WorldWideScience

Sample records for single-species step-flow epitaxy

  1. Direct Measurements of Island Growth and Step-Edge Barriers in Colloidal Epitaxy

    KAUST Repository

    Ganapathy, R.

    2010-01-21

    Epitaxial growth, a bottom-up self-assembly process for creating surface nano- and microstructures, has been extensively studied in the context of atoms. This process, however, is also a promising route to self-assembly of nanometer- and micrometer-scale particles into microstructures that have numerous technological applications. To determine whether atomic epitaxial growth laws are applicable to the epitaxy of larger particles with attractive interactions, we investigated the nucleation and growth dynamics of colloidal crystal films with single-particle resolution. We show quantitatively that colloidal epitaxy obeys the same two-dimensional island nucleation and growth laws that govern atomic epitaxy. However, we found that in colloidal epitaxy, step-edge and corner barriers that are responsible for film morphology have a diffusive origin. This diffusive mechanism suggests new routes toward controlling film morphology during epitaxy.

  2. One-step Ge/Si epitaxial growth.

    Science.gov (United States)

    Wu, Hung-Chi; Lin, Bi-Hsuan; Chen, Huang-Chin; Chen, Po-Chin; Sheu, Hwo-Shuenn; Lin, I-Nan; Chiu, Hsin-Tien; Lee, Chi-Young

    2011-07-01

    Fabricating a low-cost virtual germanium (Ge) template by epitaxial growth of Ge films on silicon wafer with a Ge(x)Si(1-x) (0 deposition method in one step by decomposing a hazardousless GeO(2) powder under hydrogen atmosphere without ultra-high vacuum condition and then depositing in a low-temperature region. X-ray diffraction analysis shows that the Ge film with an epitaxial relationship is along the in-plane direction of Si. The successful growth of epitaxial Ge films on Si substrate demonstrates the feasibility of integrating various functional devices on the Ge/Si substrates.

  3. Step-flow anisotropy of the m-plane GaN (1100) grown under nitrogen-rich conditions by plasma-assisted molecular beam epitaxy

    International Nuclear Information System (INIS)

    Sawicka, Marta; Siekacz, Marcin; Skierbiszewski, Czeslaw; Turski, Henryk; Krysko, Marcin; DziePcielewski, Igor; Grzegory, Izabella; Smalc-Koziorowska, Julita

    2011-01-01

    The homoepitaxial growth of m-plane (1100) GaN was investigated by plasma-assisted molecular beam epitaxy under nitrogen-rich conditions. The surface morphologies as a function of sample miscut were studied, providing evidence for a strong growth anisotropy that is a consequence of the anisotropy of Ga adatom diffusion barriers on the m-plane surface recently calculated ab initio[Lymperakis and Neugebauer, Phys. Rev. B 79, 241308(R) (2009)]. We found that substrate miscut toward [0001] implies a step flow toward while substrate miscut toward [0001] causes formation of atomic steps either perpendicular or parallel to the [0001] direction, under N-rich conditions at 730 deg C. We describe the growth conditions for achieving atomically flat m-plane GaN layers with parallel atomic steps.

  4. Surface chemistry and growth mechanisms studies of homo epitaxial (1 0 0) GaAs by laser molecular beam epitaxy

    International Nuclear Information System (INIS)

    Yan Dawei; Wu Weidong; Zhang Hong; Wang Xuemin; Zhang Hongliang; Zhang Weibin; Xiong Zhengwei; Wang Yuying; Shen Changle; Peng Liping; Han Shangjun; Zhou Minjie

    2011-01-01

    In this paper, GaAs thin film has been deposited on thermally desorbed (1 0 0) GaAs substrate using laser molecular beam epitaxy. Scanning electron microscopy, in situ reflection high energy electron diffraction and in situ X-ray photoelectron spectroscopy are applied for evaluation of the surface morphology and chemistry during growth process. The results show that a high density of pits is formed on the surface of GaAs substrate after thermal treatment and the epitaxial thin film heals itself by a step flow growth, resulting in a smoother surface morphology. Moreover, it is found that the incorporation of As species into GaAs epilayer is more efficient in laser molecular beam epitaxy than conventional molecular beam epitaxy. We suggest the growth process is impacted by surface chemistry and morphology of GaAs substrate after thermal treatment and the growth mechanisms are discussed in details.

  5. A step-by-step experiment of 3C-SiC hetero-epitaxial growth on 4H-SiC by CVD

    Energy Technology Data Exchange (ETDEWEB)

    Xin, Bin [School of Microelectronics, Xidian University, Key Laboratory of Wide Band-Gap Semiconductor Materials and Devices, Xi’an 710071 (China); Jia, Ren-Xu, E-mail: rxjia@mail.xidian.edu.cn [School of Microelectronics, Xidian University, Key Laboratory of Wide Band-Gap Semiconductor Materials and Devices, Xi’an 710071 (China); Hu, Ji-Chao [School of Microelectronics, Xidian University, Key Laboratory of Wide Band-Gap Semiconductor Materials and Devices, Xi’an 710071 (China); Tsai, Cheng-Ying [Graduate Institute of Electronics Engineering, National Taiwan University, 10617 Taipei, Taiwan (China); Lin, Hao-Hsiung, E-mail: hhlin@ntu.edu.tw [Graduate Institute of Electronics Engineering, National Taiwan University, 10617 Taipei, Taiwan (China); Graduate Institute of Photonics and Optoelectronics, National Taiwan University, 10617 Taipei, Taiwan (China); Zhang, Yu-Ming [School of Microelectronics, Xidian University, Key Laboratory of Wide Band-Gap Semiconductor Materials and Devices, Xi’an 710071 (China)

    2015-12-01

    Highlights: • A step-by-step experiment to investigate the growth mechanism of SiC hetero-epitaxial is proposed. • It has shown protrusive regular “hill” morphology with much lower density of DPB defect in our experiment, which normally were in high density with shallow groove. Based on the defect morphology, an anisotropy migration rate phenomenon of adatoms has been regarded as forming the morphology of DPB defects and a new “DPB defects assist epitaxy” growth mode has been proposed based on Frank-van der Merwe growth mode. - Abstract: To investigate the growth mechanism of hetero-epitaxial SiC, a step-by-step experiment of 3C-SiC epitaxial layers grown on 4H-SiC on-axis substrates by the CVD method are reported in this paper. Four step experiments with four one-quarter 4H-SiC wafers were performed. Optical microscopy and atomic force microscopy (AFM) were used to characterize the morphology of the epitaxial layers. It was previously found that the main factor affecting the epilayer morphology was double-positioning boundary (DPB) defects, which normally were in high density with shallow grooves. However, a protrusive regular “hill” morphology with a much lower density was shown in our experiment in high-temperature growth conditions. The anisotropic migration of adatoms is regarded as forming the morphology of DPB defects, and a new “DPB defects assist epitaxy” growth mode has been proposed based on the Frank-van der Merwe growth mode. Raman spectroscopy and X-ray diffraction were used to examine the polytypes and the quality of the epitaxial layers.

  6. Wet chemical deposition of single crystalline epitaxial manganite thin films with atomically flat surface

    International Nuclear Information System (INIS)

    Mishra, Amita; Dutta, Anirban; Samaddar, Sayanti; Gupta, Anjan K.

    2013-01-01

    We report the wet chemical deposition of single crystalline epitaxial thin films of the colossal magneto-resistive manganite La 0.67 Sr 0.33 MnO 3 on the lattice-matched (001)-face of a La 0.3 Sr 0.7 Al 0.65 Ta 0.35 O 3 substrate. Topographic images of these films taken with a scanning tunneling microscope show atomically flat terraces separated by steps of monatomic height. The resistivity of these films shows an insulator-metal transition at 310 K, nearly coincident with the Curie temperature of 340 K, found from magnetization measurements. The films show a magnetoresistance of 7% at 300 K and 1.2 T. Their saturation magnetization value at low temperatures is consistent with that of the bulk. - Highlights: ► Wet chemical deposition of La 0.67 Sr 0.33 MnO 3 (LSMO) on a lattice-matched substrate. ► Single crystalline epitaxial LSMO films obtained. ► Flat terraces separated by monatomic steps observed by scanning tunneling microscope

  7. Step-flow growth mode instability of N-polar GaN under N-excess

    International Nuclear Information System (INIS)

    Chèze, C.; Sawicka, M.; Siekacz, M.; Łucznik, B.; Boćkowski, M.; Skierbiszewski, C.; Turski, H.; Cywiński, G.; Smalc-Koziorowska, J.; Weyher, J. L.; Kryśko, M.

    2013-01-01

    GaN layers were grown on N-polar GaN substrates by plasma-assisted molecular beam epitaxy under different III/V ratios. Ga-rich conditions assure step-flow growth with atomically flat surface covered by doubly-bunched steps, as for Ga-polar GaN. Growth under N-excess however leads to an unstable step-flow morphology. Particularly, for substrates slightly miscut towards , interlacing fingers are covered by atomic steps pinned on both sides by small hexagonal pits. In contrast, a three-dimensional island morphology is observed on the Ga-polar equivalent sample. We attribute this result to lower diffusion barriers on N-polar compared to Ga-polar GaN under N-rich conditions

  8. An explicit multi-time-stepping algorithm for aerodynamic flows

    OpenAIRE

    Niemann-Tuitman, B.E.; Veldman, A.E.P.

    1997-01-01

    An explicit multi-time-stepping algorithm with applications to aerodynamic flows is presented. In the algorithm, in different parts of the computational domain different time steps are taken, and the flow is synchronized at the so-called synchronization levels. The algorithm is validated for aerodynamic turbulent flows. For two-dimensional flows speedups in the order of five with respect to single time stepping are obtained.

  9. Linking pedestrian flow characteristics with stepping locomotion

    Science.gov (United States)

    Wang, Jiayue; Boltes, Maik; Seyfried, Armin; Zhang, Jun; Ziemer, Verena; Weng, Wenguo

    2018-06-01

    While properties of human traffic flow are described by speed, density and flow, the locomotion of pedestrian is based on steps. To relate characteristics of human locomotor system with properties of human traffic flow, this paper aims to connect gait characteristics like step length, step frequency, swaying amplitude and synchronization with speed and density and thus to build a ground for advanced pedestrian models. For this aim, observational and experimental study on the single-file movement of pedestrians at different densities is conducted. Methods to measure step length, step frequency, swaying amplitude and step synchronization are proposed by means of trajectories of the head. Mathematical models for the relations of step length or frequency and speed are evaluated. The problem how step length and step duration are influenced by factors like body height and density is investigated. It is shown that the effect of body height on step length and step duration changes with density. Furthermore, two different types of step in-phase synchronization between two successive pedestrians are observed and the influence of step synchronization on step length is examined.

  10. A benchmark of co-flow and cyclic deposition/etch approaches for the selective epitaxial growth of tensile-strained Si:P

    Science.gov (United States)

    Hartmann, J. M.; Veillerot, M.; Prévitali, B.

    2017-10-01

    We have compared co-flow and cyclic deposition/etch processes for the selective epitaxial growth of Si:P layers. High growth rates, relatively low resistivities and significant amounts of tensile strain (up to 10 nm min-1, 0.55 mOhm cm and a strain equivalent to 1.06% of substitutional C in Si:C layers) were obtained at 700 °C, 760 Torr with a co-flow approach and a SiH2Cl2 + PH3 + HCl chemistry. This approach was successfully used to thicken the sources and drains regions of n-type fin-shaped Field Effect Transistors. Meanwhile, the (Si2H6 + PH3/HCl + GeH4) CDE process evaluated yielded at 600 °C, 80 Torr even lower resistivities (0.4 mOhm cm, typically), at the cost however of the tensile strain which was lost due to (i) the incorporation of Ge atoms (1.5%, typically) into the lattice during the selective etch steps and (ii) a reduction by a factor of two of the P atomic concentration in CDE layers compared to that in layers grown in a single step (5 × 1020 cm-3 compared to 1021 cm-3).

  11. Modelling of epitaxial film growth with an Ehrlich-Schwoebel barrier dependent on the step height

    International Nuclear Information System (INIS)

    Leal, F F; Ferreira, S C; Ferreira, S O

    2011-01-01

    The formation of mounded surfaces in epitaxial growth is attributed to the presence of barriers against interlayer diffusion in the terrace edges, known as Ehrlich-Schwoebel (ES) barriers. We investigate a model for epitaxial growth using an ES barrier explicitly dependent on the step height. Our model has an intrinsic topological step barrier even in the absence of an explicit ES barrier. We show that mounded morphologies can be obtained even for a small barrier while a self-affine growth, consistent with the Villain-Lai-Das Sarma equation, is observed in the absence of an explicit step barrier. The mounded surfaces are described by a super-roughness dynamical scaling characterized by locally smooth (facetted) surfaces and a global roughness exponent α > 1. The thin film limit is featured by surfaces with self-assembled three-dimensional structures having an aspect ratio (height/width) that may increase or decrease with temperature depending on the strength of the step barrier. (fast track communication)

  12. Single-event burnout of epitaxial bipolar transistors

    Energy Technology Data Exchange (ETDEWEB)

    Kuboyama, S.; Sugimoto, K.; Shugyo, S.; Matsuda, S. [National Space Development Agency of Japan, Tsukuba, Ibaraki (Japan); Hirao, T. [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan)

    1998-12-01

    Single-Event Burnout (SEB) of bipolar junction transistors (BJTs) has been observed nondestructively. It was revealed that all the NPN BJTs, including small signal transistors, with thinner epitaxial layers were inherently susceptible to the SEB phenomenon. It was demonstrated that several design parameters of BJTs were responsible for SEB susceptibility. Additionally, destructive and nondestructive modes of SEB were identified.

  13. Single-event burnout of epitaxial bipolar transistors

    Energy Technology Data Exchange (ETDEWEB)

    Kuboyama, Satoshi; Sugimoto, Kenji; Matsuda, Sumio [National Space Development Agency of Japan, Ysukuba, Ibaraki (Japan); Hirao, Toshio

    1998-10-01

    Single-event burnout (SEB) of bipolar junction transistors (BJTs) has been observed nondestructively. It was revealed that all the NPN BJTs including small signal transistors with thinner epitaxial layer were inherently susceptible to the SEB phenomenon. It was demonstrated that several design parameters of BJTs were responsible for SEB susceptibility. Additionally, destructive and nondestructive modes of SEB were identified. (author)

  14. Step driven competitive epitaxial and self-limited growth of graphene on copper surface

    Directory of Open Access Journals (Sweden)

    Lili Fan

    2011-09-01

    Full Text Available The existence of surface steps was found to have significant function and influence on the growth of graphene on copper via chemical vapor deposition. The two typical growth modes involved were found to be influenced by the step morphologies on copper surface, which led to our proposed step driven competitive growth mechanism. We also discovered a protective role of graphene in preserving steps on copper surface. Our results showed that wide and high steps promoted epitaxial growth and yielded multilayer graphene domains with regular shape, while dense and low steps favored self-limited growth and led to large-area monolayer graphene films. We have demonstrated that controllable growth of graphene domains of specific shape and large-area continuous graphene films are feasible.

  15. Epitaxial growth of thin single-crystals and their quality study by Rutherford scattering in channeling conditions

    International Nuclear Information System (INIS)

    Kirsch, Robert.

    1975-01-01

    Some aspects of thin crystalline layers are reminded: vacuum deposition, epitaxial growth, annealing and interdiffusion ion channeling and scattering of 1-2MeV helium ions are used to study the crystalline quality, the annealing effects and in some cases the interdiffusion in epitaxial multilayers of silver, copper gold and nickel. Thin single-crystals of gold and nickel oriented (III) plan parallel to the surface were obtained by successive epitaxial growth from muscovite mica clivages. The mounting techniques of single crystalline, self-supporting, 300 to 1200 Angstroems thick, gold and nickel targets of 3mm diameter are described. The gold single-crystals have dislocation densities of 10 8 cm -2 and the various epitaxial layers are obtained without twinning [fr

  16. Characteristics of an Electron Cyclotron Resonance Plasma Source for the Production of Active Nitrogen Species in III-V Nitride Epitaxy

    Science.gov (United States)

    Meyyappan, Meyya; Arnold, James O. (Technical Monitor)

    1997-01-01

    A simple analysis is provided to determine the characteristics of an electron cyclotron resonance (ECR) plasma source for the generation of active nitrogen species in the molecular beam epitaxy of III-V nitrides. The effects of reactor geometry, pressure, power, and flow rate on the dissociation efficiency and ion flux are presented. Pulsing the input power is proposed to reduce the ion flux.

  17. Quasi van der Waals epitaxy of copper thin film on single-crystal graphene monolayer buffer

    Science.gov (United States)

    Lu, Zonghuan; Sun, Xin; Washington, Morris A.; Lu, Toh-Ming

    2018-03-01

    Quasi van der Waals epitaxial growth of face-centered cubic Cu (~100 nm) thin films on single-crystal monolayer graphene is demonstrated using thermal evaporation at an elevated substrate temperature of 250 °C. The single-crystal graphene was transferred to amorphous (glass) and crystalline (quartz) SiO2 substrates for epitaxy study. Raman analysis showed that the thermal evaporation method had minimal damage to the graphene lattice during the Cu deposition. X-ray diffraction and electron backscatter diffraction analyses revealed that both Cu films are single-crystal with (1 1 1) out-of-plane orientation and in-plane Σ3 twin domains of 60° rotation. The crystallinity of the SiO2 substrates has a negligible effect on the Cu crystal orientation during the epitaxial growth, implying the strong screening effect of graphene. We also demonstrate the epitaxial growth of polycrystalline Cu on a commercial polycrystalline monolayer graphene consisting of two orientation domains offset 30° to each other. It confirms that the crystal orientation of the epitaxial Cu film follows that of graphene, i.e. the Cu film consists of two orientation domains offset 30° to each other when deposited on polycrystalline graphene. Finally, on the contrary to the report in the literature, we show that the direct current and radio frequency flip sputtering method causes significant damage to the graphene lattice during the Cu deposition process, and therefore neither is a suitable method for Cu epitaxial growth on graphene.

  18. From single-species advice to mixed-species management: taking the next step

    DEFF Research Database (Denmark)

    Vinther, Morten; Reeves, S.A.; Patterson, K.R.

    2004-01-01

    Fishery management advice has traditionally been given on a stock-by-stock basis. Recent problems in implementing this advice, particularly for the demersal fisheries of the North Sea, have highlighted the limitations of the approach. In the long term, it would be desirable to give advice...... that accounts for mixed-fishery effects, but in the short term there is a need for approaches to resolve the conflicting management advice for different species within the same fishery, and to generate catch or effort advice that accounts for the mixed-species nature of the fishery. This paper documents...... a recent approach used to address these problems. The approach takes the single-species advice for each species in the fishery as a starting point, then attempts to resolve it into consistent catch or effort advice using fleet-disaggregated catch forecasts in combination with explicitly stated management...

  19. Epitaxial-graphene/graphene-oxide junction: an essential step towards epitaxial graphene electronics.

    Science.gov (United States)

    Wu, Xiaosong; Sprinkle, Mike; Li, Xuebin; Ming, Fan; Berger, Claire; de Heer, Walt A

    2008-07-11

    Graphene-oxide (GO) flakes have been deposited to bridge the gap between two epitaxial-graphene electrodes to produce all-graphene devices. Electrical measurements indicate the presence of Schottky barriers at the graphene/graphene-oxide junctions, as a consequence of the band gap in GO. The barrier height is found to be about 0.7 eV, and is reduced after annealing at 180 degrees C, implying that the gap can be tuned by changing the degree of oxidation. A lower limit of the GO mobility was found to be 850 cm2/V s, rivaling silicon. In situ local oxidation of patterned epitaxial graphene has been achieved.

  20. Epitaxial growth of AlN on single crystal Mo substrates

    International Nuclear Information System (INIS)

    Okamoto, Koichiro; Inoue, Shigeru; Nakano, Takayuki; Kim, Tae-Won; Oshima, Masaharu; Fujioka, Hiroshi

    2008-01-01

    We have grown AlN films on single-crystalline Mo(110), (100), and (111) substrates using a low temperature pulsed laser deposition (PLD) growth technique and investigated their structural properties. Although c-axis oriented AlN films grow on Mo(100), the films contain 30 o rotated domains due to the difference in the rotational symmetry between AlN(0001) and Mo(100). AlN films with only poor crystalline quality grow on Mo(111) substrates, probably due to the poor surface morphology and high reactivity of the substrates. On the other hand, single crystal AlN films grow epitaxially on Mo(110) substrates with an in-plane relationship of AlN[11-20] // Mo[001]. Reflection high-energy electron diffraction or electron backscattered diffraction analysis has revealed that neither in-plane 30 deg. rotated domains nor cubic phase domains exist in the AlN films. X-ray reflectivity measurements have revealed that the heterointerface between AlN and Mo prepared by PLD at 450 deg. C is quite abrupt. These results indicate that PLD epitaxial growth of AlN on single crystal Mo substrates is quite promising for the fabrication of future high frequency filter devices

  1. Epitaxial growth of AlN on single crystal Mo substrates

    Energy Technology Data Exchange (ETDEWEB)

    Okamoto, Koichiro; Inoue, Shigeru [Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505 (Japan); Nakano, Takayuki; Kim, Tae-Won [Kanagawa Academy of Science and Technology (KAST) KSP east 301, 3-2-1 Sakado, Takatsu-ku, Kawasaki, Kanagawa, 213-0012 (Japan); Oshima, Masaharu [Department of Applied Chemistry, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656 (Japan); Fujioka, Hiroshi [Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505 (Japan); Kanagawa Academy of Science and Technology (KAST) KSP east 301, 3-2-1 Sakado, Takatsu-ku, Kawasaki, Kanagawa, 213-0012 (Japan)], E-mail: hfujioka@iis.u-tokyo.ac.jp

    2008-06-02

    We have grown AlN films on single-crystalline Mo(110), (100), and (111) substrates using a low temperature pulsed laser deposition (PLD) growth technique and investigated their structural properties. Although c-axis oriented AlN films grow on Mo(100), the films contain 30{sup o} rotated domains due to the difference in the rotational symmetry between AlN(0001) and Mo(100). AlN films with only poor crystalline quality grow on Mo(111) substrates, probably due to the poor surface morphology and high reactivity of the substrates. On the other hand, single crystal AlN films grow epitaxially on Mo(110) substrates with an in-plane relationship of AlN[11-20] // Mo[001]. Reflection high-energy electron diffraction or electron backscattered diffraction analysis has revealed that neither in-plane 30 deg. rotated domains nor cubic phase domains exist in the AlN films. X-ray reflectivity measurements have revealed that the heterointerface between AlN and Mo prepared by PLD at 450 deg. C is quite abrupt. These results indicate that PLD epitaxial growth of AlN on single crystal Mo substrates is quite promising for the fabrication of future high frequency filter devices.

  2. Single-domain epitaxial silicene on diboride thin films

    Energy Technology Data Exchange (ETDEWEB)

    Fleurence, A., E-mail: antoine@jaist.ac.jp; Friedlein, R.; Aoyagi, K.; Yamada-Takamura, Y. [School of Materials Science, Japan Advanced Institute of Science and Technology (JAIST), 1-1 Asahidai, Nomi, Ishikawa 923-1292 (Japan); Gill, T. G. [School of Materials Science, Japan Advanced Institute of Science and Technology (JAIST), 1-1 Asahidai, Nomi, Ishikawa 923-1292 (Japan); London Centre for Nanotechnology, University College London (UCL), London WC1H 0AH (United Kingdom); Department of Chemistry, UCL, London WC1H 0AJ (United Kingdom); Sadowski, J. T. [Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973 (United States); Copel, M.; Tromp, R. M. [IBM Research Division, Thomas J. Watson Research Center, Yorktown Heights, New York 10598 (United States); Hirjibehedin, C. F. [London Centre for Nanotechnology, University College London (UCL), London WC1H 0AH (United Kingdom); Department of Chemistry, UCL, London WC1H 0AJ (United Kingdom); Department of Physics and Astronomy, UCL, London WC1E 6BT (United Kingdom)

    2016-04-11

    Epitaxial silicene, which forms spontaneously on ZrB{sub 2}(0001) thin films grown on Si(111) wafers, has a periodic stripe domain structure. By adsorbing additional Si atoms on this surface, we find that the domain boundaries vanish, and a single-domain silicene sheet can be prepared without altering its buckled honeycomb structure. The amount of Si required to induce this change suggests that the domain boundaries are made of a local distortion of the silicene honeycomb lattice. The realization of a single domain sheet with structural and electronic properties close to those of the original striped state demonstrates the high structural flexibility of silicene.

  3. UV detectors based on epitaxial diamond films grown on single-crystal diamond substrates by vapor-phase synthesis

    International Nuclear Information System (INIS)

    Sharonov, G.V.; Petrov, S.A.; Bol'shakov, A.P.; Ral'chenko, V.G.; Kazyuchits, N.M.

    2010-01-01

    The prospects for use of CVD-technology for epitaxial growth of single-crystal diamond films of instrumental quality in UHF plasma for the production of optoelectronic devices are discussed. A technology for processing diamond single crystals that provides a perfect surface crystal structure with roughness less than 0,5 nm was developed. It was demonstrated that selective UV detectors based on synthetic single-crystal diamond substrates coated with single-crystal films can be produced. A criterion for selecting clean and structurally perfect single crystals of synthetic diamond was developed for the epitaxial growth technology. (authors)

  4. Conductivity of epitaxial and CVD graphene with correlated line defects

    DEFF Research Database (Denmark)

    Radchenko, T. M.; Shylau, Artsem; Zozoulenko, I. V.

    2014-01-01

    Transport properties of single-layer graphene with correlated one-dimensional defects are studied theoretically using the computational model within the time-dependent real-space Kubo-Greenwood formalism. Such defects are present in epitaxial graphene, comprising atomic terraces and steps due...

  5. van der Waals epitaxy of SnS film on single crystal graphene buffer layer on amorphous SiO2/Si

    Science.gov (United States)

    Xiang, Yu; Yang, Yunbo; Guo, Fawen; Sun, Xin; Lu, Zonghuan; Mohanty, Dibyajyoti; Bhat, Ishwara; Washington, Morris; Lu, Toh-Ming; Wang, Gwo-Ching

    2018-03-01

    Conventional hetero-epitaxial films are typically grown on lattice and symmetry matched single crystal substrates. We demonstrated the epitaxial growth of orthorhombic SnS film (∼500 nm thick) on single crystal, monolayer graphene that was transferred on the amorphous SiO2/Si substrate. Using X-ray pole figure analysis we examined the structure, quality and epitaxy relationship of the SnS film grown on the single crystal graphene and compared it with the SnS film grown on commercial polycrystalline graphene. We showed that the SnS films grown on both single crystal and polycrystalline graphene have two sets of orientation domains. However, the crystallinity and grain size of the SnS film improve when grown on the single crystal graphene. Reflection high-energy electron diffraction measurements show that the near surface texture has more phases as compared with that of the entire film. The surface texture of a film will influence the growth and quality of film grown on top of it as well as the interface formed. Our result offers an alternative approach to grow a hetero-epitaxial film on an amorphous substrate through a single crystal graphene buffer layer. This strategy of growing high quality epitaxial thin film has potential applications in optoelectronics.

  6. Single-step reinitialization and extending algorithms for level-set based multi-phase flow simulations

    Science.gov (United States)

    Fu, Lin; Hu, Xiangyu Y.; Adams, Nikolaus A.

    2017-12-01

    We propose efficient single-step formulations for reinitialization and extending algorithms, which are critical components of level-set based interface-tracking methods. The level-set field is reinitialized with a single-step (non iterative) "forward tracing" algorithm. A minimum set of cells is defined that describes the interface, and reinitialization employs only data from these cells. Fluid states are extrapolated or extended across the interface by a single-step "backward tracing" algorithm. Both algorithms, which are motivated by analogy to ray-tracing, avoid multiple block-boundary data exchanges that are inevitable for iterative reinitialization and extending approaches within a parallel-computing environment. The single-step algorithms are combined with a multi-resolution conservative sharp-interface method and validated by a wide range of benchmark test cases. We demonstrate that the proposed reinitialization method achieves second-order accuracy in conserving the volume of each phase. The interface location is invariant to reapplication of the single-step reinitialization. Generally, we observe smaller absolute errors than for standard iterative reinitialization on the same grid. The computational efficiency is higher than for the standard and typical high-order iterative reinitialization methods. We observe a 2- to 6-times efficiency improvement over the standard method for serial execution. The proposed single-step extending algorithm, which is commonly employed for assigning data to ghost cells with ghost-fluid or conservative interface interaction methods, shows about 10-times efficiency improvement over the standard method while maintaining same accuracy. Despite their simplicity, the proposed algorithms offer an efficient and robust alternative to iterative reinitialization and extending methods for level-set based multi-phase simulations.

  7. Pumping requirements and options for molecular beam epitaxy and gas source molecular beam epitaxy/chemical beam epitaxy

    International Nuclear Information System (INIS)

    McCollum, M.J.; Plano, M.A.; Haase, M.A.; Robbins, V.M.; Jackson, S.L.; Cheng, K.Y.; Stillman, G.E.

    1989-01-01

    This paper discusses the use of gas sources in growth by MBE as a result of current interest in growth of InP/InGaAsP/InGaAs lattice matched to InP. For gas flows greater than a few sccm, pumping speed requirements dictate the use of turbomolecular or diffusion pumps. GaAs samples with high p-type mobilities have been grown with diffusion pumped molecular beam epitaxial system. According to the authors, this demonstration of the inherent cleanliness of a properly designed diffusion pumping system indicates that a diffusion pump is an excellent inexpensive and reliable choice for growth by molecular beam epitaxy and gas source molecular beam epitaxy/chemical beam epitaxy

  8. Magnetotransport investigations of single- and heterostructure epitaxial films of IV/VI-semiconductors

    International Nuclear Information System (INIS)

    Ambrosch, K.-E.

    1985-01-01

    Lead salts are small gap semiconductors that are used for infrared detectors and lasers. PbMnTe and PbEuTe are semimagnetic semiconductors. Magnetotransport properties of epitaxial films and epitaxial heterostructures (PbTe / PbSnTe) are investigated. Epitaxial films of PbSnTe, PbMnTe and PbEuTe have been used for Shubnikov de Haas - experiments in tilted magnetic fields. This method allows the quantitative determination of the electric carrier distribution with respect to the crystal directions. The nonequal distribution is caused by strain effects that are more important for PbMnTe than for PbSnTe and PbEuTe. Magnetoresistance experiments show a deviation from cubic symmetry that leads to the same results for the carrier distribution as the Shubnikov de Haas effect. Magnetoresistance experiments performed with PbTe / PbSnTe heterostructures show no megnetoresistance if the magnetic field is in plane with the layers. The difference of the magnetoresistance for single films and heterostructures is explained by 'quasitwodimensional' carriers. Shubnikov de Haas experiments performed on heterostructures as a function of the tilt angle of the magnetic field show different behaviour compared to that of single films. Using additional information about effective masses and strain it was possible to distinguish between 'two-' and 'threedimensional' electronic systems. The distribution of carriers in single films and heterostructures has been determined by means of magnetotransport experiments. The results are explained by strain effects of the crystal lattice. In addition heterostructures show a 'quasitwodimensional' behaviour caused by interaction of their layers. (Author)

  9. Crystalline and electronic structure of epitaxial γ-Al2O3 films

    International Nuclear Information System (INIS)

    Wu, Huiyan; Lu, Dawei; Zhu, Kerong; Xu, Guoyong; Wang, Hu

    2013-01-01

    Epitaxial γ-Al 2 O 3 films were fabricated on SrTiO 3 (1 0 0) substrates using pulsed laser deposition (PLD) technique. The high quality of epitaxial growth γ-Al 2 O 3 films was confirmed by X-ray diffraction (XRD). Atomic force microscopy (AFM) images indicated the smooth surfaces and the step-flow growth of the films. In order to illuminate the electronic properties and the local structure of the epitaxial γ-Al 2 O 3 , we experimentally measured the X-ray absorption near-edge structure (XANES) spectrum at the O K-edge and compared the spectrum with the theoretical simulations by using various structure models. Our results based on XANES spectrum analysis indicated that the structure of the epitaxial γ-Al 2 O 3 film was a defective spinel with Al vacancies, which prefer to be located at the octahedral sites

  10. Evidence for graphite-like hexagonal AlN nanosheets epitaxially grown on single crystal Ag(111)

    Energy Technology Data Exchange (ETDEWEB)

    Tsipas, P.; Kassavetis, S.; Tsoutsou, D.; Xenogiannopoulou, E.; Golias, E.; Giamini, S. A.; Dimoulas, A. [National Center for Scientific Research “Demokritos,” 15310 Athens (Greece); Grazianetti, C.; Fanciulli, M. [Laboratorio MDM, IMM-CNR, I-20864, Agrate Brianza (MB) (Italy); Dipartimento di Scienza dei Materiali, Università degli Studi di Milano Bicocca, I-20126, Milano (Italy); Chiappe, D.; Molle, A. [Laboratorio MDM, IMM-CNR, I-20864, Agrate Brianza (MB) (Italy)

    2013-12-16

    Ultrathin (sub-monolayer to 12 monolayers) AlN nanosheets are grown epitaxially by plasma assisted molecular beam epitaxy on Ag(111) single crystals. Electron diffraction and scanning tunneling microscopy provide evidence that AlN on Ag adopts a graphite-like hexagonal structure with a larger lattice constant compared to bulk-like wurtzite AlN. This claim is further supported by ultraviolet photoelectron spectroscopy indicating a reduced energy bandgap as expected for hexagonal AlN.

  11. Step edge influence on barrier height and contact area in vertical heterojunctions between epitaxial graphene and n-type 4H-SiC

    International Nuclear Information System (INIS)

    Tadjer, M. J.; Nyakiti, L. O.; Robinson, Z.; Anderson, T. J.; Myers-Ward, R. L.; Wheeler, V. D.; Eddy, C. R.; Gaskill, D. K.; Koehler, A. D.; Hobart, K. D.; Kub, F. J.

    2014-01-01

    Vertical rectifying contacts of epitaxial graphene grown by Si sublimation on the Si-face of 4H-SiC epilayers were investigated. Forward bias preferential conduction through the step edges was correlated by linear current density normalization. This phenomenon was observed on samples with 2.7–5.8 monolayers of epitaxial graphene as determined by X-ray photoelectron spectroscopy. A modified Richardson plot was implemented to extract the barrier height (0.81 eV at 290 K, 0.99 eV at 30 K) and the electrically dominant SiC step length of a Ti/Al contact overlapping a known region of approximately 0.52 μm wide SiC terraces

  12. Epitaxial Growth of Permalloy Thin Films on MgO Single-Crystal Substrates

    International Nuclear Information System (INIS)

    Ohtake, Mitsuru; Tanaka, Takahiro; Matsubara, Katsuki; Futamoto, Masaaki; Kirino, Fumiyoshi

    2011-01-01

    Permalloy (Py: Ni - 20 at. % Fe) thin films were prepared on MgO single-crystal substrates of (100), (110), and (111) orientations by molecular beam epitaxy. Py crystals consisting of fcc(100) and hcp(112-bar 0) orientations epitaxially nucleate on MgO(100) substrates. With increasing the substrate temperature, the volume ratio of fcc(100) to hcp(112-bar 0) crystal increases. The metastable hcp(112-bar 0) structure transforms into more stable fcc(110) structure with increasing the film thickness. Py(110) fcc single-crystal films are obtained on MgO(110) substrates, whereas Py films epitaxially grow on MgO(111) substrates with two types of fcc(111) variants whose orientations are rotated around the film normal by 180 deg. each other. X-ray diffraction analysis indicates that the out-of-plane and the in-plane lattice spacings of these fcc-Py films agree within ±0.4% with the values of bulk fcc-Py crystal, suggesting that the strains in the films are very small. High-resolution transmission electron microscopy shows that periodical misfit dislocations are preferentially introduced in the films around the Py/MgO(100) and the Py/MgO(110) interfaces to reduce the lattice mismatches. The magnetic properties are considered to be reflecting the magnetocrystalline anisotropies of bulk fcc-Py and/or metastable hcp-Py crystals and the shape anisotropy caused by the surface undulations.

  13. Epitaxial Growth of Permalloy Thin Films on MgO Single-Crystal Substrates

    Energy Technology Data Exchange (ETDEWEB)

    Ohtake, Mitsuru; Tanaka, Takahiro; Matsubara, Katsuki; Futamoto, Masaaki [Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551 (Japan); Kirino, Fumiyoshi, E-mail: ohtake@futamoto.elect.chuo-u.ac.jp [Graduate School of Fine Arts, Tokyo National University of Fine Arts and Music, 12-8 Ueno-koen, Taito-ku, Tokyo 110-8714 (Japan)

    2011-07-06

    Permalloy (Py: Ni - 20 at. % Fe) thin films were prepared on MgO single-crystal substrates of (100), (110), and (111) orientations by molecular beam epitaxy. Py crystals consisting of fcc(100) and hcp(112-bar 0) orientations epitaxially nucleate on MgO(100) substrates. With increasing the substrate temperature, the volume ratio of fcc(100) to hcp(112-bar 0) crystal increases. The metastable hcp(112-bar 0) structure transforms into more stable fcc(110) structure with increasing the film thickness. Py(110){sub fcc} single-crystal films are obtained on MgO(110) substrates, whereas Py films epitaxially grow on MgO(111) substrates with two types of fcc(111) variants whose orientations are rotated around the film normal by 180 deg. each other. X-ray diffraction analysis indicates that the out-of-plane and the in-plane lattice spacings of these fcc-Py films agree within {+-}0.4% with the values of bulk fcc-Py crystal, suggesting that the strains in the films are very small. High-resolution transmission electron microscopy shows that periodical misfit dislocations are preferentially introduced in the films around the Py/MgO(100) and the Py/MgO(110) interfaces to reduce the lattice mismatches. The magnetic properties are considered to be reflecting the magnetocrystalline anisotropies of bulk fcc-Py and/or metastable hcp-Py crystals and the shape anisotropy caused by the surface undulations.

  14. Growth mechanisms of plasma-assisted molecular beam epitaxy of green emission InGaN/GaN single quantum wells at high growth temperatures

    International Nuclear Information System (INIS)

    Yang, W. C.; Wu, C. H.; Tseng, Y. T.; Chiu, S. Y.; Cheng, K. Y.

    2015-01-01

    The results of the growth of thin (∼3 nm) InGaN/GaN single quantum wells (SQWs) with emission wavelengths in the green region by plasma-assisted molecular beam epitaxy are present. An improved two-step growth method using a high growth temperature up to 650 °C is developed to increase the In content of the InGaN SQW to 30% while maintaining a strong luminescence intensity near a wavelength of 506 nm. The indium composition in InGaN/GaN SQW grown under group-III-rich condition increases with increasing growth temperature following the growth model of liquid phase epitaxy. Further increase in the growth temperature to 670 °C does not improve the photoluminescence property of the material due to rapid loss of indium from the surface and, under certain growth conditions, the onset of phase separation

  15. Direct Measurements of Island Growth and Step-Edge Barriers in Colloidal Epitaxy

    KAUST Repository

    Ganapathy, R.; Buckley, M. R.; Gerbode, S. J.; Cohen, I.

    2010-01-01

    -scale particles into microstructures that have numerous technological applications. To determine whether atomic epitaxial growth laws are applicable to the epitaxy of larger particles with attractive interactions, we investigated the nucleation and growth dynamics

  16. Boron, arsenic and phosphorus dopant incorporation during low temperature low pressure silicon epitaxial growth

    International Nuclear Information System (INIS)

    Borland, J.O.; Thompson, T.; Tagle, V.; Benzing, W.

    1987-01-01

    Submicron silicon epitaxial structures with very abrupt epi/substrate transition widths have been realized through the use of low temperature silicon epitaxial growth techniques. At these low temperature and low pressure epitaxial growth conditions there is minimal, if any, dopant diffusion from the substrate into the epilayer during deposition. The reincorporation of autodoped dopant as well as the incorporation of intentional dopant can be a trade-off at low temperatures and low pressures. For advanced CMOS and Bi-CMOS technologies, five to six orders of magnitude change in concentration levels are desirable. In this investigation, all of the epitaxial depositions were carried out in an AMC-7810 epi-reactor with standard jets for a turbulent mixing system, and using a modified center inject configuration to achieve a single pass laminar flow system. To simulate the reincorporation of various autodoped dopant, the authors ran a controlled dopant flow of 100 sccm for each of the three dopants (boron, phosphorus and arsenic) to achieve the controlled background dopant level in the reactor gas stream

  17. Patterns of gene flow define species of thermophilic Archaea.

    Directory of Open Access Journals (Sweden)

    Hinsby Cadillo-Quiroz

    2012-02-01

    Full Text Available Despite a growing appreciation of their vast diversity in nature, mechanisms of speciation are poorly understood in Bacteria and Archaea. Here we use high-throughput genome sequencing to identify ongoing speciation in the thermoacidophilic Archaeon Sulfolobus islandicus. Patterns of homologous gene flow among genomes of 12 strains from a single hot spring in Kamchatka, Russia, demonstrate higher levels of gene flow within than between two persistent, coexisting groups, demonstrating that these microorganisms fit the biological species concept. Furthermore, rates of gene flow between two species are decreasing over time in a manner consistent with incipient speciation. Unlike other microorganisms investigated, we do not observe a relationship between genetic divergence and frequency of recombination along a chromosome, or other physical mechanisms that would reduce gene flow between lineages. Each species has its own genetic island encoding unique physiological functions and a unique growth phenotype that may be indicative of ecological specialization. Genetic differentiation between these coexisting groups occurs in large genomic "continents," indicating the topology of genomic divergence during speciation is not uniform and is not associated with a single locus under strong diversifying selection. These data support a model where species do not require physical barriers to gene flow but are maintained by ecological differentiation.

  18. Patterns of gene flow define species of thermophilic Archaea.

    Science.gov (United States)

    Cadillo-Quiroz, Hinsby; Didelot, Xavier; Held, Nicole L; Herrera, Alfa; Darling, Aaron; Reno, Michael L; Krause, David J; Whitaker, Rachel J

    2012-02-01

    Despite a growing appreciation of their vast diversity in nature, mechanisms of speciation are poorly understood in Bacteria and Archaea. Here we use high-throughput genome sequencing to identify ongoing speciation in the thermoacidophilic Archaeon Sulfolobus islandicus. Patterns of homologous gene flow among genomes of 12 strains from a single hot spring in Kamchatka, Russia, demonstrate higher levels of gene flow within than between two persistent, coexisting groups, demonstrating that these microorganisms fit the biological species concept. Furthermore, rates of gene flow between two species are decreasing over time in a manner consistent with incipient speciation. Unlike other microorganisms investigated, we do not observe a relationship between genetic divergence and frequency of recombination along a chromosome, or other physical mechanisms that would reduce gene flow between lineages. Each species has its own genetic island encoding unique physiological functions and a unique growth phenotype that may be indicative of ecological specialization. Genetic differentiation between these coexisting groups occurs in large genomic "continents," indicating the topology of genomic divergence during speciation is not uniform and is not associated with a single locus under strong diversifying selection. These data support a model where species do not require physical barriers to gene flow but are maintained by ecological differentiation.

  19. GaN Schottky diodes with single-crystal aluminum barriers grown by plasma-assisted molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Tseng, H. Y.; Yang, W. C.; Lee, P. Y.; Lin, C. W.; Cheng, Kai-Yuan; Hsieh, K. C.; Cheng, K. Y., E-mail: kycheng@ee.nthu.edu.tw [Department of Electrical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Hsu, C.-H. [Division of Scientific Research, National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan (China)

    2016-08-22

    GaN-based Schottky barrier diodes (SBDs) with single-crystal Al barriers grown by plasma-assisted molecular beam epitaxy are fabricated. Examined using in-situ reflection high-energy electron diffractions, ex-situ high-resolution x-ray diffractions, and high-resolution transmission electron microscopy, it is determined that epitaxial Al grows with its [111] axis coincident with the [0001] axis of the GaN substrate without rotation. In fabricated SBDs, a 0.2 V barrier height enhancement and 2 orders of magnitude reduction in leakage current are observed in single crystal Al/GaN SBDs compared to conventional thermal deposited Al/GaN SBDs. The strain induced piezoelectric field is determined to be the major source of the observed device performance enhancements.

  20. Epitaxial graphene

    Science.gov (United States)

    de Heer, Walt A.; Berger, Claire; Wu, Xiaosong; First, Phillip N.; Conrad, Edward H.; Li, Xuebin; Li, Tianbo; Sprinkle, Michael; Hass, Joanna; Sadowski, Marcin L.; Potemski, Marek; Martinez, Gérard

    2007-07-01

    Graphene multilayers are grown epitaxially on single crystal silicon carbide. This system is composed of several graphene layers of which the first layer is electron doped due to the built-in electric field and the other layers are essentially undoped. Unlike graphite the charge carriers show Dirac particle properties (i.e. an anomalous Berry's phase, weak anti-localization and square root field dependence of the Landau level energies). Epitaxial graphene shows quasi-ballistic transport and long coherence lengths; properties that may persist above cryogenic temperatures. Paradoxically, in contrast to exfoliated graphene, the quantum Hall effect is not observed in high-mobility epitaxial graphene. It appears that the effect is suppressed due to the absence of localized states in the bulk of the material. Epitaxial graphene can be patterned using standard lithography methods and characterized using a wide array of techniques. These favorable features indicate that interconnected room temperature ballistic devices may be feasible for low-dissipation high-speed nanoelectronics.

  1. Considering dominance in reduced single-step genomic evaluations.

    Science.gov (United States)

    Ertl, J; Edel, C; Pimentel, E C G; Emmerling, R; Götz, K-U

    2018-06-01

    Single-step models including dominance can be an enormous computational task and can even be prohibitive for practical application. In this study, we try to answer the question whether a reduced single-step model is able to estimate breeding values of bulls and breeding values, dominance deviations and total genetic values of cows with acceptable quality. Genetic values and phenotypes were simulated (500 repetitions) for a small Fleckvieh pedigree consisting of 371 bulls (180 thereof genotyped) and 553 cows (40 thereof genotyped). This pedigree was virtually extended for 2,407 non-genotyped daughters. Genetic values were estimated with the single-step model and with different reduced single-step models. Including more relatives of genotyped cows in the reduced single-step model resulted in a better agreement of results with the single-step model. Accuracies of genetic values were largest with single-step and smallest with reduced single-step when only the cows genotyped were modelled. The results indicate that a reduced single-step model is suitable to estimate breeding values of bulls and breeding values, dominance deviations and total genetic values of cows with acceptable quality. © 2018 Blackwell Verlag GmbH.

  2. Epitaxial growth of CZT(S,Se) on silicon

    Science.gov (United States)

    Bojarczuk, Nestor A.; Gershon, Talia S.; Guha, Supratik; Shin, Byungha; Zhu, Yu

    2016-03-15

    Techniques for epitaxial growth of CZT(S,Se) materials on Si are provided. In one aspect, a method of forming an epitaxial kesterite material is provided which includes the steps of: selecting a Si substrate based on a crystallographic orientation of the Si substrate; forming an epitaxial oxide interlayer on the Si substrate to enhance wettability of the epitaxial kesterite material on the Si substrate, wherein the epitaxial oxide interlayer is formed from a material that is lattice-matched to Si; and forming the epitaxial kesterite material on a side of the epitaxial oxide interlayer opposite the Si substrate, wherein the epitaxial kesterite material includes Cu, Zn, Sn, and at least one of S and Se, and wherein a crystallographic orientation of the epitaxial kesterite material is based on the crystallographic orientation of the Si substrate. A method of forming an epitaxial kesterite-based photovoltaic device and an epitaxial kesterite-based device are also provided.

  3. Epitaxial growth and new phase of single crystal Dy by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Yang, Kai-Yueh; Homma, Hitoshi; Schuller, I.K.

    1987-09-01

    We have grown two novel epitaxial phases of dysprosium (Dy) on vanadium (V) by molecular beam epitaxy technique. Surface and bulk structures are studied by in-situ reflection high energy electron diffraction (RHEED) and x-ray diffraction techniques. The new hcp phases are ∼4% expanded uniformly in-plane (0001), and ∼9% and ∼4% expanded out of plane along the c-axes for non-interrupted and interrupted deposition case, respectively. We also observed (2 x 2), (3 x 3), and (4 x 4) Dy surface reconstruction patterns and a series of transitions as the Dy film thickness increases. 12 refs., 3 figs

  4. One-step synthesis of pyridines and dihydropyridines in a continuous flow microwave reactor

    Directory of Open Access Journals (Sweden)

    Mark C. Bagley

    2013-09-01

    Full Text Available The Bohlmann–Rahtz pyridine synthesis and the Hantzsch dihydropyridine synthesis can be carried out in a microwave flow reactor or using a conductive heating flow platform for the continuous processing of material. In the Bohlmann–Rahtz reaction, the use of a Brønsted acid catalyst allows Michael addition and cyclodehydration to be carried out in a single step without isolation of intermediates to give the corresponding trisubstituted pyridine as a single regioisomer in good yield. Furthermore, 3-substituted propargyl aldehydes undergo Hantzsch dihydropyridine synthesis in preference to Bohlmann–Rahtz reaction in a very high yielding process that is readily transferred to continuous flow processing.

  5. Control growth of silicon nanocolumns' epitaxy on silicon nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Chong, Su Kong, E-mail: sukong1985@yahoo.com.my [University of Malaya, Low Dimensional Materials Research Centre, Department of Physics (Malaysia); Dee, Chang Fu [Universiti Kebangsaan Malaysia (UKM), Institute of Microengineering and Nanoelectronics (IMEN) (Malaysia); Yahya, Noorhana [Universiti Teknologi PETRONAS, Faculty of Science and Information Technology (Malaysia); Rahman, Saadah Abdul [University of Malaya, Low Dimensional Materials Research Centre, Department of Physics (Malaysia)

    2013-04-15

    The epitaxial growth of Si nanocolumns on Si nanowires was studied using hot-wire chemical vapor deposition. A single-crystalline and surface oxide-free Si nanowire core (core radius {approx}21 {+-} 5 nm) induced by indium crystal seed was used as a substance for the vapor phase epitaxial growth. The growth process is initiated by sidewall facets, which then nucleate upon certain thickness to form Si islands and further grow to form nanocolumns. The Si nanocolumns with diameter of 10-20 nm and aspect ratio up to 10 can be epitaxially grown on the surface of nanowires. The results showed that the radial growth rate of the Si nanocolumns remains constant with the increase of deposition time. Meanwhile, the radial growth rates are controllable by manipulating the hydrogen to silane gas flow rate ratio. The optical antireflection properties of the Si nanocolumns' decorated SiNW arrays are discussed in the text.

  6. Plasticity and microstructure of epitaxial Ag/Ni multilayers; Mechanische Eigenschaften und Mikrostruktur epitaktischer Ag/Ni-Multilagenschichten

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Tobias K.

    2007-10-15

    To meet the still increasing technical demands of new materials, it is required to improve basic knowledge of thin films and multilayers. This thesis describes the microstructure and mechanical behaviour of thin epitaxial Ag/Ni-multilayers. Former investigations were only done on polycrystalline multilayers or epitaxial single layers. The manufacture of epitaxial Ag/Ni-multilayers on (111) orientated Si-substrates was performed by a magnetron sputtering technique under ultra high vacuum (UHV). The thickness of the alternating Ag- and Ni-layers varies between 100 and 400 nm, the thickness of the whole film varies between 200 and 800 nm. Hardness and flow stress of Ag/Ni-multilayers were measured with a nanoindentation technique, a substrate curvature method and by X-ray diffraction. The hardness of these multilayers varies between 1.5 and 2.0 GPa. The Ag single film hardness is 0.5 GPa and Ni film 1.8 GPa. The flow stress of the Ag/Ni-multilayers varies between 350 and 800 MPa. The Ag single layer shows a flow stress of 100 MPa and Ni of 450 MPa. Both hardness and flow stress increase with decreasing layer thickness. In situ TEM and HRTEM experiments showed a semicoherent Ag/Ni-interface. It was observed that these interfaces act as sources and sinks. Dislocation loops formed at the interface expand and shrink according to the stress state. They combine with loops from the opposite interface or with the interface itself and form threading dislocations. Dislocation loops penetrating an interface were not observed. Results were compared with various models which simulate flow stress in thin films and multilayers. The most important models are calculated by Nix-Freund, the Source-model after von Blanckenhagen and the Hall-Petch-model. (orig.)

  7. Comparison study on mechanical properties single step and three step artificial aging on duralium

    Science.gov (United States)

    Tsamroh, Dewi Izzatus; Puspitasari, Poppy; Andoko, Sasongko, M. Ilman N.; Yazirin, Cepi

    2017-09-01

    Duralium is kind of non-ferro alloy that used widely in industrial. That caused its properties such as mild, high ductility, and resistance from corrosion. This study aimed to know mechanical properties of duralium on single step and three step articial aging process. Mechanical properties that discussed in this study focused on toughness value, tensile strength, and microstructure of duralium. Toughness value of single step artificial aging was 0.082 joule/mm2, and toughness value of three step artificial aging was 0,0721 joule/mm2. Duralium tensile strength of single step artificial aging was 32.36 kgf/mm^2, and duralium tensile strength of three step artificial aging was 32,70 kgf/mm^2. Based on microstructure photo of duralium of single step artificial aging showed that precipitate (θ) was not spreading evenly indicated by black spot which increasing the toughness of material. While microstructure photo of duralium that treated by three step artificial aging showed that it had more precipitate (θ) spread evenly compared with duralium that treated by single step artificial aging.

  8. Crystallinity of the epitaxial heterojunction of C60 on single crystal pentacene

    Science.gov (United States)

    Tsuruta, Ryohei; Mizuno, Yuta; Hosokai, Takuya; Koganezawa, Tomoyuki; Ishii, Hisao; Nakayama, Yasuo

    2017-06-01

    The structure of pn heterojunctions is an important subject in the field of organic semiconductor devices. In this work, the crystallinity of an epitaxial pn heterojunction of C60 on single crystal pentacene is investigated by non-contact mode atomic force microscopy and high-resolution grazing incidence x-ray diffraction. Analysis shows that the C60 molecules assemble into grains consisting of single crystallites on the pentacene single crystal surface. The in-plane mean crystallite size exceeds 0.1 μm, which is at least five time larger than the size of crystallites deposited onto polycrystalline pentacene thin films grown on SiO2. The results indicate that improvement in the crystal quality of the underlying molecular substrate leads to drastic promotion of the crystallinity at the organic semiconductor heterojunction.

  9. Structural characterization of metastable hcp-Ni thin films epitaxially grown on Au(100) single-crystal underlayers

    International Nuclear Information System (INIS)

    Ohtake, Mitsuru; Tanaka, Takahiro; Futamoto, Masaaki; Kirino, Fumiyoshi

    2010-01-01

    Ni(1120) epitaxial thin films with hcp structure were prepared on Au(100) single-crystal underlayers at 100 deg. C by ultra high vacuum molecular beam epitaxy. The detailed film structure is studied by in situ reflection high energy electron diffraction, x-ray diffraction, and transmission electron microscopy. The hcp-Ni film consists of two types of variants whose c-axes are rotated around the film normal by 90 deg. each other. An atomically sharp boundary is recognized between the film and the underlayer, where misfit dislocations are introduced. Presence of such dislocations seems to relieve the strain caused by the lattice mismatch between the film and the underlayer.

  10. Preparation of hcp-Ni(112-bar 0) epitaxial thin films on Au(100) single-crystal underlayers

    International Nuclear Information System (INIS)

    Ohtake, Mitsuru; Tanaka, Takahiro; Futamoto, Masaaki; Kirino, Fumiyoshi

    2010-01-01

    Ni epitaxial films with an hcp structure are successfully obtained on Au(100) single-crystal underlayers formed on MgO(100) substrates at temperatures lower than 300 0 C by molecular beam epitaxy. With increasing the substrate temperature, the volume ratio of more stable fcc phase inc r eases in the film. The Ni film prepared at 100 0 C consists primarily of hcp crystal with the (112-bar 0) plane parallel to the substrate surface coexisting with a small amount of fcc-Ni(100) crystal. The lattice constant of hcp-Ni crystal is determined as a = 0.249 nm, c = 0.398 nm, and c/a = 1.60.

  11. Effect of gas flow on the selective area growth of gallium nitride via metal organic vapor phase epitaxy

    Science.gov (United States)

    Rodak, L. E.; Kasarla, K. R.; Korakakis, D.

    2007-08-01

    The effect of gas flow on the selective area growth (SAG) of gallium nitride (GaN) grown via metal organic vapor phase epitaxy (MOVPE) has been investigated. In this study, the SAG of GaN was carried out on a silicon dioxide striped pattern along the GaN direction. SAG was initiated with the striped pattern oriented parallel and normal to the incoming gas flow in a horizontal reactor. The orientation of the pattern did not impact cross section of the structure after re-growth as both orientations resulted in similar trapezoidal structures bounded by the (0 0 0 1) and {1 1 2¯ n} facets ( n≈1.7-2.2). However, the growth rates were shown to depend on the orientation of the pattern as the normally oriented samples exhibited enhanced vertical and cross-sectional growth rates compared to the parallel oriented samples. All growths occurred under identical conditions and therefore the difference in growth rates must be attributed to a difference in mass transport of species.

  12. Epitaxial Ge Solar Cells Directly Grown on Si (001) by MOCVD Using Isobutylgermane

    Science.gov (United States)

    Kim, Youngjo; Kim, Kangho; Lee, Jaejin; Kim, Chang Zoo; Kang, Ho Kwan; Park, Won-Kyu

    2018-03-01

    Epitaxial Ge layers have been grown on Si (001) substrates by metalorganic chemical vapor deposition (MOCVD) using an isobutylgermane (IBuGe) metalorganic source. Low and high temperature two-step growth and post annealing techniques are employed to overcome the lattice mismatch problem between Ge and Si. It is demonstrated that high quality Ge epitaxial layers can be grown on Si (001) by using IBuGe with surface RMS roughness of 2 nm and an estimated threading dislocation density of 4.9 × 107 cm -2. Furthermore, single-junction Ge solar cells have been directly grown on Si substrates with an in situ MOCVD growth. The epitaxial Ge p- n junction structures are investigated with transmission electron microscopy and electrochemical C- V measurements. As a result, a power conversion efficiency of 1.69% was achieved for the Ge solar cell directly grown on Si substrate under AM1.5G condition.

  13. A high resolution cross section transmission electron microscopy study of epitaxial rare earth fluoride/GaAs(111) interfaces prepared by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Chien, C.J.; Bravman, J.C.

    1990-01-01

    The authors report the HRXTEM study of epitaxial rare earth fluoride/GaAs(111) interfaces. Such interfaces are of interest because they are the starting point for growth of buried epitaxial rare earth/rare earth fluoride sandwich structures which exhibit interesting and non bulk-like magnetic properties. Also, the optical transitions in ultrathin epitaxial NdF 3 films may be influenced by strain and defects in the NdF 3 film and the nature of the interface to GaAs. The authors find that the rare earth fluoride/GaAs interfaces are semi-coherent but chemically abrupt with the transition taking place within 3 Angstrom. However, the interface is physically rough and multiple monolayer steps in the GaAs surface tend to tilt boundaries in the fluoride. The origin of these steps is believed to be thermal etching of the GaAs during the heat- cleaning stage prior to epitaxy. The surface of the fluoride film is much smoother than the initial GaAs surface indicating planarization during epitaxy

  14. Microstructure and magnetic properties of FeCo epitaxial thin films grown on MgO single-crystal substrates

    International Nuclear Information System (INIS)

    Shikada, Kouhei; Ohtake, Mitsuru; Futamoto, Masaaki; Kirino, Fumiyoshi

    2009-01-01

    FeCo epitaxial films were prepared on MgO(100), MgO(110), and MgO(111) substrates by ultrahigh vacuum molecular beam epitaxy. FeCo thin films with (100), (211), and (110) planes parallel to the substrate surface grow on respective MgO substrates. FeCo/MgO interface structures are studied by high-resolution cross-sectional transmission electron microscopy and the epitaxial growth mechanism is discussed. Atomically sharp boundaries are recognized between the FeCo thin films and the MgO substrates where misfit dislocations are introduced in the FeCo thin films presumably to decrease the lattice misfits. Misfit dislocations are observed approximately every 9 and 1.4 nm in FeCo thin film at the FeCo/MgO(100) and the FeCo/MgO(110) interfaces, respectively. X-ray diffraction analysis indicates that the lattice spacing measured parallel to the single-crystal substrate surfaces are in agreement within 0.1% with those of the respective bulk values of Fe 50 Co 50 alloy crystal, showing that the FeCo film strain is very small. The magnetic anisotropies of these epitaxial films basically reflect the magnetocrystalline anisotropy of bulk FeCo alloy crystal

  15. A Lateral Flow Biosensor for the Detection of Single Nucleotide Polymorphisms.

    Science.gov (United States)

    Zeng, Lingwen; Xiao, Zhuo

    2017-01-01

    A lateral flow biosensor (LFB) is introduced for the detection of single nucleotide polymorphisms (SNPs). The assay is composed of two steps: circular strand displacement reaction and lateral flow biosensor detection. In step 1, the nucleotide at SNP site is recognized by T4 DNA ligase and the signal is amplified by strand displacement DNA polymerase, which can be accomplished at a constant temperature. In step 2, the reaction product of step 1 is detected by a lateral flow biosensor, which is a rapid and cost effective tool for nuclei acid detection. Comparing with conventional methods, it requires no complicated machines. It is suitable for the use of point of care diagnostics. Therefore, this simple, cost effective, robust, and promising LFB detection method of SNP has great potential for the detection of genetic diseases, personalized medicine, cancer related mutations, and drug-resistant mutations of infectious agents.

  16. Preparation of hcp-Ni(112-bar 0) epitaxial thin films on Au(100) single-crystal underlayers

    Energy Technology Data Exchange (ETDEWEB)

    Ohtake, Mitsuru; Tanaka, Takahiro; Futamoto, Masaaki [Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551 (Japan); Kirino, Fumiyoshi, E-mail: ohtake@futamoto.elect.chuo-u.ac.j [Graduate School of Fine Arts, Tokyo National University of Fine Arts and Music, 12-8 Ueno-koen, Taito-ku, Tokyo 110-8714 (Japan)

    2010-01-01

    Ni epitaxial films with an hcp structure are successfully obtained on Au(100) single-crystal underlayers formed on MgO(100) substrates at temperatures lower than 300 {sup 0}C by molecular beam epitaxy. With increasing the substrate temperature, the volume ratio of more stable fcc phase inc{sub r}eases in the film. The Ni film prepared at 100 {sup 0}C consists primarily of hcp crystal with the (112-bar 0) plane parallel to the substrate surface coexisting with a small amount of fcc-Ni(100) crystal. The lattice constant of hcp-Ni crystal is determined as a = 0.249 nm, c = 0.398 nm, and c/a = 1.60.

  17. Epitaxial growth of topological insulator Bi{sub 2}Se{sub 3} film on Si(111) with atomically sharp interface

    Energy Technology Data Exchange (ETDEWEB)

    Bansal, Namrata [Department of Electrical and Computer Engineering, Rutgers, State University of New Jersey, Piscataway, NJ 08854 (United States); Kim, Yong Seung [Graphene Research Institute, Sejong University, Seoul 143-747 (Korea, Republic of); Edrey, Eliav; Brahlek, Matthew; Horibe, Yoichi [Department of Physics and Astronomy, Rutgers, State University of New Jersey, Piscataway, NJ 08854 (United States); Iida, Keiko; Tanimura, Makoto [Research Department, Nissan Arc, Ltd. Yokosuka, Kanagawa 237-0061 (Japan); Li Guohong; Feng Tian; Lee, Hang-Dong; Gustafsson, Torgny; Andrei, Eva [Department of Physics and Astronomy, Rutgers, State University of New Jersey, Piscataway, NJ 08854 (United States); Oh, Seongshik, E-mail: ohsean@physics.rutgers.edu [Department of Physics and Astronomy, Rutgers, the State University of New Jersey, Piscataway, NJ 08854 (United States)

    2011-10-31

    Atomically sharp epitaxial growth of Bi{sub 2}Se{sub 3} films is achieved on Si(111) substrate with molecular beam epitaxy. Two-step growth process is found to be a key to achieve interfacial-layer-free epitaxial Bi{sub 2}Se{sub 3} films on Si substrates. With a single-step high temperature growth, second phase clusters are formed at an early stage. On the other hand, with low temperature growth, the film tends to be disordered even in the absence of a second phase. With a low temperature initial growth followed by a high temperature growth, second-phase-free atomically sharp interface is obtained between Bi{sub 2}Se{sub 3} and Si substrate, as verified by reflection high energy electron diffraction (RHEED), transmission electron microscopy (TEM) and X-ray diffraction. The lattice constant of Bi{sub 2}Se{sub 3} is observed to relax to its bulk value during the first quintuple layer according to RHEED analysis, implying the absence of strain from the substrate. TEM shows a fully epitaxial structure of Bi{sub 2}Se{sub 3} film down to the first quintuple layer without any second phase or an amorphous layer.

  18. Preparation and structural characterization of FeCo epitaxial thin films on insulating single-crystal substrates

    International Nuclear Information System (INIS)

    Nishiyama, Tsutomu; Ohtake, Mitsuru; Futamoto, Masaaki; Kirino, Fumiyoshi

    2010-01-01

    FeCo epitaxial films were prepared on MgO(111), SrTiO 3 (111), and Al 2 O 3 (0001) single-crystal substrates by ultrahigh vacuum molecular beam epitaxy. The effects of insulating substrate material on the film growth process and the structures were investigated. FeCo(110) bcc films grow on MgO substrates with two type domains, Nishiyama-Wassermann (NW) and Kurdjumov-Sachs (KS) relationships. On the contrary, FeCo films grown on SrTiO 3 and Al 2 O 3 substrates include FeCo(111) bcc crystal in addition to the FeCo(110) bcc crystals with NW and KS relationships. The FeCo(111) bcc crystal consists of two type domains whose orientations are rotated around the film normal by 180 deg. each other. The out-of-plane and the in-plane lattice spacings of FeCo(110) bcc and FeCo(111) bcc crystals formed on the insulating substrates are in agreement with those of the bulk Fe 50 Co 50 (at. %) crystal with small errors ranging between +0.2% and +0.4%, showing that the strains in the epitaxial films are very small.

  19. Fabrication of GaN epitaxial thin film on InGaZnO4 single-crystalline buffer layer

    International Nuclear Information System (INIS)

    Shinozaki, Tomomasa; Nomura, Kenji; Katase, Takayoshi; Kamiya, Toshio; Hirano, Masahiro; Hosono, Hideo

    2010-01-01

    Epitaxial (0001) films of GaN were grown on (111) YSZ substrates using single-crystalline InGaZnO 4 (sc-IGZO) lattice-matched buffer layers by molecular beam epitaxy with a NH 3 source. The epitaxial relationships are (0001) GaN //(0001) IGZO //(111) YSZ in out-of-plane and [112-bar 0] GaN //[112-bar 0] IGZO //[11-bar 0] YSZ in in-plane. This is different from those reported for GaN on many oxide crystals; the in-plane orientation of GaN crystal lattice is rotated by 30 o with respect to those of oxide substrates except for ZnO. Although these GaN films showed relatively large tilting and twisting angles, which would be due to the reaction between GaN and IGZO, the GaN films grown on the sc-IGZO buffer layers exhibited stronger band-edge photoluminescence than GaN grown on a low-temperature GaN buffer layer.

  20. Epitaxial Growth of an Organic p-n Heterojunction: C60 on Single-Crystal Pentacene.

    Science.gov (United States)

    Nakayama, Yasuo; Mizuno, Yuta; Hosokai, Takuya; Koganezawa, Tomoyuki; Tsuruta, Ryohei; Hinderhofer, Alexander; Gerlach, Alexander; Broch, Katharina; Belova, Valentina; Frank, Heiko; Yamamoto, Masayuki; Niederhausen, Jens; Glowatzki, Hendrik; Rabe, Jürgen P; Koch, Norbert; Ishii, Hisao; Schreiber, Frank; Ueno, Nobuo

    2016-06-01

    Designing molecular p-n heterojunction structures, i.e., electron donor-acceptor contacts, is one of the central challenges for further development of organic electronic devices. In the present study, a well-defined p-n heterojunction of two representative molecular semiconductors, pentacene and C60, formed on the single-crystal surface of pentacene is precisely investigated in terms of its growth behavior and crystallographic structure. C60 assembles into a (111)-oriented face-centered-cubic crystal structure with a specific epitaxial orientation on the (001) surface of the pentacene single crystal. The present experimental findings provide molecular scale insights into the formation mechanisms of the organic p-n heterojunction through an accurate structural analysis of the single-crystalline molecular contact.

  1. Factors affecting GEBV accuracy with single-step Bayesian models.

    Science.gov (United States)

    Zhou, Lei; Mrode, Raphael; Zhang, Shengli; Zhang, Qin; Li, Bugao; Liu, Jian-Feng

    2018-01-01

    A single-step approach to obtain genomic prediction was first proposed in 2009. Many studies have investigated the components of GEBV accuracy in genomic selection. However, it is still unclear how the population structure and the relationships between training and validation populations influence GEBV accuracy in terms of single-step analysis. Here, we explored the components of GEBV accuracy in single-step Bayesian analysis with a simulation study. Three scenarios with various numbers of QTL (5, 50, and 500) were simulated. Three models were implemented to analyze the simulated data: single-step genomic best linear unbiased prediction (GBLUP; SSGBLUP), single-step BayesA (SS-BayesA), and single-step BayesB (SS-BayesB). According to our results, GEBV accuracy was influenced by the relationships between the training and validation populations more significantly for ungenotyped animals than for genotyped animals. SS-BayesA/BayesB showed an obvious advantage over SSGBLUP with the scenarios of 5 and 50 QTL. SS-BayesB model obtained the lowest accuracy with the 500 QTL in the simulation. SS-BayesA model was the most efficient and robust considering all QTL scenarios. Generally, both the relationships between training and validation populations and LD between markers and QTL contributed to GEBV accuracy in the single-step analysis, and the advantages of single-step Bayesian models were more apparent when the trait is controlled by fewer QTL.

  2. Structure characterization of Pd/Co/Pd tri-layer films epitaxially grown on MgO single-crystal substrates

    Energy Technology Data Exchange (ETDEWEB)

    Tobari, Kousuke, E-mail: tobari@futamoto.elect.chuo-u.ac.jp; Ohtake, Mitsuru; Nagano, Katsumasa; Futamoto, Masaaki

    2011-09-30

    Pd/Co/Pd tri-layer films were prepared on MgO substrates of (001), (111), and (011) orientations at room temperature by ultra high vacuum rf magnetron sputtering. The detailed film structures around the Co/Pd and the Pd/Co interfaces are investigated by reflection high energy electron diffraction. Pd layers of (001){sub fcc}, (111){sub fcc}, and (011){sub fcc} orientations epitaxially grow on the respective MgO substrates. Strained fcc-Co(001) single-crystal layers are formed on the Pd(001){sub fcc} layers by accommodating the fairly large lattice mismatch between the Co and the Pd layers. On the Co layers,, Pd polycrystalline layers are formed. When Co films are formed on the Pd(111){sub fcc} and the Pd(011){sub fcc} layers, atomic mixing is observed around the Co/Pd interfaces and fcc-CoPd alloy phases are coexisting with Co crystals. The Co crystals formed on the Pd(111){sub fcc} layers consist of hcp(0001) + fcc(111) and Pd(111){sub fcc} epitaxial layers are formed on the Co layers. Co crystals epitaxially grow on the Pd(011){sub fcc} layers with two variants, hcp(11-bar 00) and fcc(111). On the Co layers, Pd(011){sub fcc} epitaxial layers are formed.

  3. Intermediate surface structure between step bunching and step flow in SrRuO3 thin film growth

    Science.gov (United States)

    Bertino, Giulia; Gura, Anna; Dawber, Matthew

    We performed a systematic study of SrRuO3 thin films grown on TiO2 terminated SrTiO3 substrates using off-axis magnetron sputtering. We investigated the step bunching formation and the evolution of the SRO film morphology by varying the step size of the substrate, the growth temperature and the film thickness. The thin films were characterized using Atomic Force Microscopy and X-Ray Diffraction. We identified single and multiple step bunching and step flow growth regimes as a function of the growth parameters. Also, we clearly observe a stronger influence of the step size of the substrate on the evolution of the SRO film surface with respect to the other growth parameters. Remarkably, we observe the formation of a smooth, regular and uniform ``fish skin'' structure at the transition between one regime and another. We believe that the fish skin structure results from the merging of 2D flat islands predicted by previous models. The direct observation of this transition structure allows us to better understand how and when step bunching develops in the growth of SrRuO3 thin films.

  4. Investigation of turbulent separation in a forward-facing step flow

    International Nuclear Information System (INIS)

    Pearson, D S; Goulart, P J; Ganapathisubramani, B

    2011-01-01

    The relation between the upstream and downstream regions of separation of the flow over a forward-facing step is investigated using experimental data. High-speed Particle Image Velocimetry (PIV) data is used to show a correlation between the wall shear stress of the oncoming boundary layer and the streamwise location of reverse flow upstream of the step. The time delay associated with the correlation is consistent with average convection velocities in the lower boundary layer. This suggests that appropriate addition of momentum into the boundary layer could be used to control the spatial extent of the separation upstream of the step. In addition, low-speed PIV data is used to show statistical relations between the flow characteristics of the recirculation regions in the vicinity of the step face. It is shown that a slower than average flow velocity above the step face is associated with an increase in the wall-normal extent of upstream reverse flow, an increase in the inclination of the flow above the step and an increase in downstream vorticity.

  5. Epitaxial graphene electronic structure and transport

    International Nuclear Information System (INIS)

    De Heer, Walt A; Berger, Claire; Wu Xiaosong; Sprinkle, Mike; Hu Yike; Ruan Ming; First, Phillip N; Stroscio, Joseph A; Haddon, Robert; Piot, Benjamin; Faugeras, Clement; Potemski, Marek; Moon, Jeong-Sun

    2010-01-01

    Since its inception in 2001, the science and technology of epitaxial graphene on hexagonal silicon carbide has matured into a major international effort and is poised to become the first carbon electronics platform. A historical perspective is presented and the unique electronic properties of single and multilayered epitaxial graphenes on electronics grade silicon carbide are reviewed. Early results on transport and the field effect in Si-face grown graphene monolayers provided proof-of-principle demonstrations. Besides monolayer epitaxial graphene, attention is given to C-face grown multilayer graphene, which consists of electronically decoupled graphene sheets. Production, structure and electronic structure are reviewed. The electronic properties, interrogated using a wide variety of surface, electrical and optical probes, are discussed. An overview is given of recent developments of several device prototypes including resistance standards based on epitaxial graphene quantum Hall devices and new ultrahigh frequency analogue epitaxial graphene amplifiers.

  6. Accuracy of Single-Step versus 2-Step Double-Mix Impression Technique

    DEFF Research Database (Denmark)

    Franco, Eduardo Batista; da Cunha, Leonardo Fernandes; Herrera, Francyle Simões

    2011-01-01

    Objective. To investigate the accuracy of dies obtained from single-step and 2-step double-mix impressions. Material and Methods. Impressions (n = 10) of a stainless steel die simulating a complete crown preparation were performed using a polyether (Impregum Soft Heavy and Light body) and a vinyl...

  7. Single photon emission up to liquid nitrogen temperature from charged excitons confined in GaAs-based epitaxial nanostructures

    NARCIS (Netherlands)

    Dusanowski, L.; Syperek, M.; Marynski, A.; Li, L.H.; Misiewicz, J.; Höfling, S.; Kamp, M.; Fiore, A.; Sek, G.

    2015-01-01

    We demonstrate a non-classical photon emitter at near infrared wavelength based on a single (In,Ga)As/GaAs epitaxially grown columnar quantum dot. Charged exciton complexes have been identified in magneto-photoluminescence. Photon auto-correlation histograms from the recombination of a trion

  8. Numerical Simulations of Two-Phase Reacting Flow in a Single-Element Lean Direct Injection (LDI) Combustor Using NCC

    Science.gov (United States)

    Liu, Nan-Suey; Shih, Tsan-Hsing; Wey, C. Thomas

    2011-01-01

    A series of numerical simulations of Jet-A spray reacting flow in a single-element lean direct injection (LDI) combustor have been conducted by using the National Combustion Code (NCC). The simulations have been carried out using the time filtered Navier-Stokes (TFNS) approach ranging from the steady Reynolds-averaged Navier-Stokes (RANS), unsteady RANS (URANS), to the dynamic flow structure simulation (DFS). The sub-grid model employed for turbulent mixing and combustion includes the well-mixed model, the linear eddy mixing (LEM) model, and the filtered mass density function (FDF/PDF) model. The starting condition of the injected liquid spray is specified via empirical droplet size correlation, and a five-species single-step global reduced mechanism is employed for fuel chemistry. All the calculations use the same grid whose resolution is of the RANS type. Comparisons of results from various models are presented.

  9. An explicit multi-time-stepping algorithm for aerodynamic flows

    NARCIS (Netherlands)

    Niemann-Tuitman, B.E.; Veldman, A.E.P.

    1997-01-01

    An explicit multi-time-stepping algorithm with applications to aerodynamic flows is presented. In the algorithm, in different parts of the computational domain different time steps are taken, and the flow is synchronized at the so-called synchronization levels. The algorithm is validated for

  10. Synthesis of Epitaxial Single-Layer MoS2 on Au(111).

    Science.gov (United States)

    Grønborg, Signe S; Ulstrup, Søren; Bianchi, Marco; Dendzik, Maciej; Sanders, Charlotte E; Lauritsen, Jeppe V; Hofmann, Philip; Miwa, Jill A

    2015-09-08

    We present a method for synthesizing large area epitaxial single-layer MoS2 on the Au(111) surface in ultrahigh vacuum. Using scanning tunneling microscopy and low energy electron diffraction, the evolution of the growth is followed from nanoscale single-layer MoS2 islands to a continuous MoS2 layer. An exceptionally good control over the MoS2 coverage is maintained using an approach based on cycles of Mo evaporation and sulfurization to first nucleate the MoS2 nanoislands and then gradually increase their size. During this growth process the native herringbone reconstruction of Au(111) is lifted as shown by low energy electron diffraction measurements. Within the MoS2 islands, we identify domains rotated by 60° that lead to atomically sharp line defects at domain boundaries. As the MoS2 coverage approaches the limit of a complete single layer, the formation of bilayer MoS2 islands is initiated. Angle-resolved photoemission spectroscopy measurements of both single and bilayer MoS2 samples show a dramatic change in their band structure around the center of the Brillouin zone. Brief exposure to air after removing the MoS2 layer from vacuum is not found to affect its quality.

  11. General Top-Down Ion Exchange Process for the Growth of Epitaxial Chalcogenide Thin Films and Devices

    KAUST Repository

    Xia, Chuan

    2016-12-30

    We demonstrate a versatile top-down ion exchange process, done at ambient temperature, to form epitaxial chalcogenide films and devices, with nanometer scale thickness control. To demonstrate the versatility of our process we have synthesized (1) epitaxial chalcogenide metallic and semiconducting films and (2) free-standing chalcogenide films and (3) completed in situ formation of atomically sharp heterojunctions by selective ion exchange. Epitaxial NiCo2S4 thin films prepared by our process show 115 times higher mobility than NiCo2S4 pellets (23 vs 0.2 cm(2) V-1 s(-1)) prepared by previous reports. By controlling the ion exchange process time, we made free-standing epitaxial films of NiCo2S4 and transferred them onto different substrates. We also demonstrate in situ formation of atomically sharp, lateral Schottky diodes based on NiCo2O4/NiCo2S4 heterojunction, using a single ion exchange step. Additionally, we show that our approach can be easily extended to other chalcogenide semiconductors. Specifically, we used our process to prepare Cu1.8S thin films with mobility that matches single crystal Cu1.8S (25 cm(2) V-1 s(-1)), which is ca. 28 times higher than the previously reported Cu1.8S thin film mobility (0.58 cm(2) V-1 s(-1)), thus demonstrating the universal nature of our process. This is the first report in which chalcogenide thin films retain the epitaxial nature of the precursor oxide films, an approach that will be useful in many applications.

  12. Percutaneous Cystgastrostomy as a Single-Step Procedure

    International Nuclear Information System (INIS)

    Curry, L.; Sookur, P.; Low, D.; Bhattacharya, S.; Fotheringham, T.

    2009-01-01

    The purpose of this study was to evaluate the success of percutaneous transgastric cystgastrostomy as a single-step procedure. We performed a retrospective analysis of single-step percutaneous transgastric cystgastrostomy carried out in 12 patients (8 male, 4 female; mean age 44 years; range 21-70 years), between 2002 and 2007, with large symptomatic pancreatic pseudocysts for whom up to 1-year follow-up data (mean 10 months) were available. All pseudocysts were drained by single-step percutaneous cystgastrostomy with the placement of either one or two stents. The procedure was completed successfully in all 12 patients. The pseudocysts showed complete resolution on further imaging in 7 of 12 patients with either enteric passage of the stent or stent removal by endoscopy. In 2 of 12 patients, the pseudocysts showed complete resolution on imaging, with the stents still noted in situ. In 2 of 12 patients, the pseudocysts became infected after 1 month and required surgical intervention. In 1 of 12 patients, the pseudocyst showed partial resolution on imaging, but subsequently reaccumulated and later required external drainage. In our experience, percutaneous cystgastrostomy as a single-step procedure has a high success rate and good short-term outcomes over 1-year follow-up and should be considered in the treatment of large symptomatic cysts.

  13. Mushroom-free selective epitaxial growth of Si, SiGe and SiGe:B raised sources and drains

    Science.gov (United States)

    Hartmann, J. M.; Benevent, V.; Barnes, J. P.; Veillerot, M.; Lafond, D.; Damlencourt, J. F.; Morvan, S.; Prévitali, B.; Andrieu, F.; Loubet, N.; Dutartre, D.

    2013-05-01

    We have evaluated various Cyclic Selective Epitaxial Growth/Etch (CSEGE) processes in order to grow "mushroom-free" Si and SiGe:B Raised Sources and Drains (RSDs) on each side of ultra-short gate length Extra-Thin Silicon-On-Insulator (ET-SOI) transistors. The 750 °C, 20 Torr Si CSEGE process we have developed (5 chlorinated growth steps with four HCl etch steps in-between) yielded excellent crystalline quality, typically 18 nm thick Si RSDs. Growth was conformal along the Si3N4 sidewall spacers, without any poly-Si mushrooms on top of unprotected gates. We have then evaluated on blanket 300 mm Si(001) wafers the feasibility of a 650 °C, 20 Torr SiGe:B CSEGE process (5 chlorinated growth steps with four HCl etch steps in-between, as for Si). As expected, the deposited thickness decreased as the total HCl etch time increased. This came hands in hands with unforeseen (i) decrease of the mean Ge concentration (from 30% down to 26%) and (ii) increase of the substitutional B concentration (from 2 × 1020 cm-3 up to 3 × 1020 cm-3). They were due to fluctuations of the Ge concentration and of the atomic B concentration [B] in such layers (drop of the Ge% and increase of [B] at etch step locations). Such blanket layers were a bit rougher than layers grown using a single epitaxy step, but nevertheless of excellent crystalline quality. Transposition of our CSEGE process on patterned ET-SOI wafers did not yield the expected results. HCl etch steps indeed helped in partly or totally removing the poly-SiGe:B mushrooms on top of the gates. This was however at the expense of the crystalline quality and 2D nature of the ˜45 nm thick Si0.7Ge0.3:B recessed sources and drains selectively grown on each side of the imperfectly protected poly-Si gates. The only solution we have so far identified that yields a lesser amount of mushrooms while preserving the quality of the S/D is to increase the HCl flow during growth steps.

  14. Organometallic vapor-phase epitaxy theory and practice

    CERN Document Server

    Stringfellow, Gerald B

    1989-01-01

    Here is one of the first single-author treatments of organometallic vapor-phase epitaxy (OMVPE)--a leading technique for the fabrication of semiconductor materials and devices. Also included are metal-organic molecular-beam epitaxy (MOMBE) and chemical-beam epitaxy (CBE) ultra-high-vacuum deposition techniques using organometallic source molecules. Of interest to researchers, students, and people in the semiconductor industry, this book provides a basic foundation for understanding the technique and the application of OMVPE for the growth of both III-V and II-VI semiconductor materials and the

  15. Stepwise hydrogeological modeling and groundwater flow analysis on site scale (Step 0 and Step 1)

    International Nuclear Information System (INIS)

    Ohyama, Takuya; Saegusa, Hiromitsu; Onoe, Hironori

    2005-05-01

    One of the main goals of the Mizunami Underground Research Laboratory Project is to establish comprehensive techniques for investigation, analysis, and assessment of the deep geological environment. To achieve this goal, a variety of investigations, analysis, and evaluations have been conducted using an iterative approach. In this study, hydrogeological modeling and ground water flow analyses have been carried out using the data from surface-based investigations at Step 0 and Step 1, in order to synthesize the investigation results, to evaluate the uncertainty of the hydrogeological model, and to specify items for further investigation. The results of this study are summarized as follows: 1) As the investigation progresses Step 0 to Step 1, the understanding of groundwater flow was enhanced from Step 0 to Step 1, and the hydrogeological model could be revised, 2) The importance of faults as major groundwater flow pathways was demonstrated, 3) Geological and hydrogeological characteristics of faults with orientation of NNW and NE were shown to be especially significant. The main item specified for further investigations is summarized as follows: geological and hydrogeological characteristics of NNW and NE trending faults are important. (author)

  16. Theoretical modelling and experimental investigation of single-phase and two-phase flow division at a tee-junction

    International Nuclear Information System (INIS)

    Lemonnier, H.; Hervieu, E.

    1991-01-01

    Phase separation in a tee-junction is modelled in the particular case of bubbly-flow. The model is based on a two-dimensional approach and hence, uses local equations. The first step consists in modelling the single-phase flow in the tee-junction. The free streamline theory is used to predict the flow of the continuous phase. The two recirculation zones which are presented in this case are predicted by the model. The second step consists in predicting the gas bubble paths as a result of the actions of the single-phase flow. Finally, the trajectories of gas bubbles are used to predict the separation characteristics of the tee-junction. Each step of the modelling procedure has been carefully tested by an in-depth experimental investigation. Excellent quantitative agreement is obtained between experimental results and model predictions. Moreover, the phase separation phenomenon is found to be clearly described by the model. (orig.)

  17. Single step radiolytic synthesis of iridium nanoparticles onto graphene oxide

    International Nuclear Information System (INIS)

    Rojas, J.V.; Molina Higgins, M.C.; Toro Gonzalez, M.; Castano, C.E.

    2015-01-01

    Graphical abstract: - Highlights: • Ir nanoparticles were synthesized through a single step gamma irradiation process. • Homogeneously distributed Ir nanoparticles on graphene oxide are ∼2.3 nm in size. • Ir−O bonds evidenced the interaction of the nanoparticles with the support. - Abstract: In this work a new approach to synthesize iridium nanoparticles on reduced graphene oxide is presented. The nanoparticles were directly deposited and grown on the surface of the carbon-based support using a single step reduction method through gamma irradiation. In this process, an aqueous isopropanol solution containing the iridium precursor, graphene oxide, and sodium dodecyl sulfate was initially prepared and sonicated thoroughly to obtain a homogeneous dispersion. The samples were irradiated with gamma rays with energies of 1.17 and 1.33 MeV emitted from the spontaneous decay of the 60 Co irradiator. The interaction of gamma rays with water in the presence of isopropanol generates highly reducing species homogeneously distributed in the solution that can reduce the Ir precursor down to a zero valence state. An absorbed dose of 60 kGy was used, which according to the yield of reducing species is sufficient to reduce the total amount of precursor present in the solution. This novel approach leads to the formation of 2.3 ± 0.5 nm Ir nanoparticles distributed along the surface of the support. The oxygenated functionalities of graphene oxide served as nucleation sites for the formation of Ir nuclei and their subsequent growth. XPS results revealed that the interaction of Ir with the support occurs through Ir−O bonds.

  18. Epitaxial TiO 2/SnO 2 core-shell heterostructure by atomic layer deposition

    KAUST Repository

    Nie, Anmin

    2012-01-01

    Taking TiO 2/SnO 2 core-shell nanowires (NWs) as a model system, we systematically investigate the structure and the morphological evolution of this heterostructure synthesized by atomic layer deposition/epitaxy (ALD/ALE). All characterizations, by X-ray diffraction, high-resolution transmission electron microscopy, selected area electron diffraction and Raman spectra, reveal that single crystalline rutile TiO 2 shells can be epitaxially grown on SnO 2 NWs with an atomically sharp interface at low temperature (250 °C). The growth behavior of the TiO 2 shells highly depends on the surface orientations and the geometrical shape of the core SnO 2 NW cross-section. Atomically smooth surfaces are found for growth on the {110} surface. Rough surfaces develop on {100} surfaces due to (100) - (1 × 3) reconstruction, by introducing steps in the [010] direction as a continuation of {110} facets. Lattice mismatch induces superlattice structures in the TiO 2 shell and misfit dislocations along the interface. Conformal epitaxial growth has been observed for SnO 2 NW cores with an octagonal cross-section ({100} and {110} surfaces). However, for a rectangular core ({101} and {010} surfaces), the shell also derives an octagonal shape from the epitaxial growth, which was explained by a proposed model based on ALD kinetics. The surface steps and defects induced by the lattice mismatch likely lead to improved photoluminescence (PL) performance for the yellow emission. Compared to the pure SnO 2 NWs, the PL spectrum of the core-shell nanostructures exhibits a stronger emission peak, which suggests potential applications in optoelectronics. © The Royal Society of Chemistry 2012.

  19. Ge-on-Si : Single-Crystal Selective Epitaxial Growth in a CVD Reactor

    NARCIS (Netherlands)

    Sammak, A.; De Boer, W.B.; Nanver, L.K.

    2012-01-01

    A standard Si/SiGe ASM CVD reactor that was recently modified for merging GaAs and Si epitaxial growth in one system is utilized to achieve intrinsic and doped epitaxial Ge-on-Si with low threading dislocation and defect densities. For this purpose, the system is equipped with 2% diluted GeH4 as the

  20. Comparative analysis of single-step and two-step biodiesel production using supercritical methanol on laboratory-scale

    International Nuclear Information System (INIS)

    Micic, Radoslav D.; Tomić, Milan D.; Kiss, Ferenc E.; Martinovic, Ferenc L.; Simikić, Mirko Ð.; Molnar, Tibor T.

    2016-01-01

    Highlights: • Single-step supercritical transesterification compared to the two-step process. • Two-step process: oil hydrolysis and subsequent supercritical methyl esterification. • Experiments were conducted in a laboratory-scale batch reactor. • Higher biodiesel yields in two-step process at milder reaction conditions. • Two-step process has potential to be cost-competitive with the single-step process. - Abstract: Single-step supercritical transesterification and two-step biodiesel production process consisting of oil hydrolysis and subsequent supercritical methyl esterification were studied and compared. For this purpose, comparative experiments were conducted in a laboratory-scale batch reactor and optimal reaction conditions (temperature, pressure, molar ratio and time) were determined. Results indicate that in comparison to a single-step transesterification, methyl esterification (second step of the two-step process) produces higher biodiesel yields (95 wt% vs. 91 wt%) at lower temperatures (270 °C vs. 350 °C), pressures (8 MPa vs. 12 MPa) and methanol to oil molar ratios (1:20 vs. 1:42). This can be explained by the fact that the reaction system consisting of free fatty acid (FFA) and methanol achieves supercritical condition at milder reaction conditions. Furthermore, the dissolved FFA increases the acidity of supercritical methanol and acts as an acid catalyst that increases the reaction rate. There is a direct correlation between FFA content of the product obtained in hydrolysis and biodiesel yields in methyl esterification. Therefore, the reaction parameters of hydrolysis were optimized to yield the highest FFA content at 12 MPa, 250 °C and 1:20 oil to water molar ratio. Results of direct material and energy costs comparison suggest that the process based on the two-step reaction has the potential to be cost-competitive with the process based on single-step supercritical transesterification. Higher biodiesel yields, similar or lower energy

  1. Improved crystalline quality of AlN epitaxial layer on sapphire by introducing TMGa pulse flow into the nucleation stage

    Science.gov (United States)

    Wu, Hualong; Wang, Hailong; Chen, Yingda; Zhang, Lingxia; Chen, Zimin; Wu, Zhisheng; Wang, Gang; Jiang, Hao

    2018-05-01

    The crystalline quality of AlN epitaxial layers on sapphire substrates was improved by introducing trimethylgallium (TMGa) pulse flow into the growth of AlN nucleation layers. It was found that the density of both screw- and edge-type threading dislocations could be significantly reduced by introducing the TMGa pulse flow. With increasing TMGa pulse flow times, the lateral correlation length (i.e. the grain size) increases and the strain in the AlN epilayers changes from tensile state to compressive state. Unstrained AlN with the least dislocations and a smooth surface was obtained by introducing 2-times TMGa pulse flow. The crystalline improvement is attributed to enhanced lateral growth and improved crystalline orientation by the TMGa pulse flow.

  2. A Study of Laminar Backward-Facing Step Flow

    DEFF Research Database (Denmark)

    Davidson, Lars; Nielsen, Peter V.

    The laminar flow for a backwards facing step is studied. This work was initially part of the work presented in. In that work low-Reynolds number effects was studied, and the plan was also to include laminar flow. However, it turned out that when the numerical predictions of the laminar flow (Re...

  3. Epitaxial growth of fcc-CoxNi100-x thin films on MgO(110) single-crystal substrates

    International Nuclear Information System (INIS)

    Ohtake, Mitsuru; Nukaga, Yuri; Sato, Yoichi; Futamoto, Masaaki; Kirino, Fumiyoshi

    2009-01-01

    Co x Ni 100-x (x=100, 80, 20, 0 at. %) epitaxial thin films were prepared on MgO(110) single-crystal substrates heated at 300 deg. C by ultrahigh vacuum molecular beam epitaxy. The growth mechanism is discussed based on lattice strain and crystallographic defects. CoNi(110) single-crystal films with a fcc structure are obtained for all compositions. Co x Ni 100-x film growth follows the Volmer-Weber mode. X-ray diffraction analysis indicates that the out-of-plane and the in-plane lattice spacings of the Co x Ni 100-x films are in agreement within ±0.5% with the values of the respective bulk Co x Ni 100-x crystals, suggesting that the strain in the film is very small. High-resolution cross-sectional transmission microscopy shows that an atomically sharp boundary is formed between a Co(110) fcc film and a MgO(110) substrate, where periodical misfit dislocations are preferentially introduced in the film at the Co/MgO interface. The presence of such periodical misfit dislocations relieves the strain caused by the lattice mismatch between the film and the substrate.

  4. Polyphyly and gene flow between non-sibling Heliconius species

    Directory of Open Access Journals (Sweden)

    Jiggins Chris D

    2006-04-01

    Full Text Available Abstract Background The view that gene flow between related animal species is rare and evolutionarily unimportant largely antedates sensitive molecular techniques. Here we use DNA sequencing to investigate a pair of morphologically and ecologically divergent, non-sibling butterfly species, Heliconius cydno and H. melpomene (Lepidoptera: Nymphalidae, whose distributions overlap in Central and Northwestern South America. Results In these taxa, we sequenced 30–45 haplotypes per locus of a mitochondrial region containing the genes for cytochrome oxidase subunits I and II (CoI/CoII, and intron-spanning fragments of three unlinked nuclear loci: triose-phosphate isomerase (Tpi, mannose-6-phosphate isomerase (Mpi and cubitus interruptus (Ci genes. A fifth gene, dopa decarboxylase (Ddc produced sequence data likely to be from different duplicate loci in some of the taxa, and so was excluded. Mitochondrial and Tpi genealogies are consistent with reciprocal monophyly, whereas sympatric populations of the species in Panama share identical or similar Mpi and Ci haplotypes, giving rise to genealogical polyphyly at the species level despite evidence for rapid sequence divergence at these genes between geographic races of H. melpomene. Conclusion Recent transfer of Mpi haplotypes between species is strongly supported, but there is no evidence for introgression at the other three loci. Our results demonstrate that the boundaries between animal species can remain selectively porous to gene flow long after speciation, and that introgression, even between non-sibling species, can be an important factor in animal evolution. Interspecific gene flow is demonstrated here for the first time in Heliconius and may provide a route for the transfer of switch-gene adaptations for Müllerian mimicry. The results also forcefully demonstrate how reliance on a single locus may give an erroneous picture of the overall genealogical history of speciation and gene flow.

  5. Chirality-Controlled Growth of Single-Wall Carbon Nanotubes Using Vapor Phase Epitaxy: Mechanistic Understanding and Scalable Production

    Science.gov (United States)

    2016-09-15

    AFRL-AFOSR-VA-TR-2016-0319 Chirality -Controlled Growth of Single-Wall Carbon Nanotubes Using Vapor Phase Epitaxy: Mechanistic Understanding and...TELEPHONE NUMBER (Include area code) DISTRIBUTION A: Distribution approved for public release. 15-06-2016 final Jun 2014 - Jun 2016 Chirality ...for Public Release; Distribution is Unlimited. In this report, we present our efforts in establishing a novel and effective approach for chirality

  6. Epitaxial TiN(001) wetting layer for growth of thin single-crystal Cu(001)

    Energy Technology Data Exchange (ETDEWEB)

    Chawla, J. S.; Zhang, X. Y.; Gall, D. [Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States)

    2011-08-15

    Single-crystal Cu(001) layers, 4-1400 nm thick, were deposited on MgO(001) with and without a 2.5-nm-thick TiN(001) buffer layer. X-ray diffraction and reflection indicate that the TiN(001) surface suppresses Cu-dewetting, yielding a 4 x lower defect density and a 9 x smaller surface roughness than if grown on MgO(001) at 25 deg. C. In situ and low temperature electron transport measurements indicate that ultra-thin (4 nm) Cu(001) remains continuous and exhibits partial specular scattering at the Cu-vacuum boundary with a Fuchs-Sondheimer specularity parameter p = 0.6 {+-} 0.2, suggesting that the use of epitaxial wetting layers is a promising approach to create low-resistivity single-crystal Cu nanoelectronic interconnects.

  7. Comparison of single-step and two-step purified coagulants from Moringa oleifera seed for turbidity and DOC removal.

    Science.gov (United States)

    Sánchez-Martín, J; Ghebremichael, K; Beltrán-Heredia, J

    2010-08-01

    The coagulant proteins from Moringa oleifera purified with single-step and two-step ion-exchange processes were used for the coagulation of surface water from Meuse river in The Netherlands. The performances of the two purified coagulants and the crude extract were assessed in terms of turbidity and DOC removal. The results indicated that the optimum dosage of the single-step purified coagulant was more than two times higher compared to the two-step purified coagulant in terms of turbidity removal. And the residual DOC in the two-step purified coagulant was lower than in single-step purified coagulant or crude extract. (c) 2010 Elsevier Ltd. All rights reserved.

  8. Thermodynamic approach and comparison of two-step and single step DME (dimethyl ether) syntheses with carbon dioxide utilization

    International Nuclear Information System (INIS)

    Chen, Wei-Hsin; Hsu, Chih-Liang; Wang, Xiao-Dong

    2016-01-01

    DME (Dimethyl ether) synthesis from syngas with CO_2 utilization through two-step and single step processes is analyzed thermodynamically. The influences of reaction temperature, H_2/CO molar ratio, and CO_2/CO molar ratio on CO and CO_2 conversions, DME selectivity and yield, and thermal behavior are evaluated. Particular attention is paid to the comparison of the performance of DME synthesis between the two different methods. In the two-step method, the addition of CO_2 suppresses the CO conversion during methanol synthesis. An increase in CO_2/CO ratio decreases the CO_2 conversion (negative effect), but increases the total consumption amount of CO_2 (positive effect). At a given reaction temperature with H_2/CO = 4, the maximum DME yield develops at CO_2/CO = 1. In the single step method, over 98% of CO can be converted and the DME yield can be as high as 0.52 mol (mol CO)"−"1 at CO_2/CO = 2. The comparison of the single step and two-step processes indicates that the maximum CO conversion, DME selectivity, and DME yield in the former are higher than those in the latter, whereas an opposite result in the maximum CO_2 conversion is observed. These results reveal that the single step process has lower thermodynamic limitation and is a better option for DME synthesis. From CO_2 utilization point of view, the operation with low temperature, high H_2/CO ratio, and low CO_2/CO ratio results in higher CO_2 conversion, irrespective of two-step or single step DME synthesis. - Highlights: • DME (Dimethyl ether) synthesis with CO_2 utilization is analyzed thermodynamically. • Single step and two-step DME syntheses are studied and compared with each other. • CO_2 addition suppresses CO conversion in MeOH synthesis but increases MeOH yield. • The performance of the single step DME synthesis is better than that of the two-step one. • Increase CO_2/CO ratio decreases CO_2 conversion but increases CO_2 consumption amount.

  9. The physics of epitaxial graphene on SiC(0001)

    International Nuclear Information System (INIS)

    Kageshima, H; Hibino, H; Tanabe, S

    2012-01-01

    Various physical properties of epitaxial graphene grown on SiC(0001) are studied. First, the electronic transport in epitaxial bilayer graphene on SiC(0001) and quasi-free-standing bilayer graphene on SiC(0001) is investigated. The dependences of the resistance and the polarity of the Hall resistance at zero gate voltage on the top-gate voltage show that the carrier types are electron and hole, respectively. The mobility evaluated at various carrier densities indicates that the quasi-free-standing bilayer graphene shows higher mobility than the epitaxial bilayer graphene when they are compared at the same carrier density. The difference in mobility is thought to come from the domain size of the graphene sheet formed. To clarify a guiding principle for controlling graphene quality, the mechanism of epitaxial graphene growth is also studied theoretically. It is found that a new graphene sheet grows from the interface between the old graphene sheets and the SiC substrate. Further studies on the energetics reveal the importance of the role of the step on the SiC surface. A first-principles calculation unequivocally shows that the C prefers to release from the step edge and to aggregate as graphene nuclei along the step edge rather than be left on the terrace. It is also shown that the edges of the existing graphene more preferentially absorb the isolated C atoms. For some annealing conditions, experiments can also provide graphene islands on SiC(0001) surfaces. The atomic structures are studied theoretically together with their growth mechanism. The proposed embedded island structures actually act as a graphene island electronically, and those with zigzag edges have a magnetoelectric effect. Finally, the thermoelectric properties of graphene are theoretically examined. The results indicate that reducing the carrier scattering suppresses the thermoelectric power and enhances the thermoelectric figure of merit. The fine control of the Fermi energy position is thought to

  10. Polarized Raman scattering study of PSN single crystals and epitaxial thin films

    Directory of Open Access Journals (Sweden)

    J. Pokorný

    2015-06-01

    Full Text Available This paper describes a detailed analysis of the dependence of Raman scattering intensity on the polarization of the incident and inelastically scattered light in PbSc0.5Nb0.5O3 (PSN single crystals and epitaxially compressed thin films grown on (100-oriented MgO substrates. It is found that there are significant differences between the properties of the crystals and films, and that these differences can be attributed to the anticipated structural differences between these two forms of the same material. In particular, the scattering characteristics of the oxygen octahedra breathing mode near 810 cm-1 indicate a ferroelectric state for the crystals and a relaxor state for the films, which is consistent with the dielectric behaviors of these materials.

  11. Designed optimization of a single-step extraction of fucose-containing sulfated polysaccharides from Sargassum sp

    DEFF Research Database (Denmark)

    Ale, Marcel Tutor; Mikkelsen, Jørn Dalgaard; Meyer, Anne S.

    2012-01-01

    Fucose-containing sulfated polysaccharides can be extracted from the brown seaweed, Sargassum sp. It has been reported that fucose-rich sulfated polysaccharides from brown seaweeds exert different beneficial biological activities including anti-inflammatory, anticoagulant, and anti-viral effects....... Classical extraction of fucose-containing sulfated polysaccharides from brown seaweed species typically involves extended, multiple-step, hot acid, or CaCl2 treatments, each step lasting several hours. In this work, we systematically examined the influence of acid concentration (HCl), time, and temperature...... on the yield of fucosecontaining sulfated polysaccharides (FCSPs) in statistically designed two-step and single-step multifactorial extraction experiments. All extraction factors had significant effects on the fucose-containing sulfated polysaccharides yield, with the temperature and time exerting positive...

  12. Epitaxial properties of ZnO thin films on SrTiO3 substrates grown by laser molecular beam epitaxy

    International Nuclear Information System (INIS)

    Wei, X. H.; Li, Y. R.; Zhu, J.; Huang, W.; Zhang, Y.; Luo, W. B.; Ji, H.

    2007-01-01

    Epitaxial ZnO thin films with different orientations have been grown by laser molecular beam epitaxy on (001)- (011)-, and (111)-orientated SrTiO 3 single-crystal substrates. The growth behavior was in situ monitored by reflection high-energy electron diffraction, and the epitaxial orientation relations were reconfirmed by ex situ x-ray diffraction measurements. In the case of ZnO on SrTiO 3 (001), four orthogonal domains coexisted in the ZnO epilayer, i.e., ZnO(110) parallel SrTiO 3 (001) and ZnO[-111] parallel SrTiO 3 . For (011)- and (111)-orientated substrates, single-domain epitaxy with c axial orientation was observed, in which the in-plane relationship was ZnO[110] parallel SrTiO 3 [110] irrespective of the substrate orientations. Additionally, the crystalline quality of ZnO on SrTiO 3 (111) was better than that of ZnO on SrTiO 3 (011) because of the same symmetry between the (111) substrates and (001) films. The obtained results can be attributed to the difference of the in-plane crystallographic symmetry. Furthermore, those alignments can be explained by the interface stress between the substrates and the films

  13. Comparison of Model Reliabilities from Single-Step and Bivariate Blending Methods

    DEFF Research Database (Denmark)

    Taskinen, Matti; Mäntysaari, Esa; Lidauer, Martin

    2013-01-01

    Model based reliabilities in genetic evaluation are compared between three methods: animal model BLUP, single-step BLUP, and bivariate blending after genomic BLUP. The original bivariate blending is revised in this work to better account animal models. The study data is extracted from...... be calculated. Model reliabilities by the single-step and the bivariate blending methods were higher than by animal model due to genomic information. Compared to the single-step method, the bivariate blending method reliability estimates were, in general, lower. Computationally bivariate blending method was......, on the other hand, lighter than the single-step method....

  14. Low-leakage superconducting tunnel junctions with a single-crystal Al{sub 2}O{sub 3} barrier

    Energy Technology Data Exchange (ETDEWEB)

    Oh, S [National Institute of Standards and Technology, Boulder, CO 80305 (United States); Department of Physics, University of Illinois, Urbana, IL 61801 (United States); Cicak, K; Osborn, K D; Simmonds, R W; Pappas, D P [National Institute of Standards and Technology, Boulder, CO 80305 (United States); McDermott, R; Cooper, K B; Steffen, M; Martinis, J M [University of California, Santa Barbara, CA 93106 (United States)

    2005-10-01

    We have developed a two-step growth scheme for single-crystal Al{sub 2}O{sub 3} tunnel barriers. The barriers are epitaxially grown on single-crystal rhenium (Re) base electrodes that are grown epitaxially on a sapphire substrate, while polycrystalline Al is used as the top electrode. We show that by first growing an amorphous aluminium (Al) oxide layer at room temperature and crystallizing it at a high temperature in oxygen environment, a morphologically intact single-crystal Al{sub 2}O{sub 3} layer is obtained. Tunnel junctions fabricated from these trilayers show very low subgap leakage current. This single-crystal Al{sub 2}O{sub 3} junction may open a new venue for coherent quantum devices.

  15. Isotopically pure single crystal epitaxial diamond films and their preparation

    International Nuclear Information System (INIS)

    Banholzer, W.F.; Anthony, T.R.; Williams, D.M.

    1992-01-01

    The present invention is directed to the production of single crystal diamond consisting of isotopically pure carbon-12 or carbon-13. In the present invention, isotopically pure single crystal diamond is grown on a single crystal substrate directly from isotopically pure carbon-12 or carbon-13. One method for forming isotopically pure single crystal diamond comprises the steps of placing in a reaction chamber a single substrate heated to an elevated diamond forming temperature. Another method for forming isotopically pure single crystal diamond comprises diffusing isotopically pure carbon-12 or carbon-13 through a metallic catalyst under high pressure to a region containing a single crystal substrate to form an isotopically pure single crystal diamond layer on said single crystal substrate

  16. Morphological and electronic properties of epitaxial graphene on SiC

    International Nuclear Information System (INIS)

    Yakimova, R.; Iakimov, T.; Yazdi, G.R.; Bouhafs, C.; Eriksson, J.; Zakharov, A.; Boosalis, A.; Schubert, M.; Darakchieva, V.

    2014-01-01

    We report on the structural and electronic properties of graphene grown on SiC by high-temperature sublimation. We have studied thickness uniformity of graphene grown on 4H–SiC (0 0 0 1), 6H–SiC (0 0 0 1), and 3C–SiC (1 1 1) substrates and investigated in detail graphene surface morphology and electronic properties. Differences in the thickness uniformity of the graphene layers on different SiC polytypes is related mainly to the minimization of the terrace surface energy during the step bunching process. It is also shown that a lower substrate surface roughness results in more uniform step bunching and consequently better quality of the grown graphene. We have compared the three SiC polytypes with a clear conclusion in favor of 3C–SiC. Localized lateral variations in the Fermi energy of graphene are mapped by scanning Kelvin probe microscopy. It is found that the overall single-layer graphene coverage depends strongly on the surface terrace width, where a more homogeneous coverage is favored by wider terraces. It is observed that the step distance is a dominating, factor in determining the unintentional doping of graphene from the SiC substrate. Microfocal spectroscopic ellipsometry mapping of the electronic properties and thickness of epitaxial graphene on 3C–SiC (1 1 1) is also reported. Growth of one monolayer graphene is demonstrated on both Si- and C-polarity of the 3C–SiC substrates and it is shown that large area homogeneous single monolayer graphene can be achieved on the Si-face substrates. Correlations between the number of graphene monolayers on one hand and the main transition associated with an exciton enhanced van Hove singularity at ∼4.5 eV and the free-charge carrier scattering time, on the other are established. It is shown that the interface structure on the Si- and C-polarity of the 3C–SiC (1 1 1) differs and has a determining role for the thickness and electronic properties homogeneity of the epitaxial graphene.

  17. Quasi-epitaxial barium hexaferrite thin films prepared by a topotactic reactive diffusion process

    Science.gov (United States)

    Meng, Siqin; Yue, Zhenxing; Zhang, Xiaozhi; Li, Longtu

    2014-01-01

    Quasi-epitaxial barium hexaferrite thin films (BaM) with crystallographic c-axis parallel to film normal were prepared through a topotactic reactive diffusion process using two-step solution deposition on c-plane sapphire. The two-step spin coating process involves preparing an epitaxial hematite film, coating the film with barium precursor solution and thermal annealing. The crystal orientation and magnetic anisotropy of BaM thin films were investigated by X-ray diffraction analysis, SEM observation and magnetic measurements. Hysteresis loops showed good magnetic anisotropy and high remanence ratio (RR) Mr/Ms = 0.97. The films fabricated by two-step spin coating process displayed wider rocking curve width but better magnetic anisotropy than one-step spin coating. The possible mechanism of this discrepancy is discussed in this paper.

  18. Quasi-epitaxial barium hexaferrite thin films prepared by a topotactic reactive diffusion process

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Siqin; Yue, Zhenxing, E-mail: yuezhx@tsinghua.edu.cn; Zhang, Xiaozhi; Li, Longtu

    2014-01-30

    Quasi-epitaxial barium hexaferrite thin films (BaM) with crystallographic c-axis parallel to film normal were prepared through a topotactic reactive diffusion process using two-step solution deposition on c-plane sapphire. The two-step spin coating process involves preparing an epitaxial hematite film, coating the film with barium precursor solution and thermal annealing. The crystal orientation and magnetic anisotropy of BaM thin films were investigated by X-ray diffraction analysis, SEM observation and magnetic measurements. Hysteresis loops showed good magnetic anisotropy and high remanence ratio (RR) Mr/Ms = 0.97. The films fabricated by two-step spin coating process displayed wider rocking curve width but better magnetic anisotropy than one-step spin coating. The possible mechanism of this discrepancy is discussed in this paper.

  19. Singularities of 28Si electrical activation in a single crystal and epitaxial GaAs under radiation annealing

    International Nuclear Information System (INIS)

    Ardyshev, V.M.; Ardyshev, M.V.; Khludkov, S.S.

    2000-01-01

    Using the voltage-capacitance characteristics method, the concentration profiles of 28 Si that is implanted in monocrystal and epitaxial GaAs after fast thermal annealing (FTA) (825, 870, 950 deg C, 12 s) have been studied; using Van-der-Paw method, the electron Hall mobility temperature dependence in the range of 70-400 K has been measured. Unlike thermal annealing (800 deg C, 30 min), the silicon diffusion depth redistribution into GaAs is shown to occur for both types of material. The coefficient of diffusion of Si in the single crystal is 2 times greater, but the electrical activation efficiency is somewhat less than in the epitaxial GaAs for each of the temperatures of FTA. The analysis of the temperature dependence of the electron mobility in ion-implanted layers after FTA gives the evidence about the significantly lower concentration of defects restricting the mobility in comparison with results obtained at thermal annealing during 30 min [ru

  20. Numerical simulation of complex turbulent Flow over a backward-facing step

    International Nuclear Information System (INIS)

    Silveira Neto, A.

    1991-06-01

    A statistical and topological study of a complex turbulent flow over a backward-facing step is realized by means of Direct and Large-Eddy Simulations. Direct simulations are performed in an isothermal and in a stratified two-dimensional case. In the isothermal case coherent structures have been obtained by the numerical simulation in the mixing layer downstream of the step. In a second step a thermal stratification is imposed on this flow. The coherent structures are in this case produced in the immediate vicinity of the step and disappear dowstream for increasing stratification. Afterwards, large-eddy simulations are carried out in the three-dimensional case. The subgrid-scale model is a local adaptation to the physical space of the spectral eddy-viscosity concept. The statistics of turbulence are in good agreement with the experimental data, corresponding to a small step configuration. Furthermore, calculations at higher step configuration show that the eddy structure of the flow presents striking analogies with the plane shear layers, with large billows shed behind the step, and intense longitudinal vortices strained between these billows [fr

  1. Epitaxial GaN films by hyperthermal ion-beam nitridation of Ga droplets

    Energy Technology Data Exchange (ETDEWEB)

    Gerlach, J. W.; Ivanov, T.; Neumann, L.; Hoeche, Th.; Hirsch, D.; Rauschenbach, B. [Leibniz-Institut fuer Oberflaechenmodifizierung (IOM), D-04318 Leipzig (Germany)

    2012-06-01

    Epitaxial GaN film formation on bare 6H-SiC(0001) substrates via the process of transformation of Ga droplets into a thin GaN film by applying hyperthermal nitrogen ions is investigated. Pre-deposited Ga atoms in well defined amounts form large droplets on the substrate surface which are subsequently nitridated at a substrate temperature of 630 Degree-Sign C by a low-energy nitrogen ion beam from a constricted glow-discharge ion source. The Ga deposition and ion-beam nitridation process steps are monitored in situ by reflection high-energy electron diffraction. Ex situ characterization by x-ray diffraction and reflectivity techniques, Rutherford backscattering spectrometry, and electron microscopy shows that the thickness of the resulting GaN films depends on the various amounts of pre-deposited gallium. The films are epitaxial to the substrate, exhibit a mosaic like, smooth surface topography and consist of coalesced large domains of low defect density. Possible transport mechanisms of reactive nitrogen species during hyperthermal nitridation are discussed and the formation of GaN films by an ion-beam assisted process is explained.

  2. Epitaxial GaN around ZnO nanopillars

    Energy Technology Data Exchange (ETDEWEB)

    Fikry, Mohamed; Scholz, Ferdinand [Institut fuer Optoelektronik, Universitaet Ulm, Albert-Einstein-Allee 45, 89081 Ulm (Germany); Madel, Manfred; Tischer, Ingo; Thonke, Klaus [Institut fuer Quantenmaterie, Universitaet Ulm, Albert-Einstein-Allee 45, 89081 Ulm (Germany)

    2011-07-01

    We report on an investigation of the epitaxial quality of GaN layers overgrown coaxially around ZnO nanopillars. In a first step, regularly arranged ZnO nanopillars were grown using pre-patterning by e-beam lithography or self-organized hexagonal polystyrene sphere masks. Alternatively, ZnO pillars were also successfully grown on top of GaN pyramids. In a second step, GaN layers were grown around the ZnO pillars by Metal Organic Vapor Phase Epitaxy. At growth temperatures above 800 C, the ZnO pillars are dissolved by the hydrogen carrier gas leaving hollow GaN nanotubes. Characterization involved photoluminescence (PL), scanning electron microscopy and cathodoluminescence. The fair quality of the deposited GaN layers is confirmed by a sharp low temperature PL peak at 3.48 eV attributed to the donor bound exciton emission. Further peaks at 3.42 eV and 3.29 eV show the possible existence of basal plane and prismatic stacking faults.

  3. Epitaxial Graphene: A New Material for Electronics

    Science.gov (United States)

    de Heer, Walt A.

    2007-10-01

    Graphene multilayers are grown epitaxially on single crystal silicon carbide. This system is composed of several graphene layers of which the first layer is electron doped due to the built-in electric field and the other layers are essentially undoped. Unlike graphite the charge carriers show Dirac particle properties (i.e. an anomalous Berry's phase, weak anti-localization and square root field dependence of the Landau level energies). Epitaxial graphene shows quasi-ballistic transport and long coherence lengths; properties that may persists above cryogenic temperatures. Paradoxically, in contrast to exfoliated graphene, the quantum Hall effect is not observed in high mobility epitaxial graphene. It appears that the effect is suppressed due to absence of localized states in the bulk of the material. Epitaxial graphene can be patterned using standard lithography methods and characterized using a wide array of techniques. These favorable features indicate that interconnected room temperature ballistic devices may be feasible for low dissipation high-speed nano-electronics.

  4. Investigation of deep level defects in epitaxial semiconducting zinc sulpho-selenide. Progress report, 15 June 1979-14 June 1980

    International Nuclear Information System (INIS)

    Wessels, B.W.

    1980-01-01

    In an effort to understand the defect structure of the ternary II-VI compound zinc sulpho-selenide, the binary compound zinc selenide was investigated. Thin single crystalline films of zinc selenide were heteroepitaxially grown on (100) GaAs. Epitaxial layers from 5 to 50 microns thick could be readily grown using a chemical vapor transport technique. The layers had an excellent morphology with few stacking faults and hillocks. Detailed epitaxial growth kinetics were examined as a function of temperature and reactant concentration. It was found that hydrogen flow rate, source and substrate temperature affect the growth rate of the epitaxial films. Au - ZnSe Schottky barrier diodes and ZnSe - GaAs n-p heterojunctions were prepared from the epitaxial layers. Current-voltage characteristics were measured on both types of diodes. From capacitance-voltage measurements the residual doping density of the epitaxial layers were found to be of the order of 10 14 - 10 15 cm -3 . Finally, we have begun to measure the deep level spectrum of both the Schottky barrier diodes and the heterojunctions. Deep level transient spectroscopy appears to be well suited for determining trapping states in ZnSe provided the material has a low enough resistivity

  5. Anatase thin film with diverse epitaxial relationship grown on yttrium stabilized zirconia substrate by chemical vapor deposition

    International Nuclear Information System (INIS)

    Miyagi, Takahira; Ogawa, Tomoyuki; Kamei, Masayuki; Wada, Yoshiki; Mitsuhashi, Takefumi; Yamazaki, Atsushi

    2003-01-01

    An anatase epitaxial thin film with diverse epitaxial relationship, YSZ (001) // anatase (001), YSZ (010) // anatase (110), was grown on a single crystalline yttrium stabilized zirconia (YSZ) (001) substrate by metal organic chemical vapor deposition (MOCVD). The full width at half maximum (FWHM) of the (004) reflection of this anatase epitaxial film was 0.4deg, and the photoluminescence of this anatase epitaxial film showed visible emission with broad spectral width and large Stokes shift at room temperature. These results indicate that this anatase epitaxial film possessed almost equal crystalline quality compared with that grown under identical growth conditions on single crystalline SrTiO 3 substrate. (author)

  6. Microstructure of epitaxial YBa2Cu3O7-x thin films grown on LaAlO3 (001)

    International Nuclear Information System (INIS)

    Hsieh, Y.; Siegal, M.P.; Hull, R.; Phillips, J.M.

    1990-01-01

    We report a microstructural investigation of the epitaxial growth of YBa 2 Cu 3 O 7-x (YBCO) thin films on LaAlO 3 (001) substrates using transmission electron microscopy (TEM). Epitaxial films grow with two distinct modes: c epitaxy (YBCO) single crystal with the c (axis normal to the surface and a epitaxy (YBCO) single crystal with the c axis in the interfacial plane), where c epitaxy is the dominant mode grown in all samples 35--200 nm thick. In 35 nm YBCO films annealed at 850 degree C, 97±1% of the surface area is covered by c epitaxy with embedded anisotropic a-epitaxial grains. Quantitative analysis reveals the effect of film thickness and annealing temperature on the density, grain sizes, areal coverages, and anisotropic growth of a epitaxy

  7. A novel single-step, multipoint calibration method for instrumented Lab-on-Chip systems

    DEFF Research Database (Denmark)

    Pfreundt, Andrea; Patou, François; Zulfiqar, Azeem

    2014-01-01

    for instrument-based PoC blood biomarker analysis systems. Motivated by the complexity of associating high-accuracy biosensing using silicon nanowire field effect transistors with ease of use for the PoC system user, we propose a novel one-step, multipoint calibration method for LoC-based systems. Our approach...... specifically addresses the important interfaces between a novel microfluidic unit to integrate the sensor array and a mobile-device hardware accessory. A multi-point calibration curve is obtained by generating a defined set of reference concentrations from a single input. By consecutively splitting the flow...

  8. Nucleation Mechanisms of Aromatic Polyesters, PET, PBT, and PEN, on Single-Wall Carbon Nanotubes: Early Nucleation Stages

    Directory of Open Access Journals (Sweden)

    Adriana Espinoza-Martínez

    2012-01-01

    Full Text Available Nucleation mechanisms of poly(ethylene terephthalate (PET, poly(butylene terephthalate (PBT, and poly(ethylene naphthalate (PEN on single-wall carbon nanotubes (SWNTs are proposed, based on experimental evidence, theoretical epitaxy analysis, and semiempirical quantum chemical calculations. In order to elucidate early nucleation stages polyester-coated nanotubes were obtained from highly diluted solutions. High-resolution transmission electron microscopy (HRTEM revealed helical morphologies for PET/SWNTs and PEN/SWNTs and the formation of lobules with different orientations for PBT/SWNTs. To explain the morphological behavior one model was proposed based on crystallographic interactions, that is, epitaxy. Theoretical epitaxy calculations indicated that epitaxy is not possible from the strict epitaxy point of view. Instead, aromatic self-assembly mechanism was proposed based on π-π interactions and the chirality of the nanotube. It was proposed that the mechanism implies two steps to produce helical or lobular morphologies with different orientations. In the first step polymer chains were approached, aligned parallel to the nanotube axis and adsorbed due to electrostatic interactions and the flexibility of the molecule. However, due to π-π interactions between the aromatic rings of the polymer and the nanotube, in the second step chains reoriented on the nanotube surface depending on the chirality of the nanotube. The mechanism was supported by semi-empirical calculations.

  9. Single step sequential polydimethylsiloxane wet etching to fabricate a microfluidic channel with various cross-sectional geometries

    Science.gov (United States)

    Wang, C.-K.; Liao, W.-H.; Wu, H.-M.; Lo, Y.-H.; Lin, T.-R.; Tung, Y.-C.

    2017-11-01

    Polydimethylsiloxane (PDMS) has become a widely used material to construct microfluidic devices for various biomedical and chemical applications due to its desirable material properties and manufacturability. PDMS microfluidic devices are usually fabricated using soft lithography replica molding methods with master molds made of photolithogrpahy patterned photoresist layers on silicon wafers. The fabricated microfluidic channels often have rectangular cross-sectional geometries with single or multiple heights. In this paper, we develop a single step sequential PDMS wet etching process that can be used to fabricate microfluidic channels with various cross-sectional geometries from single-layer PDMS microfluidic channels. The cross-sections of the fabricated channel can be non-rectangular, and varied along the flow direction. Furthermore, the fabricated cross-sectional geometries can be numerically simulated beforehand. In the experiments, we fabricate microfluidic channels with various cross-sectional geometries using the developed technique. In addition, we fabricate a microfluidic mixer with alternative mirrored cross-sectional geometries along the flow direction to demonstrate the practical usage of the developed technique.

  10. Epitaxial growth of bcc-FexCo100-x thin films on MgO(1 1 0) single-crystal substrates

    International Nuclear Information System (INIS)

    Ohtake, Mitsuru; Nishiyama, Tsutomu; Shikada, Kouhei; Kirino, Fumiyoshi; Futamoto, Masaaki

    2010-01-01

    Fe x Co 100-x (x=100, 65, 50 at%) epitaxial thin films were prepared on MgO(1 1 0) single-crystal substrates heated at 300 deg. C by ultra-high vacuum molecular beam epitaxy. The film structure and the growth mechanism are discussed. FeCo(2 1 1) films with bcc structure grow epitaxially on MgO(1 1 0) substrates with two types of variants whose orientations are rotated around the film normal by 180 deg. each other for all compositions. Fe x Co 100-x film growth follows the Volmer Weber mode. X-ray diffraction analysis indicates the out-of-plane and the in-plane lattice spacings are in agreement with the values of respective bulk Fe x Co 100-x crystals with very small errors less than ±0.4%, suggesting the strains in the films are very small. High-resolution cross-sectional transmission electron microscopy shows that periodical misfit dislocations are preferentially introduced in the film at the Fe 50 Co 50 /MgO interface along the MgO[1 1-bar 0] direction. The presence of such periodical dislocations decreases the large lattice mismatch of about -17% existing at the FeCo/MgO interface along the MgO[1 1-bar 0] direction.

  11. Structural characterization of epitaxial YBa2Cu3O7 thin films on step-edge substrates by means of high-resolution electron microscopy

    International Nuclear Information System (INIS)

    Jia, C.L.; Kabius, B.; Urban, K.

    1993-01-01

    The microstructure of YBa 2 Cu 3 O 7 films epitaxially grown on step-edge (0 0 1) SrTiO 3 and LaAlO 3 substrates has been characterized by means of high-resolution electron microscopy. The results indicate a relationship between the microstructure of the film across a step and the angle the step makes with the substrate plane. On a steep, high-angle step, the film grows with its c-axis perpendicular to that of the film on substrate surface so that two grain boundaries are formed. In the upper grain boundary, on the average, a (0 1 3) habit plane alternates with a (1 0 3) habit plane. This alternating structure is caused by twinning in the orthorhombic structure. The lower boundaries consist of a chain of (0 1 3)(0 1 3) and (0 1 0)(0 0 1) type segments exhibiting a tendency to tilt the whole habit plane toward the a-b plane of the flank film. Dislocations, stacking faults and misfit strains were also observed in or close to the boundaries. (orig.)

  12. Vertical epitaxial wire-on-wire growth of Ge/Si on Si(100) substrate.

    Science.gov (United States)

    Shimizu, Tomohiro; Zhang, Zhang; Shingubara, Shoso; Senz, Stephan; Gösele, Ulrich

    2009-04-01

    Vertically aligned epitaxial Ge/Si heterostructure nanowire arrays on Si(100) substrates were prepared by a two-step chemical vapor deposition method in anodic aluminum oxide templates. n-Butylgermane vapor was employed as new safer precursor for Ge nanowire growth instead of germane. First a Si nanowire was grown by the vapor liquid solid growth mechanism using Au as catalyst and silane. The second step was the growth of Ge nanowires on top of the Si nanowires. The method presented will allow preparing epitaxially grown vertical heterostructure nanowires consisting of multiple materials on an arbitrary substrate avoiding undesired lateral growth.

  13. High-quality single crystalline NiO with twin phases grown on sapphire substrate by metalorganic vapor phase epitaxy

    Directory of Open Access Journals (Sweden)

    Kazuo Uchida

    2012-12-01

    Full Text Available High-quality single crystalline twin phase NiO grown on sapphire substrates by metalorganic vapor phase epitaxy is reported. X-ray rocking curve analysis of NiO films grown at different temperatures indicates a minimum full width at half maximum of the cubic (111 diffraction peak of 0.107° for NiO film grown at as low as 550 °C. Detailed microstructural analysis by Φ scan X-ray diffraction and transmission electron microscopy reveal that the NiO film consists of large single crystalline domains with two different crystallographic orientations which are rotated relative to each other along the [111] axis by 60°. These single crystal domains are divided by the twin phase boundaries.

  14. Microwave dynamics of YBCO bi-epitaxial Josephson structures

    DEFF Research Database (Denmark)

    Constantinian, K. Y.; Ovsyannikov, G. A.; Mashtakov, A. D.

    1996-01-01

    The processes of interaction of microwaves (frequency View the MathML source) with a single high-Tc superconducting YBa2Cu3Ox (YBCO) bi-epitaxial grain-boundary junction and with an array of two junctions connected in series, have been investigated experimentally at temperatures T = 4.2− 77 K......, as well as the subharmonic detector response at weak magnetic fields φ microwave field induced frequency synchronization of two series connected bi-epitaxial YBCO junctions....

  15. Low temperature step-graded InAlAs/GaAs metamorphic buffer layers grown by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Shang, X Z; Wu, S D; Liu, C; Wang, W X; Guo, L W; Huang, Q; Zhou, J M

    2006-01-01

    Low-temperature step-graded InAlAs metamorphic buffer layers on GaAs substrate grown by molecular beam epitaxy were investigated. The strain relaxation and the composition of the top InAlAs layer were determined by high-resolution triple-axis x-ray diffraction measurements, which show that the top InAlAs layer is nearly fully relaxed. Surface morphology was observed by reflection high-energy electron diffraction pattern and atomic force microscopy. Under a selected range of growth parameters, the root mean square surface roughness of the sample grown at 380 deg. C is 0.802 nm, which has the smallest value compared with those of other samples. Furthermore, The ω-2θ and ω scans of the triple-axis x-ray diffraction, and photoluminescence show the sample grown at 380 deg. C has better crystalline quality. With decreasing As overpressure at this growth temperature, crystalline quality became poor and could not maintain two dimensional growth with increasing overpressure. The carrier concentrations and Hall mobilities of the InAlAs/ InGaAs/GaAs MM-HEMT structure on low-temperature step-graded InAlAs metamorphic buffer layers grown in optimized conditions are high enough to make devices

  16. Improving Genetic Evaluation of Litter Size Using a Single-step Model

    DEFF Research Database (Denmark)

    Guo, Xiangyu; Christensen, Ole Fredslund; Ostersen, Tage

    A recently developed single-step method allows genetic evaluation based on information from phenotypes, pedigree and markers simultaneously. This paper compared reliabilities of predicted breeding values obtained from single-step method and the traditional pedigree-based method for two litter size...... traits, total number of piglets born (TNB), and litter size at five days after birth (Ls 5) in Danish Landrace and Yorkshire pigs. The results showed that the single-step method combining phenotypic and genotypic information provided more accurate predictions than the pedigree-based method, not only...

  17. Experimental investigations of superconductivity in quasi-two-dimensional epitaxial copper oxide superlattices and trilayers

    International Nuclear Information System (INIS)

    Lowndes, D.H.; Norton, D.P.

    1993-01-01

    Epitaxial trilayer and superlattice structures grown by pulsed laser ablation have been used to study the superconducting-to-normal transition of ultrathin (one and two c-axis unit cells) YBa 2 Cu 3 O 7-x layers. The normalized flux-flow resistances for several epitaxial structures containing two-cell-thick YBa 2 Cu 3 O 7-x films collapse onto the ''universal'' curve of the Ginzburg-Landau Coulomb Gas (GLCG) model. Analysis of normalized resistance data for a series of superlattices containing one-cell-thick YBa 2 Cu 3 O 7-x layers also is consistent with the behavior expected for quasi-two-dimensional layers in a highly anisotropic, layered three-dimensional superconductor. Current-voltage measurements for one of the trilayer structures also are consistent with the normalized resistance data, and with the GLCG model. Scanning tunneling microscopy, transmission electron microscopy, and electrical transport studies show that growth-related steps in ultrathin YBa 2 Cu 3 O 7-x layers affect electrical continuity over macroscopic distances, acting as weak links. However , the perturbation of the superconducting order parameter can be minimized by utilizing hole-doped buffer and cap layers, on both sides of the YBa 2 Cu 3 O 7-x layer, in trilayers and superlattices. These results demonstrate the usefulness of epitaxial trilayer and superlattice structures as tools for systematic, fundamental studies of high-temperature superconductivity

  18. Empirical Modeling of Oxygen Uptake of Flow Over Stepped Chutes ...

    African Journals Online (AJOL)

    The present investigation evaluates the influence of three different step chute geometry when skimming flow was allowed over them with the aim of determining the aerated flow length which is a significant factor when developing empirical equations for estimating aeration efficiency of flow. Overall, forty experiments were ...

  19. Preparation and Characterization of Epitaxial VO2 Films on Sapphire Using Postepitaxial Topotaxy Route via Epitaxial V2O3 Films

    Science.gov (United States)

    Yamaguchi, Iwao; Manabe, Takaaki; Tsuchiya, Tetsuo; Nakajima, Tomohiko; Sohma, Mitsugu; Kumagai, Toshiya

    2008-02-01

    Epitaxial VO2 films were prepared on the C-planes of α-Al2O3 substrates by a metal organic deposition (MOD) process. It was difficult to obtain the single phase of (010)M-oriented VO2 films, in which the subscript M refers to the monoclinic indices, by the heat treatment of amorphous precursor films in the VO2-stable region after the pyrolysis of the coating solution. The product films consisted of discontinuous circular grains of 1-2 µm size on the substrate surface. Therefore, we prepared the (010)M-oriented epitaxial VO2 films using postepitaxial topotaxy (PET), that is, topotactic oxidation of (0001)-oriented epitaxial V2O3 films. First, epitaxial V2O3(0001) films were obtained by MOD starting with a vanadium naphthenate solution. Second, the epitaxial V2O3(0001) films were topotactically oxidized at 500 °C in an Ar-O2 gas mixture with pO2 = 10-4 atm to obtain (010)M-oriented epitaxial VO2 films. The epitaxial relationships were VO2(010)M ∥ α-Al2O3(0001) and VO2[100]M ∥ α-Al2O3[0110], [1010], [1100]. The VO2(010)M films exhibited metal-semiconductor transitions with hysteresis loops at 60-80 °C. The resistivity change before and after the transition of the VO2(010)M film oxidized for 6 h was three orders of magnitude.

  20. Hydrogen reduction in GaAsN thin films by flow rate modulated chemical beam epitaxy

    International Nuclear Information System (INIS)

    Saito, K.; Nishimura, K.; Suzuki, H.; Ohshita, Y.; Yamaguchi, M.

    2008-01-01

    The amount of residual H in the GaAsN film grown by chemical beam epitaxy (CBE) can be decreased by flow rate modulation growth. Many H atoms in the films grown by CBE exist as N-H or N-H 2 structures. Although a higher growth temperature was required for decreasing the H concentration ([H]), it caused a decrease in the N concentration ([N]). A reduction in [H] while keeping [N] constant was necessary. By providing an intermittent supply of Ga source while continuously supplying As and N sources, [H] effectively decreased in comparison with the [H] value in the film grown at the same temperature by conventional CBE without reducing [N

  1. Growth kinetics and mass transport mechanisms of GaN columns by selective area metal organic vapor phase epitaxy

    Science.gov (United States)

    Wang, Xue; Hartmann, Jana; Mandl, Martin; Sadat Mohajerani, Matin; Wehmann, Hergo-H.; Strassburg, Martin; Waag, Andreas

    2014-04-01

    Three-dimensional GaN columns recently have attracted a lot of attention as the potential basis for core-shell light emitting diodes for future solid state lighting. In this study, the fundamental insights into growth kinetics and mass transport mechanisms of N-polar GaN columns during selective area metal organic vapor phase epitaxy on patterned SiOx/sapphire templates are systematically investigated using various pitch of apertures, growth time, and silane flow. Species impingement fluxes on the top surface of columns Jtop and on their sidewall Jsw, as well as, the diffusion flux from the substrate Jsub contribute to the growth of the GaN columns. The vertical and lateral growth rates devoted by Jtop, Jsw and Jsub are estimated quantitatively. The diffusion length of species on the SiOx mask surface λsub as well as on the sidewall surfaces of the 3D columns λsw are determined. The influences of silane on the growth kinetics are discussed. A growth model is developed for this selective area metal organic vapor phase epitaxy processing.

  2. Cryptic species? Patterns of maternal and paternal gene flow in eight neotropical bats.

    Directory of Open Access Journals (Sweden)

    Elizabeth L Clare

    Full Text Available Levels of sequence divergence at mitochondrial loci are frequently used in phylogeographic analysis and species delimitation though single marker systems cannot assess bi-parental gene flow. In this investigation I compare the phylogeographic patterns revealed through the maternally inherited mitochondrial COI region and the paternally inherited 7(th intron region of the Dby gene on the Y-chromosome in eight common Neotropical bat species. These species are diverse and include members of two families from the feeding guilds of sanguivores, nectarivores, frugivores, carnivores and insectivores. In each case, the currently recognized taxon is comprised of distinct, substantially divergent intraspecific mitochondrial lineages suggesting cryptic species complexes. In Chrotopterus auritus, and Saccopteryx bilineata I observed congruent patterns of divergence in both genetic regions suggesting a cessation of gene flow between intraspecific groups. This evidence supports the existence of cryptic species complexes which meet the criteria of the genetic species concept. In Glossophaga soricina two intraspecific groups with largely sympatric South American ranges show evidence for incomplete lineage sorting or frequent hybridization while a third group with a Central American distribution appears to diverge congruently at both loci suggesting speciation. Within Desmodus rotundus and Trachops cirrhosus the paternally inherited region was monomorphic and thus does not support or refute the potential for cryptic speciation. In Uroderma bilobatum, Micronycteris megalotis and Platyrrhinus helleri the gene regions show conflicting patterns of divergence and I cannot exclude ongoing gene flow between intraspecific groups. This analysis provides a comprehensive comparison across taxa and employs both maternally and paternally inherited gene regions to validate patterns of gene flow. I present evidence for previously unrecognized species meeting the criteria of

  3. Numerical method for partial equilibrium flow

    International Nuclear Information System (INIS)

    Ramshaw, J.D.; Cloutman, L.D.; Los Alamos, New Mexico 87545)

    1981-01-01

    A numerical method is presented for chemically reactive fluid flow in which equilibrium and nonequilibrium reactions occur simultaneously. The equilibrium constraints on the species concentrations are established by a quadratic iterative procedure. If the equilibrium reactions are uncoupled and of second or lower order, the procedure converges in a single step. In general, convergence is most rapid when the reactions are weakly coupled. This can frequently be achieved by a judicious choice of the independent reactions. In typical transient calculations, satisfactory accuracy has been achieved with about five iterations per time step

  4. Single-Step Seeded-Growth of Graphene Nanoribbons (GNRs) via Plasma-Enhanced Chemical Vapor Deposition (PECVD)

    Science.gov (United States)

    Hsu, C.-C.; Yang, K.; Tseng, W.-S.; Li, Yiliang; Li, Yilun; Tour, J. M.; Yeh, N.-C.

    One of the main challenges in the fabrication of GNRs is achieving large-scale low-cost production with high quality. Current techniques, including lithography and unzipped carbon nanotubes, are not suitable for mass production. We have recently developed a single-step PECVD growth process of high-quality graphene sheets without any active heating. By adding some substituted aromatic as seeding molecules, we are able to rapidly grow GNRs vertically on various transition-metal substrates. The morphology and electrical properties of the GNRs are dependent on the growth parameters such as the growth time, gas flow and species of the seeding molecules. On the other hand, all GNRs exhibit strong infrared and optical absorption. From studies of the Raman spectra, scanning electron microscopic images, and x-ray/ultraviolet photoelectron spectra of these GNRs as functions of the growth parameters, we propose a model for the growth mechanism. Our findings suggest that our approach opens up a pathway to large-scale, inexpensive production of GNRs for applications to supercapacitors and solar cells. This work was supported by the Grubstake Award and NSF through IQIM at Caltech.

  5. Transfer-free electrical insulation of epitaxial graphene from its metal substrate.

    Science.gov (United States)

    Lizzit, Silvano; Larciprete, Rosanna; Lacovig, Paolo; Dalmiglio, Matteo; Orlando, Fabrizio; Baraldi, Alessandro; Gammelgaard, Lauge; Barreto, Lucas; Bianchi, Marco; Perkins, Edward; Hofmann, Philip

    2012-09-12

    High-quality, large-area epitaxial graphene can be grown on metal surfaces, but its transport properties cannot be exploited because the electrical conduction is dominated by the substrate. Here we insulate epitaxial graphene on Ru(0001) by a stepwise intercalation of silicon and oxygen, and the eventual formation of a SiO(2) layer between the graphene and the metal. We follow the reaction steps by X-ray photoemission spectroscopy and demonstrate the electrical insulation using a nanoscale multipoint probe technique.

  6. Transfer-Free Electrical Insulation of Epitaxial Graphene from its Metal Substrate

    DEFF Research Database (Denmark)

    Lizzit, Silvano; Larciprete, Rosanna; Lacovig, Paolo

    2012-01-01

    High-quality, large-area epitaxial graphene can be grown on metal surfaces, but its transport properties cannot be exploited because the electrical conduction is dominated by the substrate. Here we insulate epitaxial graphene on Ru(0001) by a stepwise intercalation of silicon and oxygen......, and the eventual formation of a SiO2 layer between the graphene and the metal. We follow the reaction steps by X-ray photoemission spectroscopy and demonstrate the electrical insulation using a nanoscale multipoint probe technique....

  7. A Modified EPA Method 1623 that Uses Tangential Flow Hollow-Fiber Ultrafiltration and Heat Dissociation Steps to Detect Waterborne Cryptosporidum and Giardia spp.

    Science.gov (United States)

    This protocol describes the use of a tangential flow hollow-fiber ultrafiltration sample concentration system and a heat dissociation as alternative steps for the detection of waterborne Cryptosporidium and Giardia species using EPA Method 1623.

  8. Selfsupported epitaxial silicon films

    International Nuclear Information System (INIS)

    Lazarovici, D.; Popescu, A.

    1975-01-01

    The methods of removing the p or p + support of an n-type epitaxial silicon layer using electrochemical etching are described. So far, only n + -n junctions have been processed. The condition of anodic dissolution for some values of the support and layer resistivity are given. By this method very thin single crystal selfsupported targets of convenient areas can be obtained for channeling - blocking experiments

  9. Single-step link of the superdeformed band in 143Eu

    International Nuclear Information System (INIS)

    Atac, A.; Bergstroem, M.H.; Nyberg, J.; Persson, J.; Herskind, B.; Joss, D.T.; Lipoglavsek, M.; Tucek, K.

    1996-01-01

    A discrete γ-ray ransition with an energy of 3360.6 keV deexciting the second lowest SD state in 143 Eu has been discovered. It carries 3.2 % of the full intensity of the band and feeds into a nearly spherical state which is above the I = 35/2 (+) , E x =4947 keV level. The exact placement of the single-step link is, however, not established due to the specially complicated level scheme in the region of interest. The energy of the single-step link agrees well with the previously determined two-step links. (orig.)

  10. Epitaxial patterning of thin-films: conventional lithographies and beyond

    International Nuclear Information System (INIS)

    Zhang, Wei; Krishnan, Kannan M

    2014-01-01

    Thin-film based novel magnetic and electronic devices have entered a new era in which the film crystallography, structural coherence, and epitaxy play important roles in determining their functional properties. The capabilities of controlling such structural and functional properties are being continuously developed by various physical deposition technologies. Epitaxial patterning strategies further allow the miniaturization of such novel devices, which incorporates thin-film components into nanoscale architectures while keeping their functional properties unmodified from their ideal single-crystal values. In the past decade, epitaxial patterning methods on the laboratory scale have been reported to meet distinct scientific inquires, in which the techniques and processes used differ from one to the other. In this review we summarize many of these pioneering endeavors in epitaxial patterning of thin-film devices that use both conventional and novel lithography techniques. These methods demonstrate epitaxial patterning for a broad range of materials (metals, oxides, and semiconductors) and cover common device length scales from micrometer to sub-hundred nanometer. Whilst we have been motivated by magnetic materials and devices, we present our outlook on developing systematic-strategies for epitaxial patterning of functional materials which will pave the road for the design, discovery and industrialization of next-generation advanced magnetic and electronic nano-devices. (topical review)

  11. The origin of local strain in highly epitaxial oxide thin films.

    Science.gov (United States)

    Ma, Chunrui; Liu, Ming; Chen, Chonglin; Lin, Yuan; Li, Yanrong; Horwitz, J S; Jiang, Jiechao; Meletis, E I; Zhang, Qingyu

    2013-10-31

    The ability to control the microstructures and physical properties of hetero-epitaxial functional oxide thin films and artificial structures is a long-sought goal in functional materials research. Normally, only the lattice misfit between the film and the substrate is considered to govern the physical properties of the epitaxial films. In fact, the mismatch of film unit cell arrangement and the Surface-Step-Terrace (SST) dimension of the substrate, named as "SST residual matching", is another key factor that significantly influence the properties of the epitaxial film. The nature of strong local strain induced from both lattice mismatch and the SST residual matching on ferroelectric (Ba,Sr)TiO3 and ferromagnetic (La,Ca)MnO3 thin films are systematically investigated and it is demonstrated that this combined effect has a dramatic impact on the physical properties of highly epitaxial oxide thin films. A giant anomalous magnetoresistance effect (~10(10)) was achieved from the as-designed vicinal surfaces.

  12. Step scaling and the Yang-Mills gradient flow

    International Nuclear Information System (INIS)

    Lüscher, Martin

    2014-01-01

    The use of the Yang-Mills gradient flow in step-scaling studies of lattice QCD is expected to lead to results of unprecedented precision. Step scaling is usually based on the Schrödinger functional, where time ranges over an interval [0,T] and all fields satisfy Dirichlet boundary conditions at time 0 and T. In these calculations, potentially important sources of systematic errors are boundary lattice effects and the infamous topology-freezing problem. The latter is here shown to be absent if Neumann instead of Dirichlet boundary conditions are imposed on the gauge field at time 0. Moreover, the expectation values of gauge-invariant local fields at positive flow time (and of other well localized observables) that reside in the center of the space-time volume are found to be largely insensitive to the boundary lattice effects.

  13. Step-to-step spatiotemporal variables and ground reaction forces of intra-individual fastest sprinting in a single session.

    Science.gov (United States)

    Nagahara, Ryu; Mizutani, Mirai; Matsuo, Akifumi; Kanehisa, Hiroaki; Fukunaga, Tetsuo

    2018-06-01

    We aimed to investigate the step-to-step spatiotemporal variables and ground reaction forces during the acceleration phase for characterising intra-individual fastest sprinting within a single session. Step-to-step spatiotemporal variables and ground reaction forces produced by 15 male athletes were measured over a 50-m distance during repeated (three to five) 60-m sprints using a long force platform system. Differences in measured variables between the fastest and slowest trials were examined at each step until the 22nd step using a magnitude-based inferences approach. There were possibly-most likely higher running speed and step frequency (2nd to 22nd steps) and shorter support time (all steps) in the fastest trial than in the slowest trial. Moreover, for the fastest trial there were likely-very likely greater mean propulsive force during the initial four steps and possibly-very likely larger mean net anterior-posterior force until the 17th step. The current results demonstrate that better sprinting performance within a single session is probably achieved by 1) a high step frequency (except the initial step) with short support time at all steps, 2) exerting a greater mean propulsive force during initial acceleration, and 3) producing a greater mean net anterior-posterior force during initial and middle acceleration.

  14. Single-step affinity purification for fungal proteomics.

    Science.gov (United States)

    Liu, Hui-Lin; Osmani, Aysha H; Ukil, Leena; Son, Sunghun; Markossian, Sarine; Shen, Kuo-Fang; Govindaraghavan, Meera; Varadaraj, Archana; Hashmi, Shahr B; De Souza, Colin P; Osmani, Stephen A

    2010-05-01

    A single-step protein affinity purification protocol using Aspergillus nidulans is described. Detailed protocols for cell breakage, affinity purification, and depending on the application, methods for protein release from affinity beads are provided. Examples defining the utility of the approaches, which should be widely applicable, are included.

  15. Effects of a modular two-step ozone-water and annealing process on silicon carbide graphene

    Energy Technology Data Exchange (ETDEWEB)

    Webb, Matthew J., E-mail: matthew.webb@cantab.net; Lundstedt, Anna; Grennberg, Helena [Department of Chemistry—BMC, Uppsala University, Box 576, SE-751 23 Uppsala (Sweden); Polley, Craig; Niu, Yuran; Zakharov, Alexei A.; Balasubramanian, Thiagarajan [MAX IV Laboratory, Lund University, 22100 Lund (Sweden); Dirscherl, Kai [DFM—Danish Fundamental Metrology, Matematiktorvet 307, DK-2800 Lyngby (Denmark); Burwell, Gregory; Guy, Owen J. [College of Engineering, Faraday Tower, Singleton Park, Swansea University, Swansea SA2 8PP (United Kingdom); Palmgren, Pål [VG Scienta Scientific AB, Box 15120, Vallongatan 1, SE-750 15 Uppsala (Sweden); Yakimova, Rositsa [Department of Physics, Chemistry, and Biology, Linköping University, SE-581 83 Linköping (Sweden)

    2014-08-25

    By combining ozone and water, the effect of exposing epitaxial graphene on silicon carbide to an aggressive wet-chemical process has been evaluated after high temperature annealing in ultra high vacuum. The decomposition of ozone in water produces a number of oxidizing species, however, despite long exposure times to the aqueous-ozone environment, no graphene oxide was observed after the two-step process. The systems were comprehensively characterized before and after processing using Raman spectroscopy, core level photoemission spectroscopy, and angle resolved photoemission spectroscopy together with low energy electron diffraction, low energy electron microscopy, and atomic force microscopy. In spite of the chemical potential of the aqueous-ozone reaction environment, the graphene domains were largely unaffected raising the prospect of employing such simple chemical and annealing protocols to clean or prepare epitaxial graphene surfaces.

  16. Flow control of micro-ramps on supersonic forward-facing step flow

    International Nuclear Information System (INIS)

    Zhang Qing-Hu; Zhu Tao; Wu Anping; Yi Shihe

    2016-01-01

    The effects of the micro-ramps on supersonic turbulent flow over a forward-facing step (FFS) was experimentally investigated in a supersonic low-noise wind tunnel at Mach number 3 using nano-tracer planar laser scattering (NPLS) and particle image velocimetry (PIV) techniques. High spatiotemporal resolution images and velocity fields of supersonic flow over the testing model were captured. The fine structures and their spatial evolutionary characteristics without and with the micro-ramps were revealed and compared. The large-scale structures generated by the micro-ramps can survive the downstream FFS flowfield. The micro-ramps control on the flow separation and the separation shock unsteadiness was investigated by PIV results. With the micro-ramps, the reduction in the range of the reversal flow zone in streamwise direction is 50% and the turbulence intensity is also reduced. Moreover, the reduction in the average separated region and in separation shock unsteadiness are 47% and 26%, respectively. The results indicate that the micro-ramps are effective in reducing the flow separation and the separation shock unsteadiness. (paper)

  17. Microstructure of Co(112-bar 0) epitaxial thin films, grown on MgO(100) single-crystal substrates

    Energy Technology Data Exchange (ETDEWEB)

    Nukaga, Yuri; Ohtake, Mitsuru; Futamoto, Masaaki [Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551 (Japan); Kirino, Fumiyoshi, E-mail: nukaga@futamoto.elect.chuo-u.ac.j [Graduate School of Fine Arts, Tokyo National University of Fine Arts and Music, 12-8 Ueno-koen, Taito-ku, Tokyo 110-8714 (Japan)

    2010-01-01

    Co(112-bar 0) epitaxial thin films with hcp structure were prepared on MgO(100) single-crystal substrates heated at 300 {sup 0}C by ultra high vacuum molecular beam epitaxy. The microstructure is investigated by employing X-ray diffraction and high-resolution transmission electron microscopy. The film consists of two types of domains whose c-axes are rotated around the film normal by 90{sup 0} each other. Stacking faults are observed for the film along the Co[0001] direction. An atomically sharp boundary is recognized between the film and the substrate, where some misfit dislocations are introduced in the film at the Co/MgO interface. Dislocations are also observed in the film up to 15 nm thickness from the interface. Presence of such stacking faults and misfit dislocations seem to relieve the strain caused by the lattice mismatch between the film and the substrate. X-ray diffraction analysis indicates that the out-of-plane and the in-plane lattice spacings of the film are in agreement within 0.5% and 0.1%, respectively, with those of the bulk hcp-Co crystal, suggesting the strain in the film is very small.

  18. Microstructure of Co(112-bar 0) epitaxial thin films, grown on MgO(100) single-crystal substrates

    International Nuclear Information System (INIS)

    Nukaga, Yuri; Ohtake, Mitsuru; Futamoto, Masaaki; Kirino, Fumiyoshi

    2010-01-01

    Co(112-bar 0) epitaxial thin films with hcp structure were prepared on MgO(100) single-crystal substrates heated at 300 0 C by ultra high vacuum molecular beam epitaxy. The microstructure is investigated by employing X-ray diffraction and high-resolution transmission electron microscopy. The film consists of two types of domains whose c-axes are rotated around the film normal by 90 0 each other. Stacking faults are observed for the film along the Co[0001] direction. An atomically sharp boundary is recognized between the film and the substrate, where some misfit dislocations are introduced in the film at the Co/MgO interface. Dislocations are also observed in the film up to 15 nm thickness from the interface. Presence of such stacking faults and misfit dislocations seem to relieve the strain caused by the lattice mismatch between the film and the substrate. X-ray diffraction analysis indicates that the out-of-plane and the in-plane lattice spacings of the film are in agreement within 0.5% and 0.1%, respectively, with those of the bulk hcp-Co crystal, suggesting the strain in the film is very small.

  19. Composition of single-step media used for human embryo culture.

    Science.gov (United States)

    Morbeck, Dean E; Baumann, Nikola A; Oglesbee, Devin

    2017-04-01

    To determine compositions of commercial single-step culture media and test with a murine model whether differences in composition are biologically relevant. Experimental laboratory study. University-based laboratory. Inbred female mice were superovulated and mated with outbred male mice. Amino acid, organic acid, and ions content were determined for single-step culture media: CSC, Global, G-TL, and 1-Step. To determine whether differences in composition of these media are biologically relevant, mouse one-cell embryos were cultured for 96 hours in each culture media at 5% and 20% oxygen in a time-lapse incubator. Compositions of four culture media were analyzed for concentrations of 30 amino acids, organic acids, and ions. Blastocysts at 96 hours of culture and cell cycle timings were calculated, and experiments were repeated in triplicate. Of the more than 30 analytes, concentrations of glucose, lactate, pyruvate, amino acids, phosphate, calcium, and magnesium varied in concentrations. Mouse embryos were differentially affected by oxygen in G-TL and 1-Step. Four single-step culture media have compositions that vary notably in pyruvate, lactate, and amino acids. Blastocyst development was affected by culture media and its interaction with oxygen concentration. Copyright © 2017 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  20. Numerical simulation in a two dimensional turbulent flow over a backward-facing step

    International Nuclear Information System (INIS)

    Silveira Neto, A. da; Grand, D.

    1991-01-01

    Numerical simulations of turbulent flows in complex geometries are generally restricted to the prediction of the mean flow and use semi-empirical turbulence models. The present study is devoted to the simulation of the coherence structures which develop in a flow submitted to a velocity change, downstream of a backward facing step. Two aspect ratios (height of the step over height of the channel) have been explored and the values of the Reynolds number vary from (6000 to 90000). In the isothermal case coherent structures have been obtained by the numerical simulation in the mixing layer downstream of the step. The numerical simulations provides results in fairly good agreement with available experimental results. In a second step a thermal stratification is imposed on this flow for one value of Richardson number (0.5) the coherent structures disappear downstream for increasing values of Richardson number. (author)

  1. The Fractional Step Method Applied to Simulations of Natural Convective Flows

    Science.gov (United States)

    Westra, Douglas G.; Heinrich, Juan C.; Saxon, Jeff (Technical Monitor)

    2002-01-01

    This paper describes research done to apply the Fractional Step Method to finite-element simulations of natural convective flows in pure liquids, permeable media, and in a directionally solidified metal alloy casting. The Fractional Step Method has been applied commonly to high Reynold's number flow simulations, but is less common for low Reynold's number flows, such as natural convection in liquids and in permeable media. The Fractional Step Method offers increased speed and reduced memory requirements by allowing non-coupled solution of the pressure and the velocity components. The Fractional Step Method has particular benefits for predicting flows in a directionally solidified alloy, since other methods presently employed are not very efficient. Previously, the most suitable method for predicting flows in a directionally solidified binary alloy was the penalty method. The penalty method requires direct matrix solvers, due to the penalty term. The Fractional Step Method allows iterative solution of the finite element stiffness matrices, thereby allowing more efficient solution of the matrices. The Fractional Step Method also lends itself to parallel processing, since the velocity component stiffness matrices can be built and solved independently of each other. The finite-element simulations of a directionally solidified casting are used to predict macrosegregation in directionally solidified castings. In particular, the finite-element simulations predict the existence of 'channels' within the processing mushy zone and subsequently 'freckles' within the fully processed solid, which are known to result from macrosegregation, or what is often referred to as thermo-solutal convection. These freckles cause material property non-uniformities in directionally solidified castings; therefore many of these castings are scrapped. The phenomenon of natural convection in an alloy under-going directional solidification, or thermo-solutal convection, will be explained. The

  2. Nucleation of single GaN nanorods with diameters smaller than 35 nm by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Chen, Yen-Ting; Araki, Tsutomu; Palisaitis, Justinas; Persson, Per O. Å.; Olof Holtz, Per; Birch, Jens; Chen, Li-Chyong; Chen, Kuei-Hsien; Nanishi, Yasushi

    2013-01-01

    Nucleation mechanism of catalyst-free GaN nanorod grown on Si(111) is investigated by the fabrication of uniform and narrow (<35 nm) nanorods without a pre-defined mask by molecular beam epitaxy. Direct evidences show that the nucleation of GaN nanorods stems from the sidewall of the underlying islands down to the Si(111) substrate, different from commonly reported ones on top of the island directly. Accordingly, the growth and density control of the nanorods is exploited by a “narrow-pass” approach that only narrow nanorod can be grown. The optimal size of surrounding non-nucleation area around single nanorod is estimated as 88 nm

  3. Nucleation of single GaN nanorods with diameters smaller than 35 nm by molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yen-Ting [Institute of Atomic and Molecular Sciences, Academia Sinica, 10617 Taipei, Taiwan (China); Department of Physics, Chemistry and Biology (IFM), Linköping University, S-58183 Linköping (Sweden); Araki, Tsutomu [Department of Electrical and Electronic Engineering, Ritsumeikan University, 525-8577 Shiga (Japan); Palisaitis, Justinas; Persson, Per O. Å.; Olof Holtz, Per; Birch, Jens [Department of Physics, Chemistry and Biology (IFM), Linköping University, S-58183 Linköping (Sweden); Chen, Li-Chyong [Center for Condensed Matter Sciences, National Taiwan University, 10617 Taipei, Taiwan (China); Chen, Kuei-Hsien [Institute of Atomic and Molecular Sciences, Academia Sinica, 10617 Taipei, Taiwan (China); Center for Condensed Matter Sciences, National Taiwan University, 10617 Taipei, Taiwan (China); Nanishi, Yasushi [Global Innovation Research Organization, Ritsumeikan University, 525-8577 Shiga (Japan)

    2013-11-11

    Nucleation mechanism of catalyst-free GaN nanorod grown on Si(111) is investigated by the fabrication of uniform and narrow (<35 nm) nanorods without a pre-defined mask by molecular beam epitaxy. Direct evidences show that the nucleation of GaN nanorods stems from the sidewall of the underlying islands down to the Si(111) substrate, different from commonly reported ones on top of the island directly. Accordingly, the growth and density control of the nanorods is exploited by a “narrow-pass” approach that only narrow nanorod can be grown. The optimal size of surrounding non-nucleation area around single nanorod is estimated as 88 nm.

  4. Structural Studies of Silver Nanoparticles Obtained Through Single-Step Green Synthesis

    Science.gov (United States)

    Prasad Peddi, Siva; Abdallah Sadeh, Bilal

    2015-10-01

    Green synthesis of silver Nanoparticles (AGNP's) has been the most prominent among the metallic nanoparticles for research for over a decade and half now due to both the simplicity of preparation and the applicability of biological species with extensive applications in medicine and biotechnology to reduce and trap the particles. The current article uses Eclipta Prostrata leaf extract as the biological species to cap the AGNP's through a single step process. The characterization data obtained was used for the analysis of the sample structure. The article emphasizes the disquisition of their shape and size of the lattice parameters and proposes a general scheme and a mathematical model for the analysis of their dependence. The data of the synthesized AGNP's has been used to advantage through the introduction of a structural shape factor for the crystalline nanoparticles. The properties of the structure of the AGNP's proposed and evaluated through a theoretical model was undeviating with the experimental consequences. This modus operandi gives scope for the structural studies of ultrafine particles prepared using biological methods.

  5. Epitaxial growth and electronic structure of a layered zinc pnictide semiconductor, β-BaZn2As2

    International Nuclear Information System (INIS)

    Xiao, Zewen; Ran, Fan-Yong; Hiramatsu, Hidenori; Matsuishi, Satoru; Hosono, Hideo; Kamiya, Toshio

    2014-01-01

    BaZn 2 As 2 is expected for a good p-type semiconductor and has two crystalline phases of an orthorhombic α phase and a higher-symmetry tetragonal β phase. Here, we report that high-quality epitaxial films of the tetragonal β-BaZn 2 As 2 were grown on single-crystal MgO (001) substrates by a reactive solid-phase epitaxy technique. Out-of-plane and in-plane epitaxial relationships between the film and the substrate were BaZn 2 As 2 (00 l)//MgO (001) and BaZn 2 As 2 [200]//MgO [200], respectively. The full-widths at half maximum were 0.082° for a 008 out-of-plane rocking curve and 0.342° for a 200 in-plane rocking curve. A step-and-terrace structure was observed by atomic force microscopy. The band gap of β-BaZn 2 As 2 was evaluated to be around 0.2 eV, which is much smaller than that of a family compound LaZnOAs (1.5 eV). Density functional theory calculation using the Heyd–Scuseria–Ernzerhof hybrid functionals supports the small band gap. - Highlights: • High-quality epitaxial β-BaZn 2 As 2 films were obtained. • The band gap of β-BaZn 2 As 2 was evaluated to around 0.2 eV. • Hybrid Heyd–Scuseria–Ernzerhof calculation supports the small band gap

  6. Real-time observation of epitaxial crystal growth in gaseous environment using x-ray diffraction and x-ray reflectometry

    International Nuclear Information System (INIS)

    Kawamura, Tomoaki; Bhunia, Satyaban; Watanabe, Yoshio; Fujikawa, Seiji

    2008-01-01

    We made the x-ray diffractometer combined with the MOCVD growth system for the real-time observation of epitaxial growth in gaseous environment, and investigated the growth mechanism of InP crystals. Changes of the (-5/2 O) Bragg diffraction during the growth revealed that the growth starts immediately after the In source has been supplied and gradually stopped, owing to the migrating In atoms on the surface. Additionally, one can easily determine the growth modes, including 3-dimensional mode, layer-by-layer mode, and step-flow mode, by observing the change of x-ray reflectivity with various growth conditions. (author)

  7. InAs film grown on Si(111) by metal organic vapor phase epitaxy

    International Nuclear Information System (INIS)

    Caroff, P; Jeppsson, M; Mandl, B; Wernersson, L-E; Wheeler, D; Seabaugh, A; Keplinger, M; Stangl, J; Bauer, G

    2008-01-01

    We report the successful growth of high quality InAs films directly on Si(111) by Metal Organic Vapor Phase Epitaxy. A nearly mirror-like and uniform InAs film is obtained at 580 0 C for a thickness of 2 μm. We measured a high value of the electron mobility of 5100 cm 2 /Vs at room temperature. The growth is performed using a standard two-step procedure. The influence of the nucleation layer, group V flow rate, and layer thickness on the electrical and morphological properties of the InAs film have been investigated. We present results of our studies by Atomic Force Microscopy, Scanning Electron Microscopy, electrical Hall/van der Pauw and structural X-Ray Diffraction characterization

  8. The Point Zoro Symmetric Single-Step Procedure for Simultaneous Estimation of Polynomial Zeros

    Directory of Open Access Journals (Sweden)

    Mansor Monsi

    2012-01-01

    Full Text Available The point symmetric single step procedure PSS1 has R-order of convergence at least 3. This procedure is modified by adding another single-step, which is the third step in PSS1. This modified procedure is called the point zoro symmetric single-step PZSS1. It is proven that the R-order of convergence of PZSS1 is at least 4 which is higher than the R-order of convergence of PT1, PS1, and PSS1. Hence, computational time is reduced since this procedure is more efficient for bounding simple zeros simultaneously.

  9. Atomic Step Formation on Sapphire Surface in Ultra-precision Manufacturing

    Science.gov (United States)

    Wang, Rongrong; Guo, Dan; Xie, Guoxin; Pan, Guoshun

    2016-01-01

    Surfaces with controlled atomic step structures as substrates are highly relevant to desirable performances of materials grown on them, such as light emitting diode (LED) epitaxial layers, nanotubes and nanoribbons. However, very limited attention has been paid to the step formation in manufacturing process. In the present work, investigations have been conducted into this step formation mechanism on the sapphire c (0001) surface by using both experiments and simulations. The step evolutions at different stages in the polishing process were investigated with atomic force microscopy (AFM) and high resolution transmission electron microscopy (HRTEM). The simulation of idealized steps was constructed theoretically on the basis of experimental results. It was found that (1) the subtle atomic structures (e.g., steps with different sawteeth, as well as steps with straight and zigzag edges), (2) the periodicity and (3) the degree of order of the steps were all dependent on surface composition and miscut direction (step edge direction). A comparison between experimental results and idealized step models of different surface compositions has been made. It has been found that the structure on the polished surface was in accordance with some surface compositions (the model of single-atom steps: Al steps or O steps). PMID:27444267

  10. How humans use visual optic flow to regulate stepping during walking.

    Science.gov (United States)

    Salinas, Mandy M; Wilken, Jason M; Dingwell, Jonathan B

    2017-09-01

    Humans use visual optic flow to regulate average walking speed. Among many possible strategies available, healthy humans walking on motorized treadmills allow fluctuations in stride length (L n ) and stride time (T n ) to persist across multiple consecutive strides, but rapidly correct deviations in stride speed (S n =L n /T n ) at each successive stride, n. Several experiments verified this stepping strategy when participants walked with no optic flow. This study determined how removing or systematically altering optic flow influenced peoples' stride-to-stride stepping control strategies. Participants walked on a treadmill with a virtual reality (VR) scene projected onto a 3m tall, 180° semi-cylindrical screen in front of the treadmill. Five conditions were tested: blank screen ("BLANK"), static scene ("STATIC"), or moving scene with optic flow speed slower than ("SLOW"), matched to ("MATCH"), or faster than ("FAST") walking speed. Participants took shorter and faster strides and demonstrated increased stepping variability during the BLANK condition compared to the other conditions. Thus, when visual information was removed, individuals appeared to walk more cautiously. Optic flow influenced both how quickly humans corrected stride speed deviations and how successful they were at enacting this strategy to try to maintain approximately constant speed at each stride. These results were consistent with Weber's law: healthy adults more-rapidly corrected stride speed deviations in a no optic flow condition (the lower intensity stimuli) compared to contexts with non-zero optic flow. These results demonstrate how the temporal characteristics of optic flow influence ability to correct speed fluctuations during walking. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Epitaxy of Polar Oxides and Semiconductors

    Science.gov (United States)

    Shelton, Christopher Tyrel

    Integrating polar oxide materials with wide-bandgap nitride semiconductors offers the possibility of a tunable 2D carrier gas (2DCG) - provided defect densities are low and interfaces are abrupt. This dissertation investigates a portion of the synthesis science necessary to produce a "semiconductor-grade" interface between these highly dissimilar materials. A significant portion of this work is aligned with efforts to engineer a step-free GaN substrate to produce single in-plane oriented rocksalt oxide films. Initially, we explore the homoepitaxial MOCVD growth conditions necessary to produce highquality GaN films on ammonothermally grown substrates. Ammono substrates are only recently available for purchase and are the market leader in low-dislocation density material. Their novelty requires development of an understanding of morphology trade-offs in processing space. This includes preservation of the epi-polished surface in aggressive MOCVD environments and an understanding of the kinetic barriers affecting growth morphologies. Based on several factors, it was determined that GaN exhibits an 'uphill' diffusion bias that may likely be ascribed to a positive Ehrlich-Schwoebel (ES) barrier. This barrier should have a stabilizing effect against step-bunching but, for many growth conditions, regular step bunching was observed. One possible explanation for the step-bunching instability is the presence of impurities. Experimentally, conditions which incorporate more carbon into GaN homoepitaxial layers are correlated with step-bunching while conditions that suppress carbon produce bilayer stepped morphologies. These observations lead us to the conclusion that GaN homoepitaxial morphology is a competition between impurity induced step-bunching and a stabilizing diffusion bias due to a positive ES barrier. Application of the aforementioned homoepitaxial growth techniques to discrete substrate regions using selected- and confined area epitaxy (SAE,CAE) produces some

  12. Epitaxial growth of lithium fluoride on the (1 1 1) surface of CaF 2

    Science.gov (United States)

    Klumpp, St; Dabringhaus, H.

    1999-08-01

    Growth of lithium fluoride by molecular beam epitaxy on the (1 1 1) surface of calcium fluoride crystals was studied by TEM and LEED for crystal temperatures from 400 to 773 K and impinging lithium fluoride fluxes from 3×10 11 to 3×10 14 cm -2 s -1. Growth starts, usually, at the steps on the (1 1 1) surface of CaF 2. For larger step distances and at later growth stages also growth on the terraces between the steps is found. Preferably, longish, roof-like crystallites are formed, which can be interpreted by growth of LiF(2 0 1¯)[0 1 0] parallel to CaF 2(1 1 1)[ 1¯ 0 1]. To a lesser extent square crystallites, i.e. growth with LiF(0 0 1), and, rarely, three-folded pyramidal crystallites, i.e. growth with LiF(1 1 1) parallel to CaF 2(1 1 1), are observed. While the pyramidal crystallites show strict epitaxial orientation with LiF[ 1¯ 0 1]‖CaF 2[ 1¯ 0 1] and LiF[ 1¯ 0 1]‖CaF 2[1 2¯ 1], only about 80% of the square crystallites exhibit an epitaxial alignment, where LiF[1 0 0]‖CaF 2[ 1¯ 0 1] is preferred to LiF[1 1 0]‖CaF 2[ 1¯ 0 1]. The epitaxial relationships are discussed on the basis of theoretically calculated adsorption positions of the lithium fluoride monomer and dimer on the terrace and at the steps of the CaF 2(1 1 1) surface.

  13. Redox Species of Redox Flow Batteries: A Review.

    Science.gov (United States)

    Pan, Feng; Wang, Qing

    2015-11-18

    Due to the capricious nature of renewable energy resources, such as wind and solar, large-scale energy storage devices are increasingly required to make the best use of the renewable power. The redox flow battery is considered suitable for large-scale applications due to its modular design, good scalability and flexible operation. The biggest challenge of the redox flow battery is the low energy density. The redox active species is the most important component in redox flow batteries, and the redox potential and solubility of redox species dictate the system energy density. This review is focused on the recent development of redox species. Different categories of redox species, including simple inorganic ions, metal complexes, metal-free organic compounds, polysulfide/sulfur and lithium storage active materials, are reviewed. The future development of redox species towards higher energy density is also suggested.

  14. Redox Species of Redox Flow Batteries: A Review

    Directory of Open Access Journals (Sweden)

    Feng Pan

    2015-11-01

    Full Text Available Due to the capricious nature of renewable energy resources, such as wind and solar, large-scale energy storage devices are increasingly required to make the best use of the renewable power. The redox flow battery is considered suitable for large-scale applications due to its modular design, good scalability and flexible operation. The biggest challenge of the redox flow battery is the low energy density. The redox active species is the most important component in redox flow batteries, and the redox potential and solubility of redox species dictate the system energy density. This review is focused on the recent development of redox species. Different categories of redox species, including simple inorganic ions, metal complexes, metal-free organic compounds, polysulfide/sulfur and lithium storage active materials, are reviewed. The future development of redox species towards higher energy density is also suggested.

  15. Experimental investigation of a cavitating backward-facing step flow

    International Nuclear Information System (INIS)

    Maurice, G; Djeridi, H; Barre, S

    2014-01-01

    The present study is the first part of global experimental work which is intended to produce a refined database of liquid and vapor phases and to improve CFD modeling of turbulent cavitating flows which can occur in rocket engine turbo-pump inducers. The purpose of the present experimental study is to get a better understanding of the dynamics of the liquid phase in a cavitating backward facing step flow and provide a refined database for the physical analysis of interaction between turbulence and cavitation. The backward facing step flow provides us a well-known test case to compare vortex dynamics and a realistic industrial configuration such as backflow in turbo machinery. Experiments were conducted in the hydrodynamic tunnel of CREMHyG at Grenoble,which was especially designed to study cavitating shear flows at high Reynolds numbers. To highlight the liquid phase topology and dynamics such as large vortex structures, free shear layer instability, reattachment wall interaction and reverse flow, the flow is characterized by Laser Induced Fluoresence Particles Image Velocimetry (PIV-LIF) measurements techniques and by Laser Doppler Velocimetry (LDV) techniques using spectral analysis to characterize the vortex shedding dynamics. The liquid phase was analyzed at different cavitation levels corresponding to 1% to 45% of void ratio range inside the shear layer, recirculation area and reattachment zone. The mean and fluctuating liquid velocities are clearly modified by the vapor phase and the scale of the vortical structures tends to be smaller inducing a destructuration of turbulence by cavitation

  16. Epitaxial Single-Layer MoS2 on GaN with Enhanced Valley Helicity

    KAUST Repository

    Wan, Yi

    2017-12-19

    Engineering the substrate of 2D transition metal dichalcogenides can couple the quasiparticle interaction between the 2D material and substrate, providing an additional route to realize conceptual quantum phenomena and novel device functionalities, such as realization of a 12-time increased valley spitting in single-layer WSe2 through the interfacial magnetic exchange field from a ferromagnetic EuS substrate, and band-to-band tunnel field-effect transistors with a subthreshold swing below 60 mV dec−1 at room temperature based on bilayer n-MoS2 and heavily doped p-germanium, etc. Here, it is demonstrated that epitaxially grown single-layer MoS2 on a lattice-matched GaN substrate, possessing a type-I band alignment, exhibits strong substrate-induced interactions. The phonons in GaN quickly dissipate the energy of photogenerated carriers through electron–phonon interaction, resulting in a short exciton lifetime in the MoS2/GaN heterostructure. This interaction enables an enhanced valley helicity at room temperature (0.33 ± 0.05) observed in both steady-state and time-resolved circularly polarized photoluminescence measurements. The findings highlight the importance of substrate engineering for modulating the intrinsic valley carriers in ultrathin 2D materials and potentially open new paths for valleytronics and valley-optoelectronic device applications.

  17. Epitaxial Single-Layer MoS2 on GaN with Enhanced Valley Helicity

    KAUST Repository

    Wan, Yi; Xiao, Jun; Li, Jingzhen; Fang, Xin; Zhang, Kun; Fu, Lei; Li, Pan; Song, Zhigang; Zhang, Hui; Wang, Yilun; Zhao, Mervin; Lu, Jing; Tang, Ning; Ran, Guangzhao; Zhang, Xiang; Ye, Yu; Dai, Lun

    2017-01-01

    Engineering the substrate of 2D transition metal dichalcogenides can couple the quasiparticle interaction between the 2D material and substrate, providing an additional route to realize conceptual quantum phenomena and novel device functionalities, such as realization of a 12-time increased valley spitting in single-layer WSe2 through the interfacial magnetic exchange field from a ferromagnetic EuS substrate, and band-to-band tunnel field-effect transistors with a subthreshold swing below 60 mV dec−1 at room temperature based on bilayer n-MoS2 and heavily doped p-germanium, etc. Here, it is demonstrated that epitaxially grown single-layer MoS2 on a lattice-matched GaN substrate, possessing a type-I band alignment, exhibits strong substrate-induced interactions. The phonons in GaN quickly dissipate the energy of photogenerated carriers through electron–phonon interaction, resulting in a short exciton lifetime in the MoS2/GaN heterostructure. This interaction enables an enhanced valley helicity at room temperature (0.33 ± 0.05) observed in both steady-state and time-resolved circularly polarized photoluminescence measurements. The findings highlight the importance of substrate engineering for modulating the intrinsic valley carriers in ultrathin 2D materials and potentially open new paths for valleytronics and valley-optoelectronic device applications.

  18. Optical investigation of atomic steps in ultra-thin InGaAs/InP quantum wells grown by vapor levitation epitaxy

    International Nuclear Information System (INIS)

    Morais, P.C.

    1988-09-01

    Ultra-thin InGaAs/InP single-quantum-well structures, grown by chloride transport vapor levitation epitaxy, have been investigated by low temperature photoluminescence (PL). Well resolved peaks are observed in the PL spectra which we attribute to monolayer (a/2=2.93 A) variations in quantum well (QW) thickness. Separate peak positions for QW thicknesses corresponding to 2-6 monolayers have been determined, providing an unambiguous thickness calibration for spectral shifts due to quantum confinement. The PL peak corresponding to two monolayers occurs at 1.314 eV corresponding to an energy shift of 524 meV. Experimental data agree very well with a simple effective-mass theory. (author) [pt

  19. COMPUTATIONAL ANALYSIS OF BACKWARD-FACING STEP FLOW

    Directory of Open Access Journals (Sweden)

    Erhan PULAT

    2001-01-01

    Full Text Available In this study, backward-facing step flow that are encountered in electronic systems cooling, heat exchanger design, and gas turbine cooling are investigated computationally. Steady, incompressible, and two-dimensional air flow is analyzed. Inlet velocity is assumed uniform and it is obtained from parabolic profile by using maximum velocity. In the analysis, the effects of channel expansion ratio and Reynolds number to reattachment length are investigated. In addition, pressure distribution throughout the channel length is also obtained and flow is analyzed for the Reynolds number values of 50 and 150 and channel expansion ratios of 1.5 and 2. Governing equations are solved by using Galerkin finite element mothod of ANSYS-FLOTRAN code. Obtained results are compared with the solutions of lattice BGK method that is relatively new method in fluid dynamics and other numerical and experimental results. It is concluded that reattachment length increases with increasing Reynolds number and at the same Reynolds number it decreases with increasing channel expansion ratio.

  20. Epitaxy physical principles and technical implementation

    CERN Document Server

    Herman, Marian A; Sitter, Helmut

    2004-01-01

    Epitaxy provides readers with a comprehensive treatment of the modern models and modifications of epitaxy, together with the relevant experimental and technological framework. This advanced textbook describes all important aspects of the epitaxial growth processes of solid films on crystalline substrates, including a section on heteroepitaxy. It covers and discusses in details the most important epitaxial growth techniques, which are currently widely used in basic research as well as in manufacturing processes of devices, namely solid-phase epitaxy, liquid-phase epitaxy, vapor-phase epitaxy, including metal-organic vapor-phase epitaxy and molecular-beam epitaxy. Epitaxy’s coverage of science and texhnology thin-film is intended to fill the need for a comprehensive reference and text examining the variety of problems related to the physical foundations and technical implementation of epitaxial crystallization. It is intended for undergraduate students, PhD students, research scientists, lecturers and practic...

  1. Equivalence of two models in single-phase multicomponent flow simulations

    KAUST Repository

    Wu, Yuanqing

    2016-02-28

    In this work, two models to simulate the single-phase multicomponent flow in reservoirs are introduced: single-phase multicomponent flow model and two-phase compositional flow model. Because the single-phase multicomponent flow is a special case of the two-phase compositional flow, the two-phase compositional flow model can also simulate the case. We compare and analyze the two models when simulating the single-phase multicomponent flow, and then demonstrate the equivalence of the two models mathematically. An experiment is also carried out to verify the equivalence of the two models.

  2. Equivalence of two models in single-phase multicomponent flow simulations

    KAUST Repository

    Wu, Yuanqing; Sun, Shuyu

    2016-01-01

    In this work, two models to simulate the single-phase multicomponent flow in reservoirs are introduced: single-phase multicomponent flow model and two-phase compositional flow model. Because the single-phase multicomponent flow is a special case of the two-phase compositional flow, the two-phase compositional flow model can also simulate the case. We compare and analyze the two models when simulating the single-phase multicomponent flow, and then demonstrate the equivalence of the two models mathematically. An experiment is also carried out to verify the equivalence of the two models.

  3. Evolution of spirals during molecular beam epitaxy of GaN on 6H-SiC(0001)

    International Nuclear Information System (INIS)

    Cui, Y.; Li, L.

    2002-01-01

    Evolution of spirals during molecular beam epitaxy growth of GaN films on 6H-SiC(0001) was studied by in situ scanning tunneling microscopy. It was found that dislocations emerge at the film surface, creating straight steps with orientation along directions with a density of 10 10 cm -2 for 40-nm-thick films. During subsequent growth, these straight steps wind around dislocations and develop into spirals with a density of 10 9 cm -2 for 100-nm-thick films. The spirals can be classified into three types: single arm, interlocking double arm, and closed loop. The first two types originate from steps with one end pinned, and the third type results from steps with both ends pinned. At film thickness larger than 200 nm, these spirals further evolve into spiral mounds with a density of 10 7 cm -2 . Based on the Burton, Cabrera, and Frank theory, a model is proposed to explain the formation of different types of spirals and the reduction of their densities

  4. MgO monolayer epitaxy on Ni (100)

    Science.gov (United States)

    Sarpi, B.; Putero, M.; Hemeryck, A.; Vizzini, S.

    2017-11-01

    The growth of two-dimensional oxide films with accurate control of their structural and electronic properties is considered challenging for engineering nanotechnological applications. We address here the particular case of MgO ultrathin films grown on Ni (100), a system for which neither crystallization nor extended surface ordering has been established previously in the monolayer range. Using Scanning Tunneling Microscopy and Auger Electron Spectroscopy, we report on experiments showing MgO monolayer (ML) epitaxy on a ferromagnetic nickel surface, down to the limit of atomic thickness. Alternate steps of Mg ML deposition, O2 gas exposure, and ultrahigh vacuum thermal treatment enable the production of a textured film of ordered MgO nano-domains. This study could open interesting prospects for controlled epitaxy of ultrathin oxide films with a high magneto-resistance ratio on ferromagnetic substrates, enabling improvement in high-efficiency spintronics and magnetic tunnel junction devices.

  5. Genomic prediction in a nuclear population of layers using single-step models.

    Science.gov (United States)

    Yan, Yiyuan; Wu, Guiqin; Liu, Aiqiao; Sun, Congjiao; Han, Wenpeng; Li, Guangqi; Yang, Ning

    2018-02-01

    Single-step genomic prediction method has been proposed to improve the accuracy of genomic prediction by incorporating information of both genotyped and ungenotyped animals. The objective of this study is to compare the prediction performance of single-step model with a 2-step models and the pedigree-based models in a nuclear population of layers. A total of 1,344 chickens across 4 generations were genotyped by a 600 K SNP chip. Four traits were analyzed, i.e., body weight at 28 wk (BW28), egg weight at 28 wk (EW28), laying rate at 38 wk (LR38), and Haugh unit at 36 wk (HU36). In predicting offsprings, individuals from generation 1 to 3 were used as training data and females from generation 4 were used as validation set. The accuracies of predicted breeding values by pedigree BLUP (PBLUP), genomic BLUP (GBLUP), SSGBLUP and single-step blending (SSBlending) were compared for both genotyped and ungenotyped individuals. For genotyped females, GBLUP performed no better than PBLUP because of the small size of training data, while the 2 single-step models predicted more accurately than the PBLUP model. The average predictive ability of SSGBLUP and SSBlending were 16.0% and 10.8% higher than the PBLUP model across traits, respectively. Furthermore, the predictive abilities for ungenotyped individuals were also enhanced. The average improvements of prediction abilities were 5.9% and 1.5% for SSGBLUP and SSBlending model, respectively. It was concluded that single-step models, especially the SSGBLUP model, can yield more accurate prediction of genetic merits and are preferable for practical implementation of genomic selection in layers. © 2017 Poultry Science Association Inc.

  6. Use of flow injection mass spectrometric fingerprinting and chemometrics for differentiation of three black cohosh species

    International Nuclear Information System (INIS)

    Huang, Huilian; Sun, Jianghao; McCoy, Joe-Ann; Zhong, Haiyan; Fletcher, Edward J.; Harnly, James; Chen, Pei

    2015-01-01

    Flow injection mass spectrometry (FIMS) was used to provide chemical fingerprints of black cohosh (Actaea racemosa L.) in a manner of minutes by omitting the separation step. This method has proven to be a powerful tool for botanical authentication and in this study it was used to distinguish between three Actaea species prior to a more detailed chemical analysis using ultra high-performance liquid chromatography high-resolution mass spectrometry (UHPLC–HRMS). Black cohosh has become increasingly popular as a dietary supplement in the United States for the treatment of symptoms related to menopause. However, it has been known to be adulterated with the Asian Actaea dahurica (Turcz. ex Fisch. & C.A.Mey.) Franch. species (syn. Cimicifuga dahurica (Turcz.) Maxim). Existing methods for identification of black cohosh and differentiation of Actaea species are usually lengthy, laborious, and lack robustness, often based on the comparison of a few pre-selected components. Chemical fingerprints were obtained for 77 black cohosh samples and their related species using FIMS in the negative ion mode. The analysis time for each sample was less than 2 min. All data were processed using principal component analysis (PCA). FIMS fingerprints could readily differentiate all three species. Representative samples from each of the three species were further examined using UHPLC–MS to provide detailed profiles of the chemical differences between the three species and were compared to the PCA loadings. This study demonstrates a simple, fast, and easy analytical method that can be used to differentiate A. racemosa, Actaea podocarpa, and A. dahurica. - Highlights: • Flow injection mass spectrometry (FIMS) was used to provide chemical fingerprints of black cohosh (Actaea racemosa L.) in a manner of minutes by omitting the separation step. • FIMS can discriminate between A. dahurica, A. podocarpa, and A. racemosa. • FIMS is a valuable screening tool for authentication of botanicals

  7. Use of flow injection mass spectrometric fingerprinting and chemometrics for differentiation of three black cohosh species

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Huilian [Food Composition and Methods Development Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD (United States); Key Laboratory of Modern Preparation of TCM, Jiangxi University of Traditional Chinese Medicine, Ministry of Education, Nanchang, Jiangxi Province (China); Sun, Jianghao [Food Composition and Methods Development Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD (United States); McCoy, Joe-Ann [The North Carolina Arboretum Germplasm Repository, UNC Affiliate Campus, Asheville, NC (United States); Zhong, Haiyan [College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan Province (China); Fletcher, Edward J. [Strategic Sourcing, Inc., Banner Elk, NC 28604 (United States); Harnly, James, E-mail: harnly.james@ars.usda.gov [Food Composition and Methods Development Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD (United States); Chen, Pei, E-mail: pei.chen@ars.usda.gov [Food Composition and Methods Development Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD (United States)

    2015-03-01

    Flow injection mass spectrometry (FIMS) was used to provide chemical fingerprints of black cohosh (Actaea racemosa L.) in a manner of minutes by omitting the separation step. This method has proven to be a powerful tool for botanical authentication and in this study it was used to distinguish between three Actaea species prior to a more detailed chemical analysis using ultra high-performance liquid chromatography high-resolution mass spectrometry (UHPLC–HRMS). Black cohosh has become increasingly popular as a dietary supplement in the United States for the treatment of symptoms related to menopause. However, it has been known to be adulterated with the Asian Actaea dahurica (Turcz. ex Fisch. & C.A.Mey.) Franch. species (syn. Cimicifuga dahurica (Turcz.) Maxim). Existing methods for identification of black cohosh and differentiation of Actaea species are usually lengthy, laborious, and lack robustness, often based on the comparison of a few pre-selected components. Chemical fingerprints were obtained for 77 black cohosh samples and their related species using FIMS in the negative ion mode. The analysis time for each sample was less than 2 min. All data were processed using principal component analysis (PCA). FIMS fingerprints could readily differentiate all three species. Representative samples from each of the three species were further examined using UHPLC–MS to provide detailed profiles of the chemical differences between the three species and were compared to the PCA loadings. This study demonstrates a simple, fast, and easy analytical method that can be used to differentiate A. racemosa, Actaea podocarpa, and A. dahurica. - Highlights: • Flow injection mass spectrometry (FIMS) was used to provide chemical fingerprints of black cohosh (Actaea racemosa L.) in a manner of minutes by omitting the separation step. • FIMS can discriminate between A. dahurica, A. podocarpa, and A. racemosa. • FIMS is a valuable screening tool for authentication of botanicals.

  8. STM investigation of epitaxial Si growth for the fabrication of a Si-based quantum computer

    Energy Technology Data Exchange (ETDEWEB)

    Oberbeck, Lars; Hallam, Toby; Curson, Neil J.; Simmons, Michelle Y.; Clark, Robert G

    2003-05-15

    We investigate the morphology of epitaxial Si layers grown on clean and on hydrogen terminated Si(0 0 1) to explore the growth strategy for the fabrication of a Si-based quantum computer. We use molecular beam epitaxy to deposit 5 monolayers of silicon at a temperature of 250 deg. C and scanning tunnelling microscopy to image the surface at room temperature after growth and after various rapid annealing steps in the temperature range of 350-600 deg. C. The epitaxial layer grown on the hydrogenated surface shows a significantly higher surface roughness due to a lower mobility of silicon surface atoms in the presence of hydrogen. Annealing at temperatures {>=}550 deg. C reduces the roughness of both epitaxial layers to the value of a clean silicon surface. However, the missing dimer defect density of the epitaxial layer grown on the hydrogenated surface remains higher by a factor of two compared to the layer grown on clean Si(0 0 1). Our results suggest a quantum computer growth strategy in which the hydrogen resist layer is desorbed before the epitaxial silicon layer is grown at low temperature to encapsulate phosphorus quantum bits.

  9. Growth and properties of epitaxial iron oxide layers

    NARCIS (Netherlands)

    Voogt, F.C; Fujii, T; Hibma, T; Zhang, G.L.; Smulders, P.J M

    1996-01-01

    Epitaxial layers of iron oxides have been grown on a MgO(001) substrate by evaporating natural Fe or Fe-57 from Knudsen cells in the presence of a NO2 flow directed to the substrate. The resulting layers have been investigated in situ with LEED, RHEED, AES and XPS and ex situ with GEMS and ion beam

  10. A comparative study of transport properties in polycrystalline and epitaxial chromium nitride films

    KAUST Repository

    Duan, X. F.

    2013-01-08

    Polycrystalline CrNx films on Si(100) and glass substrates and epitaxial CrNx films on MgO(100) substrates were fabricated by reactive sputtering with different nitrogen gas flow rates (fN2). With the increase of fN2, a lattice phase transformation from metallic Cr2N to semiconducting CrN appears in both polycrystalline and epitaxial CrNx films. At fN2= 100 sccm, the low-temperature conductance mechanism is dominated by both Mott and Efros-Shklovskii variable-range hopping in either polycrystalline or epitaxial CrN films. In all of the polycrystalline and epitaxial films, only the polycrystalline CrNx films fabricated at fN2 = 30 and 50 sccm exhibit a discontinuity in ρ(T) curves at 260-280 K, indicating that both the N-vacancy concentration and grain boundaries play important roles in the metal-insulator transition. © 2013 American Institute of Physics.

  11. Response of single polymers to localized step strains

    NARCIS (Netherlands)

    Panja, D.

    2009-01-01

    In this paper, the response of single three-dimensional phantom and self-avoiding polymers to localized step strains are studied for two cases in the absence of hydrodynamic interactions: (i) Polymers tethered at one end with the strain created at the point of tether, and (ii) free polymers with the

  12. Three-dimensional vortex flow near the endwall of a short cylinder in crossflow: Stepped-diameter circular cylinder

    International Nuclear Information System (INIS)

    Chen, S.B.; Sanitjai, S.; Ghosh, K.; Goldstein, R.J.

    2012-01-01

    The effect of geometry on the flow around a cylinder in crossflow is investigated in this study. Three different stepped-diameter circular cylinders (SDCC s) with varying step heights are used. Extensive flow visualization using the oil-lampblack and smoke-wire techniques and near wake velocity measurements using a hotwire anemometer reveal complex secondary flows on and around the SDCC. Six vortices are observed in the horseshoe vortex system near the cylinder–endwall junction and six additional vortices are found in the step-induced vortex system on the step surface. Based on these experimental results, new secondary flow models are proposed. The step-induced vortices separate from the step surface at both sides and move toward the endwall, washing down the sides of the top/bottom larger diameter cylinders and interact with the separated shear layer and horseshoe vortices. In this process, they modify the near wake flow significantly: they produce an increase in velocity near the endwall region (below the step) and a decrease in velocity near the mid-span region, even altering the oscillatory behavior of the wake. - Highlights: ► Extensive flow visualization for stepped-diameter circular cylinders in crossflow. ► Six vortices in the horseshoe vortex system near the base. ► Six additional step-induced vortices on the upstream symmetry plane of step surface. ► Power spectral analysis for u′ shows oscillatory nature of the wake.

  13. Epitaxial hexagonal materials on IBAD-textured substrates

    Science.gov (United States)

    Matias, Vladimir; Yung, Christopher

    2017-08-15

    A multilayer structure including a hexagonal epitaxial layer, such as GaN or other group III-nitride (III-N) semiconductors, a oriented textured layer, and a non-single crystal substrate, and methods for making the same. The textured layer has a crystalline alignment preferably formed by the ion-beam assisted deposition (IBAD) texturing process and can be biaxially aligned. The in-plane crystalline texture of the textured layer is sufficiently low to allow growth of high quality hexagonal material, but can still be significantly greater than the required in-plane crystalline texture of the hexagonal material. The IBAD process enables low-cost, large-area, flexible metal foil substrates to be used as potential alternatives to single-crystal sapphire and silicon for manufacture of electronic devices, enabling scaled-up roll-to-roll, sheet-to-sheet, or similar fabrication processes to be used. The user is able to choose a substrate for its mechanical and thermal properties, such as how well its coefficient of thermal expansion matches that of the hexagonal epitaxial layer, while choosing a textured layer that more closely lattice matches that layer.

  14. Increasing the radiation resistance of single-crystal silicon epitaxial layers

    Directory of Open Access Journals (Sweden)

    Kurmashev Sh. D.

    2014-12-01

    Full Text Available The authors investigate the possibility of increasing the radiation resistance of silicon epitaxial layers by creating radiation defects sinks in the form of dislocation networks of the density of 109—1012 m–2. Such networks are created before the epitaxial layer is applied on the front surface of the silicon substrate by its preliminary oxidation and subsequent etching of the oxide layer. The substrates were silicon wafers KEF-4.5 and KDB-10 with a diameter of about 40 mm, grown by the Czochralski method. Irradiation of the samples was carried out using electron linear accelerator "Electronics" (ЭЛУ-4. Energy of the particles was 2,3—3,0 MeV, radiation dose 1015—1020 m–2, electron beam current 2 mA/m2. It is shown that in structures containing dislocation networks, irradiation results in reduction of the reverse currents by 5—8 times and of the density of defects by 5—10 times, while the mobility of the charge carriers is increased by 1,2 times. Wafer yield for operation under radiation exposure, when the semiconductor structures are formed in the optimal mode, is increased by 7—10% compared to the structures without dislocation networks. The results obtained can be used in manufacturing technology for radiation-resistant integrated circuits (bipolar, CMOS, BiCMOS, etc..

  15. Pseudomorphic growth of organic semiconductor thin films driven by incommensurate epitaxy

    International Nuclear Information System (INIS)

    Sassella, A.; Campione, M.; Raimondo, L.; Borghesi, A.; Bussetti, G.; Cirilli, S.; Violante, A.; Goletti, C.; Chiaradia, P.

    2009-01-01

    A stable pseudomorphic phase of α-quaterthiophene, a well known organic semiconductor, is obtained by growing films with organic molecular beam epitaxy (OMBE) on a single crystal of another organic semiconductor, namely, tetracene. The structural characteristics of the new phase are investigated by monitoring in situ the OMBE process by reflectance anisotropy spectroscopy; thus assessing that incommensurate epitaxy is in this case, the driving force for tuning the molecular packing in organic molecular films and in turn, their solid state properties

  16. Epitaxial growth of bcc-Fe{sub x}Co{sub 100-x} thin films on MgO(1 1 0) single-crystal substrates

    Energy Technology Data Exchange (ETDEWEB)

    Ohtake, Mitsuru, E-mail: ohtake@futamoto.elect.chuo-u.ac.j [Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551 (Japan); Nishiyama, Tsutomu; Shikada, Kouhei [Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551 (Japan); Kirino, Fumiyoshi [Graduate School of Fine Arts, Tokyo National University of Fine Arts and Music, 12-8 Ueno-koen, Taito-ku, Tokyo 110-8714 (Japan); Futamoto, Masaaki [Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551 (Japan)

    2010-07-15

    Fe{sub x}Co{sub 100-x} (x=100, 65, 50 at%) epitaxial thin films were prepared on MgO(1 1 0) single-crystal substrates heated at 300 deg. C by ultra-high vacuum molecular beam epitaxy. The film structure and the growth mechanism are discussed. FeCo(2 1 1) films with bcc structure grow epitaxially on MgO(1 1 0) substrates with two types of variants whose orientations are rotated around the film normal by 180 deg. each other for all compositions. Fe{sub x}Co{sub 100-x} film growth follows the Volmer Weber mode. X-ray diffraction analysis indicates the out-of-plane and the in-plane lattice spacings are in agreement with the values of respective bulk Fe{sub x}Co{sub 100-x} crystals with very small errors less than +-0.4%, suggesting the strains in the films are very small. High-resolution cross-sectional transmission electron microscopy shows that periodical misfit dislocations are preferentially introduced in the film at the Fe{sub 50}Co{sub 50}/MgO interface along the MgO[1 1-bar 0] direction. The presence of such periodical dislocations decreases the large lattice mismatch of about -17% existing at the FeCo/MgO interface along the MgO[1 1-bar 0] direction.

  17. Critical flow rate in a single phase flow. Blocking concept

    International Nuclear Information System (INIS)

    Giot, Michel

    1978-01-01

    After referring to the phenomena accompanying the appearance of a critical flow rate in a nozzle and presenting equations governing single phase flows, the critical condition is defined. Several particular cases are then examined; the horizontal and vertical isentropic flow, Fanno's flow and Raleigh's and the isothermal flow. The entropy deviation is calculated on either side of a normal impact. To conclude, the link existing between the concepts of critical flow and the propagation rate of small perturbations is demonstrated. To do so, the method of perturbations, that of Prandtl and that of characteristic directions are applied in turn [fr

  18. Kinetic-energy induced smoothening and delay of epitaxial breakdown in pulsed-laser deposition

    International Nuclear Information System (INIS)

    Shin, Byungha; Aziz, Michael J.

    2007-01-01

    We have isolated the effect of kinetic energy of depositing species from the effect of flux pulsing during pulsed-laser deposition (PLD) on surface morphology evolution of Ge(001) homoepitaxy at low temperature (100 deg. C). Using a dual molecular beam epitaxy (MBE) PLD chamber, we compare morphology evolution from three different growth methods under identical experimental conditions except for the differing nature of the depositing flux: (a) PLD with average kinetic energy 300 eV (PLD-KE); (b) PLD with suppressed kinetic energy comparable to thermal evaporation energy (PLD-TH); and (c) MBE. The thicknesses at which epitaxial breakdown occurs are ranked in the order PLD-KE>MBE>PLD-TH; additionally, the surface is smoother in PLD-KE than in MBE. The surface roughness of the films grown by PLD-TH cannot be compared due to the early epitaxial breakdown. These results demonstrate convincingly that kinetic energy is more important than flux pulsing in the enhancement of epitaxial growth, i.e., the reduction in roughness and the delay of epitaxial breakdown

  19. Preparation of metastable bcc permalloy epitaxial thin films on GaAs(011)B3 single-crystal substrates

    International Nuclear Information System (INIS)

    Ohtake, Mitsuru; Higuchi, Jumpei; Yabuhara, Osamu; Kirino, Fumiyoshi; Futamoto, Masaaki

    2011-01-01

    Permalloy (Py) single-crystal films with bcc structure were obtained on GaAs(011) B3 single-crystal substrates by ultra high vacuum rf magnetron sputtering. The film growth and the detailed film structures were investigated by refection high energy electron diffraction and pole figure X-ray diffraction. bcc-Py films epitaxially grow on the substrates in the orientation relationship of Py(011)[011-bar] bcc || GaAs(011)[011-bar] B3 . The lattice constant of bcc-Py film is determined to be a = 0.291 nm. With increasing the film thickness, parts of the bcc crystal transform into more stable fcc structure by atomic displacement parallel to the bcc{011} close-packed planes. The resulting film thus consists of a mixture of bcc and fcc crystals. The phase transformation mechanism is discussed based on the experimental results. The in-plane magnetization properties reflecting the magnetocrystalline anisotropy of bcc-Py crystal are observed for the Py films grown on GaAs(011) B3 substrates.

  20. Spin injection in epitaxial MnGa(111)/GaN(0001) heterostructures

    Science.gov (United States)

    Zube, Christian; Malindretos, Joerg; Watschke, Lars; Zamani, Reza R.; Disterheft, David; Ulbrich, Rainer G.; Rizzi, Angela; Iza, Michael; Keller, Stacia; DenBaars, Steven P.

    2018-01-01

    Ferromagnetic MnGa(111) layers were grown on GaN(0001) by molecular beam epitaxy. MnGa/GaN Schottky diodes with a doping level of around n = 7 × 1018 cm-3 were fabricated to achieve single step tunneling across the metal/semiconductor junction. Below the GaN layer, a thin InGaN quantum well served as optical spin detector ("spin-LED"). For electron spin injection from MnGa into GaN and subsequent spin transport through a 45 nm (70 nm) thick GaN layer, we observe a circular polarization of 0.3% (0.2%) in the electroluminescence at 80 K. Interface mixing, spin polarization losses during electrical transport in the GaN layer, and spin relaxation in the InGaN quantum well are discussed in relation with the low value of the optically detected spin polarization.

  1. Multiple growths of epitaxial lift-off solar cells from a single InP substrate

    International Nuclear Information System (INIS)

    Lee, Kyusang; Shiu, Kuen-Ting; Zimmerman, Jeramy D.; Forrest, Stephen R.; Renshaw, Christopher K.

    2010-01-01

    We demonstrate multiple growths of flexible, thin-film indium tin oxide-InP Schottky-barrier solar cells on a single InP wafer via epitaxial lift-off (ELO). Layers that protect the InP parent wafer surface during the ELO process are subsequently removed by selective wet-chemical etching, with the active solar cell layers transferred to a thin, flexible plastic host substrate by cold welding at room temperature. The first- and second-growth solar cells exhibit no performance degradation under simulated Atmospheric Mass 1.5 Global (AM 1.5G) illumination, and have a power conversion efficiency of η p =14.4±0.4% and η p =14.8±0.2%, respectively. The current-voltage characteristics for the solar cells and atomic force microscope images of the substrate indicate that the parent wafer is undamaged, and is suitable for reuse after ELO and the protection-layer removal processes. X-ray photoelectron spectroscopy, reflection high-energy electron diffraction observation, and three-dimensional surface profiling show a surface that is comparable or improved to the original epiready wafer following ELO. Wafer reuse over multiple cycles suggests that high-efficiency; single-crystal thin-film solar cells may provide a practical path to low-cost solar-to-electrical energy conversion.

  2. Graphene nanoribbons epitaxy on boron nitride

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Xiaobo; Wang, Shuopei; Wu, Shuang; Chen, Peng; Zhang, Jing; Zhao, Jing; Meng, Jianling; Xie, Guibai; Wang, Duoming; Wang, Guole; Zhang, Ting Ting; Yang, Rong; Shi, Dongxia [Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Yang, Wei [Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Laboratoire Pierre Aigrain, ENS-CNRS UMR 8551, Universités Pierre et Marie Curie and Paris-Diderot, 24 rue Lhomond, 75231 Paris Cedex 05 (France); Watanabe, Kenji; Taniguchi, Takashi [National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044 (Japan); Zhang, Guangyu, E-mail: gyzhang@aphy.iphy.ac.cn [Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Collaborative Innovation Center of Quantum Matter, Beijing 100190 (China)

    2016-03-14

    In this letter, we report a pilot study on epitaxy of monolayer graphene nanoribbons (GNRs) on hexagonal boron nitride (h-BN). We found that GNRs grow preferentially from the atomic steps of h-BN, forming in-plane heterostructures. GNRs with well-defined widths ranging from ∼15 nm to ∼150 nm can be obtained reliably. As-grown GNRs on h-BN have high quality with a carrier mobility of ∼20 000 cm{sup 2} V{sup −1} s{sup −1} for ∼100-nm-wide GNRs at a temperature of 1.7 K. Besides, a moiré pattern induced quasi-one-dimensional superlattice with a periodicity of ∼15 nm for GNR/h-BN was also observed, indicating zero crystallographic twisting angle between GNRs and h-BN substrate. The superlattice induced band structure modification is confirmed by our transport results. These epitaxial GNRs/h-BN with clean surfaces/interfaces and tailored widths provide an ideal platform for high-performance GNR devices.

  3. Quantum dots assisted photocatalysis for the chemiluminometric determination of chemical oxygen demand using a single interface flow system

    Energy Technology Data Exchange (ETDEWEB)

    Silvestre, Cristina I.C.; Frigerio, Christian [Requimte, Department of Chemistry, Faculty of Pharmacy, Porto University, Rua Anibal Cunha 164, 4099-030, Porto (Portugal); Santos, Joao L.M., E-mail: joaolms@ff.up.pt [Requimte, Department of Chemistry, Faculty of Pharmacy, Porto University, Rua Anibal Cunha 164, 4099-030, Porto (Portugal); Lima, Jose L.F.C. [Requimte, Department of Chemistry, Faculty of Pharmacy, Porto University, Rua Anibal Cunha 164, 4099-030, Porto (Portugal)

    2011-08-12

    Highlights: {yields} A novel flow method for the determination of chemical oxygen demand is proposed. {yields} CdTe nanocrystals are irradiated with UV light to generate strong oxidizing species. {yields} Reactive species promote a fast catalytic degradation of organic matter. {yields} Luminol is used as a chemiluminescence probe for indirect COD assessment. {yields} A single interface flow system was implemented to automate the assays. - Abstract: A novel flow method for the determination of chemical oxygen demand (COD) is proposed in this work. It relies on the combination of a fully automated single interface flow system, an on-line UV photocatalytic unit and quantum dot (QD) nanotechnology. The developed approach takes advantage of CdTe nanocrystals capacity to generate strong oxidizing species upon irradiation with UV light, which fostered a fast catalytic degradation of the organic compounds. Luminol was used as a chemiluminescence (CL) probe for indirect COD assessment, since it is easily oxidized by the QD generated species yielding a strong CL emission that is quenched in the presence of the organic matter. The proposed methodology allowed the determination of COD concentrations between 1 and 35 mg L{sup -1}, with good precision (R.S.D. < 1.1%, n = 3) and a sampling frequency of about 33 h{sup -1}. The procedure was applied to the determination of COD in wastewater certified reference materials and the obtained results showed an excellent agreement with the certified values.

  4. Optical characterization of epitaxial single crystal CdTe thin films on Al{sub 2}O{sub 3} (0001) substrates

    Energy Technology Data Exchange (ETDEWEB)

    Jovanovic, S.M.; Devenyi, G.A., E-mail: devenyga@mcmaster.ca; Jarvis, V.M.; Meinander, K.; Haapamaki, C.M.; Kuyanov, P.; Gerber, M.; LaPierre, R.R.; Preston, J.S.

    2014-11-03

    The optoelectronic properties of single crystal CdTe thin films were investigated by photoluminescence spectroscopy, photoreflectance spectroscopy and variable angle spectroscopic ellipsometry. The room temperature bandgap was measured to be 1.51 eV and was consistent between spectroscopic measurements and previously reported values. Breadth of bandgap emission was consistent with high quality material. Low temperature photoluminescence spectra indicated a dominant emission consistent with bound excitons. Emissions corresponding to self-compensation defects, doping and contaminants were not found. Variable angle spectroscopic ellipsometry measurements over the near-UV to infrared range demonstrated sharp resonance peaks. All spectroscopic measurements indicate high quality thin film material of comparable or better quality than bulk CdTe. - Highlights: • High quality epitaxial CdTe thin films were grown. • Two dimensional X-ray diffraction characterization confirmed single crystal material. • Photoluminescence indicated low defect density when compared to bulk single crystals. • Optical characterization indicated the presence of room temperature excitons.

  5. Single-Crystal Y2O3 Epitaxially on GaAs(001 and (111 Using Atomic Layer Deposition

    Directory of Open Access Journals (Sweden)

    Y. H. Lin

    2015-10-01

    Full Text Available Single-crystal atomic-layer-deposited (ALD Y\\(_{\\mathrm{2}}\\O\\(_{\\mathrm{3}}\\ films 2 nm thick were epitaxially grown on molecular beam epitaxy (MBE GaAs(001-4 \\(\\times\\ 6 and GaAs(111A-2 \\(\\times\\ 2 reconstructed surfaces. The in-plane epitaxy between the ALD-oxide films and GaAs was observed using \\textit{in-situ} reflection high-energy electron diffraction in our uniquely designed MBE/ALD multi-chamber system. More detailed studies on the crystallography of the hetero-structures were carried out using high-resolution synchrotron radiation X-ray diffraction. When deposited on GaAs(001, the Y\\(_{\\mathrm{2}}\\O\\(_{\\mathrm{3}}\\ films are of a cubic phase and have (110 as the film normal, with the orientation relationship being determined: Y\\(_{\\mathrm{2}}\\O\\(_{\\mathrm{3}}\\(\\(110\\[\\(001\\][\\(\\overline{1}10\\]//GaAs(\\(001\\[\\(110\\][\\(1\\overline{1}0\\]. On GaAs(\\(111\\A, the Y\\(_{\\mathrm{2}}\\O\\(_{\\mathrm{3}}\\ films are also of a cubic phase with (\\(111\\ as the film normal, having the orientation relationship of Y\\(_{\\mathrm{2}}\\O\\(_{\\mathrm{3}}\\(\\(111\\[\\(2\\overline{1}\\overline{1}\\] [\\(01\\overline{1}\\]//GaAs (\\(111\\ [\\(\\overline{2}11\\][\\(0\\overline{1}1\\]. The relevant orientation for the present/future integrated circuit platform is (\\(001\\. The ALD-Y\\(_{\\mathrm{2}}\\O\\(_{\\mathrm{3}}\\/GaAs(\\(001\\-4 \\(\\times\\ 6 has shown excellent electrical properties. These include small frequency dispersion in the capacitance-voltage CV curves at accumulation of ~7% and ~14% for the respective p- and n-type samples with the measured frequencies of 1 MHz to 100 Hz. The interfacial trap density (Dit is low of ~10\\(^{12}\\ cm\\(^{−2}\\eV\\(^{−1}\\ as extracted from measured quasi-static CVs. The frequency dispersion at accumulation and the D\\(_{it}\\ are the lowest ever achieved among all the ALD-oxides on GaAs(\\(001\\.

  6. High-quality GaN epitaxially grown on Si substrate with serpentine channels

    Science.gov (United States)

    Wei, Tiantian; Zong, Hua; Jiang, Shengxiang; Yang, Yue; Liao, Hui; Xie, Yahong; Wang, Wenjie; Li, Junze; Tang, Jun; Hu, Xiaodong

    2018-06-01

    A novel serpentine-channeled mask was introduced to Si substrate for low-dislocation GaN epitaxial growth and the fully coalesced GaN film on the masked Si substrate was achieved for the first time. Compared with the epitaxial lateral overgrowth (ELOG) growth method, this innovative mask only requires one-step epitaxial growth of GaN which has only one high-dislocation region per mask opening. This new growth method can effectively reduce dislocation density, thus improving the quality of GaN significantly. High-quality GaN with low dislocation density ∼2.4 × 107 cm-2 was obtained, which accounted for about eighty percent of the GaN film in area. This innovative technique is promising for the growth of high-quality GaN templates and the subsequent fabrication of high-performance GaN-based devices like transistors, laser diodes (LDs), and light-emitting diodes (LEDs) on Si substrate.

  7. Water flow in single rock joints

    International Nuclear Information System (INIS)

    Hakami, Eva

    1989-05-01

    To study the hydromechanical properties of single rock joints a technique to make transparent replicas of natural joint surfaces has been developed. Five different joint samples were replicated and studied. The aperture distribution of the joints were obtained through a measurement method provided by the transparent replicas. The principle behind the method is that a water drop with a known volume, which is placed inside a joint, will cover a certain area of the surface depending on the average size of aperture at the actual point. Flow tests were performed on the same joint replicas. The tortuousity of the flow and the velocity along single stream lines were measured using colour injections into the water flow through the joints. The equivalent hydraulic apertures determined from the flow tests where shown to be smaller than the average mechanical apertures. The velocity of the flow varies strongly between different paths over the joint depending on the spatial distribution of the apertures. The degree of matedness between the joint surfaces is an important factor influencing the channeling character of the joints. (author) (38 refs.)

  8. Dynamics of flow behind backward-facing step in a narrow channel

    Directory of Open Access Journals (Sweden)

    Uruba V.

    2013-04-01

    Full Text Available The results and their analysis from experiments obtained by TR-PIV are presented on the model of backward-facing step in a narrow channel. The recirculation zone is studied in details. Mean structures are evaluated from fluctuating velocity fields. Then dynamics of the flow is characterized with help of POD (BOD technique. Substantial differences in high energy dynamical structures behaviour within the back-flow region and further downstream behind the flow reattachment have been found.

  9. The Effects of Multiple-Step and Single-Step Directions on Fourth and Fifth Grade Students' Grammar Assessment Performance

    Science.gov (United States)

    Mazerik, Matthew B.

    2006-01-01

    The mean scores of English Language Learners (ELL) and English Only (EO) students in 4th and 5th grade (N = 110), across the teacher-administered Grammar Skills Test, were examined for differences in participants' scores on assessments containing single-step directions and assessments containing multiple-step directions. The results indicated no…

  10. Simulation of the two-fluid model on incompressible flow with Fractional Step method for both resolved and unresolved scale interfaces

    International Nuclear Information System (INIS)

    Hou, Xiaofei; Rigola, Joaquim; Lehmkuhl, Oriol; Oliva, Assensi

    2015-01-01

    Highlights: • Two phase flow with free surface is solved by means of two-fluid model (TFM). • Fractional Step method and finite volume technique is used to solve TFM. • Conservative Level Set method reduces interface sharpening diffusion problem. • Cases including high density ratios and high viscosities validate the models. - Abstract: In the present paper, the Fractional Step method usually used in single fluid flow is here extended and applied for the two-fluid model resolution using the finite volume discretization. The use of a projection method resolution instead of the usual pressure-correction method for multi-fluid flow, successfully avoids iteration processes. On the other hand, the main weakness of the two fluid model used for simulations of free surface flows, which is the numerical diffusion of the interface, is also solved by means of the conservative Level Set method (interface sharpening) (Strubelj et al., 2009). Moreover, the use of the algorithm proposed has allowed presenting different free-surface cases with or without Level Set implementation even under coarse meshes under a wide range of density ratios. Thus, the numerical results presented, numerically verified, experimentally validated and converged under high density ratios, shows the capability and reliability of this resolution method for both mixed and unmixed flows

  11. Defect mediated van der Waals epitaxy of hexagonal boron nitride on graphene

    Science.gov (United States)

    Heilmann, M.; Bashouti, M.; Riechert, H.; Lopes, J. M. J.

    2018-04-01

    Van der Waals heterostructures comprising of hexagonal boron nitride and graphene are promising building blocks for novel two-dimensional devices such as atomically thin transistors or capacitors. However, demonstrators of those devices have been so far mostly fabricated by mechanical assembly, a non-scalable and time-consuming method, where transfer processes can contaminate the surfaces. Here, we investigate a direct growth process for the fabrication of insulating hexagonal boron nitride on high quality epitaxial graphene using plasma assisted molecular beam epitaxy. Samples were grown at varying temperatures and times and studied using atomic force microscopy, revealing a growth process limited by desorption at high temperatures. Nucleation was mostly commencing from morphological defects in epitaxial graphene, such as step edges or wrinkles. Raman spectroscopy combined with x-ray photoelectron measurements confirm the formation of hexagonal boron nitride and prove the resilience of graphene against the nitrogen plasma used during the growth process. The electrical properties and defects in the heterostructures were studied with high lateral resolution by tunneling current and Kelvin probe force measurements. This correlated approach revealed a nucleation apart from morphological defects in epitaxial graphene, which is mediated by point defects. The presented results help understanding the nucleation and growth behavior during van der Waals epitaxy of 2D materials, and point out a route for a scalable production of van der Waals heterostructures.

  12. A Renormalisation Group Method. V. A Single Renormalisation Group Step

    Science.gov (United States)

    Brydges, David C.; Slade, Gordon

    2015-05-01

    This paper is the fifth in a series devoted to the development of a rigorous renormalisation group method applicable to lattice field theories containing boson and/or fermion fields, and comprises the core of the method. In the renormalisation group method, increasingly large scales are studied in a progressive manner, with an interaction parametrised by a field polynomial which evolves with the scale under the renormalisation group map. In our context, the progressive analysis is performed via a finite-range covariance decomposition. Perturbative calculations are used to track the flow of the coupling constants of the evolving polynomial, but on their own perturbative calculations are insufficient to control error terms and to obtain mathematically rigorous results. In this paper, we define an additional non-perturbative coordinate, which together with the flow of coupling constants defines the complete evolution of the renormalisation group map. We specify conditions under which the non-perturbative coordinate is contractive under a single renormalisation group step. Our framework is essentially combinatorial, but its implementation relies on analytic results developed earlier in the series of papers. The results of this paper are applied elsewhere to analyse the critical behaviour of the 4-dimensional continuous-time weakly self-avoiding walk and of the 4-dimensional -component model. In particular, the existence of a logarithmic correction to mean-field scaling for the susceptibility can be proved for both models, together with other facts about critical exponents and critical behaviour.

  13. Stability of spanwise-modulated flows behind backward-facing steps

    Science.gov (United States)

    Boiko, A. V.; Dovgal, A. V.; Sorokin, A. M.

    2017-10-01

    An overview and synthesis of researches on development of local vortical disturbances in laminar separated flows downstream of backward-facing steps, in which the velocity field depends essentially on two variables are given. Peculiarities of transition to turbulence in such spatially inhomogeneous separated zones are discussed. The experimental data are supplemented by the linear stability characteristics of model velocity profiles of the separated flow computed using both the classical local formulation and the nonlocal approach based on the Floquet theory for partial differential equations with periodic coefficients. The results clarify the response of the local separated flows to their modulation with stationary geometrical and temperature inhomogeneities. The results can be useful for the development of new methods of laminar separation control.

  14. Complex Nanostructures by Pulsed Droplet Epitaxy

    Directory of Open Access Journals (Sweden)

    Noboyuki Koguchi

    2011-06-01

    Full Text Available What makes three dimensional semiconductor quantum nanostructures so attractive is the possibility to tune their electronic properties by careful design of their size and composition. These parameters set the confinement potential of electrons and holes, thus determining the electronic and optical properties of the nanostructure. An often overlooked parameter, which has an even more relevant effect on the electronic properties of the nanostructure, is shape. Gaining a strong control over the electronic properties via shape tuning is the key to access subtle electronic design possibilities. The Pulsed Dropled Epitaxy is an innovative growth method for the fabrication of quantum nanostructures with highly designable shapes and complex morphologies. With Pulsed Dropled Epitaxy it is possible to combine different nanostructures, namely quantum dots, quantum rings and quantum disks, with tunable sizes and densities, into a single multi-function nanostructure, thus allowing an unprecedented control over electronic properties.

  15. Anisotropic-strain-relaxation-induced crosshatch morphology in epitaxial SrTiO{sub 3}/NdGaO{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Tan, X. L.; Chen, F.; Chen, P. F.; Xu, H. R.; Chen, B. B.; Jin, F.; Gao, G. Y.; Wu, W. B., E-mail: wuwb@ustc.edu.cn [Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, and High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230026 (China)

    2014-10-15

    We investigate the strain relaxation and surface morphology of epitaxial SrTiO{sub 3} (STO) films grown on (001){sub O} and (110){sub O} planes of orthorhombic NdGaO{sub 3} (NGO), and (001) plane of cubic (LaAlO{sub 3}){sub 0.3}(Sr{sub 2}AlTaO{sub 6}){sub 0.7} (LSAT) substrates. Although the average lattice mismatches are similar, strikingly regular crosshatched surface patterns can be found on STO/NGO(001){sub O}[(110){sub O}] films, contrary to the uniform surface of STO/LSAT(001). Based on the orientation and thickness dependent patterns and high-resolution x-ray diffractions, we ascribe the crosshatch morphology to the anisotropic strain relaxation with possibly the 60° misfit dislocation formation and lateral surface step flow in STO/NGO films, while an isotropic strain relaxation in STO/LSAT. Further, we show that the crosshatched STO/NGO(110){sub O} surface could be utilized as a template to modify the magnetotransport properties of epitaxial La{sub 0.6}Ca{sub 0.4}MnO{sub 3} films. This study highlights the crucial role of symmetry mismatch in determining the surface morphology of the perovskite oxide films, in addition to their epitaxial strain states, and offers a different route for designing and fabricating functional perovskite-oxide devices.

  16. Standardization of a two-step real-time polymerase chain reaction based method for species-specific detection of medically important Aspergillus species.

    Science.gov (United States)

    Das, P; Pandey, P; Harishankar, A; Chandy, M; Bhattacharya, S; Chakrabarti, A

    2017-01-01

    Standardization of Aspergillus polymerase chain reaction (PCR) poses two technical challenges (a) standardization of DNA extraction, (b) optimization of PCR against various medically important Aspergillus species. Many cases of aspergillosis go undiagnosed because of relative insensitivity of conventional diagnostic methods such as microscopy, culture or antigen detection. The present study is an attempt to standardize real-time PCR assay for rapid sensitive and specific detection of Aspergillus DNA in EDTA whole blood. Three nucleic acid extraction protocols were compared and a two-step real-time PCR assay was developed and validated following the recommendations of the European Aspergillus PCR Initiative in our setup. In the first PCR step (pan-Aspergillus PCR), the target was 28S rDNA gene, whereas in the second step, species specific PCR the targets were beta-tubulin (for Aspergillus fumigatus, Aspergillus flavus, Aspergillus terreus), gene and calmodulin gene (for Aspergillus niger). Species specific identification of four medically important Aspergillus species, namely, A. fumigatus, A. flavus, A. niger and A. terreus were achieved by this PCR. Specificity of the PCR was tested against 34 different DNA source including bacteria, virus, yeast, other Aspergillus sp., other fungal species and for human DNA and had no false-positive reactions. The analytical sensitivity of the PCR was found to be 102 CFU/ml. The present protocol of two-step real-time PCR assays for genus- and species-specific identification for commonly isolated species in whole blood for diagnosis of invasive Aspergillus infections offers a rapid, sensitive and specific assay option and requires clinical validation at multiple centers.

  17. Electroluminescence from a single InGaN quantum dot in the green spectral region up to 150 K

    International Nuclear Information System (INIS)

    Kalden, J; Sebald, K; Gutowski, J; Tessarek, C; Figge, S; Kruse, C; Hommel, D

    2010-01-01

    We present electrically driven luminescence from single InGaN quantum dots embedded into a light emitting diode structure grown by metal-organic vapor-phase epitaxy. Single sharp emission lines in the green spectral region can be identified. Temperature dependent measurements demonstrate thermal stability of the emission of a single quantum dot up to 150 K. These results are an important step towards applications like electrically driven single-photon emitters, which are a basis for applications incorporating plastic optical fibers as well as for modern concepts of free space quantum cryptography.

  18. Epitaxial growth of hybrid nanostructures

    Science.gov (United States)

    Tan, Chaoliang; Chen, Junze; Wu, Xue-Jun; Zhang, Hua

    2018-02-01

    Hybrid nanostructures are a class of materials that are typically composed of two or more different components, in which each component has at least one dimension on the nanoscale. The rational design and controlled synthesis of hybrid nanostructures are of great importance in enabling the fine tuning of their properties and functions. Epitaxial growth is a promising approach to the controlled synthesis of hybrid nanostructures with desired structures, crystal phases, exposed facets and/or interfaces. This Review provides a critical summary of the state of the art in the field of epitaxial growth of hybrid nanostructures. We discuss the historical development, architectures and compositions, epitaxy methods, characterization techniques and advantages of epitaxial hybrid nanostructures. Finally, we provide insight into future research directions in this area, which include the epitaxial growth of hybrid nanostructures from a wider range of materials, the study of the underlying mechanism and determining the role of epitaxial growth in influencing the properties and application performance of hybrid nanostructures.

  19. A two-step obtainment of quantum confinement in ZnO nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Mofor, A C; El-Shaer, A; Suleiman, M; Bakin, A; Waag, A [Institute of Semiconductor Technology, Technical University Braunschweig, Hans-Sommer-Strasse 66, D-38106 Braunschweig (Germany)

    2006-10-14

    ZnO nanorod-based single quantum well heterostructures were fabricated in a two-step process. Nanorods were first grown using vapour transport. Subsequently, high-quality ZnO/Zn{sub 0.85}Mg{sub 0.15}O heterostructures were grown on the nanorods using molecular beam epitaxy. The nanorods are well aligned along the c-axis of ZnO, as indicated by a very narrow rocking curve full width at half maximum. Quantum confinement was clearly observed within the ZnO well for different well widths. The quantum wells show photoluminescence peaks with a full width at half maximum as small as 15 meV.

  20. Film boiling from spheres in single- and two-phase flow

    International Nuclear Information System (INIS)

    Liu, C.; Theofanous, T.G.; Yuen, W.W.

    1992-01-01

    Experimental data on film boiling heat transfer from single, inductively heated, spheres in single- and two-phase flow (saturated water and steam, respectively) are presented. In the single-phase-flow experiments water velocities ranged from 0.1 to 2.0 m/s; in the two-phase-flow experiments superficial water and steam velocities covered 0.1 to 0.6 m/s and 4 to 10 m/s, respectively. All experiments were run at atmospheric pressure and with sphere temperatures from 900C down to quenching. Limited interpretations of the single-phase- flow data are possible, but the two-phase-flow data are new and unique

  1. Physical modeling of vortical cross-step flow in the American paddlefish, Polyodon spathula

    Science.gov (United States)

    Brooks, Hannah; Haines, Grant E.; Lin, M. Carly

    2018-01-01

    Vortical cross-step filtration in suspension-feeding fish has been reported recently as a novel mechanism, distinct from other biological and industrial filtration processes. Although crossflow passing over backward-facing steps generates vortices that can suspend, concentrate, and transport particles, the morphological factors affecting this vortical flow have not been identified previously. In our 3D-printed models of the oral cavity for ram suspension-feeding fish, the angle of the backward-facing step with respect to the model’s dorsal midline affected vortex parameters significantly, including rotational, tangential, and axial speed. These vortices were comparable to those quantified downstream of the backward-facing steps that were formed by the branchial arches of preserved American paddlefish in a recirculating flow tank. Our data indicate that vortices in cross-step filtration have the characteristics of forced vortices, as the flow of water inside the oral cavity provides the external torque required to sustain forced vortices. Additionally, we quantified a new variable for ram suspension feeding termed the fluid exit ratio. This is defined as the ratio of the total open pore area for water leaving the oral cavity via spaces between branchial arches that are not blocked by gill rakers, divided by the total area for water entering through the gape during ram suspension feeding. Our experiments demonstrated that the fluid exit ratio in preserved paddlefish was a significant predictor of the flow speeds that were quantified anterior of the rostrum, at the gape, directly dorsal of the first ceratobranchial, and in the forced vortex generated by the first ceratobranchial. Physical modeling of vortical cross-step filtration offers future opportunities to explore the complex interactions between structural features of the oral cavity, vortex parameters, motile particle behavior, and particle morphology that determine the suspension, concentration, and

  2. Compatibility of pedigree-based and marker-based relationship matrices for single-step genetic evaluation

    DEFF Research Database (Denmark)

    Christensen, Ole Fredslund

    2012-01-01

    Single-step methods for genomic prediction have recently become popular because they are conceptually simple and in practice such a method can completely replace a pedigree-based method for routine genetic evaluation. An issue with single-step methods is compatibility between the marker-based rel...

  3. Self-sustained oscillations with acoustic feedback in flows over a backward-facing step with a small upstream step

    Science.gov (United States)

    Yokoyama, Hiroshi; Tsukamoto, Yuichi; Kato, Chisachi; Iida, Akiyoshi

    2007-10-01

    Self-sustained oscillations with acoustic feedback take place in a flow over a two-dimensional two-step configuration: a small forward-backward facing step, which we hereafter call a bump, and a relatively large backward-facing step (backstep). These oscillations can radiate intense tonal sound and fatigue nearby components of industrial products. We clarify the mechanism of these oscillations by directly solving the compressible Navier-Stokes equations. The results show that vortices are shed from the leading edge of the bump and acoustic waves are radiated when these vortices pass the trailing edge of the backstep. The radiated compression waves shed new vortices by stretching the vortex formed by the flow separation at the leading edge of the bump, thereby forming a feedback loop. We propose a formula based on a detailed investigation of the phase relationship between the vortices and the acoustic waves for predicting the frequencies of the tonal sound. The frequencies predicted by this formula are in good agreement with those measured in the experiments we performed.

  4. Numerical simulations of seepage flow in rough single rock fractures

    Directory of Open Access Journals (Sweden)

    Qingang Zhang

    2015-09-01

    Full Text Available To investigate the relationship between the structural characteristics and seepage flow behavior of rough single rock fractures, a set of single fracture physical models were produced using the Weierstrass–Mandelbrot functions to test the seepage flow performance. Six single fractures, with various surface roughnesses characterized by fractal dimensions, were built using COMSOL multiphysics software. The fluid flow behavior through the rough fractures and the influences of the rough surfaces on the fluid flow behavior was then monitored. The numerical simulation indicates that there is a linear relationship between the average flow velocity over the entire flow path and the fractal dimension of the rough surface. It is shown that there is good a agreement between the numerical results and the experimental data in terms of the properties of the fluid flowing through the rough single rock fractures.

  5. Effects of a finite melt on the thickness and composition of liquid phase epitaxial InGaAsP and InGaAs layers grown by the diffusion-limited step-cooling technique

    International Nuclear Information System (INIS)

    Cook, L.W.; Tashima, M.M.; Stillman, G.E.

    1980-01-01

    The thickness of InGaAsP (lambda/sub g/=1.15 μm) and InGaAs (lambda/sub g/=1.68 μm) liquid phase epitaxial layers grown on (100) InP substrates by the step-cooling technique has been measured as a function of growth time. (lambda/sub g/ is defined as the wavelength corresponding to the energy gap of the epitaxial layer.) For growth times much less than the shortest diffusion time tau/sub i/=l 2 /D/sub i/ of the melt constituents, where l is the melt height and D/sub i/ is the diffusivity of each component in the melt, the thickness is consistent with diffusion-limited theory, and the composition is constant. The time at which the growth rate deviates sharply from diffusion-limited theory and beyond which constant composition growth can no longer be maintained has been determined for the melt size used in our experiments and can be estimated for any melt size

  6. Epitaxial lift-off for solid-state cavity quantum electrodynamics

    International Nuclear Information System (INIS)

    Greuter, Lukas; Najer, Daniel; Kuhlmann, Andreas V.; Starosielec, Sebastian; Warburton, Richard J.; Valentin, Sascha R.; Ludwig, Arne; Wieck, Andreas D.

    2015-01-01

    We demonstrate an approach to incorporate self-assembled quantum dots into a Fabry-Pérot-like microcavity. Thereby, a 3λ/4 GaAs layer containing quantum dots is epitaxially removed and attached by van der Waals bonding to one of the microcavity mirrors. We reach a finesse as high as 4100 with this configuration limited by the reflectivity of the dielectric mirrors and not by scattering at the semiconductor-mirror interface, demonstrating that the epitaxial lift-off procedure is a promising procedure for cavity quantum electrodynamics in the solid state. As a first step in this direction, we demonstrate a clear cavity-quantum dot interaction in the weak coupling regime with a Purcell factor in the order of 3. Estimations of the coupling strength via the Purcell factor suggest that we are close to the strong coupling regime

  7. User-Dependent CFD Predictions of a Backward-Facing Step Flow

    DEFF Research Database (Denmark)

    Peng, Lei; Nielsen, Peter Vilhelm; Wang, Xiaoxue

    2015-01-01

    The backward-facing step flow with an expansion ratio of 5 has been modelled by 19 teams without benchmark solution or experimental data. Different CFD codes, turbulence models, boundary conditions, numerical schemes and convergent criteria are adopted based on the participants’ own experience...

  8. Molecular beam epitaxy of single crystal colossal magnetoresistive material

    International Nuclear Information System (INIS)

    Eckstein, J.N.; Bozovic, I.; Rzchowski, M.; O'Donnell, J.; Hinaus, B.; Onellion, M.

    1996-01-01

    The authors have grown films of (LaSr)MnO 3 (LSMO) and (LaCa)MnO 3 (LCMO) using atomic layer-by-layer molecular beam epitaxy (ALL-MBE). Depending on growth conditions, substrate lattice constant and the exact cation stoichiometry, the films are either pseudomorphic or strain relaxed. The pseudomorphic films show atomically flat surfaces, with a unit cell terrace structure that is a replica of that observed on the slightly vicinal substrates, while the strain relaxed films show bumpy surfaces correlated with a dislocation network. All films show tetragonal structure and exhibit anisotropic magnetoresistance, with a low field response, (1/R)(dR/dH) as large as 5 T -1

  9. Adsorption-controlled growth of BiMnO3 films by molecular-beam epitaxy

    International Nuclear Information System (INIS)

    Lee, J. H.; Ke, X.; Misra, R.; Schiffer, P.; Ihlefeld, J. F.; Mei, Z. G.; Liu, Z. K.; Xu, X. S.; Musfeldt, J. L.; Heeg, T.; Schlom, D. G.; Roeckerath, M.; Schubert, J.

    2010-01-01

    We have developed the means to grow BiMnO 3 thin films with unparalleled structural perfection by reactive molecular-beam epitaxy and determined its band gap. Film growth occurs in an adsorption-controlled growth regime. Within this growth window bounded by oxygen pressure and substrate temperature at a fixed bismuth overpressure, single-phase films of the metastable perovskite BiMnO 3 may be grown by epitaxial stabilization. X-ray diffraction reveals phase-pure and epitaxial films with ω rocking curve full width at half maximum values as narrow as 11 arc sec (0.003 deg. ). Optical absorption measurements reveal that BiMnO 3 has a direct band gap of 1.1±0.1 eV.

  10. Single-Step Affinity Purification for Fungal Proteomics ▿ †

    OpenAIRE

    Liu, Hui-Lin; Osmani, Aysha H.; Ukil, Leena; Son, Sunghun; Markossian, Sarine; Shen, Kuo-Fang; Govindaraghavan, Meera; Varadaraj, Archana; Hashmi, Shahr B.; De Souza, Colin P.; Osmani, Stephen A.

    2010-01-01

    A single-step protein affinity purification protocol using Aspergillus nidulans is described. Detailed protocols for cell breakage, affinity purification, and depending on the application, methods for protein release from affinity beads are provided. Examples defining the utility of the approaches, which should be widely applicable, are included.

  11. Epitaxial hexagonal materials on IBAD-textured substrates

    Energy Technology Data Exchange (ETDEWEB)

    Matias, Vladimir; Yung, Christopher

    2017-08-15

    A multilayer structure including a hexagonal epitaxial layer, such as GaN or other group III-nitride (III-N) semiconductors, a <111> oriented textured layer, and a non-single crystal substrate, and methods for making the same. The textured layer has a crystalline alignment preferably formed by the ion-beam assisted deposition (IBAD) texturing process and can be biaxially aligned. The in-plane crystalline texture of the textured layer is sufficiently low to allow growth of high quality hexagonal material, but can still be significantly greater than the required in-plane crystalline texture of the hexagonal material. The IBAD process enables low-cost, large-area, flexible metal foil substrates to be used as potential alternatives to single-crystal sapphire and silicon for manufacture of electronic devices, enabling scaled-up roll-to-roll, sheet-to-sheet, or similar fabrication processes to be used. The user is able to choose a substrate for its mechanical and thermal properties, such as how well its coefficient of thermal expansion matches that of the hexagonal epitaxial layer, while choosing a textured layer that more closely lattice matches that layer.

  12. Growth temperature and dopant species effects on deep levels in Si grown by low temperature molecular beam epitaxy

    International Nuclear Information System (INIS)

    Chung, Sung-Yong; Jin, Niu; Rice, Anthony T.; Berger, Paul R.; Yu, Ronghua; Fang, Z-Q.; Thompson, Phillip E.

    2003-01-01

    Deep-level transient spectroscopy measurements were performed in order to investigate the effects of substrate growth temperature and dopant species on deep levels in Si layers during low-temperature molecular beam epitaxial growth. The structures studied were n + -p junctions using B doping for the p layer and p + -n junctions using P doping for the n layer. While the density of hole traps H1 (0.38-0.41 eV) in the B-doped p layers showed a clear increase with decreasing growth temperature from 600 to 370 degree sign C, the electron trap density was relatively constant. Interestingly, the minority carrier electron traps E1 (0.42-0.45 eV) and E2 (0.257 eV), found in the B-doped p layers, are similar to the majority carrier electron traps E11 (0.48 eV) and E22 (0.269 eV) observed in P-doped n layers grown at 600 degree sign C. It is hypothesized that these dominating electron traps are associated with pure divacancy defects and are independent of the dopant species

  13. FY 1997 report on the study on lamination control technology for functional multi-element oxide thin films by complex beam epitaxy (CxBE) process; 1997 nendo chosa hokokusho (sakutaisen epitaxy (CxBE) ho ni yoru kinosei tagenso sankabutsu usumaku no sekiso seigyo gijutsu ni kansuru kenkyu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    Complex beam epitaxy (CxBE) process was proposed and demonstrated as new deposition process of multi-element oxide thin films. This process radiates excimer laser onto a metal complex target of ethylenediamine-tetraacetate complex under reduced pressure oxygen atmosphere condition in a reaction vessel to supply raw material onto a heated substrate. This process allowed deposition of YBCO123 phase hetero-epitaxial film onto a single-crystalline SrTiO3 substrate. This process was proved to be promising through study on crystal orientation, composition transcription and surface smoothness of the obtained oxide thin films. In addition, epitaxial ZnO film was also deposited onto a single crystalline Al2O3 substrate by this process. The relation between the obtained film and substrate epitaxy was examined, and photoluminescence of specimens was measured by triple wave of Nd:YAG laser. As a result, it was clarified that the epitaxial ZnO film prepared by this process is useful as laser material. 60 refs., 48 figs., 5 tabs.

  14. Interdiffusion in epitaxial, single-crystalline Au/Ag thin films studied by Auger electron spectroscopy sputter-depth profiling and positron annihilation

    International Nuclear Information System (INIS)

    Noah, Martin A.; Flötotto, David; Wang, Zumin; Reiner, Markus; Hugenschmidt, Christoph; Mittemeijer, Eric J.

    2016-01-01

    Interdiffusion in epitaxial, single-crystalline Au/Ag bilayered thin films on Si (001) substrates was investigated by Auger electron spectroscopy (AES) sputter-depth profiling and by in-situ positron annihilation Doppler broadening spectroscopy (DBS). By the combination of these techniques identification of the role of vacancy sources and sinks on interdiffusion in the Au/Ag films was possible. It was found that with precise knowledge of the concentration-dependent self-diffusion and impurity diffusion coefficients a distinction between the Darken-Manning treatment and Nernst-Planck treatment can be made, which is not possible on the basis of the determined concentration-depth profiles alone.

  15. Nanoselective area growth of GaN by metalorganic vapor phase epitaxy on 4H-SiC using epitaxial graphene as a mask

    International Nuclear Information System (INIS)

    Puybaret, Renaud; Jordan, Matthew B.; Voss, Paul L.; Ougazzaden, Abdallah; Patriarche, Gilles; Sundaram, Suresh; El Gmili, Youssef; Salvestrini, Jean-Paul; Heer, Walt A. de; Berger, Claire

    2016-01-01

    We report the growth of high-quality triangular GaN nanomesas, 30-nm thick, on the C-face of 4H-SiC using nanoselective area growth (NSAG) with patterned epitaxial graphene grown on SiC as an embedded mask. NSAG alleviates the problems of defects in heteroepitaxy, and the high mobility graphene film could readily provide the back low-dissipative electrode in GaN-based optoelectronic devices. A 5–8 graphene-layer film is first grown on the C-face of 4H-SiC by confinement-controlled sublimation of silicon carbide. Graphene is then patterned and arrays of 75-nm-wide openings are etched in graphene revealing the SiC substrate. A 30-nm-thick GaN is subsequently grown by metal organic vapor phase epitaxy. GaN nanomesas grow epitaxially with perfect selectivity on SiC, in the openings patterned through graphene. The up-or-down orientation of the mesas on SiC, their triangular faceting, and cross-sectional scanning transmission electron microscopy show that they are biphasic. The core is a zinc blende monocrystal surrounded with single-crystal wurtzite. The GaN crystalline nanomesas have no threading dislocations or V-pits. This NSAG process potentially leads to integration of high-quality III-nitrides on the wafer scalable epitaxial graphene/silicon carbide platform.

  16. Nanoselective area growth of GaN by metalorganic vapor phase epitaxy on 4H-SiC using epitaxial graphene as a mask

    Energy Technology Data Exchange (ETDEWEB)

    Puybaret, Renaud; Jordan, Matthew B.; Voss, Paul L.; Ougazzaden, Abdallah, E-mail: aougazza@georgiatech-metz.fr [School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); CNRS UMI 2958, Georgia Institute of Technology, 2 Rue Marconi, 57070 Metz (France); Patriarche, Gilles [CNRS, Laboratoire de Photonique et de Nanostructures, Route de Nozay, 91460 Marcoussis (France); Sundaram, Suresh; El Gmili, Youssef [CNRS UMI 2958, Georgia Institute of Technology, 2 Rue Marconi, 57070 Metz (France); Salvestrini, Jean-Paul [Université de Lorraine, CentraleSupélec, LMOPS, EA4423, 57070 Metz (France); Heer, Walt A. de [School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); Berger, Claire [School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); CNRS, Institut Néel, BP166, 38042 Grenoble Cedex 9 (France)

    2016-03-07

    We report the growth of high-quality triangular GaN nanomesas, 30-nm thick, on the C-face of 4H-SiC using nanoselective area growth (NSAG) with patterned epitaxial graphene grown on SiC as an embedded mask. NSAG alleviates the problems of defects in heteroepitaxy, and the high mobility graphene film could readily provide the back low-dissipative electrode in GaN-based optoelectronic devices. A 5–8 graphene-layer film is first grown on the C-face of 4H-SiC by confinement-controlled sublimation of silicon carbide. Graphene is then patterned and arrays of 75-nm-wide openings are etched in graphene revealing the SiC substrate. A 30-nm-thick GaN is subsequently grown by metal organic vapor phase epitaxy. GaN nanomesas grow epitaxially with perfect selectivity on SiC, in the openings patterned through graphene. The up-or-down orientation of the mesas on SiC, their triangular faceting, and cross-sectional scanning transmission electron microscopy show that they are biphasic. The core is a zinc blende monocrystal surrounded with single-crystal wurtzite. The GaN crystalline nanomesas have no threading dislocations or V-pits. This NSAG process potentially leads to integration of high-quality III-nitrides on the wafer scalable epitaxial graphene/silicon carbide platform.

  17. Real-Time Visualization of Active Species in a Single-Site Metal–Organic Framework Photocatalyst

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Sizhuo [Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53201, United States; Pattengale, Brian [Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53201, United States; Lee, Sungsik [X-ray Science Division, Argonne National Laboratory, Argonne, Illinois 60349, United States; Huang, Jier [Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53201, United States

    2018-02-06

    In this work, we report a new single-site photocatalyst (Co-Ru-UIO- 67(bpy)) based on a metal-organic framework platform with incorporated molecular photosensitizer and catalyst. We show that this catalyst not only demonstrates exceptional activity for light-driven H2 production but also can be recycled without loss of activity. Using the combination of optical transient absorption spectroscopy and in situ X-ray absorption spectroscopy, we not only captured the key CoI intermediate species formed after ultrafast charge transfer from the incorporated photosensitizer but also identified the rate-limiting step in the catalytic cycle, providing insight into the catalysis mechanism of these single-site metal-organic framework photocatalysts.

  18. Mixed convection flow and heat transfer over different geometries of backward-facing step

    Directory of Open Access Journals (Sweden)

    BADER SHABEEB ALSHURAIAAN

    2013-12-01

    Full Text Available Mixed convective flow and heat transfer characteristics for two-dimensional laminar flow in a channel with different geometries of a backward-facing step are presented for various Grashof numbers. The wall downstream of the step was maintained at a constant temperature; TH, while the upper wall was considered isothermal at TC. The wall upstream of the step and the backward-facing step were considered as adiabatic surfaces. Navier-Stokes equations were employed to represent the transport phenomena in the channel. Further, the governing equations were solved using a finite element formulation based on the Galerkin method of weighted residuals. The numerical results of the reattachement lengths for recirculation region in a vertical channel with a backward-facing step (Re = 100 were validated by comparing them against documented studies in the literature. The results of this investigation show that the local skin friction coefficient increases with an increase in Grashof numbers. The results of this investigation show that configuration II of the backward-facing step (inclined exhibited an absence of vortices for all values of Grashof numbers and consequently the minimum skin friction coefficient. However, configuration I is found to have the largest local skin friction coefficient.

  19. Development of a new Xe-133 single dose multi-step method (SDMM) for muscle blood flow measurement using gamma camera

    International Nuclear Information System (INIS)

    Bunko, Hisashi; Seto, Mikito; Taki, Junichi

    1985-01-01

    In order to measure the muscle blood flow (MBF) during exercise (Ex), a new Xe-133 single dose multi-step method (SDMM) for leg MBF measurement before, during and after Ex using gamma camera was developped. Theoretically, if the activity of Xe-133 in the muscle immediately before and after Ex are known, then the mean MBF during Ex can be calculated. In SDMM, these activities are corrected through correction formula using time delays between end of data aquisition (DA) at rest (R1) and begining of the Ex (TAB), and between end of Ex and begining of the DA after Ex (R2) (TDA). Validity of the SDMM and MBF response on mild and heavy Ex were evaluated in 11 normal volunteers. Ex MBF calculated from 5 and 2.5 min DA (5 sec/frame) both at R1 and R2 were highly correlated (r=.996). Ex MBF by SDMM and direct(measurement by fixed leg exercise were also highly correlated (r=.999). Reproducibility of the R1 and Ex MBF were excellent (r=.999). The highest MBF was seen in GCM on miled walking Ex and in VLM on heavy squatting Ex. After miled Ex, MBF rapidly returned to normal. After heavy Ex, MBF remaind high in VLM In conclusion, SDMM is simple and accurate method for evaluation of dynamic MBF response according to exercise. SDMM is also applicable to the field of sports medicine. (author)

  20. Single-phase flow and flow boiling of water in horizontal rectangular microchannels

    OpenAIRE

    Mirmanto

    2013-01-01

    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University The current study is part of a long term experimental project devoted to investigating single-phase flow pressure drop and heat transfer, flow boiling pressure drop and heat transfer, flow boiling instability and flow visualization of de-ionized water flow in microchannels. The experimental facility was first designed and constructed by S. Gedupudi (2009) and in the present study; ...

  1. Simulation of Sweep-Jet Flow Control, Single Jet and Full Vertical Tail

    Science.gov (United States)

    Childs, Robert E.; Stremel, Paul M.; Garcia, Joseph A.; Heineck, James T.; Kushner, Laura K.; Storms, Bruce L.

    2016-01-01

    This work is a simulation technology demonstrator, of sweep jet flow control used to suppress boundary layer separation and increase the maximum achievable load coefficients. A sweep jet is a discrete Coanda jet that oscillates in the plane parallel to an aerodynamic surface. It injects mass and momentum in the approximate streamwise direction. It also generates turbulent eddies at the oscillation frequency, which are typically large relative to the scales of boundary layer turbulence, and which augment mixing across the boundary layer to attack flow separation. Simulations of a fluidic oscillator, the sweep jet emerging from a nozzle downstream of the oscillator, and an array of sweep jets which suppresses boundary layer separation are performed. Simulation results are compared to data from a dedicated validation experiment of a single oscillator and its sweep jet, and from a wind tunnel test of a full-scale Boeing 757 vertical tail augmented with an array of sweep jets. A critical step in the work is the development of realistic time-dependent sweep jet inflow boundary conditions, derived from the results of the single-oscillator simulations, which create the sweep jets in the full-tail simulations. Simulations were performed using the computational fluid dynamics (CFD) solver Overow, with high-order spatial discretization and a range of turbulence modeling. Good results were obtained for all flows simulated, when suitable turbulence modeling was used.

  2. EDITORIAL: Epitaxial graphene Epitaxial graphene

    Science.gov (United States)

    de Heer, Walt A.; Berger, Claire

    2012-04-01

    Graphene is widely regarded as an important new electronic material with interesting two-dimensional electron gas properties. Not only that, but graphene is widely considered to be an important new material for large-scale integrated electronic devices that may eventually even succeed silicon. In fact, there are countless publications that demonstrate the amazing applications potential of graphene. In order to realize graphene electronics, a platform is required that is compatible with large-scale electronics processing methods. It was clear from the outset that graphene grown epitaxially on silicon carbide substrates was exceptionally well suited as a platform for graphene-based electronics, not only because the graphene sheets are grown directly on electronics-grade silicon carbide (an important semiconductor in its own right), but also because these sheets are oriented with respect to the semiconductor. Moreover, the extremely high temperatures involved in production assure essentially defect-free and contamination-free materials with well-defined interfaces. Epitaxial graphene on silicon carbide is not a unique material, but actually a class of materials. It is a complex structure consisting of a reconstructed silicon carbide surface, which, for planar hexagonal silicon carbide, is either the silicon- or the carbon-terminated face, an interfacial carbon rich layer, followed by one or more graphene layers. Consequently, the structure of graphene films on silicon carbide turns out to be a rich surface-science puzzle that has been intensively studied and systematically unravelled with a wide variety of surface science probes. Moreover, the graphene films produced on the carbon-terminated face turn out to be rotationally stacked, resulting in unique and important structural and electronic properties. Finally, in contrast to essentially all other graphene production methods, epitaxial graphene can be grown on structured silicon carbide surfaces to produce graphene

  3. Transverse injection into Mach 2 flow behind a rearward-facing step - A 3-D, compressible flow test case for hypersonic combustor CFD validation

    Science.gov (United States)

    Mcdaniel, James C.; Fletcher, Douglas G.; Hartfield, Roy J.; Hollo, Steven D.

    1991-01-01

    A spatially-complete data set of the important primitive flow variables is presented for the complex, nonreacting, 3D unit combustor flow field employing transverse injection into a Mach 2 flow behind a rearward-facing step. A unique wind tunnel facility providing the capability for iodine seeding was built specifically for these measurements. Two optical techniques based on laser-induced-iodine fluorescence were developed and utilized for nonintrusive, in situ flow field measurements. LDA provided both mean and fluctuating velocity component measurements. A thermographic phosphor wall temperature measurement technique was developed and employed. Data from the 2D flow over a rearward-facing step and the complex 3D mixing flow with injection are reported.

  4. The evolutionary history of bears is characterized by gene flow across species

    Science.gov (United States)

    Kumar, Vikas; Lammers, Fritjof; Bidon, Tobias; Pfenninger, Markus; Kolter, Lydia; Nilsson, Maria A.; Janke, Axel

    2017-01-01

    Bears are iconic mammals with a complex evolutionary history. Natural bear hybrids and studies of few nuclear genes indicate that gene flow among bears may be more common than expected and not limited to polar and brown bears. Here we present a genome analysis of the bear family with representatives of all living species. Phylogenomic analyses of 869 mega base pairs divided into 18,621 genome fragments yielded a well-resolved coalescent species tree despite signals for extensive gene flow across species. However, genome analyses using different statistical methods show that gene flow is not limited to closely related species pairs. Strong ancestral gene flow between the Asiatic black bear and the ancestor to polar, brown and American black bear explains uncertainties in reconstructing the bear phylogeny. Gene flow across the bear clade may be mediated by intermediate species such as the geographically wide-spread brown bears leading to large amounts of phylogenetic conflict. Genome-scale analyses lead to a more complete understanding of complex evolutionary processes. Evidence for extensive inter-specific gene flow, found also in other animal species, necessitates shifting the attention from speciation processes achieving genome-wide reproductive isolation to the selective processes that maintain species divergence in the face of gene flow. PMID:28422140

  5. The evolutionary history of bears is characterized by gene flow across species.

    Science.gov (United States)

    Kumar, Vikas; Lammers, Fritjof; Bidon, Tobias; Pfenninger, Markus; Kolter, Lydia; Nilsson, Maria A; Janke, Axel

    2017-04-19

    Bears are iconic mammals with a complex evolutionary history. Natural bear hybrids and studies of few nuclear genes indicate that gene flow among bears may be more common than expected and not limited to polar and brown bears. Here we present a genome analysis of the bear family with representatives of all living species. Phylogenomic analyses of 869 mega base pairs divided into 18,621 genome fragments yielded a well-resolved coalescent species tree despite signals for extensive gene flow across species. However, genome analyses using different statistical methods show that gene flow is not limited to closely related species pairs. Strong ancestral gene flow between the Asiatic black bear and the ancestor to polar, brown and American black bear explains uncertainties in reconstructing the bear phylogeny. Gene flow across the bear clade may be mediated by intermediate species such as the geographically wide-spread brown bears leading to large amounts of phylogenetic conflict. Genome-scale analyses lead to a more complete understanding of complex evolutionary processes. Evidence for extensive inter-specific gene flow, found also in other animal species, necessitates shifting the attention from speciation processes achieving genome-wide reproductive isolation to the selective processes that maintain species divergence in the face of gene flow.

  6. Epitaxial Fe3Si/Ge/Fe3Si thin film multilayers grown on GaAs(001)

    International Nuclear Information System (INIS)

    Jenichen, B.; Herfort, J.; Jahn, U.; Trampert, A.; Riechert, H.

    2014-01-01

    We demonstrate Fe 3 Si/Ge/Fe 3 Si/GaAs(001) structures grown by molecular-beam epitaxy and characterized by transmission electron microscopy, electron backscattered diffraction, and X-ray diffraction. The bottom Fe 3 Si epitaxial film on GaAs is always single crystalline. The structural properties of the Ge film and the top Fe 3 Si layer depend on the substrate temperature during Ge deposition. Different orientation distributions of the grains in the Ge and the upper Fe 3 Si film were found. The low substrate temperature T s of 150 °C during Ge deposition ensures sharp interfaces, however, results in predominantly amorphous films. We find that the intermediate T s (225 °C) leads to a largely [111] oriented upper Fe 3 Si layer and polycrystal films. The high T s of 325 °C stabilizes the [001] oriented epitaxial layer structure, i.e., delivers smooth interfaces and single crystal films over as much as 80% of the surface area. - Highlights: • Fe 3 Si/Ge/Fe 3 Si/GaAs(001) structures are grown by MBE. • The bottom Fe 3 Si film is always single crystalline. • The properties of the Ge film depend on the substrate temperature during deposition. • Optimum growth conditions lead to almost perfect epitaxy of Ge on Fe 3 Si

  7. Large eddy simulation of turbulent premixed combustion flows over backward facing step

    Energy Technology Data Exchange (ETDEWEB)

    Park, Nam Seob [Yuhan University, Bucheon (Korea, Republic of); Ko, Sang Cheol [Jeju National University, Jeju (Korea, Republic of)

    2011-03-15

    Large eddy simulation (LES) of turbulent premixed combustion flows over backward facing step has been performed using a dynamic sub-grid G-equation flamelet model. A flamelet model for the premixed flame is combined with a dynamic sub-grid combustion model for the filtered propagation of flame speed. The objective of this study is to investigate the validity of the dynamic sub-grid G-equation model in a complex turbulent premixed combustion flow. For the purpose of validating the LES combustion model, the LES of isothermal and reacting shear layer formed at a backward facing step is carried out. The calculated results are compared with the experimental results, and a good agreement is obtained.

  8. Large eddy simulation of turbulent premixed combustion flows over backward facing step

    International Nuclear Information System (INIS)

    Park, Nam Seob; Ko, Sang Cheol

    2011-01-01

    Large eddy simulation (LES) of turbulent premixed combustion flows over backward facing step has been performed using a dynamic sub-grid G-equation flamelet model. A flamelet model for the premixed flame is combined with a dynamic sub-grid combustion model for the filtered propagation of flame speed. The objective of this study is to investigate the validity of the dynamic sub-grid G-equation model in a complex turbulent premixed combustion flow. For the purpose of validating the LES combustion model, the LES of isothermal and reacting shear layer formed at a backward facing step is carried out. The calculated results are compared with the experimental results, and a good agreement is obtained

  9. Thin film evolution equations from (evaporating) dewetting liquid layers to epitaxial growth

    International Nuclear Information System (INIS)

    Thiele, U

    2010-01-01

    In the present contribution we review basic mathematical results for three physical systems involving self-organizing solid or liquid films at solid surfaces. The films may undergo a structuring process by dewetting, evaporation/condensation or epitaxial growth, respectively. We highlight similarities and differences of the three systems based on the observation that in certain limits all of them may be described using models of similar form, i.e. time evolution equations for the film thickness profile. Those equations represent gradient dynamics characterized by mobility functions and an underlying energy functional. Two basic steps of mathematical analysis are used to compare the different systems. First, we discuss the linear stability of homogeneous steady states, i.e. flat films, and second the systematics of non-trivial steady states, i.e. drop/hole states for dewetting films and quantum-dot states in epitaxial growth, respectively. Our aim is to illustrate that the underlying solution structure might be very complex as in the case of epitaxial growth but can be better understood when comparing the much simpler results for the dewetting liquid film. We furthermore show that the numerical continuation techniques employed can shed some light on this structure in a more convenient way than time-stepping methods. Finally we discuss that the usage of the employed general formulation does not only relate seemingly unrelated physical systems mathematically, but does allow as well for discussing model extensions in a more unified way.

  10. Abnormal growth kinetics of h-BN epitaxial monolayer on Ru(0001) enhanced by subsurface Ar species

    Science.gov (United States)

    Wei, Wei; Meng, Jie; Meng, Caixia; Ning, Yanxiao; Li, Qunxiang; Fu, Qiang; Bao, Xinhe

    2018-04-01

    Growth kinetics of epitaxial films often follows the diffusion-limited aggregation mechanism, which shows a "fractal-to-compact" morphological transition with increasing growth temperature or decreasing deposition flux. Here, we observe an abnormal "compact-to-fractal" morphological transition with increasing growth temperature for hexagonal boron nitride growth on the Ru(0001) surface. The unusual growth process can be explained by a reaction-limited aggregation (RLA) mechanism. Moreover, introduction of the subsurface Ar atoms has enhanced this RLA growth behavior by decreasing both reaction and diffusion barriers. Our work may shed light on the epitaxial growth of two-dimensional atomic crystals and help to control their morphology.

  11. Evaluation of accuracy in implant site preparation performed in single- or multi-step drilling procedures.

    Science.gov (United States)

    Marheineke, Nadine; Scherer, Uta; Rücker, Martin; von See, Constantin; Rahlf, Björn; Gellrich, Nils-Claudius; Stoetzer, Marcus

    2018-06-01

    Dental implant failure and insufficient osseointegration are proven results of mechanical and thermal damage during the surgery process. We herein performed a comparative study of a less invasive single-step drilling preparation protocol and a conventional multiple drilling sequence. Accuracy of drilling holes was precisely analyzed and the influence of different levels of expertise of the handlers and additional use of drill template guidance was evaluated. Six experimental groups, deployed in an osseous study model, were representing template-guided and freehanded drilling actions in a stepwise drilling procedure in comparison to a single-drill protocol. Each experimental condition was studied by the drilling actions of respectively three persons without surgical knowledge as well as three highly experienced oral surgeons. Drilling actions were performed and diameters were recorded with a precision measuring instrument. Less experienced operators were able to significantly increase the drilling accuracy using a guiding template, especially when multi-step preparations are performed. Improved accuracy without template guidance was observed when experienced operators were executing single-step versus multi-step technique. Single-step drilling protocols have shown to produce more accurate results than multi-step procedures. The outcome of any protocol can be further improved by use of guiding templates. Operator experience can be a contributing factor. Single-step preparations are less invasive and are promoting osseointegration. Even highly experienced surgeons are achieving higher levels of accuracy by combining this technique with template guidance. Hereby template guidance enables a reduction of hands-on time and side effects during surgery and lead to a more predictable clinical diameter.

  12. The role of gene flow in shaping genetic structures of the subtropical conifer species Araucaria angustifolia.

    Science.gov (United States)

    Stefenon, V M; Gailing, O; Finkeldey, R

    2008-05-01

    The morphological features of pollen and seed of Araucaria angustifolia have led to the proposal of limited gene dispersal for this species. We used nuclear microsatellite and AFLP markers to assess patterns of genetic variation in six natural populations at the intra- and inter-population level, and related our findings to gene dispersal in this species. Estimates of both fine-scale spatial genetic structure (SGS) and migration rate suggest relatively short-distance gene dispersal. However, gene dispersal differed among populations, and effects of more efficient dispersal within population were observed in at least one stand. In addition, even though some seed dispersal may be aggregated in this principally barochorous species, reasonable secondary seed dispersal, presumably facilitated by animals, and overlap of seed shadows within populations is suggested. Overall, no correlation was observed between levels of SGS and inbreeding, density or age structure, except that a higher level of SGS was revealed for the population with a higher number of juvenile individuals. A low estimate for the number of migrants per generation between two neighbouring populations implies limited gene flow. We expect that stepping-stone pollen flow may have contributed to low genetic differentiation among populations observed in a previous survey. Thus, strategies for maintenance of gene flow among remnant populations should be considered in order to avoid degrading effects of population fragmentation on the evolution of A. angustifolia.

  13. Estimation of preferred water flow parameters for four species of ...

    African Journals Online (AJOL)

    Blackfly larvae typically occur in fast-flowing riffle sections of rivers, with different blackfly species showing preferences for different hydraulic conditions. Very little quantitative data exist on hydraulic conditions linked to the blackfly species occurring in South African streams. Stones-in-current biotopes (i.e. fast riffle flows over ...

  14. A single molecule DNA flow stretching microscope for undergraduates

    NARCIS (Netherlands)

    Williams, Kelly; Grafe, Brendan; Burke, Kathryn M.; Tanner, Nathan; van Oijen, Antoine M.; Loparo, Joseph; Price, Allen C.

    2011-01-01

    The design of a simple, safe, and inexpensive single molecule flow stretching instrument is presented. The instrument uses a low cost upright microscope coupled to a webcam for imaging single DNA molecules that are tethered in an easy to construct microfluidic flow cell. The system requires no

  15. Standard practice for measurement of the glass dissolution rate using the single-pass flow-through test method

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This practice describes a single-pass flow-through (SPFT) test method that can be used to measure the dissolution rate of a homogeneous silicate glass, including nuclear waste glasses, in various test solutions at temperatures less than 100°C. Tests may be conducted under conditions in which the effects from dissolved species on the dissolution rate are minimized to measure the forward dissolution rate at specific values of temperature and pH, or to measure the dependence of the dissolution rate on the concentrations of various solute species. 1.2 Tests are conducted by pumping solutions in either a continuous or pulsed flow mode through a reaction cell that contains the test specimen. Tests must be conducted at several solution flow rates to evaluate the effect of the flow rate on the glass dissolution rate. 1.3 This practice excludes static test methods in which flow is simulated by manually removing solution from the reaction cell and replacing it with fresh solution. 1.4 Tests may be conducted wit...

  16. Fabrication of 5 cm long epitaxial Sm{sub 0.2}Ce{sub 0.8}O{sub 1.9-x} single buffer layer on textured Ni-5%W substrate for YBCO coated conductors via dip-coating PACSD method

    Energy Technology Data Exchange (ETDEWEB)

    Lei, M.; Wang, W.T.; Pu, M.H.; Yang, X.S.; He, L.J. [Key Laboratory of Magnetic Levitation and Maglev Trains (Ministry of Education of China), Superconductivity R and D Center (SRDC), Mail Stop 165, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Cheng, C.H. [Science and Engineering, University of New South Wales, Sydney 2052, New South Wales (Australia); Zhao, Y., E-mail: yzhao@home.swjtu.edu.cn [Key Laboratory of Magnetic Levitation and Maglev Trains (Ministry of Education of China), Superconductivity R and D Center (SRDC), Mail Stop 165, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China)] [Science and Engineering, University of New South Wales, Sydney 2052, New South Wales (Australia)

    2011-11-15

    Epitaxial Sm{sub 0.2}Ce{sub 0.8}O{sub 1.9-x} single buffer layer for YBCO coated conductors was deposited via fluorine-free dip-coating CSD. Flat, dense and crack-free SCO films with sharp (2 0 0) c-axis texture were obtained by carefully controlling the processing. YBCO thin films with a homogeneous surface microstructure were deposited on the SCO-buffered NiW substrate via CSD approach. Five centimeters long epitaxial Sm{sub 0.2}Ce{sub 0.8}O{sub 1.9-x} (SCO) single buffer layer for YBCO coated conductors was deposited via dip-coating polymer-assisted chemical solution deposition (PACSD) approach on bi-axially textured Ni-5%W (2 0 0) alloy substrate. The film formation and texture evolution were investigated using X-ray diffraction and scanning electron microscopy. Flat, dense and crack-free SCO films with sharp (2 0 0) c-axis texture were obtained by way of carefully controlling the concentration of precursor solution, withdrawing speed, annealing temperature and dwelling time. On consideration of both microstructure and texture, epitaxial SCO single buffer layers were fabricated using precursor solution of 0.3 M cationic concentration, the withdrawing speed of 10 mm/min and heat treatment at 1100 deg. C in Ar-5%H{sub 2} mixture gas for 0.5 h. Epitaxial YBCO thin films with a homogeneous surface microstructure were deposited on the SCO-buffered NiW substrate via dip-coating PACSD approach. The PACSD approach was a promising way to fabricate long and low-cost YBCO coated conductors.

  17. Low-temperature atomic layer epitaxy of AlN ultrathin films by layer-by-layer, in-situ atomic layer annealing.

    Science.gov (United States)

    Shih, Huan-Yu; Lee, Wei-Hao; Kao, Wei-Chung; Chuang, Yung-Chuan; Lin, Ray-Ming; Lin, Hsin-Chih; Shiojiri, Makoto; Chen, Miin-Jang

    2017-01-03

    Low-temperature epitaxial growth of AlN ultrathin films was realized by atomic layer deposition (ALD) together with the layer-by-layer, in-situ atomic layer annealing (ALA), instead of a high growth temperature which is needed in conventional epitaxial growth techniques. By applying the ALA with the Ar plasma treatment in each ALD cycle, the AlN thin film was converted dramatically from the amorphous phase to a single-crystalline epitaxial layer, at a low deposition temperature of 300 °C. The energy transferred from plasma not only provides the crystallization energy but also enhances the migration of adatoms and the removal of ligands, which significantly improve the crystallinity of the epitaxial layer. The X-ray diffraction reveals that the full width at half-maximum of the AlN (0002) rocking curve is only 144 arcsec in the AlN ultrathin epilayer with a thickness of only a few tens of nm. The high-resolution transmission electron microscopy also indicates the high-quality single-crystal hexagonal phase of the AlN epitaxial layer on the sapphire substrate. The result opens a window for further extension of the ALD applications from amorphous thin films to the high-quality low-temperature atomic layer epitaxy, which can be exploited in a variety of fields and applications in the near future.

  18. NiFe epitaxial films with hcp and fcc structures prepared on bcc-Cr underlayers

    Energy Technology Data Exchange (ETDEWEB)

    Higuchi, Jumpei, E-mail: higuchi@futamoto.elect.chuo-u.ac.jp [Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551 (Japan); Ohtake, Mitsuru; Sato, Yoichi [Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551 (Japan); Kirino, Fumiyoshi [Graduate School of Fine Arts, Tokyo National University of Fine Arts and Music, 12-8 Ueno-koen, Taito-ku, Tokyo 110-8714 (Japan); Futamoto, Masaaki [Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551 (Japan)

    2011-09-30

    NiFe epitaxial films are prepared on Cr(211){sub bcc} and Cr(100){sub bcc} underlayers grown hetero-epitaxially on MgO single-crystal substrates by ultra-high vacuum rf magnetron sputtering. The film growth behavior and the crystallographic properties are studied by reflection high energy electron diffraction and pole figure X-ray diffraction. Metastable hcp-NiFe(11-bar 00) and hcp-NiFe(112-bar 0) crystals respectively nucleate on Cr(211){sub bcc} and Cr(100){sub bcc} underlayers, where the hcp-NiFe crystals are stabilized through hetero-epitaxial growth. The hcp-NiFe(11-bar 00) crystal is a single-crystal with the c-axis parallel to the substrate surface, whereas the hcp-NiFe(112-bar 0) crystal is a bi-crystal with the respective c-axes lying in plane and perpendicular each other. With increasing the film thickness, the hcp structure in the NiFe films starts to transform into more stable fcc structure by atomic displacement parallel to the hcp(0001) close packed plane. The resulting films consist of hcp and fcc crystals.

  19. NiFe epitaxial films with hcp and fcc structures prepared on bcc-Cr underlayers

    International Nuclear Information System (INIS)

    Higuchi, Jumpei; Ohtake, Mitsuru; Sato, Yoichi; Kirino, Fumiyoshi; Futamoto, Masaaki

    2011-01-01

    NiFe epitaxial films are prepared on Cr(211) bcc and Cr(100) bcc underlayers grown hetero-epitaxially on MgO single-crystal substrates by ultra-high vacuum rf magnetron sputtering. The film growth behavior and the crystallographic properties are studied by reflection high energy electron diffraction and pole figure X-ray diffraction. Metastable hcp-NiFe(11-bar 00) and hcp-NiFe(112-bar 0) crystals respectively nucleate on Cr(211) bcc and Cr(100) bcc underlayers, where the hcp-NiFe crystals are stabilized through hetero-epitaxial growth. The hcp-NiFe(11-bar 00) crystal is a single-crystal with the c-axis parallel to the substrate surface, whereas the hcp-NiFe(112-bar 0) crystal is a bi-crystal with the respective c-axes lying in plane and perpendicular each other. With increasing the film thickness, the hcp structure in the NiFe films starts to transform into more stable fcc structure by atomic displacement parallel to the hcp(0001) close packed plane. The resulting films consist of hcp and fcc crystals.

  20. Computing single step operators of logic programming in radial basis function neural networks

    Science.gov (United States)

    Hamadneh, Nawaf; Sathasivam, Saratha; Choon, Ong Hong

    2014-07-01

    Logic programming is the process that leads from an original formulation of a computing problem to executable programs. A normal logic program consists of a finite set of clauses. A valuation I of logic programming is a mapping from ground atoms to false or true. The single step operator of any logic programming is defined as a function (Tp:I→I). Logic programming is well-suited to building the artificial intelligence systems. In this study, we established a new technique to compute the single step operators of logic programming in the radial basis function neural networks. To do that, we proposed a new technique to generate the training data sets of single step operators. The training data sets are used to build the neural networks. We used the recurrent radial basis function neural networks to get to the steady state (the fixed point of the operators). To improve the performance of the neural networks, we used the particle swarm optimization algorithm to train the networks.

  1. Computing single step operators of logic programming in radial basis function neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Hamadneh, Nawaf; Sathasivam, Saratha; Choon, Ong Hong [School of Mathematical Sciences, Universiti Sains Malaysia, 11800 USM, Penang (Malaysia)

    2014-07-10

    Logic programming is the process that leads from an original formulation of a computing problem to executable programs. A normal logic program consists of a finite set of clauses. A valuation I of logic programming is a mapping from ground atoms to false or true. The single step operator of any logic programming is defined as a function (T{sub p}:I→I). Logic programming is well-suited to building the artificial intelligence systems. In this study, we established a new technique to compute the single step operators of logic programming in the radial basis function neural networks. To do that, we proposed a new technique to generate the training data sets of single step operators. The training data sets are used to build the neural networks. We used the recurrent radial basis function neural networks to get to the steady state (the fixed point of the operators). To improve the performance of the neural networks, we used the particle swarm optimization algorithm to train the networks.

  2. Computing single step operators of logic programming in radial basis function neural networks

    International Nuclear Information System (INIS)

    Hamadneh, Nawaf; Sathasivam, Saratha; Choon, Ong Hong

    2014-01-01

    Logic programming is the process that leads from an original formulation of a computing problem to executable programs. A normal logic program consists of a finite set of clauses. A valuation I of logic programming is a mapping from ground atoms to false or true. The single step operator of any logic programming is defined as a function (T p :I→I). Logic programming is well-suited to building the artificial intelligence systems. In this study, we established a new technique to compute the single step operators of logic programming in the radial basis function neural networks. To do that, we proposed a new technique to generate the training data sets of single step operators. The training data sets are used to build the neural networks. We used the recurrent radial basis function neural networks to get to the steady state (the fixed point of the operators). To improve the performance of the neural networks, we used the particle swarm optimization algorithm to train the networks

  3. The RiverFish Approach to Business Process Modeling: Linking Business Steps to Control-Flow Patterns

    Science.gov (United States)

    Zuliane, Devanir; Oikawa, Marcio K.; Malkowski, Simon; Alcazar, José Perez; Ferreira, João Eduardo

    Despite the recent advances in the area of Business Process Management (BPM), today’s business processes have largely been implemented without clearly defined conceptual modeling. This results in growing difficulties for identification, maintenance, and reuse of rules, processes, and control-flow patterns. To mitigate these problems in future implementations, we propose a new approach to business process modeling using conceptual schemas, which represent hierarchies of concepts for rules and processes shared among collaborating information systems. This methodology bridges the gap between conceptual model description and identification of actual control-flow patterns for workflow implementation. We identify modeling guidelines that are characterized by clear phase separation, step-by-step execution, and process building through diagrams and tables. The separation of business process modeling in seven mutually exclusive phases clearly delimits information technology from business expertise. The sequential execution of these phases leads to the step-by-step creation of complex control-flow graphs. The process model is refined through intuitive table and diagram generation in each phase. Not only does the rigorous application of our modeling framework minimize the impact of rule and process changes, but it also facilitates the identification and maintenance of control-flow patterns in BPM-based information system architectures.

  4. Heat-transfer and pressure distributions for laminar separated flows downstream of rearward-facing steps with and without mass suction

    Science.gov (United States)

    Brown, R. D.; Jakubowski, A. K.

    1974-01-01

    Heat-transfer and pressure distributions were measured for laminar separated flows downstream of rearward-facing steps with and without mass suction. The flow conditions were such that the boundary-layer thickness was comparable to or larger than the step height. For both suction and no-suction cases, an increase in the step height resulted in a sharp decrease in the initial heat-transfer rates behind the step. Downstream, however, the heat transfer gradually recovered back to less than or near attached-flow values. Mass suction from the step base area increased the local heat-transfer rates; however, this effect was relatively weak for the laminar flows considered. Even removal of the entire approaching boundary layer raised the post-step heat-transfer rates only about 10 percent above the flatplate values. Post-step pressure distributions were found to depend on the entrainment conditions at separation. In the case of the solid-faced step, a sharp pressure drop behind the step was followed by a very short plateau and relatively fast recompression. For the slotted-step connected to a large plenum but without suction, the pressure drop at the base was much smaller and the downstream recompression more gradual than that for solid-faced step.

  5. MOSS spectroscopic camera for imaging time resolved plasma species temperature and flow speed

    International Nuclear Information System (INIS)

    Michael, Clive; Howard, John

    2000-01-01

    A MOSS (Modulated Optical Solid-State) spectroscopic camera has been devised to monitor the spatial and temporal variations of temperatures and flow speeds of plasma ion species, the Doppler broadening measurement being made of spectroscopic lines specified. As opposed to a single channel MOSS spectrometer, the camera images light from plasma onto an array of light detectors, being mentioned 2D imaging of plasma ion temperatures and flow speeds. In addition, compared to a conventional grating spectrometer, the MOSS camera shows an excellent light collecting performance which leads to the improvement of signal to noise ratio and of time resolution. The present paper first describes basic items of MOSS spectroscopy, then follows MOSS camera with an emphasis on the optical system of 2D imaging. (author)

  6. MOSS spectroscopic camera for imaging time resolved plasma species temperature and flow speed

    Energy Technology Data Exchange (ETDEWEB)

    Michael, Clive; Howard, John [Australian National Univ., Plasma Research Laboratory, Canberra (Australia)

    2000-03-01

    A MOSS (Modulated Optical Solid-State) spectroscopic camera has been devised to monitor the spatial and temporal variations of temperatures and flow speeds of plasma ion species, the Doppler broadening measurement being made of spectroscopic lines specified. As opposed to a single channel MOSS spectrometer, the camera images light from plasma onto an array of light detectors, being mentioned 2D imaging of plasma ion temperatures and flow speeds. In addition, compared to a conventional grating spectrometer, the MOSS camera shows an excellent light collecting performance which leads to the improvement of signal to noise ratio and of time resolution. The present paper first describes basic items of MOSS spectroscopy, then follows MOSS camera with an emphasis on the optical system of 2D imaging. (author)

  7. Preparation of metastable bcc permalloy epitaxial thin films on GaAs(011){sub B3} single-crystal substrates

    Energy Technology Data Exchange (ETDEWEB)

    Ohtake, Mitsuru, E-mail: ohtake@futamoto.elect.chuo-u.ac.jp [Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551 (Japan); Higuchi, Jumpei; Yabuhara, Osamu [Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551 (Japan); Kirino, Fumiyoshi [Graduate School of Fine Arts, Tokyo National University of Fine Arts and Music, 12-8 Ueno-koen, Taito-ku, Tokyo 110-8714 (Japan); Futamoto, Masaaki [Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551 (Japan)

    2011-09-30

    Permalloy (Py) single-crystal films with bcc structure were obtained on GaAs(011){sub B3} single-crystal substrates by ultra high vacuum rf magnetron sputtering. The film growth and the detailed film structures were investigated by refection high energy electron diffraction and pole figure X-ray diffraction. bcc-Py films epitaxially grow on the substrates in the orientation relationship of Py(011)[011-bar]{sub bcc} || GaAs(011)[011-bar]{sub B3}. The lattice constant of bcc-Py film is determined to be a = 0.291 nm. With increasing the film thickness, parts of the bcc crystal transform into more stable fcc structure by atomic displacement parallel to the bcc{l_brace}011{r_brace} close-packed planes. The resulting film thus consists of a mixture of bcc and fcc crystals. The phase transformation mechanism is discussed based on the experimental results. The in-plane magnetization properties reflecting the magnetocrystalline anisotropy of bcc-Py crystal are observed for the Py films grown on GaAs(011){sub B3} substrates.

  8. Phylogenetic Pattern, Evolutionary Processes and Species Delimitation in the Genus Echinococcus.

    Science.gov (United States)

    Lymbery, A J

    2017-01-01

    An accurate and stable alpha taxonomy requires a clear conception of what constitutes a species and agreed criteria for delimiting different species. An evolutionary or general lineage concept defines a species as a single lineage of organisms with a common evolutionary trajectory, distinguishable from other such lineages. Delimiting evolutionary species is a two-step process. In the first step, phylogenetic reconstruction identifies putative species as groups of organisms that are monophyletic (share a common ancestor) and exclusive (more closely related to each other than to organisms outside the group). The second step is to assess whether members of the group possess genetic exchangeability (where cohesion is maintained by gene flow among populations) or ecological exchangeability (where cohesion is maintained because populations occupy the same ecological niche). Recent taxonomic reviews have recognized nine species within the genus Echinococcus. Phylogenetic reconstructions of the relationships between these putative species using mtDNA and nuclear gene sequences show that for the most part these nine species are monophyletic, although there are important incongruences that need to be resolved. Applying the criteria of genetic and ecological exchangeability suggests that seven of the currently recognized species represent evolutionarily distinct lineages. The species status of Echinococcus canadensis and Echinococcus ortleppi could not be confirmed. Coalescent-based analyses represent a promising approach to species delimitation in these closely related taxa. It seems likely, from a comparison of sister species groups, that speciation in the genus has been driven by geographic isolation, but biogeographic scenarios are largely speculative and require further testing. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Selective epitaxial growth of stepwise SiGe:B at the recessed sources and drains: A growth kinetics and strain distribution study

    Directory of Open Access Journals (Sweden)

    Sangmo Koo

    2016-09-01

    Full Text Available The selective epitaxial growth of Si1-xGex and the related strain properties were studied. Epitaxial Si1-xGex films were deposited on (100 and (110 orientation wafers and on patterned Si wafers with recessed source and drain structures via ultrahigh vacuum chemical vapor deposition using different growing steps and Ge concentrations. The stepwise process was split into more than 6 growing steps that ranged in thicknesses from a few to 120 nm in order to cover the wide stages of epitaxial growth. The growth rates of SiGe on the plane and patterned wafers were examined and a dependence on the surface orientation was identified. As the germanium concentration increased, defects were generated with thinner Si1-xGex growth. The defect generation was the result of the strain evolution which was examined for channel regions with a Si1-xGex source/drain (S/D structure.

  10. Highly piezoelectric BaTiO3 nanorod bundle arrays using epitaxially grown TiO2 nanomaterials.

    Science.gov (United States)

    Jang, Seon-Min; Yang, Su Chul

    2018-06-08

    Low-dimensional piezoelectric nanostructures such as nanoparticles, nanotubes, nanowires, nanoribbons and nanosheets have been developed for potential applications as energy harvesters, tunable sensors, functional transducers and low-power actuators. In this study, lead-free BaTiO 3 nanorod bundle arrays (NBA) with highly piezoelectric properties were successfully synthesized on fluorine-doped tin oxide (FTO) substrate via a two-step process consisting of TiO 2 epitaxial growth and BaTiO 3 conversion. Through the TiO 2 epitaxial growth on FTO substrate, (001) oriented TiO 2 nanostructures formed vertically-aligned NBA with a bundle diameter of 80 nm and an aspect ratio of six. In particular, chemical etching of the TiO 2 NBA was conducted to enlarge the surface area for effective Ba 2+ ion diffusion during the perovskite conversion process from TiO 2 to BaTiO 3 . The final structure of perovskite BaTiO 3 NBA was found to exhibit a feasible piezoelectric response of 3.56 nm with a clear phase change of 180° from the single BaTiO 3 bundle, by point piezoelectric forced microscopy (PFM) analysis. Consequently, highly piezoelectric NBA could be a promising nanostructure for various nanoscale electronic devices.

  11. Highly piezoelectric BaTiO3 nanorod bundle arrays using epitaxially grown TiO2 nanomaterials

    Science.gov (United States)

    Jang, Seon-Min; Yang, Su Chul

    2018-06-01

    Low-dimensional piezoelectric nanostructures such as nanoparticles, nanotubes, nanowires, nanoribbons and nanosheets have been developed for potential applications as energy harvesters, tunable sensors, functional transducers and low-power actuators. In this study, lead-free BaTiO 3 nanorod bundle arrays (NBA) with highly piezoelectric properties were successfully synthesized on fluorine-doped tin oxide (FTO) substrate via a two-step process consisting of TiO2 epitaxial growth and BaTiO3 conversion. Through the TiO2 epitaxial growth on FTO substrate, (001) oriented TiO2 nanostructures formed vertically-aligned NBA with a bundle diameter of 80 nm and an aspect ratio of six. In particular, chemical etching of the TiO2 NBA was conducted to enlarge the surface area for effective Ba2+ ion diffusion during the perovskite conversion process from TiO2 to BaTiO3. The final structure of perovskite BaTiO3 NBA was found to exhibit a feasible piezoelectric response of 3.56 nm with a clear phase change of 180° from the single BaTiO3 bundle, by point piezoelectric forced microscopy (PFM) analysis. Consequently, highly piezoelectric NBA could be a promising nanostructure for various nanoscale electronic devices.

  12. Epitaxial single-crystal thin films of MnxTi1-xO2-δ grown on (rutile)TiO2 substrates with pulsed laser deposition: Experiment and theory

    Energy Technology Data Exchange (ETDEWEB)

    Ilton, Eugene S.; Droubay, Timothy C.; Chaka, Anne M.; Kovarik, Libor; Varga, Tamas; Arey, Bruce W.; Kerisit, Sebastien N.

    2015-02-01

    Epitaxial rutile-structured single-crystal MnxTi1-xO2-δ films were synthesized on rutile- (110) and -(001) substrates using pulsed laser deposition. The films were characterized by reflection high-energy electron diffraction (RHEED), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and aberration-corrected transmission electron microscopy (ACTEM). Under the present conditions, 400oC and PO2 = 20 mTorr, single crystal epitaxial thin films were grown for x = 0.13, where x is the nominal average mole fraction of Mn. In fact, arbitrarily thick films could be grown with near invariant Mn/Ti concentration profiles from the substrate/film interface to the film surface. In contrast, at x = 0.25, Mn became enriched towards the surface and a secondary nano-scale phase formed which appeared to maintain the basic rutile structure but with enhanced z-contrast in the tunnels, or tetrahedral interstitial sites. Ab initio thermodynamic calculations provided quantitative estimates for the destabilizing effect of expanding the β-MnO2 lattice parameters to those of TiO2-rutile, the stabilizing effect of diluting Mn with increasing Ti concentration, and competing reaction pathways.

  13. A comparative study of transport properties in polycrystalline and epitaxial chromium nitride films

    KAUST Repository

    Duan, X. F.; Mi, Wenbo; Guo, Zaibing; Bai, Haili

    2013-01-01

    Polycrystalline CrNx films on Si(100) and glass substrates and epitaxial CrNx films on MgO(100) substrates were fabricated by reactive sputtering with different nitrogen gas flow rates (fN2). With the increase of fN2, a lattice phase transformation

  14. POD analysis of flow over a backward-facing step forced by right-angle-shaped plasma actuator.

    Science.gov (United States)

    Wang, Bin; Li, Huaxing

    2016-01-01

    This study aims to present flow control over the backward-facing step with specially designed right-angle-shaped plasma actuator and analyzed the influence of various scales of flow structures on the Reynolds stress through snapshot proper orthogonal decomposition (POD). 2D particle image velocimetry measurements were conducted on region (x/h = 0-2.25) and reattachment zone in the x-y plane over the backward-facing step at a Reynolds number of Re h  = 27,766 (based on step height [Formula: see text] and free stream velocity [Formula: see text]. The separated shear layer was excited by specially designed right-angle-shaped plasma actuator under the normalized excitation frequency St h  ≈ 0.345 along the 45° direction. The spatial distribution of each Reynolds stress component was reconstructed using an increasing number of POD modes. The POD analysis indicated that the flow dynamic downstream of the step was dominated by large-scale flow structures, which contributed to streamwise Reynolds stress and Reynolds shear stress. The intense Reynolds stress localized to a narrow strip within the shear layer was mainly affected by small-scale flow structures, which were responsible for the recovery of the Reynolds stress peak. With plasma excitation, a significant increase was obtained in the vertical Reynolds stress peak. Under the dimensionless frequencies St h  ≈ 0.345 and [Formula: see text] which are based on the step height and momentum thickness, the effectiveness of the flow control forced by the plasma actuator along the 45° direction was ordinary. Only the vertical Reynolds stress was significantly affected.

  15. Single-step colloidal quantum dot films for infrared solar harvesting

    KAUST Repository

    Kiani, Amirreza; Sutherland, Brandon R.; Kim, Younghoon; Ouellette, Olivier; Levina, Larissa; Walters, Grant; Dinh, Cao Thang; Liu, Mengxia; Voznyy, Oleksandr; Lan, Xinzheng; Labelle, Andre J.; Ip, Alexander H.; Proppe, Andrew; Ahmed, Ghada H.; Mohammed, Omar F.; Hoogland, Sjoerd; Sargent, Edward H.

    2016-01-01

    . To date, IR CQD solar cells have been made using a wasteful and complex sequential layer-by-layer process. Here, we demonstrate ∼1 eV bandgap solar-harvesting CQD films deposited in a single step. By engineering a fast-drying solvent mixture for metal

  16. Microfluidic Impedance Flow Cytometry Enabling High-Throughput Single-Cell Electrical Property Characterization

    Science.gov (United States)

    Chen, Jian; Xue, Chengcheng; Zhao, Yang; Chen, Deyong; Wu, Min-Hsien; Wang, Junbo

    2015-01-01

    This article reviews recent developments in microfluidic impedance flow cytometry for high-throughput electrical property characterization of single cells. Four major perspectives of microfluidic impedance flow cytometry for single-cell characterization are included in this review: (1) early developments of microfluidic impedance flow cytometry for single-cell electrical property characterization; (2) microfluidic impedance flow cytometry with enhanced sensitivity; (3) microfluidic impedance and optical flow cytometry for single-cell analysis and (4) integrated point of care system based on microfluidic impedance flow cytometry. We examine the advantages and limitations of each technique and discuss future research opportunities from the perspectives of both technical innovation and clinical applications. PMID:25938973

  17. Single-step linking transition from superdeformed to spherical states in {sup 143}Eu

    Energy Technology Data Exchange (ETDEWEB)

    Atac, A.; Axelsson, A.; Persson, J. [Uppsala Univ. (Sweden)] [and others

    1996-12-31

    A discrete {gamma}-ray transition which connects the second lowest SD state with a normally deformed one in {sup 143}Eu has been discovered. It has an energy of 3360.6 keV and carries 3.2 % of the full intensity of the SD band. It feeds into a nearly spherical state which is above the I = 35/2{sup +}, E=4947 keV level. The exact placement of the single-step link could, however, not be established due to the especially complicated level scheme in the region of interest. The angular correlation study favours a stretched dipole character for the 3360.6 keV transition. The single-step link agrees well with the previously determined two-step links, both with respect to energy and spin.

  18. Flow characteristics through a single fracture of artificial fracture system

    International Nuclear Information System (INIS)

    Park, Byoung Yoon; Bae, Dae Seok; Kim, Chun Soo; Kim, Kyung Su; Koh, Young Kwon; Jeon, Seok Won

    2001-04-01

    Fracture flow in rock masses is one of the most important issues in petroleum engineering, geology, and hydrogeology. Especially, in case of the HLW disposal, groundwater flow in fractures is an important factor in the performance assessment of the repository because the radionuclides move along the flowing groundwater through fractures. Recently, the characterization of fractures and the modeling of fluid flow in fractures are studied by a great number of researchers. Among those studies, the hydraulic behavior in a single fracture is one of the basic issues for understanding of fracture flow in rockmass. In this study, a fluid flow test in the single fracture made of transparent epoxy replica was carried out to obtain the practical exponent values proposed from the Cubic law and to estimate the flow rates through a single fracture. Not only the relationship between flow rates and the geometry of fracture was studied, but also the various statistical parameters of fracture geometry were compared to the effective transmissivity data obtained from computer simulation.

  19. A note on Fenchel cuts for the single-node flow problem

    DEFF Research Database (Denmark)

    Klose, Andreas

    The single-node flow problem, which is also known as the single-sink fixed-charge transportation problem, consists in finding a minimum cost flow from a number of nodes to a single sink. The flow cost comprise an amount proportional to the quantity shipped as well as a fixed charge. In this note......, some structural properties of Fenchel cutting planes for this problem are described. Such cuts might then be applied for solving, e.g., fixed-charge transportation problems and more general fixed-charge network flow problems....

  20. Influence of structural properties on ballistic transport in nanoscale epitaxial graphene cross junctions

    International Nuclear Information System (INIS)

    Bock, Claudia; Weingart, Sonja; Karaissaridis, Epaminondas; Kunze, Ulrich; Speck, Florian; Seyller, Thomas

    2012-01-01

    In this paper we investigate the influence of material and device properties on the ballistic transport in epitaxial monolayer graphene and epitaxial quasi-free-standing monolayer graphene. Our studies comprise (a) magneto-transport in two-dimensional (2D) Hall bars, (b) temperature- and magnetic-field-dependent bend resistance of unaligned and step-edge-aligned orthogonal cross junctions, and (c) the influence of the lead width of the cross junctions on ballistic transport. We found that ballistic transport is highly sensitive to scattering at the step edges of the silicon carbide substrate. A suppression of the ballistic transport is observed if the lead width of the cross junction is reduced from 50 nm to 30 nm. In a 50 nm wide device prepared on quasi-free-standing graphene we observe a gradual transition from the ballistic into the diffusive transport regime if the temperature is increased from 4.2 to about 50 K, although 2D Hall bars show a temperature-independent mobility. Thus, in 1D devices additional temperature-dependent scattering mechanisms play a pivotal role. (paper)

  1. Single crystalline metal films as substrates for graphene growth

    Energy Technology Data Exchange (ETDEWEB)

    Zeller, Patrick; Henss, Ann-Kathrin; Wintterlin, Joost [Department Chemie, Ludwig-Maximilians-Universitaet Muenchen (Germany); Weinl, Michael; Schreck, Matthias [Institut fuer Physik, Universitaet Augsburg (Germany); Speck, Florian; Ostler, Markus [Lehrstuhl fuer Technische Physik, Universitaet Erlangen-Nuernberg, Erlangen (Germany); Institut fuer Physik, Technische Universitaet Chemnitz (Germany); Seyller, Thomas [Institut fuer Physik, Technische Universitaet Chemnitz (Germany)

    2017-11-15

    Single crystalline metal films deposited on YSZ-buffered Si(111) wafers were investigated with respect to their suitability as substrates for epitaxial graphene. Graphene was grown by CVD of ethylene on Ru(0001), Ir(111), and Ni(111) films in UHV. For analysis a variety of surface science methods were used. By an initial annealing step the surface quality of the films was strongly improved. The temperature treatments of the metal films caused a pattern of slip lines, formed by thermal stress in the films, which, however, did not affect the graphene quality and even prevented wrinkle formation. Graphene was successfully grown on all three types of metal films in a quality comparable to graphene grown on bulk single crystals of the same metals. In the case of the Ni(111) films the originally obtained domain structure of rotational graphene phases could be transformed into a single domain by annealing. This healing process is based on the control of the equilibrium between graphene and dissolved carbon in the film. For the system graphene/Ni(111) the metal, after graphene growth, could be removed from underneath the epitaxial graphene layer by a pure gas phase reaction, using the reaction of CO with Ni to give gaseous Ni(CO){sub 4}. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Liquid phase electro epitaxy growth kinetics of GaAs-A three-dimensional numerical simulation study

    International Nuclear Information System (INIS)

    Mouleeswaran, D.; Dhanasekaran, R.

    2006-01-01

    A three-dimensional numerical simulation study for the liquid phase electro epitaxial growth kinetic of GaAs is presented. The kinetic model is constructed considering (i) the diffusive and convective mass transport, (ii) the heat transfer due to thermoelectric effects such as Peltier effect, Joule effect and Thomson effect, (iii) the electric current distribution with electromigration and (iv) the fluid flow coupled with concentration and temperature fields. The simulations are performed for two configurations namely (i) epitaxial growth from the arsenic saturated gallium rich growth solution, i.e., limited solution model and (ii) epitaxial growth from the arsenic saturated gallium rich growth solution with polycrystalline GaAs feed. The governing equations of liquid phase electro epitaxy are solved numerically with appropriate initial and boundary conditions using the central difference method. Simulations are performed to determine the following, a concentration profiles of solute atoms (As) in the Ga-rich growth solution, shape of the substrate evolution, the growth rate of the GaAs epitaxial film, the contributions of Peltier effect and electromigration of solute atoms to the growth with various experimental growth conditions. The growth rate is found to increase with increasing growth temperature and applied current density. The results are discussed in detail

  3. High-mobility BaSnO{sub 3} grown by oxide molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Raghavan, Santosh; Schumann, Timo; Kim, Honggyu; Zhang, Jack Y.; Cain, Tyler A.; Stemmer, Susanne, E-mail: stemmer@mrl.ucsb.edu [Materials Department, University of California, Santa Barbara, California 93106-5050 (United States)

    2016-01-01

    High-mobility perovskite BaSnO{sub 3} films are of significant interest as new wide bandgap semiconductors for power electronics, transparent conductors, and as high mobility channels for epitaxial integration with functional perovskites. Despite promising results for single crystals, high-mobility BaSnO{sub 3} films have been challenging to grow. Here, we demonstrate a modified oxide molecular beam epitaxy (MBE) approach, which supplies pre-oxidized SnO{sub x}. This technique addresses issues in the MBE of ternary stannates related to volatile SnO formation and enables growth of epitaxial, stoichiometric BaSnO{sub 3}. We demonstrate room temperature electron mobilities of 150 cm{sup 2} V{sup −1} s{sup −1} in films grown on PrScO{sub 3}. The results open up a wide range of opportunities for future electronic devices.

  4. Nanopatterning of magnetic disks by single-step Ar+ Ion projection

    NARCIS (Netherlands)

    Dietzel, A.H.; Berger, R.; Loeschner, H.; Platzgummer, E.; Stengl, G.; Bruenger, W.H.; Letzkus, F.

    2003-01-01

    Large-area Ar+ projection has been used to generate planar magnetic nanostructures on a 1¿-format hard disk in a single step (see Figure). The recording pattern was transferred to a Co/Pt multilayer without resist processes or any other contact to the delicate media surface. It is conceivable that

  5. Towards single step production of multi-layer inorganic hollow fibers

    NARCIS (Netherlands)

    de Jong, J.; Benes, Nieck Edwin; Koops, G.H.; Wessling, Matthias

    2004-01-01

    In this work we propose a generic synthesis route for the single step production of multi-layer inorganic hollow fibers, based on polymer wet spinning combined with a heat treatment. With this new method, membranes with a high surface area per unit volume ratio can be produced, while production time

  6. Flow over back-facing step in a narrow channel

    Czech Academy of Sciences Publication Activity Database

    Uruba, Václav; Jonáš, Pavel

    2012-01-01

    Roč. 12, č. 1 (2012), s. 501-502 ISSN 1617-7061. [Annual Meeting of the International Association of Applied Mathematics and Mechanics /83./. Darmstadt, 26.03.2012-30.03.2012] R&D Projects: GA ČR GAP101/10/1230; GA ČR GA101/08/1112 Institutional research plan: CEZ:AV0Z20760514 Keywords : channel flow * backward facing step * PIV Subject RIV: BK - Fluid Dynamics http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1617-7061

  7. Coupled quantum dot-ring structures by droplet epitaxy

    International Nuclear Information System (INIS)

    Somaschini, C; Bietti, S; Koguchi, N; Sanguinetti, S

    2011-01-01

    The fabrication, by pure self-assembly, of GaAs/AlGaAs dot-ring quantum nanostructures is presented. The growth is performed via droplet epitaxy, which allows for the fine control, through As flux and substrate temperature, of the crystallization kinetics of nanometer scale metallic Ga reservoirs deposited on the surface. Such a procedure permits the combination of quantum dots and quantum rings into a single, multi-functional, complex quantum nanostructure.

  8. A Study of Low-Reynolds Number Effects in Backward-Facing Step Flow Using Large Eddy Simulations

    DEFF Research Database (Denmark)

    Davidson, Lars; Nielsen, Peter V.

    The flow in ventilated rooms is often not fully turbulent, but in some regions the flow can be laminar. Problems have been encountered when simulating this type of flow using RANS (Reynolds Averaged Navier-Stokes) methods. Restivo carried out experiment on the flow after a backward-facing step...

  9. Molecular beam epitaxy of three-dimensional Dirac material Sr3PbO

    Science.gov (United States)

    Samal, D.; Nakamura, H.; Takagi, H.

    2016-07-01

    A series of anti-perovskites including Sr3PbO are recently predicted to be a three-dimensional Dirac material with a small mass gap, which may be a topological crystalline insulator. Here, we report the epitaxial growth of Sr3PbO thin films on LaAlO3 using molecular beam epitaxy. X-ray diffraction indicates (001) growth of Sr3PbO, where [110] of Sr3PbO matches [100] of LaAlO3. Measurements of the Sr3PbO films with parylene/Al capping layers reveal a metallic conduction with p-type carrier density of ˜1020 cm-3. The successful growth of high quality Sr3PbO film is an important step for the exploration of its unique topological properties.

  10. Catalytic Activity Enhancement for Oxygen Reduction on Epitaxial Perovskite Thin Films for Solid-Oxide Fuel Cells

    KAUST Repository

    la O', Gerardo Jose; Ahn, Sung-Jin; Crumlin, Ethan; Orikasa, Yuki; Biegalski, Michael D.; Christen, Hans M.; Shao-Horn, Yang

    2010-01-01

    Figure Presented The active ingredient: La0.8Sr 0.2CoO3-δ (LSC) epitaxial thin films are prepared on (001 )-oriented yttria-stabilized zirconia (YSZ) single crystals with a gadolinium-doped ceria (GDC) buffer layer (see picture). The LSC epitaxial films exhibit better oxygen reduction kinetics than bulk LSC. The enhanced activity is attributed in part to higher oxygen nonstoichiometry. © 2010 Wiley-VCH Verlag GmbH & Co. KCaA, Weinheim.

  11. Catalytic Activity Enhancement for Oxygen Reduction on Epitaxial Perovskite Thin Films for Solid-Oxide Fuel Cells

    KAUST Repository

    la O', Gerardo Jose

    2010-06-22

    Figure Presented The active ingredient: La0.8Sr 0.2CoO3-δ (LSC) epitaxial thin films are prepared on (001 )-oriented yttria-stabilized zirconia (YSZ) single crystals with a gadolinium-doped ceria (GDC) buffer layer (see picture). The LSC epitaxial films exhibit better oxygen reduction kinetics than bulk LSC. The enhanced activity is attributed in part to higher oxygen nonstoichiometry. © 2010 Wiley-VCH Verlag GmbH & Co. KCaA, Weinheim.

  12. Influence of the carrier Gas, trimethylgallium flow, and growth time on the character of the selective epitaxy of GaN

    Energy Technology Data Exchange (ETDEWEB)

    Rozhavskaya, M. M., E-mail: MRozhavskaya@gmail.com; Lundin, V. V.; Zavarin, E. E.; Troshkov, S. I.; Brunkov, P. N.; Tsatsulnikov, A. F. [Russian Academy of Sciences, Ioffe Physical-Technical Institute (Russian Federation)

    2013-03-15

    The influence of the carrier gas, trimethylgallium flow, and growth time on the character of the selective epitaxy of GaN in stripe windows oriented along the crystallographic direction Left-Pointing-Angle-Bracket 11-bar00 Right-Pointing-Angle-Bracket GaN for various widths of the mask between the stripes is studied. It is shown that the addition of nitrogen in the reactor atmosphere leads to changes in the form of the stripes in the case of wide (40 {mu}m) mask from a rectangular form restricted by a {l_brace}1 1-bar20{r_brace} lateral face to a trapezoidal form restricted by a {l_brace}1 1-bar22{r_brace} lateral face. It is also shown that during growth in the nitrogen-hydrogen mixture, the gallium flow starts to considerably affect the form of the growing stripes. It is shown that the process is significantly unstable, which leads to a noticeable variation in the form type as the transverse section of the stripe increases.

  13. Hydrodynamics of single- and two-phase flow in inclined rod arrays

    International Nuclear Information System (INIS)

    Ebeling-Koning, D.B.; Todreas, N.E.

    1983-09-01

    Required inputs for thermal-hydraulic codes are constitutive relations for fluid-solid flow resistance, in single-phase flow, and interfacial momentum exchange (relative phase motion), in two-phase flow. An inclined rod array air-water experiment was constructed to study the hydrodynamics of multidimensional porous medium flow in rod arrays. Velocities, pressures, and bubble distributions were measured in square rod arrays of P/d = 1.5, at 0, 30, 45, and 90 degree inclinations to the vertical flow direction. Constitutive models for single-phase flow resistance are reviewed, new comprehensive models developed, and an assessment with previously published and new data made. The principle of superimposing one-dimensional correlations proves successful for turbulent single-phase inclined flow. For bubbly two-phase incline flow a new flow separation phenomena was observed and modeled. A two-region liquid velocity model is developed to explain the experimentally observed phenomena. Fundamental data for bubbles rising in rod arrays were also taken

  14. Structural comparison of anodic nanoporous-titania fabricated from single-step and three-step of anodization using two paralleled-electrodes anodizing cell

    Directory of Open Access Journals (Sweden)

    Mallika Thabuot

    2016-02-01

    Full Text Available Anodization of Ti sheet in the ethylene glycol electrolyte containing 0.38wt% NH4F with the addition of 1.79wt% H2O at room temperature was studied. Applied potential of 10-60 V and anodizing time of 1-3 h were conducted by single-step and three-step of anodization within the two paralleled-electrodes anodizing cell. Their structural and textural properties were investigated by X-ray diffraction (XRD and scanning electron microscopy (SEM. After annealing at 600°C in the air furnace for 3 h, TiO2-nanotubes was transformed to the higher proportion of anatase crystal phase. Also crystallization of anatase phase was enhanced as the duration of anodization as the final step increased. By using single-step of anodization, pore texture of oxide film was started to reveal at the applied potential of 30 V. Better orderly arrangement of the TiO2-nanotubes array with larger pore size was obtained with the increase of applied potential. The applied potential of 60 V was selected for the three-step of anodization with anodizing time of 1-3 h. Results showed that the well-smooth surface coverage with higher density of porous-TiO2 was achieved using prolonging time at the first and second step, however, discontinuity tube in length was produced instead of the long-vertical tube. Layer thickness of anodic oxide film depended on the anodizing time at the last step of anodization. More well arrangement of nanostructured-TiO2 was produced using three-step of anodization under 60 V with 3 h for each step.

  15. Towards rhombohedral SiGe epitaxy on 150mm c-plane sapphire substrates

    Science.gov (United States)

    Duzik, Adam J.; Park, Yeonjoon; Choi, Sang H.

    2015-04-01

    Previous work demonstrated for the first time the ability to epitaxially grow uniform single crystal diamond cubic SiGe (111) films on trigonal sapphire (0001) substrates. While SiGe (111) forms two possible crystallographic twins on sapphire (0001), films consisting primarily of one twin were produced on up to 99.95% of the total wafer area. This permits new bandgap engineering possibilities and improved group IV based devices that can exploit the higher carrier mobility in Ge compared to Si. Models are proposed on the epitaxy of such dissimilar crystal structures based on the energetic favorability of crystallographic twins and surface reconstructions. This new method permits Ge (111) on sapphire (0001) epitaxy, rendering Ge an economically feasible replacement for Si in some applications, including higher efficiency Si/Ge/Si quantum well solar cells. Epitaxial SiGe films on sapphire showed a 280% increase in electron mobility and a 500% increase in hole mobility over single crystal Si. Moreover, Ge possesses a wider bandgap for solar spectrum conversion than Si, while the transparent sapphire substrate permits an inverted device structure, increasing the total efficiency to an estimated 30-40%, much higher than traditional Si solar cells. Hall Effect mobility measurements of the Ge layer in the Si/Ge/Si quantum well structure were performed to demonstrate the advantage in carrier mobility over a pure Si solar cell. Another application comes in the use of microelectromechanical devices technology, where high-resistivity Si is currently used as a substrate. Sapphire is a more resistive substrate and offers better performance via lower parasitic capacitance and higher film carrier mobility over the current Si-based technology.

  16. The Combination of Micro Diaphragm Pumps and Flow Sensors for Single Stroke Based Liquid Flow Control.

    Science.gov (United States)

    Jenke, Christoph; Pallejà Rubio, Jaume; Kibler, Sebastian; Häfner, Johannes; Richter, Martin; Kutter, Christoph

    2017-04-03

    With the combination of micropumps and flow sensors, highly accurate and secure closed-loop controlled micro dosing systems for liquids are possible. Implementing a single stroke based control mode with piezoelectrically driven micro diaphragm pumps can provide a solution for dosing of volumes down to nanoliters or variable average flow rates in the range of nL/min to μL/min. However, sensor technologies feature a yet undetermined accuracy for measuring highly pulsatile micropump flow. Two miniaturizable in-line sensor types providing electrical readout-differential pressure based flow sensors and thermal calorimetric flow sensors-are evaluated for their suitability of combining them with mircopumps. Single stroke based calibration of the sensors was carried out with a new method, comparing displacement volumes and sensor flow volumes. Limitations of accuracy and performance for single stroke based flow control are described. Results showed that besides particle robustness of sensors, controlling resistive and capacitive damping are key aspects for setting up reproducible and reliable liquid dosing systems. Depending on the required average flow or defined volume, dosing systems with an accuracy of better than 5% for the differential pressure based sensor and better than 6.5% for the thermal calorimeter were achieved.

  17. Epitaxial growth and dielectric properties of Bi sub 2 VO sub 5 sub . sub 5 thin films on TiN/Si substrates with SrTiO sub 3 buffer layers

    CERN Document Server

    Lee, H Y; Choi, B C; Jeong, J H; Joseph, M; Tabata, H; Kawai, T

    2000-01-01

    Bi sub 2 VO sub 5 sub . sub 5 (BVO) thin films were epitaxially grown on SrTiO sub 3 /TiN/Si substrates by using pulsed laser ablation. A TiN thin film was prepared at 700 .deg. C as a bottom electrode. The TiN film exhibited a high alpha axis orientation and a very smooth morphology. Before the preparation of the BVO thin film, a crystallized SrTiO sub 3 thin film was deposited as a buffer layer on TiN/Si. The BVO thin film grown at a substrate temperature at 700 .deg. C and an oxygen pressure of 50 mTorr was found to be epitaxial along the c-axis. Also, BVO films were observed to have flat surfaces and the step-flow modes. The dielectric constant of the BVO film on STO/TiN/Si was constant at about 8 approx 4 in the applied frequency range between 10 sup 2 and 10 sup 6 Hz.

  18. One-pot growth of two-dimensional lateral heterostructures via sequential edge-epitaxy

    Science.gov (United States)

    Sahoo, Prasana K.; Memaran, Shahriar; Xin, Yan; Balicas, Luis; Gutiérrez, Humberto R.

    2018-01-01

    Two-dimensional heterojunctions of transition-metal dichalcogenides have great potential for application in low-power, high-performance and flexible electro-optical devices, such as tunnelling transistors, light-emitting diodes, photodetectors and photovoltaic cells. Although complex heterostructures have been fabricated via the van der Waals stacking of different two-dimensional materials, the in situ fabrication of high-quality lateral heterostructures with multiple junctions remains a challenge. Transition-metal-dichalcogenide lateral heterostructures have been synthesized via single-step, two-step or multi-step growth processes. However, these methods lack the flexibility to control, in situ, the growth of individual domains. In situ synthesis of multi-junction lateral heterostructures does not require multiple exchanges of sources or reactors, a limitation in previous approaches as it exposes the edges to ambient contamination, compromises the homogeneity of domain size in periodic structures, and results in long processing times. Here we report a one-pot synthetic approach, using a single heterogeneous solid source, for the continuous fabrication of lateral multi-junction heterostructures consisting of monolayers of transition-metal dichalcogenides. The sequential formation of heterojunctions is achieved solely by changing the composition of the reactive gas environment in the presence of water vapour. This enables selective control of the water-induced oxidation and volatilization of each transition-metal precursor, as well as its nucleation on the substrate, leading to sequential edge-epitaxy of distinct transition-metal dichalcogenides. Photoluminescence maps confirm the sequential spatial modulation of the bandgap, and atomic-resolution images reveal defect-free lateral connectivity between the different transition-metal-dichalcogenide domains within a single crystal structure. Electrical transport measurements revealed diode-like responses across the

  19. Organic Redox Species in Aqueous Flow Batteries: Redox Potentials, Chemical Stability and Solubility

    Science.gov (United States)

    Wedege, Kristina; Dražević, Emil; Konya, Denes; Bentien, Anders

    2016-01-01

    Organic molecules are currently investigated as redox species for aqueous low-cost redox flow batteries (RFBs). The envisioned features of using organic redox species are low cost and increased flexibility with respect to tailoring redox potential and solubility from molecular engineering of side groups on the organic redox-active species. In this paper 33, mainly quinone-based, compounds are studied experimentially in terms of pH dependent redox potential, solubility and stability, combined with single cell battery RFB tests on selected redox pairs. Data shows that both the solubility and redox potential are determined by the position of the side groups and only to a small extent by the number of side groups. Additionally, the chemical stability and possible degradation mechanisms leading to capacity loss over time are discussed. The main challenge for the development of all-organic RFBs is to identify a redox pair for the positive side with sufficiently high stability and redox potential that enables battery cell potentials above 1 V. PMID:27966605

  20. Organic Redox Species in Aqueous Flow Batteries: Redox Potentials, Chemical Stability and Solubility

    Science.gov (United States)

    Wedege, Kristina; Dražević, Emil; Konya, Denes; Bentien, Anders

    2016-12-01

    Organic molecules are currently investigated as redox species for aqueous low-cost redox flow batteries (RFBs). The envisioned features of using organic redox species are low cost and increased flexibility with respect to tailoring redox potential and solubility from molecular engineering of side groups on the organic redox-active species. In this paper 33, mainly quinone-based, compounds are studied experimentially in terms of pH dependent redox potential, solubility and stability, combined with single cell battery RFB tests on selected redox pairs. Data shows that both the solubility and redox potential are determined by the position of the side groups and only to a small extent by the number of side groups. Additionally, the chemical stability and possible degradation mechanisms leading to capacity loss over time are discussed. The main challenge for the development of all-organic RFBs is to identify a redox pair for the positive side with sufficiently high stability and redox potential that enables battery cell potentials above 1 V.

  1. Extraordinary epitaxial alignment of graphene islands on Au(111)

    International Nuclear Information System (INIS)

    Wofford, Joseph M; Dubon, Oscar D; Starodub, Elena; Nie Shu; Bartelt, Norman C; Thürmer, Konrad; McCarty, Kevin F; Walter, Andrew L; Bostwick, Aaron; Rotenberg, Eli

    2012-01-01

    Pristine, single-crystalline graphene displays a unique collection of remarkable electronic properties that arise from its two-dimensional, honeycomb structure. Using in situ low-energy electron microscopy, we show that when deposited on the (111) surface of Au carbon forms such a structure. The resulting monolayer, epitaxial film is formed by the coalescence of dendritic graphene islands that nucleate at a high density. Over 95% of these islands can be identically aligned with respect to each other and to the Au substrate. Remarkably, the dominant island orientation is not the better lattice-matched 30° rotated orientation but instead one in which the graphene [01] and Au [011] in-plane directions are parallel. The epitaxial graphene film is only weakly coupled to the Au surface, which maintains its reconstruction under the slightly p-type doped graphene. The linear electronic dispersion characteristic of free-standing graphene is retained regardless of orientation. That a weakly interacting, non-lattice matched substrate is able to lock graphene into a particular orientation is surprising. This ability, however, makes Au(111) a promising substrate for the growth of single crystalline graphene films. (paper)

  2. Epitaxial silicon semiconductor detectors, past developments, future prospects

    International Nuclear Information System (INIS)

    Gruhn, C.R.

    1976-01-01

    A review of the main physical characteristics of epitaxial silicon as it relates to detector development is presented. As examples of applications results are presented on (1) epitaxial silicon avalanche diodes (ESAD); signal-to-noise, non-linear aspects of the avalanche gain mechanism, gain-bandwidth product, (2) ultrathin epitaxial silicon surface barrier (ESSB) detectors, response to heavy ions, (3) an all-epitaxial silicon diode (ESD), response to heavy ions, charge transport and charge defect. Future prospects of epitaxial silicon as it relates to new detector designs are summarized

  3. Differences in Lower Extremity and Trunk Kinematics between Single Leg Squat and Step Down Tasks.

    Directory of Open Access Journals (Sweden)

    Cara L Lewis

    Full Text Available The single leg squat and single leg step down are two commonly used functional tasks to assess movement patterns. It is unknown how kinematics compare between these tasks. The purpose of this study was to identify kinematic differences in the lower extremity, pelvis and trunk between the single leg squat and the step down. Fourteen healthy individuals participated in this research and performed the functional tasks while kinematic data were collected for the trunk, pelvis, and lower extremities using a motion capture system. For the single leg squat task, the participant was instructed to squat as low as possible. For the step down task, the participant was instructed to stand on top of a box, slowly lower him/herself until the non-stance heel touched the ground, and return to standing. This was done from two different heights (16 cm and 24 cm. The kinematics were evaluated at peak knee flexion as well as at 60° of knee flexion. Pearson correlation coefficients (r between the angles at those two time points were also calculated to better understand the relationship between each task. The tasks resulted in kinematics differences at the knee, hip, pelvis, and trunk at both time points. The single leg squat was performed with less hip adduction (p ≤ 0.003, but more hip external rotation and knee abduction (p ≤ 0.030, than the step down tasks at 60° of knee flexion. These differences were maintained at peak knee flexion except hip external rotation was only significant in the 24 cm step down task (p ≤ 0.029. While there were multiple differences between the two step heights at peak knee flexion, the only difference at 60° of knee flexion was in trunk flexion (p < 0.001. Angles at the knee and hip had a moderate to excellent correlation (r = 0.51-0.98, but less consistently so at the pelvis and trunk (r = 0.21-0.96. The differences in movement patterns between the single leg squat and the step down should be considered when selecting a

  4. A high-order positivity-preserving single-stage single-step method for the ideal magnetohydrodynamic equations

    Science.gov (United States)

    Christlieb, Andrew J.; Feng, Xiao; Seal, David C.; Tang, Qi

    2016-07-01

    We propose a high-order finite difference weighted ENO (WENO) method for the ideal magnetohydrodynamics (MHD) equations. The proposed method is single-stage (i.e., it has no internal stages to store), single-step (i.e., it has no time history that needs to be stored), maintains a discrete divergence-free condition on the magnetic field, and has the capacity to preserve the positivity of the density and pressure. To accomplish this, we use a Taylor discretization of the Picard integral formulation (PIF) of the finite difference WENO method proposed in Christlieb et al. (2015) [23], where the focus is on a high-order discretization of the fluxes (as opposed to the conserved variables). We use the version where fluxes are expanded to third-order accuracy in time, and for the fluid variables space is discretized using the classical fifth-order finite difference WENO discretization. We use constrained transport in order to obtain divergence-free magnetic fields, which means that we simultaneously evolve the magnetohydrodynamic (that has an evolution equation for the magnetic field) and magnetic potential equations alongside each other, and set the magnetic field to be the (discrete) curl of the magnetic potential after each time step. In this work, we compute these derivatives to fourth-order accuracy. In order to retain a single-stage, single-step method, we develop a novel Lax-Wendroff discretization for the evolution of the magnetic potential, where we start with technology used for Hamilton-Jacobi equations in order to construct a non-oscillatory magnetic field. The end result is an algorithm that is similar to our previous work Christlieb et al. (2014) [8], but this time the time stepping is replaced through a Taylor method with the addition of a positivity-preserving limiter. Finally, positivity preservation is realized by introducing a parameterized flux limiter that considers a linear combination of high and low-order numerical fluxes. The choice of the free

  5. Influence of defects in SiC (0001) on epitaxial graphene

    International Nuclear Information System (INIS)

    Guo Yu; Guo Li-Wei; Lu Wei; Huang Jiao; Jia Yu-Ping; Sun Wei; Li Zhi-Lin; Wang Yi-Fei

    2014-01-01

    Defects in silicon carbide (SiC) substrate are crucial to the properties of the epitaxial graphene (EG) grown on it. Here we report the effect of defects in SiC on the crystalline quality of EGs through comparative studies of the characteristics of the EGs grown on SiC (0001) substrates with different defect densities. It is found that EGs on high quality SiC possess regular steps on the surface of the SiC and there is no discernible D peak in its Raman spectrum. Conversely, the EG on the SiC with a high density of defects has a strong D peak, irregular stepped morphology and poor uniformity in graphene layer numbers. It is the defects in the SiC that are responsible for the irregular stepped morphology and lead to the small domain size in the EG. (rapid communication)

  6. Thin epitaxial silicon detectors

    International Nuclear Information System (INIS)

    Stab, L.

    1989-01-01

    Manufacturing procedures of thin epitaxial surface barriers will be given. Some improvements have been obtained: larger areas, lower leakage currents and better resolutions. New planar epitaxial dE/dX detectors, made in a collaboration work with ENERTEC-INTERTECHNIQUE, and a new application of these thin planar diodes to EXAFS measurements, made in a collaboration work with LURE (CNRS,CEA,MEN) will also be reported

  7. High-rate deposition of epitaxial layers for efficient low-temperature thin film epitaxial silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Oberbeck, L.; Schmidt, J.; Wagner, T.A.; Bergmann, R.B. [Stuttgart Univ. (Germany). Inst. of Physical Electronics

    2001-07-01

    Low-temperature deposition of Si for thin-film solar cells has previously been hampered by low deposition rates and low material quality, usually reflected by a low open-circuit voltage of these solar cells. In contrast, ion-assisted deposition produces Si films with a minority-carrier diffusion length of 40 {mu}m, obtained at a record deposition rate of 0.8 {mu}m/min and a deposition temperature of 650{sup o}C with a prebake at 810{sup o}C. A thin-film Si solar cell with a 20-{mu}m-thick epitaxial layer achieves an open-circuit voltage of 622 mV and a conversion efficiency of 12.7% without any light trapping structures and without high-temperature solar cell process steps. (author)

  8. Transient flow analysis of the single cylinder for the control rod hydraulic driving system

    International Nuclear Information System (INIS)

    Sun, Xinming; Qin, Benke; Bo, Hanliang

    2017-01-01

    Highlights: • The control rod hydraulic driving system(CRHDS) is a new type of built-in control rod drive technology. The hydraulic cylinder is the main component of the CRHDS. • Transient flow phenomenon in the CRHDS is studied by experiments under different working conditions. • The working mechanism of the hydraulic cylinder step motion and the key characteristic parameters are analyzed based on the experimental results. - Abstract: The control rod hydraulic driving system (CRHDS) is a new type of built-in control rod drive technology. In the CRHDS the pulse flow from the pump into the hydraulic cylinder of the control rod hydraulic drive mechanism (CRHDM) is regulated by the integrated valve to perform the step motion of the reactor control rod. Transient flow occurs in the CRHDS during control rod step motion process which is studied by experiments. The time-history curves of flow rate, pressure and inner cylinder displacement were analyzed, and the results show that the water hammer pressure peak during the step-up motion is high, while there are no obvious pressure fluctuations in the corresponding step-down motion. In the step-up process, the pressure fluctuation amplitude increases with the increase of CRHDS driving pressure. The step-up time and the pressure increasing time before step-up decreases with the driving pressure. The step-up pressure increases with the driving pressure. In the step-down process, the step-down time, the step-down pressure and the pressure decreasing time before step-down do not change with the increase of the driving pressure. The experimental results lay the base for the working principle and vibration reduction analysis of the CRHDS and it’s also helpful for improvement of the working performance of the key facilities and instruments of the CRHDS loop.

  9. A single-step method for rapid extraction of total lipids from green microalgae.

    Directory of Open Access Journals (Sweden)

    Martin Axelsson

    Full Text Available Microalgae produce a wide range of lipid compounds of potential commercial interest. Total lipid extraction performed by conventional extraction methods, relying on the chloroform-methanol solvent system are too laborious and time consuming for screening large numbers of samples. In this study, three previous extraction methods devised by Folch et al. (1957, Bligh and Dyer (1959 and Selstam and Öquist (1985 were compared and a faster single-step procedure was developed for extraction of total lipids from green microalgae. In the single-step procedure, 8 ml of a 2∶1 chloroform-methanol (v/v mixture was added to fresh or frozen microalgal paste or pulverized dry algal biomass contained in a glass centrifuge tube. The biomass was manually suspended by vigorously shaking the tube for a few seconds and 2 ml of a 0.73% NaCl water solution was added. Phase separation was facilitated by 2 min of centrifugation at 350 g and the lower phase was recovered for analysis. An uncharacterized microalgal polyculture and the green microalgae Scenedesmus dimorphus, Selenastrum minutum, and Chlorella protothecoides were subjected to the different extraction methods and various techniques of biomass homogenization. The less labour intensive single-step procedure presented here allowed simultaneous recovery of total lipid extracts from multiple samples of green microalgae with quantitative yields and fatty acid profiles comparable to those of the previous methods. While the single-step procedure is highly correlated in lipid extractability (r² = 0.985 to the previous method of Folch et al. (1957, it allowed at least five times higher sample throughput.

  10. The Combination of Micro Diaphragm Pumps and Flow Sensors for Single Stroke Based Liquid Flow Control

    Directory of Open Access Journals (Sweden)

    Christoph Jenke

    2017-04-01

    Full Text Available With the combination of micropumps and flow sensors, highly accurate and secure closed-loop controlled micro dosing systems for liquids are possible. Implementing a single stroke based control mode with piezoelectrically driven micro diaphragm pumps can provide a solution for dosing of volumes down to nanoliters or variable average flow rates in the range of nL/min to μL/min. However, sensor technologies feature a yet undetermined accuracy for measuring highly pulsatile micropump flow. Two miniaturizable in-line sensor types providing electrical readout—differential pressure based flow sensors and thermal calorimetric flow sensors—are evaluated for their suitability of combining them with mircopumps. Single stroke based calibration of the sensors was carried out with a new method, comparing displacement volumes and sensor flow volumes. Limitations of accuracy and performance for single stroke based flow control are described. Results showed that besides particle robustness of sensors, controlling resistive and capacitive damping are key aspects for setting up reproducible and reliable liquid dosing systems. Depending on the required average flow or defined volume, dosing systems with an accuracy of better than 5% for the differential pressure based sensor and better than 6.5% for the thermal calorimeter were achieved.

  11. Ge films grown on Si substrates by molecular-beam epitaxy below 450 deg. C

    International Nuclear Information System (INIS)

    Liu, J.; Kim, H.J.; Hul'ko, O.; Xie, Y.H.; Sahni, S.; Bandaru, P.; Yablonovitch, E.

    2004-01-01

    Ge thin films are grown on Si(001) substrates by molecular-beam epitaxy at 370 deg. C. The low-temperature epitaxial growth is compatible with the back-end thermal budget of current generation complementary metal-oxide-semiconductor technology, which is restricted to less than 450 deg. C. Reflection high-energy electron diffraction shows that single-crystal Ge thin films with smooth surfaces could be achieved below 450 deg. C. Double-axis x-ray θ/2θ scans also show that the epitaxial Ge films are almost fully strain-relaxed. As expected, cross-sectional transmission electron microscopy shows a network of dislocations at the interface. Hydrogen and oxide desorption techniques are proved to be necessary for improving the quality of the Ge films, which is reflected in improved minority carrier diffusion lengths and exceptionally low leakage currents

  12. Pool-Type Fishways: Two Different Morpho-Ecological Cyprinid Species Facing Plunging and Streaming Flows

    Science.gov (United States)

    Branco, Paulo; Santos, José M.; Katopodis, Christos; Pinheiro, António; Ferreira, Maria T.

    2013-01-01

    Fish are particularly sensitive to connectivity loss as their ability to reach spawning grounds is seriously affected. The most common way to circumvent a barrier to longitudinal connectivity, and to mitigate its impacts, is to implement a fish passage device. However, these structures are often non-effective for species with different morphological and ecological characteristics so there is a need to determine optimum dimensioning values and hydraulic parameters. The aim of this work is to study the behaviour and performance of two species with different ecological characteristics (Iberian barbel Luciobarbus bocagei–bottom oriented, and Iberian chub Squalius pyrenaicus–water column) in a full-scale experimental pool-type fishway that offers two different flow regimes–plunging and streaming. Results showed that both species passed through the surface notch more readily during streaming flow than during plunging flow. The surface oriented species used the surface notch more readily in streaming flow, and both species were more successful in moving upstream in streaming flow than in plunging flow. Streaming flow enhances upstream movement of both species, and seems the most suitable for fishways in river systems where a wide range of fish morpho-ecological traits are found. PMID:23741465

  13. Single step synthesis, characterization and applications of curcumin functionalized iron oxide magnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Bhandari, Rohit; Gupta, Prachi; Dziubla, Thomas; Hilt, J. Zach, E-mail: zach.hilt@uky.edu

    2016-10-01

    Magnetic iron oxide nanoparticles have been well known for their applications in magnetic resonance imaging (MRI), hyperthermia, targeted drug delivery, etc. The surface modification of these magnetic nanoparticles has been explored extensively to achieve functionalized materials with potential application in biomedical, environmental and catalysis field. Herein, we report a novel and versatile single step methodology for developing curcumin functionalized magnetic Fe{sub 3}O{sub 4} nanoparticles without any additional linkers, using a simple coprecipitation technique. The magnetic nanoparticles (MNPs) were characterized using transmission electron microscopy, X-ray diffraction, fourier transform infrared spectroscopy and thermogravimetric analysis. The developed MNPs were employed in a cellular application for protection against an inflammatory agent, a polychlorinated biphenyl (PCB) molecule. - Graphical abstract: Novel single step curcumin coated magnetic Fe{sub 3}O{sub 4} nanoparticles without any additional linkers for medical, environmental, and other applications. Display Omitted - Highlights: • A novel and versatile single step methodology for developing curcumin functionalized magnetic Fe{sub 3}O{sub 4} nanoparticles is reported. • The magnetic nanoparticles (MNPs) were characterized using TEM, XRD, FTIR and TGA. • The developed MNPs were employed in a cellular application for protection against an inflammatory agent, a polychlorinated biphenyl (PCB).

  14. Adaptive Time Stepping for Transient Network Flow Simulation in Rocket Propulsion Systems

    Science.gov (United States)

    Majumdar, Alok K.; Ravindran, S. S.

    2017-01-01

    Fluid and thermal transients found in rocket propulsion systems such as propellant feedline system is a complex process involving fast phases followed by slow phases. Therefore their time accurate computation requires use of short time step initially followed by the use of much larger time step. Yet there are instances that involve fast-slow-fast phases. In this paper, we present a feedback control based adaptive time stepping algorithm, and discuss its use in network flow simulation of fluid and thermal transients. The time step is automatically controlled during the simulation by monitoring changes in certain key variables and by feedback. In order to demonstrate the viability of time adaptivity for engineering problems, we applied it to simulate water hammer and cryogenic chill down in pipelines. Our comparison and validation demonstrate the accuracy and efficiency of this adaptive strategy.

  15. The stepping behavior analysis of pedestrians from different age groups via a single-file experiment

    Science.gov (United States)

    Cao, Shuchao; Zhang, Jun; Song, Weiguo; Shi, Chang'an; Zhang, Ruifang

    2018-03-01

    The stepping behavior of pedestrians with different age compositions in single-file experiment is investigated in this paper. The relation between step length, step width and stepping time are analyzed by using the step measurement method based on the calculation of curvature of the trajectory. The relations of velocity-step width, velocity-step length and velocity-stepping time for different age groups are discussed and compared with previous studies. Finally effects of pedestrian gender and height on stepping laws and fundamental diagrams are analyzed. The study is helpful for understanding pedestrian dynamics of movement. Meanwhile, it offers experimental data to develop a microscopic model of pedestrian movement by considering stepping behavior.

  16. Epitaxial rare-earth superlattices and films

    International Nuclear Information System (INIS)

    Salamon, M.B.; Beach, R.S.; Flynn, C.P.; Matheny, A.; Tsui, F.; Rhyne, J.J.

    1992-01-01

    This paper reports on epitaxial growth of rare-earth superlattices which is demonstrated to have opened important new areas of research on magnetic materials. The propagation magnetic order through non-magnetic elements, including its range and anisotropy, has been studied. The importance of magnetostriction in determining the phase diagram is demonstrated by the changes induced by epitaxial clamping. The cyrstallinity of epitaxial superlattices provides the opportunity to study interfacial magnetism by conventional x-ray and neutron scattering methods

  17. Phloem loading in two Scrophulariaceae species. What can drive symplastic flow via plasmodesmata?

    Science.gov (United States)

    Voitsekhovskaja, Olga V; Koroleva, Olga A; Batashev, Denis R; Knop, Christian; Tomos, A Deri; Gamalei, Yuri V; Heldt, Hans-Walter; Lohaus, Gertrud

    2006-01-01

    To determine the driving forces for symplastic sugar flux between mesophyll and phloem, gradients of sugar concentrations and osmotic pressure were studied in leaf tissues of two Scrophulariaceae species, Alonsoa meridionalis and Asarina barclaiana. A. meridionalis has a typical symplastic configuration of minor-vein phloem, i.e. intermediary companion cells with highly developed plasmodesmal connections to bundle-sheath cells. In A. barclaiana, two types of companion cells, modified intermediary cells and transfer cells, were found in minor-vein phloem, giving this species the potential to have a complex phloem-loading mode. We identified all phloem-transported carbohydrates in both species and analyzed the levels of carbohydrates in chloroplasts, vacuoles, and cytoplasm of mesophyll cells by nonaqueous fractionation. Osmotic pressure was measured in single epidermal and mesophyll cells and in whole leaves and compared with calculated values for phloem sap. In A. meridionalis, a 2-fold concentration gradient for sucrose between mesophyll and phloem was found. In A. barclaiana, the major transported carbohydrates, sucrose and antirrhinoside, were present in the phloem in 22- and 6-fold higher concentrations, respectively, than in the cytoplasm of mesophyll cells. The data show that diffusion of sugars along their concentration gradients is unlikely to be the major mechanism for symplastic phloem loading if this were to occur in these species. We conclude that in both A. meridionalis and A. barclaiana, apoplastic phloem loading is an indispensable mechanism and that symplastic entrance of solutes into the phloem may occur by mass flow. The conditions favoring symplastic mass flow into the phloem are discussed.

  18. Large-area selective CVD epitaxial growth of Ge on Si substrates

    NARCIS (Netherlands)

    Sammak, A.; De Boer, W.; Nanver, L.K.

    2011-01-01

    Selective epitaxial growth of crystalline Ge on Si in a standard ASM Epsilon 2000 CVD reactor is investigated for the fabrication of Ge p+n diodes. At the deposition temperature of 700?C, most of the lattice mismatch-defects are trapped within first 300nm of Ge growth and good quality single crystal

  19. Properties of Hg1-xCdxTe epitaxial films grown on (211)CdTe and (211)CdZnTe

    International Nuclear Information System (INIS)

    Di Stefano, M.C.; Gilabert, U.; Heredia, E.; Trigubo, A.B.

    2004-01-01

    Hg 1-x Cd x Te (MCT) epitaxial films have been grown employing single crystalline substrates of CdTe and Cd 0.96 Zn 0.04 Te with (211)Cd and (211)Te crystalline orientations. The Isothermal Vapor Phase Epitaxy (ISOVPE) technique without Hg overpressure has been used for the epitaxial growth. Substrates and films were characterized by optical microscopy, chemical etching and X ray diffraction (Laue technique). The electrical properties were determined by Hall effect measurements. The characterization results allowed to evaluate the crystalline quality of MCT films. (copyright 2004 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  20. Epitaxial Growth of Hetero-Ln-MOF Hierarchical Single Crystals for Domain- and Orientation-Controlled Multicolor Luminescence 3D Coding Capability.

    Science.gov (United States)

    Pan, Mei; Zhu, Yi-Xuan; Wu, Kai; Chen, Ling; Hou, Ya-Jun; Yin, Shao-Yun; Wang, Hai-Ping; Fan, Ya-Nan; Su, Cheng-Yong

    2017-11-13

    Core-shell or striped heteroatomic lanthanide metal-organic framework hierarchical single crystals were obtained by liquid-phase anisotropic epitaxial growth, maintaining identical periodic organization while simultaneously exhibiting spatially segregated structure. Different types of domain and orientation-controlled multicolor photophysical models are presented, which show either visually distinguishable or visible/near infrared (NIR) emissive colors. This provides a new bottom-up strategy toward the design of hierarchical molecular systems, offering high-throughput and multiplexed luminescence color tunability and readability. The unique capability of combining spectroscopic coding with 3D (three-dimensional) microscale spatial coding is established, providing potential applications in anti-counterfeiting, color barcoding, and other types of integrated and miniaturized optoelectronic materials and devices. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Epitaxial growth of hetero-Ln-MOF hierarchical single crystals for domain- and orientation-controlled multicolor luminescence 3D coding capability

    International Nuclear Information System (INIS)

    Pan, Mei; Zhu, Yi-Xuan; Wu, Kai; Chen, Ling; Hou, Ya-Jun; Yin, Shao-Yun; Wang, Hai-Ping; Fan, Ya-Nan; Su, Cheng-Yong

    2017-01-01

    Core-shell or striped heteroatomic lanthanide metal-organic framework hierarchical single crystals were obtained by liquid-phase anisotropic epitaxial growth, maintaining identical periodic organization while simultaneously exhibiting spatially segregated structure. Different types of domain and orientation-controlled multicolor photophysical models are presented, which show either visually distinguishable or visible/near infrared (NIR) emissive colors. This provides a new bottom-up strategy toward the design of hierarchical molecular systems, offering high-throughput and multiplexed luminescence color tunability and readability. The unique capability of combining spectroscopic coding with 3D (three-dimensional) microscale spatial coding is established, providing potential applications in anti-counterfeiting, color barcoding, and other types of integrated and miniaturized optoelectronic materials and devices. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Epitaxial growth of hetero-Ln-MOF hierarchical single crystals for domain- and orientation-controlled multicolor luminescence 3D coding capability

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Mei; Zhu, Yi-Xuan; Wu, Kai; Chen, Ling; Hou, Ya-Jun; Yin, Shao-Yun; Wang, Hai-Ping; Fan, Ya-Nan [MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou (China); Su, Cheng-Yong [MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou (China); State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou (China)

    2017-11-13

    Core-shell or striped heteroatomic lanthanide metal-organic framework hierarchical single crystals were obtained by liquid-phase anisotropic epitaxial growth, maintaining identical periodic organization while simultaneously exhibiting spatially segregated structure. Different types of domain and orientation-controlled multicolor photophysical models are presented, which show either visually distinguishable or visible/near infrared (NIR) emissive colors. This provides a new bottom-up strategy toward the design of hierarchical molecular systems, offering high-throughput and multiplexed luminescence color tunability and readability. The unique capability of combining spectroscopic coding with 3D (three-dimensional) microscale spatial coding is established, providing potential applications in anti-counterfeiting, color barcoding, and other types of integrated and miniaturized optoelectronic materials and devices. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Growth of InN on 6H-SiC by plasma assisted molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Brown, April S.; Kim, Tong-Ho; Choi, Soojeong; Wu, Pae; Morse, Michael [Department of Electrical and Computer Engineering, Duke University, 128 Hudson Hall, Durham, NC (United States); Losurdo, Maria; Giangregorio, Maria M.; Bruno, Giovanni [Institute of Inorganic Methodologies and of Plasmas, IMIP-CNR and INSTM UdR Bari, via Orabona, 4, 70126 Bari (Italy); Moto, Akihiro [Innovation Core SEI, Inc., 3235 Kifer Road, Santa Clara, CA 95051 (United States)

    2006-06-15

    We have investigated the growth of InN films by plasma assisted molecular beam epitaxy on the Si-face of 6H-SiC(0001). Growth is performed under In-rich conditions using a two-step process consisting of the deposition of a thin, low-temperature 350 C InN buffer layer, followed by the subsequent deposition of the InN epitaxial layer at 450 C. The effect of buffer annealing is investigated. The structural and optical evolution of the growing layer has been monitored in real time using RHEED and spectroscopic ellipsometry. Structural, morphological, electrical and optic properties are discussed. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  4. One-Step Cationic Grafting of 4-Hydroxy-TEMPO and its Application in a Hybrid Redox Flow Battery with a Crosslinked PBI Membrane.

    Science.gov (United States)

    Chang, Zhenjun; Henkensmeier, Dirk; Chen, Ruiyong

    2017-08-24

    By using a one-step epoxide ring-opening reaction between 4-hydroxy-2,2,6,6-tetramethylpiperidine 1-oxyl (4-hydroxy-TEMPO) and glycidyltrimethylammonium cation (GTMA + ), we synthesized a cation-grafted TEMPO (g + -TEMPO) and studied its electrochemical performance against a Zn 2+ /Zn anode in a hybrid redox flow battery. To conduct Cl - counter anions, a crosslinked methylated polybenzimidazole (PBI) membrane was prepared and placed between the catholyte and anolyte. Compared to 4-hydroxy-TEMPO, the positively charged g + - TEMPO exhibits enhanced reaction kinetics. Moreover, flow battery tests with g + -TEMPO show improved Coulombic, voltage, and energy efficiencies and cycling stability over 140 cycles. Crossover of active species through the membrane was not detected. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Microstructure of Co/X (X=Cu,Ag,Au) epitaxial thin films grown on Al2O3(0001) substrates

    International Nuclear Information System (INIS)

    Ohtake, Mitsuru; Akita, Yuta; Futamoto, Masaaki; Kirino, Fumiyoshi

    2007-01-01

    Epitaxial thin films of Co/X (X=Cu,Ag,Au) were prepared on Al 2 O 3 (0001) substrates at substrate temperatures of 100 and 300 degree sign C by UHV molecular beam epitaxy. A complicated microstructure was realized for the epitaxial thin films. In-situ reflection high-energy electron diffraction observation has shown that X atoms of the buffer layer segregated to the surface during Co layer deposition, and it yielded a unique epitaxial granular structure. The structure consists of small Co grains buried in the X buffer layer, where both the magnetic small Co grains and the nonmagnetic X layer are epitaxially grown on the single crystal substrate. The structure varied depending on the X element and the substrate temperature. The crystal structure of Co grains is influenced by the buffer layer material and determined to be hcp and fcc structures for the buffer layer materials of Au and Cu, respectively

  6. Epitaxial growth of a monolayer WSe2-MoS2 lateral p-n junction with an atomically sharp interface

    KAUST Repository

    Li, Ming Yang

    2015-07-30

    Two-dimensional transition metal dichalcogenides (TMDCs) such as molybdenum sulfide MoS2 and tungsten sulfide WSe2 have potential applications in electronics because they exhibit high on-off current ratios and distinctive electro-optical properties. Spatially connected TMDC lateral heterojunctions are key components for constructing monolayer p-n rectifying diodes, light-emitting diodes, photovoltaic devices, and bipolar junction transistors. However, such structures are not readily prepared via the layer-stacking techniques, and direct growth favors the thermodynamically preferred TMDC alloys. We report the two-step epitaxial growth of lateral WSe2-MoS2 heterojunction, where the edge of WSe2 induces the epitaxial MoS2 growth despite a large lattice mismatch. The epitaxial growth process offers a controllable method to obtain lateral heterojunction with an atomically sharp interface.

  7. Control of ion content and nitrogen species using a mixed chemistry plasma for GaN grown at extremely high growth rates >9 μm/h by plasma-assisted molecular beam epitaxy

    Science.gov (United States)

    Gunning, Brendan P.; Clinton, Evan A.; Merola, Joseph J.; Doolittle, W. Alan; Bresnahan, Rich C.

    2015-10-01

    Utilizing a modified nitrogen plasma source, plasma assisted molecular beam epitaxy (PAMBE) has been used to achieve higher growth rates in GaN. A higher conductance aperture plate, combined with higher nitrogen flow and added pumping capacity, resulted in dramatically increased growth rates up to 8.4 μm/h using 34 sccm of N2 while still maintaining acceptably low operating pressure. It was further discovered that argon could be added to the plasma gas to enhance growth rates up to 9.8 μm/h, which was achieved using 20 sccm of N2 and 7.7 sccm Ar flows at 600 W radio frequency power, for which the standard deviation of thickness was just 2% over a full 2 in. diameter wafer. A remote Langmuir style probe employing the flux gauge was used to indirectly measure the relative ion content in the plasma. The use of argon dilution at low plasma pressures resulted in a dramatic reduction of the plasma ion current by more than half, while high plasma pressures suppressed ion content regardless of plasma gas chemistry. Moreover, different trends are apparent for the molecular and atomic nitrogen species generated by varying pressure and nitrogen composition in the plasma. Argon dilution resulted in nearly an order of magnitude achievable growth rate range from 1 μm/h to nearly 10 μm/h. Even for films grown at more than 6 μm/h, the surface morphology remained smooth showing clear atomic steps with root mean square roughness less than 1 nm. Due to the low vapor pressure of Si, Ge was explored as an alternative n-type dopant for high growth rate applications. Electron concentrations from 2.2 × 1016 to 3.8 × 1019 cm-3 were achieved in GaN using Ge doping, and unintentionally doped GaN films exhibited low background electron concentrations of just 1-2 × 1015 cm-3. The highest growth rates resulted in macroscopic surface features due to Ga cell spitting, which is an engineering challenge still to be addressed. Nonetheless, the dramatically enhanced growth rates demonstrate

  8. Gallium arsenide single crystal solar cell structure and method of making

    Science.gov (United States)

    Stirn, Richard J. (Inventor)

    1983-01-01

    A production method and structure for a thin-film GaAs crystal for a solar cell on a single-crystal silicon substrate (10) comprising the steps of growing a single-crystal interlayer (12) of material having a closer match in lattice and thermal expansion with single-crystal GaAs than the single-crystal silicon of the substrate, and epitaxially growing a single-crystal film (14) on the interlayer. The material of the interlayer may be germanium or graded germanium-silicon alloy, with low germanium content at the silicon substrate interface, and high germanium content at the upper surface. The surface of the interface layer (12) is annealed for recrystallization by a pulsed beam of energy (laser or electron) prior to growing the interlayer. The solar cell structure may be grown as a single-crystal n.sup.+ /p shallow homojunction film or as a p/n or n/p junction film. A Ga(Al)AS heteroface film may be grown over the GaAs film.

  9. The Transitional Backward-Facing Step Flow in a Water Channel with Variable Expansion Geometry

    Czech Academy of Sciences Publication Activity Database

    Tihon, Jaroslav; Pěnkavová, Věra; Havlica, Jaromír; Šimčík, Miroslav

    2012-01-01

    Roč. 40, JUL (2012), s. 112-125 ISSN 0894-1777 R&D Projects: GA ČR GA104/07/1110; GA ČR GAP101/11/0806 Institutional research plan: CEZ:AV0Z40720504 Keywords : backward-facing step flow * wall shear stress * flow forcing Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.595, year: 2012

  10. Lateral epitaxial overgrowth of GaN on a patterned GaN-on-silicon substrate by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Wang, Yongjin; Hu, Fangren; Hane, Kazuhiro

    2011-01-01

    We report here the lateral epitaxial overgrowth (LEO) of GaN on a patterned GaN-on-silicon substrate by molecular beam epitaxy (MBE) growth with radio frequency nitrogen plasma as a gas source. Two kinds of GaN nanostructures are defined by electron beam lithography and realized on a GaN substrate by fast atom beam etching. The epitaxial growth of GaN by MBE is performed on the prepared GaN template, and the selective growth of GaN takes place with the assistance of GaN nanostructures. The LEO of GaN produces novel GaN epitaxial structures which are dependent on the shape and the size of the processed GaN nanostructures. Periodic GaN hexagonal pyramids are generated inside the air holes, and GaN epitaxial strips with triangular section are formed in the grating region. This work provides a promising way for producing novel GaN-based devices by the LEO of GaN using the MBE technique

  11. Quantized dissipation and random telegraph voltage noise in epitaxial BiSrCaCuO thin films

    International Nuclear Information System (INIS)

    Jung, G.; Savo, B.; Vecchione, A.

    1993-01-01

    In this paper we report on the observation of correlated multiple-voltage RTN switching in high quality epitaxial BiSrCaCuO thin film. We ascribe the correlated noise to the quantization of flux flow dissipation in the film. (orig.)

  12. Relationship of cerebral blood flow to aortic-to-pulmonary collateral/shunt flow in single ventricles

    Science.gov (United States)

    Fogel, Mark A; Li, Christine; Wilson, Felice; Pawlowski, Tom; Nicolson, Susan C; Montenegro, Lisa M; Berenstein, Laura Diaz; Spray, Thomas L; Gaynor, J William; Fuller, Stephanie; Keller, Marc S; Harris, Matthew A; Whitehead, Kevin K; Clancy, Robert; Elci, Okan; Bethel, Jim; Vossough, Arastoo; Licht, Daniel J

    2016-01-01

    Objective Patients with single ventricle can develop aortic-to-pulmonary collaterals (APCs). Along with systemic-to-pulmonary artery shunts, these structures represent a direct pathway from systemic to pulmonary circulations, and may limit cerebral blood flow (CBF). This study investigated the relationship between CBF and APC flow on room air and in hypercarbia, which increases CBF in patients with single ventricle. Methods 106 consecutive patients with single ventricle underwent 118 cardiac magnetic resonance (CMR) scans in this cross-sectional study; 34 prior to bidirectional Glenn (BDG) (0.50±0.30 years old), 50 prior to Fontan (3.19±1.03 years old) and 34 3–9 months after Fontan (3.98±1.39 years old). Velocity mapping measured flows in the aorta, cavae and jugular veins. Analysis of variance (ANOVA) and multiple linear regression were used. Significance was p<0.05. Results A strong inverse correlation was noted between CBF and APC/shunt both on room air and with hypercarbia whether CBF was indexed to aortic flow or body surface area, independent of age, cardiopulmonary bypass time, Po2 and Pco2 (R=−0.67–−0.70 for all patients on room air, p<0.01 and R=−0.49–−0.90 in hypercarbia, p<0.01). Correlations were not different between surgical stages. CBF was lower, and APCs/shunt flow was higher prior to BDG than in other stages. Conclusions There is a strong inverse relationship between CBF and APC/shunt flow in patients with single ventricle throughout surgical reconstruction on room air and in hypercarbia independent of other factors. We speculate that APC/shunt flow may have a negative impact on cerebral development and neurodevelopmental outcome. Interventions on APC may modify CBF, holding out the prospect for improving neurodevelopmental trajectory. Trial Registration Number NCT02135081. PMID:26048877

  13. Photoenhanced atomic layer epitaxy. Hikari reiki genshiso epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Mashita, M.; Kawakyu, Y. (Toshiba corp., Tokyo (Japan))

    1991-10-01

    The growth temperature range was greatly expanded of atomic layer epitaxy (ALE) expected as the growth process of ultra-thin stacks. Ga layers and As layers were formed one after the other on a GaAs substrate in the atmosphere of trimethylgallium (TMG) or AsH{sub 2} supplied alternately, by KrF excimer laser irradiation normal to the substrate. As a result, the growth temperature range was 460-540{degree}C nearly 10 times that of 500 {plus minus} several degrees centigrade in conventional thermal growth method. Based on the experimental result where light absorption of source molecules adsorbed on a substrate surface was larger than that under gaseous phase condition, new adsorbed layer enhancement model was proposed to explain above irradiation effect verifying it by experiments. As this photoenhancement technique is applied to other materials, possible fabrication of new crystal structures as a super lattice with ultra-thin stacks of single atomic layers is expected because of a larger freedom in material combination for hetero-ALE. 11 refs., 7 figs.

  14. Single-Molecule Flow Platform for the Quantification of Biomolecules Attached to Single Nanoparticles.

    Science.gov (United States)

    Jung, Seung-Ryoung; Han, Rui; Sun, Wei; Jiang, Yifei; Fujimoto, Bryant S; Yu, Jiangbo; Kuo, Chun-Ting; Rong, Yu; Zhou, Xing-Hua; Chiu, Daniel T

    2018-05-15

    We describe here a flow platform for quantifying the number of biomolecules on individual fluorescent nanoparticles. The platform combines line-confocal fluorescence detection with near nanoscale channels (1-2 μm in width and height) to achieve high single-molecule detection sensitivity and throughput. The number of biomolecules present on each nanoparticle was determined by deconvolving the fluorescence intensity distribution of single-nanoparticle-biomolecule complexes with the intensity distribution of single biomolecules. We demonstrate this approach by quantifying the number of streptavidins on individual semiconducting polymer dots (Pdots); streptavidin was rendered fluorescent using biotin-Alexa647. This flow platform has high-throughput (hundreds to thousands of nanoparticles detected per second) and requires minute amounts of sample (∼5 μL at a dilute concentration of 10 pM). This measurement method is an additional tool for characterizing synthetic or biological nanoparticles.

  15. Magnetic state controllable critical temperature in epitaxial Ho/Nb bilayers

    Directory of Open Access Journals (Sweden)

    Yuanzhou Gu

    2014-04-01

    Full Text Available We study the magnetic properties of Ho thin films with different crystallinity (either epitaxial or non-epitaxial and investigate their proximity effects with Nb thin films. Magnetic measurements show that epitaxial Ho has large anisotropy in two different crystal directions in contrast to non-epitaxial Ho. Transport measurements show that the superconducting transition temperature (Tc of Nb thin films can be significantly suppressed at zero field by epitaxial Ho compared with non-epitaxial Ho. We also demonstrate a direct control over Tc by changing the magnetic states of the epitaxial Ho layer, and attribute the strong proximity effects to exchange interaction.

  16. Impact of Bee Species and Plant Density on Alfalfa Pollination and Potential for Gene Flow

    Directory of Open Access Journals (Sweden)

    Johanne Brunet

    2010-01-01

    Full Text Available In outcrossing crops like alfalfa, various bee species can contribute to pollination and gene flow in seed production fields. With the increasing use of transgenic crops, it becomes important to determine the role of these distinct pollinators on alfalfa pollination and gene flow. The current study examines the relative contribution of honeybees, three bumble bee species, and three solitary bee species to pollination and gene flow in alfalfa. Two wild solitary bee species and one wild bumble bee species were best at tripping flowers, while the two managed pollinators commonly used in alfalfa seed production, honeybees and leaf cutting bees, had the lowest tripping rate. Honeybees had the greatest potential for gene flow and risk of transgene escape relative to the other pollinators. For honeybees, gene flow and risk of transgene escape were not affected by plant density although for the three bumble bee species gene flow and risk of transgene escape were the greatest in high-density fields.

  17. Structural Studies of the Initial Stages of Fluoride Epitaxy on Silicon and GERMANIUM(111)

    Science.gov (United States)

    Denlinger, Jonathan David

    The epitaxial growth of ionic insulators on semiconductor substrates is of interest due to fundamental issues of interface bonding and structure as well as to potential technological applications. The initial stages of Group IIa fluoride insulator growth on (111) Si and Ge substrates by molecular beam epitaxy are studied with the in situ combination of X-ray Photoelectron Spectroscopy (XPS) and Diffraction (XPD). While XPS probes the electronic structure, XPD reveals atomic structure. In addition, low energy electron diffraction (LEED) is used to probe surface order and a separate study using X-ray standing wave (XSW) fluorescence reveals interface cation bonding sites. Following the formation of a chemically-reacted interface layer in CaF_2 epitaxy on Si(111), the morphology of the subsequent bulk layers is found to be dependent on substrate temperature and incident flux rate. At temperatures >=600 ^circC a transition from three -dimensional island formation at low flux to laminar growth at higher flux is observed with bulk- and interface-resolved XPD. At lower substrate temperatures, laminar growth is observed at all fluxes, but with different bulk nucleation behavior due to changes in the stoichiometry of the interface layer. This new observation of kinetic effects on the initial nucleation in CaF_2 epitaxy has important ramifications for the formation of thicker heterostructures for scientific or device applications. XPS and XPD are also used to identify for the first time, surface core-level species of Ca and F, and a secondary interface-shifted F Auger component arising from a second-layer site directly above interface-layer Ca atoms. The effects of lattice mismatch (from -3% to 8%) are investigated with various growths of Ca_{rm x}Sr _{rm 1-x}F_2 on Si and Ge (111) substrates. Triangulation of (111) and (220) XSW indicates a predominance of 3-fold hollow Sr bonding sites coexisting with 4-fold top sites for monolayers of SrF_2 on Si. XSW and LEED reveal a

  18. Numerical simulation of 3D backward facing step flows at various Reynolds numbers

    Directory of Open Access Journals (Sweden)

    Louda Petr

    2015-01-01

    Full Text Available The work deals with the numerical simulation of 3D turbulent flow over backward facing step in a narrow channel. The mathematical model is based on the RANS equations with an explicit algebraic Reynolds stress model (EARSM. The numerical method uses implicit finite volume upwind discretization. While the eddy viscosity models fail in predicting complex 3D flows, the EARSM model is shown to provide results which agree well with experimental PIV data. The reference experimental data provide the 3D flow field. The simulations are compared with experiment for 3 values of Reynolds number.

  19. Epitaxial growth of rhenium with sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Seongshik [National Institute of Standards and Technology, Boulder, CO 80305 (United States) and Department of Physics, University of Illinois, Urbana, IL 61801 (United States)]. E-mail: soh@boulder.nist.gov; Hite, Dustin A. [National Institute of Standards and Technology, Boulder, CO 80305 (United States); Cicak, K. [National Institute of Standards and Technology, Boulder, CO 80305 (United States); Osborn, Kevin D. [National Institute of Standards and Technology, Boulder, CO 80305 (United States); Simmonds, Raymond W. [National Institute of Standards and Technology, Boulder, CO 80305 (United States); McDermott, Robert [University of California, Santa Barbara, CA 93106 (United States); Cooper, Ken B. [University of California, Santa Barbara, CA 93106 (United States); Steffen, Matthias [University of California, Santa Barbara, CA 93106 (United States); Martinis, John M. [University of California, Santa Barbara, CA 93106 (United States); Pappas, David P. [National Institute of Standards and Technology, Boulder, CO 80305 (United States)

    2006-02-21

    We have grown epitaxial Rhenium (Re) (0001) films on {alpha}-Al{sub 2}O{sub 3} (0001) substrates using sputter deposition in an ultra high vacuum system. We find that better epitaxy is achieved with DC rather than with RF sputtering. With DC sputtering, epitaxy is obtained with the substrate temperatures above 700 deg. C and deposition rates below 0.1 nm/s. The epitaxial Re films are typically composed of terraced hexagonal islands with screw dislocations, and island size gets larger with high temperature post-deposition annealing. The growth starts in a three dimensional mode but transforms into two dimensional mode as the film gets thicker. With a thin ({approx}2 nm) seed layer deposited at room temperature and annealed at a high temperature, the initial three dimensional growth can be suppressed. This results in larger islands when a thick film is grown at 850 deg. C on the seed layer. We also find that when a room temperature deposited Re film is annealed to higher temperatures, epitaxial features start to show up above {approx}600 deg. C, but the film tends to be disordered.

  20. Raman measurements of epitaxial YBa2Cu3O7-δ films

    International Nuclear Information System (INIS)

    Burns, G.; Dacol, F.H.; Gield, C.A.; Gupta, A.; Holtzberg, F.; Koren, G.; Laibowitz, R.; McGuire, T.R.; Segmuller, A.P.; Worthington, T.K.

    1990-01-01

    The authors report Raman measurements on good (high J c ) epitaxial YBa 2 Cu 3 O -δ (Y123) films (δ ∼ 0). The results are compared to those from oriented Y123 single crystals. The comparisons are made for superconducting δ ∼ 0 and semiconducting δ ∼ 1 materials

  1. Single orientation graphene synthesized on iridium thin films grown by molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Dangwal Pandey, A., E-mail: arti.pandey@desy.de; Grånäs, E.; Shayduk, R.; Noei, H.; Vonk, V. [Deutsches Elektronen-Synchrotron (DESY), D-22607 Hamburg (Germany); Krausert, K.; Franz, D.; Müller, P.; Keller, T. F.; Stierle, A., E-mail: andreas.stierle@desy.de [Deutsches Elektronen-Synchrotron (DESY), D-22607 Hamburg (Germany); Fachbereich Physik, Universität Hamburg, D-22607 Hamburg (Germany)

    2016-08-21

    Heteroepitaxial iridium thin films were deposited on (0001) sapphire substrates by means of molecular beam epitaxy, and subsequently, one monolayer of graphene was synthesized by chemical vapor deposition. The influence of the growth parameters on the quality of the Ir films, as well as of graphene, was investigated systematically by means of low energy electron diffraction, x-ray reflectivity, x-ray diffraction, Auger electron spectroscopy, scanning electron microscopy, and atomic force microscopy. Our study reveals (111) oriented iridium films with high crystalline quality and extremely low surface roughness, on which the formation of large-area epitaxial graphene is achieved. The presence of defects, like dislocations, twins, and 30° rotated domains in the iridium films is also discussed. The coverage of graphene was found to be influenced by the presence of 30° rotated domains in the Ir films. Low iridium deposition rates suppress these rotated domains and an almost complete coverage of graphene was obtained. This synthesis route yields inexpensive, air-stable, and large-area graphene with a well-defined orientation, making it accessible to a wider community of researchers for numerous experiments or applications, including those which use destructive analysis techniques or irreversible processes. Moreover, this approach can be used to tune the structural quality of graphene, allowing a systematic study of the influence of defects in various processes like intercalation below graphene.

  2. Numerical Simulation of single-stage axial fan operation under dusty flow conditions

    Science.gov (United States)

    Minkov, L. L.; Pikushchak, E. V.

    2017-11-01

    Assessment of the aerodynamic efficiency of the single-stage axial flow fan under dusty flow conditions based on a numerical simulation using the computational package Ansys-Fluent is proposed. The influence of dust volume fraction on the dependences of the air volume flow rate and the pressure drop on the rotational speed of rotor is demonstrated. Matching functions for formulas describing a pressure drop and volume flow rate in dependence on the rotor speed and dust content are obtained by numerical simulation for the single-stage axial fan. It is shown that the aerodynamic efficiency of the single-stage axial flow fan decreases exponentially with increasing volume content of dust in the air.

  3. Gene flow among wild and domesticated almond species: insights from chloroplast and nuclear markers

    Science.gov (United States)

    Delplancke, Malou; Alvarez, Nadir; Espíndola, Anahí; Joly, Hélène; Benoit, Laure; Brouck, Elise; Arrigo, Nils

    2012-01-01

    Hybridization has played a central role in the evolutionary history of domesticated plants. Notably, several breeding programs relying on gene introgression from the wild compartment have been performed in fruit tree species within the genus Prunus but few studies investigated spontaneous gene flow among wild and domesticated Prunus species. Consequently, a comprehensive understanding of genetic relationships and levels of gene flow between domesticated and wild Prunus species is needed. Combining nuclear and chloroplastic microsatellites, we investigated the gene flow and hybridization among two key almond tree species, the cultivated Prunus dulcis and one of the most widespread wild relative Prunus orientalis in the Fertile Crescent. We detected high genetic diversity levels in both species along with substantial and symmetric gene flow between the domesticated P. dulcis and the wild P. orientalis. These results were discussed in light of the cultivated species diversity, by outlining the frequent spontaneous genetic contributions of wild species to the domesticated compartment. In addition, crop-to-wild gene flow suggests that ad hoc transgene containment strategies would be required if genetically modified cultivars were introduced in the northwestern Mediterranean. PMID:25568053

  4. Hydrogen assisted growth of high quality epitaxial graphene on the C-face of 4H-SiC

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Tuocheng; Jia, Zhenzhao; Yan, Baoming; Yu, Dapeng; Wu, Xiaosong, E-mail: xswu@pku.edu.cn [State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, Peking University, Beijing 100871 (China); Collaborative Innovation Center of Quantum Matter, Beijing 100871 (China)

    2015-01-05

    We demonstrate hydrogen assisted growth of high quality epitaxial graphene on the C-face of 4H-SiC. Compared with the conventional thermal decomposition technique, the size of the growth domain by this method is substantially increased and the thickness variation is reduced. Based on the morphology of epitaxial graphene, the role of hydrogen is revealed. It is found that hydrogen acts as a carbon etchant. It suppresses the defect formation and nucleation of graphene. It also improves the kinetics of carbon atoms via hydrocarbon species. These effects lead to increase of the domain size and the structure quality. The consequent capping effect results in smooth surface morphology and suppression of multilayer growth. Our method provides a viable route to fine tune the growth kinetics of epitaxial graphene on SiC.

  5. Out of the picture: a study of family drawings by children from step-, single-parent, and non-step families.

    Science.gov (United States)

    Dunn, Judy; O'Connor, Thomas G; Levy, Irit

    2002-12-01

    Investigated the family drawings of 180 children ages 5 to 7 years in various family settings, including stepfather, single-parent, complex stepfamilies, and 2-parent control families. The relations of family type and biological relatedness to omission of family members and grouping of parents were examined. Children from step- and single-parent families were more likely to exclude family members than children from "control" non-step families, and exclusion was predicted from biological relatedness. Children who were biologically related to both resident parents were also more likely to group their parents together. Omission of family members was found to be associated with children's adjustment (specifically more externalizing and internalizing behavior) as reported by teachers and parents. The results indicate that biological relatedness is a salient aspect of very young children's representations of their families. The association between adjustment and exclusion of family members and grouping of parents indicates that family drawings may be useful research and clinical tools, when used in combination with other methods of assessment.

  6. On the impacts of coarse-scale models of realistic roughness on a forward-facing step turbulent flow

    International Nuclear Information System (INIS)

    Wu, Yanhua; Ren, Huiying

    2013-01-01

    Highlights: ► Discrete wavelet transform was used to produce coarse-scale models of roughness. ► PIV were performed in a forward-facing step flow with roughness of different scales. ► Impacts of roughness scales on various turbulence statistics were studied. -- Abstract: The present work explores the impacts of the coarse-scale models of realistic roughness on the turbulent boundary layers over forward-facing steps. The surface topographies of different scale resolutions were obtained from a novel multi-resolution analysis using discrete wavelet transform. PIV measurements are performed in the streamwise–wall-normal (x–y) planes at two different spanwise positions in turbulent boundary layers at Re h = 3450 and δ/h = 8, where h is the mean step height and δ is the incoming boundary layer thickness. It was observed that large-scale but low-amplitude roughness scales had small effects on the forward-facing step turbulent flow. For the higher-resolution model of the roughness, the turbulence characteristics within 2h downstream of the steps are observed to be distinct from those over the original realistic rough step at a measurement position where the roughness profile possesses a positive slope immediately after the step’s front. On the other hand, much smaller differences exist in the flow characteristics at the other measurement position whose roughness profile possesses a negative slope following the step’s front

  7. Flow-based market coupling. Stepping stone towards nodal pricing?

    International Nuclear Information System (INIS)

    Van der Welle, A.J.

    2012-07-01

    For achieving one internal energy market for electricity by 2014, market coupling is deployed to integrate national markets into regional markets and ultimately one European electricity market. The extent to which markets can be coupled depends on the available transmission capacities between countries. Since interconnections are congested from time to time, congestion management methods are deployed to divide the scarce available transmission capacities over market participants. For further optimization of the use of available transmission capacities while maintaining current security of supply levels, flow-based market coupling (FBMC) will be implemented in the CWE region by 2013. Although this is an important step forward, important hurdles for efficient congestion management remain. Hence, flow based market coupling is compared to nodal pricing, which is often considered as the most optimal solution from theoretical perspective. In the context of decarbonised power systems it is concluded that advantages of nodal pricing are likely to exceed its disadvantages, warranting further development of FBMC in the direction of nodal pricing.

  8. Dissolvable fluidic time delays for programming multi-step assays in instrument-free paper diagnostics.

    Science.gov (United States)

    Lutz, Barry; Liang, Tinny; Fu, Elain; Ramachandran, Sujatha; Kauffman, Peter; Yager, Paul

    2013-07-21

    Lateral flow tests (LFTs) are an ingenious format for rapid and easy-to-use diagnostics, but they are fundamentally limited to assay chemistries that can be reduced to a single chemical step. In contrast, most laboratory diagnostic assays rely on multiple timed steps carried out by a human or a machine. Here, we use dissolvable sugar applied to paper to create programmable flow delays and present a paper network topology that uses these time delays to program automated multi-step fluidic protocols. Solutions of sucrose at different concentrations (10-70% of saturation) were added to paper strips and dried to create fluidic time delays spanning minutes to nearly an hour. A simple folding card format employing sugar delays was shown to automate a four-step fluidic process initiated by a single user activation step (folding the card); this device was used to perform a signal-amplified sandwich immunoassay for a diagnostic biomarker for malaria. The cards are capable of automating multi-step assay protocols normally used in laboratories, but in a rapid, low-cost, and easy-to-use format.

  9. Position-controlled epitaxial III-V nanowires on silicon

    NARCIS (Netherlands)

    Roest, A.L.; Verheijen, M.A.; Wunnicke, O.; Serafin, S.N.; Wondergem, H.J.; Bakkers, E.P.A.M.

    2006-01-01

    We show the epitaxial integration of III-V semiconductor nanowires with silicon technology. The wires are grown by the VLS mechanism with laser ablation as well as metal-organic vapour phase epitaxy. The hetero-epitaxial growth of the III-V nanowires on silicon was confirmed with x-ray diffraction

  10. A two-step method for rapid characterization of electroosmotic flows in capillary electrophoresis.

    Science.gov (United States)

    Zhang, Wenjing; He, Muyi; Yuan, Tao; Xu, Wei

    2017-12-01

    The measurement of electroosmotic flow (EOF) is important in a capillary electrophoresis (CE) experiment in terms of performance optimization and stability improvement. Although several methods exist, there are demanding needs to accurately characterize ultra-low electroosmotic flow rates (EOF rates), such as in coated capillaries used in protein separations. In this work, a new method, called the two-step method, was developed to accurately and rapidly measure EOF rates in a capillary, especially for measuring the ultra-low EOF rates in coated capillaries. In this two-step method, the EOF rates were calculated by measuring the migration time difference of a neutral marker in two consecutive experiments, in which a pressure driven was introduced to accelerate the migration and the DC voltage was reversed to switch the EOF direction. Uncoated capillaries were first characterized by both this two-step method and a conventional method to confirm the validity of this new method. Then this new method was applied in the study of coated capillaries. Results show that this new method is not only fast in speed, but also better in accuracy. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Epitaxial growth mechanisms of graphene and effects of substrates

    OpenAIRE

    Özçelik, V. Ongun; Cahangirov, S.; Ciraci, S.

    2012-01-01

    The growth process of single layer graphene with and without substrate is investigated using ab initio, finite temperature molecular dynamic calculations within density functional theory. An understanding of the epitaxial graphene growth mechanisms in the atomic level is provided by exploring the transient stages which occur at the growing edges of graphene. These stages are formation and collapse of large carbon rings together with the formation and healing of Stone-Wales like pentagon-hepta...

  12. Mechanisms of temporal variation in single-nephron blood flow in rats

    DEFF Research Database (Denmark)

    Yip, K P; Holstein-Rathlou, N H; Marsh, D J

    1993-01-01

    Modified laser-Doppler velocimetry was used to determine the number of different mechanisms regulating single-nephron blood flow. Two oscillations were identified in star vessel blood flow, one at 20-50 mHz and another at 100-200 mHz. Tubuloglomerular feedback (TGF) mediates the slower oscillation......, and the faster one is probably myogenic in origin. Acute hypertension increased autospectral power in the 20-50 mHz and 100-200 mHz frequency bands to 282 +/- 50 and 248 +/- 64%, respectively, of control even though mean single-nephron blood flow was autoregulated. Mean blood flow increased 24.6 +/- 6.1% when...... components in efferent arteriole blood flow....

  13. Epitaxial growth of silicon for layer transfer

    Science.gov (United States)

    Teplin, Charles; Branz, Howard M

    2015-03-24

    Methods of preparing a thin crystalline silicon film for transfer and devices utilizing a transferred crystalline silicon film are disclosed. The methods include preparing a silicon growth substrate which has an interface defining substance associated with an exterior surface. The methods further include depositing an epitaxial layer of silicon on the silicon growth substrate at the surface and separating the epitaxial layer from the substrate substantially along the plane or other surface defined by the interface defining substance. The epitaxial layer may be utilized as a thin film of crystalline silicon in any type of semiconductor device which requires a crystalline silicon layer. In use, the epitaxial transfer layer may be associated with a secondary substrate.

  14. Interspecific gene flow and maintenance of species integrity in oaks

    Directory of Open Access Journals (Sweden)

    Oliver Gailing

    2014-07-01

    Full Text Available Oak species show a wide variation in morphological and physiological characters, and species boundaries between closely related species are often not clear-cut. Still, despite frequent interspecific gene flow, oaks maintain distinct morphological and physiological adaptations. In sympatric stands, spatial distribution of species with different ecological requirements is not random but constrained by soil and other microenvironmental factors. Pre-zygotic isolation (e.g. cross incompatibilities, asynchrony in flowering, pollen competition and post-zygotic isolation (divergent selection contribute to the maintenance of species integrity in sympatric oak stands. The antagonistic effects of interspecific gene flow and divergent selection are reflected in the low genetic differentiation between hybridizing oak species at most genomic regions interspersed by regions with signatures of divergent selection (outlier regions. In the near future, the availability of high-density genetic linkage maps anchored to scaffolds of a sequenced Q. robur genome will allow to characterize the underlying genes in these outlier regions and their putative role in reproductive isolation between species. Reciprocal transplant experiments of seedlings between parental environments can be used to characterize selection on outlier genes. High transferability of gene-based markers will enable comparative outlier screens in different oak species.

  15. A novel multimodal chromatography based single step purification process for efficient manufacturing of an E. coli based biotherapeutic protein product.

    Science.gov (United States)

    Bhambure, Rahul; Gupta, Darpan; Rathore, Anurag S

    2013-11-01

    Methionine oxidized, reduced and fMet forms of a native recombinant protein product are often the critical product variants which are associated with proteins expressed as bacterial inclusion bodies in E. coli. Such product variants differ from native protein in their structural and functional aspects, and may lead to loss of biological activity and immunogenic response in patients. This investigation focuses on evaluation of multimodal chromatography for selective removal of these product variants using recombinant human granulocyte colony stimulating factor (GCSF) as the model protein. Unique selectivity in separation of closely related product variants was obtained using combined pH and salt based elution gradients in hydrophobic charge induction chromatography. Simultaneous removal of process related impurities was also achieved in flow-through leading to single step purification process for the GCSF. Results indicate that the product recovery of up to 90.0% can be obtained with purity levels of greater than 99.0%. Binding the target protein at pHproduct variants using the combined pH and salt based elution gradient and removal of the host cell impurities in flow-through are the key novel features of the developed multimodal chromatographic purification step. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Enhancement of L10 ordering with the c-axis perpendicular to the substrate in FePt alloy film by using an epitaxial cap-layer

    Directory of Open Access Journals (Sweden)

    Mitsuru Ohtake

    2017-05-01

    Full Text Available FePt alloy thin films with cap-layers of MgO or C are prepared on MgO(001 single-crystal substrates by using a two-step method consisting of low-temperature deposition at 200 °C followed by high-temperature annealing at 600 °C. The FePt film thickness is fixed at 10 nm, whereas the cap-layer thickness is varied from 1 to 10 nm. The influences of cap-layer material and cap-layer thickness on the variant structure and the L10 ordering are investigated. Single-crystal FePt(001 films with disordered fcc structure (A1 grow epitaxially on the substrates at 200 °C. Single-crystal MgO(001 cap-layers grow epitaxially on the FePt films, whereas the structure of C cap-layers is amorphous. The phase transformation from A1 to L10 occurs when the films are annealed at 600 °C. The FePt films with MgO cap-layers thicker than 2 nm consist of L10(001 variant with the c-axis perpendicular to the substrate surface, whereas those with C cap-layers involve small volumes of L10(100 and (010 variants with the c-axis lying in the film plane. The in-plane and the out-of-plane lattices are respectively more expanded and contracted in the continuous-lattice MgO/FePt/MgO structure due to accommodations of misfits of FePt film with respect to not only the MgO substrate but also the MgO cap-layer. The lattice deformation promotes phase transformation along the perpendicular direction and L10 ordering. The FePt films consisting of only L10(001 variant show strong perpendicular magnetic anisotropies and low in-plane coercivities. The present study shows that an introduction of epitaxial cap-layer is effective in controlling the c-axis perpendicular to the substrate surface.

  17. Two-step single slope/SAR ADC with error correction for CMOS image sensor.

    Science.gov (United States)

    Tang, Fang; Bermak, Amine; Amira, Abbes; Amor Benammar, Mohieddine; He, Debiao; Zhao, Xiaojin

    2014-01-01

    Conventional two-step ADC for CMOS image sensor requires full resolution noise performance in the first stage single slope ADC, leading to high power consumption and large chip area. This paper presents an 11-bit two-step single slope/successive approximation register (SAR) ADC scheme for CMOS image sensor applications. The first stage single slope ADC generates a 3-bit data and 1 redundant bit. The redundant bit is combined with the following 8-bit SAR ADC output code using a proposed error correction algorithm. Instead of requiring full resolution noise performance, the first stage single slope circuit of the proposed ADC can tolerate up to 3.125% quantization noise. With the proposed error correction mechanism, the power consumption and chip area of the single slope ADC are significantly reduced. The prototype ADC is fabricated using 0.18 μ m CMOS technology. The chip area of the proposed ADC is 7 μ m × 500 μ m. The measurement results show that the energy efficiency figure-of-merit (FOM) of the proposed ADC core is only 125 pJ/sample under 1.4 V power supply and the chip area efficiency is 84 k  μ m(2) · cycles/sample.

  18. Two-Step Single Slope/SAR ADC with Error Correction for CMOS Image Sensor

    Directory of Open Access Journals (Sweden)

    Fang Tang

    2014-01-01

    Full Text Available Conventional two-step ADC for CMOS image sensor requires full resolution noise performance in the first stage single slope ADC, leading to high power consumption and large chip area. This paper presents an 11-bit two-step single slope/successive approximation register (SAR ADC scheme for CMOS image sensor applications. The first stage single slope ADC generates a 3-bit data and 1 redundant bit. The redundant bit is combined with the following 8-bit SAR ADC output code using a proposed error correction algorithm. Instead of requiring full resolution noise performance, the first stage single slope circuit of the proposed ADC can tolerate up to 3.125% quantization noise. With the proposed error correction mechanism, the power consumption and chip area of the single slope ADC are significantly reduced. The prototype ADC is fabricated using 0.18 μm CMOS technology. The chip area of the proposed ADC is 7 μm × 500 μm. The measurement results show that the energy efficiency figure-of-merit (FOM of the proposed ADC core is only 125 pJ/sample under 1.4 V power supply and the chip area efficiency is 84 k μm2·cycles/sample.

  19. Simultaneous analysis of carotenoids and tocopherols in botanical species using one step solid-liquid extraction followed by high performance liquid chromatography.

    Science.gov (United States)

    Valdivielso, Izaskun; Bustamante, María Ángeles; Ruiz de Gordoa, Juan Carlos; Nájera, Ana Isabel; de Renobales, Mertxe; Barron, Luis Javier R

    2015-04-15

    Carotenoids and tocopherols from botanical species abundant in Atlantic mountain grasslands were simultaneously extracted using one-step solid-liquid phase. A single n-hexane/2-propanol extract containing both types of compounds was injected twice under two different sets of HPLC conditions to separate the tocopherols by normal-phase chromatography and carotenoids by reverse-phase mode. The method allowed reproducible quantification in plant samples of very low amounts of α-, β-, γ- and δ-tocopherols (LOD from 0.0379 to 0.0720 μg g(-1) DM) and over 15 different xanthophylls and carotene isomers. The simplified one-step extraction without saponification significantly increased the recovery of tocopherols and carotenoids, thereby enabling the determination of α-tocopherol acetate in plant samples. The two different sets of chromatographic analysis provided near baseline separation of individual compounds without interference from other lipid compounds extracted from plants, and a very sensitive and accurate detection of tocopherols and carotenoids. The detection of minor individual components in botanical species from grasslands is nowadays of high interest in searching for biomarkers for foods derived from grazing animals. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Modeling single-file diffusion with step fractional Brownian motion and a generalized fractional Langevin equation

    International Nuclear Information System (INIS)

    Lim, S C; Teo, L P

    2009-01-01

    Single-file diffusion behaves as normal diffusion at small time and as subdiffusion at large time. These properties can be described in terms of fractional Brownian motion with variable Hurst exponent or multifractional Brownian motion. We introduce a new stochastic process called Riemann–Liouville step fractional Brownian motion which can be regarded as a special case of multifractional Brownian motion with a step function type of Hurst exponent tailored for single-file diffusion. Such a step fractional Brownian motion can be obtained as a solution of the fractional Langevin equation with zero damping. Various kinds of fractional Langevin equations and their generalizations are then considered in order to decide whether their solutions provide the correct description of the long and short time behaviors of single-file diffusion. The cases where the dissipative memory kernel is a Dirac delta function, a power-law function and a combination of these functions are studied in detail. In addition to the case where the short time behavior of single-file diffusion behaves as normal diffusion, we also consider the possibility of a process that begins as ballistic motion

  1. Dispersed single-phase-step Michelson interferometer for Doppler imaging using sunlight.

    Science.gov (United States)

    Wan, Xiaoke; Ge, Jian

    2012-09-15

    A Michelson interferometer is dispersed with a fiber array-fed spectrograph, providing 59 Doppler sensing channels using sunlight in the 510-570 nm wavelength region. The interferometer operates at a single-phase-step mode, which is particularly advantageous in multiplexing and data processing compared to the phase-stepping mode of other interferometer spectrometer instruments. Spectral templates are prepared using a standard solar spectrum and simulated interferometer modulations, such that the correlation function with a measured 1D spectrum determines the Doppler shift. Doppler imaging of a rotating cylinder is demonstrated. The average Doppler sensitivity is ~12 m/s, with some channels reaching ~5 m/s.

  2. Absence of strain-mediated magnetoelectric coupling at fully epitaxial Fe/BaTiO3 interface (invited)

    International Nuclear Information System (INIS)

    Radaelli, G.; Petti, D.; Cantoni, M.; Rinaldi, C.; Bertacco, R.

    2014-01-01

    Interfacial MagnetoElectric coupling (MEC) at ferroelectric/ferromagnetic interfaces has recently emerged as a promising route to achieve electrical writing of magnetic information in spintronic devices. For the prototypical Fe/BaTiO 3 (BTO) system, various MEC mechanisms have been theoretically predicted. Experimentally, it is well established that using BTO single crystal substrates MEC is dominated by strain-mediated mechanisms. In case of ferromagnetic layers epitaxially grown onto BTO films, instead, no direct evidence for MEC has been provided, apart from the results obtained on tunneling junction sandwiching a BTO tunneling barrier. In this paper, MEC at fully epitaxial Fe/BTO interface is investigated by Magneto-Optical Kerr Effect and magnetoresistance measurements on magnetic tunnel junctions fabricated on BTO. We find no evidence for strain-mediated MEC mechanisms in epitaxial systems, likely due to clamping of BTO to the substrate. Our results indicate that pure electronic MEC is the route of choice to be explored for achieving the electrical writing of information in epitaxial ferromagnet-ferroelectric heterostructures

  3. Phloem Loading in Two Scrophulariaceae Species. What Can Drive Symplastic Flow via Plasmodesmata?1

    Science.gov (United States)

    Voitsekhovskaja, Olga V.; Koroleva, Olga A.; Batashev, Denis R.; Knop, Christian; Tomos, A. Deri; Gamalei, Yuri V.; Heldt, Hans-Walter; Lohaus, Gertrud

    2006-01-01

    To determine the driving forces for symplastic sugar flux between mesophyll and phloem, gradients of sugar concentrations and osmotic pressure were studied in leaf tissues of two Scrophulariaceae species, Alonsoa meridionalis and Asarina barclaiana. A. meridionalis has a typical symplastic configuration of minor-vein phloem, i.e. intermediary companion cells with highly developed plasmodesmal connections to bundle-sheath cells. In A. barclaiana, two types of companion cells, modified intermediary cells and transfer cells, were found in minor-vein phloem, giving this species the potential to have a complex phloem-loading mode. We identified all phloem-transported carbohydrates in both species and analyzed the levels of carbohydrates in chloroplasts, vacuoles, and cytoplasm of mesophyll cells by nonaqueous fractionation. Osmotic pressure was measured in single epidermal and mesophyll cells and in whole leaves and compared with calculated values for phloem sap. In A. meridionalis, a 2-fold concentration gradient for sucrose between mesophyll and phloem was found. In A. barclaiana, the major transported carbohydrates, sucrose and antirrhinoside, were present in the phloem in 22- and 6-fold higher concentrations, respectively, than in the cytoplasm of mesophyll cells. The data show that diffusion of sugars along their concentration gradients is unlikely to be the major mechanism for symplastic phloem loading if this were to occur in these species. We conclude that in both A. meridionalis and A. barclaiana, apoplastic phloem loading is an indispensable mechanism and that symplastic entrance of solutes into the phloem may occur by mass flow. The conditions favoring symplastic mass flow into the phloem are discussed. PMID:16377750

  4. Hydrodynamics of single- and two-phase flow in inclined rod arrays

    International Nuclear Information System (INIS)

    Todreas, N.E.

    1984-01-01

    Required inputs for thermal-hydraulic codes are constitutive relations for fluid-solid flow resistance, in single-phase flow, and interfacial momentum exchange (relative phase motion), in two-phase flow. An inclined rod array air-water experiment was constructed to study the hydrodynamics of multidimensional porous medium flow in rod arrays. Velocities, pressures, bubble distributions, and void fractions were measured in inline and rotational square rod arrays of P/d = 1.5, at 0, 30, 45, and 90 degree inclinations to the vertical flow direction. Constitutive models for single-phase flow resistance are reviewed, new comprehensive models developed, and an assessment with previously published and new data made. The principle of superimposing one-dimensional correlations proves successful for turbulent single-phase inclined flow. For bubbly two-phase yawed flow through incline rod arrays a new flow separation phenomena was observed and modeled. Bubbles of diameters significantly smaller than the rod diameter travel along the rod axis, while larger diameter bubbles move through the rod array gaps. The outcome is a flow separation not predictable with current interfacial momentum exchange models. This phenomenon was not observed in rotated square rod arrays. Current interfacial momentum exchange models were confirmed for this rod arrangement. Models for the two phase flow resistance multiplier for cross flow were reviewed and compared with data from cross and yawed flow rod arrays. Both drag and lift components of the multiplier were well predicted by the homogenous model. Other models reviewed overpredicted the data by a factor of two

  5. Optical properties of pure and Ce3+ doped gadolinium gallium garnet crystals and epitaxial layers

    International Nuclear Information System (INIS)

    Syvorotka, I.I.; Sugak, D.; Wierzbicka, A.; Wittlin, A.; Przybylińska, H.; Barzowska, J.; Barcz, A.; Berkowski, M.; Domagała, J.; Mahlik, S.; Grinberg, M.; Ma, Chong-Geng

    2015-01-01

    Results of X-ray diffraction and low temperature optical absorption measurements of cerium doped gadolinium gallium garnet single crystals and epitaxial layers are reported. In the region of intra-configurational 4f–4f transitions the spectra of the bulk crystals exhibit the signatures of several different Ce 3+ related centers. Apart from the dominant center, associated with Ce substituting gadolinium, at least three other centers are found, some of them attributed to the so-called antisite locations of rare-earth ions in the garnet host, i.e., in the Ga positions. X-ray diffraction data prove lattice expansion of bulk GGG crystals due to the presence of rare-earth antisites. The concentration of the additional Ce-related centers in epitaxial layers is much lower than in the bulk crystals. However, the Ce-doped layers incorporate a large amount of Pb from flux, which is the most probable source of nonradiative quenching of Ce luminescence, not observed in crystals grown by the Czochralski method. - Highlights: • Ce 3+ multicenters found in Gadolinium Gallium Garnet crystals and epitaxial layers. • High quality epitaxial layers of pure and Ce-doped GGG were grown. • Luminescence quenching of Ce 3+ by Pb ions from flux detected in GGG epitaxial layers. • X-ray diffraction allows measuring the amount of the rare-earth antisites in GGG

  6. Single-photon emission tomography and cerebral blood flow

    International Nuclear Information System (INIS)

    Celsis, P.; Chan, M.; Marc-Vergnes, J.P.; Sveinsdottir, E.; Goldman, T.G.; Henriksen, L.; Paulson, O.B.; Stokely, E.M.; Lassen, N.A.

    1982-01-01

    This paper illustrates the capabilities of single-photon emission tomography in imaging local cerebral blood flows in man. The results purport the conclusion that a fairly good improvement has been achieved when compared to stationary detectors and that single-photon emission tomography is a well-suited tool for studying cerebral hemodynamics, especially within the framework of clinical studies [fr

  7. Effects of phylogenetic reconstruction method on the robustness of species delimitation using single-locus data.

    Science.gov (United States)

    Tang, Cuong Q; Humphreys, Aelys M; Fontaneto, Diego; Barraclough, Timothy G; Paradis, Emmanuel

    2014-10-01

    Coalescent-based species delimitation methods combine population genetic and phylogenetic theory to provide an objective means for delineating evolutionarily significant units of diversity. The generalised mixed Yule coalescent (GMYC) and the Poisson tree process (PTP) are methods that use ultrametric (GMYC or PTP) or non-ultrametric (PTP) gene trees as input, intended for use mostly with single-locus data such as DNA barcodes. Here, we assess how robust the GMYC and PTP are to different phylogenetic reconstruction and branch smoothing methods. We reconstruct over 400 ultrametric trees using up to 30 different combinations of phylogenetic and smoothing methods and perform over 2000 separate species delimitation analyses across 16 empirical data sets. We then assess how variable diversity estimates are, in terms of richness and identity, with respect to species delimitation, phylogenetic and smoothing methods. The PTP method generally generates diversity estimates that are more robust to different phylogenetic methods. The GMYC is more sensitive, but provides consistent estimates for BEAST trees. The lower consistency of GMYC estimates is likely a result of differences among gene trees introduced by the smoothing step. Unresolved nodes (real anomalies or methodological artefacts) affect both GMYC and PTP estimates, but have a greater effect on GMYC estimates. Branch smoothing is a difficult step and perhaps an underappreciated source of bias that may be widespread among studies of diversity and diversification. Nevertheless, careful choice of phylogenetic method does produce equivalent PTP and GMYC diversity estimates. We recommend simultaneous use of the PTP model with any model-based gene tree (e.g. RAxML) and GMYC approaches with BEAST trees for obtaining species hypotheses.

  8. Comparison on genomic predictions using GBLUP models and two single-step blending methods with different relationship matrices in the Nordic Holstein population

    DEFF Research Database (Denmark)

    Gao, Hongding; Christensen, Ole Fredslund; Madsen, Per

    2012-01-01

    Background A single-step blending approach allows genomic prediction using information of genotyped and non-genotyped animals simultaneously. However, the combined relationship matrix in a single-step method may need to be adjusted because marker-based and pedigree-based relationship matrices may...... not be on the same scale. The same may apply when a GBLUP model includes both genomic breeding values and residual polygenic effects. The objective of this study was to compare single-step blending methods and GBLUP methods with and without adjustment of the genomic relationship matrix for genomic prediction of 16......) a simple GBLUP method, 2) a GBLUP method with a polygenic effect, 3) an adjusted GBLUP method with a polygenic effect, 4) a single-step blending method, and 5) an adjusted single-step blending method. In the adjusted GBLUP and single-step methods, the genomic relationship matrix was adjusted...

  9. Measurement of the single and two phase flow using newly developed average bidirectional flow tube

    International Nuclear Information System (INIS)

    Yun, Byong Jo; Euh, Dong Jin; Kang, Kyung Ho; Song, Chul Hwa; Baek, Won Pil

    2005-01-01

    A new instrument, an average BDFT (Birectional Flow Tube), was proposed to measure the flow rate in single and two phase flows. Its working principle is similar to that of the pitot tube, wherein the dynamic pressure is measured. In an average BDFT, the pressure measured at the front of the flow tube is equal to the total pressure, while that measured at the rear tube is slightly less than the static pressure of the flow field due to the suction effect downstream. The proposed instrument was tested in air/water vertical and horizontal test sections with an inner diameter of 0.08m. The tests were performed primarily in single phase water and air flow conditions to obtain the amplification factor(k) of the flow tube in the vertical and horizontal test sections. Tests were also performed in air/water vertical two phase flow conditions in which the flow regimes were bubbly, slug, and churn turbulent flows. In order to calculate the phasic mass flow rates from the measured differential pressure, the Chexal dirft-flux correlation and a momentum exchange factor between the two phases were introduced. The test results show that the proposed instrument with a combination of the measured void fraction, Chexal drift-flux correlation, and Bosio and Malnes' momentum exchange model could predict the phasic mass flow rates within a 15% error. A new momentum exchange model was also proposed from the present data and its implementation provides a 5% improvement to the measured mass flow rate when compared to that with the Bosio and Malnes' model

  10. Rotordynamic analysis for stepped-labyrinth gas seals using moody's friction-factor model

    International Nuclear Information System (INIS)

    Ha, Tae Woong

    2001-01-01

    The governing equations are derived for the analysis of a stepped labyrinth gas seal generally used in high performance compressors, gas turbines, and steam turbines. The bulk-flow is assumed for a single cavity control volume set up in a stepped labyrinth cavity and the flow is assumed to be completely turbulent in the circumferential direction. The Moody's wall-friction-factor model is used for the calculation of wall shear stresses in the single cavity control volume. For the reaction force developed by the stepped labyrinth gas seal, linearized zeroth-order and first-order perturbation equations are developed for small motion about a centered position. Integration of the resultant first-order pressure distribution along and around the seal defines the rotordynamic coefficients of the stepped labyrinth gas seal. The resulting leakage and rotordynamic characteristics of the stepped labyrinth gas seal are presented and compared with Scharrer's theoretical analysis using Blasius' wall-friction-factor model. The present analysis shows a good qualitative agreement of leakage characteristics with Scharrer's analysis, but underpredicts by about 20 %. For the rotordynamic coefficients, the present analysis generally yields smaller predicted values compared with Scharrer's analysis

  11. Altered stream-flow regimes and invasive plant species: The Tamarix case

    Science.gov (United States)

    Stromberg, J.C.; Lite, S.J.; Marler, R.; Paradzick, C.; Shafroth, P.B.; Shorrock, D.; White, J.M.; White, M.S.

    2007-01-01

    Aim: To test the hypothesis that anthropogenic alteration of stream-flow regimes is a key driver of compositional shifts from native to introduced riparian plant species. Location: The arid south-western United States; 24 river reaches in the Gila and Lower Colorado drainage basins of Arizona. Methods: We compared the abundance of three dominant woody riparian taxa (native Populus fremontii and Salix gooddingii, and introduced Tamarix) between river reaches that varied in stream-flow permanence (perennial vs. intermittent), presence or absence of an upstream flow-regulating dam, and presence or absence of municipal effluent as a stream water source. Results: Populus and Salix were the dominant pioneer trees along the reaches with perennial flow and a natural flood regime. In contrast, Tamarix had high abundance (patch area and basal area) along reaches with intermittent stream flows (caused by natural and cultural factors), as well as those with dam-regulated flows. Main conclusions: Stream-flow regimes are strong determinants of riparian vegetation structure, and hydrological alterations can drive dominance shifts to introduced species that have an adaptive suite of traits. Deep alluvial groundwater on intermittent rivers favours the deep-rooted, stress-adapted Tamarix over the shallower-rooted and more competitive Populus and Salix. On flow-regulated rivers, shifts in flood timing favour the reproductively opportunistic Tamarix over Populus and Salix, both of which have narrow germination windows. The prevailing hydrological conditions thus favour a new dominant pioneer species in the riparian corridors of the American Southwest. These results reaffirm the importance of reinstating stream-flow regimes (inclusive of groundwater flows) for re-establishing the native pioneer trees as the dominant forest type. ?? 2007 The Authors Journal compilation ?? 2007 Blackwell Publishing Ltd.

  12. Magnetic properties of novel epitaxial films

    International Nuclear Information System (INIS)

    Bader, S.D.; Moog, E.R.

    1986-09-01

    The surface magneto-optic Kerr effect (SMOKE) is used to explore the magnetism of ultra-thin Fe Films extending into the monolayer regime. Both bcc α-Fe and fcc γ-Fe single-crystalline, multilayer films are prepared on the bulk-terminated (1 x 1) structures of Au(100) and Cu(100), respectively. The characterizations of epitaxy and growth mode are performed using low energy electron diffraction and Auger electron spectroscopy. Monolayer-range Fe/Au(100) is ferromagnetic with a lower Curie temperature than bulk α-Fe. The controversial γ-Fe/Cu(100) system exhibits a striking, metastable, surface magnetic phase at temperatures above room temperature, but does not exhibit bulk ferromagnetism

  13. Highly Crystalline C8-BTBT Thin-Film Transistors by Lateral Homo-Epitaxial Growth on Printed Templates.

    Science.gov (United States)

    Janneck, Robby; Pilet, Nicolas; Bommanaboyena, Satya Prakash; Watts, Benjamin; Heremans, Paul; Genoe, Jan; Rolin, Cedric

    2017-11-01

    Highly crystalline thin films of organic semiconductors offer great potential for fundamental material studies as well as for realizing high-performance, low-cost flexible electronics. The fabrication of these films directly on inert substrates is typically done by meniscus-guided coating techniques. The resulting layers show morphological defects that hinder charge transport and induce large device-to-device variability. Here, a double-step method for organic semiconductor layers combining a solution-processed templating layer and a lateral homo-epitaxial growth by a thermal evaporation step is reported. The epitaxial regrowth repairs most of the morphological defects inherent to meniscus-guided coatings. The resulting film is highly crystalline and features a mobility increased by a factor of three and a relative spread in device characteristics improved by almost half an order of magnitude. This method is easily adaptable to other coating techniques and offers a route toward the fabrication of high-performance, large-area electronics based on highly crystalline thin films of organic semiconductors. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Doping efficiency analysis of highly phosphorous doped epitaxial/amorphous silicon emitters grown by PECVD for high efficiency silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    El-Gohary, H.G.; Sivoththaman, S. [Waterloo Univ., ON (Canada). Dept. of Electrical and Computer Engineering

    2008-08-15

    The efficient doping of hydrogenated amorphous and crystalline silicon thin films is a key factor in the fabrication of silicon solar cells. The most popular method for developing those films is plasma enhanced chemical vapor deposition (PECVD) because it minimizes defect density and improves doping efficiency. This paper discussed the preparation of different structure phosphorous doped silicon emitters ranging from epitaxial to amorphous films at low temperature. Phosphine (PH{sub 3}) was employed as the doping gas source with the same gas concentration for both epitaxial and amorphous silicon emitters. The paper presented an analysis of dopant activation by applying a very short rapid thermal annealing process (RTP). A spreading resistance profile (SRP) and SIMS analysis were used to detect both the active dopant and the dopant concentrations, respectively. The paper also provided the results of a structural analysis for both bulk and cross-section at the interface using high-resolution transmission electron microscopy and Raman spectroscopy, for epitaxial and amorphous films. It was concluded that a unity doping efficiency could be achieved in epitaxial layers by applying an optimized temperature profile using short time processing rapid thermal processing technique. The high quality, one step epitaxial layers, led to both high conductive and high doping efficiency layers.

  15. Evidence for gene flow between two sympatric mealybug species (Insecta; Coccoidea; Pseudococcidae.

    Directory of Open Access Journals (Sweden)

    Hofit Kol-Maimon

    Full Text Available Occurrence of inter-species hybrids in natural populations might be evidence of gene flow between species. In the present study we found evidence of gene flow between two sympatric, genetically related scale insect species--the citrus mealybug Planococcus citri (Risso and the vine mealybug Planococcus ficus (Signoret. These species can be distinguished by morphological, behavioral, and molecular traits. We employed the sex pheromones of the two respective species to study their different patterns of male attraction. We also used nuclear ITS2 (internal transcribed spacer 2 and mitochondrial COI (Cytochrome c oxidase sub unit 1 DNA sequences to characterize populations of the two species, in order to demonstrate the outcome of a possible gene flow between feral populations of the two species. Our results showed attraction to P. ficus pheromones of all tested populations of P. citri males but not vice versa. Furthermore, ITS2 sequences revealed the presence of 'hybrid females' among P. citri populations but not among those of P. ficus. 'hybrid females' from P. citri populations identified as P. citri females according to COI sequences. We offer two hypotheses for these results. 1 The occurrence of phenotypic and genotypic traits of P. ficus in P. citri populations may be attributed to both ancient and contemporary gene flow between their populations; and 2 we cannot rule out that an ancient sympatric speciation by which P. ficus emerged from P. citri might have led to the present situation of shared traits between these species. In light of these findings we also discuss the origin of the studied species and the importance of the pherotype phenomenon as a tool with which to study genetic relationships between congener scale insects.

  16. Relationship of cerebral blood flow to aortic-to-pulmonary collateral/shunt flow in single ventricles.

    Science.gov (United States)

    Fogel, Mark A; Li, Christine; Wilson, Felice; Pawlowski, Tom; Nicolson, Susan C; Montenegro, Lisa M; Diaz Berenstein, Laura; Spray, Thomas L; Gaynor, J William; Fuller, Stephanie; Keller, Marc S; Harris, Matthew A; Whitehead, Kevin K; Clancy, Robert; Elci, Okan; Bethel, Jim; Vossough, Arastoo; Licht, Daniel J

    2015-08-01

    Patients with single ventricle can develop aortic-to-pulmonary collaterals (APCs). Along with systemic-to-pulmonary artery shunts, these structures represent a direct pathway from systemic to pulmonary circulations, and may limit cerebral blood flow (CBF). This study investigated the relationship between CBF and APC flow on room air and in hypercarbia, which increases CBF in patients with single ventricle. 106 consecutive patients with single ventricle underwent 118 cardiac magnetic resonance (CMR) scans in this cross-sectional study; 34 prior to bidirectional Glenn (BDG) (0.50±0.30 years old), 50 prior to Fontan (3.19±1.03 years old) and 34 3-9 months after Fontan (3.98±1.39 years old). Velocity mapping measured flows in the aorta, cavae and jugular veins. Analysis of variance (ANOVA) and multiple linear regression were used. Significance was pflow or body surface area, independent of age, cardiopulmonary bypass time, Po2 and Pco2 (R=-0.67--0.70 for all patients on room air, pflow was higher prior to BDG than in other stages. There is a strong inverse relationship between CBF and APC/shunt flow in patients with single ventricle throughout surgical reconstruction on room air and in hypercarbia independent of other factors. We speculate that APC/shunt flow may have a negative impact on cerebral development and neurodevelopmental outcome. Interventions on APC may modify CBF, holding out the prospect for improving neurodevelopmental trajectory. NCT02135081. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  17. Assessment of PDF Micromixing Models Using DNS Data for a Two-Step Reaction

    Science.gov (United States)

    Tsai, Kuochen; Chakrabarti, Mitali; Fox, Rodney O.; Hill, James C.

    1996-11-01

    Although the probability density function (PDF) method is known to treat the chemical reaction terms exactly, its application to turbulent reacting flows have been overshadowed by the ability to model the molecular mixing terms satisfactorily. In this study, two PDF molecular mixing models, the linear-mean-square-estimation (LMSE or IEM) model and the generalized interaction-by-exchange-with-the-mean (GIEM) model, are compared with the DNS data in decaying turbulence with a two-step parallel-consecutive reaction and two segregated initial conditions: ``slabs" and ``blobs". Since the molecular mixing model is expected to have a strong effect on the mean values of chemical species under such initial conditions, the model evaluation is intended to answer the following questions: Can the PDF models predict the mean values of chemical species correctly with completely segregated initial conditions? (2) Is a single molecular mixing timescale sufficient for the PDF models to predict the mean values with different initial conditions? (3) Will the chemical reactions change the molecular mixing timescales of the reacting species enough to affect the accuracy of the model's prediction for the mean values of chemical species?

  18. Structure and functional properties of epitaxial PBZRxTI1-xO3 films

    NARCIS (Netherlands)

    Vergeer, Kurt

    2017-01-01

    The work described in this thesis is focused on the characterization and understanding of epitaxial, clamped, dense PbZrxTi1-xO3 (PZT) films. A thermodynamic model is developed, which is used to simulate properties of clamped PZT films throughout this work. The free energy equations for single- and

  19. Comparison of single-entry and double-entry two-step couple screening for cystic fibrosis carriers

    NARCIS (Netherlands)

    tenKate, LP; Verheij, JBGM; Wildhagen, MF; Hilderink, HBM; Kooij, L; Verzijl, JG; Habbema, JDF

    1996-01-01

    Both single-entry two-step (SETS) couple screening and double-entry two-step (DETS) couple screening have been recommended as methods to screen for cystic fibrosis gene carriers. In this paper we compare the expected results from both types of screening. In general, DETS results in a higher

  20. On-demand semiconductor source of 780-nm single photons with controlled temporal wave packets

    Science.gov (United States)

    Béguin, Lucas; Jahn, Jan-Philipp; Wolters, Janik; Reindl, Marcus; Huo, Yongheng; Trotta, Rinaldo; Rastelli, Armando; Ding, Fei; Schmidt, Oliver G.; Treutlein, Philipp; Warburton, Richard J.

    2018-05-01

    We report on a fast, bandwidth-tunable single-photon source based on an epitaxial GaAs quantum dot. Exploiting spontaneous spin-flip Raman transitions, single photons at 780 nm are generated on demand with tailored temporal profiles of durations exceeding the intrinsic quantum dot lifetime by up to three orders of magnitude. Second-order correlation measurements show a low multiphoton emission probability [g2(0 ) ˜0.10 -0.15 ] at a generation rate up to 10 MHz. We observe Raman photons with linewidths as low as 200 MHz, which is narrow compared to the 1.1-GHz linewidth measured in resonance fluorescence. The generation of such narrow-band single photons with controlled temporal shapes at the rubidium wavelength is a crucial step towards the development of an optimized hybrid semiconductor-atom interface.

  1. Deposition of O atomic layers on Si(100) substrates for epitaxial Si-O superlattices: investigation of the surface chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Jayachandran, Suseendran, E-mail: suseendran.jayachandran@imec.be [KU Leuven, Department of Metallurgy and Materials, Castle Arenberg 44, B-3001 Leuven (Belgium); IMEC, Kapeldreef 75, 3001 Leuven (Belgium); Delabie, Annelies; Billen, Arne [KU Leuven, Department of Chemistry, Celestijnenlaan 200F, B-3001 Leuven (Belgium); IMEC, Kapeldreef 75, 3001 Leuven (Belgium); Dekkers, Harold; Douhard, Bastien; Conard, Thierry; Meersschaut, Johan; Caymax, Matty [IMEC, Kapeldreef 75, 3001 Leuven (Belgium); Vandervorst, Wilfried [KU Leuven, Department of Physics and Astronomy, Celestijnenlaan 200D, B-3001 Leuven (Belgium); IMEC, Kapeldreef 75, 3001 Leuven (Belgium); Heyns, Marc [KU Leuven, Department of Metallurgy and Materials, Castle Arenberg 44, B-3001 Leuven (Belgium); IMEC, Kapeldreef 75, 3001 Leuven (Belgium)

    2015-01-01

    Highlights: • Atomic layer is deposited by O{sub 3} chemisorption reaction on H-terminated Si(100). • O-content has critical impact on the epitaxial thickness of the above-deposited Si. • Oxygen atoms at dimer/back bond configurations enable epitaxial Si on O atomic layer. • Oxygen atoms at hydroxyl and more back bonds, disable epitaxial Si on O atomic layer. - Abstract: Epitaxial Si-O superlattices consist of alternating periods of crystalline Si layers and atomic layers of oxygen (O) with interesting electronic and optical properties. To understand the fundamentals of Si epitaxy on O atomic layers, we investigate the O surface species that can allow epitaxial Si chemical vapor deposition using silane. The surface reaction of ozone on H-terminated Si(100) is used for the O deposition. The oxygen content is controlled precisely at and near the atomic layer level and has a critical impact on the subsequent Si deposition. There exists only a small window of O-contents, i.e. 0.7–0.9 atomic layers, for which the epitaxial deposition of Si can be realized. At these low O-contents, the O atoms are incorporated in the Si-Si dimers or back bonds (-OSiH), with the surface Si atoms mainly in the 1+ oxidation state, as indicated by infrared spectroscopy. This surface enables epitaxial seeding of Si. For O-contents higher than one atomic layer, the additional O atoms are incorporated in the Si-Si back bonds as well as in the Si-H bonds, where hydroxyl groups (-Si-OH) are created. In this case, the Si deposition thereon becomes completely amorphous.

  2. Factors that affect the calibration of turbines in single-phase flow

    International Nuclear Information System (INIS)

    Piper, T.C.

    1977-05-01

    Basic turbine operation in single-phase flow is related. Causes and relative magnitudes of retarding torque are given for two sizes of turbines when used for water flow measurement. An equation for slip caused by retarding torques is given. Evaluation of turbine slip behavior at the turbine low flow region shows that bearing retarding torques, change in flow patterns, or other effects can predominate in the relatively large changes in the calibration ''constant'' that occurs there. Fluid lubricity is singled out as an important fluid property in certain types of bearings and flow. Temperature induced changes in turbine size are shown to cause calibration changes if a turbine is used at a temperature significantly different than that at which it was calibrated

  3. Factors that affect the calibration of turbines in single-phase flow

    Energy Technology Data Exchange (ETDEWEB)

    Piper, T. C.

    1977-05-01

    Basic turbine operation in single-phase flow is related. Causes and relative magnitudes of retarding torque are given for two sizes of turbines when used for water flow measurement. An equation for slip caused by retarding torques is given. Evaluation of turbine slip behavior at the turbine low flow region shows that bearing retarding torques, change in flow patterns, or other effects can predominate in the relatively large changes in the calibration ''constant'' that occurs there. Fluid lubricity is singled out as an important fluid property in certain types of bearings and flow. Temperature induced changes in turbine size are shown to cause calibration changes if a turbine is used at a temperature significantly different than that at which it was calibrated.

  4. Single-Stage Step up/down Driver for Permanent-Magnet Synchronous Machines

    Science.gov (United States)

    Chen, T. R.; Juan, Y. L.; Huang, C. Y.; Kuo, C. T.

    2017-11-01

    The two-stage circuit composed of a step up/down dc converter and a three-phase voltage source inverter is usually adopted as the electric vehicle’s motor driver. The conventional topology is more complicated. Additional power loss resulted from twice power conversion would also cause lower efficiency. A single-stage step up/down Permanent-Magnet Synchronous Motor driver for Brushless DC (BLDC) Motor is proposed in this study. The number components and circuit complexity are reduced. The low frequency six-step square-wave control is used to reduce the switching losses. In the proposed topology, only one active switch is gated with a high frequency PWM signal for adjusting the rotation speed. The rotor position signals are fed back to calculate the motor speed for digital close-loop control in a MCU. A 600W prototype circuit is constructed to drive a BLDC motor with rated speed 3000 rpm, and can control the speed of six sections.

  5. Structural characteristics of single crystalline GaN films grown on (111) diamond with AlN buffer

    DEFF Research Database (Denmark)

    Pécz, Béla; Tóth, Lajos; Barna, Árpád

    2013-01-01

    Hexagonal GaN films with the [0001] direction parallel to the surface normal were grown on (111) oriented single crystalline diamond substrates by plasma-assisted molecular beam epitaxy. Pre-treatments of the diamond surface with the nitrogen plasma beam, prior the nucleation of a thin AlN layer......, eliminated the inversion domains and reduced the density of threading dislocations in the GaN epilayers. The films have an in-plane epitaxial relationship [1010]GaN//[110]diamond. Thus GaN (0001) thin films of single epitaxial relationship and of single polarity were realised on diamond with AlN buffer....

  6. Absence of strain-mediated magnetoelectric coupling at fully epitaxial Fe/BaTiO{sub 3} interface (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Radaelli, G., E-mail: greta.radaelli@gmail.com; Petti, D.; Cantoni, M.; Rinaldi, C.; Bertacco, R. [LNESS Center - Dipartimento di Fisica del Politecnico di Milano, Como 22100 (Italy)

    2014-05-07

    Interfacial MagnetoElectric coupling (MEC) at ferroelectric/ferromagnetic interfaces has recently emerged as a promising route to achieve electrical writing of magnetic information in spintronic devices. For the prototypical Fe/BaTiO{sub 3} (BTO) system, various MEC mechanisms have been theoretically predicted. Experimentally, it is well established that using BTO single crystal substrates MEC is dominated by strain-mediated mechanisms. In case of ferromagnetic layers epitaxially grown onto BTO films, instead, no direct evidence for MEC has been provided, apart from the results obtained on tunneling junction sandwiching a BTO tunneling barrier. In this paper, MEC at fully epitaxial Fe/BTO interface is investigated by Magneto-Optical Kerr Effect and magnetoresistance measurements on magnetic tunnel junctions fabricated on BTO. We find no evidence for strain-mediated MEC mechanisms in epitaxial systems, likely due to clamping of BTO to the substrate. Our results indicate that pure electronic MEC is the route of choice to be explored for achieving the electrical writing of information in epitaxial ferromagnet-ferroelectric heterostructures.

  7. Electron diffraction of CBr{sub 4} in superfluid helium droplets: A step towards single molecule diffraction

    Energy Technology Data Exchange (ETDEWEB)

    He, Yunteng; Zhang, Jie; Kong, Wei, E-mail: wei.kong@oregonstate.edu [Department of Chemistry, Oregon State University, Corvallis, Oregon 97331-4003 (United States)

    2016-07-21

    We demonstrate the practicality of electron diffraction of single molecules inside superfluid helium droplets using CBr{sub 4} as a testing case. By reducing the background from pure undoped droplets via multiple doping, with small corrections for dimers and trimers, clearly resolved diffraction rings of CBr{sub 4} similar to those of gas phase molecules can be observed. The experimental data from CBr{sub 4} doped droplets are in agreement with both theoretical calculations and with experimental results of gaseous species. The abundance of monomers and clusters in the droplet beam also qualitatively agrees with the Poisson statistics. Possible extensions of this approach to macromolecular ions will also be discussed. This result marks the first step in building a molecular goniometer using superfluid helium droplet cooling and field induced orientation. The superior cooling effect of helium droplets is ideal for field induced orientation, but the diffraction background from helium is a concern. This work addresses this background issue and identifies a possible solution. Accumulation of diffraction images only becomes meaningful when all images are produced from molecules oriented in the same direction, and hence a molecular goniometer is a crucial technology for serial diffraction of single molecules.

  8. Characterization of low Al content Al{sub x}Ga{sub 1-x}N epitaxial films grown by atmospheric-pressure MOVPE

    Energy Technology Data Exchange (ETDEWEB)

    Toure, A.; Halidou, I.; Benzarti, Z.; Bchetnia, A.; El Jani, B. [Faculte des Sciences, Unite de Recherche sur les Hetero-Epitaxies et Applications, 5019 Monastir (Tunisia); Fouzri, A. [Laboratoire Physico-Chimie des Materiaux, Faculte des Sciences de Monastir, Unite de Service Commun de Recherche ' ' High Resolution X-ray Diffractometer' ' , 5019 Monastir (Tunisia)

    2012-05-15

    Al{sub x}Ga{sub 1-x}N epitaxial films grown on GaN/sapphire by atmospheric-pressure metalorganic vapor phase epitaxy (AP-MOVPE) using trimethylgallium (TMG) and trimethylaluminum (TMA) as group III precursors have been studied. Two groups of samples were grown. The aluminum (Al) solid composition of Al{sub x}Ga{sub 1-x}N was varied in the range from 0.03 to 0.20 by changing the molar flow ratio [TMA/(TMA + TMG)]. The effect of TMA flow rate, respectively, TMG flow rate, on the growth rate, and Al solid composition is discussed. The structural properties of the alloys have been investigated by high-resolution X-ray diffraction (HRXRD). The optical properties of these samples were investigated by photoluminescence (PL). It is found that on increasing Al solid composition, via an increase of the TMA flow rate, the structural quality is deteriorated and the growth efficiency decreases. On the other hand, when the TMG flow rate is reduced, a decrease of the full width at half-maximum (FWHM) is observed with Al content. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Ensembles of indium phosphide nanowires: physical properties and functional devices integrated on non-single crystal platforms

    International Nuclear Information System (INIS)

    Kobayashi, Nobuhiko P.; Lohn, Andrew; Onishi, Takehiro; Mathai, Sagi; Li, Xuema; Straznicky, Joseph; Wang, Shih-Yuan; Williams, R.S.; Logeeswaran, V.J.; Islam, M.S.

    2009-01-01

    A new route to grow an ensemble of indium phosphide single-crystal semiconductor nanowires is described. Unlike conventional epitaxial growth of single-crystal semiconductor films, the proposed route for growing semiconductor nanowires does not require a single-crystal semiconductor substrate. In the proposed route, instead of using single-crystal semiconductor substrates that are characterized by their long-range atomic ordering, a template layer that possesses short-range atomic ordering prepared on a non-single-crystal substrate is employed. On the template layer, epitaxial information associated with its short-range atomic ordering is available within an area that is comparable to that of a nanowire root. Thus the template layer locally provides epitaxial information required for the growth of semiconductor nanowires. In the particular demonstration described in this paper, hydrogenated silicon was used as a template layer for epitaxial growth of indium phosphide nanowires. The indium phosphide nanowires grown on the hydrogenerated silicon template layer were found to be single crystal and optically active. Simple photoconductors and pin-diodes were fabricated and tested with the view towards various optoelectronic device applications where group III-V compound semiconductors are functionally integrated onto non-single-crystal platforms. (orig.)

  10. Ensembles of indium phosphide nanowires: physical properties and functional devices integrated on non-single crystal platforms

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Nobuhiko P.; Lohn, Andrew; Onishi, Takehiro [University of California, Santa Cruz (United States). Baskin School of Engineering; NASA Ames Research Center, Nanostructured Energy Conversion Technology and Research (NECTAR), Advanced Studies Laboratories, Univ. of California Santa Cruz, Moffett Field, CA (United States); Mathai, Sagi; Li, Xuema; Straznicky, Joseph; Wang, Shih-Yuan; Williams, R.S. [Hewlett-Packard Laboratories, Information and Quantum Systems Laboratory, Palo Alto, CA (United States); Logeeswaran, V.J.; Islam, M.S. [University of California Davis, Electrical and Computer Engineering, Davis, CA (United States)

    2009-06-15

    A new route to grow an ensemble of indium phosphide single-crystal semiconductor nanowires is described. Unlike conventional epitaxial growth of single-crystal semiconductor films, the proposed route for growing semiconductor nanowires does not require a single-crystal semiconductor substrate. In the proposed route, instead of using single-crystal semiconductor substrates that are characterized by their long-range atomic ordering, a template layer that possesses short-range atomic ordering prepared on a non-single-crystal substrate is employed. On the template layer, epitaxial information associated with its short-range atomic ordering is available within an area that is comparable to that of a nanowire root. Thus the template layer locally provides epitaxial information required for the growth of semiconductor nanowires. In the particular demonstration described in this paper, hydrogenated silicon was used as a template layer for epitaxial growth of indium phosphide nanowires. The indium phosphide nanowires grown on the hydrogenerated silicon template layer were found to be single crystal and optically active. Simple photoconductors and pin-diodes were fabricated and tested with the view towards various optoelectronic device applications where group III-V compound semiconductors are functionally integrated onto non-single-crystal platforms. (orig.)

  11. Preparation and structure characterization of SmCo5(0001) epitaxial thin films grown on Cu(111) underlayers

    International Nuclear Information System (INIS)

    Ohtake, Mitsuru; Nukaga, Yuri; Futamoto, Masaaki; Kirino, Fumiyoshi

    2009-01-01

    SmCo 5 (0001) epitaxial films were prepared on Cu(111) single-crystal underlayers formed on Al 2 O 3 (0001) substrates at 500 deg. C. The nucleation and growth mechanism of (0001)-oriented SmCo 5 crystal on Cu(111) underlayer is investigated and a method to control the nucleation is proposed. The SmCo 5 epitaxial thin film formed directly on Cu underlayer consists of two types of domains whose orientations are rotated around the film normal by 30 deg. each other. By introducing a thin Co seed layer on the Cu underlayer, a SmCo 5 (0001) single-crystal thin film is successfully obtained. Nucleation of SmCo 5 crystal on Cu underlayer seems controllable by varying the interaction between the Cu underlayer and the SmCo 5 layer

  12. MASS TRANSFER CONTROL OF A BACKWARD-FACING STEP FLOW BY LOCAL FORCING- EFFECT OF REYNOLDS NUMBER

    Directory of Open Access Journals (Sweden)

    Zouhaier MEHREZ

    2011-01-01

    Full Text Available The control of fluid mechanics and mass transfer in separated and reattaching flow over a backward-facing step by a local forcing, is studied using Large Eddy Simulation (LES.To control the flow, the local forcing is realized by a sinusoidal oscillating jet at the step edge. The Reynolds number is varied in the range 10000 ≤ Re≤ 50000 and the Schmidt number is fixed at 1.The found results show that the flow structure is modified and the local mass transfer is enhanced by the applied forcing. The observed changes depend on the Reynolds number and vary with the frequency and amplitude of the local forcing. For the all Reynolds numbers, the largest recirculation zone size reduction is obtained at the optimum forcing frequency St = 0.25. At this frequency the local mass transfer enhancement attains the maximum.

  13. SiGe epitaxial memory for neuromorphic computing with reproducible high performance based on engineered dislocations

    Science.gov (United States)

    Choi, Shinhyun; Tan, Scott H.; Li, Zefan; Kim, Yunjo; Choi, Chanyeol; Chen, Pai-Yu; Yeon, Hanwool; Yu, Shimeng; Kim, Jeehwan

    2018-01-01

    Although several types of architecture combining memory cells and transistors have been used to demonstrate artificial synaptic arrays, they usually present limited scalability and high power consumption. Transistor-free analog switching devices may overcome these limitations, yet the typical switching process they rely on—formation of filaments in an amorphous medium—is not easily controlled and hence hampers the spatial and temporal reproducibility of the performance. Here, we demonstrate analog resistive switching devices that possess desired characteristics for neuromorphic computing networks with minimal performance variations using a single-crystalline SiGe layer epitaxially grown on Si as a switching medium. Such epitaxial random access memories utilize threading dislocations in SiGe to confine metal filaments in a defined, one-dimensional channel. This confinement results in drastically enhanced switching uniformity and long retention/high endurance with a high analog on/off ratio. Simulations using the MNIST handwritten recognition data set prove that epitaxial random access memories can operate with an online learning accuracy of 95.1%.

  14. Real time ellipsometry for monitoring plasma-assisted epitaxial growth of GaN

    Energy Technology Data Exchange (ETDEWEB)

    Bruno, Giovanni [Institute of Inorganic Methodologies and of Plasmas, IMIP-CNR and INSTM UdR Bari, via Orabona, 4, 70126 Bari (Italy); Losurdo, Maria [Institute of Inorganic Methodologies and of Plasmas, IMIP-CNR and INSTM UdR Bari, via Orabona, 4, 70126 Bari (Italy)]. E-mail: maria.losurdo@ba.imip.cnr.it; Giangregorio, Maria M. [Institute of Inorganic Methodologies and of Plasmas, IMIP-CNR and INSTM UdR Bari, via Orabona, 4, 70126 Bari (Italy); Capezzuto, Pio [Institute of Inorganic Methodologies and of Plasmas, IMIP-CNR and INSTM UdR Bari, via Orabona, 4, 70126 Bari (Italy); Brown, April S. [Department of Electrical and Computer Engineering, Duke University, 128 Hudson Hall, Durham, NC (United States); Kim, Tong-Ho [Department of Electrical and Computer Engineering, Duke University, 128 Hudson Hall, Durham, NC (United States); Choi, Soojeong [Department of Electrical and Computer Engineering, Duke University, 128 Hudson Hall, Durham, NC (United States)

    2006-10-31

    GaN is grown on Si-face 4H-SiC(0 0 0 1) substrates using remote plasma-assisted methods including metalorganic chemical vapour deposition (RP-MOCVD) and molecular beam epitaxy (MBE). Real time spectroscopic ellipsometry is used for monitoring all the steps of substrate pre-treatments and the heteroepitaxial growth of GaN on SiC. Our characterization emphasis is on understanding the nucleation mechanism and the GaN growth mode, which depend on the SiC surface preparation.

  15. First-step nucleation growth dependence of InAs/InGaAs/InP quantum dot formation in two-step growth

    International Nuclear Information System (INIS)

    Yin Zongyou; Tang Xiaohong; Deny, Sentosa; Chin, Mee Koy; Zhang Jixuan; Teng Jinghua; Du Anyan

    2008-01-01

    First-step nucleation growth has an important impact on the two-step growth of high-quality mid-infrared emissive InAs/InGaAs/InP quantum dots (QDs). It has been found that an optimized growth rate for first-step nucleation is critical for forming QDs with narrow size distribution, high dot density and high crystal quality. High growth temperature has an advantage in removing defects in the QDs formed, but the dot density will be reduced. Contrasting behavior in forming InAs QDs using metal-organic vapor phase epitaxy (MOVPE) by varying the input flux ratio of group-V versus group-III source (V/III ratio) in the first-step nucleation growth has been observed and investigated. High-density, 2.5 x 10 10 cm -2 , InAs QDs emitting at>2.15 μm have been formed with narrow size distribution, ∼1 nm standard deviation, by reducing the V/III ratio to zero in first-step nucleation growth

  16. Solid phase epitaxy of amorphous silicon carbide: Ion fluence dependence

    International Nuclear Information System (INIS)

    Bae, I.-T.; Ishimaru, Manabu; Hirotsu, Yoshihiko; Sickafus, Kurt E.

    2004-01-01

    We have investigated the effect of radiation damage and impurity concentration on solid phase epitaxial growth of amorphous silicon carbide (SiC) as well as microstructures of recrystallized layer using transmission electron microscopy. Single crystals of 6H-SiC with (0001) orientation were irradiated with 150 keV Xe ions to fluences of 10 15 and 10 16 /cm 2 , followed by annealing at 890 deg. C. Full epitaxial recrystallization took place in a specimen implanted with 10 15 Xe ions, while retardation of recrystallization was observed in a specimen implanted with 10 16 /cm 2 Xe ions. Atomic pair-distribution function analyses and energy dispersive x-ray spectroscopy results suggested that the retardation of recrystallization of the 10 16 Xe/cm 2 implanted sample is attributed to the difference in amorphous structures between the 10 15 and 10 16 Xe/cm 2 implanted samples, i.e., more chemically disordered atomistic structure and higher Xe impurity concentration in the 10 16 Xe/cm 2 implanted sample

  17. Passive control of coherent structures in a modified backwards-facing step flow

    Science.gov (United States)

    Ormonde, Pedro C.; Cavalieri, André V. G.; Silva, Roberto G. A. da; Avelar, Ana C.

    2018-05-01

    We study a modified backwards-facing step flow, with the addition of two different plates; one is a baseline, impermeable plate and the second a perforated one. An experimental investigation is carried out for a turbulent reattaching shear layer downstream of the two plates. The proposed setup is a model configuration to study how the plate characteristics affect the separated shear layer and how turbulent kinetic energies and large-scale coherent structures are modified. Measurements show that the perforated plate changes the mean flow field, mostly by reducing the intensity of reverse flow close to the bottom wall. Disturbance amplitudes are significantly reduced up to five step heights downstream of the trailing edge of the plate, more specifically in the recirculation region. A loudspeaker is then used to introduce phase-locked, low-amplitude perturbations upstream of the plates, and phase-averaged measurements allow a quantitative study of large-scale structures in the shear-layer. The evolution of such coherent structures is evaluated in light of linear stability theory, comparing the eigenfunction of the Kelvin-Helmholtz mode to the experimental results. We observe a close match of linear-stability eigenfunctions with phase-averaged amplitudes for the two tested Strouhal numbers. The perforated plate is found to reduce the amplitude of the Kelvin-Helmholtz coherent structures in comparison to the baseline, impermeable plate, a behavior consistent with the predicted amplification trends from linear stability.

  18. High-Performance Flexible Thin-Film Transistors Based on Single-Crystal-like Silicon Epitaxially Grown on Metal Tape by Roll-to-Roll Continuous Deposition Process.

    Science.gov (United States)

    Gao, Ying; Asadirad, Mojtaba; Yao, Yao; Dutta, Pavel; Galstyan, Eduard; Shervin, Shahab; Lee, Keon-Hwa; Pouladi, Sara; Sun, Sicong; Li, Yongkuan; Rathi, Monika; Ryou, Jae-Hyun; Selvamanickam, Venkat

    2016-11-02

    Single-crystal-like silicon (Si) thin films on bendable and scalable substrates via direct deposition are a promising material platform for high-performance and cost-effective devices of flexible electronics. However, due to the thick and unintentionally highly doped semiconductor layer, the operation of transistors has been hampered. We report the first demonstration of high-performance flexible thin-film transistors (TFTs) using single-crystal-like Si thin films with a field-effect mobility of ∼200 cm 2 /V·s and saturation current, I/l W > 50 μA/μm, which are orders-of-magnitude higher than the device characteristics of conventional flexible TFTs. The Si thin films with a (001) plane grown on a metal tape by a "seed and epitaxy" technique show nearly single-crystalline properties characterized by X-ray diffraction, Raman spectroscopy, reflection high-energy electron diffraction, and transmission electron microscopy. The realization of flexible and high-performance Si TFTs can establish a new pathway for extended applications of flexible electronics such as amplification and digital circuits, more than currently dominant display switches.

  19. Epitaxial lateral overgrowth - a tool for dislocation blockade in multilayer system

    International Nuclear Information System (INIS)

    Zytkiewicz, Z.R.

    1998-01-01

    Results on epitaxial lateral overgrowth of GaAs layers are reported. The methods of controlling the growth anisotropy, the effect of substrate defects filtration in epitaxial lateral overgrowth procedure and influence of the mask on properties of epitaxial lateral overgrowth layers will be discussed. The case od GaAs epitaxial lateral overgrowth layers grown by liquid phase epitaxy on heavily dislocated GaAs substrates was chosen as an example to illustrate the processes discussed. The similarities between our results and those reported recently for GaN layers grown laterally by metalorganic vapour phase epitaxy will be underlined. (author)

  20. Comparative toxicity of a brominated flame retardant (tetrabromobisphenol A) on microalgae with single and multi-species bioassays.

    Science.gov (United States)

    Debenest, Timothée; Petit, Anne-Nöelle; Gagné, François; Kohli, Mohan; Nguyen, Nien; Blaise, Christian

    2011-09-01

    The potential threat of emerging chemicals to the aquatic flora is a major issue. The purpose of the study was to develop a multispecies microalgae test in order to determine the impact of species interactions on the cytoxicity of an emergent toxic contaminant: the tetrabromobisphenol A (TBBPA). Single and multi-species tests were thus performed to study the effects of this flame retardant on two microalgae (Pseudokirchneriella subcapitata and Nitzschia palea) commonly observed in freshwater. A synthetic medium was designed to allow the growth of both species. The algae were exposed to 1.8, 4.8, 9.2, 12.9 and 16.5 μM of TBBPA for 72 h. After staining with fluorescein diacetate (FDA), viable cells of each alga species were analyzed by flow cytometry based on chlorophyll autofluorescence and intracellular esterase activity. Density and abundance of viable cells were assessed to follow the population growth and the cell viability. In TBBPA treated samples, the growth of the two microalgae was significantly inhibited at the three highest concentrations (9.2, 12.9 and 16.5 μM) in the two tests. At the end of the experiment (t=72 h), the cell viability was also significantly smaller at these concentrations. The decreases of growth rate and viable cell abundance in TBBPA treated populations of N. palea were significantly higher in multi-species test in comparison with the single-species test. No significant differences were noticed between the two tests for P. subcapitata populations exposed to TBBPA. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  1. Peyton’s four-step approach: differential effects of single instructional steps on procedural and memory performance – a clarification study

    Directory of Open Access Journals (Sweden)

    Krautter M

    2015-05-01

    Full Text Available Markus Krautter,1 Ronja Dittrich,2 Annette Safi,2 Justine Krautter,1 Imad Maatouk,2 Andreas Moeltner,2 Wolfgang Herzog,2 Christoph Nikendei2 1Department of Nephrology, 2Department of General Internal and Psychosomatic Medicine, University of Heidelberg Medical Hospital, Heidelberg, Germany Background: Although Peyton’s four-step approach is a widely used method for skills-lab training in undergraduate medical education and has been shown to be more effective than standard instruction, it is unclear whether its superiority can be attributed to a specific single step. Purpose: We conducted a randomized controlled trial to investigate the differential learning outcomes of the separate steps of Peyton’s four-step approach. Methods: Volunteer medical students were randomly assigned to four different groups. Step-1 group received Peyton’s Step 1, Step-2 group received Peyton’s Steps 1 and 2, Step-3 group received Peyton’s Steps 1, 2, and 3, and Step-3mod group received Peyton’s Steps 1 and 2, followed by a repetition of Step 2. Following the training, the first independent performance of a central venous catheter (CVC insertion using a manikin was video-recorded and scored by independent video assessors using binary checklists. The day after the training, memory performance during delayed recall was assessed with an incidental free recall test. Results: A total of 97 participants agreed to participate in the trial. There were no statistically significant group differences with regard to age, sex, completed education in a medical profession, completed medical clerkships, preliminary memory tests, or self-efficacy ratings. Regarding checklist ratings, Step-2 group showed a superior first independent performance of CVC placement compared to Step-1 group (P<0.001, and Step-3 group showed a superior performance to Step-2 group (P<0.009, while Step-2 group and Step-3mod group did not differ (P=0.055. The findings were similar in the incidental

  2. Effects of substrate temperature and Cu underlayer thickness on the formation of SmCo5(0001) epitaxial thin films

    International Nuclear Information System (INIS)

    Ohtake, Mitsuru; Nukaga, Yuri; Futamoto, Masaaki; Kirino, Fumiyoshi

    2010-01-01

    SmCo 5 (0001) epitaxial thin films were prepared on Cu(111) underlayers heteroepitaxially grown on Al 2 O 3 (0001) single-crystal substrates by molecular beam epitaxy. The effects of substrate temperature and Cu underlayer thickness on the crystallographic properties of SmCo 5 (0001) epitaxial films were investigated. The Cu atoms of underlayer diffuse into the SmCo 5 film and substitute the Co sites in SmCo 5 structure forming an alloy compound of Sm(Co,Cu) 5 . The ordered phase formation is enhanced with increasing the substrate temperature and with increasing the Cu underlayer thickness. The Cu atom diffusion into the SmCo 5 film is assisting the formation of Sm(Co,Cu) 5 ordered phase.

  3. Epitaxial growth of Ge-Sb-Te based phase change materials

    International Nuclear Information System (INIS)

    Perumal, Karthick

    2013-01-01

    Ge-Sb-Te based phase change materials are considered as a prime candidate for optical and electrical data storage applications. With the application of an optical or electrical pulse, they can be reversibly switched between amorphous and crystalline state, thereby exhibiting large optical and electrical contrast between the two phases, which are then stored as information in the form of binary digits. Single crystalline growth is interesting from both the academic and industrial perspective, as ordered Ge-Sb-Te based metamaterials are known to exhibit switching at reduced energies. The present study deals with the epitaxial growth and analysis of Ge-Sb-Te based thin films. The first part of the thesis deals with the epitaxial growth of GeTe. Thin films of GeTe were grown on highly mismatched Si(111) and (001) substrates. On both the substrate orientations the film grows along [111] direction with an amorphous-to-crystalline transition observed during the initial stages of growth. The amorphous-to-crystalline transition was studied in-vivo using azimuthal reflection high-energy electron diffraction scans and grazing incidence X-ray diffraction. In the second part of the thesis epitaxy and characterization of Sb 2 Te 3 thin films are presented. The third part of the thesis deals with the epitaxy of ternary Ge-Sb-Te alloys. The composition of the films are shown to be highly dependent on growth temperatures and vary along the pseudobinary line from Sb 2 Te 3 to GeTe with increase in growth temperatures. A line-of-sight quadrupole mass spectrometer was used to reliably control the GeSbTe growth temperature. Growth was performed at different Ge, Sb, Te fluxes to study the compositional variation of the films. Incommensurate peaks are observed along the [111] direction by X-ray diffraction. The possibility of superstructural vacancy ordering along the [111] direction is discussed.

  4. GaN/NbN epitaxial semiconductor/superconductor heterostructures

    Science.gov (United States)

    Yan, Rusen; Khalsa, Guru; Vishwanath, Suresh; Han, Yimo; Wright, John; Rouvimov, Sergei; Katzer, D. Scott; Nepal, Neeraj; Downey, Brian P.; Muller, David A.; Xing, Huili G.; Meyer, David J.; Jena, Debdeep

    2018-03-01

    Epitaxy is a process by which a thin layer of one crystal is deposited in an ordered fashion onto a substrate crystal. The direct epitaxial growth of semiconductor heterostructures on top of crystalline superconductors has proved challenging. Here, however, we report the successful use of molecular beam epitaxy to grow and integrate niobium nitride (NbN)-based superconductors with the wide-bandgap family of semiconductors—silicon carbide, gallium nitride (GaN) and aluminium gallium nitride (AlGaN). We apply molecular beam epitaxy to grow an AlGaN/GaN quantum-well heterostructure directly on top of an ultrathin crystalline NbN superconductor. The resulting high-mobility, two-dimensional electron gas in the semiconductor exhibits quantum oscillations, and thus enables a semiconductor transistor—an electronic gain element—to be grown and fabricated directly on a crystalline superconductor. Using the epitaxial superconductor as the source load of the transistor, we observe in the transistor output characteristics a negative differential resistance—a feature often used in amplifiers and oscillators. Our demonstration of the direct epitaxial growth of high-quality semiconductor heterostructures and devices on crystalline nitride superconductors opens up the possibility of combining the macroscopic quantum effects of superconductors with the electronic, photonic and piezoelectric properties of the group III/nitride semiconductor family.

  5. Strain-Modulated Epitaxy

    National Research Council Canada - National Science Library

    Brown, April

    1999-01-01

    Strain-Modulated Epitaxy (SME) is a novel approach, invented at Georgia Tech, to utilize subsurface stressors to control strain and therefore material properties and growth kinetics in the material above the stressors...

  6. Taylor vortices in the flow between two coaxial cylinders one of which has a step change in radius

    International Nuclear Information System (INIS)

    Raju, V R K

    2014-01-01

    A numerical study of the flow between two coaxial cylinders, where one of the cylinders has a step change in radius, is carried out. The inner cylinder rotates and the outer cylinder is stationary. Computation is restricted to axisymmetric motion since instability in flow between coaxial cylinders is found to first occur in the form of axisymmetric Taylor vortices. In the presence of a step, Taylor vortices are found to appear first in the region where the gap between the cylinders is larger and approximately when the local Taylor number in this region reaches the critical Taylor number for onset of instability. Subsequently, Taylor vortices appear in the region where the gap is narrower, and when the local Taylor number in that region exceeds the critical Taylor number. The Taylor vortices have inward flow at a stationary end plate, and outward flow at an end plate which rotates with the same angular velocity as the inner cylinder. Similar results were obtained by Sprague et al (2008 Phys. Fluids 20 014102) for a step on inner cylinder configuration. The step functions as another end plate, if the step size is large. Whereas, it has no effect, if the step size is small. In most situations, these determine whether the number of Taylor vortices in the wide and narrow gap regions is even or odd. When the end plates rotate synchronously, but at a different speed from the inner cylinder, a change from even to odd or odd to even number of vortices in each region occurs at certain rotation rates of the end plates by sudden appearance or disappearance of a vortex at the end of the column. For a certain range of rotation rates of the end plates, the total number of vortices in the entire fluid column is odd, although the end conditions are symmetrical. (paper)

  7. Air stepping in response to optic flows that move Toward and Away from the neonate.

    Science.gov (United States)

    Barbu-Roth, Marianne; Anderson, David I; Desprès, Adeline; Streeter, Ryan J; Cabrol, Dominique; Trujillo, Michael; Campos, Joseph J; Provasi, Joëlle

    2014-07-01

    To shed further light on the perceptual regulation of newborn stepping, we compared neonatal air stepping in response to optic flows simulating forward or backward displacement with stepping forward on a surface. Twenty-two 3-day-olds performed four 60 s trials in which they stepped forward on a table (Tactile) or in the air in response to a pattern that moved toward (Toward) or away (Away) from them or was static (Static). Significantly more steps were taken in the Tactile and Toward conditions than the Static condition. The Away condition was intermediate to the other conditions. The knee joint activity across the entire trial was significantly greater in the Toward than the Away condition. Within-limb kinematics and between-limb coordination were very similar for steps taken in the air and on the table, particularly in the Toward and Tactile conditions. These findings highlight that visual and tactile stimulation can equally elicit neonatal stepping. © 2013 Wiley Periodicals, Inc.

  8. Epitaxial growth mechanisms of graphene and effects of substrates

    Science.gov (United States)

    Özçelik, V. Ongun; Cahangirov, S.; Ciraci, S.

    2012-06-01

    The growth process of single layer graphene with and without substrate is investigated using ab initio, finite temperature molecular dynamic calculations within density functional theory. An understanding of the epitaxial graphene growth mechanisms in the atomic level is provided by exploring the transient stages which occur at the growing edges of graphene. These stages are formation and collapse of large carbon rings together with the formation and healing of Stone-Wales like pentagon-heptagon defects. The activation barriers for the healing of these growth induced defects on various substrates are calculated using the climbing image nudge elastic band method and compared with that of the Stone-Wales defect. It is found that the healing of pentagon-heptagon defects occurring near the edge in the course of growth is much easier than that of Stone-Wales defect. The role of the substrate in the epitaxial growth and in the healing of defects are also investigated in detail, along with the effects of using carbon dimers as the building blocks of graphene growth.

  9. New synthesis method for the growth of epitaxial graphene

    Energy Technology Data Exchange (ETDEWEB)

    Yu, X.Z. [Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Laboratory of Condensed Matter Spectroscopy and Opto-Electronic Physics, Department of Physics, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai 200030 (China); Hwang, C.G.; Jozwiak, C.M.; Koehl, A. [Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Schmid, A.K. [National Center for Electron Microscopy, Lawrence Berkeley National Laboratory, Berkeley, CA 94709 (United States); Lanzara, A., E-mail: ALanzara@lbl.gov [Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Department of Physics, University of California, Berkeley, CA 94720 (United States)

    2011-04-15

    Highlights: {yields} We report a new straightforward method for the synthesis of micrometer scale graphene sheets. {yields} The process is based on a face to face mehtod in which two SiC substrates are placed one on top of the other and are heated simultaneously, leading to highly homogeneous samples. {yields} The number of graphene layers is determined by the annealing temperature. - Abstract: As a viable candidate for an all-carbon post-CMOS electronics revolution, epitaxial graphene has attracted significant attention. To realize its application potential, reliable methods for fabricating large-area single-crystalline graphene domains are required. A new way to synthesize high quality epitaxial graphene, namely 'face-to-face' method, has been reported in this paper. The structure and morphologies of the samples are characterized by low-energy electron diffraction, atomic force microscopy, angle-resolved photoemission spectroscopy and Raman spectroscopy. The grown samples show better quality and larger length scales than samples grown through conventional thermal desorption. Moreover, the graphene thickness can be easily controlled by changing annealing temperature.

  10. Discrete unified gas kinetic scheme for all Knudsen number flows. III. Binary gas mixtures of Maxwell molecules

    Science.gov (United States)

    Zhang, Yue; Zhu, Lianhua; Wang, Ruijie; Guo, Zhaoli

    2018-05-01

    Recently a discrete unified gas kinetic scheme (DUGKS) in a finite-volume formulation based on the Boltzmann model equation has been developed for gas flows in all flow regimes. The original DUGKS is designed for flows of single-species gases. In this work, we extend the DUGKS to flows of binary gas mixtures of Maxwell molecules based on the Andries-Aoki-Perthame kinetic model [P. Andries et al., J. Stat. Phys. 106, 993 (2002), 10.1023/A:1014033703134. A particular feature of the method is that the flux at each cell interface is evaluated based on the characteristic solution of the kinetic equation itself; thus the numerical dissipation is low in comparison with that using direct reconstruction. Furthermore, the implicit treatment of the collision term enables the time step to be free from the restriction of the relaxation time. Unlike the DUGKS for single-species flows, a nonlinear system must be solved to determine the interaction parameters appearing in the equilibrium distribution function, which can be obtained analytically for Maxwell molecules. Several tests are performed to validate the scheme, including the shock structure problem under different Mach numbers and molar concentrations, the channel flow driven by a small gradient of pressure, temperature, or concentration, the plane Couette flow, and the shear driven cavity flow under different mass ratios and molar concentrations. The results are compared with those from other reliable numerical methods. The results show that the proposed scheme is an effective and reliable method for binary gas mixtures in all flow regimes.

  11. Acoustic programming in step-split-flow lateral-transport thin fractionation.

    Science.gov (United States)

    Ratier, Claire; Hoyos, Mauricio

    2010-02-15

    We propose a new separation scheme for micrometer-sized particles combining acoustic forces and gravitational field in split-flow lateral-transport thin (SPLITT)-like fractionation channels. Acoustic forces are generated by ultrasonic standing waves set up in the channel thickness. We report on the separation of latex particles of two different sizes in a preliminary experiment using this proposed hydrodynamic acoustic sorter, HAS. Total binary separation of 5 and 10 microm diameter particles has been achieved. Numerical simulations of trajectories of particles flowing through a step-SPLITT under the conditions which combine acoustic standing waves and gravity show a very good agreement with the experiment. Calculations in order to compare separations obtained by the acoustic programming s-SPLITT fractionation and the conventional SPLITT fractionation show that the improvement in separation time is around 1 order of magnitude and could still be improved; this is the major finding of this work. This separation technique can be extended to biomimetic particles and blood cells.

  12. InGaAs/GaAs (110) quantum dot formation via step meandering

    Energy Technology Data Exchange (ETDEWEB)

    Diez-Merino, Laura; Tejedor, Paloma [Department of Nanostructures and Surfaces, Instituto de Ciencia de Materiales de Madrid, CSIC, Sor Juana Ines de la Cruz 3, 28049-Madrid (Spain)

    2011-07-01

    InGaAs (110) semiconductor quantum dots (QDs) offer very promising prospects as a material base for a new generation of high-speed spintronic devices, such as single electron transistors for quantum computing. However, the spontaneous formation of InGaAs QDs is prevented by two-dimensional (2D) layer-by-layer growth on singular GaAs (110) substrates. In this work we have studied, by using atomic force microscopy and photoluminescence spectroscopy (PL), the growth of InGaAs/GaAs QDs on GaAs (110) stepped substrates by molecular beam epitaxy (MBE), and the modification of the adatom incorporation kinetics to surface steps in the presence of chemisorbed atomic hydrogen. The as-grown QDs exhibit lateral dimensions below 100 nm and emission peaks in the 1.35-1.37 eV range. It has been found that a step meandering instability derived from the preferential attachment of In adatoms to [110]-step edges relative to [11n]-type steps plays a key role in the destabilization of 2D growth that leads to 3D mound formation on both conventional and H-terminated vicinal substrates. In the latter case, the driving force for 3D growth via step meandering is enhanced by H-induced upward mass transport in addition to the lower energy cost associated with island formation on H-terminated substrates, which results in a high density array of InGaAs/GaAs dots selectively nucleated on the terrace apices with reduced lateral dimensions and improved PL efficiency relative to those of conventional MBE-grown samples.

  13. InGaAs/GaAs (110) quantum dot formation via step meandering

    International Nuclear Information System (INIS)

    Diez-Merino, Laura; Tejedor, Paloma

    2011-01-01

    InGaAs (110) semiconductor quantum dots (QDs) offer very promising prospects as a material base for a new generation of high-speed spintronic devices, such as single electron transistors for quantum computing. However, the spontaneous formation of InGaAs QDs is prevented by two-dimensional (2D) layer-by-layer growth on singular GaAs (110) substrates. In this work we have studied, by using atomic force microscopy and photoluminescence spectroscopy (PL), the growth of InGaAs/GaAs QDs on GaAs (110) stepped substrates by molecular beam epitaxy (MBE), and the modification of the adatom incorporation kinetics to surface steps in the presence of chemisorbed atomic hydrogen. The as-grown QDs exhibit lateral dimensions below 100 nm and emission peaks in the 1.35-1.37 eV range. It has been found that a step meandering instability derived from the preferential attachment of In adatoms to [110]-step edges relative to [11n]-type steps plays a key role in the destabilization of 2D growth that leads to 3D mound formation on both conventional and H-terminated vicinal substrates. In the latter case, the driving force for 3D growth via step meandering is enhanced by H-induced upward mass transport in addition to the lower energy cost associated with island formation on H-terminated substrates, which results in a high density array of InGaAs/GaAs dots selectively nucleated on the terrace apices with reduced lateral dimensions and improved PL efficiency relative to those of conventional MBE-grown samples.

  14. High field electron paramagnetic resonance spectroscopy under ultrahigh vacuum conditions—A multipurpose machine to study paramagnetic species on well defined single crystal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Rocker, J.; Cornu, D.; Kieseritzky, E.; Hänsel-Ziegler, W.; Freund, H.-J. [Fritz-Haber-Institut der MPG, Faradayweg 4-6, 14195 Berlin (Germany); Seiler, A. [Fritz-Haber-Institut der MPG, Faradayweg 4-6, 14195 Berlin (Germany); Laboratorium für Applikationen der Synchrotronstrahlung, KIT Campus Süd, Kaiserstr. 12, 76131 Karlsruhe (Germany); Bondarchuk, O. [Fritz-Haber-Institut der MPG, Faradayweg 4-6, 14195 Berlin (Germany); CIC energiGUNE, Parque Tecnologico, C/Albert Einstein 48, CP 01510 Minano (Alava) (Spain); Risse, T., E-mail: risse@chemie.fu-berlin.de [Fritz-Haber-Institut der MPG, Faradayweg 4-6, 14195 Berlin (Germany); Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin (Germany)

    2014-08-01

    A new ultrahigh vacuum (UHV) electron paramagnetic resonance (EPR) spectrometer operating at 94 GHz to investigate paramagnetic centers on single crystal surfaces is described. It is particularly designed to study paramagnetic centers on well-defined model catalysts using epitaxial thin oxide films grown on metal single crystals. The EPR setup is based on a commercial Bruker E600 spectrometer, which is adapted to ultrahigh vacuum conditions using a home made Fabry Perot resonator. The key idea of the resonator is to use the planar metal single crystal required to grow the single crystalline oxide films as one of the mirrors of the resonator. EPR spectroscopy is solely sensitive to paramagnetic species, which are typically minority species in such a system. Hence, additional experimental characterization tools are required to allow for a comprehensive investigation of the surface. The apparatus includes a preparation chamber hosting equipment, which is required to prepare supported model catalysts. In addition, surface characterization tools such as low energy electron diffraction (LEED)/Auger spectroscopy, temperature programmed desorption (TPD), and infrared reflection absorption spectroscopy (IRAS) are available to characterize the surfaces. A second chamber used to perform EPR spectroscopy at 94 GHz has a room temperature scanning tunneling microscope attached to it, which allows for real space structural characterization. The heart of the UHV adaptation of the EPR experiment is the sealing of the Fabry-Perot resonator against atmosphere. To this end it is possible to use a thin sapphire window glued to the backside of the coupling orifice of the Fabry Perot resonator. With the help of a variety of stabilization measures reducing vibrations as well as thermal drift it is possible to accumulate data for a time span, which is for low temperature measurements only limited by the amount of liquid helium. Test measurements show that the system can detect paramagnetic

  15. SIMULATION OF TURBULENT FLOW AND HEAT TRANSFER OVER A BACKWARD -FACING STEP WITH RIBS TURBULATORS

    Directory of Open Access Journals (Sweden)

    Khudheyer S Mushatet

    2011-01-01

    Full Text Available Simulation is presented for a backward facing step flow and heat transfer inside a channel with ribs turbulators. The problem was investigated for Reynolds numbers up to 32000. The effect of a step height, the number of ribs and the rib thickness on the flow and thermal field were investigated. The computed results are presented as streamlines counters, velocity vectors and graphs of Nusselt number and turbulent kinetic energy variation. A control volume method employing a staggered grid techniques was imposed to discretize the governing continuity, full Navier Stockes and energy equations. A computer program using a SIMPLE algorithm was developed to handle the considered problem. The effect of turbulence was modeled by using a k-є model with its wall function formulas. The obtained results show that the strength and size of the re-circulation zones behind the step are increased with the increase of contraction ratio(i.e. with the increase of a step height. The size of recirculation regions and the reattachment length after the ribs are decreased with increasing of the contraction ratio. Also the results show that the Reynolds number and contraction ratio have a significant effect on the variation of turbulent kinetic energy and Nusselt number

  16. LES of hypersonic flow over a 3D single-fin

    OpenAIRE

    Fang, J.; Yao, Y.; Lu, L.; Zheng, Y.

    2015-01-01

    LES of hypersonic flow passing a 3D single-fin at Mach 5 and Re∞=3.7×107/m was conducted using a newly developed 7th-order low-dissipation monotonicity-preserving NS solver with dynamic Smagorinsky subgrid model. The simulation captures salient flow phenome such as shock systems, flow separation structures, and turbulence characteristics. It was found that in the reverse flow region, the streamwise elongated coherent structures are regenerated beneath the main separation vortex, almost immedi...

  17. Hyperspectral imaging flow cytometer

    Science.gov (United States)

    Sinclair, Michael B.; Jones, Howland D. T.

    2017-10-25

    A hyperspectral imaging flow cytometer can acquire high-resolution hyperspectral images of particles, such as biological cells, flowing through a microfluidic system. The hyperspectral imaging flow cytometer can provide detailed spatial maps of multiple emitting species, cell morphology information, and state of health. An optimized system can image about 20 cells per second. The hyperspectral imaging flow cytometer enables many thousands of cells to be characterized in a single session.

  18. A three-step vehicle detection framework for range estimation using a single camera

    CSIR Research Space (South Africa)

    Kanjee, R

    2015-12-01

    Full Text Available This paper proposes and validates a real-time onroad vehicle detection system, which uses a single camera for the purpose of intelligent driver assistance. A three-step vehicle detection framework is presented to detect and track the target vehicle...

  19. Atomic layer deposition of epitaxial layers of anatase on strontium titanate single crystals: Morphological and photoelectrochemical characterization

    Energy Technology Data Exchange (ETDEWEB)

    Kraus, Theodore J.; Nepomnyashchii, Alexander B.; Parkinson, B. A., E-mail: bparkin1@uwyo.edu [Department of Chemistry, School of Energy Resources, University of Wyoming, Laramie, Wyoming 82071 (United States)

    2015-01-15

    Atomic layer deposition was used to grow epitaxial layers of anatase (001) TiO{sub 2} on the surface of SrTiO{sub 3} (100) crystals with a 3% lattice mismatch. The epilayers grow as anatase (001) as confirmed by x-ray diffraction. Atomic force microscope images of deposited films showed epitaxial layer-by-layer growth up to about 10 nm, whereas thicker films, of up to 32 nm, revealed the formation of 2–5 nm anatase nanocrystallites oriented in the (001) direction. The anatase epilayers were used as substrates for dye sensitization. The as received strontium titanate crystal was not sensitized with a ruthenium-based dye (N3) or a thiacyanine dye (G15); however, photocurrent from excited state electron injection from these dyes was observed when adsorbed on the anatase epilayers. These results show that highly ordered anatase surfaces can be grown on an easily obtained substrate crystal.

  20. 100-nm thick single-phase wurtzite BAlN films with boron contents over 10%

    KAUST Repository

    Li, Xiaohang; Wang, Shuo; Liu, Hanxiao; Ponce, Fernando A.; Detchprohm, Theeradetch; Dupuis, Russell D.

    2017-01-01

    Growing thicker BAlN films while maintaining single-phase wurtzite structure and boron content over 10% has been challenging. In this study, we report on the growth of 100 nm-thick single-phase wurtzite BAlN films with boron contents up to 14.4% by MOCVD. Flow-modulated epitaxy was employed to increase diffusion length of group-III atoms and reduce parasitic reactions between the metalorganics and NH3. A large growth efficiency of ∼2000 μm mol−1 was achieved as a result. Small B/III ratios up to 17% in conjunction with high temperatures up to 1010 °C were utilized to prevent formation of the cubic phase and maintain wurtzite structure.

  1. 100-nm thick single-phase wurtzite BAlN films with boron contents over 10%

    KAUST Repository

    Li, Xiaohang

    2017-01-11

    Growing thicker BAlN films while maintaining single-phase wurtzite structure and boron content over 10% has been challenging. In this study, we report on the growth of 100 nm-thick single-phase wurtzite BAlN films with boron contents up to 14.4% by MOCVD. Flow-modulated epitaxy was employed to increase diffusion length of group-III atoms and reduce parasitic reactions between the metalorganics and NH3. A large growth efficiency of ∼2000 μm mol−1 was achieved as a result. Small B/III ratios up to 17% in conjunction with high temperatures up to 1010 °C were utilized to prevent formation of the cubic phase and maintain wurtzite structure.

  2. Experimental investigation of turbulent flow in a channel with the backward-facing inclined step

    Directory of Open Access Journals (Sweden)

    Uruba Václav

    2012-04-01

    Full Text Available The work deals with the experimental investigation of turbulent flow in a closed channel with the backward-facing inclined step. Experiments were carried by means of the PIV optical measuring method in the channel of the rectangular cross-section in the inlet part and with inclined steps of the constant height H mm and various inclination angles for a wide range of the Reynolds number. The attention was paid especially to the separation region behind the step and to the relaxation of the shear layer after the reattachment in the outlet part of the channel. The dependence of the length of the separation region on the Reynolds number was obtained for various step angles. Optical measurements were completed by the measurement of static pressure distribution in the inlet and outlet part of the channel to estimate energy losses.

  3. Quickest single-step one pot mechanosynthesis and characterization of ZnTe quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Patra, S. [Dept of Physics, University of Burdwan, Golapbag, Burdwan, West Bengal 713104 (India); Pradhan, S.K., E-mail: skp_bu@yahoo.com [Dept of Physics, University of Burdwan, Golapbag, Burdwan, West Bengal 713104 (India)

    2011-05-05

    Research highlights: > First time quickest mechanosynthesis of ZnTe QDs starting from Zn and Te powders. > Cubic ZnTe are formed in a single pot at RT in a single step within 1 h of milling. > The existence of stacking faults and twin faults are evident from HRTEM images. > Distinct blue shift has been observed in UV-vis absorption spectra. > First time report that ZnTe QDs with faults can also show the quantum size effect. - Abstract: ZnTe quantum dots (QDs) are synthesized at room temperature in a single step by mechanical alloying the stoichiometric equimolar mixture (1:1 mol) of Zn and Te powders under Ar within 1 h of milling. Both XRD and HRTEM characterizations reveal that these QDs having size {approx}5 nm contain stacking faults of different kinds. A distinct blue-shift in absorption spectra with decreasing particle size of QDs confirms the quantum size confinement effect (QSCE). It is observed for first time that the QDs with considerable amount of faults can also show the QSCE. Optical band gaps of these QDs increase with increasing milling time and their band gaps can be fine-tuned easily by varying milling time of QDs.

  4. Semiconductors and semimetals epitaxial microstructures

    CERN Document Server

    Willardson, Robert K; Beer, Albert C; Gossard, Arthur C

    1994-01-01

    Newly developed semiconductor microstructures can now guide light and electrons resulting in important consequences for state-of-the-art electronic and photonic devices. This volume introduces a new generation of epitaxial microstructures. Special emphasis has been given to atomic control during growth and the interrelationship between the atomic arrangements and the properties of the structures.Key Features* Atomic-level control of semiconductor microstructures* Molecular beam epitaxy, metal-organic chemical vapor deposition* Quantum wells and quantum wires* Lasers, photon(IR)detectors, heterostructure transistors

  5. Preferential states of rotating turbulent flows in a square container with a step topography

    NARCIS (Netherlands)

    Tenreiro, M.; Trieling, R.R.; Zavala Sansón, L.; Heijst, van G.J.F.

    2013-01-01

    The self-organization of confined, quasi-two-dimensional turbulent flows in a rotating square container with a step-like topography is investigated by means of laboratory experiments and numerical simulations based on a rigid lid, shallow-water formulation. The domain is divided by a bottom

  6. Interface relaxation and band gap shift in epitaxial layers

    Directory of Open Access Journals (Sweden)

    Ziming Zhu

    2012-12-01

    Full Text Available Although it is well known that the interface relaxation plays the crucial role for the electronic properties in semiconductor epitaxial layers, there is lack of a clear definition of relationship between interfacial bond-energy variation and interface bond-nature-factor (IBNF in epitaxial layers before and after relaxation. Here we establish an analytical method to shed light on the relationship between the IBNF and the bond-energy change, as well as the relation with band offset in epitaxial layers from the perspective of atomic-bond-relaxation consideration and continuum mechanics. The theoretical predictions are consistent with the available evidences, which provide an atomistic understanding on underlying mechanism of interface effect in epitaxial nanostructures. Thus, it will be helpful for opening up to tailor physical-chemical properties of the epitaxial nanostructures to the desired specifications.

  7. Critical heat flux phenomena in flow boiling during step wise and ramp wise power transients

    International Nuclear Information System (INIS)

    Celata, G.P.; Cumo, M.; D'Annibale, F.; Farello, G.E.; Abou Said, S.

    1987-01-01

    The present paper deals with the results of an experimental investigation of the forced flow critical heat flux during power transients in a vertically heated channel. Experiments were carried out with a Refrigerant-12 1oop employing a circular test section which was electrically and uniformly heated. The power transients were performed with the step-wise and ramp-wise increase of the power to the test section. The test parameters included several values of the initial power (before the transient) and the final power (at the end of the transient) in the case of step-wise transients and the slope of the ramp in the case of ramp-wise transients. The pressure and specific mass flow rate, which were kept constant during the power transient,were varied from 1.2 to 2.7 MPa and 850 to 1500 Kg/sm 2 , respectively. Correlations of the experimental data for the time-to-crisis in terms of the independent parameters of the system are also proposed and verified for different values of pressure,mass flow rate, and inlet subcooling

  8. Single-mode molecular beam epitaxy grown PbEuSeTe/PbTe buried-heterostructure diode lasers for CO2 high-resolution spectroscopy

    International Nuclear Information System (INIS)

    Feit, Z.; Kostyk, D.; Woods, R.J.; Mak, P.

    1991-01-01

    Buried-heterostructure tunable PbEuSeTe/PbTe lasers were fabricated using a two-stage molecular beam epitaxy growth procedure. Improvements in the processing technique yielded lasers that show performance characteristics significantly better than those reported previously. A continuous wave (cw) operating temperature of 203 K was realized, which is the highest cw operating temperature ever reported for lead-chalcogenides diode lasers. This laser exhibited exceptionally low-threshold currents of 1.4 mA at 90 K and 43 mA at 160 K with single-mode operation for injection currents up to 30I th and 0.18 mW power at 100 K. The usefulness of the laser, when operating cw at 200 K, was demonstrated by the ability to perform high-resolution spectroscopy of a low-pressure CO 2 gas sample

  9. High quality atomically thin PtSe2 films grown by molecular beam epitaxy

    Science.gov (United States)

    Yan, Mingzhe; Wang, Eryin; Zhou, Xue; Zhang, Guangqi; Zhang, Hongyun; Zhang, Kenan; Yao, Wei; Lu, Nianpeng; Yang, Shuzhen; Wu, Shilong; Yoshikawa, Tomoki; Miyamoto, Koji; Okuda, Taichi; Wu, Yang; Yu, Pu; Duan, Wenhui; Zhou, Shuyun

    2017-12-01

    Atomically thin PtSe2 films have attracted extensive research interests for potential applications in high-speed electronics, spintronics and photodetectors. Obtaining high quality thin films with large size and controlled thickness is critical. Here we report the first successful epitaxial growth of high quality PtSe2 films by molecular beam epitaxy. Atomically thin films from 1 ML to 22 ML have been grown and characterized by low-energy electron diffraction, Raman spectroscopy and x-ray photoemission spectroscopy. Moreover, a systematic thickness dependent study of the electronic structure is revealed by angle-resolved photoemission spectroscopy (ARPES), and helical spin texture is revealed by spin-ARPES. Our work provides new opportunities for growing large size single crystalline films to investigate the physical properties and potential applications of PtSe2.

  10. Epitaxially Grown Films of Standing and Lying Pentacene Molecules on Cu(110) Surfaces

    Science.gov (United States)

    2011-01-01

    Here, it is shown that pentacene thin films (30 nm) with distinctively different crystallographic structures and molecular orientations can be grown under essentially identical growth conditions in UHV on clean Cu(110) surfaces. By X-ray diffraction, we show that the epitaxially oriented pentacene films crystallize either in the “thin film” phase with standing molecules or in the “single crystal” structure with molecules lying with their long axes parallel to the substrate. The morphology of the samples observed by atomic force microscopy shows an epitaxial alignment of pentacene crystallites, which corroborates the molecular orientation observed by X-ray diffraction pole figures. Low energy electron diffraction measurements reveal that these dissimilar growth behaviors are induced by subtle differences in the monolayer structures formed by slightly different preparation procedures. PMID:21479111

  11. Structural and electrical properties of c-axis epitaxial and polycrystalline Sr sub 3 Bi sub 4 Ti sub 6 O sub 2 sub 1 thin films

    CERN Document Server

    Zhang, S T; Sun, H P; Pan Xiao Qing; Tan, W S; Liu, Z G; Ming, N B

    2003-01-01

    c-axis epitaxial and polycrystalline Sr sub 3 Bi sub 4 Ti sub 6 O sub 2 sub 1 (SBTi) thin films were fabricated on (001)SrTiO sub 3 (STO) single-crystal substrates and Pt/Ti sub 2 /SiO sub 2 /Si substrates respectively, by pulsed laser deposition (PLD). Structures of the films were systematically characterized by x-ray diffraction (XRD), including theta-2 theta-scans, rocking curve scans and phi-scans, atomic force microscopy and transmission electron microscopy (TEM). The epitaxial orientation relation of the SBTi films on STO is established by selected-area electron diffraction and XRD phi-scans to be (001)SBTi || (001)STO, [11-bar 0]SBTi || [010]STO. Cross-sectional high-resolution TEM studies on the epitaxial SBTi film revealed that SBTi is a single-phase material. A special kind of irrational atomic shift along the [001] direction was observed and is discussed in detail. By using an evanescent microwave probe (EMP), the room-temperature dielectric constant of the epitaxial SBTi film was measured to be 21...

  12. Interplay of uniaxial and cubic anisotropy in epitaxial Fe thin films on MgO (001 substrate

    Directory of Open Access Journals (Sweden)

    Srijani Mallik

    2014-09-01

    Full Text Available Epitaxial Fe thin films were grown on annealed MgO(001 substrates at oblique incidence by DC magnetron sputtering. Due to the oblique growth configuration, uniaxial anisotropy was found to be superimposed on the expected four-fold cubic anisotropy. A detailed study of in-plane magnetic hysteresis for Fe on MgO thin films has been performed by Magneto Optic Kerr Effect (MOKE magnetometer. Both single step and double step loops have been observed depending on the angle between the applied field and easy axis i.e. along ⟨100⟩ direction. Domain images during magnetization reversal were captured by Kerr microscope. Domain images clearly evidence two successive and separate 90° domain wall (DW nucleation and motion along cubic easy cum uniaxial easy axis and cubic easy cum uniaxial hard axis, respectively. However, along cubic hard axis two 180° domain wall motion dominate the magnetization reversal process. In spite of having four-fold anisotropy it is essential to explain magnetization reversal mechanism in 0°< ϕ < 90° span as uniaxial anisotropy plays a major role in this system. Also it is shown that substrate rotation can suppress the effect of uniaxial anisotropy superimposed on four-fold anisotropy.

  13. Epitaxial condition and polarity in GaN grown on a HfN-buffered Si(111) wafer

    Science.gov (United States)

    Xu, X.; Armitage, R.; Shinkai, Satoko; Sasaki, Katsutaka; Kisielowski, C.; Weber, E. R.

    2005-05-01

    Single-crystal GaN thin films have been deposited epitaxially on a HfN-buffered Si(111) substrates by molecular-beam epitaxy. The microstructural and compositional characteristics of the films were studied in detail by transmission electron microscopy (TEMs). Cross-sectional TEM investigations have revealed the crystallographic orientation relationship in different GaN /HfN/Si layers. GaN film polarity is studied by conventional TEM and convergent beam electron diffraction simulations, and the results show that the GaN film has a Ga polarity with relatively high density of inversion domains. Based on our observations, growth mechanisms related to the structural properties are discussed.

  14. Turbulence, dynamic similarity and scale effects in high-velocity free-surface flows above a stepped chute

    Science.gov (United States)

    Felder, Stefan; Chanson, Hubert

    2009-07-01

    In high-velocity free-surface flows, air entrainment is common through the interface, and intense interactions take place between turbulent structures and entrained bubbles. Two-phase flow properties were measured herein in high-velocity open channel flows above a stepped chute. Detailed turbulence measurements were conducted in a large-size facility, and a comparative analysis was applied to test the validity of the Froude and Reynolds similarities. The results showed consistently that the Froude similitude was not satisfied using a 2:1 geometric scaling ratio. Lesser number of entrained bubbles and comparatively greater bubble sizes were observed at the smaller Reynolds numbers, as well as lower turbulence levels and larger turbulent length and time scales. The results implied that small-size models did underestimate the rate of energy dissipation and the aeration efficiency of prototype stepped spillways for similar flow conditions. Similarly a Reynolds similitude was tested. The results showed also some significant scale effects. However a number of self-similar relationships remained invariant under changes of scale and confirmed the analysis of Chanson and Carosi (Exp Fluids 42:385-401, 2007). The finding is significant because self-similarity may provide a picture general enough to be used to characterise the air-water flow field in large prototype channels.

  15. Integrated X-ray and charged particle active pixel CMOS sensor arrays using an epitaxial silicon sensitive region

    International Nuclear Information System (INIS)

    Kleinfelder, Stuart; Bichsel, Hans; Bieser, Fred; Matis, Howard S.; Rai, Gulshan; Retiere, Fabrice; Weiman, Howard; Yamamoto, Eugene

    2002-01-01

    Integrated CMOS Active Pixel Sensor (APS) arrays have been fabricated and tested using X-ray and electron sources. The 128 by 128 pixel arrays, designed in a standard 0.25 micron process, use a ∼10 micron epitaxial silicon layer as a deep detection region. The epitaxial layer has a much greater thickness than the surface features used by standard CMOS APS, leading to stronger signals and potentially better signal-to-noise ratio (SNR). On the other hand, minority carriers confined within the epitaxial region may diffuse to neighboring pixels, blur images and reduce peak signal intensity. But for low-rate, sparse-event images, centroid analysis of this diffusion may be used to increase position resolution. Careful trade-offs involving pixel size and sense-node area verses capacitance must be made to optimize overall performance. The prototype sensor arrays, therefore, include a range of different pixel designs, including different APS circuits and a range of different epitaxial layer contact structures. The fabricated arrays were tested with 1.5 GeV electrons and Fe-55 X-ray sources, yielding a measured noise of 13 electrons RMS and an SNR for single Fe-55 X-rays of greater than 38

  16. Magnetic-property changes in epitaxial metal-film sandwiches

    International Nuclear Information System (INIS)

    Brodsky, M.B.

    1982-08-01

    Epitaxial metal-film sandwiches (EMFS) containing Pd or Cr, have been prepared between single-crystal Ag or Au. The modified Pd/Cr show major changes in physical properties. Pd has a stretched lattice parameter in Au-Pd-Au, which combines with a tetragonal distortion to cause exchange enhancements up to 28,000 and spin-fluctuation temperatures of 1 to 10 K. In Au-Cr-Au, Cr takes up the fcc structure, leading to superconductivity due to a high N(E/sub F/). These results are contrasted to data for Ag-Pd-Ag and Ag-Cr-Ag EMFS

  17. Point defect balance in epitaxial GaSb

    International Nuclear Information System (INIS)

    Segercrantz, N.; Slotte, J.; Makkonen, I.; Kujala, J.; Tuomisto, F.; Song, Y.; Wang, S.

    2014-01-01

    Positron annihilation spectroscopy in both conventional and coincidence Doppler broadening mode is used for studying the effect of growth conditions on the point defect balance in GaSb:Bi epitaxial layers grown by molecular beam epitaxy. Positron annihilation characteristics in GaSb are also calculated using density functional theory and compared to experimental results. We conclude that while the main positron trapping defect in bulk samples is the Ga antisite, the Ga vacancy is the most prominent trap in the samples grown by molecular beam epitaxy. The results suggest that the p–type conductivity is caused by different defects in GaSb grown with different methods.

  18. Single-step fabrication of quantum funnels via centrifugal colloidal casting of nanoparticle films

    Science.gov (United States)

    Kim, Jin Young; Adinolfi, Valerio; Sutherland, Brandon R.; Voznyy, Oleksandr; Kwon, S. Joon; Kim, Tae Wu; Kim, Jeongho; Ihee, Hyotcherl; Kemp, Kyle; Adachi, Michael; Yuan, Mingjian; Kramer, Illan; Zhitomirsky, David; Hoogland, Sjoerd; Sargent, Edward H.

    2015-01-01

    Centrifugal casting of composites and ceramics has been widely employed to improve the mechanical and thermal properties of functional materials. This powerful method has yet to be deployed in the context of nanoparticles—yet size–effect tuning of quantum dots is among their most distinctive and application-relevant features. Here we report the first gradient nanoparticle films to be constructed in a single step. By creating a stable colloid of nanoparticles that are capped with electronic-conduction-compatible ligands we were able to leverage centrifugal casting for thin-films devices. This new method, termed centrifugal colloidal casting, is demonstrated to form films in a bandgap-ordered manner with efficient carrier funnelling towards the lowest energy layer. We constructed the first quantum-gradient photodiode to be formed in a single deposition step and, as a result of the gradient-enhanced electric field, experimentally measured the highest normalized detectivity of any colloidal quantum dot photodetector. PMID:26165185

  19. Single-step fabrication of quantum funnels via centrifugal colloidal casting of nanoparticle films.

    KAUST Repository

    Kim, Jin Young; Adinolfi, Valerio; Sutherland, Brandon R; Voznyy, Oleksandr; Kwon, S Joon; Kim, Tae Wu; Kim, Jeongho; Ihee, Hyotcherl; Kemp, Kyle; Adachi, Michael; Yuan, Mingjian; Kramer, Illan; Zhitomirsky, David; Hoogland, Sjoerd; Sargent, Edward H

    2015-01-01

    Centrifugal casting of composites and ceramics has been widely employed to improve the mechanical and thermal properties of functional materials. This powerful method has yet to be deployed in the context of nanoparticles--yet size-effect tuning of quantum dots is among their most distinctive and application-relevant features. Here we report the first gradient nanoparticle films to be constructed in a single step. By creating a stable colloid of nanoparticles that are capped with electronic-conduction-compatible ligands we were able to leverage centrifugal casting for thin-films devices. This new method, termed centrifugal colloidal casting, is demonstrated to form films in a bandgap-ordered manner with efficient carrier funnelling towards the lowest energy layer. We constructed the first quantum-gradient photodiode to be formed in a single deposition step and, as a result of the gradient-enhanced electric field, experimentally measured the highest normalized detectivity of any colloidal quantum dot photodetector.

  20. Single-step fabrication of quantum funnels via centrifugal colloidal casting of nanoparticle films.

    KAUST Repository

    Kim, Jin Young

    2015-07-13

    Centrifugal casting of composites and ceramics has been widely employed to improve the mechanical and thermal properties of functional materials. This powerful method has yet to be deployed in the context of nanoparticles--yet size-effect tuning of quantum dots is among their most distinctive and application-relevant features. Here we report the first gradient nanoparticle films to be constructed in a single step. By creating a stable colloid of nanoparticles that are capped with electronic-conduction-compatible ligands we were able to leverage centrifugal casting for thin-films devices. This new method, termed centrifugal colloidal casting, is demonstrated to form films in a bandgap-ordered manner with efficient carrier funnelling towards the lowest energy layer. We constructed the first quantum-gradient photodiode to be formed in a single deposition step and, as a result of the gradient-enhanced electric field, experimentally measured the highest normalized detectivity of any colloidal quantum dot photodetector.

  1. Development of single step RT-PCR for detection of Kyasanur forest disease virus from clinical samples

    Directory of Open Access Journals (Sweden)

    Gouri Chaubal

    2018-02-01

    Discussion and conclusion: The previously published sensitive real time RT-PCR assay requires higher cost in terms of reagents and machine setup and technical expertise has been the primary reason for development of this assay. A single step RT-PCR is relatively easy to perform and more cost effective than real time RT-PCR in smaller setups in the absence of Biosafety Level-3 facility. This study reports the development and optimization of single step RT-PCR assay which is more sensitive and less time-consuming than nested RT-PCR and cost effective for rapid diagnosis of KFD viral RNA.

  2. Numerical simulation of 2 D laminar flow subjected to the Lorentz force effect in a channel with backward facing step

    Energy Technology Data Exchange (ETDEWEB)

    Farahbakhsh, Iman; Paknejad, Amin; Ghassemi, Hassan [Amirkabir Univ. of Technology, Tehran (Iran, Islamic Republic of)

    2012-10-15

    This paper presents the numerical solutions of a two dimensional laminar flow over a backward facing step in the presence of the Lorentz body force. The Navier Stokes equations in a vorticity stream function formulation are numerically solved using a uniform grid mesh of 2001 {Chi} 51 points. A second order central difference approximation is used for spatial derivatives. The solutions progress in time with a fourth order Runge Kutta method. The unsteady backward facing step flow solution is computed for Reynolds numbers 100 to 800. The size and genesis of the recirculating regions are dramatically affected by applying the Lorentz force. The results demonstrate that using an appropriate configuration for applying the Lorentz force can make it an essential tool for controlling the flow in channels with a backward facing step.

  3. Position-controlled epitaxial III-V nanowires on silicon

    Energy Technology Data Exchange (ETDEWEB)

    Roest, Aarnoud L; Verheijen, Marcel A; Wunnicke, Olaf; Serafin, Stacey; Wondergem, Harry; Bakkers, Erik P A M [Philips Research Laboratories, Professor Holstlaan 4, 5656 AA Eindhoven (Netherlands); Kavli Institute of NanoScience, Delft University of Technology, PO Box 5046, 2600 GA Delft (Netherlands)

    2006-06-14

    We show the epitaxial integration of III-V semiconductor nanowires with silicon technology. The wires are grown by the VLS mechanism with laser ablation as well as metal-organic vapour phase epitaxy. The hetero-epitaxial growth of the III-V nanowires on silicon was confirmed with x-ray diffraction pole figures and cross-sectional transmission electron microscopy. We show preliminary results of two-terminal electrical measurements of III-V nanowires grown on silicon. E-beam lithography was used to predefine the position of the nanowires.

  4. Position-controlled epitaxial III-V nanowires on silicon

    International Nuclear Information System (INIS)

    Roest, Aarnoud L; Verheijen, Marcel A; Wunnicke, Olaf; Serafin, Stacey; Wondergem, Harry; Bakkers, Erik P A M

    2006-01-01

    We show the epitaxial integration of III-V semiconductor nanowires with silicon technology. The wires are grown by the VLS mechanism with laser ablation as well as metal-organic vapour phase epitaxy. The hetero-epitaxial growth of the III-V nanowires on silicon was confirmed with x-ray diffraction pole figures and cross-sectional transmission electron microscopy. We show preliminary results of two-terminal electrical measurements of III-V nanowires grown on silicon. E-beam lithography was used to predefine the position of the nanowires

  5. Control of ion content and nitrogen species using a mixed chemistry plasma for GaN grown at extremely high growth rates >9 μm/h by plasma-assisted molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Gunning, Brendan P.; Clinton, Evan A.; Merola, Joseph J.; Doolittle, W. Alan, E-mail: alan.doolittle@ece.gatech.edu [Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); Bresnahan, Rich C. [Veeco Instruments, St. Paul, Minnesota 55127 (United States)

    2015-10-21

    Utilizing a modified nitrogen plasma source, plasma assisted molecular beam epitaxy (PAMBE) has been used to achieve higher growth rates in GaN. A higher conductance aperture plate, combined with higher nitrogen flow and added pumping capacity, resulted in dramatically increased growth rates up to 8.4 μm/h using 34 sccm of N{sub 2} while still maintaining acceptably low operating pressure. It was further discovered that argon could be added to the plasma gas to enhance growth rates up to 9.8 μm/h, which was achieved using 20 sccm of N{sub 2} and 7.7 sccm Ar flows at 600 W radio frequency power, for which the standard deviation of thickness was just 2% over a full 2 in. diameter wafer. A remote Langmuir style probe employing the flux gauge was used to indirectly measure the relative ion content in the plasma. The use of argon dilution at low plasma pressures resulted in a dramatic reduction of the plasma ion current by more than half, while high plasma pressures suppressed ion content regardless of plasma gas chemistry. Moreover, different trends are apparent for the molecular and atomic nitrogen species generated by varying pressure and nitrogen composition in the plasma. Argon dilution resulted in nearly an order of magnitude achievable growth rate range from 1 μm/h to nearly 10 μm/h. Even for films grown at more than 6 μm/h, the surface morphology remained smooth showing clear atomic steps with root mean square roughness less than 1 nm. Due to the low vapor pressure of Si, Ge was explored as an alternative n-type dopant for high growth rate applications. Electron concentrations from 2.2 × 10{sup 16} to 3.8 × 10{sup 19} cm{sup −3} were achieved in GaN using Ge doping, and unintentionally doped GaN films exhibited low background electron concentrations of just 1–2 × 10{sup 15} cm{sup −3}. The highest growth rates resulted in macroscopic surface features due to Ga cell spitting, which is an engineering challenge still to be

  6. Control of ion content and nitrogen species using a mixed chemistry plasma for GaN grown at extremely high growth rates >9 μm/h by plasma-assisted molecular beam epitaxy

    International Nuclear Information System (INIS)

    Gunning, Brendan P.; Clinton, Evan A.; Merola, Joseph J.; Doolittle, W. Alan; Bresnahan, Rich C.

    2015-01-01

    Utilizing a modified nitrogen plasma source, plasma assisted molecular beam epitaxy (PAMBE) has been used to achieve higher growth rates in GaN. A higher conductance aperture plate, combined with higher nitrogen flow and added pumping capacity, resulted in dramatically increased growth rates up to 8.4 μm/h using 34 sccm of N 2 while still maintaining acceptably low operating pressure. It was further discovered that argon could be added to the plasma gas to enhance growth rates up to 9.8 μm/h, which was achieved using 20 sccm of N 2 and 7.7 sccm Ar flows at 600 W radio frequency power, for which the standard deviation of thickness was just 2% over a full 2 in. diameter wafer. A remote Langmuir style probe employing the flux gauge was used to indirectly measure the relative ion content in the plasma. The use of argon dilution at low plasma pressures resulted in a dramatic reduction of the plasma ion current by more than half, while high plasma pressures suppressed ion content regardless of plasma gas chemistry. Moreover, different trends are apparent for the molecular and atomic nitrogen species generated by varying pressure and nitrogen composition in the plasma. Argon dilution resulted in nearly an order of magnitude achievable growth rate range from 1 μm/h to nearly 10 μm/h. Even for films grown at more than 6 μm/h, the surface morphology remained smooth showing clear atomic steps with root mean square roughness less than 1 nm. Due to the low vapor pressure of Si, Ge was explored as an alternative n-type dopant for high growth rate applications. Electron concentrations from 2.2 × 10 16 to 3.8 × 10 19 cm −3 were achieved in GaN using Ge doping, and unintentionally doped GaN films exhibited low background electron concentrations of just 1–2 × 10 15 cm −3 . The highest growth rates resulted in macroscopic surface features due to Ga cell spitting, which is an engineering challenge still to be addressed. Nonetheless, the

  7. Single inclusive spectra, Hanburg–Brown–Twiss and elliptic flow: A ...

    Indian Academy of Sciences (India)

    The constraints due to the measurements of the single particle inclusive spectra, the ... flow and HBT vs. the reaction plane with a hydro-motivated blast wave model. .... different mass particles allows the extraction of the elliptic component of the transverse ... Moreover, the details of the dependence of elliptic flow on particle.

  8. Evidence of population resistance to extreme low flows in a fluvial-dependent fish species

    Science.gov (United States)

    Katz, Rachel A.; Freeman, Mary C.

    2015-01-01

    Extreme low streamflows are natural disturbances to aquatic populations. Species in naturally intermittent streams display adaptations that enhance persistence during extreme events; however, the fate of populations in perennial streams during unprecedented low-flow periods is not well-understood. Biota requiring swift-flowing habitats may be especially vulnerable to flow reductions. We estimated the abundance and local survival of a native fluvial-dependent fish species (Etheostoma inscriptum) across 5 years encompassing historic low flows in a sixth-order southeastern USA perennial river. Based on capturemark-recapture data, the study shoal may have acted as a refuge during severe drought, with increased young-of-the-year (YOY) recruitment and occasionally high adult immigration. Contrary to expectations, summer and autumn survival rates (30 days) were not strongly depressed during low-flow periods, despite 25%-80% reductions in monthly discharge. Instead, YOY survival increased with lower minimum discharge and in response to small rain events that increased low-flow variability. Age-1+ fish showed the opposite pattern, with survival decreasing in response to increasing low-flow variability. Results from this population dynamics study of a small fish in a perennial river suggest that fluvial-dependent species can be resistant to extreme flow reductions through enhanced YOY recruitment and high survival

  9. Environmental flow assessments for transformed estuaries

    Science.gov (United States)

    Sun, Tao; Zhang, Heyue; Yang, Zhifeng; Yang, Wei

    2015-01-01

    Here, we propose an approach to environmental flow assessment that considers spatial pattern variations in potential habitats affected by river discharges and tidal currents in estuaries. The approach comprises four steps: identifying and simulating the distributions of critical environmental factors for habitats of typical species in an estuary; mapping of suitable habitats based on spatial distributions of the Habitat Suitability Index (HSI) and adopting the habitat aggregation index to understand fragmentation of potential suitable habitats; defining variations in water requirements for a certain species using trade-off analysis for different protection objectives; and recommending environmental flows in the estuary considering the compatibility and conflict of freshwater requirements for different species. This approach was tested using a case study in the Yellow River Estuary. Recommended environmental flows were determined by incorporating the requirements of four types of species into the assessments. Greater variability in freshwater inflows could be incorporated into the recommended environmental flows considering the adaptation of potential suitable habitats with variations in the flow regime. Environmental flow allocations should be conducted in conjunction with land use conflict management in estuaries. Based on the results presented here, the proposed approach offers flexible assessment of environmental flow for aquatic ecosystems that may be subject to future change.

  10. Coherence in a transmon qubit with epitaxial tunnel junctions

    Energy Technology Data Exchange (ETDEWEB)

    Weides, Martin [National Institute of Standards and Technology, Boulder, Colorado 80305 (United States); Karlsruhe Institute of Technology (Germany); Kline, Jeffrey; Vissers, Michael; Sandberg, Martin; Pappas, David [National Institute of Standards and Technology, Boulder, Colorado 80305 (United States); Wisbey, David [National Institute of Standards and Technology, Boulder, Colorado 80305 (United States); Saint Louis University, St. Louis, Missouri 63103 (United States); Johnson, Blake; Ohki, Thomas [Raytheon BBN Technologies, Cambridge, Massachusetts 02138 (United States)

    2012-07-01

    Transmon qubits based on epitaxial tunnel junctions and interdigitated capacitors were developed. This multileveled qubit, patterned by use of all-optical lithography, is a step towards scalable qubits with a high integration density. The relaxation time T{sub 1} is.72-.86 {mu} sec and the ensemble dephasing time T{sub 2}{sup *} is slightly larger than T{sub 1}. The dephasing time T{sub 2} (1.36 {mu} sec) is nearly energy-relaxation-limited. Qubit spectroscopy yields weaker level splitting than observed in qubits with amorphous barriers in equivalent-size junctions. The qubit's inferred microwave loss closely matches the weighted losses of the individual elements (junction, wiring dielectric, and interdigitated capacitor), determined by independent resonator measurements.

  11. High quality single atomic layer deposition of hexagonal boron nitride on single crystalline Rh(111) four-inch wafers

    Energy Technology Data Exchange (ETDEWEB)

    Hemmi, A.; Bernard, C.; Cun, H.; Roth, S.; Klöckner, M.; Kälin, T.; Osterwalder, J.; Greber, T., E-mail: greber@physik.uzh.ch [Physik-Institut, Universität Zürich, CH-8057 Zürich (Switzerland); Weinl, M.; Gsell, S.; Schreck, M. [Institut für Physik, Universität Augsburg, D-86135 Augsburg (Germany)

    2014-03-15

    The setup of an apparatus for chemical vapor deposition (CVD) of hexagonal boron nitride (h-BN) and its characterization on four-inch wafers in ultra high vacuum (UHV) environment is reported. It provides well-controlled preparation conditions, such as oxygen and argon plasma assisted cleaning and high temperature annealing. In situ characterization of a wafer is accomplished with target current spectroscopy. A piezo motor driven x-y stage allows measurements with a step size of 1 nm on the complete wafer. To benchmark the system performance, we investigated the growth of single layer h-BN on epitaxial Rh(111) thin films. A thorough analysis of the wafer was performed after cutting in atmosphere by low energy electron diffraction, scanning tunneling microscopy, and ultraviolet and X-ray photoelectron spectroscopies. The apparatus is located in a clean room environment and delivers high quality single layers of h-BN and thus grants access to large area UHV processed surfaces, which had been hitherto restricted to expensive, small area single crystal substrates. The facility is versatile enough for customization to other UHV-CVD processes, e.g., graphene on four-inch wafers.

  12. Modelling of subcritical free-surface flow over an inclined backward-facing step in a water channel

    Directory of Open Access Journals (Sweden)

    Šulc Jan

    2012-04-01

    Full Text Available The contribution deals with the experimental and numerical modelling of subcritical turbulent flow in an open channel with an inclined backward-facing step. The step with the inclination angle α = 20° was placed in the water channel of the cross-section 200×200 mm. Experiments were carried out by means of the PIV and LDA measuring techniques. Numerical simulations were executed by means of the commercial software ANSYS CFX 12.0. Numerical results obtained for twoequation models and EARSM turbulence model completed by transport equations for turbulent energy and specific dissipation rate were compared with experimental data. The modelling was concentrated particularly on the development of the flow separation and on the corresponding changes of free surface.

  13. Three-dimensional numerical modeling of turbulent single-phase and two-phase flow in curved pipes

    International Nuclear Information System (INIS)

    Xin, R.C.; Dong, Z.F.; Ebadian, M.A.

    1996-01-01

    In this study, three-dimensional single-phase and two-phase flows in curved pipes have been investigated numerically. Two different pipe configurations were computed. When the results of the single-phase flow simulation were compared with the experimental data, a fairly good agreement was achieved. A flow-developing process has been suggested in single-phase flow, in which the turbulence is stronger near the outer tube wall than near the inner tube wall. For two-phase flow, the Eulerian multiphase model was used to simulate the phase distribution of a three-dimensional gas-liquid bubble flow in curved pipe. The RNG/κ-ε turbulence model was used to determine the turbulence field. An inlet gas void fraction of 5 percent was simulated. The gas phase effects on the liquid phase flow velocity have been examined by comparing the results of single-phase flow and two-phase flow. The findings show that for the downward flow in the U bend, the gas concentrates at the inner portion of the cross section at φ = π/18 - π/6 in most cases. The results of the phase distribution simulation are compared to experimental observations qualitatively and topologically

  14. GaAs structures with InAs and As quantum dots produced in a single molecular beam epitaxy process

    International Nuclear Information System (INIS)

    Nevedomskii, V. N.; Bert, N. A.; Chaldyshev, V. V.; Preobrazhenskii, V. V.; Putyato, M. A.; Semyagin, B. R.

    2009-01-01

    Epitaxial GaAs layers containing InAs semiconductor quantum dots and As metal quantum dots are grown by molecular beam epitaxy. The InAs quantum dots are formed by the Stranskii-Krastanow mechanism, whereas the As quantum dots are self-assembled in the GaAs layer grown at low temperature with a large As excess. The microstructure of the samples is studied by transmission electron microscopy. It is established that the As metal quantum dots formed in the immediate vicinity of the InAs semiconductor quantum dots are larger in size than the As quantum dots formed far from the InAs quantum dots. This is apparently due to the effect of strain fields of the InAs quantum dots upon the self-assembling of As quantum dots. Another phenomenon apparently associated with local strains around the InAs quantum dots is the formation of V-like defects (stacking faults) during the overgrowth of the InAs quantum dots with the GaAs layer by low-temperature molecular beam epitaxy. Such defects have a profound effect on the self-assembling of As quantum dots. Specifically, on high-temperature annealing needed for the formation of large-sized As quantum dots by Ostwald ripening, the V-like defects bring about the dissolution of the As quantum dots in the vicinity of the defects. In this case, excess arsenic most probably diffuses towards the open surface of the sample via the channels of accelerated diffusion in the planes of stacking faults.

  15. Nanoporous Silica Templated HeteroEpitaxy: Final LDRD Report.

    Energy Technology Data Exchange (ETDEWEB)

    Burckel, David Bruce; Koleske, Daniel; Rowen, Adam M.; Williams, John Dalton; Fan, Hongyou; Arrington, Christian Lew

    2006-11-01

    This one-year out-of-the-box LDRD was focused on exploring the use of porous growth masks as a method for defect reduction during heteroepitaxial crystal growth. Initially our goal was to investigate porous silica as a growth mask, however, we expanded the scope of the research to include several other porous growth masks on various size scales, including mesoporous carbon, and the UV curable epoxy, SU-8. Use of SU-8 as a growth mask represents a new direction, unique in the extensive literature of patterned epitaxial growth, and presents the possibility of providing a single step growth mask. Additional research included investigation of pore viability via electrochemical deposition into high aspect ratio photoresist patterns and pilot work on using SU-8 as a DUV negative resist, another significant potential result. While the late start nature of this project pushed some of the initial research goals out of the time table, significant progress was made. 3 Acknowledgements This work was performed in part at the Nanoscience @ UNM facility, a member of the National Nanotechnology Infrastructure Network, which is supported by the National Science Foundation (Grant ECS 03-35765). Sandia is multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United Stated Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. This work was supported under the Sandia LDRD program (Project 99405). 4

  16. Growth, structural, and electrical properties of germanium-on-silicon heterostructure by molecular beam epitaxy

    Science.gov (United States)

    Ghosh, Aheli; Clavel, Michael B.; Nguyen, Peter D.; Meeker, Michael A.; Khodaparast, Giti A.; Bodnar, Robert J.; Hudait, Mantu K.

    2017-09-01

    The growth, morphological, and electrical properties of thin-film Ge grown by molecular beam epitaxy on Si using a two-step growth process were investigated. High-resolution x-ray diffraction analysis demonstrated ˜0.10% tensile-strained Ge epilayer, owing to the thermal expansion coefficient mismatch between Ge and Si, and negligible epilayer lattice tilt. Micro-Raman spectroscopic analysis corroborated the strain-state of the Ge thin-film. Cross-sectional transmission electron microscopy revealed the formation of 90° Lomer dislocation network at Ge/Si heterointerface, suggesting the rapid and complete relaxation of Ge epilayer during growth. Atomic force micrographs exhibited smooth surface morphology with surface roughness published Dit data for Ge MOS devices, as a function of threading dislocation density within the Ge layer. The results obtained were comparable with Ge MOS devices integrated on Si via alternative buffer schemes. This comprehensive study of directly-grown epitaxial Ge-on-Si provides a pathway for the development of Ge-based electronic devices on Si.

  17. Single-Camera-Based Method for Step Length Symmetry Measurement in Unconstrained Elderly Home Monitoring.

    Science.gov (United States)

    Cai, Xi; Han, Guang; Song, Xin; Wang, Jinkuan

    2017-11-01

    single-camera-based gait monitoring is unobtrusive, inexpensive, and easy-to-use to monitor daily gait of seniors in their homes. However, most studies require subjects to walk perpendicularly to camera's optical axis or along some specified routes, which limits its application in elderly home monitoring. To build unconstrained monitoring environments, we propose a method to measure step length symmetry ratio (a useful gait parameter representing gait symmetry without significant relationship with age) from unconstrained straight walking using a single camera, without strict restrictions on walking directions or routes. according to projective geometry theory, we first develop a calculation formula of step length ratio for the case of unconstrained straight-line walking. Then, to adapt to general cases, we propose to modify noncollinear footprints, and accordingly provide general procedure for step length ratio extraction from unconstrained straight walking. Our method achieves a mean absolute percentage error (MAPE) of 1.9547% for 15 subjects' normal and abnormal side-view gaits, and also obtains satisfactory MAPEs for non-side-view gaits (2.4026% for 45°-view gaits and 3.9721% for 30°-view gaits). The performance is much better than a well-established monocular gait measurement system suitable only for side-view gaits with a MAPE of 3.5538%. Independently of walking directions, our method can accurately estimate step length ratios from unconstrained straight walking. This demonstrates our method is applicable for elders' daily gait monitoring to provide valuable information for elderly health care, such as abnormal gait recognition, fall risk assessment, etc. single-camera-based gait monitoring is unobtrusive, inexpensive, and easy-to-use to monitor daily gait of seniors in their homes. However, most studies require subjects to walk perpendicularly to camera's optical axis or along some specified routes, which limits its application in elderly home monitoring

  18. Fabrication of Polydimethylsiloxane Microlenses Utilizing Hydrogel Shrinkage and a Single Molding Step

    Directory of Open Access Journals (Sweden)

    Bader Aldalali

    2014-05-01

    Full Text Available We report on polydimethlysiloxane (PDMS microlenses and microlens arrays on flat and curved substrates fabricated via a relatively simple process combining liquid-phase photopolymerization and a single molding step. The mold for the formation of the PDMS lenses is fabricated by photopolymerizing a polyacrylamide (PAAm pre-hydrogel. The shrinkage of PAAm after its polymerization forms concave lenses. The lenses are then transferred to PDMS by a single step molding to form PDMS microlens array on a flat substrate. The PAAm concave lenses are also transferred to PDMS and another flexible polymer, Solaris, to realize artificial compound eyes. The resultant microlenses and microlens arrays possess good uniformity and optical properties. The focal length of the lenses is inversely proportional to the shrinkage time. The microlens mold can also be rehydrated to change the focal length of the ultimate PDMS microlenses. The spherical aberration is 2.85 μm and the surface roughness is on the order of 204 nm. The microlenses can resolve 10.10 line pairs per mm (lp/mm and have an f-number range between f/2.9 and f/56.5. For the compound eye, the field of view is 113°.

  19. Development and evaluation of a single-step duplex PCR for simultaneous detection of Fasciola hepatica and Fasciola gigantica (family Fasciolidae, class Trematoda, phylum Platyhelminthes).

    Science.gov (United States)

    Le, Thanh Hoa; Nguyen, Khue Thi; Nguyen, Nga Thi Bich; Doan, Huong Thi Thanh; Le, Xuyen Thi Kim; Hoang, Chau Thi Minh; De, Nguyen Van

    2012-08-01

    A single-step multiplex PCR (here referred to as a duplex PCR) has been developed for simultaneous detection and diagnosis of Fasciola hepatica and F. gigantica. These species overlap in distribution in many countries of North and East Africa and Central and Southeast Asia and are similar in egg morphology, making identification from fecal samples difficult. Based on a comparative alignment of mitochondrial DNA (mtDNA) spanning the region of cox1-trnT-rrnL, two species-specific forward primers were designed, FHF (for F. hepatica) and FGF (for F. gigantica), and a single reverse primer, FHGR (common for both species). Conventional PCR followed by sequencing was applied using species-specific primer pairs to verify the specificity of primers and the identity of Fasciola DNA templates. Duplex PCR (using three primers) was used for testing with the DNA extracted from adult worms, miracidia, and eggs, producing amplicons of 1,031 bp for F. hepatica and 615 bp for F. gigantica. The duplex PCR failed to amplify from DNA of other common liver and intestinal trematodes, including two opisthorchiids, three heterophyids, an echinostomid, another fasciolid, and a taeniid cestode. The sensitivity assay showed that the duplex PCR limit of detection for each Fasciola species was between 0.012 ng and 0.006 ng DNA. Evaluation using DNA templates from 32 Fasciola samples (28 adults and 4 eggs) and from 25 field-collected stools of ruminants and humans revealed specific bands of the correct size and the presence of Fasciola species. This novel mtDNA duplex PCR is a sensitive and fast tool for accurate identification of Fasciola species in areas of distributional and zonal overlap.

  20. Development and Evaluation of a Single-Step Duplex PCR for Simultaneous Detection of Fasciola hepatica and Fasciola gigantica (Family Fasciolidae, Class Trematoda, Phylum Platyhelminthes)

    Science.gov (United States)

    Nguyen, Khue Thi; Nguyen, Nga Thi Bich; Doan, Huong Thi Thanh; Le, Xuyen Thi Kim; Hoang, Chau Thi Minh; De, Nguyen Van

    2012-01-01

    A single-step multiplex PCR (here referred to as a duplex PCR) has been developed for simultaneous detection and diagnosis of Fasciola hepatica and F. gigantica. These species overlap in distribution in many countries of North and East Africa and Central and Southeast Asia and are similar in egg morphology, making identification from fecal samples difficult. Based on a comparative alignment of mitochondrial DNA (mtDNA) spanning the region of cox1-trnT-rrnL, two species-specific forward primers were designed, FHF (for F. hepatica) and FGF (for F. gigantica), and a single reverse primer, FHGR (common for both species). Conventional PCR followed by sequencing was applied using species-specific primer pairs to verify the specificity of primers and the identity of Fasciola DNA templates. Duplex PCR (using three primers) was used for testing with the DNA extracted from adult worms, miracidia, and eggs, producing amplicons of 1,031 bp for F. hepatica and 615 bp for F. gigantica. The duplex PCR failed to amplify from DNA of other common liver and intestinal trematodes, including two opisthorchiids, three heterophyids, an echinostomid, another fasciolid, and a taeniid cestode. The sensitivity assay showed that the duplex PCR limit of detection for each Fasciola species was between 0.012 ng and 0.006 ng DNA. Evaluation using DNA templates from 32 Fasciola samples (28 adults and 4 eggs) and from 25 field-collected stools of ruminants and humans revealed specific bands of the correct size and the presence of Fasciola species. This novel mtDNA duplex PCR is a sensitive and fast tool for accurate identification of Fasciola species in areas of distributional and zonal overlap. PMID:22692744

  1. All-epitaxial Co{sub 2}FeSi/Ge/Co{sub 2}FeSi trilayers fabricated by Sn-induced low-temperature epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Kawano, M.; Ikawa, M.; Arima, K.; Yamada, S.; Kanashima, T.; Hamaya, K., E-mail: hamaya@ee.es.osaka-u.ac.jp [Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka 560-8531 (Japan)

    2016-01-28

    We demonstrate low-temperature growth of all-epitaxial Co{sub 2}FeSi/Ge/Co{sub 2}FeSi trilayer structures by developing Sn-induced surfactant-mediated molecular beam epitaxy (SMBE) of Ge on Co{sub 2}FeSi. Despite the growth of a semiconductor on a metal, we verify that the inserted Sn monolayers between Ge and Co{sub 2}FeSi enable to promote the 2D epitaxial growth of Ge up to 5 nm at a T{sub G} of 250 °C. An understanding of the mechanism of the Sn-induced SMBE leads to the achievement of all-epitaxial Co{sub 2}FeSi/Ge/Co{sub 2}FeSi trilayer structures with spin-valve-like magnetization reversals. This study will open a way for vertical-type and high-performance Ge-based spintronics devices.

  2. Magnetic properties of epitaxial bismuth ferrite-garnet mono- and bilayers

    International Nuclear Information System (INIS)

    Semuk, E.Yu.; Berzhansky, V.N.; Prokopov, A.R.; Shaposhnikov, A.N.; Karavainikov, A.V.; Salyuk, O.Yu.; Golub, V.O.

    2015-01-01

    Magnetic properties of Bi 1.5 Gd 1.5 Fe 4.5 Al 0.5 O 12 (84 nm) and Bi 2.8 Y 0.2 Fe 5 O 12 (180 nm) films epitaxially grown on gallium-gadolinium garnet (GGG) single crystal (111) substrate as well as Bi 1.5 Gd 1.5 Fe 4.5 Al 0.5 O 12 /Bi 2.8 Y 0.2 Fe 5 O 12 bilayer were investigated using ferromagnetic resonance technique. The mismatch of the lattice parameters of substrate and magnetic layers leads to formation of adaptive layers which affect on the high order anisotropy constant of the films but practically do not affect on uniaxial perpendicular magnetic anisotropy The magnetic properties of the bilayer film were explained in supposition of strong exchange coupling between magnetic layers taking into account film-film and film-substrate elastic interaction. - Highlights: • Magnetic parameters of epitaxial Bi-YIG films and bilayers on GGG substrate. • Adaptive layers affect on high order magnetic anisotropy. • Magnetic properties of bilayers are result of strong exchange interaction

  3. Groundwater flow simulation on local scale. Setting boundary conditions of groundwater flow simulation on site scale model in the step 4

    International Nuclear Information System (INIS)

    Onoe, Hironori; Saegusa, Hiromitsu; Ohyama, Takuya

    2007-03-01

    Japan Atomic Energy Agency has been conducting a wide range of geoscientific research in order to build a foundation for multidisciplinary studies of the deep geological environment as a basis of research and development for geological disposal of nuclear wastes. Ongoing geoscientific research programs include the Regional Hydrogeological Study (RHS) project and Mizunami Underground Research Laboratory (MIU) project in the Tono region, Gifu Prefecture. The main goal of these projects is to establish comprehensive techniques for investigation, analysis, and assessment of the deep geological at several spatial scales. The RHS project is a Local scale study for understanding the groundwater flow system from the recharge area to the discharge area. The Surface-based Investigation Phase of the MIU project is a Site scale study for understanding the deep geological environment immediately surrounding the MIU construction site using a multiphase, iterative approach. In this study, the hydrogeological modeling and groundwater flow simulation on Local scale were carried out in order to set boundary conditions of the Site scale model based on the data obtained from surface-based investigations in the Step4 in Site scale of the MIU project. As a result of the study, boundary conditions for groundwater flow simulation on the Site scale model of the Step4 could be obtained. (author)

  4. Laser doppler anemometry in single- and two-phase flows

    International Nuclear Information System (INIS)

    Durst, F.

    1976-01-01

    The present report gives an introduction into laser-Doppler anemometry and tries to explain the basic physical principles of this measuring technique. Moire fringe patterns are used in order to visually model LDA-signals and to explain the basic difference in optical systems. It is pointed out that LDA measurements in highly turbulent flows and in two-phase flows should be attempted with direction sensitive instruments only. Some of the optical systems developed by the author and his collaborators are introduced and their functioning in measurements is demonstrated. These measurements embrace investigations in a number of single-phase flows including flames. (orig.) [de

  5. Single-species versus dual-species probiotic supplementation as an emerging therapeutic strategy for obesity.

    Science.gov (United States)

    Karimi, G; Jamaluddin, R; Mohtarrudin, N; Ahmad, Z; Khazaai, H; Parvaneh, M

    2017-10-01

    Recent studies have reported beneficial effects of specific probiotics on obesity. However, the difference in the anti-obesity effects of probiotics as single species and dual species is still uncertain. Therefore, we aimed to compare the efficacy of single and dual species of bacteria on markers of obesity in high-fat diet-induced obese rats. A total of 40 male Sprague-Dawley rats were assigned to one of five groups of varying diets as follows: standard diet, high fat diet (HFD), HFD supplemented with Lactobacillus casei strain Shirota, HFD supplemented with Bifidobacterium longum and HFD supplemented with a mixture of these two bacterial species. After 15 weeks of supplementation, the animals were examined for changes in body weight, body fat, total count of bacteria in fecal, blood serum lipid profile, leptin, adiponectin and inflammatory biomarkers. Histological analysis of the liver and adipose tissue was performed and the hepatic mRNA expression levels of genes related to lipid metabolism were measured. It was found that probiotic supplementation of either B. longum or a mixture of B. longum and LcS bacteria significantly reduced weight and triglycerides in the HFD groups. Supplementation of B. longum bacteria showed better results in terms of modulating leptin level, fat mass, adipocyte size and lipoprotein lipase expression, as well as increasing adiponectin and peroxisome proliferator-activated receptors-γ expression compared to dual species of bacteria. No significant differences were observed in the total count of fecal bacteria, glucose and inflammatory biomarker levels between supplemented groups. B. longum supplementation in obesity was more beneficial in metabolic profile changes than the mixture species. Copyright © 2017 The Italian Society of Diabetology, the Italian Society for the Study of Atherosclerosis, the Italian Society of Human Nutrition, and the Department of Clinical Medicine and Surgery, Federico II University. Published by Elsevier B

  6. Structural and electronic properties of InN epitaxial layer grown on c-plane sapphire by chemical vapor deposition technique

    Energy Technology Data Exchange (ETDEWEB)

    Barick, Barun Kumar, E-mail: bkbarick@gmail.com; Prasad, Nivedita; Saroj, Rajendra Kumar; Dhar, Subhabrata [Department of Physics, Indian Institute of Technology, Bombay, Mumbai 400076 (India)

    2016-09-15

    Growth of InN epilayers on c-plane sapphire substrate by chemical vapor deposition technique using pure indium metal and ammonia as precursors has been systematically explored. It has been found that [0001] oriented indium nitride epitaxial layers with smooth surface morphology can be grown on c-plane sapphire substrates by optimizing the growth conditions. Bandgap of the film is observed to be Burstein–Moss shifted likely to be due to high background electron concentration. It has been found that the concentration of this unintentional doping decreases with the increase in the growth temperature and the ammonia flux. Epitaxial quality on the other hand deteriorates as the growth temperature increases. Moreover, the morphology of the deposited layer has been found to change from flat top islands to faceted mounds as the flow rate of ammonia increases. This phenomenon is expected to be related to the difference in surface termination character at low and high ammonia flow rates.

  7. Low temperature epitaxy of Ge-Sb-Te films on BaF{sub 2} (111) by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Thelander, E., E-mail: erik.thelander@iom-leipzig.de; Gerlach, J. W.; Ross, U.; Lotnyk, A.; Rauschenbach, B. [Leibniz-Institut für Oberflächenmodifizierung e.V., Leipzig 04318 (Germany)

    2014-12-01

    Pulsed laser deposition was employed to deposit epitaxial Ge{sub 2}Sb{sub 2}Te{sub 5}-layers on the (111) plane of BaF{sub 2} single crystal substrates. X-ray diffraction measurements show a process temperature window for epitaxial growth between 85 °C and 295 °C. No crystalline growth is observed for lower temperatures, whereas higher temperatures lead to strong desorption of the film constituents. The films are of hexagonal structure with lattice parameters consistent with existing models. X-ray pole figure measurements reveal that the films grow with one single out-of-plane crystal orientation, but rotational twin domains are present. The out-of-plane epitaxial relationship is determined to be Ge{sub 2}Sb{sub 2}Te{sub 5}(0001) || BaF{sub 2}(111), whereas the in-plane relationship is characterized by two directions, i.e., Ge{sub 2}Sb{sub 2}Te{sub 5} [-12-10] || BaF{sub 2}[1-10] and Ge{sub 2}Sb{sub 2}Te{sub 5}[1-210] || BaF{sub 2}[1-10]. Aberration-corrected high-resolution scanning transmission electron microscopy was used to resolve the local atomic structure and confirm the hexagonal structure of the films.

  8. Effect of epitaxial strain and lattice mismatch on magnetic and transport behaviors in metamagnetic FeRh thin films

    Science.gov (United States)

    Xie, Yali; Zhan, Qingfeng; Shang, Tian; Yang, Huali; Wang, Baomin; Tang, Jin; Li, Run-Wei

    2017-05-01

    We grew 80 nm FeRh films on different single crystals with various lattice constants. FeRh films on SrTiO3 (STO) and MgO substrates exhibit an epitaxial growth of 45° in-plane structure rotation. In contrast, FeRh on LaAlO3 (LAO) displays a mixed epitaxial growth of both 45° in-plane structure rotation and cube-on-cube relationships. Due to the different epitaxial growth strains and lattice mismatch values, the critical temperature for the magnetic phase transition of FeRh can be changed between 405 and 360 K. In addition, the external magnetic field can shift this critical temperature to low temperature in different rates for FeRh films grown on different substrates. The magnetoresistance appears a maximum value at different temperatures between 320 and 380 K for FeRh films grown on different substrates.

  9. Effect of epitaxial strain and lattice mismatch on magnetic and transport behaviors in metamagnetic FeRh thin films

    Directory of Open Access Journals (Sweden)

    Yali Xie

    2017-05-01

    Full Text Available We grew 80 nm FeRh films on different single crystals with various lattice constants. FeRh films on SrTiO3 (STO and MgO substrates exhibit an epitaxial growth of 45° in-plane structure rotation. In contrast, FeRh on LaAlO3 (LAO displays a mixed epitaxial growth of both 45° in-plane structure rotation and cube-on-cube relationships. Due to the different epitaxial growth strains and lattice mismatch values, the critical temperature for the magnetic phase transition of FeRh can be changed between 405 and 360 K. In addition, the external magnetic field can shift this critical temperature to low temperature in different rates for FeRh films grown on different substrates. The magnetoresistance appears a maximum value at different temperatures between 320 and 380 K for FeRh films grown on different substrates.

  10. Epitaxial growth and magnetic properties of Fe4-xMnxN thin films grown on MgO(0 0 1) substrates by molecular beam epitaxy

    Science.gov (United States)

    Anzai, Akihito; Takata, Fumiya; Gushi, Toshiki; Toko, Kaoru; Suemasu, Takashi

    2018-05-01

    Epitaxial Fe4-xMnxN (x = 0, 1, 2, 3, and 4) thin films were successfully grown on MgO(0 0 1) single-crystal substrates by molecular beam epitaxy, and their crystalline qualities and magnetic properties were investigated. It was found that the lattice constants of Fe4-xMnxN obtained from X-ray diffraction measurement increased with the Mn content. The ratio of the perpendicular lattice constant c to the in-plane lattice constant a of Fe4-xMnxN was found to be about 0.99 at x ⩾ 2. The magnetic properties evaluated using a vibrating sample magnetometer at room temperature revealed that all of the Fe4-xMnxN films exhibited ferromagnetic behavior regardless of the value of x. In addition, the saturation magnetization decreased non-linearly as the Mn content increased. Finally, FeMn3N and Mn4N exhibited perpendicular anisotropy and their uniaxial magnetic anisotropy energies were 2.2 × 105 and 7.5 × 105 erg/cm3, respectively.

  11. Site-selective substitutional doping with atomic precision on stepped Al (111) surface by single-atom manipulation.

    Science.gov (United States)

    Chen, Chang; Zhang, Jinhu; Dong, Guofeng; Shao, Hezhu; Ning, Bo-Yuan; Zhao, Li; Ning, Xi-Jing; Zhuang, Jun

    2014-01-01

    In fabrication of nano- and quantum devices, it is sometimes critical to position individual dopants at certain sites precisely to obtain the specific or enhanced functionalities. With first-principles simulations, we propose a method for substitutional doping of individual atom at a certain position on a stepped metal surface by single-atom manipulation. A selected atom at the step of Al (111) surface could be extracted vertically with an Al trimer-apex tip, and then the dopant atom will be positioned to this site. The details of the entire process including potential energy curves are given, which suggests the reliability of the proposed single-atom doping method.

  12. Effect of density step on stirring properties of a strain flow

    International Nuclear Information System (INIS)

    Gonzalez, M; Paranthoen, P

    2009-01-01

    The influence of steep density gradient on stirring properties of a strain flow is addressed by considering the problem in which an interface separating two regions with different constant densities is stabilized within a stagnation-point flow. The existence of an analytic solution for the two-dimensional incompressible flow field allows the exact derivation of the velocity gradient tensor and of parameters describing the local flow topology. Stirring properties are affected not only by vorticity production and jump of strain intensity at the interface, but also by rotation of strain principal axes resulting from anisotropy of pressure Hessian. The strain persistence parameter, which measures the respective effects of strain and effective rotation (vorticity plus rotation rate of strain basis), reveals a complex structure. In particular, for large values of the density ratio, it indicates dominating effective rotation in a restricted area past the interface. Information on flow structure derived from the Okubo-Weiss parameter, by contrast, is less detailed. The influence of the density step on stirring properties is assessed by the Lagrangian evolution of the gradient of a passive scalar. Even for a moderate density ratio, alignment of the scalar gradient and growth rate of its norm are deeply altered. Past the interface effective rotation indeed drives the scalar gradient to align with a direction determined by the local strain persistence parameter, away from the compressional strain direction. The jump of strain intensity at the interface, however, opposes the lessening effect of the latter mechanism on the growth rate of the scalar gradient norm and promotes the rise of the gradient.

  13. GaSb-based single-mode distributed feedback lasers for sensing (Conference Presentation)

    Science.gov (United States)

    Gupta, James A.; Bezinger, Andrew; Lapointe, Jean; Poitras, Daniel; Aers, Geof C.

    2017-02-01

    GaSb-based tunable single-mode diode lasers can enable rapid, highly-selective and highly-sensitive absorption spectroscopy systems for gas sensing. In this work, single-mode distributed feedback (DFB) laser diodes were developed for the detection of various trace gases in the 2-3.3um range, including CO2, CO, HF, H2S, H2O and CH4. The lasers were fabricated using an index-coupled grating process without epitaxial regrowth, making the process significantly less expensive than conventional DFB fabrication. The devices are based on InGaAsSb/AlGaAsSb separate confinement heterostructures grown on GaSb by molecular beam epitaxy. DFB lasers were produced using a two step etch process. Narrow ridge waveguides were first defined by optical lithography and etched into the semiconductor. Lateral gratings were then defined on both sides of the ridge using electron-beam lithography and etched to produce the index-grating. Effective index modeling was used to optimize the ridge width, etch depths and the grating pitch to ensure single-lateral-mode operation and adequate coupling strength. The effective index method was further used to simulate the DFB laser emission spectrum, based on a transfer matrix model for light transmission through the periodic structure. The fabricated lasers exhibit single-mode operation which is tunable through the absorption features of the various target gases by adjustment of the drive current. In addition to the established open-path sensing applications, these devices have great potential for optoelectronic integrated gas sensors, making use of integrated photodetectors and possibly on-chip Si photonics waveguide structures.

  14. Single mode step-index polymer optical fiber for humidity insensitive high temperature fiber Bragg grating sensors

    DEFF Research Database (Denmark)

    Woyessa, Getinet; Fasano, Andrea; Stefani, Alessio

    2016-01-01

    We have fabricated the first single-mode step-index and humidity insensitive polymer optical fiber operating in the 850 nm wavelength ranges. The step-index preform is fabricated using injection molding, which is an efficient method for cost effective, flexible and fast preparation of the fiber...... preform. The fabricated single-mode step-index (SI) polymer optical fiber (POF) has a 4.8µm core made from TOPAS grade 5013S-04 with a glass transition temperature of 134°C and a 150 µm cladding made from ZEONEX grade 480R with a glass transition temperature of 138°C. The key advantages of the proposed...... SIPOF are low water absorption, high operating temperature and chemical inertness to acids and bases and many polar solvents as compared to the conventional poly-methyl-methacrylate (PMMA) and polystyrene based POFs. In addition, the fiber Bragg grating writing time is short compared to microstructured...

  15. Physiological differentiation within a single-species biofilm fueled by serpentinization.

    Science.gov (United States)

    Brazelton, William J; Mehta, Mausmi P; Kelley, Deborah S; Baross, John A

    2011-01-01

    Carbonate chimneys at the Lost City hydrothermal field are coated in biofilms dominated by a single phylotype of archaea known as Lost City Methanosarcinales. In this study, we have detected surprising physiological complexity in single-species biofilms, which is typically indicative of multispecies biofilm communities. Multiple cell morphologies were visible within the biofilms by transmission electron microscopy, and some cells contained intracellular membranes that may facilitate methane oxidation. Both methane production and oxidation were detected at 70 to 80°C and pH 9 to 10 in samples containing the single-species biofilms. Both processes were stimulated by the presence of hydrogen (H(2)), indicating that methane production and oxidation are part of a syntrophic interaction. Metagenomic data included a sequence encoding AMP-forming acetyl coenzyme A synthetase, indicating that acetate may play a role in the methane-cycling syntrophy. A wide range of nitrogen fixation genes were also identified, many of which were likely acquired via lateral gene transfer (LGT). Our results indicate that cells within these single-species biofilms may have differentiated into multiple physiological roles to form multicellular communities linked by metabolic interactions and LGT. Communities similar to these Lost City biofilms are likely to have existed early in the evolution of life, and we discuss how the multicellular characteristics of ancient hydrogen-fueled biofilm communities could have stimulated ecological diversification, as well as unity of biochemistry, during the earliest stages of cellular evolution. Our previous work at the Lost City hydrothermal field has shown that its carbonate chimneys host microbial biofilms dominated by a single uncultivated "species" of archaea. In this paper, we integrate evidence from these previous studies with new data on the metabolic activity and cellular morphology of these archaeal biofilms. We conclude that the archaeal biofilm

  16. Synthesis of Si epitaxial layers from technical silicon by liquid-phase epitaxy method

    International Nuclear Information System (INIS)

    Ibragimov, Sh.I.; Saidov, A.S.; Sapaev, B.; Horvat, M.A.

    2004-01-01

    Full text: For today silicon is one of the most suitable materials because it is investigated, cheap and several its parameters are even just as good as those of connections A III B V . Disintegration of the USSR has led to the must difficult position of the industry of silicon instrument manufacture because of all industry of semiconductor silicon manufacture had generally concentrated in Ukraine. The importance of semiconductor silicon is rather great, because of, in opinion of expects, the nearest decade this material will dominate over not only on microelectronics but also in the majority of basic researches. Research of obtain of semiconductor silicon, power electronics and solar conversion, is topical interest of the science. In the work research of technological conditions of obtain and measurement of parameters of epitaxial layers obtained from technical silicon + stannum is resulted. Growth of silicon epitaxial layer with suitable parameters on thickness, cleanliness uniformity and structural perfection depends on the correct choice of condition of the growth and temperature. It is shown that in this case the growth occurring without preliminary clearing of materials (mix materials and substrates) at crystallization of epitaxial layer from technical silicon is accompanied by clearing of silicon film from majority of impurities order-of-magnitude. As starting raw material technical silicon of mark Kr.3 has been taken. By means of X-ray microanalyzer 'Jeol' JSM 5910 LV - Japan the quantitative analysis from the different points has been and from the different sides and from different points has been carried out. After corresponding chemical and mechanical processing the quantitative analysis of layer on chip has been carried out. Results of the quantitative analysis are shown. More effective clearing occurs that of the impurity atoms such as Al, P, Ca, Ti and Fe. The obtained material (epitaxial layer) has the parameters: specific resistance ρ∼0.1-4.0

  17. Reclamation of a molecular beam epitaxy system and conversion for oxide epitaxy

    International Nuclear Information System (INIS)

    Carver, Alexander G.; Henderson, Walter; Doolittle, W. Alan

    2008-01-01

    An early 1980s vintage molecular beam epitaxy system, a Varian Gen II system, originally used for HgCdTe epitaxy, was converted into a system capable of growing thin-film complex metal oxides. The nature of some of the alternative oxides requires a thorough cleaning and, in some cases, complete replacement of system components. Details are provided regarding the chemistry of the etchants used, safety requirements for properly handling, and disposal of large quantities of etchants and etch by-products, and components that can be reused versus components that require replacement are given. Following the given procedures, an ultimate base pressure of 2x10 -10 Torr was obtained. Films grown in the system after reclamation contained no evidence of previously present materials down to the detection limit of secondary ion mass spectrometry

  18. A comparison of fisheries biological reference points estimated from temperature-specific multi-species and single-species climate-enhanced stock assessment models

    Science.gov (United States)

    Holsman, Kirstin K.; Ianelli, James; Aydin, Kerim; Punt, André E.; Moffitt, Elizabeth A.

    2016-12-01

    Multi-species statistical catch at age models (MSCAA) can quantify interacting effects of climate and fisheries harvest on species populations, and evaluate management trade-offs for fisheries that target several species in a food web. We modified an existing MSCAA model to include temperature-specific growth and predation rates and applied the modified model to three fish species, walleye pollock (Gadus chalcogrammus), Pacific cod (Gadus macrocephalus) and arrowtooth flounder (Atheresthes stomias), from the eastern Bering Sea (USA). We fit the model to data from 1979 through 2012, with and without trophic interactions and temperature effects, and use projections to derive single- and multi-species biological reference points (BRP and MBRP, respectively) for fisheries management. The multi-species model achieved a higher over-all goodness of fit to the data (i.e. lower negative log-likelihood) for pollock and Pacific cod. Variability from water temperature typically resulted in 5-15% changes in spawning, survey, and total biomasses, but did not strongly impact recruitment estimates or mortality. Despite this, inclusion of temperature in projections did have a strong effect on BRPs, including recommended yield, which were higher in single-species models for Pacific cod and arrowtooth flounder that included temperature compared to the same models without temperature effects. While the temperature-driven multi-species model resulted in higher yield MBPRs for arrowtooth flounder than the same model without temperature, we did not observe the same patterns in multi-species models for pollock and Pacific cod, where variability between harvest scenarios and predation greatly exceeded temperature-driven variability in yield MBRPs. Annual predation on juvenile pollock (primarily cannibalism) in the multi-species model was 2-5 times the annual harvest of adult fish in the system, thus predation represents a strong control on population dynamics that exceeds temperature

  19. Self-assembled epitaxial NiSi2 nanowires on Si(001) by reactive deposition epitaxy

    International Nuclear Information System (INIS)

    Chen, S.Y.; Chen, L.J.

    2006-01-01

    Self-assembled epitaxial NiSi 2 nanowires have been fabricated on Si(001) by reactive deposition epitaxy (RDE). The RDE method promoted nanowire growth since it provides deposited atoms sufficient kinetic energy for movement on the Si surface during the growth of silicide islands. The twin-related interface between NiSi 2 and Si is directly related to the nanowire formation since it breaks the symmetry of the surface and leads to the asymmetric growth. The temperature of RDE was found to greatly influence the formation of nanowires. By RDE at 750 deg. C, a high density of NiSi 2 nanowires was formed with an average aspect ratio of 30

  20. Molecular beam epitaxy a short history

    CERN Document Server

    Orton, J W

    2015-01-01

    This volume describes the development of molecular beam epitaxy from its origins in the 1960s through to the present day. It begins with a short historical account of other methods of crystal growth, both bulk and epitaxial, to set the subject in context, emphasising the wide range of semiconductor materials employed. This is followed by an introduction to molecular beams and their use in the Stern-Gerlach experiment and the development of the microwave MASER.

  1. Droplet Epitaxy Image Contrast in Mirror Electron Microscopy

    Science.gov (United States)

    Kennedy, S. M.; Zheng, C. X.; Jesson, D. E.

    2017-01-01

    Image simulation methods are applied to interpret mirror electron microscopy (MEM) images obtained from a movie of GaAs droplet epitaxy. Cylindrical symmetry of structures grown by droplet epitaxy is assumed in the simulations which reproduce the main features of the experimental MEM image contrast, demonstrating that droplet epitaxy can be studied in real-time. It is therefore confirmed that an inner ring forms at the droplet contact line and an outer ring (or skirt) occurs outside the droplet periphery. We believe that MEM combined with image simulations will be increasingly used to study the formation and growth of quantum structures.

  2. The influence of electrohydrodynamic flow on the distribution of chemical species in positive corona

    Science.gov (United States)

    Pontiga, Francisco; Yanallah, Khelifa; Bouazza, R.; Chen, Junhong

    2015-09-01

    A numerical simulation of positive corona discharge in air, including the effect of electrohydrodynamic (EHD) motion of the gas, has been carried out. Air flow is assumed to be confined between two parallel plates, and corona discharge is produced around a thin wire, midway between the plates. Therefore, fluid dynamics equations, including electrical forces, have been solved together with the continuity equation of each neutral species. The plasma chemical model included 24 chemical reactions and ten neutral species, in addition to electrons and positive ions. The results of the simulation have shown that the influence of EHD flow on the spatial distributions of the species is quite different depending on the species. Hence, reactive species like atomic oxygen and atomic nitrogen are confined to the vicinity of the wire, and they are weakly affected by the EHD gas motion. In contrast, nitrogen oxides and ozone are efficiently dragged outside the active region of the corona discharge by the EHD flow. This work was supported by the Spanish Government Agency ``Ministerio de Ciencia e Innovación'' under Contract No. FIS2011-25161.

  3. Epitaxial growth of Ge-Sb-Te based phase change materials

    Energy Technology Data Exchange (ETDEWEB)

    Perumal, Karthick

    2013-07-30

    Ge-Sb-Te based phase change materials are considered as a prime candidate for optical and electrical data storage applications. With the application of an optical or electrical pulse, they can be reversibly switched between amorphous and crystalline state, thereby exhibiting large optical and electrical contrast between the two phases, which are then stored as information in the form of binary digits. Single crystalline growth is interesting from both the academic and industrial perspective, as ordered Ge-Sb-Te based metamaterials are known to exhibit switching at reduced energies. The present study deals with the epitaxial growth and analysis of Ge-Sb-Te based thin films. The first part of the thesis deals with the epitaxial growth of GeTe. Thin films of GeTe were grown on highly mismatched Si(111) and (001) substrates. On both the substrate orientations the film grows along [111] direction with an amorphous-to-crystalline transition observed during the initial stages of growth. The amorphous-to-crystalline transition was studied in-vivo using azimuthal reflection high-energy electron diffraction scans and grazing incidence X-ray diffraction. In the second part of the thesis epitaxy and characterization of Sb{sub 2}Te{sub 3} thin films are presented. The third part of the thesis deals with the epitaxy of ternary Ge-Sb-Te alloys. The composition of the films are shown to be highly dependent on growth temperatures and vary along the pseudobinary line from Sb{sub 2}Te{sub 3} to GeTe with increase in growth temperatures. A line-of-sight quadrupole mass spectrometer was used to reliably control the GeSbTe growth temperature. Growth was performed at different Ge, Sb, Te fluxes to study the compositional variation of the films. Incommensurate peaks are observed along the [111] direction by X-ray diffraction. The possibility of superstructural vacancy ordering along the [111] direction is discussed.

  4. Self-assembled magnetic nanostructures: Epitaxial Ni nanodots on TiN/Si (001) surface

    International Nuclear Information System (INIS)

    Zhou, H.; Narayan, J.

    2006-01-01

    Systems containing single domain magnetic particles are of great interest in view of their possible applications in ultrahigh-density data storage and magnetoelectronic devices. The focus of this work is plan-view STEM Z-contrast imaging study of the self-assembly growth of magnetic nickel nanostructures by domain matching epitaxy under Volmer-Weber (V-W) mode. The growth was carried out using pulsed laser deposition (PLD) technique with epitaxial titanium nitride film as the template, which was in turn grown on silicon (001) substrate via domain matching epitaxy. Our results show that the base of nickel islands is rectangular with the two principal edges parallel to two orthogonal directions, which is [110] and [1-bar 1 0] for [001] oriented growth. The size distribution of the islands is relatively narrow, comparable to that obtained from self-assembled islands grown under Stranski-Krastanow (S-K) mode. A certain degree of self-organization was also found in the lateral distribution of islands: island chains were observed along the directions close to , which are also the edge directions. The interaction between neighboring islands through the island edge-induced strain field is believed to be responsible for the size uniformity and the lateral ordering

  5. Suggestion of an average bidirectional flow tube for the measurement of single and two phase flow rate

    International Nuclear Information System (INIS)

    Yun, B.J.; Kang, K.H.; Euh, D.J.; Song, C.H.; Baek, W.P.

    2005-01-01

    Full text of publication follows: A new type instrumentation, average bidirectional flow tube, was suggested to apply to the single and two phase flow condition. Its working principle is similar to that of the Pitot tube. The pressure measured at the front of the flow tube is equal to the total pressure, while that measured at the rear tube is slightly less than static pressure of flow field due to the suction effect at the downstream. It gives an amplification effect of measured pressure difference at the flow tube. The proposed instrumentation has the characteristics that it could be applicable to low flow condition and measure bidirectional flow. It was tested in the air-water vertical and horizontal test sections which have 0.08 m inner diameter. The pressure difference across the average bidirectional flow tube, system pressure, average void fraction and injection phasic mass flow rates were measured on the measuring plane. Test was performed primarily in the single phase water and air flow condition to get the amplification factor k of the flow tube. The test was also performed in the air-water two phase flow condition and the covered flow regimes were bubbly, slug, churn turbulent flow in the vertical pipe and stratified flow in the horizontal pipe. In order to calculate the phasic and total mass flow rates from the measured differential pressure, Chexal drift-flux correlation and momentum exchange factor between the two phases were introduced. The test result shows that the suggested instrumentation with the measured void fraction, Chexal drift-flux correlation and Bosio and Malnes' momentum exchange model can predict the phasic mass flow rates within 15% error compared to the true values. A new momentum exchange model was also suggested and it gives up to 5% improvement of the measured mass flow rate compared to combination of Bosio and Malnes' momentum exchange model. (authors)

  6. Spin-injection into epitaxial graphene on silicon carbide

    Science.gov (United States)

    Konishi, Keita; Cui, Zhixin; Hiraki, Takahiro; Yoh, Kanji

    2013-09-01

    We have studied the spin-injection properties in epitaxial graphene on SiC. The ferromagnetic metal (FM) electrodes were composed of a tunnel barrier layer AlOx (14 Å) and a ferromagnetic Co (600 Å) layer. We have successfully observed the clear resistance peaks indicating spin-injection both in the "local" and "non-local" spin measurement set-ups at low temperatures. We estimate spin-injection rate of 1% based on "non-local" measurement and 1.6% based on local measurements. Spin-injection rate of multilayer graphene by mechanical exfoliation method was twice as high as single layer graphene on SiC based on "local" measurement.

  7. Dislocations limited electronic transport in hydride vapour phase epitaxy grown GaN templates: A word of caution for the epitaxial growers

    Energy Technology Data Exchange (ETDEWEB)

    Chatterjee, Abhishek, E-mail: cabhishek@rrcat.gov.in; Khamari, Shailesh K.; Kumar, R.; Dixit, V. K.; Oak, S. M.; Sharma, T. K., E-mail: tarun@rrcat.gov.in [Semiconductor Physics and Devices Laboratory, Raja Ramanna Centre for Advanced Technology, Indore 452013 (India)

    2015-01-12

    GaN templates grown by hydride vapour phase epitaxy (HVPE) and metal organic vapour phase epitaxy (MOVPE) techniques are compared through electronic transport measurements. Carrier concentration measured by Hall technique is about two orders larger than the values estimated by capacitance voltage method for HVPE templates. It is learnt that there exists a critical thickness of HVPE templates below which the transport properties of epitaxial layers grown on top of them are going to be severely limited by the density of charged dislocations lying at layer-substrate interface. On the contrary MOVPE grown templates are found to be free from such limitations.

  8. Growth of strained InGaAs/GaAs quantum wells and index guided injection lasers over nonplanar substrates by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Arent, D.J.; Galeuchet, Y.D.; Nilsson, S.; Meier, H.P.

    1990-01-01

    Strained InGaAs/GaAs quantum wells were grown on nonplanar substrates by molecular beam epitaxy and studied by scanning electron microscopy and low temperature spatially and spectrally resolved cathodoluminescence spectroscopy. For (100) ridges and grooves formed with (311)A sidewalls, almost complete removal of In from the strained quantum wells on the (311)A facet is observed. Corresponding increases of In content in the quantum wells grown on the (100) facets indicate that most if not all of the In is displaced from the (311)A facet via interplanar adatom migration. Ga adatom migration is also observed under our growth conditions such that quantum wells grown nominally near the critical layer thickness on structures less than ≅2.5 μm wide are no longer pseudomorphically strained, as detected by luminescence linewidth analysis. We present the first results of strained InGaAs/GaAs index guided injection lasers grown by single-step molecular beam epitaxy over nonplanar substrates and show that differences greater than 50 meV in the effective band gap of a 70 A quantum well can be achieved between the gain region and the nonabsorbing waveguide without relaxing the strain. Room temperature threshold currents as low as 6 mA for 4 μmx750 μm uncoated devices lasing continuously at a wavelength of 1.01 μm have been achieved

  9. Molecular Doping of the Hole-Transporting Layer for Efficient, Single-Step Deposited Colloidal Quantum Dot Photovoltaics

    KAUST Repository

    Kirmani, Ahmad R.

    2017-07-31

    Employment of thin perovskite shells and metal halides as surface-passivants for colloidal quantum dots (CQDs) have been important, recent developments in CQD optoelectronics. These have opened the route to single-step deposited high-performing CQD solar cells. These promising architectures employ a QD hole-transporting layer (HTL) whose intrinsically shallow Fermi level (EF) restricts band-bending at maximum power-point during solar cell operation limiting charge collection. Here, we demonstrate a generalized approach to effectively balance band-edge energy levels of the main CQD absorber and charge-transport layer for these high-performance solar cells. Briefly soaking the QD HTL in a solution of the metal-organic p-dopant, molybdenum tris(1-(trifluoroacetyl)-2-(trifluoromethyl)ethane-1,2-dithiolene), effectively deepens its Fermi level, resulting in enhanced band bending at the HTL:absorber junction. This blocks the back-flow of photo-generated electrons, leading to enhanced photocurrent and fill factor compared to undoped devices. We demonstrate 9.0% perovskite-shelled and 9.5% metal-halide-passivated CQD solar cells, both achieving ca. 10% relative enhancements over undoped baselines.

  10. Issues in measure-preserving three dimensional flow integrators: Self-adjointness, reversibility, and non-uniform time stepping

    International Nuclear Information System (INIS)

    Finn, John M.

    2015-01-01

    Properties of integration schemes for solenoidal fields in three dimensions are studied, with a focus on integrating magnetic field lines in a plasma using adaptive time stepping. It is shown that implicit midpoint (IM) and a scheme we call three-dimensional leapfrog (LF) can do a good job (in the sense of preserving KAM tori) of integrating fields that are reversible, or (for LF) have a “special divergence-free” (SDF) property. We review the notion of a self-adjoint scheme, showing that such schemes are at least second order accurate and can always be formed by composing an arbitrary scheme with its adjoint. We also review the concept of reversibility, showing that a reversible but not exactly volume-preserving scheme can lead to a fractal invariant measure in a chaotic region, although this property may not often be observable. We also show numerical results indicating that the IM and LF schemes can fail to preserve KAM tori when the reversibility property (and the SDF property for LF) of the field is broken. We discuss extensions to measure preserving flows, the integration of magnetic field lines in a plasma and the integration of rays for several plasma waves. The main new result of this paper relates to non-uniform time stepping for volume-preserving flows. We investigate two potential schemes, both based on the general method of Feng and Shang [Numer. Math. 71, 451 (1995)], in which the flow is integrated in split time steps, each Hamiltonian in two dimensions. The first scheme is an extension of the method of extended phase space, a well-proven method of symplectic integration with non-uniform time steps. This method is found not to work, and an explanation is given. The second method investigated is a method based on transformation to canonical variables for the two split-step Hamiltonian systems. This method, which is related to the method of non-canonical generating functions of Richardson and Finn [Plasma Phys. Controlled Fusion 54, 014004 (2012

  11. Chirality-Controlled Synthesis and Applications of Single-Wall Carbon Nanotubes.

    Science.gov (United States)

    Liu, Bilu; Wu, Fanqi; Gui, Hui; Zheng, Ming; Zhou, Chongwu

    2017-01-24

    Preparation of chirality-defined single-wall carbon nanotubes (SWCNTs) is the top challenge in the nanotube field. In recent years, great progress has been made toward preparing single-chirality SWCNTs through both direct controlled synthesis and postsynthesis separation approaches. Accordingly, the uses of single-chirality-dominated SWCNTs for various applications have emerged as a new front in nanotube research. In this Review, we review recent progress made in the chirality-controlled synthesis of SWCNTs, including metal-catalyst-free SWCNT cloning by vapor-phase epitaxy elongation of purified single-chirality nanotube seeds, chirality-specific growth of SWCNTs on bimetallic solid alloy catalysts, chirality-controlled synthesis of SWCNTs using bottom-up synthetic strategy from carbonaceous molecular end-cap precursors, etc. Recent major progresses in postsynthesis separation of single-chirality SWCNT species, as well as methods for chirality characterization of SWCNTs, are also highlighted. Moreover, we discuss some examples where single-chirality SWCNTs have shown clear advantages over SWCNTs with broad chirality distributions. We hope this review could inspire more research on the chirality-controlled preparation of SWCNTs and equally important inspire the use of single-chirality SWCNT samples for more fundamental studies and practical applications.

  12. Stepwise hydrogeological modeling and groundwater flow analysis on site scale (step 2)

    International Nuclear Information System (INIS)

    Onoe, Hironori; Saegusa, Hiromitsu; Endo, Yoshinobu

    2005-02-01

    One of the main goals of the Mizunami Underground Research Laboratory Project is to establish comprehensive techniques for investigation, analysis, and assessment of the deep geological environment. To achieve this goal, a variety of investigations are being conducted using an iterative approach. In this study, hydrogeological modeling and groundwater flow analyses have been carried out using the data from surface-based investigations at Step 2, in order to synthesize the investigation results, to evaluate the uncertainty of the hydrogeological model, and to specify items for further investigation. The results of this study are summarized as follows: 1) The understanding of groundwater flow is enhanced, and the hydrogeological model has renewed; 2) The importance of faults as major groundwater flow pathways has been demonstrated; 3) The importance of iterative approach as progress of investigations has been demonstrated; 4) Geological and hydraulic characteristics of faults with orientation of NNW, NW and NE were shown to be especially significant; 5) the hydraulic properties of the Lower Sparsely Fractured Domain (LSFD) significantly influence the groundwater flow. The main items specified for further investigations are summarized as follows: 1) Geological and hydraulic characteristics of NNW, NW and NE trending faults; 2) Hydraulic properties of the LSFD; 3) More accuracy upper and lateral boundary conditions of the site scale model. (author)

  13. An unstructured finite volume solver for two phase water/vapour flows based on an elliptic oriented fractional step method

    International Nuclear Information System (INIS)

    Mechitoua, N.; Boucker, M.; Lavieville, J.; Pigny, S.; Serre, G.

    2003-01-01

    Based on experience gained at EDF and Cea, a more general and robust 3-dimensional (3D) multiphase flow solver has been being currently developed for over three years. This solver, based on an elliptic oriented fractional step approach, is able to simulate multicomponent/multiphase flows. Discretization follows a 3D full unstructured finite volume approach, with a collocated arrangement of all variables. The non linear behaviour between pressure and volume fractions and a symmetric treatment of all fields are taken into account in the iterative procedure, within the time step. It greatly enforces the realizability of volume fractions (i.e 0 < α < 1), without artificial numerical needs. Applications to widespread test cases as static sedimentation, water hammer and phase separation are shown to assess the accuracy and the robustness of the flow solver in different flow conditions, encountered in nuclear reactors pipes. (authors)

  14. Modelling of flow and contaminant migration in single rock fractures

    International Nuclear Information System (INIS)

    Dahlblom, P.; Joensson, L.

    1990-03-01

    The report deals with flow and hydrodynamic dispersion of a nonreactive contaminant in a single, irregularly shaped fracture. The main purpose of the report is to describe the basis and development of a computational 'tool' for simulating the aperture geometry of a single fracture and the detailed flow in it. On the basis of this flow information further properties of the fracture can be studied. Some initial application to dispersion of a nonreactive contaminant are thus discussed. The spatial pattern of variation of the fracture aperture is considered as a two-dimensional stochastic process. A method for simulation of such a process is described. The stochastic properties can be chosen arbitrarily. It is assumed that the fracture aperture belongs to a log-normal distribution. For calculation of the flow pattern, the Navier-Stokes equations are simplified to describe low velocity and steady-state flow. These equations, and the continuity equation are integrated in the direction across the fracture plane. A stream function, which describes the integrated flow in the fracture, is defined. A second order partial differential equation, with respect to the stream function, is established and solved by the finite difference method. Isolines for the stream function define boundaries between channels with equal flow rates. The travel time for each channel can be calculated to achieve a measure of the dispersion. The impact of the aperture distribution on the ratio between the mass balance fracture aperture and the cubic law fracture aperture is shown by simple examples. (28 figs., 1 tab., 22 refs.)

  15. High quality GaAs single photon emitters on Si substrate

    International Nuclear Information System (INIS)

    Bietti, S.; Sanguinetti, S.; Cavigli, L.; Accanto, N.; Vinattieri, A.; Minari, S.; Abbarchi, M.; Isella, G.; Frigeri, C.; Gurioli, M.

    2013-01-01

    We describe a method for the direct epitaxial growth of a single photon emitter, based on GaAs quantum dots fabricated by droplet epitaxy, working at liquid nitrogen temperatures on Si substrates. The achievement of quantum photon statistics up to T=80 K is directly proved by antibunching in the second order correlation function as measured with a H anbury Brown and Twiss interferometer

  16. Influence of arsenic flow on the crystal structure of epitaxial GaAs grown at low temperatures on GaAs (100) and (111)A substrates

    Energy Technology Data Exchange (ETDEWEB)

    Galiev, G. B.; Klimov, E. A. [Russian Academy of Sciences, Institute of Ultra High Frequency Semiconductor Electronics (Russian Federation); Vasiliev, A. L.; Imamov, R. M. [Russian Academy of Sciences, Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,” (Russian Federation); Pushkarev, S. S., E-mail: s-s-e-r-p@mail.ru [Russian Academy of Sciences, Institute of Ultra High Frequency Semiconductor Electronics (Russian Federation); Trunkin, I. N. [National Research Centre “Kurchatov Institute” (Russian Federation); Maltsev, P. P. [Russian Academy of Sciences, Institute of Ultra High Frequency Semiconductor Electronics (Russian Federation)

    2017-01-15

    The influence of arsenic flow in a growth chamber on the crystal structure of GaAs grown by molecular-beam epitaxy at a temperature of 240°C on GaAs (100) and (111)A substrates has been investigated. The flow ratio γ of arsenic As4 and gallium was varied in the range from 16 to 50. GaAs films were either undoped, or homogeneously doped with silicon, or contained three equidistantly spaced silicon δ-layers. The structural quality of the annealed samples has been investigated by transmission electron microscopy. It is established for the first time that silicon δ-layers in “low-temperature” GaAs serve as formation centers of arsenic precipitates. Their average size, concentration, and spatial distribution are estimated. The dependence of the film structural quality on γ is analyzed. Regions 100–150 nm in size have been revealed in some samples and identified (by X-ray microanalysis) as pores. It is found that, in the entire range of γ under consideration, GaAs films on (111)A substrates have a poorer structural quality and become polycrystalline beginning with a thickness of 150–200 nm.

  17. MBE-grown Si and Si1−xGex quantum dots embedded within epitaxial Gd2O3 on Si(111) substrate for floating gate memory device

    International Nuclear Information System (INIS)

    Manna, S; Aluguri, R; Katiyar, A; Ray, S K; Das, S; Laha, A; Osten, H J

    2013-01-01

    Si and Si 1−x Ge x quantum dots embedded within epitaxial Gd 2 O 3 grown by molecular beam epitaxy have been studied for application in floating gate memory devices. The effect of interface traps and the role of quantum dots on the memory properties have been studied using frequency-dependent capacitance–voltage and conductance–voltage measurements. Multilayer quantum dot memory comprising four and five layers of Si quantum dots exhibits a superior memory window to that of single-layer quantum dot memory devices. It has also been observed that single-layer Si 1−x Ge x quantum dots show better memory characteristics than single-layer Si quantum dots. (paper)

  18. Lanthanum gallate substrates for epitaxial high-temperature superconducting thin films

    Science.gov (United States)

    Sandstrom, R. L.; Giess, E. A.; Gallagher, W. J.; Segmuller, A.; Cooper, E. I.

    1988-11-01

    It is demonstrated that lanthanum gallate (LaGaO3) has considerable potential as an electronic substrate material for high-temperature superconducting films. It provides a good lattice and thermal expansion match to YBa2Cu3O(7-x), can be grown in large crystal sizes, is compatible with high-temperature film processing, and has a reasonably low dielectric constant and low dielectric losses. Epitaxial YBa2Cu3O(7-x) films grown on LaGaO3 single-crystal substrates by three techniques have zero resistance between 87 and 91 K.

  19. Voluntary stepping behavior under single- and dual-task conditions in chronic stroke survivors: A comparison between the involved and uninvolved legs.

    Science.gov (United States)

    Melzer, Itshak; Goldring, Melissa; Melzer, Yehudit; Green, Elad; Tzedek, Irit

    2010-12-01

    If balance is lost, quick step execution can prevent falls. Research has shown that speed of voluntary stepping was able to predict future falls in old adults. The aim of the study was to investigate voluntary stepping behavior, as well as to compare timing and leg push-off force-time relation parameters of involved and uninvolved legs in stroke survivors during single- and dual-task conditions. We also aimed to compare timing and leg push-off force-time relation parameters between stroke survivors and healthy individuals in both task conditions. Ten stroke survivors performed a voluntary step execution test with their involved and uninvolved legs under two conditions: while focusing only on the stepping task and while a separate attention-demanding task was performed simultaneously. Temporal parameters related to the step time were measured including the duration of the step initiation phase, the preparatory phase, the swing phase, and the total step time. In addition, force-time parameters representing the push-off power during stepping were calculated from ground reaction data and compared with 10 healthy controls. The involved legs of stroke survivors had a significantly slower stepping time than uninvolved legs due to increased swing phase duration during both single- and dual-task conditions. For dual compared to single task, the stepping time increased significantly due to a significant increase in the duration of step initiation. In general, the force time parameters were significantly different in both legs of stroke survivors as compared to healthy controls, with no significant effect of dual compared with single-task conditions in both groups. The inability of stroke survivors to swing the involved leg quickly may be the most significant factor contributing to the large number of falls to the paretic side. The results suggest that stroke survivors were unable to rapidly produce muscle force in fast actions. This may be the mechanism of delayed execution

  20. Cellobiohydrolase 1 from Trichoderma reesei degrades cellulose in single cellobiose steps

    Science.gov (United States)

    Brady, Sonia K.; Sreelatha, Sarangapani; Feng, Yinnian; Chundawat, Shishir P. S.; Lang, Matthew J.

    2015-12-01

    Cellobiohydrolase 1 from Trichoderma reesei (TrCel7A) processively hydrolyses cellulose into cellobiose. Although enzymatic techniques have been established as promising tools in biofuel production, a clear understanding of the motor's mechanistic action has yet to be revealed. Here, we develop an optical tweezers-based single-molecule (SM) motility assay for precision tracking of TrCel7A. Direct observation of motility during degradation reveals processive runs and distinct steps on the scale of 1 nm. Our studies suggest TrCel7A is not mechanically limited, can work against 20 pN loads and speeds up when assisted. Temperature-dependent kinetic studies establish the energy requirements for the fundamental stepping cycle, which likely includes energy from glycosidic bonds and other sources. Through SM measurements of isolated TrCel7A domains, we determine that the catalytic domain alone is sufficient for processive motion, providing insight into TrCel7A's molecular motility mechanism.

  1. High sensitive quasi freestanding epitaxial graphene gas sensor on 6H-SiC

    NARCIS (Netherlands)

    Iezhokin, I.; Offermans, P.; Brongersma, S.H.; Giesbers, A.J.M.; Flipse, C.F.J.

    2013-01-01

    We have measured the electrical response to NO2, N2, NH3, and CO for epitaxial graphene and quasi freestanding epitaxial graphene on 6H-SiC substrates. Quasi freestanding epitaxial graphene shows a 6 fold increase in NO2 sensitivity compared to epitaxial graphene. Both samples show a sensitivity

  2. A dynamic performance model for redox-flow batteries involving soluble species

    International Nuclear Information System (INIS)

    Shah, A.A.; Watt-Smith, M.J.; Walsh, F.C.

    2008-01-01

    A transient modelling framework for a vanadium redox-flow battery (RFB) is developed and experiments covering a range of vanadium concentration and electrolyte flow rate are conducted. The two-dimensional model is based on a comprehensive description of mass, charge and momentum transport and conservation, and is combined with a global kinetic model for reactions involving vanadium species. The model is validated against the experimental data and is used to study the effects of variations in concentration, electrolyte flow rate and electrode porosity. Extensions to the model and future work are suggested

  3. CFD Simulation of Heat Transfer and Turbulent Fluid Flow over a Double Forward-Facing Step

    Directory of Open Access Journals (Sweden)

    Hussein Togun

    2013-01-01

    Full Text Available Heat transfer and turbulent water flow over a double forward-facing step were investigated numerically. The finite volume method was used to solve the corresponding continuity, momentum, and energy equations using the K-ε model. Three cases, corresponding to three different step heights, were investigated for Reynolds numbers ranging from 30,000 to 100,000 and temperatures ranging from 313 to 343 K. The bottom of the wall was heated, whereas the top was insulated. The results show that the Nusselt number increased with the Reynolds number and step height. The maximum Nusselt number was observed for case 3, with a Reynolds number of 100,000 and temperature of 343 K, occurring at the second step. The behavior of the Nusselt number was similar for all cases at a given Reynolds number and temperature. A recirculation zone was observed before and after the first and second steps in the contour maps of the velocity field. In addition, the results indicate that the coefficient pressure increased with increasing Reynolds number and step height. ANSYS FLUENT 14 (CFD software was employed to run the simulations.

  4. Junction Transport in Epitaxial Film Silicon Heterojunction Solar Cells: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Young, D. L.; Li, J. V.; Teplin, C. W.; Stradins, P.; Branz, H. M.

    2011-07-01

    We report our progress toward low-temperature HWCVD epitaxial film silicon solar cells on inexpensive seed layers, with a focus on the junction transport physics exhibited by our devices. Heterojunctions of i/p hydrogenated amorphous Si (a-Si) on our n-type epitaxial crystal Si on n++ Si wafers show space-charge-region recombination, tunneling or diffusive transport depending on both epitaxial Si quality and the applied forward voltage.

  5. Buffer-layer enhanced crystal growth of BaB6 (1 0 0) thin films on MgO (1 0 0) substrates by laser molecular beam epitaxy

    International Nuclear Information System (INIS)

    Kato, Yushi; Yamauchi, Ryosuke; Arai, Hideki; Tan, Geng; Tsuchimine, Nobuo; Kobayashi, Susumu; Saeki, Kazuhiko; Takezawa, Nobutaka; Mitsuhashi, Masahiko; Kaneko, Satoru; Yoshimoto, Mamoru

    2012-01-01

    Crystalline BaB 6 (1 0 0) thin films can be fabricated on MgO (1 0 0) substrates by inserting a 2-3 nm-thick epitaxial SrB 6 (1 0 0) buffer layer by pulsed laser deposition (PLD) in ultra-high vacuum (i.e., laser molecular beam epitaxy). Reflection high-energy electron diffraction and X-ray diffraction measurements indicated the heteroepitaxial structure of BaB 6 (1 0 0)/SrB 6 (1 0 0)/MgO (1 0 0) with the single domain of the epitaxial relationship. Conversely, BaB 6 thin films without the buffer layer were not epitaxial instead they developed as polycrystalline films with a random in-plane configuration and some impurity phases. As a result, the buffer layer is considered to greatly affect the initial growth of epitaxial BaB 6 thin films; therefore, in this study, buffering effects have been discussed. From the conventional four-probe measurement, it was observed that BaB 6 epitaxial thin films exhibit n-type semiconducting behavior with a resistivity of 2.90 × 10 -1 Ω cm at room temperature.

  6. Single-step controlled-NOT logic from any exchange interaction

    Science.gov (United States)

    Galiautdinov, Andrei

    2007-11-01

    A self-contained approach to studying the unitary evolution of coupled qubits is introduced, capable of addressing a variety of physical systems described by exchange Hamiltonians containing Rabi terms. The method automatically determines both the Weyl chamber steering trajectory and the accompanying local rotations. Particular attention is paid to the case of anisotropic exchange with tracking controls, which is solved analytically. It is shown that, if computational subspace is well isolated, any exchange interaction can always generate high fidelity, single-step controlled-NOT (CNOT) logic, provided that both qubits can be individually manipulated. The results are then applied to superconducting qubit architectures, for which several CNOT gate implementations are identified. The paper concludes with consideration of two CNOT gate designs having high efficiency and operating with no significant leakage to higher-lying noncomputational states.

  7. Lattice-Symmetry-Driven Epitaxy of Hierarchical GaN Nanotripods

    KAUST Repository

    Wang, Ping

    2017-01-18

    Lattice-symmetry-driven epitaxy of hierarchical GaN nanotripods is demonstrated. The nanotripods emerge on the top of hexagonal GaN nanowires, which are selectively grown on pillar-patterned GaN templates using molecular beam epitaxy. High-resolution transmission electron microscopy confirms that two kinds of lattice-symmetry, wurtzite (wz) and zinc-blende (zb), coexist in the GaN nanotripods. Periodical transformation between wz and zb drives the epitaxy of the hierarchical nanotripods with N-polarity. The zb-GaN is formed by the poor diffusion of adatoms, and it can be suppressed by improving the ability of the Ga adatoms to migrate as the growth temperature increased. This controllable epitaxy of hierarchical GaN nanotripods allows quantum dots to be located at the phase junctions of the nanotripods and nanowires, suggesting a new recipe for multichannel quantum devices.

  8. Epitaxial growth of Co(0 0 0 1)hcp/Fe(1 1 0)bcc magnetic bi-layer films on SrTiO3(1 1 1) substrates

    International Nuclear Information System (INIS)

    Ohtake, Mitsuru; Shikada, Kouhei; Kirino, Fumiyoshi; Futamoto, Masaaki

    2008-01-01

    Co(0 0 0 1) hcp /Fe(1 1 0) bcc epitaxial magnetic bi-layer films were successfully prepared on SrTiO 3 (1 1 1) substrates. The crystallographic properties of Co/Fe epitaxial magnetic bi-layer films were investigated. Fe(1 1 0) bcc soft magnetic layer grew epitaxially on SrTiO 3 (1 1 1) substrate with two type variants, Nishiyama-Wasserman and Kurdjumov-Sachs relationships. An hcp-Co single-crystal layer is obtained on Ru(0 0 0 1) hcp interlayer, while hcp-Co layer formed on Au(1 1 1) fcc or Ag(1 1 1) fcc interlayer is strained and may involve fcc-Co phase. It has been shown possible to prepare Co/Fe epitaxial magnetic bi-layer films which can be usable for patterned media application

  9. Recovery Act : Near-Single-Crystalline Photovoltaic Thin Films on Polycrystalline, Flexible Substrates

    Energy Technology Data Exchange (ETDEWEB)

    Venkat Selvamanickam; Alex Freundlich

    2010-11-29

    between the various layers. The defect density in GaAs was reduced by a factor of five by adding a step of in-situ deposition of Ge by MBE on the sputtered Ge prior to GaAs growth. We have investigated device design strategies that would support development of high-efficiency devices in presence of dislocation densities of 10^8 cm^-2 present in our epitaxial GaAs films. Results from modeling work show that with a proper emitter, base and doping selection, the modeled efficiency of a GaAs cells with dislocation densities of 10^9 and 10^8 cm^-2 could be increased from 1% and 7% to 11% and 17% respectively. Under AM0, this single junction GaAs solar cell, has optimized value of emitter and base thickness of around 0.7 and 1.7 microns respectively, to give a maximum efficiency of 24.2%. We have fabricated complete GaAs solar cells using our Ge films on metal substrates. Pattern resolution of few microns with well-defined grid line of 30 microns has been realized on few cm square flexible templates. The ability to grow single-crystalline-like Ge films on flexible, polycrystalline substrates by reel-to-reel tape processing now provides an immense potential to fabricate high quality III-V photovoltaics on flexible, inexpensive substrates.

  10. Single-Step Fabrication of High-Density Microdroplet Arrays of Low-Surface-Tension Liquids.

    Science.gov (United States)

    Feng, Wenqian; Li, Linxian; Du, Xin; Welle, Alexander; Levkin, Pavel A

    2016-04-01

    A facile approach for surface patterning that enables single-step fabrication of high-density arrays of low-surface-tension organic-liquid microdroplets is described. This approach enables miniaturized and parallel high-throughput screenings in organic solvents, formation of homogeneous arrays of hydrophobic nanoparticles, polymer micropads of specific shapes, and polymer microlens arrays. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Low-field multi-step magnetization of GaV4S8 single crystal

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, H; Kajinami, Y; Tabata, Y [Department of Materials Science and Engineering, Kyoto University, Kyoto 606-8501 (Japan); Ikeno, R; Motoyama, G; Kohara, T, E-mail: h.nakamura@ht8.ecs.kyoto-u.ac.j [Graduate School of Material Science, University of Hyogo, Kamigori, Hyogo 678-1297 (Japan)

    2009-01-01

    The magnetization process of single crystalline GaV4S8 including tetrahedral magnetic clusters was measured in the magnetically ordered state below T{sub C} {approx_equal} 13 K. Just below TC, steps were observed at very low fields of the order of 100 Oe, suggesting the competition of several intra- and inter-cluster interactions in a low energy range.

  12. Diffusion welding. [heat treatment of nickel alloys following single step vacuum welding process

    Science.gov (United States)

    Holko, K. H. (Inventor)

    1974-01-01

    Dispersion-strengthened nickel alloys are sanded on one side and chemically polished. This is followed by a single-step welding process wherein the polished surfaces are forced into intimate contact at 1,400 F for one hour in a vacuum. Diffusion, recrystallization, and grain growth across the original weld interface are obtained during postheating at 2,150 F for two hours in hydrogen.

  13. An Improved Single-Step Cloning Strategy Simplifies the Agrobacterium tumefaciens-Mediated Transformation (ATMT)-Based Gene-Disruption Method for Verticillium dahliae.

    Science.gov (United States)

    Wang, Sheng; Xing, Haiying; Hua, Chenlei; Guo, Hui-Shan; Zhang, Jie

    2016-06-01

    The soilborne fungal pathogen Verticillium dahliae infects a broad range of plant species to cause severe diseases. The availability of Verticillium genome sequences has provided opportunities for large-scale investigations of individual gene function in Verticillium strains using Agrobacterium tumefaciens-mediated transformation (ATMT)-based gene-disruption strategies. Traditional ATMT vectors require multiple cloning steps and elaborate characterization procedures to achieve successful gene replacement; thus, these vectors are not suitable for high-throughput ATMT-based gene deletion. Several advancements have been made that either involve simplification of the steps required for gene-deletion vector construction or increase the efficiency of the technique for rapid recombinant characterization. However, an ATMT binary vector that is both simple and efficient is still lacking. Here, we generated a USER-ATMT dual-selection (DS) binary vector, which combines both the advantages of the USER single-step cloning technique and the efficiency of the herpes simplex virus thymidine kinase negative-selection marker. Highly efficient deletion of three different genes in V. dahliae using the USER-ATMT-DS vector enabled verification that this newly-generated vector not only facilitates the cloning process but also simplifies the subsequent identification of fungal homologous recombinants. The results suggest that the USER-ATMT-DS vector is applicable for efficient gene deletion and suitable for large-scale gene deletion in V. dahliae.

  14. Lateral and vertical facies relationships of bedforms deposited by aggrading supercritical flows: From cyclic steps to humpback dunes

    Science.gov (United States)

    Lang, Jörg; Winsemann, Jutta

    2013-10-01

    The preservation of bedforms related to supercritical flows and hydraulic jumps is commonly considered to be rare in the geologic record, although these bedforms are known from a variety of depositional environments. This field-based study presents a detailed analysis of the sedimentary facies and stacking pattern of deposits of cyclic steps, chutes-and-pools, antidunes and humpback dunes from three-dimensional outcrops. The well exposed Middle Pleistocene successions from northern Germany comprise glacilacustrine ice-contact subaqueous fan and glacial lake-outburst flood deposits. The studied successions give new insights into the depositional architecture of bedforms related to supercritical flows and may serve as an analogue for other high-energy depositional environments such as fluvial settings, coarse-grained deltas or turbidite systems. Deposits of cyclic steps occur within the glacial lake-outburst flood succession and are characterised by lenticular scours infilled by gently to steeply dipping backsets. Cyclic steps formed due to acceleration and flow thinning when the glacial lake-outburst flood spilled over a push-moraine ridge. These bedforms are commonly laterally and vertically truncated and alternate with deposits of chutes-and-pools and antidunes. The subaqueous fan successions are dominated by laterally extensive sinusoidal waveforms, which are interpreted as deposits of aggrading stationary antidunes, which require quasi-steady flows at the lower limit of the supercritical flow stage and high rates of sedimentation. Humpback dunes are characterised by downflow divergent cross-stratification, displaying differentiation into topsets, foresets and bottomsets, and are interpreted as deposited at the transition from subcritical to supercritical flow conditions or vice versa. Gradual lateral and vertical transitions between humpback dunes and antidune deposits are very common. The absence of planar-parallel stratification in all studied successions

  15. Single-step colloidal quantum dot films for infrared solar harvesting

    KAUST Repository

    Kiani, Amirreza

    2016-11-01

    Semiconductors with bandgaps in the near- to mid-infrared can harvest solar light that is otherwise wasted by conventional single-junction solar cell architectures. In particular, colloidal quantum dots (CQDs) are promising materials since they are cost-effective, processed from solution, and have a bandgap that can be tuned into the infrared (IR) via the quantum size effect. These characteristics enable them to harvest the infrared portion of the solar spectrum to which silicon is transparent. To date, IR CQD solar cells have been made using a wasteful and complex sequential layer-by-layer process. Here, we demonstrate ∼1 eV bandgap solar-harvesting CQD films deposited in a single step. By engineering a fast-drying solvent mixture for metal iodide-capped CQDs, we deposited active layers greater than 200 nm in thickness having a mean roughness less than 1 nm. We integrated these films into infrared solar cells that are stable in air and exhibit power conversion efficiencies of 3.5% under illumination by the full solar spectrum, and 0.4% through a simulated silicon solar cell filter.

  16. Numerical Simulation Analysis of Five-Step Variable-Diameter Pipe with Solid-Liquid Two-Phase Abrasive Flow Polishing

    Science.gov (United States)

    Li, Junye; Zhang, Hengfu; Wu, Guiling; Hu, Jinglei; Liu, Yang; Sun, Zhihui

    2018-01-01

    In many areas of precision machining abrasive flow polishing technology has an important role. In order to study the influence of abrasive flow on the polishing effect of variable diameter parts, the fifth step variable diameter tube was taken as the research object to analyze the dynamic pressure and turbulent kinetic energy distribution of inlet velocity on the fifth-order variable diameter tube influences. Through comparative analysis, the abrasive flow polished variable diameter pipe parts have very effective and significant polishing effect and the higher the inlet speed, the more significant the polishing effect.

  17. Bridge flap technique as a single-step solution to mucogingival problems: A case series

    Directory of Open Access Journals (Sweden)

    Vivek Gupta

    2011-01-01

    Full Text Available Shallow vestibule, gingival recession, inadequate width of attached gingiva (AG and aberrant frenum pull are an array of mucogingival problems for which several independent and effective surgical solutions are reported in the literature. This case series reports the effectiveness of the bridge flap technique as a single-step surgical entity for increasing the depth of the vestibule, root coverage, increasing the width of the AG and solving the problem of abnormal frenum pull. Eight patients with 18 teeth altogether having Millers class I, II or III recession along with problems of shallow vestibule, inadequate width of AG and with or without frenum pull underwent this surgical procedure and were followed-up till 9 months post-operatively. The mean root coverage obtained was 55% and the mean average gain in width of the AG was 3.5 mm. The mean percentage gain in clinical attachment level was 41%. The bridge flap technique can be an effective single-step solution for the aforementioned mucogingival problems if present simultaneously in any case, and offers considerable advantages over other mucogingival surgical techniques in terms of simplicity, limited chair-time for the patient and the operator, single surgical intervention for manifold mucogingival problems and low morbidity because of the absence of palatal donor tissue.

  18. Scintillation efficiency and X-ray imaging with the RE-Doped LuAG thin films grown by liquid phase epitaxy

    International Nuclear Information System (INIS)

    Tous, Jan; Blazek, Karel; Kucera, Miroslav; Nikl, Martin; Mares, Jiri A.

    2012-01-01

    Very thin scintillator imaging plates have recently become of great interest. In high resolution X-ray radiography, very thin scintillator layers of about 5–20 μm are used to achieve 2D-spatial resolutions below 1 μm. Thin screens can be prepared by mechanical polishing from single crystals or by epitaxial growth on single-crystal substrates using the Liquid Phase Epitaxy technique (LPE). Other types of screens (e.g. deposited powder) do no reach required spatial resolutions. This work compares LPE-grown YAG and LuAG scintillator films doped with different rare earth ions (Cerium, Terbium and Europium). Two different fluxes were used in the LPE growth procedure. These LPE films are compared to YAG:Ce and LuAG:Ce screens made from bulk single crystals. Relative light yield was detected by a highly sensitive CCD camera. Scintillator screens were excited by a micro-focus X-ray source and the generated light was gathered by the CCD camera’s optical system. Scintillator 2D-homogeneity is examined in an X-ray imaging setup also using the CCD camera.

  19. Atomic layer epitaxy of ZnO for applications in molecular beam epitaxy growth of GaN and InGaN

    International Nuclear Information System (INIS)

    Godlewski, M.; Szczerbakow, A.; Ivanov, V. Yu.; Barski, A.; Goldys, E.M.

    2000-01-01

    We report the successful atomic layer epitaxy growth of thin ZnO films and their use for GaN and InGaN epitaxy. The properties of ZnO epilayers, obtained by four different procedures, are analysed, as well as of GaN and InGaN films grown on ZnO-coated Si and GaAs by MBE. (author)

  20. Incorporation of causative quantitative trait nucleotides in single-step GBLUP.

    Science.gov (United States)

    Fragomeni, Breno O; Lourenco, Daniela A L; Masuda, Yutaka; Legarra, Andres; Misztal, Ignacy

    2017-07-26

    Much effort is put into identifying causative quantitative trait nucleotides (QTN) in animal breeding, empowered by the availability of dense single nucleotide polymorphism (SNP) information. Genomic selection using traditional SNP information is easily implemented for any number of genotyped individuals using single-step genomic best linear unbiased predictor (ssGBLUP) with the algorithm for proven and young (APY). Our aim was to investigate whether ssGBLUP is useful for genomic prediction when some or all QTN are known. Simulations included 180,000 animals across 11 generations. Phenotypes were available for all animals in generations 6 to 10. Genotypes for 60,000 SNPs across 10 chromosomes were available for 29,000 individuals. The genetic variance was fully accounted for by 100 or 1000 biallelic QTN. Raw genomic relationship matrices (GRM) were computed from (a) unweighted SNPs, (b) unweighted SNPs and causative QTN, (c) SNPs and causative QTN weighted with results obtained with genome-wide association studies, (d) unweighted SNPs and causative QTN with simulated weights, (e) only unweighted causative QTN, (f-h) as in (b-d) but using only the top 10% causative QTN, and (i) using only causative QTN with simulated weight. Predictions were computed by pedigree-based BLUP (PBLUP) and ssGBLUP. Raw GRM were blended with 1 or 5% of the numerator relationship matrix, or 1% of the identity matrix. Inverses of GRM were obtained directly or with APY. Accuracy of breeding values for 5000 genotyped animals in the last generation with PBLUP was 0.32, and for ssGBLUP it increased to 0.49 with an unweighted GRM, 0.53 after adding unweighted QTN, 0.63 when QTN weights were estimated, and 0.89 when QTN weights were based on true effects known from the simulation. When the GRM was constructed from causative QTN only, accuracy was 0.95 and 0.99 with blending at 5 and 1%, respectively. Accuracies simulating 1000 QTN were generally lower, with a similar trend. Accuracies using the