombination), edge-density fluctuations, and core impurity concentrations

  10. Fueling of magnetically confined plasmas by single- and two-stage repeating pneumatic pellet injectors

    International Nuclear Information System (INIS)

    Gouge, M.J.; Combs, S.K.; Foust, C.R.; Milora, S.L.

    1990-01-01

    Advanced plasma fueling systems for magnetic fusion confinement experiments are under development at Oak Ridge National Laboratory (ORNL). The general approach is that of producing and accelerating frozen hydrogenic pellets to speeds in the kilometer-per-second range using single shot and repetitive pneumatic (light-gas gun) pellet injectors. The millimeter-to-centimeter size pellets enter the plasma and continuously ablate because of the plasma electron heat flux, depositing fuel atoms along the pellet trajectory. This fueling method allows direct fueling in the interior of the hot plasma and is more efficient than the alternative method of injecting room temperature fuel gas at the wall of the plasma vacuum chamber. Single-stage pneumatic injectors based on the light-gas gun concept have provided hydrogenic fuel pellets in the speed range of 1--2 km/s in single-shot injector designs. Repetition rates up to 5 Hz have been demonstrated in repetitive injector designs. Future fusion reactor-scale devices may need higher pellet velocities because of the larger plasma size and higher plasma temperatures. Repetitive two-stage pneumatic injectors are under development at ORNL to provide long-pulse plasma fueling in the 3--5 km/s speed range. Recently, a repeating, two-stage light-gas gun achieved repetitive operation at 1 Hz with speeds in the range of 2--3 km/s

  11. Analysis and comparison between electric and magnetic power couplers for accelerators in Free Electron Lasers (FEL)

    Science.gov (United States)

    Serpico, C.; Grudiev, A.; Vescovo, R.

    2016-10-01

    Free-electron lasers represent a new and exciting class of coherent optical sources possessing broad wavelength tunability and excellent optical-beam quality. The FERMI seeded free-electron laser (FEL), located at the Elettra laboratory in Trieste, is driven by a 200 m long, S-band linac: the high energy part of the linac is equipped with 6 m long backward traveling wave (BTW) structures. The structures have small iris radius and a nose cone geometry which allows for high gradient operation. Development of new high-gradient, S-band accelerating structures for the replacement of the existing BTWs is under consideration. This paper investigates two possible solutions for the RF power couplers suitable for a linac driven FEL which require reduced wakefields effects, high operating gradient and very high reliability. The first part of the manuscript focuses on the reduction of residual field asymmetries, while in the second analyzes RF performances, the peak surface fields and the expected breakdown rate. In the conclusion, two solutions are compared and pros and cons are highlighted.

  12. Analysis and comparison between electric and magnetic power couplers for accelerators in Free Electron Lasers (FEL)

    Energy Technology Data Exchange (ETDEWEB)

    Serpico, C., E-mail: claudio.serpico@elettra.eu [Elettra - Sincrotrone Trieste, Trieste (Italy); Grudiev, A. [CERN, Geneva (Switzerland); Vescovo, R. [University of Trieste, Trieste (Italy)

    2016-10-11

    Free-electron lasers represent a new and exciting class of coherent optical sources possessing broad wavelength tunability and excellent optical-beam quality. The FERMI seeded free-electron laser (FEL), located at the Elettra laboratory in Trieste, is driven by a 200 m long, S-band linac: the high energy part of the linac is equipped with 6 m long backward traveling wave (BTW) structures. The structures have small iris radius and a nose cone geometry which allows for high gradient operation. Development of new high-gradient, S-band accelerating structures for the replacement of the existing BTWs is under consideration. This paper investigates two possible solutions for the RF power couplers suitable for a linac driven FEL which require reduced wakefields effects, high operating gradient and very high reliability. The first part of the manuscript focuses on the reduction of residual field asymmetries, while in the second analyzes RF performances, the peak surface fields and the expected breakdown rate. In the conclusion, two solutions are compared and pros and cons are highlighted.

  13. Temperature-phased anaerobic digestion of food waste: A comparison with single-stage digestions based on performance and energy balance.

    Science.gov (United States)

    Xiao, Benyi; Qin, Yu; Zhang, Wenzhe; Wu, Jing; Qiang, Hong; Liu, Junxin; Li, Yu-You

    2018-02-01

    The temperature-phased anaerobic digestion (TPAD) of food waste was studied for the purpose of comparing with single-stage mesophilic and thermophilic anaerobic digestion. The biogas and methane yields in the TPAD during the steady period were 0.759 ± 0.115 L/g added VS and 0.454 ± 0.201 L/g added VS, which were lower than those in the two single-stage anaerobic digestion. The improper sludge retention time may be the reason for the lower biogas and methane production in TPAD. The removal of volatile solids in the TPAD was 78.55 ± 4.59% and the lowest among the three anaerobic digestion processes. The reaction ratios of the four anaerobic digestion steps in the TPAD were all lower than those in the two single-stage anaerobic digestion. The energy conversion efficiency of the degraded substrate in the TPAD was similar with those in single-stage mesophilic and thermophilic anaerobic digestion systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Hydrodeoxygenation of oils from cellulose in single and two-stage hydropyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Rocha, J.D.; Snape, C.E. [Strathclyde Univ., Glasgow (United Kingdom); Luengo, C.A. [Universidade Estadual de Campinas, SP (Brazil). Dept. de Fisica Aplicada

    1996-09-01

    To investigate the removal of oxygen (hydrodeoxygenation) during the hydropyrolysis of cellulose, single and two-stage experiments on pure cellulose have been carried out using hydrogen pressures up to 10 MPa and temperatures over the range 300-520{sup o}C. Carbon, oxygen and aromaticity balances have been determined from the product yields and compositions. For the two-stage tests, the primary oils were passed through a bed of commercial Ni/Mo {gamma}-alumina-supported catalyst (Criterion 424, presulphided) at 400{sup o}C. Raising the hydrogen pressure from atmospheric to 10 MPa increased the carbon conversion by 10 mole % which was roughly equally divided between the oil and hydrocarbon gases. The oxygen content of the primary oil was reduced by over 10% to below 20% w/w. The addition of a dispersed iron sulphide catalyst further increased the oil yield at 10 MPa and reduces the oxygen content of the oil by a further 10%. The effect of hydrogen pressure on oil yields was most pronounced at low flow rates where it is beneficial in helping to overcome diffusional resistances. Unlike the dispersed iron sulphide in the first stage, the use of the Ni-Mo catalyst in the second stage reduced both the oxygen content and aromaticity of the oils. (Author)

  15. Genomic Prediction of Single Crosses in the Early Stages of a Maize Hybrid Breeding Pipeline

    Directory of Open Access Journals (Sweden)

    Dnyaneshwar C. Kadam

    2016-11-01

    Full Text Available Prediction of single-cross performance has been a major goal of plant breeders since the beginning of hybrid breeding. Recently, genomic prediction has shown to be a promising approach, but only limited studies have examined the accuracy of predicting single-cross performance. Moreover, no studies have examined the potential of predicting single crosses among random inbreds derived from a series of biparental families, which resembles the structure of germplasm comprising the initial stages of a hybrid maize breeding pipeline. The main objectives of this study were to evaluate the potential of genomic prediction for identifying superior single crosses early in the hybrid breeding pipeline and optimize its application. To accomplish these objectives, we designed and analyzed a novel population of single crosses representing the Iowa Stiff Stalk synthetic/non-Stiff Stalk heterotic pattern commonly used in the development of North American commercial maize hybrids. The performance of single crosses was predicted using parental combining ability and covariance among single crosses. Prediction accuracies were estimated using cross-validation and ranged from 0.28 to 0.77 for grain yield, 0.53 to 0.91 for plant height, and 0.49 to 0.94 for staygreen, depending on the number of tested parents of the single cross and genomic prediction method used. The genomic estimated general and specific combining abilities showed an advantage over genomic covariances among single crosses when one or both parents of the single cross were untested. Overall, our results suggest that genomic prediction of single crosses in the early stages of a hybrid breeding pipeline holds great potential to redesign hybrid breeding and increase its efficiency.

  16. Performance of the rebuilt SUERC single-stage accelerator mass spectrometer

    Science.gov (United States)

    Shanks, Richard P.; Ascough, Philippa L.; Dougans, Andrew; Gallacher, Paul; Gulliver, Pauline; Rood, Dylan H.; Xu, Sheng; Freeman, Stewart P. H. T.

    2015-10-01

    The SUERC bipolar single-stage accelerator mass spectrometer (SSAMS) has been dismantled and rebuilt to accommodate an additional rotatable pre-accelerator electrostatic spherical analyser (ESA) and a second ion source injector. This is for the attachment of an experimental positive-ion electron cyclotron resonance (ECR) ion source in addition to a Cs-sputter source. The ESA significantly suppresses oxygen interference to radiocarbon detection, and remaining measurement interference is now thought to be from 13C injected as 13CH molecule scattering off the plates of a second original pre-detector ESA.

  17. A two-phase inspection model for a single component system with three-stage degradation

    International Nuclear Information System (INIS)

    Wang, Huiying; Wang, Wenbin; Peng, Rui

    2017-01-01

    This paper presents a two-phase inspection schedule and an age-based replacement policy for a single plant item contingent on a three-stage degradation process. The two phase inspection schedule can be observed in practice. The three stages are defined as the normal working stage, low-grade defective stage and critical defective stage. When an inspection detects that an item is in the low-grade defective stage, we may delay the preventive replacement action if the time to the age-based replacement is less than or equal to a threshold level. However, if it is above this threshold level, the item will be replaced immediately. If the item is found in the critical defective stage, it is replaced immediately. A hybrid bee colony algorithm is developed to find the optimal solution for the proposed model which has multiple decision variables. A numerical example is conducted to show the efficiency of this algorithm, and simulations are conducted to verify the correctness of the model. - Highlights: • A two-phase inspection model is studied. • The failure process has three stages. • The delayed replacement is considered.

  18. Plasma gasification of refuse derived fuel in a single-stage system using different gasifying agents.

    Science.gov (United States)

    Agon, N; Hrabovský, M; Chumak, O; Hlína, M; Kopecký, V; Masláni, A; Bosmans, A; Helsen, L; Skoblja, S; Van Oost, G; Vierendeels, J

    2016-01-01

    The renewable evolution in the energy industry and the depletion of natural resources are putting pressure on the waste industry to shift towards flexible treatment technologies with efficient materials and/or energy recovery. In this context, a thermochemical conversion method of recent interest is plasma gasification, which is capable of producing syngas from a wide variety of waste streams. The produced syngas can be valorized for both energetic (heat and/or electricity) and chemical (ammonia, hydrogen or liquid hydrocarbons) end-purposes. This paper evaluates the performance of experiments on a single-stage plasma gasification system for the treatment of refuse-derived fuel (RDF) from excavated waste. A comparative analysis of the syngas characteristics and process yields was done for seven cases with different types of gasifying agents (CO2+O2, H2O, CO2+H2O and O2+H2O). The syngas compositions were compared to the thermodynamic equilibrium compositions and the performance of the single-stage plasma gasification of RDF was compared to that of similar experiments with biomass and to the performance of a two-stage plasma gasification process with RDF. The temperature range of the experiment was from 1400 to 1600 K and for all cases, a medium calorific value syngas was produced with lower heating values up to 10.9 MJ/Nm(3), low levels of tar, high levels of CO and H2 and which composition was in good agreement to the equilibrium composition. The carbon conversion efficiency ranged from 80% to 100% and maximum cold gas efficiency and mechanical gasification efficiency of respectively 56% and 95%, were registered. Overall, the treatment of RDF proved to be less performant than that of biomass in the same system. Compared to a two-stage plasma gasification system, the produced syngas from the single-stage reactor showed more favourable characteristics, while the recovery of the solid residue as a vitrified slag is an advantage of the two-stage set-up. Copyright

  19. Investigation of Advanced Propellants to Enable Single Stage to Orbit Launch Vehicles

    Science.gov (United States)

    2006-10-30

    ERS-PAS-2006-205) 13. SUPPLEMENTARY NOTES Graduate work for California State University, Fresno 14. ABSTRACT Single-Stage-To-Orbit ( SSTO ...and maintained. Despite well-funded development efforts, no SSTO vehicles have been fielded to date. Existing chemical rocket and vehicle...technologies do not enable feasible SSTO designs. In the future, new propellants with advanced properties could enable SSTO launch vehicles. A parametric

  20. Studies of harmonic generation in free electron lasers

    International Nuclear Information System (INIS)

    Goldammer, K.

    2007-01-01

    Nonlinear harmonic generation is one of the most interesting aspects of Free Electron Lasers under study today. It provides for coherent, high intensity radiation at higher harmonics of the FEL resonant frequency. The sources, numerical simulation and applications of harmonic radiation in cascaded High Gain Harmonic Generation FELs were the subject of this thesis. Harmonic emission in FELs originates from harmonic microbunching of the particles and the particular electron trajectory during FEL interaction. Numerical FEL simulation codes model these analytical equations and predict the performance of Free Electron Lasers with good accuracy. This thesis has relied heavily upon the FEL simulation code Genesis 1.3 which has been upgraded in the framework of this thesis to compute harmonic generation in a self-consistent manner. Tests against analytical predictions suggest that the harmonic power levels as well as harmonic gain lengths are simulated correctly. A benchmark with the FEL simulation code GINGER yields excellent agreement of the harmonic saturation length and saturation power. The new version of the simulation code Genesis was also tested against measurements from the VUV-FEL FLASH at DESY. The spectral power distributions of fundamental and third harmonic radiation were recorded at 25.9 nm and 8.6 nm, respectively. The relative bandwidths (FWHM) were in the range of 2 % for both the fundamental as well as the third harmonic, which was accurately reproduced by time-dependent simulations with Genesis. The new code was also used to propose and evaluate a new design for the BESSY Soft X-Ray FEL, a cascaded High Gain Harmonic Generation FEL proposed by BESSY in Berlin. The original design for the BESSY High Energy FEL line requires four HGHG stages to convert the initial seed laser wavelength of 297.5 nm down to 1.24 nm. A new scheme is proposed that makes use of fifth harmonic radiation from the first stage and reduces the number of HGHG stages to three. It

  1. Studies of harmonic generation in free electron lasers

    Energy Technology Data Exchange (ETDEWEB)

    Goldammer, K.

    2007-11-12

    Nonlinear harmonic generation is one of the most interesting aspects of Free Electron Lasers under study today. It provides for coherent, high intensity radiation at higher harmonics of the FEL resonant frequency. The sources, numerical simulation and applications of harmonic radiation in cascaded High Gain Harmonic Generation FELs were the subject of this thesis. Harmonic emission in FELs originates from harmonic microbunching of the particles and the particular electron trajectory during FEL interaction. Numerical FEL simulation codes model these analytical equations and predict the performance of Free Electron Lasers with good accuracy. This thesis has relied heavily upon the FEL simulation code Genesis 1.3 which has been upgraded in the framework of this thesis to compute harmonic generation in a self-consistent manner. Tests against analytical predictions suggest that the harmonic power levels as well as harmonic gain lengths are simulated correctly. A benchmark with the FEL simulation code GINGER yields excellent agreement of the harmonic saturation length and saturation power. The new version of the simulation code Genesis was also tested against measurements from the VUV-FEL FLASH at DESY. The spectral power distributions of fundamental and third harmonic radiation were recorded at 25.9 nm and 8.6 nm, respectively. The relative bandwidths (FWHM) were in the range of 2 % for both the fundamental as well as the third harmonic, which was accurately reproduced by time-dependent simulations with Genesis. The new code was also used to propose and evaluate a new design for the BESSY Soft X-Ray FEL, a cascaded High Gain Harmonic Generation FEL proposed by BESSY in Berlin. The original design for the BESSY High Energy FEL line requires four HGHG stages to convert the initial seed laser wavelength of 297.5 nm down to 1.24 nm. A new scheme is proposed that makes use of fifth harmonic radiation from the first stage and reduces the number of HGHG stages to three. It

  2. Single-stage soft tissue reconstruction and orbital fracture repair for complex facial injuries.

    Science.gov (United States)

    Wu, Peng Sen; Matoo, Reshvin; Sun, Hong; Song, Li Yuan; Kikkawa, Don O; Lu, Wei

    2017-02-01

    Orbital fractures with open periorbital wounds cause significant morbidity. Timing of debridement with fracture repair and soft tissue reconstruction is controversial. This study focuses on the efficacy of early single-stage repair in combined bony and soft tissue injuries. Retrospective review. Twenty-three patients with combined open soft tissue wounds and orbital fractures were studied for single-stage orbital reconstruction and periorbital soft tissue repair. Inclusion criteria were open soft tissue wounds with clinical and radiographic evidence of orbital fractures and repair performed within 48 h after injury. Surgical complications and reconstructive outcomes were assessed over 6 months. The main outcome measures were enophthalmos, pre- and post-CT imaging of orbits, scar evaluation, presence of diplopia, and eyelid position. Enophthalmos was corrected in 16/19 cases and improved in 3/19 cases. 3D reconstruction of CT images showed markedly improved orbital alignment with objective measurements of the optic foramen to cornea distance (mm) in reconstructed orbits relative to intact orbits of 0.66, 95% confidence interval [CI] (lower 0.33, upper 0.99) mm. The mean baseline of Stony Brook Scar Evaluation Scale was 0.6, 95%CI (0.30-0.92), and for 6 months, the mean score was 3.4, 95%CI (3.05-3.73). Residual diplopia in secondary gazes was present in two patients; one patient had ectropion. Complications included one case of local wound infection. An early single-stage repair of combined soft tissue and orbital fractures yields satisfactory functional and aesthetic outcomes. Complications are low and likely related to trauma severity. Copyright © 2016 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  3. New autocorrelation technique for the IR FEL optical pulse width measurements

    Energy Technology Data Exchange (ETDEWEB)

    Amirmadhi, F.; Brau, K.A.; Becker, C. [Vanderbilt Univ., Nashville, TN (United States)] [and others

    1995-12-31

    We have developed a new technique for the autocorrelation measurement of optical pulse width at the Vanderbilt University FEL center. This method is based on nonlinear absorption and transmission characteristics of semiconductors such as Ge, Te and InAs suitable for the wavelength range from 2 to over 6 microns. This approach, aside being simple and low cost, removes the phase matching condition that is generally required for the standard frequency doubling technique and covers a greater wavelength range per nonlinear material. In this paper we will describe the apparatus, explain the principal mechanism involved and compare data which have been acquired with both frequency doubling and two-photon absorption.

  4. Rf system modeling for the high average power FEL at CEBAF

    International Nuclear Information System (INIS)

    Merminga, L.; Fugitt, J.; Neil, G.; Simrock, S.

    1995-01-01

    High beam loading and energy recovery compounded by use of superconducting cavities, which requires tight control of microphonic noise, place stringent constraints on the linac rf system design of the proposed high average power FEL at CEBAF. Longitudinal dynamics imposes off-crest operation, which in turn implies a large tuning angle to minimize power requirements. Amplitude and phase stability requirements are consistent with demonstrated performance at CEBAF. A numerical model of the CEBAF rf control system is presented and the response of the system is examined under large parameter variations, microphonic noise, and beam current fluctuations. Studies of the transient behavior lead to a plausible startup and recovery scenario

  5. Compensating effect of the coherent synchrotron radiation in bunch compressors

    Science.gov (United States)

    Jing, Yichao; Hao, Yue; Litvinenko, Vladimir N.

    2013-06-01

    Typical bunch compression for a high-gain free-electron laser (FEL) requires a large compression ratio. Frequently, this compression is distributed in multiple stages along the beam transport line. However, for a high-gain FEL driven by an energy recovery linac (ERL), compression must be accomplished in a single strong compressor located at the beam line’s end; otherwise the electron beam would be affected severely by coherent synchrotron radiation (CSR) in the ERL’s arcs. In such a scheme, the CSR originating from the strong compressors could greatly degrade the quality of the electron beam. In this paper, we present our design for a bunch compressor that will limit the effect of CSR on the e-beam’s quality. We discuss our findings from a study of such a compressor, and detail its potential for an FEL driven by a multipass ERL developed for the electron-Relativistic Heavy Ion Collider.

  6. Comparison of different undulator schemes with superimposed alternating gradients for the VUV-FEL at the TESLA Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Pflueger, J.; Nikitina, Y.M. [DESY/HASYLAB, Hamburg (Germany)

    1995-12-31

    For the VUV-FEL at the TESLA Test Facility an undulator with a total length of 30 m is needed. In this study three different approaches to realize an undulator with a sinusoidal plus a superimposed quadrupolar field were studied with the 3D code MAFIA.

  7. Multiple kernel learning using single stage function approximation for binary classification problems

    Science.gov (United States)

    Shiju, S.; Sumitra, S.

    2017-12-01

    In this paper, the multiple kernel learning (MKL) is formulated as a supervised classification problem. We dealt with binary classification data and hence the data modelling problem involves the computation of two decision boundaries of which one related with that of kernel learning and the other with that of input data. In our approach, they are found with the aid of a single cost function by constructing a global reproducing kernel Hilbert space (RKHS) as the direct sum of the RKHSs corresponding to the decision boundaries of kernel learning and input data and searching that function from the global RKHS, which can be represented as the direct sum of the decision boundaries under consideration. In our experimental analysis, the proposed model had shown superior performance in comparison with that of existing two stage function approximation formulation of MKL, where the decision functions of kernel learning and input data are found separately using two different cost functions. This is due to the fact that single stage representation helps the knowledge transfer between the computation procedures for finding the decision boundaries of kernel learning and input data, which inturn boosts the generalisation capacity of the model.

  8. Design and test of SX-FEL cavity BPM

    International Nuclear Information System (INIS)

    Yuan Renxian; Zhou Weimin; Chen Zhichu; Yu Luyang; Wang Baopen; Leng Yongbin

    2013-01-01

    This paper reports the design and cold test of the cavity beam position monitor (CBPM) for SX-FEL to fulfill the requirement of beam position measurement resolution of less than 1 μm, even 0.1 μm. The CBPM was optimized by using a coupling slot to damp the TM 010 mode in the output signal. The isolation of TM 010 mode is about 117 dB, and the shunt impedance is about 200 Ω@4.65 GHz with the quality factor 80 from MAFIA simulation and test result. A special antenna was designed to load power for reducing excitation of other modes in the cavity. The resulting output power of TM 110 mode was about 90 mV/mm when the source was 6 dBm, and the accomplishable minimum voltage was about 200 μV. The resolution of the CBPM was about 0.1 μm from the linear fitting result based on the cold test. (authors)

  9. The μ-RWELL: A compact, spark protected, single amplification-stage MPGD

    Science.gov (United States)

    Poli Lener, M.; Bencivenni, G.; de Olivera, R.; Felici, G.; Franchino, S.; Gatta, M.; Maggi, M.; Morello, G.; Sharma, A.

    2016-07-01

    In this work we present two innovative architectures of resistive MPGDs based on the WELL-amplification concept: - the micro-Resistive WELL (μ-RWELL) is a compact spark-protected single amplification-stage Micro-Pattern Gas Detector (MPGD). The amplification stage, realized with a structure very similar to a GEM foil (called WELL), is embedded through a resistive layer in the readout board. A cathode electrode, defining the gas conversion/drift gap, completes the detector mechanics. The new architecture, showing an excellent space resolution, 50 μm, is a very compact device, robust against discharges and exhibiting a large gain (>104), simple to construct and easy for engineering and then suitable for large area tracking devices as well as digital calorimeters. - the Fast Timing Micro-pattern (FTM): a new device with an architecture based on a stack of several coupled full-resistive layers where drift and multiplication stages (WELL type) alternate in the structure. The signals from each multiplication stage can be read out from any external readout boards through the capacitive couplings, providing a signal with a gain of 104-105. The main advantage of this new device is the improvement of the timing provided by the competition of the ionization processes in the different drift regions, which can be exploited for fast timing at the high luminosity accelerators (e.g. HL-LHC upgrade) as well as for applications like medical imaging.

  10. Optimization of a dedicated bio-imaging beamline at the European X-ray FEL

    Energy Technology Data Exchange (ETDEWEB)

    Geloni, Gianluca [European XFEL GmbH, Hamburg (Germany); Kocharyan, Vitali; Saldin, Evgeni [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2012-09-15

    We recently proposed a basic concept for design and layout of the undulator source for a dedicated bio-imaging beamline at the European XFEL. The goal of the optimized scheme proposed here is to enable experimental simplification and performance improvement. The core of the scheme is composed by soft and hard X-ray self-seeding setups. Based on the use of an improved design for both monochromators it is possible to increase the design electron energy up to 17.5 GeV in photon energy range between 2 keV and 13 keV, which is the most preferable for life science experiments. An advantage of operating at such high electron energy is the increase of the X-ray output peak power. Another advantage is that 17.5 GeV is the preferred operation energy for SASE1 and SASE2 beamline users. Since it will be necessary to run all the XFEL lines at the same electron energy, this choice will reduce the interference with other undulator lines and increase the total amount of scheduled beam time. In this work we also propose a study of the performance of the self-seeding scheme accounting for spatiotemporal coupling caused by the use of a single crystal monochromator. Our analysis indicates that this distortion is easily suppressed by the right choice of diamond crystal planes and that the proposed undulator source yields about the same performance as in the case for a X-ray seed pulse with no coupling. Simulations show that the FEL power reaches 2 TW in the 3 keV-5 keV photon energy range, which is the most preferable for single biomolecule imaging.

  11. Optimization of a dedicated bio-imaging beamline at the European X-ray FEL

    International Nuclear Information System (INIS)

    Geloni, Gianluca; Kocharyan, Vitali; Saldin, Evgeni

    2012-09-01

    We recently proposed a basic concept for design and layout of the undulator source for a dedicated bio-imaging beamline at the European XFEL. The goal of the optimized scheme proposed here is to enable experimental simplification and performance improvement. The core of the scheme is composed by soft and hard X-ray self-seeding setups. Based on the use of an improved design for both monochromators it is possible to increase the design electron energy up to 17.5 GeV in photon energy range between 2 keV and 13 keV, which is the most preferable for life science experiments. An advantage of operating at such high electron energy is the increase of the X-ray output peak power. Another advantage is that 17.5 GeV is the preferred operation energy for SASE1 and SASE2 beamline users. Since it will be necessary to run all the XFEL lines at the same electron energy, this choice will reduce the interference with other undulator lines and increase the total amount of scheduled beam time. In this work we also propose a study of the performance of the self-seeding scheme accounting for spatiotemporal coupling caused by the use of a single crystal monochromator. Our analysis indicates that this distortion is easily suppressed by the right choice of diamond crystal planes and that the proposed undulator source yields about the same performance as in the case for a X-ray seed pulse with no coupling. Simulations show that the FEL power reaches 2 TW in the 3 keV-5 keV photon energy range, which is the most preferable for single biomolecule imaging.

  12. X-ray beam splitting design for concurrent imaging at hard X-ray FELs and synchrotron facilities

    Czech Academy of Sciences Publication Activity Database

    Oberta, Peter; Mokso, R.

    2013-01-01

    Roč. 729, NOV (2013), s. 85-89 ISSN 0168-9002 R&D Projects: GA MPO FR-TI1/412 Institutional research plan: CEZ:AV0Z10100522 Keywords : diffractive-refractive optics * hard X-ray FEL * X-ray imaging Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.316, year: 2013 http://www.sciencedirect.com/science/article/pii/S0168900213009613

  13. Powerful electrostatic FEL: Regime of operation, recovery of the spent electron beam and high voltage generator

    Energy Technology Data Exchange (ETDEWEB)

    Boscolo, I. [Univ. and INFN, Milan (Italy); Gong, J. [Southwest Jiaotong Univ., Chengdu (China)

    1995-02-01

    FEL, driven by a Cockcroft-Walton electrostatic accelerator with the recovery of the spent electron beam, is proposed as powerful radiation source for plasma heating. The low gain and high gain regimes are compared in view of the recovery problem and the high gain regime is shown to be much more favourable. A new design of the onion Cockcroft-Walton is presented.

  14. Wavefront propagation through the beamline designed for seeding the DESY XUV FEL

    CERN Document Server

    Reininger, R; Gürtler, P; Bahrdt, J

    2001-01-01

    A beamline designed to reduce the spectral bandwidth of the DESY XUV FEL is described. The beamline is intended to cover the wavelength range from 6.4 to 50 nm with three variable line spacing gratings. A plane mirror in front of the grating is used to maintain constant magnification in the dispersion direction. The electric field generated by the first undulator at three wavelengths, 6.4, 13, and 25 nm, is propagated through the beamline. The results show that the beamline has the resolution and imaging properties required for seeding the second undulator at these wavelengths.

  15. Status and initial commissioning of a high gain 800 nm SASE FEL

    CERN Document Server

    Tremaine, Aaron M; Murokh, A; Musumeci, P; Pellegrini, C; Rosenzweig, J; Babzien, M; Ben-Zvi, I; Johnson, E; Malone, R; Rakowsky, G; Skaritka, J; Wang, X J; Yu, L H; Van Bibber, K A; Hill, J M; Le Sage, G P; Carr, R; Cornacchia, M; Nuhn, H D; Ruland, R; Nguyen, D C

    2000-01-01

    We describe the status and initial commissioning of the Visible to Infrared SASE Amplifier (VISA) experiment. VISA uses a strong focusing 4 m undulator, the Brookhaven National Laboratory ATF linac with an energy of 72 MeV, and a photoinjector electron source. The VISA fundamental radiation wavelength is near 800 nm and the power expected at saturation is near 60 MW. Power, angular and spectral measurements are planned for the VISA radiation and these results will be analyzed and compared with SASE FEL theory and computer simulation. In addition, the induced electron beam micro-bunching will be measured using coherent transition radiation.

  16. Status and initial commissioning of a high gain 800 nm SASE FEL

    International Nuclear Information System (INIS)

    Tremaine, A.; Frigola, P.; Murokh, A.; Musumeci, P.; Pellegrini, C.; Rosenzweig, J.; Babzien, M.; Ben-Zvi, I.; Johnson, E.; Malone, R.; Rakowsky, G.; Skaritka, J.; Wang, X.J.; Yu, L.H.; Van Bibber, K.A.; Hill, J.M.; Le Sage, G.P.; Carr, R.; Cornacchia, M.; Nuhn, H.-D.; Ruland, R.; Nguyen, D.C.

    2000-01-01

    We describe the status and initial commissioning of the Visible to Infrared SASE Amplifier (VISA) experiment. VISA uses a strong focusing 4 m undulator, the Brookhaven National Laboratory ATF linac with an energy of 72 MeV, and a photoinjector electron source. The VISA fundamental radiation wavelength is near 800 nm and the power expected at saturation is near 60 MW. Power, angular and spectral measurements are planned for the VISA radiation and these results will be analyzed and compared with SASE FEL theory and computer simulation. In addition, the induced electron beam micro-bunching will be measured using coherent transition radiation

  17. Comparison of feature and classifier algorithms for online automatic sleep staging based on a single EEG signal

    NARCIS (Netherlands)

    Radha, M.; Garcia Molina, G.; Poel, M.; Tononi, G.

    2014-01-01

    Automatic sleep staging on an online basis has recently emerged as a research topic motivated by fundamental sleep research. The aim of this paper is to find optimal signal processing methods and machine learning algorithms to achieve online sleep staging on the basis of a single EEG signal. The

  18. DeepSleepNet: A Model for Automatic Sleep Stage Scoring Based on Raw Single-Channel EEG.

    Science.gov (United States)

    Supratak, Akara; Dong, Hao; Wu, Chao; Guo, Yike

    2017-11-01

    This paper proposes a deep learning model, named DeepSleepNet, for automatic sleep stage scoring based on raw single-channel EEG. Most of the existing methods rely on hand-engineered features, which require prior knowledge of sleep analysis. Only a few of them encode the temporal information, such as transition rules, which is important for identifying the next sleep stages, into the extracted features. In the proposed model, we utilize convolutional neural networks to extract time-invariant features, and bidirectional-long short-term memory to learn transition rules among sleep stages automatically from EEG epochs. We implement a two-step training algorithm to train our model efficiently. We evaluated our model using different single-channel EEGs (F4-EOG (left), Fpz-Cz, and Pz-Oz) from two public sleep data sets, that have different properties (e.g., sampling rate) and scoring standards (AASM and R&K). The results showed that our model achieved similar overall accuracy and macro F1-score (MASS: 86.2%-81.7, Sleep-EDF: 82.0%-76.9) compared with the state-of-the-art methods (MASS: 85.9%-80.5, Sleep-EDF: 78.9%-73.7) on both data sets. This demonstrated that, without changing the model architecture and the training algorithm, our model could automatically learn features for sleep stage scoring from different raw single-channel EEGs from different data sets without utilizing any hand-engineered features.

  19. Production and detection of axion-like particles at the VUV-FEL. Letter of intent

    International Nuclear Information System (INIS)

    Koetz, U.; Ringwald, A.; Tschentscher, T.

    2006-06-01

    Recently, the PVLAS collaboration has reported evidence for an anomalously large rotation of the polarization of light generated in vacuum in the presence of a transverse magnetic field. This may be explained through the production of a new light spin-zero particle coupled to two photons. In this Letter of Intent, we propose to test this hypothesis by setting up a photon regeneration experiment which exploits the photon beam of the Vacuum-UltraViolet Free-Electron Laser VUV-FEL, sent along the transverse magnetic field of a linear arrangement of dipole magnets of size B L ∼ 30 Tm. The high photon energies available at the VUV-FEL increase substantially the expected photon regeneration rate in the mass range implied by the PVLAS anomaly, in comparison to the rate expected at visible lasers of similar power. We find that the particle interpretation of the PVLAS result can be tested within a short running period. The pseudoscalar vs. scalar nature can be determined by varying the direction of the magnetic field with respect to the laser polarization. The mass of the particle can be measured by running at different photon energies. The proposed experiment offers a window of opportunity for a firm establishment or exclusion of the particle interpretation of the PVLAS anomaly before other experiments can compete. (Orig.)

  20. The resistive plate WELL detector as a single stage thick gaseous multiplier detector

    Energy Technology Data Exchange (ETDEWEB)

    Bressler, Shikma; Breskin, Amos; Moleri, Luca; Kumar, Ashwini; Pitt, Michael [Department of Particle Physics and Astrophysics, Weizmann Institute of Science (WIS) (Israel); Kudella, Simon [Institut fuer Experimentelle Kernphysik (IEKP), KIT (Germany)

    2015-07-01

    Gaseous Electron Multiplier (GEM) detector use high electric fields inside the h ole of a foil to achieve a high charge multiplication. As a thicker version of G EMs based on printed circuit board (PCB) structures, Thick Gaseous Electron Multiplier (THGEM) detectors combine the high gain of a GEM foil with the robustness, stability and low production costs of a PCB and allow a large quantity of applications that require the coverage of a large area at low cost and moderate spatial resolution. One application the Weizmann Institute of Science (WIS) develops as a member of the RD51 framework is the Resistive Plate WELL (RPWELL) detector. This single stage detector allows a very stable, discharge free operation at high gain (10{sup 5}). The single stage operation allows a low total height and make s the RPWELL a candidate for the Digital Hadronic Calorimeter (DHCAL) of the International Large Detector (ILD) at the International Linear Collider (ILC). The talk gives an insight into the way the RPWELL works and shows results from the last test beam.

  1. Establishment of a laboratory for spectroscopic investigation of radioactive samples at the ELBE-FEL facility. Intentions and perspectives

    International Nuclear Information System (INIS)

    Foerstendorf, H.; Friedrich, H.; Heise, K.H.

    2002-01-01

    The Institute of Radiochemistry is setting up a radionuclide laboratory for optical spectroscopy at the free electron laser facility of the ELBE electron accelerator (ELBE-FEL). The quality of the infrared light source opens up new fields of analytical research in radiochemistry. Some aspects of future applications are introduced. (orig.)

  2. Numerical simulations of single and multi-staged injection of H2 in a supersonic scramjet combustor

    Directory of Open Access Journals (Sweden)

    L. Abu-Farah

    2014-12-01

    Full Text Available Computational fluid dynamics (CFD simulations of a single staged injection of H2 through a central wedge shaped strut and a multi-staged injection through wall injectors are carried out by using Ansys CFX-12 code. Unstructured tetrahedral grids for narrow channel and quarter geometries of the combustor are generated by using ICEM CFD. Steady three-dimensional (3D Reynolds-averaged Navier-stokes (RANS simulations are carried out in the case of no H2 injection and compared with the simulations of single staged pilot and/or main H2 injections and multistage injection. Shear stress transport (SST based on k-ω turbulent model is adopted. Flow field visualization (complex shock waves interactions and static pressure distribution along the wall of the combustor are predicted and compared with the experimental schlieren images and measured wall static pressures for validation. A good agreement is found between the CFD predicted results and the measured data. The narrow and quarter geometries of the combustor give similar results with very small differences. Multi-staged injections of H2 enhance the turbulent H2/air mixing by forming vortices and additional shock waves (bow shocks.

  3. Clinical Outcomes and Risks of Single-stage Bilateral Unicompartmental Knee Arthroplasty via Oxford Phase III

    Directory of Open Access Journals (Sweden)

    Tong Ma

    2015-01-01

    Full Text Available Background: Osteoarthritis often affects the joint bilaterally, and the single-stage (SS unicompartmental knee arthroplasty (UKA is advantageous in terms of a single anesthesia administration, a short hospital stay, lower medical costs, and enhanced patient convenience. However, the complication risk of SS UKA continues to be debated. The aim of this article was to evaluate the clinical effectiveness, complications, and functional recovery of SS and two-stage (TS UKA. Methods: From January 2008 to December 2013, we compared a series of 36 SS UKA with 45 TS UKA for osteoarthritis. The mean age was 65.4 years (range: 55-75 years. The mean body mass index was 25.2 kg/m 2 (range: 22-29 kg/m 2 . The pre- and post-operative Oxford Knee Scores (OKSs, complications, operative times, tourniquet times, the amount of drainage, and hemoglobin (Hb were evaluated. The Chi-square test, Fisher′s exact test, and paired and grouped t-tests were used in this study. Results: The mean follow-up was 50 months. No complications of death, fat embolism, deep vein thrombosis, and prosthetic infection were reported. Patients who underwent SS UKA had a shorter cumulative anesthesia time (113.5 vs. 133.0 min, P 0.05. At the final follow-up, the mean OKS improved from 39.48 ± 5.69 to 18.83 ± 3.82 (P 0.05. Patients who underwent SS UKA had a faster recovery. Conclusions: The single-staged UKA offers the benefits of a single anesthesia administration, reduced total anesthetic time, decreased overall rehabilitation time, and absence of an increase in perioperative mortality or complications compared with the TS bilateral UKA.

  4. Nonlinear absorption and transmission properties of Ge, Te and InAs using tuneable IR FEL

    Energy Technology Data Exchange (ETDEWEB)

    Amirmadhi, F.; Becker, K.; Brau, C.A. [Vanderbilt Univ., Nashville, TN (United States)

    1995-12-31

    Nonlinear absorption properties of Ge, Te and InAs are being investigated using the transmission of FEL optical pulses through these semiconductors (z-scan method). Wavelength, intensity and macropulse dependence are used to differentiate between two-photon and free-carrier absorption properties of these materials. Macropulse dependence is resolved by using a Pockles Cell to chop the 4-{mu}s macropulse down to 100 ns. Results of these experiments will be presented and discussed.

  5. Modeling condom-use stage of change in low-income, single, urban women.

    Science.gov (United States)

    Morrison-Beedy, Dianne; Carey, Michael P; Lewis, Brian P

    2002-04-01

    This study was undertaken to identify and test a model of the cognitive antecedents to condom use stage of change in low-income, single, urban women. A convenience sample of 537 women (M=30 years old) attending two urban primary health care settings in western New York State anonymously completed questionnaires based primarily on two leading social-cognitive models, the transtheoretical model and the information-motivation-behavioral skills model. We used structural equation modeling to examine the direct and indirect effects of HIV-related knowledge, social norms of discussing HIV risk and prevention, familiarity with HIV-infected persons, general readiness to change sexual behaviors, perceived vulnerability to HIV, and pros and cons of condom use on condom-use stage of change. The results indicated two models that differ by partner type. Condom-use stage of change in women with steady main partners was influenced most by social norms and the pros of condom use. Condom-use stage of change in women with "other" types (multiple, casual, or new) of sexual partners was influenced by HIV-related knowledge, general readiness to change sexual behaviors, and the pros of condom use. These findings suggest implications for developing gender-relevant HIV-prevention interventions. Copyright 2002 Wiley Periodicals, Inc.

  6. Study of CSR Effects in the Jefferson Laboratory FEL Driver

    Energy Technology Data Exchange (ETDEWEB)

    Hall, C. C. [Colorado State U.; Biedron, S. [Colorado State U.; Burleson, Theodore A. [Colorado State U.; Milton, Stephen V. [Colorado State U.; Morin, Auralee L. [Colorado State U.; Benson, Stephen V. [JLAB; Douglas, David R. [JLAB; Evtushenko, Pavel E. [JLAB; Hannon, Fay E. [JLAB; Li, Rui [JLAB; Tennant, Christopher D. [JLAB; Zhang, Shukui [JLAB; Carlsten, Bruce E. [LANL; Lewellen, John W. [LANL

    2013-08-01

    In a recent experiment conducted on the Jefferson Laboratory IR FEL driver the effects of Coherent Synchrotron Radiation (CSR) on beam quality were studied. The primary goal of this work was to explore CSR output and effect on the beam with variation of the bunch compression in the IR chicane. This experiment also provides a valuable opportunity to benchmark existing CSR models in a system that may not be fully represented by a 1-D CSR model. Here we present results from this experiment and compare to initial simulations of CSR in the magnetic compression chicane of the machine. Finally, we touch upon the possibility for CSR induced microbunching gain in the magnetic compression chicane, and show that parameters in the machine are such that it should be thoroughly damped.

  7. Single stage three level grid interactive MPPT inverter for PV systems

    International Nuclear Information System (INIS)

    Ozdemir, Saban; Altin, Necmi; Sefa, Ibrahim

    2014-01-01

    Highlights: • A three phase three-level NPC inverter for grid interactive PV systems is proposed. • A novel MPPT algorithm is introduced for single stage systems. • The proposed algorithm is robust with respect to parameter variations of PV system. • THD level is measured as 3.45% and it meets the international standards (<5%). • Total system efficiency is measured as 93.08%. - Abstract: In this study, three-phase, single stage neutral point clamped grid interactive inverter is designed and implemented. The reference current of the voltage source inverter is determined by maximum power point tracking sub-program in order to obtain maximum power from photovoltaic modules instantaneously. Proposed control is realized via TMS320F28335 32-bit floating point processor. The modified incremental conductance method is applied for maximum power point tracking; the PI regulator is used to control the inverter output current shape and level. Galvanic isolation is provided by a line frequency transformer that matches inverter output voltage to the grid voltage level and prevents DC current injection into the grid. Experimental results show that the designed inverter imports energy to the grid with unity power factor, total harmonic distortion level is 3.45% and this value is in the limits of the international standards. In addition, the total efficiency of the system is measured as 93.08%. The proposed system gets the maximum power from photovoltaic module and dispatches into the grid without using additional DC/DC converter

  8. Propulsion requirements for reusable single-stage-to-orbit rocket vehicles

    Science.gov (United States)

    Stanley, Douglas O.; Engelund, Walter C.; Lepsch, Roger

    1994-05-01

    The conceptual design of a single-stage-to-orbit (SSTO) vehicle using a wide variety of evolutionary technologies has recently been completed as a part of NASA's Advanced Manned Launch System (AMLS) study. The employment of new propulsion system technologies is critical to the design of a reasonably sized, operationally efficient SSTO vehicle. This paper presents the propulsion system requirements identified for this near-term AMLS SSTO vehicle. Sensitivities of the vehicle to changes in specific impulse and sea-level thrust-to-weight ratio are examined. The results of a variety of vehicle/propulsion system trades performed on the near-term AMLS SSTO vehicle are also presented.

  9. Characterization and Suppression of the Electromagnetic Interference Induced Phase Shift in the JLab FEL Photo - Injector Advanced Drive Laser System

    Energy Technology Data Exchange (ETDEWEB)

    F. G. Wilson, D. Sexton, S. Zhang

    2011-09-01

    The drive laser for the photo-cathode gun used in the JLab Free Electron Laser (FEL) facility had been experiencing various phase shifts on the order of tens of degrees (>20{sup o} at 1497 MHz or >40ps) when changing the Advanced Drive Laser (ADL) [2][3][4] micro-pulse frequencies. These phase shifts introduced multiple complications when trying to setup the accelerator for operation, ultimately inhibiting the robustness and overall performance of the FEL. Through rigorous phase measurements and systematic characterizations, we determined that the phase shifts could be attributed to electromagnetic interference (EMI) coupling into the ADL phase control loop, and subsequently resolved the issue of phase shift to within tenths of a degree (<0.5{sup o} at 1497 MHz or <1ps). The diagnostic method developed and the knowledge gained through the entire process will prove to be invaluable for future designs of similar systems.

  10. Single Stage Contactor Testing Of The Next Generation Solvent Blend

    Energy Technology Data Exchange (ETDEWEB)

    Herman, D. T.; Peters, T. B.; Duignan, M. R.; Williams, M. R.; Poirier, M. R.; Brass, E. A.; Garrison, A. G.; Ketusky, E. T.

    2014-01-06

    The Modular Caustic Side Solvent Extraction (CSSX) Unit (MCU) facility at the Savannah River Site (SRS) is actively pursuing the transition from the current BOBCalixC6 based solvent to the Next Generation Solvent (NGS)-MCU solvent to increase the cesium decontamination factor. To support this integration of NGS into the MCU facility the Savannah River National Laboratory (SRNL) performed testing of a blend of the NGS (MaxCalix based solvent) with the current solvent (BOBCalixC6 based solvent) for the removal of cesium (Cs) from the liquid salt waste stream. This testing utilized a blend of BOBCalixC6 based solvent and the NGS with the new extractant, MaxCalix, as well as a new suppressor, tris(3,7dimethyloctyl) guanidine. Single stage tests were conducted using the full size V-05 and V-10 liquid-to-liquid centrifugal contactors installed at SRNL. These tests were designed to determine the mass transfer and hydraulic characteristics with the NGS solvent blended with the projected heel of the BOBCalixC6 based solvent that will exist in MCU at time of transition. The test program evaluated the amount of organic carryover and the droplet size of the organic carryover phases using several analytical methods. The results indicate that hydraulically, the NGS solvent performed hydraulically similar to the current solvent which was expected. For the organic carryover 93% of the solvent is predicted to be recovered from the stripping operation and 96% from the extraction operation. As for the mass transfer, the NGS solvent significantly improved the cesium DF by at least an order of magnitude when extrapolating the One-stage results to actual Seven-stage extraction operation with a stage efficiency of 95%.

  11. Single-Stage Step up/down Driver for Permanent-Magnet Synchronous Machines

    Science.gov (United States)

    Chen, T. R.; Juan, Y. L.; Huang, C. Y.; Kuo, C. T.

    2017-11-01

    The two-stage circuit composed of a step up/down dc converter and a three-phase voltage source inverter is usually adopted as the electric vehicle’s motor driver. The conventional topology is more complicated. Additional power loss resulted from twice power conversion would also cause lower efficiency. A single-stage step up/down Permanent-Magnet Synchronous Motor driver for Brushless DC (BLDC) Motor is proposed in this study. The number components and circuit complexity are reduced. The low frequency six-step square-wave control is used to reduce the switching losses. In the proposed topology, only one active switch is gated with a high frequency PWM signal for adjusting the rotation speed. The rotor position signals are fed back to calculate the motor speed for digital close-loop control in a MCU. A 600W prototype circuit is constructed to drive a BLDC motor with rated speed 3000 rpm, and can control the speed of six sections.

  12. Single Ion transient-IBIC analyses of semiconductor devices using a cryogenic temperature stage

    International Nuclear Information System (INIS)

    Laird, J.S.; Bardos, R.; Legge, G.J.F.; Jagadish, C.

    1998-01-01

    A new Transient - IBIC data acquisition and analysis system at MARC is described. A discussion on the need for single ion control and temperature control is also given. The recorded signal is used as the trigger for beam pulsing. The new cryostatic temperature control stage is introduced. Data is presented on line profiles across the edge of a Au-Si junction collected over the temperature range of 25-300K using a developed C-V and I-V variable temperature stage incorporating a liquid helium cryostat. It demonstrates the potential improvements in spatial resolution in materials of long lifetime by mapping on timing windows around the prompt charge component in the charge transient

  13. Effects of Stator Shroud Injection on the Aerodynamic Performance of a Single-Stage Transonic Axial Compressor

    Energy Technology Data Exchange (ETDEWEB)

    Dinh, Cong-Truong; Ma, Sang-Bum; Kim, Kwang Yong [Inha Univ., Incheon (Korea, Republic of)

    2017-01-15

    In this study, stator shroud injection in a single-stage transonic axial compressor is proposed. A parametric study of the effect of stator shroud injection on aerodynamic performances was conducted using the three-dimensional Reynolds-averaged Navier-Stokes equations. The curvature, length, width, and circumferential angle of the stator shroud injector and the air injection mass flow rate were selected as the test parameters. The results of the parametric study show that the aerodynamic performances of the single-stage transonic axial compressor were improved by stator shroud injection. The aerodynamic performances were the most sensitive to the injection mass flow rate. Further, the total pressure ratio and adiabatic efficiency were the maximum when the ratio of circumferential angle was 10%.

  14. Effects of Stator Shroud Injection on the Aerodynamic Performance of a Single-Stage Transonic Axial Compressor

    International Nuclear Information System (INIS)

    Dinh, Cong-Truong; Ma, Sang-Bum; Kim, Kwang Yong

    2017-01-01

    In this study, stator shroud injection in a single-stage transonic axial compressor is proposed. A parametric study of the effect of stator shroud injection on aerodynamic performances was conducted using the three-dimensional Reynolds-averaged Navier-Stokes equations. The curvature, length, width, and circumferential angle of the stator shroud injector and the air injection mass flow rate were selected as the test parameters. The results of the parametric study show that the aerodynamic performances of the single-stage transonic axial compressor were improved by stator shroud injection. The aerodynamic performances were the most sensitive to the injection mass flow rate. Further, the total pressure ratio and adiabatic efficiency were the maximum when the ratio of circumferential angle was 10%.

  15. Extension of self-seeding scheme with single crystal monochromator to lower energy <5 keV as a way to generate multi-TW scale pulses at the European XFEL

    Energy Technology Data Exchange (ETDEWEB)

    Geloni, Gianluca [European XFEL GmbH, Hamburg (Germany); Kocharyan, Vitali; Saldin, Evgeni [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2012-07-15

    We propose a use of the self-seeding scheme with single crystal monochromator to produce high power, fully-coherent pulses for applications at a dedicated bio-imaging beamline at the European X-ray FEL in the photon energy range between 3.5 keV and 5 keV. We exploit the C(111) Bragg reflection ({pi}-polarization) in diamond crystals with a thickness of 0.1 mm, and we show that, by tapering the 40 cells of the SASE3 type undulator the FEL power can reach up to 2 TW in the entire photon energy range. The present design assumes the use of a nominal electron bunch with charge 0.1 nC at nominal electron beam energy 17.5 GeV. The main application of the scheme proposed in this work is for single shot imaging of individual protein molecules. (orig.)

  16. Extension of self-seeding scheme with single crystal monochromator to lower energy <5 keV as a way to generate multi-TW scale pulses at the European XFEL

    International Nuclear Information System (INIS)

    Geloni, Gianluca; Kocharyan, Vitali; Saldin, Evgeni

    2012-07-01

    We propose a use of the self-seeding scheme with single crystal monochromator to produce high power, fully-coherent pulses for applications at a dedicated bio-imaging beamline at the European X-ray FEL in the photon energy range between 3.5 keV and 5 keV. We exploit the C(111) Bragg reflection (π-polarization) in diamond crystals with a thickness of 0.1 mm, and we show that, by tapering the 40 cells of the SASE3 type undulator the FEL power can reach up to 2 TW in the entire photon energy range. The present design assumes the use of a nominal electron bunch with charge 0.1 nC at nominal electron beam energy 17.5 GeV. The main application of the scheme proposed in this work is for single shot imaging of individual protein molecules. (orig.)

  17. Single-stage-to-orbit: Meeting the challenge

    Science.gov (United States)

    Freeman, Delma C., Jr.; Talay, Theodore A.; Austin, Robert Eugene

    1995-10-01

    There has been and continues to be significant discussion about the viability of fully reusable, single-stage-to-orbit (SSTO) concepts for delivery of payloads to orbit. Often, these discussions have focused in detail on performance and technology requirements relating to the technical feasibility of the concept, with only broad generalizations on how the SSTO will achieve its economic goals of greatly reduced vehicle ground and flight operations costs. With the current industry and NASA Reusable Launch Vehicle Technology Program efforts underway to mature and demonstrate technologies leading to a viable commercial launch system that also satisfies national needs, achieving acceptable recurring costs becomes a significant challenge. This paper reviews the current status of the Reusable Launch Vehicle Technology Program including the DC-XA, X-33, and X-34 flight systems and associated technology programs. The paper also examines lessons learned from the recently completed DC-X reusable rocket demonstrator program. It examines how these technologies and flight systems address the technical and operability challenges of SSTO whose solutions are necessary to reduce costs. The paper also discusses the management and operational approaches that address the challenge of a new cost-effective, reusable launch vehicle system.

  18. Simulation studies of a XUV/soft X-ray harmonic-cascade FEL for the proposed LBNL recirculating linac*

    International Nuclear Information System (INIS)

    Fawley, W.M.; Barletta, W.A.; Corlett, J.N.; Zholents, A.

    2003-01-01

    Presently there is significant interest at LBNL in designing and building a facility for ultrafast (i.e. femtosecond time scale) x-ray science based upon a superconducting, recirculating RF linac (see Corlett et al. for more details). In addition to producing synchrotron radiation pulses in the 1-15 keV energy range, we are also considering adding one or more free-electron laser (FEL) beamlines using a harmonic cascade approach to produce coherent XUV soft X-ray emission beginning with a strong input seed at ∼200 nm wavelength obtained from a ''conventional'' laser. Each cascade is composed of a radiator together with a modulator section, separated by a magnetic chicane. The chicane temporally delays the electron beam pulse in order that a ''virgin'' pulse region (with undegraded energy spread) be brought into synchronism with the radiation pulse, which together then undergo FEL action in the modulator. We present various results obtained with the GINGER simulation code examining final output sensitivity to initial electron beam parameters. We also discuss the effects of spontaneous emission and shot noise upon this particular cascade approach which can limit the final output coherence

  19. A 20fs synchronization system for lasers and cavities in accelerators and FELs

    Science.gov (United States)

    Wilcox, R. B.; Byrd, J. M.; Doolittle, L. R.; Huang, G.; Staples, J. W.

    2010-02-01

    A fiber-optic RF distribution system has been developed for synchronizing lasers and RF plants in short pulse FELs. Typical requirements are 50-100fs rms over time periods from 1ms to several hours. Our system amplitude modulates a CW laser signal, senses fiber length using an interferometer, and feed-forward corrects the RF phase digitally at the receiver. We demonstrate less than 15fs rms error over 12 hours, between two independent channels with a fiber path length difference of 200m and transmitting S-band RF. The system is constructed using standard telecommunications components, and uses regular telecom fiber.

  20. Advances in single- and multi-stage Stirling-type pulse tube cryocoolers for space applications in NLIP/SITP/CAS

    Science.gov (United States)

    Dang, Haizheng; Tan, Jun; Zha, Rui; Li, Jiaqi; Zhang, Lei; Zhao, Yibo; Gao, Zhiqian; Bao, Dingli; Li, Ning; Zhang, Tao; Zhao, Yongjiang; Zhao, Bangjian

    2017-12-01

    This paper presents a review of recent advances in single- and multi-stage Stirling-type pulse tube cryocoolers (SPTCs) for space applications developed at the National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences (NLIP/SITP/CAS). A variety of single-stage SPTCs operating at 25-150 K have been developed, including several mid-sized ones operating at 80-110 K. Significant progress has been achieved in coolers operating at 30-40 K which use common stainless steel meshes as regenerator matrices. Another important advance is the micro SPTCs with an overall mass of 300-800 g operating at high frequencies varying from 100 Hz to 400 Hz. The main purpose of developing two-stage SPTCs is to simultaneously acquire cooling capacities at both stages, obviating the need for auxiliary precooling in various applications. The three-stage SPTCs are developed mainly for applications at around 10 K, which are also used for precooling the J-T coolers to achieve further lower temperatures. The four-stage SPTCs are developed to directly achieve the liquid helium temperature for cooling space low-Tc superconducting devices and for the deep space exploration as well. Several typical development programs are described and an overview of the cooler performances is presented.

  1. Some issues and subtleties in numerical simulation of X-ray FEL's

    International Nuclear Information System (INIS)

    Fawley, William M.

    2002-01-01

    Part of the overall design effort for x-ray FEL's such as the LCLS and TESLA projects has involved extensive use of particle simulation codes to predict their output performance and underlying sensitivity to various input parameters (e.g. electron beam emittance). This paper discusses some of the numerical issues that must be addressed by simulation codes in this regime. We first give a brief overview of the standard approximations and simulation methods adopted by time-dependent(i.e. polychromatic) codes such as GINGER, GENESIS, and FAST3D, including the effects of temporal discretization and the resultant limited spectral bandpass,and then discuss the accuracies and inaccuracies of these codes in predicting incoherent spontaneous emission (i.e. the extremely low gain regime)

  2. Beam dynamics simulations for linacs driving short-wavelength FELs

    International Nuclear Information System (INIS)

    Ferrario, M.; Tazzioli, F.

    1999-01-01

    The fast code HOMDYN has been recently developed, in the framework of the TTF (Tesla test facility) collaboration, in order to study the beam dynamics of linacs delivering high brightness beams as those needed for short wavelength Fel experiments. These linacs are typically driven by radio-frequency photo-injectors, where correlated time dependent space charge effects are of great relevance: these effects cannot be studied by standard beam optics codes (TRACE3D, etc.) and they have been modeled so far by means of multi-particle (Pic or quasistatic) codes requiring heavy cpu time and memory allocations. HOMDYN is able to describe the beam generation at the photo-cathode and the emittance compensation process in the injector even running on a laptop with very modest running rimes (less than a minute). In this paper it is showed how this capability of the code is exploited so to model a whole linac up to the point where the space charge dominated regime is of relevance (200 MeV)

  3. NASA Glenn's Single-Stage Axial Compressor Facility Upgraded

    Science.gov (United States)

    Brokopp, Richard A.

    2004-01-01

    NASA Glenn Research Center's Single-Stage Axial Compressor Facility was upgraded in fiscal year 2003 to expand and improve its research capabilities for testing high-speed fans and compressors. The old 3000-hp drive motor and gearbox were removed and replaced with a refurbished 7000-hp drive motor and gearbox, with a maximum output speed of 21,240 rpm. The higher horsepower rating permits testing of fans and compressors with higher pressure ratio or higher flow. A new inline torquemeter was installed to provide an alternate measurement of fan and compressor efficiency, along with the standard pressure and temperature measurements. A refurbished compressor bearing housing was also installed with bidirectional rotation capability, so that a variety of existing hardware could be tested. Four new lubrication modules with backup capability were installed for the motor, gearbox, torquemeter, and compressor bearing housing, so that in case the primary pump fails, the backup will prevent damage to the rotating hardware. The combustion air supply line for the facility inlet air system was activated to provide dry air for repeatable inlet conditions. New flow conditioning hardware was installed in the facility inlet plenum tank, which greatly reduced the inlet turbulence. The new inlet can also be easily modified to accommodate 20- or 22-in.-diameter fans and compressors, so a variety of existing hardware from other facilities (such as Glenn's 9- by 15-Foot Low-Speed Wind Tunnel) can be tested in the Single-Stage Axial Compressor Facility. An exhaust line was also installed to provide bleed capability to remove the inlet boundary layer. To improve the operation and control of the facility, a new programmable logic controller (PLC) was installed to upgrade from hardwired relay logic to software logic. The PLC also enabled the usage of human-machine interface software to allow for easier operation of the facility and easier reconfiguration of the facility controls when

  4. Extending the photon energy coverage of an x-ray self-seeding FEL via the reverse taper enhanced harmonic generation technique

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Kaiqing; Qi, Zheng [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Feng, Chao, E-mail: fengchao@sinap.ac.cn [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Deng, Haixiao [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Wang, Dong, E-mail: wangdong@sinap.ac.cn [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Zhao, Zhentang [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); University of Chinese Academy of Sciences, Beijing 100049 (China)

    2017-05-11

    In this paper, a simple method is proposed to extend the photon energy range of a soft x-ray self-seeding free-electron laser (FEL). A normal monochromator is first applied to purify the FEL spectrum and provide a coherent seeding signal. This coherent signal then interacts with the electron beam in the following reverse tapered undulator section to generate strong coherent microbunchings while maintain the good quality of the electron beam. After that, the pre-bunched electron beam is sent into the third undulator section which resonates at a target high harmonic of the seed to amplify the coherent radiation at shorter wavelength. Three dimensional simulations have been performed and the results demonstrate that the photon energy gap between 1.5 keV and 4.5 keV of the self-seeding scheme can be fully covered and 100 GW-level peak power can be achieved by using the proposed technique.

  5. Effect of Single and Double Stage Chemically Treated Kenaf Fibers on Mechanical Properties of Polyvinyl Alcohol Film

    Directory of Open Access Journals (Sweden)

    Md Ershad Ali

    2014-12-01

    Full Text Available The physico-mechanical properties of lignocellulosic kenaf fiber reinforced polyvinyl alcohol (PVA biocomposite films were investigated. To improve the properties of the biocomposite, kenaf fibers were chemically treated separately in a single stage (with Cr2(SO4312(H2O and double stages (with CrSO4 and NaHCO3 to improve the adhesion and compatibility between the kenaf fiber and PVA matrix. PVA was reinforced with various compositions of chemically treated kenaf fiber by using a solution casting technique. Microstructural analyses and mechanical tests were subsequently conducted. Scanning electron microscopic analysis indicated that chemical treatment improved the uniformity distribution of kenaf fiber within the PVA matrix. FTIR and XRD analyses confirmed the presence of chromium on the fiber surface. The tensile strength of PVA reinforced with chemical treated kenaf fiber was found to be higher than those reinforced with untreated kenaf. The Young’s modulus, flexural strength, and flexural modulus increased with fiber loading for both untreated and treated kenaf fiber reinforced PVA films. The double stage treated kenaf fiber showed better mechanical properties and lower moisture uptake than the single stage treated kenaf fiber.

  6. Single-stage three-phase AC to DC conversion with isolation and Bi-directional power flow

    NARCIS (Netherlands)

    Vermulst, B.J.D.; Duarte, J.L.; Wijnands, C.G.E.; Lomonova, E.A.

    2014-01-01

    An approach for three-phase AC to DC conversion is proposed, which consists of a single-stage while offering galvanic isolation, soft-switching, bi-directional power flow and a significant reduction of inductive and capacitive energy storage. Two elements enable this approach, namely a neutral

  7. Simulation model of a single-stage lithium bromide-water absorption cooling unit

    Science.gov (United States)

    Miao, D.

    1978-01-01

    A computer model of a LiBr-H2O single-stage absorption machine was developed. The model, utilizing a given set of design data such as water-flow rates and inlet or outlet temperatures of these flow rates but without knowing the interior characteristics of the machine (heat transfer rates and surface areas), can be used to predict or simulate off-design performance. Results from 130 off-design cases for a given commercial machine agree with the published data within 2 percent.

  8. Potential applications of a dual-sweep streak camera system for characterizing particle and photon beams of VUV, XUV, and x-ray FELS

    Energy Technology Data Exchange (ETDEWEB)

    Lumpkin, A. [Argonne National Lab., IL (United States)

    1995-12-31

    The success of time-resolved imaging techniques in the Characterization of particle beams and photon beams of the recent generation of L-band linac-driven or storage ring FELs in the infrared, visible, and ultraviolet wavelength regions can be extended to the VUV, XUV, and x-ray FELs. Tests and initial data have been obtained with the Hamamatsu C5680 dual-sweep streak camera system which includes a demountable photocathode (thin Au) assembly and a flange that allows windowless operation with the transport vacuum system. This system can be employed at wavelengths shorter than 100 nm and down to 1 {Angstrom}. First tests on such a system at 248-nm wavelengths have been performed oil the Argonne Wakefield Accelerator (AWA) drive laser source. A quartz window was used at the tube entrance aperture. A preliminary test using a Be window mounted on a different front flange of the streak tube to look at an x-ray bremsstrahlung source at the AWA was limited by photon statistics. This system`s limiting resolution of {sigma}{approximately}1.1 ps observed at 248 nm would increase with higher incoming photon energies to the photocathode. This effect is related to the fundamental spread in energies of the photoelectrons released from the photocathodes. Possible uses of the synchrotron radiation sources at the Advanced Photon Source and emerging short wavelength FELs to test the system will be presented.

  9. Single-stage MPPT control realization for Aalborg inverter in photovoltaic system

    DEFF Research Database (Denmark)

    Zhang, Shuai; Wu, Weimin; Wang, Houqing

    2017-01-01

    In this paper, the single-stage Maximum Power Point Tracking (MPPT) control strategy for the Aalborg photovoltaic inverter is presented. Aalborg inverter has many advantages, such as high efficiency, wide range of input voltage, minimum voltage drop of the filtering inductors, etc. Nevertheless......, it is essentially a “half-bridge” inverter with two input sources, where one source works in MPPT mode, the other is out of control. If without the reasonable parameter design and the proper control, the bus-voltage of this inverter may change greatly, resulting in the serious power oscillation around maximum power...

  10. Spatial distribution and polarization of gamma-rays generated via Compton backscattering in the Duke/OK-4 storage ring FEL

    CERN Document Server

    Park, S H; Tornow, W; Montgomery, C

    2001-01-01

    Beams of nearly monochromatic gamma-rays are produced via intracavity Compton backscattering in the OK-4/Duke storage ring FEL, the high-intensity gamma-ray source (HI gamma S). Presently, HI gamma S generates gamma-ray beams with an energy tunable from 2 to 58 MeV and a maximum flux of 5x10 sup 7 gamma-rays per second. The gamma-rays are linearly polarized with a degree of polarization close to 100% (V.N. Litvinenko, et al., Predictions and expected performance for the VUV OK-5/Duke Storage Ring FEL with variable polarization, Nucl. Instr. and Meth. A, to be published in this proceeding) and they are collimated to pencil-like semi-monoenergetic beams with RMS energy spreads as low as 0.2%. The detailed theoretical and experimental studies of the gamma-ray beam quality were conducted during the last two years (S.H. Park, Thesis, Duke University, Durham, NC, USA, 2000). In this paper, we present the theoretical analysis and the experimental results on the spatial distribution and polarization of gamma-rays fro...

  11. Spatial distribution and polarization of {gamma}-rays generated via Compton backscattering in the Duke/OK-4 storage ring FEL

    Energy Technology Data Exchange (ETDEWEB)

    Park, S.H. E-mail: shpark@nanum.kaeri.re.kr; Litvinenko, V.N.; Tornow, W.; Montgomery, C

    2001-12-21

    Beams of nearly monochromatic {gamma}-rays are produced via intracavity Compton backscattering in the OK-4/Duke storage ring FEL, the high-intensity {gamma}-ray source (HI{gamma}S). Presently, HI{gamma}S generates {gamma}-ray beams with an energy tunable from 2 to 58 MeV and a maximum flux of 5x10{sup 7} {gamma}-rays per second. The {gamma}-rays are linearly polarized with a degree of polarization close to 100% (V.N. Litvinenko, et al., Predictions and expected performance for the VUV OK-5/Duke Storage Ring FEL with variable polarization, Nucl. Instr. and Meth. A, to be published in this proceeding) and they are collimated to pencil-like semi-monoenergetic beams with RMS energy spreads as low as 0.2%. The detailed theoretical and experimental studies of the {gamma}-ray beam quality were conducted during the last two years (S.H. Park, Thesis, Duke University, Durham, NC, USA, 2000). In this paper, we present the theoretical analysis and the experimental results on the spatial distribution and polarization of {gamma}-rays from the HI{gamma}S facility.

  12. Spatial distribution and polarization of γ-rays generated via Compton backscattering in the Duke/OK-4 storage ring FEL

    International Nuclear Information System (INIS)

    Park, S.H.; Litvinenko, V.N.; Tornow, W.; Montgomery, C.

    2001-01-01

    Beams of nearly monochromatic γ-rays are produced via intracavity Compton backscattering in the OK-4/Duke storage ring FEL, the high-intensity γ-ray source (HIγS). Presently, HIγS generates γ-ray beams with an energy tunable from 2 to 58 MeV and a maximum flux of 5x10 7 γ-rays per second. The γ-rays are linearly polarized with a degree of polarization close to 100% (V.N. Litvinenko, et al., Predictions and expected performance for the VUV OK-5/Duke Storage Ring FEL with variable polarization, Nucl. Instr. and Meth. A, to be published in this proceeding) and they are collimated to pencil-like semi-monoenergetic beams with RMS energy spreads as low as 0.2%. The detailed theoretical and experimental studies of the γ-ray beam quality were conducted during the last two years (S.H. Park, Thesis, Duke University, Durham, NC, USA, 2000). In this paper, we present the theoretical analysis and the experimental results on the spatial distribution and polarization of γ-rays from the HIγS facility

  13. Tranexamic acid for control of blood loss in bilateral total knee replacement in a single stage

    Directory of Open Access Journals (Sweden)

    Mandeep S Dhillon

    2011-01-01

    Full Text Available Background: Tranexamic acid (TEA reduces blood loss and red cell transfusions in patients undergoing unilateral total knee arthroplasty (TKA. However, there is not much literature regarding the use of TEA in patients undergoing bilateral TKA in a single stage and the protocols for administration of TEA in such patients are ill-defined. Materials and Methods: We carried out a case control study evaluating the effect of TEA on postoperative hemoglobin (Hb, total drain output, and number of blood units transfused in 52 patients undergoing bilateral TKA in a single stage, and compared it with 56 matched controls who did not receive TEA. Two doses of TEA were administered in doses of 10 mg / kg each (slow intravenous (IV infusion, with the first dose given just before tourniquet release of the first knee and the second dose three hours after the first one. Results: A statistically significant reduction in the total drain output and requirement of allogenic blood transfusion in cases who received TEA, as compared to the controls was observed. The postoperative Hb and Hb at the time of discharge were found to be lower in the control group, and this result was found to be statistically significant. Conclusion: TEA administered in patients undergoing single stage bilateral TKA helped reduce total blood loss and decreased allogenic blood transfusion requirements. This might be particularly relevant, where facilities such as autologous reinfusion might not be available.

  14. The analysis of single-electron orbits in a free electron laser based upon a rectangular hybrid wiggler

    International Nuclear Information System (INIS)

    Kordbacheh, A.; Ghahremaninezhad, Roghayeh; Maraghechi, B.

    2012-01-01

    A three-dimensional analysis of a novel free-electron laser (FEL) based upon a rectangular hybrid wiggler (RHW) is presented. This RHW is designed in a configuration composed of rectangular rings with alternating ferrite and dielectric spacers immersed in a solenoidal magnetic field. An analytic model of RHW is introduced by solution of Laplace's equation for the magnetostatic fields under the appropriate boundary conditions. The single-electron orbits in combined RHW and axial guide magnetic fields are studied when only the first and the third spatial harmonic components of the RHW field are taken into account and the higher order terms are ignored. The results indicate that the third spatial harmonic leads to group III orbits with a strong negative mass regime particularly in large solenoidal magnetic fields. RHW is found to be a promising candidate with favorable characteristics to be used in microwave FEL.

  15. The analysis of single-electron orbits in a free electron laser based upon a rectangular hybrid wiggler

    Science.gov (United States)

    Kordbacheh, A.; Ghahremaninezhad, Roghayeh; Maraghechi, B.

    2012-09-01

    A three-dimensional analysis of a novel free-electron laser (FEL) based upon a rectangular hybrid wiggler (RHW) is presented. This RHW is designed in a configuration composed of rectangular rings with alternating ferrite and dielectric spacers immersed in a solenoidal magnetic field. An analytic model of RHW is introduced by solution of Laplace's equation for the magnetostatic fields under the appropriate boundary conditions. The single-electron orbits in combined RHW and axial guide magnetic fields are studied when only the first and the third spatial harmonic components of the RHW field are taken into account and the higher order terms are ignored. The results indicate that the third spatial harmonic leads to group III orbits with a strong negative mass regime particularly in large solenoidal magnetic fields. RHW is found to be a promising candidate with favorable characteristics to be used in microwave FEL.

  16. Single-Phase Single-Stage Grid Tied Solar PV System with Active Power Filtering Using Power Balance Theory

    Science.gov (United States)

    Singh, Yashi; Hussain, Ikhlaq; Singh, Bhim; Mishra, Sukumar

    2018-03-01

    In this paper, power quality features such as harmonics mitigation, power factor correction with active power filtering are addressed in a single-stage, single-phase solar photovoltaic (PV) grid tied system. The Power Balance Theory (PBT) with perturb and observe based maximum power point tracking algorithm is proposed for the mitigation of power quality problems in a solar PV grid tied system. The solar PV array is interfaced to a single phase AC grid through a Voltage Source Converter (VSC), which provides active power flow from a solar PV array to the grid as well as to the load and it performs harmonics mitigation using PBT based control. The solar PV array power varies with sunlight and due to this, the solar PV grid tied VSC works only 8-10 h per day. At night, when PV power is zero, the VSC works as an active power filter for power quality improvement, and the load active power is delivered by the grid to the load connected at the point of common coupling. This increases the effective utilization of a VSC. The system is modelled and simulated using MATLAB and simulated responses of the system at nonlinear loads and varying environmental conditions are also validated experimentally on a prototype developed in the laboratory.

  17. Real-time monitoring of longitudinal electron bunch parameters by intensity-integrated and spectroscopic measurements of single coherent THz pulses; Echtzeitbestimmung longitudinaler Elektronenstrahlparameter mittels absoluter Intensitaets- und Spektralmessung einzelner kohaerenter THz Strahlungspulse

    Energy Technology Data Exchange (ETDEWEB)

    Wesch, Stephan

    2012-12-15

    High-gain free-electron lasers (FELs) generate intense and monochromatic photon pulses with few tens of femtosecond duration. For this purpose, electron beams are accelerated to relativistic energies and shrunk longitudinally down to micrometer size.The diagnosis of theses compressed electron bunches is a challenge especially for MHz bunch repetition rates as provided by the FEL FLASH in Hamburg. In this thesis, coherently emitted THz radiation of single electron bunches were investigated, on which the longitudinal structure is imprinted. Two instruments were used: First, the FLASH bunch compression monitors, relying on the integrated intensity measurement of diffraction radiation, were modified to determine the overall length of every bunch behind the two bunch compressors (BC). A model was developed showing that their response is independent of the exact bunch shape for lengths below 200 {mu}m (rms). This could experimentally be verified in the range between 50 and 190 {mu}m within 7% accuracy for themonitor behind the last BC by comparison with measurements with the transverse deflecting structure (TDS). Second, a single-shot spectrometer with five staged reflective blazed gratings has been designed, build and commissioned. With its two grating sets, the wavelength ranges from 5.5 to 44 {mu}m and 45 to 440 {mu}m can be simultaneously detected by 118 fast pyroelectric elements. Measurements based on transition radiation spectra were compared with profiles recorded by the TDS.The shape of the spectra as well as the reconstructed temporal profiles (using the Kramers-Kronig relation for phase retrieval) are in excellent agreement. For bunches with a charge of 50 pC, bunch lengths down to 5 {mu}m (fhwm) could be detected.

  18. Studying the effect of over-modulation on the output voltage of three-phase single-stage grid-connected boost inverter

    Directory of Open Access Journals (Sweden)

    A. Abbas Elserougi

    2013-09-01

    Full Text Available Voltage boosting is very essential issue in renewable-energy fed applications. The classical two-stage power conversion process is typically used to interface the renewable energy sources to the grid. For better efficiency, single-stage inverters are recommended. In this paper, the performance of single-stage three-phase grid-connected boost inverter is investigated when its gain is extended by employing over-modulation technique. Using of over-modulation is compared with the employment of third order harmonic injection. The latter method can increase the inverter gain by 15% without distorting the inverter output voltage. The performance of extended gain grid-connected boost inverter is also tested during normal operation as well as in the presence of grid side disturbances. Simulation and experimental results are satisfactory.

  19. Analysis of U and Pu resin bead samples with a single stage mass spectrometer

    International Nuclear Information System (INIS)

    Smith, D.H.; Walker, R.L.; Bertram, L.K.; Carter, J.A.

    1979-01-01

    Resin bead sampling enables the shipment of nanogram U and Pu quantities for analysis. Application of this sampling technique to safeguards was investigated with a single-stage mass spectrometer. Standards gave results in good agreement with NBS certified values. External precisions of +-0.5% were obtained on isotopic ratios of approx. 0.01; precisions on quantitative measurements are +-1.0%

  20. Single-stage revision for fungal peri-prosthetic joint infection: a single-centre experience.

    Science.gov (United States)

    Klatte, T O; Kendoff, D; Kamath, A F; Jonen, V; Rueger, J M; Frommelt, L; Gebauer, M; Gehrke, T

    2014-04-01

    Fungal peri-prosthetic infections of the knee and hip are rare but likely to result in devastating complications. In this study we evaluated the results of their management using a single-stage exchange technique. Between 2001 and 2011, 14 patients (ten hips, four knees) were treated for a peri-prosthetic fungal infection. One patient was excluded because revision surgery was not possible owing to a large acetabular defect. One patient developed a further infection two months post-operatively and was excluded from the analysis. Two patients died of unrelated causes. After a mean of seven years (3 to 11) a total of ten patients were available for follow-up. One patient, undergoing revision replacement of the hip, had a post-operative dislocation. Another patient, undergoing revision replacement of the knee, developed a wound infection and required revision 29 months post-operatively following a peri-prosthetic femoral fracture. The mean Harris hip score increased to 74 points (63 to 84; p prosthetic infection is feasible, with an acceptable rate of a satisfactory outcome.