Sample records for single-stage continuous production

  1. In-target rare nuclei production rates with EURISOL single-stage configuration

    CERN Document Server

    Chabod, S P; Ene, D; Doré, D; Blideanu, V; David, J.-Ch; Ridikas, D


    We conducted calculations of exotic nuclei production rates for 320 configurations of EURISOL (European Isotope Separation On-Line Radioactive Ion Beam Facility) direct spallation targets. The nuclei yields were evaluated using neutron generation-transport codes, completed with evolution calculations to account for nuclei decays and low energy neutron interactions. The yields were optimized for 11 selected elements (Li, Be, Ne, Mg, Ar, Ni, Ga, Kr, Sn, Hg, Fr) and 23 of their isotopes, as function of the target compositions and geometries as well as the incident proton beam energies. For the considered elements, we evaluated the yield distributions as functions of the charge and mass numbers using two different spallation models.

  2. Enhanced Hydrogen Production Integrated with CO2 Separation in a Single-Stage Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Shwetha Ramkumar; Mahesh Iyer; Danny Wong; Himanshu Gupta; Bartev Sakadjian; Liang-Lhih Fan


    High purity hydrogen is commercially produced from syngas by the Water Gas Shift Reaction (WGSR) in high and low temperature shift reactors using iron oxide and copper catalysts respectively. However, the WGSR is thermodynamically limited at high temperatures towards hydrogen production necessitating excess steam addition and catalytic operation. In the calcium looping process, the equilibrium limited WGSR is driven forward by the incessant removal of CO{sub 2} by-product through the carbonation of calcium oxide. At high pressures, this process obviates the need for a catalyst and excess steam requirement, thereby removing the costs related to the procurement and deactivation of the catalyst and steam generation. Thermodynamic analysis for the combined WGS and carbonation reaction was conducted. The combined WGS and carbonation reaction was investigated at varying pressures, temperatures and S/C ratios using a bench scale reactor system. It was found that the purity of hydrogen increases with the increase in pressure and at a pressure of 300 psig, almost 100% hydrogen is produced. It was also found that at high pressures, high purity hydrogen can be produced using stoichiometric quantities of steam. On comparing the catalytic and non catalytic modes of operation in the presence of calcium oxide, it was found that there was no difference in the purity of hydrogen produced at elevated pressures. Multicyclic reaction and regeneration experiments were also conducted and it was found that the purity of hydrogen remains almost constant after a few cycles.

  3. High Purity Hydrogen Production with In-Situ Carbon Dioxide and Sulfur Capture in a Single Stage Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Nihar Phalak; Shwetha Ramkumar; Daniel Connell; Zhenchao Sun; Fu-Chen Yu; Niranjani Deshpande; Robert Statnick; Liang-Shih Fan


    Enhancement in the production of high purity hydrogen (H{sub 2}) from fuel gas, obtained from coal gasification, is limited by thermodynamics of the water gas shift (WGS) reaction. However, this constraint can be overcome by conducting the WGS in the presence of a CO{sub 2}-acceptor. The continuous removal of CO{sub 2} from the reaction mixture helps to drive the equilibrium-limited WGS reaction forward. Since calcium oxide (CaO) exhibits high CO{sub 2} capture capacity as compared to other sorbents, it is an ideal candidate for such a technique. The Calcium Looping Process (CLP) developed at The Ohio State University (OSU) utilizes the above concept to enable high purity H{sub 2} production from synthesis gas (syngas) derived from coal gasification. The CLP integrates the WGS reaction with insitu CO{sub 2}, sulfur and halide removal at high temperatures while eliminating the need for a WGS catalyst, thus reducing the overall footprint of the hydrogen production process. The CLP comprises three reactors - the carbonator, where the thermodynamic constraint of the WGS reaction is overcome by the constant removal of CO{sub 2} product and high purity H{sub 2} is produced with contaminant removal; the calciner, where the calcium sorbent is regenerated and a sequestration-ready CO{sub 2} stream is produced; and the hydrator, where the calcined sorbent is reactivated to improve its recyclability. As a part of this project, the CLP was extensively investigated by performing experiments at lab-, bench- and subpilot-scale setups. A comprehensive techno-economic analysis was also conducted to determine the feasibility of the CLP at commercial scale. This report provides a detailed account of all the results obtained during the project period.

  4. Correlation of precursor and product ions in single-stage high resolution mass spectrometry. A tool for detecting diagnostic ions and improving the precursor elemental composition elucidation

    Energy Technology Data Exchange (ETDEWEB)

    Borràs, S. [Departament de Química Analítica, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona (Spain); Kaufmann, A., E-mail: [Official Food Control Authority, Fehrenstrasse 15, 8032 Zürich (Switzerland); Companyó, R. [Departament de Química Analítica, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona (Spain)


    Highlights: ► We are describing a technique to spot ions which are derived from each other. ► Single stage high resolution data is used. ► This “in silicon” technique is compared to conventional precursor scan. ► Some applications for this technique are presented. -- Abstract: Monitoring of common diagnostic fragments is essential for recognizing molecules which are members of a particular compound class. Up to now, unit resolving tandem quadrupole mass spectrometers, operating in the precursor ion scan mode, have been typically used to perform such analysis. By means of high-resolution mass spectrometry (HRMS) a much more sensitive and selective detection can be achieved. However, using a single-stage HRMS instrument, there is no unequivocal link to the corresponding precursor ion, since such instrumentation does not permit a previous precursor selection. Thus, to address this limitation, an in silico approach to locate precursor ions, based on diagnostic fragments, was developed. Implemented as an Excel macro, the algorithm rapidly assembles and surveys exact mass data to provide a list of feasible precursor candidates according to the correlation of the chromatographic peak shape profile and other additional filtering criteria (e.g. neutral losses and isotopes). The macro was tested with two families of veterinary drugs, sulfonamides and penicillins, which are known to yield diagnostic product ions when fragmented. Data sets obtained from different food matrices (fish and liver), both at high and low concentration of the target compounds, were investigated in order to evaluate the capabilities and limitations of the reported approach. Finally, other possible applications of this technique, such as the elucidation of elemental compositions based on product ions and corresponding neutral losses, were also presented and discussed.

  5. Quantitative targeted and retrospective data analysis of relevant pesticides, antibiotics and mycotoxins in bakery products by liquid chromatography-single-stage Orbitrap mass spectrometry. (United States)

    De Dominicis, Emiliano; Commissati, Italo; Gritti, Elisa; Catellani, Dante; Suman, Michele


    In addition to 'traditional' multi-residue and multi-contaminant multiple reaction monitoring (MRM) mass spectrometric techniques devoted to quantifying a list of targeted compounds, the global food industry requires non-targeted methods capable of detecting other possible potentially hazardous compounds. Ultra-high-performance liquid chromatography combined with a single-stage Orbitrap high-resolution mass spectrometer (UHPLC-HRMS Exactive™-Orbitrap Technology) was successfully exploited for the complete selective and quantitative determination of 33 target compounds within three major cross categories (pesticides, antibiotics and mycotoxins) in bakery matrices (specifically milk, wheat flour and mini-cakes). Resolution was set at 50 000 full width at half maximum (FWHM) to achieve the right compromise between an adequate scan speed and selectivity, allowing for the limitations related to the necessary generic sample preparation approach. An exact mass with tolerance of 5 ppm and minimum peak threshold of 10 000 units were fixed as the main identification conditions, including retention time and isotopic pattern as additional criteria devoted to greatly reducing the risk of false-positive findings. The full validation for all the target analytes was performed: linearity, intermediate repeatability and recovery (28 analytes within 70-120%) were positively assessed; furthermore, limits of quantification between 5 and 100 µg kg(-1) (with most of the analytes having a limit of detection below 6 µg kg(-1)) indicate good performance, which is compatible with almost all the regulatory needs. Naturally contaminated and fortified mini-cakes, prepared through combined use of industrial and pilot plant production lines, were analysed at two different concentration levels, obtaining good overall quantitative results and providing preliminary indications of the potential of full-scan HRMS cluster analysis. The effectiveness of this analytical approach was also tested in

  6. A single-stage functionalization and exfoliation method for the production of graphene in water: stepwise construction of 2D-nanostructured composites with iron oxide nanoparticles. (United States)

    Ihiawakrim, Dris; Ersen, Ovidiu; Melin, Frédéric; Hellwig, Petra; Janowska, Izabela; Begin, Dominique; Baaziz, Walid; Begin-Colin, Sylvie; Pham-Huu, Cuong; Baati, Rachid


    A practically simple top-down process for the exfoliation of graphene (GN) and few-layer graphene (FLG) from graphite is described. We have discovered that a biocompatible amphiphilic pyrene-based hexahistidine peptide is able to exfoliate, functionalize, and dissolve few layer graphene flakes in pure water under exceptionally mild, sustainable and virtually innocuous low intensity cavitation conditions. Large area functionalized graphene flakes with the hexahistidine oligopeptide (His₆-TagGN = His₆@GN) have been produced efficiently at room temperature and characterized by TEM, Raman, and UV spectroscopy. Conductivity experiments carried out on His₆-TagGN samples revealed superior electric performances as compared to reduced graphene oxide (rGO) and non-functionalized graphene, demonstrating the non-invasive features of our non-covalent functionalization process. We postulated a rational exfoliation mechanism based on the intercalation of the peptide amphiphile under cavitational chemistry. We also demonstrated the ability of His6-TagGN nanoassemblies to self-assemble spontaneously with inorganic iron oxide nanoparticles generating magnetic two-dimensional (2D) His₆-TagGN/Fe₃O₄ nanocomposites under mild and non-hydrothermal conditions. The set of original experiments described here open novel perspectives in the facile production of water dispersible high quality GN and FLG sheets that will improve and facilitate the interfacing, processing and manipulation of graphene for promising applications in catalysis, nanocomposite construction, integrated nanoelectronic devices and bionanotechnology.

  7. NOFBX Single-Stage-to-Orbit Mars Ascent Vehicle Engine, Phase II (United States)

    National Aeronautics and Space Administration — We propose the continuation of our research and development of a Nitrous Oxide Fuel Blend (NOFBXTM) Single-Stage-to-Orbit (SSTO) monopropellant propulsion system for...

  8. Delayed Single Stage Perineal Posterior Urethroplasty

    International Nuclear Information System (INIS)

    Ali, S.; Shahnawaz; Shahzad, I.; Baloch, M. U.


    Objective: To determine the delayed single stage perineal posterior urethroplasty for treatment of posterior urethral stricture/distraction defect. Study Design: Descriptive case series. Place and Duration of Study: Department of Urology, Jinnah Postgraduate Medical Centre, Karachi, from January 2009 to December 2011. Methodology: Patients were selected for delayed single stage perineal posterior urethroplasty for treatment of posterior urethral stricture / distraction defect. All were initially suprapubically catheterized followed by definitive surgery after at least 3 months. Results: Thirty male patients were analyzed with a mean follow-up of 10 months, 2 patients were excluded as they developed failure in first 3 months postoperatively. Mean patients age was 26.25 ± 7.9 years. On follow-up, 7 patients (23.3 percentage) experienced recurrent stricture during first 10 months. Five (16.6 percentage) patients were treated successfully with single direct visual internal urethrotomy. Two patients (6.6 percentage) had more than one direct visual internal urethrotomy and considered failed. Re-do perineal urethroplasty was eventually performed. The overall success rate was 93.3 percentage with permissive criteria allowing single direct visual internal urethrotomy and 76.6% with strict criteria allowing no more procedures postoperatively. Conclusion: Posterior anastomotic urethroplasty offers excellent long-term results to patients with posterior urethral trauma and distraction defect even after multiple prior procedures. (author)

  9. Red Mud Catalytic Pyrolysis of Pinyon Juniper and Single-Stage Hydrotreatment of Oils

    Energy Technology Data Exchange (ETDEWEB)

    Agblevor, Foster A.; Elliott, Douglas C.; Santosa, Daniel M.; Olarte, Mariefel V.; Burton, Sarah D.; Swita, Marie; Beis, Sedat H.; Christian, Kyle; Sargent, Brandon


    Pinyon juniper biomass feedstocks, which cover a large acreage of rangeland in the western United States, are being eradicated and, therefore, considered as a convenient biomass feedstock for biofuel production. Pinyon juniper whole biomass (wood, bark, and leaves) were pyrolyzed in a pilot-scale bubbling fluidized-bed reactor at 450 °C, and the noncondensable gases were recycled to fluidize the reactor. Red mud was used as the in situ catalyst for the pyrolysis of the pinyon juniper biomass. The pyrolysis products were condensed in three stages, and products were analyzed for physicochemical properties. The condenser oil formed two phases with the aqueous fraction, whereas the electrostatic precipitator oils formed a single phase. The oil pH was 3.3; the higher heating value (HHV) was 28 MJ/kg; and the viscosity was less than 100 cP. There was a direct correlation between the viscosity of the oils and the alcohol/ether content of the oils, and this was also related to the aging rate of the oils. The catalytic pyrolysis oils were hydrotreated in a continuous single-stage benchtop hydrotreater to produce hydrocarbon fuels with a density of 0.80$-$0.82 cm3/g. The hydrotreater ran continuously for over 300 h with no significant catalyst deactivation or coke formation. This is the first time that such a long single-stage hydrotreatment has been demonstrated on biomass catalytic pyrolysis oils.

  10. Continuous steel production and apparatus (United States)

    Peaslee, Kent D [Rolla, MO; Peter, Jorg J [McMinnville, OR; Robertson, David G. C. [Rolla, MO; Thomas, Brian G [Champaign, IL; Zhang, Lifeng [Trondheim, NO


    A process for continuous refining of steel via multiple distinct reaction vessels for melting, oxidation, reduction, and refining for delivery of steel continuously to, for example, a tundish of a continuous caster system, and associated apparatus.

  11. Continuous production of flexible carbon nanotube-based transparent conductive films

    International Nuclear Information System (INIS)

    Fraser, I Stuart; Windle, Alan H; Motta, Marcelo S; Schmidt, Ron K


    This work shows a simple, single-stage, scalable method for the continuous production of high-quality carbon nanotube-polymer transparent conductive films from carbon feedstock. Besides the ease of scalability, a particular advantage of this process is that the concentration of nanotubes in the films, and thus transparency and conductivity, can be adjusted by changing simple process parameters. Therefore, films can be readily prepared for any application desired, ranging from solar cells to flat panel displays. Our best results show a surface resistivity of the order of 300 Ω square -1 for a film with 80% transparency, which is promising at this early stage of process development.

  12. Continuous production of flexible carbon nanotube-based transparent conductive films (United States)

    Fraser, I. Stuart; Motta, Marcelo S.; Schmidt, Ron K.; Windle, Alan H.


    This work shows a simple, single-stage, scalable method for the continuous production of high-quality carbon nanotube-polymer transparent conductive films from carbon feedstock. Besides the ease of scalability, a particular advantage of this process is that the concentration of nanotubes in the films, and thus transparency and conductivity, can be adjusted by changing simple process parameters. Therefore, films can be readily prepared for any application desired, ranging from solar cells to flat panel displays. Our best results show a surface resistivity of the order of 300 Ω square-1 for a film with 80% transparency, which is promising at this early stage of process development.

  13. Chinese ethnic meat products: Continuity and development. (United States)

    Zeng, Weicai; Wen, Wenting; Deng, Yue; Tian, Yuanyuan; Sun, Honghu; Sun, Qun


    With their distinctive sensory characterizations and unique processing technologies, Chinese ethnic meat products possess great potential for development and continuity in modern China's meat industry. Due to the greater demand for meat products and higher quality and safety concerns in economically fast growing China, the development and continuity of ethnic meat products face its own unique challenges. In this review, the classification of typical ethnic products and their characteristics, and the research progress on their quality and processing technologies are discussed. The application of innovative and green technologies to improve the safety and quality of ethnic meat products for greater industrialization and sustainable development is highlighted. Furthermore, the strategy for promoting the production of Chinese ethnic meat products during the next five years is presented. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Managerial implications for improving continuous production processes

    DEFF Research Database (Denmark)

    Capaci, Francesca; Vanhatalo, Erik; Bergquist, Bjarne


    Data analytics remains essential for process improvement and optimization. Statistical process control and design of experiments are among the most powerful process and product improvement methods available. However, continuous process environments challenge the application of these methods....... In this article we highlight SPC and DoE implementation challenges described in the literature for managers, researchers and practitioners interested in continuous production process improvement. The results may help managers support the implementation of these methods and make researchers and practitioners aware...... of methodological challenges in continuous process environments...

  15. Adaptive kanban control mechanism for a single-stage hybrid system (United States)

    Korugan, Aybek; Gupta, Surendra M.


    In this paper, we consider a hybrid manufacturing system with two discrete production lines. Here the output of either production line can satisfy the demand for the same type of product without any penalties. The interarrival times for demand occurrences and service completions are exponentially distributed i.i.d. variables. In order to control this type of manufacturing system we suggest a single stage pull type control mechanism with adaptive kanbans and state independent routing of the production information.

  16. Method for the continuous production of hydrogen (United States)

    Getty, John Paul; Orr, Mark T.; Woodward, Jonathan


    The present invention is a method for the continuous production of hydrogen. The present method comprises reacting a metal catalyst with a degassed aqueous organic acid solution within a reaction vessel under anaerobic conditions at a constant temperature of C. and at a pH ranging from about 4 to about 9. The reaction forms a metal oxide when the metal catalyst reacts with the water component of the organic acid solution while generating hydrogen, then the organic acid solution reduces the metal oxide thereby regenerating the metal catalyst and producing water, thus permitting the oxidation and reduction to reoccur in a continual reaction cycle. The present method also allows the continuous production of hydrogen to be sustained by feeding the reaction with a continuous supply of degassed aqueous organic acid solution.

  17. Single-stage Kanban system with deterioration failures and condition-based preventive maintenance

    International Nuclear Information System (INIS)

    Xanthopoulos, A.S.; Koulouriotis, D.E.; Botsaris, P.N.


    Despite the fact that the fields of pull type production control policies and condition-based preventive maintenance have much in common contextually, they have evolved independently up to now. In this investigation, an attempt is made to bridge the gap between these two branches of knowledge by introducing the single-stage Kanban system with deterioration failures and condition-based preventive maintenance. The formalism of continuous time Markov chains is used to model the system and expressions for eight performance metrics are derived. Two important, from a managerial perspective, constrained optimization problems for the proposed model are defined where the objective is the simultaneous optimization of the Kanban policy, the preventive maintenance policy and the inspection schedule under conflicting performance criteria. Multiple instances of each optimization problem are solved by means of the augmented Lagrangian genetic algorithm. The results from the optimization trials coupled by the results from extensive numerical examples facilitate the thorough investigation of the system’s behaviour. - Highlights: • Kanban system with deterioration failures and preventive maintenance is introduced. • The system is modeled as a continuous time Markov chain. • Expressions for eight performance metrics are derived. • The behavior of the system is studied through numerical examples. • Optimization results for selected performance metrics are presented

  18. A single-stage polymerase-based protocol for the introduction of deletions and insertions without subcloning. (United States)

    Salerno, John C; Jones, Rachel J; Erdogan, Eda; Smith, Susan M E


    A single-stage polymerase-based procedure is described that allows extensive modifications of DNA. The version described here uses the QuikChange Site-Directed Mutagenesis System kit supplied by Stratagene. The original protocol is replaced by a single-stage method in which linear production of complementary strands is accomplished in separate single primer reactions. This has proved effective in introducing insertions and deletions into large gene/vector combinations without subcloning.

  19. Design, Construction and Measured Performance of a Single-Stage ...

    African Journals Online (AJOL)

    The design philosophy, construction and measured performances of a single stage, single entry centrifugal pump demonstration unit are presented. In the construction, close-coupled induction motor drives the centrifugal pump, which draws fluid (water) from a water storage tank and delivers same through a flow control ...

  20. Single-stage repair versus traditional repair of high anorectal ...

    African Journals Online (AJOL)

    random number table. The patients in group A were treated with a single-stage operation, whereas the patients in group B were treated with a standard staged operation. (either PSARP or abdominoperineal pull-through). After clinical evaluation using the Kelly score, patients were divided into three clinical groups ...

  1. Control of Single-Stage Single-Phase PV inverter

    DEFF Research Database (Denmark)

    Ciobotaru, Mihai; Teodorescu, Remus; Blaabjerg, Frede


    In this paper the issue of control strategies for single-stage photovoltaic (PV) inverter is addressed. Two different current controllers have been implemented and an experimental comparison between them has been made. A complete control structure for the single-phase PV system is also presented...

  2. Operational Aspects of Continuous Pharmaceutical Production

    DEFF Research Database (Denmark)

    Mitic, Aleksandar

    . The main goal of this work is to develop a PI strategy that would include different chemical and physical approaches with the main purpose to accelerate slow chemi cal reactions and adapt them to continuous manufacturing modes. Detailed insight into the PAT, QbD, CI and Lean Production System (LPS...... pathway resulted in several benefits from an economic, environmental and manufacturing point of view. Considering the results achieved in the case studies, it can be concluded that successful implementation of the PI strategy has been ac hieved while satisfying the PAT demands and implementing Lean...... and semi-batch processes which include plenty of supportive actions defined as non-value added activities (NVAs) or simply waste. It is therefore desirable to im plement a switch from batch based production to continuous manufacturi ng modes in order to minimize NVAs, as well as to enable easier...

  3. Integrated continuous production of recombinant therapeutic proteins. (United States)

    Warikoo, Veena; Godawat, Rahul; Brower, Kevin; Jain, Sujit; Cummings, Daniel; Simons, Elizabeth; Johnson, Timothy; Walther, Jason; Yu, Marcella; Wright, Benjamin; McLarty, Jean; Karey, Kenneth P; Hwang, Chris; Zhou, Weichang; Riske, Frank; Konstantinov, Konstantin


    In the current environment of diverse product pipelines, rapidly fluctuating market demands and growing competition from biosimilars, biotechnology companies are increasingly driven to develop innovative solutions for highly flexible and cost-effective manufacturing. To address these challenging demands, integrated continuous processing, comprised of high-density perfusion cell culture and a directly coupled continuous capture step, can be used as a universal biomanufacturing platform. This study reports the first successful demonstration of the integration of a perfusion bioreactor and a four-column periodic counter-current chromatography (PCC) system for the continuous capture of candidate protein therapeutics. Two examples are presented: (1) a monoclonal antibody (model of a stable protein) and (2) a recombinant human enzyme (model of a highly complex, less stable protein). In both cases, high-density perfusion CHO cell cultures were operated at a quasi-steady state of 50-60 × 10(6) cells/mL for more than 60 days, achieving volumetric productivities much higher than current perfusion or fed-batch processes. The directly integrated and automated PCC system ran uninterrupted for 30 days without indications of time-based performance decline. The product quality observed for the continuous capture process was comparable to that for a batch-column operation. Furthermore, the integration of perfusion cell culture and PCC led to a dramatic decrease in the equipment footprint and elimination of several non-value-added unit operations, such as clarification and intermediate hold steps. These findings demonstrate the potential of integrated continuous bioprocessing as a universal platform for the manufacture of various kinds of therapeutic proteins. Copyright © 2012 Wiley Periodicals, Inc.

  4. Continuous hydrogen production from starch by fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Yasuda, Keigo; Tanisho, Shigeharu [Yokohama National Univ. (Japan)


    This study was investigated the effect of hydraulic retention time (HRT) on hydrogen production rate, hydrogen yield and the production rate of volatile fatty acid. The experiment was performed in a continuous stirred tank reactor (CSTR) with a working volume of 1 L by using a Clostridium sp. The temperature of the CSTR was regulated 37 C. The pH was controlled 6.0 by the addition of 3 M of NaOH solution. Starch was used as the carbon source with the concentration of 30 g L{sup -1}. Hydrogen production rate increased from 0.9 L-H{sub 2} L-culture{sup -1} h{sup -1} to 3.2 L-H{sub 2} L-culture{sup -1} h{sup -1} along with the decrease of HRT from 9 h to 1.5 h. Hydrogen yield decreased at low HRT. The major volatile fatty acids are acetic acid, butyric acid and lactic acid. The production rates of acetic acid and butyric acid increased along with the decrease of HRT. On the other hand, the rate of lactic acid was low at high HRT while it increased at HRT 1.5 h. The increase of the production rate of lactic acid suggested one of the reasons that hydrogen yield decreased. (orig.)

  5. New current control based MPPT technique for single stage grid connected PV systems

    International Nuclear Information System (INIS)

    Jain, Sachin; Agarwal, Vivek


    This paper presents a new maximum power point tracking algorithm based on current control for a single stage grid connected photovoltaic system. The main advantage of this algorithm comes from its ability to predict the approximate amplitude of the reference current waveform or power that can be derived from the PV array with the help of an intermediate variable β. A variable step size for the change in reference amplitude during initial tracking helps in fast tracking. It is observed that if the reference current amplitude is greater than the array capacity, the system gets unstable (i.e. moves into the positive slope region of the p-v characteristics of the array). The proposed algorithm prevents the PV system from entering the positive slope region of the p-v characteristics. It is also capable of restoring stability if the system goes unstable due to a sudden environmental change. The proposed algorithm has been tested on a new single stage grid connected PV configuration recently developed by the authors to feed sinusoidal current into the grid. The system is operated in a continuous conduction mode to realize advantages such as low device current stress, high efficiency and low EMI. A fast MPPT tracker with single stage inverter topology operating in CCM makes the overall system highly efficient. Specific cases of the system, operating in just discontinuous current mode and discontinuous current mode and their relative merits and demerits are also discussed

  6. Nitrite reduction and methanogenesis in a single-stage UASB reactor. (United States)

    Borges, L I; López-Vazquez, C M; García, H; van Lier, J B


    In this study, nitrite reduction and methanogenesis in a single-stage upflow anaerobic sludge blanket (UASB) reactor was investigated, using high-strength synthetic domestic wastewater as substrate. To assess long-term effects and evaluate the mechanisms that allow successful nitrite reduction and methanogenesis in a single-stage UASB, sludge was exposed to relatively high nitrite loading rates (315 ± 13 mgNO(2)(-)-N/(l.d)), using a chemical oxygen demand (COD) to nitrogen ratio of 18 gCOD/gNO(2)(-)-N, and an organic loading rate of 5.4 ± 0.2 gCOD/(l.d). In parallel, the effects of sludge morphology on methanogenesis inhibition were studied by performing short-term batch activity tests at different COD/NO(2)(-)-N ratios with anaerobic sludge samples. In long-term tests, denitrification was practically complete and COD removal efficiency did not change significantly after nitrite addition. Furthermore, methane production only decreased by 13%, agreeing with the reducing equivalents requirement for complete NO(2)(-) reduction to N₂. Apparently, the spatial separation of denitrification and methanogenesis zones inside the UASB reactor allowed nitrite reduction and methanogenesis to occur at the same moment. Batch tests showed that granules seem to protect methanogens from nitrite inhibition, probably due to transport limitations. Combined COD and N removal via nitrite in a single-stage UASB reactor could be a feasible technology to treat high-strength domestic wastewater.

  7. The Lifetime Estimate for ACSR Single-Stage Splice Connector Operating at Higher Temperatures

    International Nuclear Information System (INIS)

    Wang, Jy-An John; Graziano, Joe; Chan, John


    This paper is the continuation of Part I effort to develop a protocol of integrating analytical and experimental approaches to evaluate the integrity of a full tension single-stage splice connector (SSC) assembly during service at high operating temperature.1The Part II efforts are mainly focused on the thermal mechanical testing, thermal-cycling simulation and its impact on the effective lifetime of the SSC system. The investigation indicates that thermal cycling temperature and frequency, conductor cable tension loading, and the compressive residual stress field within a SSC system have significant impact on the SSC integrity and the associated effective lifetime.

  8. Control of Single-Stage Single-Phase PV inverter

    DEFF Research Database (Denmark)

    Ciobotaru, Mihai; Teodorescu, Remus; Blaabjerg, Frede


    In this paper the issue of control strategies for single-stage photovoltaic (PV) inverter is addressed. Two different current controllers have been implemented and an experimental comparison between them has been made. A complete control structure for the single-phase PV system is also presented......-forward; - and the grid current controller implemented in two different ways, using the classical proportional integral (PI) and the novel proportional resonant (PR) controllers. The control strategy was tested experimentally on 1.5 kW PV inverter........ The main elements of the PV control structure are: - a maximum power point tracker (MPPT) algorithm using the incremental conductance method; - a synchronization method using the phase-locked-loop (PLL), based on delay; - the input power control using the dc voltage controller and power feed...

  9. New results for single stage low energy carbon AMS

    International Nuclear Information System (INIS)

    Klody, G.M.; Schroeder, J.B.; Norton, G.A.; Loger, R.L.; Kitchen, R.L.; Sundquist, M.L.


    A new configuration of the NEC single stage, low energy carbon AMS system (U.S. Patent 6,815,666 B2) has been built and tested. The injector includes two 40-sample ion sources, electrostatic and magnetic analysis, and fast sequential injection. The gas stripper, analyzing magnet, electrostatic analyzer, and detector are on an open air 250 kV deck. Both 12 C and 13 C currents are measured on the deck after the stripper, and an SSB detector is used for 14 C counting. Injected 12 C and mass 13 ( 13 C and 12 CH) currents are also measured. Automated controls follow a user-specified run list for unattended operation. Initial test results show precision for 14 C/ 12 C ratios of better than 5 per mil, and backgrounds for unprocessed graphite of less than 0.005 x modern. We will report final results for precision, background, and throughput and discuss related design features

  10. Simulation of continuous cast steel product solidification

    Directory of Open Access Journals (Sweden)

    Ardelean, E.


    Full Text Available Primary cooling – inside the tundish – has a great impact over the thickness of the solidified steel crust. If on exiting the tundish the crust is too thin, it can punch and break, as a result of the ferrostatic pressure exerted from the inside by the liquid steel as well as because of the weight of the molten steel. The parameters that influence the amount of dissipated heat depend on the cooling water flow of the tundish, on the pressure and temperature of the cooling water but also on the overheating of the continuously cast steel. The secondary cooling takes place at the exit of the semi-finished product from the tundish, when the solidification is supposed to take place all along the cross section of the strand. In order to achieve it, in addition to a correctly managed primary cooling, it is necessary to obtain the proper correlation of the factors that influence the secondary cooling as well: the water flow rate long the three zones of the installation and its pressure in the secondary circuit. All these have in view a proper solidification length; an intense cooling can generate cracks due to the thermal stress, while a too slow cooling can generate a partial solidification of the strand up to the cropping machine area. The paper presents a mathematical simulation of the continuously cast steel solidification.

    El enfriamiento primario del cristalizador tiene una gran importancia sobre el espesor de la costra de acero solidificado. Si al salir del cristalizador, esta costra es demasiado sutil, bajo la acción de la presión ferro estática ejercitada por el acero líquido del interior y gracias el peso propio del hilo, ésta, puede perforar resultando su rompimiento. Los parámetros que influenyen sobre la cantidad de calor cedida dependen del agua de enfriamiento del catalizador, de la presión y de la temperatura de agua de enfriamiento, pero también del sobrecalentamiento del acero fundido continuamente. A la salida del

  11. Omega-3 production by fermentation of Yarrowia lipolytica: From fed-batch to continuous. (United States)

    Xie, Dongming; Miller, Edward; Sharpe, Pamela; Jackson, Ethel; Zhu, Quinn


    The omega-3 fatty acid, cis-5,8,11,14,17-eicosapentaenoic acid (C20:5; EPA) has wide-ranging benefits in improving heart health, immune function, and mental health. A sustainable source of EPA production through fermentation of metabolically engineered Yarrowia lipolytica has been developed. In this paper, key fed-batch fermentation conditions were identified to achieve 25% EPA in the yeast biomass, which is so far the highest EPA titer reported in the literature. Dynamic models of the EPA fermentation process were established for analyzing, optimizing, and scaling up the fermentation process. In addition, model simulations were used to develop a two-stage continuous process and compare to single-stage continuous and fed- batch processes. The two stage continuous process, which is equipped with a smaller growth fermentor (Stage 1) and a larger production fermentor (Stage 2), was found to be a superior process to achieve high titer, rate, and yield of EPA. A two-stage continuous fermentation experiment with Y. lipolytica strain Z7334 was designed using the model simulation and then tested in a 2 L and 5 L fermentation system for 1,008 h. Compared with the standard 2 L fed-batch process, the two-stage continuous fermentation process improved the overall EPA productivity by 80% and EPA concentration in the fermenter by 40% while achieving comparable EPA titer in biomass and similar conversion yield from glucose. During the long-term experiment it was also found that the Y. lipolytica strain evolved to reduce byproduct and increase lipid production. This is one of the few continuous fermentation examples that demonstrated improved productivity and concentration of a final product with similar conversion yield compared with a fed-batch process. This paper suggests the two-stage continuous fermentation could be an effective process to achieve improved production of omega-3 and other fermentation products where non-growth or partially growth associated kinetics

  12. NASA Glenn's Single-Stage Axial Compressor Facility Upgraded (United States)

    Brokopp, Richard A.


    NASA Glenn Research Center's Single-Stage Axial Compressor Facility was upgraded in fiscal year 2003 to expand and improve its research capabilities for testing high-speed fans and compressors. The old 3000-hp drive motor and gearbox were removed and replaced with a refurbished 7000-hp drive motor and gearbox, with a maximum output speed of 21,240 rpm. The higher horsepower rating permits testing of fans and compressors with higher pressure ratio or higher flow. A new inline torquemeter was installed to provide an alternate measurement of fan and compressor efficiency, along with the standard pressure and temperature measurements. A refurbished compressor bearing housing was also installed with bidirectional rotation capability, so that a variety of existing hardware could be tested. Four new lubrication modules with backup capability were installed for the motor, gearbox, torquemeter, and compressor bearing housing, so that in case the primary pump fails, the backup will prevent damage to the rotating hardware. The combustion air supply line for the facility inlet air system was activated to provide dry air for repeatable inlet conditions. New flow conditioning hardware was installed in the facility inlet plenum tank, which greatly reduced the inlet turbulence. The new inlet can also be easily modified to accommodate 20- or 22-in.-diameter fans and compressors, so a variety of existing hardware from other facilities (such as Glenn's 9- by 15-Foot Low-Speed Wind Tunnel) can be tested in the Single-Stage Axial Compressor Facility. An exhaust line was also installed to provide bleed capability to remove the inlet boundary layer. To improve the operation and control of the facility, a new programmable logic controller (PLC) was installed to upgrade from hardwired relay logic to software logic. The PLC also enabled the usage of human-machine interface software to allow for easier operation of the facility and easier reconfiguration of the facility controls when

  13. Monte Carlo Error Analysis Applied to Core Formation: The Single-stage Model Revived (United States)

    Cottrell, E.; Walter, M. J.


    well-constrained data sets for Ni, Co, W and V -- a grouping of elements highly sensitive to pressure, temperature, oxygen fugacity and melt composition -- and allow a conservative 1σ uncertainty on the regression parameters derived from internally consistent data sets of at least n=20. When using regressions without enforced valence (D) or temperature dependence we find abundant four-element single-stage liquidus solutions in the range from 10 to 70 GPa (most near 40 GPa) at ‘Earth’ values of IW-2.3 and nbo/t = 2.7. However, when using 1-atm free energy data to enforce the temperature effect the solution space is reduced to 40-50 GPa. If we enforce valence (Kd) and the temperature effect no liquidus solutions exist at 1σ uncertainty. If errors are not considered, no liquidus solutions exist in any case. Thus diverse conclusions can be drawn from the same data sets dependent on how the data are regressed and whether or not regression errors are considered. Our results indicate that, within model uncertainties, equilibrium single-stage core formation remains a viable model for Earth. Complex multi-stage models are not required by the partitioning data, although such models may be considered more realistic descriptions of continuous accretion and core formation.

  14. Production of Mandioca alcohol by continuous fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Govea, V.deS.


    Slurries of cassava meal were saccharified by the action of amylase from Bacillus subtilis and amyloglucosidase from Aspergillus awamori. The resulting glucose medium was fermented continuously on a semi-industrial scale using Saccharomyces cerevisiae without addition of artificial nutrients. A 90.87% yield was obtained in the conversion of glucose to EtOH.

  15. Single-stage mass spectrometric analyses of resin bead samples

    Energy Technology Data Exchange (ETDEWEB)

    Smith, D. H.; Walker, R. L.; Bertram, L. K.; Carter, J. A.


    Plutonium and uranium from dissolver solutions loaded on resin beads can be analyzed on single-stage mass spectrometers with little or no degradation of results provided proper care is exercised with regard to sample handling techniques. Additionally, storage of samples on resin beads is feasible for periods at least as long as six months provided the beads are not exposed to residual HNO/sub 3/ and air; it is probable that beads will retain their integrity much longer than six months when stored under collodion, but as yet no data to support this contention have been collected. Conventional or commercial mass spectrometers can readily be adapted to the resin bead technique by installing a pulse-counting detection system. The cost of such conversion will vary depending on whether or not a data acquisition system will be needed. A reasonable estimate is that the cost will be in the neighborhood of $15,000; this figure includes the price of a multi-channel analyzer to serve as a temporary data storage device, but does not include the cost of a computer. It does not appear that it will be practicable to switch easily back and forth between pulse-counting and current integration modes unless the instrument is provided with a movable Faraday cup. Using the same multiplier in both modes would undoubtedly degrade its performance in each. The requirements of low background counting rates and high gain for pulse counting, and of relatively high signal handling capacity in current integration are mutually incompatible if demanded of the same multiplier.

  16. Single Stage Contactor Testing Of The Next Generation Solvent Blend

    Energy Technology Data Exchange (ETDEWEB)

    Herman, D. T.; Peters, T. B.; Duignan, M. R.; Williams, M. R.; Poirier, M. R.; Brass, E. A.; Garrison, A. G.; Ketusky, E. T.


    The Modular Caustic Side Solvent Extraction (CSSX) Unit (MCU) facility at the Savannah River Site (SRS) is actively pursuing the transition from the current BOBCalixC6 based solvent to the Next Generation Solvent (NGS)-MCU solvent to increase the cesium decontamination factor. To support this integration of NGS into the MCU facility the Savannah River National Laboratory (SRNL) performed testing of a blend of the NGS (MaxCalix based solvent) with the current solvent (BOBCalixC6 based solvent) for the removal of cesium (Cs) from the liquid salt waste stream. This testing utilized a blend of BOBCalixC6 based solvent and the NGS with the new extractant, MaxCalix, as well as a new suppressor, tris(3,7dimethyloctyl) guanidine. Single stage tests were conducted using the full size V-05 and V-10 liquid-to-liquid centrifugal contactors installed at SRNL. These tests were designed to determine the mass transfer and hydraulic characteristics with the NGS solvent blended with the projected heel of the BOBCalixC6 based solvent that will exist in MCU at time of transition. The test program evaluated the amount of organic carryover and the droplet size of the organic carryover phases using several analytical methods. The results indicate that hydraulically, the NGS solvent performed hydraulically similar to the current solvent which was expected. For the organic carryover 93% of the solvent is predicted to be recovered from the stripping operation and 96% from the extraction operation. As for the mass transfer, the NGS solvent significantly improved the cesium DF by at least an order of magnitude when extrapolating the One-stage results to actual Seven-stage extraction operation with a stage efficiency of 95%.

  17. Self-Excited Single-Stage Power Factor Correction Driving Circuit for LED Lighting

    Directory of Open Access Journals (Sweden)

    Yong-Nong Chang


    Full Text Available This pa\tper proposes a self-excited single-stage high power factor LED lighting driving circuit. Being featured with power factor correction capability without needing any control devices, the proposed circuit structure is with low cost and suitable for commercial production. The power factor correction function is accomplished by using inductor in combination with a half-bridge quasi resonant converter to achieve active switching and yield out voltage regulation according to load requirement. Furthermore, the zero-voltage switching in the half-bridge converter can be attained to promote the overall performance efficiency of the proposed circuit. Finally, the validity and production availability of the proposed circuit will be verified as well.

  18. Detection of Brucella melitensis and Brucella abortus strains using a single-stage PCR method

    Directory of Open Access Journals (Sweden)

    Alamian, S.


    Full Text Available Brucella melitensis and Brucella abortus are of the most important causes of brucellosis, an infectious disease which is transmitted either directly or indirectly including consuming unpasteurized dairy products. Both strains are considered endemic in Iran. Common diagnostic methods such as bacteriologic cultures are difficult and time consuming regarding the bacteria. The aim of this study was to suggest a single-stage PCR method using a pair of primers to detect both B. melitensis and B. abortus. The primers were named UF1 and UR1 and the results showed that the final size of PCR products were 84 bp and 99 bp for B. melitensis and B. abortus, respectively. Therefore the method could be useful for rapid detection of B. melitensis and B. abortus simultaneously.

  19. Mixing and settling in continuous metal production

    International Nuclear Information System (INIS)

    Richter, H.J.; Laaspere, J.T.; Fitzpatrick, J.M.


    Modern metallurgical processes produce metal from ore in a single converter operated in horizontal mode to permit staging of bath and oxygen potential by utilizing bottom-blowing of oxygen and fuel. The submerged injectors must create sufficient turbulence to provide excellent gas-liquid contact in order to maximize heat and mass transfer in the bath, but this turbulence must be selectively localized so as to provide adequate phase separation zones of metal and slag between the active turbulent zones. It is important to know the behavior of gas and liquids in the bubble plume, the nature and paths of liquids and entrainment into the plume, and separation phenomena including travel and behavior in the settling zones. Such knowledge is of fundamental value in designing reactors for continuous direct metal making. In this work the mixing caused by submerged injection of gas into a bath simulating a converter and subsequent phase separation of two immiscible liquids representing slag and metal respectively, are being studied experimentally and analytically. First results of experiments and of the numerical analysis are presented


    International Nuclear Information System (INIS)

    Birdwell, J.F. Jr.; McFarlane, J.; Schuh, D.L.; Tsouris, C.; Day, J.N.; Hullette, J.N.


    ports. Results from laboratory operations showed that the ASTM specification for bound acylglycerides was achieved only at extended reaction times (∼25 min) using a single-stage batch contact at elevated temperature and pressure. In the single-pass configuration, the time required gives no throughput advantage over the current batch reaction process. The limitation seems to be the presence of glycerine, which hinders complete conversion because of reversible reactions. Significant improvement in quality was indicated after a second and third passes, where product from the first stage was collected and separated from the glycerine, and further reacted with a minor addition of methanol. Chemical kinetics calculations suggest that five consecutive stages of 2 min residence time would produce better than ASTM specification fuel with no addition of methanol past the first stage. Additional stages may increase the capital investment, but the increase should be offset by reduced operating costs and a factor of 3 higher throughput. Biodiesel, a mixture of methyl esters, is made commercially from the transesterification of oil, often soy oil (see Reaction 1). The kinetics of the transesterification process is rapid; however, multiphase separations after the synthesis of the fuel can be problematic. Therefore, the process is typically run in batch mode. The biodiesel fuel and the glycerine product take several hours to separate. In addition, to push yields to completion, an excess of methoxide catalyst is typically used, which has to be removed from both the biodiesel and the glycerine phase after reaction. Washing steps are often employed to remove free fatty acids, which can lead to undesirable saponification. Standards for biodiesel purity are based either on the removal of contaminants before the oil feedstock is esterified or on the separation of unwanted by-products. Various methods have been examined to enhance either the pretreatment of biodiesel feedstocks or the

  1. Comparison of single-stage and temperature-phased two-stage anaerobic digestion of oily food waste

    International Nuclear Information System (INIS)

    Wu, Li-Jie; Kobayashi, Takuro; Li, Yu-You; Xu, Kai-Qin


    Highlights: • A single-stage and two two-stage anaerobic systems were synchronously operated. • Similar methane production 0.44 L/g VS added from oily food waste was achieved. • The first stage of the two-stage process became inefficient due to serious pH drop. • Recycle favored the hythan production in the two-stage digestion. • The conversion of unsaturated fatty acids was enhanced by recycle introduction. - Abstract: Anaerobic digestion is an effective technology to recover energy from oily food waste. A single-stage system and temperature-phased two-stage systems with and without recycle for anaerobic digestion of oily food waste were constructed to compare the operation performances. The synchronous operation indicated the similar ability to produce methane in the three systems, with a methane yield of 0.44 L/g VS added . The pH drop to less than 4.0 in the first stage of two-stage system without recycle resulted in poor hydrolysis, and methane or hydrogen was not produced in this stage. Alkalinity supplement from the second stage of two-stage system with recycle improved pH in the first stage to 5.4. Consequently, 35.3% of the particulate COD in the influent was reduced in the first stage of two-stage system with recycle according to a COD mass balance, and hydrogen was produced with a percentage of 31.7%, accordingly. Similar solids and organic matter were removed in the single-stage system and two-stage system without recycle. More lipid degradation and the conversion of long-chain fatty acids were achieved in the single-stage system. Recycling was proved to be effective in promoting the conversion of unsaturated long-chain fatty acids into saturated fatty acids in the two-stage system.

  2. design, construction and measured performance of a single-stage

    African Journals Online (AJOL)


    Nov 3, 2012 ... Piezometers are attached to the pipe work, close to the inlet and outlet of the pump, so that the total head-rise (H), ... voir and pipe work for continuous water circulation is also provided. Manually operated valves, at the ... pump suction via a flexible tube. The two manome- ters have an external diameter of ...

  3. A continuous-time control model on production planning network ...

    African Journals Online (AJOL)

    A continuous-time control model on production planning network. DEA Omorogbe, MIU Okunsebor. Abstract. In this paper, we give a slightly detailed review of Graves and Hollywood model on constant inventory tactical planning model for a job shop. The limitations of this model are pointed out and a continuous time ...

  4. Design of Continuous Reactor Systems for API Production

    DEFF Research Database (Denmark)

    Pedersen, Michael Jønch

    -scale production equipment enabled complete replacement of the existing batch production of this intermediate. The crowning achievement in this work was the realization of continuous laboratory reactor setups capable of manufacturing the entire GMP portion of the synthesis of melitracen HCl at H. Lundbeck A...

  5. Open and continuous fermentation: products, conditions and bioprocess economy. (United States)

    Li, Teng; Chen, Xiang-bin; Chen, Jin-chun; Wu, Qiong; Chen, Guo-Qiang


    Microbial fermentation is the key to industrial biotechnology. Most fermentation processes are sensitive to microbial contamination and require an energy intensive sterilization process. The majority of microbial fermentations can only be conducted over a short period of time in a batch or fed-batch culture, further increasing energy consumption and process complexity, and these factors contribute to the high costs of bio-products. In an effort to make bio-products more economically competitive, increased attention has been paid to developing open (unsterile) and continuous processes. If well conducted, continuous fermentation processes will lead to the reduced cost of industrial bio-products. To achieve cost-efficient open and continuous fermentations, the feeding of raw materials and the removal of products must be conducted in a continuous manner without the risk of contamination, even under 'open' conditions. Factors such as the stability of the biological system as a whole during long cultivations, as well as the yield and productivity of the process, are also important. Microorganisms that grow under extreme conditions such as high or low pH, high osmotic pressure, and high or low temperature, as well as under conditions of mixed culturing, cell immobilization, and solid state cultivation, are of interest for developing open and continuous fermentation processes. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Use of skin stretchers for single-stage bilateral mastectomies in a dog and a cat. (United States)

    Miyazaki, Yuta; Aikawa, Takeshi; Shimatsu, Taichi; Nishimura, Masaaki; Sadahiro, Shigeo


    To describe the application of skin stretchers for closure of single-stage bilateral mastectomies in a dog and a cat. Clinical case report. A 12-year-old intact female Miniature Dachshund and a 13-year-old spayed female domestic short-hair cat. Skin stretchers were applied to the site of the skin adjacent to mammary glands for 2-4 days before surgery. Cable tension was adjusted every 6-8 hours to elongate the skin and to achieve primary closure of single-stage bilateral mastectomy without tension. Wound closure after single-stage bilateral mastectomy was achieved without tension or major complication in both animals. Use of skin stretchers allows primary closure of single-stage bilateral mastectomy in dogs and cats. © 2017 The American College of Veterinary Surgeons.

  7. Single-Stage, Gelled Hydrazine System for Mars Ascent Vehicle Propulsion, Phase I (United States)

    National Aeronautics and Space Administration — Microcosm, Inc. in cooperation with Aerojet Rocketdyne is presenting an innovative approach to the Mars Ascent Vehicle (MAV). The single-stage monopropellant system...

  8. Single Stage Transthoracic Approach to the Right Lung and Liver Dome Hydatid Cysts

    Directory of Open Access Journals (Sweden)

    Rasih Yazkan


    lung, the hepatic lesions were all of the dome located. Conclusions :Single stage transthoracic approach is prevent the second surgical procedures on simultaneous right lung and liver dome hydatid cyst and it is safe and effective method.

  9. Continuous hydroponic wheat production using a recirculating system (United States)

    Mackowiak, C. L.; Owens, L. P.; Hinkle, C. R.; Prince, R. P.


    Continuous crop production, where plants of various ages are growing simultaneously in a single recirculating nutrient solution, is a possible alternative to batch production in a Controlled Ecological Life Support System. A study was conducted at John F. Kennedy Space Center where 8 trays (0.24 sq m per tray) of Triticum aestivum L. Yecora Rojo were grown simultaneously in a growth chamber at 23 C, 65 percent relative humidity, 1000 ppm CO2, continuous light, with a continuous flow, thin film nutrient delivery system. The same modified Hoagland nutrient solution was recirculated through the plant trays from an 80 L reservoir throughout the study. It was maintained by periodic addition of water and nutrients based on chemical analyses of the solution. The study was conducted for 216 days, during which 24 trays of wheat were consecutively planted (one every 9 days), 16 of which were grown to maturity and harvested. The remaining 8 trays were harvested on day 216. Grain yields averaged 520 g m(exp -2), and had an average edible biomass of 32 percent. Consecutive yields were unaffected by nutrient solution age. It was concluded that continual wheat production will work in this system over an extended period of time. Certain micronutrient deficiencies and toxicities posed problems and must be addressed in future continuous production systems.

  10. Single Stage Knee Arthroplasty Revision Surgery: A Systematic Review of the Literature. (United States)

    Chew, E; Khan, W S; Agarwal, S; Morgan-Jones, R


    Total Knee Arthroplasty is an increasingly common procedure and revision surgery, particularly for infection, is associated with significant morbidity and healthcare costs. The current gold standard is a two stage revision procedure but single stage revision is increasingly being used in some departments to improve patient outcomes. We conducted a systematic review of the literature to determine the up-to-date evidence underlying the use of a single stage knee approach in revision surgery. A total of 12 studies were included in this review amounting to 433 revision surgeries. This is the largest review of single stage knee revision surgery. The procedures described were heterogenous and included the 'two-in-one' technique as well as other single stage revision procedures. There were also differences in implants and antibiotic regimens. The mean re-infection rates described in 10 studies was 9.4% (range 0-19.2%) after a mean follow-up of 40.3 months (range 7-180 months). The re-infection rates in the studies published over the last 30 years are falling, and this is not accounted for by any significant change in duration of follow-up during this period. The outcome scores varied, but patients generally showed an improvement. The Knee Society Score and the Oxford Knee Score were the most commonly used in five and three studies respectively. We conclude that the current evidence for single stage revision is variable and there is a lack of good quality evidence to address whether single stage revisions is thorough enough to eradicate deep infection and is able to restore adequate function. There is a need for larger prospective studies with standardised procedures and protocol, and with adequate follow-up. Till then, patients considered for a single stage approach should be thoroughly assessed and the surgery should be performed by a senior surgeon with experience in single stage knee revisions.

  11. Attainability and minimum energy of single-stage membrane and membrane/distillation hybrid processes

    KAUST Repository

    Alshehri, Ali


    As an energy-efficient separation method, membrane technology has attracted more and more attentions in many challenging separation processes. The attainability and the energy consumption of a membrane process are the two basic fundamental questions that need to be answered. This report aims to use process simulations to find: (1) at what conditions a single-stage membrane process can meet the separation task that is defined by product purity and recovery ratio and (2) what are the most important parameters that determine the energy consumption. To perform a certain separation task, it was found that both membrane selectivity and pressure ratio exhibit a minimum value that is defined only by product purity and recovery ratio. The membrane/distillation hybrid system was used to study the energy consumption. A shortcut method was developed to calculate the minimum practical separation energy (MPSE) of the membrane process and the distillation process. It was found that the MPSE of the hybrid system is only determined by the membrane selectivity and the applied transmembrane pressure ratio in three stages. At the first stage when selectivity is low, the membrane process is not competitive to the distillation process. Adding a membrane unit to a distillation tower will not help in reducing energy. At the second medium selectivity stage, the membrane/distillation hybrid system can help reduce the energy consumption, and the higher the membrane selectivity, the lower is the energy. The energy conservation is further improved as pressure ratio increases. At the third stage when both selectivity and pressure ratio are high, the hybrid system will change to a single-stage membrane unit and this change will cause significant reduction in energy consumption. The energy at this stage keeps decreasing with selectivity at slow rate, but slightly increases with pressure ratio. Overall, the higher the membrane selectivity, the more the energy is saved. Therefore, the two

  12. A generic process template for continuous pharmaceutical production

    DEFF Research Database (Denmark)

    Singh, Ravendra; Rozada-Sanches, Raquel; Dean, William


    In the work reported here, a conceptual generic continuous process template for pharmaceutical production is presented. The template is demonstrated on a nitro reduction case study that should in principle be generic such that it can handle a series of substrates with similar molecular functional......In the work reported here, a conceptual generic continuous process template for pharmaceutical production is presented. The template is demonstrated on a nitro reduction case study that should in principle be generic such that it can handle a series of substrates with similar molecular...

  13. Single-stage revision for periprosthetic hip infection using antibiotic loaded impaction graft. (United States)

    Ebied, Ayman M; Elseedy, Adel I; Gamal, Osama


    Staged revision for periprosthetic infection of the hip is an accepted and widely used technique by many surgeons. However, single-stage exchange of the hip prosthesis remains an attractive option to others because of the advantages of reduced morbidity, shorter treatment time and hospital stay in addition to the reduced cost of treatment. Single-stage revision for periprosthetic hip infection can achieve excellent results if a specific protocol for patients' selection and management is followed. 52 patients with evidence of periprosthetic infection had preoperative aspiration of the affected hip. The infecting organisms were identified in 33/52 and single-stage revision was performed. The remaining 19 patients had a 2-stage exchange arthroplasty. Patients in the single-stage revision protocol had antibiotic loaded morsellized bone graft, a cemented cup and a long cementless stem. At an average follow up of 6 (range 4-8) years postoperatively, only 1 case of persistent infection was found in the single-stage group - a 97% rate of eradicating infection was achieved. Single-stage exchange achieves excellent success rate in patients with periprosthetic infection when a specific protocol for patient selection and management is followed.

  14. Wind-driven SEIG supplying DC microgrid through a single-stage power converter

    Directory of Open Access Journals (Sweden)

    Vellapatchi Nayanar


    Full Text Available Nowadays, there is an increased emphasis on utilizing the renewable energy sources and selection of suitable power converters for supplying dc microgrid. Among the various renewable energy sources, wind energy stands first in terms of installed capacity. So, an attempt is made in this paper for supplying dc microgrid utilizing wind energy. A self-excited induction generator has been used in the proposed wind energy conversion system (WECS. A single-stage power converter, namely, semi-converter is connected between the SEIG and dc grid terminals for closed-loop control of the proposed system. A perturb and observe (P&O based maximum power point tracking (MPPT algorithm has been developed and implemented using a dsPIC30F4011 digital controller. In this MPPT algorithm, the firing angle of the converter is adjusted by continuously monitoring the dc grid current for a given wind velocity. For analyzing the proposed system, a MATLAB/Simulink model has been developed by selecting the various components starting from wind-turbine model to the power converter supplying dc microgrid. Successful working of the proposed WECS has also been shown through experimental results obtained on a prototype model developed in the laboratory.

  15. Thermodynamic analysis of single-stage and multi-stage adsorption refrigeration cycles with activated carbon–ammonia working pair

    International Nuclear Information System (INIS)

    Xu, S.Z.; Wang, L.W.; Wang, R.Z.


    Highlights: • Activated carbon–ammonia multi-stage adsorption refrigerator was analyzed. • COP, exergetic efficiency and entropy production of cycles were calculated. • Single-stage cycle usually has the advantages of simple structure and high COP. • Multi-stage cycles adapt to critical conditions better than single-stage cycle. • Boundary conditions for choosing optimal cycle were summarized as tables. - Abstract: Activated carbon–ammonia multi-stage adsorption refrigeration cycle was analyzed in this article, which realized deep-freezing for evaporating temperature under −18 °C with heating source temperature much lower than 100 °C. Cycle mathematical models for single, two and three-stage cycles were established on the basis of thorough thermodynamic analysis. According to simulation results of thermodynamic evaluation indicators such as COP (coefficient of performance), exergetic efficiency and cycle entropy production, multi-stage cycle adapts to high condensing temperature, low evaporating temperature and low heating source temperature well. Proposed cycle with selected working pair can theoretically work under very severe conditions, such as −25 °C evaporating temperature, 40 °C condensing temperature, and 70 °C heating source temperature, but under these working conditions it has the drawback of low cycle adsorption quantity. It was found that both COP and exergetic efficiency are of great reference value in the choice of cycle, whereas entropy production is not so useful for cycle stage selection. Finally, the application boundary conditions of single-stage, two-stage, and three-stage cycles were summarized as tables according to the simulation results, which provides reference for choosing optimal cycle under different conditions.

  16. Continuous Cultivation of Photosynthetic Bacteria for Fatty Acids Production

    DEFF Research Database (Denmark)

    Kim, Dong-Hoon; Lee, Ji-Hye; Hwang, Yuhoon


    In the present work, we introduced a novel approach for microbial fatty acids (FA) production. Photosynthetic bacteria, Rhodobacter sphaeroides KD131, were cultivated in a continuous-flow, stirred-tank reactor (CFSTR) at various substrate (lactate) concentrations.At hydraulic retention time (HRT)....... sphaeroides was around 35% of dry cell weight, mainly composed of vaccenic acid (C18:1, omega-7)....

  17. A novel fermentor system optimized for continuous production of ...

    African Journals Online (AJOL)

    A novel fermentor system containing Aureobasidium pullulans in polyurethane foam was designed to achieve continuous production of pullulan. A. pullulans cells were immobilized in 10 to 20 g polyurethane foam with pore size of 1000 Ǻ. The system has specialized aeration provision with 80 perforations of 4 mm. Pullulan ...

  18. A stochastic surplus production model in continuous time

    DEFF Research Database (Denmark)

    Pedersen, Martin Wæver; Berg, Casper Willestofte


    surplus production model in continuous time (SPiCT), which in addition to stock dynamics also models the dynamics of the fisheries. This enables error in the catch process to be reflected in the uncertainty of estimated model parameters and management quantities. Benefits of the continuous-time state......Surplus production modelling has a long history as a method for managing data-limited fish stocks. Recent advancements have cast surplus production models as state-space models that separate random variability of stock dynamics from error in observed indices of biomass. We present a stochastic...... and improve estimation of reference points relative to discrete-time analysis of aggregated annual data. Finally, subannual data from five North Sea stocks are analysed with particular focus on using residual analysis to diagnose model insufficiencies and identify necessary model extensions such as robust...

  19. Continuous production of palm biofuel under supercritical ethyl acetate

    International Nuclear Information System (INIS)

    Komintarachat, Cholada; Sawangkeaw, Ruengwit; Ngamprasertsith, Somkiat


    Highlights: • Continuous synthesized biofuel from palm oil in supercritical ethyl acetate was examined. • Mass flow rate of palm oil and ethyl acetate mixture influent to biofuel production in continuous system. • Water addition to reacting mixture improves the production of fatty acid ethyl esters and triacetin. • The generated acetic acid from ETA hydrolysis can protect the products from thermal decomposition. - Abstract: The interesterification of palm oil in supercritical ethyl acetate (ETA) to produce fatty acid ethyl ester (FAEEs) or biofuel was conducted in a continuous tubular reactor. The density of the mixtures in the system was estimated using the Peng–Robinson equation of state process simulator, and the residence time was calculated. The effects of the reaction conditions, including the molar ratios of palm oil to ethyl acetate, the temperature, and the pressure, were investigated under various mass flow rates of the mixtures and optimized. The results showed that reaction temperatures above 653 K and long residence times affected the content of FAEEs and triacetin, a valuable by-product. The addition of water to the mixture in a 1:30:10 M ratio of palm oil to ethyl acetate to water at 653 K, 16 MPa, and a mixture mass flow rate of 1.5 g/min increased the total production of FAEEs and triacetin from 90.9 to 101.5 wt% in 42.4 min. The main finding of the present study is that triglyceride associated with ETA hydrolysis used to form acetic acid protected the products from decomposition at high temperatures and long residence times. The results will aid the selection of an efficient and economical process for alternative biofuel production from palm oil in supercritical ETA

  20. Single-Stage Revision Arthroplasty for Infection-An Underutilized Treatment Strategy. (United States)

    Negus, Jonathan J; Gifford, Peter B; Haddad, Fares S


    The burden of revision arthroplasty surgery for infection is rising as the rate of primary arthroplasty surgery increases. Infected arthroplasty rates are now relatively low, but the sheer increase in volume is leading to considerable patient morbidity and significant increases in costs to the health care system. Single-stage revision for infection is one of the several accepted treatment options, but the indications and results are debated. This review aims to clarify the current evidence. MEDLINE/PubMed databases were reviewed for studies that looked at single- or one-stage revision knee or hip arthroplasty for infection. There is increasing evidence that single-stage revision for infection can control infection and with decreased morbidity, mortality, and health care costs compared with a staged approach. However, the indications are still debated. Recently, there has been a determined effort to define an infected arthroplasty in a manner that will allow for standardization of reporting in the literature. The evidence supporting single stage for knee arthroplasty is catching up with the result with hip arthroplasty. High-quality data from randomized controlled trials are now pending. After the gradual evolution of using the single-stage approach, with the widespread acceptance of this definition, we can now standardize comparisons across the world and move toward a refined definition of the ideal patient population for single-stage arthroplasty revision in both the hip and the knee population. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Numerical Simulation of single-stage axial fan operation under dusty flow conditions (United States)

    Minkov, L. L.; Pikushchak, E. V.


    Assessment of the aerodynamic efficiency of the single-stage axial flow fan under dusty flow conditions based on a numerical simulation using the computational package Ansys-Fluent is proposed. The influence of dust volume fraction on the dependences of the air volume flow rate and the pressure drop on the rotational speed of rotor is demonstrated. Matching functions for formulas describing a pressure drop and volume flow rate in dependence on the rotor speed and dust content are obtained by numerical simulation for the single-stage axial fan. It is shown that the aerodynamic efficiency of the single-stage axial flow fan decreases exponentially with increasing volume content of dust in the air.

  2. Design considerations for single-stage and two-stage pneumatic pellet injectors

    International Nuclear Information System (INIS)

    Gouge, M.J.; Combs, S.K.; Fisher, P.W.; Milora, S.L.


    Performance of single-stage pneumatic pellet injectors is compared with several models for one-dimensional, compressible fluid flow. Agreement is quite good for models that reflect actual breech chamber geometry and incorporate nonideal effects such as gas friction. Several methods of improving the performance of single-stage pneumatic pellet injectors in the near term are outlined. The design and performance of two-stage pneumatic pellet injectors are discussed, and initial data from the two-stage pneumatic pellet injector test facility at Oak Ridge National Laboratory are presented. Finally, a concept for a repeating two-stage pneumatic pellet injector is described. 27 refs., 8 figs., 3 tabs

  3. imulation Results of Single Stage AC- AC Converter for Induction Heating

    Directory of Open Access Journals (Sweden)



    Full Text Available This paper presents simulation of single stage Induction heating system with series Load Resonance. Low frequency AC is converted in to High Frequency Ac using newly developed ZVS-PWM high frequency inverter. This High Frequency is used for Induction Heating .Single stage AC-AC converter system is modeled and simulated using Matlab Simulink. The simulation results of ZVS-PWM high frequency system are presented. The effectiveness of this UFAC-to-HFAC direct power frequency converter using IGBTs for consumer high-frequency IH appliances is evaluated and proved on the basis of simulation results.

  4. Moving from batch towards continuous organic‐chemical pharmaceutical production

    DEFF Research Database (Denmark)

    Cervera Padrell, Albert Emili

    alkylation reaction was achieved using a filter reactor coupled with a side‐entry tubular reactor, using real‐time in‐line near‐infrared (NIR) spectroscopy for monitoring the reaction and ensuring the right product quality. A subsequent hydrolysis of the alkoxide product was performed in continuous mode......Pharmaceutical ingredients have traditionally been produced in batches using multipurpose stirred vessels. Reactions and separations have typically been tailored to fit these units, facing multiple limitations when transferring synthetic routes from the laboratory to industrial scale. Scaling up...... thus resulted in many cases in low reaction yields and separation efficiencies. These limitations were however compensated by a relatively fast process implementation. For the pharmaceutical industry this meant that new drug products could be exclusively marketed for a longer time period, resulting...

  5. Optimization of asparaginase production from Zymomonas mobilis by continuous fermentation

    Directory of Open Access Journals (Sweden)

    Francieli Bortoluzzi Menegat


    Full Text Available Asparaginase is an enzyme used in clinical treatments as a chemotherapeutic agent and in food technology to prevent acrylamide formation in fried and baked foods. Asparaginase is industrially produced by microorganisms, mainly gram-negative bacteria. Zymomonas mobilis is a Gram-negative bacterium that utilizes glucose, fructose and sucrose as carbon source and has been known for its efficiency in producing ethanol, sorbitol, levan, gluconic acid and has recently aroused interest for asparaginase production. Current assay optimizes the production of Z. mobilis asparaginase by continuous fermentation using response surface experimental design and methodology. The studied variables comprised sucrose, yeast extract and asparagine. Optimized condition obtained 117.45 IU L-1 with dilution rate 0.20 h-1, yeast extract 0.5 g L-1, sucrose 20 g L-1 and asparagine 1.3 g L-1. Moreover, carbon:nitrogen ratio (1:0.025 strongly affected the response of asparaginase activity. The use of Z. mobilis by continuous fermentation has proved to be a promising alternative for the biotechnological production of asparaginase.

  6. Temperature-phased anaerobic digestion of food waste: A comparison with single-stage digestions based on performance and energy balance. (United States)

    Xiao, Benyi; Qin, Yu; Zhang, Wenzhe; Wu, Jing; Qiang, Hong; Liu, Junxin; Li, Yu-You


    The temperature-phased anaerobic digestion (TPAD) of food waste was studied for the purpose of comparing with single-stage mesophilic and thermophilic anaerobic digestion. The biogas and methane yields in the TPAD during the steady period were 0.759 ± 0.115 L/g added VS and 0.454 ± 0.201 L/g added VS, which were lower than those in the two single-stage anaerobic digestion. The improper sludge retention time may be the reason for the lower biogas and methane production in TPAD. The removal of volatile solids in the TPAD was 78.55 ± 4.59% and the lowest among the three anaerobic digestion processes. The reaction ratios of the four anaerobic digestion steps in the TPAD were all lower than those in the two single-stage anaerobic digestion. The energy conversion efficiency of the degraded substrate in the TPAD was similar with those in single-stage mesophilic and thermophilic anaerobic digestion systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Continuous dry fermentation of swine manure for biogas production

    International Nuclear Information System (INIS)

    Chen, Chuang; Zheng, Dan; Liu, Gang–Jin; Deng, Liang–Wei; Long, Yan; Fan, Zhan–Hui


    Highlights: • Continuous dry fermentation of swine manure for biogas production is feasible. • The feedstock TS concentration exerted a significant impact on biogas production. • Influences of ammonia and digestate liquidity were investigated in this study. • The results showed that the feedstock TS of swine manure should not exceed 30%. - Abstract: A down plug-flow anaerobic reactor (DPAR) was designed for the feasibility study on continuous dry fermentation of swine manure without any additional stirring. Using fresh swine manure as the feedstock with TS concentration (w/w) of 20%, 25%, 30%, and 35%, stable volumetric biogas production rates of 2.40, 1.92, 0.911, and 0.644 L·(L d) −1 and biogas yields of 0.665, 0.532, 0.252, and 0.178 L g −1 VS were obtained respectively, and the TS degradation rates were 46.5%, 45.4%, 53.2%, and 55.6%, respectively. With the increase of feedstock TS concentration, the concentration of ammonia nitrogen grew up to the maximum value of 3500 mg L −1 . Biogas production was obviously inhibited when the concentration of ammonia nitrogen was above 3000 mg L −1 . The maximal volumetric biogas production rate of 2.34 L·(L d) −1 and biogas yield of 0.649 L g −1 VS were obtained with TS concentration of 25% at 25 °C without inhibition. Liquidity experiments showed that TS concentration of digestate could be less than 15.8%, and the flow rate of digestate more than 0.98 m s −1 when the feedstock TS concentration was less than 35%, which indicated the digestate could be easily discharged from a DPAR. Therefore, it is feasible to conduct a continuous dry fermentation in a DPAR using fresh swine manure as the feedstock with TS concentration less than 35%, whereas the feedstock TS concentration should not exceed 30% to achieve the maximal biogas production rate and biogas yield

  8. Single-stage oxidative dehydrogenation of n-butaneand isopentane in adiabatic sectional reactors with supply of oxygene and water steam

    International Nuclear Information System (INIS)

    Azizov, A.G; Gadji-Kasumov, V.S


    Full text: The advanced technique of single-stage dehydrogenation of n-butane and iso-pentane in adiabatic sectional with separate supply of oxygen on every section is offered. The substance of the novel method consist in water metering for every section. Such technological technique considerably cut the specific energy expenses on high temperature water steam production, increase the yield and selectivity of main products formation at the expense of more complete partial oxidation of the correspondend olefins.

  9. Analysis of U and Pu resin bead samples with a single stage mass spectrometer

    International Nuclear Information System (INIS)

    Smith, D.H.; Walker, R.L.; Bertram, L.K.; Carter, J.A.


    Resin bead sampling enables the shipment of nanogram U and Pu quantities for analysis. Application of this sampling technique to safeguards was investigated with a single-stage mass spectrometer. Standards gave results in good agreement with NBS certified values. External precisions of +-0.5% were obtained on isotopic ratios of approx. 0.01; precisions on quantitative measurements are +-1.0%

  10. Practical Considerations Concerning the Interleaved Transition Mode Single-stage Ballast

    DEFF Research Database (Denmark)

    Teodorescu, Remus; Kjær, Søren Bækhøj; Munk-Nielsen, Stig


    The aim of this paper is to present a novel single-stage interleaved ballast focusing on practical design aspects like: key current expression, overall losses, harmonic analysis of the differential-mode EMI current and preheating ballast function. A new preheating method is also presented. A PSPI...

  11. Single-Stage Low-Power Quadrature RF Receiver Front-End: The LMV Cell

    DEFF Research Database (Denmark)

    Liscidini, Antonio; Mazzanti, Andrea; Tonietto, Riccardo


    This paper presents the first quadrature RF receiver front-end where, in a single stage, low-noise amplifier (LNA), mixer and voltage-controlled oscillator (VCO) share the same bias current. The new structure exploits the intrinsic mixing functionality of a classical LC-tank oscillator providing ...

  12. Single stage buck-boost DC-AC neutral point clamped inverter

    DEFF Research Database (Denmark)

    Mo, Wei; Loh, Poh Chiang; Andrew, A.


    This paper proposes a new single stage buck-boost DC-AC neutral point clamped inverter topology which integrates the cascaded configurations of recently introduced inductor-capacitor-capacitor-transformer impedance source network (by Adamowicz) and classic NPC configuration. As a consequence...

  13. Comparison between a two-stage and single-stage digesters when ...

    African Journals Online (AJOL)

    Phenol is a pollutant found in many industrial wastewaters, which diminishes biogas formation in anaerobic digesters. In this study, a two-stage (acidogenic and methanogenic) anaerobic digester (TSAD) was compared to a single stage digester (SSD), in treating a synthetic wastewater contaminated with phenol.

  14. Production of glucoamylase by continuous two-step cultivation

    Energy Technology Data Exchange (ETDEWEB)

    Ambartsumyan, L.I.; Popova, N.F.; Gernet, M.V.; Filatov, L.N.


    The production of glucoamylase by Endomycospis strain 20-9 was studied using a continuous 2-step fermentation. Two fermentors, each with a capacity of 3L, were used. As major substrates for fermentation, the 1st fermentor contained 2% corn meal liquor, and the 2nd fermentor contained dilute corn starch. Elevation of the dilution rate in the 1st fermentor from 0.035 to 0.07 h-1 increased the glucoamylase activity from 10 to 40 units/mL. Maximum glucoamylase production in the 2nd fermentor (22-24 units/mL) was observed with 0.8-1.2% starch. The optimal values of aeration and pH in both fermentors are given.

  15. Use of tower reactors for continuous ethanol production

    Directory of Open Access Journals (Sweden)

    M.C. Viegas


    Full Text Available The purpose of this work was to develop a continuous fermentation system operating with a tower reactor using some flocculent yeast strains isolated from an industrial process. The strain was an used in the trial of the proposed system, composed of two serial glass tower reactor. The effects of the following variables were studied on the yield and productivity of the system: total reducing sugar (TRS, concentration in feeding, recycle flow in the second reactor, residence time and diameter/height ratio of the reactors. It was observed that the TRS concentration in feeding and residence time is the variables that interfere most with the productivity of the system. Yield was not affected by any of the variables within the range of values studied. All trials were performed according to a factorial experimental design (making up a total of 19 trials and the results were evaluated by response surface.

  16. Landsat Data Continuity Mission (LDCM) Standard Product Generation and Characteristics (United States)

    Micijevic, E.; Hayes, R.


    prefer uncorrected data a Level 0 Reformatted Product (L0Rp) product will be available. The standard L1T product for L8 will be a 16-bit, north up Universal Transverse Mercator (UTM) projection, Cubic Convolution (CC) resampled, GeoTIFF file. The delivered tar file contains eight 30-meter OlI multispectral bands, one 15-meter OLI Panchromatic band, two TIRS thermal bands, a Quality Band (QB), a metadata file, and an Angle Band. The QB is a file that contains quality statistics from the image data and cloud mask for the scene. The metadata file contains information about the product ordered and is essential for the end user to know how that product was processed. The Angle Band is a binary image file that contains the solar angle information for the scene data collected. The L1T reflectance product bands will be generated with no sun angle correction applied. The angle band will enable an optional TOA reflectance calculation using the sun angles specific to each image pixel. This method was chosen to maintain continuity with Landsat products while allowing the users that require a per pixel sun angle correction to have that capability. An example of a L8 product can be downloaded from the Landsat website located at: The sample L8 product was created using Landsat 7 data projected onto a L8 grid and processed to LDCM data product specifications.

  17. Continuous dry fermentation of swine manure for biogas production. (United States)

    Chen, Chuang; Zheng, Dan; Liu, Gang-Jin; Deng, Liang-Wei; Long, Yan; Fan, Zhan-Hui


    A down plug-flow anaerobic reactor (DPAR) was designed for the feasibility study on continuous dry fermentation of swine manure without any additional stirring. Using fresh swine manure as the feedstock with TS concentration (w/w) of 20%, 25%, 30%, and 35%, stable volumetric biogas production rates of 2.40, 1.92, 0.911, and 0.644L · (Ld)(-1) and biogas yields of 0.665, 0.532, 0.252, and 0.178 L g(-)(1)VS were obtained respectively, and the TS degradation rates were 46.5%, 45.4%, 53.2%, and 55.6%, respectively. With the increase of feedstock TS concentration, the concentration of ammonia nitrogen grew up to the maximum value of 3500 mg L(-1). Biogas production was obviously inhibited when the concentration of ammonia nitrogen was above 3000 mg L(-1). The maximal volumetric biogas production rate of 2.34 L ·(Ld)(-1) and biogas yield of 0.649 L g(-1)VS were obtained with TS concentration of 25% at 25°C without inhibition. Liquidity experiments showed that TS concentration of digestate could be less than 15.8%, and the flow rate of digestate more than 0.98 m s(-1) when the feedstock TS concentration was less than 35%, which indicated the digestate could be easily discharged from a DPAR. Therefore, it is feasible to conduct a continuous dry fermentation in a DPAR using fresh swine manure as the feedstock with TS concentration less than 35%, whereas the feedstock TS concentration should not exceed 30% to achieve the maximal biogas production rate and biogas yield. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Outcomes of single-stage grip-release reconstruction in tetraplegia. (United States)

    Reinholdt, Carina; Fridén, Jan


    To evaluate the outcomes of our technique for single-stage grip-release reconstruction and compare it with previous 1- and 2-stage grip reconstructions in tetraplegia. A total of 14 patients (16 hands) with tetraplegia underwent a single-stage combination of operations to provide pinch, grip, and release function. We compared the study group with a historical control group of 15 patients (18 hands) who had been treated with staged flexion-extension grip-release reconstructions. Both groups were classified as ocular cutaneous 4. Assessment parameters included grip and pinch strength, maximal opening of the first webspace, and Canadian Occupational Performance Measurement. Both groups were rehabilitated with early active mobilization beginning the first day after surgery. Grip strength and opening of the first webspace were significantly greater in the single-stage group than in the comparative group. Pinch strength was not significantly different between groups. On the Canadian Occupational Performance Measurement score, patients belonging to the single-stage group were highly satisfied (increase of 3.7 points) and could perform several of their self-selected goals (3.5 points of improvement). The single-stage grip-release reconstruction provides people who have spinal cord injuries and tetraplegia with improved and reliable grip function; active finger flexion, active thumb flexion, passive thumb extension, and passive interossei function can all be achieved through this procedure. Early active mobilization is particularly important in improving functional outcome after this combination of grip reconstruction procedures. Therapeutic III. Copyright © 2013 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  19. Development of continuous deglycerolisation reactor for ethyl ester production

    Directory of Open Access Journals (Sweden)

    Ruamporn Nikhom


    Full Text Available In this work, the development of continuous deglycerolisation (CD reactor for ethyl ester production was investigated to improve the ethyl ester conversion. The device to assist separation of glycerol, in the CD unit, integrates transesterification (mixing zone and separation (settling zone into one unit. For reversible transesterification, removing glycerol during reaction can drive the equilibrium to the product side in order to achieve high conversion. Two models of device to assist separation of glycerol have been carried out to investigate the suitable conditions for ethyl ester production. Results showed that the fin-type model could separate higher amount of glycerol from the reaction system in order to achieve high transesterification conversion. The suitable conditions found in this study were: molar ratio of oil to ethanol of 1:5, KOCH3 concentration of 1.6 %wt. retention time of 15 min and reaction temperature of 70°C. At these conditions, ethyl ester’s purity and yield were 97.3%wt. and 92.0%wt., respectively. In addition, the fuel properties of the final ethyl ester product met the biodiesel standard for methyl ester which specified by Department of Energy Business.


    Cragg, Gordon M.; Newman, David J.


    1. Background Nature has been a source of medicinal products for millennia, with many useful drugs developed from plant sources. Following discovery of the penicillins, drug discovery from microbial sources occurred and diving techniques in the 1970s opened the seas. Combinatorial chemistry (late 1980s), shifted the focus of drug discovery efforts from Nature to the laboratory bench. 2. Scope of Review This review traces natural products drug discovery, outlining important drugs from natural sources that revolutionized treatment of serious diseases. It is clear Nature will continue to be a major source of new structural leads, and effective drug development depends on multidisciplinary collaborations. 3. Major Conclusions The explosion of genetic information led not only to novel screens, but the genetic techniques permitted the implementation of combinatorial biosynthetic technology and genome mining. The knowledge gained has allowed unknown molecules to be identified. These novel bioactive structures can be optimized by using combinatorial chemistry generating new drug candidates for many diseases. 4 General Significance: The advent of genetic techniques that permitted the isolation / expression of biosynthetic cassettes from microbes may well be the new frontier for natural products lead discovery. It is now apparent that biodiversity may be much greater in those organisms. The numbers of potential species involved in the microbial world are many orders of magnitude greater than those of plants and multi-celled animals. Coupling these numbers to the number of currently unexpressed biosynthetic clusters now identified (>10 per species) the potential of microbial diversity remains essentially untapped. PMID:23428572

  1. Continued SOFC cell and stack technology and improved production methods

    Energy Technology Data Exchange (ETDEWEB)

    Wandel, M.; Brodersen, K.; Phair, J. (and others)


    Within this project significant results are obtained on a number of very diverse areas ranging from development of cell production, metallic creep in interconnect to assembling and test of stacks with foot print larger than 500 cm2. Out of 38 milestones 28 have been fulfilled and 10 have been partly fulfilled. This project has focused on three main areas: 1) The continued cell development and optimization of manufacturing processes aiming at production of large foot-print cells, improving cell performance and development environmentally more benign production methods. 2) Stack technology - especially stacks with large foot print and improving the stack design with respect to flow geometry and gas leakages. 3) Development of stack components with emphasis on sealing (for 2G as well as 3G), interconnect (coat, architecture and creep) and test development. Production of cells with a foot print larger than 500 cm2 is very difficult due to the brittleness of the cells and great effort has been put into this topic. Eight cells were successfully produced making it possible to assemble and test a real stack thereby giving valuable results on the prospects of stacks with large foot print. However, the yield rate is very low and a significant development to increase this yield lies ahead. Several lessons were learned on the stack level regarding 'large foot print' stacks. Modelling studies showed that the width of the cell primarily is limited by production and handling of the cell whereas the length (in the flow direction) is limited by e.g. pressure drop and necessary manifolding. The optimal cell size in the flow direction was calculated to be between approx20 cm and < 30 cm. From an economical point of view the production yield is crucial and stacks with large foot print cell area are only feasible if the cell production yield is significantly enhanced. Co-casting has been pursued as a production technique due to the possibilities in large scale production

  2. Continuous fermentative hydrogen production in different process conditions

    Energy Technology Data Exchange (ETDEWEB)

    Nasirian, N. [Islamic Azad Univ., Shoushtar (Iran, Islamic Republic of). Dept. of Agricultural Mechanization; Almassi, M.; Minaee, S. [Islamic Azad Univ., Tehran (Iran, Islamic Republic of). Dept. of Agricultural Mechanization; Widmann, R. [Duisburg-Essen Univ., Essen (Germany). Dept. of Environmental Engineering, Waste and Water


    This paper reported on a study in which hydrogen was produced by fermentation of biomass. A continuous process using a non-sterile substrate with a readily available mixed microflora was used on heat treated digested sewage sludge from a wastewater treatment plant. Hydrogen was produced from waste sugar at a pH of 5.2 and a temperature of 37 degrees C. An experimental setup of three 5.5 L working volume continuously stirred tank reactors (CSTR) in different stirring speeds were constructed and operated at 7 different hydraulic retention times (HRTs) and different organic loading rates (OLR). Dissolved organic carbon was examined. The results showed that the stirring speed of 135 rpm had a beneficial effect on hydrogen fermentation. The best performance was obtained in 135 rpm and 8 h of HRT. The amount of gas varied with different OLRs, but could be stabilized on a high level. Methane was not detected when the HRT was less than 16 h. The study identified the reactor in which the highest specific rate of hydrogen production occurred.

  3. Palm Olein Polyols Production by Batch and Continuous Hydrolysis

    International Nuclear Information System (INIS)

    Darfizzi Derawi; Jumat Salimon; Darfizzi Derawi


    Di-hydroxy-PO degree (70 % of yield) was synthesised through oxirane cleavage of epoxidized palm olein (EPO degree) by using continuous and batch hydrolysis process. Both hydrolysis processes obtained an optimum oxirane cleavage yield (97.2 %) by using perchloric acid 3 % v/ wt for 90 min (continuous process) and 75 min (batch process). The presence of stretching vibration broadband peak of hydroxyl at wavenumber 3429 cm -1 shown on the Fourier transformation infra-red (FTIR) spectrum, indicate formation of polyols compound. The carbon-nuclear magnetic resonance ( 13 C-NMR) spectrum of di-hydroxy-PO o showed the presence of carbon peak bonded with hydroxyl (74.5 ppm). The proton-nuclear magnetic resonance ( 1 H-NMR) spectrum of di-hydroxy-PO o showed the presence of proton peak attached to the carbon of polyols (3.4 ppm) and proton of hydroxyl (4.6 ppm). Kinematic viscosity of polyols product (110.7 mg KOH/ g oil) were 1435.2 cSt (40 degree Celsius) and 55.2 cSt (100 degree Celsius) with the viscosity index of 78. (author)

  4. Validation of a PC based program for single stage absorption heat pump (United States)

    Zaltash, A.; Ally, M. R.


    An interactive computer code was developed to evaluate single stage absorption heat pump performance for temperature amplifier and heat amplifier modes using water as the refrigerant. This program performs the cycle calculations for single stage cycles based on the polynomial expressions developed to correlate experimental vapor-liquid-equilibrium (VLE) and specific enthalpy-concentration data for LiBr/water and (Li, K, Na)NO3 water systems as well as the properties of pure water. The operating parameters obtained by this program were tested against mass and energy balances in documented cases and the results show that the maximum deviation between coefficient of performance (COP) values obtained by this software and the ones previously calculated is less than 3 percent. In addition, this program was used to study the effect of solution temperature leaving the absorber on the other operating parameters. This type of analysis could be used to improve and optimize cycle design.

  5. Grid Integration of Single Stage Solar PV System using Three-level Voltage Source Converter (United States)

    Hussain, Ikhlaq; Kandpal, Maulik; Singh, Bhim


    This paper presents a single stage solar PV (photovoltaic) grid integrated power generating system using a three level voltage source converter (VSC) operating at low switching frequency of 900 Hz with robust synchronizing phase locked loop (RS-PLL) based control algorithm. To track the maximum power from solar PV array, an incremental conductance algorithm is used and this maximum power is fed to the grid via three-level VSC. The use of single stage system with three level VSC offers the advantage of low switching losses and the operation at high voltages and high power which results in enhancement of power quality in the proposed system. Simulated results validate the design and control algorithm under steady state and dynamic conditions.

  6. Single-stage osseointegrated implants for nasal prosthodontic rehabilitation: A clinical report. (United States)

    de Carvalho, Bruna M D F; Freitas-Pontes, Karina M; de Negreiros, Wagner A; Verde, Marcus A R L


    Malignant tumors in the nasal region may be treated by means of invasive surgical procedures, with large facial losses. Nasal prostheses, retained by osseointegrated facial implants, instead of plastic surgery, will, in most patients, offer good biomechanical and cosmetic results. This clinical report describes the prosthetic rehabilitation of a patient with nasal cancer who had the entire nasal vestibule removed in a single-stage surgical procedure in order to shorten the rehabilitation time. The nasal prosthesis was built on a 3-magnet bar and was made of platinum silicone with intrinsic pigmentation, thereby restoring the patient's appearance and self-esteem. The authors concluded that single-stage implants may reduce the rehabilitation time to as little as 1 month, and the correct use of materials and techniques may significantly improve the nasal prosthesis. Copyright © 2015 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  7. Single-stage Modified Duhamel procedure for Hirschsprung′s disease : Our experience

    Directory of Open Access Journals (Sweden)

    Paras R Kothari


    Full Text Available Introduction: Primary single-stage pull-through for Hirschsprung′s disease (HD has been reported to give comparable surgical outcomes to staged operations with less morbidity. Herein, we present our experience with single-stage Modified Duhamel procedure for management of HD. Patients and Methods: This was a review of 48 cases of HD who underwent single-stage Modified Duhamel procedure without a protective colostomy. Results: The age at surgery ranged from 6 months to 10 years (median - 9 months, mean - 2.3 years. The average weight of the child was 7.2 kg (range, 4.9-22 kg. 38 (79.2% patients had classical rectosigmoid HD, the rest being long segment HD (the proximal most level being the splenic flexure. The average duration of surgery was 175 minutes (range, 130-245 minutes. The average blood loss was 45 ml. The average hospital stay was 7.2 days (range: 6-10 days. The major postoperative complications (n=3 included postoperative adhesive intestinal obstruction, anastomotic leak and persistent constipation due to residual aganglionosis. Each required a re-exploration. Minor complications included surgical site infection (n=3 and post-operative enterocolitis (n=3, which were managed conservatively. Six patients had constipation for a limited period post-operatively. All patients have a satisfactory functional outcome and normal development and growth. Conclusions: For HD, we recommend that single-stage Modified Duhamel procedure should be the preferred approach in view of its low morbidity, satisfactory functional outcome and avoidance of stoma, multiple surgeries and economic benefit in view of decreased hospital stay.

  8. Advanteges of using Two-Switch Forward in Single-Stage Power Factor Corrected Power Supplies

    DEFF Research Database (Denmark)

    Petersen, Lars


    A single-Stage power factor corrected power supply using a two-switch forward is proposed to increase efficiency. The converter is operated in the DCM (Discontinues Conduction Mode). This will insure the intermediate DC-bus to be controlled only by means of circuit parameters and therefore...... power supply has been implemented. The measured efficiency and power factor are about 87% and 0.96 respectively....

  9. The first preliminary experiments on an 84 GHz gyrotron with a single-stage depressed collector

    International Nuclear Information System (INIS)

    Shimozuma, T.; Sato, M.; Takita, Y.


    We fabricated and tested an 84GHz gyrotron with a single-stage depressed collector. The gyrotron has a high-voltage insulating section made of a low loss silicon nitride composite. In this preliminary experiment in the depressed collector configuration, we obtained 591kW, 41% operation with a depression voltage of 22.5kV. Access to the higher efficiency region was inhibited by an increase in anode current. (author)

  10. System and method for single-phase, single-stage grid-interactive inverter (United States)

    Liu, Liming; Li, Hui


    The present invention provides for the integration of distributed renewable energy sources/storages utilizing a cascaded DC-AC inverter, thereby eliminating the need for a DC-DC converter. The ability to segment the energy sources and energy storages improves the maintenance capability and system reliability of the distributed generation system, as well as achieve wide range reactive power compensation. In the absence of a DC-DC converter, single stage energy conversion can be achieved to enhance energy conversion efficiency.

  11. High Throughput, Continuous, Mass Production of Photovoltaic Modules

    Energy Technology Data Exchange (ETDEWEB)

    Kurt Barth


    AVA Solar has developed a very low cost solar photovoltaic (PV) manufacturing process and has demonstrated the significant economic and commercial potential of this technology. This I & I Category 3 project provided significant assistance toward accomplishing these milestones. The original goals of this project were to design, construct and test a production prototype system, fabricate PV modules and test the module performance. The original module manufacturing costs in the proposal were estimated at $2/Watt. The objectives of this project have been exceeded. An advanced processing line was designed, fabricated and installed. Using this automated, high throughput system, high efficiency devices and fully encapsulated modules were manufactured. AVA Solar has obtained 2 rounds of private equity funding, expand to 50 people and initiated the development of a large scale factory for 100+ megawatts of annual production. Modules will be manufactured at an industry leading cost which will enable AVA Solar's modules to produce power that is cost-competitive with traditional energy resources. With low manufacturing costs and the ability to scale manufacturing, AVA Solar has been contacted by some of the largest customers in the PV industry to negotiate long-term supply contracts. The current market for PV has continued to grow at 40%+ per year for nearly a decade and is projected to reach $40-$60 Billion by 2012. Currently, a crystalline silicon raw material supply shortage is limiting growth and raising costs. Our process does not use silicon, eliminating these limitations.

  12. Continuous production of nanostructured particles using spatial atomic layer deposition

    International Nuclear Information System (INIS)

    Ommen, J. Ruud van; Kooijman, Dirkjan; Niet, Mark de; Talebi, Mojgan; Goulas, Aristeidis


    In this paper, the authors demonstrate a novel spatial atomic layer deposition (ALD) process based on pneumatic transport of nanoparticle agglomerates. Nanoclusters of platinum (Pt) of ∼1 nm diameter are deposited onto titania (TiO 2 ) P25 nanoparticles resulting to a continuous production of an active photocatalyst (0.12–0.31 wt. % of Pt) at a rate of about 1 g min −1 . Tuning the precursor injection velocity (10–40 m s −1 ) enhances the contact between the precursor and the pneumatically transported support flows. Decreasing the chemisorption temperature (from 250 to 100 °C) results in more uniform distribution of the Pt nanoclusters as it decreases the reaction rate as compared to the rate of diffusion into the nanoparticle agglomerates. Utilizing this photocatalyst in the oxidation reaction of Acid Blue 9 showed a factor of five increase of the photocatalytic activity compared to the native P25 nanoparticles. The use of spatial particle ALD can be further expanded to deposition of nanoclusters on porous, micron-sized particles and to the production of core–shell nanoparticles enabling the robust and scalable manufacturing of nanostructured powders for catalysis and other applications

  13. Single-stage reconstruction of flexor tendons with vascularized tendon transfers. (United States)

    Cavadas, P C; Pérez-García, A; Thione, A; Lorca-García, C


    The reconstruction of finger flexor tendons with vascularized flexor digitorum superficialis (FDS) tendon grafts (flaps) based on the ulnar vessels as a single stage is not a popular technique. We reviewed 40 flexor tendon reconstructions (four flexor pollicis longus and 36 finger flexors) with vascularized FDS tendon grafts in 38 consecutive patients. The donor tendons were transferred based on the ulnar vessels as a single-stage procedure (37 pedicled flaps, three free flaps). Four patients required composite tendon and skin island transfer. Minimum follow-up was 12 months, and functional results were evaluated using a total active range of motion score. Multiple linear regression analysis was performed to evaluate the factors that could be associated with the postoperative total active range of motion. The average postoperative total active range of motion (excluding the thumbs) was 178.05° (SD 50°). The total active range of motion was significantly lower for patients who were reconstructed with free flaps and for those who required composite tendon and skin island flap. Age, right or left hand, donor/motor tendon and pulley reconstruction had no linear effect on total active range of motion. Overall results were comparable with a published series on staged tendon grafting but with a lower complication rate. Vascularized pedicled tendon grafts/flaps are useful in the reconstruction of defects of finger flexor tendons in a single stage, although its role in the reconstructive armamentarium remains to be clearly established. © The Author(s) 2014.

  14. Is Single-stage Revision Safe Following Infected Total Knee Arthroplasty? A Critical Review. (United States)

    Vaishya, Raju; Agarwal, Amit Kumar; Rawat, Sudheer K; Singh, Harsh; Vijay, Vipul


    With the improvement in outcomes and modern prosthesis design, total knee arthroplasty (TKA) has now become a commonly performed surgery. It is postulated that a total of 2-5% of the primary and revision TKA becomes infected every year, requiring a revision procedure which to date is the conventional two-stage revision. The diagnosis and treatment of these periprosthetic infections is a major and challenging task, as it requires precise identification of the pathogen, meticulous debridement, and postoperative rehabilitation. To date, there have been very few studies in existing literature comparing the outcomes of single-stage versus two-stage procedure in infected TKA. The aim of the review was to provide the clinicians an insight into the outcome of the single-stage procedure compared to two-stage procedures and to suggest ways to improve the results further. In the following critical review, a total of 669 cases that underwent either a single or two-stage revision for infected TKA were studied. The postoperative functional scores were comparable in most studies during the early postoperative period. Our data supports the use of a single-stage revision surgery in infected TKA as an alternative to a conventional two-stage procedure. However, larger prospective and multicentric trials are required to validate our findings.

  15. Performance characteristics of an excimer laser (XeCl) with single-stage magnetic pulse compression (United States)

    Varshnay, N. K.; Singh, A.; Benerji, N. S.


    Performance characteristics of an excimer laser (XeCl) with single-stage magnetic pulse compression suitable for material processing applications are presented here. The laser incorporates in-built compact gas circulation and gas cooling to ensure fresh gas mixture between the electrodes for repetitive operation. A magnetically coupled tangential blower is used for gas circulation inside the laser chamber for repetitive operation. The exciter consists of C-C energy transfer circuit and thyratron is used as a high-voltage main switch with single-stage magnetic pulse compression (MPC) between thyratron and the laser electrodes. Low inductance of the laser head and uniform and intense pre-ionization are the main features of the electric circuit used in the laser. A 250 ns rise time voltage pulse was compressed to 100 ns duration with a single-stage magnetic pulse compressor using Ni-Zn ferrite cores. The laser can generate about 150 mJ at ˜100 Hz rep-rate reliably from a discharge volume of 100 cm 3. 2D spatial laser beam profile generated is presented here. The profile shows that the laser beam is completely filled with flat-top which is suitable for material processing applications. The SEM image of the microhole generated on copper target is presented here.

  16. Rings of continuous functions, symmetric products, and Frobenius algebras

    International Nuclear Information System (INIS)

    Buchstaber, Viktor M; Rees, E G


    A constructive proof is given for the classical theorem of Gel'fand and Kolmogorov (1939) characterising the image of the evaluation map from a compact Hausdorff space X into the linear space C(X)* dual to the ring C(X) of continuous functions on X. Our approach to the proof enabled us to obtain a more general result characterising the image of the evaluation map from the symmetric products Sym n (X) into C(X)*. A similar result holds if X=C m and leads to explicit equations for symmetric products of affine algebraic varieties as algebraic subvarieties in the linear space dual to the polynomial ring. This leads to a better understanding of the algebra of multisymmetric polynomials. The proof of all these results is based on a formula used by Frobenius in 1896 in defining higher characters of finite groups. This formula had no further applications for a long time; however, it has appeared in several independent contexts during the last fifteen years. It was used by A. Wiles and R.L. Taylor in studying representations and by H.-J. Hoehnke and K.W. Johnson and later by J. McKay in studying finite groups. It plays an important role in our work concerning multivalued groups. Several properties of this remarkable formula are described. It is also used to prove a theorem on the structure constants of Frobenius algebras, which have recently attracted attention due to constructions taken from topological field theory and singularity theory. This theorem develops a result of Hoehnke published in 1958. As a corollary, a direct self-contained proof is obtained for the fact that the 1-, 2-, and 3-characters of the regular representation determine a finite group up to isomorphism. This result was first published by Hoehnke and Johnson in 1992

  17. Effect of dilution rate on productivity of continuous bacteriophage production in cellstat. (United States)

    Nabergoj, Dominik; Kuzmić, Nina; Drakslar, Benjamin; Podgornik, Aleš


    Ability to efficiently propagate high quantities of bacteriophages (phages) is of great importance considering higher phage production needs in the future. Continuous production of phages could represent an interesting option. In our study, we tried to elucidate the effect of dilution rate on productivity of continuous production of phages in cellstat. As a model system, a well-studied phage T4 and Escherichia coli K-12 as a host were used. Experiments where physiology of bacteria was changing with dilution rate of cellstat and where bacterial physiology was kept constant were performed. For both setups there exists an optimal dilution rate when maximal productivity is achieved. Experimentally obtained values of phage concentration and corresponding productivity were compared with mathematical model predictions, and good agreement was obtained for both types of experiments. Analysis of mathematical model coefficients revealed that latent period and burst size to dilution rate coefficient mostly affect optimum dilution rate and productivity. Due to high sensitivity, it is important to evaluate phage growth parameters carefully, to run cellstat under optimal productivity.

  18. Process performance and product quality in an integrated continuous antibody production process. (United States)

    Karst, Daniel J; Steinebach, Fabian; Soos, Miroslav; Morbidelli, Massimo


    Continuous manufacturing is currently being seriously considered in the biopharmaceutical industry as the possible new paradigm for producing therapeutic proteins, due to production cost and product quality related benefits. In this study, a monoclonal antibody producing CHO cell line was cultured in perfusion mode and connected to a continuous affinity capture step. The reliable and stable integration of the two systems was enabled by suitable control loops, regulating the continuous volumetric flow and adapting the operating conditions of the capture process. For the latter, an at-line HPLC measurement of the harvest concentration subsequent to the bioreactor was combined with a mechanistic model of the capture chromatographic unit. Thereby, optimal buffer consumption and productivity throughout the process was realized while always maintaining a yield above the target value of 99%. Stable operation was achieved at three consecutive viable cell density set points (20, 60, and 40 × 10 6 cells/mL), together with consistent product quality in terms of aggregates, fragments, charge isoforms, and N-linked glycosylation. In addition, different values for these product quality attributes such as N-linked glycosylation, charge variants, and aggregate content were measured at the different steady states. As expected, the amount of released DNA and HCP was significantly reduced by the capture step for all considered upstream operating conditions. This study is exemplary for the potential of enhancing product quality control and modulation by integrated continuous manufacturing. Biotechnol. Bioeng. 2017;114: 298-307. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  19. Minimally Invasive, Single-Stage, Multilevel Surgery for Obstructive Sleep Apnea in Asian Patients. (United States)

    Lin, Hsin-Ching; Friedman, Michael; Chang, Hsueh-Wen; Bonzelaar, Lauren; Salapatas, Anna M; Lin, Meng-Chih; Huang, Kuo-Tung


    This study adds to the literature on the efficacy and low complication rates associated with minimally invasive, single-stage, multilevel surgery for Asian adults with obstructive sleep apnea (OSA) for whom conservative treatment had failed. Overall, our experience has produced results that make this procedure an option for select patients with snoring and OSA. To investigate the effectiveness and safety of anatomy-based, minimally invasive, single-stage, multilevel surgery in the treatment of OSA in an Asian population. This retrospective study enrolled 59 consecutive patients with OSA from a tertiary academic medical center who had multilevel obstruction and unsuccessful conservative therapy and then underwent minimally invasive, single-stage, multilevel surgery. The subjective symptoms and objective polysomnographic findings were collected preoperatively and at a minimum of 3 months postoperatively. The Global Patient Assessment questionnaire was used to assess patient satisfaction after minimally invasive, single-stage, multilevel surgery. Scores on the Epworth Sleepiness Scale and bed partner evaluation of patient's snoring on a visual analog scale (scale of 0-10, with 0 indicating no snoring and 10 indicating the bed partner to leave the room or sleep separately, as assessed by the bed partner). The primary outcomes are a 50% decrease in bed partner's snoring visual analog scale level postoperatively and an improvement of 50% or more in apnea-hypopnea index by an at least 3-month follow-up. Adverse events and patient-reported quality measures were also assessed. Forty-seven patients (36 men and 11 women; mean [SD], 47.3 [10.9] years) with a minimum 3-month follow-up and complete data were included in the analysis. None of the patients had serious perioperative or postoperative complications. Three months postoperatively, the mean (SD) scores on the Epworth Sleepiness Scale and bed partner evaluation of patient's snoring on the visual analog scale decreased

  20. [Single-stage bilateral Pemberton's pericapsular osteotomy in bilateral developmental dysplasia of the hip]. (United States)

    Zorer, Gazi; Bagatur, A Erdem


    This study was designed to evaluate the results of single-stage bilateral Pemberton's pericapsular osteotomy with or without open reduction and to demonstrate its advantages over two separate consecutive interventions in bilateral developmental dysplasia of the hip (DDH). This prospective study included 20 patients (14 girls, 6 boys; mean age 30 months; range 12 to 60 months) with bilateral DDH, who underwent single-stage bilateral Pemberton's pericapsular osteotomy with (14 patients, group A1) or without (6 patients, group A2) open reduction. Twenty patients (16 girls, 4 boys; mean age 24 months; range 13 to 47 months) with unilateral DDH, who underwent Pemberton's pericapsular osteotomy with (12 patients, group B1) or without (8 patients, group B2) open reduction were enrolled into the study as controls. Single- and two-stage procedures were compared with regard to improvement in the acetabular index, complications, mean duration of anesthesia, perioperative need for blood transfusion, length of hospital stay, initiation of walking, overall cost of antibiotic prophylaxis, and total hospital charge. There were no significant differences between A1 and B1, A2 and B2 groups with respect to mean age, gender, pre- and postoperative acetabular indices, and recovery times. However, duration of anesthesia, length of hospital stay, cost of antibiotic prophylaxis, and total hospital charges differed significantly. The amount of blood transfusion differed significantly only between groups A1 and B1. The length of hospital stay and cost of antibiotic prophylaxis in group A2 was twice as much as that of group B2. Increases in other parameters ranged between 22% to 37%. No early or late complications were encountered. Single-stage bilateral Pemberton's pericapsular osteotomy in patients with bilateral DDH seems to have significant advantages over two separate consecutive interventions. However, increased risks of bilateral osteotomies require that sufficiently equipped and

  1. Single-stage electrohydraulic servosystem for actuating on airflow valve with frequencies to 500 hertz (United States)

    Webb, J. A., Jr.; Mehmed, O.; Lorenzo, C. F.


    An airflow valve and its electrohydraulic actuation servosystem are described. The servosystem uses a high-power, single-stage servovalve to obtain a dynamic response beyond that of systems designed with conventional two-stage servovalves. The electrohydraulic servosystem is analyzed and the limitations imposed on system performance by such nonlinearities as signal saturations and power limitations are discussed. Descriptions of the mechanical design concepts and developmental considerations are included. Dynamic data, in the form of sweep-frequency test results, are presented and comparison with analytical results obtained with an analog computer model is made.

  2. 85,000-GPM, single-stage, single-suction LMFBR intermediate centrifugal pump

    International Nuclear Information System (INIS)

    Fair, C.E.; Cook, M.E.; Huber, K.A.; Rohde, R.


    The mechanical and hydraulic design features of the 85,000-gpm, single-stage, single-suction pump test article, which is designed to circulate liquid-sodium coolant in the intermediate heat-transport system of a Large-Scale Liquid Metal Fast Breeder Reactor (LS-LMFBR), are described. The design and analytical considerations used to satisfy the pump performance and operability requirements are presented. The validation of pump hydraulic performance using a hydraulic scale-model pump is discussed, as is the featute test for the mechanical-shaft seal system

  3. Fault Diagnosis for Engine Based on Single-Stage Extreme Learning Machine

    Directory of Open Access Journals (Sweden)

    Fei Gao


    Full Text Available Single-Stage Extreme Learning Machine (SS-ELM is presented to dispose of the mechanical fault diagnosis in this paper. Based on it, the traditional mapping type of extreme learning machine (ELM has been changed and the eigenvectors extracted from signal processing methods are directly regarded as outputs of the network’s hidden layer. Then the uncertainty that training data transformed from the input space to the ELM feature space with the ELM mapping and problem of the selection of the hidden nodes are avoided effectively. The experiment results of diesel engine fault diagnosis show good performance of the SS-ELM algorithm.

  4. Single-stage MPPT control realization for Aalborg inverter in photovoltaic system

    DEFF Research Database (Denmark)

    Zhang, Shuai; Wu, Weimin; Wang, Houqing


    In this paper, the single-stage Maximum Power Point Tracking (MPPT) control strategy for the Aalborg photovoltaic inverter is presented. Aalborg inverter has many advantages, such as high efficiency, wide range of input voltage, minimum voltage drop of the filtering inductors, etc. Nevertheless......, it is essentially a “half-bridge” inverter with two input sources, where one source works in MPPT mode, the other is out of control. If without the reasonable parameter design and the proper control, the bus-voltage of this inverter may change greatly, resulting in the serious power oscillation around maximum power...... that the proposed control strategy has good steady-state and dynamic performances....

  5. Simulation model of a single-stage lithium bromide-water absorption cooling unit (United States)

    Miao, D.


    A computer model of a LiBr-H2O single-stage absorption machine was developed. The model, utilizing a given set of design data such as water-flow rates and inlet or outlet temperatures of these flow rates but without knowing the interior characteristics of the machine (heat transfer rates and surface areas), can be used to predict or simulate off-design performance. Results from 130 off-design cases for a given commercial machine agree with the published data within 2 percent.

  6. Promising results after single-stage reconstruction of the nipple and areola complex

    DEFF Research Database (Denmark)

    Børsen-Koch, Mikkel; Bille, Camilla; Thomsen, Jørn B


    a technique based on a local flap for reconstruction of the nipple in combination with immediate intradermal tattooing for reconstruction of the areola. Results: We reviewed the outcome of 22 cases of women who had simple single-stage reconstruction over a period of one year. We found no major and only two...... minor complications including one case of partial flap necrosis and one case of infection. Only three patients needed additional tattooing after a three-month period. The cosmetic outcome was satisfactory and none of the patients needed corrective procedures. The mean procedure time for unilateral...

  7. Performance of the rebuilt SUERC single-stage accelerator mass spectrometer (United States)

    Shanks, Richard P.; Ascough, Philippa L.; Dougans, Andrew; Gallacher, Paul; Gulliver, Pauline; Rood, Dylan H.; Xu, Sheng; Freeman, Stewart P. H. T.


    The SUERC bipolar single-stage accelerator mass spectrometer (SSAMS) has been dismantled and rebuilt to accommodate an additional rotatable pre-accelerator electrostatic spherical analyser (ESA) and a second ion source injector. This is for the attachment of an experimental positive-ion electron cyclotron resonance (ECR) ion source in addition to a Cs-sputter source. The ESA significantly suppresses oxygen interference to radiocarbon detection, and remaining measurement interference is now thought to be from 13C injected as 13CH molecule scattering off the plates of a second original pre-detector ESA.

  8. The Current of Continuing Professional Development for Product Designers


    山内, 勉; Yamauchi, Tsutomu


    Product Designers are required some skills and knowledge in the product development. Based on my professional career, I presumed three skills, they are, Technical skills, Conceptual skills and Human skills. In this study, I interviewed some Product Designers to make sure what skills are needed in the product development process. It emerged that Product Designers are expected to improve their Conceptual and Human skills besides Technical skills for playing a part at the upper and lower stage o...

  9. Design and analysis of a single stage to orbit nuclear thermal rocket reactor engine

    Energy Technology Data Exchange (ETDEWEB)

    Labib, Satira, E-mail:; King, Jeffrey, E-mail:


    Graphical abstract: - Highlights: • Three NTR reactors are optimized for the single stage launch of 1–15 MT payloads. • The proposed rocket engines have specific impulses in excess of 700 s. • Reactivity and submersion criticality requirements are satisfied for each reactor. - Abstract: Recent advances in the development of high power density fuel materials have renewed interest in nuclear thermal rockets (NTRs) as a viable propulsion technology for future space exploration. This paper describes the design of three NTR reactor engines designed for the single stage to orbit launch of payloads from 1 to 15 metric tons. Thermal hydraulic and rocket engine analyses indicate that the proposed rocket engines are able to reach specific impulses in excess of 800 s. Neutronics analyses performed using MCNP5 demonstrate that the hot excess reactivity, shutdown margin, and submersion criticality requirements are satisfied for each NTR reactor. The reactors each consist of a 40 cm diameter core packed with hexagonal tungsten cermet fuel elements. The core is surrounded by radial and axial beryllium reflectors and eight boron carbide control drums. The 40 cm long reactor meets the submersion criticality requirements (a shutdown margin of at least $1 subcritical in all submersion scenarios) with no further modifications. The 80 and 120 cm long reactors include small amounts of gadolinium nitride as a spectral shift absorber to keep them subcritical upon submersion in seawater or wet sand following a launch abort.

  10. Heavy metal bioleaching and sludge stabilization in a single-stage reactor using indigenous acidophilic heterotrophs. (United States)

    Mehrotra, Akanksha; Sreekrishnan, T R


    Simultaneous sludge digestion and metal leaching (SSDML) have been reported at mesophilic temperature. It is generally perceived that while sludge stabilization is effected by heterotrophs at neutral pH, metal bioleaching is done by acidophilic autotrophs. However, little information is available on the microbial communities involved in the process. This study carried out SSDML in a single-stage reactor using sludge indigenous microorganisms and looked at the bacterial communities responsible for the process. Volatile suspended solids were reduced by more than 40%. The concentration of zinc, copper, chromium, cadmium and nickel decreased by more than 45% in the dry sludge. Acidophilic species of Alicyclobacillus genus were the dominant heterotrophs. A few heterotrophic bacteria were detected which can oxidize iron (Alicyclobacillus ferrooxydans, Alicyclobacillus ferripilum and Ferrimicrobium acidiphilum). Acidithiobacillus ferrooxidans (autotroph) was responsible for the oxidation of both iron and sulfur which lead to a change in the pH from neutral to acidic. The presence of acidophilic heterotrophs, which can oxidize either iron or sulfur, enhanced the efficiency of SSDML process with respect to sludge stabilization and metal leaching. This study shows that it is possible to carry out the SSDML in a single-stage reactor with indigenous microorganisms.

  11. Single-stage micro-scale solvent extraction in parallel microbore tubes using MDIMJ

    International Nuclear Information System (INIS)

    Darekar, Mayur; Singh, K.K.; Joshi, J.M.; Mukhopadhyay, S.; Shenoy, K.T.


    Single-stage micro-scale solvent extraction of U(VI) from simulated lean streams is explored using micro-scale contactor comprising of a MDIMJ (Monoblock Distributor with Integrated Microfluidic Junction) and PTFE microbore tubes. 30% (v/v) TBP in dodecane has been used as the extracting phase. The objective of the study is to demonstrate numbering up approach for scale-up of micro-scale extraction using indigenously conceptualized and fabricated MDIMJ. First the performance of MIDIMJ for equal flow distribution is tested. Then the effects of inlet flow rate and O/A ratio on stage efficiency and percentage extraction are studied. The experiments show that it is easy to scale-up single-stage micro-scale solvent extraction by using MDIMJ for numbering up approach. Maximum capacity tested is 4.8 LPH. With O/A = 2/1, more than 90% extraction is achieved in a very short contact time of less than 3s. The study thus demonstrates possibility of process intensification and easy scale-up of micro-scale solvent extraction

  12. A single stage to orbit rocket with non-cryogenic propellants (United States)

    Clapp, Mitchell B.; Hunter, Maxwell W.


    Different propellant combinations for single-stage-to-orbit-rocket applications were compared to oxygen/hydrogen, including nitrogen tetroxide/hydrazine, oxygen/methane, oxygen/propane, oxygen/RP-1, solid core nuclear/hydrogen, and hydrogen peroxide/JP-5. Results show that hydrogen peroxide and JP-5, which have a specific impulse of 328 s in vacuum and a density of 1,330 kg/cu m. This high-density jet fuel offers 1.79 times the payload specific energy of oxygen and hydrogen. By catalytically decomposing the hydrogen peroxide to steam and oxygen before injection into the thrust chamber, the JP-5 can be injected as a liquid into a high-temperature gas flow. This would yield superior combustion stability and permit easy throttling of the engine by adjusting the amount of JP-5 in the mixture. It is concluded that development of modern hydrogen peroxide/JP-5 engines, combined with modern structural technology, could lead to a simple, robust, and versatile single-stage-to-orbit capability.

  13. Performance evaluation of a piezoactuator-based single-stage valve system subjected to high temperature

    International Nuclear Information System (INIS)

    Jeon, Juncheol; Han, Chulhee; Ung Chung, Jye; Choi, Seung-Bok


    In this paper, a novel single-stage valve system activated by a piezostack actuator is proposed and experimentally evaluated at both room temperature (20 °C) and high temperature (100 °C) conditions. A hinge-lever displacement amplifier is adopted in the valve system to magnify the displacement generated from the piezostack actuator. After explaining the operating principle of the proposed piezostack-driven single-stage valve system, the geometric dimensions and mechanical properties of the valve components are discussed in details. An experimental apparatus is then manufactured to evaluate the performances of the valve system such as flow rate. The experimental apparatus consists of a heat chamber, which can regulate the temperature of the valve system and oil, pneumatic-hydraulic cylinders, a hydraulic circuit, a pneumatic circuit, electronic devices, an interface card, and a high voltage amplifier. The pneumatic-hydraulic cylinder transforms the pneumatic pressure into hydraulic pressure. The performances of the valve system regarding spool response, pressure drop, and flow rate are evaluated and presented. In addition, the performance of the valve system under high temperature condition is compared with that under room temperature condition. The experimental results are plotted in both frequency and time domains. (paper)

  14. Design and analysis of a radial diffuser in a single-stage centrifugal pump

    Directory of Open Access Journals (Sweden)

    Ming-Gao Tan


    Full Text Available Radial diffusers can improve the flow uniformity in pumps and affect the hydraulic performance of centrifugal pumps directly. The diffusion coefficient d is an important parameter in fluid machinery but it has seldom been used in the diffuser design of single-stage centrifugal pumps. To improve the design method of radial diffuser use in centrifugal pumps, the diffusion coefficient was introduced into the design of radial diffusers based on a single-arc hydraulic design method and it was found that the vane outlet angle, vane outlet thickness and vane number have a significant impact on the design results. A single-stage centrifugal pump with a radial diffuser was selected as the research model. The inner flow was simulated using the commercial computational fluid dynamics (CFD program CFX and verified by experiment. The results indicate that the head and efficiency of the pump are best when the vane outlet angle is 6°. The flow area decreases and the flow velocity at radial diffuser outlet increase when the outlet thickness is greater than 2 mm. The hydraulic loss is minimum and the head and efficiency are better when the vane number is 8 at different flow rates. So, the optimal range of the diffusion coefficient for the model pump is around 1.6 to 2. The study indicates that it is feasible to design radial diffusers according to the diffusion coefficient.

  15. Lengthening Temporalis Myoplasty for Single-Stage Smile Reconstruction in Children with Facial Paralysis. (United States)

    Panossian, Andre


    Free muscle transfer for dynamic smile reanimation in facial paralysis is not always predictable with regard to cosmesis. Hospital stays range from 5 to 7 days. Prolonged operative times, longer hospital stays, and excessive cheek bulk are associated with free flap options. Lengthening temporalis myoplasty offers single-stage smile reanimation with theoretical advantages over free tissue transfer. From 2012 to 2014, 18 lengthening temporalis myoplasties were performed in 14 children for smile reconstruction. A retrospective chart review was completed for demographics, operative times, length of hospital stay, and perioperative complications. Fourteen consecutive patients with complete facial paralysis were included. Four patients underwent single-stage bilateral reconstruction, and 10 underwent unilateral procedures. Diagnoses included Möbius syndrome (n = 5), posterior cranial fossa tumors (n = 4), posttraumatic (n = 2), hemifacial microsomia (n = 1), and idiopathic (n = 2). Average patient age was 10.1 years. Average operative time was 410 minutes (499 minutes for bilateral lengthening temporalis myoplasty and 373 for unilateral lengthening temporalis myoplasty). Average length of stay was 3.3 days (4.75 days for bilateral lengthening temporalis myoplasty and 2.8 for unilateral lengthening temporalis myoplasty). Nine patients required minor revisions. Lengthening temporalis myoplasty is a safe alternative to free tissue transfer for dynamic smile reconstruction in children with facial paralysis. Limited donor-site morbidity, shorter operative times, and shorter hospital stays are some benefits over free flap options. However, revisions are required frequently secondary to tendon avulsions and adhesions. Therapeutic, IV.

  16. Hearing rehabilitation with single-stage bilateral vibroplasty in a child with Franceschetti syndrome. (United States)

    Sargsyan, Sona; Rahne, Torsten; Kösling, Sabrina; Eichler, Gerburg; Plontke, Stefan K


    Hearing is of utmost importance for normal speech and social development. Even children who have mild or unilateral permanent hearing loss may experience difficulties with understanding speech, as well as problems with educational and psycho-social development. The increasing advantages of middle-ear implant technologies are opening new perspectives for restoring hearing. Active middle-ear implants can be used in children and adolescents with hearing loss. In addition to the well-documented results for improving speech intelligibility and quality of hearing in sensorineural hearing loss active middle-ear implants are now successfully used in patients with conductive and mixed hearing loss. In this article we present a case of successful, single-stage vibroplasty, on the right side with the fixation of the FMT on the stapes and PORP CLiP vibroplasty on the left side in a 6-year-old girl with bilateral mixed hearing loss and multiple dyslalia associated with Franceschetti syndrome (mandibulofacial dysostosis). CT revealed bilateral middle-ear malformations as well as an atretic right and stenotic left external auditory canal. Due to craniofacial dysmorphia airway and (post)operative, management is significantly more difficult in patients with a Franceschetti syndrome which in this case favoured a single-stage bilateral procedure. No intra- or postoperative surgical complications were reported. The middle-ear implants were activated 4 weeks after surgery. In the audiological examination 6 months after surgery, the child showed 100% speech intelligibility with activated implants on each side.

  17. In-situ sludge pretreatment in a single-stage anaerobic digester. (United States)

    Chen, Yun; Xiao, Keke; Jiang, Xie; Shen, Nan; Zeng, Raymond J; Zhou, Yan


    This study aimed to develop an in-situ sludge pretreatment method by increasing the temperature from thermophilic to extreme thermophilic condition in a single-stage anaerobic digester. The results revealed that a stable performance was obtained within the temperature range of 55-65°C, and the maximum methane yield of 208.51±13.66mL/g VS was obtained at 65°C. Moreover, the maximum extent of hydrolysis (33%) and acidification (27.1%) was also observed at 65°C. However, further increase of temperature to 70°C did not improve the organic conversion efficiency. Microbial community analysis revealed that Coprothermobacter, highly related to acetate oxidisers, appeared to be the abundant bacterial group at higher temperature. A progressive shift in methanogenic members from Methanosarcina to Methanothermobacter was observed upon increasing the temperature. This work demonstrated single-stage sludge digestion system can be successfully established at high temperature (65°C) with stable performance, which can eliminate the need of conventional thermophilic pretreatment step. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Improving biogas production from anaerobic co-digestion of Thickened Waste Activated Sludge (TWAS) and fat, oil and grease (FOG) using a dual-stage hyper-thermophilic/thermophilic semi-continuous reactor. (United States)

    Alqaralleh, Rania Mona; Kennedy, Kevin; Delatolla, Robert


    This paper investigates the feasibility and advantages of using a dual-stage hyper-thermophilic/thermophilic semi-continuous reactor system for the co-digestion of Thickened Waste Activated Sludge (TWAS) and Fat, Oil and Grease (FOG) to produce biogas in high quantity and quality. The performance of the dual-stage hyper-thermophilic (70°C)/thermophilic (55°C) anaerobic co-digestion system is evaluated and compared to the performance of a single-stage thermophilic (55°C) reactor that was used to co-digest the same FOG-TWAS mixtures. Both co-digestion reactors were compared to a control reactor (the control reactor was a single-stage thermophilic reactor that only digested TWAS). The effect of FOG% in the co-digestion mixture (based on total volatile solids) and the reactor hydraulic retention time (HRT) on the biogas/methane production and the reactors' performance were thoroughly investigated. The FOG% that led to the maximum methane yield with a stable reactor performance was determined for both reactors. The maximum FOG% obtained for the single-stage thermophilic reactor at 15 days HRT was found to be 65%. This 65% FOG resulted in 88.3% higher methane yield compared to the control reactor. However, the dual-stage hyper-thermophilic/thermophilic co-digestion reactor proved to be more efficient than the single-stage thermophilic co-digestion reactor, as it was able to digest up to 70% FOG with a stable reactor performance. The 70% FOG in the co-digestion mixture resulted in 148.2% higher methane yield compared to the control at 15 days HRT. 70% FOG (based on total volatile solids) is so far the highest FOG% that has been proved to be useful and safe for semi-continuous reactor application in the open literature. Finally, the dual-stage hyper-thermophilic/thermophilic co-digestion reactor also proved to be efficient and stable in co-digesting 40% FOG mixtures at lower HRTs (i.e., 9 and 12 days) and still produce high methane yields and Class A effluents

  19. Design of Continuous Crystallizers for Production of Active Pharmaceutical Ingredients

    DEFF Research Database (Denmark)

    Capellades Mendez, Gerard; Christensen, Troels V.

    Manufacturing (CPM) could lead to significant reductions in the production costs and an improved consistency of the product quality. As a result, development of such processes has received a significant interest in the past decade. To be able to compete in a patent-driven industry with relatively small annual...... production rates, CPM should be conducted in versatile units that offer short process development times and can be used for production of different compounds. This PhD project deals with the development of novel crystallizer configurations and process design methods oriented to the crystallization of APIs...

  20. Importance of stability study of continuous systems for ethanol production. (United States)

    Paz Astudillo, Isabel Cristina; Cardona Alzate, Carlos Ariel


    Fuel ethanol industry presents different problems during bioreactors operation. One of them is the unexpected variation in the output ethanol concentration from the bioreactor or a drastic fall in the productivity. In this paper, a compilation of concepts and relevant results of several experimental and theoretical studies about dynamic behavior of fermentation systems for bioethanol production with Saccharomyces cerevisiae and Zymomonas mobilis is done with the purpose of understanding the stability phenomena that could affect the productivity of industries producing fuel ethanol. It is shown that the design of high scale biochemical processes for fuel ethanol production must be done based on stability studies. © 2010 Elsevier B.V. All rights reserved.

  1. Plasma gasification of refuse derived fuel in a single-stage system using different gasifying agents. (United States)

    Agon, N; Hrabovský, M; Chumak, O; Hlína, M; Kopecký, V; Masláni, A; Bosmans, A; Helsen, L; Skoblja, S; Van Oost, G; Vierendeels, J


    The renewable evolution in the energy industry and the depletion of natural resources are putting pressure on the waste industry to shift towards flexible treatment technologies with efficient materials and/or energy recovery. In this context, a thermochemical conversion method of recent interest is plasma gasification, which is capable of producing syngas from a wide variety of waste streams. The produced syngas can be valorized for both energetic (heat and/or electricity) and chemical (ammonia, hydrogen or liquid hydrocarbons) end-purposes. This paper evaluates the performance of experiments on a single-stage plasma gasification system for the treatment of refuse-derived fuel (RDF) from excavated waste. A comparative analysis of the syngas characteristics and process yields was done for seven cases with different types of gasifying agents (CO2+O2, H2O, CO2+H2O and O2+H2O). The syngas compositions were compared to the thermodynamic equilibrium compositions and the performance of the single-stage plasma gasification of RDF was compared to that of similar experiments with biomass and to the performance of a two-stage plasma gasification process with RDF. The temperature range of the experiment was from 1400 to 1600 K and for all cases, a medium calorific value syngas was produced with lower heating values up to 10.9 MJ/Nm(3), low levels of tar, high levels of CO and H2 and which composition was in good agreement to the equilibrium composition. The carbon conversion efficiency ranged from 80% to 100% and maximum cold gas efficiency and mechanical gasification efficiency of respectively 56% and 95%, were registered. Overall, the treatment of RDF proved to be less performant than that of biomass in the same system. Compared to a two-stage plasma gasification system, the produced syngas from the single-stage reactor showed more favourable characteristics, while the recovery of the solid residue as a vitrified slag is an advantage of the two-stage set-up. Copyright

  2. Productivity of grasslands under continuous and rotational grazing

    NARCIS (Netherlands)

    Lantinga, E.A.


    In the Netherlands, rotational grazing, with grazing periods of 2 to 5 days, is the most common grazing system at present. In contrast with other countries of North-western Europe, the continuous grazing system is used here only to a limited extent. However, the results of numerous

  3. Microbial production of a biofuel (acetone-butanol-ethanol) in a continuous bioreactor: impact of bleed and simultaneous product removal (United States)

    Acetone butanol ethanol (ABE) was produced in an integrated continuous fermentation and product recovery system using a microbial strain Clostridium beijerinckii BA101 for ABE production and fermentation gases (CO2 and H2) for product removal by gas stripping. This represents a continuation of our ...

  4. Magnesium isotope evidence for single stage formation of CB chondrules by colliding planetesimals

    DEFF Research Database (Denmark)

    Olsen, Mia Bjørg Stolberg; Schiller, Martin; Krot, Alexander N.


    Chondrules are igneous spherical objects preserved in chondritic meteorites and believed to have formed during transient heating events in the solar protoplanetary disk. Chondrules present in the metal-rich CB chondrites show unusual chemical and petrologic features not observed in other chondrite...... groups, implying a markedly distinct formation mechanism. Here, we report high-precision Mg-isotope data for 10 skeletal olivine chondrules from the Hammadah al Hamra 237 (HH237) chondrite to probe the formation history of CB chondrules. The Al/Mg ratios of individual chondrules are positively correlated...... to their stable Mg-isotope composition (μMg), indicating that the correlated variability was imparted by a volatility-controlled process (evaporation/condensation). The mass-independent Mg composition (μMg*) of chondrules is consistent with single stage formation from an initially homogeneous magnesium reservoir...

  5. Aeration Strategies To Mitigate Nitrous Oxide Emissions from Single-Stage Nitritation/Anammox Reactors

    DEFF Research Database (Denmark)

    Domingo Felez, Carlos; Mutlu, A. Gizem; Jensen, Marlene Mark


    Autotrophic nitrogen removal is regarded as a resource efficient process to manage nitrogen-rich residual streams. However, nitrous oxide emissions of these processes are poorly documented and strategies to mitigate emissions unknown. In this study, two sequencing batch reactors performing single......-stage nitritation/anammox were operated under different aeration strategies, gradually adjusted over six months. At constant but limiting oxygen loading, synthetic reject water was fed (0.75g-N/L.d) and high nitrogen removal efficiencies (83 +/- 5 and 88 +/- 2%) obtained. Dynamics of liquid phase nitrous (N2O......) and nitric oxide (NO) concentrations were monitored and N2O emissions calculated. Significant decreases in N2O emissions were obtained when the frequency of aeration was increased while maintaining a constant air flow rate (from >6 to 1.7% Delta N2O/Delta TN). However, no significant effect on the emissions...

  6. Multi-disciplinary design optimization and performance evaluation of a single stage transonic axial compressor

    International Nuclear Information System (INIS)

    Lee, Sae Il; Lee, Dong Ho; Kim, Kyu Hong; Park, Tae Choon; Lim, Byeung Jun; Kang, Young Seok


    The multidisciplinary design optimization method, which integrates aerodynamic performance and structural stability, was utilized in the development of a single-stage transonic axial compressor. An approximation model was created using artificial neural network for global optimization within given ranges of variables and several design constraints. The genetic algorithm was used for the exploration of the Pareto front to find the maximum objective function value. The final design was chosen after a second stage gradient-based optimization process to improve the accuracy of the optimization. To validate the design procedure, numerical simulations and compressor tests were carried out to evaluate the aerodynamic performance and safety factor of the optimized compressor. Comparison between numerical optimal results and experimental data are well matched. The optimum shape of the compressor blade is obtained and compared to the baseline design. The proposed optimization framework improves the aerodynamic efficiency and the safety factor.

  7. Investigation of Single-Stage Modified Turbine of Mark 25 Torpedo Power Plant (United States)

    Hoyt, Jack W.


    Efficiency investigations have been made on a single-stage modification of the turbine of a Mark 25 aerial torpedo to determine the performance of the unit with five different turbine nozzles. The output of the turbine blades was computed by analyzing the windage and mechanical-friction losses of the unit. The turbine was faund to be most efficient with a cast nozzle having sharp-edged inlets to the nine nozzle ports. An analysis af the effectiveness af the first and second stages of the standard Mark 25 torpedo turbine indicates that the first- stage turbine contributes nearly all the brake power produced at blade-jet speed ratios above 0.26.

  8. The Integrity of ACSR Full Tension Single-Stage Splice Connector at Higher Operation Temperature

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jy-An John [ORNL; Lara-Curzio, Edgar [ORNL; King Jr, Thomas J [ORNL


    Due to increases in power demand and limited investment in new infrastructure, existing overhead power transmission lines often need to operate at temperatures higher than those used for the original design criteria. This has led to the accelerated aging and degradation of splice connectors. It is manifested by the formation of hot-spots that have been revealed by infrared imaging during inspection. The implications of connector aging is two-fold: (1) significant increases in resistivity of the splice connector (i.e., less efficient transmission of electricity) and (2) significant reductions in the connector clamping strength, which could ultimately result in separation of the power transmission line at the joint. Therefore, the splice connector appears to be the weakest link in electric power transmission lines. This report presents a protocol for integrating analytical and experimental approaches to evaluate the integrity of full tension single-stage splice connector assemblies and the associated effective lifetime at high operating temperature.

  9. Clean-chemistry synthesis of 2-tetralones in a single-stage acylation-cycloalkylation process. (United States)

    Gray, A D; Smyth, T P


    The preparation of substituted-2-tetralones by direct reaction of a 1-alkene with a substituted phenylacetic acid in a reaction system of trifluoroacetic anhydride (TFAA) and phosphoric acid is described. This single-stage process involves in situ formation of a mixed anhydride of the phenylacetic acid and acylation of the alkene by this species followed by cycloalkylation of the aromatic ring. This is a cleaner approach to the synthesis of 2-tetralones compared to Friedel-Crafts aliphatic acylation-cycloalkylation in that use of thionyl chloride, aluminum trichloride, and a chlorinated hydrocarbon solvent is eliminated. In addition, the atom efficiency is augmented by recovery of the spent TFAA as trifluoroacetic acid (TFA) and conversion of this back to TFAA by dehydration.

  10. Theoretical evaluation of the efficiency of gas single-stage reciprocating compressor medium pressure units (United States)

    Busarov, S. S.; Vasil'ev, V. K.; Busarov, I. S.; Titov, D. S.; Panin, Ju. N.


    Developed earlier and tested in such working fluid as air, the technology of calculating the operating processes of slow-speed long-stroke reciprocating stages let the authors to obtain successful results concerning compression of gases to medium pressures in one stage. In this connection, the question of the efficiency of the application of slow-speed long-stroke stages in various fields of technology and the national economy, where the working fluid is other gas or gas mixture, is topical. The article presents the results of the efficiency evaluation of single-stage compressor units on the basis of such stages for cases when ammonia, hydrogen, helium or propane-butane mixture is used as the working fluid.

  11. Isolated EWiRaC: A New Low-Stress Single-Stage Isolated PFC Converter

    DEFF Research Database (Denmark)

    Schneider, Henrik; Bergendorff, Stefan Pihl; Petersen, Lars


    A new PFC-family of Efficient Wide Range Converters named EWiRaC was recently introduced. EWiRaC has a major advantage in terms of efficiency at low-line and handles challenges like inrush current limiting as an integrated part of the conversion scheme. The main objective of this paper is to inve......A new PFC-family of Efficient Wide Range Converters named EWiRaC was recently introduced. EWiRaC has a major advantage in terms of efficiency at low-line and handles challenges like inrush current limiting as an integrated part of the conversion scheme. The main objective of this paper...... is to investigate the performance of an isolated EWiRaC (I-EWiRaC) in a single-stage PFC configuration....

  12. Single-stage accelerator mass spectrometer radiocarbon-interference identification and positive-ionisation characterisation

    Energy Technology Data Exchange (ETDEWEB)

    Wilcken, K.M., E-mail: [Scottish Universities Environmental Research Centre, Scottish Enterprise Technology Park, East Kilbride G75 0QF (United Kingdom); Freeman, S.P.H.T.; Xu, S.; Dougans, A. [Scottish Universities Environmental Research Centre, Scottish Enterprise Technology Park, East Kilbride G75 0QF (United Kingdom)


    A single-stage accelerator mass spectrometer (SSAMS) is a good alternative to conventional spectrometers based on tandem electrostatic acceleration for radiocarbon measurement and permits experimentation with both negative and positive carbon ions. However, such {sup 14}C AMS of either polarity ions is limited by an interference. In the case of anion acceleration we have newly determined this to be summed {sup 13}C and {sup 16}O by improvising an additional Wien filter on our SSAMS deck. Also, {sup 14}C AMS might be improved by removing its dependency on negative-ionisation in a sputter ion source. This requires negative-ionisation of sample atoms elsewhere to suppress the {sup 14}N interference, which we accomplish by transmitting initially positive ions through a thin membrane. The ionisation dependence on ion-energy is found to be consistent with previous experimentation with vapours and thicker foils.

  13. Realization of single-phase single-stage grid-connected PV system

    Directory of Open Access Journals (Sweden)

    Osama M. Arafa


    Full Text Available This paper presents a single phase single stage grid-tied PV system. Grid angle detection is introduced to allow operation at any arbitrary power factor but unity power factor is chosen to utilize the full inverter capacity. The system ensures MPPT using the incremental conductance method and it can track the changes in insolation level without oscillations. A PI voltage controller and a dead-beat current controller are used to ensure high quality injected current to the grid. The paper investigates the system structure and performance through numerical simulation using Matlab/Simulink. An experimental setup controlled by the MicrolabBox DSP prototyping platform is utilized to realize the system and study its performance. The precautions for smooth and safe system operation including the startup sequence are fully considered in the implementation.

  14. High efficiency 40 K single-stage Stirling-type pulse tube cryocooler (United States)

    Wu, X. L.; Chen, L. B.; Pan, C. Z.; Cui, C.; Wang, J. J.; Zhou, Y.


    A high efficiency single-stage Stirling-type coaxial pulse tube cryocooler (SPTC) operating at around 40 K has been designed, built and tested. The double-inlet and the inertance tubes together with the gas reservoir were adopted as the phase shifters. Under the conditions of 2.5 MPa charging pressure and 30 Hz operating frequency, the prototype has achieved a no-load temperature of 23.8 K with 330 W of electric input power at a rejection temperature of 279 K. When the input power increases to 400 W, it can achieve a cooling capacity of 4.7 W/40 K while rejecting heat at 279 K yielding an efficiency of 7.02% relative to Carnot. It achieves a cooling capacity of 5 W/40 K with an input power of 450 W. It takes 10 minutes for the SPTC to cool to its no-load temperature of 40 K from 295 K.

  15. Single stage to orbit mass budgets derived from propellant density and specific impulse

    Energy Technology Data Exchange (ETDEWEB)

    Whitehead, J.C.


    The trade between specific impulse (Isp) and density is examined in view of Single Stage To Orbit (SSTO) requirements. Mass allocations for vehicle hardware are derived from these two properties, for several propellant combinations and a dual-fuel case. This comparative analysis, based on flight-proven hardware, indicates that the higher density of several alternative propellants compensates for reduced Isp, when compared with cryogenic oxygen and hydrogen. Approximately half the orbiting mass of a rocket- propelled SSTO vehicle must be allocated to propulsion hardware and residuals. Using hydrogen as the only fuel requires a slightly greater fraction of orbiting mass for propulsion, because hydrogen engines and tanks are heavier than those for denser fuels. The advantage of burning both a dense fuel and hydrogen in succession depends strongly on tripropellant engine weight. The implications of the calculations for SSTO vehicle design are discussed, especially with regard to the necessity to minimize non-tankage structure.

  16. Characterization and single-stage denitrification anaerobic digestion of spent stream from the hydrolysis-fermentation-combustion process (United States)

    Singh, Ramnik

    The demand for ethanol as an oxygenate and octane booster in automobile fuel is growing. A number of processes are being investigated for conversion of biomass to ethanol. The Hydrolysis-Fermentation-Combustion (HFC) process for fuel ethanol production developed at the University of California Forest Products Laboratory, Richmond, California is at the stage of technology transfer following over two decades of research and development. This study addresses the technology to be used in treatment of spent streams to be discharged from this process. The treatment design combines a single stage denitrification and anaerobic digestion (SSDAD) for the biological treatment of a representative stream from this process. A typical spent stream contained a wide range of soluble organic materials including: unfermented sugars, components of the feedstocks solubilized in the hydrolysis, acid degradation products of carbohydrates, cleavage products of lignin, water-soluble extractives and phenolics, terpenes and other unfermented organic material, and nitrate ion from the nitric acid used as a catalyst in the hydrolysis reaction. Three sets of experiments were conducted in laboratory scale anaerobic digesters. Commonly available anaerobic sludge from local sewage treatment plants was used as a starter seed and was successfully acclimated to the high nitrate substrate leading to enrichment of denitrifiers. Necessary nutrients and trace elements were identified and supplied to satisfy the obligatory requirements of different groups of bacterial groups present. A major finding was the unique role of ammonium hydroxide in controlling pH leading to steady-state operation of the digester. At steady state operation the reduction in COD was 65%, the nitrate reduction was 88% and the nitrite reduction was 100%. Nitrate was reduced to safe nitrogen gas without buildup of any intermediate products. Organic material was converted to useful methane gas and carbon dioxide. The SSDAD system was

  17. Single-stage management with combined tri-endoscopic approach for concomitant cholecystolithiasis and choledocholithiasis. (United States)

    Lv, Fujing; Zhang, Shutian; Ji, Ming; Wang, Yongjun; Li, Peng; Han, Wei


    The aim of this study was to investigate the value of a single stage with combined tri-endoscopic (duodenoscopy, laparoscopy and choledochoscopy) approach for patients with concomitant cholecystolithiasis and choledocholithiasis. Fifty-three patients with combined gallbladder stones and common bile duct stones from February 2014 to April 2015 were randomized assigned to two groups: 29 patients underwent single-stage surgery with combined duodenoscope, laparoscope and choledochoscope (combined tri-endoscopic group), and 29 patients underwent endoscopic sphincterotomy to remove common bile duct stones followed by laparoscopic cholecystectomy several days later (control group). The success rate of complete stone removal, procedure-related complication, hospital stay and the cost of hospitalization were compared between the two groups. Altogether, 53 patients (29 patients in combined tri-endoscopic group and 24 patients in control group) successfully underwent the surgery and ERCP procedure. Three patients in the control group developed post-ERCP pancreatitis. One case of bile leaking and one case of residual stone were noted in the combined tri-endoscopic group. There were no significant differences between the two groups with regard to both complete stone removal [96.6 % (28/29) vs. 100 % (24/24)] and procedure-related complication rate [3.4 % (1/29) vs. 12.5 % (3/24)] (p > 0.05). No open surgery was required in either group. There were significant differences between the two groups with regard to hospital stay (6.72 ± 1.3 days vs. 10.91 ± 1.6 days, p choledocholithiasis was just as safe and successful as the control group. In addition, it resulted in a shorter hospital stay and less cost.

  18. Outcome of single stage vertebral column resection in treatment of kyphotic deformity. (United States)

    Arif, Mohammad; Satar, Abdul; Saeed, Muhammad; Wazir, Zahid; Inam, Mohammad


    To find the frequency of deformity correction, functional outcome and complications of single-stage vertebral column resection in patients with kyphotic deformity. The prospective case series was conducted at Hayatabad Medical Complex, Peshawar, and Aman Hospital, Peshawar, from January 2012 to December 2013, and comprised all patients who underwent single-stage posterior vertebral column resection. Only patients with severe rigid sharp deformity of different aetiology that required more than 40 degree correction and who had at least 3-month follow-up were included. Data was processed using SPSS 16. Of the total 18 patients, 11(61.1%) were male and 7(38.9%) were female, with an overall mean age of 28.7±13.6 years (range: 12-60 years). Among them, 8(44.4%) patients had congenital kyphosis, 5(27.8%) had posttraumatic origin, 4(22.2%) had post-tuberculous deformity, while 1(5.6%) had iatrogenic kyphosis. The apex of the deformity was in thoracic spine in 12(66.7%) patients, while in 6(33.3%) patients it was in the lumbar spine. The average pre- and post-operative Cobb's angle was 66.2±18.9 degrees and 18.8±12.8 degrees respectively. Mean correction of deformities was 47.3±13.3 degrees. The mean correction achieved in percentage terms was 73.5±8.6 per cent (range: 56-87%). There were no patients with post-operative deterioration of neurological status. Two (11%) patients underwent re-exploration of the wounds with wash and cultures due to wound discharge. Posterior vertebral column resection was found to be a very effective method of correction of severe kyphotic deformities in expert hands with acceptable morbidity.

  19. Comparisons of single-stage and two-stage approaches to genomic selection. (United States)

    Schulz-Streeck, Torben; Ogutu, Joseph O; Piepho, Hans-Peter


    Genomic selection (GS) is a method for predicting breeding values of plants or animals using many molecular markers that is commonly implemented in two stages. In plant breeding the first stage usually involves computation of adjusted means for genotypes which are then used to predict genomic breeding values in the second stage. We compared two classical stage-wise approaches, which either ignore or approximate correlations among the means by a diagonal matrix, and a new method, to a single-stage analysis for GS using ridge regression best linear unbiased prediction (RR-BLUP). The new stage-wise method rotates (orthogonalizes) the adjusted means from the first stage before submitting them to the second stage. This makes the errors approximately independently and identically normally distributed, which is a prerequisite for many procedures that are potentially useful for GS such as machine learning methods (e.g. boosting) and regularized regression methods (e.g. lasso). This is illustrated in this paper using componentwise boosting. The componentwise boosting method minimizes squared error loss using least squares and iteratively and automatically selects markers that are most predictive of genomic breeding values. Results are compared with those of RR-BLUP using fivefold cross-validation. The new stage-wise approach with rotated means was slightly more similar to the single-stage analysis than the classical two-stage approaches based on non-rotated means for two unbalanced datasets. This suggests that rotation is a worthwhile pre-processing step in GS for the two-stage approaches for unbalanced datasets. Moreover, the predictive accuracy of stage-wise RR-BLUP was higher (5.0-6.1%) than that of componentwise boosting.

  20. Apparatus and method for continuous production of materials (United States)

    Chang, Chih-hung; Jin, Hyungdae


    Embodiments of a continuous-flow injection reactor and a method for continuous material synthesis are disclosed. The reactor includes a mixing zone unit and a residence time unit removably coupled to the mixing zone unit. The mixing zone unit includes at least one top inlet, a side inlet, and a bottom outlet. An injection tube, or plurality of injection tubes, is inserted through the top inlet and extends past the side inlet while terminating above the bottom outlet. A first reactant solution flows in through the side inlet, and a second reactant solution flows in through the injection tube(s). With reference to nanoparticle synthesis, the reactant solutions combine in a mixing zone and form nucleated nanoparticles. The nucleated nanoparticles flow through the residence time unit. The residence time unit may be a single conduit, or it may include an outer housing and a plurality of inner tubes within the outer housing.

  1. Investigation on the continued production of the Naval Petroleum Reserves beyond April 5, 1991

    Energy Technology Data Exchange (ETDEWEB)


    The authority to produce the Naval Petroleum Reserves (NPRs) is due to expire in April 1991, unless extended by Presidential finding. As provided in the Naval Petroleum Reserves Production act of 1976 (Public Law 94-258), the President may continue production of the NPRs for a period of up to three years following the submission to Congress, at least 180 days prior to the expiration of the current production period, of a report that determines that continued production of the NPRs is necessary and a finding by the President that continued production is in the national interest. This report assesses the need to continue production of the NPRs, including analyzing the benefits and costs of extending production or returning to the shut-in status that existed prior to 1976. This continued production study considers strategic, economic, and energy issues at the local, regional, and national levels. 15 figs., 13 tabs.

  2. 42 CFR 3.208 - Continued protection of patient safety work product. (United States)


    ... 42 Public Health 1 2010-10-01 2010-10-01 false Continued protection of patient safety work product... GENERAL PROVISIONS PATIENT SAFETY ORGANIZATIONS AND PATIENT SAFETY WORK PRODUCT Confidentiality and Privilege Protections of Patient Safety Work Product § 3.208 Continued protection of patient safety work...

  3. Continuous Isosorbide Production From Sorbitol Using Solid Acid Catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Williamson, R.; Holladay,J.; Jaffe, M.; Brunelle, D.


    This is a final report for a project funded by the US Department of Agriculture and managed by the US Department of Energy. The Iowa Corn Promotion Board was the principal contracting entity for the grant. The Iowa Corn Promotion Board subcontracted with General Electric, Pacific Northwest National Lab and New Jersey Institute of Technology to conduct research in this project. The Iowa Corn Promotion Board and General Electric provided cost share for the project. The purpose of this diverse collaboration was to integrate both the conversion and the polymer applications into one project and increase the likelihood of success. This project has led to additional collaborations among other polymer companies. The goals of the project were to develop a renewable route to isosorbide for commercialization that is economically competitive with all existing production technologies and to develop new applications for isosorbide in various products such as polymers and materials. Under this program a novel process for the production of isosorbide was developed and evaluated. The novel process converts corn based sorbitol into isosorbide using a solid catalyst with integrated water removal and product recovery. In addition the work under this program has identified several novel products based on isosorbide chemistries. These market applications include: epoxy resins, UV stabilizers, plasticizers and polyesters. These market applications have commercial interest within the current polymer industry. This report contains an overview summary of the accomplishments. Six inventions and four patent applications have been written as a result of this project. Additional data will be published in the patent applications. The data developed at New Jersey Institute of Technology was presented at two technical conferences held in June of 2006. Several companies have made inquiries about using this material in their products.

  4. Effects of sludge recirculation rate and mixing time on performance of a prototype single-stage anaerobic digester for conversion of food wastes to biogas and energy recovery. (United States)

    Ratanatamskul, Chavalit; Saleart, Tawinan


    Food wastes have been recognized as the largest waste stream and accounts for 39.25 % of total municipal solid waste in Thailand. Chulalongkorn University has participated in the program of in situ energy recovery from food wastes under the Ministry of Energy (MOE), Thailand. This research aims to develop a prototype single-stage anaerobic digestion system for biogas production and energy recovery from food wastes inside Chulalongkorn University. Here, the effects of sludge recirculation rate and mixing time were investigated as the main key parameters for the system design and operation. From the results obtained in this study, it was found that the sludge recirculation rate of 100 % and the mixing time of 60 min per day were the most suitable design parameters to achieve high efficiencies in terms of chemical oxygen demand (COD), total solids (TS), and total volatile solid (TVS) removal and also biogas production by this prototype anaerobic digester. The obtained biogas production was found to be 0.71 m(3)/kg COD and the composition of methane was 61.6 %. Moreover, the efficiencies of COD removal were as high as 82.9 % and TVS removal could reach 83.9 % at the optimal condition. Therefore, the developed prototype single-stage anaerobic digester can be highly promising for university canteen application to recover energy from food wastes via biogas production.

  5. Production of ethyl alcohol from molasses using continuous process ...

    African Journals Online (AJOL)

    Sugar cane molasses from Nigerian Sugar processing factory Bacita were used for ethanol production. A special ethanol resistant yeast strain Saccharomyces cerevisiae (DIST/IPF/90) employed as inoculum was propagated on clarified molasses. Fermentation of clarified molasses to ethanol was brought about at room ...

  6. A novel fermentor system optimized for continuous production of ...

    African Journals Online (AJOL)



    Aug 29, 2011 ... Pullulan is an important polysaccharide and has elastic, nontoxic, edible and oxygen impermeable transparent thin film forming capability just like polyethylene films; therefore, its commercial production for the preparation of biodegradable plastic has been started in Japan and USA. (Singh et al., 2008 Gaur ...

  7. production of ethyl alcohol from molasses using continuous process

    African Journals Online (AJOL)


    general panem of growth, harvest and delivery to a distillery, conversion of the raw materials to hydrolyzable substrate suitable for fermentation to ethanol, fermentation and purification by distillation. Faust el al., (1983) reported molasses as being technically the most ideal raw material in ethanol production compared with ...

  8. Stability, resilience and animal production in continuously grazed ...

    African Journals Online (AJOL)

    The Jones-Sandland model, popularly used in southern Africa, may be criticised because it ignores firstly the long-term effects of grazing intensity on the acceptability and productivity of pasture or veld, and secondly possible discontinuities in the animal performance - stocking rate relationship. A mathematical model is ...

  9. Production of teicoplanin by Actinoplanes teichomyceticus in continuous fermentation

    DEFF Research Database (Denmark)

    Vara, A.G.; Hochkoepple, A.; Nielsen, Jens


    Production of the potent antibiotic teicoplanin by Actinoplanes teichomyceticus was studied in batch and in chemostat cultures. It is found that the producing strain deactivates to a non-producing strain named NP-12. This strain is used to find the growth kinetics of the A. teichomyceticus withou...

  10. Maintaining ecosystem services through continued livestock production on California rangelands (United States)

    Barry, S.; Becchetti, T.


    Nearly 40% of California is rangeland comprising the largest land type in California and providing forage for livestock, primarily beef cattle. In addition to forage, rangelands provide a host of ecosystem systems services, including habitat for common and endangered species, fire fuels management, pollination services, clean water, viewsheds, and carbon sequestration. Published research has documented that most of these ecosystem services are positively impacted by managed livestock grazing and rancher stewardship. Ranchers typically do not receive any monetary reimbursement for their stewardship in providing these ecosystem services to the public. Markets have been difficult to establish with limited ability to adequately monitor and measure services provided. At the same time, rangelands have been experiencing rapid conversion to urbanization and more profitable and intensive forms of agriculture such as almond and walnut orchards. To prevent further conversion of rangelands and the loss of the services they provide, there needs to be a mechanism to identify and compensate landowners for the value of all products and services being received from rangelands. This paper considers two methods (opportunity cost and avoided cost) to determine the value of Payment for Ecosystem Services (PES) for rangelands. PES can raise the value of rangelands, making them more competitive financially. Real estate values and University of California Cooperative Extension Cost Studies, were used to demonstrate the difference in value (lost opportunity cost) between the primary products of rangelands (livestock production) and the products of the converted rangelands (almond and walnut orchards). Avoided costs for vegetation management and habitat creation and maintenance were used to establish the value of managed grazing. If conversion is to be slowed or stopped and managed grazing promoted to protect the ecosystem services rangelands provide, this value could be compensated through

  11. Continuous Monitoring of Photolysis Products by Thz Spectroscopy (United States)

    Omar, Abdelaziz; Cuisset, Arnaud; Mouret, Gaël; Hindle, Francis; Eliet, Sophie; Bocquet, Robin


    We demonstrate the potential of THz spectroscopy to monitor the real time evolution of the gas phase concentration of photolysis products and determine the kinetic reaction rate constant. In the primary work, we have chosen to examine the photolysis of formaldehyde (H_2CO). Exposure of H_2CO to a UVB light (250 to 360 nm) in a single pass of 135 cm length cell leads to decomposition via two mechanisms: the radical channel with production of HCO and the molecular channel with production of CO. A commercial THz source (frequency multiplication chain) operating in the range 600-900 GHz was used to detect and quantify the various chemical species as a function of time. Monitoring the concentrations of CO and H_2CO via rotational transitions, allowed the kinetic rate of H_2CO consummation to be obtained, and an estimation of the rate constants for both the molecular and radical photolysis mechanisms. We have modified our experimental setup to increase the sensitivity of the spectrometer and changed sample preparation protocol specifically to quantify the HCO concentration. Acetaldehyde was used as the precursor for photolysis by UVC resulting in the decompositon mechanism can be described by: CH_3CHO+hν→ CH_3 + HCO → CH_4 + CO Frequency modulation of the source and Zeeman modulation is used to achieve the high sensitivity required. Particular attention has been paid to the mercury photosensitization effect that allowed us to increase the HCO production enabling quantification of the monitored radical. We quantify the HCO radical and start a spectroscopic study of the line positions. H. M. Pickett and T. L. Boyd, Chem. Phys. Lett, Vol 58, 446-449, (1978) S. Eliet, A. Cuisset, M Guinet, F. Hindle, G. Mouret, R. Bocquet, and J. Demaison, Journal of Molecular Spectroscopy, Vol 279, 12-15 (2012). G. Mouret, M. Guinet, A. Cuisset, L. Croizé, S. Eliet, R. Bocquet and F. Hindle, Sensors Journal. IEEE, Vol 13, 133 - 138, (2013)

  12. Neurons controlling Aplysia feeding inhibit themselves by continuous NO production.

    Directory of Open Access Journals (Sweden)

    Nimrod Miller


    Full Text Available Neural activity can be affected by nitric oxide (NO produced by spiking neurons. Can neural activity also be affected by NO produced in neurons in the absence of spiking?Applying an NO scavenger to quiescent Aplysia buccal ganglia initiated fictive feeding, indicating that NO production at rest inhibits feeding. The inhibition is in part via effects on neurons B31/B32, neurons initiating food consumption. Applying NO scavengers or nitric oxide synthase (NOS blockers to B31/B32 neurons cultured in isolation caused inactive neurons to depolarize and fire, indicating that B31/B32 produce NO tonically without action potentials, and tonic NO production contributes to the B31/B32 resting potentials. Guanylyl cyclase blockers also caused depolarization and firing, indicating that the cGMP second messenger cascade, presumably activated by the tonic presence of NO, contributes to the B31/B32 resting potential. Blocking NO while voltage-clamping revealed an inward leak current, indicating that NO prevents this current from depolarizing the neuron. Blocking nitrergic transmission had no effect on a number of other cultured, isolated neurons. However, treatment with NO blockers did excite cerebral ganglion neuron C-PR, a command-like neuron initiating food-finding behavior, both in situ, and when the neuron was cultured in isolation, indicating that this neuron also inhibits itself by producing NO at rest.Self-inhibitory, tonic NO production is a novel mechanism for the modulation of neural activity. Localization of this mechanism to critical neurons in different ganglia controlling different aspects of a behavior provides a mechanism by which a humeral signal affecting background NO production, such as the NO precursor L-arginine, could control multiple aspects of the behavior.

  13. Continuous production of biohythane from hydrothermal liquefied cornstalk biomass via two-stage high-rate anaerobic reactors. (United States)

    Si, Bu-Chun; Li, Jia-Ming; Zhu, Zhang-Bing; Zhang, Yuan-Hui; Lu, Jian-Wen; Shen, Rui-Xia; Zhang, Chong; Xing, Xin-Hui; Liu, Zhidan


    Biohythane production via two-stage fermentation is a promising direction for sustainable energy recovery from lignocellulosic biomass. However, the utilization of lignocellulosic biomass suffers from specific natural recalcitrance. Hydrothermal liquefaction (HTL) is an emerging technology for the liquefaction of biomass, but there are still several challenges for the coupling of HTL and two-stage fermentation. One particular challenge is the limited efficiency of fermentation reactors at a high solid content of the treated feedstock. Another is the conversion of potential inhibitors during fermentation. Here, we report a novel strategy for the continuous production of biohythane from cornstalk through the integration of HTL and two-stage fermentation. Cornstalk was converted to solid and liquid via HTL, and the resulting liquid could be subsequently fed into the two-stage fermentation systems. The systems consisted of two typical high-rate reactors: an upflow anaerobic sludge blanket (UASB) and a packed bed reactor (PBR). The liquid could be efficiently converted into biohythane via the UASB and PBR with a high density of microbes at a high organic loading rate. Biohydrogen production decreased from 2.34 L/L/day in UASB (1.01 L/L/day in PBR) to 0 L/L/day as the organic loading rate (OLR) of the HTL liquid products increased to 16 g/L/day. The methane production rate achieved a value of 2.53 (UASB) and 2.54 L/L/day (PBR), respectively. The energy and carbon recovery of the integrated HTL and biohythane fermentation system reached up to 79.0 and 67.7%, respectively. The fermentation inhibitors, i.e., 5-hydroxymethyl furfural (41.4-41.9% of the initial quantity detected) and furfural (74.7-85.0% of the initial quantity detected), were degraded during hydrogen fermentation. Compared with single-stage fermentation, the methane process during two-stage fermentation had a more efficient methane production rate, acetogenesis, and COD removal. The microbial distribution

  14. Process for continuous production of metallic uranium and uranium alloys (United States)

    Hayden, Jr., Howard W.; Horton, James A.; Elliott, Guy R. B.


    A method is described for forming metallic uranium, or a uranium alloy, from uranium oxide in a manner which substantially eliminates the formation of uranium-containing wastes. A source of uranium dioxide is first provided, for example, by reducing uranium trioxide (UO.sub.3), or any other substantially stable uranium oxide, to form the uranium dioxide (UO.sub.2). This uranium dioxide is then chlorinated to form uranium tetrachloride (UCl.sub.4), and the uranium tetrachloride is then reduced to metallic uranium by reacting the uranium chloride with a metal which will form the chloride of the metal. This last step may be carried out in the presence of another metal capable of forming one or more alloys with metallic uranium to thereby lower the melting point of the reduced uranium product. The metal chloride formed during the uranium tetrachloride reduction step may then be reduced in an electrolysis cell to recover and recycle the metal back to the uranium tetrachloride reduction operation and the chlorine gas back to the uranium dioxide chlorination operation.

  15. Process for continuous production of metallic uranium and uranium alloys (United States)

    Hayden, H.W. Jr.; Horton, J.A.; Elliott, G.R.B.


    A method is described for forming metallic uranium, or a uranium alloy, from uranium oxide in a manner which substantially eliminates the formation of uranium-containing wastes. A source of uranium dioxide is first provided, for example, by reducing uranium trioxide (UO{sub 3}), or any other substantially stable uranium oxide, to form the uranium dioxide (UO{sub 2}). This uranium dioxide is then chlorinated to form uranium tetrachloride (UCl{sub 4}), and the uranium tetrachloride is then reduced to metallic uranium by reacting the uranium chloride with a metal which will form the chloride of the metal. This last step may be carried out in the presence of another metal capable of forming one or more alloys with metallic uranium to thereby lower the melting point of the reduced uranium product. The metal chloride formed during the uranium tetrachloride reduction step may then be reduced in an electrolysis cell to recover and recycle the metal back to the uranium tetrachloride reduction operation and the chlorine gas back to the uranium dioxide chlorination operation. 4 figs.

  16. Outcomes of single-stage total arch replacement via clamshell incision

    Directory of Open Access Journals (Sweden)

    Ishizaka Toru


    Full Text Available Abstract Background Treatment of complex aortic pathologies involving the transverse arch with extensive involvement of the descending aorta remains a surgical challenge. Since clamshell incision provides superior exposure of the entire thoracic aorta, we evaluated the use of this technique for single-stage total arch replacement by arch vessel reconstruction. Methods The arch-first technique combined with clamshell incision was used in 38 cases of aneurysm and aortic disease in 2008 and 2009. Extensive total arch replacement was used with clamshell incision for reconstruction of arch vessels under deep hypothermic circulatory arrest. Results Overall 30-day mortality was 13%. The mean operating time was approximately 8 hours. Deep hypothermia resulted in mean CPB time exceeding 4.5 hours and mean duration of circulatory arrest was 25 minutes. The overall postoperative temporary and permanent neurologic dysfunction rates were 3% and 3% for elective and 3% and 0% for emergency surgery, respectively. All patients except the five who died in hospital were discharged without nursing care after an average post-operative hospital stay of 35 days. Conclusions The arch-first technique, combined with clamshell incision, provides expeditious replacement of the thoracic aorta with an acceptable duration of hypothermic circulatory arrest and minimizes the risk of retrograde atheroembolism by using antegrade perfusion.

  17. Solvent Carryover Characterization and Recovery for a 10-inch Single Stage Centrifugal Contactor

    International Nuclear Information System (INIS)

    Lentsch, R.D.; Stephens, A.B.; Leung, D.T.; Baffling, K.E.; Harmon, H.D.; Suggs, P.C.


    A test program has been performed to characterize the organic solvent carryover and recovery from centrifugal contactors in the Caustic-side Solvent Extraction (CSSX) process. CSSX is the baseline design for removing cesium from salt solutions for Department of Energy (DOE) Savannah River Site's Salt Waste Processing Facility. CSSX uses a custom solvent to extract cesium from the salt solution in a series of single stage centrifugal contactors. Meeting the Waste Acceptance Criteria at the Defense Waste Processing Facility and Saltstone, as well as plant economics, dictate that solvent loss should be kept to a minimum. Solvent droplet size distribution in the aqueous outlet streams of the CSSX contactors is of particular importance to the design of solvent recovery equipment. Because insufficient solvent droplet size data existed to form a basis for the recovery system design, DOE funded the CSSX Solvent Carryover Characterization and Recovery Test (SCCRT). This paper presents the droplet size distribution of solvent and concentration in the contactor aqueous outlet streams as a function of rotor speed, bottom plate type, and flow rate. It also presents the performance data of a prototype coalescer. (authors)

  18. Single-Stage Step up/down Driver for Permanent-Magnet Synchronous Machines (United States)

    Chen, T. R.; Juan, Y. L.; Huang, C. Y.; Kuo, C. T.


    The two-stage circuit composed of a step up/down dc converter and a three-phase voltage source inverter is usually adopted as the electric vehicle’s motor driver. The conventional topology is more complicated. Additional power loss resulted from twice power conversion would also cause lower efficiency. A single-stage step up/down Permanent-Magnet Synchronous Motor driver for Brushless DC (BLDC) Motor is proposed in this study. The number components and circuit complexity are reduced. The low frequency six-step square-wave control is used to reduce the switching losses. In the proposed topology, only one active switch is gated with a high frequency PWM signal for adjusting the rotation speed. The rotor position signals are fed back to calculate the motor speed for digital close-loop control in a MCU. A 600W prototype circuit is constructed to drive a BLDC motor with rated speed 3000 rpm, and can control the speed of six sections.

  19. Single stage: dorsolateral onlay buccal mucosal urethroplasty for long anterior urethral strictures using perineal route

    Directory of Open Access Journals (Sweden)

    Vikram Prabha


    Full Text Available ABSTRACT Objective To assess the outcome of single stage dorsolateral onlay buccal mucosal urethroplasty for long anterior urethral strictures (>4cm long using a perineal incision. Materials and Methods From August 2010 to August 2013, 20 patients underwent BMG urethroplasty. The cause of stricture was Lichen sclerosis in 12 cases (60%, Instrumentation in 5 cases (25%, and unknown in 3 cases (15%. Strictures were approached through a perineal skin incision and penis was invaginated into it to access the entire urethra. All the grafts were placed dorsolaterally, preserving the bulbospongiosus muscle, central tendon of perineum and one-sided attachement of corpus spongiosum. Procedure was considered to be failure if the patient required instrumentation postoperatively. Results Mean stricture length was 8.5cm (range 4 to 12cm. Mean follow-up was 22.7 months (range 12 to 36 months. Overall success rate was 85%. There were 3 failures (meatal stenosis in 1, proximal stricture in 1 and whole length recurrent stricture in 1. Other complications included wound infection, urethrocutaneous fistula, brownish discharge per urethra and scrotal oedema. Conclusion Dorsolateral buccal mucosal urethroplasty for long anterior urethral strictures using a single perineal incision is simple, safe and easily reproducible by urologists with a good outcome.

  20. [Achieve single-stage autotrophic biological nitrogen removal process by controlling the concentration of free ammonia]. (United States)

    Ji, Li-Li; Yang, Zhao-Hui; Xu, Zheng-Yong; Li, Xiao-Jiang; Tang, Zhi-Gang; Deng, Jiu-Hu


    Through controlling the concentration of free ammonia in the sequencing batch reactor (SBR), the single-stage autotrophic biological nitrogen removal process was achieved, including partial nitrification and anaerobic ammonium oxidation. The experiment was completed via two steps, the enrichment of nitrite bacteria and the inoculation of the mixture of anammox biomass. The operating temperature in the SBR was (31 +/- 2) degrees C. During the step of the enrichment of nitrite bacteria, pH was about 7.8. Changes of FA concentration were achieved by controlling the concentration of influent NH4(+) -N(56-446 mg x L(-1)), in order to inhibit and eliminate the nitrate bacteria. The activity tests of the sludge, 55d after enrichment, showed strong activity of aerobic ammonium oxidation [2.91 kg x (kg x d)(-1)] and low activity of nitrite oxidation [0.03 kg x(kg x d)(-1)]. During the inoculation of the mixture of anammox biomass, changes of FA concentration were achieved by controlling the concentration of influent NH4(+) -N and pH. As the inoculation of anammox biomass, abundant of bacteria and nutrient content were into the reactor and there kept high activity of aerobic ammonium oxidation [2.83 kg x (kg x d)(-1)] and a certain activity of nitrite oxidation, at the same time, the activity of anammox and heterotrophic denitrification reached 0.65 kg x (kg x d)(-1) and 0.11 kg x (kg x d)(-1), respectively.

  1. Construction and characterization of a single stage dual diaphragm gas gun (United States)

    Helminiak, Nathaniel Steven

    In the interest of studying the propagation of shock waves, this work sets out to design, construct, and characterize a pneumatic accelerator that performs high-velocity flyer plate impact tests. A single stage gas gun with a dual diaphragm breach allows for a non-volatile, reliable experimental testing platform for shock phenomena. This remotely operated gas gun utilizes compressed nitrogen to launch projectiles down a 14 foot long, 2 inch diameter bore barrel, which subsequently impacts a target material of interest. A dual diaphragm firing mechanism allows the 4.5 liter breech to reach a total pressure differential of 10ksi before accelerating projectiles to velocities as high as 1,000 m/s (1570-2240 mph). The projectile's velocity is measured using a series of break pin circuits. The target response can be measured with Photon Doppler Velocimetry (PDV) and/or stress gauge system. A vacuum system eliminates the need for pressure relief in front of the projectile, while additionally allowing the system to remain closed over the entire firing cycle. Characterization of the system will allow for projectile speed to be estimated prior to launching based on initial breach pressure.

  2. Orifice Mass Flow Calculation in NASA's W-8 Single Stage Axial Compressor Facility (United States)

    Bozak, Richard F.


    Updates to the orifice mass flow calculation for the W-8 Single Stage Axial Compressor Facility at NASA Glenn Research Center are provided to include the effect of humidity and incorporate ISO 5167. A methodology for including the effect of humidity into the inlet orifice mass flow calculation is provided. Orifice mass flow calculations provided by ASME PTC-19.5-2004, ASME MFC-3M-2004, ASME Fluid Meters, and ISO 5167 are compared for W-8's atmospheric inlet orifice plate. Differences in expansion factor and discharge coefficient given by these standards give a variation of about +/- 75% mass flow except for a few cases. A comparison of the calculations with an inlet static pressure mass flow correlation and a fan exit mass flow integration using test data from a 2017 turbofan rotor test in W-8 show good agreement between the inlet static pressure mass flow correlation, ISO 5167, and ASME Fluid Meters. While W-8's atmospheric inlet orifice plate violates the pipe diameter limit defined by each of the standards, the ISO 5167 is chosen to be the primary orifice mass flow calculation to use in the W-8 facility.

  3. Single-stage transforaminal decompression, debridement, interbody fusion, and posterior instrumentation for lumbosacral brucellosis. (United States)

    Abulizi, Yakefu; Liang, Wei-Dong; Muheremu, Aikeremujiang; Maimaiti, Maierdan; Sheng, Wei-Bin


    Spinal brucellosis is a less commonly reported infectious spinal pathology. There are few reports regarding the surgical treatment of spinal brucellosis in existing literature. This retrospective study was conducted to determine the effectiveness of single-stage transforaminal decompression, debridement, interbody fusion, and posterior instrumentation for lumbosacral spinal brucellosis. From February 2012 to April 2015, 32 consecutive patients (19 males and 13 females, mean age 53.7 ± 8.7) with lumbosacral brucellosis treated by transforaminal decompression, debridement, interbody fusion, and posterior instrumentation were enrolled. Medical records, imaging studies, laboratory data were collected and summarized. Surgical outcomes were evaluated based on visual analogue scale (VAS), Oswestry Disability Index (ODI) and Japanese Orthopaedic Association (JOA) scale. The changes in C-reactive protein (CRP) levels, erythrocyte sedimentation rate (ESR), clinical symptoms and complications were investigated. Graft fusion was evaluated using Bridwell grading criteria. The mean follow-up period was 24.9 ± 8.2 months. Back pain and radiating leg pain was relieved significantly in all patients after operation. No implant failures were observed in any patients. Wound infection was observed in two patients and sinus formation was observed in one patient. Solid bony fusion was achieved in 30 patients and the fusion rate was 93.8%. The levels of ESR and CRP were returned to normal by the end of three months' follow-up. VAS and ODI scores were significantly improved (P brucellosis.

  4. A conceptual framework on the role of creativity in sustaining continuous innovation in new product development


    Bélanger, Souni; Veilleux, Sophie; Tremblay, Maripier


    If creativity and innovation are viewed as assets in any business, they represent for some a key survival factor imposed by their industry on a daily basis. In such a context of continuous innovation, the pace of innovation is accelerated. This article focuses on how creativity helps sustain continuous innovation in new product development. We develop a conceptual framework that highlights the key factors that lead to continuous new product development: information management, ...

  5. Continuous biohydrogen production using cheese whey: Improving the hydrogen production rate

    Energy Technology Data Exchange (ETDEWEB)

    Davila-Vazquez, Gustavo; Cota-Navarro, Ciria Berenice; Razo-Flores, Elias [Division de Ciencias Ambientales, Instituto Potosino de Investigacion Cientifica y Tecnologica, Camino a la Presa San Jose 2055, Lomas 4a seccion, C.P. 78216, San Luis Potosi, S.L.P (Mexico); Rosales-Colunga, Luis Manuel; de Leon-Rodriguez, Antonio [Division de Biologia Molecular, Instituto Potosino de Investigacion Cientifica y Tecnologica, Camino a la Presa San Jose 2055, Lomas 4a seccion, C.P. 78216, San Luis Potosi, S.L.P (Mexico)


    Due to the renewed interest in finding sustainable fuels or energy carriers, biohydrogen (Bio-H{sub 2}) from biomass is a promising alternative. Fermentative Bio-H{sub 2} production was studied in a continuous stirred tank reactor (CSTR) operated during 65.6 d with cheese whey (CW) as substrate. Three hydraulic retention times (HRTs) were tested (10, 6 and 4 h) and the highest volumetric hydrogen production rate (VHPR) was attained with HRT of 6 h. Therefore, four organic loading rates (OLRs) at a fixed HRT of 6 h were tested thereafter, being: 92.4, 115.5, 138.6 and 184.4 g lactose/L/d. The highest VHPR (46.61 mmol H{sub 2}/L/h) and hydrogen molar yield (HMY) of 2.8 mol H{sub 2}/mol lactose were found at an OLR of 138.6 g lactose/L/d; a sharp fall in VHPR occurred at an OLR of 184.4 g lactose/L/d. Butyric, propionic and acetic acids were the main soluble metabolites found, with butyric-to-acetic ratios ranging from 1.0 to 2.4. Bacterial community was identified by partial sequence analysis of the 16S rRNA and polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE). The results showed that at HRT of 10 h and 6 h were dominated by the Clostridium genus. The VHPR attained in this study is the highest reported value for a CSTR system using CW as substrate with anaerobic sludge as inoculum and represents a 33-fold increase compared to a previous study. Thus, it was demonstrated that continuous fermentative Bio-H{sub 2} production from CW can be significantly enhanced by an appropriate selection of parameters such as HRT and OLR. Enhancements in VHPR are significant because it is a critical parameter to determine the full-scale practical application of fermentation technologies that will be used for sustainable and clean energy generation. (author)


    Energy Technology Data Exchange (ETDEWEB)

    Elliot B. Kennel; Stephen P. Carpenter; Dady Dadyburjor; Manoj Katakdaunde; Liviu Magean; Peter G. Stansberry; Alfred H. Stiller; John W. Zondlo


    The purpose of this DOE-funded effort is to develop continuous processes for solvent extraction of coal for the production of carbon products. These carbon products include materials used in metals smelting, especially in the aluminum and steel industries, as well as porous carbon structural material referred to as ''carbon foam'' and carbon fibers. During this reporting period, efforts have focused on the development of continuous processes for hydrogenation as well as continuous production of carbon foam and coke.


    Energy Technology Data Exchange (ETDEWEB)

    Elliot B. Kennel; Stephen P. Carpenter; Dady Dadyburjor; Manoj Katakdaunde; Liviu Magean; Madhavi Nallani-Chakravartula; Peter G. Stansberry; Alfred H. Stiller; John W. Zondlo


    The purpose of this DOE-funded effort is to develop continuous processes for solvent extraction of coal for the production of carbon products. These carbon products include materials used in metals smelting, especially in the aluminum and steel industries, as well as porous carbon structural material referred to as ''carbon foam'' and carbon fibers. During this reporting period, efforts have focused on the development of continuous processes for hydrogenation as well as continuous production of carbon foam and coke.

  8. Evaluation of single-stage adjustable strabismus surgery under conscious sedation

    Directory of Open Access Journals (Sweden)

    Sharma Pradeep


    Full Text Available Purpose: To evaluate the feasibility and stability of ocular alignment after single-stage adjustable strabismus surgery (SSASS performed under topical anesthesia. Materials and Methods: Forty-five patients of concomitant exodeviations were randomized into three groups of 15 cases each and were operated with three different techniques: Group I - conventional surgery, Group II - two-stage adjustable suture technique with suture adjustment performed 6h postoperatively and Group III- SSASS under topical anesthesia and intravenous conscious sedation with midazolam and fentanyl. Intraoperative suture adjustment was done by giving a cross target to the patient on the ceiling at the end of the procedure. Surgical results were compared among the three groups at three months follow-up. Intraoperative hemodynamic parameters and patients′ experience of the surgery (by questionnaire were also compared. Results: Mean preoperative deviation for distance in Groups I, II, III was -41.67 prism diopter (pd ±9.0, -38.93 pd ±11.05 and -41.87 pd ±8.91 ( P =0.6 respectively. At three months, mean correction achieved for distance was +31.87 pd ±11.71, +35.47 pd ±10.86 and +42.80 pd ±10.71 respectively which was significantly different between Group III and Group I ( P =0.03. Intraoperatively all hemodynamic parameters remained stable and comparable ( P =0. 5 in all groups. Intraoperative pain ( P < 0.001 and time taken for surgery ( P < 0.001 was more in the SSASS group. Amount of exodrift was 10-12 pd, comparable in all three groups ( P = 0.5. Conclusions: SSASS, performed under topical anesthesia, is safe and has better outcomes than conventional recession-resection surgery for concomitant exodeviation. An overcorrection of about 10-12 pd is recommended to check the exodrift and achieve stable alignment.

  9. Metoidioplasty as a single stage sex reassignment surgery in female transsexuals: Belgrade experience. (United States)

    Djordjevic, Miroslav L; Stanojevic, Dusan; Bizic, Marta; Kojovic, Vladimir; Majstorovic, Marko; Vujovic, Svetlana; Milosevic, Alexandar; Korac, Gradimir; Perovic, Sava V


    Metoidioplasty represents one of the variants of phalloplasty in female transsexuals. Its main characteristic is that it is a one-stage procedure. It involves lengthening and straightening of hypertrophied clitoris to create a neophallus, urethral lengthening to enable voiding while standing, and scrotal reconstruction with insertion of testicle prostheses. Our aim is to describe our technique and highlight its advantages. Between September 2002 and April 2007, 82 female transsexuals, aged 18-54 years (mean age 31) underwent one-stage metoidioplasty. Clitoris is lengthened and straightened by division of clitoral ligaments and short urethral plate. Urethroplasty is done with combined buccal mucosa graft and genital skin flaps. Scrotum is created from labia majora in which two testicle prostheses are inserted. Simultaneously, female genitalia are removed. Patients' personal satisfaction about sensitivity and length of neophallus, possibility to void in standing position, real length of reconstructed urethra as well as complication rate comparing to other published data. The median follow-up was 32 months (range 14-69). The mean neophallic length was 5.7 cm (range 4-10). Voiding in standing position was reported in all patients, while dribbling and spraying were noticed in 23 cases and solved spontaneously. There were two urethral strictures and seven fistulas that required secondary minor revision. All patients reported preserved sensation and normal postoperative erection. Testicle prostheses rejection was not observed in any of the patients. Metoidioplasty is a single-stage and time-saving procedure. It could be an alternative to total phalloplasty in female transsexuals who do not wish to have sexual intercourse. Also, it represents a first step in cases where additional augmentation phalloplasty is required.

  10. Thermodynamic simulation of condensation heat recovery characteristics of a single stage centrifugal chiller in a hotel

    International Nuclear Information System (INIS)

    Gong, Guangcai; Chen, Feihu; Su, Huan; Zhou, Jianyong


    Highlights: ► Thermodynamic model of a two-condenser condensation system has been carried out. ► Dynamic simulation method has been presented. ► COP and g of the refrigerating system is better than the single condensation system. ► The optimal parameters for the two-condenser condensation system have been studied. -- Abstract: A thermodynamic simulation study has been carried out for a single stage centrifugal chiller in this paper. The cooling capacity of the chiller unit is about 1750 kW. The chiller unit has been set and tested, and the work refrigerant is R22. A heat exchanger has been set between outlet of the compressor and the condenser for sanitary hot water supplying. Then the chiller unit is a kind of combined system that can provide sanitary hot water supplying and air conditioning simultaneously. A thermodynamic simulation model of the combined system has been established with the system simulation toolbox Simulink. Performance of the components and the combined system of the chiller unit has been studied over a wide range of operating conditions. The potential energy and fuel cost saving associated with the use of the proposed combined system for a typical hotel in south China has been estimated. It is showed that the combined system of the chiller unit is very useful in hotel buildings. And the thermodynamic simulation model of the combined system is significance for the optimization of parameters of the chiller unit such as condensation and evaporation temperature, mass flow of the sanitary hot water and size of hot water storage tank.

  11. Analysis of honeybush tea (Cyclopia spp.) volatiles by comprehensive two-dimensional gas chromatography using a single-stage thermal modulator. (United States)

    Ntlhokwe, Gaalebalwe; Tredoux, Andreas G J; Górecki, Tadeusz; Edwards, Matthew; Vestner, Jochen; Muller, Magdalena; Erasmus, Lené; Joubert, Elizabeth; Christel Cronje, J; de Villiers, André


    The applicability of comprehensive two-dimensional gas chromatography (GC×GC) using a single-stage thermal modulator was explored for the analysis of honeybush tea (Cyclopia spp.) volatile compounds. Headspace solid phase micro-extraction (HS-SPME) was used in combination with GC×GC separation on a non-polar × polar column set with flame ionisation (FID) detection for the analysis of fermented Cyclopia maculata, Cyclopia subternata and Cyclopia genistoides tea infusions of a single harvest season. Method optimisation entailed evaluation of the effects of several experimental parameters on the performance of the modulator, the choice of columns in both dimensions, as well as the HS-SPME extraction fibre. Eighty-four volatile compounds were identified by co-injection of reference standards. Principal component analysis (PCA) showed clear differentiation between the species based on their volatile profiles. Due to the highly reproducible separations obtained using the single-stage thermal modulator, multivariate data analysis was simplified. The results demonstrate both the complexity of honeybush volatile profiles and the potential of GC×GC separation in combination with suitable data analysis techniques for the investigation of the relationship between sensory properties and volatile composition of these products. The developed method therefore offers a fast and inexpensive methodology for the profiling of honeybush tea volatiles. Graphical abstract Surface plot obtained for the GC×GC-FID analysis of honeybush tea volatiles.

  12. An operation protocol for facilitating start-up of single-stage autotrophic nitrogen removing reactors based on process stoichiometry

    DEFF Research Database (Denmark)

    Mutlu, A. Gizem; Vangsgaard, Anna Katrine; Sin, Gürkan


    Start-up and operation of single-stage nitritation/anammox reactor employing complete autotrophic nitrogen can be difficult. Keeping the performance criteria and monitoring the microbial community composition may not be easy or fast enough to take action on time. In this study, a control strategy...

  13. Low voltage ride-through capability control for single-stage inverter-based grid-connected photovoltaic power plant

    DEFF Research Database (Denmark)

    Al-Shetwi, Ali Q.; Sujod, Muhamad Zahim; Blaabjerg, Frede


    The low voltage ride-through (LVRT) capability is one of the challenges faced by the integration of large-scale photovoltaic (PV) power stations into electrical grid which has not been fully investigated. Therefore, this paper presents a comprehensive control strategy of single-stage PV power pla...

  14. Revision Anterior Cruciate Ligament Reconstruction: Results of a Single-stage Approach Using Allograft Dowel Bone Grafting for Femoral Defects. (United States)

    Werner, Brian C; Gilmore, Carl J; Hamann, Joshua C; Gaskin, Cree M; Carroll, John J; Hart, Joseph M; Miller, Mark D


    The purpose of this study was to present results of single-stage revision anterior cruciate ligament (ACL) reconstruction using an allograft bone dowel for isolated femoral bony deficiency. Sixteen patients underwent single-stage revision ACL reconstruction using an allograft bone dowel for isolated femoral bony deficiency between 2007 and 2012. Twelve patients (75%) completed study visits, which included CT scans as well as completion of validated outcomes measures. The average KT-1000 side-to-side difference was 1.0 mm ± 2.9 mm. The average International Knee Documentation Committee score was 70.2 ± 17.8, the Tegner score was 4.8 ± 2.8, and the visual analog scale pain score was 2.8 ± 2.4. An analysis of CT scans showed that all 12 dowels had excellent (>75%) incorporation. A single-stage approach for revision ACL reconstruction using allograft dowels for isolated femoral bony deficiency yields objective and subjective outcomes comparable to those reported in the literature for two-stage and other single-stage techniques, with good incorporation of the dowels. Retrospective case series, level IV.

  15. Two-stage IMZ implants and ITI implants inserted in a single-stage procedure : A prospective comparative study

    NARCIS (Netherlands)

    Heydenrijk, Kees; Raghoebar, Gerry M.; Meijer, Henny J.A.; Reijden, Willy A. van der; Winkelhoff, Arie Jan van; Stegenga, Boudewijn


    The aim of this study was to evaluate the feasibility of using a two-stage implant system in a single-stage procedure and to study the impact of the microgap at crestal level and to monitor the microflora in the peri-implant area. Forty edentulous patients (Cawood & Howell class V–VI) participated

  16. Two-stage IMZ implants and ITI implants inserted in a single-stage procedure - A prospective comparative study

    NARCIS (Netherlands)

    Heydenrijk, K; Raghoebar, GM; Meijer, HJA; van der Reijden, WA; van Winkelhoff, AJ; Stegenga, B

    The aim of this study was to evaluate the feasibility of using a two-stage implant system in a single-stage procedure and to study the impact of the microgap at crestal level and to monitor the microflora in the peri-implant area. Forty edentulous patients (Cawood & Howell class V-VI) participated

  17. Enhanced biodiesel production in Neochloris oleoabundans by a semi-continuous process in two stage photobioreactors. (United States)

    Yoon, Se Young; Hong, Min Eui; Chang, Won Seok; Sim, Sang Jun


    Under autotrophic conditions, highly productive biodiesel production was achieved using a semi-continuous culture system in Neochloris oleoabundans. In particular, the flue gas generated by combustion of liquefied natural gas and natural solar radiation were used for cost-effective microalgal culture system. In semi-continuous culture, the greater part (~80%) of the culture volume containing vegetative cells grown under nitrogen-replete conditions in a first photobioreactor (PBR) was directly transferred to a second PBR and cultured sequentially under nitrogen-deplete conditions for accelerating oil accumulation. As a result, in semi-continuous culture, the productivities of biomass and biodiesel in the cells were increased by 58% (growth phase) and 51% (induction phase) compared to the cells in batch culture, respectively. The semi-continuous culture system using two stage photobioreactors is a very efficient strategy to further improve biodiesel production from microalgae under photoautotrophic conditions.

  18. Contamination issues in a continuous ethanol production corn wet milling facility (United States)

    Low ethanol yields and poor yeast viability were investigated at a continuous ethanol production corn wet milling facility. Using starch slurries and recycle streams from a commercial ethanol facility, laboratory hydrolysates were prepared by reproducing starch liquefaction and saccharification ste...

  19. Development of continuous pharmaceutical production processes supported by process systems engineering methods and tools

    DEFF Research Database (Denmark)

    Gernaey, Krist; Cervera Padrell, Albert Emili; Woodley, John


    The pharmaceutical industry is undergoing a radical transition towards continuous production processes. Systematic use of process systems engineering (PSE) methods and tools form the key to achieve this transition in a structured and efficient way.......The pharmaceutical industry is undergoing a radical transition towards continuous production processes. Systematic use of process systems engineering (PSE) methods and tools form the key to achieve this transition in a structured and efficient way....

  20. Enteric methane production and ruminal fermentation of forage brassica diets fed in continuous culture (United States)

    The aim of the current study was to determine nutrient digestibility, VFA production, N metabolism, and CH4 production of canola (Brassica napus L.), rapeseed (B. napus L.), turnip (B. rapa L.), and annual ryegrass (Lolium multiflorum Lam.) fed with orchardgrass (Dactylis glomerata L.) in continuous...

  1. Enteric methane production and ruminal fermentation from forage brassica diets fed in continuous culture (United States)

    Brassicas provide forage for livestock during the late fall when traditional perennial cool-season forages are not productive. However, little research exists on ruminal fermentation and methane(CH4) production of brassicas fed as forage. A continuous culture fermentor system was used to assess nutr...

  2. Effects of Stator Shroud Injection on the Aerodynamic Performance of a Single-Stage Transonic Axial Compressor

    International Nuclear Information System (INIS)

    Dinh, Cong-Truong; Ma, Sang-Bum; Kim, Kwang Yong


    In this study, stator shroud injection in a single-stage transonic axial compressor is proposed. A parametric study of the effect of stator shroud injection on aerodynamic performances was conducted using the three-dimensional Reynolds-averaged Navier-Stokes equations. The curvature, length, width, and circumferential angle of the stator shroud injector and the air injection mass flow rate were selected as the test parameters. The results of the parametric study show that the aerodynamic performances of the single-stage transonic axial compressor were improved by stator shroud injection. The aerodynamic performances were the most sensitive to the injection mass flow rate. Further, the total pressure ratio and adiabatic efficiency were the maximum when the ratio of circumferential angle was 10%.

  3. Effects of Stator Shroud Injection on the Aerodynamic Performance of a Single-Stage Transonic Axial Compressor

    Energy Technology Data Exchange (ETDEWEB)

    Dinh, Cong-Truong; Ma, Sang-Bum; Kim, Kwang Yong [Inha Univ., Incheon (Korea, Republic of)


    In this study, stator shroud injection in a single-stage transonic axial compressor is proposed. A parametric study of the effect of stator shroud injection on aerodynamic performances was conducted using the three-dimensional Reynolds-averaged Navier-Stokes equations. The curvature, length, width, and circumferential angle of the stator shroud injector and the air injection mass flow rate were selected as the test parameters. The results of the parametric study show that the aerodynamic performances of the single-stage transonic axial compressor were improved by stator shroud injection. The aerodynamic performances were the most sensitive to the injection mass flow rate. Further, the total pressure ratio and adiabatic efficiency were the maximum when the ratio of circumferential angle was 10%.

  4. Area G perimeter surface-soil and single-stage water sampling: Environmental surveillance for fiscal year 95. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Childs, M.; Conrad, R.


    ESH-19 personnel collected soil and single-stage water samples around the perimeter of Area G at Los Alamos National Laboratory (LANL) during FY 95 to characterize possible radionuclide movement out of Area G through surface water and entrained sediment runoff. Soil samples were analyzed for tritium, total uranium, isotopic plutonium, americium-241, and cesium-137. The single-stage water samples were analyzed for tritium and plutonium isotopes. All radiochemical data was compared with analogous samples collected during FY 93 and 94 and reported in LA-12986 and LA-13165-PR. Six surface soils were also submitted for metal analyses. These data were included with similar data generated for soil samples collected during FY 94 and compared with metals in background samples collected at the Area G expansion area.

  5. Modeling of DNA single stage splicing language via Yusof-Goode approach: One string with two rules (United States)

    Lim, Wen Li; Yusof, Yuhani; Mudaber, Mohammad Hassan


    Splicing system plays a pivotal role in attempts to recombine sets of double-stranded DNA molecules when acted by restriction enzymes and ligase. Traditional method of finding the result of DNA recombination through experiment is both time and money consuming. Hence, finding the number of patterns of DNA single stage splicing language through formalism of splicing system is a way to optimize the searching process. From the biological perspective, it predicts the number of types of molecules that will exist in the system under existence of restriction enzymes and ligase. In this paper, some theorems, corollaries and examples that lead to the predictions of single stage splicing languages involving one pattern string and two rules are presented via Yusof-Goode approach.

  6. Design and operation of a continuous integrated monoclonal antibody production process. (United States)

    Steinebach, Fabian; Ulmer, Nicole; Wolf, Moritz; Decker, Lara; Schneider, Veronika; Wälchli, Ruben; Karst, Daniel; Souquet, Jonathan; Morbidelli, Massimo


    The realization of an end-to-end integrated continuous lab-scale process for monoclonal antibody manufacturing is described. For this, a continuous cultivation with filter-based cell-retention, a continuous two column capture process, a virus inactivation step, a semi-continuous polishing step (twin-column MCSGP), and a batch-wise flow-through polishing step were integrated and operated together. In each unit, the implementation of internal recycle loops allows to improve the performance: (a) in the bioreactor, to simultaneously increase the cell density and volumetric productivity, (b) in the capture process, to achieve improved capacity utilization at high productivity and yield, and (c) in the MCSGP process, to overcome the purity-yield trade-off of classical batch-wise bind-elute polishing steps. Furthermore, the design principles, which allow the direct connection of these steps, some at steady state and some at cyclic steady state, as well as straight-through processing, are discussed. The setup was operated for the continuous production of a commercial monoclonal antibody, resulting in stable operation and uniform product quality over the 17 cycles of the end-to-end integration. The steady-state operation was fully characterized by analyzing at the outlet of each unit at steady state the product titer as well as the process (HCP, DNA, leached Protein A) and product (aggregates, fragments) related impurities. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1303-1313, 2017. © 2017 American Institute of Chemical Engineers.

  7. Towards continuous enzyme-catalysed processes for the production of biodiesel

    DEFF Research Database (Denmark)

    Nordblad, Mathias; Pedersen, Anders Kristian; Meyland, Lene Have

    The application of lipases in the production of biodiesel can find several roles: in pretreating high FFA oils via esterification, transesterification for converting oil to biodiesel and polishing via esterification to ensure the product is within specification. In all these cases the potential...... size of the process plants, suggest that continuous operation would be highly beneficial due to the economies of scale. To investigate this, we have examined both oil pretreatment via esterification and biodiesel production via transesterification in batch stirred tank reactors (BSTRs), continuous...


    Energy Technology Data Exchange (ETDEWEB)

    Elliot B. Kennel; Stephen P. Carpenter; Dady Dadyburjor; Manoj Katakdaunde; Liviu Magean; Peter G. Stansberry; Alfred H. Stiller; John W. Zondlo


    The purpose of this DOE-funded effort is to develop continuous processes for solvent extraction of coal for the production of carbon products. These carbon products include materials used in metals smelting, especially in the aluminum and steel industries, as well as porous carbon structural material referred to as ''carbon foam'' and carbon fibers. During this reporting period, efforts have focused on the facility modifications for continuous hydrotreating, as well as developing improved protocols for producing synthetic pitches.

  9. Single stage incubators and Hypercapnia during incubation affect the vascularization of the chorioallantoic membrane in broiler embryos. (United States)

    Fernandes, J I M; Bortoluzzi, C; Schmidt, J M; Scapini, L B; Santos, T C; Murakami, A E


    Incubation management can have direct effects on neonate health and consequently affect post-hatching development. The effects of incubation in multiple and single stage incubators with different concentrations of CO 2 were evaluated in terms of the vessel density in the chorioallantoic membrane, hatching, heart morphology, and body development of the neonate up to the tenth day. A total of 2,520 fertile eggs were used and distributed in a completely randomized design with 4 levels of CO 2 in 4 single-stage incubators (4,000; 6,000; 8,000; and 10,000 ppm) and a control treatment based on multiple-stage incubation, totaling 5 treatments. The levels of CO 2 were used during the first 10 d of the incubation period, and after this period, all eggs were submitted to the same level of CO 2 (4,000 ppm). Eggs that were incubated in multiple-stage incubators presented a lower percentage of vessels in the chorioallantoic membrane, lower yolk absorption by the embryo, wall depth of the right ventricle, and greater humidity losses in the eggs when compared to eggs in the single-stage incubators. The eggs submitted to hypercapnia, between 5,000 and 6,000 ppm of CO 2 , had a higher percentage of vessels in the chorioallantoic membrane; the embryos originating from these eggs had higher weight, with higher relative weight of the liver. However, the same levels reduced the yolk absorption. Single-stage incubation with moderate levels of hypercapnia is an efficient tool to be adopted by the hatcheries when attempting to improve chick quality. © 2016 Poultry Science Association Inc.

  10. Performance analysis of a single stage four bed metal hydride cooling system, part A: Influence of mass recovery

    Energy Technology Data Exchange (ETDEWEB)

    Abraham, Kevin; Prakash Maiya, M.; Srinivasa Murthy, S. [Refrigeration and Air-conditioning Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Madras, 600036, Chennai (India)


    The concept of mass recovery in metal hydride systems is studied with a single stage multi-bed cooling system as example. Mass recovery results in variation of bed temperatures due to removal or addition of heat of desorption or absorption respectively. Coefficient of performance and cold output increase while required heat input decreases for the mass recovery cycle. Thus mass recovery between hydride reactors is found to improve system performance compared to that of a basic system. (authors)

  11. Continuous production of pectinase by immobilized yeast cells on spent grains


    Almeida, Catarina; Brányik, Tomáš; Ferreira, Pedro Moradas; Teixeira, J. A.


    A yeast strain secreting endopolygalacturonase was used in this work to study the possibility of continuous production of this enzyme. It is a feasible and interesting alternative to fungal batch production essentially due to the specificity of the type of pectinase excreted by Kluyveromyces marxianus CCT 3172, to the lower broth viscosity and to the easier downstream operations. In order to increase the reactors’ productivity, a cellulosic carrier obtained from barley spent grain...

  12. Success Factors for PDCA as Continuous Improvement Method in Product Development


    Lodgaard, Eirin; Gamme, Inger; Aasland, Knut,


    Part 3: Human Factors, Learning and Innovation; International audience; In order to maintain sustainability in an ever changing environment, where customer requirements contains a yearly price reduction over the life cycle of a product, decreased time for development of new products and increased product quality, there is an increased need for focus on continuous improvements. A well-known improvement method is the PDCA (Plan-Do-Check-Act), which many companies have succeeded in implementing ...

  13. Theoretical comparison of single-stage and advanced absorption heat transformers used to increase solar pond's temperature

    Energy Technology Data Exchange (ETDEWEB)

    Rivera, W; Best, Roberto [Centro de Investigacion en Energia-UNAM, Temixco, Morelos (Mexico)


    Mathematical models of single-stage and advanced absorption heat transformers operating with the water/Carrol{sup T}M mixture were developed to simulate the performance of these systems coupled to a solar pond in order to increase the temperature of the useful heat produced by solar ponds. The results showed that the single-stage and the double absorption heat transformer are the most promising configuration to be coupled to solar ponds. With single-stage heat transformers it is possible to increase solar pond's temperature until 50 Celsius degrees with coefficients of performance of about 0.48 and with double absorption heat transformers until 100 Celsius degrees with coefficients of performance of 0.33. [Spanish] Se desarrollaron modelos matematicos de una sola etapa y transformadores avanzados de absorcion de calor operando con la mezcla agua/Carrol{sup T}M para simular el rendimiento de estos sistemas acoplados a un estanque solar con el objeto de aumentar la temperatura del calor util producido por los estanques solares. Los resultados mostraron que la etapa sencilla y el transformador de calor de absorcion doble son la configuracion mas prometedora para ser acoplado a estanques solares. Con los transformadores de calor de una sola etapa es posible aumentar la temperatura del estanque solar hasta 50 grados Celsius con coeficientes de rendimiento de alrededor de 0.48 y con transformadores de calor de doble absorcion hasta 100 grados Celsius con coeficientes de rendimiento de 0.33.

  14. How can recovery be enhanced after single-stage laparoscopic management of CBD stones? Endoscopic treatment versus laparoscopic surgery. (United States)

    Chapuis-Roux, Emilie; Pellissier, Laurent; Browet, Francois; Berthou, Jean Charles; Hakim, Sami; Brazier, Franck; Cosse, Cyril; Delcenserie, Richard; Regimbeau, Jean Marc


    Single-stage management of CBD stones comprises simultaneous common bile duct (CBD) clearance and cholecystectomy. The CBD can be cleared by using endoscopic treatment (ET) or laparoscopic surgery (LS) alone. To determine the most rapid recovery after the single-stage laparoscopic management of CBD stones. Patients with CBD stones treated at either of two centers (one performing ET only and one performing LS only for single-stage treatment) were included. The primary endpoint was "the textbook outcome". The feasibility rate was 74% for ET and 100% for LS (p≤0.001). The proportion of cases with the textbook outcome was higher in the ET group than in the LS-only group (73% vs. 10%; pCBD clearance rate was similar in the ET and LS-only groups (100% vs. 96.6%, respectively; p=0.17). The overall morbidity rate was lower in the ET group than in the LS-only group (23% vs. 29%, p=0.05). Both ET and LS are feasible, safe and effective for clearance of the CBD. ET was better than LS in terms of a less frequent requirement for drainage and a shorter length of hospital stay. LS was associated with a shorter operating time. Copyright © 2017 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.

  15. Economics of recombinant antibody production processes at various scales: Industry-standard compared to continuous precipitation. (United States)

    Hammerschmidt, Nikolaus; Tscheliessnig, Anne; Sommer, Ralf; Helk, Bernhard; Jungbauer, Alois


    Standard industry processes for recombinant antibody production employ protein A affinity chromatography in combination with other chromatography steps and ultra-/diafiltration. This study compares a generic antibody production process with a recently developed purification process based on a series of selective precipitation steps. The new process makes two of the usual three chromatographic steps obsolete and can be performed in a continuous fashion. Cost of Goods (CoGs) analyses were done for: (i) a generic chromatography-based antibody standard purification; (ii) the continuous precipitation-based purification process coupled to a continuous perfusion production system; and (iii) a hybrid process, coupling the continuous purification process to an upstream batch process. The results of this economic analysis show that the precipitation-based process offers cost reductions at all stages of the life cycle of a therapeutic antibody, (i.e. clinical phase I, II and III, as well as full commercial production). The savings in clinical phase production are largely attributed to the fact that expensive chromatographic resins are omitted. These economic analyses will help to determine the strategies that are best suited for small-scale production in parallel fashion, which is of importance for antibody production in non-privileged countries and for personalized medicine. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. OPTIMASI PRODUKSI ENZIMATIS DIASILGLISEROL MELALUI GLISEROLISIS KONTINU [Optimization of Enzymatic Diacylglycerol Production through Continuous Glycerolysis

    Directory of Open Access Journals (Sweden)



    Full Text Available Diacylglycerol (DAG produced from crude palm oil (CPO is one of the healthy oils that can be consumed for daily human diet. DAG production in Indonesia is constrained by the high cost of the mostly imported lipase. To overcome this problem, research of DAG production has been carried out using crude extracts of lipase produced by local species of fungi Rhizopus oryzae. This study aims to develop a continuous process of enzymatic glycerolysis of CPO for DAG production; to establish optimum conditions of DAG production which includes flow rate of CPO and glycerolysis time; and to test the performance of lipase from the local mold R. oryzae in catalyzing continuous process of glycerolysis for the production of DAG. Lipase isolation was carried out by acetone precipitation and lipase was used as a catalyst in the continuous glycerolysis process. The glycerolysis was conducted by reacting CPO with glycerol continuously at various time periods. The optimum condition of automatic continuous glycerolysis process was achieved at a CPO flow rate of 3 mL/min with a glycerolysis time at the 18 cycles (9 hours. The conversion of DAG was 29%. The performance of lipase was proven to remain stable up to 3 times changes of CPO substrate for 9 hours of glycerolysis process with the best condition at the 3 cycles and can improved conversion of DAG until 37%.

  17. Bio-hydrogen production from molasses by anaerobic fermentation in continuous stirred tank reactor (United States)

    Han, Wei; Li, Yong-feng; Chen, Hong; Deng, Jie-xuan; Yang, Chuan-ping


    A study of bio-hydrogen production was performed in a continuous flow anaerobic fermentation reactor (with an available volume of 5.4 L). The continuous stirred tank reactor (CSTR) for bio-hydrogen production was operated under the organic loading rates (OLR) of 8-32 kg COD/m3 reactor/d (COD: chemical oxygen demand) with molasses as the substrate. The maximum hydrogen production yield of 8.19 L/d was obtained in the reactor with the OLR increased from 8 kg COD/m3 reactor/d to 24 kg COD/m3 d. However, the hydrogen production and volatile fatty acids (VFAs) drastically decreased at an OLR of 32 kg COD/m3 reactor/d. Ethanoi, acetic, butyric and propionic were the main liquid fermentation products with the percentages of 31%, 24%, 20% and 18%, which formed the mixed-type fermentation.

  18. Single-stage revision from gastric band to gastric bypass or sleeve gastrectomy: 6- and 12-month outcomes. (United States)

    Yeung, Louise; Durkan, Brandice; Barrett, Allison; Kraft, Cary; Vu, Kim; Phillips, Edward; Cunneen, Scott; Burch, Miguel


    Laparoscopic adjustable gastric banding (LAGB) is increasingly requiring revisional surgery for complications and failures. Removal of the band and conversion to either laparoscopic Roux-en-y gastric bypass (LRYGB) or laparoscopic sleeve gastrectomy (LSG) is feasible as a single-stage procedure. The objective of this study is to compare the safety and efficacy of single-stage revision from LAGB to either LRYGB or LSG at 6 and 12 months postoperatively. Retrospective analysis was performed on patients undergoing single-stage revision between 2009 and 2014 at a single academic medical center. Patients were reassessed for weight loss and complications at 6 and 12 months postoperatively. Thirty-two patients underwent single-stage revision to LRYGB, and 72 to LSG. Preoperative BMIs were similar between the two groups (p = 0.27). Median length of stay for LRYGB was 3 days versus 2 for LSG (p = 0.14). Four patients in the LRYGB group required reoperation within 30 days, and two patients in the LSG group required reoperation within 30 days (p = 0.15). There was no difference in ER visits (p = 0.24) or readmission rates (p = 0.80) within 30 days of operation. Six delayed complications were seen in the LSG group with three requiring intervention. At 6 months postoperatively, percent excess weight loss (%EWL) was 50.20 for LRYGB and 30.64 for LSG (p = 0.056). At 12 months, %EWL was 51.19 for LRYGB and 34.89 for LSG (p = 0.31). There was no difference in diabetes or hypertension medication reduction at 12 months between LRYGB and LSG (p > 0.07). Single-stage revision from LAGB to LRYGB or LSG is technically feasible, but not without complications. The complications in the bypass group were more severe. There was no difference in readmission or reoperation rates, weight loss or comorbidity reduction. Revision to LRYGB trended toward higher rate and greater severity of complications with equivalent weight loss and comorbidity reduction.

  19. Study on improvement of continuous hydrogen production by photosynthetic biofilm in interior illuminant reactor. (United States)

    Liu, Wenhui; Yuan, Linjiang; Wei, Bo


    In the present study, a new type of interior optical fiber illuminating reactor was developed for H2 production to solve the problem of luminous intensity attenuation at the center portion of a reactor, and an immobilization technique was used to enhance the stability of a continuous hydrogen production process with attached photosynthetic bacteria, using glucose as a sole carbon substrate for the indigenous photosynthetic bacteria (PSB) Rhodopseudomonas palustris SP-6. Results of the experiments showed that the interior optical fiber illuminating reactor produces H2 more efficiently and productively than the exterior light source reactor, with the cumulative H2 production, the maximum H2 production rate and H2 yield increased by 813ml, 11.3ml l-1 h-1 and 22.3%, respectively. The stability of the product of continuous hydrogen was realized by immobilizing PSB on the surface of powder active carbon(PAC). After adding the dosage of 2.0g l-1 PAC, the continuous steady operation of H2 production gave a high H2 yield of 1.398 mol H2 mol-1 glucose and an average H2 production rate of 35.1ml l-1 h-1 illuminating with a single interior optical fiber light source. Meanwhile, a higher H2 yield of 1.495 mol H2 mol-1 glucose and an average H2 production rate of 38.7ml l-1 h-1 were attained illuminating with a compound lamp in the continuous H2 production for 20 days.

  20. Design and operation of a filter reactor for continuous production of a selected pharmaceutical intermediate

    DEFF Research Database (Denmark)

    Christensen, Kim Müller; Pedersen, Michael Jønch; Dam-Johansen, Kim


    -batch operation, are reduced impurity formation and the use of much lower reactor volumes (factor of 1000 based on the laboratory reactor) and less solvent consumption (from 5.8 to 2.3L/kg reactant). Added challenges include handling of continuous solid powder feeding, stable pumping of reactive slurries......A novel filter reactor system for continuous production of selected pharmaceutical intermediates is presented and experimentally verified. The filter reactor system consists of a mixed flow reactor equipped with a bottom filter, to retain solid reactant particles, followed by a conventional plug...... in tetrahydrofuran solvent. The use of the filter reactor design was explored by examining the transferability of a synthesis step in a present full-scale semi-batch pharmaceutical production into continuous processing. The main advantages of the new continuous minireactor system, compared to the conventional semi...

  1. Feasibility of Continuous Frying System to Improve the Quality Indices of Palm Olein for the Production of Extruded Product. (United States)

    Ahmad Tarmizi, Azmil Haizam; Ahmad, Karimah


    Comparative frying studies on the processing of extruded product were conducted under intermittent and continuous frying conditions using two separate frying systems, i.e batch and pilot scale continuous fryers, respectively. Thermal resistance of palm olein were assessed for a total of 5 days of frying operation at 155°C - the unconventional frying temperature gave the product moisture content of 3% after intermittent and continuous frying for 2.5 min and 2 min, respectively. The formation of free fatty acid in palm olein in the case of intermittent frying was more than 2-fold higher compared to its counterpart (0.66%). Smoke point inversely evolved with oil acidity: the value dropped progressively from 215 to 177°C and from 219 to 188°C when extruded product was intermittently and continuously fried, respectively. In the light of induction period, repeated frying exhibited a gradual decrease in the value after 5 days of frying (12.2 h). Interestingly, continuous frying gave somewhat similar induction period, as demonstrated by fresh palm olein, across frying time. Frying at lower temperature, to some extent, provides opportunity for palm olein to retain 74% of its initial vitamin E during continuous frying. This benefit, however, is somehow denied when extruded product was processed under intermittent frying conditions--only 27% of vitamin E was remained at the end of frying session. Regardless of frying protocols, transient in polar compounds was minimal and hence comparable. The colour in the case of continuous frying appeared to be darker due to higher degree of oil utilisation for frying. The data obtained will provide useful information for food processors on how palm olein behaves when frying is undertaken under different frying protocols.

  2. PDCA cycle as a part of continuous improvement in the production company - a case study


    Marta Jagusiak-Kocik


    The paper presents a case study of the practical use of Deming cycle in a manufacturing company, from the plastics processing industry, from the sector of small and medium-sized enterprises. The paper is a study of literature in the field of continuous improvement and characterized by a cycle of continuous improvement, called the Deming cycle, or PDCA cycle. This cycle was used as a solution to quality problems which occurred during production of photo frames: discolorations and ...

  3. Biohydrogen production from enzymatic hydrolysis of food waste in batch and continuous systems (United States)

    Han, Wei; Yan, Yingting; Shi, Yiwen; Gu, Jingjing; Tang, Junhong; Zhao, Hongting


    In this study, the feasibility of biohydrogen production from enzymatic hydrolysis of food waste was investigated. Food waste (solid-to-liquid ratio of 10%, w/v) was first hydrolyzed by commercial glucoamylase to release glucose (24.35 g/L) in the food waste hydrolysate. Then, the obtained food waste hydrolysate was used as substrate for biohydrogen production in the batch and continuous (continuous stirred tank reactor, CSTR) systems. It was observed that the maximum cumulative hydrogen production of 5850 mL was achieved with a yield of 245.7 mL hydrogen/g glucose (1.97 mol hydrogen/mol glucose) in the batch system. In the continuous system, the effect of hydraulic retention time (HRT) on biohydrogen production from food waste hydrolysate was investigated. The optimal HRT obtained from this study was 6 h with the highest hydrogen production rate of 8.02 mmol/(h·L). Ethanol and acetate were the major soluble microbial products with low propionate production at all HRTs. Enzymatic hydrolysis of food waste could effectively accelerate hydrolysis speed, improve substrate utilization rate and increase hydrogen yield. PMID:27910937

  4. Scientific production in CBCE/CONBRACE: the continuing education from 2007 to 2013 in focus

    Directory of Open Access Journals (Sweden)

    Deiva Mara Delfini Batista


    Full Text Available This study, qualitative and documentary character, aimed to analyze the scientific production about continuing education of teachers between the years 2007 and 2013, from the GTT "Teachers Training and the World of Work" of the Brazilian Sports Science College. We identified 49 papers about the issue, which were categorized into different groups based on their approaches and features. The results portray the existence of systematic scientific production about continuing education, and that is articulate with the reality of Brazilian graduate. However, some categories showed little representation, pointing challenges to be faced, requiring more research about the issue.

  5. Improvement production of bacterial cellulose by semi-continuous process in molasses medium. (United States)

    Cakar, Fatih; Ozer, Işılay; Aytekin, A Özhan; Sahin, Fikrettin


    Bacterial cellulose (BC) has unique properties such as structural, functional, physical and chemical. The mass production of BC for industrial application has recently become attractive to produce more economical and high productive cellulose. In this study, to improve the productivity of bacterial cellulose (BC), BC production by Gluconacetobacter xylinus FC01 was investigated in molasses medium with static semi-continuous operation mode. Cell dry weight, polysaccharide, sugar and cellulose concentrations were monitored and cellulose was characterized by Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM). The highest cellulose yield (1.637 g/L) was obtained in SCP50-7d, which molasses of 1/2 ratio for 7 days by static semi-continuous operation mode. The results show that BC can be highly produced by G. xylinus in molasses with static semi-continuous process than batch process. We claimed that low-cost medium with semi-continuous operation mode in static culture is a good candidate for industrial scale BC productions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Continuous biodiesel production using in situ glycerol separation by membrane bioreactor system. (United States)

    Ko, Myung Joo; Park, Hyun June; Hong, So Yeon; Yoo, Young Je


    Biodiesel is one of the most promising renewable fuel sources. Candida antarctica lipase B (CalB) has been used for biodiesel production because of its high activity and stability. However, CalB can only be utilized in industrial biodiesel production if the enzyme deactivation by methanol and the negative effects of glycerol can be mitigated. Methanol inhibition can be avoided by utilizing a stepwise addition of methanol, but there is no suitable method to reduce the glycerol effect. This study aims to use a membrane bioreactor system to remove glycerol during biodiesel production. In addition, methanol inhibition can be reduced by continuously feeding methanol through the membrane system. This continuous membrane bioreactor system can be used for efficient biodiesel production.

  7. Continuity And Inclusion Of Actors In Scientific Production In Accounting Between 1994 And 2009

    Directory of Open Access Journals (Sweden)

    Silvana Anita Walter


    Full Text Available This research was aimed at verifying, within a longitudinal perspective (1994-2009, the role of authors in the development of Brazilian scientific production in accounting. A bibliometric and sociometric research was undertaken, in which 4,052 papers were consulted. Production and continuity categories were analyzed, classifying the authors as continuant, transient, entrant, one-timer and withdrawing. The results demonstrated the importance of continuant authors for the development, consolidation and maturing of accounting research. That is so because these authors displayed the greatest productivity in quantitative terms; intermediate the relationship with other categories, that is, they serve as agents for information from different researchers; the eight continuant authors with the highest number of publications play a central role in their networks, articulating research by different researchers; and are the main responsible for international partnerships. Despite the importance of continuants, they represent the lowest percentage among the categories. On the opposite, most of the authors identified were classified as one-timers, that is, they published a single study across the study period. This last category, in combination with entrant authors, indicate the attractiveness of the knowledge area for researchers, and can serve as the main sources of innovations and novel approaches. As regards the withdrawing authors, some degree of rotation was observed, which is natural in all research areas.

  8. Performances comparison between three technologies for continuous ethanol production from molasses

    International Nuclear Information System (INIS)

    Bouallagui, Hassib; Touhami, Youssef; Hanafi, Nedia; Ghariani, Amine; Hamdi, Moktar


    Molasses are a potential feedstock for ethanol production. The successful application of anaerobic fermentation for ethanol production from molasses is critically dependent to the development and the use of high rate bioreactors. In this study the fermentation of sugar cane molasses by Saccharomyces cerevisiae for the ethanol production in a continuously stirred tank reactor (CSTR), an immobilised cell reactor (ICR) and a membrane reactor (MBR) was investigated. Ethanol production and reactor productivities were compared under different dilution rates (D). When using the CSTR, a decent ethanol productivity (Qp) of 6.8 g L −1 h −1 was obtained at a dilution rate of 0.5 h −1 . The Qp was improved by 48% and the residual sugar concentration was reduced by using the ICR. Intensifying the production of ethanol was investigated in the MBR to achieve a maximum ethanol concentration and a Qp of 46.5 g L −1 and 19.2 g L −1 h −1 , respectively. The achieved results in the MBR worked with high substrate concentration are promising for the scale up operation. -- Highlights: ► We compare three reactors for ethanol production from sugar cane molasses. ► The ethanol productivity of 6.8 g L -1 h -1 was obtained using the CSTR. ► The ethanol productivity was improved by 48% by using the ICR. ► Intensifying ethanol productivity (19.2 g L -1 h -1 ) was investigated in the MBR

  9. Single-stage treatment of infected tibial non-unions and osteomyelitis with bone marrow granulocytes precursors protecting bone graft. (United States)

    Hernigou, Philippe; Dubory, Arnaud; Homma, Yasuhiro; Flouzat Lachaniette, Charles Henri; Chevallier, Nathalie; Rouard, Helene


    Infected non-unions present a clinical challenge, especially with risk of recurrent infection. Bone marrow contains granulocyte precursors identified in vitro as colony forming units-granulocyte macrophage (CFU-GM) have a prophylactic action against infection. We therefore tested the hypothesis that bone marrow concentrated granulocytes precursors added to a standard bone graft could decrease the risk of recurrence of infection when single-stage treatment of infected tibial non-unions is performed with bone graft. During a single-stage procedure 40 patients with infected tibial non-union received a spongious bone graft supercharged with granulocytes precursors after debridement (study group). A control group (40 patients) was treated in a single stage with local debridement and standard bone graft obtained from the iliac crest. The antibiotic therapy protocol was the same (60 days) in the two groups. CFU-GM progenitors were harvested from bone marrow aspirated on the opposite iliac crest of the site where the cancellous bone was obtained. Union (radiographs and CT scan), a recurrence of clinical infection, and need for subsequent surgery were evaluated. Thirty-eight (95%) patients who received graft supercharged with granulocytes precursors achieved successful union without recurrence of infection during the seven-year follow-up versus 28 (70%) control patients; for the control group the mean graft resorption volume was 40%, while no bone graft resorption was found for the study group. Supercharging the cancellous bone graft with bone marrow granulocytes precursors protect the site of infected non-union from recurrence of infection and bone resorption of the graft.

  10. Cost Effectiveness of Natural Regeneration for Sustaining Production Continuity in Commercial Pine Plantations (United States)

    T.R. Clason


    Reforestation is a key to production continuity in commercial pine plantations. Although natural and artificial regeneration methods have been used successfully for pine seedling establishment, it is seedling growth during early stage of plantation development that affects the financial potential of a pine plantation. A study was initiated to determine the effect of...

  11. Continuous operation of a pilot plant for the production of beryllium oxide

    International Nuclear Information System (INIS)

    Costa, T.C.; Amaral, S.; Silveira, C.M.S.; Oliveira, A.P. de


    A method of obtaining beryllium oxide with a purity of 99,2% was developed in a pilot plant with a capacity of 7 tons per month destined to operate continuously. The operation market prospects and control of production with the objective of obtaining internacional technical grade beryllium oxide are discussed [pt

  12. Wood pulp as an immobilization matrix for the continuous production of isopropanol and butanol. (United States)

    Survase, Shrikant A; van Heiningen, Adriaan; Granström, Tom


    The study was focused on developing a continuous method to produce an alcohol mixture suitable to be used as a gasoline supplement. The immobilized column reactor with wood pulp fibers was successfully used for the continuous production of butanol and isopropanol using Clostridium beijerinckii DSM 6423. A sugar mixture (glucose, mannose, galactose, arabinose and xylose) representing lignocellulose hydrolysate was used as a substrate for the production of solvents. The effect of dilution rate on solvent production was studied during continuous operation. The maximum total solvent concentration of 11.99 g/l was obtained at a dilution rate of 0.16 h(-1). The maximum solvent productivity (5.58 g/l h) was obtained at a dilution rate of 1.5 h(-1). The maximum solvent yield of 0.45 g/g from sugar mixture was observed at 0.25 h(-1). The system will be further used for the solvent production using wood hydrolysate as a substrate.

  13. Continuous Production of IF-WS2 Nanoparticles by a Rotary Process

    Directory of Open Access Journals (Sweden)

    Fang Xu


    Full Text Available This manuscript demonstrates the design, modification and initial investigation of a rotary furnace for the manufacturing of inorganic fullerene WS2 nanoparticles. Different preparation methods starting with various precursors have been investigated, of which the gas-solid reaction starting with WO3 nanoparticles was the most efficient technique. Furthermore, the influence of temperature, reaction time, and reaction gases etc. on the synthesis of inorganic fullerene WS2 nanomaterials was investigated, and these parameters were optimised based on combined characterisations using XRD, SEM and TEM. In addition, the furnace was further modified to include a baffled tube, a continuous gas-blow feeding system, and a collection system, in order to improve the batch yield and realise continuous production. This technique has improved the production from less than 1 g/batch in a traditional tube furnace to a few tens of g/batch, and could be easily scaled up to industry level production.

  14. Acclimatization Study for Biohydrogen Production from Palm Oil Mill Effluent (POME) in Continuous-flow System (United States)

    Idris, N.; Lutpi, N. A.; Wong, Y. S.; Tengku Izhar, T. N.


    This research aims to study the acclimatization phase for biohydrogen production from palm oil mill effluent (POME) by adapting the microorganism to the new environment in continuous-flow system of thermophilic bioreactor. The thermophilic fermentation was continuously loaded with 0.4 L/day of raw POME for 35 days to acclimatize the microorganism until a steady state of biohydrogen production was obtained. The significance effect of acclimatization phase on parameter such as pH, microbial growth, chemical oxygen demand (COD), and alkalinity were also studied besides the production of biogas. This study had found that the thermophilic bioreactor reach its steady state with 1960 mL/d of biogas produced, which consist of 894 ppm of hydrogen composition.

  15. Continuous-Time Classical and Quantum Random Walk on Direct Product of Cayley Graphs

    International Nuclear Information System (INIS)

    Salimi, S.; Jafarizadeh, M. A.


    In this paper we define direct product of graphs and give a recipe for obtaining probability of observing particle on vertices in the continuous-time classical and quantum random walk. In the recipe, the probability of observing particle on direct product of graph is obtained by multiplication of probability on the corresponding to sub-graphs, where this method is useful to determining probability of walk on complicated graphs. Using this method, we calculate the probability of continuous-time classical and quantum random walks on many of finite direct product Cayley graphs (complete cycle, complete K n , charter and n-cube). Also, we inquire that the classical state the stationary uniform distribution is reached as t → ∞ but for quantum state is not always satisfied. (general)

  16. Microfluidic Platform for the Continuous Production and Characterization of Multilamellar Vesicles

    DEFF Research Database (Denmark)

    Ghazal, Aghiad; Gontsarik, Mark; Kutter, Jörg P.


    A microfluidic platform combined with synchrotron small-angle X-ray scattering (SAXS) was used for monitoring the continuous production of multilamellar vesicles (MLVs). Their production was fast and started to evolve within less than 0.43 s of contact between the lipids and the aqueous phase....... To obtain nanoparticles with a narrow size distribution, it was important to use a modified hydrodynamic flow focusing (HFF) microfluidic device with narrower microchannels than those normally used for SAXS experiments. Monodispersed MLVs as small as 160 nm in size, with a polydispersity index (PDI......) of approximately 0.15 were achieved. The nanoparticles produced were smaller and had a narrower size distribution than those obtained via conventional bulk mixing methods. This microfluidic platform therefore has a great potential for the continuous production of monodispersed NPs....

  17. Single-stage separation and esterification of cation salt carboxylates using electrodeionization (United States)

    Lin, YuPo J.; Henry, Michael; Hestekin, Jamie; Snyder, Seth W.; St. Martin, Edward J.


    A method of and apparatus for continuously making an organic ester from a lower alcohol and an organic acid is disclosed. An organic acid or salt is introduced or produced in an electrode ionization (EDI) stack with a plurality of reaction chambers each formed from a porous solid ion exchange resin wafer interleaved between anion exchange membranes or an anion exchange membrane and a cation exchange membrane or an anion exchange membrane and a bipolar exchange membranes. At least some reaction chambers are esterification chambers and/or bioreactor chambers and/or chambers containing an organic acid or salt. A lower alcohol in the esterification chamber reacts with an anion to form an organic ester and water with at least some of the water splitting with the ions leaving the chamber to drive the reaction.

  18. Development of a novel integrated continuous reactor system for biocatalytic production of biodiesel. (United States)

    Chattopadhyay, Soham; Sen, Ramkrishna


    A novel integrated immobilized enzyme-reactor system involving a continuous stirred tank reactor with two packed bed reactors in series was developed for the continuous production of biodiesel. The problem of methanol solubility into oil was solved by introducing a stirred tank reactor to dissolve methanol into partially converted oil. This step made the process perfectly continuous without requiring any organic solvent and intermittent methanol addition in the process. The substrate feeding rate of 0.74 mL/min and enzyme loading of 0.75 g per reactor were determined to be optimum for maximum biodiesel yield. The integrated continuous process was stable up to 45 cycles with biodiesel productivity of 137.2 g/L/h, which was approximately 5 times higher than solvent free batch process. In comparison with the processes reported in literature using expensive Novozyme 435 and hazardous organic solvent, the present process is completely green and perfectly continuous with economic and environmental advantages. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Single stage reconstruction of ruptured tendoachilles tendon with skin cover using distally based superficial sural artery flap. (United States)

    Abhyankar, Suhas V; Kulkarni, Ananta; Agarwal, Naveen Kumar


    Ruptured tendoachilles along with skin defect is a complex problem to reconstruct. Both things require a priority. Single stage reconstruction of ruptured tendoachilles tendon with skin cover using distally based superficial sural arterial flap allows us to perform both. This procedure gives excellent result, shortens the stay, thereby reducing the cost. This method is a simple solution to the complex problem like ruptured tendoachilles with skin defect. In this study, 6 patients with rupture of tendoachilles tendon due to penetrating injury, with skin defect are presented. The repair was done using aponeurotic part of tendoachilles tendon, taken from proximal part of tendoachilles in the midline measuring around 2 to 2.5 cm in width and 8 to 10 cm in length, with intact distal attachment. The tendon was turned upside down by 180 degrees and sutured to the distal stump of the tendoachilles tendon without tension. The skin defect was covered using distally based superficial sural artery flap in the same sitting. The follow-up period was 9 to 30 months. All patients showed good results. In one patient there was distal necrosis of 1.5 cm of the distally based superficial sural artery flap, which healed satisfactorily with conservative treatment. Single stage tendoachilles reconstruction can be used with good functional result and patient satisfaction.

  20. Continuous production of pectinase by immobilized yeast cells on spent grains. (United States)

    Almeida, Catarina; Brányik, Tomás; Moradas-Ferreira, Pedro; Teixeira, José


    A yeast strain secreting endopolygalacturonase was used in this work to study the possibility of continuous production of this enzyme. It is a feasible and interesting alternative to fungal batch production essentially due to the specificity of the type of pectinase excreted by Kluyveromyces marxianus CCT 3172, to the lower broth viscosity and to the easier downstream operations. In order to increase the reactors' productivity, a cellulosic carrier obtained from barley spent grains was tested as an immobilization support. Two types of reactors were studied for pectinase production using glucose as a carbon and energy source--a continuous stirred tank reactor (CSTR) and a packed bed reactor (PBR) with recycled flow. The highest value for pectinase volumetric productivity (P(V)=0.98 U ml(-1) h(-1)) was achieved in the PBR for D=0.40 h(-1), a glucose concentration on the inlet of S(in)=20 g l(-1), and a biomass load in the support of X(i)=0.225 g g(-1). The results demonstrate the attractiveness of the packed bed system for pectinase production.

  1. [A stable reagent for the-single stage determination of inorganic phosphate]. (United States)

    Pupyshev, A B


    A recipe of a simple reagent for phosphorus detection has been developed, consisting of ammonium molybdate (4 mM), sulfuric acid (0.2 N), and Tween-80 (0.2%). The developing phosphate staining may be registered in 15 min at a wavelength of 350 nm. The product molar extinction is equal to 1.20.10(4), this being close to that of molybdic blue. Phosphate staining is characterized by the stability of results and insensitivity to the presence of a number of substances used in enzymology. The prepared reagent is fit for experiments within a fortnight if stored in the cold.

  2. PDCA cycle as a part of continuous improvement in the production company - a case study

    Directory of Open Access Journals (Sweden)

    Marta Jagusiak-Kocik


    Full Text Available The paper presents a case study of the practical use of Deming cycle in a manufacturing company, from the plastics processing industry, from the sector of small and medium-sized enterprises. The paper is a study of literature in the field of continuous improvement and characterized by a cycle of continuous improvement, called the Deming cycle, or PDCA cycle. This cycle was used as a solution to quality problems which occurred during production of photo frames: discolorations and scorches on the surface of the frame. When measures were introduced to reduce the number of nonconformities, a decrease by more than 60% was observed.

  3. Bioaggregate of photo-fermentative bacteria for enhancing continuous hydrogen production in a sequencing batch photobioreactor. (United States)

    Xie, Guo-Jun; Liu, Bing-Feng; Wang, Rui-Qing; Ding, Jie; Ren, Hong-Yu; Zhou, Xu; Ren, Nan-Qi


    Hydrogen recovery through solar-driven biomass conversion by photo-fermentative bacteria (PFB) has been regarded as a promising way for sustainable energy production. However, a considerable fraction of organic substrate was consumed for the growth of PFB as biocatalysts, furthermore, these PFB were continuously washed out from the photobioreactor in continuous operation because of their poor flocculation. In this work, PFB bioaggregate induced by L-cysteine was applied in a sequencing batch photobioreactor to enhance continuous hydrogen production and reduce biomass washout. The effects of the hydraulic retention time (HRT), influent concentration and light intensity on hydrogen production of the photobioreactor were investigated. The maximum hydrogen yield (3.35 mol H2/mol acetate) and production rate (1044 ml/l/d) were obtained at the HRT of 96 h, influent concentration of 3.84 g COD/l, and light intensity of 200 W/m(2). With excellent settling ability, biomass accumulated in the photobioreactor and reached 2.15 g/l under the optimum conditions. Structural analysis of bioaggregate showed that bacterial cells were covered and tightly linked together by extracellular polymeric substances, and formed a stable structure. Therefore, PFB bioaggregate induced by L-cysteine is an efficient strategy to improve biomass retention capacity of the photobioreactor and enhance hydrogen recovery efficiency from organic wastes.

  4. Bioaggregate of photo-fermentative bacteria for enhancing continuous hydrogen production in a sequencing batch photobioreactor (United States)

    Xie, Guo-Jun; Liu, Bing-Feng; Wang, Rui-Qing; Ding, Jie; Ren, Hong-Yu; Zhou, Xu; Ren, Nan-Qi


    Hydrogen recovery through solar-driven biomass conversion by photo-fermentative bacteria (PFB) has been regarded as a promising way for sustainable energy production. However, a considerable fraction of organic substrate was consumed for the growth of PFB as biocatalysts, furthermore, these PFB were continuously washed out from the photobioreactor in continuous operation because of their poor flocculation. In this work, PFB bioaggregate induced by L-cysteine was applied in a sequencing batch photobioreactor to enhance continuous hydrogen production and reduce biomass washout. The effects of the hydraulic retention time (HRT), influent concentration and light intensity on hydrogen production of the photobioreactor were investigated. The maximum hydrogen yield (3.35 mol H2/mol acetate) and production rate (1044 ml/l/d) were obtained at the HRT of 96 h, influent concentration of 3.84 g COD/l, and light intensity of 200 W/m2. With excellent settling ability, biomass accumulated in the photobioreactor and reached 2.15 g/l under the optimum conditions. Structural analysis of bioaggregate showed that bacterial cells were covered and tightly linked together by extracellular polymeric substances, and formed a stable structure. Therefore, PFB bioaggregate induced by L-cysteine is an efficient strategy to improve biomass retention capacity of the photobioreactor and enhance hydrogen recovery efficiency from organic wastes.

  5. Development of High-Productivity Continuous Ethanol Production using PVA-Immobilized Zymomonas mobilis in an Immobilized-Cells Fermenter

    Directory of Open Access Journals (Sweden)

    Nurhayati Nurhayati


    Full Text Available Ethanol as one of renewable energy was being considered an excellent alternative clean-burning fuel to replace gasoline. Continuous ethanol fermentation systems had offered important economic advantages compared to traditional systems. Fermentation rates were significantly improved, especially when continuous fermentation was integrated with cell immobilization techniques to enrich the cells concentration in fermentor. Growing cells of Zymomonas mobilis immobilized in polyvinyl alcohol (PVA gel beads were employed in an immobilized-cells fermentor for continuous ethanol fermentation from glucose. The glucose loading, dilution rate, and cells loading were varied in order to determine which best condition employed in obtaining both high ethanol production and low residual glucose with high dilution rate. In this study, 20 g/L, 100 g/L, 125 g/L and 150 g/L of glucose concentration and 20% (w/v, 40% (w/v and 50% (w/v of cells loading were employed with range of dilution rate at 0.25 to 1 h-1. The most stable production was obtained for 25 days by employing 100 g/L of glucose loading. Meanwhile, the results also exhibited that 125 g/L of glucose loading as well as 40% (w/v of cells loading yielded high ethanol concentration, high ethanol productivity, and acceptable residual glucose at 62.97 g/L, 15.74 g/L/h and 0.16 g/L, respectively. Furthermore, the dilution rate of 4 hour with 100 g/L and 40% (w/v of glucose and cells loading was considered as the optimum condition with ethanol production, ethanol productivity and residual glucose obtained were 49.89 g/L, 12.47 g/L/h, and 2.04 g/L, respectively. This recent study investigated ethanol inhibition as well. The present research had proved that high sugar concentration was successfully converted to ethanol. These achieved results were promising for further study.


    Energy Technology Data Exchange (ETDEWEB)

    Dady B. Dadyburjor; Mark E. Heavner; Manoj Katakdaunde; Liviu Magean; J. Joshua Maybury; Alfred H. Stiller; Joseph M. Stoffa; John W. Zondlo


    The purpose of this DOE-funded effort is to develop continuous processes for solvent extraction of coal for the production of carbon products. The largest applications are those which support metals smelting, such as anodes for aluminum smelting and electrodes for arc furnaces. Other carbon products include materials used in creating fuels for the Direct Carbon Fuel Cell, and porous carbon structural material referred to as ''carbon foam'' and carbon fibers. During this reporting period, hydrotreatment of solvent was completed in preparation for pitch fabrication for graphite electrodes. Coal digestion has lagged but is expected to be complete by next quarter. Studies are reported on coal dissolution, pitch production, foam synthesis using physical blowing agents, and alternate coking techniques.


    Energy Technology Data Exchange (ETDEWEB)

    Elliot B. Kennel; Quentin C. Berg; Stephen P. Carpenter; Dady Dadyburjor; Jason C. Hissam; Manoj Katakdaunde; Liviu Magean; Abha Saddawi; Alfred H. Stiller; John W. Zondlo


    The purpose of this DOE-funded effort is to develop continuous processes for solvent extraction of coal for the production of carbon products. The largest applications are those which support metals smelting, such as anodes for aluminum smelting and electrodes for arc furnaces. Other carbon products include materials used in creating fuels for the Direct Carbon Fuel Cell, metals smelting, especially in the aluminum and steel industries, as well as porous carbon structural material referred to as ''carbon foam'' and carbon fibers. During this reporting period, efforts have focused on the development of carbon electrodes for Direct Carbon Fuel Cells (DCFC), and on carbon foam composites used in ballistic armor, as well as the hydrotreatment of solvents used in the basic solvent extraction process. A major goal is the production of 1500 pounds of binder pitch, corresponding to about 3000 pounds of hydrotreated solvent.

  8. Bio-immobilization of dark fermentative bacteria for enhancing continuous hydrogen production from cornstalk hydrolysate. (United States)

    Zhao, Lei; Cao, Guang-Li; Sheng, Tao; Ren, Hong-Yu; Wang, Ai-Jie; Zhang, Jian; Zhong, Ying-Juan; Ren, Nan-Qi


    Mycelia pellets were employed as biological carrier in a continuous stirred tank reactor to reduce biomass washout and enhance hydrogen production from cornstalk hydrolysate. Hydraulic retention time (HRT) and influent substrate concentration played critical roles on hydrogen production of the bioreactor. The maximum hydrogen production rate of 14.2mmol H 2 L -1 h -1 was obtained at optimized HRT of 6h and influent concentration of 20g/L, 2.6 times higher than the counterpart without mycelia pellets. With excellent immobilization ability, biomass accumulated in the reactor and reached 1.6g/L under the optimum conditions. Upon further energy conversion analysis, continuous hydrogen production with mycelia pellets gave the maximum energy conversion efficiency of 17.8%. These results indicate mycelia pellet is an ideal biological carrier to improve biomass retention capacity of the reactor and enhance hydrogen recovery efficiency from lignocellulosic biomass, and meanwhile provides a new direction for economic and efficient hydrogen production process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Zymomonas mobilis immobilized on loofa sponge: levan and ethanol production in semi-continuous fermentation

    Directory of Open Access Journals (Sweden)

    Vidiany Aparecida Queiroz Santos


    Full Text Available Zymomonas mobilis is a promising microorganism in the biotechnological production of ethanol and levan due to its low biomass and high tolerance to ethanol concentrations. Ethanol and levan production by Z. mobilis CDBB-603 immobilized on loofa sponge using semi-continuous fermentation is evaluated. The first experiment, conducted with initial volume 50 mL and incubated for 24 hours, produced maximum ethanol and levan production, respectively 13.56 g L-1 and 23.94 g L-1, with 250 g L-1 sucrose and without agitation, at 30°C. The second experiment was based on the best condition obtained in the first, using fermenter with production scale of 200 mL and by semi-continuous process. The second experiment also assessed immobilized biomass reuse during 10 days (240 hours and produced higher ethanol (34.64 g L-1 and levan (26.40 g L-1 production rates than in the first experiment. Experiment 2 also verified that the microorganism remained viable and produced ethanol and levan until the last (10th recycle day.

  10. From discovery to production: Scale-out of continuous flow meso reactors

    Directory of Open Access Journals (Sweden)

    Peter Styring


    Full Text Available A continuous flow parallel reactor system has been developed to provide a rapid and seamless transition from the discovery phase and production phase of chemical synthesis, particularly in low volume-high value pharmaceuticals production. Using a single fixed bed catalytic meso reactor, reactions can be screened on a small discovery scale over short time scales. The intensified process produces sufficient material for a full analysis. By replication of the single reactor in parallel, the same chemistry can be achieved on a larger scale, on a small footprint and without the mass and heat transport limitations of reactor scale-out in batch.

  11. Exopolysaccharide and extracellular metabolite production by Lactobacillus delbrueckii subsp. bulgaricus, grown on lactose in continuous culture. (United States)

    Welman, Alan; Maddox, Ian; Archer, Richard


    Lactobacillus delbrueckii subsp. bulgaricus NCFB 2483, when grown on lactose in continuous culture, showed increasing specific yields and volumetric productivities of exopolysaccharide (EPS) with increasing dilution rate. Specific and volumetric productivities of lactate and galactose, as extracellular metabolites, increased in response to the incremental changes in the dilution rate up to 0.4 h(-1). Elevated Y(p/s) values determined for EPS (0.025 g EPS x g lactose(-1)) at the dilution rates of 0.3 h(-1)-0.4 h(-1), relative to those determined at lower dilution rates, suggest a diversion of carbon flux towards EPS being associated with the higher rates of growth.

  12. Continuous production of ethanol by use of respiration deficient mutant yeast

    Energy Technology Data Exchange (ETDEWEB)

    Faber, M.; Bernstein, J.D.; Grossman, M.


    This patent describes a continuous process for producing ethanol from D-sugars. The process consists of: (A) inoculating a fermentation zone with a respiration-deficient mutant of a flocculating strain of saccharomyces uvarium; (B) feeding a mixture of a D-sugar, a nitrogen source, a vitamin source and a mineral source into the fermentation zone in the presence of an oxygen-containing gas; (C) fermenting the D-sugar mixture for a sufficiently long period of time to yield an ethanol product; and (D) separating the ethanol product as overflow from the mutant yeast cells.

  13. A systematic methodology for the design of continuous active pharmaceutical ingredient production processes

    DEFF Research Database (Denmark)

    Cervera Padrell, Albert Emili; Gani, Rafiqul; Kiil, Søren


    Continuous pharmaceutical manufacturing (CPM) has emerged as a powerful technology to obtain higher reaction yields and improved separation efficiencies, potentially leading to simplified process flowsheets, reduced total costs, lower environmental impacts, and safer and more flexible production...... and representation, as well as on how to employ this knowledge for process (re-)design. The aim of this paper is to introduce a methodology that systematically identifies already existing PSE methods and tools which can assist in the design of CPM processes. This methodology has been applied to a process...... for the production of an API developed by H. Lundbeck A/S, demonstrating the mentioned potential benefits that CPM can offer....

  14. Large-Scale Production of CdSe Nanocrystal by a Continuous Flow Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kawa, Manabu, E-mail:; Morii, Hidekazu; Ioku, Atau; Saita, Soichiro [MCC-Group Science and Technology Research Center, Mitsubishi Chemical Corporation (Japan); Okuyama, Kikuo [Hiroshima University, Department of Chemical Engineering, Graduate School of Engineering (Japan)


    Organically capped CdSe nanocrystals were successfully produced by a continuous flow reactor in 13 g/h rate as isolated CdSe nanocrystal, using trioctylphosphine oxide (TOPO) both as the capping organic reagent and the high-temperature reaction solvent. Relatively high reaction temperature (e.g. 350 deg. C) was necessary for matured crystal growth. The quality of TOPO (i.e. impurity composition such like phosphonic acids) was also influential on the quality of the resulting CdSe nanocrystal. The continuous flow reactor was able to produce highly-luminescence, monodispersed CdSe nanocrystals, confirmed by transmission electron microscope observation. The production rate was stable at least 1 h to allow over 10 g production.

  15. Solid lipid nanoparticles: continuous and potential large-scale nanoprecipitation production in static mixers. (United States)

    Dong, Yuancai; Ng, Wai Kiong; Shen, Shoucang; Kim, Sanggu; Tan, Reginald B H


    This work aimed at developing continuous and scalable nanoprecipitation synthesis of solid lipid nanoparticles (SLN) by mixing lipids acetonic solution with water using static mixers. The developed platform exhibited good control over the nanoprecipitation process and enabled the production of SLN below 200 nm at a throughput of 37.5-150 g/h (for 25 mg/ml lipid solution at a flow rate of 25-100 ml/min). Among the several process parameters investigated, the lipid concentration played primary role in influencing the size of the SLN and higher lipid concentration resulted in relatively larger particles. Fenofibrate, a model drug, has been successfully loaded into the SLN. Our work demonstrates the potential of applying static mixing-nanoprecipitation for continuous and large scale production of SLN. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Recycling of cellulases in a continuous process for production of bioethanol

    DEFF Research Database (Denmark)

    Haven, Mai Østergaard

    The focus of the work presented in this thesis is recycling of commercial enzymes in a continuous process for production of bioethanol from biomass. To get a deeper understanding of the factors affecting the potential for enzyme recycling, the interactions between enzymes and biomass, the adsorpt......The focus of the work presented in this thesis is recycling of commercial enzymes in a continuous process for production of bioethanol from biomass. To get a deeper understanding of the factors affecting the potential for enzyme recycling, the interactions between enzymes and biomass......, the adsorption and desorption as well as stability and recovery of activity was investigated. More knowledge on these factors have enabled a process adapted for enzyme recycling. The driver being that enzyme consumption remains a major cost when producing bioethanol from lignocellulosic biomass. Unlike previous...

  17. Continuous process of powder production for MOX fuel fabrication according to ''granat'' technology

    International Nuclear Information System (INIS)

    Morkovnikov, V.E.; Raginskiy, L.S.; Pavlinov, A.P.; Chernov, V.A.; Revyakin, V.V.; Varykhanov, V.S.; Revnov, V.N.


    During last years the problem of commercial MOX fuel fabrication for nuclear reactors in Russia was solved in a number of directions. The paper deals with the solution of the problem of creating a continuous pilot plant for the production of MOX fuel powders on the basis of the home technology 'Granat', that was tested before on a small-scale pilot-commercial batch-operated plant of the same name and confirmed good results. (authors)

  18. Towards Continuous Integration in Model-Based Engineering of Automated Production Systems


    Jakob Mund, Iman Badr, Safa Bougouffa, Birgit Vogel-Heuser


    Continuous integration (CI) is widely used in software engineering. The observed benefits include reduced efforts for system integration, which is particularly appealing for engineering automated production systems (aPS) due to the different disciplines involved. Yet, while many individual quality assurance means for aPS have been proposed, their adequacy for and systematic use in CI remains unclear. In this article, we provide two key contributions: First, we propose a quality model for mode...

  19. Glucoamylases production of Aspergillus niger in solid state fermentation using a continuous counter-current reactor


    Varzakas, T. H.; Roussos, Sevastianos; Arvanitoyannis, I. S.


    This work presents the continuous production of fungal biomass and glucoamylase by solid state fermentation (SSF) in a counter-current reactor adapted for this purpose. Pre-germinated conidia of Aspergillus niger were used as an inoculum, and sugarcane bagasse, embedded with a nutritive solution, was the solid support. The solids residence time distribution (RTD) was carried out by feeding one impule of blue-coloured humidified bagasse and its RTD was fixed at 20 h. This study demonstrated th...

  20. The business impact of an integrated continuous biomanufacturing platform for recombinant protein production. (United States)

    Walther, Jason; Godawat, Rahul; Hwang, Chris; Abe, Yuki; Sinclair, Andrew; Konstantinov, Konstantin


    The biotechnology industry primarily uses batch technologies to manufacture recombinant proteins. The natural evolution of other industries has shown that transitioning from batch to continuous processing can yield significant benefits. A quantitative understanding of these benefits is critical to guide the implementation of continuous processing. In this manuscript, we use process economic modeling and Monte Carlo simulations to evaluate an integrated continuous biomanufacturing (ICB) platform and conduct risk-based valuation to generate a probabilistic range of net-present values (NPVs). For a specific ten-year product portfolio, the ICB platform reduces average cost by 55% compared to conventional batch processing, considering both capital and operating expenses. The model predicts that these savings can further increase by an additional 25% in situations with higher-than-expected product demand showing the upward potential of the ICB platform. The ICB platform achieves these savings and corresponding flexibility mainly due to process intensification in both upstream and downstream unit operations. This study demonstrates the promise of continuous bioprocessing while also establishing a novel framework to quantify financial benefits of other platform process technologies. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Single-stage posterior transforaminal lumbar interbody fusion, debridement, limited decompression, 3-column reconstruction, and posterior instrumentation in surgical treatment for single-segment lumbar spinal tuberculosis


    Zeng, Hao; Wang, Xiyang; Zhang, Penghui; Peng, Wei; Zhang, Yupeng; Liu, Zheng


    Objective: The aim of this study is to determine the feasibility and efficacy of surgical management of single-segment lumbar spinal tuberculosis (TB) by using single-stage posterior transforaminal lumbar interbody fusion, debridement, limited decompression, 3-column reconstruction, and posterior instrumentation.Methods: Seventeen cases of single-segment lumbar TB were treated with single-stage posterior transforaminal lumbar interbody fusion, debridement, limited decompression, 3-column reco...

  2. Continuous measurements of bronchial exposure induced by radon decay products during inhalation

    International Nuclear Information System (INIS)

    Iwaoka, Kazuki; Tokonami, Shinji; Yonehara, Hidenori; Ishikawa, Tetsuo; Doi, Masahiro; Kobayashi, Yosuke; Yatabe, Yoshinori; Takahashi, Hiroyuki; Yamada, Yuji


    The deposition of radon decay products is not equal in each of the respiratory regions and as the presence of radon has been linked with an increase in lung cancer risk, it is important to calculate the deposition of radon decay products in each of the respiratory regions. Recently, many studies on the deposition of radon in respiratory regions have been simulated using wire screens. The systems and equipment used in those studies are not suitable for field measurements as their dimensions are relatively massive, nor can they measure continuously. We developed a continuous bronchial dosimeter (CBD) which is suitable for field measurements. It was designed with specifications that allow it to be remain compact. The CBD simulates the deposition of radon decay products in the different respiratory regions by the use of a combination of wire screens. Deposition in the simulated regions of the lung can be continuously estimated in various environments. The ratio of activities deposited in a simulated nasal cavity (N) and tracheobronchial (TB) regions was calculated from the results of simultaneous measurements using CBD-R (reference), CBD-N (nasal), and CBD-TB (tracheobronchial) measurement units. After aerosols were injected into the radon chamber, the ratio of N and TB depositions decreased. This results indicate that the CBD gave a good response to changes in the environment. It was found that the ratio of N and TB deposition also varied with time in each actual environment

  3. Two-stage IMZ implants and ITI implants inserted in a single-stage procedure. A prospective comparative study. (United States)

    Heydenrijk, Kees; Raghoebar, Gerry M; Meijer, Henny J A; van der Reijden, Willy A; van Winkelhoff, Arie Jan; Stegenga, Boudewijn


    The aim of this study was to evaluate the feasibility of using a two-stage implant system in a single-stage procedure and to study the impact of the microgap at crestal level and to monitor the microflora in the peri-implant area. Forty edentulous patients (Cawood & Howell class V-VI) participated in this study. After randomisation, 20 patients received two IMZ implants inserted in a single-stage procedure and 20 patients received two ITI implants. After 3 months, overdentures were fabricated, supported by a bar and clip attachment. A standardised clinical and radiographic evaluation was performed immediately after denture insertion and 6 and 12 months later. Twelve months after loading, peri-implant samples were collected with sterile paper points and analysed for the presence of putative periodontal pathogens using culture techniques. One IMZ implant was lost due to insufficient osseointegration. With regard to the clinical parameters at the 12 months evaluation, significant differences for plaque score and probing pocket depth (IMZ: mean 3.3 mm, ITI: mean 2.9 mm) were found between the two groups. The mean bone loss in the first year of functioning was 0.6 mm for both groups. Prevotella intermedia was detected more often in the ITI group (12 implants) than in the IMZ group (three implants). Porphyromonas gingivalis was found in three patients. In one of these patients an implant showed bone loss of 1.6 mm between T0 and T12. Some associations were found between clinical parameters and the target microorganisms in the ITI group. These associations were not present in the IMZ group. The short-term results indicate that two-stage implants inserted in a single-stage procedure may be as predictable as one-stage implants. The microgap at crestal level in nonsubmerged IMZ implants seems to have no adverse influence on the peri-implant microbiological colonisation and of crestal bone loss in the first year of functioning. The peri-implant sulcus can and does harbour

  4. Results of single-staged rotational osteotomy in a child with congenital proximal radioulnar synostosis: subjective and objective evaluation. (United States)

    Shingade, Viraj U; Shingade, Rashmi V; Ughade, Suresh N


    For congenital proximal radioulnar synostosis, both conservative and operative treatments have been described. Most of the studies describing surgical interventions are based on subjective evaluation of the forearm function and have used severe degree of forearm pronation as an indication for surgery. This study describes a single-staged rotational osteotomy of the proximal third ulna and distal third radius. The aim of the study was to assess the utility of the described surgical procedure by subjective and objective evaluations of the forearm function. Forty-eight children with congenital proximal radioulnar synostosis were evaluated by subjective and objective assessments and were followed up prospectively. Subjective evaluation consisted of a set of 12 questions regarding the basic activities of life. Objective evaluation was made using the Jebsen-Taylor hand-function test and a classification system used by Failla and colleagues for 15 tasks described by Morrey and colleagues. Eleven children were treated conservatively. Thirty-six children underwent a single-staged rotational osteotomy of the proximal third ulna and distal third radius. After surgery, the evaluations were repeated. The mean age at surgery was 8.6±3.7 years, and the mean postoperative follow-up period was 54±13 months. All operated forearms showed a statistically significant improvement in functioning after surgery as per the subjective and objective evaluations. The mean time taken to carry out all activities before surgery was 47.7+10.0 seconds, which significantly reduced to 33.3+6.6 seconds after surgery (P=0.0001) as per the results of the Jebsen-Taylor hand-function test. All good (n=19) and fair (n=11) results were converted to excellent (n=30) after surgery as per the modified Failla classification. There were no neurovascular injuries as compared with other published techniques. Only 1 child had delayed union, and 1 had persistent dorsal angulation at the radial osteotomy site. For


    Energy Technology Data Exchange (ETDEWEB)

    Elliot B. Kennel; Chong Chen; Dady Dadyburjor; Liviu Magean; Peter G. Stansberry; Alfred H. Stiller; John W. Zondlo


    The purpose of this DOE-funded effort is to develop continuous processes for solvent extraction of coal for the production of carbon products. These carbon products include materials used in metals smelting, especially in the aluminum and steel industries, as well as porous carbon structural material referred to as ''carbon foam'' and carbon fibers. Table 1 provides an overview of the major markets for carbon products. Current sources of materials for these processes generally rely on petroleum distillation products or coal tar distillates obtained as a byproduct of metcoke production facilities. In the former case, the American materials industry, just as the energy industry, is dependent upon foreign sources of petroleum. In the latter case, metcoke production is decreasing every year due to the combined difficulties associated with poor economics and a significant environmental burden. Thus, a significant need exists for an environmentally clean process which can used domestically obtained raw materials and which can still be very competitive economically.

  6. Continuous co-production of ethanol and xylitol from rice straw hydrolysate in a membrane bioreactor. (United States)

    Zahed, Omid; Jouzani, Gholamreza Salehi; Abbasalizadeh, Saeed; Khodaiyan, Faramarz; Tabatabaei, Meisam


    The present study was set to develop a robust and economic biorefinery process for continuous co-production of ethanol and xylitol from rice straw in a membrane bioreactor. Acid pretreatment, enzymatic hydrolysis, detoxification, yeast strains selection, single and co-culture batch fermentation, and finally continuous co-fermentation were optimized. The combination of diluted acid pretreatment (3.5 %) and enzymatic conversion (1:10 enzyme (63 floating-point unit (FPU)/mL)/biomass ratio) resulted in the maximum sugar yield (81 % conversion). By concentrating the hydrolysates, sugars level increased by threefold while that of furfural reduced by 50 % (0.56 to 0.28 g/L). Combined application of active carbon and resin led to complete removal of furfural, hydroxyl methyl furfural, and acetic acid. The strains Saccharomyces cerevisiae NCIM 3090 with 66.4 g/L ethanol production and Candida tropicalis NCIM 3119 with 9.9 g/L xylitol production were selected. The maximum concentrations of ethanol and xylitol in the single cultures were recorded at 31.5 g/L (0.42 g/g yield) and 26.5 g/L (0.58 g/g yield), respectively. In the batch co-culture system, the ethanol and xylitol productions were 33.4 g/L (0.44 g/g yield) and 25.1 g/L (0.55 g/g yield), respectively. The maximum ethanol and xylitol volumetric productivity values in the batch co-culture system were 65 and 58 % after 25 and 60 h, but were improved in the continuous co-culture mode and reached 80 % (55 g/L) and 68 % (31 g/L) at the dilution rate of 0.03 L per hour, respectively. Hence, the continuous co-production strategy developed in this study could be recommended for producing value-added products from this hugely generated lignocellulosic waste.

  7. Controlled continuous bio-hydrogen production using different biogas release strategies. (United States)

    Esquivel-Elizondo, S; Chairez, I; Salgado, E; Aranda, J S; Baquerizo, G; Garcia-Peña, E I


    Dark fermentation for bio-hydrogen (bio-H2) production is an easily operated and environmentally friendly technology. However, low bio-H2 production yield has been reported as its main drawback. Two strategies have been followed in the past to improve this fact: genetic modifications and adjusting the reaction conditions. In this paper, the second one is followed to regulate the bio-H2 release from the reactor. This operating condition alters the metabolic pathways and increased the bio-H2 production twice. Gas release was forced in the continuous culture to study the equilibrium in the mass transfer between the gaseous and liquid phases. This equilibrium depends on the H2, CO2, and volatile fatty acids production. The effect of reducing the bio-H2 partial pressure (bio-H2 pp) to enhance bio-H2 production was evaluated in a 30 L continuous stirred tank reactor. Three bio-H2 release strategies were followed: uncontrolled, intermittent, and constant. In the so called uncontrolled fermentation, without bio-H2 pp control, a bio-H2 molar yield of 1.2 mol/mol glucose was obtained. A sustained low bio-H2 pp of 0.06 atm increased the bio-H2 production rate from 16.1 to 108 mL/L/h with a stable bio-H2 percentage of 55% (v/v) and a molar yield of 1.9 mol/mol glucose. Biogas release enhanced bio-H2 production because lower bio-H2 pp, CO2 concentration, and reduced volatile fatty acids accumulation prevented the associated inhibitions and bio-H2 consumption.

  8. Influence of solids retention time on continuous H{sub 2} production using membrane bioreactor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dong-Yeol [Research Center for Material Cycles and Waste Management, National Institute for Environmental Studies,16-2 Onogawa, Tsukuba, Ibaraki 305 8506 (Japan); Li, Yu-You [Department of Environmental Science, Tohoku University, 6-6-06 Aoba, Sendai, Miyagi 980 8579 (Japan); Noike, Tatsuya [Advanced Research Institute for the Sciences and Humanities, Nihon University 12-5, Goban-cho, Chiyoda-ku, Tokyo 102 8251 (Japan)


    The influence of solids retention time (SRT) on continuous H{sub 2} production in a submerged membrane bioreactor (MBR) was investigated using mixed mesophilic microflora. The bioreactor was continuously operated at the four SRTs of 2, 4, 12.5 and 90 d on a glucose medium under the hydraulic retention time (HRT) of 9 h and the mesophilic condition of 35 C {+-} 0.5. Stable biogas production with H{sub 2} content of 50.8%-60% was achieved at SRTs ranging from 2 to 12.5 d. No methane gas was observed in monitoring the experimental conditions. The H{sub 2} production increased from 17.62 to 26.1 l-H{sub 2}/d when the SRT increased from 2 to 12.5 d, but decreased to 9.1 l-H{sub 2}/d at the 90 d SRT. The best H{sub 2} yield, 1.19 mol-H{sub 2}/mol-glucose, was observed at the SRT of 2 d and the highest H{sub 2} production rate, 5.8 l-H{sub 2}/l/d, was obtained at the SRT of 12.5 d. Stable H{sub 2} production was achieved by maintaining the SRT in the range of 2 - 12.5 d, regardless of the fermentative pathway related to higher lactate production. The decrease in H{sub 2} yield was observed at long SRTs due to the low volatile suspended solids/total suspended solids (VSS/TSS) as well as the high extracellular polymeric substances (EPS) concentrations. These results suggest that the SRT is the key factor enabling sustainable H{sub 2} fermentation in MBR, and that an SLR value of around 1.6 kg-DOC/kg-VSS/d might be the specific condition for achieving optimum H{sub 2} production. (author)

  9. Semi-continuous methane production from undiluted brown algae using a halophilic marine microbial community. (United States)

    Miura, Toyokazu; Kita, Akihisa; Okamura, Yoshiko; Aki, Tsunehiro; Matsumura, Yukihiko; Tajima, Takahisa; Kato, Junichi; Nakashimada, Yutaka


    Acclimated marine sediment-derived culture was used for semi-continuous methane production from materials equivalent to raw brown algae, without dilution of salinity and without nutrient supply, under 3 consecutive conditions of varying organic loading rates (OLRs) and hydraulic retention time (HRT). Methane production was stable at 2.0gVS/kg/day (39-day HRT); however, it became unstable at 2.9gVS/kg/day (28-day HRT) due to acetate and propionate accumulation. OLR subsequently decreased to 1.7gVS/kg/day (46-day HRT), stabilizing methane production beyond steady state. Methane yield was above 300mL/g VS at all OLRs. These results indicated that the acclimated marine sediment culture was able to produce methane semi-continuously from raw brown algae without dilution and nutrient supply under steady state. Microbial community analysis suggested that hydrogenotrophic methanogens predominated among archaea during unstable methane production, implying a partial shift of the methanogenic pathway from acetoclastic methanogenesis to acetate oxidation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. A Rocket Powered Single-Stage-to-Orbit Launch Vehicle With U.S. and Soviet Engineers (United States)

    MacConochie, Ian O.; Stnaley, Douglas O.


    A single-stage-to-orbit launch vehicle is used to assess the applicability of Soviet Energia high-pressure-hydrocarbon engine to advanced U.S. manned space transportation systems. Two of the Soviet engines are used with three Space Shuttle Main Engines. When applied to a baseline vehicle that utilized advanced hydrocarbon engines, the higher weight of the Soviet engines resulted in a 20 percent loss of payload capability and necessitated a change in the crew compartment size and location from mid-body to forebody in order to balance the vehicle. Various combinations of Soviet and Shuttle engines were evaluated for comparison purposes, including an all hydrogen system using all Space Shuttle Main Engines. Operational aspects of the baseline vehicle are also discussed. A new mass properties program entitles Weights and Moments of Inertia (WAMI) is used in the study.

  11. Advantages of using a two-switch forward in single-stage power factor corrected power supplies

    DEFF Research Database (Denmark)

    Petersen, Lars


    A single-stage power factor corrected power supply using a two-switch forward is proposed to increase efficiency. The converter is operated in the DCM (discontinues conduction mode) and it is shown that this operation mode ensures the intermediate DC-bus to be controlled only by means of circuit...... parameters and therefore independent of load variations. The DCM operation often has a diminishing effect on the efficiency but by use of the two-switch topology high efficiency with minimum circuit complexity can be achieved in this mode. A 500 W 70 V prototype of the two-switch boost-forward PFC power...... supply has been implemented. The measured efficiency is between 85% and 88.5% in the range 30 W-500 W and the measured power factor at full load is 0.95....

  12. Bilateral Simultaneous Revision Total Knee Arthroplasty as a Single Staged Procedure: A Case Report and Review of Literature. (United States)

    Vaishya, Raju; Agarwal, Amit Kumar; Jaiswal, Chirag; Vijay, Vipul; Vaish, Abhishek


    Bilateral revision total knee arthroplasty (TKA) is a surgical procedure, which is rarely done simultaneously as it is a difficult surgery and the safety of simultaneous bilateral single stage surgery remains unknown. We report a case of a 67-year-old woman who presented to us with bilateral painful and unstable TKA (right > left) of six months duration. The primary bilateral TKA were done 14 years ago. Bilateral simultaneous revision TKA was performed, using cemented, constrained, long-stem prostheses. The intraoperative and postoperative periods remained uneventful. At last follow-up at four years, she had a pain-free range of motion of up to 0-115°, and the patient had returned to the activities of daily living. She had stable knees with good function and no evidence of loosening or wear.

  13. A rapid method for optimization of the rocket propulsion system for single-stage-to-orbit vehicles (United States)

    Eldred, C. H.; Gordon, S. V.


    A rapid analytical method for the optimization of rocket propulsion systems is presented for a vertical take-off, horizontal landing, single-stage-to-orbit launch vehicle. This method utilizes trade-offs between propulsion characteristics affecting flight performance and engine system mass. The performance results from a point-mass trajectory optimization program are combined with a linearized sizing program to establish vehicle sizing trends caused by propulsion system variations. The linearized sizing technique was developed for the class of vehicle systems studied herein. The specific examples treated are the optimization of nozzle expansion ratio and lift-off thrust-to-weight ratio to achieve either minimum gross mass or minimum dry mass. Assumed propulsion system characteristics are high chamber pressure, liquid oxygen and liquid hydrogen propellants, conventional bell nozzles, and the same fixed nozzle expansion ratio for all engines on a vehicle.

  14. The Naso-labial and lateral forehead flaps as a single stage: A case report and review of literature

    Directory of Open Access Journals (Sweden)

    Adigun I


    Full Text Available We present here the case of a patient with a major traumatic nasal loses who had a near-total nasal reconstruction as a single-stage procedure. A 35 year-old civil servant who was involved in a road traffic injury about two years before presentation. He sustained extensive and multiple facial injuries with complete loss of nasal cover and lining. Reconstruction was performed by using superiorly based, bilateral, nasolabial flaps to line the floor and the nasal septum, and a paramedian forehead flap for skin cover. The patient did well postoperatively and was discharged home on the 7 th postoperative day. If the principles concerning cover, support, and lining are adhered to, excellent functional and aesthetic results can be achieved as we have obtained in our patient.

  15. Studies on water turbine runner which fish can pass through: In case of single stage axial runner

    International Nuclear Information System (INIS)

    Shimizu, Yukimari; Maeda, Takao; Nagoshi, Osamu; Ieda, Kazuma; Shinma, Hisako; Hagimoto, Michiko


    The relationship between water turbine runner design and operation and the safe passage of fish through the turbine is studied. The kinds of fish used in the tests are a dace, a sweet fish and a small salmon. A single stage axial runner is used. The velocity and pressure distributions were measured inside the turbine casing and along the casing wall. Many pictures showing fish passing through the rotating runner were taken and analyzed. The swimming speed of the fish was examined from video recordings. Fish pass through the runner more rapidly when they can determine and choose the easier path. Injury and mortality of fish are affected by the runner speed and the location of impact of the runner on the fish body

  16. Single stage concrete pumping through 2.432 km (1.51 miles: Weather and execution challenges

    Directory of Open Access Journals (Sweden)

    Chetan Hazaree


    Full Text Available This paper describes the execution challenges faced during single stage pumping of concrete through 2.432 km. Pump and pipeline selection and installation, materials’ development, establishing of control points and controlling variations are discussed. Concrete responses to weather changes play a vital role in concreting and pumping methodology development. Measuring pump pressure during pumping can provide insightful guidance to concreting. In order to optimize concrete mixtures, distance-specific mixture designs were developed and a relation between air-free paste volume (AFPV and pumping distance is derived. Pipeline priming and washout procedures specific to long-distance pumping are elaborated in detail. The paper presents a broad understanding regarding the challenges encountered; changes in pumping distance, materials, and climate would change the approach to solutions.

  17. Optimization of cyclosporin A production by Beauveria nivea in continuous fed-batch fermentation

    Directory of Open Access Journals (Sweden)

    Dong Huijun


    Full Text Available To develop the effective control method for fed-batch culture of cyclosporin A production, we chose fructose, L-valine and (NH42HPO4 as feeding nutrients and compared their productivities in relation to different concentrations. The feeding rate of three kinds of feeding materials was controlled to maintain the suitable residual concentration. The fed-batch fermentation results indicated that the optimal concentrations of fructose, L-valine and (NH42HPO4 were about 20 g/L, 0.5 g/L and 0.6 g/L for cyclosporin A production, respectively. The cultivation of Beauveria nivea could produce cyclosporin A up to 6.2 g/L for 240 hrs through a continuous feeding-rate-controlled-batch process under the optimal feeding conditions.

  18. Continuous Ethanol Production Using Immobilized-Cell/Enzyme Biocatalysts in Fluidized-Bed Bioreactor (FBR)

    Energy Technology Data Exchange (ETDEWEB)

    Nghiem, NP


    The immobilized-cell fluidized-bed bioreactor (FBR) was developed at Oak Ridge National Laboratory (ORNL). Previous studies at ORNL using immobilized Zymomonas mobilis in FBR at both laboratory and demonstration scale (4-in-ID by 20-ft-tall) have shown that the system was more than 50 times as productive as industrial benchmarks (batch and fed-batch free cell fermentations for ethanol production from glucose). Economic analysis showed that a continuous process employing the FBR technology to produce ethanol from corn-derived glucose would offer savings of three to six cents per gallon of ethanol compared to a typical batch process. The application of the FBR technology for ethanol production was extended to investigate more complex feedstocks, which included starch and lignocellulosic-derived mixed sugars. Economic analysis and mathematical modeling of the reactor were included in the investigation. This report summarizes the results of these extensive studies.

  19. Biological production of ethanol from coal. Task 4 report, Continuous reactor studies

    Energy Technology Data Exchange (ETDEWEB)


    The production of ethanol from synthesis gas by the anaerobic bacterium C. ljungdahlii has been demonstrated in continuous stirred tank reactors (CSTRs), CSTRs with cell recycle and trickle bed reactors. Various liquid media were utilized in these studies including basal medium, basal media with 1/2 B-vitamins and no yeast extract and a medium specifically designed for the growth of C. ljungdahlii in the CSTR. Ethanol production was successful in each of the three reactor types, although trickle bed operation with C. ljungdahlii was not as good as with the stirred tank reactors. Operation in the CSTR with cell recycle was particularly promising, producing 47 g/L ethanol with only minor concentrations of the by-product acetate.

  20. Development of an advanced, continuous mild gasification process for the production of co-products technical evaluation. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Ness, R.O. Jr.; Runge, B.; Sharp, L.


    The University of North Dakota Energy and Environmental Research Center (EERC) and the AMAX Research and Development Center are cooperating in the development of a Mild Gasification process that will rapidly devolatilize coals of all ranks at relatively low temperatures between 930{degree} and 1470{degree}F (500{degree}and 800{degree}C) and near atmospheric pressure to produce primary products that include a reactive char, a hydrocarbon condensate, and a low-Btu gas. These will be upgraded in a ``coal refinery`` system having the flexibility to optimize products based on market demand. Task 2 of the four-task development sequence primarily covered bench-scale testing on a 10-gram thermogravimetric analyzer (TGA) and a 1 to 4-lb/hr continuous fluidized-bed reactor (CFBR). Tests were performed to determine product yields and qualities for the two major test coals-one a high-sulfur bituminous coal from the Illinois Basin (Indiana No. 3) and the other a low-sulfur subbituminous coal from the Powder River Basin (Wyodak). Results from Task 3, on product upgrading tests performed by AMAX Research and Development (R&D), are also reported. Task 4 included the construction, operation of a Process Research Unit (PRU), and the upgrading of the products. An economic evaluation of a commercial facility was made, based on the data produced in the PRU, CFBR, and the physical cleaning steps.

  1. Development of an advanced, continuous mild gasification process for the production of co-products technical evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Ness, R.O. Jr.; Runge, B.; Sharp, L.


    The University of North Dakota Energy and Environmental Research Center (EERC) and the AMAX Research and Development Center are cooperating in the development of a Mild Gasification process that will rapidly devolatilize coals of all ranks at relatively low temperatures between 930[degree] and 1470[degree]F (500[degree]and 800[degree]C) and near atmospheric pressure to produce primary products that include a reactive char, a hydrocarbon condensate, and a low-Btu gas. These will be upgraded in a coal refinery'' system having the flexibility to optimize products based on market demand. Task 2 of the four-task development sequence primarily covered bench-scale testing on a 10-gram thermogravimetric analyzer (TGA) and a 1 to 4-lb/hr continuous fluidized-bed reactor (CFBR). Tests were performed to determine product yields and qualities for the two major test coals-one a high-sulfur bituminous coal from the Illinois Basin (Indiana No. 3) and the other a low-sulfur subbituminous coal from the Powder River Basin (Wyodak). Results from Task 3, on product upgrading tests performed by AMAX Research and Development (R D), are also reported. Task 4 included the construction, operation of a Process Research Unit (PRU), and the upgrading of the products. An economic evaluation of a commercial facility was made, based on the data produced in the PRU, CFBR, and the physical cleaning steps.

  2. Continuous aryl alcohol oxidase production under growth-limited conditions using a trickle bed reactor. (United States)

    Pardo-Planas, Oscar; Atiyeh, Hasan K; Prade, Rolf A; Müller, Michael; Wilkins, Mark R


    An A. nidulans strain with a pyridoxine marker was used for continuous production of aryl alcohol oxidase (AAO) in a trickle bed reactor (TBR). Modified medium with reduced zinc, no copper, and 5 g/L ascorbic acid that reduced melanin production and increased AAO productivity under growth limited conditions was used. Two air flow rates, 0.11 L/min (0.1 vvm) and 1.1 L/min (1.0 vvm) were tested. More melanin formation and reduced protein productivity were observed with air flow rate of 1.1 L/min. Three random packings were used as support for the fungus inside the TBR column, two of which were hydrophobic and one which was hydrophilic, and three different dilution rates were tested. The use of GEA BCN 030 hydrophobic packing resulted in greater AAO yield and productivity than the other packings. Increasing dilution rates favored melanin formation and citric, lactic and succinic acid accumulation, which decreased AAO yield and productivity. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Single-stage osseointegrated reconstruction and rehabilitation of lower limb amputees: the Osseointegration Group of Australia Accelerated Protocol-2 (OGAAP-2) for a prospective cohort study. (United States)

    Al Muderis, Munjed; Lu, William; Tetsworth, Kevin; Bosley, Belinda; Li, Jiao Jiao


    Lower limb amputations have detrimental influences on the quality of life, function and body image of the affected patients. Following amputation, prolonged rehabilitation is required for patients to be fitted with traditional socket prostheses, and many patients experience symptomatic socket-residuum interface problems which lead to reduced prosthetic use and quality of life. Osseointegration has recently emerged as a novel approach for the reconstruction of amputated limbs, which overcomes many of the socket-related problems by directly attaching the prosthesis to the skeletal residuum. To date, the vast majority of osseointegration procedures worldwide have been performed in 2 stages, which require at least 4 months and up to 18 months for the completion of reconstruction and rehabilitation from the time of the initial surgery. The current prospective cohort study evaluates the safety and efficacy of a single-stage osseointegration procedure performed under the Osseointegration Group of Australia Accelerated Protocol-2 (OGAAP-2), which dramatically reduces the time of recovery to ∼3-6 weeks. The inclusion criteria for osseointegrated reconstruction under the OGAAP-2 procedure are age over 18 years, unilateral transfemoral amputation and experiencing problems or difficulties in using socket prostheses. All patients receive osseointegrated implants which are press-fitted into the residual bone. Functional and quality-of-life outcome measures are recorded preoperatively and at defined postoperative follow-up intervals up to 2 years. Postoperative adverse events are also recorded. The preoperative and postoperative values are compared for each outcome measure, and the benefits and harms of the single-stage OGAAP-2 procedure will be compared with the results obtained using a previously employed 2-stage procedure. This study has received ethics approval from the University of Notre Dame, Sydney, Australia (014153S). The study outcomes will be disseminated

  4. Continuous Low Cost Transesterification Process for the Production of Coconut Biodiesel

    Directory of Open Access Journals (Sweden)

    Chandra P. Singh


    Full Text Available Biodiesel, or alkyl ester, is an alternative renewable, biodegradable, and non-toxic diesel fuel produced by the catalytic transesterification of vegetable oil. Here we characterize a system for continuous transesterification of vegetable oil using five continuous stirring tank reactors (5CSTRs. We tested residence times of 16–43min, stirring speeds of 200–800rpm, a catalyst concentration (KOH of 0.25–1 wt% of oil (in gram, different total flow rates of the oil and MeOH, and on the production performance of the 5 stage continuous reactor for transesterification of vegetable oil. Using a molar ratio of oil:methanol of 1:7 and a reaction temperature of 65 °C, we show that a high stirring speed increased the reaction rate, but an excessive stir speed decreased the reaction rate and conversion to biodiesel. Furthermore, a higher catalyst percentage significantly increased the reaction rate and production capacity. A catalyst percentage of 1 wt% of oil gave the best conversion; 99.04 ± 0.05%. The resulting biodiesel esters were characterized for their physical and fuel properties including density, viscosity, iodine volume, acid volume, cloud point, pure point, gross heat of combustion, and volatility. The purity and conversion of the biodiesel was analyzed by HPLC.

  5. Continuous determination of volatile products in anaerobic fermenters by on-line capillary gas chromatography

    International Nuclear Information System (INIS)

    Diamantis, V.; Melidis, P.; Aivasidis, A.


    Bio-ethanol and biogas produced during the anaerobic conversion of organic compounds has been a subject of great interest since the oil crisis of the 1970s. In ethanol fermentation and anaerobic treatment of wastewaters, end-product (ethanol) and intermediate-products (short-chain fatty acids, SCFA) cause inhibition that results in reduced process efficiency. Control of these constituents is of utmost importance for bioreactor optimization and process stability. Ethanol and SCFA can be detected with precision by capillary gas chromatography usually conducted in off-line measurements. In this work, an on-line monitoring and controlling system was developed and connected to the fermenter via an auto-sampling equipment, which could perform the feeding, filtration and dilution of the sample and final injection into the gas chromatograph through an automation-based programmed procedure. The sample was continuously pumped from the recycle stream of the bioreactor and treated using a microfiltration unit. The concentrate was returned to the reactor while the permeate was quantitatively mixed with an internal standard solution. The system comprised of a gas chromatograph with the flow cell and one-shot sampler and a PC with the appropriate software. The on-line measurement of ethanol and SCFA, directly from the liquid phase of an ethanol fermenter and a high-rate continuous mode anaerobic digester, was accomplished by gas chromatography. Also, this monitoring and controlling system was proved to be effective in the continuous fermentation of alcohol-free beer

  6. Optimization and characterization of biodiesel production from microalgae Botryococcus grown at semi-continuous system

    International Nuclear Information System (INIS)

    Ashokkumar, Veeramuthu; Agila, Elango; Sivakumar, Pandian; Salam, Zainal; Rengasamy, Ramasamy; Ani, Farid Nasir


    Highlights: • Bioprospecting for Botryococcus in upstream and downstream process for bioenergy production. • Large scale cultivation of B. braunii at semi-continuous system under open raceway system. • The biomass was harvested 99.5% successfully by Poly-(D)glucosamine and ferric iron. • Botryococcus biodiesel was characterized and found within ASTM standards. • Under semi-continuous mode, the alga B. braunii produces 101 tons ha −1 year −1 . - Abstract: The indigenous strain Botryococcus braunii TN101 was isolated and acclimatized under laboratory condition. Upstream and downstream process was thoroughly explored for biofuel production. During semi-continuous cultivation, the alga was grown under batch mode for 6 days; thereafter 40% of algal culture was harvested at every three days interval. At semi-continuous system, the indigenous strain grows well and produces high biomass productivity of 33.8 g m −3 day −1 . A two step combined harvesting process was designed using ferric iron and organic polymer Poly-(D)glucosamine and harvested 99.5% of biomass. Lipid extraction was optimized using different solvents, cyclohexane and methanol at 3:1 ratio supported for maximum extraction of lipids in Botryococcus up to 26.3%. Physicochemical properties of lipid was analyzed and found, saponification values 184, ester values 164, iodine values 92 and the average molecular weight of the lipids are 920 g mol −1 . The lipid contains 9.7% of FFA level, therefore, a simultaneous esterification and transesterification of free fatty acids and triacylglycerides were optimized for biodiesel production and the methyl ester yield was recorded up to 84%. In addition, an optimization study was carried out for the removal of pigments present in the biodiesel; the result revealed that 99% of pigments were removed from the biodiesel using activated charcoal. The biodiesel profile was analyzed by 1 H and 13 C NMR and GC–MS analyzer, methyl palmitate and methyl oleate


    Energy Technology Data Exchange (ETDEWEB)

    Elliot B. Kennel; R. Michael Bergen; Stephen P. Carpenter; Dady Dadyburjor; Manoj Katakdaunde; Liviu Magean; Alfred H. Stiller; W. Morgan Summers; John W. Zondlo


    The purpose of this DOE-funded effort is to develop continuous processes for solvent extraction of coal for the production of carbon products. The largest applications are those which support metals smelting, such as anodes for aluminum smelting and electrodes for arc furnaces. Other carbon products include materials used in creating fuels for the Direct Carbon Fuel Cell, metals smelting, especially in the aluminum and steel industries, as well as porous carbon structural material referred to as ''carbon foam'' and carbon fibers. During this reporting period, coking and composite fabrication continued using coal-derived samples. These samples were tested in direct carbon fuel cells. Methodology was refined for determining the aromatic character of hydro treated liquid, based on Nuclear Magnetic Resonance (NMR) and Fourier Transform Infrared (FTIR). Tests at GrafTech International showed that binder pitches produced using the WVU solvent extraction protocol can result in acceptable graphite electrodes for use in arc furnaces. These tests were made at the pilot scale.

  8. Modifying the Toyota Production System for continuous performance improvement in an academic children's hospital. (United States)

    Stapleton, F Bruder; Hendricks, James; Hagan, Patrick; DelBeccaro, Mark


    The Toyota Production System (TPS) has become a successful model for improving efficiency and eliminating errors in manufacturing processes. In an effort to provide patients and families with the highest quality clinical care, our academic children's hospital has modified the techniques of the TPS for a program in continuous performance improvement (CPI) and has expanded its application to educational and research programs. Over a period of years, physicians, nurses, residents, administrators, and hospital staff have become actively engaged in a culture of continuous performance improvement. This article provides background into the methods of CPI and describes examples of how we have applied these methods for improvement in clinical care, resident teaching, and research administration.


    Energy Technology Data Exchange (ETDEWEB)

    Elliot Kennel; Chong Chen; Dady Dadyburjor; Mark Heavner; Manoj Katakdaunde; Liviu Magean; James Mayberry; Alfred Stiller; Joseph Stoffa; Christopher Yurchick; John Zondlo


    This NETL sponsored effort seeks to develop continuous technologies for the production of carbon products, which may be thought of as the heavier products currently produced from refining of crude petroleum and coal tars obtained from metallurgical grade coke ovens. This effort took binder grade pitch, produced from liquefaction of West Virginia bituminous grade coal, all the way to commercial demonstration in a state of the art arc furnace. Other products, such as crude oil, anode grade coke and metallurgical grade coke were demonstrated successfully at the bench scale. The technology developed herein diverged from the previous state of the art in direct liquefaction (also referred to as the Bergius process), in two major respects. First, direct liquefaction was accomplished with less than a percent of hydrogen per unit mass of product, or about 3 pound per barrel or less. By contrast, other variants of the Bergius process require the use of 15 pounds or more of hydrogen per barrel, resulting in an inherent materials cost. Second, the conventional Bergius process requires high pressure, in the range of 1500 psig to 3000 psig. The WVU process variant has been carried out at pressures below 400 psig, a significant difference. Thanks mainly to DOE sponsorship, the WVU process has been licensed to a Canadian Company, Quantex Energy Inc, with a commercial demonstration unit plant scheduled to be erected in 2011.

  10. Performance test of a 6-stage continuous reactor for palm methyl ester production. (United States)

    Leevijit, T; Tongurai, C; Prateepchaikul, G; Wisutmethangoon, W


    Effects of residence time (3-12 min), stirrer speed (0-800 rpm), and NaOH concentration (0.25-1.0 wt% of oil) on the production performance of the designed 6-stage continuous reactor (2.272 l) for transesterification of palm oil were investigated at molar ratio of methanol to oil of 6:1 and temperature of 60 degrees C. Higher stirrer speed increased the reaction rate up to an appropriate speed but excessive stirrer speed decreased the reaction rate. Inappropriate stirrer speed runs dramatically decreased the production capacity of the reactor. Higher NaOH concentration significantly increased reaction rate and production capacity of the reactor. The reactor had a residence time distribution equivalent to 5.98 ideal CSTRs in series and a production performance equivalent to a plug flow reactor. At NaOH of 1.0 wt% of oil, the reactor could produce saleable biodiesel within residence time of 6 min in which a production capacity was 17.3 l/h and a power consumption of stirrer was 0.6 kW/m(3).

  11. Continuous Packed Bed Reactor with Immobilized β-Galactosidase for Production of Galactooligosaccharides (GOS

    Directory of Open Access Journals (Sweden)

    Barbara Rodriguez-Colinas


    Full Text Available The β-galactosidase from Bacillus circulans was covalently attached to aldehyde-activated (glyoxal agarose beads and assayed for the continuous production of galactooligosaccharides (GOS in a packed-bed reactor (PBR. The immobilization was fast (1 h and the activity of the resulting biocatalyst was 97.4 U/g measured with o-nitrophenyl-β-d-galactopyranoside (ONPG. The biocatalyst showed excellent operational stability in 14 successive 20 min reaction cycles at 45 °C in a batch reactor. A continuous process for GOS synthesis was operated for 213 h at 0.2 mL/min and 45 °C using 100 g/L of lactose as a feed solution. The efficiency of the PBR slightly decreased with time; however, the maximum GOS concentration (24.2 g/L was obtained after 48 h of operation, which corresponded to 48.6% lactose conversion and thus to maximum transgalactosylation activity. HPAEC-PAD analysis showed that the two major GOS were the trisaccharide Gal-β(1→4-Gal-β(1→4-Glc and the tetrasaccharide Gal-β(1→4-Gal-β(1→4-Gal-β(1→4-Glc. The PBR was also assessed in the production of GOS from milk as a feed solution. The stability of the bioreactor was satisfactory during the first 8 h of operation; after that, a decrease in the flow rate was observed, probably due to partial clogging of the column. This work represents a step forward in the continuous production of GOS employing fixed-bed reactors with immobilized β-galactosidases.

  12. Effects of continuous addition of nitrate to a thermophilic anaerobic digestion system

    International Nuclear Information System (INIS)

    Rivard, C.J.


    The biodegradation of complex organic matter is regulated partially by the ability to dump electrons which build up in the form of reduced nicotinamide adenine dinucleotide (NAD). The effects of the continuous addition of the oxidant, nitrate, were investigated on a single-stage, thermophilic, anaerobic digester. The digester acclimated rapidly to nitrate addition. The continuous addition of nitrate resulted in a constant inhibition of total gas (30%) and methane production (36%). Reduction in total gas and methane production was accompanied by increases in sludge pH and acetate, propionate, and ammonium ion pools. Effluent particle size distribution revealed a shift to smaller particle sizes in the nitrate-pumped sludge. The continuous addition of nitrate resulted in lower numbers of methanogens and sulfate reducers in the sludge, with increases in nitrate-reducing and cellulose-degrading microorganisms. These findings indicate that added nitrate underwent dissimilatory reduction to ammonium ion, as determined from gas analysis, ammonium pools, and 15 N-nitrate-label experiments. Continuous nitrate addition to a single-phase digestion system was determined to inhibit methane production from biomass and wastes. Thus for the single-stage digestion system in which maximum methane production is desired, the addition of nitrate is not recommended. However, in a multistage digestion system, the continuous addition of nitrate in the primary stage to increase the rate and extent of degradation of organic matter to volatile fatty acids, which then would serve as feed to a second stage, may be advantageous

  13. Changes in distortion product oto-acoustic emissions after exposure to continuous and impulsive noise

    DEFF Research Database (Denmark)

    de Toro, Miguel Angel Aranda; Ordoñez, Rodrigo Pizarro; Hammershøi, Dorte


    Temporary changes in the hearing of human subjects were monitored with distortion product otoacoustic emissions (DPOAEs) after control sound exposures in a laboratory. The objectives of the experiment were to investigate whether the +5~dB penalty for impulsiveness used in international standards...... and legislation correlates to a higher risk of hearing damage. Subjects were exposed to two types of binaural recordings consisting of a continuous broad-band noise-exposure normalized to LEX,8h = 80~dB and the interaction of the previous stimulus with a noise of impulsive character normalized to LEX,8h = 75 + 5...

  14. Butanol production by Clostridium acetobutylicum in a continuous packed bed reactor. (United States)

    Napoli, Fabio; Olivieri, Giuseppe; Russo, Maria Elena; Marzocchella, Antonio; Salatino, Piero


    In this study, we report on a butanol production process by immobilized Clostridium acetobutylicum in a continuous packed bed reactor (PBR) using Tygon rings as a carrier. The medium was a solution of lactose (15-30 g/L) and yeast extract (3 g/L) to emulate the cheese whey, an abundant lactose-rich wastewater. The reactor was operated under controlled conditions with respect to the pH and to the dilution rate. The pH and the dilution rate ranged between 4 and 5, the dilution rate between 0.54 and 2.4 h(-1) (2.5 times the maximum specific growth rate assessed for suspended cells). The optimal performance of the reactor was recorded at a dilution rate of 0.97 h(-1): the butanol productivity was 4.4 g/Lh and the selectivity of solvent in butanol was 88%(w).

  15. Kaizen - continuous improvement of high voltage products; Kaizen - kontinuierliche Verbesserung bei Hochspannungsprodukten

    Energy Technology Data Exchange (ETDEWEB)

    Schwarz, M. [ABB Calor Emag Schaltanlagen AG, Hanau-Grossauheim (Germany); Goessmann, T. [ABB Calor Emag Schaltanlagen AG, Mannheim (Germany)


    In the actual global competition only the company can survive who cares for the continuous improvement of all business activities. The ABB Calor Emag Schaltanlagen AG at his production site in Hanau-Grossauheim has installed a specific improvement programm called KVP what is based on the ideas of Kaizen. Aim is the improvement of processes, mainly in production, concerning quality, dates, costs and environment by activating all colleagues. (orig.) [Deutsch] Im heutigen globalen Wettbewerb kann sich nur der behaupten, der sich kontinuierlich in allen Unternehmensbereichen weiterentwickelt. Die ABB Calor Emag Schaltanlagen AG hat in ihrem Werk Hanau-Grossauheim nach den Ideen des Kaizen ein werkspezifisches Programm zur kontinuierlichen Verbesserung der Prozesse in der Fertigung eingefuehrt. Ziel ist die stetige Verbesserung von Fertigungsparametern, wie Qualitaet, Termine, Kosten und Umwelt unter Einbeziehung aller Mitarbeiter. (orig.)

  16. Nano-Sized Fume Biogas Production from Food Waster Using Semi-Continuous Anaerobic Digester. (United States)

    Park, Keum-Joo; Seo, Seong-Gyu; Kim, Eun-Sik; Islam, M N; Song, Hyung-Woon; Yoon, Hyung-Sun


    In this study, the nano-sized fume biogas production from food waste was investigated using lab scale semi-continuous stirred tank reactor (SCSTR) at 35 °C with 30d HRT and 30L working volume. The mesophilic digestion test was performed with three different feed materials (food waste) and food to microorganism (F/M) ratios (0.13, 0.34, and 0.27) in the same experiment. The results showed that the F/M ratios significantly affected the biogas production rate. The highest production rate was obtained at F/M ratio of 0.13. Nano-sized fume biogas produced in anaerobic digestion consists of 68.7% CH4, 31.2% CO2 and 30~200 nm particle. The average nano-sized fume biogas and methane production of digester were 29.96 L/Kg versus day-1 and 20.58 L/Kg versus day-1, respectively. The CH4 could be calculated as the heat energy 1.85 Kcal/Kg VS day-1. The digestion was operated without addition of chemicals or nutrients into the system.


    Energy Technology Data Exchange (ETDEWEB)

    Elliot B. Kennel; Philip L. Biedler; Chong Chen; Dady Dadyburjor; Liviu Magean; Peter G. Stansberry; Alfred H. Stiller; John W. Zondlo


    The purpose of this DOE-funded effort is to develop continuous processes for solvent extraction of coal for the production of carbon products. These carbon products include materials used in metals smelting, especially in the aluminum and steel industries, as well as porous carbon structural material referred to as ''carbon foam'' and carbon fibers. There are a number of parameters which are important for the production of acceptable cokes, including purity, structure, density, electrical resistivity, thermal conductivity etc. From the standpoint of a manufacturer of graphite electrodes such as GrafTech, one of the most important parameters is coefficient of thermal expansion (CTE). Because GrafTech material is usually fully graphitized (i.e., heat treated at 3100 C), very high purity is automatically achieved. The degree of graphitization controls properties such as CTE, electrical resistivity, thermal conductivity, and density. Thus it is usually possible to correlate these properties using a single parameter. CTE has proven to be a useful index for the quality of coke. Pure graphite actually has a slightly negative coefficient of thermal expansion, whereas more disordered carbon has a positive coefficient.

  18. A Hierarchical structure of key performance indicators for operation management and continuous improvement in production systems. (United States)

    Kang, Ningxuan; Zhao, Cong; Li, Jingshan; Horst, John A


    Key performance indicators (KPIs) are critical for manufacturing operation management and continuous improvement (CI). In modern manufacturing systems, KPIs are defined as a set of metrics to reflect operation performance, such as efficiency, throughput, availability, from productivity, quality and maintenance perspectives. Through continuous monitoring and measurement of KPIs, meaningful quantification and identification of different aspects of operation activities can be obtained, which enable and direct CI efforts. A set of 34 KPIs has been introduced in ISO 22400. However, the KPIs in a manufacturing system are not independent, and they may have intrinsic mutual relationships. The goal of this paper is to introduce a multi-level structure for identification and analysis of KPIs and their intrinsic relationships in production systems. Specifically, through such a hierarchical structure, we define and layer KPIs into levels of basic KPIs, comprehensive KPIs and their supporting metrics, and use it to investigate the relationships and dependencies between KPIs. Such a study can provide a useful tool for manufacturing engineers and managers to measure and utilize KPIs for CI.

  19. Cell Free Xanthan Gum Production Using Continuous Recycled Packed Fibrous-bed Bioreactor-membrane

    Directory of Open Access Journals (Sweden)

    Rosalam, S.


    Full Text Available Although the xanthan gum has been produced as a commercial commodity, the biomass isolation and its recovery are still challenging. This study revealed the xanthan gum production by fermentation of Xanthomonas campestris DSMZ using glucose as a carbon source in an immobilised batch and a continuous recycled packed fibrous-bed bioreactor-membrane (CRPBFBM. The pure cotton fibre was used to immobilise the microbial cell biomass and to isolate from the liquid phase containing medium and xanthan gum. The cellulose acetate membrane with 0.45 µm was used to recover the xanthan gum. The batch fermentation showed that the immobilisation technique gave higher xanthan gum concentration at 20g/L than the free moving cell without immobilisation at 18g/L. The CRPBBM produced the highest xanthan gum concentration at 18.7 g/L at the dilution rate of 1.44 d-1. The highest production rate of CRPBFBM was 0.475 g/L-h. Further research needs to be conducted to ascertain the stability of the Xanthomonas Campestris DSMZ during a long period of continuous fermentation as well as up scaling the CRPBFBM.

  20. Continuous syngas fermentation for the production of ethanol, n-propanol and n-butanol. (United States)

    Liu, Kan; Atiyeh, Hasan K; Stevenson, Bradley S; Tanner, Ralph S; Wilkins, Mark R; Huhnke, Raymond L


    Syngas fermentation to fuels is a technology on the verge of commercialization. Low cost of fermentation medium is important for process feasibility. The use of corn steep liquor (CSL) instead of yeast extract (YE) in Alkalibaculum bacchi strain CP15 bottle fermentations reduced the medium cost by 27% and produced 78% more ethanol. When continuous fermentation was performed in a 7-L fermentor, 6g/L ethanol was obtained in the YE and YE-free media. When CSL medium was used in continuous fermentation, the maximum produced concentrations of ethanol, n-propanol and n-butanol were 8 g/L, 6 g/L and 1 g/L, respectively. n-Propanol and n-butanol were not typical products of strain CP15. A 16S rRNA gene-based survey revealed a mixed culture in the fermentor dominated by A. bacchi strain CP15 (56%) and Clostridium propionicum (34%). The mixed culture presents an opportunity for higher alcohols production from syngas. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Continuing investigations for technology assessment of 99Mo production from LEU [low enriched uranium] targets

    International Nuclear Information System (INIS)

    Vandegrift, G.F.; Kwok, J.D.; Marshall, S.L.; Vissers, D.R.; Matos, J.E.


    Currently much of the world's supply of 99m Tc for medical purposes is produced from 99 Mo derived from the fissioning of high enriched uranium (HEU). This paper presents the results of our continuing studies on the effects of substituting low enriched uranium (LEU) for HEU in targets for the production of fission product 99 Mo. Improvements in the electrodeposition of thin films of uranium metal continue to increase the appeal for the substitution of LEU metal for HEU oxide films in cylindrical targets. The process is effective for targets fabricated from stainless steel or zircaloy. Included is a cost estimate for setting up the necessary equipment to electrodeposit uranium metal on cylindrical targets. Further investigations on the effect of LEU substitution on processing of these targets are also reported. Substitution of uranium silicides for the uranium-aluminium alloy or uranium aluminide dispersed fuel used in current target designs will allow the substitution of LEU for HEU in these targets with equivalent 99 Mo-yield per target and no change in target geometries. However, this substitution will require modifications in current processing steps due to 1) the insolubility of uranium silicides in alkaline solutions and 2) the presence of significant quantities of silicate in solution. Results to date suggest that substitution of LEU for HEU can be achieved. (Author)

  2. A clinical case of single-stage correction of penetration combined orofacial defect with two microsurgical autografts

    Directory of Open Access Journals (Sweden)

    A. D. Kaprin


    Full Text Available After surgical treatment for locally advanced oral tumors with resection of soft tissues, mucosal membrane, and facial skeletal structures, there are penetration combined defects, removal of which is a challenge for reconstructive surgeons. Mandibular repair is one of the problems in the correction of combined oral defects. Surgeons use different grafts to remove mandibular defects. One-flap transplantation does not always solve all reconstruction problems and ensure the repair of the mucosal membrane, a soft-tissue component, skin integuments, and facial skeleton.The authors describe a clinical case of successful single-stage correction of penetration combined orofacial defect after resection of the tongue, mouth floor, en bloc resection of the lower jaw and mental soft tissues, bilateral cervical supramyochoroidal lymphadenectomy, stage LCL CM mandibular defect formation after J. Boyd, by using two microsurgical autografts (a peroneal skin-muscle-skin autograft and a radial skin-fascia one in a 39-year-old female patient clinically diagnosed with carcinoma of the left mandibular alveolar ridge mucosa, Stage IVA (T4аN0M0.The Department of Microsurgery, P.A. Herzen Moscow Oncology Research Institute, Ministry of Health of Russia, has gained experience in comprehensively correcting extensive combined maxillofacial defects with two or more grafts in 27 patients who underwent autografting with a total of 73 flaps. The most functionally incapacitating and life-incompatible defect was removed at Stage 1 of reconstructive treatment. Delayed reconstruction was made after a complex of specialized antitumor therapy and assessment of treatment results in the absence of progressive growth. A great problem during multi-stage defect correction is presented by the lack of recipient vessels after cervical lymphadenectomy, the presence of soft tissue scar changes, trismus, temporomandibular joint ankylosis, contractures and displacement of the edges of the

  3. Odds ratio product of sleep EEG as a continuous measure of sleep state. (United States)

    Younes, Magdy; Ostrowski, Michele; Soiferman, Marc; Younes, Henry; Younes, Mark; Raneri, Jill; Hanly, Patrick


    To develop and validate an algorithm that provides a continuous estimate of sleep depth from the electroencephalogram (EEG). Retrospective analysis of polysomnograms. Research laboratory. 114 patients who underwent clinical polysomnography in sleep centers at the University of Manitoba (n = 58) and the University of Calgary (n = 56). None. Power spectrum of EEG was determined in 3-second epochs and divided into delta, theta, alpha-sigma, and beta frequency bands. The range of powers in each band was divided into 10 aliquots. EEG patterns were assigned a 4-digit number that reflects the relative power in the 4 frequency ranges (10,000 possible patterns). Probability of each pattern occurring in 30-s epochs staged awake was determined, resulting in a continuous probability value from 0% to 100%. This was divided by 40 (% of epochs staged awake) producing the odds ratio product (ORP), with a range of 0-2.5. In validation testing, average ORP decreased progressively as EEG progressed from wakefulness (2.19 ± 0.29) to stage N3 (0.13 ± 0.05). ORP sleep and ORP > 2.0 predicted wakefulness in > 95% of 30-s epochs. Epochs with intermediate ORP occurred in unstable sleep with a high arousal index (> 70/h) and were subject to much interrater scoring variability. There was an excellent correlation (r(2) = 0.98) between ORP in current 30-s epochs and the likelihood of arousal or awakening occurring in the next 30-s epoch. Our results support the use of the odds ratio product (ORP) as a continuous measure of sleep depth. © 2015 Associated Professional Sleep Societies, LLC.

  4. Multi-electrode continuous flow microbial electrolysis cell for biogas production from acetate

    KAUST Repository

    Rader, Geoffrey K.


    Most microbial electrolysis cells (MECs) contain only a single set of electrodes. In order to examine the scalability of a multiple-electrode design, we constructed a 2.5 L MEC containing 8 separate electrode pairs made of graphite fiber brush anodes pre-acclimated for current generation using acetate, and 304 stainless steel mesh cathodes (64 m2/m3). Under continuous flow conditions and a one day hydraulic retention time, the maximum current was 181 mA (1.18 A/m2, cathode surface area; 74 A/m 3) within three days of operation. The maximum hydrogen production (day 3) was 0.53 L/L-d, reaching an energy efficiency relative to electrical energy input of ηE = 144%. Current production remained relatively steady (days 3-18), but the gas composition dramatically shifted over time. By day 16, there was little H2 gas recovered and methane production increased from 0.049 L/L-d (day 3) to 0.118 L/L-d. When considering the energy value of both hydrogen and methane, efficiency relative to electrical input remained above 100% until near the end of the experiment (day 17) when only methane gas was being produced. Our results show that MECs can be scaled up primarily based on cathode surface area, but that hydrogen can be completely consumed in a continuous flow system unless methanogens can be completely eliminated from the system. © 2010 Professor T. Nejat Veziroglu. Published by Elsevier Ltd. All rights reserved.

  5. Continuous fermentative hydrogen production from cheese whey wastewater under thermophilic anaerobic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Azbar, Nuri; Cetinkaya Dokgoez, F. Tuba; Keskin, Tugba; Korkmaz, Kemal S.; Syed, Hamid M. [Bioengineering Department, Faculty of Engineering, Ege University, EBILTEM, Bornova, 35100 Izmir (Turkey)


    Hydrogen (H{sub 2}) production from cheese processing wastewater via dark anaerobic fermentation was conducted using mixed microbial communities under thermophilic conditions. The effects of varying hydraulic retention time (HRT: 1, 2 and 3.5 days) and especially high organic load rates (OLR: 21, 35 and 47 g chemical oxygen demand (COD)/l/day) on biohydrogen production in a continuous stirred tank reactor were investigated. The biogas contained 5-82% (45% on average) hydrogen and the hydrogen production rate ranged from 0.3 to 7.9 l H{sub 2}/l/day (2.5 l/l/day on average). H{sub 2} yields of 22, 15 and 5 mmol/g COD (at a constant influent COD of 40 g/l) were achieved at HRT values of 3.5, 2, and 1 days, respectively. On the other hand, H{sub 2} yields were monitored to be 3, 9 and 6 mmol/g COD, for OLR values of 47, 35 and 21 g COD/l/day, when HRT was kept constant at 1 day. The total measurable volatile fatty acid concentration in the effluent (as a function of influent COD) ranged between 118 and 27,012 mg/l, which was mainly composed of acetic acid, iso-butyric acid, butyric acid, propionic acid, formate and lactate. Ethanol and acetone production was also monitored from time to time. To characterize the microbial community in the bioreactor at different HRTs, DNA in mixed liquor samples was extracted immediately for PCR amplification of 16S RNA gene using eubacterial primers corresponding to 8F and 518R. The PCR product was cloned and subjected to DNA sequencing. The sequencing results were analyzed by using MegaBlast available on NCBI website which showed 99% identity to uncultured Thermoanaerobacteriaceae bacterium. (author)

  6. A Robust High-Performance GPS L1 Receiver with Single-stage Quadrature Redio-Frequency Circuit (United States)

    Liu, Jianghua; Xu, Weilin; Wan, Qinq; Liu, Tianci


    A low power current reuse single-stage quadrature raido-frequency part (SQRF) is proposed for GPS L1 receiver in 180nm CMOS process. The proposed circuit consists of LNA, Mixer, QVCO, is called the QLMV cell. A two blocks stacked topology is adopted in this design. The parallel QVCO and mixer placed on the top forms the upper stacked block, and the LNA placed on the bottom forms the other stacked block. The two blocks share the current and achieve low power performance. To improve the stability, a float current source is proposed. The float current isolated the local oscillation signal and the input RF signal, which bring the whole circuit robust high-performance. The result shows conversion gain is 34 dB, noise figure is three dB, the phase noise is -110 dBc/Hz at 1MHz and IIP3 is -20 dBm. The proposed circuit dissipated 1.7mW with 1 V supply voltage.

  7. Heat transfer and oil flow studies on a single-stage-to-orbit control-configured winged entry vehicle (United States)

    Helms, V. T., III; Bradley, P. F.


    Results are presented for oil flow and phase change paint heat transfer tests conducted on a 0.006 scale model of a proposed single stage to orbit control configured vehicle. The data were taken at angles of attack up to 40 deg at a free stream Mach number of 10 for Reynolds numbers based on model length of 0.5 x 10 to the 6th power, 1.0 x 10 to the 6th power and 2.0 x 10 to the 6th power. The magnitude and distribution of heating are characterized in terms of angle of attack and Reynolds number aided by an analysis of the flow data which are used to suggest the presence of various three dimensional flow structures that produce the observed heating patterns. Of particular interest are streak heating patterns that result in high localized heat transfer rates on the wing windward surface at low to moderate angles of attack. These streaks are caused by the bow-shock/wing-shock interaction and formation of the wing-shock. Embedded vorticity was found to be associated with these interactions.

  8. Performance Evaluation of Low/Zero Voltage Ride-Through Operations for Single-Stage Single-Phase Photovoltaic Inverters

    DEFF Research Database (Denmark)

    Zhang, Zhen; Yang, Yongheng; Blaabjerg, Frede


    With the fast development of distributed power generations, stability and security have attracted extensive attention in the recent years. As a representative of clean energies, Photovoltaic (PV) systems have been installed extensively worldwide. This drives grid-connected requirements to be cont......With the fast development of distributed power generations, stability and security have attracted extensive attention in the recent years. As a representative of clean energies, Photovoltaic (PV) systems have been installed extensively worldwide. This drives grid-connected requirements......-connected single-stage single-phase PV systems in the case of Low/Zero Voltage Ride-Through (LVRT/ZVRT) operation. A comparative analysis of the two LVRT/ZVRT control methods for PV systems is presented. Simulation results are presented, which verifies that the LVRT/ZVRT methods can help the PV systems...... to temporarily ride-through the grid low-/zero-voltage faults. The power phase-angle control method has a better dynamic response....

  9. Continuous fermentative hydrogen production from coffee drink manufacturing wastewater by applying UASB reactor

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Kyung-Won; Shin, Hang-Sik [Department of Civil and Environmental Engineering, KAIST, 373-1 Guseong-dong, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Kim, Dong-Hoon [Department of Civil and Environmental Engineering, University of Windsor, 401 Sunset Ave., Essex Hall, Windsor, Ontario (Canada)


    The feasibility of continuous H{sub 2} production from coffee drink manufacturing wastewater (CDMW) was tested in two different types of reactors: a completely-stirred tank reactor (CSTR) and an up-flow anaerobic sludge blanket reactor (UASBr). While the performance in CSTR was limited, it was significantly enhanced in UASBr. The maximum H{sub 2} yield of 1.29 mol H{sub 2}/mol hexose{sub added} was achieved at HRT of 6 h in UASBr operation. Non-hydrogenic, lactic acid was the dominant in CSTR, while butyric and caproic acids in UASBr. As caproic acid is generated by consuming acetic and butyric acids, all of which are related to H{sub 2} production, the presence of caproic acid in the broth also indicates H{sub 2} production, yielding 1.33 mol H{sub 2}/glucose. It was speculated that the enhanced performance in UASBr was attributed to the high concentration of biomass over 60,000 mg VSS/L in the blanket zone, which provided insufficient substrate for indigenous lactic acid bacteria (LAB) to survive. The abundance of LAB in CDMW was confirmed by natural fermentation of CDMW. That is without the addition of external inoculum, CDMW was mainly fermented into lactic acid under mesophilic condition. For the first time ever, H{sub 2} producing granules (HPG) with diameters of 2.1 mm were successfully formed by using actual waste as a substrate. (author)

  10. Optimal control of hydrogen production in a continuous anaerobic fermentation bioreactor

    Energy Technology Data Exchange (ETDEWEB)

    Aceves-Lara, Cesar-Arturo [INRA, UMR792, Ingenierie des Systemes Biologiques et des Procedes, Toulouse (France); CNRS, UMR5504, Toulouse, France 135 Avenue de Rangueil, Toulouse Cedex F-31077 (France); INRA, UR050, Laboratoire de Biotechnologie de l' Environnement, Avenue des Etangs, Narbonne F-11100 (France); Latrille, Eric; Steyer, Jean-Philippe [INRA, UR050, Laboratoire de Biotechnologie de l' Environnement, Avenue des Etangs, Narbonne F-11100 (France)


    This paper addresses the problem of optimization of hydrogen production in continuous anaerobic digesters using a model predictive control (MPC) strategy. The process is described by a dynamic nonlinear model. The influent concentration of molasses together with the effluent substrate and product concentrations of acetate, propionate, butyrate and biomass were estimated by an asymptotic online observer from measurements of gas composition in H{sub 2} and CO{sub 2} and gas flow rate. The observer was tested experimentally before to apply MPC online. The combined strategy (MPC and observer) was used in order to optimize a bioreactor of 2 L. The hydrogen production was increased by 75% up to 8.27mL{sub H{sub 2}} L{sup -1}min{sup -1}, using the influent flow rate as the main control variable while keeping the conversion of the influent concentration higher than 95% and maintaining the temperature at 37 C and pH at 5.5. (author)

  11. Continuous production of biodiesel under supercritical methyl acetate conditions: Experimental investigation and kinetic model. (United States)

    Farobie, Obie; Matsumura, Yukihiko


    In this study, biodiesel production by using supercritical methyl acetate in a continuous flow reactor was investigated for the first time. The aim of this study was to elucidate the reaction kinetics of biodiesel production by using supercritical methyl. Experiments were conducted at various reaction temperatures (300-400°C), residence times (5-30min), oil-to-methyl acetate molar ratio of 1:40, and a fixed pressure of 20MPa. Reaction kinetics of biodiesel production with supercritical methyl acetate was determined. Finally, biodiesel yield obtained from this method was compared to that obtained with supercritical methanol, ethanol, and MTBE (methyl tertiary-butyl ether). The results showed that biodiesel yield with supercritical methyl acetate increased with temperature and time. The developed kinetic model was found to fit the experimental data well. The reactivity of supercritical methyl acetate was the lowest, followed by that of supercritical MTBE, ethanol, and methanol, under the same conditions. Copyright © 2017. Published by Elsevier Ltd.

  12. 77 FR 34012 - Foundry Coke Products From the People's Republic of China: Continuation of Antidumping Duty Order (United States)


    ... International Trade Administration Foundry Coke Products From the People's Republic of China: Continuation of... antidumping duty order on foundry coke products from the People's Republic of China (``PRC'') would likely... Products from China Determination, 77 FR 32998 (June 4, 2012), and USITC Publication 4326 (May 29, 2012...

  13. Efficacy of single-stage and two-stage Fowler–Stephens laparoscopic orchidopexy in the treatment of intraabdominal high testis

    Directory of Open Access Journals (Sweden)

    Chang-Yuan Wang


    Conclusion: In the case of testis with good collateral circulation, single-stage F-S laparoscopic orchidopexy had the same safety and efficacy as the two-stage F-S procedure. Surgical options should be based on comprehensive consideration of intraoperative testicular location, testicular ischemia test, and collateral circumstances surrounding the testes. Under the appropriate conditions, we propose single-stage F-S laparoscopic orchidopexy be preferred. It may be appropriate to avoid unnecessary application of the two-stage procedure that has a higher cost and causes more pain for patients.

  14. Variability of oil and gas well productivities for continuous (unconventional) petroleum accumulations (United States)

    Charpentier, Ronald R.; Cook, Troy A.


    Over the last decade, oil and gas well productivities were estimated using decline-curve analysis for thousands of wells as part of U.S. Geological Survey (USGS) studies of continuous (unconventional) oil and gas resources in the United States. The estimated ultimate recoveries (EURs) of these wells show great variability that was analyzed at three scales: within an assessment unit (AU), among AUs of similar reservoir type, and among groups of AUs with different reservoir types. Within a particular oil or gas AU (such as the Barnett Shale), EURs vary by about two orders of magnitude between the most productive wells and the least productive ones (excluding those that are dry and abandoned). The distributions of EURs are highly skewed, with most of the wells in the lower part of the range. Continuous AUs were divided into four categories based on reservoir type and major commodity (oil or gas): coalbed gas, shale gas, other low-permeability gas AUs (such as tight sands), and low-permeability oil AUs. Within each of these categories, there is great variability from AU to AU, as shown by plots of multiple EUR distributions. Comparing the means of each distribution within a category shows that the means themselves have a skewed distribution, with a range of approximately one to two orders of magnitude. A comparison of the three gas categories (coalbed gas, shale gas, and other low-permeability gas AUs) shows large overlap in the ranges of EUR distributions. Generally, coalbed gas AUs have lower EUR distributions, shale gas AUs have intermediate sizes, and the other low-permeability gas AUs have higher EUR distributions. The plot of EUR distributions for each category shows the range of variation among developed AUs in an appropriate context for viewing the historical development within a particular AU. The Barnett Shale is used as an example to demonstrate that dividing wells into groups by time allows one to see the changes in EUR distribution. Subdivision into groups

  15. Creating a AIRS/AMSU and CrIS/ATMS continuity sounding product (United States)

    Barnet, C. D.; Gambacorta, A.; Smith, N.; Wheeler, A. A.


    The AIRS/AMSU (Atmospheric Infrared Sounder; Advanced Microwave Sounding Unit) onboard the EOS/Aqua was launched in 2002. CrIS/ATMS (CrossTrack Infrared Sounder; Advanced Technology Microwave Sounder) onboard Suomi NPP was launched in 2011 and will also be launched on the Joint Polar Sounding System (JPSS) series of satellites beginning in 2017. Suomi NPP and EOS/Aqua now have more than five years of overlap. Demonstrating data continuity between these two platforms has become a priority especially since EOS/Aqua is well past its design lifetime. Additionally, with JPSS, this record of soundings will be extended into future decades and will enable critically important scientific research on large scale (long term) atmospheric processes. The AIRS/AMSU and CrIS/ATMS have many differences in instrument design, spatial sampling, spectral coverage and resolution. Instruments also degrade with time. It is only with careful, deliberate and transparent error characterization and propagation that systematic effects can be accounted for, and preferably minimized, in retrieved sounding products. We have developed the Community Long-term Infrared Microwave Coupled Product System (CLIMCAPS) to achieve a seamless record of satellite soundings. A CLIMCAPS sounding is comprised of a set of parameters that characterizes the full atmospheric state and includes profiles of temperature, moisture, cloud and surface products, and trace gas species (O3, CH4, CO, SO2, HNO3, N2O and CO2). The trace gases are by-products necessary to remove biases in temperature and moisture retrievals; however, they can also be readily ingested into science applications. The information content of an IR sounder such as AIRS and CrIS is a function of lapse rate, the quantity of absorbers such as clouds, moisture and trace gases, as well as the instrument's sensitivity. Information content can vary vertically, spatially, and temporally. CLIMCAPS uses the NASA Modern-Era Retrospective Analysis for Research

  16. Process development of continuous glycerolysis in an immobilized enzyme-packed reactor for industrial monoacylglycerol production

    DEFF Research Database (Denmark)

    Damstrup, Marianne; Kiil, Søren; Jensen, Anker Degn


    of the enzyme and measured expansion when wetted with a reaction mixture, a filling degree of 52 vol % dry enzymes particles per column volume seemed appropriate. Twenty minutes was required to reach equilibrium conditions with a MAG content of 50-55 wt %. Only insignificant indications of mass transfer...... limitations were observed. Hence, the commercial lipase seemed adequate to use in its available particle size distribution ranging from 300 to 900 mu m. A column length-to-diameter ratio of less than 25 did not interfere with the transfer of the fluid mixture through the column. Under the tested conditions......Continuous and easily operated glycerolysis was studied in different lipase-packed columns to evaluate the most potential process set-ups for industrial monoacylglycerol (MAG) production. Practical design-related issues such as enzyme-filling degree, required reaction time, mass transfer...

  17. Role of continual environmental performance improvement in achieving sustainability in uranium production

    International Nuclear Information System (INIS)

    Jarrell, J.P.; Chad, G.M.S.


    Although the term sustainable development is commonly used today, there is not yet a commonly accepted definition. Various ways of measuring sustainability have been proposed. To show how these issues are being effectively addressed in modern uranium developments, we will review some methods of defining the environmental component of sustainable development in the mining and mineral-processing sector. Environmental impacts associated with uranium extraction and processing in modern facilities are modest. Air and water emissions are well controlled. Waste materials are subject to comprehensive management programmes. The size of the impacted area is smaller than in other energy sectors, providing good opportunity to minimize land impact. Experience over the past three decades facilitated gradual, persistent, but cumulatively significant environmental improvements in the uranium production sector. Cameco's uranium mining and processing facilities exemplify these improvements. These improvements can be expected to continue, supporting our argument of Cameco's environmental sustainability. (author)

  18. [Analysis of the continuity, circulation and productivity of the Revista Española de Quimioterapia]. (United States)

    Gimeno Sieres, E


    The primary objective of this study was to compare some of the bibliometric indicators of the continuity, circulation and productivity of the Revista Espanola de Quimioterapia up to 2003 with other spanish journals of Pharmacy and Pharmacology. This was done by reviewing periodicals directories, such as the ISSN (International Standard Serial Number/Número Internacional Normalizado de Publicaciones Seriadas) and ULRICH'S (Periodicals Directory), as well as the CDU (Classification Universal Decimal), national and international databases including IME (Indice Médico Español), ICYT (Indice Espanol de Ciencia y Tecnologia), IPA (International Pharmaceutical Abstracts), SCI Expanded (Science Citation Index Expanded), MEDLINE (Index Medicus), EMBASE (Excerpta Medica), BIOSIS PREVIEWS, ANALYTICAL ABSTRACTS, FSTA (Food Science and Technology Abstracts), SCIFINDER SCHOLAR and CHEMISTRY CITATION INDEX. According to the results, the Revista Española de Quimioterapia, in publication for 15 years, is widely distributed and has a good rating among other scientific journals of the same discipline.

  19. Continuous recycling of enzymes during production of lignocellulosic bioethanol in demonstration scale

    DEFF Research Database (Denmark)

    Haven, Mai Østergaard; Lindedam, Jane; Jeppesen, Martin D.


    Recycling of enzymes in production of lignocellulosic bioethanol has been tried for more than 30 years. So far, the successes have been few and the experiments have been carried out at conditions far from those in an industrially feasible process. Here we have tested continuous enzyme recycling a...... broth also opens up the possibility of lowering the dry matter content in hydrolysis and fermentation while still maintaining high ethanol concentrations....... at demonstration scale using industrial process conditions (high dry matter content and low enzyme dosage) for a period of eight days. The experiment was performed at the Inbicon demonstration plant (Kalundborg, Denmark) capable of converting four tonnes of wheat straw per hour. 20% of the fermentation broth...... was recycled to the hydrolysis reactor while enzyme dosage was reduced by 5%. The results demonstrate that recycling enzymes by this method can reduce overall enzyme consumption and may also increase the ethanol concentrations in the fermentation broth. Our results further show that recycling fermentation...

  20. Entropy production and fluctuation theorems for Langevin processes under continuous non-Markovian feedback control. (United States)

    Munakata, T; Rosinberg, M L


    Continuous feedback control of Langevin processes may be non-Markovian due to a time lag between the measurement and the control action. We show that this requires one to modify the basic relation between dissipation and time reversal and to include a contribution arising from the noncausal character of the reverse process. We then propose a new definition of the quantity measuring the irreversibility of a path in a nonequilibrium stationary state, which can also be regarded as the trajectory-dependent total entropy production. This leads to an extension of the second law, which takes a simple form in the long-time limit. As an illustration, we apply the general approach to linear systems that are both analytically tractable and experimentally relevant.

  1. Continuous fermentation using low concentration of sugar cane and Zymomonas mobilis CP4 for ethanol production

    Directory of Open Access Journals (Sweden)

    João Batista Buzato


    Full Text Available Effect of dilution rate in continuous fermentation of 20g sucrose/L and Z. mobilis CP4 was studied for ethanol production at 28oC + 1, without pH control. Four dilution rates were compared: 0.045; 0.14; 0.23 and 0.34 h-1. In dilution rates 0.045; 0.14 and 0.23 h-1 were produced 9,4g/L of ethanol and in dilution rate 0.34 h-1 was produced 8,8 g/L. Ethanol conversion efficiency were of 91% in dilution rates 0.045; 0.14 and 0. 23 h-1. In dilution rate 0.34 h-1 the conversion efficiency was of 85%.

  2. Continuous Production of Ethanol from Starch Using Glucoamylase and Yeast Co-Immobilized in Pectin Gel (United States)

    Giordano, Raquel L. C.; Trovati, Joubert; Schmidell, Willibaldo

    This work presents a continuous simultaneous saccharification and fermentation (SSF) process to produce ethanol from starch using glucoamylase and Saccharomyces cerevisiae co-immobilized in pectin gel. The enzyme was immobilized on macroporous silica, after silanization and activation of the support with glutaraldehyde. The silicaenzyme derivative was co-immobilized with yeast in pectin gel. This biocatalyst was used to produce ethanol from liquefied manioc root flour syrup, in three fixed bed reactors. The initial reactor yeast load was 0.05 g wet yeast/ml of reactor (0.1 g wet yeast/g gel), used in all SSF experiments. The enzyme concentration in the reactor was defined by running SSF batch assays, using different amount of silica-enzyme derivative, co-immobilized with yeast in pectin gel. The chosen reactor enzyme concentration, 3.77 U/ml, allowed fermentation to be the rate-limiting step in the batch experiment. In this condition, using initial substrate concentration of 166.0 g/1 of total reducing sugars (TRS), 1 ml gel/1 ml of medium, ethanol productivity of 8.3 g/l/h was achieved, for total conversion of starch to ethanol and 91% of the theoretical yield. In the continuous runs, feeding 163.0 g/1 of TRS and using the same enzyme and yeast concentrations used in the batch run, ethanol productivity was 5.9 g ethanol/1/h, with 97% of substrate conversion and 81% of the ethanol theoretical yield. Diffusion effects in the extra-biocatalyst film seemed to be reduced when operating at superficial velocities above 3.7 × 10-4 cm/s.

  3. Process analytical technology in continuous manufacturing of a commercial pharmaceutical product. (United States)

    Vargas, Jenny M; Nielsen, Sarah; Cárdenas, Vanessa; Gonzalez, Anthony; Aymat, Efrain Y; Almodovar, Elvin; Classe, Gustavo; Colón, Yleana; Sanchez, Eric; Romañach, Rodolfo J


    The implementation of process analytical technology and continuous manufacturing at an FDA approved commercial manufacturing site is described. In this direct compaction process the blends produced were monitored with a Near Infrared (NIR) spectroscopic calibration model developed with partial least squares (PLS) regression. The authors understand that this is the first study where the continuous manufacturing (CM) equipment was used as a gravimetric reference method for the calibration model. A principal component analysis (PCA) model was also developed to identify the powder blend, and determine whether it was similar to the calibration blends. An air diagnostic test was developed to assure that powder was present within the interface when the NIR spectra were obtained. The air diagnostic test as well the PCA and PLS calibration model were integrated into an industrial software platform that collects the real time NIR spectra and applies the calibration models. The PCA test successfully detected an equipment malfunction. Variographic analysis was also performed to estimate the sampling analytical errors that affect the results from the NIR spectroscopic method during commercial production. The system was used to monitor and control a 28 h continuous manufacturing run, where the average drug concentration determined by the NIR method was 101.17% of label claim with a standard deviation of 2.17%, based on 12,633 spectra collected. The average drug concentration for the tablets produced from these blends was 100.86% of label claim with a standard deviation of 0.4%, for 500 tablets analyzed by Fourier Transform Near Infrared (FT-NIR) transmission spectroscopy. The excellent agreement between the mean drug concentration values in the blends and tablets produced provides further evidence of the suitability of the validation strategy that was followed. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Effect of temperature on continuous fermentative hydrogen production from Laminaria japonica by anaerobic mixed cultures. (United States)

    Shi, Xueqing; Kim, Dong-Hoon; Shin, Hang-Sik; Jung, Kyung-Won


    The temperature effect on continuous dark fermentative hydrogen production from non-pretreated Laminaria japonica was investigated in the present study. In a preliminary step, the fermentors were continuously operated as an inoculation process at three different temperatures, 35, 50 and 65°C, to respectively represent mesophilic, thermophilic, and hyperthermophilic conditions. An optimization process was subsequently conducted with a range of organic loading rate (OLR) and cultivation pH. Among the various operation conditions, the maximum H2 yield, 61.3±2.0 mL H2/g TS, was observed under a mesophilic condition at OLR of 3.4 g COD/L/d and pH 5.5. From a PCR-DGGE analysis, it was found that an increase of temperature can reduce the microbial diversity and change the predominant species. Finally, total cellulase activity was measured, to investigate the effect of temperature on hydrolysis of L. japonica. The highest cellulase activity was 0.19±0.02 FPU/mL, observed at 35°C, coinciding with the maximum H2 yield. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Continuous production of diatom Entomoneis sp. in mechanically stirred tank and flat-panel airlift photobioreactors. (United States)

    Viriyayingsiri, Thunyaporn; Sittplangkoon, Pantaporn; Powtongsook, Sorawit; Nootong, Kasidit


    Continuous production of diatom Entomonies sp. was performed in mechanically stirred tank and flat-panel airlift photobioreactors (FPAP). The maximum specific growth rate of diatom from the batch experiment was 0.98 d(-1). A series of dilution rate and macronutrient concentration adjustments were performed in a stirred tank photobioreactor and found that the dilution rate ranged from 0.7 to 0.8 d(-1) and modified F/2 growth media containing nitrate at 3.09 mg N/L, phosphate at 2.24 mg P/L, and silicate at 11.91 mg Si/L yielded the maximum cell number density. Finally, the continuous cultivation of Entomonies sp. was conducted in FPAP using the optimal conditions determined earlier, resulting in the maximum cell number density of 19.69 × 10(4) cells/mL, which was approximately 47 and 73% increase from the result using the stirred tank photobioreactor fed with modified and standard F/2 growth media, respectively.

  6. Continuous estimation of evapotranspiration and gross primary productivity from an Unmanned Aerial System (United States)

    Wang, S.; Bandini, F.; Jakobsen, J.; J Zarco-Tejada, P.; Liu, X.; Haugård Olesen, D.; Ibrom, A.; Bauer-Gottwein, P.; Garcia, M.


    Model prediction of evapotranspiration (ET) and gross primary productivity (GPP) using optical and thermal satellite imagery is biased towards clear-sky conditions. Unmanned Aerial Systems (UAS) can collect optical and thermal signals at unprecedented very high spatial resolution (cubic spline method. Using these continuous datasets, a joint ET and GPP model, which combines the Priestley-Taylor Jet Propulsion Laboratory ET model (Fisher et al., 2008; Garcia et al., 2013) and the Light Use Efficiency GPP model (Potter et al., 1993), was applied. The simulated ET and GPP were compared with the footprint of eddy covariance observations. The simulated daily ET has a RMSE of 14.41 W•m-2 and a correlation coefficient of 0.83. The simulated daily GPP has a root mean square error (RMSE) of 1.56 g•C•m-2•d-1 and a correlation coefficient of 0.87. This study demonstrates the potential of UAS based multispectral and thermal mapping to continuously estimate ET and GPP for both sunny and cloudy weather conditions.

  7. Study of H2S increasing in gas production of vapor continuous injection

    Energy Technology Data Exchange (ETDEWEB)

    Centeno, J. [PDVSA INTEVEP (Venezuela)


    In the heavy oil industry, thermal recovery methods are often used to enhance oil recovery, continuous vapor injection is one of them. In this method, water vapor is injected into the reservoir at high temperatures, affecting the geochemical system of the fluid reservoir. It has been noticed that the use of the continuous vapor injection method results in increased concentrations of H2S in gas production. Previous studies proved that H2S diffusion is affected by the H2S/CO2 ratio and this paper aimed at determining the influence of such ratios on the diffusion properties of acid gases. Experiments were conducted with three different H2S/CO2 ratios and heavy oil samples from Orinoco oil elt. Results showed that acid gas diffusion decreases when the H2S/CO2 ratio increases and that the diffusion of H2S is better with a high percentage of water. This study successfully assessed the variation of acid gas diffusion with different values of H2S/CO2 ratios and water percentages.

  8. Continuing Discontinuities: Local and State Perspectives on Cattle Production and Water Management in Botswana

    Directory of Open Access Journals (Sweden)

    Emmanuel Manzungu


    Full Text Available From 1885 when the modern state of Botswana was founded until the discovery of significant mineral deposits in 1967, one year after independence, the livestock industry, particularly cattle production, played a significant role in the country’s economy. Today there are concerns about how the livestock industry, because of its importance to many rural households, and its potential to diversify the mineral-dominated economy, can be revived. In recognition of the country’s semi-arid climate, the government has promoted a policy of developing water sources for livestock watering. The state has acknowledged the policy has largely been ineffective, but continues to implement it. This paper attempts to explain this paradox by examining state and local perspectives in the management of water and related resources in the Botswana part of the Limpopo river basin. The discontinuities between the local inhabitants and state practitioners are analyzed within the wider physical social, political, and economic landscape. We ascribe the continued implementation of an ineffective policy to modernisation claims.


    Directory of Open Access Journals (Sweden)



    Full Text Available The concept of a continuous process in producing biodiesel from jatropha oil by using an Oscillatory Flow Biodiesel Reactor (OFBR is discussed in this paper. It has been recognized that the batch stirred reactor is a primary mode used in the synthesis of biodiesel. However, pulsatile flow has been extensively researcehed and the fundamental principles have been successfully developed upon which its hydrodynamics are based. Oscillatory flow biodiesel reactor offers precise control of mixing by means of the baffle geometry and pulsation which facilitates to continuous operation, giving plug flow residence time distribution with high turbulence and enhanced mass and heat transfer. In conjunction with the concept of reactor design, parameters such as reactor dimensions, the hydrodynamic studies and physical properties of reactants must be considered prior to the design work initiated recently. The OFBR reactor design involves the use of simulation software, ASPEN PLUS and the reactor design fundamentals. Following this, the design parameters shall be applied in fabricating the OFBR for laboratory scale biodiesel production.

  10. Production of acids and alcohols from syngas in a two-stage continuous fermentation process. (United States)

    Abubackar, Haris Nalakath; Veiga, María C; Kennes, Christian


    A two-stage continuous system with two stirred tank reactors in series was utilized to perform syngas fermentation using Clostridium carboxidivorans. The first bioreactor (bioreactor 1) was maintained at pH 6 to promote acidogenesis and the second one (bioreactor 2) at pH 5 to stimulate solventogenesis. Both reactors were operated in continuous mode by feeding syngas (CO:CO 2 :H 2 :N 2 ; 30:10:20:40; vol%) at a constant flow rate while supplying a nutrient medium at different flow rates of 8.1, 15, 22 and 30 ml/h. A cell recycling unit was added to bioreactor 2 in order to recycle the cells back to the reactor, maintaining the OD 600 around 1 in bioreactor 2 throughout the experimental run. When comparing the flow rates, the best results in terms of solvent production were obtained with a flow rate of 22 ml/h, reaching the highest average outlet concentration for alcohols (1.51 g/L) and the most favorable alcohol/acid ratio of 0.32. Copyright © 2018 Elsevier Ltd. All rights reserved.



    Daniel Tudor


    This paper analyzes two special cases of C* -algebras, the cases of universal crossed product and reduced crossed product of a group by a C* -algebra. In the hypothesis that the universal crossed product is a continuous trace C* -algebra or a type I C* -algebra, it is proved that the reduced crossed product is a continuous trace C* -algebra or, respectively, a type I C* -algebra. Moreover, these results can be extended in the case when the crossed products are obtained from a groupoid an...

  12. Continuous production of biodiesel from microalgae by extraction coupling with transesterification under supercritical conditions. (United States)

    Zhou, Dan; Qiao, Baoquan; Li, Gen; Xue, Song; Yin, Jianzhong


    Raw material for biodiesel has been expanded from edible oil to non-edible oil. In this study, biodiesel continuous production for two kinds of microalgae Chrysophyta and Chlorella sp. was conducted. Coupling with the supercritical carbon dioxide extraction, the oil of microalgae was extracted firstly, and then sent to the downstream production of biodiesel. The residue after decompression can be reused as the material for pharmaceuticals and nutraceuticals. Results showed that the particle size of microalgae, temperature, pressure, molar ration of methanol to oil, flow of CO 2 and n-hexane all have effects on the yield of biodiesel. With the optimal operation conditions: 40mesh algae, extraction temperature 60°C, flow of n-hexane 0.4ml/min, reaction temperature: 340°C, pressure: 18-20MPa, CO 2 flow of 0.5L/min, molar ration of methanol to oil 84:1, a yield of 56.31% was obtained for Chrysophyta, and 63.78% for Chlorella sp. due to the higher lipid content. Copyright © 2017. Published by Elsevier Ltd.

  13. Effects of a saturated layer and recirculation on nitrogen treatment performances of a single stage Vertical Flow Constructed Wetland (VFCW). (United States)

    Prigent, S; Paing, J; Andres, Y; Chazarenc, F


    Upgrades to enhance nitrogen removal were tested in a 2 year old pilot vertical flow constructed wetland in spring and summer periods. The effects of a saturated layer and of recirculation were tested in particular. Two pilots (L = 2 m, W = 1.25 m, H = 1.2 m), filled with expanded schist (Mayennite(®)), were designed with hydraulic saturated layers of 20 and 40 cm at the bottom. Each pilot was fed with raw domestic wastewater under field conditions according to a hydraulic load of 15-38 cm d(-1) (i.e. 158-401 g COD (chemical oxygen demand) m(-2) d(-1)) and to recirculation rates ranging from 0% up to 150%. The initial load during the first 2 years of operation resulted in an incomplete mineralized accumulated sludge leading to total suspended solids (TSS), COD and biochemical oxygen demand (BOD5) release. A 40 cm hydraulic saturated layer enabled an increase of 5-10% total nitrogen (TN) removal compared to a 20 cm saturated layer. Recirculation allowed the dilution of raw wastewater and enhanced nitrification in a single stage. A design of 1.8 m² pe(-1) (48 cm d(-1), 191 g COD m(-2) d(-1)) with a 40 cm saturated layer and 100% recirculation enabled the French standard D4 (35 mg TSS L(-1), 125 mg COD L(-1), 25 mg BOD5 L(-1)), nitrogen concentrations below 20 mg TKN (total Kjeldahl nitrogen) L(-1) and 50 mg TN L(-1), to be met.

  14. Influence of the effectiveness of raw materials on the reliability of thermoelectric cooling devices. Part I: single-stage TEDs

    Directory of Open Access Journals (Sweden)

    Zaikov V. P.


    Full Text Available Increase of the reliability of information systems depends on the reliability improvement of their component elements, including cooling devices, providing efficiency of thermally loaded components. Thermoelectric devices based on the Peltier effect have significant advantages compared with air and liquid systems for thermal modes of the radio-electronic equipment. This happens due to the absence of moving parts, which account for the failure rate. The article presents research results on how thermoelectric efficiency modules affect the failure rate and the probability of non-failure operation in the range of working temperature of thermoelectric coolers. The authors investigate a model of relative failure rate and the probability of failure-free operation single-stage thermoelectric devices depending on the main relevant parameters: the operating current flowing through the thermocouple and resistance, temperature changes, the magnitude of the heat load and the number of elements in the module. It is shown that the increase in the thermoelectric efficiency of the primary material for a variety of thermocouple temperature changes causes the following: maximum temperature difference increases by 18%; the number of elements in the module decreases; cooling coefficient increases; failure rate reduces and the probability of non-failure operation of thermoelectric cooling device increases. Material efficiency increase by 1% allows reducing failure rate by 2,6—4,3% in maximum refrigeration capacity mode and by 4,2—5,0% in minimal failure rate mode when temperature difference changes in the range of 40—60 K. Thus, the increase in the thermoelectric efficiency of initial materials of thermocouples can significantly reduce the failure rate and increase the probability of failure of thermoelectric coolers depending on the temperature difference and the current operating mode.

  15. Prospective study of single-stage repair of contaminated hernias using a biologic porcine tissue matrix: the RICH Study. (United States)

    Itani, Kamal M F; Rosen, Michael; Vargo, Daniel; Awad, Samir S; Denoto, George; Butler, Charles E


    In the presence of contamination, the repair of a ventral incisional hernia (VIH) is challenging. The presence of comorbidities poses an additional risk for postoperative wound events and hernia recurrence. To date, very few studies describe the outcomes of VIH repair in this high-risk population. A prospective, multicenter, single-arm, the Repair of Infected or Contaminated Hernias study was performed to study the clinical outcomes of open VIH repair of contaminated abdominal defects with a non-cross-linked, porcine, acellular dermal matrix, Strattice. Of 85 patients who consented to participate, 80 underwent open VIH repair with Strattice. Hernia defects were 'clean-contaminated' (n = 39), 'contaminated' (n = 39), or 'dirty' (n = 2), and the defects were classified as grade 3 (n = 60) or grade 4 (n = 20). The midline was restored, and primary closure was achieved in 64 patients; the defect was bridged in 16 patients. At 24 months, 53 patients (66%) experienced 95 wound events. There were 28 unique, infection-related events in 24 patients. Twenty-two patients experienced seromas, all but 5 of which were transient and required no intervention. No unanticipated adverse events occurred, and no tissue matrix required complete excision. There were 22 hernia (28%) recurrences by month 24. There was no correlation between infection-related events and hernia recurrence. The use of the intact, non-cross-linked, porcine, acellular dermal matrix, Strattice, in the repair of contaminated VIH in high-risk patients allowed for successful, single-stage reconstruction in >70% of patients followed for 24 months after repair. Published by Mosby, Inc.

  16. Continuous succinic acid production by Actinobacillus succinogenes on xylose-enriched hydrolysate. (United States)

    Bradfield, Michael F A; Mohagheghi, Ali; Salvachúa, Davinia; Smith, Holly; Black, Brenna A; Dowe, Nancy; Beckham, Gregg T; Nicol, Willie


    Bio-manufacturing of high-value chemicals in parallel to renewable biofuels has the potential to dramatically improve the overall economic landscape of integrated lignocellulosic biorefineries. However, this will require the generation of carbohydrate streams from lignocellulose in a form suitable for efficient microbial conversion and downstream processing appropriate to the desired end use, making overall process development, along with selection of appropriate target molecules, crucial to the integrated biorefinery. Succinic acid (SA), a high-value target molecule, can be biologically produced from sugars and has the potential to serve as a platform chemical for various chemical and polymer applications. However, the feasibility of microbial SA production at industrially relevant productivities and yields from lignocellulosic biorefinery streams has not yet been reported. Actinobacillus succinogenes 130Z was immobilised in a custom continuous fermentation setup to produce SA on the xylose-enriched fraction of a non-detoxified, xylose-rich corn stover hydrolysate stream produced from deacetylation and dilute acid pretreatment. Effective biofilm attachment, which serves as a natural cell retention strategy to increase cell densities, productivities and resistance to toxicity, was accomplished by means of a novel agitator fitting. A maximum SA titre, yield and productivity of 39.6 g L(-1), 0.78 g g(-1) and 1.77 g L(-1) h(-1) were achieved, respectively. Steady states were obtained at dilution rates of 0.02, 0.03, 0.04, and 0.05 h(-1) and the stirred biofilm reactor was stable over prolonged periods of operation with a combined fermentation time of 1550 h. Furthermore, it was found that a gradual increase in the dilution rate was required to facilitate adaptation of the culture to the hydrolysate, suggesting a strong evolutionary response to the toxic compounds in the hydrolysate. Moreover, the two primary suspected fermentation inhibitors, furfural and HMF

  17. An operational protocol for facilitating start-up of single-stage autotrophic nitrogen-removing reactors based on process stoichiometry

    DEFF Research Database (Denmark)

    Mutlu, Ayten Gizem; Vangsgaard, Anna Katrine; Sin, Gürkan


    Start-up and operation of single-stage nitritation–anammox sequencing batch reactors (SBRs) for completely autotrophic nitrogen removal can be challenging and far from trivial. In this study, a step-wise procedure is developed based on stoichiometric analysis of the process performance from...

  18. Clinical and radiologic evaluation of 2-stage IMZ implants placed in a single-stage procedure : 2-year results of a prospective comparative study

    NARCIS (Netherlands)

    Heydenrijk, K; Raghoebar, GM; Meijer, HJA; Stegenga, B


    Purpose: The aim of this study was to evaluate the feasibility of using a 2-stage implant system in a single-stage procedure and to study the impact of the microgap between the implant and the abutment. Materials and Methods: Sixty edentulous patients (Cawood class V or VI) participated in this

  19. Characteristics and Sampling Efficiencies of Two Impactor Bioaerosol Samplers: MAS-100(Registered) (Microbial Air Monitoring System) and Single-Stage Andersen Viable Microbial Samplers

    National Research Council Canada - National Science Library

    Hottell, K


    .... A petri dish with agar is used as the impaction surface for these samplers. The MAS-l00 is a single-stage impactor that aspirates air through a 400-hole perforated entry plate onto an agar plate at an airflow rate of 100 L/min...

  20. Calendering as a direct shaping tool for the continuous production of fixed-dose combination products via co-extrusion. (United States)

    Vynckier, A-K; Lin, H; Zeitler, J A; Willart, J-F; Bongaers, E; Voorspoels, J; Remon, J P; Vervaet, C


    In this study calendering is used as a downstream technique to shape monolithic co-extruded fixed-dose combination products in a continuous way. Co-extrudates with a metoprolol tartrate-loaded sustained-release core and a hydrochlorothiazide-loaded immediate-release coat were produced and immediately shaped into a monolithic drug delivery system via calendering, using chilled rolls with tablet-shaped cavities. In vitro metoprolol tartrate release from the ethylcellulose core of the calendered tablets was prolonged in comparison with the sustained release of a multiparticulate dosage form, prepared manually by cutting co-extrudates into mini-matrices. Analysis of the dosage forms using X-ray micro-computed tomography only detected small differences between the pore structure of the core of the calendered tablet and the mini-matrices. Diffusion path length was shown to be the main mechanism behind the release kinetics. Terahertz pulsed imaging visualized that adhesion between the core and coat of the calendered tablet was not complete and a gradient in coat thickness (varying from 200 to 600μm) was observed. Modulated differential scanning calorimetry and X-ray diffraction indicated that the solid-state properties of both drugs were not affected by the calendering procedure. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Experimental study on methanol recovery through flashing vaporation in continuous production of biodiesel via supercritical methanol

    International Nuclear Information System (INIS)

    Wang Cunwen; Chen Wen; Wang Weiguo; Wu Yuanxin; Chi Ruan; Tang Zhengjiao


    To improve the oil conversion, high methanol/oil molar ratio is required in the continuous production of biodiesel via supercritical methanol transesterification in tubular reactor. And thus the subsequent excess methanol recovery needs high energy consumption. Based on the feature of high temperature and high pressure in supercritical methanol transesterification, excess methanol recovery in reaction system by flashing vaporation is conducted and the effect of reaction temperature, reaction pressure and flashing pressure on methanol recovery and methanol concentration in gas phase is discussed in detail in this article. Results show that at the reaction pressure of 9-15 MPa and the reaction temperature of 240-300 o C, flashing pressure has significant influence on methanol recovery and methanol content in gas phase, which can be effectively improved by reducing flashing pressure. At the same time, reaction temperature and reaction pressure also have an important effect on methanol recovery and methanol content in gas phase. At volume flow of biodiesel and methanol 1:2, tubular reactor pressure 15 MPa, tubular reactor temperature 300 o C and the flashing pressure 0.4 MPa, methanol recovery is more than 85% and methanol concentration of gas phase (mass fraction) is close to 99% after adiabatic braising; therefore, the condensate liquid of gas phase can be injected directly into methanol feedstock tank to be recycled. Research abstracts: Biodiesel is an important alternative energy, and supercritical methanol transesterification is a new and green technology to prepare biodiesel with some obvious advantages. But it also exists some problems: high reaction temperature, high reaction pressure and large molar ratio of methanol/oil will cause large energy consumption which restricts supercritical methanol for the industrial application of biodiesel. So a set of tubular reactor-coupled flashing apparatus is established for continuous preparing biodiesel in supercritical

  2. Continuous Glucose Monitoring, Future Products, and Update on Worldwide Artificial Pancreas Projects. (United States)

    Kropff, Jort; DeVries, J Hans


    The development of accurate and easy-to-use continuous glucose monitoring (CGM) improved diabetes treatment by providing additional temporal information on glycemia and glucose trends to patient and physician. Although CGM enables users to lower their average glucose level without an increased incidence of hypoglycemia, this comes at the price of additional patient effort. Automation of insulin administration, also known as closed-loop (CL) or artificial pancreas treatment, has the promise to reduce patient effort and improve glycemic control. CGM data serve as the conditional input for insulin automation devices. The first commercial product for partial automation of insulin administration used insulin delivery shutoff at a predefined glucose level. These systems showed a reduction in hypoglycemia. Insulin-only CL devices show increased time spent in euglycemia and a reduction of hypo- and hyperglycemia. Improved glycemic control, coinciding with a minor decrease in hemoglobin A1c level, was confirmed in recent long-term home studies investigating these devices, paving the way for pivotal studies for commercialization of the artificial pancreas. Although the first results from dual-hormone CL systems are promising, because of increased cost of consumables of these systems, long-term head-to-head studies will have to prove superiority over insulin-only approaches. Now CL glucose control for daily use might finally become reality. Improved continuous glucose sensing technology, miniaturization of electrical devices, and development of algorithms were key in making this possible. Clinical adoption challenges, including device usability and reimbursement, need to be addressed. Time will tell for which patient groups CL systems will be reimbursed and whether these devices can deliver the promise that they hold.

  3. Growth and enzyme production during continuous cultures of a high amylase-producing variant of Aspergillus oryzae

    DEFF Research Database (Denmark)

    Zangirolami, Teresa; Carlsen, M.; Nielsen, J.


    Growth and product formation by a selected variant of Aspergillus oryzae showing high alpha-amylase production was studied in continuous cultivations carried out at six different specific growth rates, using glucose as the growth-limiting nutrient. The analysis of the steady-state data revealed t...

  4. A prototype data assimilation framework for generating spatiotemporally continuous SWOT data products (United States)

    Andreadis, K.; Margulis, S. A.; Li, D.; Lettenmaier, D. P.


    The Surface Water and Ocean Topography (SWOT) satellite will provide critical surface water observations for the hydrologic community. However, production of key SWOT variables, such as river discharge and surface inundation, as well as lake, reservoir, and wetland storage change will be complicated by the discontinuity of the observations in space and time. A methodology that generates products with spatially and temporally continuous fields based on SWOT observables would be highly desirable. Data assimilation provides a mechanism for merging observations from SWOT with model predictions in order to produce estimates of quantities such as river discharge, storage change, and water heights for locations and times when there is no satellite overpass or other constraints (such as layover) render the measurement unusable. We describe here a prototype assimilation system with application to the Upper Mississippi basin, implemented using synthetic SWOT observations. We use a hydrologic model (VIC) coupled with a hydrodynamic model (LISFLOOD-FP) which generates "true" fields of surface water variables. The true fields are then used to generate synthetic SWOT observations using the SWOT Instrument Simulator. We also perform a "first-guess" (or open-loop) simulation with the coupled model using a configuration that contains errors representative of the imperfect knowledge of parameters and input data, including channel topography, bankfull widths and depths, and inflows, to create an ensemble of 20 model trajectories. Subsequently we assimilate the synthetic SWOT observations into the open-loop model results to estimate water surface elevation, discharge, and storage change. Our preliminary results using three data assimilation strategies show that all improve the water surface elevation estimate accuracy by 25% - 35% for a river reach of the upper Mississippi River. Ongoing work is examining whether the improved water surface elevation estimates propagate to improvements

  5. Single-stage epidural catheter lavage with posterior spondylodesis in lumbar pyogenic spondylodiscitis with multilevel epidural abscess formation. (United States)

    Tschoeke, Sven K; Kayser, Ralph; Gulow, Jens; Hoeh, Nicolas von der; Salis-Soglio, Georg von; Heyde, Christoph


    Despite significant advances in the conservative management of pyogenic spondylodiscitis, consecutive instability, deformity, and/or neurologic compromise demands a prompt surgical intervention. However, in rare cases involving additional multilevel epidural abscess formation, the appropriate surgical strategy remains controversial. In this retrospective cohort analyses, we evaluated the efficacy of a single-stage posterior approach with the addition of a one-time multilevel epidural lavage via the surgically exposed interlaminar fenestration of the infected segment. From January 2009 through December 2010, 73 patients presenting pyogenic spondylodiscitis with instability of the lumbar spine were admitted. In all cases, the surgical strategy included a radical resection of the affected intervertebral disc and stabilization by intervertebral fusion using a titanium cage with autologous bone grafting in a level-dependent posterior approach with additional pedicle screw-and-rod instrumentation. In cases where multilevel abscess formation was evident, the standard surgical procedure was complemented by drainage and irrigation of the abscess from posterior by carefully advancing a soft infant feeding tube via the surgically exposed epidural space under fluoroscopic guidance. All patients received complementary oral antibiotic therapy for 12 weeks and were followed-up for a minimum of 12 months postoperatively. Ten patients (three male and seven female patients; mean age: 64.9 ± 10.9 years) presented with an additional lumbar epidural abscess extending beyond three levels proximal or distal to the infected disc. In all 10 patients the laboratory-chemical inflammatory parameters (leukocyte count, C-reactive protein) remained within the physiologic range after completing antibiotic therapy throughout the 1-year follow-up period. The plain radiographs and magnetic resonance imaging demonstrated solid fusion and the complete remission of the initial abscess formation after

  6. Rapid near-optimal trajectory generation and guidance law development for single-stage-to-orbit airbreathing vehicles (United States)

    Calise, A. J.; Flandro, G. A.; Corban, J. E.


    General problems associated with on-board trajectory optimization, propulsion system cycle selection, and with the synthesis of guidance laws were addressed for an ascent to low-earth-orbit of an air-breathing single-stage-to-orbit vehicle. The NASA Generic Hypersonic Aerodynamic Model Example and the Langley Accelerator aerodynamic sets were acquired and implemented. Work related to the development of purely analytic aerodynamic models was also performed at a low level. A generic model of a multi-mode propulsion system was developed that includes turbojet, ramjet, scramjet, and rocket engine cycles. Provisions were made in the dynamic model for a component of thrust normal to the flight path. Computational results, which characterize the nonlinear sensitivity of scramjet performance to changes in vehicle angle of attack, were obtained and incorporated into the engine model. Additional trajectory constraints were introduced: maximum dynamic pressure; maximum aerodynamic heating rate per unit area; angle of attack and lift limits; and limits on acceleration both along and normal to the flight path. The remainder of the effort focused on required modifications to a previously derived algorithm when the model complexity cited above was added. In particular, analytic switching conditions were derived which, under appropriate assumptions, govern optimal transition from one propulsion mode to another for two cases: the case in which engine cycle operations can overlap, and the case in which engine cycle operations are mutually exclusive. The resulting guidance algorithm was implemented in software and exercised extensively. It was found that the approximations associated with the assumed time scale separation employed in this work are reasonable except over the Mach range from roughly 5 to 8. This phenomenon is due to the very large thrust capability of scramjets in this Mach regime when sized to meet the requirement for ascent to orbit. By accounting for flight path

  7. Single-Step Fabrication of Computationally Designed Microneedles by Continuous Liquid Interface Production.

    Directory of Open Access Journals (Sweden)

    Ashley R Johnson

    Full Text Available Microneedles, arrays of micron-sized needles that painlessly puncture the skin, enable transdermal delivery of medications that are difficult to deliver using more traditional routes. Many important design parameters, such as microneedle size, shape, spacing, and composition, are known to influence efficacy, but are notoriously difficult to alter due to the complex nature of microfabrication techniques. Herein, we utilize a novel additive manufacturing ("3D printing" technique called Continuous Liquid Interface Production (CLIP to rapidly prototype sharp microneedles with tuneable geometries (size, shape, aspect ratio, spacing. This technology allows for mold-independent, one-step manufacturing of microneedle arrays of virtually any design in less than 10 minutes per patch. Square pyramidal CLIP microneedles composed of trimethylolpropane triacrylate, polyacrylic acid and photopolymerizable derivatives of polyethylene glycol and polycaprolactone were fabricated to demonstrate the range of materials that can be utilized within this platform for encapsulating and controlling the release of therapeutics. These CLIP microneedles effectively pierced murine skin ex vivo and released the fluorescent drug surrogate rhodamine.

  8. Evaluating continuous application of treated sludge on soil and plant productivity

    Directory of Open Access Journals (Sweden)

    Ahmed Al-Busaidi


    Full Text Available Kala Compost is a mixture of treated sewage bio-solids and green wastes. It can improve soil fertility and plant growth. However, long-term application of treated sewage bio-solids could result in heavy metals accumulation and some health problems. e objective of this study was to evaluate the e ect of a long run application of Kala compost mixed with chemical fertilizer on soil and plant productivity. Soil and plant (mainly cucumber samples were taken from 12 greenhouses that received Kala compost continuously for the last ve years. No symptoms of physical or chemical problems were observed in the greenhouses and measured soil samples. Moreover, the soil had su cient values of di erent nutrients for plant growth and all measured micronutrients (heavy metals were within the safe limit and below the range of the international standards. An excellent growth was observed in all grown plants and no symptoms of elements de ciency were found. Chemical analysis of fruit samples did not show any accumulation of heavy metals and all measured elements were within the safe limit and did not exceed the international standards. It can be concluded that Kala compost was a good media for plant growth that can enrich the soil with di erent elements needed for higher yield. However, more monitoring is needed with treated bio-solid application but good management could be the key to avoid any adverse e ect of any contaminant.

  9. Continuous-Flow Production of Injectable Liposomes via a Microfluidic Approach

    Directory of Open Access Journals (Sweden)

    Alessandra Zizzari


    Full Text Available Injectable liposomes are characterized by a suitable size and unique lipid mixtures, which require time-consuming and nonstraightforward production processes. The complexity of the manufacturing methods may affect liposome solubility, the phase transition temperatures of the membranes, the average particle size, and the associated particle size distribution, with a possible impact on the drug encapsulation and release. By leveraging the precise steady-state control over the mixing of miscible liquids and a highly efficient heat transfer, microfluidic technology has proved to be an effective and direct methodology to produce liposomes. This approach results particularly efficient in reducing the number of the sizing steps, when compared to standard industrial methods. Here, Microfluidic Hydrodynamic Focusing chips were produced and used to form liposomes upon tuning experimental parameters such as lipids concentration and Flow-Rate-Ratios (FRRs. Although modelling evidenced the dependence of the laminar flow on the geometric constraints and the FRR conditions, for the specific formulation investigated in this study, the lipids concentration was identified as the primary factor influencing the size of the liposomes and their polydispersity index. This was attributed to a predominance of the bending elasticity modulus over the vesiculation index in the lipid mixture used. Eventually, liposomes of injectable size were produced using microfluidic one-pot synthesis in continuous flow.

  10. Microorganism selection and biosurfactant production in a continuously and periodically operated bioslurry reactor. (United States)

    Cassidy, D P; Hudak, A J


    A continuous-flow reactor (CSTR) and a soil slurry-sequencing batch reactor (SS-SBR) were maintained in 8l vessels for 180 days to treat a soil contaminated with diesel fuel (DF). Concentrations of Candida tropicalis, Brevibacterium casei, Flavobacterium aquatile, Pseudomonas aeruginosa, and Pseudomonas fluorescens were determined using fatty acid methyl ester (FAME) analysis. DF removal (biological and volatile) and biosurfactant concentrations were measured. The SS-SBR encouraged the growth of biosurfactant-producing species relative to the CSTR. Counts of biosurfactant-producing species (C. tropicalis, P. aeruginosa, P. fluorescens) relative to total microbial counts were 88% in the SS-SBR and 23% in the CSTR. Biosurfactants were produced in the SS-SBR to levels of nearly 70 times the critical micelle concentration (CMC) early in the cycle, but were completely degraded by the end of each cycle. No biosurfactant production was observed in the CSTR. DF biodegradation rates were over 40% greater and DF stripping was over five times lower in the SS-SBR than the CSTR. However, considerable foaming occurred in the SS-SBR. Reversing the mode of operation in the reactors on day 80 caused a complete reversal in microbial consortia and reactor performance by day 120. These results show that bioslurry reactor operation can be manipulated to control overall reactor performance.

  11. Quantitative determination of retained austenite in the continuous annealing production line of cold-rolled steel

    International Nuclear Information System (INIS)

    Ichikawa, Fumihiko; Kitagawa, Hajime.


    An X-ray diffraction method has been developed for quantitative determination of retained austenite in the continuous annealing production line, CAL, of cold rolled steel sheets. A new unit of diffractometer(Cr-K α source with two proportional counters) was specially designed for the CAL. Intensities of {220} austenite reflection, I γ , and background, I BG , are measured separately by the two detectors. From I γ and I BG , real-time calculation of normalized intensity of austenite, I S , is executed by the following equation ; I S = (I γ -I BG )/I BG . I S was little affected by the fluctuation of the distance between the diffractometer and travelling material. Normalized intensity is well correlated both with the tensile strength and with volume fraction of martensite, of high strength ''dual-phase'' steel sheets. From this findings, the presently developed X-ray diffractometer unit is proved to be successfully employable in the CAL as an effectual method for control of material properties in the high strength ''dual-phase'' steel sheet by monitoring the normalized intensity of austenite. (author)

  12. Continuous production of carbon nanotubes and diamond films by swirled floating catalyst chemical vapour deposition method

    Directory of Open Access Journals (Sweden)

    S.E. Iyuke


    Full Text Available Various techniques for the synthesis of carbon nanotubes (CNTs are being developed to meet an increasing demand as a result of their versatile applications. Swirled floating catalyst chemical vapour deposition (SFCCVD is one of these techniques. This method was used to synthesise CNTs on a continuous basis using acetylene gas as a carbon source, ferrocene dissolved in xylene as a catalyst precursor, and both hydrogen and argon as carrier gases. Transmission electron microscopy analyses revealed that a mixture of single and multi-wall carbon nanotubes and other carbon nanomaterials were produced within the pyrolytic temperature range of 900–1 100°C and acetylene flow rate range of 118–370 ml min–1. Image comparison of raw and purified products showed that low contents of iron particles and amorphous carbon were contained in the synthesised carbon nanotubes. Diamond films were produced at high ferrocene concentration, hydrogen flow rate and pyrolysis temperatures, while carbon nanoballs were formed and attached to the surface of theCNTs at low ferrocene content and low pyrolysis temperature.


    Directory of Open Access Journals (Sweden)

    Levandovskiy L. V.


    Full Text Available This work objective is to find the technological conditions for the intensification of yeast growth in the gradient-continuous yeast cultivation process. Experiments on four sequential yeast chemostats (connected into a battery demonstrated broad possibilities to influence the metabolic activity of yeast and the alcohol production depending on the content of molasses introduced into the second, third and fourth yeast generators. Adding the molasses according to the 3:2:1 scheme in quantities, which are sufficient to achieve the initial concentration of solids of 26.5 g/100 cm3 to the end of the process resulted in high accumulation of yeast in the medium (up to 99 g/dm3. It is demonstrated that the highest ratio of economic effect of biomass synthesis from molasses sugars (88 g/100 g is achieved when molasses is added according to the 1:2:2.5 scheme and the initial solids concentration in the medium is near 12 g/100 cm3.

  14. Mathematical modeling of a continuous alcoholic fermentation process in a two-stage tower reactor cascade with flocculating yeast recycle. (United States)

    de Oliveira, Samuel Conceição; de Castro, Heizir Ferreira; Visconti, Alexandre Eliseu Stourdze; Giudici, Reinaldo


    Experiments of continuous alcoholic fermentation of sugarcane juice with flocculating yeast recycle were conducted in a system of two 0.22-L tower bioreactors in series, operated at a range of dilution rates (D 1 = D 2 = 0.27-0.95 h(-1)), constant recycle ratio (α = F R /F = 4.0) and a sugar concentration in the feed stream (S 0) around 150 g/L. The data obtained in these experimental conditions were used to adjust the parameters of a mathematical model previously developed for the single-stage process. This model considers each of the tower bioreactors as a perfectly mixed continuous reactor and the kinetics of cell growth and product formation takes into account the limitation by substrate and the inhibition by ethanol and biomass, as well as the substrate consumption for cellular maintenance. The model predictions agreed satisfactorily with the measurements taken in both stages of the cascade. The major differences with respect to the kinetic parameters previously estimated for a single-stage system were observed for the maximum specific growth rate, for the inhibition constants of cell growth and for the specific rate of substrate consumption for cell maintenance. Mathematical models were validated and used to simulate alternative operating conditions as well as to analyze the performance of the two-stage process against that of the single-stage process.

  15. Continuous production of glycerol by catalytic high pressure hydrogenolysis of sucrose

    NARCIS (Netherlands)

    van Ling, Gerrit; Driessen, Alfons J.; Piet, Arie C.; Vlugter, Jozef C.


    Several continuous reactor systems have been discussed for the catalytic high pressure hydrogenolysis of sucrose to glycerol. Theoretically and actually, continuous reactors lead to lower glycerol yields than in a batch process. Two continuous stirred tank reactors in cascade constitute a reasonable

  16. Effect of organic loading rate on dark fermentative hydrogen production in the continuous stirred tank reactor and continuous mixed immobilized sludge reactor from waste pastry hydrolysate. (United States)

    Han, Wei; Hu, Yunyi; Li, Shiyi; Nie, Qiulin; Zhao, Hongting; Tang, Junhong


    Waste pastry (6%, w/v) was hydrolyzed by the produced glucoamylase and protease to obtain the glucose (19.8g/L) and free amino nitrogen (179mg/L) solution. Then, the effect of organic loading rate (OLR) (8-40kgCOD/(m 3 d)) on dark fermentative hydrogen production in the continuous stirred tank reactor (CSTR) and continuous mixed immobilized sludge reactor (CMISR) from waste pastry hydrolysate was investigated and compared. The maximum hydrogen production rate of CSTR (277.76mL/(hL)) and CMISR (320.2mL/(hL)) were achieved at OLR of 24kgCOD/(m 3 d) and 32kgCOD/(m 3 d), respectively. Carbon recovery ranged from 75.2-84.1% in the CSTR and CMISR with the balance assumed to be converted to biomass. One gram waste pastry could produce 0.33g (1.83mmol) glucose which could be further converted to 79.24mL (3.54mmol) hydrogen in the CMISR or 91.66mL (4.09mmol) hydrogen in the CSTR. This is the first study which reports dark fermentative hydrogen production from waste pastry. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Continuous cultivation of a thermophilic bacterium Aeribacillus pallidus 418 for production of an exopolysaccharide applicable in cosmetic creams. (United States)

    Radchenkova, N; Panchev, I; Vassilev, S; Kuncheva, M; Dobreva, S; Kambourova, M


    The aim of this study was to evaluate the effectiveness of continuous cultivation approach for exopolysaccharide (EPS) production by a thermophilic micro-organism and the potential of the synthesized EPS for application in cosmetic industry. Study on the ability of Aeribacillus pallidus 418, isolated as a good EPS producer, to synthesize the polymer in continuous cultures showed higher production in comparison with batch cultures. The degree of the EPS in the precipitate after continuous cultivation significantly increased. Non-Newtonian pseudoplastic and thixotropic behaviour of EPS determines the ability of the received cream to become more fluid after increasing time of application on the skin. This study demonstrates a highly efficient way for production of EPS from a continuous growth culture of A. pallidus 418 that have many advantages and can outperform batch culture by eliminating time for cleaning and sterilization of the vessel and the comparatively long lag phases before the organisms enter a brief period of high productivity. The valuable physico-chemical properties of the synthesized EPS influenced positively the properties of a commercial cream. EPSs from thermophilic micro-organisms are of special interest due to the advantages of the thermophilic processes and nonpathogenic nature of the polymer molecules. However, their industrial application is hindered by the comparatively low biomass and correspondingly EPS yield. Suggested continuous approach for EPS could have an enormous economic potential for an industrial scale production of thermophilic EPSs. © 2015 The Society for Applied Microbiology.

  18. Production of multi-, oligo- and single-pore membranes using a continuous ion beam

    Energy Technology Data Exchange (ETDEWEB)

    Apel, P.Yu., E-mail: [Flerov Laboratory of Nuclear Reactions, Joint Institute for Nuclear Research, Joliot-Curie Str. 6, 141980 Dubna (Russian Federation); Dubna International University, Universitetskaya Str. 19, 141980 Dubna (Russian Federation); Ivanov, O.M.; Lizunov, N.E.; Mamonova, T.I.; Nechaev, A.N. [Flerov Laboratory of Nuclear Reactions, Joint Institute for Nuclear Research, Joliot-Curie Str. 6, 141980 Dubna (Russian Federation); Olejniczak, K. [Flerov Laboratory of Nuclear Reactions, Joint Institute for Nuclear Research, Joliot-Curie Str. 6, 141980 Dubna (Russian Federation); Faculty of Chemistry, Nicolaus Copernicus University, Gagarina Str. 7, 87-100 Torun (Poland); Vacik, J. [Nuclear Physics Institute, ASCR, v.v.i., 25068 Řež (Czech Republic); Dmitriev, S.N. [Flerov Laboratory of Nuclear Reactions, Joint Institute for Nuclear Research, Joliot-Curie Str. 6, 141980 Dubna (Russian Federation)


    Ion track membranes (ITM) have attracted significant interest over the past two decades due to their numerous applications in physical, biological, chemical, biochemical and medical experimental works. A particular feature of ITM technology is the possibility to fabricate samples with a predetermined number of pores, including single-pore membranes. The present report describes a procedure that allowed for the production of multi-, oligo- and single-pore membranes using a continuous ion beam from an IC-100 cyclotron. The beam was scanned over a set of small diaphragms, from 17 to ∼1000 μm in diameter. Ions passed through the apertures and impinged two sandwiched polymer foils, with the total thickness close to the ion range in the polymer. The foils were pulled across the ion beam at a constant speed. The ratio between the transport speed and the scanning frequency determined the distance between irradiation spots. The beam intensity and the aperture diameters were adjusted such that either several, one or no ions passed through the diaphragms during one half-period of scanning. After irradiation, the lower foil was separated from the upper foil and was etched to obtain pores 6–8 μm in diameter. The pores were found using a color chemical reaction between two reagents placed on opposite sides of the foil. The located pores were further confirmed using SEM and optical microscopy. The numbers of tracks in the irradiation spots were consistent with the Poisson statistics. Samples with single or few tracks obtained in this way were employed to study fine phenomena in ion track nanopores.

  19. Large-Scale, Continuous-Flow Production of Stressed Biomass (Desulfovibrio vulgaris Hildenborough)

    Energy Technology Data Exchange (ETDEWEB)

    Geller, Jil T.; Borglin, Sharon E.; Fortney, Julian L.; Lam, Bonita R.; Hazen, Terry C.; Biggin, Mark D.


    The Protein Complex Analysis Project (PCAP,, focuses on high-throughput analysis of microbial protein complexes in the anaerobic, sulfate-reducing organism, DesulfovibriovulgarisHildenborough(DvH).Interest in DvHas a model organism for bioremediation of contaminated groundwater sites arises from its ability to reduce heavy metals. D. vulgarishas been isolated from contaminated groundwater of sites in the DOE complex. To understand the effect of environmental changes on the organism, midlog-phase cultures are exposed to nitrate and salt stresses (at the minimum inhibitory concentration, which reduces growth rates by 50percent), and compared to controls of cultures at midlogand stationary phases. Large volumes of culture of consistent quality (up to 100 liters) are needed because of the relatively low cell density of DvHcultures (one order of magnitude lower than E. coli, for example) and PCAP's challenge to characterize low-abundance membrane proteins. Cultures are grown in continuous flow stirred tank reactors (CFSTRs) to produce consistent cell densities. Stressor is added to the outflow from the CFSTR, and the mixture is pumped through a plug flow reactor (PFR), to provide a stress exposure time of 2 hours. Effluent is chilled and held in large carboys until it is centrifuged. A variety of analyses -- including metabolites, total proteins, cell density and phospholipidfatty-acids -- track culture consistency within a production run, and differences due to stress exposure and growth phase for the different conditions used. With our system we are able to produce the requisite 100 L of culture for a given condition within a week.

  20. Effect of oxygen supply on flavor formation during continuous alcohol-free beer production : a model study


    Lehnert, Radek; Kuřec, Michal; Brányik, Tomáš; Teixeira, J. A.


    The influence of oxygen supply on the formation and conversion of the most important flavor compounds during continuous, alcohol-free beer production was studied in a complex model medium. The medium contained inorganic salts, nutrients, and aldehydes (hexanal, 2-methyl propanal, 3-methyl butanal, and furfural) and mimicked real brewery wort, with the advantage of a constant composition. Fermentation experiments were carried out in a continuously operating gas-lift reactor, ...

  1. The influence of nitrogen sources on the alpha-amylase productivity of Aspergillus oryzae in continuous cultures

    DEFF Research Database (Denmark)

    Pedersen, Henrik; Nielsen, Jens


    The influence of the nitrogen source on the cc-amylase productivity of Aspergillus oryzae was quantified in continuous cultivations. Both inorganic and complex nitrogen sources were investigated and glucose was used as the carbon and energy sources. For production of alpha-amylase, nitrate...... in the cc-amylase productivity. The higher alpha-amylase productivity during growth on casein hydrolysate was not caused by increased transcription of the alpha-amylase genes but was caused by a faster secretion of alpha-amylase or by a lower binding of alpha-amylase to the biomass....

  2. Studying the effect of over-modulation on the output voltage of three-phase single-stage grid-connected boost inverter

    Directory of Open Access Journals (Sweden)

    A. Abbas Elserougi


    Full Text Available Voltage boosting is very essential issue in renewable-energy fed applications. The classical two-stage power conversion process is typically used to interface the renewable energy sources to the grid. For better efficiency, single-stage inverters are recommended. In this paper, the performance of single-stage three-phase grid-connected boost inverter is investigated when its gain is extended by employing over-modulation technique. Using of over-modulation is compared with the employment of third order harmonic injection. The latter method can increase the inverter gain by 15% without distorting the inverter output voltage. The performance of extended gain grid-connected boost inverter is also tested during normal operation as well as in the presence of grid side disturbances. Simulation and experimental results are satisfactory.

  3. Prevalent mixed Hölder spectra and mixed multifractal formalism in a product of continuous Besov spaces (United States)

    Ben Abid, Moez


    In this work we show that the mixed Hölder spectra of a pair of functions in a prevalent set of a product of continuous Besov spaces satisfies a mixed multifractal formalism based on the wavelet leaders. The results can be easily extended for finitely many functions in a product of continuous Besov spaces. We will use the notion of the essential shyness to calculate the mixed wavelet leaders scaling function for almost every pair of functions. As far as we know this is the first application of this notion.

  4. Immediate two-stage tissue expander vs single-stage direct-to-implant breast reconstruction: two case reports of identical twins with BRCA 2 mutation

    Directory of Open Access Journals (Sweden)

    Aleš Porčnik


    Full Text Available In order to achieve the best aesthetic result after immediate implant-based breast reconstruction, all the advantages and disadvantages of two-stage tissue expander and single-stage direct-to-implant breast reconstruction should be considered. Decision about the type of implant-based reconstruction is based on the consultations outcomes after multidisciplinary team meeting of breast and reconstructive specialist, but patients own wishes should be prioritised.

  5. Hydrogen production by photosynthetic bacteria Rhodobacter capsulatus Hup{sup -} strain on acetate in continuous panel photobioreactors

    Energy Technology Data Exchange (ETDEWEB)

    Deo Androga, Dominic; Ozgur, Ebru; Eroglu, Inci [Middle East Technical Univ., Ankara (Turkey). Dept. of Chemical Engineering; Guenduez, Ufuk [Middle East Technical Univ., Ankara (Turkey). Dept. of Biology


    Photobiological hydrogen production from organic acids occurs in the presence of light and under anaerobic conditions. Stable and optimized operation of the photobioreactors is the most challenging task in the photofermentation process. The aim of this study was to achieve a stable and high hydrogen production on acetate, using the photosynthetic bacteria Rhodobacter capsulatus Hup{sup -} (uptake hydrogenase deleted strain) in continuous panel photobioreactors. An indoor experiment with continuous illumination (1500-2500 lux, corresponding to 101-169 W/m{sup 2}) and controlled temperature was carried out in a 8 L panel photobioreactor. A modified form of basal culture media containing 40 mM of acetate and 2 mM of glutamate with a feeding rate of 0.8 L/day was used. Stable hydrogen productivity of 0.7 mmol H{sub 2}/l{sub c}.h was obtained, however, biomass decreased during the continuous operation. Further indoor experiments with a biomass recycle and different feed compositions were carried out to optimise the feed composition for a stable biomass and hydrogen production. The highest hydrogen productivity of 0.8 mmol H{sub 2}/l{sub c}.h and yield of 88% was obtained in the 40 mM/ 4 mM acetate/glutamate continuously fed photobioreactor for a period of 21 days. (orig.)

  6. Single-stage endoscopic treatment for mild to moderate acute cholangitis associated with choledocholithiasis: a multicenter, non-randomized, open-label and exploratory clinical trial. (United States)

    Eto, Kazunori; Kawakami, Hiroshi; Haba, Shin; Yamato, Hiroaki; Okuda, Toshinori; Yane, Kei; Hayashi, Tsuyoshi; Ehira, Nobuyuki; Onodera, Manabu; Matsumoto, Ryusuke; Matsubara, Yu; Takagi, Tomofumi; Sakamoto, Naoya


    Two-stage treatment involving stone removal after drainage is recommended for mild to moderate acute cholangitis associated with choledocholithiasis. However, single-stage treatment has some advantages. We aimed to assess the efficacy and safety of single-stage endoscopic treatment for mild to moderate acute cholangitis associated with choledocholithiasis. A multicenter, non-randomized, open-label, exploratory clinical trial was performed in 12 institutions. A total of 50 patients with a naïve papilla and a body temperature ≥37 °C who were diagnosed with mild to moderate cholangitis associated with choledocholithiasis were enrolled between August 2012 and February 2014. Of the 50 patients, 15 had mild cholangitis and 35 had moderate cholangitis. The median number of common bile duct stones was 2 (range, 1-8), and the median diameter of the common bile duct stones was 7.5 mm (range, 1-18). The cure rate of acute cholangitis within 4 days after single-stage treatment was 90% (45/50) based on a body temperature choledocholithiasis (clinical trial registration number: UMIN000008494). © 2015 Japanese Society of Hepato-Biliary-Pancreatic Surgery.

  7. Single-stage posterior transforaminal lumbar interbody fusion, debridement, limited decompression, 3-column reconstruction, and posterior instrumentation in surgical treatment for single-segment lumbar spinal tuberculosis. (United States)

    Zeng, Hao; Wang, Xiyang; Zhang, Penghui; Peng, Wei; Liu, Zheng; Zhang, Yupeng


    The aim of this study is to determine the feasibility and efficacy of surgical management of single-segment lumbar spinal tuberculosis (TB) by using single-stage posterior transforaminal lumbar interbody fusion, debridement, limited decompression, 3-column reconstruction, and posterior instrumentation. Seventeen cases of single-segment lumbar TB were treated with single-stage posterior transforaminal lumbar interbody fusion, debridement, limited decompression, 3-column reconstruction, and posterior instrumentation. The mean follow-up was 36.9 months (range: 24-62 months). The kyphotic angle ranged from 15.2-35.1° preoperatively, with an average measurement of 27.8°. The American Spinal Injury Association (ASIA) score system was used to evaluate the neurological deficits and erythrocyte sedimentation rate (ESR) used to judge the activity of TB. Spinal TB was completely cured in all 17 patients. There was no recurrent TB infection. The postoperative kyphotic angle was 6.6-10.2°, 8.1° in average, and there was no significant loss of the correction at final follow-up. Solid fusion was achieved in all cases. Neurological condition in all patients was improved after surgery. Single-stage posterior transforaminal lumbar interbody fusion, debridement, limited decompression, 3-column reconstruction, and posterior instrumentation can be a feasible and effective method the in treatment of single-segment lumbar spinal TB.

  8. Production of ethanol from xylose by Candida shehatae grown under continuous or fed-batch conditions (United States)

    T. W. Jeffries; M. A. Alexander


    Xylose is a major component of angiosperm lignocellulosic residues. It is available from a number of different sources in the forest products industry, including fiberboard manufacture, sulfite waste liquors, production of dissolving pulp, and the hydrolysis of hardwood residues. Hydrolysis of wood for the production of liquid fuels, particularly ethanol, has been...

  9. Evaluation of Packed-Bed Reactor and Continuous Stirred Tank Reactor for the Production of Colchicine Derivatives


    Dubey, Kashyap Kumar; Kumar, Dhirendra; Kumar, Punit; Haque, Shafiul; Jawed, Arshad


    Bioconversion of colchicine into its pharmacologically active derivative 3-demethylated colchicine (3-DMC) mediated by P450BM3 enzyme is an economic and promising strategy for the production of this inexpensive and potent anticancer drug. Continuous stirred tank reactor (CSTR) and packed-bed reactor (PBR) of 3 L and 2 L total volumes were compared for the production of 3-demethylated colchicine (3-DMC) a colchicine derivative using Bacillus megaterium MTCC*420 under aerobic conditions. Statis...

  10. Real time continuous oxygen concentration monitoring system during malaxation for the production of Virgin Olive Oil

    Directory of Open Access Journals (Sweden)

    Aiello, G.


    Full Text Available During the mechanical extraction process of Virgin Olive Oil (VOO some important physical phenomena and enzymatic transformations occur which influence the quality of the final product. The control of process parameters is crucial to ensure the quality of VOO, therefore process monitoring and control is a fundamental requirement in the modern VOO processing industry. The present work proposes an innovative Real-Time Monitoring System (RTMS aimed at continuously measuring the oxygen concentration during the malaxation process in order to establish a correlation with the quality of the final product obtained. This monitoring system is based on an oxygen concentration sensor directly connected to the malaxation chamber and a data acquisition system to analyze and store the measured values in a process database. The experimental results obtained show that the use of oxygen during malaxation improves some qualitative parameters of VOO such as free fatty acids and total polyphenols while others (peroxide values and spectrophotometric indexes worsen. These results are similar to those obtained by employing nitrogen, which is the traditional technique to avoid the wellknown oxidation processes studied by several researchers, thus demonstrating that the presence of oxygen during the malaxation process can have beneficial effects on the quality of VOO when its concentration is properly controlled.

    Durante el proceso de extracción mecánica del aceite de oliva virgen ocurren importantes fenómenos físicos y transformaciones enzimáticas que influyen en la calidad del producto final. El control de los parámetros del proceso es crucial para garantizar la calidad del aceite de oliva virgen, por tanto la monitorización y el control del proceso son requisitos fundamentales en el moderno tratamiento industrial del aceite de oliva virgen. El presente trabajo propone un sistema de monitorización innovador en tiempo real dirigido a medir continuamente

  11. Continuous primary fermentation of beer : yeast immobilization kinetics and product quality


    Brányik, Tomáš; Vicente, A. A.; Teixeira, J. A.


    A one stage continuous primary beer fermentation consisting of brewing yeast immobilized on spent grain particles in a gas lift reactor was studied. The goal of this work was to adjust the flavor of the continuously produced green beer to the desired character by sparging an adequate amount of air and by controlling the fermentation temperature in the immobilized yeast reactor as well as to predict the rate of the brewing yeast immobilization using a kinetic model adapted to th...

  12. Continuous Production of Structured Phospholipids in a Packed Red Reactor with Lipase from Thermomyces lanuginosa

    DEFF Research Database (Denmark)

    Vikbjerg, Anders Falk; Peng, Lifeng; Mu, Huiling


    The possibilities of producing structured phospholipids by lipase-catalyzed acidolysis between soybean phospholipids and caprylic acid were examined in continuous packed bed enzyme reactors. Acidolysis reactions were performed in both a solvent system and a solvent-free system with the commercial...... was favored by high substrate ratio between acyl donor and phospholipids, longer residence time, and higher reaction temperature. Under certain conditions, an incorporation of around 30% caprylic acid can be obtained in continuous operation with hexane as the solvent....

  13. Continuous usage of a hair dye product containing 2-methoxymethyt-para-phenylenediamine by hair-dye-allergic individuals

    NARCIS (Netherlands)

    Kock, M.; Coenraads, P. -J.; Bloemeke, B.; Goebel, C.

    Background Despite a positive patch test reaction to para-phenylenediamine (PPD) and/or toluene-2,5-diamine (PTD), many people attempt to continue dyeing their hair with products containing PPD or its derivatives. Objectives Investigation of elicitation reactions among PPD/PTD-allergic individuals

  14. Effect of oilseed source on ruminal fermentation and methane production of a grass-legume diet in continuous culture (United States)

    Addition of oilseeds to pasture-based ruminant diets has been shown to decrease enteric CH4 emissions. However, little research has directly compared the effect of oilseed source on ruminal fermentation and Methane (CH4) production. A 4-unit continuous culture fermentor system was used to test 4 oil...

  15. Growth and enzyme production during continuous cultures of a high amylase-producing variant of Aspergillus oryzae

    DEFF Research Database (Denmark)

    Zangirolami, Teresa; Carlsen, M.; Nielsen, J.


    Growth and product formation by a selected variant of Aspergillus oryzae showing high alpha-amylase production was studied in continuous cultivations carried out at six different specific growth rates, using glucose as the growth-limiting nutrient. The analysis of the steady-state data revealed...... that the variant and wild-type strains were similar with respect to glucose uptake system and stoichiometric coefficients. However, the variant was capable of maintaining an enzyme production as high as 40 FAUgDW(-1)h(-1) at a dilution rate of 0.2 h(-1), while the wild-type strain reached a maximum specific alpha-amylase...

  16. Quantifying VOC-Reaction Tracers, Ozone Production, and Continuing Aerosol Production Rates in Urban and Far-Downwind Atmospheres (United States)

    Chatfield, Robert; Ren, X.; Brune, W.; Fried, A.; Schwab, J.


    We have found a surprisingly informative decomposition of the complex question of smoggy ozone production (basically, [HO2] in a more locally determined field of [NO]) in the process of linked investigations of modestly smoggy Eastern North America (by NASA aircraft, July 2004) and rather polluted Flushing, NYC (Queens College, July, 2001). In both rural and very polluted situations, we find that a simple contour graph parameterization of the local principal ozone production rate can be estimated using only the variables [NO] and j(sub rads) [HCHO]: Po(O3) = c (j(sub rads) [HCHO])(sup a) [HCHO](sup b). Here j(sub rads) is the photolysis of HCHO to radicals, presumably capturing many harder-UV photolytic processes and the principle ozone production is that due to HO2; mechanisms suggest that ozone production due to RO2 is closely correlated, often suggesting a limited range of different proportionality factors. The method immediately suggests a local interpretation for concepts of VOC limitation and NOx limitation. We believe that the product j(sub rads) [HCHO] guages the oxidation rate of observed VOC mixtures in a way that also provides [HO2] useful for the principle ozone production rate k [HO2] [NO], and indeed, all ozone chemical production. The success of the method suggests that dominant urban primary-HCHO sources may transition to secondary plume-HCHO sources in a convenient way. Are there other, simple, near-terminal oxidized VOC's which help guage ozone production and aerosol particle formation? Regarding particles, we report on, to the extent NASA Research resources allow, on appealing relationships between far-downwind (Atlantic PBL) HCHO and very fine aerosol (including sulfate. Since j(sub rads) [HCHO] provides a time-scale, we may understand distant-plume particle production in a more quantitative manner. Additionally we report on a statistical search in the nearer field for relationships between glyoxals (important near-terminal aromatic and isoprene

  17. Continuous hydrogen and methane production from Agave tequilana bagasse hydrolysate by sequential process to maximize energy recovery efficiency. (United States)

    Montiel Corona, Virginia; Razo-Flores, Elías


    Continuous H 2 and CH 4 production in a two-stage process to increase energy recovery from agave bagasse enzymatic-hydrolysate was studied. In the first stage, the effect of organic loading rate (OLR) and stirring speed on volumetric hydrogen production rate (VHPR) was evaluated in a continuous stirred tank reactor (CSTR); by controlling the homoacetogenesis with the agitation speed and maintaining an OLR of 44 g COD/L-d, it was possible to reach a VHPR of 6 L H 2 /L-d, equivalent to 1.34 kJ/g bagasse. In the second stage, the effluent from CSTR was used as substrate to feed a UASB reactor for CH 4 production. Volumetric methane production rate (VMPR) of 6.4 L CH 4 /L-d was achieved with a high OLR (20 g COD/L-d) and short hydraulic retention time (HRT, 14 h), producing 225 mL CH 4 /g-bagasse equivalent to 7.88 kJ/g bagasse. The two-stage continuous process significantly increased energy conversion efficiency (56%) compared to one-stage hydrogen production (8.2%). Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. 75 FR 26919 - Certain Crepe Paper Products From the People's Republic of China: Continuation of Antidumping... (United States)


    ... DEPARTMENT OF COMMERCE International Trade Administration [A-570-895] Certain Crepe Paper Products... International Trade Commission (``ITC'') that revocation of the antidumping duty order on certain crepe paper... duty order on certain crepe paper products from the PRC pursuant to section 751(c) of the Tariff Act of...

  19. Continuous production of fullerenes and other carbon nanomaterials on a semi-industrial scale using plasma technology

    International Nuclear Information System (INIS)

    Gruenberger, T.M.; Gonzalez-Aguilar, J.; Fulcheri, L.; Fabry, F.; Grivei, E.; Probst, N.; Flamant, G.; Charlier, J.-C.


    A new production method is presented allowing the production of bulk quantities of fullerenes and other carbon nanomaterials using a 3-phase thermal plasma (260 kW). The main characteristics of this method lie in the independent control of the carbon throughput by injection of a solid carbon feedstock, and the immediate extraction of the synthesised product from the reactor, allowing production on a continuous basis. The currently investigated plasma facility is of an intermediate scale between lab-size and an industrial pilot plant, ready for further up scaling to an industrial size. The influence of a large number of different carbon precursors, plasma gases and operating conditions on the fullerene yield has been studied. At this state, quantities of up to 1 kg of carbon can be processed per hour with further scope for increase, leading to production rates for this type of materials not achievable with any other technology at present

  20. Production of very fine grained Mg-3%Al-1%Zn alloy by continuous extrusion forming (CONFORM)

    Energy Technology Data Exchange (ETDEWEB)

    He, Youliang; Li, Jian [CANMET-Materials Technology Laboratory, Natural Resources Canada, 568 Booth Street, Ottawa, Ontario (Canada); Gao, Fei; Song, Baoyun; Fu, Rong; Wu, Guiming [Department of Materials Science and Engineering, Dalian Jiatong University, Dalian, Liaoning 116028 (China)


    Very fine grained ({proportional_to}2{mu}m) Mg-3%Al-1%Zn alloy rods are produced using an industrial continuous extrusion forming (CONFORM) machine. Cast rods (grain size {proportional_to}150 {mu}m) are utilized as the feedstock and significant grain refinement is achieved in a single extrusion process. Tensile elongation of about 200% is achieved at 473 K using the extruded sample. This demonstrates the potential application of CONFORM as a continuous severe plastic deformation process to produce very fine grained metals to attain superplastic properties. (Copyright copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Continuous wet oxidation pretreatment of lignocellulosic biomass with subsequent continuous ethanol production; Kontinuerlig vaadoxidationsforbehandling af lignocelluloseholdige biomasser med efterfoelgende kontinuerlig ethanolfremstilling

    Energy Technology Data Exchange (ETDEWEB)

    Ahring, B.K.; Torry-Smith, M.; Loeth, A.H.


    In this project the possibility of implementing a UASB-reactor for detoxification of the recirculation water is investigated. Bioethanol- effluent (BEE) made from wet-oxidized wheat straw (60 g-wheat straw/l-water) fermented with Saccharomyces cerevisiae and Thermoanaerobacter mathranii A3M4 is in this project used to simulate the effluent from a commercial bioethanol plant. To investigate the gas potential and conversion of inhibitors, BEE is investigated both in batch and in a laboratory scale UASB reactor. In batch tests the conversion of acetovanillon, 2-furan acid and 4-hydroxyacetophenon was investigated with the substances themselves, as single substrat, and by co-digestion with BEE. The experiments show that the conversion of the three substances together with BEE had a positive influence on the decomposition and the inhibition levels. Tests with conversion of BEE in a laboratory scale UASB-reactor showed that by loading up to 29 g-COD/l it was possible to obtain a COD-reduction at 80% (w/w). At the same time GC-analyses of vanillin acid, homo vanillin acid, aceton vanillon, syringon acid, acetosyringon, syringol, 4-hydroxybenzo acid, 4-hydroxbenzaldenhyde, 2-furan acid, and phenol showed that all these substances were converted in the UASB-reactor. Economical calculations carried out on the basis of the results from the experiments indicate that the implementation of a UASB-cleaning step for cleaning the bioethanol process water can be carried out with a economical profit, which among other means a short payback time on the investment. It is things concluded that the implementation of a UASB-cleaning step is a qualified method to detoxify process water for bioethanol production and thereby reduce the total production costs of the commercial bioethanol production based on lignocelluslose materials. The necessity of tests with repeated recirculations are indicated, because continuous reuse of the process water can result in up-concentration of any inhibitors

  2. Optimisation of Lab-Scale Continuous Alcohol-Free Beer Production

    Czech Academy of Sciences Publication Activity Database

    Lehnert, R.; Novák, Pavel; Macieira, F.; Kuřec, M.; Teixeira, J.A.; Brányik, T.


    Roč. 27, č. 4 (2009), s. 267-275 ISSN 1212-1800 Institutional research plan: CEZ:AV0Z40720504 Keywords : alcohol-free beer * continuous reactor * immobilised yeast Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 0.602, year: 2009

  3. Continuous Production of Structured Phospholipids in a Packed Red Reactor with Lipase from Thermomyces lanuginosa

    DEFF Research Database (Denmark)

    Vikbjerg, Anders Falk; Peng, Lifeng; Mu, Huiling


    The possibilities of producing structured phospholipids by lipase-catalyzed acidolysis between soybean phospholipids and caprylic acid were examined in continuous packed bed enzyme reactors. Acidolysis reactions were performed in both a solvent system and a solvent-free system with the commercial...

  4. Heat transfer and the continuous production of hydroxypropyl starch in a static mixer reactor

    NARCIS (Netherlands)

    Lammers, Gerard; Beenackers, Antonie A. C. M.


    A novel continuous reactor for the chemical derivation of aqueous starch solutions based on static mixers is proposed. Both the experimentally observed axial and radial temperature gradients in the static mixer could be accurately described by a pseudohomogeneous two-dimensional heat transfer (PTHT)

  5. Continuous Glucose Monitoring, Future Products, and Update on Worldwide Artificial Pancreas Projects

    NARCIS (Netherlands)

    Kropff, Jort; DeVries, J. Hans


    The development of accurate and easy-to-use continuous glucose monitoring (CGM) improved diabetes treatment by providing additional temporal information on glycemia and glucose trends to patient and physician. Although CGM enables users to lower their average glucose level without an increased

  6. Continuous wasteless ecologically safe technology of propylenecarbonate production in presence of phthalocyanine catalysts (United States)

    Afanasiev, Vladimir Vasilievich [Moscow, RU; Zefirov, Nikolai Serafimovich [Moscow, RU; Zalepugin, Dmitry Yurievich [Moscow, RU; Polyakov, Victor Stanislavovich [Moscow, RU; Tilkunova, Nataliya Alexandrovna [Moscow, RU; Tomilova, Larisa Godvigovna [Moscow, RU


    A continuous method of producing propylenecarbonate includes carboxylation of propylene oxide with carbon dioxide in presence of phthalocyanine catalyst on an inert carrier, using as the phthalocyanine catalyst at least one catalyst selected from the group consisting of not-substituted, methyl, ethyl, butyl, and tret butyl-substituted phthalocyanines of metals, including those containing counterions, and using as the carrier a hydrophobic carrier.

  7. Butanol production by bioconversion of cheese whey in a continuous packed bed reactor. (United States)

    Raganati, F; Olivieri, G; Procentese, A; Russo, M E; Salatino, P; Marzocchella, A


    Butanol production by Clostridium acetobutylicum DSM 792 fermentation was investigated. Unsupplemented cheese whey was adopted as renewable feedstock. The conversion was successfully carried out in a biofilm packed bed reactor (PBR) for more than 3 months. The PBR was a 4 cm ID, 16 cm high glass tube with a 8 cm bed of 3mm Tygon rings, as carriers. It was operated at the dilution rate between 0.4h(-1) and 0.94 h(-1). The cheese whey conversion process was characterized in terms of metabolites production (butanol included), lactose conversion and biofilm mass. Under optimized conditions, the performances were: butanol productivity 2.66 g/Lh, butanol concentration 4.93 g/L, butanol yield 0.26 g/g, butanol selectivity of the overall solvents production 82 wt%. Copyright © 2013 Elsevier Ltd. All rights reserved.


    Directory of Open Access Journals (Sweden)

    S. E. Ulanin


    Full Text Available In 1973 the crew of polar expedition, investigating the Middendorff Bay at the messdeck Zarya, discovered the depot of food products hidden in permafrost by head of Russian polar expedition E. Toll in 1900. There were oat flakes ‘Gerkules’ and croutons in the depot. Then the study carried out in Research Institute of Vegetable Drying and Can Industry had shown that all products discovered had preserved all their food qualities. That result leaded to launch up the experimental work on the possibility of preservation of food products and foodstuffs in permafrost till 2050. Quality of product found out in Taymyr Peninsula was analyzed. The results of study on qualities after long preservation in permafrost of such food products and foodstuffs as meat, milk, fish, confectionery, concentrated food, plant seeds were given. As a result of expedition in 2016, 20 samples were taken out and new samples of two types of products were placed into repository. Overall products placed consisted of 23 items, including foodstuffs and plant seeds with account of taking them out in 2025, 2035 and 2050. On the basis of research carried out, it is proved that most of modern and casual food products can be preserved without losing their quality values.

  9. Improving EGSB reactor performance for simultaneous bioenergy and organic acid production from cheese whey via continuous biological H2 production. (United States)

    Ramos, Lucas Rodrigues; Silva, Edson Luiz


    To evaluate the influence of hydraulic retention time (HRT) and cheese whey (CW) substrate concentration (15 and 25 g lactose l -1 ) on the performance of EGSB reactors (R15 and R25, respectively) for H 2 production. A decrease in the HRT from 8 to 4 h favored the H 2 yield and H 2 production rate (HPR) in R15, with maximum values of 0.86 ± 0.11 mmol H 2 g COD -1 and 0.23 ± 0.024 l H 2 h -1 l -1 , respectively. H 2 production in R25 was also favored at a HRT of 4 h, with maximum yield and HPR values of 0.64 ± 0.023 mmol H 2 g COD -1 and 0.31 ± 0.032 l H 2 h -1 l -1 , respectively. The main metabolites produced were butyric, acetic and lactic acids. The EGSB reactor was evaluated as a viable acidogenic step in the two-stage anaerobic treatment of CW for the increase of COD removal efficiency and biomethane production.

  10. Development of an advanced, continuous mild gasification process for the production of co-products: Topical report

    Energy Technology Data Exchange (ETDEWEB)

    Cha, C.Y.; Merriam, N.W.; Jha, M.C.; Breault, R.W.


    Research on mild gasification is discussed. The report is divided into three sections: literature survey of mild gasification processes; literature survey of char, condensibles, and gas upgrading and utilization methods; and industrial market assessment of products of mild gasification. Recommendations are included in each section. (CBS) 248 refs., 58 figs., 62 tabs.

  11. Twin-belt continuous caster with containment and cooling of the exiting cast product for enabling high-speed casting of molten-center product (United States)

    Dykes, Charles D.; Daniel, Sabah S.; Wood, J. F. Barry


    In continuously casting molten metal into cast product by a twin-belt machine, it is desirable to achieve dramatic increases in speed (linear feet per minute) at which cast product exits the machine, particularly in installations where steel cast product is intended to feed a downstream regular rolling mill (as distinct from a planetary mill) operating in tandem with the twin-belt caster. Such high-speed casting produces product with a relatively thin shell and molten interior, and the shell tends to bulge outwardly due to metallostatic head pressure of the molten center. A number of cooperative features enable high-speed, twin-belt casting: (1) Each casting belt is slidably supported adjacent to the caster exit pulley for bulge control and enhanced cooling of cast product. (2) Lateral skew steering of each belt provides an effective increase in moving mold length plus a continuity of heat transfer not obtained with prior art belt steering apparatus. (3) The exiting slab is contained and supported downstream from the casting machine to prevent bulging of the shell of the cast product, and (4) spray cooling is incorporated in the exit containment apparatus for secondary cooling of cast product.

  12. Product sampling during transient continuous countercurrent hydrolysis of canola oil and development of a kinetic model

    KAUST Repository

    Wang, Weicheng


    A chemical kinetic model has been developed for the transient stage of the continuous countercurrent hydrolysis of triglycerides to free fatty acids and glycerol. Departure functions and group contribution methods were applied to determine the equilibrium constants of the four reversible reactions in the kinetic model. Continuous countercurrent hydrolysis of canola oil in subcritical water was conducted experimentally in a lab-scale reactor over a range of temperatures and the concentrations of all neutral components were quantified. Several of the rate constants in the model were obtained by modeling this experimental data, with the remaining determined from calculated equilibrium constants. Some reactions not included in the present, or previous, hydrolysis modeling efforts were identified from glycerolysis kinetic studies and may explain the slight discrepancy between model and experiment. The rate constants determined in this paper indicate that diglycerides in the feedstock accelerate the transition from "emulsive hydrolysis" to "rapid hydrolysis". © 2013 Elsevier Ltd.





    The concept of a continuous process in producing biodiesel from jatropha oil by using an Oscillatory Flow Biodiesel Reactor (OFBR) is discussed in this paper. It has been recognized that the batch stirred reactor is a primary mode used in the synthesis of biodiesel. However, pulsatile flow has been extensively researcehed and the fundamental principles have been successfully developed upon which its hydrodynamics are based. Oscillatory flow biodiesel reactor offers precise control of mixing b...

  14. Performance analysis of the single-stage absorption heat transformer using a new working pair composed of ionic liquid and water

    International Nuclear Information System (INIS)

    Zhang Xiaodong; Hu Dapeng


    The performance simulation of a single-stage absorption heat transformer using a new working pair composed of ionic liquids, 1-ethyl-3-methylimidazolium dimethylphosphate, and water (H 2 O + [EMIM][DMP]), was performed based on the thermodynamic properties of the new working pair and on the mass and energy balance for each component of the system. In order to evaluate the new working pair, the simulation results were compared with those of aqueous solution of lithium bromide (H 2 O + LiBr), Trifluoroethanol (TFE) + tetraethylenglycol dimethylether (E181). The results indicate that when generation, evaporation, condensing and absorption temperatures are 90 °C, 90 °C, 35 °C and 130 °C, the coefficients of performance of the single-stage absorption heat transformer using H 2 O + LiBr, H 2 O + [EMIM][DMP] and TFE + E181 as working pairs will reach 0.494, 0.481 and 0.458 respectively. And the corresponding exergy efficiency will reach 0.64, 0.62 and 0.59, respectively. Meanwhile the available heat outputs for per unit mass of refrigerant are 2466 kJ/kg, 2344 kJ/kg and 311 kJ/kg, respectively. The above excellent cycle performance together with the advantages of negligible vapor pressure, no crystallization and more weak corrosion tendency to iron-steel materials may make the new working pair better suited for the industrial absorption heat transformer. - Highlights: ► The cycle performance of the single-stage absorption heat transformer was simulated. ► Water and 1-ethyl-3-methylimidazolium dimethylphosphate was used as new working pair. ► Water and 1-ethyl-3-methylimidazolium dimethylphosphate are entirely miscible. ► The COP and exergy efficiency for this new working pairs were 0.481 and 0.62. ► The new working pairs has potential application to absorption heat transformer.

  15. Posterior or Single-stage Combined Anterior and Posterior Approach Decompression for Treating Complex Cervical Spondylotic Myelopathy Coincident Multilevel Anterior and Posterior Compression. (United States)

    Zhou, Xiaoxiao; Cai, Pan; Li, Yuwei; Wang, Haijiao; Xia, Shengli; Wang, Xiuhui


    A single-center, retrospective, longitudinal matched cohort clinical study of prospectively collected outcomes. To compare retrospectively the clinical outcomes and complications of the posterior approach laminoplasty and single-stage anterior approach laminoplasty combined with anterior cervical corpectomy and fusion and anterior cervical discectomy and fusion for treating patients with cervical spondylotic myelopathy coincident multilevel anterior and posterior compression, known as complex cervical spondylotic myelopathy (cCSM) here. The optimal surgical management of this type of cCSM remains controversial. Sixty-seven patients with multilevel cCSM underwent decompression surgery from 1996 to 2007. Among these patients, 31 underwent a single-stage combined approach with decompression (combined approach group) and 36 underwent laminoplasty for posterior approach (posterior approach group). Average operative duration, operative estimated blood loss, surgical costs, and cervical alignment were measured. Average operative duration, operative estimated blood loss, and surgical costs were significantly lower in the posterior approach group than those in the combined approach group (P0.05). No statistical difference was observed in the preoperative Cobb angle (P>0.05), whereas a significant statistical difference was observed for the postoperative Cobb angle (Pgroups. The surgical incidences of complications were 22.2% and 48.4% in the posterior and combined approach groups (Papproach laminoplasty and single-stage combined approach led to significant neurological improvement and pain reduction in the majority of patients. Both approaches showed similar results in terms of decompression and neurological improvement. The posterior approach was superior to the combined approach in terms of surgical costs, surgical time, blood loss, and complication rate.

  16. Retrospective analysis of 56 edentulous dental arches restored with 344 single-stage implants using an immediate loading fixed provisional protocol: statistical predictors of implant failure. (United States)

    Kinsel, Richard P; Liss, Mindy


    The purpose of this retrospective study was to evaluate the effects of implant dimensions, surface treatment, location in the dental arch, numbers of supporting implant abutments, surgical technique, and generally recognized risk factors on the survival of a series of single-stage Straumann dental implants placed into edentulous arches using an immediate loading protocol. Each patient received between 4 and 18 implants in one or both dental arches. Periapical radiographs were obtained over a 2- to 10-year follow-up period to evaluate crestal bone loss following insertion of the definitive metal-ceramic fixed prostheses. Univariate tests for failure rates as a function of age ( or = 60 years), gender, smoking, bone grafting, dental arch, surface type, anterior versus posterior, number of implants per arch, and surgical technique were made using Fisher exact tests. The Cochran-Armitage test for trend was used to evaluate the presence of a linear trend in failure rates regarding implant length and implant diameter. Logistic regression modeling was used to determine which, if any, of the aforementioned factors would predict patient and implant failure. A significance criterion of P = .05 was utilized. Data were collected for 344 single-stage implants placed into 56 edentulous arches (39 maxillae and 17 mandibles) of 43 patients and immediately loaded with a 1-piece provisional fixed prosthesis. A total of 16 implants failed to successfully integrate, for a survival rate of 95.3%. Increased rates of failure were associated with reduced implant length, placement in the posterior region of the jaw, increased implant diameter, and surface treatment. Implant length emerged as the sole significant predictor of implant failure. In this retrospective analysis of 56 consecutively treated edentulous arches with multiple single-stage dental implants loaded immediately, reduced implant length was the sole significant predictor of failure.

  17. System for continuous production of cassava (Manihot sculenta Crantz. in the municipality of Trinidad.

    Directory of Open Access Journals (Sweden)

    Osdany de la Caridad Pérez González


    Full Text Available In Sancti Spiritus province there are limitations in the potential of cassava (Manihot sculenta Crantz. with the yield that doesn´t guarantee the alimentary supply to the population, this is reflected with more dimension in the municipality of Trinidad, one of the edges that can solve this problem is a handling of clones that will guarantee a self sufficiency of the municipality, so the objective of this work is to establish a staggered sowing system in the cultivation of cassava, using different existent clones in the city, having in mind its cycles and its agro production characteristic that will allow to elevate yields for hectare and to elevate the production volumes in correspondence with the population in the municipality of Trinidad. As a result was obtained a production in tons for hectares of the satisfactory tuber using four clones: CMC 40 of 6 to 8 months of consumption, belonging to plantations of short cycle, INIVIT AND-93-4 and it INIVIT Y-93-4 CENSA 74-725 of the 8 months of having sowed until the 11 months, belonging to plantations of short cycle and half respectively and the miss of consumption from 10 until the 11 months of having sowed of late cycle, this satisfied in different times of the year yucca´s production for the population's consumption in the Cooperative CPA of Agricultural Production "Pedro Lantigua."

  18. Source identification of nitrous oxide emission pathways from a single-stage nitritation-anammox granular reactor

    KAUST Repository

    Ali, Muhammad


    Nitrous oxide (N2O) production pathway in a signal-stage nitritation-anammox sequencing batch reactor (SBR) was investigated based on a multilateral approach including real-time N2O monitoring, N2O isotopic composition analysis, and in-situ analyses of spatial distribution of N2O production rate and microbial populations in granular biomass. N2O emission rate was high in the initial phase of the operation cycle and gradually decreased with decreasing NH4+ concentration. The average emission of N2O was 0.98 ± 0.42% and 1.35 ± 0.72% of the incoming nitrogen load and removed nitrogen, respectively. The N2O isotopic composition analysis revealed that N2O was produced via NH2OH oxidation and NO2− reduction pathways equally, although there is an unknown influence from N2O reduction and/or anammox N2O production. However, the N2O isotopomer analysis could not discriminate the relative contribution of nitrifier denitrification and heterotrophic denitrification in the NO2− reduction pathway. Various in-situ techniques (e.g. microsensor measurements and FISH (fluorescent in-situ hybridization) analysis) were therefore applied to further identify N2O producers. Microsensor measurements revealed that approximately 70% of N2O was produced in the oxic surface zone, where nitrifiers were predominantly localized. Thus, NH2OH oxidation and NO2 reduction by nitrifiers (nitrifier-denitrification) could be responsible for the N2O production in the oxic zone. The rest of N2O (ca. 30%) was produced in the anammox bacteria-dominated anoxic zone, probably suggesting that NO2− reduction by coexisting putative heterotrophic denitrifiers and some other unknown pathway(s) including the possibility of anammox process account for the anaerobic N2O production. Further study is required to identify the anaerobic N2O production pathways. Our multilateral approach can be useful to quantitatively examine the relative contributions of N2O production pathways. Good understanding of the key N2O

  19. Development of an advanced, continuous mild gasification process for the production of co-products (Task 1), Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Knight, R.A.; Gissy, J.L.; Onischak, M.; Babu, S.P.; Carty, R.H. (Institute of Gas Technology, Chicago, IL (United States)); Duthie, R.G. (Bechtel Group, Inc., San Francisco, CA (United States)); Wootten, J.M. (Peabody Holding Co., Inc., St. Louis, MO (United States))


    Under US DOE sponsorship, a project team consisting of the Institute of Gas Technology, Peabody Holding Company, and Bechtel Group, Inc. has been developing an advanced, mild gasification process to process all types of coal and to produce solid and condensable liquid co-products that can open new markets for coal. The three and a half year program (September 1987 to June 1991) consisted of investigations in four main areas. These areas are: (1) Literature Survey of Mild Gasification Processes, Co-Product Upgrading and Utilization, and Market Assessment; (2) Mild Gasification Technology Development: Process Research Unit Tests Using Slipstream Sampling; (3) Bench-Scale Char Upgrading Study; (4) Mild Gasification Technology Development: System Integration Studies. In this report, the literature and market assessment of mild gasification processes are discussed.

  20. Mesophilic continuous fermentative hydrogen production from acid pretreated de-oiled jatropha waste hydrolysate using immobilized microorganisms. (United States)

    Kumar, Gopalakrishnan; Sivagurunathan, Periyasamy; Sen, Biswarup; Kim, Sang-Hyoun; Lin, Chiu-Yue


    Mesophilic hydrogen production from acid pretreated hydrolysate (biomass concentration of 100g/L and 2% hydrochloric acid) of de-oiled jatropha waste was carried out in continuous system using immobilized microorganisms at various hydraulic retention times (HRTs) ranging from 48 to 12h. The experimental results of the reusability of immobilized microorganisms showed their stability up to 10 cycles with an average cumulative hydrogen production of 770mL/L. The peak hydrogen production rate and hydrogen yield were 0.9L/L*d and 86mL/g reducing sugars added , respectively at 16h HRT, with butyrate as the predominant volatile fatty acid. The microbial community analysis revealed that majority of the PCR-DGGE bands were assigned to genus Clostridium and were perhaps the key drivers of the higher hydrogen production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Continuous butyric acid fermentation coupled with REED technology for enhanced productivity

    DEFF Research Database (Denmark)

    Baroi, George Nabin; Skiadas, Ioannis; Westermann, Peter

    , today’s organic residues and wastes may become tomorrow’s platform for a variety of products for industrial use. Butyric acid fermentation has long been discussed in the last decade due to the wide application of butyric acid in chemical, pharmaceutical and food industries. Compared to other microbial...... strains, C.tyrobutyricum seems the most promising for biological production of butyric acid as it is characterised by higher selectivity and higher tolerance to butyric acid. However, studies on fermentative butyric production from lignocellulosic biomasses are scarce in the international literature....... The present study focuses on butyric acid fermentation of Pre-treated (by wet explosion) and enzymatically Hydrolysed Wheat Straw (PHWS) by an adapted C. tyrobutyricum strain. The strain could grow in up to 80% (v/v) PHWS in batch mode and it was capable of fermenting both glucose and xylose producing butyric...

  2. Continuous production of chitooligosaccharides by an immobilized enzyme in a dual-reactor system

    DEFF Research Database (Denmark)

    Santos-Moriano, Paloma; Woodley, John; Plou, Francisco J.


    flow through a packed-bead reactor (PBR), thus avoiding clogging of the column. The relationship between hydrolysis degree of chitosan (1% w/v) and viscosity of the solution was assessed in a batch reactor. A 50% hydrolyzed chitosan did not cause any clogging of the PBR. Under these conditions...... profile (with chitotriose and chitobiose as major products, using chitosans of different polymerization and deacetylation degrees), but significantly increased the enzyme thermostability. A two-step process was proposed, in which chitosan was first hydrolyzed in a batch reactor to a viscosity that could......, the productivity of the PBR at the lowest dilution rate was 37 gCOS L−1 h−1, with a conversion yield of 73%. In contrast, at the highest dilution rate, the productivity was nearly 200 gCOS L−1 h−1, but the conversion yield dropped to around 40%....

  3. An Effective Method of Continuous Production of Erythritol from Glycerol by Yarrowia lipolytica MK1

    Directory of Open Access Journals (Sweden)

    Magdalena Rakicka


    Full Text Available This study demonstrates the potential applicability of the UV mutant Yarrowia lipolytica MK1 for the valorisation of glycerol and erythritol production in a chemostat culture. The aim of this research is to investigate the optimal C:N ratio in the feeding medium in order to enhance erythritol production. The highest erythritol concentration, at 113.1 g/L with a volumetric erythritol production rate of 1.1 g/(L·h and a yield of 0.57 g/g, was obtained in the feeding medium with a C:N ratio of 80:1. Moreover, no residual glycerol was observed in the culture broth during cultivation. The chemical composition of the biomass was analysed. The contents of lysine and threonine in the biomass protein amino acid profile were higher than those required by the FAO/WHO for fodder yeast.

  4. Comparative study of production of Bio-Indigo by Pandoraea sp. in a two phase - fed batch and continuous bioreactor

    Directory of Open Access Journals (Sweden)

    Vaishnavi Unde


    Full Text Available Indigo, is blue of blue jeans, a synthetic dye used on large scale all over the world. Chemical production of the dye is taking a new route towards bacterial production to overcome the environmental effects that are posed by the synthetic blue powder (Indigo. In the present work a strain Pandoraea sp. isolated from the oil contaminated soil is found to produce blue pigment which is analyzed qualitatively as indigo using UV-visible scan and Thin Layer Chromatography (TLC. The strain is used for indigo production at lab scale in two different bioreactor configurations first the fed batch mode and second continuous mode using two phases. The two phases consisting of medium carrying biomass and the second phase of silicone oil carrying substrate indole. The use of second phase allows higher concentration of substrate injection reducing the inhibition effects of the substrate as well as act as a partitioning agent for removal of the product. In two phase study, the maximum indigo produced was seen to be 0.068 g/L after 22 hours of substrate injection into the Fermentor in a fed batch mode. The maximum yield obtained in this configuration was 19%. For commercial production of bio-indigo a continuous operation is required, which was studied in a bioreactor with 2.5 liter capacity under the optimized conditions. The maximum indigo produced was found to be 0.052 g/L after about 72 hours of operation. The results showed decrease in the production of indigo in continuous mode as compared to fed batch operation, which may be due to the insufficient time available for the bacteria to bio-transform indole into indigo.

  5. Sustainable MSD prevention: management for continuous improvement between prevention and production. Ergonomic intervention in two assembly line companies. (United States)

    Caroly, S; Coutarel, F; Landry, A; Mary-Cheray, I


    To increase output and meet customers' needs, companies have turned to the development of production management systems: Kaizen, one piece flow, Kanban, etc. The aim of such systems is to accelerate decisions, react to environmental issues and manage various productions. In the main, this type of management system has led to the continuous improvement of production performance. Consequently, such production management systems can have unexpected negative effects on operators' health and safety. Conversely, regulation and control systems focusing on work-related risks have obliged firms to implement health and safety management systems such as OHSAS 18001. The purpose of this type of system, also based on continuous improvement, is to reduce risks, facilitate work-related activities and identify solutions in terms of equipment and tools. However, the prevention actions introduced through health and safety systems often result in other unexpected and unwanted effects on production. This paper shows how companies can improve the way they are run by taking into account both types of management system. Copyright 2010 Elsevier Ltd. All rights reserved.

  6. Estimating Energy- and Eco-Balances for Continuous Bio-Ethanol Production Using a Blenke Cascade System


    Ntihuga, Jean; Senn, Thomas; Gschwind, Peter; Kohlus, Reinhard


    Energy and environmental effects of wheat-based fuel, produced continuously by a Blenke cascade system, were assessed. Two scenarios: (1) no-co-products utilization scenario; and (2) co-products utilization scenario, were compared. A Life Cycle Assessment (LCA) model was used for analysis. The scope covered a cradle-to-gate inventory. The results from energy analysis showed, that wheat-based ethanol has a positive average net energy value (NEV), NEV = 3.35 MJ/kg ethanol with an average net en...

  7. Model-based analysis of high shear wet granulation from batch to continuous processes in pharmaceutical production - A critical review

    DEFF Research Database (Denmark)

    Kumar, Ashish; Gernaey, Krist; De Beer, Thomas


    continuous production line is still hampered by complex steps such as granulation and drying which are considered to be too inflexible to handle potential product change-overs. Granulation is necessary in order to achieve good flowability properties and better control of drug content uniformity. This paper...... reviews modelling and supporting measurement tools for the high shear wet granulation (HSWG) process, which is an important granulation technique due to the inherent benefits and the suitability of this unit operation for the desired switch to continuous mode. For gaining improved insight...... into the complete system, particle-level mechanisms are required to be better understood, and linked with an appropriate meso- or macro-scale model. A brief review has been provided to understand the mechanisms of the granulation process at micro- or particle-level such as those involving wetting and nucleation...

  8. Active pharmaceutical ingredient (API) production involving continuous processes – A process system engineering (PSE)-assisted design framework

    DEFF Research Database (Denmark)

    Cervera Padrell, Albert Emili; Skovby, Tommy; Kiil, Søren


    and fermentation-based products. The method exploits the synergic combination of continuous flow technologies (e.g., microfluidic techniques) and process systems engineering (PSE) methods and tools for faster process design and increased process understanding throughout the whole drug product and process...... development cycle. The design framework structures the many different and challenging design problems (e.g., solvent selection, reactor design, and design of separation and purification operations), driving the user from the initial drug discovery steps – where process knowledge is very limited – toward......A systematic framework is proposed for the design of continuous pharmaceutical manufacturing processes. Specifically, the design framework focuses on organic chemistry based, active pharmaceutical ingredient (API) synthetic processes, but could potentially be extended to biocatalytic...

  9. Modeling the growth and proteinase A production in continuous cultures of recombinant Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Carlsen, Morten; Jochumsen, Kirsten Væver; Emborg, Claus


    Overexpression of the homologous protein proteinase A (PrA) in Saccharomyces cerevisiae has been achieved by inserting the PrA gene (PEP4) with its own promoter on a 2 mu multicopy plasmid. With this system the specific PrA production rate was found to be described well by a linear function...

  10. Investigation of production of continuous off axis fibre reinforced thermoplastic material (United States)

    McDonald, Philip C.

    Fibre reinforced composites have been used in the engineering industry for many years since the discovery of glass fibre in 1930 and its first use to reinforce phenolic resin to form Bakelite. Since then thermoplastic and thermosetting composites have spread into almost every industry from marine to aerospace, automotive to motorsport, luggage to the hobby industry and even fashion. This vast range of applications for composite materials is due to their high strength to weight ratio, excellent impact absorption properties, lack of corrosion, and reformability. In recent years a government directive has forced automotive manufacturers to look at lighter and more efficient vehicles to reduce carbon emissions. This can be achieved by using fibre reinforced thermoplastics to replace steel panels throughout the vehicle.Steel panels from a Nissan Qashqai were tested to determine the failure loads of each panel which the replacement thermoplastic material had to match or better. After extensive testing in a laboratory a tailored laminate lay-up with 5 laminate layers has been developed to replace structural steel components in vehicles. This tailored laminate stack up has a higher failure load than the steel components tested from the Nissan Qashqai while reducing the mass by at least 50%. The key drivers within the automotive industry are fuel savings and reduced vehicle mass, the use of this material and the potential it has in the mass production automotive industry can have a high impact on the overall mass of the vehicle which would invariably have a positive effect to the fuel consumption, thereby improving fuel economy in petrol and diesel vehicles, and increasing the range of electric vehicles.Throughout this project a prototype machine was developed and built to achieve mass production of this 5 ply laminate at a rate of more than 345,000 laminates per year with a processing cost of 3 1p making it available to the mass production market. The estimated production

  11. Continuous Hydrogen Production from Agricultural Wastewaters at Thermophilic and Hyperthermophilic Temperatures. (United States)

    Ramos, Lucas Rodrigues; Silva, Edson Luiz


    The objective of this study was to investigate the effects of hydraulic retention time (HRT) (8 to 0.5 h) and temperature (55 to 75 °C) in two anaerobic fluidized bed reactors (AFBR) using cheese whey (AFBR-CW = 10,000 mg sugars L -1 ) and vinasse (AFBR-V = 10,000 mg COD L -1 ) as substrates. Decreasing the HRT to 0.5 h increased the hydrogen production rates in both reactors, with maximum values of 5.36 ± 0.81 L H 2 h -1 L -1 in AFBR-CW and 0.71 ± 0.16 L H 2 h -1 L -1 in AFBR-V. The optimal conditions for hydrogen production were the HRT of 4 h and temperature of 65 °C in AFBR-CW, observing maximum hydrogen yield (HY) of 5.51 ± 0.37 mmol H 2 g COD -1 . Still, the maximum HY in AFBR-V was 1.64 ± 0.22 mmol H 2 g COD -1 at 4 h and 55 °C. However, increasing the temperature to 75 °C reduced the hydrogen production in both reactors. Methanol and butyric, acetic, and lactic acids were the main metabolites at temperatures of 55 and 65 °C, favoring the butyric and acetic metabolic pathways of hydrogen production. The increased productions of lactate, propionate, and methanol at 75 °C indicate that the hydrogen-producing bacteria in the thermophilic inoculum were inhibited under hyperthermophilic conditions.

  12. Unlocking the potential of supported liquid phase catalysts with supercritical fluids: low temperature continuous flow catalysis with integrated product separation. (United States)

    Franciò, Giancarlo; Hintermair, Ulrich; Leitner, Walter


    Solution-phase catalysis using molecular transition metal complexes is an extremely powerful tool for chemical synthesis and a key technology for sustainable manufacturing. However, as the reaction complexity and thermal sensitivity of the catalytic system increase, engineering challenges associated with product separation and catalyst recovery can override the value of the product. This persistent downstream issue often renders industrial exploitation of homogeneous catalysis uneconomical despite impressive batch performance of the catalyst. In this regard, continuous-flow systems that allow steady-state homogeneous turnover in a stationary liquid phase while at the same time effecting integrated product separation at mild process temperatures represent a particularly attractive scenario. While continuous-flow processing is a standard procedure for large volume manufacturing, capitalizing on its potential in the realm of the molecular complexity of organic synthesis is still an emerging area that requires innovative solutions. Here we highlight some recent developments which have succeeded in realizing such systems by the combination of near- and supercritical fluids with homogeneous catalysts in supported liquid phases. The cases discussed exemplify how all three levels of continuous-flow homogeneous catalysis (catalyst system, separation strategy, process scheme) must be matched to locate viable process conditions. © 2015 The Authors.

  13. Unlocking the potential of supported liquid phase catalysts with supercritical fluids: low temperature continuous flow catalysis with integrated product separation (United States)

    Franciò, Giancarlo; Hintermair, Ulrich; Leitner, Walter


    Solution-phase catalysis using molecular transition metal complexes is an extremely powerful tool for chemical synthesis and a key technology for sustainable manufacturing. However, as the reaction complexity and thermal sensitivity of the catalytic system increase, engineering challenges associated with product separation and catalyst recovery can override the value of the product. This persistent downstream issue often renders industrial exploitation of homogeneous catalysis uneconomical despite impressive batch performance of the catalyst. In this regard, continuous-flow systems that allow steady-state homogeneous turnover in a stationary liquid phase while at the same time effecting integrated product separation at mild process temperatures represent a particularly attractive scenario. While continuous-flow processing is a standard procedure for large volume manufacturing, capitalizing on its potential in the realm of the molecular complexity of organic synthesis is still an emerging area that requires innovative solutions. Here we highlight some recent developments which have succeeded in realizing such systems by the combination of near- and supercritical fluids with homogeneous catalysts in supported liquid phases. The cases discussed exemplify how all three levels of continuous-flow homogeneous catalysis (catalyst system, separation strategy, process scheme) must be matched to locate viable process conditions. PMID:26574523

  14. Agents Modeling Experience Applied To Control Of Semi-Continuous Production Process

    Directory of Open Access Journals (Sweden)

    Gabriel Rojek


    Full Text Available The lack of proper analytical models of some production processes prevents us from obtaining proper values of process parameters by simply computing optimal values. Possible solutions of control problems in such areas of industrial processes can be found using certain methods from the domain of artificial intelligence: neural networks, fuzzy logic, expert systems, or evolutionary algorithms. Presented in this work, a solution to such a control problem is an alternative approach that combines control of the industrial process with learning based on production results. By formulating the main assumptions of the proposed methodology, decision processes of a human operator using his experience are taken into consideration. The researched model of using and gathering experience of human beings is designed with the contribution of agent technology. The presented solution of the control problem coincides with case-based reasoning (CBR methodology.

  15. Changes in distortion product oto-acoustic emissions after exposure to continuous and impulsive noise

    DEFF Research Database (Denmark)

    de Toro, Miguel Angel Aranda; Ordoñez, Rodrigo Pizarro; Hammershøi, Dorte


    Temporary changes in the hearing of human subjects were monitored with distortion product otoacoustic emissions (DPOAEs) after control sound exposures in a laboratory. The objectives of the experiment were to investigate whether the +5~dB penalty for impulsiveness used in international standards......~dB penalty = 80~dB. The results show that the effects on DPOAE levels from the two stimuli could be compared in terms of their total acoustic energy....





    Exploring new renewable resources for energy needs has been gaining great importance in recent years due to mounting crude oil prices, an irrevocable decrease in oil reserves, and increasing environmental degradation. Biodiesel has recently attracted considerable attention as a renewable and nontoxic fuel. However, conventional methods of biodiesel production have serious shortcomings that compromise the effectiveness of biodiesel as an energetic solution. Thus, the overall obj...

  17. Reactive Power Control of Single-Stage Three-Phase Photovoltaic System during Grid Faults Using Recurrent Fuzzy Cerebellar Model Articulation Neural Network

    Directory of Open Access Journals (Sweden)

    Faa-Jeng Lin


    Full Text Available This study presents a new active and reactive power control scheme for a single-stage three-phase grid-connected photovoltaic (PV system during grid faults. The presented PV system utilizes a single-stage three-phase current-controlled voltage-source inverter to achieve the maximum power point tracking (MPPT control of the PV panel with the function of low voltage ride through (LVRT. Moreover, a formula based on positive sequence voltage for evaluating the percentage of voltage sag is derived to determine the ratio of the injected reactive current to satisfy the LVRT regulations. To reduce the risk of overcurrent during LVRT operation, a current limit is predefined for the injection of reactive current. Furthermore, the control of active and reactive power is designed using a two-dimensional recurrent fuzzy cerebellar model articulation neural network (2D-RFCMANN. In addition, the online learning laws of 2D-RFCMANN are derived according to gradient descent method with varied learning-rate coefficients for network parameters to assure the convergence of the tracking error. Finally, some experimental tests are realized to validate the effectiveness of the proposed control scheme.

  18. A simulation study on performance evaluation of single-stage LiBr–H2O vapor absorption heat pump for chip cooling

    Directory of Open Access Journals (Sweden)

    Manu S.


    Full Text Available The growth of Lithium Bromide–Water (LiBr–H2O absorption based heat pump is encouraged for the necessity of extracting high heat from the electronic chips. This paper presents a simulation study of single-stage LiBr–H2O vapor absorption heat pump for chip cooling. In this study, a detailed thermodynamic analysis of the single-stage LiBr–H2O vapor absorption heat pump for chip cooling in the nonexistence of solution heat exchanger was performed and a user-friendly graphical user interface (GUI package including visual components was developed by using MATlab (2008b. The influence of chip temperature on COP (Coefficient of Performance, flow rates and conductance was examined by using the developed package. The model is validated by using the values available in the literature and indicates that there is a greater reduction in the absorber load. The influence of chip temperature on the performance and thermal loads of individual components was studied and it was concluded that, COP increases from 0.7145 to 0.8421 with an increase in chip temperature.

  19. Continuous production of functionalized polymer particles employing the phase separation in polymer blend films. (United States)

    Park, ChooJin; Hyun, Dong Choon; Lim, Min-Cheol; Kim, Su-Jeong; Kim, Young-Rok; Paik, Hyun-Jong; Jeong, Unyong


    This study reports a continuous prepartion of spherical or hemispherical polymer particles simply utilizing the phase separation in polymer blend films during the coating process. We took an advantage of the strong phase separation between a water-soluble crystalline polymer as a matrix and hydrophobic polymers as minor components. We demonstrated the prepartion of water-soluble polystyrene (PS) particles, nitrilotriacetic acid (NTA)-functionalized PS particles for protein separation, and semiconducting poly(3-hexylthiophene) (P3HT) particles. The sizes of the particles could be controlled by adjusting the film thickness and weight fraction of the minor component polymers in the blend film. It provides a simple facile way to prepare polymer particles in a continous process. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Microwave-assisted pyrolysis of methyl ricinoleate for continuous production of undecylenic acid methyl ester (UAME). (United States)

    Nie, Yong; Duan, Ying; Gong, Ruchao; Yu, Shangzhi; Lu, Meizhen; Yu, Fengwen; Ji, Jianbing


    Undecylenic acid methyl ester (UAME) was continuously produced from methyl ricinoleate using a microwave-assisted pyrolysis system with atomization feeding. The UAME yield of 77 wt.% was obtained at 500°C using SiC as the microwave absorbent and heating medium. The methyl ricinoleate conversion and UAME yield from microwave-assisted pyrolysis process were higher than those from conventional pyrolysis. The effect of temperature on the pyrolysis process was also investigated. The methyl ricinoleate conversion increased but the cracking liquid yield decreased when the temperature increased from 460°C to 560°C. The maximum UAME yield was obtained at the temperature of 500°C. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Neutron cross section library production code system for continuous energy Monte Carlo code MVP. LICEM

    International Nuclear Information System (INIS)

    Mori, Takamasa; Nakagawa, Masayuki; Kaneko, Kunio.


    A code system has been developed to produce neutron cross section libraries for the MVP continuous energy Monte Carlo code from an evaluated nuclear data library in the ENDF format. The code system consists of 9 computer codes, and can process nuclear data in the latest ENDF-6 format. By using the present system, MVP neutron cross section libraries for important nuclides in reactor core analyses, shielding and fusion neutronics calculations have been prepared from JENDL-3.1, JENDL-3.2, JENDL-FUSION file and ENDF/B-VI data bases. This report describes the format of MVP neutron cross section library, the details of each code in the code system and how to use them. (author)

  2. Performance of continuous stirred tank reactor (CSTR) on fermentative biohydrogen production from melon waste (United States)

    Cahyari, K.; Sarto; Syamsiah, S.; Prasetya, A.


    This research was meant to investigate performance of continuous stirred tank reactor (CSTR) as bioreactor for producing biohydrogen from melon waste through dark fermentation method. Melon waste are commonly generated from agricultural processing stages i.e. cultivation, post-harvesting, industrial processing, and transportation. It accounted for more than 50% of total harvested fruit. Feedstock of melon waste was fed regularly to CSTR according to organic loading rate at value 1.2 - 3.6 g VS/ (l.d). Optimum condition was achieved at OLR 2.4 g VS/ (l.d) with the highest total gas volume 196 ml STP. Implication of higher OLR value is reduction of total gas volume due to accumulation of acids (pH 4.0), and lower substrate volatile solid removal. In summary, application of this method might valorize melon waste and generates renewable energy sources.

  3. Neutron cross section library production code system for continuous energy Monte Carlo code MVP. LICEM

    Energy Technology Data Exchange (ETDEWEB)

    Mori, Takamasa; Nakagawa, Masayuki [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Kaneko, Kunio


    A code system has been developed to produce neutron cross section libraries for the MVP continuous energy Monte Carlo code from an evaluated nuclear data library in the ENDF format. The code system consists of 9 computer codes, and can process nuclear data in the latest ENDF-6 format. By using the present system, MVP neutron cross section libraries for important nuclides in reactor core analyses, shielding and fusion neutronics calculations have been prepared from JENDL-3.1, JENDL-3.2, JENDL-FUSION file and ENDF/B-VI data bases. This report describes the format of MVP neutron cross section library, the details of each code in the code system and how to use them. (author).

  4. Continuous volatile fatty acid production from lignocellulosic biomass by a novel rumen-mimetic bioprocess. (United States)

    Agematu, Hitosi; Takahashi, Takehiko; Hamano, Yoshio


    Lignocellulosic biomass is an attractive source of biofuels and biochemicals, being abundant in various plant sources. However, processing this type of biomass requires hydrolysis of cellulose. The proposed rumen-mimetic bioprocess consists of dry-pulverization of lignocellulosic biomass and pH-controlled continuous cultivation of ruminal bacteria using ammonium as a nitrogen source. In this study, ruminal bacteria were continuously cultivated for over 60 days and used to digest microcrystalline cellulose, rice straw, and Japanese cedar to produce volatile fatty acids (VFAs). The ruminal bacteria grew well in the chemically defined medium. The amounts of VFAs produced from 20 g of cellulose, rice straw, and Japanese cedar were 183 ± 29.7, 69.6 ± 12.2, and 21.8 ± 12.9 mmol, respectively. Each digestion completed within 24 h. The carbon yield was 60.6% when 180 mmol of VFAs was produced from 20 g of cellulose. During the cultivation, the bacteria were observed to form flocs that enfolded the feed particles. These flocs likely contain all of the bacterial species necessary to convert lignocellulosic biomass to VFAs and microbial protein symbiotically. Denaturing gradient gel electrophoresis (DGGE) analysis of PCR-amplified 16S rDNA fragments revealed that the bacterial community was relatively stable after 1 week in cultivation, though it was different from the original community structure. Furthermore, sequence analysis of the DGGE bands indicates that the microbial community includes a cellulolytic bacterium, a bacterium acting synergistically with cellulolytic bacteria, and a propionate-producing bacterium, as well as other anaerobic bacteria. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  5. Continuity Evaluation of Surface Retrieval Algorithms for ICESat-2/ATLAS Photon-Counting Laser Altimetry Data Products (United States)

    Leigh, H. W.; Magruder, L. A.


    The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) mission team is developing algorithms to produce along-track and gridded science data products for a variety of surface types, including land ice, sea ice, land, and ocean. The ATL03 data product will contain geolocated photons for each of the six beams, and will incorporate geophysical corrections as well as preliminary photon classifications (signal vs. background). Higher level along-track and gridded data products for various surface types are processed using the ATL03 geolocated photons. The data processing schemes developed for each of the surface types rely on independent surface finding algorithms optimized to identify ground, canopy, water, or ice surfaces, as appropriate for a particular geographical location. In such cases where multiple surface types are present in close proximity to one another (e.g. land-ocean interface), multiple surface finding algorithms may be employed to extract surfaces along the same segment of a lidar profile. This study examines the effects on continuity of the various surface finding algorithms, specifically for littoral/coastal areas. These areas are important to the cryospheric, hydrologic, and biospheric communities in that continuity between the respective surface elevation products is required to fully utilize the information provided by ICESat-2 and its Advanced Topographic Laser Altimeter System (ATLAS) instrument.

  6. Operational Improvements of Continuous Process with Tools of Lean Production - A Case Study in a Brazilian Petrochemical

    Directory of Open Access Journals (Sweden)

    Francisco Uchoa Passos


    Full Text Available This study seeks to evaluate operational improvements in Brazilian petrochemical company Braskem, which has been using lean production management tools to monitor its processes. There was some improvement in plant efficiency, measured from the beginning of implementation of management tools Six Sigma and TPM. Thus, we investigated three efficiency indicators considered by the company of great importance for the competitiveness of the business: the physical loss of products, plant’s energy efficiency, and the utilization rate of assets. The differences observed in these indicators, before and after the use of the tools, were tested for its statistical significance, which revealed that the physical losses of ethylene and plant’s energy efficiency improved, almost reaching the performance considered as class world. As for the utilization rate of assets, although it has evolved positively, still is at a considerable distance from that performance standard. By registering operational improvements in a continuous process plant, with lean production tools, this study indicates that these instruments, even if they have no causal relation with the improvements, are suitable for continuous processes and could have a much broader use, oriented, first of all, by the general approach of process optimization and, somehow, regardless of the nature of productive activity.

  7. Batch and continuous biogas production arising from feed varying in rice straw volumes following pre-treatment with extrusion. (United States)

    Menardo, S; Cacciatore, V; Balsari, P


    This paper studies the synergistic effects on biogas production obtained when different feedstocks are co-digested with varying proportions of rice straw and explores their behavior at the laboratory scale in continuously stirred digesters. Evaluative measures included methane production, volatile solids degradation, ash accumulation, and extrusion effectiveness. The effect of extrusion on the production of energy was also investigated. Results indicated that continuous stirred digesters fed with substrates composed of 10% or 30% of ensiled rice straw (on total FM) produced 146.1 and 140.0lNCH4kgDM(-1)day(-1), respectively. When extrusion was employed, organic matter degradation was promoted and methane production was significantly raised-by as much as 16%. For the feeds containing 10% rice straw, the increase in obtained energy was higher than the energy needed for the extrusion, but the energy balance was close to zero when the percentage of rice straw was the 30% of the feed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Continuous biodiesel production in a fixed bed reactor packed with anion-exchange resin as heterogeneous catalyst. (United States)

    Ren, Yanbiao; He, Benqiao; Yan, Feng; Wang, Hong; Cheng, Yu; Lin, Ligang; Feng, Yaohui; Li, Jianxin


    A continuous biodiesel production from the transesterification of soybean oil with methanol was investigated in a fixed bed reactor packed with D261 anion-exchange resin as a heterogeneous catalyst. The conversion to biodiesel achieved 95.2% within a residence time 56 min under the conditions: reaction temperature of 323.15K, n-hexane/soybean oil weight rate of 0.5, methanol/soybean oil molar ratio of 9:1 and feed flow rate of 1.2 ml/min. The resin can be regenerated in-situ and restored to the original activity to achieve continuous production after the resin deactivation. The product obtained was mainly composed of methyl esters. No glycerol in the product was detected due to the resin adsorbing glycerol in the fixed bed, which solved the issue of glycerol separation from biodiesel. It is believed that the fixed bed reactor with D261 has a potential commercial application in the transesterification of triglyceride. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Development of an advanced continuous mild gasification process for the production of coproducts: Task 4. 6, Technical and economic evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Hogsett, R.F.; Jha, M.C.


    Morgantown Energy Technology Center (METC) of DOE has sponsored, and continues to sponsor, programs for the development of technology and market strategies which will lead to the commercialization of processes for the production of coproducts from mild gasification of coal. It has been recognized by DOE and industry that mild gasification is a promising technology with potential to economically convert coal into marketable products, thereby increasing domestic coal utilization. In this process, coal is devolatilized under non- oxidizing conditions at mild temperature (900--1100{degrees}F) and pressure (1--15psig). Condensation of the vapor will yield a liquid product that can be upgraded to a petroleum substitute, and the remaining gas can provide the fuel for the process. The residual char can be burned in a power plant. Thus, in a long-term national scenario, implementation of this process will result in significant decrease of imported oil and increase in coal utilization.

  10. Maximizing the productivity of the microalgae Scenedesmus AMDD cultivated in a continuous photobioreactor using an online flow rate control. (United States)

    McGinn, Patrick J; MacQuarrie, Scott P; Choi, Jerome; Tartakovsky, Boris


    In this study, production of the microalga Scenedesmus AMDD in a 300 L continuous flow photobioreactor was maximized using an online flow (dilution rate) control algorithm. To enable online control, biomass concentration was estimated in real time by measuring chlorophyll-related culture fluorescence. A simple microalgae growth model was developed and used to solve the optimization problem aimed at maximizing the photobioreactor productivity. When optimally controlled, Scenedesmus AMDD culture demonstrated an average volumetric biomass productivity of 0.11 g L -1  d -1 over a 25 day cultivation period, equivalent to a 70 % performance improvement compared to the same photobioreactor operated as a turbidostat. The proposed approach for optimizing photobioreactor flow can be adapted to a broad range of microalgae cultivation systems.

  11. Improved continuous fumaric acid production with immobilised Rhizopus oryzae by implementation of a revised nitrogen control strategy. (United States)

    Naude, Andre; Nicol, Willie


    A novel fermentation system was employed whereby the mycelial mat of Rhizopus oryzae was attached to a polypropylene tube. Batch operation was used for growth, while continuous operation was employed during the fumaric acid production phase. A clear decrease in respiration, fumaric acid (FA) and ethanol production was observed when zero nitrogen was fed in the production phase, with FA productivity decreasing from an initial 0.7 g L -1  h -1 to 0.3 g L -1  h -1 after 150 hours. With the addition of 0.625 mg L -1  h -1 of urea FA productivity dropped to only 0.4 g L -1  h -1 after 150 hours and 0.3 g L -1  h -1 after 400 hours. Under these conditions it was observed that the ethanol production rate decreased 20 times faster compared with the FA production rate, therefore resulting in high FA yields towards the end of the fermentation (instantaneous 0.96 g g -1 and average 0.81 g g -1 after 400 hours). Increasing the urea feed rate to 1.875 mg L -1  h -1 resulted in a clear increase in FA production and respiration rates. This condition also resulted in a 25% increase in biomass after 150 hours, while the decline in the ethanol production rate was seven times lower than in the 0.625 mg L -1  h -1 urea fermentation, resulting in lower FA yields. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Continuous citric acid production in repeated-fed batch fermentation by Aspergillus niger immobilized on a new porous foam. (United States)

    Yu, Bin; Zhang, Xin; Sun, Wenjun; Xi, Xun; Zhao, Nan; Huang, Zichun; Ying, Zhuojun; Liu, Li; Liu, Dong; Niu, Huanqing; Wu, Jinglan; Zhuang, Wei; Zhu, Chenjie; Chen, Yong; Ying, Hanjie


    The efficiency of current methods for industrial production of citric acid is limited. To achieve continuous citric acid production with enhanced yield and reduced cost, immobilized fermentation was employed in an Aspergillus niger 831 repeated fed-batch fermentation system. We developed a new type of material (PAF201), which was used as a carrier for the novel adsorption immobilization system. Hydrophobicity, pore size and concentration of carriers were researched in A. niger immobilization. The efficiency of the A. niger immobilization process was analyzed by scanning electron microscopy. Then eight-cycle repeated fed-batch cultures for citric acid production were carried out over 600 h, which showed stable production with maximum citric acid concentrations and productivity levels of 162.7 g/L and 2.26 g L -1  h -1 , respectively. Compared with some other literatures about citric acid yield, PAF201 immobilization system is 11.3% higher than previous results. These results indicated that use of the new adsorption immobilization system could greatly improve citric acid productivity in repeated fed-batch fermentation. Moreover, these results could provide a guideline for A.niger or other filamentous fungi immobilization in industry. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. NASA's MODIS/VIIRS Land Surface Temperature and Emissivity Products: Asssessment of Accuracy, Continuity and Science Uses (United States)

    Hulley, G. C.; Malakar, N.; Islam, T.


    Land Surface Temperature and Emissivity (LST&E) are an important Earth System Data Record (ESDR) and Environmental Climate Variable (ECV) defined by NASA and GCOS respectively. LST&E data are key variables used in land cover/land use change studies, in surface energy balance and atmospheric water vapor retrieval models and retrievals, and in climate research. LST&E products are currently produced on a routine basis using data from the MODIS instruments on the NASA EOS platforms and by the VIIRS instrument on the Suomi-NPP platform that serves as a bridge between NASA EOS and the next-generation JPSS platforms. Two new NASA LST&E products for MODIS (MxD21) and VIIRS (VNP21) are being produced during 2017 using a new approach that addresses discrepancies in accuracy and consistency between the current suite of split-window based LST products. The new approach uses a Temperature Emissivity Separation (TES) algorithm, originally developed for the ASTER instrument, to physically retrieve both LST and spectral emissivity consistently for both sensors with high accuracy and well defined uncertainties. This study provides a rigorous assessment of accuracy of the MxD21/VNP21 products using temperature- and radiance-based validation strategies and demonstrates continuity between the products using collocated matchups over CONUS. We will further demonstrate potential science use of the new products with studies related to heat waves, monitoring snow melt dynamics, and land cover/land use change.

  14. Photosynthetic bacterial growth and productivity under continuous illumination or diurnal cycles with olive mill wastewater as feedstock

    Energy Technology Data Exchange (ETDEWEB)

    Eroglu, Ela [Middle East Technical University, Dept. of Chemical Engineering, 06531, Ankara (Turkey); University of California, Dept. of Plant and Microbial Biology, Berkeley, CA 94720-3102 (United States); Gunduz, Ufuk; Yucel, Meral [Middle East Technical University, Dept. of Biology, 06531, Ankara (Turkey); Eroglu, Inci [Middle East Technical University, Dept. of Chemical Engineering, 06531, Ankara (Turkey)


    Photofermentative hydrogen production from olive mill wastewater by Rhodobacter sphaeroides O.U.001 was investigated under different regimes of illumination. The analysis included measurements of biomass accumulation, H{sub 2}-production, high-value bio-product accumulation (polyhydroxybutyrate and carotenoid) and measurements of the medium pH as a function of growth and productivity. Batch cultures were grown under continuous light (CL) or 12 h light/12 h dark (12L/12D) diurnal cycles. Growth under CL or 12L/12D cycles yielded about the same amount of biomass (0.5 g dry cell weight per L culture) and volume of H{sub 2} gas (50 ml H{sub 2} per L culture). On the other hand, 12L/12D cultures showed a pronounced lag in biomass and H{sub 2} accumulation. Advances described in the work would find application in lowering operational costs for hydrogen production by better management of the energy source and cheap feedstock utilization. Compare to CL, equivalent amount of hydrogen gas accumulation within shorter time interval denoted to have two times higher hydrogen production rate and light conversion efficiencies via diurnal cycles, which can yield 50% savings on consumed energy source. (author)

  15. Hydrogen production from continuous flow, microbial reverse-electrodialysis electrolysis cells treating fermentation wastewater. (United States)

    Watson, Valerie J; Hatzell, Marta; Logan, Bruce E


    A microbial reverse-electrodialysis electrolysis cell (MREC) was used to produce hydrogen gas from fermentation wastewater without the need for additional electrical energy. Increasing the number of cell pairs in the reverse electrodialysis stack from 5 to 10 doubled the maximum current produced from 60 A/m(3) to 120 A/m(3) using acetate. However, more rapid COD removal required a decrease in the anolyte hydraulic retention time (HRT) from 24 to 12 h to stabilize anode potentials. Hydrogen production using a fermentation wastewater (10 cell pairs, HRT=8 h) reached 0.9±0.1 L H2/Lreactor/d (1.1±0.1 L H2/g-COD), with 58±5% COD removal and a coulombic efficiency of 74±5%. These results demonstrated that consistent rates of hydrogen gas production could be achieved using an MREC if effluent anolyte COD concentrations are sufficient to produce stable anode potentials. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Animal use in the chemical and product manufacturing sectors - can the downtrend continue? (United States)

    Curren, Rodger


    During the 1990s and early 2000s, a number of manufacturing companies in the cosmetic, personal care and household product industries were able to substantially reduce their use of animals for testing (or to not use animals in the first place). These reductions were almost always the result of significant financial contributions to either direct, in-house alternatives research, or to support personnel whose duties were to understand and apply the current state-of-the-art for in vitro testing. They occurred almost exclusively in non-regulatory areas, and primarily involved acute topical toxicities. Over the last few years, the reduction in animal use has been much less dramatic, because some companies are still reluctant to change from the traditional animal studies, because systemic, repeat-dose toxicity is more difficult to model in vitro, and because many products still require animal testing for regulatory approval. Encouragingly, we are now observing an increased acceptance of non-animal methods by regulatory agencies. This is due to mounting scientific evidence from larger databases, agreement by companies to share data and testing strategies with regulatory agencies, and a focus on smaller domains of applicability. These changes, along with new emphasis and financial support for addressing systemic toxicities, promise to provide additional possibilities for industry to replace animals with in vitro methods, alone or in combination with in silico methods. However, the largest advance will not occur until more companies commit to using the non-animal test strategies that are currently available. 2009 FRAME.

  17. Continuous ethanol production using yeast immobilized on sugar-cane stalks

    Energy Technology Data Exchange (ETDEWEB)

    Vasconcelos, J.N. de [Alagoas Univ., Maceio, AL (Brazil). Dept. de Engenharia Quimica]. E-mail:; Lopes, C.E. [Pernambuco Univ., Recife, PE (Brazil). Dept. de Antibioticos; Franca, F.P. de [Universidade Federal, Rio de Janeiro, RJ (Brazil). Escola de Quimica. Dept. de Engenharia Bioquimica


    Sugar-cane stalks, 2.0 cm long, were used as a support for yeast immobilization envisaging ethanol production. The assays were conducted in 38.5 L fermenters containing a bed of stalks with 50% porosity. The operational stability of the immobilized yeast, the efficiency and stability of the process, as well as the best dilution rate were evaluated. Molasses from demerara sugar production was used in the medium formulation. It was diluted to obtain 111.75 {+-} 1.51 g/L without any further treatment. Sulfuric acid was used to adjust the pH value to around 4.2. Every two days Kamoran HJ (10 ppm) or with a mixture containing penicillin (10 ppm) and tetracycline (10 ppm), was added to the medium. Ethanol yield and efficiency were 29.64 g/L.h and 86.40%, respectively, and the total reducing sugars conversion was 74.61% at a dilution rate of 0.83 h{sup -1}. The yeast-stalk system was shown to be stable for over a 60 day period at extremely variable dilution rates ranging from 0.05 h{sup -1} to 3.00 h{sup -1}. The concentration of immobilized cell reached around 109 cells/gram of dry sugar-cane stalk when the fermenter was operating at the highest dilution rate (3.00 h{sup -1}). (author)

  18. Optimization of continuous lipid extraction from Chlorella vulgaris by CO₂-expanded methanol for biodiesel production. (United States)

    Yang, Yi-Hung; Klinthong, Worasaung; Tan, Chung-Sung


    CO2-expanded methanol (CXM) was used to extract lipids from the microalgae Chlorella vulgaris (a total lipid content of 20.7% was determined by Soxhlet extraction with methanol at 373 K for 96 h) in a continuous mode. The CXM was found to be a superior solvent to methanol, ethanol, pressurized methanol and ethanol, and CO2-expanded ethanol for lipid extraction. The effects of operation variables including temperature, pressure and CO2 flow rate on extraction performance were examined using the response surface and contour plot methodologies. The optimal operating conditions were at a pressure of 5.5 MPa, a temperature of 358 K, a methanol flow rate of 1 mL/min and a CO2 flow rate of 3.0 mL/min, providing an extracted lipid yield of 84.8 wt% over an extraction period of 30 min. Compared with propane methanol mixture, CXM was safer and more energy efficient for lipid extraction from C. vulgaris. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. A continuous hyperspatial monitoring system of evapotranspiration and gross primary productivity from Unmanned Aerial Systems (United States)

    Wang, Sheng; Bandini, Filippo; Jakobsen, Jakob; Zarco-Tejada, Pablo J.; Köppl, Christian Josef; Haugård Olesen, Daniel; Ibrom, Andreas; Bauer-Gottwein, Peter; Garcia, Monica


    Unmanned Aerial Systems (UAS) can collect optical and thermal hyperspatial (body at varying target and ambient temperatures and resulted in laboratory accuracy with RMSE of 0.95 K. A joint model of ET and GPP was applied using two parsimonious, physiologically based models, a modified version of the Priestley-Taylor Jet Propulsion Laboratory model (Fisher et al., 2008; Garcia et al., 2013) and a Light Use Efficiency approach (Potter et al., 1993). Both models estimate ET and GPP under optimum potential conditions down-regulated by the same biophysical constraints dependent on remote sensing and atmospheric data to reflect multiple stresses. Vegetation indices were calculated from the multispectral data to assess vegetation conditions, while thermal infrared imagery was used to compute a thermal inertia index to infer soil moisture constraints. To interpolate radiometric temperature between flights, a prognostic Surface Energy Balance model (Margulis et al., 2001) based on the force-restore method was applied in a data assimilation scheme to obtain continuous ET and GPP fluxes. With this operational system, regular flight campaigns with a hexacopter (DJI S900) have been conducted in a Danish willow flux site (Risø) over the 2016 growing season. The observed energy, water and carbon fluxes from the Risø eddy covariance flux tower were used to validate the model simulation. This UAS monitoring system is suitable for agricultural management and land-atmosphere interaction studies.

  20. Active pharmaceutical ingredient (API) production involving continuous processes--a process system engineering (PSE)-assisted design framework. (United States)

    Cervera-Padrell, Albert E; Skovby, Tommy; Kiil, Søren; Gani, Rafiqul; Gernaey, Krist V


    A systematic framework is proposed for the design of continuous pharmaceutical manufacturing processes. Specifically, the design framework focuses on organic chemistry based, active pharmaceutical ingredient (API) synthetic processes, but could potentially be extended to biocatalytic and fermentation-based products. The method exploits the synergic combination of continuous flow technologies (e.g., microfluidic techniques) and process systems engineering (PSE) methods and tools for faster process design and increased process understanding throughout the whole drug product and process development cycle. The design framework structures the many different and challenging design problems (e.g., solvent selection, reactor design, and design of separation and purification operations), driving the user from the initial drug discovery steps--where process knowledge is very limited--toward the detailed design and analysis. Examples from the literature of PSE methods and tools applied to pharmaceutical process design and novel pharmaceutical production technologies are provided along the text, assisting in the accumulation and interpretation of process knowledge. Different criteria are suggested for the selection of batch and continuous processes so that the whole design results in low capital and operational costs as well as low environmental footprint. The design framework has been applied to the retrofit of an existing batch-wise process used by H. Lundbeck A/S to produce an API: zuclopenthixol. Some of its batch operations were successfully converted into continuous mode, obtaining higher yields that allowed a significant simplification of the whole process. The material and environmental footprint of the process--evaluated through the process mass intensity index, that is, kg of material used per kg of product--was reduced to half of its initial value, with potential for further reduction. The case-study includes reaction steps typically used by the pharmaceutical

  1. Analytical method used for intermediate products in continuous distillation of furfural

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Z.L.; Jia, M.; Wang, L.J.; Deng, Y.X.


    During distillation of furfural, analysis of main components in the crude furfural condensate and intermediate products is very important. Since furfural and methylfurfural are homologous and both furfural and acetone contain a carbonyl group, components in the sample must be separated before analysis. An improved analytical method has been studied, the accuracy and precision of which would meet the requirement of industrial standards. The analytical procedure was provided as follows: to determine the furfural content with gravimetric method of barbituric acid; to determine the methanol content with dichromate method after precipitating furfural and acetone, and distilling the liquid for analysis; and to determine the methylfurfural content with bromide-bromate method, which can be used only in the sample containing higher content of methylfurfural. For the sample in low content, the gas-liquid chromatographic method can be used. 7 references.

  2. Mevalonate production by engineered acetogen biocatalyst during continuous fermentation of syngas or CO₂/H₂ blend. (United States)

    Kiriukhin, Michael; Tyurin, Michael


    Naturally mevalonate-resistant acetogen Clostridium sp. MT1243 produced only 425 mM acetate during syngas fermentation. Using Clostridium sp. MT1243 we engineered biocatalyst selectively producing mevalonate from synthesis gas or CO₂/H₂ blend. Acetate production and spore formation were eliminated from Clostridium sp. MT1243 using Cre-lox66/lox71-system. Cell energy released via elimination of phosphotransacetylase, acetate kinase and early stage sporulation genes powered mevalonate accumulation in fermentation broth due to expression of synthetic thiolase, HMG-synthase, and HMG-reductase, three copies of each, integrated using Tn7-approach. Recombinants produced 145 mM mevalonate in five independent single-step fermentation runs 25 days each in five repeats using syngas blend 60% CO and 40% H₂ (v/v) (p syngas (p < 0.005). Mevalonate from CO₂/H₂ blend might serve as a commercial route to mitigate global warming in proportion to CO₂ fermentation scale worldwide.


    Directory of Open Access Journals (Sweden)

    V. Levandovskyi


    Full Text Available The work objective was to use a serial connection of yeast generators (according to the battery principle and by means of this to increase the rate of medium dilution therein from 0.18–0.20 to 0.88–0.96 h-1, to reduce the solids concentration in the yeast mash from 17 to 10–12% and to enter the whole volume of it into the first streamwise device. The amount of molasses that has not been added to the mash in order to solids concentration reduction in it was introduced into the last two yeast generators. Consequently, it has been clearly shown the intensification of biomass accumulation, its yield increase by 29% with regard to ethanol amount and increase in productivity of yeast culturing by 18%.

  4. Sustainable data policy for a data production facility: a work in (continual) progress (United States)

    Ketcham, R. A.


    The University of Texas High-Resolution X-Ray Computed Tomography Facility (UTCT) has been producing volumetric data and data products of geological and other scientific specimens and engineering materials for over 20 years. Data volumes, both in terms of the size of individual data sets and overall facility production, have progressively grown and fluctuated near the upper boundary of what can be managed by contemporary workstations and lab-scale servers and network infrastructure, making data policy a preoccupation for our entire history. Although all projects have been archived since our first day of operation, policies on which data to keep (raw, reconstructed after corrections, processed) have varied, and been periodically revisited in consideration of the cost of curation and the likelihood of revisiting and reprocessing data when better techniques become available, such as improved artifact corrections or iterative tomographic reconstruction. Advances in instrumentation regularly make old data obsolete and more advantageous to reacquire, but the simple act of getting a sample to a scanning facility is a practical barrier that cannot be overlooked. In our experience, the main times that raw data have been revisited using improved processing to improve image quality were predictable, high-impact charismatic projects (e.g., Archaeopteryx, A. Afarensis "Lucy"). These cases actually provided the impetus for development of the new techniques (ring and beam hardening artifact reduction), which were subsequently incorporated into our data processing pipeline going forward but were rarely if ever retroactively applied to earlier data sets. The only other times raw data have been reprocessed were when reconstruction parameters were inappropriate, due to unnoticed sample features or human error, which are usually recognized fairly quickly. The optimal data retention policy thus remains an open question, although erring on the side of caution remains the default

  5. Continuous and batch cultures of Escherichia coli KJ134 for succinic acid fermentation: metabolic flux distributions and production characteristics. (United States)

    van Heerden, Carel D; Nicol, Willie


    Succinic acid (SA) has become a prominent biobased platform chemical with global production quantities increasing annually. Numerous genetically modified E. coli strains have been developed with the main aim of increasing the SA yield of the organic carbon source. In this study, a promising SA-producing strain, E. coli KJ134 [Biotechnol. Bioeng. 101:881-893, 2008], from the Department of Microbiology and Cell Science of the University of Florida was evaluated under continuous and batch conditions using D-glucose and CO2 in a mineral salt medium. Production characteristics entailing growth and maintenance rates, growth termination points and metabolic flux distributions under growth and non-growth conditions were determined. The culture remained stable for weeks under continuous conditions. Under growth conditions the redox requirements of the reductive tricarboxylic acid (TCA) cycle was solely balanced by acetic acid (AcA) production via the pyruvate dehydrogenase route resulting in a molar ratio of SA:AcA of two. A maximum growth rate of 0.22 h(-1) was obtained, while complete growth inhibition occurred at a SA concentration of 18 g L(-1). Batch culture revealed that high-yield succinate production (via oxidative TCA or glyoxylate redox balancing) occurred under non-growth conditions where a SA:AcA molar ratio of up to five was attained, with a final SA yield of 0.94 g g(-1). Growth termination of the batch culture was in agreement with that of the continuous culture. The maximum maintenance production rate of SA under batch conditions was found to be 0.6 g g(-1) h(-1). This is twice the maintenance rate observed in the continuous runs. The study revealed that the metabolic flux of E. coli KJ134 differs significantly for growth and non-growth conditions, with non-growth conditions resulting in higher SA:AcA ratios and SA yields. Bioreaction characteristics entailing growth and maintenance rates, as well as growth termination markers will guide future fermentor

  6. Understanding of polyhydroxybutyrate production under carbon and phosphorus-limited growth conditions in non-axenic continuous culture. (United States)

    Cavaillé, Laëtitia; Albuquerque, Maria; Grousseau, Estelle; Lepeuple, Anne-Sophie; Uribelarrea, Jean-Louis; Hernandez-Raquet, Guillermina; Paul, Etienne


    In a waste into resource strategy, a selection of polyhydroxybutyrate (PHB)-accumulating organisms from activated sludge was achieved in an open continuous culture under acetic acid and phosphorus limitation. Once the microbial population was selected at a dilution rate (D), an increase in phosphorus limitation degree was applied in order to study the intracellular phosphorus plasticity of selected bacteria and the resulting capacity to produce PHB. Whatever D, all selected populations were able to produce PHB. At a D, the phosphorus availability determined the phosphorus-cell content which in turn fixed the amount of cell. All the remaining carbon was thus directed toward PHB. By decreasing D, microorganisms adapted more easily to higher phosphorus limitation leading to higher PHB content. A one-stage continuous reactor operated at D=0.023h(-)(1) gave reliable high PHB productivity with PHB content up to 80%. A two-stage reactor could ensure better productivity while allowing tuning product quality. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Estimating Energy- and Eco-Balances for Continuous Bio-Ethanol Production Using a Blenke Cascade System

    Directory of Open Access Journals (Sweden)

    Reinhard Kohlus


    Full Text Available Energy and environmental effects of wheat-based fuel, produced continuously by a Blenke cascade system, were assessed. Two scenarios: (1 no-co-products utilization scenario; and (2 co-products utilization scenario, were compared. A Life Cycle Assessment (LCA model was used for analysis. The scope covered a cradle-to-gate inventory. The results from energy analysis showed, that wheat-based ethanol has a positive average net energy value (NEV, NEV = 3.35 MJ/kg ethanol with an average net energy ratio (NER, NER = 1.14 MJ/MJ fossils for scenario 1, while for scenario 2, NEV = 20 MJ/kg ethanol with NER = 3.94 MJ/MJ fossils. The environmental performance analysis indicated that in scenario 1, the strongest contribution to environmental impacts was from the ethanol conversion stage; whereas in scenario 2, it was from wheat production stage. The use of a continuous fermentation system based on Blenke cascade is a promising technology that increases wheat based bio-ethanol’s energy benefits. In addition, the calculated parameters show the potential to significantly reduce emissions level.

  8. An innovative biocatalyst for production of ethanol from xylose in a continuous bioreactor. (United States)

    Silva, C R; Zangirolami, T C; Rodrigues, J P; Matugi, K; Giordano, R C; Giordano, R L C


    The use of the hemicellulose fraction of biomass may be important for the feasibility of the production of second generation bioethanol. Wild strains of Saccharomyces cerevisiae are widely used in industry for production of 1st generation ethanol, and the robustness of this yeast is an important advantage in large scale applications. Isomerization of xylose to xylulose is an essential step in this process. This reaction is catalyzed by glucose isomerase (GI). A new biocatalyst is presented here for the simultaneous isomerization and fermentation (SIF) of xylose. GI from Streptomyces rubiginosus was immobilized in chitosan, through crosslinking with glutaraldehyde, and the support containing the immobilized GI (IGI-Ch) was co-immobilized with S. cerevisiae, in calcium alginate gel. The immobilization experiments led to high immobilized protein loads (30-68 mg × g(support)(-1)), high yields (circa of 100%) and high recovered enzyme activity (>90%). The IGI-Ch derivative with maximum activity presented 1700 IU × g(catalyst)(-1), almost twice the activity of a commercial immobilized GI, GENSWEET(®) IGI-HF. At typical operational conditions for xylose SIF operation (pH 5, 30-35 °C, presence of nutrients and ethanol concentrations in the medium up to 70 L(-1)), both derivatives, IGI-Ch and GENSWEET(®) IGI-HF retained app. 90% of the initial activity after 120 h, while soluble GI was almost completely inactive at pH 5, 30 °C. The isomerization xylose/xylulose, catalyzed by IGI-Ch, reached the equilibrium in batch experiments after 4h, with 12,000 IU × L(-1) (7 g(der) × L(-1)), at pH 5 and 30 °C, in the presence of fermentation nutrients. After co-immobilization of IGI-Ch with yeast in alginate gel, this biocatalyst succeeded in producing 12 g × L(-1) of ethanol, 9.5 g × L(-1) of xylitol, 2.5 g × L(-1) of glycerol and 1.9 g × L(-1) of acetate after consumption of 50 g × L(-1) of xylose, in 48 h, using 32.5 × 10(3) IU × L(-1) and 20 g(yeast) × L(-1), at 35


    Directory of Open Access Journals (Sweden)

    T.C. Zangirolami


    Full Text Available Growth and product formation by a selected variant of Aspergillus oryzae showing high alpha-amylase production was studied in continuous cultivations carried out at six different specific growth rates, using glucose as the growth-limiting nutrient. The analysis of the steady-state data revealed that the variant and wild-type strains were similar with respect to glucose uptake system and stoichiometric coefficients. However, the variant was capable of maintaining an enzyme production as high as 40 FAUgDW-1h-1 at a dilution rate of 0.2 h-1, while the wild-type strain reached a maximum specific alpha-amylase production rate of 17 FAUgDW-1h-1 at a dilution rate of 0.1 h-1. Using a morphologically structured model originally proposed for the wild-type strain, it was possible to describe enzyme production, biomass formation and glucose consumption after modification of a few parameters to adjust the model to the characteristics of the selected variant.

  10. Modelling topical photodynamic therapy treatment including the continuous production of Protoporphyrin IX (United States)

    Campbell, C. L.; Brown, C. T. A.; Wood, K.; Moseley, H.


    Most existing theoretical models of photodynamic therapy (PDT) assume a uniform initial distribution of the photosensitive molecule, Protoporphyrin IX (PpIX). This is an adequate assumption when the prodrug is systematically administered; however for topical PDT this is no longer a valid assumption. Topical application and subsequent diffusion of the prodrug results in an inhomogeneous distribution of PpIX, especially after short incubation times, prior to light illumination. In this work a theoretical simulation of PDT where the PpIX distribution depends on the incubation time and the treatment modality is described. Three steps of the PpIX production are considered. The first is the distribution of the topically applied prodrug, the second in the conversion from the prodrug to PpIX and the third is the light distribution which affects the PpIX distribution through photobleaching. The light distribution is modelled using a Monte Carlo radiation transfer model and indicates treatment depths of around 2 mm during daylight PDT and approximately 3 mm during conventional PDT. The results suggest that treatment depths are not only limited by the light penetration but also by the PpIX distribution.

  11. Immobilization of cell wall invertase modified with glutaraldehyde for continuous production of invert sugar. (United States)

    Vujcić, Zoran; Milovanović, Aleksandra; Bozić, Natasa; Dojnov, Biljana; Vujcić, Miroslava; Andjelković, Uros; Loncar, Nikola


    Yeast cell wall invertase (CWI) was modified with dimethyl suberimidate, glutaraldehyde, formaldehyde, and sodium periodate. Retained activity after modification was 45% for CWI modified with formaldehyde, 77% for CWI modified with sodium periodate, 80% for CWI modified with glutaraldehyde, and 115% for CWI modified with dimethyl suberimidate. Chemically modified and native CWIs showed significantly broad pH stability (pH 3-11), whereas after incubations at 50, 60, and 70 °C, CWI modified with glutaraldehyde showed the highest thermostability. Optimum pH for CWI modified with glutaraldehyde was between 4 and 5, whereas optimum temperature was at 60 °C. Comparison to CWI modified with glutaraldehyde after immobilization within alginate beads showed broader pH optimum (4.0-5.5) as well as broader temperature optimum (55-70 °C). Column bed reactor packed with the immobilized CWI modified with glutaraldehyde was successfully used for the 95% inversion of 60% (w/w) sucrose at the flow rate of 3 bed volumes per hour, pH 4.9, and 45 °C. A 1 month productivity of 3844 kg of inverted sugar/kg of the immobilisate was obtained.

  12. Novel structure in sciaenid fish skulls indicates continuous production of the cephalic neuromast cupula (United States)

    Pombo, Maíra; Turra, Alexander


    The presence of a conspicuous and frequent but never-described structure in the skull cavities of sciaenid fish was noted during population studies in an urbanized bay. The ultrastructure closely resembles the cupula of neuromasts, an organ associated with the perception of the environment in teleost fish. The bodies were recorded detached in both preserved and freshly sampled individuals and without associated cilia. Prominent characteristics are acellularity, the elliptic-conic shape composed of stack-like protein lamellas, and a mesh-like appearance in cross section. These acellular lamellar cephalic bodies (ALCBs) were more abundant in larger individuals and showed temporal peaks of abundance independently of the fish size. The conic and lamellar features suggest that the deposition of protein layers follows fish growth, and the bimodality of the size of these structures in individuals indicates temporal peaks of production. These results indicate that these ALCBs are a consequence of the accretion of the cupula of neuromasts at a faster rate than they degrade. Given the novelty of this structure and the increasing records of diseases of marine organisms worldwide, an important question is whether these bodies occur subsequently to some environmental change and whether their accumulation in the skull cavities has consequences to fish health.

  13. Ethanol production during semi-continuous syngas fermentation in a trickle bed reactor using Clostridium ragsdalei. (United States)

    Devarapalli, Mamatha; Atiyeh, Hasan K; Phillips, John R; Lewis, Randy S; Huhnke, Raymond L


    An efficient syngas fermentation bioreactor provides a mass transfer capability that matches the intrinsic kinetics of the microorganism to obtain high gas conversion efficiency and productivity. In this study, mass transfer and gas utilization efficiencies of a trickle bed reactor during syngas fermentation by Clostridium ragsdalei were evaluated at various gas and liquid flow rates. Fermentations were performed using a syngas mixture of 38% CO, 28.5% CO2, 28.5% H2 and 5% N2, by volume. Results showed that increasing the gas flow rate from 2.3 to 4.6sccm increased the CO uptake rate by 76% and decreased the H2 uptake rate by 51% up to Run R6. Biofilm formation after R6 increased cells activity with over threefold increase in H2 uptake rate. At 1662h, the final ethanol and acetic acid concentrations were 5.7 and 12.3g/L, respectively, at 200ml/min of liquid flow rate and 4.6sccm gas flow rate. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Development of Continuous Solvent Extraction Processes For Coal Derived Carbon Products

    Energy Technology Data Exchange (ETDEWEB)

    Elliot B. Kennel; Dady B. Dadyburjor; Gregory W. Hackett; Manoj Katakdaunde; Liviu Magean; Alfred H. Stiller; Robert C. Svensson; John W. Zondlo


    In this reporting period, tonnage quantities of coal extract were produced but solid separation was not accomplished in a timely manner. It became clear that the originally selected filtration process would not be effective enough for a serious commercial process. Accordingly, centrifugation was investigated as a superior means for removing solids from the extract. Results show acceptable performance. Petrographic analysis of filtered solids was carried out by R and D Carbon Petrography under the auspices of Koppers and consultant Ken Krupinski. The general conclusion is that the material appears to be amenable to centrifugation. Filtered solids shows a substantial pitch component as well as some mesophase, resulting in increased viscosity. This is likely a contributing reason for the difficulty in filtering the material. Cost estimates were made for the hydotreatment and digestion reactors that would be needed for a 20,000 ton per year demonstration plants, with the aid of ChemTech Inc. The estimates show that the costs of scaling up the existing tank reactors are acceptable. However, a strong recommendation was made to consider pipe reactors, which are thought to be more cost effective and potentially higher performance in large scale systems. The alternate feedstocks for coke and carbon products were used to fabricate carbon electrodes as described in the last quarterly report. Gregory Hackett successfully defended his MS Thesis on the use of these electrodes in Direct Carbon Fuel Cell (DCFC), which is excerpted in Section 2.4 of this quarterly report.

  15. Female fruit production depends on female flower production and crown size rather than male density in a continuous population of a tropical dioecious tree (Virola surinamensis). (United States)

    Riba-Hernández, Pablo; Segura, Jorge Lobo; Muñoz-Valverde, Jenny


    Factors related to pollen and resource limitation were evaluated to predict female fruit production in a tropical dioecious tree. Pollen limitation via variation in the male density at local scales is expected to limit female reproduction success in dioecious plants. We modeled the roles of local male density, female crown size, crown illumination, and female flower production on female fruit initiation and mature fruit production in a continuous population (62 ha plot) of a tropical dioecious tree (Virola surinamensis). In addition, we used microsatellites to describe the scale of effective pollen flow, the male effective population size, and the spatial genetic structure within/between progenies and males. The local male density was not related to female fruit initiation or mature fruit production. Female floral production had a positive effect on fruit initiation. The female crown size was positively related to fruit maturation. Seeds from the same female and seeds from different but spatially proximal females were generally half-siblings; however, proximal females showed greater variation. Proximal male-female adult pairs were not significantly more genetically related than distant pairs. The probability of paternity was negatively affected by the distance between seeds and males; most effective pollen dispersal events (∼85%) occurred from males located less than 150 m from females. The number of males siring progenies was greater than the number of males found at local scales. Female fecundity in this continuous population of Virola surinamensis is not limited by the availability of pollen from proximal males. Rather, resource allocation to floral production may ultimately determine female reproductive success. © 2016 Botanical Society of America.

  16. The development of the super-biodiesel production continuously from Sunan pecan oil through the process of reactive distillation (United States)

    Yohana, Eflita; Yulianto, Moh. Endy; Ikhsan, Diyono; Nanta, Aditya Marga; Puspitasari, Ristiyanti


    In general, a vegetable oil-based biodiesel production commercially operates a batch process with high investments and operational costs. Thus, it is necessary to develop super-biodiesel production from sunan pecan oil continuously through the process of reactive distillation. There are four advantages of the reactive distillation process for the biodiesel production, as follows: (i) it incorporates the process of transesterification reaction, and product separation of residual reactants become one stage of the process, so it saves the investment and operation costs, (ii) it reduces the need for raw materials because the methanol needed corresponds to the stoichiometry, so it also reduces the operation costs, (iii) the holdup time in the column is relatively short (5±0,5 minutes) compared to the batch process (1-2 hours), so it will reduce the operational production costs, and (iv) it is able to shift the reaction equilibrium, because the products and reactants that do not react are instantly separated (based on Le Chatelier's principles) so the conversion will be increased. However, the very crucial problem is determining the design tools and process conditions in order to maximize the conversion of the transesterification reaction in both phases. Thus, the purpose of this research was to design a continuous reactive distillation process by using a recycled condensate to increase the productivity of the super-biodiesel from sunan pecan oil. The research was carried out in three stages including (i) designing and fabricating the reactive distillation equipment, (ii) testing the tool performance and the optimization of the biodiesel production, and (iii) biodiesel testing on the diesel engine. These three stages were needed in designing and scaling-up the process tools and the process operation commercially. The reactive distillation process tools were designed and manufactured with reference to the design system tower by Kitzer, (2008). The manufactured

  17. Near-Continuous Isotopic Characterization of Soil N2O Fluxes from Maize Production (United States)

    Anex, R. P.; Francis Clar, J.


    Isotopomer ratios of N2O and especially intramolecular 15N site preference (SP) have been proposed as indicators of the sources of N2O and for providing insight into the contributions of different microbial processes. Current knowledge, however, is mainly based on pure culture studies and laboratory flask studies using mass spectrometric analysis. Recent development of laser spectroscopic methods has made possible high-precision, in situ measurements. We present results from a maize production field in Columbia County, Wisconsin, USA. Data were collected from the fertilized maize phase of a maize-soybean rotation. N2O mole fractions and isotopic composition were determined using an automatic gas flux measurement system comprising a set of custom-designed automatic chambers, circulating gas paths and an OA-ICOS N2O Isotope Analyzer (Los Gatos Research, Inc., Model 914-0027). The instrument system allows for up to 15 user programmable soil gas chambers. Wide dynamic range and parts-per-billion precision of OA-ICOS laser absorption instrument allows for extremely rapid estimation of N2O fluxes. Current operational settings provide measurements of N2O and its isotopes every 20 seconds with a precision of 0.1 ± 0.050 PPB. Comparison of measurements from four chambers (two between row and two in-row) show very different aggregate N2O flux, but SP values suggest similar sources from nitrifier denitrification and incomplete bacterial denitrification. SP values reported are being measured throughout the current growing season. To date, the majority of values are consistent with an origin from bacterial denitrification and coincide with periods of high water filled pore space.

  18. Continuous fermentation and in-situ reed separation of butyric acid for higher sugar consumption rate and productivity

    DEFF Research Database (Denmark)

    Baroi, George Nabin; Skiadas, Ioannis; Westermann, Peter

    that disconnection of the REED system resulted to much lower (48 and 83% for glucose and xylose, respectively) sugars consumption rates and consequently lower butyric acid production rates. It was also noticeable that continuous operation, even without the REED system, resulted to higher glucose consumption rates...... than batch operation (0.85 compared to 0.31 g/L/h). Similar conclusions were drawn from the experiments with increasing concentrations of PHWS. It should also be emphasized that fermentation of 100% PHWS proceeded unhindered with just urea and K2HPO4 added (to making up for nutrient deficiency...

  19. Continuous D-tagatose production by immobilized thermostable L-arabinose isomerase in a packed-bed bioreactor. (United States)

    Ryu, Se-Ah; Kim, Chang Sup; Kim, Hye-Jung; Baek, Dae Heoun; Oh, Deok-Kun


    D-Tagatose was continuously produced using thermostable L-arabinose isomerase immobilized in alginate with D-galactose solution in a packed-bed bioreactor. Bead size, L/D (length/diameter) of reactor, dilution rate, total loaded enzyme amount, and substrate concentration were found to be optimal at 0.8 mm, 520/7 mm, 0.375 h(-1), 5.65 units, and 300 g/L, respectively. Under these conditions, the bioreactor produced about 145 g/L tagatose with an average productivity of 54 g tagatose/L x h and an average conversion yield of 48% (w/w). Operational stability of the immobilized enzyme was demonstrated, with a tagatose production half-life of 24 days.

  20. A Proposal Of Simulation Model Of A Wind-Steering System For Sailing Yachts, Based On Single-Stage Servo-Pendulum Coupled With Main Rudder

    Directory of Open Access Journals (Sweden)

    Piętak Andrzej


    Full Text Available The aim of this study was to investigate possible application of fast design prototyping methods for wind-steering systems used in offshore sailing yachts. The development of such methods would help to speed up the construction work and reduce the scope of necessary experimental research, prior to implementation of the system. In the present work, based on an analysis of existing designs of windvane systems, a preliminary selection of the system configuration has been undertaken, in terms of a compromise between efficiency, performance, and design complexity. Construction design of a single-stage, servo – pendulum system, has been developed by using the Autodesk Inventor design package. Next, based on the design data, a simulation model of the system, has been produced by using Matlab - Simulink software and SimMechanics library. The model was further verified in terms of kinematics mapping with the use of Matlab visualization tools.

  1. Single Stage String Inverter for Gridconnected Photovoltaic System with Modified Perturb and Observe (P&O Fuzzy Logic Control(FLC-based MPPT Technique

    Directory of Open Access Journals (Sweden)

    S.Z.Mohammad Noor


    Full Text Available This paper presents an implementation of Single-phase Single stage String inverter for Grid connected Photovoltaic (PV system. The proposed system uses Modified Perturb and Observe (P&O algorithm implemented using Fuzzy Logic Control (FLC as Maximum Power Point Tracking (MPPT. The inverter is designed for 340W system using two series of STP170s24/Ac PV modules. The MPPT unit keeps tracking the maximum power from the PV array by changing the modulation index and the phase angle of inverter’s output voltage. The simulation model is developed using Matlab/Simulink to evaluate the performance of the converter. Selected experimental results are also presented in this paper.

  2. Performance comparison of single-stage mixed-refrigerant Joule–Thomson cycle and reverse Brayton cycle for cooling 80 to 120 K temperature-distributed heat loads (United States)

    Wang, H. C.; Chen, G. F.; Gong, M. Q.; Li, X.


    Thermodynamic performance comparison of single-stage mixed-refrigerant Joule–Thomson cycle (MJTR) and pure refrigerant reverse Brayton cycle (RBC) for cooling 80 to 120 K temperature-distributed heat loads was conducted in this paper. Nitrogen under various liquefaction pressures was employed as the heat load. The research was conducted under nonideal conditions by exergy analysis methods. Exergy efficiency and volumetric cooling capacity are two main evaluation parameters. Exergy loss distribution in each process of refrigeration cycle was also investigated. The exergy efficiency and volumetric cooling capacity of MJTR were obviously superior to RBC in 90 to 120 K temperature zone, but still inferior to RBC at 80 K. The performance degradation of MJTR was caused by two main reasons: The high fraction of neon resulted in large entropy generation and exergy loss in throttling process. Larger duty and WLMTD lead to larger exergy losses in recuperator.

  3. Single-stage gain-clamped L-band EDFA with C-band ASE self-oscillation in ring cavity

    International Nuclear Information System (INIS)

    Mahdi, M A; Al-Mansoori, M H; Bakar, A A A; Shaari, S; Zamzuri, A K


    We demonstrate single-stage gain-clamped L-band Er 3+ -doped fiber amplifier (EDFA) utilizing self-oscillation modes as the control light. The amplifier structure exploits the characteristics of C/L-band coupler to isolate between lasing modes and L-band signal. The self-lasing cavity modes are obtained without any tunable bandpass filter in the loop and generated from the amplified spontaneous emission in the C-band region. The amplifier configuration has lower noise figures as opposed to a dual-stage partially gain-clamped amplifier. The gain and noise figure fluctuations are less than ± 0.4 dB in the gain-clamping region. The transient analysis confirms that the maximum power excursion is less than 0.3 dB for 10-dB add/drop

  4. [Continuing investigation of effect of toner and its by-product on human health and occupational health management of toner]. (United States)

    Morimoto, Yasuo; Ogami, Akira; Kochi, Isamu; Uchiyama, Tetsuro; Ide, Reiko; Myojo, Toshihiko; Higashi, Toshiaki


    As there are reports that ultrafine particles are generated by thermal printer toner, and that mucosal irritation symptoms were observed in users. When printers were operated, we have been examining the effects of not only toner but its by-products on human health. We conducted a review of epidemiological and animal data on toner and its by-products such as ultrafine particles and volatile organic compounds (VOC). This was the second survey and it confirmed the results of the first survey. We reviewed the data, and summarized the results as follows. 1) Four cross-sectional studies reported no definite harmful effects of toner. 2) Ultrafine particles were generated in greater numbers at higher fuser heating and higher toner coverages. Ultrafine particles were also observed at lower rates in idle mode. 3) High-sensitive c-reactive protein in serum and heart rate variability (HRV) were useful biomarkers of not only exposure to ultrafine particles but disorder of cardiovascular disease, 8-hydroxydeoxyguanosine in urine is a biomarker of acute lung injury by welder fume, and VEGF and CA15-3 are highly sensitive and specific biomarkers of pulmonary fibrosis. 4) Physico-chemical properties of ultrafine particles were examined, and specific parameters related to pulmonary responses were not observed. Taken together, we found that there are some biomarkers which are related to not only exposure and but disorders induced by ultrafine particles, and that the generation of ultrafine particles with the operation of printers was associated with other factors than the fixing process. Until now there has been insufficient data for estimation of the hazards of toner and its by-products. However, continuing examinations are useful for complementing and correcting the information and data on toners and for revising the measures of occupational health. We will continue these examinations of toner and its by-products in the future.

  5. Evaluation of advanced hydraulic turbomachinery for underground pumped hydroelectric storage. Part 1. Single-stage regulated pump turbines for operating heads of 500 to 1000 m

    Energy Technology Data Exchange (ETDEWEB)

    Frigo, A.A.; Blomquist, C.A.; Degnan, J.R.


    High-head, large-capacity turbomachinery is needed for the concept of underground pumped hydroelectric storage to be technically and economically attractive. Single-stage, reversible, Francis-type pump turbines with adjustable wicket gates appear to offer the most economically attractive option for heads between about 500 and 1000 m. The feasibility of developing these types of machines for capacities up to 500 MW and operating heads up to 1000 m has been evaluated. Preliminary designs have been generated for six single-stage pump turbines. The designs are for capacities of 350 and 500 MW and for operating heads of 500, 750, and 1000 m. The report contains drawings of the machines along with material specifications and hydraulic performance data. Mechanical, hydraulic, and economic analyses indicate that these machines will behave according to the criteria used to design them and that they can be built at a reasonable cost. The stress and deflection responses of the 500-MW, 100-m-head pump turbine, determined by detailed finite element analysis techniques, give solid evidence of the integrity of the conceptual designs of the six units and indicate no unsolvable problems. Results of a life expectancy analysis of the wicket gates indicate that a near infinite life can be expected for these components when they are subjected to normal design loads. Efficiencies of 90.7 and 91.4% in the generating and pumping modes, respectively, can be expected for the 500-MW, 1000-m-head unit. Performances of the other five machines are comparable. The specific costs of the pump turbines in mid-1978 US dollars per kW vary from 19.2 to 11.8 over a head range of from 500 to 1000 m for the 500-MW machines and from 20.0 to 12.3 for the 350-MW machines.

  6. In-source collision-induced dissociation (IS-CID): Applications, issues and structure elucidation with single-stage mass analyzers. (United States)

    Parcher, Jon F; Wang, Mei; Chittiboyina, Amar G; Khan, Ikhlas A


    A discussion of the definition, advantages, and issues with the formation of ions in the transition region between an electrospray ionization (ESI) source and the ion optics of a mass analyzer is presented. The various types of ions formed in the so-called in-source collision-induced dissociation (IS-CID) process are illustrated. Applications of IS-CID with single-stage mass analyzers, such as structure elucidation and quantitation, are demonstrated. The discussion is illustrated by examples of the in-source fragmentation of ginkgolides, which are marker compounds found only in Ginkgo biloba. Supercritical fluid chromatography (SFC) with non-aqueous eluents was used to achieve a fast resolution of the ginkgolides without the hydrolysis reactions possible with aqueous high-performance liquid chromatography (HPLC) eluents. In-source ion generation occurs at relatively high pressures (ca. 1-3 torr) compared to the low pressure normally observed in collision chambers of tandem mass spectrometry (MS/MS). As a result, the fragmentation process is complex and often generates ions other than the fragments observed with classic CID or the same ions at different intensities. The objective of the current tutorial is to illustrate the conditions under which single-stage, quadrupole or time-of-flight mass analyzers with electrospray or in-air (direct analysis in real time; DART) ionization can be used for quantitation and structure elucidation in a manner similar to that observed with MS/MS. While the low m/z (≤ [M±H] ± ) ions formed in-source often duplicate the ions observed in MS/MS systems, it is the focus of this discussion to illustrate the utility of in-source generated fragment ions that may not be observed or observed at different intensities than in the collision cells of MS/MS instruments. Copyright © 2017 John Wiley & Sons, Ltd.

  7. Efficacy of single-stage breast-conserving treatment using multicatheter partial breast brachytherapy evaluated by GEC-ESTRO phase 3 trial. (United States)

    Sato, Kazuhiko; Fuchikami, Hiromi; Kato, Masahiro; Shimo, Takahiro; Kubota, Jun; Takeda, Naoko; Inoue, Yuko; Seto, Hiroshi; Okawa, Tomohiko


    The GEC-ESTRO has reported the equivalent outcomes of partial breast irradiation (PBI) using multicatheter interstitial brachytherapy (MCB) to whole breast irradiation (WBI) in breast-conserving therapy (BCT). We performed single-stage BCT with partial breast brachytherapy by intraoperative catheter placement. After the categorization of patients into inclusion and exclusion criteria on this trial, our databases were evaluated in order to translate it to Japanese patients. Patients undergoing BCT were retrospectively examined between November 2007 and December 2015. The technique is an open-cavity implant with a dose of 32 Gy in 8 fractions. The 4-year clinical outcomes of MCB-PBI were evaluated in the 2 distinct categories, and the comparison of the outcomes of MCB-PBI with WBI was performed in patients with unfavorable features. Of a total of 501 lesions undergoing BCT, 301 lesions were treated with MCB-PBI and 200 lesions with WBI. At the median follow-up time of 52 months, the 4-year rate of ipsilateral breast tumor recurrence (IBTR)-free, disease-free (DFS), and overall survival (OS) in patients with MCB-PBI and WBI were 98.9% vs. 98.0% ( p = 0.56), 97.0% vs. 95.3% ( p = 0.78), and 99.6% vs. 98.2% ( p = 0.38), respectively. Although in exclusion cohort treated with MCB-PBI, IBTR-free, and disease-free survival were significantly worse than in inclusion cohort, non-significantly worse outcomes was demonstrated than in exclusion cohort with WBI; IBTR-free survival (95.0% vs. 97.2%, p = 0.24), and disease-free survival (95.0% vs. 95.8%, p = 0.31). Single-stage BCT using MCB-PBI offered similar tumor control rates compering to WBI. However, further research is needed to define the benefit for patients with an exclusion criteria.

  8. Single-stage multilevel soft-tissue surgery in the lower limbs with spastic cerebral palsy: Experience from a rehabilitation unit

    Directory of Open Access Journals (Sweden)

    Gupta Anupam


    Full Text Available Background: To assess the effect of single-stage multilevel soft-tissue surgery (Single Event Multiple Level Resections, SEMLR on deformities and locomotion in patients with cerebral palsy (CP with static contracture(s in lower limbs. Patients and Methods: Study included 34 patients (M:F, 23:11 with mean age of 9.53 ± 3.92 years (4-16 years. Among them 22 had diplegia and four each had quadriplegia and right and left hemiplegia. Fourteen patients (41.2% had their intelligence quotient (IQ in the normal range (IQ ≥ 80, while others had mental retardation (MR of varying severity: borderline MR (IQ = 70-79 in 12, mild MR (IQ = 50-69 in 5, and moderate MR (IQ = 35-49 in patients 3. All patients underwent surgery (total number of procedures 153, average 4.5 procedures/patient over a period of 30 months (April 2005 to September 2007. Improvement in functional abilities and locomotion was assessed using Gross Motor Functional Classification Scale (GMFCS scores and by physical examination. Results: Significant improvement in function was observed ( P = 0.000 after surgery when comparing the preoperative and postoperative GMFCS scores. All patients were maintaining ambulation at a mean follow-up duration of 13.12 ± 6.07 months (3-24 months, with five patients using knee-ankle-foot orthoses (KAFO, 22 using ankle-foot orthoses (AFO, and six patients using knee gaiters. Sixteen patients were using walker, and two were using crutches as assistive devices. Conclusion: This study suggests that CP patients with good trunk control and static contractures at multiple joints in the lower limbs can be made ambulant with single-stage multilevel soft-tissue surgery. It has to be a team effort of the surgeon and the rehabilitation team in the postoperative period for the attainment of satisfactory goal.

  9. Performance of semi-continuous membrane bioreactor in biogas production from toxic feedstock containing D-Limonene. (United States)

    Wikandari, Rachma; Youngsukkasem, Supansa; Millati, Ria; Taherzadeh, Mohammad J


    A novel membrane bioreactor configuration containing both free and encased cells in a single reactor was proposed in this work. The reactor consisted of 120g/L of free cells and 120g/L of encased cells in a polyvinylidene fluoride membrane. Microcrystalline cellulose (Avicel) and d-Limonene were used as the models of substrate and inhibitor for biogas production, respectively. Different concentrations of d-Limonene i.e., 1, 5, and 10g/L were tested, and an experiment without the addition of d-Limonene was prepared as control. The digestion was performed in a semi-continuous thermophilic reactor for 75 days. The result showed that daily methane production in the reactor with the addition of 1g/L d-Limonene was similar to that of control. A lag phase was observed in the presence of 5g/L d-Limonene; however, after 10 days, the methane production increased and reached a similar production to that of the control after 15 days. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Ethanol and Acetic Acid Production from Carbon Monoxide in a Clostridium Strain in Batch and Continuous Gas-Fed Bioreactors

    Directory of Open Access Journals (Sweden)

    Haris Nalakath Abubackar


    Full Text Available The effect of different sources of nitrogen as well as their concentrations on the bioconversion of carbon monoxide to metabolic products such as acetic acid and ethanol by Clostridium autoethanogenum was studied. In a first set of assays, under batch conditions, either NH4Cl, trypticase soy broth or yeast extract (YE were used as sources of nitrogen. The use of YE was found statistically significant (p < 0.05 on the product spectrum in such batch assays. In another set of experiments, three bioreactors were operated with continuous CO supply, in order to estimate the effect of running conditions on products and biomass formation. The bioreactors were operated under different conditions, i.e., EXP1 (pH = 5.75, YE 1g/L, EXP2 (pH = 4.75, YE 1 g/L and EXP3 (pH = 5.75, YE 0.2 g/L. When compared to EXP2 and EXP3, it was found that EXP1 yielded the maximum biomass accumulation (302.4 mg/L and products concentrations, i.e., acetic acid (2147.1 mg/L and ethanol (352.6 mg/L. This can be attributed to the fact that the higher pH and higher YE concentration used in EXP1 stimulated cell growth and did, consequently, also enhance metabolite production. However, when ethanol is the desired end-product, as a biofuel, the lower pH used in EXP2 was more favourable for solventogenesis and yielded the highest ethanol/acetic acid ratio, reaching a value of 0.54.

  11. Continuous Production of Lipase-Catalyzed Biodiesel in a Packed-Bed Reactor: Optimization and Enzyme Reuse Study

    Directory of Open Access Journals (Sweden)

    Hsiao-Ching Chen


    Full Text Available An optimal continuous production of biodiesel by methanolysis of soybean oil in a packed-bed reactor was developed using immobilized lipase (Novozym 435 as a catalyst in a tert-butanol solvent system. Response surface methodology (RSM and Box-Behnken design were employed to evaluate the effects of reaction temperature, flow rate, and substrate molar ratio on the molar conversion of biodiesel. The results showed that flow rate and temperature have significant effects on the percentage of molar conversion. On the basis of ridge max analysis, the optimum conditions were as follows: flow rate 0.1 mL/min, temperature 52.1∘C, and substrate molar ratio 1 : 4. The predicted and experimental values of molar conversion were 83.31±2.07% and 82.81±.98%, respectively. Furthermore, the continuous process over 30 days showed no appreciable decrease in the molar conversion. The paper demonstrates the applicability of using immobilized lipase and a packed-bed reactor for continuous biodiesel synthesis.

  12. Methodology for assessing quantities of water and proppant injection, and water production associated with development of continuous petroleum accumulations (United States)

    Haines, Seth S.


    The quantities of water and hydraulic fracturing proppant required for producing petroleum (oil, gas, and natural gas liquids) from continuous accumulations, and the quantities of water extracted during petroleum production, can be quantitatively assessed using a probabilistic approach. The water and proppant assessment methodology builds on the U.S. Geological Survey methodology for quantitative assessment of undiscovered technically recoverable petroleum resources in continuous accumulations. The U.S. Geological Survey assessment methodology for continuous petroleum accumulations includes fundamental concepts such as geologically defined assessment units, and probabilistic input values including well-drainage area, sweet- and non-sweet-spot areas, and success ratio within the untested area of each assessment unit. In addition to petroleum-related information, required inputs for the water and proppant assessment methodology include probabilistic estimates of per-well water usage for drilling, cementing, and hydraulic-fracture stimulation; the ratio of proppant to water for hydraulic fracturing; the percentage of hydraulic fracturing water that returns to the surface as flowback; and the ratio of produced water to petroleum over the productive life of each well. Water and proppant assessments combine information from recent or current petroleum assessments with water- and proppant-related input values for the assessment unit being studied, using Monte Carlo simulation, to yield probabilistic estimates of the volume of water for drilling, cementing, and hydraulic fracture stimulation; the quantity of proppant for hydraulic fracture stimulation; and the volumes of water produced as flowback shortly after well completion, and produced over the life of the well.

  13. Effects of mixing technologies on continuous methyl ester production: Comparison of using plug flow, static mixer, and ultrasound clamp

    International Nuclear Information System (INIS)

    Somnuk, Krit; Prasit, Tanongsak; Prateepchaikul, Gumpon


    Highlights: • Four types of continuous reactors were compared with methyl ester conversion. • Plug flow, static mixer, ultrasound clamp, SM with ultrasound reactors were tested. • The 16 × 400 W ultrasound clamps were operated at 20 kHz frequency for US reactor. • The US reactor was clearly superior over the other types of continuous reactor. • The US reactor was the most effective alternative with short reactor length. - Abstract: Four types of continuous reactors, namely plug flow reactor (PF), static mixer reactor (SM), ultrasound clamp on tubular reactor (US), and static mixer combined with ultrasound (SM/US) were compared for their purities of methyl ester in biodiesel production from refined palm oil (RPO). The reactor conditions were: KOH 4, 6, 8, 10, and 12 g L −1 , methanol content 20 vol.%, and under 20 L h −1 RPO flow rate at 60 °C temperature. The highest purity of methyl esters: 81.99 wt.% for PF, 95.70 wt.% for SM, 98.98 wt.% for US, and 97.67 wt.% for SM/US, were achieved with 900 mm, 900 mm, 700 mm, and 900 mm reactor lengths respectively, and 12 g L −1 of KOH was used in all cases. The 16 × 400 W ultrasound clamp was operated at 20 kHz frequency, and among short length reactors the US case was more effective than PF, SM, or SM/US. Moreover, ester purity from the US reactor was slightly decreased by the lowest 4 g L −1 KOH. The US reactor was clearly superior over the other types of continuous reactor, and had the potential to reduce KOH consumption by sonochemical effects on the base-catalyzed transesterification reaction.

  14. Continuous enzymatic biodiesel production from coconut oil in two-stage packed-bed reactor incorporating an extracting column to remove glycerol formed as by-product. (United States)

    Costa E Silva, William; Freitas, Larissa; Oliveira, Pedro C; de Castro, Heizir F


    The transesterification of coconut oil with ethanol catalyzed by Burkholderia cepacia lipase immobilized on polysiloxane-polyvinyl alcohol was performed in a continuous flow. The experimental design consisted of a two-stage packed-bed reactor incorporating a column with cationic resin (Lewatit GF 202) to remove the glycerol formed as by-product and the reactor performance was quantified for three different flow rates corresponding to space-times from 10 to 14 h. The influence of space-time on the ethyl ester (FAEE) concentrations, yields and productivities was determined. The reactor operation was demonstrated for space-time of 14 h attaining FAEE concentrations of 58.5 ± 0.87 wt%, FAEE yields of 97.3 ± 1.9 % and productivities of 41.6  ± 1.0 mgester g medium (-1)  h(-1). Biodiesel purified samples showed average kinematic viscosity values of 5.5 ± 0.3 mm(2) s(-1) that meet the criteria established by the American National Standard ASTM (D6751). The immobilized lipase was found to be stable regarding its morphological and catalytic characteristics, showing half-life time (t 1/2) around 1540 h. The continuous packed-bed reactor connected in series with simultaneous glycerol removal has a great potential to attain high level of transesterification yields, raising biodiesel productivity.

  15. Enzymatic saccharification of sugar cane bagasse by continuous xylanase and cellulase production from cellulomonas flavigena PR-22. (United States)

    Rojas-Rejón, Óscar A; Poggi-Varaldo, Héctor M; Ramos-Valdivia, Ana C; Ponce-Noyola, Teresa; Cristiani-Urbina, Eliseo; Martínez, Alfredo; de la Torre, Mayra


    Cellulase (CMCase) and xylanase enzyme production and saccharification of sugar cane bagasse were coupled into two stages and named enzyme production and sugar cane bagasse saccharification. The performance of Cellulomonas flavigena (Cf) PR-22 cultured in a bubble column reactor (BCR) was compared to that in a stirred tank reactor (STR). Cells cultured in the BCR presented higher yields and productivity of both CMCase and xylanase activities than those grown in the STR configuration. A continuous culture with Cf PR-22 was run in the BCR using 1% alkali-pretreated sugar cane bagasse and mineral media, at dilution rates ranging from 0.04 to 0.22 1/h. The highest enzymatic productivity values were found at 0.08 1/h with 1846.4 ± 126.4 and 101.6 ± 5.6 U/L·h for xylanase and CMCase, respectively. Effluent from the BCR in steady state was transferred to an enzymatic reactor operated in fed-batch mode with an initial load of 75 g of pretreated sugar cane bagasse; saccharification was then performed in an STR at 55°C and 300 rpm for 90 h. The constant addition of fresh enzyme as well as the increase in time of contact with the substrate increased the total soluble sugar concentration 83% compared to the value obtained in a batch enzymatic reactor. This advantageous strategy may be used for industrial enzyme pretreatment and saccharification of lignocellulosic wastes to be used in bioethanol and chemicals production from lignocellulose. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:321-326, 2016. © 2016 American Institute of Chemical Engineers.


    Directory of Open Access Journals (Sweden)



    Full Text Available This study aimed to develop the start-up experiment for producing biological hydrogen in 2 L continuous stirred tank reactor (CSTR from palm oil mill effluent (POME by the use of mixed culture sludge under non-sterile conditions. Besides using different source of starter culture, the effects of acid treated culture and various operating temperature from 35 °C to 55 °C were studied against the evolved gas in terms of volumetric H2 production rate (VHPR and soluble metabolite products (SMPs. The formation of methane was closely observed throughout the run. Within the studied temperature, VHPR was found as low as 0.71 L/L.d and ethanol was the main by-products (70-80% of total soluble metabolites. Attempts were made to produce biohydrogen without methane formation at higher thermophilic temperature (45-55 °C than the previous range. The average of 1.7 L H2 of 2 L working volume per day was produced at 55 oC with VHPR of 1.16 L/L.d. The results of soluble metabolites also are in agreement with the volatile fatty acids (VFAs which is higher than ethanol. Higher VFAs of 2269 mg/L was obtained with acetic acid being the main by-product. At this time methanogen has been deactivated and no methane was produced. From this study, it can be concluded that thermophilic environment may offer a better option in a way to eliminate methane from the biogas and at the same time improving hydrogen production rate as well.

  17. Performance comparison of ethanol and butanol production in a continuous and closed-circulating fermentation system with membrane bioreactor. (United States)

    Chen, Chunyan; Long, Sihua; Li, Airong; Xiao, Guoqing; Wang, Linyuan; Xiao, Zeyi


    Since both ethanol and butanol fermentations are urgently developed processes with the biofuel-demand increasing, performance comparison of aerobic ethanol fermentation and anerobic butanol fermentation in a continuous and closed-circulating fermentation (CCCF) system was necessary to achieve their fermentation characteristics and further optimize the fermentation process. Fermentation and pervaporation parameters including the average cell concentration, glucose consumption rate, cumulated production concentration, product flux, and separation factor of ethanol fermentation were 11.45 g/L, 3.70 g/L/h, 655.83 g/L, 378.5 g/m 2 /h, and 4.83, respectively, the corresponding parameters of butanol fermentation were 2.19 g/L, 0.61 g/L/h, 28.03 g/L, 58.56 g/m 2 /h, and 10.62, respectively. Profiles of fermentation and pervaporation parameters indicated that the intensity and efficiency of ethanol fermentation was higher than butanol fermentation, but the stability of butanol fermentation was superior to ethanol fermentation. Although the two fermentation processes had different features, the performance indicated the application prospect of both ethanol and butanol production by the CCCF system.

  18. Utilization of the substrate in the continuous cultivation of a glucoamylase producer

    Energy Technology Data Exchange (ETDEWEB)

    Ambartsumyan, L.I.; Filatov, L.N.; Razarenova, N.F.


    When Endomycopsis species 20-9 was cultivated in a chemostat culture, maximum glucoamylase biosynthesis was observed at a dilution rate of 0.037-0.07 h-1. The enzyme activity was higher in a batch culture containing reducing substances (17-24 mg/mL). There was no correlation between biomass yield and enzyme activity. A 2-stage continuous fermentation process allowed maximum production of biomass (in the 1st stage) and glucoamylase (in the 2nd stage). A mathematical model was developed to determine the kinetics of substrate utilization by the microbial cell population during the 2 stages of fermentation. The glucoamylase yield was 70-80% higher than that obtained by batch or single stage continuous cultivation.

  19. Will coal depart or will it continue to dominate global power production during the 21st century?

    Energy Technology Data Exchange (ETDEWEB)

    van der Zwaan, B. [ECN, Amsterdam (Netherlands). Policy Studies Dept.


    This article considers whether coal must depart or whether it may still dominate power production during the 21st century, in view of the challenges implied by regional pollution reduction and global warming mitigation. Four main reasons are given for why, paradoxically, coal is likely to continue to have a high, and perhaps even increasing, share in global electricity generation this century: namely, (1) its large resource base; (2) the improving efficiency and competitivity of conventional and innovative coal technologies; (3) the employability of new coal technologies in conjunction with carbon capture and storage systems; (4) the improving economics of these advanced clean coal technologies. Governments, however, will need to provide the incentives required to stimulate the deployment of clean coal technologies.

  20. Will coal depart or will it continue to dominate global power production during the 21st century?

    Energy Technology Data Exchange (ETDEWEB)

    Zwaan, Bob van der


    This article considers whether coal must depart or whether it may still dominate power production during the 21st century, in view of the challenges implied by regional pollution reduction and global warming mitigation. Four main reasons are given for why, paradoxically, coal is likely to continue to have a high, and perhaps even increasing, share in global electricity generation this century: namely, (1) its large resource base; (2) the improving efficiency and competitivity of conventional and innovative coal technologies; (3) the employability of new coal technologies in conjunction with carbon capture and storage systems; (4) the improving economics of these advanced clean coal technologies. Governments, however, will need to provide the incentives required to stimulate the deployment of clean coal technologies. (Author)


    Directory of Open Access Journals (Sweden)

    Ki Yong Choi


    Full Text Available The present paper describes a developed analyzing system of roll surface during the process of continuous hot dip zinc coated steel sheet production line, in particular, adhering problem by transferred inclusions from roll to steel sheet surface during annealing process so called the pickup. The simulated test machine for coated roll surface in processing line has been designed and performed. The system makes it possible to analyze roll surface condition according to pickup phenomena from various roll coatings concerning operating conditions of hearth rolls in annealing furnace. The algorithm of fast pickup detection on surface is developed on the base of processing of several optical images of surface. The parameters for quality estimation of surface with pickups were developed. The optical system for images registration and image processing electronics may be used in real time and embed in processing line.

  2. Effects of dilution rate on biomass and extracellular enzyme production by three species of cutaneous propionibacteria grown in continuous culture. (United States)

    Greenman, J; Holland, K T


    Propionibacterium acnes, P. avidum and P. granulosum were grown in continuous culture at a range of dilution rates on a semi-synthetic medium. Dilution rates were chosen to allow the bacteria to grow at the same relative growth rates as compared to their respective mumax values. The steady-state levels and production rates of biomass and extracellular enzymes were determined. The lipase and hyaluronate lyase of P. granulosum and the proteolytic activity of P. acnes and P. avidum were growth linked enzymes (i.e. they were produced at constant amounts per unit of biomass). In contrast, the lipase, hyaluronate lyase and acid phosphatase of P. acnes and the lipase of P. avidum were shown to be non-growth linked enzymes.

  3. Continuous Fermentation of Clostridium tyrobutyricum with Partial Cell Recycle as a Long-Term Strategy for Butyric Acid Production

    Directory of Open Access Journals (Sweden)

    Edgar C. Clausen


    Full Text Available In making alternative fuels from biomass feedstocks, the production of butyric acid is a key intermediate in the two-step production of butanol. The fermentation of glucose via Clostridium tyrobutyricum to butyric acid produces undesirable byproducts, including lactic acid and acetic acid, which significantly affect the butyric acid yield and productivity. This paper focuses on the production of butyric acid using Clostridium tyrobutyricum in a partial cell recycle mode to improve fermenter yield and productivity. Experiments with fermentation in batch, continuous culture and continuous culture with partial cell recycle by ultrafiltration were conducted. The results show that a continuous fermentation can be sustained for more than 120 days, which is the first reported long-term production of butyric acid in a continuous operation. Further, the results also show that partial cell recycle via membrane ultrafiltration has a great influence on the selectivity and productivity of butyric acid, with an increase in selectivity from ≈9% to 95% butyric acid with productivities as high as 1.13 g/Lh. Continuous fermentation with low dilution rate and high cell recycle ratio has been found to be desirable for optimum productivity and selectivity toward butyric acid and a comprehensive model explaining this phenomenon is given.

  4. Batch Growth of Chlorella Vulgaris CCALA 896 versus Semi-Continuous Regimen for Enhancing Oil-Rich Biomass Productivity

    Directory of Open Access Journals (Sweden)

    Sigita Vaičiulytė


    Full Text Available The aim of this study was to induce lipid accumulation in Chlorella cells by creating stressful growth conditions. Chlorella vulgaris CCALA 896 was grown under various batch growth modes in basal and modified BG-11 and Kolkwitz culture broths, using a continuous light regimen of 150 µE/m2/s, at 30 °C. In order to perform the experiments, two indoor photobioreactor shapes were used: a cylindrical glass photobioreactor (CGPBR with a working volume of 350 mL, and a flat glass photobioreactor (FGPBR with a working volume of 550 mL. Stress-eliciting conditions, such as nitrogen and phosphorous starvation, were imposed in order to induce lipid accumulation. The results demonstrated that more than 56% of the lipids can be accumulated in Chlorella biomass grown under two-phase batch growth conditions. The highest biomass productivity of 0.30 g/L/d was obtained at the highest nominal dilution rate (0.167 day−1 during a semi-continuous regimen, using a modified Kolkwitz medium. During the pH-stress cycles, the amount of lipids did not increase significantly and a flocculation of Chlorella cells was noted.

  5. Continuous production of biofuel from refined and used palm olein oil with supercritical methanol at a low molar ratio

    International Nuclear Information System (INIS)

    Sakdasri, Winatta; Sawangkeaw, Ruengwit; Ngamprasertsith, Somkiat


    Highlights: • Continuous production of biofuel in SCM at low molar ratio was studied. • The actual density of mixture was applied to calculate residence times. • The maximum FAME of 80–90% was observed for refined and used palm oils. • The glycerol–methanol reaction showed a positive effect in fuel yield. - Abstract: The high energy consumption and high environmental impact in the supercritical methanol (SCM) process primarily originates from the preheating of reactants and the recovery of excess alcohols. This work demonstrated the synthesis of biofuel using a lowered methanol to oil molar ratio of 12:1, instead of the 40:1–42:1 ratios that are commonly employed in conventional SCM. The apparent density of the reacting mixture was measured and applied to accurately calculate residence times in a continuous reactor. The effects of residence time were considered from 10 to 25 min. The results revealed that excessive residence times reduced the ester content, especially for unsaturated esters, in the resulting biofuel. A residence time of 20 min was recommended to simultaneously achieve a maximum ester content of 90% and a triglyceride conversion of up to 99%. Used palm olein oil with high free fatty acid (4.56 wt.%) can be employed as a feedstock and give a maximum ester content of 80%. In addition, the side reaction between glycerol and methanol at 400 °C and 15 MPa showed a positive effect in increasing fuel yield by 2%–7%

  6. Daily Management System of the Henry Ford Production System: QTIPS to Focus Continuous Improvements at the Level of the Work. (United States)

    Zarbo, Richard J; Varney, Ruan C; Copeland, Jacqueline R; D'Angelo, Rita; Sharma, Gaurav


    To support our Lean culture of continuous improvement, we implemented a daily management system designed so critical metrics of operational success were the focus of local teams to drive improvements. We innovated a standardized visual daily management board composed of metric categories of Quality, Time, Inventory, Productivity, and Safety (QTIPS); frequency trending; root cause analysis; corrective/preventive actions; and resulting process improvements. In 1 year (June 2013 to July 2014), eight laboratory sections at Henry Ford Hospital employed 64 unique daily metrics. Most assessed long-term (>6 months), monitored process stability, while short-term metrics (1-6 months) were retired after successful targeted problem resolution. Daily monitoring resulted in 42 process improvements. Daily management is the key business accountability subsystem that enabled our culture of continuous improvement to function more efficiently at the managerial level in a visible manner by reviewing and acting based on data and root cause analysis. Copyright© by the American Society for Clinical Pathology.

  7. The $1^{+}\\to n^{+}$ charge breeding method for the production of radioactive and stable continuous /pulsed multi-chargedion beams

    CERN Document Server

    Chauvin, N; Bouly, J L; Curdy, Jean Claude; Geller, R; Lamy, T; Solé, P; Sortais, P


    The principle of the 1+ -> n+ charge breeding method by injecting a mono-charged ion beam in an Electron Cyclotron Resonance Ion Source is recalled. Some 1+ ->n+ breeding efficiencies in continuous mode are given, like 9% for Ar1+ ->Ar8+ and 5% for Rb1+->Rb15+. The global capture efficiency is deduced from the whole charge state distribution spectrum. The ECRIT (ECR Ion Trap) mode that allows to produce a pulsed multi-charged beam is explained. The n+ ions are extracted in a 20 ms pulse. The breeding-bunching efficiencies are measured for Rb1+->Rb15+ (2.2%) and Pb1+->Pb22+ (1.3 %). Ion trapping time in the ECRIT plasma is evaluated to some hundreds of ms. A new application of the 1+->n+ method is developed: the production of multi-charged natural metallic ions. First experiments have been done on uranium: a 500 nA continuous current of U26+ has been measured. Finally, the future developments on the 1+->n+ experiment are discussed. A description of a 1+ ->n+ dedicated high performance ECRIS named PHOENIX (Prod...

  8. Continuous fermentation of food waste leachate for the production of volatile fatty acids and potential as a denitrification carbon source. (United States)

    Kim, Hakchan; Kim, Jaai; Shin, Seung Gu; Hwang, Seokhwan; Lee, Changsoo


    This study investigated the simultaneous effects of hydraulic retention time (HRT) and pH on the continuous production of VFAs from food waste leachate using response surface analysis. The response surface approximations (R(2)=0.895, pproduction (PTVFA) within the explored space (1-4-day HRT, pH 4.5-6.5). The estimated maximum PTVFA was 0.26g total VFAs/g CODf at 2.14-day HRT and pH 6.44, and the approximation was experimentally validated by running triplicate reactors under the estimated optimum conditions. The mixture of the filtrates recovered from these reactors was tested as a denitrification carbon source and demonstrated superior performance in terms of reaction rate and lag length relative to other chemicals, including acetate and methanol. The overall results provide helpful information for better design and control of continuous fermentation for producing waste-derived VFAs, an alternative carbon source for denitrification. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Laser cellulite treatment and laser-assisted lipoplasty of the thighs and buttocks: Combined modalities for single stage contouring of the lower body. (United States)

    Petti, Christine; Stoneburner, Jacqueline; McLaughlin, Laura


    Cellulite and lipodystrophy are often found together, especially in areas of the buttocks and thighs, causing skin surface irregularities. Each of these conditions is currently treated independently as two separate surgical procedures. In our practice, we developed a novel combined approach for the simultaneous treatment of cellulite and lipodystrophy, as a single stage procedure in the same anatomic area. For the treatment of cellulite, we used the Nd:YAG laser at a wavelength of 1,440-nm, along with an innovative 1,000-micron directional side-firing fiber optic laser system. For the treatment of lipodystrophy, the Nd:YAG laser with a 1,440 nm wavelength, along with a fiber optic laser system was used. The objective of this study is to determine the efficacy and safety of a combined approach for the simultaneous treatment of cellulite and lipodystrophy. In 2012, 16 subjects with noticeable cellulite, Grade II and Grade III, accompanied by mild-to-moderate lipodystrophy of the lower body received single treatments of the Nd:YAG laser at a wavelength of 1,440-nm along with the 1,000-micron side-firing fiber optic laser system for simultaneous treatments of both cellulite and lipodystrophy. Patients were assessed at baseline and 3-6 months post-treatment by a modified Nurnberger-Muller scale utilized to quantify the cellulite severity. Additionally, patient satisfaction and a global aesthetic improvement scale were used to measure the improvement in lipodystrophy. Blinded reviewers identified the correct baseline photographs 97% of the time when presented with a set of photographs. The median modified Nurnberger-Muller scale score at baseline was 4.75 ± 1.2 and the average improvement was 2.0 ± 1.2. Global aesthetic improvement scores ranged from 1 to 3 with an average of 1.58 indicating a much-improved overall appearance. Satisfaction was high for both physicians and patients with scores corresponding to extremely satisfied/satisfied. Precise, effective

  10. A continuous measure of gross primary production for the conterminous United States derived from MODIS and AmeriFlux data

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Jingfeng [Purdue University; Zhuang, Qianlai [Purdue University; Law, Beverly E. [Oregon State University; Chen, Jiquan [University of Toledo, Toledo, OH; Baldocchi, D. D. [University of California, Berkeley; Ma, Siyan [University of California, Berkeley; Cook, David R. [Argonne National Laboratory (ANL); Oren, Ram [Duke University; Katul, G. G. [Duke University; Gu, Lianhong [ORNL


    The quantification of carbon fluxes between the terrestrial biosphere and the atmosphere is of scientific importance and also relevant to climate-policy making. Eddy covariance flux towers provide continuous measurements of ecosystem-level exchange of carbon dioxide spanning diurnal, synoptic, seasonal, and interannual time scales. However, these measurements only represent the fluxes at the scale of the tower footprint. Here we used remotely sensed data from the Moderate Resolution Imaging Spectroradiometer (MODIS) to upscale gross primary productivity (GPP) data from eddy covariance flux towers to the continental scale. We first combined GPP and MODIS data for 42 AmeriFlux towers encompassing a wide range of ecosystem and climate types to develop a predictive GPP model using a regression tree approach. The predictive model was trained using observed GPP over the period 2000 2004, and was validated using observed GPP over the period 2005 2006 and leave-one-out cross-validation. Our model predicted GPP fairly well at the site level. We then used the model to estimate GPP for each 1 km 1 km cell across the U.S. for each 8-day interval over the period from February 2000 to December 2006 using MODIS data. Our GPP estimates provide a spatially and temporally continuous measure of gross primary production for the U.S. that is a highly constrained by eddy covariance flux data. Our study demonstrated that our empirical approach is effective for upscaling eddy flux GPP data to the continental scale and producing continuous GPP estimates across multiple biomes. With these estimates, we then examined the patterns, magnitude, and interannual variability of GPP. We estimated a gross carbon uptake between 6.91 and 7.33 Pg C yr 1 for the conterminous U.S. Drought, fires, and hurricanes reduced annual GPP at regional scales and could have a significant impact on the U.S. net ecosystem carbon exchange. The sources of the interannual variability of U.S. GPP were dominated by these

  11. A continuous measure of gross primary production for the conterminous United States derived from MODIS and AmeriFlux data

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Jingfeng; Zhuang, Qianlai; Law, Beverly E.; Chen, Jiquan; Baldocchi, Dennis D.; Cook, David R.; Oren, Ram; Richardson, Andrew D.; Wharton, Sonia; Ma, Siyan


    The quantification of carbon fluxes between the terrestrial biosphere and the atmosphere is of scientific importance and also relevant to climate-policy making. Eddy covariance flux towers provide continuous measurements of ecosystem-level exchange of carbon dioxide spanning diurnal, synoptic, seasonal, and interannual time scales. However, these measurements only represent the fluxes at the scale of the tower footprint. Here we used remotely sensed data from the Moderate Resolution Imaging Spectroradiometer (MODIS) to upscale gross primary productivity (GPP) data from eddy covariance flux towers to the continental scale. We first combined GPP and MODIS data for 42 AmeriFlux towers encompassing a wide range of ecosystem and climate types to develop a predictive GPP model using a regression tree approach. The predictive model was trained using observed GPP over the period 2000–2004, and was validated using observed GPP over the period 2005–2006 and leave-one-out cross-validation. Our model predicted GPP fairly well at the site level. We then used the model to estimate GPP for each 1 km×1 km cell across the U.S. for each 8-day interval over the period from February 2000 to December 2006 using MODIS data. Our GPP estimates provide a spatially and temporally continuous measure of gross primary production for the U.S. that is a highly constrained by eddy covariance flux data. Our study demonstrated that our empirical approach is effective for upscaling eddy flux GPP data to the continental scale and producing continuous GPP estimates across multiple biomes. With these estimates, we then examined the patterns, magnitude, and interannual variability of GPP. We estimated a gross carbon uptake between 6.91 and 7.33 Pg C yr-1 for the conterminous U.S. Drought, fires, and hurricanes reduced annual GPP at regional scales and could have a significant impact on the U.S. net ecosystem carbon exchange. The sources of the interannual variability of U.S. GPP were

  12. Continuous theta-burst stimulation to primary motor cortex reveals asymmetric compensation for sensory attenuation in bimanual repetitive force production. (United States)

    Therrien, Amanda S; Lyons, James; Balasubramaniam, Ramesh


    Studies of fingertip force production have shown that self-produced forces are perceived as weaker than externally generated forces. This is due to mechanisms of sensory reafference where the comparison between predicted and actual sensory feedback results in attenuated perceptions of self-generated forces. Without an external reference to calibrate attenuated performance judgments, a compensatory overproduction of force is exhibited. It remains unclear whether the force overproduction seen in the absence of visual reference stimuli differs when forces are produced bimanually. We studied performance of two versions of a bimanual sequential force production task compared with each hand performing the task unimanually. When the task goal was shared, force series produced by each hand in bimanual conditions were found to be uncorrelated. When the bimanual task required each hand to reach a target force level, we found asymmetries in the degree of force overproduction between the hands following visual feedback removal. Unilateral continuous theta-burst stimulation of the left primary motor cortex yielded a selective reduction of force overproduction in the hand contralateral to stimulation by disrupting sensory reafference processes. While variability was lower in bimanual trials when the task goal was shared, this influence of hand condition disappeared when the target force level was to be reached by each hand simultaneously. Our findings strengthen the notion that force control in bimanual action is less tightly coupled than other mechanisms of bimanual motor control and show that this effector specificity may be extended to the processing and compensation for mechanisms of sensory reafference.

  13. Exploring Interacting Quantum Many-Body Systems by Experimentally Creating Continuous Matrix Product States in Superconducting Circuits

    Directory of Open Access Journals (Sweden)

    C. Eichler


    Full Text Available Improving the understanding of strongly correlated quantum many-body systems such as gases of interacting atoms or electrons is one of the most important challenges in modern condensed matter physics, materials research, and chemistry. Enormous progress has been made in the past decades in developing both classical and quantum approaches to calculate, simulate, and experimentally probe the properties of such systems. In this work, we use a combination of classical and quantum methods to experimentally explore the properties of an interacting quantum gas by creating experimental realizations of continuous matrix product states—a class of states that has proven extremely powerful as a variational ansatz for numerical simulations. By systematically preparing and probing these states using a circuit quantum electrodynamics system, we experimentally determine a good approximation to the ground-state wave function of the Lieb-Liniger Hamiltonian, which describes an interacting Bose gas in one dimension. Since the simulated Hamiltonian is encoded in the measurement observable rather than the controlled quantum system, this approach has the potential to apply to a variety of models including those involving multicomponent interacting fields. Our findings also hint at the possibility of experimentally exploring general properties of matrix product states and entanglement theory. The scheme presented here is applicable to a broad range of systems exploiting strong and tunable light-matter interactions.

  14. A modified indirect mathematical model for evaluation of ethanol production efficiency in industrial-scale continuous fermentation processes. (United States)

    Canseco Grellet, M A; Castagnaro, A; Dantur, K I; De Boeck, G; Ahmed, P M; Cárdenas, G J; Welin, B; Ruiz, R M


    To calculate fermentation efficiency in a continuous ethanol production process, we aimed to develop a robust mathematical method based on the analysis of metabolic by-product formation. This method is in contrast to the traditional way of calculating ethanol fermentation efficiency, where the ratio between the ethanol produced and the sugar consumed is expressed as a percentage of the theoretical conversion yield. Comparison between the two methods, at industrial scale and in sensitivity studies, showed that the indirect method was more robust and gave slightly higher fermentation efficiency values, although fermentation efficiency of the industrial process was found to be low (~75%). The traditional calculation method is simpler than the indirect method as it only requires a few chemical determinations in samples collected. However, a minor error in any measured parameter will have an important impact on the calculated efficiency. In contrast, the indirect method of calculation requires a greater number of determinations but is much more robust since an error in any parameter will only have a minor effect on the fermentation efficiency value. The application of the indirect calculation methodology in order to evaluate the real situation of the process and to reach an optimum fermentation yield for an industrial-scale ethanol production is recommended. Once a high fermentation yield has been reached the traditional method should be used to maintain the control of the process. Upon detection of lower yields in an optimized process the indirect method should be employed as it permits a more accurate diagnosis of causes of yield losses in order to correct the problem rapidly. The low fermentation efficiency obtained in this study shows an urgent need for industrial process optimization where the indirect calculation methodology will be an important tool to determine process losses. © 2016 The Society for Applied Microbiology.

  15. Immediate, single stage, truly anatomic zirconia implant in lower molar replacement: a case report with 2.5 years follow-up. (United States)

    Pirker, W; Wiedemann, D; Lidauer, A; Kocher, A A


    This report demonstrates the clinical use of a modified, truly anatomic, root-analogue zirconia implant for immediate replacement of a two-rooted, left first mandibular molar. A 50-year-old female patient with chronic apical periodontitis of the left mandibulary first molar was referred and the tooth was extracted. The mesial root had to be removed surgically due to a root fracture. A truly anatomical, root identical, roughened zirconia implant modified by macro-retentions was manufactured and placed into the extraction socket by tapping 7 days later. After 4 months a composite crown was cemented in place. No complications occurred during the healing period. A good functional and aesthetic result was achieved with minimal bone resorption and soft tissue recession at 30 months follow-up. This report describes the successful clinical use of an immediate, single stage, truly anatomical root-analogue zirconia implant for replacement of a two-rooted tooth. Significant modifications such as macro-retentions yielded primary stability and excellent osseointegration. This novel approach is minimally invasive, respects the underlying anatomy, aids socket prevention, is time- and cost-saving with good patient acceptance as there is no need for bone drilling, sinus lift, bone augmentation or other traumatic procedures. Copyright © 2010 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  16. Enhancement of the complete autotrophic nitrogen removal over nitrite process in a modified single-stage subsurface vertical flow constructed wetland: Effect of saturated zone depth. (United States)

    Huang, Menglu; Wang, Zhen; Qi, Ran


    This study was conducted to explore enhancement of the complete autotrophic nitrogen removal over nitrite (CANON) process in a modified single-stage subsurface vertical flow constructed wetland (VSSF) with saturated zone, and nitrogen transformation pathways in the VSSF treating digested swine wastewater were investigated at four different saturated zone depths (SZDs). SZD significantly affected nitrogen transformation pathways in the VSSF throughout the experiment. As the SZD was 45cm, the CANON process was enhanced most effectively in the system owing to the notable enhancement of anammox. Correspondingly, the VSSF had the best TN removal performance [(76.74±7.30)%] and lower N 2 O emission flux [(3.50±0.22)mg·(m 2 ·h) - 1 ]. It could be concluded that autotrophic nitrogen removal via CANON process could become a primary route for nitrogen removal in the VSSF with optimized microenvironment that developed as a result of the appropriate SZD. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. High flux coherent super-continuum soft X-ray source driven by a single-stage, 10mJ, Ti:sapphire amplifier-pumped OPA. (United States)

    Ding, Chengyuan; Xiong, Wei; Fan, Tingting; Hickstein, Daniel D; Popmintchev, Tenio; Zhang, Xiaoshi; Walls, Mike; Murnane, Margaret M; Kapteyn, Henry C


    We demonstrate the highest flux tabletop source of coherent soft X-rays to date, driven by a single-stage 10 mJ Ti:sapphire regenerative amplifier at 1 kHz. We first down-convert the laser to 1.3 µm using a parametric amplifier, before up-converting it to soft X-rays using high harmonic generation in a high-pressure, phase matched, hollow waveguide geometry. The resulting optimally phase matched broadband spectrum extends to 200 eV, with a soft X-ray photon flux of > 10(6) photons/pulse/1% bandwidth at 1 kHz, corresponding to > 10(9) photons/s/1% bandwidth, or approximately a three order-of-magnitude increase compared with past work. Finally, using this broad bandwidth X-ray source, we demonstrate X-ray absorption spectroscopy of multiple elements and transitions in molecules in a single spectrum, with a spectral resolution of 0.25 eV, and with the ability to resolve the near edge fine structure.

  18. Multi-analysis determination of tropane alkaloids in cereals and solanaceaes seeds by liquid chromatography coupled to single stage Exactive-Orbitrap. (United States)

    Marín-Sáez, Jesús; Romero-González, Roberto; Garrido Frenich, Antonia


    Tropane alkaloids are a wide group of substances that comprises more than 200 compounds occurring especially in the Solanaceae family. The main aim of this study is the development of a method for the analysis of the principal tropane alkaloids as atropine, scopolamine, anisodamine, tropane, tropine, littorine, homatropine, apoatropine, aposcopolamine, scopoline, tropinone, physoperuvine, pseudotropine and cuscohygrine in cereals and related matrices. For that, a simple solid-liquid extraction was optimized and a liquid chromatographic method coupled to a single stage Exactive-Orbitrap was developed. The method was validated obtaining recoveries in the range of 60-109% (except for some compounds in soy), precision values (expressed as relative standard deviation) lower than 20% and detection and quantification limits equal to or lower than 2 and 3μg/kg respectively. Finally, the method was applied to the analysis of different types of samples as buckwheat, linseed, soy and millet, obtaining positives for anisodamine, scopolamine, atropine, littorine and tropinone in a millet flour sample above the quantification limits, whereas atropine and scopolamine were detected in a buckwheat sample, below the quantification limit. Contaminated samples with Solanaceaes seeds (Datura Stramonium and Brugmansia Arborea) were also analysed, detecting concentrations up to 693μg/kg (scopolamine) for contaminated samples with Brugmansia seeds and 1847μg/kg (atropine) when samples were contaminated with Stramonium seeds. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Performance analysis of single stage libr-water absorption machine operated by waste thermal energy of internal combustion engine: Case study (United States)

    Sharif, Hafiz Zafar; Leman, A. M.; Muthuraman, S.; Salleh, Mohd Najib Mohd; Zakaria, Supaat


    Combined heating, cooling, and power is also known as Tri-generation. Tri-generation system can provide power, hot water, space heating and air -conditioning from single source of energy. The objective of this study is to propose a method to evaluate the characteristic and performance of a single stage lithium bromide-water (LiBr-H2O) absorption machine operated with waste thermal energy of internal combustion engine which is integral part of trigeneration system. Correlations for computer sensitivity analysis are developed in data fit software for (P-T-X), (H-T-X), saturated liquid (water), saturated vapor, saturation pressure and crystallization temperature curve of LiBr-H2O Solution. Number of equations were developed with data fit software and exported into excel work sheet for the evaluation of number of parameter concerned with the performance of vapor absorption machine such as co-efficient of performance, concentration of solution, mass flow rate, size of heat exchangers of the unit in relation to the generator, condenser, absorber and evaporator temperatures. Size of vapor absorption machine within its crystallization limits for cooling and heating by waste energy recovered from exhaust gas, and jacket water of internal combustion engine also presented in this study to save the time and cost for the facilities managers who are interested to utilize the waste thermal energy of their buildings or premises for heating and air conditioning applications.

  20. Control Strategies for Drug Product Continuous Direct Compression-State of Control, Product Collection Strategies, and Startup/Shutdown Operations for the Production of Clinical Trial Materials and Commercial Products. (United States)

    Almaya, Ahmad; De Belder, Lawrence; Meyer, Robert; Nagapudi, Karthik; Lin, Hung-Ren Homer; Leavesley, Ian; Jayanth, Jayanthy; Bajwa, Gurjit; DiNunzio, James; Tantuccio, Anthony; Blackwood, Dan; Abebe, Admassu


    Continuous manufacturing (CM) has emerged in the pharmaceutical industry as a paradigm shift with significant advantages related to cost, efficiency, flexibility, and higher assurance of quality. The inherent differences from batch processes justify examining the CM control strategy more holistically. This article describes the current thinking for the control and implementation of CM, using the example of a direct compression process and taking into consideration the ICH Q10 definition of "state of control" and process validation requirements. Statistical process control using control charts, sources of variation, process capability, and process performance is explained as a useful concept that can help assess the impact of variation within a batch and indicates if a process is in state of control. The potential for time-variant nature of startup and shutdown with CM is discussed to assure product quality while minimizing waste as well as different options for detection and isolation of non-conforming materials due to process upsets. While different levels of control are possible with CM, an appropriate balance between process control and end product testing is needed depending on the level of process understanding at the different stages of development from the production of clinical supplies through commercialization. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  1. Batch and continuous production of stable dense suspensions of drug nanoparticles in a wet stirred media mill (United States)

    Afolabi, Afola we mi

    One way to improve the bioavailability of poorly water-soluble drugs is to reduce particle size of drug crystals down to nanoscale via wet stirred media milling. An increase in total surface area per mass loading of the drug and specific surface area as well as reduced external mass transfer resistance allow a faster dissolution of the poorly-water soluble drug from nanocrystals. To prevent aggregation of nanoparticles, polymers and surfactants are dissolved in water acting as stabilizers via adsorption onto the drug crystals. In the last two decades, ample experimental data were generated in the area of wet stirred media milling for the production of drug nanoparticle suspensions. However, a fundamental scientific/engineering understanding of various aspects of this process is still lacking. These challenges include elucidation of the governing mechanism(s) during nanoparticle formation and physical stabilization of the nanosuspension with the use of polymers and surfactants (formulation parameters), understanding the impact of process parameters in the context of first-principle-based models, and production of truly nanosized drug particles (10-100 nm) with acceptable physical stability and minimal contamination with the media. Recirculation mode of milling operation, where the drug suspension in a holding tank continuously circulates through the stirred media mill, has been commonly used in lab, pilot, and commercial scales. Although the recirculation is continuous, the recirculation operation mode is overall a batch operation, requiring significant number of batches for a large-volume pharmaceutical product. Hence, development and investigation of a truly continuous process should offer significant advantages. To explain the impact of some of the processing parameters, stress intensity and stress number concepts were widely used in literature, which do not account for the effect of suspension viscosity explicitly. The impact of the processing parameters has not

  2. Evaluation of gene expression and alginate production in response to oxygen transfer in continuous culture of Azotobacter vinelandii.

    Directory of Open Access Journals (Sweden)

    Alvaro Díaz-Barrera

    Full Text Available Alginates are polysaccharides used as food additives and encapsulation agents in biotechnology, and their functional properties depend on its molecular weight. In this study, different steady-states in continuous cultures of A. vinelandii were established to determine the effect of the dilution rate (D and the agitation rate on alginate production and expression of genes involved in alginate polymerization and depolymerization. Both, the agitation and dilution rates, determined the partitioning of the carbon utilization from sucrose into alginate and CO2 under oxygen-limiting conditions. A low D (0.07 h(-1 and 500 rpm resulted in the highest carbon utilization into alginate (25%. Quantitative real-time polymerase chain reaction was used to determine the transcription level of six genes involved in alginate polymerization and depolymerization. In chemostat cultures at 0.07 h(-1, the gene expression was affected by changes in the agitation rate. By increasing the agitation rate from 400 to 600 rpm, the algE7 gene expression decreased tenfold, whereas alyA1, algL and alyA2 gene expression increased between 1.5 and 2.8 times under similar conditions evaluated. Chemostat at 0.07 h(-1 showed a highest alginate molecular weight (580 kDa at 500 rpm whereas similar molecular weights (480 kDa were obtained at 400 and 600 rpm. The highest molecular weight was not explained by changes in the expression of alg8 and alg44 (genes involved in alginate polymerization. Nonetheless, a different expression pattern observed for lyases could explain the highest alginate molecular weight obtained. Overall, the results suggest that the control of alginate molecular weight in A. vinelandii cells growing in continuous mode is determined by a balance between the gene expression of intracellular and extracellular lyases in response to oxygen availability. These findings better our understanding of the biosynthesis of bacterial alginate and help us progress toward obtain

  3. Production of ethyl ester from crude palm oil by two-step reaction using continuous microwave system

    Directory of Open Access Journals (Sweden)

    Sukritthira Ratanawilai


    Full Text Available The esterification of free fatty acids (FFA in vegetable oils with alcohol using an acid catalyst is a promising methodto convert FFA into valuable ester and obtain a FFA-free oil that can be further transesterified using alkali bases. In thiswork, the direct esterification reaction of FFA in crude palm oil to ethyl ester by continuous microwave was studied and theeffects of the main variables involved in the process, amount of catalyst, reaction time and the molar ratio oil/ alcohol, wereanalyzed. The optimum condition for the continuous esterification process was carried out with a molar ratio of oil to ethanol1:6, using 1.25%wt of H2SO4/oil as a catalyst, microwave power of 78 W and a reaction time 90 min. This esterification processshows that the amount of FFA was reduced from 7.5%wt to values around 1.4 %wt. Similar results were obtained followingconventional heating at 70°C, but only after a reaction time of 240 min. The esterified crude palm oil is suitable to perform thetransesterification process. Transesterification of the esterified palm oil has been accomplished with a molar ratio of oil toethanol of 1:8.5, 2.5%wt of KOH as a catalyst, a microwave power of 78 W, and a reaction time of 7 min. In addition, theproblem of glycerin separation was solved by mixing 10%wt of pure glycerin into the ethyl ester to induce the glycerin fromthe reaction to separated. This two-step esterification and transesterification process provided a yield of 78%wt with anester content of 97.4%wt. The final ethyl ester product met with the specifications stipulated by ASTM D6751-02.

  4. Deformation and fatigue of tough 3D printed elastomer scaffolds processed by fused deposition modeling and continuous liquid interface production. (United States)

    Miller, Andrew T; Safranski, David L; Wood, Catherine; Guldberg, Robert E; Gall, Ken


    Polyurethane (PU) based elastomers continue to gain popularity in a variety of biomedical applications as compliant implant materials. In parallel, advancements in additive manufacturing continue to provide new opportunities for biomedical applications by enabling the creation of more complex architectures for tissue scaffolding and patient specific implants. The purpose of this study was to examine the effects of printed architecture on the monotonic and cyclic mechanical behavior of elastomeric PUs and to compare the structure-property relationship across two different printing approaches. We examined the tensile fatigue of notched specimens, 3D crosshatch scaffolds, and two 3D spherical pore architectures in a physically crosslinked polycarbonate urethane (PCU) printed via fused deposition modeling (FDM) as well as a photo-cured, chemically-crosslinked, elastomeric PU printed via continuous liquid interface production (CLIP). Both elastomers were relatively tolerant of 3D geometrical features as compared to stiffer synthetic implant materials such as PEEK and titanium. PCU and crosslinked PU samples with 3D porous structures demonstrated a reduced tensile failure stress as expected without a significant effect on tensile failure strain. PCU crosshatch samples demonstrated similar performance in strain-based tensile fatigue as solid controls; however, when plotted against stress amplitude and adjusted by porosity, it was clear that the architecture had an impact on performance. Square shaped notches or pores in crosslinked PU appeared to have a modest effect on strain-based tensile fatigue while circular shaped notches and pores had little impact relative to smooth samples. When plotted against stress amplitude, any differences in fatigue performance were small or not statistically significant for crosslinked PU samples. Despite the slight difference in local architecture and tolerances, crosslinked PU solid samples were found to perform on par with PCU solid

  5. Modeling the CO2 and N2O Emissions From Stover Removal for Biofuel Production From Continuous Corn Production in Iowa (United States)

    Paustian, K.; Killian, K.; Brenner, J.


    Corn stover, an agricultural residue, can be used as feedstock for near term bioethanol production and is available today at levels that can significantly impact energy supply. We evaluated the environmental impact of such a large-scale change in agricultural practices on green house gas production, soil erosion and soil carbon using the Century model. Estimates of soil C changes and GHG emissions were performed for the 99 counties in Iowa where previous environmental, management and erosion data was available. We employed climate, soil and historical management databases from a separate USDA-funded project as input to Century. RUSLE estimates of the residue requirements for acceptable soil loss rates under continuous corn agriculture were available from a previous study done Dr. Richard Nelson (Enersol Resources). Two mulch tillage and a no-till systems, where erosion estimates were available, were used as the basis for the simulations. Century simulations of these systems were run under a variety of stover removal rates. For each soil type within each county the model was run for 15 years (1980-1995) under continuous corn with convention tillage, and full residue return. Model simulation of crop yields and residue production were then calibrated to match those used by the Polysys model team at Oak Ridge and the simulation was repeated with the addition of the three corn tillage regimes, and several residue removal rates. County-average soil C changes (and net CO2 emissions) were calculated as area-weighted averages of the individual soil types in each county. For this study, we have utilized the IPCC approach to estimate annual N2O emissions. At low or zero residue removal rates, county-averaged soil C stocks were predicted to increase (i.e. net CO2 emissions are negative). Where the allowable residue removal rates (based on erosion tolerance) for mulch-tillage are on the order of 40-50% or more, the reduced input of C is such that the soils no longer sequester C

  6. Process design and control of a twin screw hot melt extrusion for continuous pharmaceutical tamper-resistant tablet production. (United States)

    Baronsky-Probst, J; Möltgen, C-V; Kessler, W; Kessler, R W


    Hot melt extrusion (HME) is a well-known process within the plastic and food industries that has been utilized for the past several decades and is increasingly accepted by the pharmaceutical industry for continuous manufacturing. For tamper-resistant formulations of e.g. opioids, HME is the most efficient production technique. The focus of this study is thus to evaluate the manufacturability of the HME process for tamper-resistant formulations. Parameters such as the specific mechanical energy (SME), as well as the melt pressure and its standard deviation, are important and will be discussed in this study. In the first step, the existing process data are analyzed by means of multivariate data analysis. Key critical process parameters such as feed rate, screw speed, and the concentration of the API in the polymers are identified, and critical quality parameters of the tablet are defined. In the second step, a relationship between the critical material, product and process quality attributes are established by means of Design of Experiments (DoEs). The resulting SME and the temperature at the die are essential data points needed to indirectly qualify the degradation of the API, which should be minimal. NIR-spectroscopy is used to monitor the material during the extrusion process. In contrast to most applications in which the probe is directly integrated into the die, the optical sensor is integrated into the cooling line of the strands. This saves costs in the probe design and maintenance and increases the robustness of the chemometric models. Finally, a process measurement system is installed to monitor and control all of the critical attributes in real-time by means of first principles, DoE models, soft sensor models, and spectroscopic information. Overall, the process is very robust as long as the screw speed is kept low. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Removal of estrogenic compounds from filtered secondary wastewater effluent in a continuous enzymatic membrane reactor. Identification of biotransformation products. (United States)

    Lloret, Lucia; Eibes, Gemma; Moreira, M Teresa; Feijoo, Gumersindo; Lema, Juan M


    In the present study, a novel and efficient technology based on the use of an oxidative enzyme was developed to perform the continuous removal of estrogenic compounds from polluted wastewaters. A 2 L enzymatic membrane reactor (EMR) was successfully operated for 100 h with minimal requirements of laccase for the transformation of estrone (E1), 17β-estradiol (E2), and 17α-ethinylestradiol (EE2)from both buffer solution and real wastewater (filtered secondary effluent). When the experiments were performed at high and low concentrations of the target compounds, 4 mg/L and 100 μg/L, not only high removal yields (80-100%) but also outstanding reduction of estrogenicity (about 84-95%) were attained. When the EMR was applied for the treatment of municipal wastewaters with real environmental concentrations of the different compounds (0.29-1.52 ng/L), excellent results were also achieved indicating the high efficiency and potential of the enzymatic reactor system. A second goal of this study relied on the identification of the transformation products to elucidate the catalytic mechanism of estrogens' transformation by laccase. The formation of dimers and trimers of E1, E2, and EE2, as well as the decomposition of E2 into E1 by laccase-catalyzed treatment, has been demonstrated by liquid chromatography atmospheric pressure chemical ionization (LC-APCI) analysis and confirmed by determination of accurate masses through liquid chromatography electrospray time-of-flight mass spectrometry (LC-ESI-TOF). Dimeric products of E2 and EE2 were found even when operating at environmental concentrations. Moreover, the reaction pathways of laccase-catalyzed transformation of E2 were proposed.

  8. Use of pilot plant scale continuous fryer to simulate industrial production of potato chips: thermal properties of palm olein blends under continuous frying conditions (United States)

    Tarmizi, Azmil Haizam Ahmad; Ismail, Razali


    Binary blends of palm olein (PO) with sunflower oil (SFO), canola oil (CNO), and cottonseed oil (CSO) were formulated to assess their stability under continuous frying conditions. The results were then compared with those obtained in PO. The oil blends studied were: (1) 60:40 for PO + SFO; (2) 70:30 for PO + CNO; and (3) 50:50 for PO + CSO. The PO and its blends were used to fry potato chips at 180°C for a total of 56 h of operation. The evolution of analytical parameters such as tocols, induction period, color, p-anisidine value, free fatty acid, smoke point, polar compounds, and polymer compounds were evaluated over the frying time. Blending PO with unsaturated oils was generally proved to keep most qualitative parameters comparable to those demonstrated in PO. Indeed, none of the oils surpassed the legislative limits for used frying. Overall, it was noted that oil containing PO and SFO showed higher resistance toward oxidative and hydrolytic behaviors as compared to the other oil blends. PMID:24804062

  9. Use of pilot plant scale continuous fryer to simulate industrial production of potato chips: thermal properties of palm olein blends under continuous frying conditions. (United States)

    Tarmizi, Azmil Haizam Ahmad; Ismail, Razali


    Binary blends of palm olein (PO) with sunflower oil (SFO), canola oil (CNO), and cottonseed oil (CSO) were formulated to assess their stability under continuous frying conditions. The results were then compared with those obtained in PO. The oil blends studied were: (1) 60:40 for PO + SFO; (2) 70:30 for PO + CNO; and (3) 50:50 for PO + CSO. The PO and its blends were used to fry potato chips at 180°C for a total of 56 h of operation. The evolution of analytical parameters such as tocols, induction period, color, p-anisidine value, free fatty acid, smoke point, polar compounds, and polymer compounds were evaluated over the frying time. Blending PO with unsaturated oils was generally proved to keep most qualitative parameters comparable to those demonstrated in PO. Indeed, none of the oils surpassed the legislative limits for used frying. Overall, it was noted that oil containing PO and SFO showed higher resistance toward oxidative and hydrolytic behaviors as compared to the other oil blends.

  10. A Universal Ts-VI Triangle Method for the Continuous Retrieval of Evaporative Fraction From MODIS Products (United States)

    Zhu, Wenbin; Jia, Shaofeng; Lv, Aifeng


    The triangle method based on the spatial relationship between remotely sensed land surface temperature (Ts) and vegetation index (VI) has been widely used for the estimates of evaporative fraction (EF). In the present study, a universal triangle method was proposed by transforming the Ts-VI feature space from a regional scale to a pixel scale. The retrieval of EF is only related to the boundary conditions at pixel scale, regardless of the Ts-VI configuration over the spatial domain. The boundary conditions of each pixel are composed of the theoretical dry edge determined by the surface energy balance principle and the wet edge determined by the average air temperature of open water. The universal triangle method was validated using the EF observations collected by the Energy Balance Bowen Ratio systems in the Southern Great Plains of the United States of America (USA). Two parameterization schemes of EF were used to demonstrate their applicability with Terra Moderate Resolution Imaging Spectroradiometer (MODIS) products over the whole year 2004. The results of this study show that the accuracy produced by both of these two parameterization schemes is comparable to that produced by the traditional triangle method, although the universal triangle method seems specifically suited to the parameterization scheme proposed in our previous research. The independence of the universal triangle method from the Ts-VI feature space makes it possible to conduct a continuous monitoring of evapotranspiration and soil moisture. That is just the ability the traditional triangle method does not possess.

  11. Impact of heterotrophically stressed algae for biofuel production via hydrothermal liquefaction and catalytic hydrotreating in continuous-flow reactors

    Energy Technology Data Exchange (ETDEWEB)

    Albrecht, Karl O.; Zhu, Yunhua; Schmidt, Andrew J.; Billing, Justin M.; Hart, Todd R.; Jones, Susanne B.; Maupin, Gary; Hallen, Richard; Ahrens, Toby; Anderson, Daniel


    Two algal feedstocks were prepared for direct comparison of their properties when converted to liquid hydrocarbon fuel. The first feedstock was prepared by growing an algal strain phototrophically using a bio-film based approach. The second feedstock employed the same algal strain but was stressed heterotrophically to significantly increase the lipid concentration. The algal feedstocks were converted to liquid hydrocarbon fuels. First, the whole algae (i.e. not defatted or lipid extracted) were converted to an intermediate biocrude using continuous hydrothermal liquefaction (HTL) at 350°C and 3000 psig. The biocrudes were subsequently upgraded via catalytic hydrotreating (HT) at 400°C and 1500 psig to remove oxygen and nitrogen as well as increase the hydrogen-to-carbon ratio. The yield and composition of the products from HTL and HT processing of the feedstocks are compared. A techno-economic analysis of the process for converting each feedstock to liquid fuels was also conducted. The capital and operating costs associated with converting the feedstocks to finished transportation fuels are reported. A fuel minimum selling price is presented as a function of the cost of the algal feedstock delivered to the HTL conversion plant.

  12. Exergy analysis of an experimental single-stage heat transformer operating with single water/lithium bromide and using additives (1-octanol and 2-ethyl-1-hexanol)

    International Nuclear Information System (INIS)

    Rivera, W.; Martinez, H.; Cerezo, J.; Romero, R.J.; Cardoso, M.J.


    Second law of Thermodynamics has been used to analyze the performance of an experimental single-stage heat transformer operating with the water/lithium bromide as single working pair and subsequently, using 1-octanol and 2-ethyl-1-hexanol as additives. Additives have been used in order to increase the heat transfer in the absorber and generator decreasing their irreversibilities. The enthalpy-based coefficients of performance (COP), external coefficients of performance (COP EXT ), exergy-based coefficients of performance (ECOP) and the irreversibilities of the equipment components were calculated for the main operating temperatures of the system. The results showed that for absorber temperatures between 84 o C and 88 o C the highest COP, COP EXT , and ECOP are obtained with the use of the 2-ethyl-1-hexanol (400 parts per million) additive, reaching values up to 0.49, 0.40 and 0.43, respectively. The lowest coefficients of performance and highest irreversibilities were obtained by using the single water/lithium bromide mixture. Analysing the irreversibilities in each one of the main components of the system, it was found that 2-ethyl-1-hexanol decreases considerably the irreversibility in the absorber then increasing the efficiency of this component and hence of the entire equipment. - Highlights: → An exergy analysis has been used to analyze an experimental heat transformer. → The system operated with single water/lithium bromide and then adding two additives. → The additives were 1-octanol and 2-ethyl-1-hexanol. → The 2-ethyl-1-hexanol additive reduced the system irreversibilities. → The highest coefficients of performance were obtained with the 2-ethyl-1-hexanol additive.

  13. Evaluation of a single-stage consumable-free modulator for comprehensive two-dimensional gas chromatography: analysis of polychlorinated biphenyls, organochlorine pesticides and chlorobenzenes. (United States)

    Muscalu, Alina M; Edwards, Matthew; Górecki, Tadeusz; Reiner, Eric J


    Comprehensive two-dimensional gas chromatography (GC×GC) has been rapidly growing in popularity. The GC×GC separation is performed by interfacing a modulator between two columns of different selectivities. The modulator periodically traps and then re-injects the analytes eluting from the first column into the second column. The most popular GC×GC systems require consumables such as liquid N2 for the trapping function of the modulator. Although these systems are very effective, their costs are a hindrance to more widespread use. A new, single-stage thermal modulator for GC×GC that requires no consumables has been developed and tested. The device traps analytes using a proprietary stainless steel capillary trap compressed between two ceramic cooling pads. Analytes are thermally desorbed from the trap into the second column via resistive heating. To evaluate this system, a routine accredited method for the analysis of polychlorinated biphenyls, organochlorine pesticides and chlorobenzenes was run using the new modulator and its performance was compared to that of an industry standard modulation system. Within-day repeatability (% RSD ranging from 2% to 13%), between-day reproducibility (% RSD from 3% to 15%), as well as between-trap reproducibility were assessed. The results are very encouraging as negligible shifts in retention times (% RSD from 0.3% to 0.6% in the 1st dimension and 0.8% to 2% in the 2nd dimension) were observed for both within-day and day-to-day comparisons of the studied samples (ANOVA, p=0.9893 for the sediment reference material compared), and the quantitative results were comparable. Routine analysis and quality control applications will benefit from the improved reproducibility as the variances in cold/hot jet flows and temperatures are eliminated. An overview of the device operation and the results from this study are summarized. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. A Collaborative Analysis Tool for Integrating Hypersonic Aerodynamics, Thermal Protection Systems, and RBCC Engine Performance for Single Stage to Orbit Vehicles (United States)

    Stanley, Thomas Troy; Alexander, Reginald


    Presented is a computer-based tool that connects several disciplines that are needed in the complex and integrated design of high performance reusable single stage to orbit (SSTO) vehicles. Every system is linked to every other system, as is the case of SSTO vehicles with air breathing propulsion, which is currently being studied by NASA. The deficiencies in the scramjet powered concept led to a revival of interest in Rocket-Based Combined-Cycle (RBCC) propulsion systems. An RBCC propulsion system integrates airbreathing and rocket propulsion into a single engine assembly enclosed within a cowl or duct. A typical RBCC propulsion system operates as a ducted rocket up to approximately Mach 3. At this point the transitions to a ramjet mode for supersonic-to-hypersonic acceleration. Around Mach 8 the engine transitions to a scram4jet mode. During the ramjet and scramjet modes, the integral rockets operate as fuel injectors. Around Mach 10-12 (the actual value depends on vehicle and mission requirements), the inlet is physically closed and the engine transitions to an integral rocket mode for orbit insertion. A common feature of RBCC propelled vehicles is the high degree of integration between the propulsion system and airframe. At high speeds the vehicle forebody is fundamentally part of the engine inlet, providing a compression surface for air flowing into the engine. The compressed air is mixed with fuel and burned. The combusted mixture must be expanded to an area larger than the incoming stream to provide thrust. Since a conventional nozzle would be too large, the entire lower after body of the vehicle is used as an expansion surface. Because of the high external temperatures seen during atmospheric flight, the design of an airbreathing SSTO vehicle requires delicate tradeoffs between engine design, vehicle shape, and thermal protection system (TPS) sizing in order to produce an optimum system in terms of weight (and cost) and maximum performance.

  15. Influence of Different Tibial Fixation Techniques on Initial Stability in Single-Stage Anterior Cruciate Ligament Revision With Confluent Tibial Tunnels: A Biomechanical Laboratory Study. (United States)

    Schliemann, Benedikt; Treder, Maximilian; Schulze, Martin; Müller, Viktoria; Vasta, Sebastiano; Zampogna, Biaggio; Herbort, Mirco; Kösters, Clemens; Raschke, Michael J; Lenschow, Simon


    To kinematically and biomechanically compare 4 different types of tibial tunnel management in single-stage anterior cruciate ligament (ACL) revision reconstruction with the control: primary ACL reconstruction using a robotic-based knee testing setup. Porcine knees and flexor tendons were used. One hundred specimens were randomly assigned to 5 testing groups: (1) open tibial tunnel, (2) bone plug technique, (3) biodegradable interference screw, (4) dilatation technique, and (5) primary ACL reconstruction. A robotic/universal force-moment sensor testing system was used to simulate the KT-1000 (MEDmetric, San Diego, CA) and pivot-shift tests. Cyclic loading and load-to-failure testing were performed. Anterior tibial translation increased significantly with all of the techniques compared with the intact ACL (P .05). The open tunnel and dilated tunnel techniques showed significantly greater anterior tibial translation (P < .05). The results of the simulated pivot-shift test were in accordance with those of the KT-1000 test. No significant differences could be observed regarding stiffness or maximum load to failure. However, elongation was significantly lower in the primary ACL reconstruction group compared with groups 1 and 3 (P = .02 and P = .03, respectively). Filling an incomplete and incorrect tibial tunnel with a press-fit bone plug or a biodegradable interference screw in a standardized laboratory situation provided initial biomechanical properties and knee stability comparable with those of primary ACL reconstruction. In contrast, the dilatation technique or leaving the malplaced tunnel open did not restore knee kinematics adequately in this model. Backup extracortical fixation should be considered because the load to failure depends on the extracortical fixation when an undersized interference screw is used for aperture fixation. Our biomechanical results could help orthopaedic surgeons to optimize the results of primary ACL revision with incomplete, incorrect

  16. Post-Burn Skin Deformities of the Face and Neck Region in Pediatric Patients: Single-Stage Treatment Using Collagen Elastin Matrix

    Directory of Open Access Journals (Sweden)

    Çağlayan Yağmur


    Full Text Available Objective: Treating severe post-burn deformities of the face and neck region in pediatric populations is challenging because of technical difficulties (e.g., limited full thickness skin graft donor site, limited flap options, unavailability for expander placement and increased donor site morbidity (e.g., related to flap and graft donor sites. In this study, we present the single-stage treatment of severe post-burn skin deformities of the face and neck region in pediatric patients using collagen-elastin matrix (Matriderm® combined with partial thickness skin grafts. Material and Methods: The total number of cases was eight (four females, four males, and the ages were between two and 11 years. All cases were operated on for only one region. Following the release of contractures and/or excision of wide excessive/ unfavorable dermal scars, defects were reconstructed using collagen- elastin matrix (Matriderm® combined with partial-thickness skin grafts. The final functional and aesthetic results were evaluated using photography and examination. Results: The deformities were in the form of contractures and/ or excessive dermal scarring. The involved regions were the face (n=3 and neck (n=5. The grafts yielded favorable plication and texture, and no recurrence of excessive dermal scarring was observed. All contractures healed unproblematically. Two patients were re-operated on for regrafting caused by minor graft loss (5% and 12% of the total area, respectively. Conclusion: In this study, we observed that collagen elastin matrix combined with partial-thickness skin grafts provides a favorable option for the treatment of pediatric late post-burn complications in the face and neck region with limited surgical options.

  17. The Phase Behavior Effect on the Reaction Engineering of Transesterification Reactions and Reactor Design for Continuous Biodiesel Production (United States)

    Csernica, Stephen N.

    transitions from two phases to a single phase, or pseudo-single phase. The transition to a single phase or pseudo-single phase is a function of the methanol content. Regardless, the maximum observed reaction rate occurs at the point of the phase transition, when the concentration of triglycerides in the methanol phase is largest. The phase transition occurs due to the accumulation of the primary product, biodiesel methyl esters. Through various experiments, it was determined that the rate of the triglyceride mass transfer into the methanol phase, as well as the solubility of triglycerides in methanol, increases with increasing methyl ester concentration. Thus, there exists some critical methyl ester concentration which favors the formation of a single or pseudo-single phase system. The effect of the by-product glycerol on the reaction kinetics was also investigated. It was determined that at low methanol to triglyceride molar ratios, glycerol acts to inhibit the reaction rate and limit the overall triglyceride conversion. This occurs because glycerol accumulates in the methanol phase, i.e. the primary reaction volume. When glycerol is at relatively high concentrations within the methanol phase, triglycerides become excluded from the reaction volume. This greatly reduces the reaction rate and limits the overall conversion. As the concentration of methanol is increased, glycerol becomes diluted and the inhibitory effects become dampened. Assuming pseudo-homogeneous phase behavior, a simple kinetic model incorporating the inhibitory effects of glycerol was proposed based on batch reactor data. The kinetic model was primarily used to theoretically compare the performance of different types of continuous flow reactors for continuous biodiesel production. It was determined that the inhibitory effects of glycerol result in the requirement of very large reactor volumes when using continuous stirred tank reactors (CSTR). The reactor volume can be greatly reduced using tubular style

  18. Synergistic dark and photo-fermentation continuous system for hydrogen production from molasses by Clostridium acetobutylicum ATCC 824 and Rhodobacter capsulatus DSM 1710. (United States)

    Morsy, Fatthy Mohamed


    This study investigated synergistic dark and photo-fermentation using continuous fermentation system (CFS). The system relies on connecting several fermenters from bottom of one to top culture level of the next in a manner that allows for delaying movement of the substrate and thus for its full consumption. While H 2 was collected, CFS allowed for moving liquid byproducts toward the outlet and hence continuous productivity. CFS could be efficiently used for: (1) Continuous dark and photo-fermentation H 2 production by Clostridium acetobutylicum and Rhodobacter capsulatus producing 5.65moleH 2 mole -1 hexose; (2) Continuous dark-fermentation synergistic H 2 , acetone, butanol and ethanol (ABE) production by C. acetobutylicum which produced per mole hexose, 2.43mol H 2 along with 73.08g ABE (3) Continuous H 2 and methane production by C. acetobutylicum and bacterial sludge producing, per mole hexose, 1.64mol pure H 2 and 2.56mol CH 4 mixed with 0.37mol H 2 ·The hydraulic retention time (HRT) for whole system was short where organic acids produced in dark-fermentation in first fermenter were synergistically utilized for H 2 production by R. capsulatus in subsequent fermenters. CFS is suitable for fast-digestible sugars but not lignocelluloses or other hard-digestible organics, requiring prolonged HRT, unless such polymeric organics were hydrolyzed prior to fermentation. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Membrane-Based Technologies in the Pharmaceutical Industry and Continuous Production of Polymer-Coated Crystals/Particles. (United States)

    Chen, Dengyue; Sirkar, Kamalesh K; Jin, Chi; Singh, Dhananjay; Pfeffer, Robert


    Membrane technologies are of increasing importance in a variety of separation and purification applications involving liquid phases and gaseous mixtures. Although the most widely used applications at this time are in water treatment including desalination, there are many applications in chemical, food, healthcare, paper and petrochemical industries. This brief review is concerned with existing and emerging applications of various membrane technologies in the pharmaceutical and biopharmaceutical industry. The goal of this review article is to identify important membrane processes and techniques which are being used or proposed to be used in the pharmaceutical and biopharmaceutical operations. How novel membrane processes can be useful for delivery of crystalline/particulate drugs is also of interest. Membrane separation technologies are extensively used in downstream processes for bio-pharmaceutical separation and purification operations via microfiltration, ultrafiltration and diafiltration. Also the new technique of membrane chromatography allows efficient purification of monoclonal antibodies. Membrane filtration techniques of reverse osmosis and nanofiltration are being combined with bioreactors and advanced oxidation processes to treat wastewaters from pharmaceutical plants. Nanofiltration with organic solvent-stable membranes can implement solvent exchange and catalyst recovery during organic solvent-based drug synthesis of pharmaceutical compounds/intermediates. Membranes in the form of hollow fibers can be conveniently used to implement crystallization of pharmaceutical compounds. The novel crystallization methods of solid hollow fiber cooling crystallizer (SHFCC) and porous hollow fiber anti-solvent crystallization (PHFAC) are being developed to provide efficient methods for continuous production of polymer-coated drug crystals in the area of drug delivery. This brief review provides a general introduction to various applications of membrane technologies in

  20. Comparison between discontinuous and continuous lactose conversion processes for the production of prebiotic galacto-oligosaccharides using beta-galactosidase from Lactobacillus reuteri. (United States)

    Splechtna, Barbara; Nguyen, Thu-Ha; Haltrich, Dietmar


    Galacto-oligosaccharide (GOS) formation from lactose in discontinuous and continuous modes of conversion was investigated using beta-galactosidase (beta-gal) from Lactobacillus reuteri. A continuous stirred tank reactor (CSTR) with an external crossflow membrane was set up, and continuous GOS production was analyzed and compared to the batchwise formed GOS product. Marked differences were detected for the two reactor setups. Above 65% lactose conversion, the GOS yield was lower for the CSTR due to a lower content of tri- and tetrasaccharides in the reaction mixture. In the CSTR, beta-gal from L. reuteri showed up to 2-fold higher specificity toward the formation of beta-(1-->6)-linked GOS, with beta-D-Galp-(1-->6)-D-Glc and beta-D-Galp-(1-->6)-D-Gal being the main GOS components formed under these conditions. This could be used to synthesize more defined GOS products.