WorldWideScience

Sample records for single-sided portable sensor

  1. Design and experimental validation of Unilateral Linear Halbach magnet arrays for single-sided magnetic resonance.

    Science.gov (United States)

    Bashyam, Ashvin; Li, Matthew; Cima, Michael J

    2018-07-01

    Single-sided NMR has the potential for broad utility and has found applications in healthcare, materials analysis, food quality assurance, and the oil and gas industry. These sensors require a remote, strong, uniform magnetic field to perform high sensitivity measurements. We demonstrate a new permanent magnet geometry, the Unilateral Linear Halbach, that combines design principles from "sweet-spot" and linear Halbach magnets to achieve this goal through more efficient use of magnetic flux. We perform sensitivity analysis using numerical simulations to produce a framework for Unilateral Linear Halbach design and assess tradeoffs between design parameters. Additionally, the use of hundreds of small, discrete magnets within the assembly allows for a tunable design, improved robustness to variability in magnetization strength, and increased safety during construction. Experimental validation using a prototype magnet shows close agreement with the simulated magnetic field. The Unilateral Linear Halbach magnet increases the sensitivity, portability, and versatility of single-sided NMR. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Spectroelectrochemical Sensing Based on Multimode Selectivity simultaneously Achievable in a Single Device. 11. Design and Evaluation of a Small Portable Sensor for the Determination of Ferrocyanide in Hanford Waste Samples

    International Nuclear Information System (INIS)

    Stegemiller, Michael L.; Heineman, William R.; Seliskar, Carl J.; Ridgway, Thomas H.; Bryan, Samuel A.; Hubler, Timothy L.; Sell, Richard L.

    2003-01-01

    Spectroelectrochemical sensing based on multimode selectivity simultaneously achievable in a single device. 11. Design and evaluation of a small portable sensor for the determination of ferrocyanide in Hanford waste samples

  3. Portable DMFC system with methanol sensor-less control

    Energy Technology Data Exchange (ETDEWEB)

    Chen, C.Y.; Liu, D.H.; Huang, C.L.; Chang, C.L. [Institute of Nuclear Energy Research (INER), No. 1000, Wunhua Rd., Jiaan Village, Longtan Township, Taoyuan County 32546 (China)

    2007-05-15

    This work develops a prototype 20 W portable DMFC by system integration of stack, condenser, methanol sensor-less control and start-up characteristics. The effects of these key components and control schemes on the performance are also discussed. To expedite the use of portable DMFC in electronic applications, the system utilizes a novel methanol sensor-less control method, providing improved fuel efficiency, durability, miniaturization and cost reduction. The operating characteristics of the DMFC stack are applied to control the fuel ejection time and period, enabling the system to continue operating even when the MEAs of the stack are deteriorated. The portable system is also designed with several features including water balance and quick start-up (in 5 min). Notably, the proposed system using methanol sensor-less control with injection of pure methanol can power the DVD player and notebook PC. The system specific energy and energy density following three days of operation are 362 Wh kg{sup -1} and 335 Wh L{sup -1}, respectively, which are better than those of lithium batteries ({proportional_to}150 Wh kg{sup -1} and {proportional_to}250 Wh L{sup -}). This good energy storage feature demonstrates that the portable DMFC is likely to be valuable in computer, communication and consumer electronic (3C) markets. (author)

  4. A portable optical human sweat sensor

    Science.gov (United States)

    Al-omari, Mahmoud; Liu, Gengchen; Mueller, Anja; Mock, Adam; Ghosh, Ruby N.; Smith, Kyle; Kaya, Tolga

    2014-11-01

    We describe the use of HNQ (2-hydroxy-1,4-naphthoquinone or Lawsone) as a potential sweat sensor material to detect the hydration levels of human beings. We have conducted optical measurements using both artificial and human sweat to validate our approach. We have determined that the dominant compound that affects HNQ absorbance in artificial sweat is sodium. The presence of lactate decreases the reactivity of HNQ while urea promotes more interactions of sodium and potassium ions with HNQ. The interactions between the hydroxyl group of HNQ and the artificial sweat components (salts, lactic acid, and urea) were investigated comprehensively. We have also proposed and developed a portable diode laser absorption sensor system that converts the absorbance at a particular wavelength range (at 455 ± 5 nm, where HNQ has an absorbance peak) into light intensity measurements via a photocell. The absorbance intensity values obtained from our portable sensor system agrees within 10.4% with measurements from a laboratory based ultraviolet-visible spectrometer. Findings of this research will provide significant information for researchers who are focusing on real-time, in-situ hydration level detection.

  5. One-port portable SAW sensor system

    Science.gov (United States)

    Hoa Nguyen, Vu; Peters, Oliver; Schnakenberg, Uwe

    2018-01-01

    A portable device using the SAW-based impedance sensor type based on one interdigital transducer simultaneously as SAW generator and sensor element (1-port approach) is introduced. As a novelty, the so far required expensive vector network analyzer (VNA) is replaced by a hand-held device to measure the impedance spectrum of the SAW sensor by RF-gain-phase meters. Hence, some of the best features from the conventional oscillator and VNA approaches are combined to develop a low-cost and self-contained measurement system, including signal in- and output ability for real-time measurements. The pivotal aspect of the portable system is the transfer of the sophisticated high frequency approach into a quasi-static one. This enables the use of simple lumped electronics without the need of impedance matching circuits. Proof-of-concept was carried out by measuring conductivities of phosphate-buffered solutions and viscosities of glycerin. Sensitivities for temperature of 0.3%/°C, viscosity of 10.1% (mPa s)-1 and conductivity of 0.5% (S cm)-1 have been determined, respectively, which are competitive results compared to the benchmark approaches.

  6. Comparative Noise Performance of Portable Broadband Sensor Emplacements

    Science.gov (United States)

    Sweet, Justin; Arias-Dotson, Eliana; Beaudoin, Bruce; Anderson, Kent

    2015-04-01

    IRIS PASSCAL has supported portable broadband seismic experiments for close to 30 years. During that time we have seen a variety of sensor vaults deployed. The vaults deployed fall into two broad categories, a PASSCAL style vault and a Flexible Array style vault. The PASSCAL vault is constructed of materials available in-county and it is the Principle Investigator (PI) who establishes the actual field deployed design. These vaults generally are a large barrel placed in a ~1 m deep hole. A small pier, decoupled from the barrel, is fashioned in the bottom of the vault (either cement, paving stone or tile) for the sensor placement. The sensor is insulated and protected. Finally the vault is sealed and buried under ~30 cm of soil. The Flexible Array vault is provided to PIs by the EarthScope program, offering a uniform portable vault for these deployments. The vault consists of a 30 cm diameter by 0.75 cm tall piece of plastic sewage pipe buried with ~10 cm of pipe above grade. A rubber membrane covers the bottom and cement was poured into the bottom, coupling the pier to the pipe. The vault is sealed and buried under ~30 cm of soil. Cost, logistics, and the availability of materials in-country are usually the deciding factors for PIs when choosing a vault design and frequently trades are made given available resources. Recently a third type of portable broadband installation, direct burial, is being tested. In this case a sensor designed for shallow, direct burial is installed in a ~20 cm diameter by ~1 m deep posthole. Direct burial installation costs are limited to the time and effort required to dig the posthole and emplace the sensor. Our initial analyses suggest that direct burial sensors perform as well and at times better than sensor in vaults on both horizontal and vertical channels across a range of periods (<1 s to 100 s). Moving towards an instrument pool composed entirely of direct burial sensors (some with integrated digitizers) could yield higher

  7. Least Squares Magnetic-Field Optimization for Portable Nuclear Magnetic Resonance Magnet Design

    International Nuclear Information System (INIS)

    Paulsen, Jeffrey L; Franck, John; Demas, Vasiliki; Bouchard, Louis-S.

    2008-01-01

    Single-sided and mobile nuclear magnetic resonance (NMR) sensors have the advantages of portability, low cost, and low power consumption compared to conventional high-field NMR and magnetic resonance imaging (MRI) systems. We present fast, flexible, and easy-to-implement target field algorithms for mobile NMR and MRI magnet design. The optimization finds a global optimum in a cost function that minimizes the error in the target magnetic field in the sense of least squares. When the technique is tested on a ring array of permanent-magnet elements, the solution matches the classical dipole Halbach solution. For a single-sided handheld NMR sensor, the algorithm yields a 640 G field homogeneous to 16,100 ppm across a 1.9 cc volume located 1.5 cm above the top of the magnets and homogeneous to 32,200 ppm over a 7.6 cc volume. This regime is adequate for MRI applications. We demonstrate that the homogeneous region can be continuously moved away from the sensor by rotating magnet rod elements, opening the way for NMR sensors with adjustable 'sensitive volumes'

  8. Development of a Portable Taste Sensor with a Lipid/Polymer Membrane

    Directory of Open Access Journals (Sweden)

    Kiyoshi Toko

    2013-01-01

    Full Text Available We have developed a new portable taste sensor with a lipid/polymer membrane and conducted experiments to evaluate the sensor’s performance. The fabricated sensor consists of a taste sensor chip (40 mm × 26 mm × 2.2 mm with working and reference electrodes and a portable sensor device (80 mm × 25 mm × 20 mm. The working electrode consists of a taste-sensing site comprising a poly(hydroxyethylmethacrylate (pHEMA hydrogel layer with KCl as the electrolyte layer and a lipid/polymer membrane as the taste sensing element. The reference electrode comprises a polyvinyl chloride (PVC membrane layer with a small hole and a pHEMA layer with KCl. The whole device is the size of a USB memory stick, making it suitable for portable use. The sensor’s response to tannic acid as the standard astringency substance showed good accuracy and reproducibility, and was comparable with the performance of a commercially available taste sensing system. Thus, it is possible for this sensor to be used for in-field evaluations and it can make a significant contribution to the food industry, as well as in various fields of research.

  9. One-sided muon tomography - A portable method for imaging critical infrastructure with a single muon detector

    Energy Technology Data Exchange (ETDEWEB)

    Boniface, K., E-mail: bonifak@mcmaster.ca [McMaster Univ., Hamilton, Ontario (Canada); Jonkmans, G. [Defence R& D Canada, Centre for Security Science, Ottawa, Ontario (Canada); Anghel, V.; Erlandson, A.; Thompson, M.; Livingstone, S. [Canadian Nuclear Laboratories, Chalk River, Ontario (Canada)

    2014-07-01

    High-energy muons generated from cosmic-ray particle showers have been shown to exhibit properties ideal for imaging the interior of large structures. This paper explores the possibility of using a single portable muon detector in conjunction with image reconstruction methods used in nuclear medicine to reconstruct a 3D image of the interior of man-made large structures such as the Zero Energy Deuterium (ZED-2) research reactor at Atomic Energy of Canada Ltd (AECL) Chalk River Laboratories (CRL). The ZED-2 reactor core and muon detector arrangement are modeled in GEANT4 and measurements of the resultant muon throughput and angular distribution at several angles of rotation around the reactor are generated. Statistical analysis is then performed on these measurements based on the well-defined flux and angular distribution of muons expected near the surface of the earth. The results of this analysis are shown to produce reconstructed images of the spatial distribution of nuclear fuel within the core for multiple fuel configurations. This “one-sided tomography” concept is a possible candidate for examining the internal structure of larger critical facilities, for example the Fukushima Daiichi power plant where the integrity of the containment infrastructure and the location of the reactor fuel is unknown. (author)

  10. Development of a portable heavy-water leak sensor based on laser absorption spectroscopy

    International Nuclear Information System (INIS)

    Lee, Lim; Park, Hyunmin; Kim, Taek-Soo; Kim, Minho; Jeong, Do-Young

    2016-01-01

    Highlights: • We developed a compact and portable laser sensor for a detection of heavy water leakage. • The sensor is wearable and also easy to use to search for the leak point. • It is sensitive enough to find invisible very tiny leaks. - Abstract: A compact and portable leak sensor based on cavity enhanced absorption spectroscopy has been newly developed for a detection of heavy water leakage which may happen in the facilities using heavy water such as pressurized heavy water reactor (PHWR). The developed portable sensor is suitable as an individual instrument for the measuring leak rate and finding the leak location because it is sufficiently compact in size and weight and operated by using an internal battery. In the performance test, the minimum detectable leak rate was estimated as 0.05 g/day from the calibration curve. This new sensor is expected to be a reliable and promising device for the detection of heavy water leakage since it has advantages on real-time monitoring and early detection for nuclear safety.

  11. UXO Discrimination Using Vehicle Towed and Man Portable Sensor Data Collected at Camp Beale, California

    Science.gov (United States)

    2011-11-01

    UXO Discrimination Using Vehicle Towed and Man Portable Sensor Data Collected at Camp Beale, California Len Pasion , Laurens Beran, Stephen Billings...PORTABLE SENSOR DATA COLLECTED AT CAMP BEALE, CALIFORNIA LEN PASION Sky Research 112A 2386 East Mall Vancouver, BC V6T1Z3 CANADA (604) 221

  12. Breath acetone monitoring by portable Si:WO3 gas sensors

    International Nuclear Information System (INIS)

    Righettoni, Marco; Tricoli, Antonio; Gass, Samuel; Schmid, Alex; Amann, Anton; Pratsinis, Sotiris E.

    2012-01-01

    Highlights: ► Portable sensors were developed and tested for monitoring acetone in the human breath. ► Acetone concentrations down to 20 ppb were measured with short response times ( 3 nanostructured films was developed. The chamber volume was miniaturized while reaction-limited and transport-limited gas flow rates were identified and sensing temperatures were optimized resulting in a low detection limit of acetone (∼20 ppb) with short response (10–15 s) and recovery times (35–70 s). Furthermore, the sensor signal (response) was robust against variations of the exhaled breath flow rate facilitating application of these sensors at realistic relative humidities (80–90%) as in the human breath. The acetone content in the breath of test persons was monitored continuously and compared to that of state-of-the-art proton transfer reaction mass spectrometry (PTR-MS). Such portable devices can accurately track breath acetone concentration to become an alternative to more elaborate breath analysis techniques.

  13. Single-sided magnetic resonance profiling in biological and materials science.

    Science.gov (United States)

    Danieli, Ernesto; Blümich, Bernhard

    2013-04-01

    Single-sided NMR was inspired by the oil industry that strived to improve the performance of well-logging tools to measure the properties of fluids confined downhole. This unconventional way of implementing NMR, in which stray magnetic and radio frequency fields are used to recover information of arbitrarily large objects placed outside the magnet, motivated the development of handheld NMR sensors. These devices have moved the technique to different scientific disciplines. The current work gives a review of the most relevant magnets and methodologies developed to generate NMR information from spatially localized regions of samples placed in close proximity to the sensors. When carried out systematically, such measurements lead to 'single-sided depth profiles' or one-dimensional images. This paper presents recent and most relevant applications as well as future perspectives of this growing branch of MRI. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Magnetic resonance elastometry using a single-sided permanent magnet

    International Nuclear Information System (INIS)

    Tan, Carl S; Marble, Andrew E; Ono, Yuu

    2012-01-01

    In this paper, we describe a magnetic resonance method of measuring material elasticity using a single-sided magnet with a permanent static field gradient. This method encodes sample velocity in a reciprocal space using Hahn spin-echoes with variable timing. The experimental results show a strong correlation between magnetic resonance signal attenuation and elasticity when an oscillating force is applied on the sample. This relationship in turn provides us with information about the displacement velocity experienced by the sample, which is inversely proportional to Young's modulus. The proposed method shows promise in offering a portable and cost-effective magnetic resonance elastography system. (paper)

  15. Single-sided NMR

    CERN Document Server

    Casanova, Federico; Blümich, Bernhard

    2011-01-01

    Single-Sided NMR describes the design of the first functioning single-sided tomograph, the related measurement methods, and a number of applications. One of the key advantages to this method is the speed at which the images are obtained.

  16. Portable reconfigurable line sensor (PRLS) and technology transfer

    International Nuclear Information System (INIS)

    MacKenzie, D.P.; Buckle, T.H.; Blattman, D.A.

    1993-01-01

    The Portable Reconfigurable Line Sensor (PRLS) is a bistatic, pulsed-Doppler, microwave intrusion detection system developed at Sandia National Laboratories for the US Air Force. The PRLS is rapidly and easily deployed, and can detect intruders ranging from a slow creeping intruder to a high speed vehicle. The system has a sharply defined detection zone and will not falsely alarm on nearby traffic. Unlike most microwave sensors, the PRLS requires no alignment or calibration. Its portability, battery operation, ease of setup, and RF alarm reporting capability make it an excellent choice for perimeter, portal, and gap-filler applications in the important new field of rapidly-deployable sensor systems. In October 1992, the US Air Force and Racon, Inc., entered into a Cooperative Research and Development Agreement (CRADA) to commercialize the PRLS, jointly sharing government and industry resources. The Air Force brings the user's perspective and requirements to the cooperative effort. Sandia, serving as the technical arm of the Air Force, adds the actual PRLS technology to the joint effort, and provides security systems and radar development expertise. Racon puts the Air Force requirements and Sandia technology together into a commercial product, making the system meet important commercial manufacturing constraints. The result is a true ''win-win'' situation, with reduced government investment during the commercial development of the PRLS, and industry access to technology not otherwise available

  17. A Power-Frequency Electric Field Sensor for Portable Measurement.

    Science.gov (United States)

    Xiao, Dongping; Ma, Qichao; Xie, Yutong; Zheng, Qi; Zhang, Zhanlong

    2018-03-31

    In this paper, a new type of electric field sensor is proposed for the health and safety protection of inspection staff in high-voltage environments. Compared with the traditional power frequency electric field measurement instruments, the portable instrument has some special performance requirements and, thus, a new kind of double spherical shell sensor is presented. First, the mathematical relationships between the induced voltage of the sensor, the output voltage of the measurement circuit, and the original electric field in free space are deduced theoretically. These equations show the principle of the proposed sensor to measure the electric field and the effect factors of the measurement. Next, the characteristics of the sensor are analyzed through simulation. The simulation results are in good agreement with the theoretical analysis. The influencing rules of the size and material of the sensor on the measurement results are summarized. Then, the proposed sensor and the matching measurement system are used in a physical experiment. After calibration, the error of the measurement system is discussed. Lastly, the directional characteristic of the proposed sensor is experimentally tested.

  18. Side-emitting fiber optic position sensor

    Science.gov (United States)

    Weiss, Jonathan D [Albuquerque, NM

    2008-02-12

    A side-emitting fiber optic position sensor and method of determining an unknown position of an object by using the sensor. In one embodiment, a concentrated beam of light source illuminates the side of a side-emitting fiber optic at an unknown axial position along the fiber's length. Some of this side-illuminated light is in-scattered into the fiber and captured. As the captured light is guided down the fiber, its intensity decreases due to loss from side-emission away from the fiber and from bulk absorption within the fiber. By measuring the intensity of light emitted from one (or both) ends of the fiber with a photodetector(s), the axial position of the light source is determined by comparing the photodetector's signal to a calibrated response curve, look-up table, or by using a mathematical model. Alternatively, the side-emitting fiber is illuminated at one end, while a photodetector measures the intensity of light emitted from the side of the fiber, at an unknown position. As the photodetector moves further away from the illuminated end, the detector's signal strength decreases due to loss from side-emission and/or bulk absorption. As before, the detector's signal is correlated to a unique position along the fiber.

  19. Breath acetone monitoring by portable Si:WO3 gas sensors

    Science.gov (United States)

    Righettoni, Marco; Tricoli, Antonio; Gass, Samuel; Schmid, Alex; Amann, Anton; Pratsinis, Sotiris E.

    2013-01-01

    Breath analysis has the potential for early stage detection and monitoring of illnesses to drastically reduce the corresponding medical diagnostic costs and improve the quality of life of patients suffering from chronic illnesses. In particular, the detection of acetone in the human breath is promising for non-invasive diagnosis and painless monitoring of diabetes (no finger pricking). Here, a portable acetone sensor consisting of flame-deposited and in situ annealed, Si-doped epsilon-WO3 nanostructured films was developed. The chamber volume was miniaturized while reaction-limited and transport-limited gas flow rates were identified and sensing temperatures were optimized resulting in a low detection limit of acetone (~20 ppb) with short response (10–15 s) and recovery times (35–70 s). Furthermore, the sensor signal (response) was robust against variations of the exhaled breath flow rate facilitating application of these sensors at realistic relative humidities (80–90%) as in the human breath. The acetone content in the breath of test persons was monitored continuously and compared to that of state-of-the-art proton transfer reaction mass spectrometry (PTR-MS). Such portable devices can accurately track breath acetone concentration to become an alternative to more elaborate breath analysis techniques. PMID:22790702

  20. A High-Performance Portable Transient Electro-Magnetic Sensor for Unexploded Ordnance Detection.

    Science.gov (United States)

    Wang, Haofeng; Chen, Shudong; Zhang, Shuang; Yuan, Zhiwen; Zhang, Haiyang; Fang, Dong; Zhu, Jun

    2017-11-17

    Portable transient electromagnetic (TEM) systems can be well adapted to various terrains, including mountainous, woodland, and other complex terrains. They are widely used for the detection of unexploded ordnance (UXO). As the core component of the portable TEM system, the sensor is constructed with a transmitting coil and a receiving coil. Based on the primary field of the transmitting coil and internal noise of the receiving coil, the design and testing of such a sensor is described in detail. Results indicate that the primary field of the transmitting coil depends on the diameter, mass, and power of the coil. A higher mass-power product and a larger diameter causes a stronger primary field. Reducing the number of turns and increasing the clamp voltage reduces the switch-off time of the transmitting current effectively. Increasing the cross-section of the wire reduces the power consumption, but greatly increases the coil's weight. The study of the receiving coil shows that the internal noise of the sensor is dominated by the thermal noise of the damping resistor. Reducing the bandwidth of the system and increasing the size of the coil reduces the internal noise effectively. The cross-sectional area and the distance between the sections of the coil have little effect on the internal noise. A less damped state can effectively reduce signal distortion. Finally, a portable TEM sensor with both a transmitting coil (constructed with a diameter, number of turns, and transmitting current of 0.5 m, 30, and 5 A, respectively) and a receiving coil (constructed with a length and resonant frequency of 5.6 cm and 50 kHz, respectively) was built. The agreement between experimental and calculated results confirms the theory used in the sensor design. The responses of an 82 mm mortar shell at different distances were measured and inverted by the differential evolution (DE) algorithm to verify system performance. Results show that the sensor designed in this study can not only

  1. A High-Performance Portable Transient Electro-Magnetic Sensor for Unexploded Ordnance Detection

    Directory of Open Access Journals (Sweden)

    Haofeng Wang

    2017-11-01

    Full Text Available Portable transient electromagnetic (TEM systems can be well adapted to various terrains, including mountainous, woodland, and other complex terrains. They are widely used for the detection of unexploded ordnance (UXO. As the core component of the portable TEM system, the sensor is constructed with a transmitting coil and a receiving coil. Based on the primary field of the transmitting coil and internal noise of the receiving coil, the design and testing of such a sensor is described in detail. Results indicate that the primary field of the transmitting coil depends on the diameter, mass, and power of the coil. A higher mass–power product and a larger diameter causes a stronger primary field. Reducing the number of turns and increasing the clamp voltage reduces the switch-off time of the transmitting current effectively. Increasing the cross-section of the wire reduces the power consumption, but greatly increases the coil’s weight. The study of the receiving coil shows that the internal noise of the sensor is dominated by the thermal noise of the damping resistor. Reducing the bandwidth of the system and increasing the size of the coil reduces the internal noise effectively. The cross-sectional area and the distance between the sections of the coil have little effect on the internal noise. A less damped state can effectively reduce signal distortion. Finally, a portable TEM sensor with both a transmitting coil (constructed with a diameter, number of turns, and transmitting current of 0.5 m, 30, and 5 A, respectively and a receiving coil (constructed with a length and resonant frequency of 5.6 cm and 50 kHz, respectively was built. The agreement between experimental and calculated results confirms the theory used in the sensor design. The responses of an 82 mm mortar shell at different distances were measured and inverted by the differential evolution (DE algorithm to verify system performance. Results show that the sensor designed in this

  2. ShakeNet: a portable wireless sensor network for instrumenting large civil structures

    Science.gov (United States)

    Kohler, Monica D.; Hao, Shuai; Mishra, Nilesh; Govindan, Ramesh; Nigbor, Robert

    2015-08-03

    We report our findings from a U.S. Geological Survey (USGS) National Earthquake Hazards Reduction Program-funded project to develop and test a wireless, portable, strong-motion network of up to 40 triaxial accelerometers for structural health monitoring. The overall goal of the project was to record ambient vibrations for several days from USGS-instrumented structures. Structural health monitoring has important applications in fields like civil engineering and the study of earthquakes. The emergence of wireless sensor networks provides a promising means to such applications. However, while most wireless sensor networks are still in the experimentation stage, very few take into consideration the realistic earthquake engineering application requirements. To collect comprehensive data for structural health monitoring for civil engineers, high-resolution vibration sensors and sufficient sampling rates should be adopted, which makes it challenging for current wireless sensor network technology in the following ways: processing capabilities, storage limit, and communication bandwidth. The wireless sensor network has to meet expectations set by wired sensor devices prevalent in the structural health monitoring community. For this project, we built and tested an application-realistic, commercially based, portable, wireless sensor network called ShakeNet for instrumentation of large civil structures, especially for buildings, bridges, or dams after earthquakes. Two to three people can deploy ShakeNet sensors within hours after an earthquake to measure the structural response of the building or bridge during aftershocks. ShakeNet involved the development of a new sensing platform (ShakeBox) running a software suite for networking, data collection, and monitoring. Deployments reported here on a tall building and a large dam were real-world tests of ShakeNet operation, and helped to refine both hardware and software. 

  3. Monolithic Composite “Pressure + Acceleration + Temperature + Infrared” Sensor Using a Versatile Single-Sided “SiN/Poly-Si/Al” Process-Module

    Directory of Open Access Journals (Sweden)

    Xinxin Li

    2013-01-01

    Full Text Available We report a newly developed design/fabrication module with low-cost single-sided “low-stress-silicon-nitride (LS-SiN/polysilicon (poly-Si/Al” process for monolithic integration of composite sensors for sensing-network-node applications. A front-side surface-/bulk-micromachining process on a conventional Si-substrate is developed, featuring a multifunctional SiN/poly-Si/Al layer design for diverse sensing functions. The first “pressure + acceleration + temperature + infrared” (PATIR composite sensor with the chip size of 2.5 mm × 2.5 mm is demonstrated. Systematic theoretical design and analysis methods are developed. The diverse sensing components include a piezoresistive absolute-pressure sensor (up to 700 kPa, with a sensitivity of 49 mV/MPa under 3.3 V supplied voltage, a piezoresistive accelerometer (±10 g, with a sensitivity of 66 μV/g under 3.3 V and a −3 dB bandwidth of 780 Hz, a thermoelectric infrared detector (with a responsivity of 45 V/W and detectivity of 3.6 × 107 cm·Hz1/2/W and a thermistor (−25–120 °C. This design/fabrication module concept enables a low-cost monolithically-integrated “multifunctional-library” technique. It can be utilized as a customizable tool for versatile application-specific requirements, which is very useful for small-size, low-cost, large-scale sensing-network node developments.

  4. Portable air quality sensor unit for participatory monitoring: an end-to-end VESNA-AQ based prototype

    Science.gov (United States)

    Vucnik, Matevz; Robinson, Johanna; Smolnikar, Miha; Kocman, David; Horvat, Milena; Mohorcic, Mihael

    2015-04-01

    Key words: portable air quality sensor, CITI-SENSE, participatory monitoring, VESNA-AQ The emergence of low-cost easy to use portable air quality sensors units is opening new possibilities for individuals to assess their exposure to air pollutants at specific place and time, and share this information through the Internet connection. Such portable sensors units are being used in an ongoing citizen science project called CITI-SENSE, which enables citizens to measure and share the data. The project aims through creating citizens observatories' to empower citizens to contribute to and participate in environmental governance, enabling them to support and influence community and societal priorities as well as associated decision making. An air quality measurement system based on VESNA sensor platform was primarily designed within the project for the use as portable sensor unit in selected pilot cities (Belgrade, Ljubljana and Vienna) for monitoring outdoor exposure to pollutants. However, functionally the same unit with different set of sensors could be used for example as an indoor platform. The version designed for the pilot studies was equipped with the following sensors: NO2, O3, CO, temperature, relative humidity, pressure and accelerometer. The personal sensor unit is battery powered and housed in a plastic box. The VESNA-based air quality (AQ) monitoring system comprises the VESNA-AQ portable sensor unit, a smartphone app and the remote server. Personal sensor unit supports wireless connection to an Android smartphone via built-in Wi-Fi. The smartphone in turn serves also as the communication gateway towards the remote server using any of available data connections. Besides the gateway functionality the role of smartphone is to enrich data coming from the personal sensor unit with the GPS location, timestamps and user defined context. This, together with an accelerometer, enables the user to better estimate ones exposure in relation to physical activities, time

  5. Investigation of silicon sensors quality as a function of the ohmic side processing technology

    CERN Document Server

    Bloch, P; Golubkov, S A; Golutvin, I A; Egorov, N; Konjkov, K; Kozlov, Y; Peisert, Anna; Sidorov, A; Zamiatin, N I; Cheremuhin, A E

    2002-01-01

    Silicon sensors designed for the CMS Preshower detector must have a high breakdown voltage in order to be fully efficient after a strong irradiation. Studies made by several groups left bracket 1,2,3 right bracket have underlined the importance of the p**+ side geometrical parameters, such as the metal width and the number and spacing of guard rings. We have in addition investigated the effects related to the ohmic side processing and found that the breakdown voltage depends strongly on the depth of the effective "dead" n**+ layer. By increasing this thickness from mum to 2.5mum, the fraction of sensors with breakdown voltage higher than 500V increased from 22% to more than 80%. On the other hand, it was noticed that the starting surface quality of the wafer (double side polished or single side polished) does not affect the detectors parameters for a given production technology. The thick n**+-layer protects against initial wafer surface and defects caused by the technological treatment during the detector pr...

  6. Application of portable XRF and VNIR sensors for rapid assessment of soil heavy metal pollution

    OpenAIRE

    Hu, Bifeng; Chen, Songchao; Hu, Jie; Xia, Fang; Xu, Junfeng; Li, Yan; Shi, Zhou

    2017-01-01

    Rapid heavy metal soil surveys at large scale with high sampling density could not be conducted with traditional laboratory physical and chemical analyses because of the high cost, low efficiency and heavy workload involved. This study explored a rapid approach to assess heavy metals contamination in 301 farmland soils from Fuyang in Zhejiang Province, in the southern Yangtze River Delta, China, using portable proximal soil sensors. Portable X-ray fluorescence spectroscopy (PXRF) was used to ...

  7. pH measurements of FET-based (bio)chemical sensors using portable measurement system.

    Science.gov (United States)

    Voitsekhivska, T; Zorgiebel, F; Suthau, E; Wolter, K-J; Bock, K; Cuniberti, G

    2015-01-01

    In this study we demonstrate the sensing capabilities of a portable multiplex measurement system for FET-based (bio)chemical sensors with an integrated microfluidic interface. We therefore conducted pH measurements with Silicon Nanoribbon FET-based Sensors using different measurement procedures that are suitable for various applications. We have shown multiplexed measurements in aqueous medium for three different modes that are mutually specialized in fast data acquisition (constant drain current), calibration-less sensing (constant gate voltage) and in providing full information content (sweeping mode). Our system therefore allows surface charge sensing for a wide range of applications and is easily adaptable for multiplexed sensing with novel FET-based (bio)chemical sensors.

  8. A low-power portable ECG sensor interface with dry electrodes

    International Nuclear Information System (INIS)

    Pu Xiaofei; Wan Lei; Zhang Hui; Qin Yajie; Hong Zhiliang

    2013-01-01

    This paper describes a low-power portable sensor interface dedicated to sensing and processing electrocardiogram (ECG) signals. Dry electrodes were employed in this ECG sensor, which eliminates the need of conductive gel and avoids complicated and mandatory skin preparation before electrode attachment. This ECG sensor system consists of two ICs, an analog front-end (AFE) and a successive approximation register analog-to-digital converter (SAR ADC) containing a relaxation oscillator. This proposed design was fabricated in a 0.18 μm 1P6M standard CMOS process. The AFE for extracting the biopotential signals is essential in this ECG sensor. In measurements, the AFE obtains a mid-band gain of 45 dB, a bandwidth from 0.6 to 160 Hz, and a total input referred noise of 2.8 μV rms while consuming 1 μW from the 1.8 V supply. The noise efficiency factor (NEF) of our design is 3.4. After conditioning, the amplified ECG signal is digitized by a 12-bit SAR ADC with 61.8 dB SNDR and 220 fJ/conversion-step. Finally, a complete ECG sensor interface with three dry copper electrodes is demonstrated in real-word setting, showing successful recordings of a capture ECG waveform. (semiconductor integrated circuits)

  9. Use of portable instrumentation/PC for loose-part monitor sensor validation, impact detection, and characterization

    International Nuclear Information System (INIS)

    Allen, J.W.

    1989-01-01

    Impact detection [loose-part monitoring (LPM)] is typically performed using acoustic sensors (accelerometers) permanently affixed to natural collection sites for possible loose parts. A typical nuclear facility will consist of 12 to 16 channels around the primary loop. Normal operation of these systems consists of continuously monitoring the conditioned sensor output and alert (or alarm) when signal levels exceed a certain threshold value. Technology for Energy Corporation (TEC) has utilized statistical methods to develop a system for monitoring LPM sensors that is capable of unambiguous channel operability validation, low-level impact (rattling) detection and trending, and impact characterization. The system consists of a software package resident on a personal computer (PC) for data storage, trending, and reporting. A small portable microprocessor box (meter) is used for data acquisition and analysis. The portable data box receives an analysis parameter set from the host PC, accepts amplified signals from the individual LPM sensors, and carries out spectral and probability density analyses. The results from the analyses are available for viewing at the meter and are locally stored for later uploading to the host computer. At the host, key parameters are trended from both the spectral and the amplitude probability function analyses. Alarm limits are preset to indicate if further analysis is warranted

  10. A wireless sensor network-based portable vehicle detector evaluation system.

    Science.gov (United States)

    Yoo, Seong-eun

    2013-01-17

    In an upcoming smart transportation environment, performance evaluations of existing Vehicle Detection Systems are crucial to maintain their accuracy. The existing evaluation method for Vehicle Detection Systems is based on a wired Vehicle Detection System reference and a video recorder, which must be operated and analyzed by capable traffic experts. However, this conventional evaluation system has many disadvantages. It is inconvenient to deploy, the evaluation takes a long time, and it lacks scalability and objectivity. To improve the evaluation procedure, this paper proposes a Portable Vehicle Detector Evaluation System based on wireless sensor networks. We describe both the architecture and design of a Vehicle Detector Evaluation System and the implementation results, focusing on the wireless sensor networks and methods for traffic information measurement. With the help of wireless sensor networks and automated analysis, our Vehicle Detector Evaluation System can evaluate a Vehicle Detection System conveniently and objectively. The extensive evaluations of our Vehicle Detector Evaluation System show that it can measure the traffic information such as volume counts and speed with over 98% accuracy.

  11. Gesture recognition for smart home applications using portable radar sensors.

    Science.gov (United States)

    Wan, Qian; Li, Yiran; Li, Changzhi; Pal, Ranadip

    2014-01-01

    In this article, we consider the design of a human gesture recognition system based on pattern recognition of signatures from a portable smart radar sensor. Powered by AAA batteries, the smart radar sensor operates in the 2.4 GHz industrial, scientific and medical (ISM) band. We analyzed the feature space using principle components and application-specific time and frequency domain features extracted from radar signals for two different sets of gestures. We illustrate that a nearest neighbor based classifier can achieve greater than 95% accuracy for multi class classification using 10 fold cross validation when features are extracted based on magnitude differences and Doppler shifts as compared to features extracted through orthogonal transformations. The reported results illustrate the potential of intelligent radars integrated with a pattern recognition system for high accuracy smart home and health monitoring purposes.

  12. Portable equipment for determining ripeness in Hass avocado using a low cost color sensor

    Science.gov (United States)

    Toro, Jessica; Daza, Carolina; Vega, Fabio; Diaz, Leonardo; Torres, Cesar

    2015-08-01

    The avocado is a one climacteric fruit that not ripe on the tree because it produces a maturation inhibitor that passes the fruit through the pedicel, the ripening occurs naturally during storage or to be induced as required. In post-harvest ripening stage is basically determined by experience of the farmer or buyer. In this word us developed portable equipment for determining ripeness is hass avocado using a low cost sensor color sensor TC3200 and LCD for display result. The prototype read of RGB color frequencies of the sensor and estimates the stage of ripeness in fourth different stages in post-harvest ripening.

  13. Portable ECG design and application based on wireless sensor network

    Directory of Open Access Journals (Sweden)

    Gül Fatma TÜRKER

    2016-05-01

    Full Text Available In this study, in order to follow the heart signals of patients that needs to be monitored instantly and continuously without mobility restrictions, a portable electrocardiogram circuit is designed. After performing the detection, upgrading, cleaning and digitizing of ECG signal received from patient via disposable electrodes, ECG signals was performed that transmit to a central node with Wireless Sensor Network (WSN based on ZigBee 802.11.4 standard. Central node is connected to the serial port of a computer. Received data from the central node is processed on computer and continuous flow graph is obtained. The obligation to use wires for tracing patients’ ECG has been removed with this portable system. As it can be seen in this study, thanks to WSN’s property of forming network by itself and its augmentable loop property, the restrain of ECG signals to reach far away distances can be surmounted. The transmission of biological signals with WSN will light on many studies that follow of patients from a distance.

  14. Portable multi-sensor system for gas detection using the temporal window technique; Systeme multicapteurs de detection de gaz, portable, utilisant la technique du fenetrage temporel

    Energy Technology Data Exchange (ETDEWEB)

    Cazaubon, Ch. [Bordeaux-1 Univ., CRED, 33 - Talence (France); Levi, H.; Bordieu, Ch.; Rebiere, D.; Pistre, J. [Bordeaux-1 Univ., Lab. IXL, UMR CNRS 5818, 33 (France)

    1999-07-01

    An autonomous and portable multi-sensor system was constructed. It can drive four gas sensors (surface acoustic waves. SAW. for examples) and four voltage output gas sensors (semiconductor metal oxide sensors, for example). Two micro-controllers. MC68HC11F1 and MC68HC711E9, used as master and slave respectively, are mounted on two cards. The first card contains the signal processing treatment algorithm using a neural network and a shifting temporal window technique: it allows real time gas selection. The second card insure the overall temperature control by an auto-adaptive PID. GB gas SAW responses were applied to the device in order to test his performances. (authors)

  15. Application of portable in situ UV fluorescence sensors in natural and engineered aquatic systems.

    Science.gov (United States)

    Fox, Bethany; Rushworth, Cathy; Atrridge, John

    2016-04-01

    Natural organic matter (NOM) is ubiquitous throughout aquatic systems. This heterogeneous mixture of organic matter is central for aquatic ecosystems and, both local and global, biogeochemical cycling. Improvements in technology and data analysis has allowed for advances in the understanding and characterisation of aquatic organic matter. However, much of the technological expansions have focussed on benchtop instruments. In recent years, there has been interest in the continued development of portable in situ sensors for monitoring NOM characteristics within a wide range of applications, spanning both natural and engineered systems. The UviLux (Chelsea Technologies Group Ltd., UK) is an in situ portable UV fluorescence sensor that can be configured to monitor a range of NOM in aquatic systems, as well as anthropogenic inputs such as polycyclic aromatic hydrocarbons (PAH) and optical brighteners. Here we will focus on the use of the Tryptophan and CDOM UviLux sensors across a variety of applications in both natural systems, such as rivers and leachate into groundwater, and engineered systems, including drinking water and waste water treatment. Recent work has focused on standardising the fluorescence output across the UviLux range of sensors, reporting data in quinine sulphate units (QSU), which enables the output from two different fluorometers to be directly compared both to each other, and to bench-top data. A key advantage of deploying multiple sensors is the ability to fingerprint the fluorescence, by providing, for example, a Tryptophan/CDOM ratio. From the data collected, the ratio of the different fluorescence regions has been shown to provide more robust in situ data and help identify true temporal variations and patterns across multiple applications and sampling locations.

  16. Detection of leakage magnetic flux from near-side and far-side defects in carbon steel plates using a giant magneto-resistive sensor

    International Nuclear Information System (INIS)

    Singh, W Sharatchandra; Rao, B P C; Vaidyanathan, S; Jayakumar, T; Raj, Baldev

    2008-01-01

    Giant magneto-resistive (GMR) sensors are attractive for magnetic flux leakage measurements, especially for the detection of shallow near-side cracks and deeply located defects. An optimized measurement system with magnetic yoke, GMR sensor and selective amplifier has been devised to detect the tangential component of leakage flux from various near-side notches and far-side notches (widths 0.5 mm and 1.0 mm, respectively) in 12 mm thick carbon steel plates. Far-side notches located at nearly 11 mm below the measurement surface have been detected with a good signal-to-noise ratio. The performance of the GMR sensor with lift off has also been studied for possible non-contact examination of hot surfaces and a lift off of 2 mm is expected to ensure the saturation-free detection of near-side as well as far-side notches

  17. Real-time Bacterial Detection by Single Cell Based Sensors UsingSynchrotron FTIR Spectromicroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Veiseh, Mandana; Veiseh, Omid; Martin, Michael C.; Bertozzi,Carolyn; Zhang, Miqin

    2005-08-10

    Microarrays of single macrophage cell based sensors weredeveloped and demonstrated for real time bacterium detection bysynchrotron FTIR microscopy. The cells were patterned on gold-SiO2substrates via a surface engineering technique by which the goldelectrodes were immobilized with fibronectin to mediate cell adhesion andthe silicon oxide background were passivated with PEG to resist proteinadsorption and cell adhesion. Cellular morphology and IR spectra ofsingle, double, and triple cells on gold electrodes exposed tolipopolysaccharide (LPS) of different concentrations were compared toreveal the detection capabilities of these biosensors. The single-cellbased sensors were found to generate the most significant IR wave numbervariation and thus provide the highest detection sensitivity. Changes inmorphology and IR spectrum for single cells exposed to LPS were found tobe time- and concentration-dependent and correlated with each other verywell. FTIR spectra from single cell arrays of gold electrodes withsurface area of 25 mu-m2, 100 mu-m2, and 400 mu-m2 were acquired usingboth synchrotron and conventional FTIR spectromicroscopes to study thesensitivity of detection. The results indicated that the developedsingle-cell platform can be used with conventional FTIRspectromicroscopy. This technique provides real-time, label-free, andrapid bacterial detection, and may allow for statistic and highthroughput analyses, and portability.

  18. A Portable Single Axis Magnetic Gradiometer

    DEFF Research Database (Denmark)

    Merayo, José M.G.; Petersen, Jan Raagaard; Nielsen, Otto V

    2001-01-01

    not provide vector information about the magnetic field. Secondly, one of the sensors measures the ambient magnetic field and is used to compensate for the main field at both sensors. Several methods have been developed for characterization of the 2 gradiometer, and the calibration of the gradient......The single axis magnetic gradiometer based on two compact detector compensation (CDC) fluxgate ringcore sensors separated 20 cm is described. Despite its high stability and precision better than 1 nT, the calibration procedures are not straightforward. Firstly, the mono-axial measurement does...... measurements is achieved by using a magnetic dipole of strength 2 mAm(2). In a coil facility, the gradient can be determined with an accuracy of 0.3 nT/m(RMS)....

  19. Relaxor-PT Single Crystal Piezoelectric Sensors

    Directory of Open Access Journals (Sweden)

    Xiaoning Jiang

    2014-07-01

    Full Text Available Relaxor-PbTiO3 piezoelectric single crystals have been widely used in a broad range of electromechanical devices, including piezoelectric sensors, actuators, and transducers. This paper reviews the unique properties of these single crystals for piezoelectric sensors. Design, fabrication and characterization of various relaxor-PT single crystal piezoelectric sensors and their applications are presented and compared with their piezoelectric ceramic counterparts. Newly applicable fields and future trends of relaxor-PT sensors are also suggested in this review paper.

  20. Technical comparison of the commercialized Racon model 21000 Portable, Reconfigurable Line Sensor (PRLS) and original Sandia/USAF prototype

    International Nuclear Information System (INIS)

    Blattman, D.A.

    1993-01-01

    The military has been moving from a global strategic response with fixed site asset protection to regional tactical response requirements. This change necessitates high security sensor systems that can be easily relocated and rapidly placed in operation by unskilled operators. The Portable, Reconfigurable Line Sensor (PRLS) was developed by Sandia National Laboratories with United States Air Force funding. Racon, Inc. is now commercializing the PRLS through a Cooperative Research and Development Agreement (CRDA) with the United States Air Force. The commercialized design of the new PRLS bi-static radar sensor benefits from the extensive field testing of the original Sandia/USAF-developed engineering prototype systems of the 1980s. Tests conducted in hot, cold, wind, rain, and snow conditions verified exceptional intruder detection capability, resistance to spoofing attempts, and insusceptibility to mutual interference and nuisance alarms caused by birds or small animals. The use of 1990's implementation technology combined with extensive testing information has resulted in significant product performance enhancements as well as cost savings. This paper compares technical features of the original Sandia/USAF prototypes with the new commercialized Racon model 21000 Portable, Reconfigurable Line Sensor. The PRLS advances the art of outdoor security to meet the Relocatable Sensor System (RSS) challenge of the 1990s

  1. Laser-induced breakdown spectroscopy - An emerging chemical sensor technology for real-time field-portable, geochemical, mineralogical, and environmental applications

    International Nuclear Information System (INIS)

    Harmon, Russell S.; DeLucia, Frank C.; McManus, Catherine E.; McMillan, Nancy J.; Jenkins, Thomas F.; Walsh, Marianne E.; Miziolek, Andrzej

    2006-01-01

    Laser induced breakdown spectroscopy (LIBS) is a simple spark spectrochemical sensor technology in which a laser beam is directed at a sample surface to create a high-temperature microplasma and a detector used to collect the spectrum of light emission and record its intensity at specific wavelengths. LIBS is an emerging chemical sensor technology undergoing rapid advancement in instrumentation capability and in areas of application. Attributes of a LIBS sensor system include: (i) small size and weight; (ii) technologically mature, inherently rugged, and affordable components; (iii) real-time response; (iv) in situ analysis with no sample preparation required; (v) a high sensitivity to low atomic weight elements which are difficult to determine by other field-portable sensor techniques, and (vi) point sensing or standoff detection. Recent developments in broadband LIBS provide the capability for detection at very high resolution (0.1 nm) of all elements in any unknown target material because all chemical elements emit in the 200-980 nm spectral region. This progress portends a unique potential for the development of a rugged and reliable field-portable chemical sensor that has the potential to be utilized in variety of geochemical, mineralogical, and environmental applications

  2. Progress with the single-sided module prototypes for the ATLAS tracker upgrade stave

    CERN Document Server

    Allport, P P; Wiik, L; Dressnandt, N; Matheson, J; Li, Z; Viehhauser, G; Gallop, B; Jones, T J; Dwuznik, M; Greenall, A; Eklund, L; Maddock, P; Pernecker, S; Wright, J; Puldon, D; Jakobs, K; Holt, R; Sevilla, S G; Koffeman, E; Dabrowski, W; Gilchriese, M; Wastie, R; Gibson, M; Robinson, D; Fadeyev, V; Gerling, M; Betancourt, C; Dawson, N; Bates, R; French, R; Kierstead, J; Anghinolfi, F; Weidberg, A; Martinez-McKinney, F; Paganis, S; Sutcliffe, P; Maunu, R; Newcomer, M; Weber, M; Parzefall, U; Clark, A; Colijn, A P; Xu, D; la Marra, D; Buttar, C; Grillo, A A; Schamberger, D; DeWilde, B; Poltorak, K; Affolder, A A; Tsionou, D; Hessey, N P; Casse, G; Fox, H; Ferrere, D; Villani, E G; Seiden, A; Tyndel, M; Sadrozinski, H F W; Wiimut, I; Carter, J R; Lacasta, C; Chilingarov, A; Santoyo, D; Lynn, D; Garcia, C; Haber, C H; Hommels, L B A; Dhawan, S; Lindgren, S; Farthouat, P; Nickerson, R; Chen, H; Kohler, M; Sattari, S; Civera, J V; McCarthy, R; Phillips, P; Unno, Y; Kaplon, J; Swientek, K; Wormald, M; Goodrick, M; Von Wilpert, J; Mahboubi, K

    2011-01-01

    The ATLAS experiment is preparing for the planned luminosity upgrade of the LHC (the super-luminous LHC or sLHC) with a programme of development for tracking able to withstand an order of greater magnitude radiation fluence and much greater hit occupancy rates than the current detector. This has led to the concept of an all-silicon tracker with an enhanced performance pixel-based inner region and short-strips for much of the higher radii. Both sub-systems employ many common technologies, including the proposed ``stave{''} concept for integrated cooling and support. For the short-strip region, use of this integrated stave concept requires single-sided modules mounted on either side of a thin central lightweight support. Each sensor is divided into four rows of 23.82 mm length strips; within each row, there are 1280 strips of 74.5 mu m pitch. Well over a hundred prototype sensors are being delivered by Hamamatsu Photonics (HPK) to Japan, Europe and the US. We present results of the first 20 chip ABCN25 ASIC hyb...

  3. A single FPGA-based portable ultrasound imaging system for point-of-care applications.

    Science.gov (United States)

    Kim, Gi-Duck; Yoon, Changhan; Kye, Sang-Bum; Lee, Youngbae; Kang, Jeeun; Yoo, Yangmo; Song, Tai-kyong

    2012-07-01

    We present a cost-effective portable ultrasound system based on a single field-programmable gate array (FPGA) for point-of-care applications. In the portable ultrasound system developed, all the ultrasound signal and image processing modules, including an effective 32-channel receive beamformer with pseudo-dynamic focusing, are embedded in an FPGA chip. For overall system control, a mobile processor running Linux at 667 MHz is used. The scan-converted ultrasound image data from the FPGA are directly transferred to the system controller via external direct memory access without a video processing unit. The potable ultrasound system developed can provide real-time B-mode imaging with a maximum frame rate of 30, and it has a battery life of approximately 1.5 h. These results indicate that the single FPGA-based portable ultrasound system developed is able to meet the processing requirements in medical ultrasound imaging while providing improved flexibility for adapting to emerging POC applications.

  4. Single side Emitting Transparent OLED lamp

    NARCIS (Netherlands)

    Lifka, H.; Verschuren, C.A.; Bruls, D.M.; Tanase, C.

    2011-01-01

    Transparent OLEDs offer great potential for novel applications. Preferably, the light should be emitted from one side only. This can bedone to some extent by modifying electrode thicknesses, but at the cost of reduced transparency. Here, we demonstrate a new approach tomake single side emissive

  5. Review of Portable and Low-Cost Sensors for the Ambient Air Monitoring of Benzene and Other Volatile Organic Compounds.

    Science.gov (United States)

    Spinelle, Laurent; Gerboles, Michel; Kok, Gertjan; Persijn, Stefan; Sauerwald, Tilman

    2017-06-28

    This article presents a literature review of sensors for the monitoring of benzene in ambient air and other volatile organic compounds. Combined with information provided by stakeholders, manufacturers and literature, the review considers commercially available sensors, including PID-based sensors, semiconductor (resistive gas sensors) and portable on-line measuring devices as for example sensor arrays. The bibliographic collection includes the following topics: sensor description, field of application at fixed sites, indoor and ambient air monitoring, range of concentration levels and limit of detection in air, model descriptions of the phenomena involved in the sensor detection process, gaseous interference selectivity of sensors in complex VOC matrix, validation data in lab experiments and under field conditions.

  6. A portable cell-based impedance sensor for toxicity testing of drinking water.

    Science.gov (United States)

    Curtis, Theresa M; Widder, Mark W; Brennan, Linda M; Schwager, Steven J; van der Schalie, William H; Fey, Julien; Salazar, Noe

    2009-08-07

    A major limitation to using mammalian cell-based biosensors for field testing of drinking water samples is the difficulty of maintaining cell viability and sterility without an on-site cell culture facility. This paper describes a portable automated bench-top mammalian cell-based toxicity sensor that incorporates enclosed fluidic biochips containing endothelial cells monitored by Electric Cell-substrate Impedance Sensing (ECIS) technology. Long-term maintenance of cells on the biochips is made possible by using a compact, self-contained disposable media delivery system. The toxicity sensor monitors changes in impedance of cell monolayers on the biochips after the introduction of water samples. The fluidic biochip includes an ECIS electronic layer and a polycarbonate channel layer, which together reduce initial impedance disturbances seen in commercially available open well ECIS chips caused by the mechanics of pipetting while maintaining the ability of the cells to respond to toxicants. A curve discrimination program was developed that compares impedance values over time between the control and treatment channels on the fluidic biochip and determines if they are significantly different. Toxicant responses of bovine pulmonary artery endothelial cells grown on fluidic biochips are similar to cells on commercially-available open well chips, and these cells can be maintained in the toxicity sensor device for at least nine days using an automated media delivery system. Longer-term cell storage is possible; bovine lung microvessel endothelial cells survive for up to four months on the fluidic biochips and remain responsive to a model toxicant. This is the first demonstration of a portable bench top system capable of both supporting cell health over extended periods of time and obtaining impedance measurements from endothelial cell monolayers after toxicant exposure.

  7. Capacitor Voltages Measurement and Balancing in Flying Capacitor Multilevel Converters Utilizing a Single Voltage Sensor

    DEFF Research Database (Denmark)

    Farivar, Glen; Ghias, Amer M. Y. M.; Hredzak, Branislav

    2017-01-01

    This paper proposes a new method for measuring capacitor voltages in multilevel flying capacitor (FC) converters that requires only one voltage sensor per phase leg. Multiple dc voltage sensors traditionally used to measure the capacitor voltages are replaced with a single voltage sensor at the ac...... side of the phase leg. The proposed method is subsequently used to balance the capacitor voltages using only the measured ac voltage. The operation of the proposed measurement and balancing method is independent of the number of the converter levels. Experimental results presented for a five-level FC...

  8. ReadMON: a portable readout system for the CERN PH-RADMON sensors

    CERN Document Server

    Mateu, Isidre; Gorine, Georgi; Moll, Michael; Pezzullo, Giuseppe; Ravotti, Federico

    2018-01-01

    PH-RADMON sensors are extensively used for radiation monitoring in the LHC experiments. Here, ReadMON, a dedicated and portable readout system for non-LHC applications, is presented. The system is able to source currents up to 32 mA and measure voltages up to 125 V, covering the full operational range of all dosimeters onboard the PH-RADMON sensor. Thus, the total measurement range of the system goes from 0.01 Gy to hundreds of kGy Total Ionizing Dose, and from few 10^10 neq/cm2 to 10^15 neq/cm2 1MeV neutron equivalent fluence. Different tests have been carried out at CERN IRRAD facility to prove the system concept and analyze its performance. Errors of only a few percent with respect to the readout done with a commercial Source Measuring Unit were found.

  9. Slab-coupled optical sensor fabrication using side-polished Panda fibers.

    Science.gov (United States)

    King, Rex; Seng, Frederick; Stan, Nikola; Cuzner, Kevin; Josephson, Chad; Selfridge, Richard; Schultz, Stephen

    2016-11-01

    A new device structure used for slab-coupled optical sensor (SCOS) technology was developed to fabricate electric field sensors. This new device structure replaces the D-fiber used in traditional SCOS technology with a side-polished Panda fiber. Unlike the D-fiber SCOS, the Panda fiber SCOS is made from commercially available materials and is simpler to fabricate. The Panda SCOS interfaces easier with lab equipment and exhibits ∼3  dB less loss at link points than the D-fiber SCOS. The optical system for the D-fiber is bandwidth limited by a transimpedance amplifier (TIA) used to amplify to the electric signal. The Panda SCOS exhibits less loss than the D-fiber and, as a result, does not require as high a gain setting on the TIA, which results in an overall higher bandwidth range. Results show that the Panda sensor also achieves comparable sensitivity results to the D-fiber SCOS. Although the Panda SCOS is not as sensitive as other side-polished fiber electric field sensors, it can be fabricated much easier because the fabrication process does not require special alignment techniques, and it is made from commercially available materials.

  10. Portable sensor for hazardous waste

    Energy Technology Data Exchange (ETDEWEB)

    Piper, L.G.; Fraser, M.E.; Davis, S.J. [Physical Sciences Inc., Andover, MA (United States)

    1995-10-01

    We are beginning the second phase of a three and a half year program designed to develop a portable monitor for sensitive hazardous waste detection. The ultimate goal of the program is to develop our concept to the prototype instrument level. Our monitor will be a compact, portable instrument that will allow real-time, in situ, monitoring of hazardous wastes. This instrument will be able to provide the means for rapid field screening of hazardous waste sites to map the areas of greatest contamination. Remediation efforts can then focus on these areas. Further, our instrument can show whether cleanup technologies are successful at reducing hazardous materials concentrations below regulated levels, and will provide feedback to allow changes in remediation operations, if necessary, to enhance their efficacy.

  11. Portable SERS sensor for malachite green and other small dye molecules

    Science.gov (United States)

    Qiu, Suyan; Zhao, Fusheng; Li, Jingting; Shih, Wei-Chuan

    2017-02-01

    Sensitive detection of specific chemicals on site can be extremely powerful in many fields. Owing to its molecular fingerprinting capability, surface-enhanced Raman scattering has been one of the technological contenders. In this paper, we describe the novel use of DNA topological nanostructure on nanoporous gold nanoparticle (NPG-NP) array chip for chemical sensing. NPG-NP features large surface area and high-density plasmonic field enhancement known as "hotspots". Hence, NPG-NP array chip has found many applications in nanoplasmonic sensor development. This technique can provide novel label-free molecular sensing capability and enables high sensitivity and specificity detection using a portable Raman spectrometer.

  12. Single Nanoparticle Plasmonic Sensors

    Directory of Open Access Journals (Sweden)

    Manish Sriram

    2015-10-01

    Full Text Available The adoption of plasmonic nanomaterials in optical sensors, coupled with the advances in detection techniques, has opened the way for biosensing with single plasmonic particles. Single nanoparticle sensors offer the potential to analyse biochemical interactions at a single-molecule level, thereby allowing us to capture even more information than ensemble measurements. We introduce the concepts behind single nanoparticle sensing and how the localised surface plasmon resonances of these nanoparticles are dependent upon their materials, shape and size. Then we outline the different synthetic approaches, like citrate reduction, seed-mediated and seedless growth, that enable the synthesis of gold and silver nanospheres, nanorods, nanostars, nanoprisms and other nanostructures with tunable sizes. Further, we go into the aspects related to purification and functionalisation of nanoparticles, prior to the fabrication of sensing surfaces. Finally, the recent developments in single nanoparticle detection, spectroscopy and sensing applications are discussed.

  13. Development of semiconductor radiation sensors for portable alarm-dosimeter

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Y. K.; Moon, B. S.; Chung, C. E.; Hong, S. B.; Kim, J. Y.; Kim, J. B.; Han, S. H.; Lee, W. G. [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2001-01-01

    We studied Semiconductor Radiation Sensors for Portable Alarm-Dosimeter. We calculated response functions for gamma energy 0.021, 0.122, 0.662, 0.835, 1.2 MeV using EGS4 codes. When we measured at various distance from source to detector, the detection efficiency of Si semiconductor detector was better than that of GM tube. The linear absorption coefficients of steel and aluminum plate were measured. These experimental results of the response of detector for intensity of radiation field coincide to the theoretical expectation. The count value of Si detector was changed with changing thickness of steel as changing threshold voltage of discriminator, and the linear absorption coefficient increased with increasing threshold voltage. Radiation detection efficiency shows difference at each threshold voltage condition. This results coincided to the theoretical simulation. 33 refs., 27 figs., 8 tabs. (Author)

  14. A portable non-contact displacement sensor and its application of lens centration error measurement

    Science.gov (United States)

    Yu, Zong-Ru; Peng, Wei-Jei; Wang, Jung-Hsing; Chen, Po-Jui; Chen, Hua-Lin; Lin, Yi-Hao; Chen, Chun-Cheng; Hsu, Wei-Yao; Chen, Fong-Zhi

    2018-02-01

    We present a portable non-contact displacement sensor (NCDS) based on astigmatic method for micron displacement measurement. The NCDS are composed of a collimated laser, a polarized beam splitter, a 1/4 wave plate, an aspheric objective lens, an astigmatic lens and a four-quadrant photodiode. A visible laser source is adopted for easier alignment and usage. The dimension of the sensor is limited to 115 mm x 36 mm x 56 mm, and a control box is used for dealing with signal and power control between the sensor and computer. The NCDS performs micron-accuracy with +/-30 μm working range and the working distance is constrained in few millimeters. We also demonstrate the application of the NCDS for lens centration error measurement, which is similar to the total indicator runout (TIR) or edge thickness difference (ETD) of a lens measurement using contact dial indicator. This application has advantage for measuring lens made in soft materials that would be starched by using contact dial indicator.

  15. Application of single-chip microcomputer to portable radon and radon daughters monitor

    International Nuclear Information System (INIS)

    Meng Yecheng; Huang Zhanyun; She Chengye

    1992-01-01

    Application of single-chip microcomputer to portable radon and radon daughters monitor is introduced in this paper. With the single-chip microcomputer automation comes into effect in the process from sampling to measuring of radon and radon daughters. The concentrations of radon and radon daughters can be easily shown when the conversion coefficients are pre-settled before the measurement. Moreover, the principle and design are briefly discussed according to the characteristics of the monitor

  16. Application of portable XRF and VNIR sensors for rapid assessment of soil heavy metal pollution.

    Science.gov (United States)

    Hu, Bifeng; Chen, Songchao; Hu, Jie; Xia, Fang; Xu, Junfeng; Li, Yan; Shi, Zhou

    2017-01-01

    Rapid heavy metal soil surveys at large scale with high sampling density could not be conducted with traditional laboratory physical and chemical analyses because of the high cost, low efficiency and heavy workload involved. This study explored a rapid approach to assess heavy metals contamination in 301 farmland soils from Fuyang in Zhejiang Province, in the southern Yangtze River Delta, China, using portable proximal soil sensors. Portable X-ray fluorescence spectroscopy (PXRF) was used to determine soil heavy metals total concentrations while soil pH was predicted by portable visible-near infrared spectroscopy (PVNIR). Zn, Cu and Pb were successfully predicted by PXRF (R2 >0.90 and RPD >2.50) while As and Ni were predicted with less accuracy (R2 heavy metals contamination grades in farmland soils was conducted based on previous results; the Kappa coefficient was 0.87, which showed that the combination of PXRF and PVNIR was an effective and rapid method to determine the degree of pollution with soil heavy metals. This study provides a new approach to assess soil heavy metals pollution; this method will facilitate large-scale surveys of soil heavy metal pollution.

  17. Application of portable XRF and VNIR sensors for rapid assessment of soil heavy metal pollution

    Science.gov (United States)

    Hu, Bifeng; Chen, Songchao; Hu, Jie; Xia, Fang; Xu, Junfeng; Li, Yan; Shi, Zhou

    2017-01-01

    Rapid heavy metal soil surveys at large scale with high sampling density could not be conducted with traditional laboratory physical and chemical analyses because of the high cost, low efficiency and heavy workload involved. This study explored a rapid approach to assess heavy metals contamination in 301 farmland soils from Fuyang in Zhejiang Province, in the southern Yangtze River Delta, China, using portable proximal soil sensors. Portable X-ray fluorescence spectroscopy (PXRF) was used to determine soil heavy metals total concentrations while soil pH was predicted by portable visible-near infrared spectroscopy (PVNIR). Zn, Cu and Pb were successfully predicted by PXRF (R2 >0.90 and RPD >2.50) while As and Ni were predicted with less accuracy (R2 heavy metals contamination grades in farmland soils was conducted based on previous results; the Kappa coefficient was 0.87, which showed that the combination of PXRF and PVNIR was an effective and rapid method to determine the degree of pollution with soil heavy metals. This study provides a new approach to assess soil heavy metals pollution; this method will facilitate large-scale surveys of soil heavy metal pollution. PMID:28234944

  18. Dual-sided reading versus single-sided reading: comparison of image quality and radiation dose between the two computed radiography system

    International Nuclear Information System (INIS)

    Song Shaojuan; Qi Hengtao; Zhao Yongxia; Jiao Fanglian

    2007-01-01

    Objective: To assess and compare the difference in image quality and exposure dose between single-sided reading image plate (IP) and dual-sided reading IP. Methods: A contrast-detail phantom CDRAD 2.0 was exposed by single-sided and dual-sided reading IP with different mAs sets. The entrance surface doses were recorded for all images. Images were then presented to two radiologists on a high resolution monitor of diagnosis workstation. The image quality figure (IQF) was measured for each image. Statistical analysis was performed using Spearman's correlation test and Wilcoxon signed-rank test to compare the difference in image quality and exposure dose between single-sided IP and dual-sided reading IP. Results: With different tube current dosage of 5.6, 12.0, 20.0, 25.0, and 40.0 mAs, IQF values of single-sided reading IP were 47.95, 37.68, 34.31, 28.61, and 24.65, respectively, while those of dual- sided reading IP were 38.83, 29.81, 29.65, 25.16, and 21.43, respectively. The IQF difference between them showed statistical significance (P<0.05). Conclusion: Image quality of dual-sided reading IP has been proved to be far superior to that of single-sided reading IP, in particular for low contrast detail. The image quality of single-sided reading IP is similar to that of dual-sided reading IP only at high dose levels. The clinical application of dual-sided reading IP will reduce the exposure dose by about 25% compared with single-sided reading IP. (authors)

  19. Portable light-emitting diode-based photometer with one-shot optochemical sensors for measurement in the field.

    Science.gov (United States)

    Palma, A J; Ortigosa, J M; Lapresta-Fernández, A; Fernández-Ramos, M D; Carvajal, M A; Capitán-Vallvey, L F

    2008-10-01

    This report describes the electronics of a portable, low-cost, light-emitting diode (LED)-based photometer dedicated to one-shot optochemical sensors. Optical detection is made through a monolithic photodiode with an on-chip single-supply transimpedance amplifier that reduces some drawbacks such as leakage currents, interferences, and parasitic capacitances. The main instrument characteristics are its high light source stability and thermal correction. The former is obtained by means of the optical feedback from the LED polarization circuit, implementing a pseudo-two light beam scheme from a unique light source with a built-in beam splitter. The feedback loop has also been used to adjust the LED power in several ranges. Moreover, the low-thermal coefficient achieved (-90 ppm/degrees C) is compensated by thermal monitoring and calibration function compensation in the digital processing. The hand-held instrument directly gives the absorbance ratio used as the analytical parameter and the analyte concentration after programming the calibration function in the microcontroller. The application of this photometer for the determination of potassium and nitrate, using one-shot sensors with ionophore-based chemistries is also demonstrated, with a simple analytical methodology that shortens the analysis time, eliminating some calibrating solutions (HCl, NaOH, and buffer). Therefore, this compact instrument is suitable for real-time analyte determination and operation in the field.

  20. Coupled wave sensor technology

    International Nuclear Information System (INIS)

    Maki, M.C.

    1988-01-01

    Buried line guided radar sensors have been used successfully for a number of years to provide perimeter security for high value resources. This paper introduces a new complementary sensor advancement at Computing Devices termed 'coupled wave device technology' (CWD). It provides many of the inherent advantages of leakey cable sensors, such as terrain-following and the ability to discriminate between humans and small animals. It also is able to provide a high or wide detection zone, and allows the sensor to be mounted aerially and adjacent to a wall or fence. Several alternative sensors have been developed which include a single-line sensor, a dual-line hybrid sensor that combines the elements of ported coax and CWD technology, and a rapid-deployment portable sensor for temporary or mobile applications. A description of the technology, the sensors, and their characteristics is provided

  1. A Lab Assembled Microcontroller-Based Sensor Module for Continuous Oxygen Measurement in Portable Hypoxia Chambers

    OpenAIRE

    Mathupala, Saroj P.; Kiousis, Sam; Szerlip, Nicholas J.

    2016-01-01

    Background Hypoxia-based cell culture experiments are routine and essential components of in vitro cancer research. Most laboratories use low-cost portable modular chambers to achieve hypoxic conditions for cell cultures, where the sealed chambers are purged with a gas mixture of preset O2 concentration. Studies are conducted under the assumption that hypoxia remains unaltered throughout the 48 to 72 hour duration of such experiments. Since these chambers lack any sensor or detection system t...

  2. Alcohol sensor based on single-mode-multimode-single-mode fiber structure

    Science.gov (United States)

    Mefina Yulias, R.; Hatta, A. M.; Sekartedjo, Sekartedjo

    2016-11-01

    Alcohol sensor based on Single-mode -Multimode-Single-mode (SMS) fiber structure is being proposed to sense alcohol concentration in alcohol-water mixtures. This proposed sensor uses refractive index sensing as its sensing principle. Fabricated SMS fiber structure had 40 m of multimode length. With power input -6 dBm and wavelength 1550 nm, the proposed sensor showed good response with sensitivity 1,983 dB per % v/v with measurement range 05 % v/v and measurement span 0,5% v/v.

  3. Evaluation and refinement of a field-portable drinking water toxicity sensor utilizing electric cell-substrate impedance sensing and a fluidic biochip.

    Science.gov (United States)

    Widder, Mark W; Brennan, Linda M; Hanft, Elizabeth A; Schrock, Mary E; James, Ryan R; van der Schalie, William H

    2015-07-01

    The US Army's need for a reliable and field-portable drinking water toxicity sensor was the catalyst for the development and evaluation of an electric cell-substrate impedance sensing (ECIS) device. Water testing technologies currently available to soldiers in the field are analyte-specific and have limited capabilities to detect broad-based water toxicity. The ECIS sensor described here uses rainbow trout gill epithelial cells seeded on fluidic biochips to measure changes in impedance for the detection of possible chemical contamination of drinking water supplies. Chemicals selected for testing were chosen as representatives of a broad spectrum of toxic industrial compounds. Results of a US Environmental Protection Agency (USEPA)-sponsored evaluation of the field portable device were similar to previously published US Army testing results of a laboratory-based version of the same technology. Twelve of the 18 chemicals tested following USEPA Technology Testing and Evaluation Program procedures were detected by the ECIS sensor within 1 h at USEPA-derived human lethal concentrations. To simplify field-testing methods further, elimination of a procedural step that acclimated cells to serum-free media streamlined the test process with only a slight loss of chemical sensitivity. For field use, the ECIS sensor will be used in conjunction with an enzyme-based sensor that is responsive to carbamate and organophosphorus pesticides. Copyright © 2014 John Wiley & Sons, Ltd.

  4. Quality assurance of double-sided silicon microstrip sensors for the silicon tracking system in the CBM experiment at FAIR

    Energy Technology Data Exchange (ETDEWEB)

    Larionov, Pavel [Goethe Universitaet, Frankfurt (Germany); Collaboration: CBM-Collaboration

    2015-07-01

    The Silicon Tracking System (STS) is the core tracking detector of the CBM experiment at FAIR. The system's task is to reconstruct the trajectories of the charged particles produced in the beam-target interactions, provide their momentum determination, and enable the detection of decay topologies. The STS will comprise 1220 double-sided silicon microstrip sensors. After production each sensor will go through a number of Quality Assurance procedures to verify their validity for performance in the STS and also to confirm the manufacturer's data. In this talk, results of the quality assurance procedures that are being applied to the latest STS prototype sensors, including detailed tests of the quality of each single strip, long-term stability and preparations for volume tests during series production, are presented.

  5. Unified double- and single-sided homogeneous Green's function representations

    Science.gov (United States)

    Wapenaar, Kees; van der Neut, Joost; Slob, Evert

    2016-06-01

    In wave theory, the homogeneous Green's function consists of the impulse response to a point source, minus its time-reversal. It can be represented by a closed boundary integral. In many practical situations, the closed boundary integral needs to be approximated by an open boundary integral because the medium of interest is often accessible from one side only. The inherent approximations are acceptable as long as the effects of multiple scattering are negligible. However, in case of strongly inhomogeneous media, the effects of multiple scattering can be severe. We derive double- and single-sided homogeneous Green's function representations. The single-sided representation applies to situations where the medium can be accessed from one side only. It correctly handles multiple scattering. It employs a focusing function instead of the backward propagating Green's function in the classical (double-sided) representation. When reflection measurements are available at the accessible boundary of the medium, the focusing function can be retrieved from these measurements. Throughout the paper, we use a unified notation which applies to acoustic, quantum-mechanical, electromagnetic and elastodynamic waves. We foresee many interesting applications of the unified single-sided homogeneous Green's function representation in holographic imaging and inverse scattering, time-reversed wave field propagation and interferometric Green's function retrieval.

  6. A portable system powered with hydrogen and one single air-breathing PEM fuel cell

    International Nuclear Information System (INIS)

    Fernández-Moreno, J.; Guelbenzu, G.; Martín, A.J.; Folgado, M.A.; Ferreira-Aparicio, P.; Chaparro, A.M.

    2013-01-01

    Highlights: • A portable system based on hydrogen and single air breathing PEM fuel cell. • Control electronics designed for low single cell voltage (0.5–0.8 V). • Forced air convection and anode purging required to help water management. • Application consisting of a propeller able to display a luminous message. • Up to 20 h autonomy with continuous 1.1 W consumption, using 1 g H 2 . - Abstract: A portable system for power generation based on hydrogen and a single proton exchange membrane fuel cell (PEMFC) has been built and operated. The fuel cell is fed in the anode with hydrogen stored in a metal hydrides cartridge, and in the cathode with oxygen from quiescent ambient air (‘air breathing’). The control electronics of the system performs DC–DC conversion from the low voltage (0.5–0.8 V) and high current output (200–300 mA cm −2 ) of the single fuel cell, up to 3.3 V to power an electronic application. System components assist fuel cell operation, including an electronic valve for anode purging, a fan in front of the open cathode, two supercapacitors for auxiliary power requirements, four LED lights, and a display screen. The influence of the system components on fuel cell behaviour is analyzed. The cathode fan and anodic purging help excess water removal from the electrodes leading to steadier cell response at the expense of extra power consumption. The power system is able to provide above 1 W DC electricity to an external application during 20 h using 1 g of H 2 . An application consisting of a propeller able to display a luminous message is chosen to test system. It is shown that one single air breathing PEM fuel cell powered with hydrogen may provide high energy density and autonomy for portable applications

  7. Low-Cost, Robust, and Field Portable Smartphone Platform Photometric Sensor for Fluoride Level Detection in Drinking Water.

    Science.gov (United States)

    Hussain, Iftak; Ahamad, Kamal Uddin; Nath, Pabitra

    2017-01-03

    Groundwater is the major source of drinking water for people living in rural areas of India. Pollutants such as fluoride in groundwater may be present in much higher concentration than the permissible limit. Fluoride does not give any visible coloration to water, and hence, no effort is made to remove or reduce the concentration of this chemical present in drinking water. This may lead to a serious health hazard for those people taking groundwater as their primary source of drinking water. Sophisticated laboratory grade tools such as ion selective electrodes (ISE) and portable spectrophotometers are commercially available for in-field detection of fluoride level in drinking water. However, such tools are generally expensive and require expertise to handle. In this paper, we demonstrate the working of a low cost, robust, and field portable smartphone platform fluoride sensor that can detect and analyze fluoride concentration level in drinking water. For development of the proposed sensor, we utilize the ambient light sensor (ALS) of the smartphone as light intensity detector and its LED flash light as an optical source. An android application "FSense" has been developed which can detect and analyze the fluoride concentration level in water samples. The custom developed application can be used for sharing of in-field sensing data from any remote location to the central water quality monitoring station. We envision that the proposed sensing technique could be useful for initiating a fluoride removal program undertaken by governmental and nongovernmental organizations here in India.

  8. Portable water quality monitoring system

    Science.gov (United States)

    Nizar, N. B.; Ong, N. R.; Aziz, M. H. A.; Alcain, J. B.; Haimi, W. M. W. N.; Sauli, Z.

    2017-09-01

    Portable water quality monitoring system was a developed system that tested varied samples of water by using different sensors and provided the specific readings to the user via short message service (SMS) based on the conditions of the water itself. In this water quality monitoring system, the processing part was based on a microcontroller instead of Lead and Copper Rule (LCR) machines to receive the results. By using four main sensors, this system obtained the readings based on the detection of the sensors, respectively. Therefore, users can receive the readings through SMS because there was a connection between Arduino Uno and GSM Module. This system was designed to be portable so that it would be convenient for users to carry it anywhere and everywhere they wanted to since the processor used is smaller in size compared to the LCR machines. It was also developed to ease the user to monitor and control the water quality. However, the ranges of the sensors' detection still a limitation in this study.

  9. A Lab Assembled Microcontroller-Based Sensor Module for Continuous Oxygen Measurement in Portable Hypoxia Chambers

    Science.gov (United States)

    Mathupala, Saroj P.; Kiousis, Sam; Szerlip, Nicholas J.

    2016-01-01

    Background Hypoxia-based cell culture experiments are routine and essential components of in vitro cancer research. Most laboratories use low-cost portable modular chambers to achieve hypoxic conditions for cell cultures, where the sealed chambers are purged with a gas mixture of preset O2 concentration. Studies are conducted under the assumption that hypoxia remains unaltered throughout the 48 to 72 hour duration of such experiments. Since these chambers lack any sensor or detection system to monitor gas-phase O2, the cell-based data tend to be non-uniform due to the ad hoc nature of the experimental setup. Methodology With the availability of low-cost open-source microcontroller-based electronic project kits, it is now possible for researchers to program these with easy-to-use software, link them to sensors, and place them in basic scientific apparatus to monitor and record experimental parameters. We report here the design and construction of a small-footprint kit for continuous measurement and recording of O2 concentration in modular hypoxia chambers. The low-cost assembly (US$135) consists of an Arduino-based microcontroller, data-logging freeware, and a factory pre-calibrated miniature O2 sensor. A small, intuitive software program was written by the authors to control the data input and output. The basic nature of the kit will enable any student in biology with minimal experience in hobby-electronics to assemble the system and edit the program parameters to suit individual experimental conditions. Results/Conclusions We show the kit’s utility and stability of data output via a series of hypoxia experiments. The studies also demonstrated the critical need to monitor and adjust gas-phase O2 concentration during hypoxia-based experiments to prevent experimental errors or failure due to partial loss of hypoxia. Thus, incorporating the sensor-microcontroller module to a portable hypoxia chamber provides a researcher a capability that was previously available

  10. A Lab Assembled Microcontroller-Based Sensor Module for Continuous Oxygen Measurement in Portable Hypoxia Chambers.

    Directory of Open Access Journals (Sweden)

    Saroj P Mathupala

    Full Text Available Hypoxia-based cell culture experiments are routine and essential components of in vitro cancer research. Most laboratories use low-cost portable modular chambers to achieve hypoxic conditions for cell cultures, where the sealed chambers are purged with a gas mixture of preset O2 concentration. Studies are conducted under the assumption that hypoxia remains unaltered throughout the 48 to 72 hour duration of such experiments. Since these chambers lack any sensor or detection system to monitor gas-phase O2, the cell-based data tend to be non-uniform due to the ad hoc nature of the experimental setup.With the availability of low-cost open-source microcontroller-based electronic project kits, it is now possible for researchers to program these with easy-to-use software, link them to sensors, and place them in basic scientific apparatus to monitor and record experimental parameters. We report here the design and construction of a small-footprint kit for continuous measurement and recording of O2 concentration in modular hypoxia chambers. The low-cost assembly (US$135 consists of an Arduino-based microcontroller, data-logging freeware, and a factory pre-calibrated miniature O2 sensor. A small, intuitive software program was written by the authors to control the data input and output. The basic nature of the kit will enable any student in biology with minimal experience in hobby-electronics to assemble the system and edit the program parameters to suit individual experimental conditions.We show the kit's utility and stability of data output via a series of hypoxia experiments. The studies also demonstrated the critical need to monitor and adjust gas-phase O2 concentration during hypoxia-based experiments to prevent experimental errors or failure due to partial loss of hypoxia. Thus, incorporating the sensor-microcontroller module to a portable hypoxia chamber provides a researcher a capability that was previously available only to labs with access to

  11. A Lab Assembled Microcontroller-Based Sensor Module for Continuous Oxygen Measurement in Portable Hypoxia Chambers.

    Science.gov (United States)

    Mathupala, Saroj P; Kiousis, Sam; Szerlip, Nicholas J

    2016-01-01

    Hypoxia-based cell culture experiments are routine and essential components of in vitro cancer research. Most laboratories use low-cost portable modular chambers to achieve hypoxic conditions for cell cultures, where the sealed chambers are purged with a gas mixture of preset O2 concentration. Studies are conducted under the assumption that hypoxia remains unaltered throughout the 48 to 72 hour duration of such experiments. Since these chambers lack any sensor or detection system to monitor gas-phase O2, the cell-based data tend to be non-uniform due to the ad hoc nature of the experimental setup. With the availability of low-cost open-source microcontroller-based electronic project kits, it is now possible for researchers to program these with easy-to-use software, link them to sensors, and place them in basic scientific apparatus to monitor and record experimental parameters. We report here the design and construction of a small-footprint kit for continuous measurement and recording of O2 concentration in modular hypoxia chambers. The low-cost assembly (US$135) consists of an Arduino-based microcontroller, data-logging freeware, and a factory pre-calibrated miniature O2 sensor. A small, intuitive software program was written by the authors to control the data input and output. The basic nature of the kit will enable any student in biology with minimal experience in hobby-electronics to assemble the system and edit the program parameters to suit individual experimental conditions. We show the kit's utility and stability of data output via a series of hypoxia experiments. The studies also demonstrated the critical need to monitor and adjust gas-phase O2 concentration during hypoxia-based experiments to prevent experimental errors or failure due to partial loss of hypoxia. Thus, incorporating the sensor-microcontroller module to a portable hypoxia chamber provides a researcher a capability that was previously available only to labs with access to sophisticated (and

  12. Portable and Disposable Paper-Based Fluorescent Sensor for In Situ Gaseous Hydrogen Sulfide Determination in Near Real-Time.

    Science.gov (United States)

    Petruci, João Flávio da Silveira; Cardoso, Arnaldo Alves

    2016-12-06

    Hydrogen sulfide is found in many environments including sewage systems, petroleum extraction platforms, kraft paper mills, and exhaled breath, but its determination at ppb levels remains a challenge within the analytical chemistry field. Off-line methods for analysis of gaseous reduced sulfur compounds can suffer from a variety of biases associated with high reactivity, sorptive losses, and atmospheric oxidative reactions. Here, we present a portable, online, and disposable gas sensor platform for the in situ determination of gaseous hydrogen sulfide, employing a 470 nm light emitting diode (LED) and a microfiber optic USB spectrometer. A sensing layer was created by impregnating 2.5 μL (0.285 nmol) of fluorescein mercury acetate (FMA) onto the surface of a micropaper analytical device with dimensions of 5 × 5 mm, which was then positioned in the optical detection system. The quantitative determination of H 2 S was based on the quenching of fluorescence intensity after direct selective reaction between the gas and FMA. This approach enabled linear calibration within the range 17-67 ppb of H 2 S, with a limit of detection of 3 ppb. The response time of the sensor was within 60 s, and the repeatability was 6.5% (RSD). The sensor was employed to monitor H 2 S released from a mini-scale wastewater treatment tank in a research laboratory. The appropriate integration of optoelectronic and mechanical devices, including LED, photodiode, pumps, and electronic boards, can be used to produce simple, fully automated portable sensors for the in situ determination of H 2 S in a variety of environments.

  13. Single-sided natural ventilation through a centre-pivot roof window

    DEFF Research Database (Denmark)

    Iqbal, Ahsan; Nielsen, Peter V.; Gunner, Amalie

    2014-01-01

    The characteristics of centre pivot roof windows for wind driven single-sided ventilation has not been studied before. These types of windows are dominating roof windows in Europe. Knowledge of flow characteristics of this kind of window is essential for accurate designing of natural ventilation...... systems. In this study, numerical methods were used to characterise a centre-pivot roof window for wind-driven single-sided ventilation. A 1:20 scale model house of the Energy Flex House (Denmark) was used in this study. The roof slope was 36o. It was found that the single-sided ventilation through...

  14. Portable Analyzer Based on Microfluidics/Nanoengineered Electrochemical Sensors for In-situ Characterization of Mixed Wastes

    Energy Technology Data Exchange (ETDEWEB)

    Yuehe Lin; Glen E. Fryxell; Wassana Yantasee; Guodong Liu; Zheming Wang

    2006-06-01

    Required characterizations of the DOE's transuranic (TRU) and mixed wastes (MW) before disposing and treatment of the wastes are currently costly and have lengthy turnaround. Research toward developing faster and more sensitive characterization and analysis tools to reduce costs and accelerate throughputs is therefore desirable. This project is aimed at the development of electrochemical sensors, specific to toxic transition metals, uranium, and technetium, that can be integrated into the portable sensor systems. This system development will include fabrication and performance evaluation of electrodes as well as understanding of electrochemically active sites on the electrodes specifically designed for toxic metals, uranium and technetium detection. Subsequently, these advanced measurement units will be incorporated into a microfluidic prototype specifically designed and fabricated for field-deployable characterizations of such species.

  15. Challenges and trends in the development of a magnetoresistive biochip portable platform

    International Nuclear Information System (INIS)

    Martins, Veronica C.; Germano, Jose; Cardoso, Filipe A.; Loureiro, Joana; Cardoso, Susana; Sousa, Leonel; Piedade, Moises; Fonseca, Luis P.; Freitas, P.P.

    2010-01-01

    The magnetoresistive (MR) biochip concept has emerged a decade ago and since then considerable achievements were made in the field. At the moment there is a strong effort in building up a fully integrated, portable and accessible spintronic device for bioanalytical assays. Some of the major challenges and working solutions are addressed here. In a MR-biochip platform five main components can be identified as key points for its success: the MR sensing elements, the magnetic labels, the surface chemistry, the microfluidic system and the read-out electronic set-up. Linear spin valve sensors were fabricated with good sensitivity and proper field range. Magnetic particles were carefully characterized and selected seeking for the best biomolecular labels. The surface chemistry was extensively optimized in order to get it more efficient, specific and reproducible. A microfluidic structure was designed and fabricated in polydimethilsiloxane (PDMS) to work as sample transportation and simultaneously control the wash out steps. Finally, a portable and autonomous electronic microsystem provides the electronic circuitry to control, address and read-out up to 256 sensors. From the assembling of all these components emerges a versatile portable platform. The first results from the platform in a real-time detection of 20mer single stranded DNA sequences labeled with 130 nm magnetic labels are presented.

  16. Challenges and trends in the development of a magnetoresistive biochip portable platform

    Energy Technology Data Exchange (ETDEWEB)

    Martins, Veronica C., E-mail: veronicamartins@ist.utl.p [INESC-MN-Instituto de Engenharia de Sistemas e Computadores-Microsistemas e Nanotecnologias and IN-Institute of Nanoscience and Nanotechnology, Rua Alves Redol 9, 1000-029 Lisbon (Portugal); IBB-Institute for Biotechnology and Bioengineering, Center for Biological and Chemical Engineering (CEBQ), Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisbon (Portugal); Germano, Jose [INESC-ID Instituto de Engenharia de Sistemas e Computadores-Investigacao e Desenvolvimento, Rua Alves Redol 9, 1000-029 Lisbon (Portugal); Cardoso, Filipe A.; Loureiro, Joana [INESC-MN-Instituto de Engenharia de Sistemas e Computadores-Microsistemas e Nanotecnologias and IN-Institute of Nanoscience and Nanotechnology, Rua Alves Redol 9, 1000-029 Lisbon (Portugal); Physics Department, Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisbon (Portugal); Cardoso, Susana [INESC-MN-Instituto de Engenharia de Sistemas e Computadores-Microsistemas e Nanotecnologias and IN-Institute of Nanoscience and Nanotechnology, Rua Alves Redol 9, 1000-029 Lisbon (Portugal); Sousa, Leonel; Piedade, Moises [INESC-ID Instituto de Engenharia de Sistemas e Computadores-Investigacao e Desenvolvimento, Rua Alves Redol 9, 1000-029 Lisbon (Portugal); Electrical and Computer Engineering Department, Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisbon (Portugal); Fonseca, Luis P. [IBB-Institute for Biotechnology and Bioengineering, Center for Biological and Chemical Engineering (CEBQ), Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisbon (Portugal); Freitas, P.P. [INESC-MN-Instituto de Engenharia de Sistemas e Computadores-Microsistemas e Nanotecnologias and IN-Institute of Nanoscience and Nanotechnology, Rua Alves Redol 9, 1000-029 Lisbon (Portugal); Physics Department, Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisbon (Portugal)

    2010-05-15

    The magnetoresistive (MR) biochip concept has emerged a decade ago and since then considerable achievements were made in the field. At the moment there is a strong effort in building up a fully integrated, portable and accessible spintronic device for bioanalytical assays. Some of the major challenges and working solutions are addressed here. In a MR-biochip platform five main components can be identified as key points for its success: the MR sensing elements, the magnetic labels, the surface chemistry, the microfluidic system and the read-out electronic set-up. Linear spin valve sensors were fabricated with good sensitivity and proper field range. Magnetic particles were carefully characterized and selected seeking for the best biomolecular labels. The surface chemistry was extensively optimized in order to get it more efficient, specific and reproducible. A microfluidic structure was designed and fabricated in polydimethilsiloxane (PDMS) to work as sample transportation and simultaneously control the wash out steps. Finally, a portable and autonomous electronic microsystem provides the electronic circuitry to control, address and read-out up to 256 sensors. From the assembling of all these components emerges a versatile portable platform. The first results from the platform in a real-time detection of 20mer single stranded DNA sequences labeled with 130 nm magnetic labels are presented.

  17. Performance Test Results of a Single-sided Silicon Strip Detector with a Radioactive Source and a Proton Beam

    International Nuclear Information System (INIS)

    Ki, Y. I.; Kah, D. H.; Son, D. H.; Kang, H. D.; Kim, H. J.; Kim, H. O.; Bae, J. B.; Ryu, S.; Park, H.; Kim, K. R.

    2007-01-01

    Due to high intrinsic precision and high speed properties of a silicon material, the silicon detector has been used in various applications such as medical imaging detector, radiation detector, positioning detectors in space science and experimental particle physics. High technology, modern equipment, and deep expertise are required to design and fabricate good quality of silicon sensors. Only few facilities in the world can develop silicon sensors which meet requirements of sensor performances. That is one of main reasons that the silicon sensor is so expensive and it takes time to purchase the silicon sensor once it is ordered. We designed and fabricated AC-coupled single-sided silicon strip sensors and developed front-end electronics and DAQ system to read out sensor signals. The silicon strip sensors were fabricated on a 5-in. n-type silicon wafer which has an orientation, high resistivity (>5 kΩ · cm) and a thickness of 380 μm. We measured the signal-to-noise ratio (SNR) of each channel by using a radioactive source and a 45 MeV proton beam from the MC-50 cyclotron at the Korea Institute of Radiological and Medical Science (KIRAMS) in Seoul. We present the measurement results of the SNRs of the silicon strip sensor with a proton beam and radioactive sources

  18. A new portable sulfide monitor with a zinc-oxide semiconductor sensor for daily use and field study.

    Science.gov (United States)

    Tanda, Naoko; Washio, Jumpei; Ikawa, Kyoko; Suzuki, Kengo; Koseki, Takeyoshi; Iwakura, Masaki

    2007-07-01

    For measuring oral malodor in daily clinical practice and in field study, we developed and evaluated a highly sensitive portable monitor system. We examined sensitivity and specificity of the sensor for volatile sulfur compounds (VSC) and obstructive gases, such as ethanol, acetone, and acetaldehyde. Each mouth air provided by 46 people was measured by this monitor, gas chromatography (GC), and olfactory panel and compared with each other. Based on the result, we used the monitor for mass health examination of a rural town with standardized measuring. The sensor detected hydrogen sulfide, methyl mercaptan, and dimethyl sulfide with 10-1000 times higher sensitivity than the other gases. The monitor's specificity was significantly improved by a VSC-selective filter. There were significant correlations between VSC concentration by the sulfide monitor and by GC, and by organoleptic score. Thirty-six percent of 969 examinees had oral malodor in a rural town. Seventy-eight percent of 969 examinees were motivated to take care of their oral condition by oral malodor measuring with the monitor. The portable sulfide monitor was useful to promote oral health care not only in clinics, but also in field study. The simple and quick operation system and the standardized measuring make it one of parameters of oral condition.

  19. A Portable Colloidal Gold Strip Sensor for Clenbuterol and Ractopamine Using Image Processing Technology

    Directory of Open Access Journals (Sweden)

    Yi Guo

    2013-01-01

    Full Text Available A portable colloidal golden strip sensor for detecting clenbuterol and ractopamine has been developed using image processing technology, as well as a novel strip reader has achieved innovatively with this imaging sensor. Colloidal gold strips for clenbuterol and ractopamine is used as first sensor with given biomedical immunication reaction. After three minutes the target sample dropped on, the color showing in the T line is relative to the content of objects as clenbuterol, this reader can finish many functions like automatic acquit ion of colored strip image, quantatively analysis of the color lines including the control line and test line, and data storage and transfer to computer. The system is integrated image collection, pattern recognition and real-time colloidal gold quantitative measurement. In experiment, clenbuterol and ractopamine standard substance with concentration from 0 ppb to 10 ppb is prepared and tested, the result reveals that standard solutions of clenbuterol and ractopamine have a good secondary fitting character with color degree (R2 is up to 0.99 and 0.98. Besides, through standard sample addition to the object negative substance, good recovery results are obtained up to 98 %. Above all, an optical sensor for colloidal strip measure is capable of determining the content of clenbuterol and ractopamine, it is likely to apply to quantatively identifying of similar reaction of colloidal golden strips.

  20. Optimize Etching Based Single Mode Fiber Optic Temperature Sensor

    OpenAIRE

    Ajay Kumar; Dr. Pramod Kumar

    2014-01-01

    This paper presents a description of etching process for fabrication single mode optical fiber sensors. The process of fabrication demonstrates an optimized etching based method to fabricate single mode fiber (SMF) optic sensors in specified constant time and temperature. We propose a single mode optical fiber based temperature sensor, where the temperature sensing region is obtained by etching its cladding diameter over small length to a critical value. It is observed that th...

  1. Survey on the cryptanalysis of wireless sensor networks using side-channel analysis

    CSIR Research Space (South Africa)

    Moabalobelo, T

    2012-09-01

    Full Text Available obtain confidential information such as secret keys by simply observing the side channel information leakage (such as the power consumption, timing, and electromagnetic emanations). Wireless sensor networks are particularly vulnerable to these attacks...

  2. Continued development of a portable widefield hyperspectral imaging (HSI) sensor for standoff detection of explosive, chemical, and narcotic residues

    Science.gov (United States)

    Nelson, Matthew P.; Gardner, Charles W.; Klueva, Oksana; Tomas, David

    2014-05-01

    Passive, standoff detection of chemical, explosive and narcotic threats employing widefield, shortwave infrared (SWIR) hyperspectral imaging (HSI) continues to gain acceptance in defense and security fields. A robust and user-friendly portable platform with such capabilities increases the effectiveness of locating and identifying threats while reducing risks to personnel. In 2013 ChemImage Sensor Systems (CISS) introduced Aperio, a handheld sensor, using real-time SWIR HSI for wide area surveillance and standoff detection of explosives, chemical threats, and narcotics. That SWIR HSI system employed a liquid-crystal tunable filter for real-time automated detection and display of threats. In these proceedings, we report on a next generation device called VeroVision™, which incorporates an improved optical design that enhances detection performance at greater standoff distances with increased sensitivity and detection speed. A tripod mounted sensor head unit (SHU) with an optional motorized pan-tilt unit (PTU) is available for precision pointing and sensor stabilization. This option supports longer standoff range applications which are often seen at checkpoint vehicle inspection where speed and precision is necessary. Basic software has been extended to include advanced algorithms providing multi-target display functionality, automatic threshold determination, and an automated detection recipe capability for expanding the library as new threats emerge. In these proceedings, we report on the improvements associated with the next generation portable widefield SWIR HSI sensor, VeroVision™. Test data collected during development are presented in this report which supports the targeted applications for use of VeroVision™ for screening residue and bulk levels of explosive and drugs on vehicles and personnel at checkpoints as well as various applications for other secure areas. Additionally, we highlight a forensic application of the technology for assisting forensic

  3. Gas sensors boosted by two-dimensional h-BN enabled transfer on thin substrate foils: towards wearable and portable applications.

    Science.gov (United States)

    Ayari, Taha; Bishop, Chris; Jordan, Matthew B; Sundaram, Suresh; Li, Xin; Alam, Saiful; ElGmili, Youssef; Patriarche, Gilles; Voss, Paul L; Salvestrini, Jean Paul; Ougazzaden, Abdallah

    2017-11-09

    The transfer of GaN based gas sensors to foreign substrates provides a pathway to enhance sensor performance, lower the cost and extend the applications to wearable, mobile or disposable systems. The main keys to unlocking this pathway is to grow and fabricate the sensors on large h-BN surface and to transfer them to the flexible substrate without any degradation of the performances. In this work, we develop a new generation of AlGaN/GaN gas sensors with boosted performances on a low cost flexible substrate. We fabricate 2-inch wafer scale AlGaN/GaN gas sensors on sacrificial two-dimensional (2D) nano-layered h-BN without any delamination or cracks and subsequently transfer sensors to an acrylic surface on metallic foil. This technique results in a modification of relevant device properties, leading to a doubling of the sensitivity to NO 2 gas and a response time that is more than 6 times faster than before transfer. This new approach for GaN-based sensor design opens new avenues for sensor improvement via transfer to more suitable substrates, and is promising for next-generation wearable and portable opto-electronic devices.

  4. Unified double- and single-sided homogeneous Green’s function representations

    Science.gov (United States)

    van der Neut, Joost; Slob, Evert

    2016-01-01

    In wave theory, the homogeneous Green’s function consists of the impulse response to a point source, minus its time-reversal. It can be represented by a closed boundary integral. In many practical situations, the closed boundary integral needs to be approximated by an open boundary integral because the medium of interest is often accessible from one side only. The inherent approximations are acceptable as long as the effects of multiple scattering are negligible. However, in case of strongly inhomogeneous media, the effects of multiple scattering can be severe. We derive double- and single-sided homogeneous Green’s function representations. The single-sided representation applies to situations where the medium can be accessed from one side only. It correctly handles multiple scattering. It employs a focusing function instead of the backward propagating Green’s function in the classical (double-sided) representation. When reflection measurements are available at the accessible boundary of the medium, the focusing function can be retrieved from these measurements. Throughout the paper, we use a unified notation which applies to acoustic, quantum-mechanical, electromagnetic and elastodynamic waves. We foresee many interesting applications of the unified single-sided homogeneous Green’s function representation in holographic imaging and inverse scattering, time-reversed wave field propagation and interferometric Green’s function retrieval. PMID:27436983

  5. Field portable petroleum analysis for validation of the site characterization and analysis penetrometer system petroleum, oil and lubricant sensor

    International Nuclear Information System (INIS)

    Davis, W.M.; Jones, P.; Porter, B.

    1995-01-01

    A petroleum, oil and lubricant (POL) sensor for the Site Characterization and Analysis Penetrometer System (SCAPS) has been developed by the Tri-Services (e.g. Army, Navy and Air Force) to characterize the distribution of POL contaminants on military sites. The sensor is based on the detection of POL contaminants using a laser induced fluorescence (LIF) spectrometer. The SCAPS POL sensor has been shown to be a valuable tool for the rapid screening of POL contamination in the subsurface. However, many factors can affect the LIF response of a particular fuel at a particular site. These include fuel type, age of spill (e.g. weathering) and soil type. The LIF sensor also detects fluorescence from any naturally occurring fluorophores, including humic substances and fluorescent minerals. These factors lead to the development of an independent procedure for the verification of the POL sensor response. This paper describes a field portable total recoverable petroleum hydrocarbon (TRPH) method based on EPA Method 418.1 and its application to on site validation of the SCAPS POL sensor response at a number of contaminated sites

  6. Portable Hand-Held Electrochemical Sensor for the Transuranics

    Energy Technology Data Exchange (ETDEWEB)

    Dale D. Russell, William B. Knowlton, Ph.D.; Russel Hertzog, Ph.D

    2005-11-25

    During the four-year period of the grant all of the goals of the originally proposed work were achieved, and some additional accomplishments are here reported. Two types of sensors were designed and built in the lab, capable of detecting uranium, plutonium and thorium at the 10 part-per-trillion level. The basis of both sensor types is a specially designed polymer having selective binding sites for actinyl ions of the form MO{sub 2}{sup 2+}(aq), where M is any actinide in the +6 oxidation state. This binding site also traps ions of the form MO{sub 2}{sup +}(aq), where M is any actinide in the +4 oxidation state. In this way, the polymer is responsive to the two most common water-soluble ions of the actinide series. The chelating ring responsible for binding the actinyl ions was identified from the literature, calix[n]arene where n = 6. Several versions of this sensing polymer were coated on conductive substrates and demonstrated for actinide sensing. An optimized sensor was developed and is fully described in this report. It has a polymer bilayer, fabricated under the particular conditions given below. Two different operating modes were demonstrated having different capabilities. One is the chemFET mode (a FET is a field effect transistor) and the other is the voltammetric mode. These two sensors give complementary information regarding the actinide species in a sample. Therefore our recommendation is that both be used together in a probe. A detailed design for such a probe has been filed as a patent application with the United States Patent Office, and is patent pending. The sensing polymer incorporating this actinyl-chelating ring was tested under a variety of conditions and the operating limits were determined. A full factorial experiment testing the polymerization method was conducted to optimize performance and characteristics of this polymer. The actinyl-sensing polymer was also deposited on the gate of a field effect transistor (FET) and demonstrated as a

  7. A single magnetic nanocomposite cilia force sensor

    KAUST Repository

    Alfadhel, Ahmed; Khan, Mohammed Asadullah; Cardoso, Susana; Kosel, Jü rgen

    2016-01-01

    The advancements in fields like robotics and medicine continuously require improvements of sensor devices and more engagement of cooperative sensing technologies. For example, instruments such as tweezers with sensitive force sensory heads could provide the ability to sense a variety of physical quantities in real time, such as the amount and direction of the force applied or the texture of the gripped object. Force sensors with such abilities could be great solutions toward the development of smart surgical tools. In this work, a unique force sensor that can be integrated at the tips of robotic arms or surgical tools is reported. The force sensor consists of a single bioinspired, permanent magnetic and highly elastic nanocomposite cilia integrated on a magnetic field sensing element. The nanocomposite is prepared from permanent magnetic nanowires incorporated into the highly elastic polydimethylsiloxane. We demonstrate the potential of this concept by performing several experiments to show the performance of the force sensor. The developed sensor element has a 200 μm in diameter single cilium with 1:5 aspect ratio and shows a detection range up to 1 mN with a sensitivity of 1.6 Ω/mN and a resolution of 31 μN. The simple fabrication process of the sensor allows easy optimization of the sensor performance to meet the needs of different applications.

  8. A single magnetic nanocomposite cilia force sensor

    KAUST Repository

    Alfadhel, Ahmed

    2016-04-20

    The advancements in fields like robotics and medicine continuously require improvements of sensor devices and more engagement of cooperative sensing technologies. For example, instruments such as tweezers with sensitive force sensory heads could provide the ability to sense a variety of physical quantities in real time, such as the amount and direction of the force applied or the texture of the gripped object. Force sensors with such abilities could be great solutions toward the development of smart surgical tools. In this work, a unique force sensor that can be integrated at the tips of robotic arms or surgical tools is reported. The force sensor consists of a single bioinspired, permanent magnetic and highly elastic nanocomposite cilia integrated on a magnetic field sensing element. The nanocomposite is prepared from permanent magnetic nanowires incorporated into the highly elastic polydimethylsiloxane. We demonstrate the potential of this concept by performing several experiments to show the performance of the force sensor. The developed sensor element has a 200 μm in diameter single cilium with 1:5 aspect ratio and shows a detection range up to 1 mN with a sensitivity of 1.6 Ω/mN and a resolution of 31 μN. The simple fabrication process of the sensor allows easy optimization of the sensor performance to meet the needs of different applications.

  9. Laser-Based and Ultra-Portable Gas Sensor for Indoor and Outdoor Formaldehyde (HCHO) Monitoring

    Science.gov (United States)

    Shutter, J. D.; Allen, N.; Paul, J.; Thiebaud, J.; So, S.; Scherer, J. J.; Keutsch, F. N.

    2017-12-01

    While used as a key tracer of oxidative chemistry in the atmosphere, formaldehyde (HCHO) is also a known human carcinogen and is listed and regulated by the United States EPA as a hazardous air pollutant. Combustion processes and photochemical oxidation of volatile organic compounds (VOCs) are the major outdoor sources of HCHO, and building materials and household products are ubiquitous sources of indoor HCHO. Due to the ease with which humans can be exposed to HCHO, it is imperative to monitor levels of both indoor and outdoor HCHO exposure in both short and long-term studies.High-quality direct and indirect methods of quantifying HCHO mixing ratios exist, but instrument size and user-friendliness can make them cumbersome or impractical for certain types of indoor and long-term outdoor measurements. In this study, we present urban HCHO measurements by using a new, commercially-available, ppbv-level accurate HCHO gas sensor (Aeris Technologies' MIRA Pico VOC Laser-Based Gas Analyzer) that is highly portable (29 cm x 20 cm x 10 cm), lightweight (3 kg), easy-to-use, and has low power (15 W) consumption. Using an ultra-compact multipass cell, an absorption path length of 13 m is achieved, resulting in a sensor capable of achieving ppbv/s sensitivity levels with no significant spectral interferences.To demonstrate the utility of the gas sensor for emissions measurements, a GPS was attached to the sensor's housing in order to map mobile HCHO measurements in real-time around the Boston, Massachusetts, metro area. Furthermore, the sensor was placed in residential and industrial environments to show its usefulness for indoor and outdoor pollution measurements. Lastly, we show the feasibility of using the HCHO sensor (or a network of them) in long-term monitoring stations for hazardous air pollutants.

  10. Pull-in instability of paddle-type and double-sided NEMS sensors under the accelerating force

    Science.gov (United States)

    Keivani, M.; Khorsandi, J.; Mokhtari, J.; Kanani, A.; Abadian, N.; Abadyan, M.

    2016-02-01

    Paddle-type and double-sided nanostructures are potential for use as accelerometers in flying vehicles and aerospace applications. Herein the pull-in instability of the cantilever paddle-type and double-sided sensors in the Casimir regime are investigated under the acceleration. The D'Alembert principle is employed to transform the accelerating system into an equivalent static system by incorporating the accelerating force. Based on the couple stress theory (CST), the size-dependent constitutive equations of the sensors are derived. The governing nonlinear equations are solved by two approaches, i.e. modified variational iteration method and finite difference method. The influences of the Casimir force, geometrical parameters, acceleration and the size phenomenon on the instability performance have been demonstrated. The obtained results are beneficial to design and fabricate paddle-type and double-sided accelerometers.

  11. A portable single-sided magnet system for remote NMR measurements of pulmonary function.

    Science.gov (United States)

    Dabaghyan, Mikayel; Muradyan, Iga; Hrovat, Alan; Butler, James; Frederick, Eric; Zhou, Feng; Kyriazis, Angelos; Hardin, Charles; Patz, Samuel; Hrovat, Mirko

    2014-12-01

    In this work, we report initial results from a light-weight, low field magnetic resonance device designed to make relative pulmonary density measurements at the bedside. The development of this device necessarily involves special considerations for the magnet, RF and data acquisition schemes as well as a careful analysis of what is needed to provide useful information in the ICU. A homogeneous field region is created remotely from the surface of the magnet such that when the magnet is placed against the chest, an NMR signal is measured from a small volume in the lung. In order to achieve portability, one must trade off field strength and therefore spatial resolution. We report initial measurements from a ping-pong ball size region in the lung as a function of lung volume. As expected, we measured decreased signal at larger lung volumes since lung density decreases with increasing lung volume. Using a CPMG sequence with ΔTE=3.5 ms and a 20 echo train, a signal to noise ratio ~1100 was obtained from an 8.8mT planar magnet after signal averaging for 43 s. This is the first demonstration of NMR measurements made on a human lung with a light-weight planar NMR device. We argue that very low spatial resolution measurements of different lobar lung regions will provide useful diagnostic information for clinicians treating Acute Respiratory Distress Syndrome as clinicians want to avoid ventilator pressures that cause either lung over distension (too much pressure) or lung collapse (too little pressure). Copyright © 2014 John Wiley & Sons, Ltd.

  12. A Portable Low-Power Acquisition System with a Urease Bioelectrochemical Sensor for Potentiometric Detection of Urea Concentrations.

    Science.gov (United States)

    Ma, Wei-Jhe; Luo, Ching-Hsing; Lin, Jiun-Ling; Chou, Sin-Houng; Chen, Ping-Hung; Syu, Mei-Jywan; Kuo, Shin-Hung; Lai, Shin-Chi

    2016-04-02

    This paper presents a portable low-power battery-driven bioelectrochemical signal acquisition system for urea detection. The proposed design has several advantages, including high performance, low cost, low-power consumption, and high portability. A LT1789-1 low-supply-voltage instrumentation amplifier (IA) was used to measure and amplify the open-circuit potential (OCP) between the working and reference electrodes. An MSP430 micro-controller was programmed to process and transduce the signals to the custom-developed software by ZigBee RF module in wireless mode and UART in able mode. The immobilized urease sensor was prepared by embedding urease into the polymer (aniline-co-o-phenylenediamine) polymeric matrix and then coating/depositing it onto a MEMS-fabricated Au working electrode. The linear correlation established between the urea concentration and the potentiometric change is in the urea concentrations range of 3.16 × 10(-4) to 3.16 × 10(-2) M with a sensitivity of 31.12 mV/log [M] and a precision of 0.995 (R² = 0.995). This portable device not only detects urea concentrations, but can also operate continuously with a 3.7 V rechargeab-le lithium-ion battery (500 mA·h) for at least four days. Accordingly, its use is feasible and even promising for home-care applications.

  13. Assessing arsenic and selenium in a single nail clipping using portable X-ray fluorescence

    International Nuclear Information System (INIS)

    Fleming, David E.B.; Nader, Michel N.; Foran, Kelly A.; Groskopf, Craig; Reno, Michael C.; Ware, Chris S.; Tehrani, Mina; Guimarães, Diana; Parsons, Patrick J.

    2017-01-01

    The feasibility of measuring arsenic and selenium contents in a single nail clipping was investigated using a small-focus portable X-ray fluorescence (XRF) instrument with monochromatic excitation beams. Nail clipping phantoms supplemented with arsenic and selenium to produce materials with 0, 5, 10, 15, and 20 µg/g were used for calibration purposes. In total, 10 different clippings were analyzed at two different measurement positions. Energy spectra were fit with detection peaks for arsenic K_α, selenium K_α, arsenic K_β, selenium K_β, and bromine K_α characteristic X-rays. Data analysis was performed under two distinct conditions of fitting constraint. Calibration lines were established from the amplitude of each of the arsenic and selenium peaks as a function of the elemental contents in the clippings. The slopes of the four calibration lines were consistent between the two conditions of analysis. The calculated minimum detection limit (MDL) of the method, when considering the K_α peak only, ranged from 0.210±0.002 µg/g selenium under one condition of analysis to 0.777±0.009 µg/g selenium under another. Compared with previous portable XRF nail clipping studies, MDLs were substantially improved for both arsenic and selenium. The new measurement technique had the additional benefits of being short in duration (~3 min) and requiring only a single nail clipping. The mass of the individual clipping used did not appear to play a major role in signal strength, but positioning of the clipping is important. - Highlights: • Portable X-ray fluorescence was used to assess As and Se in nail clipping phantoms. • Calibration lines were consistent between two different conditions of data analysis. • This new XRF approach was sensitive and required only a single nail clipping.

  14. Attempt of portable HLS

    International Nuclear Information System (INIS)

    Matsui, S.

    1999-01-01

    This article presents the work that has been made to get a reliable magnet level surveys of the Spring-8 ring. The hydrostatic level system (HLS) completed with a capacitive sensor of water surface, has been used. If the length is about 20 m and the inner diameter of the water pipe is 10 mm, the decay time is stable within a few minutes after the sensor was set on stage. Thus the portable HLS is convenient for measuring points between the reference level ones

  15. Non-destructive characterization of materials by single-sided NMR

    International Nuclear Information System (INIS)

    Goga, Nicolae-Octavian

    2007-01-01

    The experiments conducted in this work demonstrate the efficiency and sensitivity of single-sided NMR for investigating macromolecular materials on large time and length scales. Elastomers can readily be characterized by unilateral NMR of protons in terms of a variety of parameters, which correlate with the overall molecular mobility. In this way information about the cross-link density, state of cure and strain, the effects of aging and product heterogeneity can obtained. For these purposes, the NMR-MOUSE was used to optimize product development and to monitor product and production quality on-line. The sensor is also suitable for nondestructive probing of the mechanical deformation in cross-linked elastomers. A special magnet design that fits a stress-strain device has been used for complementary investigation of a series of different rubber stripes during mechanical testing. The profile NMR-MOUSE was found to be a unique tool for the characterization of changes induced by the UV irradiation in natural rubber. The aging profiles were interpreted for the first time based on a novel model in which the radiation absorption coefficient depends on the depth in the sample. (orig.)

  16. Non-destructive characterization of materials by single-sided NMR

    Energy Technology Data Exchange (ETDEWEB)

    Goga, Nicolae-Octavian

    2007-08-20

    The experiments conducted in this work demonstrate the efficiency and sensitivity of single-sided NMR for investigating macromolecular materials on large time and length scales. Elastomers can readily be characterized by unilateral NMR of protons in terms of a variety of parameters, which correlate with the overall molecular mobility. In this way information about the cross-link density, state of cure and strain, the effects of aging and product heterogeneity can obtained. For these purposes, the NMR-MOUSE was used to optimize product development and to monitor product and production quality on-line. The sensor is also suitable for nondestructive probing of the mechanical deformation in cross-linked elastomers. A special magnet design that fits a stress-strain device has been used for complementary investigation of a series of different rubber stripes during mechanical testing. The profile NMR-MOUSE was found to be a unique tool for the characterization of changes induced by the UV irradiation in natural rubber. The aging profiles were interpreted for the first time based on a novel model in which the radiation absorption coefficient depends on the depth in the sample. (orig.)

  17. MEMS pressure sensor with maximum performances by using novel back-side direct-exposure concept featuring through glass vias

    Science.gov (United States)

    Mukhopadhyay, B.; Fritz, M.; Mackowiak, P.; Vu, T. C.; Ehrmann, O.; Lang, K.-D.; Ngo, H.-D.

    2013-05-01

    Design, simulation, fabrication, and characterization of novel MEMS pressure sensors with new back-side-direct-exposure packaging concept are presented. The sensor design is optimized for harsh environments e.g. space, military, offshore and medical applications. Unbreakable connection between the active side of the Si-sensor and the protecting glass capping was realized by anodic bonding using a thin layer of metal. To avoid signal corruption of the measured pressure caused by an encapsulation system, the media has direct contact to the backside of the Si membrane and can deflect it.

  18. CeB6 Sensor for Thermoelectric Single-Photon Detector

    Directory of Open Access Journals (Sweden)

    Armen KUZANIAN

    2015-08-01

    Full Text Available Interest in single-photon detectors has recently sharply increased. The most developed single-photon detectors are currently based on superconductors. Following the theory, thermoelectric single-photon detectors can compete with superconducting detectors. The operational principle of thermoelectric detector is based on photon absorption by absorber as a result of which a temperature gradient is generated across the sensor. In this work we present the results of computer modeling of heat distribution processes after absorption of a photon of 1 keV - 1 eV energy in different areas of the absorber for different geometries of tungsten absorber and cerium hexaboride sensor. The time dependence of the temperature difference between the ends of the thermoelectric sensor and electric potential appearing across the sensor are calculated. The results of calculations show that it is realistic to detect single photons from IR to X-ray and determine their energy. Count rates up to hundreds gigahertz can be achieved.

  19. Portable Thermoelectric Power Generator Coupled with Phase Change Material

    Directory of Open Access Journals (Sweden)

    Lim Chong C.

    2014-07-01

    Full Text Available Solar is the intermittent source of renewable energy and all thermal solar systems having a setback on non-functioning during the night and cloudy environment. This paper presents alternative solution for power generation using thermoelectric which is the direct conversion of temperature gradient of hot side and cold side of thermoelectric material to electric voltage. Phase change material with latent heat effect would help to prolong the temperature gradient across thermoelectric material for power generation. Besides, the concept of portability will enable different power source like solar, wasted heat from air conditioner, refrigerator, stove etc, i.e. to create temperature different on thermoelectric material for power generation. Furthermore, thermoelectric will generate direct current which is used by all the gadgets like Smartphone, tablet, laptop etc. The portable concept of renewable energy will encourage the direct usage of renewable energy for portable gadgets. The working principle and design of portable thermoelectric power generator coupled with phase change material is presented in this paper.

  20. Magnetic field sensor based on double-sided polished fibre-Bragg gratings

    International Nuclear Information System (INIS)

    Tien, Chuen-Lin; Hwang, Chang-Chou; Liu, Wen-Feng; Chen, Hong-Wei

    2009-01-01

    A new magnetic field sensor based on double-sided polished fibre-Bragg gratings (FBGs) coated with an iron thin film for measuring magnetic flux density was experimentally demonstrated with the sensitivity of 25.6 nm T −1 . The sensing mechanism is based on the Bragg wavelength shift as the magnetic field is measured by the proposed sensing head. Results of this study present the intensity of the reflected optical signal as a function of the applied strain on the FBG. This paper shows that an improved method for sensing the wavelength shift with changes in external magnetic field is developed by use of the double-sided polished FBGs

  1. Chlorine detection in fly ash concrete using a portable neutron generator.

    Science.gov (United States)

    Naqvi, A A; Kalakada, Zameer; Al-Matouq, Faris A; Maslehuddin, M; Al-Amoudi, O S B

    2012-08-01

    The chlorine concentration in chloride-contaminated FA cement concrete specimens was measured using a portable neutron generator based prompt gamma-ray neutron activation (PGNAA) setup with the neutron generator and the gamma-ray detector placed side-by-side on one side of the concrete sample. The minimum detectable concentration of chlorine in FA cement concrete measured in the present study was comparable with previous results for larger accelerator based PGNAA setup. It shows the successful application of a portable neutron generator in concrete corrosion studies. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. 29 CFR 1917.119 - Portable ladders.

    Science.gov (United States)

    2010-07-01

    ... Requirements for Portable Reinforced Plastic Ladders (d) Standards for job-made portable ladders. Job-made... usage. (1) Ladders made by fastening rungs or devices across a single rail are prohibited. (2) Ladders...

  3. Demonstration and Validation of a Portable Raman Sensor for In-Situ Detection and Monitoring of Perchlorate (ClO4-)

    Energy Technology Data Exchange (ETDEWEB)

    Hatzinger, Paul B. [Shaw Environmental, Inc., Lawrenceville, NJ (United States); Eres, Gyula [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gu, Baohua [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jubb, Aaron M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-03-01

    Costs for environmental analysis and monitoring are increasing at a rapid rate and represent a significant percentage of the total and future remedial expenses at many U.S. Department of Defense (DoD) contaminated sites. It has been reported that about 30 to 40% of the remediation budget is usually spent on long-term monitoring (LTM), of which a large percentage represents laboratory analytical costs. Energetics such as perchlorate (ClO4-) are among the most frequently detected contaminants in groundwater and surface water at or near military installations due to their persistence and mobility. Currently, the standard protocol entails collecting samples in the field, packaging them, and shipping them overnight to a designated laboratory for analysis. This process requires significant sample preparation and handling, and analytical results may not be available for several days to weeks. In this project, we developed and demonstrated a portable Raman sensor based on surface enhanced Raman scattering (SERS) technology to detect ClO4- in contaminated water. We summarize major accomplishments as follows: • A SERS sensor based on elevated gold (Au) nano-ellipse dimer architectures was designed and developed for ClO4- with a detection limit of ~10-6 M (or 100 μg/L); The performance of these sensors was evaluated and optimized through variation of their geometric characteristics (i.e., dimer aspect ratio, dimer separation, etc.). • Large-scale commercial production of SERS substrate sensors via nanoimprinting by Nanova Inc. and Nanoimprint lithography (NIL) technology was successfully demonstrated. This is a substantial step forward toward the commercialization of the SERS sensors and may potentially lead to significantly reduced fabrication costs of SERS substrates. • Commercially produced SERS sensors were demonstrated to detect ClO4- at levels above 10-6

  4. A Portable Low-Power Acquisition System with a Urease Bioelectrochemical Sensor for Potentiometric Detection of Urea Concentrations

    Science.gov (United States)

    Ma, Wei-Jhe; Luo, Ching-Hsing; Lin, Jiun-Ling; Chou, Sin-Houng; Chen, Ping-Hung; Syu, Mei-Jywan; Kuo, Shin-Hung; Lai, Shin-Chi

    2016-01-01

    This paper presents a portable low-power battery-driven bioelectrochemical signal acquisition system for urea detection. The proposed design has several advantages, including high performance, low cost, low-power consumption, and high portability. A LT1789-1 low-supply-voltage instrumentation amplifier (IA) was used to measure and amplify the open-circuit potential (OCP) between the working and reference electrodes. An MSP430 micro-controller was programmed to process and transduce the signals to the custom-developed software by ZigBee RF module in wireless mode and UART in able mode. The immobilized urease sensor was prepared by embedding urease into the polymer (aniline-co-o-phenylenediamine) polymeric matrix and then coating/depositing it onto a MEMS-fabricated Au working electrode. The linear correlation established between the urea concentration and the potentiometric change is in the urea concentrations range of 3.16 × 10−4 to 3.16 × 10−2 M with a sensitivity of 31.12 mV/log [M] and a precision of 0.995 (R2 = 0.995). This portable device not only detects urea concentrations, but can also operate continuously with a 3.7 V rechargeab-le lithium-ion battery (500 mA·h) for at least four days. Accordingly, its use is feasible and even promising for home-care applications. PMID:27049390

  5. A Portable Low-Power Acquisition System with a Urease Bioelectrochemical Sensor for Potentiometric Detection of Urea Concentrations

    Directory of Open Access Journals (Sweden)

    Wei-Jhe Ma

    2016-04-01

    Full Text Available This paper presents a portable low-power battery-driven bioelectrochemical signal acquisition system for urea detection. The proposed design has several advantages, including high performance, low cost, low-power consumption, and high portability. A LT1789-1 low-supply-voltage instrumentation amplifier (IA was used to measure and amplify the open-circuit potential (OCP between the working and reference electrodes. An MSP430 micro-controller was programmed to process and transduce the signals to the custom-developed software by ZigBee RF module in wireless mode and UART in able mode. The immobilized urease sensor was prepared by embedding urease into the polymer (aniline-co-o-phenylenediamine polymeric matrix and then coating/depositing it onto a MEMS-fabricated Au working electrode. The linear correlation established between the urea concentration and the potentiometric change is in the urea concentrations range of 3.16 × 10−4 to 3.16 × 10−2 M with a sensitivity of 31.12 mV/log [M] and a precision of 0.995 (R2 = 0.995. This portable device not only detects urea concentrations, but can also operate continuously with a 3.7 V rechargeab-le lithium-ion battery (500 mA·h for at least four days. Accordingly, its use is feasible and even promising for home-care applications.

  6. A Portable Wireless Communication Platform Based on a Multi-Material Fiber Sensor for Real-Time Breath Detection

    Directory of Open Access Journals (Sweden)

    Mourad Roudjane

    2018-03-01

    Full Text Available In this paper, we present a new mobile wireless communication platform for real-time monitoring of an individual’s breathing rate. The platform takes the form of a wearable stretching T-shirt featuring a sensor and a detection base station. The sensor is formed by a spiral-shaped antenna made from a multi-material fiber connected to a compact transmitter. Based on the resonance frequency of the antenna at approximately 2.4 GHz, the breathing sensor relies on its Bluetooth transmitter. The contactless and non-invasive sensor is designed without compromising the user’s comfort. The sensing mechanism of the system is based on the detection of the signal amplitude transmitted wirelessly by the sensor, which is found to be sensitive to strain. We demonstrate the capability of the platform to detect the breathing rates of four male volunteers who are not in movement. The breathing pattern is obtained through the received signal strength indicator (RSSI which is filtered and analyzed with home-made algorithms in the portable system. Numerical simulations of human breath are performed to support the experimental detection, and both results are in a good agreement. Slow, fast, regular, irregular, and shallow breathing types are successfully recorded within a frequency interval of 0.16–1.2 Hz, leading to a breathing rate varying from 10 to 72 breaths per minute.

  7. Evaluating different approaches to non-destructive nitrogen status diagnosis of rice using portable RapidSCAN active canopy sensor.

    Science.gov (United States)

    Lu, Junjun; Miao, Yuxin; Shi, Wei; Li, Jingxin; Yuan, Fei

    2017-10-26

    RapidSCAN is a new portable active crop canopy sensor with three wavebands in red, red-edge, and near infrared spectral regions. The objective of this study was to determine the potential and practical approaches of using this sensor for non-destructive diagnosis of rice nitrogen (N) status. Sixteen plot experiments and ten on-farm experiments were conducted from 2014 to 2016 in Jiansanjiang Experiment Station of the China Agricultural University and Qixing Farm in Northeast China. Two mechanistic and three semi-empirical approaches using the sensor's default vegetation indices, normalized difference vegetation index and normalized difference red edge, were evaluated in comparison with the top performing vegetation indices selected from 51 tested indices. The results indicated that the most practical and stable method of using the RapidSCAN sensor for rice N status diagnosis is to calculate N sufficiency index with the default vegetation indices and then to estimate N nutrition index non-destructively (R 2  = 0.50-0.59). This semi-empirical approach achieved a diagnosis accuracy rate of 59-76%. The findings of this study will facilitate the application of the RapidSCAN active sensor for rice N status diagnosis across growth stages, cultivars and site-years, and thus contributing to precision N management for sustainable intensification of agriculture.

  8. Multiple-Event, Single-Photon Counting Imaging Sensor

    Science.gov (United States)

    Zheng, Xinyu; Cunningham, Thomas J.; Sun, Chao; Wang, Kang L.

    2011-01-01

    The single-photon counting imaging sensor is typically an array of silicon Geiger-mode avalanche photodiodes that are monolithically integrated with CMOS (complementary metal oxide semiconductor) readout, signal processing, and addressing circuits located in each pixel and the peripheral area of the chip. The major problem is its single-event method for photon count number registration. A single-event single-photon counting imaging array only allows registration of up to one photon count in each of its pixels during a frame time, i.e., the interval between two successive pixel reset operations. Since the frame time can t be too short, this will lead to very low dynamic range and make the sensor merely useful for very low flux environments. The second problem of the prior technique is a limited fill factor resulting from consumption of chip area by the monolithically integrated CMOS readout in pixels. The resulting low photon collection efficiency will substantially ruin any benefit gained from the very sensitive single-photon counting detection. The single-photon counting imaging sensor developed in this work has a novel multiple-event architecture, which allows each of its pixels to register as more than one million (or more) photon-counting events during a frame time. Because of a consequently boosted dynamic range, the imaging array of the invention is capable of performing single-photon counting under ultra-low light through high-flux environments. On the other hand, since the multiple-event architecture is implemented in a hybrid structure, back-illumination and close-to-unity fill factor can be realized, and maximized quantum efficiency can also be achieved in the detector array.

  9. A portable lipid bilayer system for environmental sensing with a transmembrane protein.

    Directory of Open Access Journals (Sweden)

    Ryuji Kawano

    Full Text Available This paper describes a portable measurement system for current signals of an ion channel that is composed of a planar lipid bilayer. A stable and reproducible lipid bilayer is formed in outdoor environments by using a droplet contact method with a micropipette. Using this system, we demonstrated that the single-channel recording of a transmembrane protein (alpha-hemolysin was achieved in the field at a high-altitude (∼3623 m. This system would be broadly applicable for obtaining environmental measurements using membrane proteins as a highly sensitive sensor.

  10. Portable double-sided pulsed laser heating system for time-resolved geoscience and materials science applications.

    Science.gov (United States)

    Aprilis, G; Strohm, C; Kupenko, I; Linhardt, S; Laskin, A; Vasiukov, D M; Cerantola, V; Koemets, E G; McCammon, C; Kurnosov, A; Chumakov, A I; Rüffer, R; Dubrovinskaia, N; Dubrovinsky, L

    2017-08-01

    A portable double-sided pulsed laser heating system for diamond anvil cells has been developed that is able to stably produce laser pulses as short as a few microseconds with repetition frequencies up to 100 kHz. In situ temperature determination is possible by collecting and fitting the thermal radiation spectrum for a specific wavelength range (particularly, between 650 nm and 850 nm) to the Planck radiation function. Surface temperature information can also be time-resolved by using a gated detector that is synchronized with the laser pulse modulation and space-resolved with the implementation of a multi-point thermal radiation collection technique. The system can be easily coupled with equipment at synchrotron facilities, particularly for nuclear resonance spectroscopy experiments. Examples of applications include investigations of high-pressure high-temperature behavior of iron oxides, both in house and at the European Synchrotron Radiation Facility using the synchrotron Mössbauer source and nuclear inelastic scattering.

  11. RFID sensors as the common sensing platform for single-use biopharmaceutical manufacturing

    International Nuclear Information System (INIS)

    Potyrailo, Radislav A; Surman, Cheryl; Monk, David; Morris, William G; Wortley, Timothy; Vincent, Mark; Diana, Rafael; Pizzi, Vincent; Carter, Jeffrey; Gach, Gerard; Klensmeden, Staffan; Ehring, Hanno

    2011-01-01

    The lack of reliable single-use sensors prevents the biopharmaceutical industry from fully embracing single-use biomanufacturing processes. Sensors based on the same detection platform for all critical parameters in single-use bioprocess components would be highly desirable to significantly simplify their installation, calibration and operation. We review here our approach for passive radio-frequency identification (RFID)-based sensing that does not rely on costly proprietary RFID memory chips with an analog input but rather implements ubiquitous passive 13.56 MHz RFID tags as inductively coupled sensors with at least 16 bit resolution provided by a sensor reader. The developed RFID sensors combine several measured parameters from the resonant sensor antenna with multivariate data analysis and deliver unique capability of multiparameter sensing and rejection of environmental interferences with a single sensor. This general sensing approach provides an elegant solution for both analytical measurement and identification and documentation of the measured location. (topical review)

  12. Heart Rate Monitor for Portable MP3 Player.

    Science.gov (United States)

    Kim, Jaywoo; Lee, Mi-Hee; Lee, Hyoung-Ki; Choi, Kiwan; Bang, Seokwon; Kim, Sangryong

    2005-01-01

    This paper presents a photoplethysmography sensor based on a heart rate monitor for a portable MP3 player. Two major design issues are addressed: one is to acquire the sensor signal with a proper amplitude despite a wide range of variation and the other is to handle the noise contaminated signal which is caused by a motion artifact. A benchmarking test with a professional medical photoplethysmography sensor shows that our device performs very well in calculating heart rate even though our photoplethysmography sensor module was designed to be cost effective.

  13. Incorporating single-side sparing in models for predicting parotid dose sparing in head and neck IMRT

    International Nuclear Information System (INIS)

    Yuan, Lulin; Wu, Q. Jackie; Yin, Fang-Fang; Yoo, David; Jiang, Yuliang; Ge, Yaorong

    2014-01-01

    Purpose: Sparing of single-side parotid gland is a common practice in head-and-neck (HN) intensity modulated radiation therapy (IMRT) planning. It is a special case of dose sparing tradeoff between different organs-at-risk. The authors describe an improved mathematical model for predicting achievable dose sparing in parotid glands in HN IMRT planning that incorporates single-side sparing considerations based on patient anatomy and learning from prior plan data. Methods: Among 68 HN cases analyzed retrospectively, 35 cases had physician prescribed single-side parotid sparing preferences. The single-side sparing model was trained with cases which had single-side sparing preferences, while the standard model was trained with the remainder of cases. A receiver operating characteristics (ROC) analysis was performed to determine the best criterion that separates the two case groups using the physician's single-side sparing prescription as ground truth. The final predictive model (combined model) takes into account the single-side sparing by switching between the standard and single-side sparing models according to the single-side sparing criterion. The models were tested with 20 additional cases. The significance of the improvement of prediction accuracy by the combined model over the standard model was evaluated using the Wilcoxon rank-sum test. Results: Using the ROC analysis, the best single-side sparing criterion is (1) the predicted median dose of one parotid is higher than 24 Gy; and (2) that of the other is higher than 7 Gy. This criterion gives a true positive rate of 0.82 and a false positive rate of 0.19, respectively. For the bilateral sparing cases, the combined and the standard models performed equally well, with the median of the prediction errors for parotid median dose being 0.34 Gy by both models (p = 0.81). For the single-side sparing cases, the standard model overestimates the median dose by 7.8 Gy on average, while the predictions by the combined

  14. Cochlear implantation for single-sided deafness and tinnitus suppression.

    Science.gov (United States)

    Holder, Jourdan T; O'Connell, Brendan; Hedley-Williams, Andrea; Wanna, George

    To quantify the potential effectiveness of cochlear implantation for tinnitus suppression in patients with single-sided deafness using the Tinnitus Handicap Inventory. The study included 12 patients with unilateral tinnitus who were undergoing cochlear implantation for single-sided deafness. The Tinnitus Handicap Inventory was administered at the patient's cochlear implant candidacy evaluation appointment prior to implantation and every cochlear implant follow-up appointment, except activation, following implantation. Patient demographics and speech recognition scores were also retrospectively recorded using the electronic medical record. A significant reduction was found when comparing Tinnitus Handicap Inventory score preoperatively (61.2±27.5) to the Tinnitus Handicap Inventory score after three months of cochlear implant use (24.6±28.2, p=0.004) and the Tinnitus Handicap Inventory score beyond 6months of CI use (13.3±18.9, p=0.008). Further, 45% of patients reported total tinnitus suppression. Mean CNC word recognition score improved from 2.9% (SD 9.4) pre-operatively to 40.8% (SD 31.7) by 6months post-activation, which was significantly improved from pre-operative scores (p=0.008). The present data is in agreement with previously published studies that have shown an improvement in tinnitus following cochlear implantation for the large majority of patients with single-sided deafness. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Radiation hardness tests of double-sided 3D strip sensors with passing-through columns

    Energy Technology Data Exchange (ETDEWEB)

    Dalla Betta, Gian-Franco, E-mail: gianfranco.dallabetta@unitn.it [Dipartimento di Ingegneria Industriale, Università degli Studi di Trento, Via Sommarive 9, I-38123 Trento (Italy); INFN TIFPA, Via Sommarive 14, I-38123 Trento (Italy); Betancourt, Christopher [Institute of Physics, University of Freiburg, Hermann-Herder-Str. 3, 79104 Freiburg (Germany); Boscardin, Maurizio; Giacomini, Gabriele [Fondazione Bruno Kessler, Centro per i Materiali e i Microsistemi (FBK-CMM), Via Sommarive 18, I-38123 Trento (Italy); Jakobs, Karl; Kühn, Susanne [Institute of Physics, University of Freiburg, Hermann-Herder-Str. 3, 79104 Freiburg (Germany); Lecini, Besnik [Dipartimento di Ingegneria Industriale, Università degli Studi di Trento, Via Sommarive 9, I-38123 Trento (Italy); Mendicino, Roberto [Dipartimento di Ingegneria Industriale, Università degli Studi di Trento, Via Sommarive 9, I-38123 Trento (Italy); INFN TIFPA, Via Sommarive 14, I-38123 Trento (Italy); Mori, Riccardo; Parzefall, Ulrich [Institute of Physics, University of Freiburg, Hermann-Herder-Str. 3, 79104 Freiburg (Germany); Povoli, Marco [Dipartimento di Ingegneria Industriale, Università degli Studi di Trento, Via Sommarive 9, I-38123 Trento (Italy); Thomas, Maira [Institute of Physics, University of Freiburg, Hermann-Herder-Str. 3, 79104 Freiburg (Germany); Zorzi, Nicola [Fondazione Bruno Kessler, Centro per i Materiali e i Microsistemi (FBK-CMM), Via Sommarive 18, I-38123 Trento (Italy)

    2014-11-21

    This paper deals with a radiation hardness study performed on double-sided 3D strip sensors with passing-through columns. Selected results from the characterization of the irradiated sensors with a beta source and a laser setup are reported and compared to pre-irradiation results and to TCAD simulations. The sensor performance in terms of signal efficiency is found to be in good agreement with that of other 3D sensors irradiated at the same fluences and tested under similar experimental conditions. - Highlights: • We report results from 3D silicon strip detectors irradiated up to HL-LHC fluences. • I–V curves, noise, charge collection measurements and laser scans are shown. • In all sensors, signals are distinguished from the noise already at low voltage. • Signal efficiency is in agreement with values expected from the electrode geometry. • Efficiency and spatial uniformity would benefit from higher operation voltages.

  16. Radiation hardness tests of double-sided 3D strip sensors with passing-through columns

    International Nuclear Information System (INIS)

    Dalla Betta, Gian-Franco; Betancourt, Christopher; Boscardin, Maurizio; Giacomini, Gabriele; Jakobs, Karl; Kühn, Susanne; Lecini, Besnik; Mendicino, Roberto; Mori, Riccardo; Parzefall, Ulrich; Povoli, Marco; Thomas, Maira; Zorzi, Nicola

    2014-01-01

    This paper deals with a radiation hardness study performed on double-sided 3D strip sensors with passing-through columns. Selected results from the characterization of the irradiated sensors with a beta source and a laser setup are reported and compared to pre-irradiation results and to TCAD simulations. The sensor performance in terms of signal efficiency is found to be in good agreement with that of other 3D sensors irradiated at the same fluences and tested under similar experimental conditions. - Highlights: • We report results from 3D silicon strip detectors irradiated up to HL-LHC fluences. • I–V curves, noise, charge collection measurements and laser scans are shown. • In all sensors, signals are distinguished from the noise already at low voltage. • Signal efficiency is in agreement with values expected from the electrode geometry. • Efficiency and spatial uniformity would benefit from higher operation voltages

  17. Negative pressure wound therapy using a portable single-use device for free skin grafts on the distal extremity in seven dogs.

    Science.gov (United States)

    Miller, A J; Cashmore, R G; Marchevsky, A M; Havlicek, M; Brown, P M; Fearnside, S M

    2016-09-01

    Retrospective study to describe clinical experience with a portable single-use negative pressure wound therapy device after application of full-thickness meshed skin grafts to wounds on the distal extremities of seven dogs. Seven dogs were treated with portable NPWT after receiving skin grafts; six as the result of tumour resection and one for traumatic injury. Medical records were reviewed and data recorded on patient signalment, cause and location of wound, surgical technique, application and maintenance of portable NPWT, graft survival and outcome, and complications encountered with the system. NPWT was provided for between 4 and 7 days. Five patients were discharged from hospital during the treatment period. Application and maintenance of the portable device was technically easy and no major complications were encountered. Minor complications consisted of fluid accumulation in the evacuation tubing. All dogs achieved 100% graft survival. Application and maintenance of the portable device was technically straightforward. All dogs receiving portable NPWT after transfer of a free skin graft to the distal extremity had a successful outcome. © 2016 Australian Veterinary Association.

  18. A single sensor and single actuator approach to performance tailoring over a prescribed frequency band.

    Science.gov (United States)

    Wang, Jiqiang

    2016-03-01

    Restricted sensing and actuation control represents an important area of research that has been overlooked in most of the design methodologies. In many practical control engineering problems, it is necessitated to implement the design through a single sensor and single actuator for multivariate performance variables. In this paper, a novel approach is proposed for the solution to the single sensor and single actuator control problem where performance over any prescribed frequency band can also be tailored. The results are obtained for the broad band control design based on the formulation for discrete frequency control. It is shown that the single sensor and single actuator control problem over a frequency band can be cast into a Nevanlinna-Pick interpolation problem. An optimal controller can then be obtained via the convex optimization over LMIs. Even remarkable is that robustness issues can also be tackled in this framework. A numerical example is provided for the broad band attenuation of rotor blade vibration to illustrate the proposed design procedures. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  19. NEWTON - NEW portable multi-sensor scienTific instrument for non-invasive ON-site characterization of rock from planetary surface and sub-surfaces

    Science.gov (United States)

    Díaz-Michelena, M.; de Frutos, J.; Ordóñez, A. A.; Rivero, M. A.; Mesa, J. L.; González, L.; Lavín, C.; Aroca, C.; Sanz, M.; Maicas, M.; Prieto, J. L.; Cobos, P.; Pérez, M.; Kilian, R.; Baeza, O.; Langlais, B.; Thébault, E.; Grösser, J.; Pappusch, M.

    2017-09-01

    In space instrumentation, there is currently no instrument dedicated to susceptibly or complete magnetization measurements of rocks. Magnetic field instrument suites are generally vector (or scalar) magnetometers, which locally measure the magnetic field. When mounted on board rovers, the electromagnetic perturbations associated with motors and other elements make it difficult to reap the benefits from the inclusion of such instruments. However, magnetic characterization is essential to understand key aspects of the present and past history of planetary objects. The work presented here overcomes the limitations currently existing in space instrumentation by developing a new portable and compact multi-sensor instrument for ground breaking high-resolution magnetic characterization of planetary surfaces and sub-surfaces. This new technology introduces for the first time magnetic susceptometry (real and imaginary parts) as a complement to existing compact vector magnetometers for planetary exploration. This work aims to solve the limitations currently existing in space instrumentation by means of providing a new portable and compact multi-sensor instrument for use in space, science and planetary exploration to solve some of the open questions on the crustal and more generally planetary evolution within the Solar System.

  20. Portable sensor for hazardous waste

    International Nuclear Information System (INIS)

    Piper, L.G.

    1994-01-01

    Objective was to develop a field-portable monitor for sensitive hazardous waste detection using active nitrogen energy transfer (ANET) excitation of atomic and molecular fluorescence (active nitrogen is made in a dielectric-barrier discharge in nitrogen). It should provide rapid field screening of hazardous waste sites to map areas of greatest contamination. Results indicate that ANET is very sensitive for monitoring heavy metals (Hg, Se) and hydrocarbons; furthermore, chlorinated hydrocarbons can be distinguished from nonchlorinated ones. Sensitivity is at ppB levels for sampling in air. ANET appears ideal for on-line monitoring of toxic heavy metal levels at building sites, hazardous waste land fills, in combustor flues, and of chlorinated hydrocarbon levels at building sites and hazardous waste dumps

  1. Cluster-based single-sink wireless sensor networks and passive optical network converged network incorporating sideband modulation schemes

    Science.gov (United States)

    Kumar, Love; Sharma, Vishal; Singh, Amarpal

    2018-02-01

    Wireless sensor networks have tremendous applications, such as civil, military, and environmental monitoring. In most of the applications, sensor data are required to be propagated over the internet/core networks, which result in backhaul setback. Subsequently, there is a necessity to backhaul the sensed information of such networks together with prolonging of the transmission link. Passive optical network (PON) is next-generation access technology emerging as a potential candidate for convergence of the sensed data to the core system. Earlier, the work with single-optical line terminal-PON was demonstrated and investigated merely analytically. This work is an attempt to demonstrate a practical model of a bidirectional single-sink wireless sensor network-PON converged network in which the collected data from cluster heads are transmitted over PON networks. Further, modeled converged structure has been investigated under the influence of double, single, and tandem sideband modulation schemes incorporating a corresponding phase-delay to the sensor data entities that have been overlooked in the past. The outcome illustrates the successful fusion of the sensor data entities over PON with acceptable bit error rate and signal to noise ratio serving as a potential development in the sphere of such converged networks. It has also been revealed that the data entities treated with tandem side band modulation scheme help in improving the performance of the converged structure. Additionally, analysis for uplink transmission reported with queue theory in terms of time cycle, average time delay, data packet generation, and bandwidth utilization. An analytical analysis of proposed converged network shows that average time delay for data packet transmission is less as compared with time cycle delay.

  2. A Portable Array-Type Optical Fiber Sensing Instrument for Real-Time Gas Detection

    Directory of Open Access Journals (Sweden)

    San-Shan Hung

    2016-12-01

    Full Text Available A novel optical fiber array-type of sensing instrument with temperature compensation for real-time detection was developed to measure oxygen, carbon dioxide, and ammonia simultaneously. The proposed instrument is multi-sensing array integrated with real-time measurement module for portable applications. The sensing optical fibers were etched and polished before coating to increase sensitivities. The ammonia and temperature sensors were each composed of a dye-coated single-mode fiber with constructing a fiber Bragg grating and a long-period filter grating for detecting light intensity. Both carbon dioxide and oxygen sensing structures use multimode fibers where 1-hydroxy-3,6,8-pyrene trisulfonic acid trisodium salt is coated for carbon dioxide sensing and Tris(2,2′-bipyridyl dichlororuthenium(II hexahydrate and Tris(bipyridineruthenium(II chloride are coated for oxygen sensing. Gas-induced fluorescent light intensity variation was applied to detect gas concentration. The portable gas sensing array was set up by integrating with photo-electronic measurement modules and a human-machine interface to detect gases in real time. The measured data have been processed using piecewise-linear method. The sensitivity of the oxygen sensor were 1.54%/V and 9.62%/V for concentrations less than 1.5% and for concentrations between 1.5% and 6%, respectively. The sensitivity of the carbon dioxide sensor were 8.33%/V and 9.62%/V for concentrations less than 2% and for concentrations between 2% and 5%, respectively. For the ammonia sensor, the sensitivity was 27.78%/V, while ammonia concentration was less than 2%.

  3. A Portable Array-Type Optical Fiber Sensing Instrument for Real-Time Gas Detection.

    Science.gov (United States)

    Hung, San-Shan; Chang, Hsing-Cheng; Chang, I-Nan

    2016-12-08

    A novel optical fiber array-type of sensing instrument with temperature compensation for real-time detection was developed to measure oxygen, carbon dioxide, and ammonia simultaneously. The proposed instrument is multi-sensing array integrated with real-time measurement module for portable applications. The sensing optical fibers were etched and polished before coating to increase sensitivities. The ammonia and temperature sensors were each composed of a dye-coated single-mode fiber with constructing a fiber Bragg grating and a long-period filter grating for detecting light intensity. Both carbon dioxide and oxygen sensing structures use multimode fibers where 1-hydroxy-3,6,8-pyrene trisulfonic acid trisodium salt is coated for carbon dioxide sensing and Tris(2,2'-bipyridyl) dichlororuthenium(II) hexahydrate and Tris(bipyridine)ruthenium(II) chloride are coated for oxygen sensing. Gas-induced fluorescent light intensity variation was applied to detect gas concentration. The portable gas sensing array was set up by integrating with photo-electronic measurement modules and a human-machine interface to detect gases in real time. The measured data have been processed using piecewise-linear method. The sensitivity of the oxygen sensor were 1.54%/V and 9.62%/V for concentrations less than 1.5% and for concentrations between 1.5% and 6%, respectively. The sensitivity of the carbon dioxide sensor were 8.33%/V and 9.62%/V for concentrations less than 2% and for concentrations between 2% and 5%, respectively. For the ammonia sensor, the sensitivity was 27.78%/V, while ammonia concentration was less than 2%.

  4. A Novel Solid State Non-Dispersive Infrared CO2 Gas Sensor Compatible with Wireless and Portable Deployment

    Directory of Open Access Journals (Sweden)

    Desmond Gibson

    2013-05-01

    Full Text Available This paper describes development of a novel mid-infrared light emitting diode (LED and photodiode (PD light source/detector combination and use within a non-dispersive infrared (NDIR carbon dioxide gas sensor. The LED/PD based NDIR sensor provides fast stabilisation time (time required to turn on the sensor from cold, warm up, take and report a measurement, and power down again ≈1 second, longevity (>15 years, low power consumption and low cost. Described performance is compatible with “fit and forget” wireless deployed sensors in applications such as indoor air quality monitoring/control & energy conservation in buildings, transport systems, horticultural greenhouses and portable deployment for safety, industrial and medical applications. Fast stabilisation time, low intrinsic power consumption and cycled operation offer typical energy consumption per measurement of mJ’s, providing extended operation using battery and/or energy harvesting strategies (measurement interval of ≈ 2 minutes provides >10 years operation from one AA battery. Specific performance data is provided in relation to measurement accuracy and noise, temperature performance, cross sensitivity, measurement range (two pathlength variants are described covering ambient through to 100% gas concentration, comparison with NDIR utilizing thermal source/pyroelectric light source/detector combination and compatibility with energy harvesting. Semiconductor based LED/PD processing together with injection moulded reflective optics and simple assembly provide a route to low cost high volume manufacturing.

  5. A novel solid state non-dispersive infrared CO2 gas sensor compatible with wireless and portable deployment.

    Science.gov (United States)

    Gibson, Desmond; MacGregor, Calum

    2013-05-29

    This paper describes development of a novel mid-infrared light emitting diode (LED) and photodiode (PD) light source/detector combination and use within a non-dispersive infrared (NDIR) carbon dioxide gas sensor. The LED/PD based NDIR sensor provides fast stabilisation time (time required to turn on the sensor from cold, warm up, take and report a measurement, and power down again ≈1 second), longevity (>15 years), low power consumption and low cost. Described performance is compatible with "fit and forget" wireless deployed sensors in applications such as indoor air quality monitoring/control & energy conservation in buildings, transport systems, horticultural greenhouses and portable deployment for safety, industrial and medical applications. Fast stabilisation time, low intrinsic power consumption and cycled operation offer typical energy consumption per measurement of mJ's, providing extended operation using battery and/or energy harvesting strategies (measurement interval of ≈ 2 minutes provides >10 years operation from one AA battery). Specific performance data is provided in relation to measurement accuracy and noise, temperature performance, cross sensitivity, measurement range (two pathlength variants are described covering ambient through to 100% gas concentration), comparison with NDIR utilizing thermal source/pyroelectric light source/detector combination and compatibility with energy harvesting. Semiconductor based LED/PD processing together with injection moulded reflective optics and simple assembly provide a route to low cost high volume manufacturing.

  6. Optical Breath Gas Extravehicular Activity Sensor for the Advanced Portable Life Support System

    Science.gov (United States)

    Wood, William R.; Casias, Miguel E.; Pilgrim, Jeffrey S.; Chullen, Cinda; Campbell, Colin

    2016-01-01

    The infrared gas transducer used during extravehicular activity (EVA) in the extravehicular mobility unit (EMU) measures and reports the concentration of carbon dioxide (CO2) in the ventilation loop. It is nearing its end of life and there are a limited number remaining. Meanwhile, the next generation advanced portable life support system (PLSS) now being developed requires CO2 sensing technology with performance beyond that presently in use. A laser diode (LD) spectrometer based on wavelength modulation spectroscopy (WMS) is being developed to address both applications by Vista Photonics, Inc. Accommodation within space suits demands that optical sensors meet stringent size, weight, and power requirements. Version 1.0 devices were delivered to NASA Johnson Space Center (JSC) in 2011. The sensors incorporate a laser diode based CO2 channel that also includes an incidental water vapor (humidity) measurement. The prototypes are controlled digitally with a field-programmable gate array (FPGA)/microcontroller architecture. Version 2.0 devices with improved electronics and significantly reduced wetted volumes were delivered to JSC in 2012. A version 2.5 upgrade recently implemented wavelength stabilized operation, better humidity measurement, and much faster data analysis/reporting. A wholly reconfigured version 3.0 will maintain the demonstrated performance of earlier versions while being backwards compatible with the EMU and offering a radiation tolerant architecture.

  7. Single nucleotide polymorphism (SNP) detection on a magnetoresistive sensor

    DEFF Research Database (Denmark)

    Rizzi, Giovanni; Østerberg, Frederik Westergaard; Dufva, Martin

    2013-01-01

    We present a magnetoresistive sensor platform for hybridization assays and demonstrate its applicability on single nucleotide polymorphism (SNP) genotyping. The sensor relies on anisotropic magnetoresistance in a new geometry with a local negative reference and uses the magnetic field from...... the sensor bias current to magnetize magnetic beads in the vicinity of the sensor. The method allows for real-time measurements of the specific bead binding to the sensor surface during DNA hybridization and washing. Compared to other magnetic biosensing platforms, our approach eliminates the need...... for external electromagnets and thus allows for miniaturization of the sensor platform....

  8. Toward Portable Breath Acetone Analysis for Diabetes Detection

    Science.gov (United States)

    Righettoni, Marco; Tricoli, Antonio

    2013-01-01

    Diabetes is a lifelong condition that may cause death and seriously affects the quality of life of a rapidly growing number of individuals. Acetone is a selective breath marker for diabetes that may contribute to the monitoring of related metabolic disorder and thus simplify the management of this illness. Here, the overall performance of Si-doped WO3 nanoparticles made by flame spray pyrolysis as portable acetone detectors is critically reviewed focusing on the requirements for medical diagnostic. The effect of flow rate, chamber volume and acetone dissociation within the measuring chamber are discussed with respect to the calibration of the sensor response. The challenges for the fabrication of portable breath acetone sensors based on chemo-resistive detectors are underlined indicating possible solutions and novel research directions. PMID:21828897

  9. Soft Sensor for Oxide Scales on the Steam Side of Superheater Tubes under Uneven Circumferential Load

    Directory of Open Access Journals (Sweden)

    Qing Wei Li

    2015-01-01

    Full Text Available A soft sensor for oxide scales on the steam side of superheater tubes of utility boiler under uneven circumferential loading is proposed for the first time. First finite volume method is employed to simulate oxide scales growth temperature on the steam side of superheater tube. Then appropriate time and spatial intervals are selected to calculate oxide scales thickness along the circumferential direction. On the basis of the oxide scale thickness, the stress of oxide scales is calculated by the finite element method. At last, the oxide scale thickness and stress sensors are established on support vector machine (SMV optimized by particle swarm optimization (PSO with time and circumferential angles as inputs and oxide scale thickness and stress as outputs. Temperature and stress calculation methods are validated by the operation data and experimental data, respectively. The soft sensor is applied to the superheater tubes of some power plant. Results show that the soft sensor can give enough accurate results for oxide scale thickness and stress in reasonable time. The forecasting model provides a convenient way for the research of the oxide scale failure.

  10. Portable Amperometric Perchlorate Selective Sensors with Microhole Array-water/organic Gel Interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang Hyuk; Girault, Hubert H.; Lee, Hye Jin [Kyungpook National Univ., Daegu (Korea, Republic of); Kim, Hyungi [Gyeongbuk Technopark, Gyeongsan (Korea, Republic of); Girault, Hubert H. [Ecole Polytechnique Federale de Lausanne, Lausanne (Switzerland)

    2013-09-15

    A novel stick-shaped portable sensing device featuring a microhole array interface between the polyvinylchloride-2-nitrophenyloctylether (PVC-NPOE) gel and water phase was developed for in-situ sensing of perchlorate ions in real water samples. Perchlorate sensitive sensing responses were obtained based on measuring the current changes with respect to the assisted transfer reaction of perchlorate ions by a perchlorate selective ligand namely, bis(dibenzoylmethanato)Ni(II) (Ni(DBM){sub 2}) across the polarized microhole array interface. Cyclic voltammetry was used to characterize the assisted transfer reaction of perchlorate ions by the Ni(DBM){sub 2} ligand when using the portable sensing device. The current response for the transfer of perchlorate anions by Ni(DBM){sub 2} across the micro-water/gel interface linearly increased as a function of the perchlorate ion concentration. The technique of differential pulse stripping voltammetry was also utilized to improve the sensitivity of the perchlorate anion detection down to 10 ppb. This was acquired by preconcentrating perchlorate anions in the gel layer by means of holding the ion transfer potential at 0 mV (vs. Ag/AgCl) for 30 s followed by stripping the complexed perchlorate ion with the ligand. The effect of various potential interfering anions on the perchlorate sensor was also investigated and showed an excellent selectivity over Br{sup -}, NO{sub 2}{sup -}, NO{sub 3}{sup -}, CO{sub 3}{sup 2-}, CH{sub 3}COO{sup -} and SO{sub 4}{sup 2-} ions. As a final demonstration, some regional water samples from the Sincheon river in Daegu city were analyzed and the data was verified with that of ion chromatography (IC) analysis from one of the Korean-certified water quality evaluation centers.

  11. Handheld multi-channel LAPS device as a transducer platform for possible biological and chemical multi-sensor applications

    International Nuclear Information System (INIS)

    Wagner, Torsten; Molina, Roberto; Yoshinobu, Tatsuo; Kloock, Joachim P.; Biselli, Manfred; Canzoneri, Michelangelo; Schnitzler, Thomas; Schoening, Michael J.

    2007-01-01

    The light-addressable potentiometric sensor is a promising technology platform for multi-sensor applications and lab-on-chip devices. However, many prior LAPS developments suffer from their lack in terms of non-portability, insufficient robustness, complicate handling, etc. Hence, portable and robust LAPS-based measurement devices have been investigated by the authors recently. In this work, a 'chip card'-based light-addressable potentiometric sensor system is presented. The utilisation of ordinary 'chip cards' allows an easy handling of different sensor chips for a wide range of possible applications. The integration of the electronic and the mechanical set-up into a single reader unit results in a compact design with the benefits of portability and low required space. In addition, the presented work includes a new multi-frequency measurement procedure, based on an FFT algorithm, which enables the simultaneous real-time measurement of up to 16 sensor spots. The comparison between the former batch-LAPS and the new FFT-based LAPS set-up will be presented. The immobilisation of biological cells (CHO: Chinese hamster ovary) demonstrates the possibility to record their metabolic activity with 16 measurement spots on the same chip. Furthermore, a Cd 2+ -selective chalcogenide-glass layer together with a pH-sensitive Ta 2 O 5 layer validates the use of the LAPS for chemical multi-sensor applications

  12. Study of New Silicon Sensors for Experiments at Future Particle Colliders

    CERN Document Server

    Muñoz Sánchez, Francisca Javiela

    In this work, two new technologies for future tracker detectors at future colliders are studied. In addition, the characterization techniques are described and the obtained results are presented. On one side, we studied two-dimensional position-sensitive microstrip sensors. This sensors use a resistive material as electrode instead of the standard metallic one. In this way, using a single sensor we can get information about two coordinates of a particle hit. On the other side, we studied double-sided double-type 3D pixel sensors. This sensors are manufactured in 3D technology instead of in the planar technology. They show more radiation hardness and require less energy to be efficiently operated than sensors manufactured in planar technology. With this work, we demonstrate the resistive microstrip sensors functionality as particle detector and the radiation hardness of 3D pixel detectors has been evaluated.

  13. Continuous Fuel Level Sensor Based on Spiral Side-Emitting Optical Fiber

    Directory of Open Access Journals (Sweden)

    Chengrui Zhao

    2012-01-01

    Full Text Available A continuous fuel level sensor using a side-emitting optical fiber is introduced in this paper. This sensor operates on the modulation of the light intensity in fiber, which is caused by the cladding’s acceptance angle change when it is immersed in fuel. The fiber is bent as a spiral shape to increase the sensor’s sensitivity by increasing the attenuation coefficient and fiber’s submerged length compared to liquid level. The attenuation coefficients of fiber with different bent radiuses in the air and water are acquired through experiments. The fiber is designed as a spiral shape with a steadily changing slope, and its response to water level is simulated. The experimental results taken in water and aviation kerosene demonstrate a performance of 0.9 m range and 10 mm resolution.

  14. Multi-Level Wavelet Shannon Entropy-Based Method for Single-Sensor Fault Location

    Directory of Open Access Journals (Sweden)

    Qiaoning Yang

    2015-10-01

    Full Text Available In actual application, sensors are prone to failure because of harsh environments, battery drain, and sensor aging. Sensor fault location is an important step for follow-up sensor fault detection. In this paper, two new multi-level wavelet Shannon entropies (multi-level wavelet time Shannon entropy and multi-level wavelet time-energy Shannon entropy are defined. They take full advantage of sensor fault frequency distribution and energy distribution across multi-subband in wavelet domain. Based on the multi-level wavelet Shannon entropy, a method is proposed for single sensor fault location. The method firstly uses a criterion of maximum energy-to-Shannon entropy ratio to select the appropriate wavelet base for signal analysis. Then multi-level wavelet time Shannon entropy and multi-level wavelet time-energy Shannon entropy are used to locate the fault. The method is validated using practical chemical gas concentration data from a gas sensor array. Compared with wavelet time Shannon entropy and wavelet energy Shannon entropy, the experimental results demonstrate that the proposed method can achieve accurate location of a single sensor fault and has good anti-noise ability. The proposed method is feasible and effective for single-sensor fault location.

  15. Low-cost, portable, robust and high-resolution single-camera stereo-DIC system and its application in high-temperature deformation measurements

    Science.gov (United States)

    Chi, Yuxi; Yu, Liping; Pan, Bing

    2018-05-01

    A low-cost, portable, robust and high-resolution single-camera stereo-digital image correlation (stereo-DIC) system for accurate surface three-dimensional (3D) shape and deformation measurements is described. This system adopts a single consumer-grade high-resolution digital Single Lens Reflex (SLR) camera and a four-mirror adaptor, rather than two synchronized industrial digital cameras, for stereo image acquisition. In addition, monochromatic blue light illumination and coupled bandpass filter imaging are integrated to ensure the robustness of the system against ambient light variations. In contrast to conventional binocular stereo-DIC systems, the developed pseudo-stereo-DIC system offers the advantages of low cost, portability, robustness against ambient light variations, and high resolution. The accuracy and precision of the developed single SLR camera-based stereo-DIC system were validated by measuring the 3D shape of a stationary sphere along with in-plane and out-of-plane displacements of a translated planar plate. Application of the established system to thermal deformation measurement of an alumina ceramic plate and a stainless-steel plate subjected to radiation heating was also demonstrated.

  16. Sniffer used as portable hydrogen leak detector

    Science.gov (United States)

    Dayan, V. H.; Rommel, M. A.

    1966-01-01

    Sniffer type portable monitor detects hydrogen in air, oxygen, nitrogen, or helium. It indicates the presence of hydrogen in contact with activated palladium black by a change in color of a thermochromic paint, and indicates the quantity of hydrogen by a sensor probe and continuous readout.

  17. Single-Sided Natural Ventilation through a Velux Roof Window

    DEFF Research Database (Denmark)

    Li, Zhigang; Nielsen, Peter Vilhelm; Fransson, J.

    2004-01-01

    This paper investigates the single-sided natural ventilation through a VELUX centre pivot roof window under natural weather conditions. The aim of the investigation is to develop an empirical formulation for air flow rate through a roof window based on CFD and tracer gas decay measurement methods...

  18. Distributed Detection with Collisions in a Random, Single-Hop Wireless Sensor Network

    Science.gov (United States)

    2013-05-26

    public release; distribution is unlimited. Distributed detection with collisions in a random, single-hop wireless sensor network The views, opinions...1274 2 ABSTRACT Distributed detection with collisions in a random, single-hop wireless sensor network Report Title We consider the problem of... WIRELESS SENSOR NETWORK Gene T. Whipps?† Emre Ertin† Randolph L. Moses† ?U.S. Army Research Laboratory, Adelphi, MD 20783 †The Ohio State University

  19. Single-Crystal Sapphire Optical Fiber Sensor Instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Pickrell, Gary [Virginia Polytechnic Inst. & State Univ., Blacksburg, VA (United States); Scott, Brian [Virginia Polytechnic Inst. & State Univ., Blacksburg, VA (United States); Wang, Anbo [Virginia Polytechnic Inst. & State Univ., Blacksburg, VA (United States); Yu, Zhihao [Virginia Polytechnic Inst. & State Univ., Blacksburg, VA (United States)

    2013-12-31

    This report summarizes technical progress on the program “Single-Crystal Sapphire Optical Fiber Sensor Instrumentation,” funded by the National Energy Technology Laboratory of the U.S. Department of Energy, and performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. This project was completed in three phases, each with a separate focus. Phase I of the program, from October 1999 to April 2002, was devoted to development of sensing schema for use in high temperature, harsh environments. Different sensing designs were proposed and tested in the laboratory. Phase II of the program, from April 2002 to April 2009, focused on bringing the sensor technologies, which had already been successfully demonstrated in the laboratory, to a level where the sensors could be deployed in harsh industrial environments and eventually become commercially viable through a series of field tests. Also, a new sensing scheme was developed and tested with numerous advantages over all previous ones in Phase II. Phase III of the program, September 2009 to December 2013, focused on development of the new sensing scheme for field testing in conjunction with materials engineering of the improved sensor packaging lifetimes. In Phase I, three different sensing principles were studied: sapphire air-gap extrinsic Fabry-Perot sensors; intensity-based polarimetric sensors; and broadband polarimetric sensors. Black body radiation tests and corrosion tests were also performed in this phase. The outcome of the first phase of this program was the selection of broadband polarimetric differential interferometry (BPDI) for further prototype instrumentation development. This approach is based on the measurement of the optical path difference (OPD) between two orthogonally polarized light beams in a single-crystal sapphire disk. At the beginning of Phase II, in June 2004, the BPDI sensor was tested at the Wabash River coal gasifier

  20. Fabrication of 3D Silicon Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Kok, A.; Hansen, T.E.; Hansen, T.A.; Lietaer, N.; Summanwar, A.; /SINTEF, Oslo; Kenney, C.; Hasi, J.; /SLAC; Da Via, C.; /Manchester U.; Parker, S.I.; /Hawaii U.

    2012-06-06

    Silicon sensors with a three-dimensional (3-D) architecture, in which the n and p electrodes penetrate through the entire substrate, have many advantages over planar silicon sensors including radiation hardness, fast time response, active edge and dual readout capabilities. The fabrication of 3D sensors is however rather complex. In recent years, there have been worldwide activities on 3D fabrication. SINTEF in collaboration with Stanford Nanofabrication Facility have successfully fabricated the original (single sided double column type) 3D detectors in two prototype runs and the third run is now on-going. This paper reports the status of this fabrication work and the resulted yield. The work of other groups such as the development of double sided 3D detectors is also briefly reported.

  1. Sensor fusion for intelligent alarm analysis

    International Nuclear Information System (INIS)

    Nelson, C.L.; Fitzgerald, D.S.

    1996-01-01

    The purpose of an intelligent alarm analysis system is to provide complete and manageable information to a central alarm station operator by applying alarm processing and fusion techniques to sensor information. This paper discusses the sensor fusion approach taken to perform intelligent alarm analysis for the Advanced Exterior Sensor (AES). The AES is an intrusion detection and assessment system designed for wide-area coverage, quick deployment, low false/nuisance alarm operation, and immediate visual assessment. It combines three sensor technologies (visible, infrared, and millimeter wave radar) collocated on a compact and portable remote sensor module. The remote sensor module rotates at a rate of 1 revolution per second to detect and track motion and provide assessment in a continuous 360 degree field-of-regard. Sensor fusion techniques are used to correlate and integrate the track data from these three sensors into a single track for operator observation. Additional inputs to the fusion process include environmental data, knowledge of sensor performance under certain weather conditions, sensor priority, and recent operator feedback. A confidence value is assigned to the track as a result of the fusion process. This helps to reduce nuisance alarms and to increase operator confidence in the system while reducing the workload of the operator

  2. A programmable and portable NMES device for drop foot correction and blood flow assist applications.

    Science.gov (United States)

    Breen, Paul P; Corley, Gavin J; O'Keeffe, Derek T; Conway, Richard; Olaighin, Gearóid

    2009-04-01

    The Duo-STIM, a new, programmable and portable neuromuscular stimulation system for drop foot correction and blood flow assist applications is presented. The system consists of a programmer unit and a portable, programmable stimulator unit. The portable stimulator features fully programmable, sensor-controlled, constant-voltage, dual-channel stimulation and accommodates a range of customized stimulation profiles. Trapezoidal and free-form adaptive stimulation intensity envelope algorithms are provided for drop foot correction applications, while time dependent and activity dependent algorithms are provided for blood flow assist applications. A variety of sensor types can be used with the portable unit, including force sensitive resistor-based foot switches and MEMS-based accelerometer and gyroscope devices. The paper provides a detailed description of the hardware and block-level system design for both units. The programming and operating procedures for the system are also presented. Finally, functional bench test results for the system are presented.

  3. Single side damage simulations and detection in beam-like structures

    International Nuclear Information System (INIS)

    Zhou, Yun-Lai; Perera, R; Wahab, M Abdel; Maia, N; Sampaio, R; Figueiredo, E

    2015-01-01

    Beam-like structures are the most common components in real engineering, while single side damage is often encountered. In this study, a numerical analysis of single side damage in a free-free beam is analysed with three different finite element models; namely solid, shell and beam models for demonstrating their performance in simulating real structures. Similar to experiment, damage is introduced into one side of the beam, and natural frequencies are extracted from the simulations and compared with experimental and analytical results. Mode shapes are also analysed with modal assurance criterion. The results from simulations reveal a good performance of the three models in extracting natural frequencies, and solid model performs better than shell while shell model performs better than beam model under intact state. For damaged states, the natural frequencies captured from solid model show more sensitivity to damage severity than shell model and shell model performs similar to the beam model in distinguishing damage. The main contribution of this paper is to perform a comparison between three finite element models and experimental data as well as analytical solutions. The finite element results show a relatively well performance. (paper)

  4. A portable readout system for silicon microstrip sensors

    International Nuclear Information System (INIS)

    Marco-Hernandez, Ricardo

    2010-01-01

    This system can measure the collected charge in one or two microstrip silicon sensors by reading out all the channels of the sensor(s), up to 256. The system is able to operate with different types (p- and n-type) and different sizes (up to 3 cm 2 ) of microstrip silicon sensors, both irradiated and non-irradiated. Heavily irradiated sensors will be used at the Super Large Hadron Collider, so this system can be used to research the performance of microstrip silicon sensors in conditions as similar as possible to the Super Large Hadron Collider operating conditions. The system has two main parts: a hardware part and a software part. The hardware part acquires the sensor signals either from external trigger inputs, in case of a radioactive source setup is used, or from a synchronised trigger output generated by the system, if a laser setup is used. The software controls the system and processes the data acquired from the sensors in order to store it in an adequate format. The main characteristics of the system are described. Results of measurements acquired with n- and p-type detectors using both the laser and the radioactive source setup are also presented and discussed.

  5. Calculation methods for single-sided natural ventilation - simplified or detailed?

    DEFF Research Database (Denmark)

    Larsen, Tine Steen; Plesner, Christoffer; Leprince, Valérie

    2016-01-01

    A great energy saving potential lies within increased use of natural ventilation, not only during summer and midseason periods, where it is mainly used today, but also during winter periods, where the outdoor air holds a great cooling potential for ventilative cooling if draft problems can...... be handled. This paper presents a newly developed simplified calculation method for single-sided natural ventilation, which is proposed for the revised standard FprEN 16798-7 (earlier EN 15242:2007) for design of ventilative cooling. The aim for predicting ventilative cooling is to find the most suitable......, while maintaining an acceptable correlation with measurements on average and the authors consider the simplified calculation method well suited for the use in standards such as FprEN 16798-7 for the ventilative cooling effects from single-sided natural ventilation The comparison of different design...

  6. Single Photon Counting Performance and Noise Analysis of CMOS SPAD-Based Image Sensors

    Science.gov (United States)

    Dutton, Neale A. W.; Gyongy, Istvan; Parmesan, Luca; Henderson, Robert K.

    2016-01-01

    SPAD-based solid state CMOS image sensors utilising analogue integrators have attained deep sub-electron read noise (DSERN) permitting single photon counting (SPC) imaging. A new method is proposed to determine the read noise in DSERN image sensors by evaluating the peak separation and width (PSW) of single photon peaks in a photon counting histogram (PCH). The technique is used to identify and analyse cumulative noise in analogue integrating SPC SPAD-based pixels. The DSERN of our SPAD image sensor is exploited to confirm recent multi-photon threshold quanta image sensor (QIS) theory. Finally, various single and multiple photon spatio-temporal oversampling techniques are reviewed. PMID:27447643

  7. SERS-based pesticide detection by using nanofinger sensors

    Science.gov (United States)

    Kim, Ansoon; Barcelo, Steven J.; Li, Zhiyong

    2015-01-01

    Simple, sensitive, and rapid detection of trace levels of extensively used and highly toxic pesticides are in urgent demand for public health. Surface-enhanced Raman scattering (SERS)-based sensor was designed to achieve ultrasensitive and simple pesticide sensing. We developed a portable sensor system composed of high performance and reliable gold nanofinger sensor strips and a custom-built portable Raman spectrometer. Compared to the general procedure and previously reported studies that are limited to laboratory settings, our analytical method is simple, sensitive, rapid, and cost-effective. Based on the SERS results, the chemical interaction of two pesticides, chlorpyrifos (CPF) and thiabendazole (TBZ), with gold nanofingers was studied to determine a fingerprint for each pesticide. The portable SERS-sensor system was successfully demonstrated to detect CPF and TBZ pesticides within 15 min with a detection limit of 35 ppt in drinking water and 7 ppb on apple skin, respectively.

  8. Detection of land mines by amplified fluorescence quenching of polymer films: a man-portable chemical sniffer for detection of ultratrace concentrations of explosives emanating from land mines

    Science.gov (United States)

    la Grone, Marcus J.; Cumming, Colin J.; Fisher, Mark E.; Fox, Michael J.; Jacob, Sheena; Reust, Dennis; Rockley, Mark G.; Towers, Eric

    2000-08-01

    The explosive charge within a landmine is the source for a mixture of chemical vapors that form a distinctive 'chemical signature' indicative of a landmine. The concentration of these compounds in the air over landmines is extremely low, well below the minimum detection limits of most field- portable chemical sensors. Described in this paper is a man- portable landmine detection system that has for the first time demonstrated the ability to detect landmines by direct sensing of the vapors of signature compounds in the air over landmines. The system utilizes fluorescent polymers developed by collaborators at the MIT. The sensor can detect ultra-trace concentrations of TNT vapor and other nitroaromatic compounds found in many landmine explosives. Thin films of the polymers exhibit intense fluorescence, but when exposed to vapors of nitroaromatic explosives the intensity of the light emitted from the films decreases. A single molecule of TNT binding to a receptor site quenches the fluorescence from many polymer repeat units, increasing the sensitivity by orders of magnitude. A sensor prototype has been develop that response in near real-time to low femtogram quantities of nitroaromatic explosives. The prototype is portable, lightweight, has low power consumption, is simple to operate, and is relatively inexpensive. Simultaneous field testing of the sensor and experienced canine landmine detection teams was recently completed. Although the testing was limited in scope, the performance of the senor met or exceeded that of the canines against buried landmines.

  9. Portable Dew Point Mass Spectrometry System for Real-Time Gas and Moisture Analysis

    Science.gov (United States)

    Arkin, C.; Gillespie, Stacey; Ratzel, Christopher

    2010-01-01

    A portable instrument incorporates both mass spectrometry and dew point measurement to provide real-time, quantitative gas measurements of helium, nitrogen, oxygen, argon, and carbon dioxide, along with real-time, quantitative moisture analysis. The Portable Dew Point Mass Spectrometry (PDP-MS) system comprises a single quadrupole mass spectrometer and a high vacuum system consisting of a turbopump and a diaphragm-backing pump. A capacitive membrane dew point sensor was placed upstream of the MS, but still within the pressure-flow control pneumatic region. Pressure-flow control was achieved with an upstream precision metering valve, a capacitance diaphragm gauge, and a downstream mass flow controller. User configurable LabVIEW software was developed to provide real-time concentration data for the MS, dew point monitor, and sample delivery system pressure control, pressure and flow monitoring, and recording. The system has been designed to include in situ, NIST-traceable calibration. Certain sample tubing retains sufficient water that even if the sample is dry, the sample tube will desorb water to an amount resulting in moisture concentration errors up to 500 ppm for as long as 10 minutes. It was determined that Bev-A-Line IV was the best sample line to use. As a result of this issue, it is prudent to add a high-level humidity sensor to PDP-MS so such events can be prevented in the future.

  10. Single-analyte to multianalyte fluorescence sensors

    Science.gov (United States)

    Lavigne, John J.; Metzger, Axel; Niikura, Kenichi; Cabell, Larry A.; Savoy, Steven M.; Yoo, J. S.; McDevitt, John T.; Neikirk, Dean P.; Shear, Jason B.; Anslyn, Eric V.

    1999-05-01

    The rational design of small molecules for the selective complexation of analytes has reached a level of sophistication such that there exists a high degree of prediction. An effective strategy for transforming these hosts into sensors involves covalently attaching a fluorophore to the receptor which displays some fluorescence modulation when analyte is bound. Competition methods, such as those used with antibodies, are also amenable to these synthetic receptors, yet there are few examples. In our laboratories, the use of common dyes in competition assays with small molecules has proven very effective. For example, an assay for citrate in beverages and an assay for the secondary messenger IP3 in cells have been developed. Another approach we have explored focuses on multi-analyte sensor arrays with attempt to mimic the mammalian sense of taste. Our system utilizes polymer resin beads with the desired sensors covalently attached. These functionalized microspheres are then immobilized into micromachined wells on a silicon chip thereby creating our taste buds. Exposure of the resin to analyte causes a change in the transmittance of the bead. This change can be fluorescent or colorimetric. Optical interrogation of the microspheres, by illuminating from one side of the wafer and collecting the signal on the other, results in an image. These data streams are collected using a CCD camera which creates red, green and blue (RGB) patterns that are distinct and reproducible for their environments. Analysis of this data can identify and quantify the analytes present.

  11. GaussStudio: designing seamless tangible interactions on portable displays

    NARCIS (Netherlands)

    Liang, R.-H.; Kuo, H.-C.; Bruns Alonso, M.; Chen, B.-Y.

    2016-01-01

    The analog Hall-sensor grid, GaussSense, is a thin-form magnetic-field camera technology for designing expressive occlusion-free, near-surface tangible interactions on conventional portable displays. The studio will provide hands-on experiences that combine physical designs and the GaussSense

  12. Refractive index sensor based on an abrupt taper Michelson interferometer in a single-mode fiber.

    Science.gov (United States)

    Tian, Zhaobing; Yam, Scott S-H; Loock, Hans-Peter

    2008-05-15

    A simple refractive index sensor based on a Michelson interferometer in a single-mode fiber is constructed and demonstrated. The sensor consists of a single symmetrically abrupt taper region in a short piece of single-mode fiber that is terminated by approximately 500 nm thick gold coating. The sensitivity of the new sensor is similar to that of a long-period-grating-type sensor, and its ease of fabrication offers a low-cost alternative to current sensing applications.

  13. Compact portable QEPAS multi-gas sensor

    Science.gov (United States)

    Dong, Lei; Kosterev, Anatoliy A.; Thomazy, David; Tittel, Frank K.

    2011-01-01

    A quartz-enhanced photoacoustic spectroscopy (QEPAS) based multi-gas sensor was developed to quantify concentrations of carbon monoxide (CO), hydrogen cyanide (HCN), hydrogen chloride (HCl), and carbon dioxide (CO2) in ambient air. The sensor consists of a compact package of dimensions 25cm x 25cm x 10cm and was designed to operate at atmospheric pressure. The HCN, CO2, and HCl measurement channels are based on cw, C-band telecommunication-style packaged, fiber-coupled diode lasers, while the CO channel uses a TO can-packaged Sb diode laser as an excitation source. Moreover, the sensor incorporates rechargeable batteries and can operate on batteries for at least 8 hours. It can also operate autonomously or interact with another device (such as a computer) via a RS232 serial port. Trace gas detection limits of 7.74ppm at 4288.29cm-1 for CO, 450ppb at 6539.11 cm-1 for HCN, 1.48ppm at 5739.26 cm-1 for HCl and 97ppm at 6361.25 cm-1 for CO2 for a 1sec average time, were demonstrated.

  14. Laser-assisted patterning of double-sided adhesive tapes for optofluidic chip integration

    Science.gov (United States)

    Zamora, Vanessa; Janeczka, Christian; Arndt-Staufenbiel, Norbert; Havlik, George; Queisser, Marco; Schröder, Henning

    2018-02-01

    Portable high-sensitivity biosensors exhibit a growing demand in healthcare, food industry and environmental monitoring sectors. Optical biosensors based on photonic integration platforms are attractive candidates due to their high sensitivity, compactness and multiplexing capabilities. However, they need a low-cost and reliable integration with the microfluidic system. Laser-micropatterned double-sided biocompatible adhesive tapes are promising bonding layers for hybrid integration of an optofluidic biochip. As a part of the EU-PHOCNOSIS project, double-sided adhesive tapes have been proposed to integrate the polymer microfluidic system with the optical integrated waveguide sensor chip. Here the adhesive tape should be patterned in a micrometer scale in order to create an interaction between the sample that flows through the polymer microchannel and the photonic sensing microstructure. Three laser-assisted structuring methods are investigated to transfer microchannel patterns to the adhesive tape. The test structure design consists of a single channel with 400 μm wide, 30 mm length and two circular receivers with 3 mm radius. The best structuring results are found by using the picosecond UV laser where smooth and straight channel cross-sections are obtained. Such patterned tapes are used to bond blank polymer substrates to blank silicon substrates. As a proof of concept, the hybrid integration is tested using colored DI-water. Structuring tests related to the reduction of channel widths are also considered in this work. The use of this technique enables a simple and rapid manufacturing of narrow channels (50-60 μm in width) in adhesive tapes, achieving a cheap and stable integration of the optofluidic biochip.

  15. A fully packaged micromachined single crystalline resonant force sensor

    Energy Technology Data Exchange (ETDEWEB)

    Cavalloni, C.; Gnielka, M.; Berg, J. von [Kistler Instrumente AG, Winterthur (Switzerland); Haueis, M.; Dual, J. [ETH Zuerich, Inst. of Mechanical Systems, Zuerich (Switzerland); Buser, R. [Interstate Univ. of Applied Science Buchs, Buchs (Switzerland)

    2001-07-01

    In this work a fully packaged resonant force sensor for static load measurements is presented. The working principle is based on the shift of the resonance frequency in response to the applied load. The heart of the sensor, the resonant structure, is fabricated by micromachining using single crystalline silicon. To avoid creep and hysteresis and to minimize temperature induced stress the resonant structure is encapsulated using an all-in-silicon solution. This means that the load coupling, the excitation of the microresonator and the detection of the oscillation signal are integrated in only one single crystalline silicon chip. The chip is packaged into a specially designed housing made of steel which has been designed with respect to application in harsh environments. The unloaded sensor has an initial frequency of about 22,5 kHz. The sensitivity amounts to 26 Hz/N with a linearity error significantly less than 0,5%FSO. (orig.)

  16. Design, fabrication and characterization of the first AC-coupled silicon microstrip sensors in India

    CERN Document Server

    Aziz, T; Mohanty, G.B.; Patil, M.R.; Rao, K.K.; Rani, Y.R.; Rao, Y.P.P.; Behnamian, H.; Mersi, S.; Naseri, M.

    2014-01-01

    This paper reports the design, fabrication and characterization of single-sided silicon microstrip sensors with integrated biasing resistors and coupling capacitors, produced for the first time in India. We have first developed a prototype sensor with different width and pitch combinations on a single 4-inch wafer. After finding test procedures for characterizing these AC coupled sensors, we have chosen an optimal width-pitch combination and also fine-tuned various process parameters in order to produce sensors with the desired specifications.

  17. Cantilever sensors: Nanomechanical tools for diagnostics

    DEFF Research Database (Denmark)

    Datar, R.; Kim, S.; Jeon, S.

    2009-01-01

    Cantilever sensors have attracted considerable attention over the last decade because of their potential as a highly sensitive sensor platform for high throughput and multiplexed detection of proteins and nucleic acids. A micromachined cantilever platform integrates nanoscale science and microfab......Cantilever sensors have attracted considerable attention over the last decade because of their potential as a highly sensitive sensor platform for high throughput and multiplexed detection of proteins and nucleic acids. A micromachined cantilever platform integrates nanoscale science...... and microfabrication technology for the label-free detection of biological molecules, allowing miniaturization. Molecular adsorption, when restricted to a single side of a deformable cantilever beam, results in measurable bending of the cantilever. This nanoscale deflection is caused by a variation in the cantilever...... surface stress due to biomolecular interactions and can be measured by optical or electrical means, thereby reporting on the presence of biomolecules. Biological specificity in detection is typically achieved by immobilizing selective receptors or probe molecules on one side of the cantilever using...

  18. Compact and portable open-path sensor for simultaneous measurements of atmospheric N2O and CO using a quantum cascade laser.

    Science.gov (United States)

    Tao, Lei; Sun, Kang; Khan, M Amir; Miller, David J; Zondlo, Mark A

    2012-12-17

    A compact and portable open-path sensor for simultaneous detection of atmospheric N(2)O and CO has been developed with a 4.5 μm quantum cascade laser (QCL). An in-line acetylene (C(2)H(2)) gas reference cell allows for continuous monitoring of the sensor drift and calibration in rapidly changing field environments and thereby allows for open-path detection at high precision and stability. Wavelength modulation spectroscopy (WMS) is used to detect simultaneously both the second and fourth harmonic absorption spectra with an optimized dual modulation amplitude scheme. Multi-harmonic spectra containing atmospheric N(2)O, CO, and the reference C(2)H(2) signals are fit in real-time (10 Hz) by combining a software-based lock-in amplifier with a computationally fast numerical model for WMS. The sensor consumes ~50 W of power and has a mass of ~15 kg. Precision of 0.15 ppbv N(2)O and 0.36 ppbv CO at 10 Hz under laboratory conditions was demonstrated. The sensor has been deployed for extended periods in the field. Simultaneous N(2)O and CO measurements distinguished between natural and fossil fuel combustion sources of N(2)O, an important greenhouse gas with poorly quantified emissions in space and time.

  19. Evaluation of Portable Multi-Gas Analyzers for use by Safety Personnel

    Science.gov (United States)

    Lueck, D. E.; Meneghelli, B. J.; Bardel, D. N.

    1998-01-01

    During confined space entry operations as well as Shuttle-safing operations, United Space Alliance (USA)/National Aeronautics and Space Administration (NASA) safety personnel use a variety of portable instrumentation to monitor for hazardous levels of compounds such as nitrogen dioxide (N%), monomethylhydrazine (NMM), FREON 21, ammonia (NH3), oxygen (O2), and combustibles (as hydrogen (H2)). Except for O2 and H2, each compound is monitored using a single analyzer. In many cases these analyzers are 5 to 10 years old and require frequent maintenance. In addition, they are cumbersome to carry and tend to make the job of personnel monitoring physically taxing. As part of an effort to upgrade the sensor technology background information was requested from a total of 27 manufacturers of portable multi-gas instruments. A set of criteria was established to determine which vendors would be selected for laboratory evaluation. These criteria were based on requests made by USA/NASA Safety personnel in order to meet requirements within their respective areas for confined-space and Shuttle-safing operations. Each of the 27 manufacturers of multi-gas analyzers was sent a copy of the criteria and asked to fill in the appropriate information pertaining to their instrumentation. Based on the results of the sensor criteria worksheets, a total of 9 vendors out of 27 surveyed manufacturers were chosen for evaluation. Each vendor included in the final evaluation process was requested to configure each of two analyzers with NO2, NH3, O2, and combustible sensors. A set of lab tests was designed in order to determine which of the multi-gas instruments under evaluation was best suited for use in both shuttle and confined space operations. These tests included linearity/repeatability, zero/span drift response/recovery, humidity, interference, and maintenance. At the conclusion of lab testing three vendors were selected for additional field testing. Based on the results of both the lab and

  20. PORTABLE ACOUSTIC MONITORING PACKAGE (PAMP)

    Energy Technology Data Exchange (ETDEWEB)

    John l. Loth; Gary J. Morris; George M. Palmer; Richard Guiler; Deepak Mehra

    2003-07-01

    The 1st generation acoustic monitoring package was designed to detect and analyze weak acoustic signals inside natural gas transmission lines. Besides a microphone it housed a three-inch diameter aerodynamic acoustic signal amplifier to maximize sensitivity to leak induced {Delta}p type signals. The theory and test results of this aerodynamic signal amplifier was described in the master's degree thesis of our Research Assistant Deepak Mehra who is about to graduate. To house such a large three-inch diameter sensor required the use of a steel 300-psi rated 4 inch weld neck flange, which itself weighed already 29 pounds. The completed 1st generation Acoustic Monitoring Package weighed almost 100 pounds. This was too cumbersome to mount in the field, on an access port at a pipeline shut-off valve. Therefore a 2nd generation and truly Portable Acoustic Monitor was built. It incorporated a fully self-contained {Delta}p type signal sensor, rated for line pressures up to 1000 psi with a base weight of only 6 pounds. This is the Rosemont Inc. Model 3051CD-Range 0, software driven sensor, which is believed to have industries best total performance. Its most sensitive unit was purchased with a {Delta}p range from 0 to 3 inch water. This resulted in the herein described 2nd generation: Portable Acoustic Monitoring Package (PAMP) for pipelines up to 1000 psi. Its 32-pound total weight includes an 18-volt battery. Together with a 3 pound laptop with its 4-channel data acquisition card, completes the equipment needed for field acoustic monitoring of natural gas transmission pipelines.

  1. Experimental demonstration of a simple displacement sensor based on a bent single-mode–multimode–single-mode fiber structure

    International Nuclear Information System (INIS)

    Wu, Qiang; Semenova, Yuliya; Wang, Pengfei; Hatta, Agus Muhamad; Farrell, Gerald

    2011-01-01

    A simple displacement sensor based on a bent single-mode–multimode–single-mode (SMS) fiber structure is proposed and experimentally investigated. The sensor offers a wider displacement range, not limited by the risk of fiber breakage, as well as a three-fold increase in displacement sensitivity by comparison with a straight SMS structure sensor. This sensor can be interrogated by either an optical spectral analyzer (OSA) or a ratiometric interrogation system: (1) if interrogated by an OSA assuming a resolution of 1 pm, it has a sensitivity of 28.2 nm for a displacement measurement range from 0 to 280 µm; (2) if interrogated by a ratiometric interrogation system, it has worst and best case resolutions of 556 and 38 nm, respectively, for a displacement measurement range from 0 to 520 µm

  2. Portable digital lock-in instrument to determine chemical constituents with single-color absorption measurements for Global Health Initiatives

    Science.gov (United States)

    Vacas-Jacques, Paulino; Linnes, Jacqueline; Young, Anna; Gerrard, Victoria; Gomez-Marquez, Jose

    2014-03-01

    Innovations in international health require the use of state-of-the-art technology to enable clinical chemistry for diagnostics of bodily fluids. We propose the implementation of a portable and affordable lock-in amplifier-based instrument that employs digital technology to perform biochemical diagnostics on blood, urine, and other fluids. The digital instrument is composed of light source and optoelectronic sensor, lock-in detection electronics, microcontroller unit, and user interface components working with either power supply or batteries. The instrument performs lock-in detection provided that three conditions are met. First, the optoelectronic signal of interest needs be encoded in the envelope of an amplitude-modulated waveform. Second, the reference signal required in the demodulation channel has to be frequency and phase locked with respect to the optoelectronic carrier signal. Third, the reference signal should be conditioned appropriately. We present three approaches to condition the signal appropriately: high-pass filtering the reference signal, precise offset tuning the reference level by low-pass filtering, and by using a voltage divider network. We assess the performance of the lock-in instrument by comparing it to a benchmark device and by determining protein concentration with single-color absorption measurements. We validate the concentration values obtained with the proposed instrument using chemical concentration measurements. Finally, we demonstrate that accurate retrieval of phase information can be achieved by using the same instrument.

  3. Portable digital lock-in instrument to determine chemical constituents with single-color absorption measurements for Global Health Initiatives

    Energy Technology Data Exchange (ETDEWEB)

    Vacas-Jacques, Paulino [Little Devices Group, SUTD-MIT International Design Center, Cambridge, Massachusetts 02139 (United States); Wellman Center for Photomedicine and Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts 02114 (United States); Linnes, Jacqueline [Little Devices Group, SUTD-MIT International Design Center, Cambridge, Massachusetts 02139 (United States); Biomedical Engineering Department, Boston University, Boston, Massachusetts 02215 (United States); Young, Anna; Gomez-Marquez, Jose [Little Devices Group, SUTD-MIT International Design Center, Cambridge, Massachusetts 02139 (United States); Gerrard, Victoria [Little Devices Group, SUTD-MIT International Design Center, Cambridge, Massachusetts 02139 (United States); Opportunity Lab, Singapore University for Technology and Design, Singapore 138682 (Singapore)

    2014-03-15

    Innovations in international health require the use of state-of-the-art technology to enable clinical chemistry for diagnostics of bodily fluids. We propose the implementation of a portable and affordable lock-in amplifier-based instrument that employs digital technology to perform biochemical diagnostics on blood, urine, and other fluids. The digital instrument is composed of light source and optoelectronic sensor, lock-in detection electronics, microcontroller unit, and user interface components working with either power supply or batteries. The instrument performs lock-in detection provided that three conditions are met. First, the optoelectronic signal of interest needs be encoded in the envelope of an amplitude-modulated waveform. Second, the reference signal required in the demodulation channel has to be frequency and phase locked with respect to the optoelectronic carrier signal. Third, the reference signal should be conditioned appropriately. We present three approaches to condition the signal appropriately: high-pass filtering the reference signal, precise offset tuning the reference level by low-pass filtering, and by using a voltage divider network. We assess the performance of the lock-in instrument by comparing it to a benchmark device and by determining protein concentration with single-color absorption measurements. We validate the concentration values obtained with the proposed instrument using chemical concentration measurements. Finally, we demonstrate that accurate retrieval of phase information can be achieved by using the same instrument.

  4. Cochlear implant effectiveness in postlingual single-sided deaf individuals: what's the point?

    Science.gov (United States)

    Finke, Mareike; Bönitz, Hanna; Lyxell, Björn; Illg, Angelika

    2017-06-01

    By extending the indication criteria for cochlear implants (CI), the population of CI candidates increased in age, as well as range and type of hearing loss. This qualitative study identified factors that contributed to seek CI treatment in single-sided deaf individuals and gained insights how single-sided deafness (SSD) and hearing with a CI affect their lives. An open-ended questionnaire and a standardised inventory (IOI-HA) were used. Qualitative data reflecting the reasons to seek CI treatment and the individual experiences after CI switch-on were collected. A total of 19 postlingually deafened single-sided deaf CI users. Participants use their CI daily and stated that their life satisfaction increased since CI activation. The analysis of the qualitative data revealed four core categories: sound localisation, tinnitus and noise sensitivity, fear to lose the second ear and quality of life. Our results show how strongly and diversely quality of hearing and quality of life is affected by acquired SSD and improved after CI activation. Our data suggest that the fear of hearing loss (HL) on the normal hearing (NH) ear is an important but so far neglected reason to seek treatment with a CI in individuals with postlingual SSD.

  5. Quantum sensors based on single diamond defects

    International Nuclear Information System (INIS)

    Jelezko Fedor

    2014-01-01

    NV centers in diamond are promising sensors able to detect electric and magnetic fields at nanoscale. Here we report on the detection of biomolecules using magnetic noise induced by their electron and nuclear spins. Presented results show first steps towards establishing novel sensing technology for visualizing single proteins and study of their dynamics. (author)

  6. Asymmetric functional contributions of acidic and aromatic side chains in sodium channel voltage-sensor domains

    DEFF Research Database (Denmark)

    Pless, Stephan Alexander; Elstone, Fisal D; Niciforovic, Ana P

    2014-01-01

    largely enigmatic. To this end, natural and unnatural side chain substitutions were made in the S2 hydrophobic core (HC), the extracellular negative charge cluster (ENC), and the intracellular negative charge cluster (INC) of the four VSDs of the skeletal muscle sodium channel isoform (NaV1......Voltage-gated sodium (NaV) channels mediate electrical excitability in animals. Despite strong sequence conservation among the voltage-sensor domains (VSDs) of closely related voltage-gated potassium (KV) and NaV channels, the functional contributions of individual side chains in Nav VSDs remain.......4). The results show that the highly conserved aromatic side chain constituting the S2 HC makes distinct functional contributions in each of the four NaV domains. No obvious cation-pi interaction exists with nearby S4 charges in any domain, and natural and unnatural mutations at these aromatic sites produce...

  7. Nanomolar detection of rutin based on adsorptive stripping analysis at single-sided heated graphite cylindrical electrodes with direct current heating

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Shao-Hua; Sun, Jian-Jun; Zhang, De-Feng; Lin, Zhi-Bin; Nie, Fa-Hui; Qiu, He-Yuan; Chen, Guo-Nan [Key Laboratory of Analysis and Detection Technology for Food Safety, Ministry of Education, College of Chemistry and Chemical Engineering, Fuzhou University, 523 Gong Ye Road, Fuzhou 350002 (China)

    2008-09-20

    A single-sided heated graphite cylindrical electrode (ss-HGCE) was designed. Compared to previous alternative current (AC) heating, much simpler and cheaper direct current (DC) heating supplier was adopted for the first time to perform adsorptive accumulation of rutin at ss-HGCE at elevated electrode temperature. This offers great promise for low cost, miniaturization and high compatibility with portability. The square wave voltammetry (SWV) stripping peak current was enhanced with increasing the electrode temperature only during preconcentration step. This enhancement was contributed to the forced thermal convection induced by heating the electrode rather than the bulk solution, which is able to improve mass transfer and facilitate adsorption hence enhance stripping response. A detection limit of 1.0 x 10{sup -9} M (S/N = 3) could be obtained at an electrode temperature of 48 C during 5 min accumulation, one magnitude lower than that at 28 C (room temperature). This is the lowest value at carbon-based electrodes for rutin determination as we know. Such novel method was also successfully used to determine rutin in pharmaceutical tablets. (author)

  8. Portable compact multifunction IR calibrator

    International Nuclear Information System (INIS)

    Wyatt, C.L.; Jacobsen, L.; Steed, A.

    1988-01-01

    A compact portable multifunction calibrator designed for future sensor systems is described which enables a linearity calibration for all detectors simultaneously using a near small-area source, a high-resolution mapping of the focal plane with 10 microrad setability and with a blur of less than 100 microrad, system spectral response calibration (radiometer) using a Michelson interferometer source, relative spectral response (spectrometer) using high-temperature external commercial blackbody simulators, and an absolute calibration using an internal low-temperature extended-area source. 5 references

  9. Development of a Portable Single Photon Ionization-Photoelectron Ionization Time-of-Flight Mass Spectrometer

    Directory of Open Access Journals (Sweden)

    Yunguang Huang

    2015-01-01

    Full Text Available A vacuum ultraviolet lamp based single photon ionization- (SPI- photoelectron ionization (PEI portable reflecting time-of-flight mass spectrometer (TOFMS was designed for online monitoring gas samples. It has a dual mode ionization source: SPI for analyte with ionization energy (IE below 10.6 eV and PEI for IE higher than 10.6 eV. Two kinds of sampling inlets, a capillary inlet and a membrane inlet, are utilized for high concentration and trace volatile organic compounds, respectively. A mass resolution of 1100 at m/z 64 has been obtained with a total size of 40 × 31 × 29 cm, the weight is 27 kg, and the power consumption is only 70 W. A mixture of benzene, toluene, and xylene (BTX, SO2, and discharging products of SF6 were used to test its performance, and the result showed that the limit of quantitation for BTX is as low as 5 ppbv (S/N = 10 : 1 with linear dynamic ranges greater than four orders of magnitude. The portable TOFMS was also evaluated by analyzing volatile organic compounds from wine and decomposition products of SF6 inside of a gas-insulated switchgear.

  10. A New Method to Detect Driver Fatigue Based on EMG and ECG Collected by Portable Non-Contact Sensors

    Directory of Open Access Journals (Sweden)

    Lin Wang

    2017-11-01

    Full Text Available Recently, detection and prediction on driver fatigue have become interest of research worldwide. In the present work, a new method is built to effectively evaluate driver fatigue based on electromyography (EMG and electrocardiogram (ECG collected by portable real-time and non-contact sensors. First, under the non-disturbance condition for driver’s attention, mixed physiological signals (EMG, ECG and artefacts are collected by non-contact sensors located in a cushion on the driver’s seat. EMG and ECG are effectively separated by FastICA, and de-noised by empirical mode decomposition (EMD. Then, three physiological features, complexity of EMG, complexity of ECG, and sample entropy (SampEn of ECG, are extracted and analysed. Principal components are obtained by principal components analysis (PCA and are used as independent variables. Finally, a mathematical model of driver fatigue is built, and the accuracy of the model is up to 91%. Moreover, based on the questionnaire, the calculation results of model are consistent with real fatigue felt by the participants. Therefore, this model can effectively detect driver fatigue.

  11. Investigation of leakage current and breakdown voltage in irradiated double-sided 3D silicon sensors

    International Nuclear Information System (INIS)

    Betta, G.-F. Dalla; Mendicino, R.; Povoli, M.; Sultan, D.M.S.; Ayllon, N.; Hoeferkamp, M.; McDuff, H.; Seidel, S.; Boscardin, M.; Zorzi, N.; Mattiazzo, S.

    2016-01-01

    We report on an experimental study aimed at gaining deeper insight into the leakage current and breakdown voltage of irradiated double-sided 3D silicon sensors from FBK, so as to improve both the design and the fabrication technology for use at future hadron colliders such as the High Luminosity LHC. Several 3D diode samples of different technologies and layout are considered, as well as several irradiations with different particle types. While the leakage current follows the expected linear trend with radiation fluence, the breakdown voltage is found to depend on both the bulk damage and the surface damage, and its values can vary significantly with sensor geometry and process details.

  12. Micro-Fuel Cells{sup TM} for portable electronics

    Energy Technology Data Exchange (ETDEWEB)

    Hockaday, R.G.; DeJohn, M.; Navas, C.; Turner, P.S.; Vaz, H.L.; Vazul, L.L. [Energy Related Devices Inc., Los Alamos, NM (United States)

    2000-05-01

    The Micro-Fuel Cell{sup TM} is a new power supply which provides a superior alternative compared to rechargeable batteries. A prototype has been developed by Manhattan Scientifics Inc. in collaboration with Energy Related Devices Inc. This mass-producible high-energy power supply can be used for cellular telephones, portable computers and other portable devices. Instead of being recharged, it can be easily refueled with methanol. The approach taken in designing this product was to develop a competitive product with definite advantages over existing products. The Micro-Fuel Cell{sup TM} is based on the idea that a fuel cell can be built onto an engineered microplastic substrate. In this case, the integrated design makes use of thin film vacuum deposition techniques to coat patterned, etched-nuclear-particle-track plastic membranes. This process forms catalytically active surface area electrodes on either side of a single structured proton-exchange-membrane electrolyte. Methanol was the choice fuel for this system because compared to hydrogen and metal hydrides, it was considered to be safer and more compact. In addition, the theoretical specific energy of methanol is significantly higher than for lithium-ion batteries. The problem of crossover, whereby methanol fuel diffuses across the fuel cell from the anode to the cathode, has also been solved by using a selectively permeable membrane. 5 refs., 4 figs.

  13. Development of Single Optical Sensor Method for the Measurement Droplet Parameters

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae Ho; Ahn, Tae Hwan; Yun, Byong Jo [Pusan National University, Busan (Korea, Republic of); Bae, Byoung Uhn; Kim, Kyoung Doo [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    In this study, we tried to develop single optical fiber probe(S-TOP) sensor method to measure droplet parameters such as diameter, droplet fraction, and droplet velocity and so on. To calibrate and confirm the optical fiber sensor for those parameters, we conducted visualization experiments by using a high speed camera with the optical sensor. To evaluate the performance of the S-TOP accurately, we repeated calibration experiments at a given droplet flow condition. Figure. 3 shows the result of the calibration. In this graph, the x axis is the droplet velocity measured by visualization and the y axis is grd, D which is obtained from S-TOP. In this study, we have developed the single tip optical probe sensor to measure the droplet parameters. From the calibration experiments with high speed camera, we get the calibration curve for the droplet velocity. Additionally, the chord length distribution of droplets is measured by the optical probe.

  14. Development of Single Optical Sensor Method for the Measurement Droplet Parameters

    International Nuclear Information System (INIS)

    Kim, Tae Ho; Ahn, Tae Hwan; Yun, Byong Jo; Bae, Byoung Uhn; Kim, Kyoung Doo

    2016-01-01

    In this study, we tried to develop single optical fiber probe(S-TOP) sensor method to measure droplet parameters such as diameter, droplet fraction, and droplet velocity and so on. To calibrate and confirm the optical fiber sensor for those parameters, we conducted visualization experiments by using a high speed camera with the optical sensor. To evaluate the performance of the S-TOP accurately, we repeated calibration experiments at a given droplet flow condition. Figure. 3 shows the result of the calibration. In this graph, the x axis is the droplet velocity measured by visualization and the y axis is grd, D which is obtained from S-TOP. In this study, we have developed the single tip optical probe sensor to measure the droplet parameters. From the calibration experiments with high speed camera, we get the calibration curve for the droplet velocity. Additionally, the chord length distribution of droplets is measured by the optical probe.

  15. Digital quantification of rolling circle amplified single DNA molecules in a resistive pulse sensing nanopore.

    Science.gov (United States)

    Kühnemund, M; Nilsson, M

    2015-05-15

    Novel portable, sensitive and selective DNA sensor methods for bio-sensing applications are required that can rival conventionally used non-portable and expensive fluorescence-based sensors. In this paper, rolling circle amplification (RCA) products are detected in solution and on magnetic particles using a resistive pulse sensing (RPS) nanopore. Low amounts of DNA molecules are detected by padlock probes which are circularized in a strictly target dependent ligation reaction. The DNA-padlock probe-complex is captured on magnetic particles by sequence specific capture oligonucleotides and amplified by a short RCA. Subsequent RPS analysis is used to identify individual particles with single attached RCA products from blank particles. This proof of concept opens up for a novel non-fluorescent digital DNA quantification method that can have many applications in bio-sensing and diagnostic approaches. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Portable Diode Laser Diagnostic System for Collaborative Research on Air-Breathing Combustion

    National Research Council Canada - National Science Library

    Hanson, Ronald

    2003-01-01

    This equipment grant focused on four areas: (1) portable diode laser sensors with new fiber-coupled diode lasers and the support equipment to provide higher power with extended wavelength tuning range and speed; (2...

  17. Analytical and numerical study concerning the behaviour of single-sided bonded patch repairs

    Directory of Open Access Journals (Sweden)

    Gheorghi OPATCHI

    2011-06-01

    Full Text Available Adhesive bonded joints are used in the assembling of structural parts, especially of those which are made from dissimilar materials. Lightweight fibre reinforced polymer composites and other adhesive bonded components represent a major proportion of a modern aircraft. Bonded patch repair technology has been widely used to repair cracked thin-walled structures to extend their service life, because a correctly executed repair significantly enhances the structural performance.In practice, the single-sided bonded patch repair is the most used because a good solution like the double-sided repair may not be an option if the access to the structure is only available from one side.This paper presents a relatively simple and effective design procedure for the single strapped bonded joints. Also, the influence of various geometrical parameters of the joint is evaluated. The analytical development is validated based on nonlinear finite element analyses.

  18. Planar sensors for the upgrade of the CMS pixel detector

    International Nuclear Information System (INIS)

    Rohe, T.; Bean, A.; Radicci, V.; Sibille, J.

    2011-01-01

    A replacement of the present CMS pixel detector with a better performing light weight four-layer system is foreseen in 2016. In the lifetime of this new system the LHC will reach and exceed its nominal luminosity of 10 34 cm -2 s -1 . Therefore the radiation hardness of all parts of the pixel system has to be reviewed. For the construction of the much larger four-layer pixel system, the replacement of the present double sided sensors by much cheaper single sided ones is considered. However, the construction of pixel modules with such sensors is challenging due to the small geometrical distance of the sensor high voltage and the ground of the readout electronics. This small distance limits the sensor bias to about 500 V in the tested samples.

  19. Multi-Functional Measurement Using a Single FBG Sensor

    NARCIS (Netherlands)

    Mizutani, Y.; Groves, R.M.

    2011-01-01

    This paper describes the measurement of average strain, strain distribution and vibration of a cantilever beam made of Carbon Fiber Reinforced Plastics (CFRP), using a single Fibre Bragg Grating (FBG) sensor mounted on the beam surface. Average strain is determined from the displacement of the peak

  20. A single-sided representation for the homogeneous Green's function of a unified scalar wave equation.

    Science.gov (United States)

    Wapenaar, Kees

    2017-06-01

    A unified scalar wave equation is formulated, which covers three-dimensional (3D) acoustic waves, 2D horizontally-polarised shear waves, 2D transverse-electric EM waves, 2D transverse-magnetic EM waves, 3D quantum-mechanical waves and 2D flexural waves. The homogeneous Green's function of this wave equation is a combination of the causal Green's function and its time-reversal, such that their singularities at the source position cancel each other. A classical representation expresses this homogeneous Green's function as a closed boundary integral. This representation finds applications in holographic imaging, time-reversed wave propagation and Green's function retrieval by cross correlation. The main drawback of the classical representation in those applications is that it requires access to a closed boundary around the medium of interest, whereas in many practical situations the medium can be accessed from one side only. Therefore, a single-sided representation is derived for the homogeneous Green's function of the unified scalar wave equation. Like the classical representation, this single-sided representation fully accounts for multiple scattering. The single-sided representation has the same applications as the classical representation, but unlike the classical representation it is applicable in situations where the medium of interest is accessible from one side only.

  1. An optical, electrical and ultrasonic layered single sensor for ingredient measurement in liquid

    International Nuclear Information System (INIS)

    Kimoto, A; Kitajima, T

    2010-01-01

    In this paper, an optical, electrical and ultrasonic layered single sensor is proposed as a new, non-invasive sensing method for the measurement of ingredients in liquid, particularly in the food industry. In the proposed sensor, the photo sensors and the PVDF films with the transparent conductive electrode are layered and the optical properties of the liquid are measured by a light emitting diode (LED) and a phototransistor (PT). In addition, the electrical properties are measured by indium tin oxide (ITO) film electrodes as the transparent conductive electrodes of PVDF films arranged on the surfaces of the LED and PT. Moreover, the ultrasonic properties are measured by PVDF films. Thus, the optical, electrical and ultrasonic properties in the same space of the liquid can be simultaneously measured at a single sensor. To test the sensor experimentally, three parameters of the liquid—such as concentrations of yellow color, sodium chloride (NaCl) and ethanol in distilled water—were estimated using the measurement values of the optical, electrical and ultrasonic properties obtained with the proposed sensor. The results suggested that it is possible to estimate the three ingredient concentrations in the same space of the liquid from the optical, electrical and ultrasonic properties measured by the proposed single sensor, although there are still some problems such as measurement accuracy that must be solved

  2. Portable and low-cost sensors in monitoring air qualities in China

    Science.gov (United States)

    Ouyang, Bin; Popoola, Lekan; Jones, Roderic; Li, Chunlin; Chen, Jianmin

    2016-04-01

    The fast dynamics and the associated high spatial variability of the atmosphere calls for monitoring techniques that are robust, portable, low-power and ideally cheap (which thus allows for easy deployment and little maintenance needs over long measurement period), yet still offering sufficient sensitivity for measuring typical air pollutants at their ambient levels. We have over years developed a measuring suite (SNAQ box, Sensor Network for Air Quality), which weighs ~2.5 kg and has dimension of 30 cm (L)*20 cm (W)* 15 cm (H), and is capable of measuring wind speed and direction, relative humidity, gas species CO, NO, NO2, O3, SO2 (all based on electrochemical sensors), CO2 (based on NDIR, non-dispersive infrared) and total VOCs (based on PID, photoionization detector), and size-speciated particles (based on optical counting method with cut-off in size at 0.34 microns). Two of these boxes have been deployed in China during the 2015 Yangtze River campaign led by Fudan University, China during 22nd/Nov and 05th/Dec. One of the two boxes was mounted on a monitoring ship that sailed along the river aiming at capturing primarily emissions from ships, and the other was carried by a van that drove on roads but followed the track of the ship during the same period. Preliminary analysis of the data revealed that measurements were successful on both platforms for most of the targeted species with essentially no need of personnel interference during the entire campaign. Emission ratio of CO against NOx, or that of CO/NOx against CO2, for different dominating emission sources (vehicles vs. ships), can be readily quantified. Ongoing analysis includes correlating the measured pollution levels with different source profiles as well as meteorology conditions and understanding the background aerosol size profiles. We conclude that this technique provides a viable solution not only for routine point measurements of air quality in China, but also as construction unit for building

  3. Right Ear Advantage of Speech Audiometry in Single-sided Deafness.

    Science.gov (United States)

    Wettstein, Vincent G; Probst, Rudolf

    2018-04-01

    Postlingual single-sided deafness (SSD) is defined as normal hearing in one ear and severely impaired hearing in the other ear. A right ear advantage and dominance of the left hemisphere are well established findings in individuals with normal hearing and speech processing. Therefore, it seems plausible that a right ear advantage would exist in patients with SSD. The audiometric database was searched to identify patients with SSD. Results from the German monosyllabic Freiburg word test and four-syllabic number test in quiet were evaluated. Results of right-sided SSD were compared with left-sided SSD. Statistical calculations were done with the Mann-Whitney U test. Four hundred and six patients with SSD were identified, 182 with right-sided and 224 with left-sided SSD. The two groups had similar pure-tone thresholds without significant differences. All test parameters of speech audiometry had better values for right ears (SSD left) when compared with left ears (SSD right). Statistically significant results (p right and 97.5 ± 4.7% left, p right and 93.9 ± 9.1% left, p right and 63.8 ± 11.1 dB SPL left, p right ear advantage of speech audiometry was found in patients with SSD in this retrospective study of audiometric test results.

  4. First bulk and surface results for the ATLAS ITk Strip stereo annulus sensors

    CERN Document Server

    Hunter, Robert Francis Holub; The ATLAS collaboration; Affolder, Tony; Bohm, Jan; Botte, James Michael; Ciungu, Bianca; Dette, Karola; Dolezal, Zdenek; Escobar, Carlos; Fadeyev, Vitaliy

    2018-01-01

    A novel microstrip sensor geometry, the stereo annulus, has been developed for use in the end-cap of the ATLAS experiment's strip tracker upgrade at the HL-LHC. Its first implementation is in the ATLAS12EC sensors a large-area, radiation-hard, single-sided, ac-coupled, \

  5. A Low Mass On-Chip Readout Scheme for Double-Sided Silicon Strip Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Irmler, C., E-mail: christian.irmler@oeaw.ac.at [HEPHY Vienna – Institute of High Energy Physics of the Austrian Academy of Sciences, Nikolsdorfer Gasse 18, A-1050 Vienna (Austria); Bergauer, T.; Frankenberger, A.; Friedl, M.; Gfall, I. [HEPHY Vienna – Institute of High Energy Physics of the Austrian Academy of Sciences, Nikolsdorfer Gasse 18, A-1050 Vienna (Austria); Higuchi, T. [University of Tokyo, Kavli Institute for Physics and Mathematics of the Universe, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8583 (Japan); Ishikawa, A. [Tohoku University, Department of Physics, Aoba Aramaki Aoba-ku, Sendai 980-8578 (Japan); Joo, C. [Seoul National University, High Energy Physics Laboratory, 25-107 Shinlim-dong, Kwanak-gu, Seoul 151-742 (Korea, Republic of); Kah, D.H.; Kang, K.H. [Kyungpook National University, Department of Physics, 1370 Sankyuk Dong, Buk Gu, Daegu 702-701 (Korea, Republic of); Rao, K.K. [Tata Institute of Fundamental Research, Experimental High Energy Physics Group, Homi Bhabha Road, Mumbai 400 005 (India); Kato, E. [Tohoku University, Department of Physics, Aoba Aramaki Aoba-ku, Sendai 980-8578 (Japan); Mohanty, G.B. [Tata Institute of Fundamental Research, Experimental High Energy Physics Group, Homi Bhabha Road, Mumbai 400 005 (India); Negishi, K. [Tohoku University, Department of Physics, Aoba Aramaki Aoba-ku, Sendai 980-8578 (Japan); Onuki, Y.; Shimizu, N. [University of Tokyo, Department of Physics, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Tsuboyama, T. [KEK, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Valentan, M. [HEPHY Vienna – Institute of High Energy Physics of the Austrian Academy of Sciences, Nikolsdorfer Gasse 18, A-1050 Vienna (Austria)

    2013-12-21

    B-factories like the KEKB in Tsukuba, Japan, operate at relatively low energies and thus require detectors with very low material budget in order to minimize multiple scattering. On the other hand, front-end chips with short shaping time like the APV25 have to be placed as close to the sensor strips as possible to reduce the capacitive load, which mainly determines the noise figure. In order to achieve both – minimal material budget and low noise – we developed a readout scheme for double-sided silicon detectors, where the APV25 chips are placed on a flexible circuit, which is glued onto the top side of the sensor. The bottom-side strips are connected by two flexible circuits, which are bent around the edge of the sensor. This so-called “Origami” design will be utilized to build the Silicon Vertex Detector of the Belle II experiment, which will consist of four layers made from ladders with up to five double-sided silicon strip sensors in a row. Each ladder will be supported by two ribs made of a carbon fiber and Airex foam core sandwich. The heat dissipated by the front-end chips will be removed by a highly efficient two-phase CO{sub 2} system. Thanks to the Origami concept, all APV25 chips are aligned in a row and thus can be cooled by a single thin cooling pipe per ladder. We present the concept and the assembly procedure of the Origami chip-on-sensor modules.

  6. A Low Mass On-Chip Readout Scheme for Double-Sided Silicon Strip Detectors

    International Nuclear Information System (INIS)

    Irmler, C.; Bergauer, T.; Frankenberger, A.; Friedl, M.; Gfall, I.; Higuchi, T.; Ishikawa, A.; Joo, C.; Kah, D.H.; Kang, K.H.; Rao, K.K.; Kato, E.; Mohanty, G.B.; Negishi, K.; Onuki, Y.; Shimizu, N.; Tsuboyama, T.; Valentan, M.

    2013-01-01

    B-factories like the KEKB in Tsukuba, Japan, operate at relatively low energies and thus require detectors with very low material budget in order to minimize multiple scattering. On the other hand, front-end chips with short shaping time like the APV25 have to be placed as close to the sensor strips as possible to reduce the capacitive load, which mainly determines the noise figure. In order to achieve both – minimal material budget and low noise – we developed a readout scheme for double-sided silicon detectors, where the APV25 chips are placed on a flexible circuit, which is glued onto the top side of the sensor. The bottom-side strips are connected by two flexible circuits, which are bent around the edge of the sensor. This so-called “Origami” design will be utilized to build the Silicon Vertex Detector of the Belle II experiment, which will consist of four layers made from ladders with up to five double-sided silicon strip sensors in a row. Each ladder will be supported by two ribs made of a carbon fiber and Airex foam core sandwich. The heat dissipated by the front-end chips will be removed by a highly efficient two-phase CO 2 system. Thanks to the Origami concept, all APV25 chips are aligned in a row and thus can be cooled by a single thin cooling pipe per ladder. We present the concept and the assembly procedure of the Origami chip-on-sensor modules

  7. Development of a portable analyzer with polymer lab-on-a-chip (LOC) for continuous sampling and monitoring of Pb(II).

    Science.gov (United States)

    Jang, A; Zou, Z; MacKnight, E; Wu, P M; Kim, I S; Ahn, C H; Bishop, P L

    2009-01-01

    A new portable analyzer with polymer lab-on-a-chip (LOC) has been designed, fabricated and fully characterized for continuous sampling and monitoring of lead (Pb(II)) in this work. As the working electrodes of the sensor, bismuth (Bi (III)) which allowed the advantage of being more environmentally friendly than traditional mercury drop electrodes was used, while maintaining similar sensitivity and other desirable characteristics. The size of a portable analyzer was 30 cmx23 cmx7 cm, and the weight was around 3 kg. The small size gives the advantage of being portable for field use while not sacrificing portability for accuracy of measurement. Furthermore, the autonomous system developed in coordination with the development of new polymer LOC integrated with electrochemical sensors can provide an innovative way to monitor surface waters in an efficient, cost-effective and sustainable manner.

  8. Design, fabrication and characterization of the first AC-coupled silicon microstrip sensors in India

    International Nuclear Information System (INIS)

    Aziz, T; Chendvankar, S R; Mohanty, G B; Patil, M R; Rao, K K; Rani, Y R; Rao, Y P P; Behnamian, H; Mersi, S; Naseri, M

    2014-01-01

    This paper reports the design, fabrication and characterization of single-sided silicon microstrip sensors with integrated biasing resistors and coupling capacitors, produced for the first time in India. We have first developed a prototype sensor on a four-inch wafer. After finding suitable test procedures for characterizing these AC coupled sensors, we fine-tuned various process parameters in order to produce sensors of the desired specifications

  9. Ultra-fast Sensor for Single-photon Detection in a Wide Range of the Electromagnetic Spectrum

    Directory of Open Access Journals (Sweden)

    Astghik KUZANYAN

    2016-12-01

    Full Text Available The results of computer simulation of heat distribution processes taking place after absorption of single photons of 1 eV-1 keV energy in three-layer sensor of the thermoelectric detector are being analyzed. Different geometries of the sensor with tungsten absorber, thermoelectric layer of cerium hexaboride and tungsten heat sink are considered. It is shown that by changing the sizes of the sensor layers it is possible to obtain transducers for registration of photons within the given spectral range with required energy resolution and count rate. It is concluded that, as compared to the single layer sensor, the thee-layer sensor has a number of advantages and demonstrate characteristics that make possible to consider the thermoelectric detector as a real alternative to superconducting single photon detectors.

  10. The Smartphone Brain Scanner: A Portable Real-Time Neuroimaging System

    DEFF Research Database (Denmark)

    Stopczynski, Arkadiusz; Stahlhut, Carsten; Larsen, Jakob Eg

    2014-01-01

    Combining low-cost wireless EEG sensors with smartphones offers novel opportunities for mobile brain imaging in an everyday context. Here we present the technical details and validation of a framework for building multi-platform, portable EEG applications with real-time 3D source reconstruction....... The system – Smartphone Brain Scanner – combines an off-the-shelf neuroheadset or EEG cap with a smartphone or tablet, and as such represents the first fully portable system for real-time 3D EEG imaging. We discuss the benefits and challenges, including technical limitations as well as details of real...

  11. Radioactive air emissions notice of construction use of a portable exhauster on single-shell tanks (SSTs) during salt well pumping and other activities

    International Nuclear Information System (INIS)

    GRANDO, C.J.

    1999-01-01

    This document serves as a notice of construction (NOC), pursuant to the requirements of Washington Administrative Code (WAC) 246-247-060, and as a request for approval to construct, pursuant to 40 Code of Federal Regulations (CFR) 61.07, portable exhausters for use on single-shell tanks (SSTs) during salt well pumping. Table 1-1 lists 18 SSTs covered by this NOC. This NOC also addresses other activities that are performed in support of salt well pumping but do not require the application of a portable exhauster. Specifically this NOC analyzes the following three activities that have the potential for emissions. (1) Salt well pumping (i.e., the actual transferring of waste from one tank to another) under nominal tank operating conditions. Nominal tank operating conditions include existing passive breathing rates. (2) Salt well pumping (the actual transferring of waste from one tank to another) with use of a portable exhauster. (3) Use of a water lance on the waste to facilitate salt well screen and salt well jet pump installation into the waste. This activity is to be performed under nominal (existing passive breathing rates) tank operating conditions. The use of portable exhausters represents a cost savings because one portable exhauster can be moved back and forth between SSTs as schedules for salt well pumping dictate. A portable exhauster also could be used to simultaneously exhaust more than one SST during salt well pumping

  12. 100 nm scale low-noise sensors based on aligned carbon nanotube networks: overcoming the fundamental limitation of network-based sensors

    Science.gov (United States)

    Lee, Minbaek; Lee, Joohyung; Kim, Tae Hyun; Lee, Hyungwoo; Lee, Byung Yang; Park, June; Jhon, Young Min; Seong, Maeng-Je; Hong, Seunghun

    2010-02-01

    Nanoscale sensors based on single-walled carbon nanotube (SWNT) networks have been considered impractical due to several fundamental limitations such as a poor sensitivity and small signal-to-noise ratio. Herein, we present a strategy to overcome these fundamental problems and build highly-sensitive low-noise nanoscale sensors simply by controlling the structure of the SWNT networks. In this strategy, we prepared nanoscale width channels based on aligned SWNT networks using a directed assembly strategy. Significantly, the aligned network-based sensors with narrower channels exhibited even better signal-to-noise ratio than those with wider channels, which is opposite to conventional random network-based sensors. As a proof of concept, we demonstrated 100 nm scale low-noise sensors to detect mercury ions with the detection limit of ~1 pM, which is superior to any state-of-the-art portable detection system and is below the allowable limit of mercury ions in drinking water set by most government environmental protection agencies. This is the first demonstration of 100 nm scale low-noise sensors based on SWNT networks. Considering the increased interests in high-density sensor arrays for healthcare and environmental protection, our strategy should have a significant impact on various industrial applications.

  13. 100 nm scale low-noise sensors based on aligned carbon nanotube networks: overcoming the fundamental limitation of network-based sensors

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Minbaek; Lee, Joohyung; Kim, Tae Hyun; Lee, Hyungwoo; Lee, Byung Yang; Hong, Seunghun [Department of Physics and Astronomy, Seoul National University, Shilim-Dong, Kwanak-Gu, Seoul 151-742 (Korea, Republic of); Park, June; Seong, Maeng-Je [Department of Physics, Chung-Ang University, Heukseok-Dong, Dongjak-Gu, Seoul 156-756 (Korea, Republic of); Jhon, Young Min, E-mail: mseong@cau.ac.kr, E-mail: shong@phya.snu.ac.kr [Korea Institute of Science and Technology, Hawolgok-Dong, Seongbuk-Gu, Seoul 136-791 (Korea, Republic of)

    2010-02-05

    Nanoscale sensors based on single-walled carbon nanotube (SWNT) networks have been considered impractical due to several fundamental limitations such as a poor sensitivity and small signal-to-noise ratio. Herein, we present a strategy to overcome these fundamental problems and build highly-sensitive low-noise nanoscale sensors simply by controlling the structure of the SWNT networks. In this strategy, we prepared nanoscale width channels based on aligned SWNT networks using a directed assembly strategy. Significantly, the aligned network-based sensors with narrower channels exhibited even better signal-to-noise ratio than those with wider channels, which is opposite to conventional random network-based sensors. As a proof of concept, we demonstrated 100 nm scale low-noise sensors to detect mercury ions with the detection limit of {approx}1 pM, which is superior to any state-of-the-art portable detection system and is below the allowable limit of mercury ions in drinking water set by most government environmental protection agencies. This is the first demonstration of 100 nm scale low-noise sensors based on SWNT networks. Considering the increased interests in high-density sensor arrays for healthcare and environmental protection, our strategy should have a significant impact on various industrial applications.

  14. 100 nm scale low-noise sensors based on aligned carbon nanotube networks: overcoming the fundamental limitation of network-based sensors

    International Nuclear Information System (INIS)

    Lee, Minbaek; Lee, Joohyung; Kim, Tae Hyun; Lee, Hyungwoo; Lee, Byung Yang; Hong, Seunghun; Park, June; Seong, Maeng-Je; Jhon, Young Min

    2010-01-01

    Nanoscale sensors based on single-walled carbon nanotube (SWNT) networks have been considered impractical due to several fundamental limitations such as a poor sensitivity and small signal-to-noise ratio. Herein, we present a strategy to overcome these fundamental problems and build highly-sensitive low-noise nanoscale sensors simply by controlling the structure of the SWNT networks. In this strategy, we prepared nanoscale width channels based on aligned SWNT networks using a directed assembly strategy. Significantly, the aligned network-based sensors with narrower channels exhibited even better signal-to-noise ratio than those with wider channels, which is opposite to conventional random network-based sensors. As a proof of concept, we demonstrated 100 nm scale low-noise sensors to detect mercury ions with the detection limit of ∼1 pM, which is superior to any state-of-the-art portable detection system and is below the allowable limit of mercury ions in drinking water set by most government environmental protection agencies. This is the first demonstration of 100 nm scale low-noise sensors based on SWNT networks. Considering the increased interests in high-density sensor arrays for healthcare and environmental protection, our strategy should have a significant impact on various industrial applications.

  15. Portable Multispectral Colorimeter for Metallic Ion Detection and Classification.

    Science.gov (United States)

    Braga, Mauro S; Jaimes, Ruth F V V; Borysow, Walter; Gomes, Osmar F; Salcedo, Walter J

    2017-07-28

    This work deals with a portable device system applied to detect and classify different metallic ions as proposed and developed, aiming its application for hydrological monitoring systems such as rivers, lakes and groundwater. Considering the system features, a portable colorimetric system was developed by using a multispectral optoelectronic sensor. All the technology of quantification and classification of metallic ions using optoelectronic multispectral sensors was fully integrated in the embedded hardware FPGA ( Field Programmable Gate Array) technology and software based on virtual instrumentation (NI LabView ® ). The system draws on an indicative colorimeter by using the chromogen reagent of 1-(2-pyridylazo)-2-naphthol (PAN). The results obtained with the signal processing and pattern analysis using the method of the linear discriminant analysis, allows excellent results during detection and classification of Pb(II), Cd(II), Zn(II), Cu(II), Fe(III) and Ni(II) ions, with almost the same level of performance as for those obtained from the Ultravioled and visible (UV-VIS) spectrophotometers of high spectral resolution.

  16. Portable Multispectral Colorimeter for Metallic Ion Detection and Classification

    Directory of Open Access Journals (Sweden)

    Mauro S. Braga

    2017-07-01

    Full Text Available This work deals with a portable device system applied to detect and classify different metallic ions as proposed and developed, aiming its application for hydrological monitoring systems such as rivers, lakes and groundwater. Considering the system features, a portable colorimetric system was developed by using a multispectral optoelectronic sensor. All the technology of quantification and classification of metallic ions using optoelectronic multispectral sensors was fully integrated in the embedded hardware FPGA ( Field Programmable Gate Array technology and software based on virtual instrumentation (NI LabView®. The system draws on an indicative colorimeter by using the chromogen reagent of 1-(2-pyridylazo-2-naphthol (PAN. The results obtained with the signal processing and pattern analysis using the method of the linear discriminant analysis, allows excellent results during detection and classification of Pb(II, Cd(II, Zn(II, Cu(II, Fe(III and Ni(II ions, with almost the same level of performance as for those obtained from the Ultravioled and visible (UV-VIS spectrophotometers of high spectral resolution.

  17. Hydrodynamics of magnetizable suspensions in a traveling magnetic field of a single-sided inductor

    International Nuclear Information System (INIS)

    Maiorov, M.M.; Tsebers, A.O.

    1979-01-01

    A few qualitative tests are described which validate the basic concepts about the behavior of magnetic fluids in a traveling field of a single-sided inductor. In the experiment small droplets of a magnetic fluid were deposited on both sides of a transparent plate. With the traveling field turned on, one could observe the motion of these droplets in opposite directions: the droplets on the inductor side of the plate moving in the direction of the traveling field. This pattern of motion can be explained by the action of antisymmetric stresses due to rotation of ferromagnetic particles, in the traveling field, on the surface of a droplet. On the basis of present results, it is concluded that accounting for the antisymmetric stresses in the selection of an adequate model of magnetic relaxation makes it possible to correctly describe the motion of a magnetic fluid in a traveling field of a single-sided inductor. An adequate model for describing the motion of a colloidal suspension of cobalt ferrite is magnetic relaxation of rigid dipoles. 10 refs

  18. Removal of ocular artifacts in EEG--an improved approach combining DWT and ANC for portable applications.

    Science.gov (United States)

    Peng, Hong; Hu, Bin; Shi, Qiuxia; Ratcliffe, Martyn; Zhao, Qinglin; Qi, Yanbing; Gao, Guoping

    2013-05-01

    A new model to remove ocular artifacts (OA) from electroencephalograms (EEGs) is presented. The model is based on discrete wavelet transformation (DWT) and adaptive noise cancellation (ANC). Using simulated and measured data, the accuracy of the model is compared with the accuracy of other existing methods based on stationary wavelet transforms and our previous work based on wavelet packet transform and independent component analysis. A particularly novel feature of the new model is the use of DWTs to construct an OA reference signal, using the three lowest frequency wavelet coefficients of the EEGs. The results show that the new model demonstrates an improved performance with respect to the recovery of true EEG signals and also has a better tracking performance. Because the new model requires only single channel sources, it is well suited for use in portable environments where constraints with respect to acceptable wearable sensor attachments usually dictate single channel devices. The model is also applied and evaluated against data recorded within the EUFP 7 Project--Online Predictive Tools for Intervention in Mental Illness (OPTIMI). The results show that the proposed model is effective in removing OAs and meets the requirements of portable systems used for patient monitoring as typified by the OPTIMI project.

  19. Registrador portátil de odorantes basado en la modulación de temperatura de un sensor mos comercial

    Directory of Open Access Journals (Sweden)

    Andy Blanco Rodríguez

    2013-01-01

    Full Text Available A simple, portable and low-cost system for odor detection was developed using a single MOS commercial sensor and a microcontroller. The temperature modulation technique was implemented applying a DC signal pulse to the sensor heater by a bipolar transistor. Two odorant profiles, ethanol and acetic acid vapors, were obtained and distinguished based on their amplitude versus time responses. Response for acetic acid was not reported by the sensor manufacturer. An ethanol vapor calibration curve was also obtained. Experimental data showed a potential behavior according to the theoretical equation of the MOS sensors. Values of logK=0.457 and α=-0.213 for a 95% confidence level were obtained.

  20. Silicon–glass-based single piezoresistive pressure sensors for harsh environment applications

    International Nuclear Information System (INIS)

    San, Haisheng; Zhang, Hong; Zhang, Qiang; Yu, Yuxi; Chen, Xuyuan

    2013-01-01

    Silicon–glass (Si–glass)-based single piezoresistive pressure sensors were designed and fabricated by standard MEMS technology. The single piezoresistive sensing element was designed to be on the lower surface of the silicon diaphragm and be vacuum-sealed in a Si–glass cavity, which form a self-packaging protection structure helpful to the applications of sensors in harsh media. The pressure sensors were fabricated using a Si–glass anodic bonding technique, and the embedded Al feedthrough lines at the Si–glass interface are used to realize the electrical connections between the piezo-sensing element and the electrode-pads, and two larger-size electrode-pads are fabricated for realizing the soldered electrical connection between the sensor and the external circuit. The performance of the pressure sensors was characterized by a pressure test system at different temperature conditions. The temperature compensation was performed by the difference between the output voltage at zero-pressure and the output at operation pressure. The measurement results show that the sensitivity is 24 mV V –1 MPa −1 , the coefficient of sensitivity is 0.14% FS °C –1 , and both the zero-point offset and the temperature coefficient of offset are equal to zero, which are able to meet the commercial application requirements. However, a nonlinearity of 5.2% FS caused by the balloon effect would considerably worsen the accuracy of the pressure sensor. It is suggested to reduce the balloon effect by using a bossed-diaphragm structure in the pressure sensor. (paper)

  1. Circular High-Q Resonating Isotropic Strain Sensors with Large Shift of Resonance Frequency under Stress

    Directory of Open Access Journals (Sweden)

    Hilmi Volkan Demir

    2009-11-01

    Full Text Available We present circular architecture bioimplant strain sensors that facilitate a strong resonance frequency shift with mechanical deformation. The clinical application area of these sensors is for in vivo assessment of bone fractures. Using a rectangular geometry, we obtain a resonance shift of 330 MHz for a single device and 170 MHz for its triplet configuration (with three side-by-side resonators on chip under an applied load of 3,920 N. Using the same device parameters with a circular isotropic architecture, we achieve a resonance frequency shift of 500 MHz for the single device and 260 MHz for its triplet configuration, demonstrating substantially increased sensitivity.

  2. Pesticide residue quantification analysis by hyperspectral imaging sensors

    Science.gov (United States)

    Liao, Yuan-Hsun; Lo, Wei-Sheng; Guo, Horng-Yuh; Kao, Ching-Hua; Chou, Tau-Meu; Chen, Junne-Jih; Wen, Chia-Hsien; Lin, Chinsu; Chen, Hsian-Min; Ouyang, Yen-Chieh; Wu, Chao-Cheng; Chen, Shih-Yu; Chang, Chein-I.

    2015-05-01

    Pesticide residue detection in agriculture crops is a challenging issue and is even more difficult to quantify pesticide residue resident in agriculture produces and fruits. This paper conducts a series of base-line experiments which are particularly designed for three specific pesticides commonly used in Taiwan. The materials used for experiments are single leaves of vegetable produces which are being contaminated by various amount of concentration of pesticides. Two sensors are used to collected data. One is Fourier Transform Infrared (FTIR) spectroscopy. The other is a hyperspectral sensor, called Geophysical and Environmental Research (GER) 2600 spectroradiometer which is a batteryoperated field portable spectroradiometer with full real-time data acquisition from 350 nm to 2500 nm. In order to quantify data with different levels of pesticide residue concentration, several measures for spectral discrimination are developed. Mores specifically, new measures for calculating relative power between two sensors are particularly designed to be able to evaluate effectiveness of each of sensors in quantifying the used pesticide residues. The experimental results show that the GER is a better sensor than FTIR in the sense of pesticide residue quantification.

  3. Single-photon light detection with transition-edge sensors

    International Nuclear Information System (INIS)

    Rajteri, M.; Taralli, E.; Portesi, C.; Monticone, E.

    2008-01-01

    Transition-Edge Sensors (TESs) are micro calorimeters that measure the energy of incident single-photons by the resistance increase of a superconducting film biased within the superconducting-to-normal transition. TES are able to detect single photons from x-ray to IR with an intrinsic energy resolution and photon-number discrimination capability. Metrological, astronomical and quantum communication applications are the fields where these properties can be particularly important. In this work, we report about characterization of different TESs based on Ti films. Single-photons have been detected from 200 nm to 800 nm working at T c ∼ 100 m K. Using a pulsed laser at 690 nm we have demonstrated the capability to resolve up to five photons.

  4. Power supply for wireless sensor or actuator systems

    International Nuclear Information System (INIS)

    Reindl, L. M.

    2011-01-01

    Portable wireless sensor or actuator systems, like portable phones, remote control, or ID cards play an ever growing role in our industrialized environment. Those systems and many more were enabled due to the steady decreasing power consumption of high integrated ICs. Most such systems are powered by batteries or inductive coupling. In this presentation several concepts for an alternative power supply of wireless sensor or actuator systems are discussed in detail. Batteries, although today mostly used, suffer from a limited storage capacity, which induce a labour and sometimes cost-intensive periodic maintenance, and a problematic ecological impact. The operating range of inductive coupling systems is due to the near ?eld limited to the aperture of the coupling coil. UHF systems operate in the far field and reach higher distances. Their operating range is limited by the distance where the voltage at the feeding point of the antenna becomes too low to drive the rectifier circuit. Larger read out ranges become feasible by omitting the rectifier stage. In this case we need either a passive frequency modulating device to shift the read out signal to a side band, or a resonator with a high quality factor, like a SAW or BAW device, to store the energy until all environmental echoes are feed away. For many applications, both indoor and outdoor, energy harvesting system become feasible which convert ambient power densities like light, RF fields, special or temporal thermal gradients, or mechanical vibrations into electrical supply power of the wireless system. All those systems strongly suffer from a lack of energy. Thus new concepts for low-ering the power consumption of a wireless sensor or actuator system by keeping their features remain extreme important. Herby, a new wake up receiver is presented which operates on a current requirement as low as 3 micro A.

  5. The Combination of Micro Diaphragm Pumps and Flow Sensors for Single Stroke Based Liquid Flow Control.

    Science.gov (United States)

    Jenke, Christoph; Pallejà Rubio, Jaume; Kibler, Sebastian; Häfner, Johannes; Richter, Martin; Kutter, Christoph

    2017-04-03

    With the combination of micropumps and flow sensors, highly accurate and secure closed-loop controlled micro dosing systems for liquids are possible. Implementing a single stroke based control mode with piezoelectrically driven micro diaphragm pumps can provide a solution for dosing of volumes down to nanoliters or variable average flow rates in the range of nL/min to μL/min. However, sensor technologies feature a yet undetermined accuracy for measuring highly pulsatile micropump flow. Two miniaturizable in-line sensor types providing electrical readout-differential pressure based flow sensors and thermal calorimetric flow sensors-are evaluated for their suitability of combining them with mircopumps. Single stroke based calibration of the sensors was carried out with a new method, comparing displacement volumes and sensor flow volumes. Limitations of accuracy and performance for single stroke based flow control are described. Results showed that besides particle robustness of sensors, controlling resistive and capacitive damping are key aspects for setting up reproducible and reliable liquid dosing systems. Depending on the required average flow or defined volume, dosing systems with an accuracy of better than 5% for the differential pressure based sensor and better than 6.5% for the thermal calorimeter were achieved.

  6. Virtual colorimetric sensor array: single ionic liquid for solvent discrimination.

    Science.gov (United States)

    Galpothdeniya, Waduge Indika S; Regmi, Bishnu P; McCarter, Kevin S; de Rooy, Sergio L; Siraj, Noureen; Warner, Isiah M

    2015-04-21

    There is a continuing need to develop high-performance sensors for monitoring organic solvents, primarily due to the environmental impact of such compounds. In this regard, colorimetric sensors have been a subject of intense research for such applications. Herein, we report a unique virtual colorimetric sensor array based on a single ionic liquid (IL) for accurate detection and identification of similar organic solvents and mixtures of such solvents. In this study, we employ eight alcohols and seven binary mixtures of ethanol and methanol as analytes to provide a stringent test for assessing the capabilities of this array. The UV-visible spectra of alcoholic solutions of the IL used in this study show two absorption bands. Interestingly, the ratio of absorbance for these two bands is found to be extremely sensitive to alcohol polarity. A virtual sensor array is created by using four different concentrations of IL sensor, which allowed identification of these analytes with 96.4-100% accuracy. Overall, this virtual sensor array is found to be very promising for discrimination of closely related organic solvents.

  7. Sensor for metal detection

    KAUST Repository

    Kodzius, Rimantas; Zhao, Guoqing

    2014-01-01

    fluid, peritoneal fluid, pleural fluid, pericardial fluid, joint fluid, and amniotic fluid, water sample, food sample, air sample, and soil sample (all claimed). ADVANTAGE - The sensor for use with the portable analytical instrument is configured

  8. Comprehensive studies on irradiated single-crystal diamond sensors

    Energy Technology Data Exchange (ETDEWEB)

    Stegler, Martin [DESY, Zeuthen (Germany)

    2015-07-01

    Single-crystal diamond sensors are used as part of the Beam and Radiation Instrumentation and Luminosity (BRIL) projects of the CMS experiment. Due to an upgrade of the Fast Beam Conditions Monitor (BCM1F) these diamond sensors are exchanged and the irradiated ones are now used for comprehensive studies. Current over voltage (IV), current over time (CT) and charge collection efficiency (CCE) measurements were performed for a better understanding of the radiation damage incurred during operation and to compensate in the future. The effect of illumination with various light sources on the charge collection efficiency was investigated and led to interesting results. Intensity and wavelength of the light were varied for deeper insight of polarization effects.

  9. Single wall carbon nanotube supports for portable direct methanol fuel cells.

    Science.gov (United States)

    Girishkumar, G; Hall, Timothy D; Vinodgopal, K; Kamat, Prashant V

    2006-01-12

    Single-wall and multiwall carbon nanotubes are employed as carbon supports in direct methanol fuel cells (DMFC). The morphology and electrochemical activity of single-wall and multiwall carbon nanotubes obtained from different sources have been examined to probe the influence of carbon support on the overall performance of DMFC. The improved activity of the Pt-Ru catalyst dispersed on carbon nanotubes toward methanol oxidation is reflected as a shift in the onset potential and a lower charge transfer resistance at the electrode/electrolyte interface. The evaluation of carbon supports in a passive air breathing DMFC indicates that the observed power density depends on the nature and source of carbon nanostructures. The intrinsic property of the nanotubes, dispersion of the electrocatalyst and the electrochemically active surface area collectively influence the performance of the membrane electrode assembly (MEA). As compared to the commercial carbon black support, single wall carbon nanotubes when employed as the support for anchoring the electrocatalyst particles in the anode and cathode sides of MEA exhibited a approximately 30% enhancement in the power density of a single stack DMFC operating at 70 degrees C.

  10. Microfabricated Formaldehyde Gas Sensors

    Directory of Open Access Journals (Sweden)

    Karen C. Cheung

    2009-11-01

    Full Text Available Formaldehyde is a volatile organic compound that is widely used in textiles, paper, wood composites, and household materials. Formaldehyde will continuously outgas from manufactured wood products such as furniture, with adverse health effects resulting from prolonged low-level exposure. New, microfabricated sensors for formaldehyde have been developed to meet the need for portable, low-power gas detection. This paper reviews recent work including silicon microhotplates for metal oxide-based detection, enzyme-based electrochemical sensors, and nanowire-based sensors. This paper also investigates the promise of polymer-based sensors for low-temperature, low-power operation.

  11. Intelligent hand-portable proliferation sensing system

    International Nuclear Information System (INIS)

    Dieckman, S.L.; Bostrom, G.A.; Waterfield, L.G.; Jendrzejczyk, J.A.; Ahuja, S.; Raptis, A.C.

    1997-01-01

    Argonne National Laboratory, with support from DOE's Office of Nonproliferation and National Security, is currently developing an intelligent hand-portable sensor system. This system is designed specifically to support the intelligence community with the task of in-field sensing of nuclear proliferation and related activities. Based upon pulsed laser photo-ionization time-of-flight mass spectrometry technology, this novel sensing system is capable of quickly providing a molecular or atomic analysis of specimens. The system is capable of analyzing virtually any gas phase molecule, or molecule that can be induced into the gas phase by (for example) sample heating. This system has the unique advantages of providing unprecedented portability, excellent sensitivity, tremendous fieldability, and a high performance/cost ratio. The system will be capable of operating in a highly automated manner for on-site inspections, and easily modified for other applications such as perimeter monitoring aboard a plane or drone. The paper describes the sensing system

  12. Optical measuring system with an interrogator and a polymer-based single-mode fibre optic sensor system

    DEFF Research Database (Denmark)

    2017-01-01

    The present invention relates to an optical measuring system comprising a polymer-based single-mode fibre-optic sensor system (102), an optical interrogator (101), and an optical arrangement (103) interconnecting the optical interrogator (101) and the polymer-based single-mode fibre-optic sensor...... system (102). The invention further relates to an optical interrogator adapted to be connected to a polymer-based single-mode fibre-optic sensor system via an optical arrangement. The interrogator comprises a broadband light source arrangement (104) and a spectrum analysing arrangement which receives...

  13. Optimizing Bandwidth Limited Problems Using One-SidedCommunication and Overlap

    Energy Technology Data Exchange (ETDEWEB)

    Bell, Christian; Bonachea, Dan; Nishtala, Rajesh; Yelick, Katherine

    2005-10-14

    Partitioned Global Address Space languages like Unified Parallel C (UPC) are typically valued for their expressiveness, especially for computations with fine-grained random accesses. In this paper we show that the one-sided communication model used in these languages also has a significant performance advantage for bandwidth-limited applications. We demonstrate this benefit through communication microbenchmarks and a case-study that compares UPC and MPI implementations of the NAS Fourier Transform (FT) benchmark. Our optimizations rely on aggressively overlapping communication with computation but spreading communication events throughout the course of the local computation. This alleviates the potential communication bottleneck that occurs when the communication is packed into a single phase (e.g., the large all-to-all in a multidimensional FFT). Even though the new algorithms require more messages for the same total volume of data, the resulting overlap leads to speedups of over 1.75x and 1.9x for the two-sided and one-sided implementations, respectively, when compared to the default NAS Fortran/MPI release. Our best one-sided implementations show an average improvement of 15 percent over our best two-sided implementations. We attribute this difference to the lower software overhead of one-sided communication, which is partly fundamental to the semantic difference between one-sided and two-sided communication. Our UPC results use the Berkeley UPC compiler with the GASNet communication system, and demonstrate the portability and scalability of that language and implementation, with performance approaching 0.5TFlop/s on the FT benchmark running on 512 processors.

  14. Fibre optic strain sensor: examples of applications

    Science.gov (United States)

    Kruszewski, J.; Beblowska, M.; Wrzosek, P.

    2006-03-01

    Construction of strain sensor for application in safety systems has been presented. The device consists of sensor's head and source and detector units. The head is made of polymer fiber bends. Designed sensor could be mounted in monitoring place (e.g. under a floor) and controlled by PC unit or could be used as a portable device for a valuable object protection.

  15. A family of fiber-optic based pressure sensors for intracochlear measurements

    Science.gov (United States)

    Olson, Elizabeth S.; Nakajima, Hideko H.

    2015-02-01

    Fiber-optic pressure sensors have been developed for measurements of intracochlear pressure. The present family of transducers includes an 81 μm diameter sensor employing a SLED light source and single-mode optic fiber, and LED/multi-mode sensors with 126 and 202 μm diameter. The 126 μm diameter pressure sensor also has been constructed with an electrode adhered to its side, for coincident pressure and voltage measurements. These sensors have been used for quantifying cochlear mechanical impedances, informing our understanding of conductive hearing loss and its remediation, and probing the operation of the cochlear amplifier.

  16. Universal quantum gates on electron-spin qubits with quantum dots inside single-side optical microcavities.

    Science.gov (United States)

    Wei, Hai-Rui; Deng, Fu-Guo

    2014-01-13

    We present some compact quantum circuits for a deterministic quantum computing on electron-spin qubits assisted by quantum dots inside single-side optical microcavities, including the CNOT, Toffoli, and Fredkin gates. They are constructed by exploiting the giant optical Faraday rotation induced by a single-electron spin in a quantum dot inside a single-side optical microcavity as a result of cavity quantum electrodynamics. Our universal quantum gates have some advantages. First, all the gates are accomplished with a success probability of 100% in principle. Second, our schemes require no additional electron-spin qubits and they are achieved by some input-output processes of a single photon. Third, our circuits for these gates are simple and economic. Moreover, our devices for these gates work in both the weak coupling and the strong coupling regimes, and they are feasible in experiment.

  17. Two against one - a case for single-sided films

    International Nuclear Information System (INIS)

    Dixon, L.

    1979-01-01

    The disadvantages of double-sided X-ray film include parallax between the double images where the film is angled to the central ray, and a cross-over effect where light from the front screen affects the back emulsion and vice versa. An investigation of the percentage of the total film density due to cross-over showed the effect varied from 28% to 47%, increasing with total density and faster screens. Kilovoltage had little influence on the effect. A single emulsion film with one screen gave an appreciable increase in radiographic sharpness and definition but required an increase by about 2.5 times in the exposure required. A very fast screen overcame this effect without comparable loss of detail. The use of single emulsion films should also reduce the thickness of cut and therefore improve sharpness in tomography. (UK)

  18. Experimental single-chip color HDTV image acquisition system with 8M-pixel CMOS image sensor

    Science.gov (United States)

    Shimamoto, Hiroshi; Yamashita, Takayuki; Funatsu, Ryohei; Mitani, Kohji; Nojiri, Yuji

    2006-02-01

    We have developed an experimental single-chip color HDTV image acquisition system using 8M-pixel CMOS image sensor. The sensor has 3840 × 2160 effective pixels and is progressively scanned at 60 frames per second. We describe the color filter array and interpolation method to improve image quality with a high-pixel-count single-chip sensor. We also describe an experimental image acquisition system we used to measured spatial frequency characteristics in the horizontal direction. The results indicate good prospects for achieving a high quality single chip HDTV camera that reduces pseudo signals and maintains high spatial frequency characteristics within the frequency band for HDTV.

  19. Single walled carbon nanotubes functionally adsorbed to biopolymers for use as chemical sensors

    Science.gov (United States)

    Johnson, Jr., Alan T.; Gelperin, Alan [Princeton, NJ; Staii, Cristian [Madison, WI

    2011-07-12

    Chemical field effect sensors comprising nanotube field effect devices having biopolymers such as single stranded DNA functionally adsorbed to the nanotubes are provided. Also included are arrays comprising the sensors and methods of using the devices to detect volatile compounds.

  20. Portable formaldehyde monitoring device using porous glass sensor and its applications in indoor air quality studies.

    Science.gov (United States)

    Maruo, Yasuko Yamada; Nakamura, Jiro

    2011-09-30

    We have developed a portable device for formaldehyde monitoring with both high sensitivity and high temporal resolution, and carried out indoor air formaldehyde concentration analysis. The absorbance difference of the sensor element was measured in the monitoring device at regular intervals of, for example, one hour or 30 min, and the result was converted into the formaldehyde concentration. This was possible because we found that the lutidine derivative that was formed as a yellow product of the reaction between 1-phenyl-1,3-butandione and formaldehyde was stable in porous glass for at least six months. We estimated the reaction rate and to be 0.049 min(-1) and the reaction occurred quickly enough for us to monitor hourly changes in the formaldehyde concentration. The detection limit was 5 μg m(-3) h. We achieved hourly formaldehyde monitoring using the developed device under several indoor conditions, and estimated the air exchange rate and formaldehyde adsorption rate, which we adopted as a new term in the mass balance equation for formaldehyde, in one office. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Multimedia architectures: from desktop systems to portable appliances

    Science.gov (United States)

    Bhaskaran, Vasudev; Konstantinides, Konstantinos; Natarajan, Balas R.

    1997-01-01

    Future desktop and portable computing systems will have as their core an integrated multimedia system. Such a system will seamlessly combine digital video, digital audio, computer animation, text, and graphics. Furthermore, such a system will allow for mixed-media creation, dissemination, and interactive access in real time. Multimedia architectures that need to support these functions have traditionally required special display and processing units for the different media types. This approach tends to be expensive and is inefficient in its use of silicon. Furthermore, such media-specific processing units are unable to cope with the fluid nature of the multimedia market wherein the needs and standards are changing and system manufacturers may demand a single component media engine across a range of products. This constraint has led to a shift towards providing a single-component multimedia specific computing engine that can be integrated easily within desktop systems, tethered consumer appliances, or portable appliances. In this paper, we review some of the recent architectural efforts in developing integrated media systems. We primarily focus on two efforts, namely the evolution of multimedia-capable general purpose processors and a more recent effort in developing single component mixed media co-processors. Design considerations that could facilitate the migration of these technologies to a portable integrated media system also are presented.

  2. Optical sensor based on a single CdS nanobelt.

    Science.gov (United States)

    Li, Lei; Yang, Shuming; Han, Feng; Wang, Liangjun; Zhang, Xiaotong; Jiang, Zhuangde; Pan, Anlian

    2014-04-23

    In this paper, an optical sensor based on a cadmium sulfide (CdS) nanobelt has been developed. The CdS nanobelt was synthesized by the vapor phase transportation (VPT) method. X-Ray Diffraction (XRD) and Transmission Electron Microscopy (TEM) results revealed that the nanobelt had a hexagonal wurtzite structure of CdS and presented good crystal quality. A single nanobelt Schottky contact optical sensor was fabricated by the electron beam lithography (EBL) technique, and the device current-voltage results showed back-to-back Schottky diode characteristics. The photosensitivity, dark current and the decay time of the sensor were 4 × 10⁴, 31 ms and 0.2 pA, respectively. The high photosensitivity and the short decay time were because of the exponential dependence of photocurrent on the number of the surface charges and the configuration of the back to back Schottky junctions.

  3. Portable Radiation Package (PRP) Instrument Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, R Michael [Remote Measurements and Research Company, Seattle, WA (United States)

    2017-08-03

    The Portable Radiation Package (PRP) was developed to provide basic radiation information in locations such as ships at sea where proper exposure is remote and difficult, the platform is in motion, and azimuth alignment is not fixed. Development of the PRP began at Brookhaven National Laboratory (BNL) in the mid-1990s and versions of it were deployed on ships in the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility’s Nauru-99 project. The PRP was deployed on ships in support of the National Aeronautics and Space Administration (NASA) Sensor Intercomparison for Marine Biological and Interdisciplinary Ocean Studies (SIMBIOS) program. Over the years the measurements have remained the same while the post-processing data analysis, especially for the FRSR, has evolved. This document describes the next-generation Portable Radiation Package (PRP2) that was developed for the DOE ARM Facility, under contract no. 9F-31462 from Argonne National Laboratory (ANL). The PRP2 has the same scientific principles that were well validated in prior studies, but has upgraded electronic hardware. The PRP2 approach is completely modular, both in hardware and software. Each sensor input is treated as a separate serial stream into the data collection computer. In this way the operator has complete access to each component of the system for purposes of error checking, calibration, and maintenance. The resulting system is more reliable, easier to install in complex situations, and more amenable to upgrade.

  4. The silicon microstrip sensors of the ATLAS semiconductor tracker

    Energy Technology Data Exchange (ETDEWEB)

    ATLAS SCT Collaboration; Spieler, Helmuth G.

    2007-04-13

    This paper describes the AC-coupled, single-sided, p-in-n silicon microstrip sensors used in the Semiconductor Tracker (SCT) of the ATLAS experiment at the CERN Large Hadron Collider (LHC). The sensor requirements, specifications and designs are discussed, together with the qualification and quality assurance procedures adopted for their production. The measured sensor performance is presented, both initially and after irradiation to the fluence anticipated after 10 years of LHC operation. The sensors are now successfully assembled within the detecting modules of the SCT, and the SCT tracker is completed and integrated within the ATLAS Inner Detector. Hamamatsu Photonics Ltd. supplied 92.2percent of the 15,392 installed sensors, with the remainder supplied by CiS.

  5. The silicon microstrip sensors of the ATLAS semiconductor tracker

    International Nuclear Information System (INIS)

    ATLAS SCT Collaboration; Spieler, Helmuth G.

    2007-01-01

    This paper describes the AC-coupled, single-sided, p-in-n silicon microstrip sensors used in the Semiconductor Tracker (SCT) of the ATLAS experiment at the CERN Large Hadron Collider (LHC). The sensor requirements, specifications and designs are discussed, together with the qualification and quality assurance procedures adopted for their production. The measured sensor performance is presented, both initially and after irradiation to the fluence anticipated after 10 years of LHC operation. The sensors are now successfully assembled within the detecting modules of the SCT, and the SCT tracker is completed and integrated within the ATLAS Inner Detector. Hamamatsu Photonics Ltd. supplied 92.2percent of the 15,392 installed sensors, with the remainder supplied by CiS

  6. Single walled carbon nanotubes with functionally adsorbed biopolymers for use as chemical sensors

    Science.gov (United States)

    Johnson, Jr., Alan T

    2013-12-17

    Chemical field effect sensors comprising nanotube field effect devices having biopolymers such as single stranded DNA or RNA functionally adsorbed to the nanotubes are provided. Also included are arrays comprising the sensors and methods of using the devices to detect volatile compounds.

  7. High-content analysis of single cells directly assembled on CMOS sensor based on color imaging.

    Science.gov (United States)

    Tanaka, Tsuyoshi; Saeki, Tatsuya; Sunaga, Yoshihiko; Matsunaga, Tadashi

    2010-12-15

    A complementary metal oxide semiconductor (CMOS) image sensor was applied to high-content analysis of single cells which were assembled closely or directly onto the CMOS sensor surface. The direct assembling of cell groups on CMOS sensor surface allows large-field (6.66 mm×5.32 mm in entire active area of CMOS sensor) imaging within a second. Trypan blue-stained and non-stained cells in the same field area on the CMOS sensor were successfully distinguished as white- and blue-colored images under white LED light irradiation. Furthermore, the chemiluminescent signals of each cell were successfully visualized as blue-colored images on CMOS sensor only when HeLa cells were placed directly on the micro-lens array of the CMOS sensor. Our proposed approach will be a promising technique for real-time and high-content analysis of single cells in a large-field area based on color imaging. Copyright © 2010 Elsevier B.V. All rights reserved.

  8. New-generation security network with synergistic IP sensors

    Science.gov (United States)

    Peshko, Igor

    2007-09-01

    Global Dynamic Monitoring and Security Network (GDMSN) for real-time monitoring of (1) environmental and atmospheric conditions: chemical, biological, radiological and nuclear hazards, climate/man-induced catastrophe areas and terrorism threats; (2) water, soil, food chain quantifiers, and public health care; (3) large government/public/ industrial/ military areas is proposed. Each GDMSN branch contains stationary or mobile terminals (ground, sea, air, or space manned/unmanned vehicles) equipped with portable sensors. The sensory data are transferred via telephone, Internet, TV, security camera and other wire/wireless or optical communication lines. Each sensor is a self-registering, self-reporting, plug-and-play, portable unit that uses unified electrical and/or optical connectors and operates with IP communication protocol. The variant of the system based just on optical technologies cannot be disabled by artificial high-power radio- or gamma-pulses or sunbursts. Each sensor, being supplied with a battery and monitoring means, can be used as a separate portable unit. Military personnel, police officers, firefighters, miners, rescue teams, and nuclear power plant personnel may individually use these sensors. Terminals may be supplied with sensors essential for that specific location. A miniature "universal" optical gas sensor for specific applications in life support and monitoring systems was designed and tested. The sensor is based on the physics of absorption and/or luminescence spectroscopy. It can operate at high pressures and elevated temperatures, such as in professional and military diving equipment, submarines, underground shelters, mines, command stations, aircraft, space shuttles, etc. To enable this capability, the multiple light emitters, detectors and data processing electronics are located within a specially protected chamber.

  9. Mobile Phone Based Falling Detection Sensor and Computer-Aided Algorithm for Elderly People

    Directory of Open Access Journals (Sweden)

    Lee Jong-Ha

    2016-01-01

    Full Text Available Falls are dangerous for the elderly population; therefore many fall detection systems have been developed. However, previous methods are bulky for elderly people or only use a single sensor to isolate falls from daily living activities, which makes a fall difficult to distinguish. In this paper, we present a cost-effective and easy-to-use portable fall-detection sensor and algorithm. Specifically, to detect human falls, we used a three-axis accelerator and a three-axis gyroscope in a mobile phone. We used the Fourier descriptor-based frequency analysis method to classify both normal and falling status. From the experimental results, the proposed method detects falling status with 96.14% accuracy.

  10. Exploring microdischarges for portable sensing applications.

    Science.gov (United States)

    Gianchandani, Y B; Wright, S A; Eun, C K; Wilson, C G; Mitra, B

    2009-10-01

    This paper describes the use of microdischarges as transducing elements in sensors and detectors. Chemical and physical sensing of gases, chemical sensing of liquids, and radiation detection are described. These applications are explored from the perspective of their use in portable microsystems, with emphasis on compactness, power consumption, the ability to operate at or near atmospheric pressure (to reduce pumping challenges), and the ability to operate in an air ambient (to reduce the need for reservoirs of carrier gases). Manufacturing methods and performance results are described for selected examples.

  11. Single-step simultaneous side-by-side placement of a self-expandable metallic stent with a 6-Fr delivery system for unresectable malignant hilar biliary obstruction: a feasibility study.

    Science.gov (United States)

    Kawakubo, Kazumichi; Kawakami, Hiroshi; Kuwatani, Masaki; Kudo, Taiki; Abe, Yoko; Kawahata, Shuhei; Kubo, Kimitoshi; Kubota, Yoshimasa; Sakamoto, Naoya

    2015-02-01

    Bilateral self-expandable metallic stent (SEMS) placement for the management of unresectable malignant hilar biliary obstruction (UMHBO) is technically challenging to perform using the existing metallic stents with thick delivery systems. The recently developed 6-Fr delivery systems could facilitate a single-step simultaneous side-by-side placement through the accessory channel of the duodenoscope. The aim of this study was to evaluate the feasibility of this procedure. Between May and September 2013, 13 consecutive patients with UMHBO underwent a single-step simultaneous side-by-side placement of SEMS with the 6-Fr delivery system. The technical success rate, stent patency, and rate of complications were evaluated from the prospectively collected database. Technical success was achieved in 11 (84.6%, 95% confidence interval [CI]: 57.8-95.8) patients. The median procedure time was 25 min. Early and late complications were observed in 23% (one segmental cholangitis and two liver abscesses) and 15% (one segmental cholangitis and one cholecystitis) patients, respectively. Median dysfunction free patency was 263 days (95% CI: 37-263). Five patients (38%) experienced stent occlusion that was successfully managed by endoscopic stent placement. A single-step simultaneous side-by-side placement of SEMS with a 6-Fr delivery system was feasible for the management of UMHBO. © 2014 Japanese Society of Hepato-Biliary-Pancreatic Surgery.

  12. The Design of a Single-Bit CMOS Image Sensor for Iris Recognition Applications

    Directory of Open Access Journals (Sweden)

    Keunyeol Park

    2018-02-01

    Full Text Available This paper presents a single-bit CMOS image sensor (CIS that uses a data processing technique with an edge detection block for simple iris segmentation. In order to recognize the iris image, the image sensor conventionally captures high-resolution image data in digital code, extracts the iris data, and then compares it with a reference image through a recognition algorithm. However, in this case, the frame rate decreases by the time required for digital signal conversion of multi-bit digital data through the analog-to-digital converter (ADC in the CIS. In order to reduce the overall processing time as well as the power consumption, we propose a data processing technique with an exclusive OR (XOR logic gate to obtain single-bit and edge detection image data instead of multi-bit image data through the ADC. In addition, we propose a logarithmic counter to efficiently measure single-bit image data that can be applied to the iris recognition algorithm. The effective area of the proposed single-bit image sensor (174 × 144 pixel is 2.84 mm2 with a 0.18 μm 1-poly 4-metal CMOS image sensor process. The power consumption of the proposed single-bit CIS is 2.8 mW with a 3.3 V of supply voltage and 520 frame/s of the maximum frame rates. The error rate of the ADC is 0.24 least significant bit (LSB on an 8-bit ADC basis at a 50 MHz sampling frequency.

  13. The Design of a Single-Bit CMOS Image Sensor for Iris Recognition Applications.

    Science.gov (United States)

    Park, Keunyeol; Song, Minkyu; Kim, Soo Youn

    2018-02-24

    This paper presents a single-bit CMOS image sensor (CIS) that uses a data processing technique with an edge detection block for simple iris segmentation. In order to recognize the iris image, the image sensor conventionally captures high-resolution image data in digital code, extracts the iris data, and then compares it with a reference image through a recognition algorithm. However, in this case, the frame rate decreases by the time required for digital signal conversion of multi-bit digital data through the analog-to-digital converter (ADC) in the CIS. In order to reduce the overall processing time as well as the power consumption, we propose a data processing technique with an exclusive OR (XOR) logic gate to obtain single-bit and edge detection image data instead of multi-bit image data through the ADC. In addition, we propose a logarithmic counter to efficiently measure single-bit image data that can be applied to the iris recognition algorithm. The effective area of the proposed single-bit image sensor (174 × 144 pixel) is 2.84 mm² with a 0.18 μm 1-poly 4-metal CMOS image sensor process. The power consumption of the proposed single-bit CIS is 2.8 mW with a 3.3 V of supply voltage and 520 frame/s of the maximum frame rates. The error rate of the ADC is 0.24 least significant bit (LSB) on an 8-bit ADC basis at a 50 MHz sampling frequency.

  14. Recent Advances in Paper-Based Sensors

    Directory of Open Access Journals (Sweden)

    Edith Chow

    2012-08-01

    Full Text Available Paper-based sensors are a new alternative technology for fabricating simple, low-cost, portable and disposable analytical devices for many application areas including clinical diagnosis, food quality control and environmental monitoring. The unique properties of paper which allow passive liquid transport and compatibility with chemicals/biochemicals are the main advantages of using paper as a sensing platform. Depending on the main goal to be achieved in paper-based sensors, the fabrication methods and the analysis techniques can be tuned to fulfill the needs of the end-user. Current paper-based sensors are focused on microfluidic delivery of solution to the detection site whereas more advanced designs involve complex 3-D geometries based on the same microfluidic principles. Although paper-based sensors are very promising, they still suffer from certain limitations such as accuracy and sensitivity. However, it is anticipated that in the future, with advances in fabrication and analytical techniques, that there will be more new and innovative developments in paper-based sensors. These sensors could better meet the current objectives of a viable low-cost and portable device in addition to offering high sensitivity and selectivity, and multiple analyte discrimination. This paper is a review of recent advances in paper-based sensors and covers the following topics: existing fabrication techniques, analytical methods and application areas. Finally, the present challenges and future outlooks are discussed.

  15. The research of digital circuit system for high accuracy CCD of portable Raman spectrometer

    Science.gov (United States)

    Yin, Yu; Cui, Yongsheng; Zhang, Xiuda; Yan, Huimin

    2013-08-01

    The Raman spectrum technology is widely used for it can identify various types of molecular structure and material. The portable Raman spectrometer has become a hot direction of the spectrometer development nowadays for its convenience in handheld operation and real-time detection which is superior to traditional Raman spectrometer with heavy weight and bulky size. But there is still a gap for its measurement sensitivity between portable and traditional devices. However, portable Raman Spectrometer with Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy (SHINERS) technology can enhance the Raman signal significantly by several orders of magnitude, giving consideration in both measurement sensitivity and mobility. This paper proposed a design and implementation of driver and digital circuit for high accuracy CCD sensor, which is core part of portable spectrometer. The main target of the whole design is to reduce the dark current generation rate and increase signal sensitivity during the long integration time, and in the weak signal environment. In this case, we use back-thinned CCD image sensor from Hamamatsu Corporation with high sensitivity, low noise and large dynamic range. In order to maximize this CCD sensor's performance and minimize the whole size of the device simultaneously to achieve the project indicators, we delicately designed a peripheral circuit for the CCD sensor. The design is mainly composed with multi-voltage circuit, sequential generation circuit, driving circuit and A/D transition parts. As the most important power supply circuit, the multi-voltage circuits with 12 independent voltages are designed with reference power supply IC and set to specified voltage value by the amplifier making up the low-pass filter, which allows the user to obtain a highly stable and accurate voltage with low noise. What's more, to make our design easy to debug, CPLD is selected to generate sequential signal. The A/D converter chip consists of a correlated

  16. Image quality assessment and medical physics evaluation of different portable dental X-ray units.

    Science.gov (United States)

    Pittayapat, Pisha; Oliveira-Santos, Christiano; Thevissen, Patrick; Michielsen, Koen; Bergans, Niki; Willems, Guy; Debruyckere, Deborah; Jacobs, Reinhilde

    2010-09-10

    Recently developed portable dental X-ray units increase the mobility of the forensic odontologists and allow more efficient X-ray work in a disaster field, especially when used in combination with digital sensors. This type of machines might also have potential for application in remote areas, military and humanitarian missions, dental care of patients with mobility limitation, as well as imaging in operating rooms. To evaluate radiographic image quality acquired by three portable X-ray devices in combination with four image receptors and to evaluate their medical physics parameters. Images of five samples consisting of four teeth and one formalin-fixed mandible were acquired by one conventional wall-mounted X-ray unit, MinRay 60/70 kVp, used as a clinical standard, and three portable dental X-ray devices: AnyRay 60 kVp, Nomad 60 kVp and Rextar 70 kVp, in combination with a phosphor image plate (PSP), a CCD, or a CMOS sensor. Three observers evaluated images for standard image quality besides forensic diagnostic quality on a 4-point rating scale. Furthermore, all machines underwent tests for occupational as well as patient dosimetry. Statistical analysis showed good quality imaging for all system, with the combination of Nomad and PSP yielding the best score. A significant difference in image quality between the combination of the four X-ray devices and four sensors was established (p1m: Rextar <0.2 microGy, MinRay <0.1 microGy). The present study demonstrated the feasibility of three portable X-ray systems to be used for specific indications, based on acceptable image quality and sufficient accuracy of the machines and following the standard guidelines for radiation hygiene. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  17. The Combination of Micro Diaphragm Pumps and Flow Sensors for Single Stroke Based Liquid Flow Control

    Directory of Open Access Journals (Sweden)

    Christoph Jenke

    2017-04-01

    Full Text Available With the combination of micropumps and flow sensors, highly accurate and secure closed-loop controlled micro dosing systems for liquids are possible. Implementing a single stroke based control mode with piezoelectrically driven micro diaphragm pumps can provide a solution for dosing of volumes down to nanoliters or variable average flow rates in the range of nL/min to μL/min. However, sensor technologies feature a yet undetermined accuracy for measuring highly pulsatile micropump flow. Two miniaturizable in-line sensor types providing electrical readout—differential pressure based flow sensors and thermal calorimetric flow sensors—are evaluated for their suitability of combining them with mircopumps. Single stroke based calibration of the sensors was carried out with a new method, comparing displacement volumes and sensor flow volumes. Limitations of accuracy and performance for single stroke based flow control are described. Results showed that besides particle robustness of sensors, controlling resistive and capacitive damping are key aspects for setting up reproducible and reliable liquid dosing systems. Depending on the required average flow or defined volume, dosing systems with an accuracy of better than 5% for the differential pressure based sensor and better than 6.5% for the thermal calorimeter were achieved.

  18. Wearable sensors for health monitoring

    Science.gov (United States)

    Suciu, George; Butca, Cristina; Ochian, Adelina; Halunga, Simona

    2015-02-01

    In this paper we describe several wearable sensors, designed for monitoring the health condition of the patients, based on an experimental model. Wearable sensors enable long-term continuous physiological monitoring, which is important for the treatment and management of many chronic illnesses, neurological disorders, and mental health issues. The system is based on a wearable sensors network, which is connected to a computer or smartphone. The wearable sensor network integrates several wearable sensors that can measure different parameters such as body temperature, heart rate and carbon monoxide quantity from the air. After the portable sensors measuring parameter values, they are transmitted by microprocessor through the Bluetooth to the application developed on computer or smartphone, to be interpreted.

  19. Optical Sensor Based on a Single CdS Nanobelt

    Directory of Open Access Journals (Sweden)

    Lei Li

    2014-04-01

    Full Text Available In this paper, an optical sensor based on a cadmium sulfide (CdS nanobelt has been developed. The CdS nanobelt was synthesized by the vapor phase transportation (VPT method. X-Ray Diffraction (XRD and Transmission Electron Microscopy (TEM results revealed that the nanobelt had a hexagonal wurtzite structure of CdS and presented good crystal quality. A single nanobelt Schottky contact optical sensor was fabricated by the electron beam lithography (EBL technique, and the device current-voltage results showed back-to-back Schottky diode characteristics. The photosensitivity, dark current and the decay time of the sensor were 4 × 104, 31 ms and 0.2 pA, respectively. The high photosensitivity and the short decay time were because of the exponential dependence of photocurrent on the number of the surface charges and the configuration of the back to back Schottky junctions.

  20. Optofluidics for handling and analysis of single living cells

    KAUST Repository

    Perozziello, Gerardo

    2017-12-07

    Optofluidics is a field with important applications in areas such as biotechnology, chemical synthesis and analytical chemistry. Optofluidic devices combine optical elements into microfluidic devices in ways that increase portability and sensitivity of analysis for diagnostic or screening purposes .In fact in these devices fluids give fine adaptability, mobility and accessibility to nanoscale photonic devices which otherwise could not be realized using conventional devices. This review describes several cases inwhich optical or microfluidic approaches are used to trap single cells in proximity of integrated optical sensor for being analysed.

  1. Optofluidics for handling and analysis of single living cells

    KAUST Repository

    Perozziello, Gerardo; Candeloro, Patrizio; Coluccio, Maria Laura; Di Fabrizio, Enzo M.

    2017-01-01

    Optofluidics is a field with important applications in areas such as biotechnology, chemical synthesis and analytical chemistry. Optofluidic devices combine optical elements into microfluidic devices in ways that increase portability and sensitivity of analysis for diagnostic or screening purposes .In fact in these devices fluids give fine adaptability, mobility and accessibility to nanoscale photonic devices which otherwise could not be realized using conventional devices. This review describes several cases inwhich optical or microfluidic approaches are used to trap single cells in proximity of integrated optical sensor for being analysed.

  2. Dielectrophoresis Aligned Single-Walled Carbon Nanotubes as pH Sensors.

    Science.gov (United States)

    Li, Pengfei; Martin, Caleb M; Yeung, Kan Kan; Xue, Wei

    2011-01-31

    Here we report the fabrication and characterization of pH sensors using aligned single-walled carbon nanotubes (SWNTs). The SWNTs are dispersed in deionized (DI) water after chemical functionalization and filtration. They are deposited and organized on silicon substrates with the dielectrophoresis process. Electrodes with "teeth"-like patterns-fabricated with photolithography and wet etching-are used to generate concentrated electric fields and strong dielectrophoretic forces for the SWNTs to deposit and align in desired locations. The device fabrication is inexpensive, solution-based, and conducted at room temperature. The devices are used as pH sensors with the electrodes as the testing pads and the dielectrophoretically captured SWNTs as the sensing elements. When exposed to aqueous solutions with various pH values, the SWNTs change their resistance accordingly. The SWNT-based sensors demonstrate a linear relationship between the sensor resistance and the pH values in the range of 5-9. The characterization of multiple sensors proves that their pH sensitivity is highly repeatable. The real-time data acquisition shows that the sensor response time depends on the pH value, ranging from 2.26 s for the pH-5 solution to 23.82 s for the pH-9 solution. The long-term stability tests illustrate that the sensors can maintain their original sensitivity for a long period of time. The simple fabrication process, high sensitivity, and fast response of the SWNT-based sensors facilitate their applications in a wide range of areas.

  3. CMOS SPAD-based image sensor for single photon counting and time of flight imaging

    OpenAIRE

    Dutton, Neale Arthur William

    2016-01-01

    The facility to capture the arrival of a single photon, is the fundamental limit to the detection of quantised electromagnetic radiation. An image sensor capable of capturing a picture with this ultimate optical and temporal precision is the pinnacle of photo-sensing. The creation of high spatial resolution, single photon sensitive, and time-resolved image sensors in complementary metal oxide semiconductor (CMOS) technology offers numerous benefits in a wide field of applications....

  4. A multichannel portable ECG system with capacitive sensors

    International Nuclear Information System (INIS)

    Oehler, M; Schilling, M; Ling, V; Melhorn, K

    2008-01-01

    Capacitive sensors can be employed for measuring the electrocardiogram of a human heart without electric contact with the skin. This configuration avoids contact problems experienced by conventional electrocardiography. In our studies, we integrated these capacitive electrocardiogram electrodes in a 15-sensor array and combined this array with a tablet personal computer. By placing the system on the patient's body, we can measure a 15-channel electrocardiogram even through clothes and without any preparation. The goal of this development is to provide a new diagnostic tool that offers the user a reproducible, easy access to a fast and spatially resolved diagnostic 'heart view'

  5. Development of a Portable Electronic Nose System for the Detection and Classification of Fruity Odors

    Directory of Open Access Journals (Sweden)

    Kea-Tiong Tang

    2010-10-01

    Full Text Available In this study, we have developed a prototype of a portable electronic nose (E-Nose comprising a sensor array of eight commercially available sensors, a data acquisition interface PCB, and a microprocessor. Verification software was developed to verify system functions. Experimental results indicate that the proposed system prototype is able to identify the fragrance of three fruits, namely lemon, banana, and litchi.

  6. The Silicon Microstrip Sensors of the ATLAS SemiConductor Tracker

    CERN Document Server

    Ahmad, A; Allport, P P; Alonso, J; Andricek, L; Apsimon, R J; Barr, A J; Bates, R L; Beck, G A; Bell, P J; Belymam, A; Benes, J; Berg, C M; Bernabeu, J; Bethke, S; Bingefors, N; Bizzell, J P; Bohm, J; Brenner, R; Brodbeck, T J; Bruckman De Renstrom, P; Buttar, C M; Campbell, D; Carpentieri, C; Carter, A A; Carter, J R; Charlton, D G; Casse, G-L; Chilingarov, A; Cindro, V; Ciocio, A; Civera, J V; Clark, A G; Colijn, A-P; Costa, M J; Dabrowski, W; Danielsen, K M; Dawson, I; Demirkoz, B; Dervan, P; Dolezal, Z; Dorholt, O; Duerdoth, I P; Dwuznik, M; Eckert, S; Ekelöf, T; Eklund, L; Escobar, C; Fasching, D; Feld, L; Ferguson, D P S; Ferrere, D; Fortin, R; Foster, J M; Fox, H; French, R; Fromant, B P; Fujita, K; Fuster, J; Gadomski, S; Gallop, B J; Garcia, C; Garcia-Navarro, J E; Gibson, M D; Gonzalez, S; Gonzalez-Sevilla, S; Goodrick, M J; Gornicki, E; Green, C; Greenall, A; Grigson, C; Grillo, A A; Grosse-Knetter, J; Haber, C; Handa, T; Hara, K; Harper, R S; Hartjes, F G; Hashizaki, T; Hauff, D; Hessey, N P; Hill, J C; Hollins, T I; Holt, S; Horazdovsky, T; Hornung, M; Hovland, K M; Hughes, G; Huse, T; Ikegami, Y; Iwata, Y; Jackson, J N; Jakobs, K; Jared, R C; Johansen, L G; Jones, R W L; Jones, T J; de Jong, P; Joseph, J; Jovanovic, P; Kaplon, J; Kato, Y; Ketterer, C; Kindervaag, I M; Kodys, P; Koffeman, E; Kohriki, T; Kohout, Z; Kondo, T; Koperny, S; van der Kraaij, E; Kral, V; Kramberger, G; Kudlaty, J; Lacasta, C; Limper, M; Linhart, V; Llosa, G; Lozano, M; Ludwig, I; Ludwig, J; Lutz, G; Macpherson, A; McMahon, S J; Macina, D; Magrath, C A; Malecki, P; Mandic, I; Marti-Garcia, S; Matsuo, T; Meinhardt, J; Mellado, B; Mercer, I J; Mikestikova, M; Mikuz, M; Minano, M; Mistry, J; Mitsou, V; Modesto, P; Mohn, B; Molloy, S D; Moorhead, G; Moraes, A; Morgan, D; Morone, M C; Morris, J; Moser, H-G; Moszczynski, A; Muijs, A J M; Nagai, K; Nakamura, Y; Nakano, I; Nicholson, R; Niinikoski, T; Nisius, R; Ohsugi, T; O'Shea, V; Oye, O K; Parzefall, U; Pater, J R; Pernegger, H; Phillips, P W; Posisil, S; Ratoff, P N; Reznicek, P; Richardson, J D; Richter, R H; Robinson, D; Roe, S; Ruggiero, G; Runge, K; Sadrozinski, H F W; Sandaker, H; Schieck, J; Seiden, A; Shinma, S; Siegrist, J; Sloan, T; Smith, N A; Snow, S W; Solar, M; Solberg, A; Sopko, B; Sospedra, L; Spieler, H; Stanecka, E; Stapnes, S; Stastny, J; Stelzer, F; Stradling, A; Stugu, B; Takashima, R; Tanaka, R; Taylor, G; Terada, S; Thompson, R J; Titov, M; Tomeda, Y; Tovey, D R; Turala, M; Turner, P R; Tyndel, M; Ullan, M; Unno, Y; Vickey, T; Vos, M; Wallny, R; Weilhammer, P; Wells, P S; Wilson, J A; Wolter, M; Wormald, M; Wu, S L; Yamashita, T; Zontar, D; Zsenei, A

    2007-01-01

    This paper describes the AC-coupled, single-sided, p-in-n silicon microstrip sensors used in the SemiConductor Tracker (SCT) of the ATLAS experiment at the CERN Large Hadron Collider (LHC). The sensor requirements, specifications and designs are discussed, together with the qualification and quality assurance procedures adopted for their production. The measured sensor performance is presented, both initially and after irradiation to the fluence anticipated after 10 years of LHC operation. The sensors are now successfully assembled within the detecting modules of the SCT, and the SCT tracker is completed and integrated within the ATLAS Inner Detector. Hamamatsu Photonics Ltd supplied 92.2% of the 15,392 installed sensors, with the remainder supplied by CiS.

  7. Design and Tests of the Silicon Sensors for the ZEUS Micro Vertex Detector

    OpenAIRE

    Dannheim, D.; Koetz, U.; Coldewey, C.; Fretwurst, E.; Garfagnini, A.; Klanner, R.; Martens, J.; Koffeman, E.; Tiecke, H.; Carlin, R.

    2002-01-01

    To fully exploit the HERA-II upgrade,the ZEUS experiment has installed a Micro Vertex Detector (MVD) using n-type, single-sided, silicon micro-strip sensors with capacitive charge division. The sensors have a readout pitch of 120 micrometers, with five intermediate strips (20 micrometer strip pitch). The designs of the silicon sensors and of the test structures used to verify the technological parameters, are presented. Results on the electrical measurements are discussed. A total of 1123 sen...

  8. Computer Controlled Portable Greenhouse Climate Control System for Enhanced Energy Efficiency

    Science.gov (United States)

    Datsenko, Anthony; Myer, Steve; Petties, Albert; Hustek, Ryan; Thompson, Mark

    2010-04-01

    This paper discusses a student project at Kettering University focusing on the design and construction of an energy efficient greenhouse climate control system. In order to maintain acceptable temperatures and stabilize temperature fluctuations in a portable plastic greenhouse economically, a computer controlled climate control system was developed to capture and store thermal energy incident on the structure during daylight periods and release the stored thermal energy during dark periods. The thermal storage mass for the greenhouse system consisted of a water filled base unit. The heat exchanger consisted of a system of PVC tubing. The control system used a programmable LabView computer interface to meet functional specifications that minimized temperature fluctuations and recorded data during operation. The greenhouse was a portable sized unit with a 5' x 5' footprint. Control input sensors were temperature, water level, and humidity sensors and output control devices were fan actuating relays and water fill solenoid valves. A Graphical User Interface was developed to monitor the system, set control parameters, and to provide programmable data recording times and intervals.

  9. A portable high-field pulsed-magnet system for single-crystal x-ray scattering studies

    International Nuclear Information System (INIS)

    Islam, Zahirul; Lang, Jonathan C.; Ruff, Jacob P. C.; Ross, Kathryn A.; Gaulin, Bruce D.; Nojiri, Hiroyuki; Matsuda, Yasuhiro H.; Qu Zhe

    2009-01-01

    We present a portable pulsed-magnet system for x-ray studies of materials in high magnetic fields (up to 30 T). The apparatus consists of a split-pair of minicoils cooled on a closed-cycle cryostat, which is used for x-ray diffraction studies with applied field normal to the scattering plane. A second independent closed-cycle cryostat is used for cooling the sample to near liquid helium temperatures. Pulsed magnetic fields (∼1 ms in total duration) are generated by discharging a configurable capacitor bank into the magnet coils. Time-resolved scattering data are collected using a combination of a fast single-photon counting detector, a multichannel scaler, and a high-resolution digital storage oscilloscope. The capabilities of this instrument are used to study a geometrically frustrated system revealing strong magnetostrictive effects in the spin-liquid state.

  10. Single Mode Optical Fiber based Refractive Index Sensor using Etched Cladding

    OpenAIRE

    Kumar, Ajay; Gupta, Geeta; Mallik, Arun; Bhatnagar, Anuj

    2011-01-01

    The use of optical fiber for sensor applications is a topic of current interest. We report the fabrication of etched single mode optical fiber based refractive index sensor. Experiments are performed to determine the etch rate of fiber in buffered hydrofluoric acid, which can be high or low depending upon the temperature at which etching is carried out. Controlled wet etching of fiber cladding is performed using these measurements and etched fiber region is tested for refractive index sensing...

  11. Demand Side Management for the European Supergrid: Occupancy variances of European single-person households

    International Nuclear Information System (INIS)

    Torriti, Jacopo

    2012-01-01

    The prospect of a European Supergrid calls for research on aggregate electricity peak demand and Europe-wide Demand Side Management. No attempt has been made as yet to represent a time-related demand curve of residential electricity consumption at the European level. This article assesses how active occupancy levels of single-person households vary in single-person household in 15 European countries. It makes use of occupancy time-series data from the Harmonised European Time Use Survey database to build European occupancy curves; identify peak occupancy periods; construct time-related electricity demand curves for TV and video watching activities and assess occupancy variances of single-person households. - Highlights: ► Morning peak occupancies of European single households tale place between 7h30 and 7h40. ► Evening peaks take place between 20h10 and 20h20. ► TV and video activities during evening peaks make up about 3.1 GWh of European peak electricity load. ► Baseline and peak occupancy variances vary across countries. ► Baseline and peak occupancy variances can be used as input for Demand Side Management choices.

  12. A photon position sensor consisting of single-electron circuits

    International Nuclear Information System (INIS)

    Kikombo, Andrew Kilinga; Amemiya, Yoshihito; Tabe, Michiharu

    2009-01-01

    This paper proposes a solid-state sensor that can detect the position of incident photons with a high spatial resolution. The sensor consists of a two-dimensional array of single-electron oscillators, each coupled to its neighbors through coupling capacitors. An incident photon triggers an excitatory circular wave of electron tunneling in the oscillator array. The wave propagates in all directions to reach the periphery of the array. By measuring the arrival time of the wave at the periphery, we can know the position of the incident photon. The tunneling wave's generation, propagation, arrival at the array periphery, and the determination of incident photon positions are demonstrated with the results of Monte Carlo based computer simulations.

  13. Foldable and portable triboelectric-electromagnetic generator for scavenging motion energy and as a sensitive gas flow sensor for detecting breath personality

    International Nuclear Information System (INIS)

    Xia, Xiaona; Liu, Guanlin; Chen, Lin; Li, Wenlong; Xi, Yi; Hu, Chenguo; Shi, Haofei

    2015-01-01

    An easily foldable and portable triboelectric-electromagnetic generator (TEMG) based on two polymer/Al layers and one copper coil has been designed to harvest ambient mechanical energy, where the copper coil is used both as a spring to achieve contact and separation of triboelectric layers and as a circuit to collect electromagnetic-induced electricity. The output performance of the TEMG is approximately reproducible after being folded many times. The working mechanism is discussed. The output performance of individual triboelectric generator (TEG) and electromagnetic generator (EMG) are systematically investigated. The maximum output current, voltage, and power are obtained to be 32.2 μA, 500 V, and 2 mW for the TEG, and 4.04 mA, 30 mV, and 15.8 μW for the EMG, respectively. The TEG with a higher internal resistance can be used as a current source, while the EMG with a lower resistance can be used as a voltage source. It can be used as a mobile light source via integrating the TEMG in clothes or bags, and as a self-powered gas flow sensor for detecting respiratory rate, which has a potential application in medical diagnoses. The simple structure and easy portability of the TEMG could be used widely in daily life to harvest ambient energy for electronic devices. (paper)

  14. Foldable and portable triboelectric-electromagnetic generator for scavenging motion energy and as a sensitive gas flow sensor for detecting breath personality

    Science.gov (United States)

    Xia, Xiaona; Liu, Guanlin; Chen, Lin; Li, Wenlong; Xi, Yi; Shi, Haofei; Hu, Chenguo

    2015-11-01

    An easily foldable and portable triboelectric-electromagnetic generator (TEMG) based on two polymer/Al layers and one copper coil has been designed to harvest ambient mechanical energy, where the copper coil is used both as a spring to achieve contact and separation of triboelectric layers and as a circuit to collect electromagnetic-induced electricity. The output performance of the TEMG is approximately reproducible after being folded many times. The working mechanism is discussed. The output performance of individual triboelectric generator (TEG) and electromagnetic generator (EMG) are systematically investigated. The maximum output current, voltage, and power are obtained to be 32.2 μA, 500 V, and 2 mW for the TEG, and 4.04 mA, 30 mV, and 15.8 μW for the EMG, respectively. The TEG with a higher internal resistance can be used as a current source, while the EMG with a lower resistance can be used as a voltage source. It can be used as a mobile light source via integrating the TEMG in clothes or bags, and as a self-powered gas flow sensor for detecting respiratory rate, which has a potential application in medical diagnoses. The simple structure and easy portability of the TEMG could be used widely in daily life to harvest ambient energy for electronic devices.

  15. Solid-State Gas Sensors: Sensor System Challenges in the Civil Security Domain.

    Science.gov (United States)

    Müller, Gerhard; Hackner, Angelika; Beer, Sebastian; Göbel, Johann

    2016-01-20

    The detection of military high explosives and illicit drugs presents problems of paramount importance in the fields of counter terrorism and criminal investigation. Effectively dealing with such threats requires hand-portable, mobile and affordable instruments. The paper shows that solid-state gas sensors can contribute to the development of such instruments provided the sensors are incorporated into integrated sensor systems, which acquire the target substances in the form of particle residue from suspect objects and which process the collected residue through a sequence of particle sampling, solid-vapor conversion, vapor detection and signal treatment steps. Considering sensor systems with metal oxide gas sensors at the backend, it is demonstrated that significant gains in sensitivity, selectivity and speed of response can be attained when the threat substances are sampled in particle as opposed to vapor form.

  16. Cantilever-like micromechanical sensors

    DEFF Research Database (Denmark)

    Boisen, Anja; Dohn, Søren; Keller, Stephan Sylvest

    2011-01-01

    The field of cantilever-based sensing emerged in the mid-1990s and is today a well-known technology for label-free sensing which holds promise as a technique for cheap, portable, sensitive and highly parallel analysis systems. The research in sensor realization as well as sensor applications has...... increased significantly over the past 10 years. In this review we will present the basic modes of operation in cantilever-like micromechanical sensors and discuss optical and electrical means for signal transduction. The fundamental processes for realizing miniaturized cantilevers are described with focus...... on silicon-and polymer-based technologies. Examples of recent sensor applications are given covering such diverse fields as drug discovery, food diagnostics, material characterizations and explosives detection....

  17. A low-cost, portable optical sensing system with wireless communication compatible of real-time and remote detection of dissolved ammonia

    Science.gov (United States)

    Deng, Shijie; Doherty, William; McAuliffe, Michael AP; Salaj-Kosla, Urszula; Lewis, Liam; Huyet, Guillaume

    2016-06-01

    A low-cost and portable optical chemical sensor based ammonia sensing system that is capable of detecting dissolved ammonia up to 5 ppm is presented. In the system, an optical chemical sensor is designed and fabricated for sensing dissolved ammonia concentrations. The sensor uses eosin as the fluorescence dye which is immobilized on the glass substrate by a gas-permeable protection layer. A compact module is developed to hold the optical components, and a battery powered micro-controller system is designed to read out and process the data measured. The system operates without the requirement of laboratory instruments that makes it cost effective and highly portable. Moreover, the calculated results in the system can be transmitted to a PC wirelessly, which allows the remote and real-time monitoring of dissolved ammonia.

  18. Optical Inspection In Hostile Industrial Environments: Single-Sensor VS. Imaging Methods

    Science.gov (United States)

    Cielo, P.; Dufour, M.; Sokalski, A.

    1988-11-01

    On-line and unsupervised industrial inspection for quality control and process monitoring is increasingly required in the modern automated factory. Optical techniques are particularly well suited to industrial inspection in hostile environments because of their noncontact nature, fast response time and imaging capabilities. Optical sensors can be used for remote inspection of high temperature products or otherwise inaccessible parts, provided they are in a line-of-sight relation with the sensor. Moreover, optical sensors are much easier to adapt to a variety of part shapes, position or orientation and conveyor speeds as compared to contact-based sensors. This is an important requirement in a flexible automation environment. A number of choices are possible in the design of optical inspection systems. General-purpose two-dimensional (2-D) or three-dimensional (3-D) imaging techniques have advanced very rapidly in the last years thanks to a substantial research effort as well as to the availability of increasingly powerful and affordable hardware and software. Imaging can be realized using 2-D arrays or simpler one-dimensional (1-D) line-array detectors. Alternatively, dedicated single-spot sensors require a smaller amount of data processing and often lead to robust sensors which are particularly appropriate to on-line operation in hostile industrial environments. Many specialists now feel that dedicated sensors or clusters of sensors are often more effective for specific industrial automation and control tasks, at least in the short run. This paper will discuss optomechanical and electro-optical choices with reference to the design of a number of on-line inspection sensors which have been recently developed at our institute. Case studies will include real-time surface roughness evaluation on polymer cables extruded at high speed, surface characterization of hot-rolled or galvanized-steel sheets, temperature evaluation and pinhole detection in aluminum foil, multi

  19. Single-sided Nuclear Magnetic Resonance for condition monitoring of cross-linked polyethylene exposed to aggressive media

    Energy Technology Data Exchange (ETDEWEB)

    Adams, A., E-mail: Alina.Adams@itmc.rwth-aachen.de [Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Templergraben 55, 52056 Aachen (Germany); Piechatzek, A.; Schmitt, G. [Institut für Instandhaltung und Korrosionsschutztechnik gGmbH, Kalkofen 4, 58638 Iserlohn (Germany); Siegmund, G. [ExxonMobil Production Germany, Riethorst 12, 30659 Hannover (Germany)

    2015-08-05

    The potential of single-sided Nuclear Magnetic Resonance (NMR) to monitor truly non-invasive changes in polymer materials during aging under aggressive media is for the first time evaluated. For this, the NMR method is used in combination with other condition monitoring methods including mechanical measurements, mass uptake, and differential scanning calorimetry. It is validated by studying for the first time the aging kinetics of silane cross-linked polyethylene (PEX) exposed to media used in oil and gas production and transportation, including aliphatic and aromatic hydrocarbons, sulphur solvents, and corrosion inhibitors in combination with CO{sub 2} and H{sub 2}S. All investigated parameters changed, with the strongest effects detected for the NMR chain mobility and in the presence of hydrocarbons. Furthermore, a universal linear correlation curve could be established between the depression of the tensile strength and the chain mobility. This result represents a fundamental step towards establishing single-sided NMR as a new analytical tool for in situ condition monitoring of polyethylene working under sour conditions. The proposed approach can be easily extended to other polymer materials. - Highlights: • The changes in PEX exposed to sour media were quantified for the first time. • The strongest morphological changes in PEX were detected under exposure to hydrocarbon media. • The chain mobility measured truly non-destructively by single-sided NMR showed the highest sensitivity to the aging process. • A universal linear correlation curve was found between the chain mobility and the tensile strength. • Single-sided NMR was validated as a condition monitoring tool.

  20. Miniaturized multi-sensor for aquatic studies

    International Nuclear Information System (INIS)

    Birkelund, Karen; Hyldgård, Anders; Mortensen, Dennis; Thomsen, Erik V

    2011-01-01

    We have developed and fabricated a multi-sensor chip for fisheries' research and demonstrated the functionality under controlled conditions. The outer dimensions of the sensor chip are 3.0 × 7.4 × 0.8 mm 3 and both sides of the chip are utilized for sensors. Hereby a more compact chip is achieved that allows for direct exposure to the seawater and thereby more accurate measurements. The chip contains a piezo-resistive pressure sensor, a pn-junction photodiode sensitive to visible light, a four-terminal platinum resistor for temperature measurement and four conductivity electrodes for the determination of the salinity of saltwater. Pressure, light intensity, temperature and salinity are all essential parameters when mapping the migration route of fish. The pressure sensor has a sensitivity of S = 1.44 × 10 −7 Pa −1 and is optimized to 20 bar pressure; the light sensor has a quantum efficiency between 52% and 74% in the range of visible light. The temperature sensor responds linearly with temperature and has a temperature coefficient of resistance of 2.9 × 10 −3 K −1 . The conductivity sensor can measure the salinity with an accuracy of ±0.1 psu. This is all together the smallest and best functioning fully integrated MEMS-based multi-sensor made to date for this specific application. However, each single-sensor performance can be optimized by introducing a considerably more complicated process sequence. In this paper, a new simpler process for integrating the four sensors on one single chip is presented in details for the first time. Further, an optimized performance of the individual sensors is presented

  1. Dielectrophoresis Aligned Single-Walled Carbon Nanotubes as pH Sensors

    Directory of Open Access Journals (Sweden)

    Wei Xue

    2011-01-01

    Full Text Available Here we report the fabrication and characterization of pH sensors using aligned single-walled carbon nanotubes (SWNTs. The SWNTs are dispersed in deionized (DI water after chemical functionalization and filtration. They are deposited and organized on silicon substrates with the dielectrophoresis process. Electrodes with “teeth”-like patterns—fabricated with photolithography and wet etching—are used to generate concentrated electric fields and strong dielectrophoretic forces for the SWNTs to deposit and align in desired locations. The device fabrication is inexpensive, solution-based, and conducted at room temperature. The devices are used as pH sensors with the electrodes as the testing pads and the dielectrophoretically captured SWNTs as the sensing elements. When exposed to aqueous solutions with various pH values, the SWNTs change their resistance accordingly. The SWNT-based sensors demonstrate a linear relationship between the sensor resistance and the pH values in the range of 5–9. The characterization of multiple sensors proves that their pH sensitivity is highly repeatable. The real-time data acquisition shows that the sensor response time depends on the pH value, ranging from 2.26 s for the pH-5 solution to 23.82 s for the pH-9 solution. The long-term stability tests illustrate that the sensors can maintain their original sensitivity for a long period of time. The simple fabrication process, high sensitivity, and fast response of the SWNT-based sensors facilitate their applications in a wide range of areas.

  2. Portable computers - portable operating systems

    International Nuclear Information System (INIS)

    Wiegandt, D.

    1985-01-01

    Hardware development has made rapid progress over the past decade. Computers used to have attributes like ''general purpose'' or ''universal'', nowadays they are labelled ''personal'' and ''portable''. Recently, a major manufacturing company started marketing a portable version of their personal computer. But even for these small computers the old truth still holds that the biggest disadvantage of a computer is that it must be programmed, hardware by itself does not make a computer. (orig.)

  3. Portable Lock-in Amplifier-Based Electrochemical Method to Measure an Array of 64 Sensors for Point-of-Care Applications.

    Science.gov (United States)

    Hrdý, Radim; Kynclová, Hana; Klepáčová, Ivana; Bartošík, Martin; Neužil, Pavel

    2017-09-05

    We present a portable lock-in amplifier-based electrochemical sensing system. The basic unit (cluster) consists of four electrochemical cells (EC), each containing one pseudoreference electrode (PRE) and one working electrode (WE). All four ECs are simultaneously interrogated, each at different frequencies, with square wave pulses superposed on a sawtooth signal for cyclic voltammetry (CV). Lock-in amplification provides independent read-out of four signals, with excellent noise suppression. We expanded a single cluster system into an array of 16 clusters by using electronic switches. The chip with an array of ECs was fabricated using planar technology with a gap between a WE and a PRE of ≈2 μm, which results in partial microelectrode-type behavior. The basic electrode characterization was performed with the model case using a ferricyanide-ferrocyanide redox couple (Fe 2+ /Fe 3+ ) reaction, performing CV and differential pulse voltammetry (DPV). We then used this system to perform cyclic lock-in voltammetry (CLV) to measure concurrently responses of the four ECs. We repeated this method with all 64 ECs on the chip. The standard deviation of a peak oxidation and reduction current in a single channel consisting of 13 ECs was ≈7.46% and ≈5.6%, respectively. The four-EC configuration in each measured spot allows determination of nonperforming ECs and, thus, to eliminate potential false results. This system is built in a portable palm-size format suitable for point-of-care applications. It can perform either individual or multiple measurements of active compounds, such as biomarkers.

  4. Applications of Elpasolites as a Multimode Radiation Sensor

    Science.gov (United States)

    Guckes, Amber

    sensor was successfully tested to confirm its ability for gamma-ray and neutron detection, and gamma?ray and neutron spectroscopy. The sensor utilizes wireless data transfer for possible radiation mapping and network?centric deployment. The handheld multimode sensor was tested by performing laboratory measurements with various gamma-ray sources and neutron sources. The single CLYC scintillator collimated directional detection system is portable, robust, and capable of source localization and identification. The collimator was designed based on the results of the computational study and is constructed with high density polyethylene (HDPE) and lead (Pb). The collimator design and construction allows for the directional detection of gamma rays and fast neutrons utilizing only one scintillator which is interchangeable. For this study, a CLYC-7 scintillator was used. The collimated directional detection system was tested by performing laboratory directional measurements with various gamma-ray sources, 252Cf and a 239PuBe source.

  5. Applications of whole-cell bacterial sensors in biotechnology and environmental science

    Energy Technology Data Exchange (ETDEWEB)

    Yagi, Kiyohito [Osaka Univ., Suita (Japan). Graduate School of Pharmaceutical Sciences

    2007-01-15

    Biosensors have major advantages over chemical or physical analyses with regard to specificity, sensitivity, and portability. Recently, many types of whole-cell bacterial biosensors have been developed using recombinant DNA technology. The bacteria are genetically engineered to respond to the presence of chemicals or physiological stresses by synthesizing a reporter protein, such as luciferase, {beta}-galactosidase, or green fluorescent protein. In addition to an overview of conventional biosensors, this minireview discusses a novel type of biosensor using a photosynthetic bacterium as the sensor strain and the crtA gene, which is responsible for carotenoid synthesis, as the reporter. Since bacteria possess a wide variety of stress-response mechanisms, including antioxidation, heat-shock responses, nutrient-starvation, and membrane-damage responses, DNA response elements for several stress-response proteins can be fused with various reporter genes to construct a versatile set of bacterial biosensors for a variety of analytes. Portable biosensors for on-site monitoring have been developed using a freeze-dried biosensing strain, and cell array biosensors have been designed for high-throughput analysis. Moreover, in the future, the use of single-cell biosensors will permit detailed analyses of samples. Signals from such sensors could be detected with digital imaging, epifluorescence microscopy, and/or flow cytometry. (orig.)

  6. Development of a Nafion/MWCNT-SPCE-Based Portable Sensor for the Voltammetric Analysis of the Anti-Tuberculosis Drug Ethambutol

    Directory of Open Access Journals (Sweden)

    Rosa A. S. Couto

    2016-06-01

    Full Text Available Herein we describe the development, characterization and application of an electrochemical sensor based on the use of Nafion/MWCNT-modified screen-printed carbon electrodes (SPCEs for the voltammetric detection of the anti-tuberculosis (anti-TB drug ethambutol (ETB. The electrochemical behaviour of the drug at the surface of the developed Nafion/MWCNT-SPCEs was studied through cyclic voltammetry (CV and square wave voltammetry (SWV techniques. Electrochemical impedance spectroscopy (EIS and scanning electron microscopy (SEM were employed to characterize the modified surface of the electrodes. Results showed that, compared to both unmodified and MWCNTs-modified SPCEs, negatively charged Nafion/MWCNT-SPCEs remarkably enhanced the electrochemical sensitivity and selectivity for ETB due to the synergistic effect of the electrostatic interaction between cationic ETB molecules and negatively charged Nafion polymer and the inherent electrocatalytic properties of both MWCNTs and Nafion. Nafion/MWCNT-SPCEs provided excellent biocompatibility, good electrical conductivity, low electrochemical interferences and a high signal-to-noise ratio, providing excellent performance towards ETB quantification in microvolumes of human urine and human blood serum samples. The outcomes of this paper confirm that the Nafion/MWCNT-SPCE-based device could be a potential candidate for the development of a low-cost, yet reliable and efficient electrochemical portable sensor for the low-level detection of this antimycobacterial drug in biological samples.

  7. Characterization of the first double-sided 3D radiation sensors fabricated at FBK on 6-inch silicon wafers

    International Nuclear Information System (INIS)

    Sultan, D.M.S.; Mendicino, R.; Betta, G.-F. Dalla; Boscardin, M.; Ronchin, S.; Zorzi, N.

    2015-01-01

    Following 3D pixel sensor production for the ATLAS Insertable B-Layer, Fondazione Bruno Kessler (FBK) fabrication facility has recently been upgraded to process 6-inch wafers. In 2014, a test batch was fabricated to check for possible issues relevant to this upgrade. While maintaining a double-sided fabrication technology, some process modifications have been investigated. We report here on the technology and the design of this batch, and present selected results from the electrical characterization of sensors and test structures. Notably, the breakdown voltage is shown to exceed 200 V before irradiation, much higher than in earlier productions, demonstrating robustness in terms of radiation hardness for forthcoming productions aimed at High Luminosity LHC upgrades

  8. A Capacitive Touch Screen Sensor for Detection of Urinary Tract Infections in Portable Biomedical Devices

    Science.gov (United States)

    Honrado, Carlos; Dong, Tao

    2014-01-01

    Incidence of urinary tract infections (UTIs) is the second highest among all infections; thus, there is a high demand for bacteriuria detection. Escherichia coli are the main cause of UTIs, with microscopy methods and urine culture being the detection standard of these bacteria. However, the urine sampling and analysis required for these methods can be both time-consuming and complex. This work proposes a capacitive touch screen sensor (CTSS) concept as feasible alternative for a portable UTI detection device. Finite element method (FEM) simulations were conducted with a CTSS model. An exponential response of the model to increasing amounts of E. coli and liquid samples was observed. A measurable capacitance change due to E. coli presence and a tangible difference in the response given to urine and water samples were also detected. Preliminary experimental studies were also conducted on a commercial CTSS using liquid solutions with increasing amounts of dissolved ions. The CTSS was capable of distinguishing different volumes of liquids, also giving an exponential response. Furthermore, the CTSS gave higher responses to solutions with a superior amount of ions. Urine samples gave the top response among tested liquids. Thus, the CTSS showed the capability to differentiate solutions by their ionic content. PMID:25196109

  9. Origami chip-on-sensor design: progress and new developments

    International Nuclear Information System (INIS)

    Irmler, C; Bergauer, T; Frankenberger, A; Friedl, M; Gfall, I; Valentan, M; Ishikawa, A; Kato, E; Negishi, K; Kameswara, R; Mohanty, G; Onuki, Y; Shimizu, N; Tsuboyama, T

    2013-01-01

    The Belle II silicon vertex detector will consist of four layers of double-sided silicon strip detectors, arranged in ladders. Each sensor will be read out individually by utilizing the Origami chip-on-sensor concept, where the APV25 chips are placed on flexible circuits, glued on top of the sensors. Beside a best compromise between low material budget and sufficient SNR, this concept allows efficient CO 2 cooling of the readout chips by a single, thin cooling pipe per ladder. Recently, we assembled a module consisting of two consecutive 6'' double-sided silicon strip detectors, both read out by Origami flexes. Such a compound of Origami modules is required for the ladders of the outer Belle II SVD layers. Consequently, it is intended to verify the scalability of the assembly procedure, the performance of combined Origami flexes as well as the efficiency of the CO 2 cooling system for a higher number of APV25 chips.

  10. Condition monitoring of shaft of single-phase induction motor using optical sensor

    Science.gov (United States)

    Fulzele, Asmita G.; Arajpure, V. G.; Holay, P. P.; Patil, N. M.

    2012-05-01

    Transmission type of optical technique is developed to sense the condition of rotating shafts from a distance. A parallel laser beam is passed tangential over the surface of rotating shaft of a single phase induction motor and its flickering shadow is received on a photo sensor. Variations in sensor voltage output are observed on a digital storage oscilloscope. It is demonstrated that this signal carries information about shaft defects like miss alignment, play and impacts in bearings along with surface deformities. Mathematical model of signals corresponding to these shaft defects is developed. During the development and testing of the sensor, effects of reflections are investigated, sensing phenomenon is simulated, frequency response of the sensor is obtained and its performance is compared with conventional accelerometer.

  11. ANOLE Portable Radiation Detection System Field Test and Evaluation Campaign

    International Nuclear Information System (INIS)

    Hodge, Chris A.

    2007-01-01

    Handheld, backpack, and mobile sensors are elements of the Global Nuclear Detection System for the interdiction and control of illicit radiological and nuclear materials. They are used by the U.S. Department of Homeland Security (DHS) and other government agencies and organizations in various roles for border protection, law enforcement, and nonproliferation monitoring. In order to systematically document the operational performance of the common commercial off-the-shelf portable radiation detection systems, the DHS Domestic Nuclear Detection Office conducted a test and evaluation campaign conducted at the Nevada Test Site from January 18 to February 27, 2006. Named 'Anole', it was the first test of its kind in terms of technical design and test complexities. The Anole test results offer users information for selecting appropriate mission-specific portable radiation detection systems. The campaign also offered manufacturers the opportunity to submit their equipment for independent operationally relevant testing to subsequently improve their detector performance. This paper will present the design, execution, and methodologies of the DHS Anole portable radiation detection system test campaign

  12. MPIRUN: A Portable Loader for Multidisciplinary and Multi-Zonal Applications

    Science.gov (United States)

    Fineberg, Samuel A.; Woodrow, Thomas S. (Technical Monitor)

    1994-01-01

    Multidisciplinary and multi-zonal applications are an important class of applications in the area of Computational Aerosciences. In these codes, two or more distinct parallel programs or copies of a single program are utilized to model a single problem. To support such applications, it is common to use a programming model where a program is divided into several single program multiple data stream (SPMD) applications, each of which solves the equations for a single physical discipline or grid zone. These SPMD applications are then bound together to form a single multidisciplinary or multi-zonal program in which the constituent parts communicate via point-to-point message passing routines. One method for implementing the message passing portion of these codes is with the new Message Passing Interface (MPI) standard. Unfortunately, this standard only specifies the message passing portion of an application, but does not specify any portable mechanisms for loading an application. MPIRUN was developed to provide a portable means for loading MPI programs, and was specifically targeted at multidisciplinary and multi-zonal applications. Programs using MPIRUN for loading and MPI for message passing are then portable between all machines supported by MPIRUN. MPIRUN is currently implemented for the Intel iPSC/860, TMC CM5, IBM SP-1 and SP-2, Intel Paragon, and workstation clusters. Further, MPIRUN is designed to be simple enough to port easily to any system supporting MPI.

  13. Development of a Portable Water Quality Analyzer

    Directory of Open Access Journals (Sweden)

    Germán COMINA

    2010-08-01

    Full Text Available A portable water analyzer based on a voltammetric electronic tongue has been developed. The system uses an electrochemical cell with two working electrodes as sensors, a computer controlled potentiostat, and software based on multivariate data analysis for pattern recognition. The system is suitable to differentiate laboratory made and real in-situ river water samples contaminated with different amounts of Escherichia coli. This bacteria is not only one of the main indicators for water quality, but also a main concern for public health, affecting especially people living in high-burden, resource-limiting settings.

  14. A Study on Immersion and Presence of a Portable Hand Haptic System for Immersive Virtual Reality

    OpenAIRE

    Kim, Mingyu; Jeon, Changyu; Kim, Jinmo

    2017-01-01

    This paper proposes a portable hand haptic system using Leap Motion as a haptic interface that can be used in various virtual reality (VR) applications. The proposed hand haptic system was designed as an Arduino-based sensor architecture to enable a variety of tactile senses at low cost, and is also equipped with a portable wristband. As a haptic system designed for tactile feedback, the proposed system first identifies the left and right hands and then sends tactile senses (vibration and hea...

  15. Beam Test Results for Single- and Double-Sided Silicon Detector Prototypes of the CMS Central Detector

    CERN Document Server

    Adriani, O

    1997-01-01

    We report the results of two beam tests performed in July and September 1995 at CERN using silicon microstrip detectors of various types: single sided, double sided with small angle stereo strips, double sided with orthogonal strips, double sided with pads. For the read-out electronics use was made of Preshape32, Premux128 and VA1 chips. The signal to noise ratio and the resolution of the detectors was studied for different incident angles of the incoming particles and for different values of the detector bias voltage. The goal of these tests was to check and improve the performances of the prototypes for the CMS Central Detector.

  16. Development of a hand-portable photoionization time-of-flight mass spectrometer

    International Nuclear Information System (INIS)

    Dieckman, S.L.; Bostrom, G.A.; Waterfield, L.G.; Jendrzejczyk, J.A.; Raptis, A.C.

    1996-01-01

    ANL is currently developing a portable chemical sensor system based on laser desorption photoionization time-of-flight mass spectrometry. It will incorporate direct sampling, a cryocooler base sample adsorption and concentration, and direct surface multiphoton ionization. All components will be in a package 9 x 11 x 4 in., weighing 15-18 lbs. A sample spectrum is given for a NaCl sample

  17. Solid-State Gas Sensors: Sensor System Challenges in the Civil Security Domain

    Directory of Open Access Journals (Sweden)

    Gerhard Müller

    2016-01-01

    Full Text Available The detection of military high explosives and illicit drugs presents problems of paramount importance in the fields of counter terrorism and criminal investigation. Effectively dealing with such threats requires hand-portable, mobile and affordable instruments. The paper shows that solid-state gas sensors can contribute to the development of such instruments provided the sensors are incorporated into integrated sensor systems, which acquire the target substances in the form of particle residue from suspect objects and which process the collected residue through a sequence of particle sampling, solid-vapor conversion, vapor detection and signal treatment steps. Considering sensor systems with metal oxide gas sensors at the backend, it is demonstrated that significant gains in sensitivity, selectivity and speed of response can be attained when the threat substances are sampled in particle as opposed to vapor form.

  18. Single-sided sheet-to-tube spot welding investigated by 3D numerical simulations

    DEFF Research Database (Denmark)

    Nielsen, Chris Valentin; Chergui, Azeddine; Zhang, Wenqi

    The single-sided resistance spot welding process is analyzed by a 3D numerical study of sheet-to-tube joining. Finite element simulations are carried out in SORPAS® 3D. Two levels of electrode force and five levels of welding current are simulated. The overall effects of changing current and force...

  19. Wearable Sweat Rate Sensors for Human Thermal Comfort Monitoring.

    Science.gov (United States)

    Sim, Jai Kyoung; Yoon, Sunghyun; Cho, Young-Ho

    2018-01-19

    We propose watch-type sweat rate sensors capable of automatic natural ventilation by integrating miniaturized thermo-pneumatic actuators, and experimentally verify their performances and applicability. Previous sensors using natural ventilation require manual ventilation process or high-power bulky thermo-pneumatic actuators to lift sweat rate detection chambers above skin for continuous measurement. The proposed watch-type sweat rate sensors reduce operation power by minimizing expansion fluid volume to 0.4 ml through heat circuit modeling. The proposed sensors reduce operation power to 12.8% and weight to 47.6% compared to previous portable sensors, operating for 4 hours at 6 V batteries. Human experiment for thermal comfort monitoring is performed by using the proposed sensors having sensitivity of 0.039 (pF/s)/(g/m 2 h) and linearity of 97.9% in human sweat rate range. Average sweat rate difference for each thermal status measured in three subjects shows (32.06 ± 27.19) g/m 2 h in thermal statuses including 'comfortable', 'slightly warm', 'warm', and 'hot'. The proposed sensors thereby can discriminate and compare four stages of thermal status. Sweat rate measurement error of the proposed sensors is less than 10% under air velocity of 1.5 m/s corresponding to human walking speed. The proposed sensors are applicable for wearable and portable use, having potentials for daily thermal comfort monitoring applications.

  20. Methanol sensor operated in a passive mode

    Science.gov (United States)

    Ren, Xiaoming; Gottesfeld, Shimshon

    2002-01-01

    A sensor outputs a signal related to a concentration of methanol in an aqueous solution adjacent the sensor. A membrane electrode assembly (MEA) is included with an anode side and a cathode side. An anode current collector supports the anode side of the MEA and has a flow channel therethrough for flowing a stream of the aqueous solution and forms a physical barrier to control access of the methanol to the anode side of the MEA. A cathode current collector supports the cathode side of the MEA and is configured for air access to the cathode side of the MEA. A current sensor is connected to measure the current in a short circuit across the sensor electrodes to provide an output signal functionally related to the concentration of methanol in the aqueous solution.

  1. Using micro-patterned sensors and cell self-assembly for measuring the oxygen consumption rate of single cells

    International Nuclear Information System (INIS)

    Etzkorn, James R; Parviz, Babak A; Wu, Wen-Chung; Tian, Zhiyuan; Kim, Prince; Jang, Sei-Hum; Jen, Alex K-Y; Meldrum, Deirdre R

    2010-01-01

    We present a method for self-assembling arrays of live single cells on a glass chip using a photopatternable polymer to form micro-traps. We have studied the single-cell self-assembly method and optimized the process to obtain a 52% yield of single-trapped cells. We also report a method to measure the oxygen consumption rate of a single cell using micro-patterned sensors. These molecular oxygen sensors were fabricated around each micro-trap allowing optical interrogation of oxygen concentration in the immediate environment of the trapped cell. Micromachined micro-wells were then used to seal the trap, sensor and cell in order to determine the oxygen consumption rate of single cells. These techniques reported here add to the collection of tools for performing 'singe-cell' biology. An oxygen consumption rate of 1.05 ± 0.28 fmol min −1 was found for a data set consisting of 25 single A549 cells.

  2. Column-Parallel Single Slope ADC with Digital Correlated Multiple Sampling for Low Noise CMOS Image Sensors

    NARCIS (Netherlands)

    Chen, Y.; Theuwissen, A.J.P.; Chae, Y.

    2011-01-01

    This paper presents a low noise CMOS image sensor (CIS) using 10/12 bit configurable column-parallel single slope ADCs (SS-ADCs) and digital correlated multiple sampling (CMS). The sensor used is a conventional 4T active pixel with a pinned-photodiode as photon detector. The test sensor was

  3. Improved detection limits of bacterial endotoxins using new type of planar interdigital sensors

    KAUST Repository

    Syaifudin, A. R Mohd

    2012-10-01

    New types of planar interdigital sensors were fabricated by photolithography and etching techniques on a Silicon/Silicon Dioxide (Si/SiO2) wafer (single side polished). The sensors were then coated with APTES (3-aminopropyltrietoxysilane) a cross linker used to bind Polymyxin B (PmB) molecules on electrodes surface. PmB is an antimicrobial peptide produced by the Gram-positive bacterium-Bacillus which has specific binding properties to Lipopolysaccharide (LPS). This paper will discuss the fabrication process, coating and immobilization procedures and analysis of sensors\\' performance based on Impedance Spectroscopy method. The sensor sensitivity was compared to standard ToxinSensor Chromogenic LAL Endotoxin Assay Kit for verification. © 2012 IEEE.

  4. Optimized Charging Scheduling with Single Mobile Charger for Wireless Rechargeable Sensor Networks

    Directory of Open Access Journals (Sweden)

    Qihua Wang

    2017-11-01

    Full Text Available Due to the rapid development of wireless charging technology, the recharging issue in wireless rechargeable sensor network (WRSN has been a popular research problem in the past few years. The weakness of previous work is that charging route planning is not reasonable. In this work, a dynamic optimal scheduling scheme aiming to maximize the vacation time ratio of a single mobile changer for WRSN is proposed. In the proposed scheme, the wireless sensor network is divided into several sub-networks according to the initial topology of deployed sensor networks. After comprehensive analysis of energy states, working state and constraints for different sensor nodes in WRSN, we transform the optimized charging path problem of the whole network into the local optimization problem of the sub networks. The optimized charging path with respect to dynamic network topology in each sub-network is obtained by solving an optimization problem, and the lifetime of the deployed wireless sensor network can be prolonged. Simulation results show that the proposed scheme has good and reliable performance for a small wireless rechargeable sensor network.

  5. Paper-Based Digital Microfluidic Chip for Multiple Electrochemical Assay Operated by a Wireless Portable Control System

    DEFF Research Database (Denmark)

    Ruecha, Nipapan; Lee, Jumi; Chae, Heedo

    2017-01-01

    for multiple analysis assays are fabricated by affordable printing techniques. For enhanced sensitivity of the sensor, the working electrode is modified through the electrochemical method, namely by reducing graphene with voltammetry and coating gold nanoparticles by amperometry. Detachable sensor and absorber...... designed portable power supply and wireless control system, the active paper-based chip platform can be utilized as an advanced point-of-care device for multiple assays in digital microfluidics....

  6. Portable Exhauster Position Paper

    International Nuclear Information System (INIS)

    KRISKOVICH, J.R.

    1999-01-01

    This document identifies the tasks that are involved in preparing the ''standby'' portable exhauster to support Interim Stabilization's schedule for saltwell pumping. A standby portable exhaust system will be assigned to any facility scheduled to be saltwell pumped with the exception of 241-S farm, 241-SX farm or 241-T farm. The standby portable exhauster shall be prepared for use and placed in storage. The standby portable exhaust system shall be removed from storage and installed to ventilate tanks being pumped that reach 25% LFL. There are three tasks that are evaluated in this document. Each task shall be completed to support portable exhaust system installation and operation. They are: Pre Installation Task; Portable Exhaust System Storage Task; and Portable Exhaust System Installation and Operation Task

  7. Advances in developing rapid, reliable and portable detection systems for alcohol.

    Science.gov (United States)

    Thungon, Phurpa Dema; Kakoti, Ankana; Ngashangva, Lightson; Goswami, Pranab

    2017-11-15

    Development of portable, reliable, sensitive, simple, and inexpensive detection system for alcohol has been an instinctive demand not only in traditional brewing, pharmaceutical, food and clinical industries but also in rapidly growing alcohol based fuel industries. Highly sensitive, selective, and reliable alcohol detections are currently amenable typically through the sophisticated instrument based analyses confined mostly to the state-of-art analytical laboratory facilities. With the growing demand of rapid and reliable alcohol detection systems, an all-round attempt has been made over the past decade encompassing various disciplines from basic and engineering sciences. Of late, the research for developing small-scale portable alcohol detection system has been accelerated with the advent of emerging miniaturization techniques, advanced materials and sensing platforms such as lab-on-chip, lab-on-CD, lab-on-paper etc. With these new inter-disciplinary approaches along with the support from the parallel knowledge growth on rapid detection systems being pursued for various targets, the progress on translating the proof-of-concepts to commercially viable and environment friendly portable alcohol detection systems is gaining pace. Here, we summarize the progress made over the years on the alcohol detection systems, with a focus on recent advancement towards developing portable, simple and efficient alcohol sensors. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Open-Lake Experimental Investigation of Azimuth Angle Estimation Using a Single Acoustic Vector Sensor

    Directory of Open Access Journals (Sweden)

    Anbang Zhao

    2018-01-01

    Full Text Available Five well-known azimuth angle estimation methods using a single acoustic vector sensor (AVS are investigated in open-lake experiments. A single AVS can measure both the acoustic pressure and acoustic particle velocity at a signal point in space and output multichannel signals. The azimuth angle of one source can be estimated by using a single AVS in a passive sonar system. Open-lake experiments are carried out to evaluate how these different techniques perform in estimating azimuth angle of a source. The AVS that was applied in these open-lake experiments is a two-dimensional accelerometer structure sensor. It consists of two identical uniaxial velocity sensors in orthogonal orientations, plus a pressure sensor—all in spatial collocation. These experimental results indicate that all these methods can effectively realize the azimuth angle estimation using only one AVS. The results presented in this paper reveal that AVS can be applied in a wider range of application in distributed underwater acoustic systems for passive detection, localization, classification, and so on.

  9. A single photon sensor employing wavelength-shifting and light-guiding technology

    Energy Technology Data Exchange (ETDEWEB)

    Schulte, Lukas; Voge, Markus; Boeser, Sebastian; Kowalski, Marek [Physikalisches Institut, Universitaet Bonn (Germany)

    2013-07-01

    In this work we describe a feasibility study of a novel type of single photon sensor that employs organic wavelength shifting materials (WLS) to capture photons and guide them to a PMT readout. Two different WLS materials, Saint Gobain BC-480 and BC-482A, have been tested as candidates for use in such a sensor. We address the photon detection efficiency, noise properties, time and spatial resolution, PMT readout, as well as some practical aspects relevant for the development and construction of a prototype sensor. Calculating the overall photon detection efficiency, we show that the effective photosensitive area of a prototype built with existing technology could easily exceed that of modules currently used e. g. in IceCube while having a dark noise rate up to two orders of magnitude smaller.

  10. A compact and portable optofluidic device for detection of liquid properties and label-free sensing

    Science.gov (United States)

    Lahoz, F.; Martín, I. R.; Walo, D.; Gil-Rostra, J.; Yubero, F.; Gonzalez-Elipe, A. R.

    2017-06-01

    Optofluidic lasers have been widely investigated over the last few years mainly because they can be easily integrated in sensor devices. However, high power pulse lasers are required as excitation sources, which, in practice, limit the portability of the system. Trying to overcome some of these limitations, in this paper we propose the combined use of a small CW laser with a Fabry-Perot optofluidic planar microcavity showing high sensitivity and versatility for detection of liquid properties and label-free sensing. Firstly, a fluorescein solution in ethanol is used to demonstrate the high performances of the FP microcavity as a temperature sensor both in the laser (high pump power above laser threshold) and in the fluorescence (low pump power) regimes. A shift in the wavelength of the resonant cavity modes is used to detect changes in the temperature and our results show that high sensitivities could be already obtained using cheap and portable CW diode lasers. In the second part of the paper, the demonstration of this portable device for label-free sensing is illustrated under low CW pumping. The wavelength positions of the optofluidic resonant modes are used to detect glucose concentrations in water solutions using a protein labelled with a fluorescent dye as the active medium.

  11. Sensitivity Enhancement of a PPM Level Capacitive Moisture Sensor

    Directory of Open Access Journals (Sweden)

    Lokesh Kumar

    2017-05-01

    Full Text Available Measurement of moisture at ppm or ppb level is very difficult and the fabrication of such sensors at low cost is always challenging. High sensitivity is an important parameter for trace level (ppm humidity sensors. Anelectronic detection circuit for interfacing the humidity sensor with high sensitivity requires a simple hardware circuit with few active devices. The recent trends for increasing the sensitivity include fabricating nanoporous film with a very large surface area. In the present work, the sensitivity of a parallel plate capacitive type sensor with metal oxide sensing film has been significantly improved with an aim to detect moisture from 3 to 100 ppm in the industrial process gases used to fabricate semiconductors and other sensitive electronic devices. The sensitivity has been increased by (i fabricating a nanoporous film of aluminum oxide using the sol-gel method and (ii increasing the cross-sectional area of a parallel plate capacitor. A novel double sided capacitive structure has been proposed where two capacitors have been fabricated—one on the top and one on the bottom side of a flat alumina substrate—and then the capacitors are connected in parallel. The structure has twice the sensitivity of a single sensor in the same ppm range but the size of the structure remains unchanged. The important characteristics of the sensors such as the sensitivity (S = Δ C Δ p p m × 100 , the response time (tr, and the recovery time (tc are determined and compared with a commercial SHAW, UKdew point meter. The fabricated double sided sensor has comparable sensitivity (S = 100%, tr (s = 28, tc (s = 40 with the commercial meter (S = 100.5%, tr (s = 258 but has a faster response time. The proposed method of sensitivity enhancement is simple, and mass producible.

  12. 671-nm microsystem diode laser based on portable Raman sensor device for in-situ identification of meat spoilage

    Science.gov (United States)

    Sowoidnich, Kay; Schmidt, Heinar; Schwägele, Fredi; Kronfeldt, Heinz-Detlef

    2011-05-01

    Based on a miniaturized optical bench with attached 671 nm microsystem diode laser we present a portable Raman system for the rapid in-situ characterization of meat spoilage. It consists of a handheld sensor head (dimensions: 210 x 240 x 60 mm3) for Raman signal excitation and collection including the Raman optical bench, a laser driver, and a battery pack. The backscattered Raman radiation from the sample is analyzed by means of a custom-designed miniature spectrometer (dimensions: 200 x 190 x 70 mm3) with a resolution of 8 cm-1 which is fiber-optically coupled to the sensor head. A netbook is used to control the detector and for data recording. Selected cuts from pork (musculus longissimus dorsi and ham) stored refrigerated at 5 °C were investigated in timedependent measurement series up to three weeks to assess the suitability of the system for the rapid detection of meat spoilage. Using a laser power of 100 mW at the sample meat spectra can be obtained with typical integration times of 5 - 10 seconds. The complex spectra were analyzed by the multivariate statistical tool PCA (principal components analysis) to determine the spectral changes occurring during the storage period. Additionally, the Raman data were correlated with reference analyses performed in parallel. In that way, a distinction between fresh and spoiled meat can be found in the time slot of 7 - 8 days after slaughter. The applicability of the system for the rapid spoilage detection of meat and other food products will be discussed.

  13. Portable wireless metering

    Energy Technology Data Exchange (ETDEWEB)

    DiPaola, L [Powtel Monitoring Systems, Inc., Ajax, ON (Canada)

    1996-12-31

    Portable meters were discussed as alternatives to standard billing meters for temporary installations. Current, voltage and power factor at a distribution station were measured to calculate kW and kVAR, using an easy to install product that communicates live readings directly to the existing billing system. A background of situations where temporary metering is a possible alternative to regular meters was presented. Use of electronic, clamp on Electronic Recording Ammeters (ERA) and their drawbacks were discussed. An improved temporary metering solution using FM radio transmission to deliver live data to a receiving device, the Eagle Series 3500, was introduced. Improvements over previous ERA systems were discussed, including accuracy, lack of batteries, immediate confirmation of functionality, current, voltage and power factor monitoring, direct feed to billing system, line crew savings, need for only a single unit at any given site, bi-directional power flow metering, independent report storage media, and a portable voltage and P.F. diagnostic tool. Details of trial applications at the Utopia distribution station west of Barrie, ON were presented. This technology was said to be still in the testing stage, but its flexibility and economy were sonsidered to be very promising for future application.

  14. SERS sensors for DVD platform

    DEFF Research Database (Denmark)

    Brøgger, Anna Line

    This Ph.D. thesis explores the engineering of a portable sensor system for detection of rare and small molecules. The Ph.D. project is part of the research project 'Multi-Sensor DVD platform' (MUSE), aiming to integrate different sensors on a rotating disc. The sensors are chosen to complement each...... other, creating more reliable and stable results for the end user. The rotating disc comprises microfluidic channels, which can be utilized for handling and manipulating liquid samples such as blood or water. The focus of this Ph.D. thesis, is on the integration of one specific sensor on a rotating disc....... The sensor is based upon surface enhanced Raman spectroscopy (SERS), which detects molecular vibrations. The aim of this thesis is to cover the different aspects of the sensor system. SERS substrates, consisting of nanopillars with gold or silver caps on top, have been fabricated by standard micro and nano...

  15. Dual-function photonic integrated circuit for frequency octo-tupling or single-side-band modulation.

    Science.gov (United States)

    Hasan, Mehedi; Maldonado-Basilio, Ramón; Hall, Trevor J

    2015-06-01

    A dual-function photonic integrated circuit for microwave photonic applications is proposed. The circuit consists of four linear electro-optic phase modulators connected optically in parallel within a generalized Mach-Zehnder interferometer architecture. The photonic circuit is arranged to have two separate output ports. A first port provides frequency up-conversion of a microwave signal from the electrical to the optical domain; equivalently single-side-band modulation. A second port provides tunable millimeter wave carriers by frequency octo-tupling of an appropriate amplitude RF carrier. The circuit exploits the intrinsic relative phases between the ports of multi-mode interference couplers to provide substantially all the static optical phases needed. The operation of the proposed dual-function photonic integrated circuit is verified by computer simulations. The performance of the frequency octo-tupling and up-conversion functions is analyzed in terms of the electrical signal to harmonic distortion ratio and the optical single side band to unwanted harmonics ratio, respectively.

  16. Functional nanomaterials and devices for electronics, sensors and energy harvesting

    CERN Document Server

    Balestra, Francis; Kilchytska, Valeriya; Flandre, Denis

    2014-01-01

    This book contains reviews of recent experimental and theoretical results related to nanomaterials. It focuses on novel functional materials and nanostructures in combination with silicon on insulator (SOI) devices, as well as on the physics of new devices and sensors, nanostructured materials and nano scaled device characterization. Special attention is paid to fabrication and properties of modern low-power, high-performance, miniaturized, portable sensors in a wide range of applications such as telecommunications, radiation control, biomedical instrumentation and chemical analysis. In this book, new approaches exploiting nanotechnologies (such as UTBB FD SOI, Fin FETs, nanowires, graphene or carbon nanotubes on dielectric) to pave a way between “More Moore” and “More than Moore” are considered, in order to create different kinds of sensors and devices which will consume less electrical power, be more portable and totally compatible with modern microelectronics products.

  17. Construction and Characterization of a Compact, Portable, Low-Cost Colorimeter for the Chemistry Lab

    Science.gov (United States)

    Clippard, Carrie M.; Hughes, William; Chohan, Balwant S.; Sykes, Danny G.

    2016-01-01

    A low-cost and portable colorimeter was constructed featuring a low-voltage programmable color light sensor-to-frequency converter, a CMOS 8-bit microcontroller, and an LCD display. The instrument has successfully facilitated the introduction and application of spectroscopy to groups of middle school, high school, and undergraduate students. A…

  18. Gold nanoparticle-based optical microfluidic sensors for analysis of environmental pollutants

    DEFF Research Database (Denmark)

    Lafleur, Josiane P.; Senkbeil, Silja; Jensen, Thomas G.

    2012-01-01

    Conventional methods of environmental analysis can be significantly improved by the development of portable microscale technologies for direct in-field sensing at remote locations. This report demonstrates the vast potential of gold nanoparticle-based microfluidic sensors for the rapid, in......-field, detection of two important classes of environmental contaminants – heavy metals and pesticides. Using gold nanoparticle-based microfluidic sensors linked to a simple digital camera as the detector, detection limits as low as 0.6 μg L−1 and 16 μg L−1 could be obtained for the heavy metal mercury...... and the dithiocarbamate pesticide ziram, respectively. These results demonstrate that the attractive optical properties of gold nanoparticle probes combine synergistically with the inherent qualities of microfluidic platforms to offer simple, portable and sensitive sensors for environmental contaminants....

  19. Ab initio quantum chemistry in parallel-portable tools and applications

    International Nuclear Information System (INIS)

    Harrison, R.J.; Shepard, R.; Kendall, R.A.

    1991-01-01

    In common with many of the computational sciences, ab initio chemistry faces computational constraints to which a partial solution is offered by the prospect of highly parallel computers. Ab initio codes are large and complex (O(10 5 ) lines of FORTRAN), representing a significant investment of communal effort. The often conflicting requirements of portability and efficiency have been successfully resolved on vector computers by reliance on matrix oriented kernels. This proves inadequate even upon closely-coupled shared-memory parallel machines. We examine the algorithms employed during a typical sequence of calculations. Then we investigate how efficient portable parallel implementations may be derived, including the complex multi-reference singles and doubles configuration interaction algorithm. A portable toolkit, modeled after the Intel iPSC and the ANL-ACRF PARMACS, is developed, using shared memory and TCP/IP sockets. The toolkit is used as an initial platform for programs portable between LANS, Crays and true distributed-memory MIMD machines. Timings are presented. 53 refs., 4 tabs

  20. Simultaneous live cell imaging using dual FRET sensors with a single excitation light.

    Directory of Open Access Journals (Sweden)

    Yusuke Niino

    Full Text Available Fluorescence resonance energy transfer (FRET between fluorescent proteins is a powerful tool for visualization of signal transduction in living cells, and recently, some strategies for imaging of dual FRET pairs in a single cell have been reported. However, these necessitate alteration of excitation light between two different wavelengths to avoid the spectral overlap, resulting in sequential detection with a lag time. Thus, to follow fast signal dynamics or signal changes in highly motile cells, a single-excitation dual-FRET method should be required. Here we reported this by using four-color imaging with a single excitation light and subsequent linear unmixing to distinguish fluorescent proteins. We constructed new FRET sensors with Sapphire/RFP to combine with CFP/YFP, and accomplished simultaneous imaging of cAMP and cGMP in single cells. We confirmed that signal amplitude of our dual FRET measurement is comparable to of conventional single FRET measurement. Finally, we demonstrated to monitor both intracellular Ca(2+ and cAMP in highly motile cardiac myocytes. To cancel out artifacts caused by the movement of the cell, this method expands the applicability of the combined use of dual FRET sensors for cell samples with high motility.

  1. Portable Weather Applications for General Aviation Pilots.

    Science.gov (United States)

    Ahlstrom, Ulf; Ohneiser, Oliver; Caddigan, Eamon

    2016-09-01

    The objective of this study was to examine the potential benefits and impact on pilot behavior from the use of portable weather applications. Seventy general aviation (GA) pilots participated in the study. Each pilot was randomly assigned to an experimental or a control group and flew a simulated single-engine GA aircraft, initially under visual meteorological conditions (VMC). The experimental group was equipped with a portable weather application during flight. We recorded measures for weather situation awareness (WSA), decision making, cognitive engagement, and distance from the aircraft to hazardous weather. We found positive effects from the use of the portable weather application, with an increased WSA for the experimental group, which resulted in credibly larger route deviations and credibly greater distances to hazardous weather (≥30 dBZ cells) compared with the control group. Nevertheless, both groups flew less than 20 statute miles from hazardous weather cells, thus failing to follow current weather-avoidance guidelines. We also found a credibly higher cognitive engagement (prefrontal oxygenation levels) for the experimental group, possibly reflecting increased flight planning and decision making on the part of the pilots. Overall, the study outcome supports our hypothesis that portable weather displays can be used without degrading pilot performance on safety-related flight tasks, actions, and decisions as measured within the constraints of the present study. However, it also shows that an increased WSA does not automatically translate to enhanced flight behavior. The study outcome contributes to our knowledge of the effect of portable weather applications on pilot behavior and decision making. © 2016, Human Factors and Ergonomics Society.

  2. Nuclear Magnetic Resonance Trackbed Moisture Sensor System

    Science.gov (United States)

    2018-02-01

    In this initial phase, conducted from March 2015 through December 2016, Vista Clara and its subcontractor Zetica Rail successfully developed and tested a man-portable, non-invasive spot-check nuclear magnetic resonance (NMR) moisture sensor that dire...

  3. Space trajectory calculation based on G-sensor

    Science.gov (United States)

    Xu, Biya; Zhan, Yinwei; Shao, Yang

    2017-08-01

    At present, without full use of the mobile phone around us, most of the research in human body posture recognition field is use camera or portable acceleration sensor to collect data. In this paper, G-sensor built-in mobile phone is use to collect data. After processing data with the way of moving average filter and acceleration integral, joint point's space three-dimensional coordinates can be abtained accurately.

  4. Sensor system for multi-point monitoring using bending loss of single mode optical fiber

    International Nuclear Information System (INIS)

    Kim, Heon Young; Kim, Dae Hyun

    2015-01-01

    Applications of smart sensors have been extended to safety systems in the aerospace, transportation and civil engineering fields. In particular, structural health monitoring techniques using smart sensors have gradually become necessary and have been developed to prevent dangers to human life and damage to assets. Generally, smart sensors are based on electro-magnets and have several weaknesses, including electro-magnetic interference and distortion. Therefore, fiber optic sensors are an outstanding alternative to overcome the weaknesses of electro-magnetic sensors. However, they require expensive devices and complex systems. This paper proposes a new, affordable and simple sensor system that uses a single fiber to monitor pressures at multiple-points. Moreover, a prototype of the sensor system was manufactured and tested for a feasibility study. Based on the results of this experimental test, a relationship was carefully observed between the bend loss conditions and light-intensity. As a result, it was shown that impacts at multiple-points could be monitored.

  5. Portable X-Ray, K-Edge Heavy Metal Detector

    International Nuclear Information System (INIS)

    Fricke, V.

    1999-01-01

    The X-Ray, K-Edge Heavy Metal Detection System was designed and built by Ames Laboratory and the Center for Nondestructive Evaluation at Iowa State University. The system uses a C-frame inspection head with an X-ray tube mounted on one side of the frame and an imaging unit and a high purity germanium detector on the other side. the inspection head is portable and can be easily positioned around ventilation ducts and pipes up to 36 inches in diameter. Wide angle and narrow beam X-ray shots are used to identify the type of holdup material and the amount of the contaminant. Precise assay data can be obtained within minutes of the interrogation. A profile of the containerized holdup material and a permanent record of the measurement are immediately available

  6. Ultra-portable field transfer radiometer for vicarious calibration of earth imaging sensors

    Science.gov (United States)

    Thome, Kurtis; Wenny, Brian; Anderson, Nikolaus; McCorkel, Joel; Czapla-Myers, Jeffrey; Biggar, Stuart

    2018-06-01

    A small portable transfer radiometer has been developed as part of an effort to ensure the quality of upwelling radiance from test sites used for vicarious calibration in the solar reflective. The test sites are used to predict top-of-atmosphere reflectance relying on ground-based measurements of the atmosphere and surface. The portable transfer radiometer is designed for one-person operation for on-site field calibration of instrumentation used to determine ground-leaving radiance. The current work describes the detector- and source-based radiometric calibration of the transfer radiometer highlighting the expected accuracy and SI-traceability. The results indicate differences between the detector-based and source-based results greater than the combined uncertainties of the approaches. Results from recent field deployments of the transfer radiometer using a solar radiation based calibration agree with the source-based laboratory calibration within the combined uncertainties of the methods. The detector-based results show a significant difference to the solar-based calibration. The source-based calibration is used as the basis for a radiance-based calibration of the Landsat-8 Operational Land Imager that agrees with the OLI calibration to within the uncertainties of the methods.

  7. Pulse-driven micro gas sensor fitted with clustered Pd/SnO2 nanoparticles.

    Science.gov (United States)

    Suematsu, Koichi; Shin, Yuka; Ma, Nan; Oyama, Tokiharu; Sasaki, Miyuki; Yuasa, Masayoshi; Kida, Tetsuya; Shimanoe, Kengo

    2015-08-18

    Real-time monitoring of specific gas concentrations with a compact and portable gas sensing device is required to sense potential health risk and danger from toxic gases. For such purposes, we developed an ultrasmall gas sensor device, where a micro sensing film was deposited on a micro heater integrated with electrodes fabricated by the microelectromechanical system (MEMS) technology. The developed device was operated in a pulse-heating mode to significantly reduce the heater power consumption and make the device battery-driven and portable. Using clustered Pd/SnO2 nanoparticles, we succeeded in introducing mesopores ranging from 10 to 30 nm in the micro gas sensing film (area: ϕ 150 μm) to detect large volatile organic compounds (VOCs). The micro sensor showed quick, stable, and high sensor responses to toluene at ppm (parts per million) concentrations at 300 °C even by operating the micro heater in a pulse-heating mode where switch-on and -off cycles were repeated at one-second intervals. The high performance of the micro sensor should result from the creation of efficient diffusion paths decorated with Pd sensitizers by using the clustered Pd/SnO2 nanoparticles. Hence we demonstrate that our pulse-driven micro sensor using nanostructured oxide materials holds promise as a battery-operable, portable gas sensing device.

  8. Design of portable ultraminiature flow cytometers for medical diagnostics

    Science.gov (United States)

    Leary, James F.

    2018-02-01

    Design of portable microfluidic flow/image cytometry devices for measurements in the field (e.g. initial medical diagnostics) requires careful design in terms of power requirements and weight to allow for realistic portability. True portability with high-throughput microfluidic systems also requires sampling systems without the need for sheath hydrodynamic focusing both to avoid the need for sheath fluid and to enable higher volumes of actual sample, rather than sheath/sample combinations. Weight/power requirements dictate use of super-bright LEDs with top-hat excitation beam architectures and very small silicon photodiodes or nanophotonic sensors that can both be powered by small batteries. Signal-to-noise characteristics can be greatly improved by appropriately pulsing the LED excitation sources and sampling and subtracting noise in between excitation pulses. Microfluidic cytometry also requires judicious use of small sample volumes and appropriate statistical sampling by microfluidic cytometry or imaging for adequate statistical significance to permit real-time (typically in less than 15 minutes) initial medical decisions for patients in the field. This is not something conventional cytometry traditionally worries about, but is very important for development of small, portable microfluidic devices with small-volume throughputs. It also provides a more reasonable alternative to conventional tubes of blood when sampling geriatric and newborn patients for whom a conventional peripheral blood draw can be problematical. Instead one or two drops of blood obtained by pin-prick should be able to provide statistically meaningful results for use in making real-time medical decisions without the need for blood fractionation, which is not realistic in the doctor's office or field.

  9. Unobtrusive measurement of indoor energy expenditure using an infrared sensor-based activity monitoring system.

    Science.gov (United States)

    Hwang, Bosun; Han, Jonghee; Choi, Jong Min; Park, Kwang Suk

    2008-11-01

    The purpose of this study was to develop an unobtrusive energy expenditure (EE) measurement system using an infrared (IR) sensor-based activity monitoring system to measure indoor activities and to estimate individual quantitative EE. IR-sensor activation counts were measured with a Bluetooth-based monitoring system and the standard EE was calculated using an established regression equation. Ten male subjects participated in the experiment and three different EE measurement systems (gas analyzer, accelerometer, IR sensor) were used simultaneously in order to determine the regression equation and evaluate the performance. As a standard measurement, oxygen consumption was simultaneously measured by a portable metabolic system (Metamax 3X, Cortex, Germany). A single room experiment was performed to develop a regression model of the standard EE measurement from the proposed IR sensor-based measurement system. In addition, correlation and regression analyses were done to compare the performance of the IR system with that of the Actigraph system. We determined that our proposed IR-based EE measurement system shows a similar correlation to the Actigraph system with the standard measurement system.

  10. Determining the Optimum Exposure and Recovery Periods for Efficient Operation of a QCM Based Elemental Mercury Vapor Sensor

    Directory of Open Access Journals (Sweden)

    K. M. Mohibul Kabir

    2015-01-01

    Full Text Available In recent years, mass based transducers such as quartz crystal microbalance (QCM have gained huge interest as potential sensors for online detection of elemental mercury (Hg0 vapor from anthropogenic sources due to their high portability and robust nature enabling them to withstand harsh industrial environments. In this study, we determined the optimal Hg0 exposure and recovery times of a QCM based sensor for ensuring its efficient operation while monitoring low concentrations of Hg0 vapor (<400 ppbv. The developed sensor was based on an AT-cut quartz substrate and utilized two gold (Au films on either side of the substrate which functions as the electrodes and selective layer simultaneously. Given the temporal response mechanisms associated with mass based mercury sensors, the experiments involved the variation of Hg0 vapor exposure periods while keeping the recovery time constant following each exposure and vice versa. The results indicated that an optimum exposure and recovery periods of 30 and 90 minutes, respectively, can be utilized to acquire the highest response magnitudes and recovery rate towards a certain concentration of Hg0 vapor whilst keeping the time it takes to report an accurate reading by the sensor to a minimum level as required in real-world applications.

  11. Development of active edge pixel sensors and four-side buttable modules using vertical integration technologies

    Energy Technology Data Exchange (ETDEWEB)

    Macchiolo, A., E-mail: Anna.Macchiolo@mpp.mpg.de [Max-Planck-Institut for Physics, Föhringer Ring 6, D-80805 Munich (Germany); Andricek, L. [Semiconductor Laboratory of the Max-Planck-Society, Otto Hahn Ring 6, D-81739 Munich (Germany); Moser, H.-G.; Nisius, R. [Max-Planck-Institut for Physics, Föhringer Ring 6, D-80805 Munich (Germany); Richter, R.H. [Semiconductor Laboratory of the Max-Planck-Society, Otto Hahn Ring 6, D-81739 Munich (Germany); Terzo, S.; Weigell, P. [Max-Planck-Institut for Physics, Föhringer Ring 6, D-80805 Munich (Germany)

    2014-11-21

    We present an R and D activity focused on the development of novel modules for the upgrade of the ATLAS pixel system at the High Luminosity LHC (HL-LHC). The modules consist of n-in-p pixel sensors, 100 or 200 μm thick, produced at VTT (Finland) with an active edge technology, which considerably reduces the dead area at the periphery of the device. The sensors are interconnected with solder bump-bonding to the ATLAS FE-I3 and FE-I4 read-out chips, and characterised with radioactive sources and beam tests at the CERN-SPS and DESY. The results of these measurements will be discussed for devices before and after irradiation up to a fluence of 5×10{sub 15}n{sub eq}/cm{sup 2}. We will also report on the R and D activity to obtain Inter Chip Vias (ICVs) on the ATLAS read-out chip in collaboration with the Fraunhofer Institute EMFT. This step is meant to prove the feasibility of the signal transport to the newly created readout pads on the backside of the chips allowing for four side buttable devices without the presently used cantilever for wire bonding. The read-out chips with ICVs will be interconnected to thin pixel sensors, 75 μm and 150 μm thick, with the Solid Liquid Interdiffusion (SLID) technology, which is an alternative to the standard solder bump-bonding.

  12. Direct observation of backbone planarization via side-chain alignment in single bulky-substituted polythiophenes

    Science.gov (United States)

    Raithel, Dominic; Simine, Lena; Pickel, Sebastian; Schötz, Konstantin; Panzer, Fabian; Baderschneider, Sebastian; Schiefer, Daniel; Lohwasser, Ruth; Köhler, Jürgen; Thelakkat, Mukundan; Sommer, Michael; Köhler, Anna; Rossky, Peter J.; Hildner, Richard

    2018-03-01

    The backbone conformation of conjugated polymers affects, to a large extent, their optical and electronic properties. The usually flexible substituents provide solubility and influence the packing behavior of conjugated polymers in films or in bad solvents. However, the role of the side chains in determining and potentially controlling the backbone conformation, and thus the optical and electronic properties on the single polymer level, is currently under debate. Here, we investigate directly the impact of the side chains by studying the bulky-substituted poly(3-(2,5-dioctylphenyl)thiophene) (PDOPT) and the common poly(3-hexylthiophene) (P3HT), both with a defined molecular weight and high regioregularity, using low-temperature single-chain photoluminescence (PL) spectroscopy and quantum-classical simulations. Surprisingly, the optical transition energy of PDOPT is significantly (˜2,000 cm‑1 or 0.25 eV) red-shifted relative to P3HT despite a higher static and dynamic disorder in the former. We ascribe this red shift to a side-chain induced backbone planarization in PDOPT, supported by temperature-dependent ensemble PL spectroscopy. Our atomistic simulations reveal that the bulkier 2,5-dioctylphenyl side chains of PDOPT adopt a clear secondary helical structural motif and thus protect conjugation, i.e., enforce backbone planarity, whereas, for P3HT, this is not the case. These different degrees of planarity in both thiophenes do not result in different conjugation lengths, which we found to be similar. It is rather the stronger electronic coupling between the repeating units in the more planar PDOPT which gives rise to the observed spectral red shift as well as to a reduced calculated electron‑hole polarization.

  13. Compensation scheme for online neutron detection using a Gd-covered CdZnTe sensor

    Energy Technology Data Exchange (ETDEWEB)

    Dumazert, Jonathan, E-mail: jonathan.dumazert@cea.fr; Coulon, Romain; Kondrasovs, Vladimir; Boudergui, Karim

    2017-06-11

    The development of portable and personal neutron dosimeters requires compact and efficient radiation sensors. Gd-157, Gd-155 and Cd-113 nuclei present the highest cross-sections for thermal neutron capture among natural isotopes. In order to allow for the exploitation of the low and medium-energy radiative signature of the said captures, the contribution of gamma background radiation, falling into the same energy range, needs to be cancelled out. This paper introduces a thermal neutron detector based on a twin-dense semiconductor scheme. The neutron-sensitive channel takes the form of a Gd-covered CdZnTe crystal, a high density and effective atomic number detection medium. The background compensation will be carried out by means of an identical CdZnTe sensor with a Tb cover. The setting of a hypothesis test aims at discriminating the signal generated by the signature of thermal neutron captures in Gd from statistical fluctuations over the compensation of both independent channels. The measurement campaign conducted with an integrated single-channel chain and two metal Gd and Tb covers, under Cs-137 and Cf-252 irradiations, provides first quantitative results on gamma-rejection and neutron sensitivity. The described study of concept gives grounds for a portable, online-compatible device, operable in conventional to controlled environments.

  14. Galvanic Cell Type Sensor for Soil Moisture Analysis.

    Science.gov (United States)

    Gaikwad, Pramod; Devendrachari, Mruthyunjayachari Chattanahalli; Thimmappa, Ravikumar; Paswan, Bhuneshwar; Raja Kottaichamy, Alagar; Makri Nimbegondi Kotresh, Harish; Thotiyl, Musthafa Ottakam

    2015-07-21

    Here we report the first potentiometric sensor for soil moisture analysis by bringing in the concept of Galvanic cells wherein the redox energies of Al and conducting polyaniline are exploited to design a battery type sensor. The sensor consists of only simple architectural components, and as such they are inexpensive and lightweight, making it suitable for on-site analysis. The sensing mechanism is proved to be identical to a battery type discharge reaction wherein polyaniline redox energy changes from the conducting to the nonconducting state with a resulting voltage shift in the presence of soil moisture. Unlike the state of the art soil moisture sensors, a signal derived from the proposed moisture sensor is probe size independent, as it is potentiometric in nature and, hence, can be fabricated in any shape or size and can provide a consistent output signal under the strong aberration conditions often encountered in soil moisture analysis. The sensor is regenerable by treating with 1 M HCl and can be used for multiple analysis with little read out hysteresis. Further, a portable sensor is fabricated which can provide warning signals to the end user when the moisture levels in the soil go below critically low levels, thereby functioning as a smart device. As the sensor is inexpensive, portable, and potentiometric, it opens up avenues for developing effective and energy efficient irrigation strategies, understanding the heat and water transfer at the atmosphere-land interface, understanding soil mechanics, forecasting the risk of natural calamities, and so on.

  15. Xsense: a miniaturised multi-sensor platform for explosives detection

    DEFF Research Database (Denmark)

    Schmidt, Michael Stenbæk; Kostesha, Natalie; Bosco, Filippo

    2011-01-01

    Realizing that no one sensing principle is perfect we set out to combine four fundamentally different sensing principles into one device. The reasoning is that each sensor will complement the others and provide redundancy under various environmental conditions. As each sensor can be fabricated...... using microfabrication the inherent advantages associated with MEMS technologies such as low fabrication costs and small device size allows us to integrate the four sensors into one portable device at a low cost....

  16. Portable multispectral imaging system for oral cancer diagnosis

    Science.gov (United States)

    Hsieh, Yao-Fang; Ou-Yang, Mang; Lee, Cheng-Chung

    2013-09-01

    This study presents the portable multispectral imaging system that can acquire the image of specific spectrum in vivo for oral cancer diagnosis. According to the research literature, the autofluorescence of cells and tissue have been widely applied to diagnose oral cancer. The spectral distribution is difference for lesions of epithelial cells and normal cells after excited fluorescence. We have been developed the hyperspectral and multispectral techniques for oral cancer diagnosis in three generations. This research is the third generation. The excited and emission spectrum for the diagnosis are acquired from the research of first generation. The portable system for detection of oral cancer is modified for existing handheld microscope. The UV LED is used to illuminate the surface of oral cavity and excite the cells to produce fluorescent. The image passes through the central channel and filters out unwanted spectrum by the selection of filter, and focused by the focus lens on the image sensor. Therefore, we can achieve the specific wavelength image via fluorescence reaction. The specificity and sensitivity of the system are 85% and 90%, respectively.

  17. Handheld and mobile hyperspectral imaging sensors for wide-area standoff detection of explosives and chemical warfare agents

    Science.gov (United States)

    Gomer, Nathaniel R.; Gardner, Charles W.; Nelson, Matthew P.

    2016-05-01

    Hyperspectral imaging (HSI) is a valuable tool for the investigation and analysis of targets in complex background with a high degree of autonomy. HSI is beneficial for the detection of threat materials on environmental surfaces, where the concentration of the target of interest is often very low and is typically found within complex scenery. Two HSI techniques that have proven to be valuable are Raman and shortwave infrared (SWIR) HSI. Unfortunately, current generation HSI systems have numerous size, weight, and power (SWaP) limitations that make their potential integration onto a handheld or field portable platform difficult. The systems that are field-portable do so by sacrificing system performance, typically by providing an inefficient area search rate, requiring close proximity to the target for screening, and/or eliminating the potential to conduct real-time measurements. To address these shortcomings, ChemImage Sensor Systems (CISS) is developing a variety of wide-field hyperspectral imaging systems. Raman HSI sensors are being developed to overcome two obstacles present in standard Raman detection systems: slow area search rate (due to small laser spot sizes) and lack of eye-safety. SWIR HSI sensors have been integrated into mobile, robot based platforms and handheld variants for the detection of explosives and chemical warfare agents (CWAs). In addition, the fusion of these two technologies into a single system has shown the feasibility of using both techniques concurrently to provide higher probability of detection and lower false alarm rates. This paper will provide background on Raman and SWIR HSI, discuss the applications for these techniques, and provide an overview of novel CISS HSI sensors focused on sensor design and detection results.

  18. Two-step single slope/SAR ADC with error correction for CMOS image sensor.

    Science.gov (United States)

    Tang, Fang; Bermak, Amine; Amira, Abbes; Amor Benammar, Mohieddine; He, Debiao; Zhao, Xiaojin

    2014-01-01

    Conventional two-step ADC for CMOS image sensor requires full resolution noise performance in the first stage single slope ADC, leading to high power consumption and large chip area. This paper presents an 11-bit two-step single slope/successive approximation register (SAR) ADC scheme for CMOS image sensor applications. The first stage single slope ADC generates a 3-bit data and 1 redundant bit. The redundant bit is combined with the following 8-bit SAR ADC output code using a proposed error correction algorithm. Instead of requiring full resolution noise performance, the first stage single slope circuit of the proposed ADC can tolerate up to 3.125% quantization noise. With the proposed error correction mechanism, the power consumption and chip area of the single slope ADC are significantly reduced. The prototype ADC is fabricated using 0.18 μ m CMOS technology. The chip area of the proposed ADC is 7 μ m × 500 μ m. The measurement results show that the energy efficiency figure-of-merit (FOM) of the proposed ADC core is only 125 pJ/sample under 1.4 V power supply and the chip area efficiency is 84 k  μ m(2) · cycles/sample.

  19. Two-Step Single Slope/SAR ADC with Error Correction for CMOS Image Sensor

    Directory of Open Access Journals (Sweden)

    Fang Tang

    2014-01-01

    Full Text Available Conventional two-step ADC for CMOS image sensor requires full resolution noise performance in the first stage single slope ADC, leading to high power consumption and large chip area. This paper presents an 11-bit two-step single slope/successive approximation register (SAR ADC scheme for CMOS image sensor applications. The first stage single slope ADC generates a 3-bit data and 1 redundant bit. The redundant bit is combined with the following 8-bit SAR ADC output code using a proposed error correction algorithm. Instead of requiring full resolution noise performance, the first stage single slope circuit of the proposed ADC can tolerate up to 3.125% quantization noise. With the proposed error correction mechanism, the power consumption and chip area of the single slope ADC are significantly reduced. The prototype ADC is fabricated using 0.18 μm CMOS technology. The chip area of the proposed ADC is 7 μm × 500 μm. The measurement results show that the energy efficiency figure-of-merit (FOM of the proposed ADC core is only 125 pJ/sample under 1.4 V power supply and the chip area efficiency is 84 k μm2·cycles/sample.

  20. Bacterial concentration detection using a portable embedded sensor system for environmental monitoring

    OpenAIRE

    Grossi , Marco; Riccò , Bruno; Parolin , Carola; Vitali , Beatrice

    2017-01-01

    International audience; The detection of bacterial concentration is important in different fields since high microbial contamination or the presence of particular pathogens can seriously endanger human health. The reference technique to measure bacterial concentration is Standard Plate Count (SPC) that, however, has long response times (24 to 72 hours) and is not suitable for automatic implementation. This paper presents a portable embedded system for bacterial concentration measurement based...

  1. Portable evanescent wave fiber biosensor for highly sensitive detection of Shigella

    Science.gov (United States)

    Xiao, Rui; Rong, Zhen; Long, Feng; Liu, Qiqi

    2014-11-01

    A portable evanescent wave fiber biosensor was developed to achieve the rapid and highly sensitive detection of Shigella. In this study, a DNA probe was covalently immobilized onto fiber-optic biosensors that can hybridize with a fluorescently labeled complementary DNA. The sensitivity of detection for synthesized oligonucleotides can reach 10-10 M. The surface of the sensor can be regenerated with 0.5% sodium dodecyl sulfate solution (pH 1.9) for over 30 times without significant deterioration of performance. The total analysis time for a single sample, including the time for measurement and surface regeneration, was less than 6 min. We employed real-time polymerase chain reaction (PCR) and compared the results of both methods to investigate the actual Shigella DNA detection capability of the fiber-optic biosensor. The fiber-optic biosensor could detect as low as 102 colony-forming unit/mL Shigella. This finding was comparable with that by real-time PCR, which suggests that this method is a potential alternative to existing detection methods.

  2. Optical bistability in a single-sided cavity coupled to a quantum channel

    Science.gov (United States)

    Payravi, M.; Solookinejad, Gh; Jabbari, M.; Nafar, M.; Ahmadi Sangachin, E.

    2018-06-01

    In this paper, we discuss the long wavelength optical reflection and bistable behavior of an InGaN/GaN quantum dot nanostructure coupled to a single-sided cavity. It is found that due to the presence of a strong coupling field, the reflection coefficient can be controlled at long wavelength, which is essential for adjusting the threshold of reflected optical bistability. Moreover, the phase shift features of the reflection pulse inside an electromagnetically induced transparency window are also discussed.

  3. Recent advances in magnesium assessment: From single selective sensors to multisensory approach.

    Science.gov (United States)

    Lvova, Larisa; Gonçalves, Carla Guanais; Di Natale, Corrado; Legin, Andrey; Kirsanov, Dmitry; Paolesse, Roberto

    2018-03-01

    The development of efficient analytical procedures for the selective detection of magnesium is an important analytical task, since this element is one of the most abundant metals in cells and plays an essential role in a plenty of cellular processes. Magnesium misbalance has been related to several pathologies and diseases both in plants and animals, as far as in humans, but the number of suitable methods for magnesium detection especially in life sample and biological environments is scarce. Chemical sensors, due to their high reliability, simplicity of handling and instrumentation, fast and real-time in situ and on site analysis are promising candidates for magnesium analysis and represent an attractive alternative to the standard instrumental methods. Here the recent achievements in the development of chemical sensors for magnesium ions detection over the last decade are reviewed. The working principles and the main types of sensors applied are described. Focus is placed on the optical sensors and multisensory systems applications for magnesium assessment in different media. Further, a critical outlook on the employment of multisensory approach in comparison to single selective sensors application in biological samples is presented. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Compact and portable X-ray imager system using Medipix3RX

    Science.gov (United States)

    Garcia-Nathan, T. B.; Kachatkou, A.; Jiang, C.; Omar, D.; Marchal, J.; Changani, H.; Tartoni, N.; van Silfhout, R. G.

    2017-10-01

    In this paper the design and implementation of a novel portable X-ray imager system is presented. The design features a direct X-ray detection scheme by making use of a hybrid detector (Medipix3RX). Taking advantages of the capabilities of the Medipix3RX, like a high resolution, zero dead-time, single photon detection and charge-sharing mode, the imager has a better resolution and higher sensitivity compared to using traditional indirect detection schemes. A detailed description of the system is presented, which consists of a vacuum chamber containing the sensor, an electronic board for temperature management, conditioning and readout of the sensor and a data processing unit which also handles network connection and allow communication with clients by acting as a server. A field programmable gate array (FPGA) device is used to implement the readout protocol for the Medipix3RX, apart from the readout the FPGA can perform complex image processing functions such as feature extraction, histogram, profiling and image compression at high speeds. The temperature of the sensor is monitored and controlled through a PID algorithm making use of a Peltier cooler, improving the energy resolution and response stability of the sensor. Without implementing data compression techniques, the system is capable of transferring 680 profiles/s or 240 images/s in a continuous mode. Implementation of equalization procedures and tests on colour mode are presented in this paper. For the experimental measurements the Medipix3RX sensor was used with a Silicon layer. One of the tested applications of the system is as an X-ray beam position monitor (XBPM) device for synchrotron applications. The XBPM allows a non-destructive real time measurement of the beam position, size and intensity. A Kapton foil is placed in the beam path scattering radiation towards a pinhole camera setup that allows the sensor to obtain an image of the beam. By using profiles of the synchrotron X-ray beam, high frequency

  5. Single-sided natural ventilation driven by wind pressure and temperature difference

    DEFF Research Database (Denmark)

    Larsen, Tine Steen; Heiselberg, Per

    2008-01-01

    -scale wind tunnel experiments have been made with the aim of making a new expression for calculation of the airflow rate in single-sided natural ventilation. During the wind tunnel experiments it was found that the dominating driving force differs between wind speed and temperature difference depending......Even though opening a window for ventilation of a room seems very simple, the flow that occurs in this situation is rather complicated. The amount of air going through the window opening will depend on the wind speed near the building, the temperatures inside and outside the room, the wind...

  6. An improved single sensor parity space algorithm for sequential probability ratio test

    Energy Technology Data Exchange (ETDEWEB)

    Racz, A. [Hungarian Academy of Sciences, Budapest (Hungary). Atomic Energy Research Inst.

    1995-12-01

    In our paper we propose a modification of the single sensor parity algorithm in order to make the statistical properties of the generated residual determinable in advance. The algorithm is tested via computer simulated ramp failure at the temperature readings of the pressurizer. (author).

  7. On-chip photonic particle sensor

    Science.gov (United States)

    Singh, Robin; Ma, Danhao; Agarwal, Anu; Anthony, Brian

    2018-02-01

    We propose an on-chip photonic particle sensor design that can perform particle sizing and counting for various environmental applications. The sensor is based on micro photonic ring resonators that are able to detect the presence of the free space particles through the interaction with their evanescent electric field tail. The sensor can characterize a wide range of the particle size ranging from a few nano meters to micron ( 1 micron). The photonic platform offers high sensitivity, compactness, fast response of the device. Further, FDTD simulations are performed to analyze different particle-light interactions. Such a compact and portable platform, packaged with integrated photonic circuit provides a useful sensing modality in space shuttle and environmental applications.

  8. Mass sensors with mechanical traps for weighing single cells in different fluids.

    Science.gov (United States)

    Weng, Yaochung; Delgado, Francisco Feijó; Son, Sungmin; Burg, Thomas P; Wasserman, Steven C; Manalis, Scott R

    2011-12-21

    We present two methods by which single cells can be mechanically trapped and continuously monitored within the suspended microchannel resonator (SMR) mass sensor. Since the fluid surrounding the trapped cell can be quickly and completely replaced on demand, our methods are well suited for measuring changes in cell size and growth in response to drugs or other chemical stimuli. We validate our methods by measuring the density of single polystyrene beads and Saccharomyces cerevisiae yeast cells with a precision of approximately 10(-3) g cm(-3), and by monitoring the growth of single mouse lymphoblast cells before and after drug treatment.

  9. Lateral side impact against kerbstones and its influence on side airbag sensing

    Energy Technology Data Exchange (ETDEWEB)

    Olders, S. [RWTH Aachen (Germany). Inst. fuer Kraftfahrwesen

    2001-07-01

    High level requirements are made to the control units and sensors of side airbag systems with regard to the reaction time until activation, because there is only a short deformation zone within the lateral zone of a vehicle. For further development of these systems and in order to minimise the possibility of erroneous activation, these airbag systems are tested in many impact configurations relevant to airbag activation and in so-called misuse tests. One of these non-deployment requirements is the kerbstone impact. Since the load on the occupants is only minimal in this impact configuration, activation of the side airbags is not necessary. Kerbstone impacts can be simulated realistically at the Institute for Automotive Engineering Aachen (Institut fuer Kraftfahrwesen Aachen (ika)) - by means of sled tests. By varying the boundary test conditions, additional information can be gathered regarding the positioning of sensors and the signal curves for adjustment of airbag electronics. (orig.)

  10. Single particle detection: Phase control in submicron Hall sensors

    International Nuclear Information System (INIS)

    Di Michele, Lorenzo; Shelly, Connor; Gallop, John; Kazakova, Olga

    2010-01-01

    We present a phase-sensitive ac-dc Hall magnetometry method which allows a clear and reliable separation of real and parasitic magnetic signals of a very small magnitude. High-sensitivity semiconductor-based Hall crosses are generally accepted as a preferential solution for non-invasive detection of superparamagnetic nanobeads used in molecular biology, nanomedicine, and nanochemistry. However, detection of such small beads is often hindered by inductive pick-up and other spurious signals. The present work demonstrates an unambiguous experimental route for detection of small magnetic moments and provides a simple theoretical background for it. The reliability of the method has been tested for a variety of InSb Hall sensors in the range 600 nm-5 μm. Complete characterization of empty devices, involving Hall coefficients and noise measurements, has been performed and detection of a single FePt bead with diameter of 140 nm and magnetic moment of μ≅10 8 μ B has been achieved with a 600 nm-wide sensor.

  11. Performance Evaluation of Proximal Sensors for Soil Assessment in Smallholder Farms in Embu County, Kenya

    Directory of Open Access Journals (Sweden)

    Kristin Piikki

    2016-11-01

    Full Text Available Four proximal soil sensors were tested at four smallholder farms in Embu County, Kenya: a portable X-ray fluorescence sensor (PXRF, a mobile phone application for soil color determination by photography, a dual-depth electromagnetic induction (EMI sensor, and a LED-based soil optical reflectance sensor. Measurements were made at 32–43 locations at each site. Topsoil samples were analyzed for plant-available nutrients (N, P, K, Mg, Ca, S, B, Mn, Zn, Cu, and Fe, pH, total nitrogen (TN and total carbon (TC, soil texture, cation exchange capacity (CEC, and exchangeable aluminum (Al. Multivariate prediction models of each of the lab-analyzed soil properties were parameterized for 576 sensor-variable combinations. Prediction models for K, N, Ca and S, B, Zn, Mn, Fe, TC, Al, and CEC met the setup criteria for functional, robust, and accurate models. The PXRF sensor was the sensor most often included in successful models. We concluded that the combination of a PXRF and a portable soil reflectance sensor is a promising combination of handheld soil sensors for the development of in situ soil assessments as a field-based alternative or complement to laboratory measurements.

  12. Microfabrication and Applications of Opto-Microfluidic Sensors

    Science.gov (United States)

    Zhang, Daiying; Men, Liqiu; Chen, Qiying

    2011-01-01

    A review of research activities on opto-microfluidic sensors carried out by the research groups in Canada is presented. After a brief introduction of this exciting research field, detailed discussion is focused on different techniques for the fabrication of opto-microfluidic sensors, and various applications of these devices for bioanalysis, chemical detection, and optical measurement. Our current research on femtosecond laser microfabrication of optofluidic devices is introduced and some experimental results are elaborated. The research on opto-microfluidics provides highly sensitive opto-microfluidic sensors for practical applications with significant advantages of portability, efficiency, sensitivity, versatility, and low cost. PMID:22163904

  13. Advancement of Miniature Optic Gas Sensor (MOGS) Probe Technology

    Science.gov (United States)

    Chullen, Cinda

    2015-01-01

    Advancement of Miniature Optic Gas Sensor (MOGS) Probe Technology" project will investigate newly developed optic gas sensors delivered from a Small Business Innovative Research (SBIR) Phase II effort. A ventilation test rig will be designed and fabricated to test the sensors while integrated with a Suited Manikin Test Apparatus (SMTA). Once the sensors are integrated, a series of test points will be completed to verify that the sensors can withstand Advanced Suit Portable Life Support System (PLSS) environments and associated human metabolic profiles for changes in pressure and levels of Oxygen (ppO2), carbon dioxide (ppCO2), and humidity (ppH2O).

  14. A low-cost, portable, high-throughput wireless sensor system for phonocardiography applications.

    Science.gov (United States)

    Sa-Ngasoongsong, Akkarapol; Kunthong, Jakkrit; Sarangan, Venkatesh; Cai, Xinwei; Bukkapatnam, Satish T S

    2012-01-01

    This paper presents the design and testing of a wireless sensor system developed using a Microchip PICDEM developer kit to acquire and monitor human heart sounds for phonocardiography applications. This system can serve as a cost-effective option to the recent developments in wireless phonocardiography sensors that have primarily focused on Bluetooth technology. This wireless sensor system has been designed and developed in-house using off-the-shelf components and open source software for remote and mobile applications. The small form factor (3.75 cm × 5 cm × 1 cm), high throughput (6,000 Hz data streaming rate), and low cost ($13 per unit for a 1,000 unit batch) of this wireless sensor system make it particularly attractive for phonocardiography and other sensing applications. The experimental results of sensor signal analysis using several signal characterization techniques suggest that this wireless sensor system can capture both fundamental heart sounds (S1 and S2), and is also capable of capturing abnormal heart sounds (S3 and S4) and heart murmurs without aliasing. The results of a denoising application using Wavelet Transform show that the undesirable noises of sensor signals in the surrounding environment can be reduced dramatically. The exercising experiment results also show that this proposed wireless PCG system can capture heart sounds over different heart conditions simulated by varying heart rates of six subjects over a range of 60-180 Hz through exercise testing.

  15. A Low-Cost, Portable, High-Throughput Wireless Sensor System for Phonocardiography Applications

    Directory of Open Access Journals (Sweden)

    Akkarapol Sa-ngasoongsong

    2012-08-01

    Full Text Available This paper presents the design and testing of a wireless sensor system developed using a Microchip PICDEM developer kit to acquire and monitor human heart sounds for phonocardiography applications. This system can serve as a cost-effective option to the recent developments in wireless phonocardiography sensors that have primarily focused on Bluetooth technology. This wireless sensor system has been designed and developed in-house using off-the-shelf components and open source software for remote and mobile applications. The small form factor (3.75 cm ´ 5 cm ´ 1 cm, high throughput (6,000 Hz data streaming rate, and low cost ($13 per unit for a 1,000 unit batch of this wireless sensor system make it particularly attractive for phonocardiography and other sensing applications. The experimental results of sensor signal analysis using several signal characterization techniques suggest that this wireless sensor system can capture both fundamental heart sounds (S1 and S2, and is also capable of capturing abnormal heart sounds (S3 and S4 and heart murmurs without aliasing. The results of a denoising application using Wavelet Transform show that the undesirable noises of sensor signals in the surrounding environment can be reduced dramatically. The exercising experiment results also show that this proposed wireless PCG system can capture heart sounds over different heart conditions simulated by varying heart rates of six subjects over a range of 60–180 Hz through exercise testing.

  16. FISH & CHIPS: Single Chip Silicon MEMS CTDL Salinity, Temperature, Pressure and Light sensor for use in fisheries research

    DEFF Research Database (Denmark)

    Hyldgård, Anders; Hansen, Ole; Thomsen, Erik Vilain

    2005-01-01

    A single-chip silicon MEMS CTDL multi sensor for use in aqueous environments is presented. The new sensor chip consists of a conductivity sensor based on platinum electrodes (C), an ion-implanted thermistor temperature sensor (T), a piezoresistive pressure sensor (D for depth/pressure) and an ion......-implanted p-n junction light sensor (L). The design and fabrication process is described. A temperature sensitivity of 0.8 × 10-3K-1 has been measured and detailed analysis of conductivity measurement data shows a cell constant of 81 cm-1....

  17. Construction and test of the first Belle II SVD ladder implementing the origami chip-on-sensor design

    International Nuclear Information System (INIS)

    Irmler, C.; Bauer, A.; Bergauer, T.; Adamczyk, K.; Bacher, S.; Aihara, H.; Angelini, C.; Batignani, G.; Bettarini, S.; Bosi, F.; Aziz, T.; Babu, V.; Bahinipati, S.; Barberio, E.; Baroncelli, Ti.; Baroncelli, To.; Basith, A.K.; Behera, P.K.; Bhuyan, B.; Bilka, T.

    2016-01-01

    The Belle II Silicon Vertex Detector comprises four layers of double-sided silicon strip detectors (DSSDs), consisting of ladders with two to five sensors each. All sensors are individually read out by APV25 chips with the Origami chip-on-sensor concept for the central DSSDs of the ladders. The chips sit on flexible circuits that are glued on the top of the sensors. This concept allows a low material budget and an efficient cooling of the chips by a single pipe per ladder. We present the construction of the first SVD ladders and results from precision measurements and electrical tests

  18. The Impact of Single-Sided Deafness upon Music Appreciation.

    Science.gov (United States)

    Meehan, Sarah; Hough, Elizabeth A; Crundwell, Gemma; Knappett, Rachel; Smith, Mark; Baguley, David M

    2017-05-01

    Many of the world's population have hearing loss in one ear; current statistics indicate that up to 10% of the population may be affected. Although the detrimental impact of bilateral hearing loss, hearing aids, and cochlear implants upon music appreciation is well recognized, studies on the influence of single-sided deafness (SSD) are sparse. We sought to investigate whether a single-sided hearing loss can cause problems with music appreciation, despite normal hearing in the other ear. A tailored questionnaire was used to investigate music appreciation for those with SSD. We performed a retrospective survey of a population of 51 adults from a University Hospital Audiology Department SSD clinic. SSD was predominantly adult-onset sensorineural hearing loss, caused by a variety of etiologies. Analyses were performed to assess for statistical differences between groups, for example, comparing music appreciation before and after the onset of SSD, or before and after receiving hearing aid(s). Results demonstrated that a proportion of the population experienced significant changes to the way music sounded; music was found to sound more unnatural (75%), unpleasant (71%), and indistinct (81%) than before hearing loss. Music was reported to lack the perceptual qualities of stereo sound, and to be confounded by distortion effects and tinnitus. Such changes manifested in an altered music appreciation, with 44% of participants listening to music less often, 71% of participants enjoying music less, and 46% of participants reporting that music played a lesser role in their lives than pre-SSD. Negative effects surrounding social occasions with music were revealed, along with a strong preference for limiting background music. Hearing aids were not found to significantly ameliorate these effects. Results could be explained in part through considerations of psychoacoustic changes intrinsic to an asymmetric hearing loss and impaired auditory scene analysis. Given the prevalence of

  19. A Smart Sensor Data Transmission Technique for Logistics and Intelligent Transportation Systems

    OpenAIRE

    Kyunghee Sun; Intae Ryoo

    2018-01-01

    When it comes to Internet of Things systems that include both a logistics system and an intelligent transportation system, a smart sensor is one of the key elements to collect useful information whenever and wherever necessary. This study proposes the Smart Sensor Node Group Management Medium Access Control Scheme designed to group smart sensor devices and collect data from them efficiently. The proposed scheme performs grouping of portable sensor devices connected to a system depending on th...

  20. High-pressure portable pneumatic drive unit.

    Science.gov (United States)

    Hete, B F; Savage, M; Batur, C; Smith, W A; Golding, L A; Nosé, Y

    1989-12-01

    The left ventricular assist device (LVAD) of the Cleveland Clinic Foundation (CCF) is a single-chamber assist pump, driven by a high-pressure pneumatic cylinder. A low-cost, portable driver that will allow cardiac care patients, with a high-pressure pneumatic ventricle assist, more freedom of movement has been developed. The compact and light-weight configuration can provide periods of 2 h of freedom from a fixed position driver and does not use exotic technology.

  1. Measurement of the Rise-Time in a Single Sided Ladder Detector

    International Nuclear Information System (INIS)

    Gerber, C.E.

    1997-01-01

    In this note we report on the measurement of the preamplifier output rise time for a SVXII chip mounted on a D0 single sided ladder. The measurements were performed on the ladder 001-883-L, using the laser test stand of Lab D. The rise time was measured for different values of the response (or bandwidth) of the preamplifier. As a bigger bandwidth results in longer rise times and therefore in less noise, the largest possible bandwidth consistent with the time between bunch crossings should be chosen to operate the detectors. The rise time is defined as the time elapsed between 10% and 90% of the charge is collected. It is also interesting to measure the time for full charge collection and the percentage of charge collected in 132 ns and 396 ns. The results are shown in table 1, for bandwidths between 2 and 63 (binary numbers). The uncertainty on the time measurement is considered to be ∼ 10 ns. Figure 1 schematically defines the four quantities measured: rise time, time of full charge collection, and percentage of charge collected in 132 ns and 396 ns. Figures 2 to 8 are the actual measurements for bandwidths of 2, 4, 8, 12, 24, 32 and 63. Figure 9 is a second measurement for BW=24, used as a consistency check of the system and the time measurement performed on the plots. The data indicate that the single sided ladders can be operated at BW=63 for 396 ns and BW=12 for 132 ns, achieving full charge collection. This will result in smaller noise than originally anticipated.

  2. Multi-channel distributed coordinated function over single radio in wireless sensor networks.

    Science.gov (United States)

    Campbell, Carlene E-A; Loo, Kok-Keong Jonathan; Gemikonakli, Orhan; Khan, Shafiullah; Singh, Dhananjay

    2011-01-01

    Multi-channel assignments are becoming the solution of choice to improve performance in single radio for wireless networks. Multi-channel allows wireless networks to assign different channels to different nodes in real-time transmission. In this paper, we propose a new approach, Multi-channel Distributed Coordinated Function (MC-DCF) which takes advantage of multi-channel assignment. The backoff algorithm of the IEEE 802.11 distributed coordination function (DCF) was modified to invoke channel switching, based on threshold criteria in order to improve the overall throughput for wireless sensor networks (WSNs) over 802.11 networks. We presented simulation experiments in order to investigate the characteristics of multi-channel communication in wireless sensor networks using an NS2 platform. Nodes only use a single radio and perform channel switching only after specified threshold is reached. Single radio can only work on one channel at any given time. All nodes initiate constant bit rate streams towards the receiving nodes. In this work, we studied the impact of non-overlapping channels in the 2.4 frequency band on: constant bit rate (CBR) streams, node density, source nodes sending data directly to sink and signal strength by varying distances between the sensor nodes and operating frequencies of the radios with different data rates. We showed that multi-channel enhancement using our proposed algorithm provides significant improvement in terms of throughput, packet delivery ratio and delay. This technique can be considered for WSNs future use in 802.11 networks especially when the IEEE 802.11n becomes popular thereby may prevent the 802.15.4 network from operating effectively in the 2.4 GHz frequency band.

  3. A portable Hall magnetometer probe for characterization of magnetic iron oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, Jefferson F.D.F.; Costa, Mateus C.; Louro, Sonia R.W.; Bruno, Antonio C., E-mail: acbruno@puc-rio.br

    2017-03-15

    We have built a portable Hall magnetometer probe, for measuring magnetic properties of iron oxide nanoparticles, that can be used for bulk materials and liquid samples as well. The magnetometer probe consists of four voltage-programmable commercial Hall sensors and a thin acrylic plate for positioning the sensors. In order to operate, it needs to be attached to a pole of an electromagnet and connected to an AD converter and a computer. It acquires a complete magnetization curve in a couple of minutes and has a magnetic moment sensitivity of 3.5×10{sup −7} Am{sup 2}. We tested its performance with magnetic nanoparticles containing an iron oxide core and having coating layers with different sizes. The magnetization results obtained were compared with measurements performed on commercial stand-alone magnetometers, and exhibited errors of about ±0.2 Am{sup 2}/kg (i.e 0.4%) at saturation and below 0.5 Am{sup 2}/kg (i.e. 10%) at remanence. - Highlights: • A low-cost portable Hall magnetometer probe has been built. • The Hall magnetometer probe can be attached to any electromagnet. • The Hall probe was calibrated and successfully compared to industry standard magnetometers. • The Hall probe was able to measure iron oxide nanoparticles with different coatings.

  4. A portable Hall magnetometer probe for characterization of magnetic iron oxide nanoparticles

    International Nuclear Information System (INIS)

    Araujo, Jefferson F.D.F.; Costa, Mateus C.; Louro, Sonia R.W.; Bruno, Antonio C.

    2017-01-01

    We have built a portable Hall magnetometer probe, for measuring magnetic properties of iron oxide nanoparticles, that can be used for bulk materials and liquid samples as well. The magnetometer probe consists of four voltage-programmable commercial Hall sensors and a thin acrylic plate for positioning the sensors. In order to operate, it needs to be attached to a pole of an electromagnet and connected to an AD converter and a computer. It acquires a complete magnetization curve in a couple of minutes and has a magnetic moment sensitivity of 3.5×10 −7 Am 2 . We tested its performance with magnetic nanoparticles containing an iron oxide core and having coating layers with different sizes. The magnetization results obtained were compared with measurements performed on commercial stand-alone magnetometers, and exhibited errors of about ±0.2 Am 2 /kg (i.e 0.4%) at saturation and below 0.5 Am 2 /kg (i.e. 10%) at remanence. - Highlights: • A low-cost portable Hall magnetometer probe has been built. • The Hall magnetometer probe can be attached to any electromagnet. • The Hall probe was calibrated and successfully compared to industry standard magnetometers. • The Hall probe was able to measure iron oxide nanoparticles with different coatings.

  5. A Portable Ultrasonic Nondestructive Inspection System for Metal Matrix Composite Track Shoes

    International Nuclear Information System (INIS)

    Mi Bao; Zhao Xiaoliang; Qian Tao; Stevenson, Mark; Kwan, Chiman; Owens, Steven E.; Royer, Roger L. Jr.; Tittmann, Bernhard R.; Raju, Basavaraju B.

    2007-01-01

    Cast aluminum track shoes reinforced with metal matrix composite (MMC) inserts at heavy loading areas such as center splines and sprocket windows are light in weight, and can resist high temperature and wear. Various defects such as disbonds at the insert-substrate interface, cracks and porosity in the MMC layer, etc. can be introduced during the manufacturing process and/or in service. This paper presents a portable ultrasonic system to automatically inspect tank track shoes for disbond. Ultrasonic pulse/echo inspection has shown good reliability for disbond detection. A prototype sensor array fixture has been designed and fabricated to prove the feasibility. Good agreements between the sensor fixture results and ultrasonic C-scan images were obtained

  6. Development of electrochemical sensor for the determination of toxic gases

    International Nuclear Information System (INIS)

    Ahmed, R.

    1997-01-01

    Monitoring release of flue and toxic gases and vapours of volatile organic toxic substances into the atmosphere is one of the most important problems in environmental pollution control studies particularly in industrial installations in order to avoid poisoning and other health hazards. In industrial areas continuous monitoring of toxic gases and vapours is required for the safety of workers and for this purpose different types of sensors and available such as thermal sensors mass sensors, biosensors, optical sensors and electrochemical sensors. Among all of these sensors electrochemical sensors are most cost-effective, accurate and very good for continuous monitoring. They can be categorized into potentiometric, conductometric, amperometric and voltammetric sensors. Applications of different types of electrochemical sensors are briefly reviewed. Development of polymer membrane and conducting polymers are most important for fabrication of electrochemical sensors, which can analyse up to twenty two gases and vapours simultaneously. Some of the commercially used electrochemical sensors are described. For the determination of hydrogen sulfide an electrochemical sensor was developed. Teflon based conduction polymer membrane was treated with some electrolytes and then silver metal was deposited on one side of the membrane. Metal part side was exposed to gases and the other side was deposited on one side of the membrane metal part side was exposed to gasses and the other side was connected with two electrodes including reference and counter electrodes, whereas metal part acted as working electrode. This system can also me used for the analysis of their gases like SO/sub 2/ etc; because they react at different potentials with the metal to generate the signals. (author)

  7. Portable system to luminaries characterization

    Science.gov (United States)

    Tecpoyotl-Torres, M.; Vera-Dimas, J. G.; Koshevaya, S.; Escobedo-Alatorre, J.; Cisneros-Villalobos, L.; Sanchez-Mondragon, J.

    2014-09-01

    For illumination sources designers is important to know the illumination distribution of their products. They can use several viewers of IES files (standard file format determined by Illuminating Engineering Society). This files are necessary not only know the distribution of illumination, but also to plain the construction of buildings by means of specialized softwares, such as Autodesk Revit. In this paper, a complete portable system for luminaries' characterization is given. The components of the systems are: Irradiance profile meter, which can generate photometry of luminaries of small sizes which covers indoor illumination requirements and luminaries for general areas. One of the meteŕs attributes is given by the color sensor implemented, which allows knowing the color temperature of luminary under analysis. The Graphic Unit Interface (GUI) has several characteristics: It can control the meter, acquires the data obtained by the sensor and graphs them in 2D under Cartesian and polar formats or 3D, in Cartesian format. The graph can be exported to png, jpg, or bmp formats, if necessary. These remarkable characteristics differentiate this GUI. This proposal can be considered as a viable option for enterprises of illumination design and manufacturing, due to the relatively low investment level and considering the complete illumination characterization provided.

  8. Package-friendly piezoresistive pressure sensors with on-chip integrated packaging-stress-suppressed suspension (PS3) technology

    International Nuclear Information System (INIS)

    Wang, Jiachou; Li, Xinxin

    2013-01-01

    An on-chip integrated packaging-stress-suppressed suspension (PS 3 ) technology for a packaging-stress-free pressure sensor is proposed and developed. With a MIS (microholes interetch and sealing) micromachining process implemented only from the front-side of a single-side polished (1 1 1) silicon wafer, a compact cantilever-shaped PS 3 is on-chip integrated surrounding a piezoresistive pressure-sensing structure to provide a packaging-process/substrate-friendly method for low-cost but high-performance sensor applications. With the MIS process, the chip size of the PS 3 -enclosed pressure sensor is as small as 0.8 mm × 0.8 mm. Compared with a normal pressure sensor without PS 3 (but with an identical pressure-sensing structure), the proposed pressure sensor has the same sensitivity of 0.046 mV kPa −1 (3.3 V) −1 . However, without using the thermal compensation technique, a temperature coefficient of offset of only 0.016% °C −1 FS is noted for the sensor with PS 3 , which is about 15 times better than that for the sensor without PS 3 . Featuring effective isolation and elimination of the influence from packaging stress, the PS 3 technique is promising to be widely used for packaging-friendly mechanical sensors. (paper)

  9. Computerized portable microwave hyperthermia quality assurance kit

    International Nuclear Information System (INIS)

    Cheung, A.Y.; Neyzari, A.

    1985-01-01

    A computerized quality assurance kit to provide precise measurement and calibration of microwave power and temperature, as well as capabilities to map SAR (Specific absorption rate) distribution in phantoms; and survey of hazardous microwave leakage has been designed. The kit is also capable of performing corelation studies on the relationship between SAR and net microwave power delivered at various anatomical sites. The kit consists of a portable microcomputer, a time-multiplexed A/D converter, a 4-channel dual directional microwave power monitor, a 4-channel thin-wire thermocouple thermometry system, an electronic thermal calibrator, a microwave leakage hazard survey meter, and a dynamic phantom tank for dosimetric analysis. Comparative performance studies were made against NBS-traceable power and temperature standards, non-perturbing optical temperature sensors, and established power and temperature measurement devices. The test results indicate that this instrument is providing its user with measurement accuracy of 0.1 0 C in temperature, 10% accuracy in power. The thin-wire thermocouple, with computer assisted error compensation, performs equally well in a strong microwave field in comparison with non-perturbing optical temperature sensors

  10. Design and Fabrication of Single-Walled Carbon Nanonet Flexible Strain Sensors

    Directory of Open Access Journals (Sweden)

    Trung Kien Vu

    2012-03-01

    Full Text Available This study presents a novel flexible strain sensor for real-time strain sensing. The material for strain sensing is single-walled carbon nanonets, grown using the alcohol catalytic chemical vapor deposition method, that were encapsulated between two layers of Parylene-C, with a polyimide layer as the sensing surface. All of the micro-fabrication was compatible with the standard IC process. Experimental results indicated that the gauge factor of the proposed strain sensor was larger than 4.5, approximately 2.0 times greater than those of commercial gauges. The results also demonstrated that the gauge factor is small when the growth time of SWCNNs is lengthier, and the gauge factor is large when the line width of the serpentine pattern of SWCNNs is small.

  11. Insight into the da Vinci® Xi - technical notes for single-docking left-sided colorectal procedures.

    Science.gov (United States)

    Ngu, James Chi-Yong; Sim, Sarah; Yusof, Sulaiman; Ng, Chee-Yung; Wong, Andrew Siang-Yih

    2017-12-01

    The adoption of robot-assisted laparoscopic colorectal surgery has been hampered by issues with docking, operative duration, technical difficulties in multi-quadrant access, and cost. The da Vinci® Xi has been designed to overcome some of these limitations. We describe our experience with the system and offer technical insights to its application in left-sided colorectal procedures. Our initial series of left-sided robotic colorectal procedures was evaluated. Patient demographics and operative outcomes were recorded prospectively using a predefined database. Between March 2015 and April 2016, 54 cases of robot-assisted laparoscopic left-sided colorectal procedures were successfully completed with no cases of conversion. The majority were low anterior resections for colorectal malignancies. Using the da Vinci® Xi Surgical System, multi-quadrant surgery involving dissection from the splenic flexure to the pelvis was possible without redocking. The da Vinci® Xi simplifies the docking procedure and makes single-docking feasible for multi-quadrant left-sided colorectal procedures. Copyright © 2016 John Wiley & Sons, Ltd.

  12. A portable, automatic SNM monitor for nuclear safeguards: Development, evaluation, and applications

    International Nuclear Information System (INIS)

    Fehlau, P.E.

    1993-09-01

    The portable SNM monitor is a lightweight, full-size, automatic monitor, suitable for temporary service (such as demonstrations or for use during maintenance) or as a permanent replacement for hand- held monitors. The authors based the monitor on the TSA Systems, Ltd., modular SNM monitor design and, through evaluation and improvement of the commercial modules, obtained adequate sensitivity in a single- cabinet monitor that is easily portable. Complete monitoring of pedestrians with a single detector cabinet is achieved by requiring the pedestrian to stand in front of the detectors and turn around through 360 deg while being observed by a security inspector. The monitor is available commercially as the TSA Systems Model PMD-701, and it is beginning to be used in both temporary and permanent applications

  13. A portable borehole temperature logging system using the four-wire resistance method

    Science.gov (United States)

    Erkan, Kamil; Akkoyunlu, Bülent; Balkan, Elif; Tayanç, Mete

    2017-12-01

    High-quality temperature-depth information from boreholes with a depth of 100 m or more is used in geothermal studies and in studies of climate change. Electrical wireline tools with thermistor sensors are capable of measuring borehole temperatures with millikelvin resolution. The use of a surface readout mode allows analysis of the thermally conductive state of a borehole, which is especially important for climatic and regional heat flow studies. In this study we describe the design of a portable temperature logging tool that uses the four-wire resistance measurement method. The four-wire method enables the elimination of cable resistance effects, thus allowing millikelvin resolution of temperature data at depth. A preliminary two-wire model of the system is also described. The portability of the tool enables one to collect data from boreholes down to 300 m, even in locations with limited accessibility.

  14. Portable treatment systems study

    Energy Technology Data Exchange (ETDEWEB)

    Sherick, M.J.; Schwinkendorf, W.E.; Bechtold, T.E.; Cole, L.T.

    1997-03-01

    In developing their Site Treatment Plans (STPs), many of the Department of Energy installations identified some form of portable treatment, to facilitate compliant disposition of select mixed low-level wastestreams. The Environmental Management Office of Science and Technology requested that a systems study be performed to better define the potential role of portable treatment with respect to mixed low-level waste, highlight obstacles to implementation, and identify opportunities for future research and development emphasis. The study was performed by first establishing a representative set of mixed waste, then formulating portable treatment system concepts to meet the required processing needs for these wastes. The portable systems that were conceptualized were evaluated and compared to a fixed centralized treatment alternative. The system evaluations include a life-cycle cost analysis and an assessment of regulatory, institutional, and technical issues associated with the potential use of portable systems. The results of this study show that when all costs are included, there are no significant cost differences between portable systems and fixed systems. However, it is also emphasized that many uncertainties exist that could impact the cost of implementing portable treatment systems. Portable treatment could be made more attractive through private sector implementation, although there is little economic incentive for a commercial vendor to develop small, specialized treatment capabilities with limited applicability. Alternatively, there may also be valid reasons why fixed units cannot be used for some problematic wastestreams. In any event, there are some site-specific problems that still need to be addressed, and there may be some opportunity for research and development to make a positive impact in these areas.

  15. Portable treatment systems study

    International Nuclear Information System (INIS)

    Sherick, M.J.; Schwinkendorf, W.E.; Bechtold, T.E.; Cole, L.T.

    1997-03-01

    In developing their Site Treatment Plans (STPs), many of the Department of Energy installations identified some form of portable treatment, to facilitate compliant disposition of select mixed low-level wastestreams. The Environmental Management Office of Science and Technology requested that a systems study be performed to better define the potential role of portable treatment with respect to mixed low-level waste, highlight obstacles to implementation, and identify opportunities for future research and development emphasis. The study was performed by first establishing a representative set of mixed waste, then formulating portable treatment system concepts to meet the required processing needs for these wastes. The portable systems that were conceptualized were evaluated and compared to a fixed centralized treatment alternative. The system evaluations include a life-cycle cost analysis and an assessment of regulatory, institutional, and technical issues associated with the potential use of portable systems. The results of this study show that when all costs are included, there are no significant cost differences between portable systems and fixed systems. However, it is also emphasized that many uncertainties exist that could impact the cost of implementing portable treatment systems. Portable treatment could be made more attractive through private sector implementation, although there is little economic incentive for a commercial vendor to develop small, specialized treatment capabilities with limited applicability. Alternatively, there may also be valid reasons why fixed units cannot be used for some problematic wastestreams. In any event, there are some site-specific problems that still need to be addressed, and there may be some opportunity for research and development to make a positive impact in these areas

  16. Low-frequency noise characterization of single CuO nanowire gas sensor devices

    NARCIS (Netherlands)

    Steinhauer, S.; Köck, A.; Gspan, C.; Grogger, W.; Vandamme, L.K.J.; Pogany, D.

    2015-01-01

    Low-frequency noise properties of single CuO nanowire devices were investigated under gas sensor operation conditions in dry and humid synthetic air at 350¿°C. A 1/f noise spectrum was found with the normalized power spectral density of current fluctuations typically a factor of 2 higher for humid

  17. Applications of Nuclear Magnetic Resonance Sensors to Cultural Heritage

    Directory of Open Access Journals (Sweden)

    Noemi Proietti

    2014-04-01

    Full Text Available In recent years nuclear magnetic resonance (NMR sensors have been increasingly applied to investigate, characterize and monitor objects of cultural heritage interest. NMR is not confined to a few specific applications, but rather its use can be successfully extended to a wide number of different cultural heritage issues. A breakthrough has surely been the recent development of portable NMR sensors which can be applied in situ for non-destructive and non-invasive investigations. In this paper three studies illustrating the potential of NMR sensors in this field of research are reported.

  18. Radioactive air emissions notice of construction use of a portable exhauster on single-shell tanks during salt well pumping and other activities

    International Nuclear Information System (INIS)

    Hays, C.B.

    1997-01-01

    This document serves as a notice of construction (NOC), pursuant to the requirements of Washington Administrative Code (WAC) 246-247-060, and as a request for approval to construct, pursuant to 40 Code of Federal Regulations (CFR) 61.96, portable exhausters for use on single-shell tanks (SSTs) during salt well pumping and other activities. The reference to 'other activities' throughout this NOC means those activities described in Appendix A. The use of portable exhausters represents a cost savings feature because one portable exhauster can be moved back and forth between SSTS as schedules for salt well pumping or other activities dictate. A portable exhauster also could be used to simultaneously exhaust more than one SST during salt well pumping or during performance of other activities. The primary objective of providing active ventilation to these SSTS is to reduce the risk of postulated accidents to remain within risk guidelines. It is anticipated that salt well pumping will release gases entrapped within the waste as the liquid level is lowered, because of less hydrostatic force keeping the gases in place. Other activities also have the potential to release trapped gases by interrupting gas pockets within the waste. Hanford Site waste tanks must comply with the Tank Farms Safety Basis (OESH 1997) which requires that the flammable gas concentration be less than 25 percent of the lower flammability limit (LFL). The Los Alamos National Laboratory (LANL) safety analysis indicates that the LFL might be exceeded in some tanks during certain postulated accident scenarios. Also, the potential for electrical (pump motor, heat tracing) and mechanical (equipment installation) spark sources exist. Therefore, because of the presence of ignition sources and the potential for released flammable gases, active ventilation might be required in some SSTS to reduce the 'time at risk' while salt well pumping or performing other activities. Thirty tanks remain to be salt well pumped

  19. Disposable Screen Printed Electrochemical Sensors: Tools for Environmental Monitoring

    Directory of Open Access Journals (Sweden)

    Akhtar Hayat

    2014-06-01

    Full Text Available Screen printing technology is a widely used technique for the fabrication of electrochemical sensors. This methodology is likely to underpin the progressive drive towards miniaturized, sensitive and portable devices, and has already established its route from “lab-to-market” for a plethora of sensors. The application of these sensors for analysis of environmental samples has been the major focus of research in this field. As a consequence, this work will focus on recent important advances in the design and fabrication of disposable screen printed sensors for the electrochemical detection of environmental contaminants. Special emphasis is given on sensor fabrication methodology, operating details and performance characteristics for environmental applications.

  20. Design of a portable near infrared system for topographic imaging of the brain in babies

    International Nuclear Information System (INIS)

    Vaithianathan, Tharshan; Tullis, Iain D.C.; Everdell, Nicholas; Leung, Terence; Gibson, Adam; Meek, Judith; Delpy, David T.

    2004-01-01

    A portable topographic near-infrared spectroscopic (NIRS) imaging system has been developed to provide real-time temporal and spatial information about the cortical response to stimulation in unrestrained infants. The optical sensing array is lightweight, flexible, and easy to apply to infants ranging from premature babies in intensive care to children in a normal environment. The sensor pad consists of a flexible double-sided circuit board onto which are mounted multiple sources (light-emitting diodes) and multiple detectors (p-i-n photodiodes), all electrically encapsulated in silicone rubber. The control electronics are housed in a box with a medical grade isolated power supply and linked to a PC fitted with a data acquisition card, the signal acquisition and analysis being performed using LABVIEW TM . The signal output is displayed as an image of oxy- and deoxyhemoglobin concentration ([HbO 2 ], [Hb]) changes at a frame rate of 3 Hz. Experiments have been conducted on phantoms to determine the sensitivity of the system, and the results have been compared to theoretical simulations. The system has been tested in volunteers by imaging changes in forearm muscle oxygenation, following blood pressure cuff occlusion to obtain typical [Hb] and [HbO 2 ] plots

  1. Design of a portable near infrared system for topographic imaging of the brain in babies

    Science.gov (United States)

    Vaithianathan, Tharshan; Tullis, Iain D. C.; Everdell, Nicholas; Leung, Terence; Gibson, Adam; Meek, Judith; Delpy, David T.

    2004-10-01

    A portable topographic near-infrared spectroscopic (NIRS) imaging system has been developed to provide real-time temporal and spatial information about the cortical response to stimulation in unrestrained infants. The optical sensing array is lightweight, flexible, and easy to apply to infants ranging from premature babies in intensive care to children in a normal environment. The sensor pad consists of a flexible double-sided circuit board onto which are mounted multiple sources (light-emitting diodes) and multiple detectors (p-i-n photodiodes), all electrically encapsulated in silicone rubber. The control electronics are housed in a box with a medical grade isolated power supply and linked to a PC fitted with a data acquisition card, the signal acquisition and analysis being performed using LABVIEW™. The signal output is displayed as an image of oxy- and deoxyhemoglobin concentration ([HbO2], [Hb]) changes at a frame rate of 3 Hz. Experiments have been conducted on phantoms to determine the sensitivity of the system, and the results have been compared to theoretical simulations. The system has been tested in volunteers by imaging changes in forearm muscle oxygenation, following blood pressure cuff occlusion to obtain typical [Hb] and [HbO2] plots.

  2. Digital Sensor Technology

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Ken D. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Quinn, Edward L. [Technology Resources, Dana Point, CA (United States); Mauck, Jerry L. [Technology Resources, Dana Point, CA (United States); Bockhorst, Richard M. [Technology Resources, Dana Point, CA (United States)

    2015-02-01

    The nuclear industry has been slow to incorporate digital sensor technology into nuclear plant designs due to concerns with digital qualification issues. However, the benefits of digital sensor technology for nuclear plant instrumentation are substantial in terms of accuracy and reliability. This paper, which refers to a final report issued in 2013, demonstrates these benefits in direct comparisons of digital and analog sensor applications. Improved accuracy results from the superior operating characteristics of digital sensors. These include improvements in sensor accuracy and drift and other related parameters which reduce total loop uncertainty and thereby increase safety and operating margins. An example instrument loop uncertainty calculation for a pressure sensor application is presented to illustrate these improvements. This is a side-by-side comparison of the instrument loop uncertainty for both an analog and a digital sensor in the same pressure measurement application. Similarly, improved sensor reliability is illustrated with a sample calculation for determining the probability of failure on demand, an industry standard reliability measure. This looks at equivalent analog and digital temperature sensors to draw the comparison. The results confirm substantial reliability improvement with the digital sensor, due in large part to ability to continuously monitor the health of a digital sensor such that problems can be immediately identified and corrected. This greatly reduces the likelihood of a latent failure condition of the sensor at the time of a design basis event. Notwithstanding the benefits of digital sensors, there are certain qualification issues that are inherent with digital technology and these are described in the report. One major qualification impediment for digital sensor implementation is software common cause failure (SCCF).

  3. New portable sensor system for rotation seismic motion measurements

    Czech Academy of Sciences Publication Activity Database

    Brokešová, J.; Málek, Jiří

    2010-01-01

    Roč. 81, č. 8 (2010), 084501 ISSN 0034-6748 R&D Projects: GA ČR GAP210/10/0925 Institutional research plan: CEZ:AV0Z30460519 Keywords : rotation al seismology * sensor system Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 1.598, year: 2010

  4. Online Remote Recording and Monitoring of Sensor Data Using DTMF Technology

    Directory of Open Access Journals (Sweden)

    Niladri Sekhar TRIPATHY

    2011-05-01

    Full Text Available Different wireless application platforms are available for remote monitoring and control of systems. In the present paper a system has been described for online remote recording and monitoring of sensor data using DTMF (Dual Tone Multi Frequency technology where acoustic communication has been implemented. One DTMF transceiver in the sensing system has been used to generate and decode the DTMF tone corresponding to the sensor output which in turn is received from the mobile phone in the user side. A separate DTMF decoder has been used in the user side to decode the received DTMF tone corresponding to the sensor output from the sensor side. Microcontroller has been used to store the decoded data from the sensor and to control the whole operation sequentially. Thus online remote recording and monitoring of the sensor data have been possible at any where in the coverage area of the mobile network. Experimental result shows good linearity between data output taken directly from the sensor side and that remotely from user side.

  5. Portable Medical Laboratory Applications Software

    OpenAIRE

    Silbert, Jerome A.

    1983-01-01

    Portability implies that a program can be run on a variety of computers with minimal software revision. The advantages of portability are outlined and design considerations for portable laboratory software are discussed. Specific approaches for achieving this goal are presented.

  6. Front-side biasing of n-in-p silicon strip detectors

    CERN Document Server

    Baselga Bacardit, Marta; Dierlamm, Alexander Hermann; Dragicevic, Marko Gerhart; Konig, Axel; Pree, Elias; Metzler, Marius

    2018-01-01

    Front-side biasing is an alternative method to bias a silicon sensor. Instead of directly applying high voltage to the back-side, one can exploit the conductive properties of the edge region to bias a detector exclusively via top-side connections. This option can be beneficial for the detector design and might help to facilitate the assembly process of modules. The effective bias voltage is affected by the resistance of the edge region and the sensor current. The measurements of n-in-p sensors performed to qualify this concept have shown that the voltage drop emerging from this resistance is negligible before irradiation. After irradiation, however, the resistivity of the edge region increases with fluence and saturates in the region of 10$^{7}\\,\\Omega$ at a fluence of 1$\\,\\cdot\\,10^{15}\\,$n$_{\\textrm{eq}}$cm$^{-2}$. The measurements are complemented by TCAD simulations and interpretations of the observed effects.

  7. Development of a hybrid earthquake early warning system based on single sensor technique

    International Nuclear Information System (INIS)

    Gravirov, V.V.; Kislov, K.V.

    2012-01-01

    There are two methods to earthquake early warning system: the method based on a network of seismic stations and the single-sensor method. Both have advantages and drawbacks. The current systems rely on high density seismic networks. Attempts at implementing techniques based on the single-station principle encounter difficulties in the identification of earthquake in noise. The noise may be very diverse, from stationary to impulsive. It seems a promising line of research to develop hybrid warning systems with single-sensors being incorporated in the overall early warning network. This will permit using all advantages and will help reduce the radius of the hazardous zone where no earthquake warning can be produced. The main problems are highlighted and the solutions of these are discussed. The system is implemented to include three detection processes in parallel. The first is based on the study of the co-occurrence matrix of the signal wavelet transform. The second consists in using the method of a change point in a random process and signal detection in a moving time window. The third uses artificial neural networks. Further, applying a decision rule out the final earthquake detection is carried out and estimate its reliability. (author)

  8. Portable, Low-cost NMR with Laser-Lathe Lithography Produced

    Energy Technology Data Exchange (ETDEWEB)

    Herberg, J L; Demas, V; Malba, V; Bernhardt, A; Evans, L; Harvey, C; Chinn, S; Maxwell, R; Reimer, J; Pines, A

    2006-12-21

    Nuclear Magnetic Resonance (NMR) is unsurpassed in its ability to non-destructively probe chemical identity. Portable, low-cost NMR sensors would enable on-site identification of potentially hazardous substances, as well as the study of samples in a variety of industrial applications. Recent developments in RF microcoil construction (i.e. coils much smaller than the standard 5 mm NMR RF coils), have dramatically increased NMR sensitivity and decreased the limits-of-detection (LOD). We are using advances in laser pantographic microfabrication techniques, unique to LLNL, to produce RF microcoils for field deployable, high sensitivity NMR-based detectors. This same fabrication technique can be used to produce imaging coils for MRI as well as for standard hardware shimming or 'ex-situ' shimming of field inhomogeneities typically associated with inexpensive magnets. This paper describes a portable NMR system based on a laser-fabricated microcoil and homebuilt probe design. For testing this probe, we used a hand-held 2 kg Halbach magnet that can fit into the palm of a hand, and an RF probe with laser-fabricated microcoils. The focus of the paper is on the evaluation of the microcoils, RF probe, and first generation gradient coils. The setup of this system, initial results, sensitivity measurements, and future plans are discussed. The results, even though preliminary, are promising and provide the foundation for developing a portable, inexpensive NMR system for chemical analysis. Such a system will be ideal for chemical identification of trace substances on site.

  9. Developments in Emission Measurements Using Lightweight Sensors and Samplers.

    Science.gov (United States)

    Lightweight emission measurement systems making use of miniaturized sensors and samplers have been developed for portable and aerial sampling for an array of pollutants. Shoebox-sized systems called “Kolibri”, weighing 3-5 kg, have been deployed on NASA-flown unmanned...

  10. Portable retinal imaging for eye disease screening using a consumer-grade digital camera

    Science.gov (United States)

    Barriga, Simon; Larichev, Andrey; Zamora, Gilberto; Soliz, Peter

    2012-03-01

    The development of affordable means to image the retina is an important step toward the implementation of eye disease screening programs. In this paper we present the i-RxCam, a low-cost, hand-held, retinal camera for widespread applications such as tele-retinal screening for eye diseases like diabetic retinopathy (DR), glaucoma, and age-related ocular diseases. Existing portable retinal imagers do not meet the requirements of a low-cost camera with sufficient technical capabilities (field of view, image quality, portability, battery power, and ease-of-use) to be distributed widely to low volume clinics, such as the offices of single primary care physicians serving rural communities. The i-RxCam uses a Nikon D3100 digital camera body. The camera has a CMOS sensor with 14.8 million pixels. We use a 50mm focal lens that gives a retinal field of view of 45 degrees. The internal autofocus can compensate for about 2D (diopters) of focusing error. The light source is an LED produced by Philips with a linear emitting area that is transformed using a light pipe to the optimal shape at the eye pupil, an annulus. To eliminate corneal reflex we use a polarization technique in which the light passes through a nano-wire polarizer plate. This is a novel type of polarizer featuring high polarization separation (contrast ratio of more than 1000) and very large acceptance angle (>45 degrees). The i-RxCam approach will yield a significantly more economical retinal imaging device that would allow mass screening of the at-risk population.

  11. Diode-side-pumped 131 W, 1319 nm single-wavelength cw Nd:YAG laser.

    Science.gov (United States)

    Haiyong, Zhu; Ge, Zhang; Chenghui, Huang; Yong, Wei; Lingxiong, Huang; Jing, Chen; Weidong, Chen; Zhenqiang, Chen

    2007-01-20

    A diode-side-pumped high-power 1319 nm single-wavelength Nd:YAG continuous wave (cw) laser is described. Through reasonable coating design of the cavity mirrors, the 1064 nm strongest line as well as the 1338 nm one have been successfully suppressed. The laser output powers corresponding to four groups of different output couplers operating at 1319 nm single wavelength have been compared. The output coupler with the transmission T=5.3% has the highest output power, and a 131 W cw output power was achieved at the pumping power of 555 W. The optical-optical conversion efficiency is 23.6%, and the slope efficiency is 46%. The output power is higher than the total output power of the dual-wavelength laser operating at 1319 nm and 1338 nm in the experiment.

  12. Double-Sided Single-Pass Submerged Arc Welding for 2205 Duplex Stainless Steel

    Science.gov (United States)

    Luo, Jian; Yuan, Yi; Wang, Xiaoming; Yao, Zongxiang

    2013-09-01

    The duplex stainless steel (DSS), which combines the characteristics of ferritic steel and austenitic steel, is used widely. The submerged arc welding (SAW) method is usually applied to join thick plates of DSS. However, an effective welding procedure is needed in order to obtain ideal DSS welds with an appropriate proportion of ferrite (δ) and austenite (γ) in the weld zone, particularly in the melted zone and heat-affected zone. This study evaluated the effectiveness of a high efficiency double-sided single-pass (DSSP) SAW joining method for thick DSS plates. The effectiveness of the converse welding procedure, characterizations of weld zone, and mechanical properties of welded joint are analyzed. The results show an increasing appearance and continuous distribution feature of the σ phase in the fusion zone of the leading welded seam. The converse welding procedure promotes the σ phase to precipitate in the fusion zone of leading welded side. The microhardness appears to significantly increase in the center of leading welded side. Ductile fracture mode is observed in the weld zone. A mixture fracture feature appears with a shear lip and tears in the fusion zone near the fusion line. The ductility, plasticity, and microhardness of the joints have a significant relationship with σ phase and heat treatment effect influenced by the converse welding step. An available heat input controlling technology of the DSSP formation method is discussed for SAW of thick DSS plates.

  13. Iloprost infusion by a new device as a portable syringe pump: safety, tolerability and agreement

    Directory of Open Access Journals (Sweden)

    Paola Faggioli

    2012-12-01

    Full Text Available Background Iloprost, prostacyclin (PGI2 analogue, effective in treatment of peripheral arterial disease, secondary Raynaud's phenomenon (RP to connective tissue disease (CTD, vasculitis, pulmonary hypertension, is usually infused through peristaltic pump, or recently through a flow regulator.Materials and methods We tested a new portable syringe pump (Pompa Infonde®, Italfarmaco S.p.A., Cinisello Balsamo, Milano on 120 patients affected by RP to CTD and cryoglobulinaemia, in iloprost therapy with a flow regulator.Results Iloprost infused through portable syringe pump is better tolerated, better appreciated by the patients and nurses and no difference was observed on therapeutic effects, with a lower incidence of side effects statistically significant. Only 3 patients were unable to tolerate the device (2 for changes in pressure and 1 for fear and shifted to traditional method of iloprost infusion.Conclusions Iloprost infusion through the portable syringe Pompa Infonde® appears to be safe, better tolerated, more acceptable and equally effective compared to infusion through a flow regulator.

  14. [An optical-fiber-sensor-based spectrophotometer for soil non-metallic nutrient determination].

    Science.gov (United States)

    He, Dong-xian; Hu, Juan-xiu; Lu, Shao-kun; He, Hou-yong

    2012-01-01

    In order to achieve rapid, convenient and efficient soil nutrient determination in soil testing and fertilizer recommendation, a portable optical-fiber-sensor-based spectrophotometer including immersed fiber sensor, flat field holographic concave grating, and diode array detector was developed for soil non-metallic nutrient determination. According to national standard of ultraviolet and visible spectrophotometer with JJG 178-2007, the wavelength accuracy and repeatability, baseline stability, transmittance accuracy and repeatability measured by the prototype instrument were satisfied with the national standard of III level; minimum spectral bandwidth, noise and excursion, and stray light were satisfied with the national standard of IV level. Significant linear relationships with slope of closing to 1 were found between the soil available nutrient contents including soil nitrate nitrogen, ammonia nitrogen, available phosphorus, available sulfur, available boron, and organic matter measured by the prototype instrument compared with that measured by two commercial single-beam-based and dual-beam-based spectrophotometers. No significant differences were revealed from the above comparison data. Therefore, the optical-fiber-sensor-based spectrophotometer can be used for rapid soil non-metallic nutrient determination with a high accuracy.

  15. Airborne Sensor Thermal Management Solution

    Energy Technology Data Exchange (ETDEWEB)

    Ng, K. K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-06-03

    The customer wants to outfit aircraft (de Havilland Twin Otter) with optical sensors. In previous product generations the sensor line-of-sight direction was fixed – the sensor’s direction relied on the orientation of the aircraft. The next generation sensor will be packaged in a rotatable turret so that the line-of-sight is reasonably independent of the aircraft’s orientation. This turret will be mounted on a boom protruding from the side of the aircraft. The customer wants to outfit aircraft (de Havilland Twin Otter) with optical sensors. In previous product generations the sensor line-of-sight direction was fixed – the sensor’s direction relied on the orientation of the aircraft. The next generation sensor will be packaged in a rotatable turret so that the line-of-sight is reasonably independent of the aircraft’s orientation. This turret will be mounted on a boom protruding from the side of the aircraft.

  16. A distributed network of low-cost continuous reading sensors to measure spatiotemporal variations of PM2.5 in Xi'an, China

    International Nuclear Information System (INIS)

    Gao, Meiling; Cao, Junji; Seto, Edmund

    2015-01-01

    Fine particulate matter (PM2.5) is a growing public health concern especially in industrializing countries but existing monitoring networks are unable to properly characterize human exposures due to low resolution spatiotemporal data. Low-cost portable monitors can supplement existing networks in both developed and industrializing regions to increase density of sites and data. This study tests the performance of a low-cost sensor in high concentration urban environments. Seven Portable University of Washington Particle (PUWP) monitors were calibrated with optical and gravimetric PM2.5 reference monitors in Xi'an, China in December 2013. Pairwise correlations between the raw PUWP and the reference monitors were high (R 2  = 0.86–0.89). PUWP monitors were also simultaneously deployed at eight sites across Xi'an alongside gravimetric PM2.5 monitors (R 2  = 0.53). The PUWP monitors were able to identify the High-technology Zone site as a potential PM2.5 hotspot with sustained high concentrations compared to the city average throughout the day. - Highlights: • A $15 portable PM sensor demonstrated high correlations with reference monitors. • The sensor can be deployed in high PM2.5 urban environments. • The sensor can improve spatiotemporal resolution of data from existing monitoring networks. - This reliable low-cost portable PM sensor could help improve monitoring and management of urban air pollution to help protect public health in both developed and developing areas

  17. Imprinted propyl gallate electrochemical sensor based on graphene/single walled carbon nanotubes/sol-gel film.

    Science.gov (United States)

    Xu, Guilin; Chi, Yu; Li, Lu; Liu, Shouhua; Kan, Xianwen

    2015-06-15

    A novel imprinted sol-gel electrochemical sensor for the determination of propyl gallate (PG) was developed based on a composite of graphene and single walled carbon nanotubes (GR-SWCNTs). It was fabricated by stepwise modifying GR-SWCNTs and molecularly imprinted polymers and stored in 0.10 mol L(-1) phosphate buffer solution pH 6.0, which endowed the sensor good sensitivity and selective recognition towards template molecules. The morphology and specific adsorption capacity of the sensor was characterized by scanning electron microscope and electrochemical methods, respectively. Under the optimized conditions, a linear range of the sensor to PG was 8.0 × 10(-8)-2.6 × 10(-3)mo lL(-1) with a limit of detection of 5.0 × 10(-8)mol L(-1) (S/N=3). The sensor exhibited specificity and selectivity towards template molecules as well as excellent reproducibility, regeneration and stability. Furthermore, the sensor could be applied to determine PG in edible oils, instant noodles and cookies with satisfactory results. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. A portable liquid crystal-based polarized light system for the detection of organophosphorus nerve gas

    Science.gov (United States)

    He, Feng Jie; Liu, Hui Long; Chen, Long Cong; Xiong, Xing Liang

    2018-03-01

    Liquid crystal (LC)-based sensors have the advantageous properties of being fast, sensitive, and label-free, the results of which can be accessed directly only through the naked eye. However, the inherent disadvantages possessed by LC sensors, such as relying heavily on polarizing microscopes and the difficulty to quantify, have limited the possibility of field applications. Herein, we have addressed these issues by constructing a portable polarized detection system with constant temperature control. This system is mainly composed of four parts: the LC cell, the optics unit, the automatic temperature control unit, and the image processing unit. The LC cell was based on the ordering transitions of LCs in the presence of analytes. The optics unit based on the imaging principle of LCs was designed to substitute the polarizing microscope for the real-time observation. The image processing unit is expected to quantify the concentration of analytes. The results have shown that the presented system can detect dimethyl methyl phosphonate (a stimulant for organophosphorus nerve gas) within 25 s, and the limit of detection is about 10 ppb. In all, our portable system has potential in field applications.

  19. Detailed studies of full-size ATLAS12 sensors

    Science.gov (United States)

    Hommels, L. B. A.; Allport, P. P.; Baca, M.; Broughton, J.; Chisholm, A.; Nikolopoulos, K.; Pyatt, S.; Thomas, J. P.; Wilson, J. A.; Kierstead, J.; Kuczewski, P.; Lynn, D.; Arratia, M.; Klein, C. T.; Ullan, M.; Fleta, C.; Fernandez-Tejero, J.; Bloch, I.; Gregor, I. M.; Lohwasser, K.; Poley, L.; Tackmann, K.; Trofimov, A.; Yildirim, E.; Hauser, M.; Jakobs, K.; Kuehn, S.; Mahboubi, K.; Mori, R.; Parzefall, U.; Clark, A.; Ferrere, D.; Gonzalez Sevilla, S.; Ashby, J.; Blue, A.; Bates, R.; Buttar, C.; Doherty, F.; McMullen, T.; McEwan, F.; O`Shea, V.; Kamada, S.; Yamamura, K.; Ikegami, Y.; Nakamura, K.; Takubo, Y.; Unno, Y.; Takashima, R.; Chilingarov, A.; Fox, H.; Affolder, A. A.; Casse, G.; Dervan, P.; Forshaw, D.; Greenall, A.; Wonsak, S.; Wormald, M.; Cindro, V.; Kramberger, G.; Mandić, I.; Mikuž, M.; Gorelov, I.; Hoeferkamp, M.; Palni, P.; Seidel, S.; Taylor, A.; Toms, K.; Wang, R.; Hessey, N. P.; Valencic, N.; Hanagaki, K.; Dolezal, Z.; Kodys, P.; Bohm, J.; Stastny, J.; Mikestikova, M.; Bevan, A.; Beck, G.; Milke, C.; Domingo, M.; Fadeyev, V.; Galloway, Z.; Hibbard-Lubow, D.; Liang, Z.; Sadrozinski, H. F.-W.; Seiden, A.; To, K.; French, R.; Hodgson, P.; Marin-Reyes, H.; Parker, K.; Jinnouchi, O.; Hara, K.; Sato, K.; Sato, K.; Hagihara, M.; Iwabuchi, S.; Bernabeu, J.; Civera, J. V.; Garcia, C.; Lacasta, C.; Marti i Garcia, S.; Rodriguez, D.; Santoyo, D.; Solaz, C.; Soldevila, U.

    2016-09-01

    The "ATLAS ITk Strip Sensor Collaboration" R&D group has developed a second iteration of single-sided n+-in-p type micro-strip sensors for use in the tracker upgrade of the ATLAS experiment at the High-Luminosity (HL) LHC. The full size sensors measure approximately 97 × 97mm2 and are designed for tolerance against the 1.1 ×1015neq /cm2 fluence expected at the HL-LHC. Each sensor has 4 columns of 1280 individual 23.9 mm long channels, arranged at 74.5 μm pitch. Four batches comprising 120 sensors produced by Hamamatsu Photonics were evaluated for their mechanical, and electrical bulk and strip characteristics. Optical microscopy measurements were performed to obtain the sensor surface profile. Leakage current and bulk capacitance properties were measured for each individual sensor. For sample strips across the sensor batches, the inter-strip capacitance and resistance as well as properties of the punch-through protection structure were measured. A multi-channel probecard was used to measure leakage current, coupling capacitance and bias resistance for each individual channel of 100 sensors in three batches. The compiled results for 120 unirradiated sensors are presented in this paper, including summary results for almost 500,000 strips probed. Results on the reverse bias voltage dependence of various parameters and frequency dependence of tested capacitances are included for validation of the experimental methods used. Comparing results with specified values, almost all sensors fall well within specification.

  20. Ultra-sensitive quasi-distributed temperature sensor based on an apodized fiber Bragg grating.

    Science.gov (United States)

    Mohammed, Nazmi A; El Serafy, Hatem O

    2018-01-10

    This work targets a remarkable quasi-distributed temperature sensor based on an apodized fiber Bragg grating. To achieve this, the mathematical formula for a proposed apodization function is carried out and tested. Then, an optimization parametric process required to achieve the remarkable accuracy that is based on coupled mode theory (CMT) is done. A detailed investigation for the side lobe analysis, which is a primary judgment factor, especially in quasi-distributed configuration, is investigated. A comparison between elite selection of apodization profiles (extracted from related literatures) and the proposed modified-Nuttal profile is carried out covering reflectivity peak, full width half maximum (FWHM), and side lobe analysis. The optimization process concludes that the proposed modified-Nuttal profile with a length (L) of 15 mm and refractive index modulation amplitude (Δn) of 1.4×10 -4 is the optimum choice for single-stage and quasi-distributed temperature sensor networks. At previous values, the proposed profile achieves an acceptable reflectivity peak of 10 -0.426   dB, acceptable FWHM of 0.0808 nm, lowest side lobe maximum (SL max) of 7.037×10 -12   dB, lowest side lobe average (SL avg) of 3.883×10 -12   dB, and lowest side lobe suppression ratio (SLSR) of 1.875×10 -11   dB. These optimized characteristics lead to an accurate single-stage sensor with a temperature sensitivity of 0.0136 nm/°C. For the quasi-distributed scenario, a noteworthy total isolation of 91 dB is achieved without temperature, and an isolation of 4.83 dB is achieved while applying temperature of 110°C for a five-stage temperature-sensing network. Further investigation is made proving that consistency in choosing the apodization profile in the quasi-distributed network is mandatory. If the consistency condition is violated, the proposed profile still survives with a casualty of side lobe level rise of -73.2070  dB when adding uniform apodization and

  1. Field applications of the ScoutTM portable MCA

    International Nuclear Information System (INIS)

    Cheng, A.Y.; Ziemba, F.P.; Browning, J.E.

    1998-01-01

    The use of Quantrad Sensor's Scout TM in field type applications is described. The portability of the Scout TM enables the user to obtain more accurate information in the field versus a survey meter. Isotopic identification is possible when ancillary information is combined with built-in software libraries. Data from the Scout TM in remediation at Stanford Linear Accelerator (SLAC), NORM (Naturally Occurring Radioactive Material) measurements in California's Central Valley oil fields, medical isotope identification at nuclear pharmaceutical company and emergency response applications are presented. Additionally, custom software enabled the use of the Scout TM in identification, qualification and detection of Special Nuclear Materials (SNM) in illicit trafficking and portal monitoring applications. (author)

  2. Ultra-Portable Smartphone Controlled Integrated Digital Microfluidic System in a 3D-Printed Modular Assembly

    OpenAIRE

    Yafia, Mohamed; Ahmadi, Ali; Hoorfar, Mina; Najjaran, Homayoun

    2015-01-01

    Portable sensors and biomedical devices are influenced by the recent advances in microfluidics technologies, compact fabrication techniques, improved detection limits and enhanced analysis capabilities. This paper reports the development of an integrated ultraportable, low-cost, and modular digital microfluidic (DMF) system and its successful integration with a smartphone used as a high-level controller and post processing station. Low power and cost effective electronic circuits are designed...

  3. A Low-Cost and Portable Dual-Channel Fiber Optic Surface Plasmon Resonance System.

    Science.gov (United States)

    Liu, Qiang; Liu, Yun; Chen, Shimeng; Wang, Fang; Peng, Wei

    2017-12-04

    A miniaturization and integration dual-channel fiber optic surface plasmon resonance (SPR) system was proposed and demonstrated in this paper. We used a yellow light-emitting diode (LED, peak wavelength 595 nm) and built-in web camera as a light source and detector, respectively. Except for the detection channel, one of the sensors was used as a reference channel to compensate nonspecific binding and physical absorption. We packaged the LED and surface plasmon resonance (SPR) sensors together, which are flexible enough to be applied to mobile devices as a compact and portable system. Experimental results show that the normalized intensity shift and refractive index (RI) of the sample have a good linear relationship in the RI range from 1.328 to 1.348. We used this sensor to monitor the reversible, specific interaction between lectin concanavalin A (Con A) and glycoprotein ribonuclease B (RNase B), which demonstrate its capabilities of specific identification and biochemical samples concentration detection. This sensor system has potential applications in various fields, such as medical diagnosis, public health, food safety, and environment monitoring.

  4. A Single-Transistor Active Pixel CMOS Image Sensor Architecture

    International Nuclear Information System (INIS)

    Zhang Guo-An; He Jin; Zhang Dong-Wei; Su Yan-Mei; Wang Cheng; Chen Qin; Liang Hai-Lang; Ye Yun

    2012-01-01

    A single-transistor CMOS active pixel image sensor (1 T CMOS APS) architecture is proposed. By switching the photosensing pinned diode, resetting and selecting can be achieved by diode pull-up and capacitive coupling pull-down of the source follower. Thus, the reset and selected transistors can be removed. In addition, the reset and selected signal lines can be shared to reduce the metal signal line, leading to a very high fill factor. The pixel design and operation principles are discussed in detail. The functionality of the proposed 1T CMOS APS architecture has been experimentally verified using a fabricated chip in a standard 0.35 μm CMOS AMIS technology

  5. A Self-Reconstructing Algorithm for Single and Multiple-Sensor Fault Isolation Based on Auto-Associative Neural Networks

    Directory of Open Access Journals (Sweden)

    Hamidreza Mousavi

    2017-01-01

    Full Text Available Recently different approaches have been developed in the field of sensor fault diagnostics based on Auto-Associative Neural Network (AANN. In this paper we present a novel algorithm called Self reconstructing Auto-Associative Neural Network (S-AANN which is able to detect and isolate single faulty sensor via reconstruction. We have also extended the algorithm to be applicable in multiple fault conditions. The algorithm uses a calibration model based on AANN. AANN can reconstruct the faulty sensor using non-faulty sensors due to correlation between the process variables, and mean of the difference between reconstructed and original data determines which sensors are faulty. The algorithms are tested on a Dimerization process. The simulation results show that the S-AANN can isolate multiple faulty sensors with low computational time that make the algorithm appropriate candidate for online applications.

  6. Polymer based amperometric hydrogen sensor

    International Nuclear Information System (INIS)

    Ramesh, C.; Periaswami, G.; Mathews, C.K.; Shankar, P.

    1993-01-01

    A polymer based amperometric hydrogen sensor has been developed for measuring hydrogen in argon. Polyvinyl alcohol-phosphoric acid serves as the solid electrolyte for proton conduction. The electrolyte is sandwiched between two palladium films. Short circuit current between the film at room temperature is measured and is found to be linearly dependant on hydrogen concentration in argon to which one side of the film is exposed. The other side is exposed to air. The response time of the sensor is found to be improved on application of a D.C. potential of 200 mV in series. The sensitivity of the sensor is in ppm range. This may be sufficient for monitoring cover gas hydrogen in FBTR. Work is underway to improve the long-term stability of the sensor. (author)

  7. A Novel Portable Absolute Transient Hot-Wire Instrument for the Measurement of the Thermal Conductivity of Solids

    Science.gov (United States)

    Assael, Marc J.; Antoniadis, Konstantinos D.; Metaxa, Ifigeneia N.; Mylona, Sofia K.; Assael, John-Alexander M.; Wu, Jiangtao; Hu, Miaomiao

    2015-11-01

    A new portable absolute Transient Hot-Wire instrument for measuring the thermal conductivity of solids over a range of 0.2 { W}{\\cdot }m^{-1}{\\cdot }{K}^{-1} to 4 { W}{\\cdot }m^{-1}{\\cdot }{K}^{-1} is presented. The new instrument is characterized by three novelties: (a) an innovative two-wires sensor which provides robustness and portability, while at the same time employs a soft silicone layer to eliminate the effect of the contact resistance between the wires and the sample, (b) a newly designed compact portable printed electronic board employing an FPGA architecture CPU to the control output voltage and data processing—the new board replaces the traditional, large in size Wheatstone-type bridge system required to perform the experimental measurements, and (c) a cutting-edge software suite, developed for the mesh describing the structure of the sensor, and utilizing the Finite Elements Method to model the heat flow. The estimation of thermal conductivity is modeled as a minimization problem and is solved using Bayesian Optimization. Our revolutionizing proposed methodology exhibits radical speedups of up to × 120, compared to previous approaches, and considerably reduces the number of simulations performed, achieving convergence only in a few minutes. The new instrument was successfully employed to measure, at room temperature, the thermal conductivity of two thermal conductivity reference materials, Pyroceram 9606 and Pyrex 7740, and two possible candidate glassy solids, PMMA and BK7, with an absolute low uncertainty of 2 %.

  8. A Raman-Based Portable Fuel Analyzer

    Science.gov (United States)

    Farquharson, Stuart

    2010-08-01

    Fuel is the single most import supply during war. Consider that the US Military is employing over 25,000 vehicles in Iraq and Afghanistan. Most fuel is obtained locally, and must be characterized to ensure proper operation of these vehicles. Fuel properties are currently determined using a deployed chemical laboratory. Unfortunately, each sample requires in excess of 6 hours to characterize. To overcome this limitation, we have developed a portable fuel analyzer capable of determine 7 fuel properties that allow determining fuel usage. The analyzer uses Raman spectroscopy to measure the fuel samples without preparation in 2 minutes. The challenge, however, is that as distilled fractions of crude oil, all fuels are composed of hundreds of hydrocarbon components that boil at similar temperatures, and performance properties can not be simply correlated to a single component, and certainly not to specific Raman peaks. To meet this challenge, we measured over 800 diesel and jet fuels from around the world and used chemometrics to correlate the Raman spectra to fuel properties. Critical to the success of this approach is laser excitation at 1064 nm to avoid fluorescence interference (many fuels fluoresce) and a rugged interferometer that provides 0.1 cm-1 wavenumber (x-axis) accuracy to guarantee accurate correlations. Here we describe the portable fuel analyzer, the chemometric models, and the successful determination of these 7 fuel properties for over 100 unknown samples provided by the US Marine Corps, US Navy, and US Army.

  9. Electrical trapping mechanism of single-microparticles in a pore sensor

    Directory of Open Access Journals (Sweden)

    Akihide Arima

    2016-11-01

    Full Text Available Nanopore sensing via resistive pulse technique are utilized as a potent tool to characterize physical and chemical property of single –molecules and –particles. In this article, we studied the influence of particle trajectory to the ionic conductance through a pore. We performed the optical/electrical simultaneous sensing of electrophoretic capture dynamics of single-particles at a pore using a microchannel/nanopore system. We detected ionic current drops synchronous to a fluorescently dyed particle being electrophoretically drawn and become immobilized at a pore in the optical imaging. We also identified anomalous trapping events wherein particles were captured at nanoscale pin-holes formed unintentionally in a SiN membrane that gave rise to relatively small current drops. This method is expected to be a useful platform for testing novel nanopore sensor design wherein current behaves in unpredictable manner.

  10. Workflow-Oriented Cyberinfrastructure for Sensor Data Analytics

    Science.gov (United States)

    Orcutt, J. A.; Rajasekar, A.; Moore, R. W.; Vernon, F.

    2015-12-01

    Sensor streams comprise an increasingly large part of Earth Science data. Analytics based on sensor data require an easy way to perform operations such as acquisition, conversion to physical units, metadata linking, sensor fusion, analysis and visualization on distributed sensor streams. Furthermore, embedding real-time sensor data into scientific workflows is of growing interest. We have implemented a scalable networked architecture that can be used to dynamically access packets of data in a stream from multiple sensors, and perform synthesis and analysis across a distributed network. Our system is based on the integrated Rule Oriented Data System (irods.org), which accesses sensor data from the Antelope Real Time Data System (brtt.com), and provides virtualized access to collections of data streams. We integrate real-time data streaming from different sources, collected for different purposes, on different time and spatial scales, and sensed by different methods. iRODS, noted for its policy-oriented data management, brings to sensor processing features and facilities such as single sign-on, third party access control lists ( ACLs), location transparency, logical resource naming, and server-side modeling capabilities while reducing the burden on sensor network operators. Rich integrated metadata support also makes it straightforward to discover data streams of interest and maintain data provenance. The workflow support in iRODS readily integrates sensor processing into any analytical pipeline. The system is developed as part of the NSF-funded Datanet Federation Consortium (datafed.org). APIs for selecting, opening, reaping and closing sensor streams are provided, along with other helper functions to associate metadata and convert sensor packets into NetCDF and JSON formats. Near real-time sensor data including seismic sensors, environmental sensors, LIDAR and video streams are available through this interface. A system for archiving sensor data and metadata in Net

  11. Portable Instrumented Communication Library

    International Nuclear Information System (INIS)

    Geist, G.A.; Heath, M.T.; Peyton, B.W.; Worley, P.H.

    2001-01-01

    1 - Description of program or function: PICL is a subroutine library that can be used to develop parallel programs that are portable across several distributed-memory multi-processors. PICL provides a portable syntax for key communication primitives and related system calls. It also provides portable routines to perform certain widely- used, high-level communication operations, such as global broadcast and global summation. PICL provides execution tracing that can be used to monitor performance or to aid in debugging. 2 - Restrictions on the complexity of the problem: PICL is a compatibility library built on top of the native multiprocessor operating system and message passing primitives. Thus, the portability of PICL programs is not guaranteed, being a function of idiosyncrasies of the different platforms. Predictable differences are captured with standard error trapping routines. PICL is a research tool, not a production software system

  12. First bulk and surface results for the ATLAS ITk stereo annulus sensors

    CERN Document Server

    Abidi, Syed Haider; The ATLAS collaboration; Bohm, Jan; Botte, James Michael; Ciungu, Bianca; Dette, Karola; Dolezal, Zdenek; Escobar, Carlos; Fadeyev, Vitaliy; Fernandez-Tejero, Xavi; Garcia-Argos, Carlos; Gillberg, Dag; Hara, Kazuhiko; Hunter, Robert Francis Holub

    2018-01-01

    A novel microstrip sensor geometry, the “stereo annulus”, has been developed for use in the end-cap of the ATLAS experiment’s strip tracker upgrade at the High-Luminosity Large Hadron Collider (HL- LHC). The radiation-hard, single-sided, ac-coupled, n + -in-p microstrip sensors are designed by the ITk Strip Sensor Collaboration and produced by Hamamatsu Photonics. The stereo annulus design has the potential to revolutionize the layout of end-cap microstrip trackers promising better tracking performance and more complete coverage than the contemporary configurations. These advantages are achieved by the union of equal length, radially oriented strips with a small stereo angle implemented directly into the sensor surface. The first-ever results for the stereo annulus geometry have been collected across several sites world- wide and are presented here. A number of full-size, unirradiated sensors were evaluated for their mechanical, bulk, and surface properties. The new device, the ATLAS12EC, is compared ag...

  13. Development and Application of a Portable Health Algorithms Test System

    Science.gov (United States)

    Melcher, Kevin J.; Fulton, Christopher E.; Maul, William A.; Sowers, T. Shane

    2007-01-01

    This paper describes the development and initial demonstration of a Portable Health Algorithms Test (PHALT) System that is being developed by researchers at the NASA Glenn Research Center (GRC). The PHALT System was conceived as a means of evolving the maturity and credibility of algorithms developed to assess the health of aerospace systems. Comprising an integrated hardware-software environment, the PHALT System allows systems health management algorithms to be developed in a graphical programming environment; to be tested and refined using system simulation or test data playback; and finally, to be evaluated in a real-time hardware-in-the-loop mode with a live test article. In this paper, PHALT System development is described through the presentation of a functional architecture, followed by the selection and integration of hardware and software. Also described is an initial real-time hardware-in-the-loop demonstration that used sensor data qualification algorithms to diagnose and isolate simulated sensor failures in a prototype Power Distribution Unit test-bed. Success of the initial demonstration is highlighted by the correct detection of all sensor failures and the absence of any real-time constraint violations.

  14. Single Side Electrolytic In-Process Dressing (ELID) Grinding with Lapping Kinematics of Silicon Carbide

    Science.gov (United States)

    Khoshaim, Ahmed Bakr

    The demand for Silicon Carbide ceramics (SiC) has increased significantly in the last decade due to its reliable physical and chemical properties. The silicon carbide is widely used for aerospace segments in addition to many uses in the industry. Sometimes, a single side grinding is preferable than conventional grinding, for it has the ability to produce flat ceramics. However, the manufacturing cost is still high because of the high tool wear and long machining time. Part of the solution is to use electrolytic in process dressing (ELID) to reduce the processing time. The study on ELID single side grinding of ceramics has never been attempted before. The study involves four variables with three levels each. One of the variables, which is the eccentricity, is being investigated for the first time on ceramics. A full factorial design, for both the surface roughness and material removal rate, guides to calculate mathematical models that can predict future results. Three grinding wheel mesh sizes are used. An investigation of the influence of different grain size on the results can then be evaluated. The kinematics of the process was studied based on eccentricity in order to optimize the pattern of the diamond grains. The experiment is performed with the assist of the proposed specialized ELID fluid, TRIM C270E.

  15. A Terrestrial Microbial Fuel Cell for Powering a Single-Hop Wireless Sensor Network.

    Science.gov (United States)

    Zhang, Daxing; Zhu, Yingmin; Pedrycz, Witold; Guo, Yongxian

    2016-05-18

    Microbial fuel cells (MFCs) are envisioned as one of the most promising alternative renewable energy sources because they can generate electric current continuously while treating waste. Terrestrial Microbial Fuel Cells (TMFCs) can be inoculated and work on the use of soil, which further extends the application areas of MFCs. Energy supply, as a primary influential factor determining the lifetime of Wireless Sensor Network (WSN) nodes, remains an open challenge in sensor networks. In theory, sensor nodes powered by MFCs have an eternal life. However, low power density and high internal resistance of MFCs are two pronounced problems in their operation. A single-hop WSN powered by a TMFC experimental setup was designed and experimented with. Power generation performance of the proposed TMFC, the relationships between the performance of the power generation and the environment temperature, the water content of the soil by weight were measured by experiments. Results show that the TMFC can achieve good power generation performance under special environmental conditions. Furthermore, the experiments with sensor data acquisition and wireless transmission of the TMFC powering WSN were carried out. We demonstrate that the obtained experimental results validate the feasibility of TMFCs powering WSNs.

  16. A Terrestrial Microbial Fuel Cell for Powering a Single-Hop Wireless Sensor Network

    Science.gov (United States)

    Zhang, Daxing; Zhu, Yingmin; Pedrycz, Witold; Guo, Yongxian

    2016-01-01

    Microbial fuel cells (MFCs) are envisioned as one of the most promising alternative renewable energy sources because they can generate electric current continuously while treating waste. Terrestrial Microbial Fuel Cells (TMFCs) can be inoculated and work on the use of soil, which further extends the application areas of MFCs. Energy supply, as a primary influential factor determining the lifetime of Wireless Sensor Network (WSN) nodes, remains an open challenge in sensor networks. In theory, sensor nodes powered by MFCs have an eternal life. However, low power density and high internal resistance of MFCs are two pronounced problems in their operation. A single-hop WSN powered by a TMFC experimental setup was designed and experimented with. Power generation performance of the proposed TMFC, the relationships between the performance of the power generation and the environment temperature, the water content of the soil by weight were measured by experiments. Results show that the TMFC can achieve good power generation performance under special environmental conditions. Furthermore, the experiments with sensor data acquisition and wireless transmission of the TMFC powering WSN were carried out. We demonstrate that the obtained experimental results validate the feasibility of TMFCs powering WSNs. PMID:27213346

  17. Research and development of a versatile portable speech prosthesis

    Science.gov (United States)

    1981-01-01

    The Versatile Portable Speech Prosthesis (VPSP), a synthetic speech output communication aid for non-speaking people is described. It was intended initially for severely physically limited people with cerebral palsy who are in electric wheelchairs. Hence, it was designed to be placed on a wheelchair and powered from a wheelchair battery. It can easily be separated from the wheelchair. The VPSP is versatile because it is designed to accept any means of single switch, multiple switch, or keyboard control which physically limited people have the ability to use. It is portable because it is mounted on and can go with the electric wheelchair. It is a speech prosthesis, obviously, because it speaks with a synthetic voice for people unable to speak with their own voices. Both hardware and software are described.

  18. [Advances of portable electrocardiogram monitor design].

    Science.gov (United States)

    Ding, Shenping; Wang, Yinghai; Wu, Weirong; Deng, Lingli; Lu, Jidong

    2014-06-01

    Portable electrocardiogram monitor is an important equipment in the clinical diagnosis of cardiovascular diseases due to its portable, real-time features. It has a broad application and development prospects in China. In the present review, previous researches on the portable electrocardiogram monitors have been arranged, analyzed and summarized. According to the characteristics of the electrocardiogram (ECG), this paper discusses the ergonomic design of the portable electrocardiogram monitor, including hardware and software. The circuit components and software modules were parsed from the ECG features and system functions. Finally, the development trend and reference are provided for the portable electrocardiogram monitors and for the subsequent research and product design.

  19. Prototype Pompa Air Portable Tenaga Surya

    OpenAIRE

    Taufik, Mohammad

    2016-01-01

    Makalah ini menyajikan purwarupa pompa air portable tenaga surya. Sistem pompa air portable terdiri atas pompa air, panel surya, solar charge controller, battery, solar frame, tiang, dan box. Sistem dapat dirangkai, sehingga bersifat portable. Pompa air portable ini berguna untuk kolam, irigasi, dan penyediaan air bersih. Hasil optimasi memberikan spesifikasi pompa air berdaya 50 Watt dan tegangan 12 VDC, solar panel berdaya 50 Wp, battery berkapasitas 50 Ah dan tegangan 12 VDC, da...

  20. Fabrication of advanced military radiation detector sensor and performance evaluation

    International Nuclear Information System (INIS)

    Kang, Sin Yang

    2010-02-01

    Recently, our country is facing a continuous nuclear weapons threat. Therefore, we must have a high-level nuclear weapons protection system. The best protection against nuclear weapons is detecting their use to reduce casualties in our country to a minimum. That means, the development of a military radiation detector is a very important issue. The Korea army is using the 'PDR - 1K portable military radiation surveymeter' in NBC (Nuclear, Biological, Chemical warfare) operations. The PDR - 1K military detector can measure beta and gamma rays only but it cannot detect alpha particles. Because of its characteristics, the Korea army has weaknesses in tactical operations. The PDR - 1K sensor is based on a GM - tube sensor system. For the mechanical structure, detectors utilizing a GM-tube sensor do not work on a high - radiation battlefield and they do not carry out nuclide analysis for fixed electron signal output. In the meantime, the United States of America and Germany are using 'AN/PDR - 77' and 'SVG - 2' that were made from scintillator sensors. They have excellent physical qualities and radiation responses for military use. Also, nuclide analysis is available. Therefore, in this study we fabricated a military - grade scintillator radiation sensor that is able to detect alpha, beta, and gamma - rays to overcome PDR - 1K's weaknesses. Also, physical characteristics and radiation response evaluation for the fabricated sensors was carried out. The alpha - particle sensor and beta - ray sensor were fabricated using a ZnS(Ag) powder state scintillator, and a Saint - Gobain organic plastic scintillator BC-408 panel, respectively. The gamma ray sensor was manufactured using a 10 x 10 x 10 mm 3 CsI(Tl) inorganic scintillator crystal. A detailed explanation follows. The alpha particle sensor was fabricated by using air - brushing method to Zns(Ag) powder scintillator spreading. The ZnS(Ag) layer thickness was 35 μm (detection efficiency: 41%). This alpha - particle sensor

  1. A method enabling simultaneous pressure and temperature measurement using a single piezoresistive MEMS pressure sensor

    International Nuclear Information System (INIS)

    Frantlović, Miloš; Stanković, Srđan; Jokić, Ivana; Lazić, Žarko; Smiljanić, Milče; Obradov, Marko; Vukelić, Branko; Jakšić, Zoran

    2016-01-01

    In this paper we present a high-performance, simple and low-cost method for simultaneous measurement of pressure and temperature using a single piezoresistive MEMS pressure sensor. The proposed measurement method utilizes the parasitic temperature sensitivity of the sensing element for both pressure measurement correction and temperature measurement. A parametric mathematical model of the sensor was established and its parameters were calculated using the obtained characterization data. Based on the model, a real-time sensor correction for both pressure and temperature measurements was implemented in a target measurement system. The proposed method was verified experimentally on a group of typical industrial-grade piezoresistive sensors. The obtained results indicate that the method enables the pressure measurement performance to exceed that of typical digital industrial pressure transmitters, achieving at the same time the temperature measurement performance comparable to industrial-grade platinum resistance temperature sensors. The presented work is directly applicable in industrial instrumentation, where it can add temperature measurement capability to the existing pressure measurement instruments, requiring little or no additional hardware, and without adverse effects on pressure measurement performance. (paper)

  2. Gearbox Fault Diagnosis in a Wind Turbine Using Single Sensor Based Blind Source Separation

    Directory of Open Access Journals (Sweden)

    Yuning Qian

    2016-01-01

    Full Text Available This paper presents a single sensor based blind source separation approach, namely, the wavelet-assisted stationary subspace analysis (WSSA, for gearbox fault diagnosis in a wind turbine. Continuous wavelet transform (CWT is used as a preprocessing tool to decompose a single sensor measurement data into a set of wavelet coefficients to meet the multidimensional requirement of the stationary subspace analysis (SSA. The SSA is a blind source separation technique that can separate the multidimensional signals into stationary and nonstationary source components without the need for independency and prior information of the source signals. After that, the separated nonstationary source component with the maximum kurtosis value is analyzed by the enveloping spectral analysis to identify potential fault-related characteristic frequencies. Case studies performed on a wind turbine gearbox test system verify the effectiveness of the WSSA approach and indicate that it outperforms independent component analysis (ICA and empirical mode decomposition (EMD, as well as the spectral-kurtosis-based enveloping, for wind turbine gearbox fault diagnosis.

  3. A Shack-Hartmann Sensor for Single-Shot Multi-Contrast Imaging with Hard X-rays

    Directory of Open Access Journals (Sweden)

    Tomy dos Santos Rolo

    2018-05-01

    Full Text Available An array of compound refractive X-ray lenses (CRL with 20 × 20 lenslets, a focal distance of 20cm and a visibility of 0.93 is presented. It can be used as a Shack-Hartmann sensor for hard X-rays (SHARX for wavefront sensing and permits for true single-shot multi-contrast imaging the dynamics of materials with a spatial resolution in the micrometer range, sensitivity on nanosized structures and temporal resolution on the microsecond scale. The object’s absorption and its induced wavefront shift can be assessed simultaneously together with information from diffraction channels. In contrast to the established Hartmann sensors the SHARX has an increased flux efficiency through focusing of the beam rather than blocking parts of it. We investigated the spatiotemporal behavior of a cavitation bubble induced by laser pulses. Furthermore, we validated the SHARX by measuring refraction angles of a single diamond CRL, where we obtained an angular resolution better than 4 μ rad.

  4. Software Engineering for Portability.

    Science.gov (United States)

    Stanchev, Ivan

    1990-01-01

    Discussion of the portability of educational software focuses on the software design and development process. Topics discussed include levels of portability; the user-computer dialog; software engineering principles; design techniques for student performance records; techniques of courseware programing; and suggestions for further research and…

  5. Environmental sensing with optical fiber sensors processed with focused ion beam and atomic layer deposition

    Science.gov (United States)

    Flores, Raquel; Janeiro, Ricardo; Dahlem, Marcus; Viegas, Jaime

    2015-03-01

    We report an optical fiber chemical sensor based on a focused ion beam processed optical fiber. The demonstrated sensor is based on a cavity formed onto a standard 1550 nm single-mode fiber by either chemical etching, focused ion beam milling (FIB) or femtosecond laser ablation, on which side channels are drilled by either ion beam milling or femtosecond laser irradiation. The encapsulation of the cavity is achieved by optimized fusion splicing onto a standard single or multimode fiber. The empty cavity can be used as semi-curved Fabry-Pérot resonator for gas or liquid sensing. Increased reflectivity of the formed cavity mirrors can be achieved with atomic layer deposition (ALD) of alternating metal oxides. For chemical selective optical sensors, we demonstrate the same FIB-formed cavity concept, but filled with different materials, such as polydimethylsiloxane (PDMS), poly(methyl methacrylate) (PMMA) which show selective swelling when immersed in different solvents. Finally, a reducing agent sensor based on a FIB formed cavity partially sealed by fusion splicing and coated with a thin ZnO layer by ALD is presented and the results discussed. Sensor interrogation is achieved with spectral or multi-channel intensity measurements.

  6. 46 CFR 169.743 - Portable magazine chests.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Portable magazine chests. 169.743 Section 169.743... Vessel Control, Miscellaneous Systems, and Equipment Markings § 169.743 Portable magazine chests. Portable magazine chests must be marked in letters at least 3 inches high: “PORTABLE MAGAZINE CHEST...

  7. 48 CFR 1837.170 - Pension portability.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 6 2010-10-01 2010-10-01 true Pension portability. 1837... ADMINISTRATION SPECIAL CATEGORIES OF CONTRACTING SERVICE CONTRACTING Service Contracts-General 1837.170 Pension portability. (a) It is NASA's policy not to require pension portability in service contracts. However, pension...

  8. 46 CFR 108.651 - Portable magazine chests.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Portable magazine chests. 108.651 Section 108.651... AND EQUIPMENT Equipment Markings and Instructions § 108.651 Portable magazine chests. Each portable magazine chest must be marked: “PORTABLE MAGAZINE CHEST—FLAMMABLE—KEEP LIGHTS AND FIRE AWAY” in letters at...

  9. A portable wireless data collection system by using optical power supply and photo-communication

    International Nuclear Information System (INIS)

    Nakajima, Toshiro; Shikai, Masahiro; Ikeda, Ikuo; Tochio, Atsushi

    1999-01-01

    For aiming at effective application to annual change management of patrolling inspection data and so forth, a portable wireless measuring and data collection device measurable to vibration, temperature and so forth automatically and for short time under patrolling of inspectors and collectable on sensor signals at many places, to collect field data as electronized data. This device was comprised of a sensor head to mount on an object apparatus to transmit sensor signals and a sensor terminal brought by an inspector and with functions to receive and memory a signal from the sensor head. It had a characteristics capable of wireless data collection using optical power supply and photo-communication where all of power supply to sensor head and transmission and receiving of data were conducted optically. As a result, some characteristics could be realized such as perfect realization of wireless data collection and reduction of maintenance burden without its need on installation of source, signal wire, and so forth, possibility to collect data for short time from distant place, and possibility to conduct high order treatment due to obtaining native waveform signal but no conventional numerical data, and possibility of development on apparatus diagnosis such as detection of abnormal sign and others. (G.K.)

  10. Man-Portable Vector EMI Sensor for Full UXO Characterization

    Science.gov (United States)

    2012-03-01

    Erik Russell assisted with project coordination. Dr. Laurens Beran and Dr. Leonard Pasion participated in discussions on classification and soil...soil on EMI sensors were also investigated during that survey as part of SERDP MM-1573 (Len Pasion , Sky Research). It was found that the MPV offered...successful discrimination can be achieved even in the presence of magnetic soils (Lhomme et al., 2008; Pasion et al., 2008). The MPV response due to

  11. Mobile Sensor Technologies Being Developed

    Science.gov (United States)

    Greer, Lawrence C.; Oberle, Lawrence G.

    2003-01-01

    The NASA Glenn Research Center is developing small mobile platforms for sensor placement, as well as methods for communicating between roving platforms and a central command location. The first part of this project is to use commercially available equipment to miniaturize an existing sensor platform. We developed a five-circuit-board suite, with an average board size of 1.5 by 3 cm. Shown in the preceding photograph, this suite provides all motor control, direction finding, and communications capabilities for a 27- by 21- by 40-mm prototype mobile platform. The second part of the project is to provide communications between mobile platforms, and also between multiple platforms and a central command location. This is accomplished with a low-power network labeled "SPAN," Sensor Platform Area Network, a local area network made up of proximity elements. In practice, these proximity elements are composed of fixed- and mobile-sensor-laden science packages that communicate to each other via radiofrequency links. Data in the network will be shared by a central command location that will pass information into and out of the network through its access to a backbone element. The result will be a protocol portable to general purpose microcontrollers satisfying a host of sensor networking tasks. This network will enter the gap somewhere between television remotes and Bluetooth but, unlike 802.15.4, will not specify a physical layer, thus allowing for many data rates over optical, acoustical, radiofrequency, hardwire, or other media. Since the protocol will exist as portable C-code, developers may be able to embed it in a host of microcontrollers from commercial to space grade and, of course, to design it into ASICs. Unlike in 802.15.4, the nodes will relate to each other as peers. A demonstration of this protocol using the two test bed platforms was recently held. Two NASA modified, commercially available, mobile platforms communicated and shared data with each other and a

  12. Spirometer Non-Invasive dengan Sensor Piezoelektrik untuk Deteksi Kesehatan Paru-Paru

    Directory of Open Access Journals (Sweden)

    KEMALASARI KEMALASARI

    2017-07-01

    Full Text Available ABSTRAKPolusi udara dapat mempengaruhi kesehatan paru-paru. Umumnya pengukuran fungsi paru menggunakan spirometer, dilakukan di rumah sakit dan membutuhkan waktu yang lama untuk mengetahui hasilnya. Untuk mengatasi masalah ini, dirancang Spirometer non-invasive yang portable dengan menggunakan sensor piezoelektrik yang diletakkan di dada. Perubahan tekanan yang diukur oleh sensor piezoelektrik adalah 10 – 80 mV, sehingga diperlukan rangkaian amplifier, filter, clamper, mikrokontroler AVR ATMega 32 sebagai pengolah data I/O dan LCD grafik untuk menampilkan hasil ukur serta SD card untuk menyimpan data. Alat ini mengukur  kapasitas vital paru-paru, respirasi rate, dan jika hasil ukur kapasitas vital paru-paru kurang  dari 80 % dari nilai prediksi kapasitas paru-paru maka kondisi paru-paru dideteksi tidak sehat.  Hasil dari pengujian menunjukkan bahwa persentase nilai keberhasilan alat adalah 95,70 %, hasil pengukuran dan deteksi kondisi paru-paru dapat langsung diketahui dari tampilan di LCD grafik, data hasil pengukuran bisa disimpan dan alat berukuran kecil sehingga portable, mudah digunakan oleh siapapun dan dimanapun dengan nyaman.Kata kunci: Spirometer, Piezoelektrik, Mikrokontroler, Kapasitas Paru-Paru, LCD Grafik.ABSTRACTAir pollution can be affected the health of the lungs. Generally the measurement of lungs function use a spirometry, performed  in the hospital and takes a long time to know the results. To overcome this problem, a portable non-invasive Spirometry is designed using a piezoelectric sensors placed on the chest. The changes of pressure is measured by the piezoelectric sensor are 10 - 80 mV, so it needs a amplifier circuit, filter, clamper, ATMega 32 AVR microcontroller as I/O data processor and LCD graph to display result of measurement and SD card for save the data. This instrument measure lungs vital capacity, respiration rate, and if the measured of lungs vital capacity is less than 80 % of the predicted of lung

  13. Quantitative flow characteristics for side-by-side square cylinders via PIV

    Directory of Open Access Journals (Sweden)

    Dogan Sercan

    2012-04-01

    Full Text Available In this study, instantaneous and time-averaged flow structures downstream of the sharp-edged single and two and three side-by-side square cylinders (SCs immersed in a uniform open channel water flow were studied by a technique of particle image velocimetry (PIV. Experimental results of wake flow structures were presented for gap ratios (G/D in the range of 1.0”G/D”3.0 for Reynolds number values of 1050, 2450 and 3400. Flow structures depending on the square cylinder (SC configurations and Reynolds number were discussed. It has been found that the development of the vortex shedding as well as the flow structure were substantially altered for side-by-side SCs comparing to the single SC. Asymmetrical and biased wake structures were observed because of the jetlike flow between the SCs for two SCs cases for the gap ratio less than 2.0. Depending on the gap spacing between the SCs, the interaction results of time2 averaged vorticity, velocity vector field, Reynolds stress correlations and streamline patterns in the wake region form a distinguished flow structure. Strouhal numbers for the single square cylinder for 1050≤Re≤3400 are found in the range of 0.12-0.13. The present results have supported the previous works by providing detailed quantitative experimental information with PIV in the wake region of the SC and might be helpful for validation of numerical studies and designers.

  14. Engineering task plan for five portable exhausters

    International Nuclear Information System (INIS)

    Rensink, G.E.

    1997-01-01

    Exhausters will be employed to ventilate certain single-shell tanks (SSTs) during salt well pumping campaigns. Active ventilation is necessary to reduce the potential flammable gas inventory (LANL 1996a) in the dome space that may accumulate during steady-state conditions or during/after postulated episodic gas release events. The tanks described in this plan support the activities required to fabricate and test three 500 cfm portable exhausters in the 200 W area shops, and to procure, design, fabricate and test two 1000 cfm units. Appropriate Notice of Construction (NOC) radiological and toxic air pollutant permits will be obtained for the portable exhausters. The portable exhauster design media to be employed to support this task was previously developed for the 241-A-101 exhauster. The same design as A101 will be fabricated with only minor improvements to the design based upon operator input/lessons learned. The safety authorization basis for this program effort will follow SAD 36 (LANL 1996b), and each tank will be reviewed against this SAD for changes or updates. The 1000 cfm units will be designed by the selected offsite contractor according to the specification requirements in KHC-S-O490. The offsite units have been specified to utilize as many of the same components as the 500 cfm units to ensure a more cost effective operation and maintenance through the reduction of spare parts and additional procedures

  15. Track Detection in Railway Sidings Based on MEMS Gyroscope Sensors

    Science.gov (United States)

    Broquetas, Antoni; Comerón, Adolf; Gelonch, Antoni; Fuertes, Josep M.; Castro, J. Antonio; Felip, Damià; López, Miguel A.; Pulido, José A.

    2012-01-01

    The paper presents a two-step technique for real-time track detection in single-track railway sidings using low-cost MEMS gyroscopes. The objective is to reliably know the path the train has taken in a switch, diverted or main road, immediately after the train head leaves the switch. The signal delivered by the gyroscope is first processed by an adaptive low-pass filter that rejects noise and converts the temporal turn rate data in degree/second units into spatial turn rate data in degree/meter. The conversion is based on the travelled distance taken from odometer data. The filter is implemented to achieve a speed-dependent cut-off frequency to maximize the signal-to-noise ratio. Although direct comparison of the filtered turn rate signal with a predetermined threshold is possible, the paper shows that better detection performance can be achieved by processing the turn rate signal with a filter matched to the rail switch curvature parameters. Implementation aspects of the track detector have been optimized for real-time operation. The detector has been tested with both simulated data and real data acquired in railway campaigns. PMID:23443376

  16. Sensor for metal detection

    KAUST Repository

    Kodzius, Rimantas

    2014-06-26

    NOVELTY - The sensor has a microfluidic flow channel that is provided with an inlet port, an outlet port, and a detection chamber. The detection chamber is provided with a group of sensing electrodes (4) having a working electrode (8), a counter electrode (9), and a reference electrode (10). A flow sensor is configured to measure flow in the channel. A temperature sensor (6) is configured to measure temperature in the channel (3). An electrical connection is configured to connect the sensor to a sensing device. USE - Sensor for detecting metal such as toxic metal in sample such as clinical sample such as stool, saliva, sputum, bronchial lavage, urine, vaginal swab, nasal swab, biopsy, tissue, tears, breath, blood, serum, plasma, cerebrospinal fluid, peritoneal fluid, pleural fluid, pericardial fluid, joint fluid, and amniotic fluid, water sample, food sample, air sample, and soil sample (all claimed). ADVANTAGE - The sensor for use with the portable analytical instrument is configured for detection of metalsin samples. The sensor can provide the excellent solution for on-site metal detection, including heavy metal detection. The sensors can provide significant advantages in higher throughput, lower cost, at the same time being less labor intensive and less dependent on individual skills. The disposable design of the sensor, the enhanced reliability and repeatability of measurements can be obtained. The sensors can be widely applied in various industries. DETAILED DESCRIPTION - INDEPENDENT CLAIMS are included for the following: (1) a system for detecting metal in sample; and (2) a method for using sensor for detecting metal in sample. DESCRIPTION OF DRAWING(S) - The drawing shows a schematic view of the sensor prototype. Channel (3) Sensing electrodes (4) Temperature sensor (6) Working electrode (8) Counter electrode (9) Reference electrode (10)

  17. Towards Application Portability on Blockchains

    OpenAIRE

    Shudo, Kazuyuki; Saito, Kenji

    2018-01-01

    We pose a fundamental problem of public blockchain, "incentive mismatch." It is an open problem, but application portability is a provisional solution to the problem. Portability is also a desirable property for an application on a private blockchain. It is not even clear to be able to define a common API for various blockchain middlewares, but it is possible to improve portability by reducing dependency on a blockchain. We present an example of such middleware designs that provide applicatio...

  18. Catalytic molecularly imprinted polymer membranes: development of the biomimetic sensor for phenols detection.

    Science.gov (United States)

    Sergeyeva, T A; Slinchenko, O A; Gorbach, L A; Matyushov, V F; Brovko, O O; Piletsky, S A; Sergeeva, L M; Elska, G V

    2010-02-05

    Portable biomimetic sensor devices for the express control of phenols content in water were developed. The synthetic binding sites mimicking active site of the enzyme tyrosinase were formed in the structure of free-standing molecularly imprinted polymer membranes. Molecularly imprinted polymer membranes with the catalytic activity were obtained by co-polymerization of the complex Cu(II)-catechol-urocanic acid ethyl ester with (tri)ethyleneglycoldimethacrylate, and oligourethaneacrylate. Addition of the elastic component oligourethaneacrylate provided formation of the highly cross-linked polymer with the catalytic activity in a form of thin, flexible, and mechanically stable membrane. High accessibility of the artificial catalytic sites for the interaction with the analyzed phenol molecules was achieved due to addition of linear polymer (polyethyleneglycol Mw 20,000) to the initial monomer mixture before the polymerization. As a result, typical semi-interpenetrating polymer networks (semi-IPNs) were formed. The cross-linked component of the semi-IPN was represented by the highly cross-linked catalytic molecularly imprinted polymer, while the linear one was represented by polyethyleneglycol Mw 20,000. Extraction of the linear polymer from the fully formed semi-IPN resulted in formation of large pores in the membranes' structure. Concentration of phenols in the analyzed samples was detected using universal portable device oxymeter with the oxygen electrode in a close contact with the catalytic molecularly imprinted polymer membrane as a transducer. The detection limit of phenols detection using the developed sensor system based on polymers-biomimics with the optimized composition comprised 0.063 mM, while the linear range of the sensor comprised 0.063-1 mM. The working characteristics of the portable sensor devices were investigated. Storage stability of sensor systems at room temperature comprised 12 months (87%). As compared to traditional methods of phenols

  19. Chemiresistor Devices for Chemical Warfare Agent Detection Based on Polymer Wrapped Single-Walled Carbon Nanotubes.

    Science.gov (United States)

    Fennell, John F; Hamaguchi, Hitoshi; Yoon, Bora; Swager, Timothy M

    2017-04-28

    Chemical warfare agents (CWA) continue to present a threat to civilian populations and military personnel in operational areas all over the world. Reliable measurements of CWAs are critical to contamination detection, avoidance, and remediation. The current deployed systems in United States and foreign militaries, as well as those in the private sector offer accurate detection of CWAs, but are still limited by size, portability and fabrication cost. Herein, we report a chemiresistive CWA sensor using single-walled carbon nanotubes (SWCNTs) wrapped with poly(3,4-ethylenedioxythiophene) (PEDOT) derivatives. We demonstrate that a pendant hexafluoroisopropanol group on the polymer that enhances sensitivity to a nerve agent mimic, dimethyl methylphosphonate, in both nitrogen and air environments to concentrations as low as 5 ppm and 11 ppm, respectively. Additionally, these PEDOT/SWCNT derivative sensor systems experience negligible device performance over the course of two weeks under ambient conditions.

  20. Molecular Etiology of Hereditary Single-Side Deafness

    Science.gov (United States)

    Kim, Shin Hye; Kim, Ah Reum; Choi, Hyun Seok; Kim, Min Young; Chun, Eun Hi; Oh, Seung-Ha; Choi, Byung Yoon

    2015-01-01

    Abstract Unilateral sensorineural hearing loss (USNHL)/single-side deafness (SSD) is a frequently encountered disability in children. The etiology of a substantial portion of USNHL/SSD still remains unknown, and genetic causes have not been clearly elucidated. In this study, the authors evaluated the heritability of USNHL/SSD. The authors sequentially recruited 50 unrelated children with SSD. For an etiologic diagnosis, we performed a rigorous review on the phenotypes of family members of all children and conducted, if necessary, molecular genetic tests including targeted exome sequencing of 129 deafness genes. Among the 50 SSD children cohort, the authors identify 4 (8%) unrelated SSD probands from 4 families (SH136, SB173, SB177, and SB199) with another hearing impaired family members. Notably, all 4 probands in our cohort with a familial history of SSD also have pigmentary abnormalities such as brown freckles or premature gray hair within first degree relatives, which may indicate that genes whose products are involved with pigmentary disorder could be candidates for heritable SSD. Indeed, SH136 and SB199 turned out to segregate a mutation in MITF and PAX3, respectively, leading to a molecular diagnosis of Waardenburg syndrome (WS). We report, for the first time in the literature, a significant heritability of pediatric SSD. There is a strong association between the heritability of USNHL/SSD and the pigmentary abnormality, shedding a new light on the understanding of the molecular basis of heritable USNHL/SSD. In case of children with congenital SSD, it would be mandatory to rigorously screen pigmentary abnormalities. WS should also be included in the differential diagnosis of children with USNHL/SSD, especially in a familial form. PMID:26512583

  1. Towards Phosphate Detection in Hydroponics Using Molecularly Imprinted Polymer Sensors.

    Science.gov (United States)

    Storer, Christopher S; Coldrick, Zachary; Tate, Daniel J; Donoghue, Jack Marsden; Grieve, Bruce

    2018-02-10

    An interdigitated electrode sensor was designed and microfabricated for measuring the changes in the capacitance of three phosphate selective molecularly imprinted polymer (MIP) formulations, in order to provide hydroponics users with a portable nutrient sensing tool. The MIPs investigated were synthesised using different combinations of the functional monomers methacrylic acid (MAA) and N -allylthiourea, against the template molecules diphenyl phosphate, triethyl phosphate, and trimethyl phosphate. A cross-interference study between phosphate, nitrate, and sulfate was carried out for the MIP materials using an inductance, capacitance, and resistance (LCR) meter. Capacitance measurements were taken by applying an alternating current (AC) with a potential difference of 1 V root mean square (RMS) at a frequency of 1 kHz. The cross-interference study demonstrated a strong binding preference to phosphate over the other nutrient salts tested for each formulation. The size of template molecule and length of the functional monomer side groups also determined that a short chain functional monomer in combination with a template containing large R-groups produced the optimal binding site conditions when synthesising a phosphate selective MIP.

  2. Portable, low-cost NMR with laser-lathe lithography produced microcoils.

    Science.gov (United States)

    Demas, Vasiliki; Herberg, Julie L; Malba, Vince; Bernhardt, Anthony; Evans, Lee; Harvey, Christopher; Chinn, Sarah C; Maxwell, Robert S; Reimer, Jeffrey

    2007-11-01

    Nuclear Magnetic Resonance (NMR) is unsurpassed in its ability to non-destructively probe chemical identity. Portable, low-cost NMR sensors would enable on-site identification of potentially hazardous substances, as well as the study of samples in a variety of industrial applications. Recent developments in RF microcoil construction (i.e. coils much smaller than the standard 5mm NMR RF coils), have dramatically increased NMR sensitivity and decreased the limits-of-detection (LOD). We are using advances in laser pantographic microfabrication techniques, unique to LLNL, to produce RF microcoils for field deployable, high sensitivity NMR-based detectors. This same fabrication technique can be used to produce imaging coils for MRI as well as for standard hardware shimming or "ex-situ" shimming of field inhomogeneities typically associated with inexpensive magnets. This paper describes a portable NMR system based on the use of a 2 kg hand-held permanent magnet, laser-fabricated microcoils, and a compact spectrometer. The main limitations for such a system are the low resolution and sensitivity associated with the low field values and quality of small permanent magnets, as well as the lack of large amounts of sample of interest in most cases. The focus of the paper is on the setting up of this system, initial results, sensitivity measurements, discussion of the limitations and future plans. The results, even though preliminary, are promising and provide the foundation for developing a portable, inexpensive NMR system for chemical analysis. Such a system will be ideal for chemical identification of trace substances on site.

  3. Development of CMOS Pixel Sensors fully adapted to the ILD Vertex Detector Requirements

    CERN Document Server

    Winter, Marc; Besson, Auguste; Claus, Gilles; Dorokhov, Andrei; Goffe, Mathieu; Hu-Guo, Christine; Morel, Frederic; Valin, Isabelle; Voutsinas, Georgios; Zhang, Liang

    2012-01-01

    CMOS Pixel Sensors are making steady progress towards the specifications of the ILD vertex detector. Recent developments are summarised, which show that these devices are close to comply with all major requirements, in particular the read-out speed needed to cope with the beam related background. This achievement is grounded on the double- sided ladder concept, which allows combining signals generated by a single particle in two different sensors, one devoted to spatial resolution and the other to time stamp, both assembled on the same mechanical support. The status of the development is overviewed as well as the plans to finalise it using an advanced CMOS process.

  4. Visualized study on specific points on demand curves and flow patterns in a single-side heated narrow rectangular channel

    International Nuclear Information System (INIS)

    Wang Junfeng; Huang Yanping; Wang Yanlin

    2011-01-01

    Highlights: → Specific points on the demand curve and flow patterns are visually studied. → Bubbly, churn, and annular flows were observed. → Onset of flow instability and bubbly-churn transition occurs at the same time. → The evolution of specific points and flow pattern transitions were examined. - Abstract: A simultaneous visualization and measurement study on some specific points on demand curves, such as onset of nucleate boiling (ONB), onset of significant void (OSV), onset of flow instability (OFI), and two-phase flow patterns in a single-side heated narrow rectangular channel, having a width of 40 mm and a gap of 3 mm, was carried out. New experimental approaches were adopted to identify OSV and OFI in a narrow rectangular channel. Under experimental conditions, the ONB could be predicted well by the Sato and Matsumura model. The OSV model of Bowring can reasonably predict the OSV if the single-side heated condition is considered. The OFI was close to the saturated boiling point and could be described accurately by Kennedy's correlation. The two-phase flow patterns observed in this experiment could be classified into bubbly, churn, and annular flow. Slug flow was never observed. The OFI always occurred when the bubbles at the channel exit began to coalesce, which corresponded to the beginning of the bubbly-churn transition in flow patterns. Finally, the evolution of specific points and flow pattern transitions were examined in a single-side heated narrow rectangular channel.

  5. Gaming control using a wearable and wireless EEG-based brain-computer interface device with novel dry foam-based sensors

    Science.gov (United States)

    2012-01-01

    A brain-computer interface (BCI) is a communication system that can help users interact with the outside environment by translating brain signals into machine commands. The use of electroencephalographic (EEG) signals has become the most common approach for a BCI because of their usability and strong reliability. Many EEG-based BCI devices have been developed with traditional wet- or micro-electro-mechanical-system (MEMS)-type EEG sensors. However, those traditional sensors have uncomfortable disadvantage and require conductive gel and skin preparation on the part of the user. Therefore, acquiring the EEG signals in a comfortable and convenient manner is an important factor that should be incorporated into a novel BCI device. In the present study, a wearable, wireless and portable EEG-based BCI device with dry foam-based EEG sensors was developed and was demonstrated using a gaming control application. The dry EEG sensors operated without conductive gel; however, they were able to provide good conductivity and were able to acquire EEG signals effectively by adapting to irregular skin surfaces and by maintaining proper skin-sensor impedance on the forehead site. We have also demonstrated a real-time cognitive stage detection application of gaming control using the proposed portable device. The results of the present study indicate that using this portable EEG-based BCI device to conveniently and effectively control the outside world provides an approach for researching rehabilitation engineering. PMID:22284235

  6. Field Tests of a Portable MEMS Gravimeter

    Directory of Open Access Journals (Sweden)

    Richard P. Middlemiss

    2017-11-01

    Full Text Available Gravimeters are used to measure density anomalies under the ground. They are applied in many different fields from volcanology to oil and gas exploration, but present commercial systems are costly and massive. A new type of gravity sensor has been developed that utilises the same fabrication methods as those used to make mobile phone accelerometers. In this study, we describe the first results of a field-portable microelectromechanical system (MEMS gravimeter. The stability of the gravimeter is demonstrated through undertaking a multi-day measurement with a standard deviation of 5.58 × 10 − 6 ms − 2 . It is then demonstrated that a change in gravitational acceleration of 4.5 × 10 − 5 ms − 2 can be measured as the device is moved between the top and the bottom of a 20.7 m lift shaft with a signal-to-noise ratio (SNR of 14.25. Finally, the device is demonstrated to be stable in a more harsh environment: a 4.5 × 10 − 4 ms − 2 gravity variation is measured between the top and bottom of a 275-m hill with an SNR of 15.88. These initial field-tests are an important step towards a chip-sized gravity sensor.

  7. Building biomarker libraries with novel chemical sensors: correlating differential mobility spectrometer signal outputs with mass spectrometry data

    International Nuclear Information System (INIS)

    Schivo, Michael; Kenyon, Nicholas J; Aksenov, Alexander A; Bardaweel, Hamzeh; Zhao Weixiang; Davis, Cristina E

    2011-01-01

    Gas chromatography/mass spectrometry (GC/MS) is a widely used analytic tool for qualitative and quantitative analysis of volatile and semi-volatile compounds. However, GC/MS use is limited by its large size, lack of portability, high cost and inherent complexity. Smaller instruments capable of high-throughput analysis of volatile compounds have the potential of combining MS-like sensitivity with portability. The micromachined differential mobility spectrometer (DMS) is a miniature sensor capable of registering volatile compounds in sub-parts-per-million (ppm) concentrations. It is small, portable, and can be coupled with multiple other compound separation methods. Here we describe paired volatile sample analyses using both GC/MS and GC/DMS which show that the DMS is capable of registering known compounds as verified by MS. Furthermore, we show that MS can be used to help build a library for our unique DMS sensor outputs and detect compounds in chemically complex backgrounds.

  8. Building biomarker libraries with novel chemical sensors: correlating differential mobility spectrometer signal outputs with mass spectrometry data

    Energy Technology Data Exchange (ETDEWEB)

    Schivo, Michael; Kenyon, Nicholas J [Division of Pulmonary and Critical Care Medicine, Genome and Biomedical Sciences Facility, University of California, Davis, CA 95616 (United States); Aksenov, Alexander A; Bardaweel, Hamzeh; Zhao Weixiang; Davis, Cristina E, E-mail: cedavis@ucdavis.edu [Department of Mechanical and Aerospace Engineering, One Shields Avenue, University of California, Davis, CA 95616 (United States)

    2011-10-29

    Gas chromatography/mass spectrometry (GC/MS) is a widely used analytic tool for qualitative and quantitative analysis of volatile and semi-volatile compounds. However, GC/MS use is limited by its large size, lack of portability, high cost and inherent complexity. Smaller instruments capable of high-throughput analysis of volatile compounds have the potential of combining MS-like sensitivity with portability. The micromachined differential mobility spectrometer (DMS) is a miniature sensor capable of registering volatile compounds in sub-parts-per-million (ppm) concentrations. It is small, portable, and can be coupled with multiple other compound separation methods. Here we describe paired volatile sample analyses using both GC/MS and GC/DMS which show that the DMS is capable of registering known compounds as verified by MS. Furthermore, we show that MS can be used to help build a library for our unique DMS sensor outputs and detect compounds in chemically complex backgrounds.

  9. Smart Sensors and Actuators: A Question of Discipline

    Directory of Open Access Journals (Sweden)

    Hoel IRIS

    2013-01-01

    Full Text Available Low power consumption and reliability are two important properties in the wireless sensor network area. The approach presented here to improve these aspects is to use a rule-based middleware enforcing a coordination protocol on top of the communication protocols imposed by the different wireless sensor networks. In addition, we move the callee side of this protocol from the gateway to the sensors/actuators in order to make them able to directly respond to this protocol. Then, it is possible to control from the application side the control (sleep/awake of the sensors and the transactional processing of operations involving a group of sensors/actuators. This has a positive impact both on the consumption and the reliability. Examples illustrating our approach are presented.

  10. Residual strains and microstructure development in single and sequential double sided friction stir welds in RQT-701 steel

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, S.J. [School of Materials, University of Manchester, Grosvenor Street, Manchester M1 7HS (United Kingdom)], E-mail: simon.barnes-2@manchester.ac.uk; Steuwer, A. [FaME38, ILL ESRF, 6 rue J.Horowitz, 38042 Grenoble, Cedex (France); University of Plymouth, Drake Circus, Plymouth PL4 8AA (United Kingdom); Mahawish, S. [School of Materials, University of Manchester, Grosvenor Street, Manchester M1 7HS (United Kingdom); Johnson, R. [TWI Yorkshire, Wallis Way, Catcliffe, Rotherham S60 5TZ (United Kingdom); Withers, P.J. [School of Materials, University of Manchester, Grosvenor Street, Manchester M1 7HS (United Kingdom)

    2008-09-25

    Single and double sided partial penetration friction stir butt welds, in a rolled, quenched and tempered steel (RQT-701), were produced at The Welding Institute (TWI) under controlled process conditions. The residual strain distributions in the longitudinal and transverse directions have been measured using energy dispersive synchrotron X-ray diffraction. The measured strains were indicative of longitudinal tensile residual stresses at levels greater than the 0.2% yield stress of the parent metal in both the single and double pass welds. In both cases, the maximum tensile strain was found in the parent metal at the boundary of the heat affected zone (HAZ). Microstructural analysis of the welds was carried out using optical microscopy and hardness variations were also mapped across the weld-plate cross-section. The maximum hardness was observed in the mixed bainite/martensite structure of the weld nugget on the advancing side of the stir zone. The minimum hardness was observed in the HAZ.

  11. Residual strains and microstructure development in single and sequential double sided friction stir welds in RQT-701 steel

    International Nuclear Information System (INIS)

    Barnes, S.J.; Steuwer, A.; Mahawish, S.; Johnson, R.; Withers, P.J.

    2008-01-01

    Single and double sided partial penetration friction stir butt welds, in a rolled, quenched and tempered steel (RQT-701), were produced at The Welding Institute (TWI) under controlled process conditions. The residual strain distributions in the longitudinal and transverse directions have been measured using energy dispersive synchrotron X-ray diffraction. The measured strains were indicative of longitudinal tensile residual stresses at levels greater than the 0.2% yield stress of the parent metal in both the single and double pass welds. In both cases, the maximum tensile strain was found in the parent metal at the boundary of the heat affected zone (HAZ). Microstructural analysis of the welds was carried out using optical microscopy and hardness variations were also mapped across the weld-plate cross-section. The maximum hardness was observed in the mixed bainite/martensite structure of the weld nugget on the advancing side of the stir zone. The minimum hardness was observed in the HAZ

  12. A next generation field-portable goniometer system

    Science.gov (United States)

    Harms, Justin D.; Bachmann, Charles M.; Faulring, Jason W.; Ruiz Torres, Andres J.

    2016-05-01

    Various field portable goniometers have been designed to capture in-situ measurements of a materials bi-directional reflectance distribution function (BRDF), each with a specific scientific purpose in mind.1-4 The Rochester Institute of Technology's (RIT) Chester F. Carlson Center for Imaging Science recently created a novel instrument incorporating a wide variety of features into one compact apparatus in order to obtain very high accuracy BRDFs of short vegetation and sediments, even in undesirable conditions and austere environments. This next generation system integrates a dual-view design using two VNIR/SWIR pectroradiometers to capture target reflected radiance, as well as incoming radiance, to provide for better optical accuracy when measuring in non-ideal atmospheric conditions or when background illumination effects are non-negligible. The new, fully automated device also features a laser range finder to construct a surface roughness model of the target being measured, which enables the user to include inclination information into BRDF post-processing and further allows for roughness effects to be better studied for radiative transfer modeling. The highly portable design features automatic leveling, a precision engineered frame, and a variable measurement plane that allow for BRDF measurements on rugged, un-even terrain while still maintaining true angular measurements with respect to the target, all without sacrificing measurement speed. Despite the expanded capabilities and dual sensor suite, the system weighs less than 75 kg, which allows for excellent mobility and data collection on soft, silty clay or fine sand.

  13. Gas compressor with side branch absorber for pulsation control

    Science.gov (United States)

    Harris, Ralph E [San Antonio, TX; Scrivner, Christine M [San Antonio, TX; Broerman, III, Eugene L.

    2011-05-24

    A method and system for reducing pulsation in lateral piping associated with a gas compressor system. A tunable side branch absorber (TSBA) is installed on the lateral piping. A pulsation sensor is placed in the lateral piping, to measure pulsation within the piping. The sensor output signals are delivered to a controller, which controls actuators that change the acoustic dimensions of the SBA.

  14. A One ppm NDIR Methane Gas Sensor with Single Frequency Filter Denoising Algorithm

    Directory of Open Access Journals (Sweden)

    Binqing Jiang

    2012-09-01

    Full Text Available A non-dispersive infrared (NDIR methane gas sensor prototype has achieved a minimum detection limit of 1 parts per million by volume (ppm. The central idea of the design of the sensor is to decrease the detection limit by increasing the signal to noise ratio (SNR of the system. In order to decrease the noise level, a single frequency filter algorithm based on fast Fourier transform (FFT is adopted for signal processing. Through simulation and experiment, it is found that the full width at half maximum (FWHM of the filter narrows with the extension of sampling period and the increase of lamp modulation frequency, and at some optimum sampling period and modulation frequency, the filtered signal maintains a noise to signal ratio of below 1/10,000. The sensor prototype provides the key techniques for a hand-held methane detector that has a low cost and a high resolution. Such a detector may facilitate the detection of leakage of city natural gas pipelines buried underground, the monitoring of landfill gas, the monitoring of air quality and so on.

  15. A Single Sided Edge Marking Method for Detecting Pectoral Muscle in Digital Mammograms

    Directory of Open Access Journals (Sweden)

    G. Toz

    2018-02-01

    Full Text Available In the computer-assisted diagnosis of breast cancer, the removal of pectoral muscle from mammograms is very important. In this study, a new method, called Single-Sided Edge Marking (SSEM technique, is proposed for the identification of the pectoral muscle border from mammograms. 60 mammograms from the INbreast database were used to test the proposed method. The results obtained were compared for False Positive Rate, False Negative Rate, and Sensitivity using the ground truth values pre-determined by radiologists for the same images. Accordingly, it has been shown that the proposed method can detect the pectoral muscle border with an average of 95.6% sensitivity.

  16. Dual-MWCNT Probe Thermal Sensor Assembly and Evaluation Based on Nanorobotic Manipulation inside a Field-Emission-Scanning Electron Microscope

    Directory of Open Access Journals (Sweden)

    Zhan Yang

    2015-03-01

    Full Text Available We report a thermal sensor composed of two multiwalled carbon nano-tubes (MWCNTs inside a field-emission-scanning electron microscope. The sensor was assembled using a nanorobotic manipulation system, which was used to construct a probe tip in order to detect the local environment of a single cell. An atomic force microscopy (AFM cantilever was used as a substrate; the cantilever was composed of Si3N4 and both sides were covered with a gold layer. MWCNTs were individually assembled on both sides of the AFM cantilever by employing nanorobotic manipulation. Another AFM cantilever was subsequently used as an end effector to manipulate the MWCNTs to touch each other. Electron-beam-induced deposition (EBID was then used to bond the two MWCNTs. The MWCNT probe thermal sensor was evaluated inside a thermostated container in the temperature range from 25°C to 60°C. The experimental results show the positive characteristics of the temperature coefficient of resistance (TCR.

  17. Portable atomic frequency standard based on coherent population trapping

    Science.gov (United States)

    Shi, Fan; Yang, Renfu; Nian, Feng; Zhang, Zhenwei; Cui, Yongshun; Zhao, Huan; Wang, Nuanrang; Feng, Keming

    2015-05-01

    In this work, a portable atomic frequency standard based on coherent population trapping is designed and demonstrated. To achieve a portable prototype, in the system, a single transverse mode 795nm VCSEL modulated by a 3.4GHz RF source is used as a pump laser which generates coherent light fields. The pump beams pass through a vapor cell containing atom gas and buffer gas. This vapor cell is surrounded by a magnetic shield and placed inside a solenoid which applies a longitudinal magnetic field to lift the Zeeman energy levels' degeneracy and to separate the resonance signal, which has no first-order magnetic field dependence, from the field-dependent resonances. The electrical control system comprises two control loops. The first one locks the laser wavelength to the minimum of the absorption spectrum; the second one locks the modulation frequency and output standard frequency. Furthermore, we designed the micro physical package and realized the locking of a coherent population trapping atomic frequency standard portable prototype successfully. The short-term frequency stability of the whole system is measured to be 6×10-11 for averaging times of 1s, and reaches 5×10-12 at an averaging time of 1000s.

  18. A sapphire monolithic differential accelerometer as core sensor for gravity gradiometric geophysical instrumentation

    Directory of Open Access Journals (Sweden)

    F. Mango

    2006-06-01

    Full Text Available Gradiometric gravimetry is a survey technique widely used in geological structure investigation. This work demonstrates the feasibility of a new class of low frequency accelerometers for geodynamics studies and space applications. We present the design features of a new low noise single-axis differential accelerometer; the sensor is suitable to be used in a Gravity Gradiometer (GG system for land geophysical survey and gravity gradient measurements. A resolution of 1 Eötvös (1 Eö=10?9s?2 at one sample per second is achievable in a compact, lightweight (less than 2 kg portable instrument, operating at room temperature. The basic components of the sensor are two identical rigidly connected accelerometers separated by a 15-cm baseline vector and the useful signal is extracted as the subtraction of the two outputs, by means of an interferometric microwave readout system. The structure will be engraved in a monocrystal of sapphire by means of Computer-Numerically-Controlled (CNC ultrasonic machining: the material was chosen because of its unique mix of outstanding mechanical and dielectric properties.

  19. Understanding the Potential of WO3 Based Sensors for Breath Analysis

    Science.gov (United States)

    Staerz, Anna; Weimar, Udo; Barsan, Nicolae

    2016-01-01

    Tungsten trioxide is the second most commonly used semiconducting metal oxide in gas sensors. Semiconducting metal oxide (SMOX)-based sensors are small, robust, inexpensive and sensitive, making them highly attractive for handheld portable medical diagnostic detectors. WO3 is reported to show high sensor responses to several biomarkers found in breath, e.g., acetone, ammonia, carbon monoxide, hydrogen sulfide, toluene, and nitric oxide. Modern material science allows WO3 samples to be tailored to address certain sensing needs. Utilizing recent advances in breath sampling it will be possible in the future to test WO3-based sensors in application conditions and to compare the sensing results to those obtained using more expensive analytical methods. PMID:27801881

  20. Consequences of Stimulus Type on Higher-Order Processing in Single-Sided Deaf Cochlear Implant Users.

    Science.gov (United States)

    Finke, Mareike; Sandmann, Pascale; Bönitz, Hanna; Kral, Andrej; Büchner, Andreas

    2016-01-01

    Single-sided deaf subjects with a cochlear implant (CI) provide the unique opportunity to compare central auditory processing of the electrical input (CI ear) and the acoustic input (normal-hearing, NH, ear) within the same individual. In these individuals, sensory processing differs between their two ears, while cognitive abilities are the same irrespectively of the sensory input. To better understand perceptual-cognitive factors modulating speech intelligibility with a CI, this electroencephalography study examined the central-auditory processing of words, the cognitive abilities, and the speech intelligibility in 10 postlingually single-sided deaf CI users. We found lower hit rates and prolonged response times for word classification during an oddball task for the CI ear when compared with the NH ear. Also, event-related potentials reflecting sensory (N1) and higher-order processing (N2/N4) were prolonged for word classification (targets versus nontargets) with the CI ear compared with the NH ear. Our results suggest that speech processing via the CI ear and the NH ear differs both at sensory (N1) and cognitive (N2/N4) processing stages, thereby affecting the behavioral performance for speech discrimination. These results provide objective evidence for cognition to be a key factor for speech perception under adverse listening conditions, such as the degraded speech signal provided from the CI. © 2016 S. Karger AG, Basel.

  1. Development of a high throughput single-particle screening for inorganic semiconductor nanorods as neural voltage sensor

    Science.gov (United States)

    Kuo, Yung; Park, Kyoungwon; Li, Jack; Ingargiola, Antonino; Park, Joonhyuck; Shvadchak, Volodymyr; Weiss, Shimon

    2017-08-01

    Monitoring membrane potential in neurons requires sensors with minimal invasiveness, high spatial and temporal (sub-ms) resolution, and large sensitivity for enabling detection of sub-threshold activities. While organic dyes and fluorescent proteins have been developed to possess voltage-sensing properties, photobleaching, cytotoxicity, low sensitivity, and low spatial resolution have obstructed further studies. Semiconductor nanoparticles (NPs), as prospective voltage sensors, have shown excellent sensitivity based on Quantum confined Stark effect (QCSE) at room temperature and at single particle level. Both theory and experiment have shown their voltage sensitivity can be increased significantly via material, bandgap, and structural engineering. Based on theoretical calculations, we synthesized one of the optimal candidates for voltage sensors: 12 nm type-II ZnSe/CdS nanorods (NRs), with an asymmetrically located seed. The voltage sensitivity and spectral shift were characterized in vitro using spectrally-resolved microscopy using electrodes grown by thin film deposition, which "sandwich" the NRs. We characterized multiple batches of such NRs and iteratively modified the synthesis to achieve higher voltage sensitivity (ΔF/F> 10%), larger spectral shift (>5 nm), better homogeneity, and better colloidal stability. Using a high throughput screening method, we were able to compare the voltage sensitivity of our NRs with commercial spherical quantum dots (QDs) with single particle statistics. Our method of high throughput screening with spectrally-resolved microscope also provides a versatile tool for studying single particles spectroscopy under field modulation.

  2. Single-Sided Deafness: Impact of Cochlear Implantation on Speech Perception in Complex Noise and on Auditory Localization Accuracy.

    Science.gov (United States)

    Döge, Julia; Baumann, Uwe; Weissgerber, Tobias; Rader, Tobias

    2017-12-01

    To assess auditory localization accuracy and speech reception threshold (SRT) in complex noise conditions in adult patients with acquired single-sided deafness, after intervention with a cochlear implant (CI) in the deaf ear. Nonrandomized, open, prospective patient series. Tertiary referral university hospital. Eleven patients with late-onset single-sided deafness (SSD) and normal hearing in the unaffected ear, who received a CI. All patients were experienced CI users. Unilateral cochlear implantation. Speech perception was tested in a complex multitalker equivalent noise field consisting of multiple sound sources. Speech reception thresholds in noise were determined in aided (with CI) and unaided conditions. Localization accuracy was assessed in complete darkness. Acoustic stimuli were radiated by multiple loudspeakers distributed in the frontal horizontal plane between -60 and +60 degrees. In the aided condition, results show slightly improved speech reception scores compared with the unaided condition in most of the patients. For 8 of the 11 subjects, SRT was improved between 0.37 and 1.70 dB. Three of the 11 subjects showed deteriorations between 1.22 and 3.24 dB SRT. Median localization error decreased significantly by 12.9 degrees compared with the unaided condition. CI in single-sided deafness is an effective treatment to improve the auditory localization accuracy. Speech reception in complex noise conditions is improved to a lesser extent in 73% of the participating CI SSD patients. However, the absence of true binaural interaction effects (summation, squelch) impedes further improvements. The development of speech processing strategies that respect binaural interaction seems to be mandatory to advance speech perception in demanding listening situations in SSD patients.

  3. A direct method for calculating instrument noise levels in side-by-side seismometer evaluations

    Science.gov (United States)

    Holcomb, L. Gary

    1989-01-01

    The subject of determining the inherent system noise levels present in modem broadband closed loop seismic sensors has been an evolving topic ever since closed loop systems became available. Closed loop systems are unique in that the system noise can not be determined via a blocked mass test as in older conventional open loop seismic sensors. Instead, most investigators have resorted to performing measurements on two or more systems operating in close proximity to one another and to analyzing the outputs of these systems with respect to one another to ascertain their relative noise levels.The analysis of side-by-side relative performance is inherently dependent on the accuracy of the mathematical modeling of the test configuration. This report presents a direct approach to extracting the system noise levels of two linear systems with a common coherent input signal. The mathematical solution to the problem is incredibly simple; however the practical application of the method encounters some difficulties. Examples of expected accuracies are presented as derived by simulating real systems performance using computer generated random noise. In addition, examples of the performance of the method when applied to real experimental test data are shown.

  4. A sensitivity-enhanced refractive index sensor using a single-mode thin-core fiber incorporating an abrupt taper.

    Science.gov (United States)

    Shi, Jie; Xiao, Shilin; Yi, Lilin; Bi, Meihua

    2012-01-01

    A sensitivity-enhanced fiber-optic refractive index (RI) sensor based on a tapered single-mode thin-core diameter fiber is proposed and experimentally demonstrated. The sensor head is formed by splicing a section of tapered thin-core diameter fiber (TCF) between two sections of single-mode fibers (SMFs). The cladding modes are excited at the first SMF-TCF interface, and then interfere with the core mode at the second interface, thus forming an inter-modal interferometer (IMI). An abrupt taper (tens of micrometers long) made by the electric-arc-heating method is utilized, and plays an important role in improving sensing sensitivity. The whole manufacture process only involves fiber splicing and tapering, and all the fabrication process can be achieved by a commercial fiber fusion splicer. Using glycerol and water mixture solution as an example, the experimental results show that the refractive index sensitivity is measured to be 0.591 nm for 1% change of surrounding RI. The proposed sensor structure features simple structure, low cost, easy fabrication, and high sensitivity.

  5. A Sensitivity-Enhanced Refractive Index Sensor Using a Single-Mode Thin-Core Fiber Incorporating an Abrupt Taper

    Directory of Open Access Journals (Sweden)

    Jie Shi

    2012-04-01

    Full Text Available A sensitivity-enhanced fiber-optic refractive index (RI sensor based on a tapered single-mode thin-core diameter fiber is proposed and experimentally demonstrated. The sensor head is formed by splicing a section of tapered thin-core diameter fiber (TCF between two sections of single-mode fibers (SMFs. The cladding modes are excited at the first SMF-TCF interface, and then interfere with the core mode at the second interface, thus forming an inter-modal interferometer (IMI. An abrupt taper (tens of micrometers long made by the electric-arc-heating method is utilized, and plays an important role in improving sensing sensitivity. The whole manufacture process only involves fiber splicing and tapering, and all the fabrication process can be achieved by a commercial fiber fusion splicer. Using glycerol and water mixture solution as an example, the experimental results show that the refractive index sensitivity is measured to be 0.591 nm for 1% change of surrounding RI. The proposed sensor structure features simple structure, low cost, easy fabrication, and high sensitivity.

  6. Laboratory Performance of the Single-Sided E-A-R (registered trademark) Combat Arms Hearing Protective Earplug

    Science.gov (United States)

    2010-01-01

    Research article / Article de recherche LABORATORY PERFORMANCE OF THE SINGLE-SIDED EAR® COMBAT ARMS HEARING PROTECTIVE EARPLUG Sharon M. Abel and...external microphones for enhanced L:. -communication-? ;‘ V SOMMAIRE. Le but de cet article est de comparer 1 effet du port de bouchons conventionnels a...MA. Bekesy audiometry and loudness balance testing. In: Katz, J, editor. Handbook of clinical audiology . 3rd ed. Williams & Wilkins: Baltimore; 1985

  7. Highly selective and sensitive detection of neurotransmitters using receptor-modified single-walled carbon nanotube sensors

    Science.gov (United States)

    Kim, Byeongju; Song, Hyun Seok; Jin, Hye Jun; Park, Eun Jin; Lee, Sang Hun; Lee, Byung Yang; Park, Tai Hyun; Hong, Seunghun

    2013-07-01

    We present receptor-modified carbon nanotube sensors for the highly selective and sensitive detection of acetylcholine (ACh), one kind of neurotransmitter. Here, we successfully expressed the M1 muscarinic acetylcholine receptor (M1 mAChR), a family of G protein-coupled receptors (GPCRs), in E. coli and coated single-walled carbon nanotube (swCNT)-field effect transistors (FETs) with lipid membrane including the receptor, enabling highly selective and sensitive ACh detection. Using this sensor, we could detect ACh at 100 pM concentration. Moreover, we showed that this sensor could selectively detect ACh among other neurotransmitters. This is the first demonstration of the real-time detection of ACh using specific binding between ACh and M1 mAChR, and it may lead to breakthroughs for various applications such as disease diagnosis and drug screening.

  8. Highly selective and sensitive detection of neurotransmitters using receptor-modified single-walled carbon nanotube sensors

    International Nuclear Information System (INIS)

    Kim, Byeongju; Jin, Hye Jun; Park, Eun Jin; Hong, Seunghun; Song, Hyun Seok; Lee, Sang Hun; Park, Tai Hyun; Lee, Byung Yang

    2013-01-01

    We present receptor-modified carbon nanotube sensors for the highly selective and sensitive detection of acetylcholine (ACh), one kind of neurotransmitter. Here, we successfully expressed the M1 muscarinic acetylcholine receptor (M1 mAChR), a family of G protein-coupled receptors (GPCRs), in E. coli and coated single-walled carbon nanotube (swCNT)-field effect transistors (FETs) with lipid membrane including the receptor, enabling highly selective and sensitive ACh detection. Using this sensor, we could detect ACh at 100 pM concentration. Moreover, we showed that this sensor could selectively detect ACh among other neurotransmitters. This is the first demonstration of the real-time detection of ACh using specific binding between ACh and M1 mAChR, and it may lead to breakthroughs for various applications such as disease diagnosis and drug screening. (paper)

  9. A Trusted Portable Computing Device

    Science.gov (United States)

    Ming-wei, Fang; Jun-jun, Wu; Peng-fei, Yu; Xin-fang, Zhang

    A trusted portable computing device and its security mechanism were presented to solve the security issues, such as the attack of virus and Trojan horse, the lost and stolen of storage device, in mobile office. It used smart card to build a trusted portable security base, virtualization to create a secure virtual execution environment, two-factor authentication mechanism to identify legitimate users, and dynamic encryption to protect data privacy. The security environment described in this paper is characteristic of portability, security and reliability. It can meet the security requirement of mobile office.

  10. Portable gamma-ray spectrometers and spectrometry systems

    International Nuclear Information System (INIS)

    Shebell, P.

    1999-01-01

    The current state-of-the-art in portable gamma-ray spectrometers and portable spectrometry systems is discussed. A comparison of detector performance and features of commercially available systems are summarised. Finally, several applications of portable systems are described. (author)

  11. On-Line Self-Calibrating Single Crystal Sapphire Optical Sensor Instrumentation for Accurate and Reliable Coal Gasifier Temperature Measurement

    Energy Technology Data Exchange (ETDEWEB)

    Kristie Cooper; Gary Pickrell; Anbo Wang

    2005-11-01

    This report summarizes technical progress April-September 2005 on the Phase II program ''On-Line Self-Calibrating Single Crystal Sapphire Optical Sensor Instrumentation for Accurate and Reliable Coal Gasifier Temperature Measurement'', funded by the Federal Energy Technology Center of the U.S. Department of Energy, and performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. The outcome of the first phase of this program was the selection of broadband polarimetric differential interferometry (BPDI) for further prototype instrumentation development. This approach is based on the measurement of the optical path difference (OPD) between two orthogonally polarized light beams in a single-crystal sapphire disk. The objective of this program is to bring the sensor technology, which has already been demonstrated in the laboratory, to a level where the sensor can be deployed in the harsh industrial environments and will become commercially viable. Due to the difficulties described on the last report, field testing of the BPDI system has not continued to date. However, we have developed an alternative high temperature sensing solution, which is described in this report. The sensing system will be installed and tested at TECO's Polk Power Station. Following a site visit in June 2005, our efforts have been focused on preparing for that field test, including he design of the sensor mechanical packaging, sensor electronics, the data transfer module, and the necessary software codes to accommodate this application.. We are currently ready to start sensor fabrication.

  12. Portable modular detection system

    Science.gov (United States)

    Brennan, James S [Rodeo, CA; Singh, Anup [Danville, CA; Throckmorton, Daniel J [Tracy, CA; Stamps, James F [Livermore, CA

    2009-10-13

    Disclosed herein are portable and modular detection devices and systems for detecting electromagnetic radiation, such as fluorescence, from an analyte which comprises at least one optical element removably attached to at least one alignment rail. Also disclosed are modular detection devices and systems having an integrated lock-in amplifier and spatial filter and assay methods using the portable and modular detection devices.

  13. Fabrication of advanced military radiation detector sensor and performance evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Sin Yang

    2010-02-15

    Recently, our country is facing a continuous nuclear weapons threat. Therefore, we must have a high-level nuclear weapons protection system. The best protection against nuclear weapons is detecting their use to reduce casualties in our country to a minimum. That means, the development of a military radiation detector is a very important issue. The Korea army is using the 'PDR - 1K portable military radiation surveymeter' in NBC (Nuclear, Biological, Chemical warfare) operations. The PDR - 1K military detector can measure beta and gamma rays only but it cannot detect alpha particles. Because of its characteristics, the Korea army has weaknesses in tactical operations. The PDR - 1K sensor is based on a GM - tube sensor system. For the mechanical structure, detectors utilizing a GM-tube sensor do not work on a high - radiation battlefield and they do not carry out nuclide analysis for fixed electron signal output. In the meantime, the United States of America and Germany are using 'AN/PDR - 77' and 'SVG - 2' that were made from scintillator sensors. They have excellent physical qualities and radiation responses for military use. Also, nuclide analysis is available. Therefore, in this study we fabricated a military - grade scintillator radiation sensor that is able to detect alpha, beta, and gamma - rays to overcome PDR - 1K's weaknesses. Also, physical characteristics and radiation response evaluation for the fabricated sensors was carried out. The alpha - particle sensor and beta - ray sensor were fabricated using a ZnS(Ag) powder state scintillator, and a Saint - Gobain organic plastic scintillator BC-408 panel, respectively. The gamma ray sensor was manufactured using a 10 x 10 x 10 mm{sup 3} CsI(Tl) inorganic scintillator crystal. A detailed explanation follows. The alpha particle sensor was fabricated by using air - brushing method to Zns(Ag) powder scintillator spreading. The ZnS(Ag) layer thickness was 35 {mu}m (detection

  14. Developing an Affordable and Portable Control Systems Laboratory Kit with a Raspberry Pi

    Directory of Open Access Journals (Sweden)

    Rebecca M. Reck

    2016-07-01

    Full Text Available Instructional laboratories are common in engineering programs. Instructional laboratories should evolve with technology and support the changes in higher education, like the increased popularity of online courses. In this study, an affordable and portable laboratory kit was designed to replace the expensive on-campus equipment for two control systems courses. The complete kit costs under $135 and weighs under 0.68 kilograms. It is comprised of off-the-shelf components (e.g., Raspberry Pi, DC motor and 3D printed parts. The kit has two different configurations. The first (base configuration is a DC motor system with a position and speed sensor. The second configuration adds a Furuta inverted pendulum attachment with another position sensor. These configurations replicate most of the student learning outcomes for the two control systems courses for which they were designed.

  15. Validation of Foot Placement Locations from Ankle Data of a Kinect v2 Sensor.

    Science.gov (United States)

    Geerse, Daphne; Coolen, Bert; Kolijn, Detmar; Roerdink, Melvyn

    2017-10-10

    The Kinect v2 sensor may be a cheap and easy to use sensor to quantify gait in clinical settings, especially when applied in set-ups integrating multiple Kinect sensors to increase the measurement volume. Reliable estimates of foot placement locations are required to quantify spatial gait parameters. This study aimed to systematically evaluate the effects of distance from the sensor, side and step length on estimates of foot placement locations based on Kinect's ankle body points. Subjects (n = 12) performed stepping trials at imposed foot placement locations distanced 2 m or 3 m from the Kinect sensor (distance), for left and right foot placement locations (side), and for five imposed step lengths. Body points' time series of the lower extremities were recorded with a Kinect v2 sensor, placed frontoparallelly on the left side, and a gold-standard motion-registration system. Foot placement locations, step lengths, and stepping accuracies were compared between systems using repeated-measures ANOVAs, agreement statistics and two one-sided t -tests to test equivalence. For the right side at the 2 m distance from the sensor we found significant between-systems differences in foot placement locations and step lengths, and evidence for nonequivalence. This distance by side effect was likely caused by differences in body orientation relative to the Kinect sensor. It can be reduced by using Kinect's higher-dimensional depth data to estimate foot placement locations directly from the foot's point cloud and/or by using smaller inter-sensor distances in the case of a multi-Kinect v2 set-up to estimate foot placement locations at greater distances from the sensor.

  16. Performance of the ALIBAVA portable readout system with irradiated and non-irradiated microstrip silicon sensors

    International Nuclear Information System (INIS)

    Marco-Hernadez, R.

    2009-01-01

    A readout system for microstrip silicon sensors has been developed as a result of collaboration among the University of Liverpool, the CNM of Barcelona and the IFIC of Valencia. The name of this collaboration is ALIBAVA and it is integrated in the RD50 Collaboration. This system is able to measure the collected charge in one or two microstrip silicon sensors by reading out all the channels of the sensor(s), up to 256, as an analogue measurement. The system uses two Beetle chips to read out the detector(s). The Beetle chip is an analogue pipelined readout chip used in the LHCb experiment. The system can operate either with non-irradiated and irradiated sensors as well as with n-type and p-type microstrip silicon sensors. Heavily irradiated sensors will be used at the SLHC, so this system is being to research the performance of microstrip silicon sensors in conditions as similar as possible to the SLHC operating conditions. The system has two main parts: a hardware part and a software part. The hardware part acquires the sensor signals either from external trigger inputs, in case of a radioactive source setup is used, or from a synchronised trigger output generated by the system, if a laser setup is used. This acquired data is sent by USB to be stored in a PC for a further processing. The hardware is a dual board based system. The daughterboard is a small board intended for containing two Beetle readout chips as well as fan-ins and detector support to interface the sensors. The motherboard is intended to process the data, to control the whole hardware and to communicate with the software by USB. The software controls the system and processes the data acquired from the sensors in order to store it in an adequate format file. The main characteristics of the system will be described. Results of measurements acquired with n-type and p-type irradiated and non-irradiated detectors using both the laser and the radioactive source setup will be also presented and discussed

  17. Portable nucleic acid thermocyclers.

    Science.gov (United States)

    Almassian, David R; Cockrell, Lisa M; Nelson, William M

    2013-11-21

    A nucleic acid thermal cycler is considered to be portable if it is under ten pounds, easily carried by one individual, and battery powered. Nucleic acid amplification includes both polymerase chain reaction (e.g. PCR, RT-PCR) and isothermal amplification (e.g. RPA, HDA, LAMP, NASBA, RCA, ICAN, SMART, SDA). There are valuable applications for portable nucleic acid thermocyclers in fields that include clinical diagnostics, biothreat detection, and veterinary testing. A system that is portable allows for the distributed detection of targets at the point of care and a reduction of the time from sample to answer. The designer of a portable nucleic acid thermocycler must carefully consider both thermal control and the detection of amplification. In addition to thermal control and detection, the designer may consider the integration of a sample preparation subsystem with the nucleic acid thermocycler. There are a variety of technologies that can achieve accurate thermal control and the detection of nucleic acid amplification. Important evaluation criteria for each technology include maturity, power requirements, cost, sensitivity, speed, and manufacturability. Ultimately the needs of a particular market will lead to user requirements that drive the decision between available technologies.

  18. A Review of Carbon Nanotubes-Based Gas Sensors

    Directory of Open Access Journals (Sweden)

    Yun Wang

    2009-01-01

    Full Text Available Gas sensors have attracted intensive research interest due to the demand of sensitive, fast response, and stable sensors for industry, environmental monitoring, biomedicine, and so forth. The development of nanotechnology has created huge potential to build highly sensitive, low cost, portable sensors with low power consumption. The extremely high surface-to-volume ratio and hollow structure of nanomaterials is ideal for the adsorption of gas molecules. Particularly, the advent of carbon nanotubes (CNTs has fuelled the inventions of gas sensors that exploit CNTs' unique geometry, morphology, and material properties. Upon exposure to certain gases, the changes in CNTs' properties can be detected by various methods. Therefore, CNTs-based gas sensors and their mechanisms have been widely studied recently. In this paper, a broad but yet in-depth survey of current CNTs-based gas sensing technology is presented. Both experimental works and theoretical simulations are reviewed. The design, fabrication, and the sensing mechanisms of the CNTs-based gas sensors are discussed. The challenges and perspectives of the research are also addressed in this review.

  19. Whole field strain measurement in critical thin adhesive layer of single- and double-sided repaired CFRP panel using DIC

    Science.gov (United States)

    Kashfuddoja, Mohammad; Ramji, M.

    2015-03-01

    In the present work, the behavior of thin adhesively layer in patch repaired carbon fiber reinforced polymer (CFRP) panel under tensile load is investigated experimentally using digital image correlation (DIC) technique. The panel is made of Carbon/epoxy composite laminate and the stacking sequence in the panel is [0º]4. A circular hole of 10 mm diameter (d) is drilled at the center of the panel to mimic the case of low velocity impact damage removal. The panel with open hole is repaired with double sided (symmetrical) and single sided (unsymmetrical) rectangular patch made of same panel material having stacking sequence of [0º]3. Araldite 2011 is used for bonding the patch onto the panel over the damaged area. The global behavior of thin adhesive layer is examined by analyzing whole field strain distribution using DIC. Longitudinal, peel and shear strain field in both double and single sided repair configuration is studied and a compression is made between them. An estimate of shear transfer length which is an essential parameter in arriving at an appropriate overlap length in patch design is proposed from DIC and FEA. Damage development, failure mechanism and load displacement behavior is also investigated. The experimental results are compared with the numerical predictions.

  20. The microassay on a card: A rugged, portable immunoassay

    Science.gov (United States)

    Kidwell, David

    1991-01-01

    The Microassay on a Card (MAC) is a portable, hand-held, non-instrumental immunoassay that can test for the presence of a wide variety of substances in the environment. The MAC is a simple device to use. A drop of test solution is placed on one side of the card and within five minutes a color is developed on the other side in proportion to the amount of substance in the test solution, with sensitivity approaching 10 ng/ml. The MAC is self-contained and self-timed; no reagents or timing is necessary. The MAC may be configured with multiple wells to provide simultaneous testing for multiple species. As envisioned, the MAC will be employed first as an on-site screen for drugs of abuse in urine or saliva. If the MAC can be used as a screen of saliva for drugs of abuse, it could be applied to driving while intoxicated, use of drugs on the job, or testing of the identity of seized materials. With appropriate modifications, the MAC also could be used to test for environmental toxins or pollutants.

  1. Compact and portable system for evaluation of individual exposure at aerosol particle in urban area

    International Nuclear Information System (INIS)

    De Zaiacomo, T.

    1995-01-01

    A compact and portable system for real-time acquisition of aerosol concentration data in urban and extra-urban area is presented. It is based on two optical type aerosol monitors integrated by aerosol particle separating and collecting devices, assembled into a carrying case together with temperature and relative humidity sensors and a programmable analog data logger; data output is addressed to a dedicated printer or personal computer. Further data about particle size, morphological aspect and particle mass concentration are obtainable by weighing supports used to concurrently collect aerosol particles and/or by means of microanalytical techniques. System performances are evaluated from the point of view of portability, possibility of use as stationary sampler for long-term monitoring purposes and coherence between optical response and ponderal mass. Some tests are finally carried out, to investigate the effect of relative humidity on the optical response of this type of instruments

  2. Pressure reducing capacity of felt: a feasibility study using a new portable system with thin sensors.

    Science.gov (United States)

    Deschamps, Kevin; Messier, Benjamin

    2015-03-01

    Pressure redistribution and off-loading is a vital component in the management of the foot in diabetes. In the present study, a new portable system encompassing thin piezoresistors was tested for clinical utility and efficacy with respect to a commonly used pressure relieving dressing for the foot in diabetes. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  3. Development of magnetic jxB sensor

    International Nuclear Information System (INIS)

    Kasai, Satoshi; Ishitsuka, Etsuo

    2001-12-01

    The improved mechanical sensor, i.e. magnetic jxB sensor (a mechanical sensor and a part of the steady state hybrid-type magnetic sensor) has been designed. The basic structure of the sensor is similar to the previously developed sensor (old sensor) in EDA phase. In this design, the neutron resistant materials are selected for the load cell (strain gauge and sensor beam) and sensing coil/frame. In order to reduce temperature drift of the sensor signal, four strain gauges with the same electrical property and geometrical size are bonded on the sensor beam by using Al 2 O 3 plasma spraying process, i.e., a couple of strain gauges is bonded on one side of the beam and another couple of gauges is bonded on the other side. These four strain gauges form an electrical bridge circuit. The zero-level drift of the output of the load cell used in the magnetic jxB sensor was reduced to about 1/20 compared with the old sensor. The temperature dependence of the output of the load cell is small. The linearity of the output of the load cell against weight was obtained. A non-linearity was observed in the sensitivity of the magnetic jxB sensor. The deviation of sensitivity from the fitting line was less than 7% in the high magnetic field region. The neutron irradiation effect on sensitivity of the sensor was investigated. The sensitivity of the sensor was gradually decreased by ∼30% at neutron fluence of (1.8-2.8)x10 23 n/m 2 in the high magnetic field. During irradiation, the non-linearity was observed in the sensitivity. (author)

  4. Smart sensor systems for human health breath monitoring applications.

    Science.gov (United States)

    Hunter, G W; Xu, J C; Biaggi-Labiosa, A M; Laskowski, D; Dutta, P K; Mondal, S P; Ward, B J; Makel, D B; Liu, C C; Chang, C W; Dweik, R A

    2011-09-01

    Breath analysis techniques offer a potential revolution in health care diagnostics, especially if these techniques can be brought into standard use in the clinic and at home. The advent of microsensors combined with smart sensor system technology enables a new generation of sensor systems with significantly enhanced capabilities and minimal size, weight and power consumption. This paper discusses the microsensor/smart sensor system approach and provides a summary of efforts to migrate this technology into human health breath monitoring applications. First, the basic capability of this approach to measure exhaled breath associated with exercise physiology is demonstrated. Building from this foundation, the development of a system for a portable asthma home health care system is described. A solid-state nitric oxide (NO) sensor for asthma monitoring has been identified, and efforts are underway to miniaturize this NO sensor technology and integrate it into a smart sensor system. It is concluded that base platform microsensor technology combined with smart sensor systems can address the needs of a range of breath monitoring applications and enable new capabilities for healthcare.

  5. A single-sided homogeneous Green's function representation for holographic imaging, inverse scattering, time-reversal acoustics and interferometric Green's function retrieval

    Science.gov (United States)

    Wapenaar, Kees; Thorbecke, Jan; van der Neut, Joost

    2016-04-01

    Green's theorem plays a fundamental role in a diverse range of wavefield imaging applications, such as holographic imaging, inverse scattering, time-reversal acoustics and interferometric Green's function retrieval. In many of those applications, the homogeneous Green's function (i.e. the Green's function of the wave equation without a singularity on the right-hand side) is represented by a closed boundary integral. In practical applications, sources and/or receivers are usually present only on an open surface, which implies that a significant part of the closed boundary integral is by necessity ignored. Here we derive a homogeneous Green's function representation for the common situation that sources and/or receivers are present on an open surface only. We modify the integrand in such a way that it vanishes on the part of the boundary where no sources and receivers are present. As a consequence, the remaining integral along the open surface is an accurate single-sided representation of the homogeneous Green's function. This single-sided representation accounts for all orders of multiple scattering. The new representation significantly improves the aforementioned wavefield imaging applications, particularly in situations where the first-order scattering approximation breaks down.

  6. A portable smart phone-based plasmonic nanosensor readout platform that measures transmitted light intensities of nanosubstrates using an ambient light sensor.

    Science.gov (United States)

    Fu, Qiangqiang; Wu, Ze; Xu, Fangxiang; Li, Xiuqing; Yao, Cuize; Xu, Meng; Sheng, Liangrong; Yu, Shiting; Tang, Yong

    2016-05-21

    Plasmonic nanosensors may be used as tools for diagnostic testing in the field of medicine. However, quantification of plasmonic nanosensors often requires complex and bulky readout instruments. Here, we report the development of a portable smart phone-based plasmonic nanosensor readout platform (PNRP) for accurate quantification of plasmonic nanosensors. This device operates by transmitting excitation light from a LED through a nanosubstrate and measuring the intensity of the transmitted light using the ambient light sensor of a smart phone. The device is a cylinder with a diameter of 14 mm, a length of 38 mm, and a gross weight of 3.5 g. We demonstrated the utility of this smart phone-based PNRP by measuring two well-established plasmonic nanosensors with this system. In the first experiment, the device measured the morphology changes of triangular silver nanoprisms (AgNPRs) in an immunoassay for the detection of carcinoembryonic antigen (CEA). In the second experiment, the device measured the aggregation of gold nanoparticles (AuNPs) in an aptamer-based assay for the detection of adenosine triphosphate (ATP). The results from the smart phone-based PNRP were consistent with those from commercial spectrophotometers, demonstrating that the smart phone-based PNRP enables accurate quantification of plasmonic nanosensors.

  7. Note: A disposable x-ray camera based on mass produced complementary metal-oxide-semiconductor sensors and single-board computers

    Energy Technology Data Exchange (ETDEWEB)

    Hoidn, Oliver R.; Seidler, Gerald T., E-mail: seidler@uw.edu [Physics Department, University of Washington, Seattle, Washington 98195 (United States)

    2015-08-15

    We have integrated mass-produced commercial complementary metal-oxide-semiconductor (CMOS) image sensors and off-the-shelf single-board computers into an x-ray camera platform optimized for acquisition of x-ray spectra and radiographs at energies of 2–6 keV. The CMOS sensor and single-board computer are complemented by custom mounting and interface hardware that can be easily acquired from rapid prototyping services. For single-pixel detection events, i.e., events where the deposited energy from one photon is substantially localized in a single pixel, we establish ∼20% quantum efficiency at 2.6 keV with ∼190 eV resolution and a 100 kHz maximum detection rate. The detector platform’s useful intrinsic energy resolution, 5-μm pixel size, ease of use, and obvious potential for parallelization make it a promising candidate for many applications at synchrotron facilities, in laser-heating plasma physics studies, and in laboratory-based x-ray spectrometry.

  8. Numerical Simulation of Inter-Flat Air Cross-Contamination under the Condition of Single-Sided Natural Ventilation

    DEFF Research Database (Denmark)

    Liu, Xiaoping; Niu, Jianlei; Perino, Marco

    2008-01-01

    ventilated room, the renormalization group based k-ε model, together with carbon dioxide used as a tracer, is chosen to reveal this air cross-contamination. The simulation results are in agreement with our prior on-site tracer-gas measurements, revealing that the windows flush with a flat fa ade can...... be a major route of the air cross-contamination in high-rise residential buildings. Finally, an assessment index is proposed to evaluate the potential infection risks associated with this inter-flat air flow occurring in high-rise residential buildings....... the two sides, each of which has a flat fa ade with openable windows. When the wind speed is extremely low, with doors closed and windows opened, the flats become single-sided naturally ventilated driven by buoyancy effects. The air pollutants can travel from a lower flat to a vertically adjacent upper...

  9. 46 CFR 78.47-70 - Portable magazine chests.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 3 2010-10-01 2010-10-01 false Portable magazine chests. 78.47-70 Section 78.47-70... Fire and Emergency Equipment, Etc. § 78.47-70 Portable magazine chests. (a) Portable magazine chest shall be marked in letters of at least 3 inches high “PORTABLE MAGAZINE CHEST—FLAMMABLE—KEEP LIGHTS AND...

  10. 46 CFR 97.37-47 - Portable magazine chests.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Portable magazine chests. 97.37-47 Section 97.37-47... OPERATIONS Markings for Fire and Emergency Equipment, Etc. § 97.37-47 Portable magazine chests. (a) Portable magazine chests shall be marked in letters at least 3 inches high: “PORTABLE MAGAZINE CHEST—FLAMMABLE—KEEP...

  11. 46 CFR 196.37-47 - Portable magazine chests.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Portable magazine chests. 196.37-47 Section 196.37-47... Markings for Fire and Emergency Equipment, etc. § 196.37-47 Portable magazine chests. (a) Portable magazine chests shall be marked in letters at least 3 inches high: PORTABLE MAGAZINE CHEST — FLAMMABLE — KEEP...

  12. Fabrication and characterization of artificial hair cell sensor based on MWCNT-PDMS composite

    Science.gov (United States)

    Kim, Chi Yeon; Lee, Hyun Sup; Cho, Yo Han; Joh, Cheeyoung; Choi, Pyung; Park, Seong Jin

    2011-06-01

    The aim of this work is to design and fabricate a flow sensor using an artificial hair cell (AHC) inspired by biological hair cells of fish. The sensor consists of a single cilium structure with high aspect ratio and a mechanoreceptor using force sensitive resistor (FSR). The cilium structure is designed for capturing a drag force with direction due to flow field around the sensor and the mechanoreceptor is designed for sensing the drag force with direction from the cilium structure and converting it into an electric signal. The mechanoreceptor has a symmetric four electrodes to sense the drag force and its direction. To fabricate the single cilium structure with high aspect ratio, we have proposed a new design concept using a separated micro mold system (SMS) fabricated by the LIGA process. For a successful replication of the cilium structure, we used the hot embossing process with the help of a double-sided mold system. We used a composite of multiwall carbon nanotube and polydimethylsiloxane (MWCNT-PDMS). The performance of the mechanoreceptors was measured by a computer-controlled nanoindenter. We carried out several experiments with the sensor in the different flow rate and direction using the experimental test apparatus. To calibrate the sensor and calculate the velocity with direction based the signal from the sensor, we analyzed the coupled phenomena between flow field and the cilium structure to calculate the deflection of the cilium structure and the drag force applying to the cilium structure due to the flow field around sensor.

  13. Time-of-flight camera via a single-pixel correlation image sensor

    Science.gov (United States)

    Mao, Tianyi; Chen, Qian; He, Weiji; Dai, Huidong; Ye, Ling; Gu, Guohua

    2018-04-01

    A time-of-flight imager based on single-pixel correlation image sensors is proposed for noise-free depth map acquisition in presence of ambient light. Digital micro-mirror device and time-modulated IR-laser provide spatial and temporal illumination on the unknown object. Compressed sensing and ‘four bucket principle’ method are combined to reconstruct the depth map from a sequence of measurements at a low sampling rate. Second-order correlation transform is also introduced to reduce the noise from the detector itself and direct ambient light. Computer simulations are presented to validate the computational models and improvement of reconstructions.

  14. Review of Recent Metamaterial Microfluidic Sensors.

    Science.gov (United States)

    Salim, Ahmed; Lim, Sungjoon

    2018-01-15

    Metamaterial elements/arrays exhibit a sensitive response to fluids yet with a small footprint, therefore, they have been an attractive choice to realize various sensing devices when integrated with microfluidic technology. Micro-channels made from inexpensive biocompatible materials avoid any contamination from environment and require only microliter-nanoliter sample for sensing. Simple design, easy fabrication process, light weight prototype, and instant measurements are advantages as compared to conventional (optical, electrochemical and biological) sensing systems. Inkjet-printed flexible sensors find their utilization in rapidly growing wearable electronics and health-monitoring flexible devices. Adequate sensitivity and repeatability of these low profile microfluidic sensors make them a potential candidate for point-of-care testing which novice patients can use reliably. Aside from degraded sensitivity and lack of selectivity in all practical microwave chemical sensors, they require an instrument, such as vector network analyzer for measurements and not readily available as a self-sustained portable sensor. This review article presents state-of-the-art metamaterial inspired microfluidic bio/chemical sensors (passive devices ranging from gigahertz to terahertz range) with an emphasis on metamaterial sensing circuit and microfluidic detection. We also highlight challenges and strategies to cope these issues which set future directions.

  15. Radiation damage effects on CMS sensors quality assurance and irradiation tests

    CERN Document Server

    Furgeri, Alexander J; de Boer, Wim; Forton, E; Freudenstein, S; Hartmann, F

    2004-01-01

    The Large Hadron Collider (LHC) at the Centre Europeenne pour la Recherche Nucleaire (CERN), Geneva, Switzerland, is a proton-proton collider with a luminosity of 10**3**4/cm**2s and will be working for ten years (starting in 2007). The Compact Muon Solenoid (CMS) will be one of the four general-purpose detectors. The CMS tracker consists of ten barrel layers, plus 2 multiplied by 9 end cap discs, which amounts to a total of 24 328 silicon sensors with a total area of 206 m**2 silicon, covering a pseudorapidity of vertical bar eta; vertical bar less than approximately equals 2.5. For the sensors close to the beam pipe, fluences of 1.6 center dot 10**1**4n//1 MeV/cm**2 are expected over the ten-year lifetime. To guarantee the functionality of the single-side silicon sensors during the runtime of the LHC, quality assurance was developed. In the two Irradiation Qualification Centers (IQCs) in Karlsruhe, Germany, and Louvain-la-Neuve, Belgium, a fraction of 1% of the sensors are electrically qualified. In Karlsru...

  16. Radioactive air emissions notice of construction use of a portable exhauster on single-shell tanks during salt well pumping; FINAL

    International Nuclear Information System (INIS)

    HOMAN, N.A.

    1999-01-01

    This document serves as a notice of construction (NOC), pursuant to the requirements of Washington Administrative Code (WAC) 246-247-060, and as a request for approval to construct, pursuant to 40 Code of Federal Regulations (CFR) 61.07, portable exhausters for use on singleshell tanks (SSTs) during salt well pumping. Table 1-1 lists SSTs covered by this NOC. This GOC also addresses other activities that are performed in support of salt well pumping but do not require the application of a portable exhauster. Specifically this NOC analyzes the following three activities that have the potential for emissions. (1) Salt well pumping (i.e., the actual transferring of waste from one tank to another) under nominal tank operating conditions. Nominal tank operating conditions include existing passive breathing rates. (2) Salt well pumping (the actual transferring of waste from one tank to another) with use of a portable exhauster. (3) Use of a water lance on the waste to facilitate salt well screen and salt well jet pump installation into the waste. This activity is to be performed under nominal (existing passive breathing rates) tank operating conditions. The use of portable exhausters represents a cost savings because one portable exhauster can be moved back and forth between SSTs as schedules for salt well pumping dictate. A portable exhauster also could be used to simultaneously exhaust more than one SST during salt well pumping. The primary objective of providing active ventilation to these SSTs during salt well pumping is to reduce the risk of postulated accidents to remain within risk guidelines. It is anticipated that salt well pumping will release gases entrapped within the waste as the liquid level is lowered, because of less hydrostatic force keeping the gases in place. Hanford Site waste tanks must comply with the Tank Farms authorization basis (DESH 1997) that requires that the flammable gas concentration be less than 25 percent of the lower flammability limit

  17. Design and tests of the silicon sensors for the ZEUS micro vertex detector

    International Nuclear Information System (INIS)

    Dannheim, D.; Koetz, U.; Coldewey, C.; Fretwurst, E.; Garfagnini, A.; Klanner, R.; Martens, J.; Koffeman, E.; Tiecke, H.; Carlin, R.

    2003-01-01

    To fully exploit the HERA-II upgrade, the ZEUS experiment has installed a Micro Vertex Detector (MVD) using n-type, single-sided, silicon μ-strip sensors with capacitive charge division. The sensors have a readout pitch of 120 μm, with five intermediate strips (20 μm strip pitch). The designs of the silicon sensors and of the test structures used to verify the technological parameters, are presented. Results on the electrical measurements are discussed. A total of 1123 sensors with three different geometries have been produced by Hamamatsu Photonics K.K. Irradiation tests with reactor neutrons and 60 Co photons have been performed for a small sample of sensors. The results on neutron irradiation (with a fluence of 1x10 13 1 MeV equivalent neutrons/cm 2 ) are well described by empirical formulae for bulk damage. The 60 Co photons (with doses up to 2.9 kGy) show the presence of generation currents in the SiO 2 -Si interface, a large shift of the flatband voltage and a decrease of the hole mobility

  18. 29 CFR 1915.132 - Portable electric tools.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Portable electric tools. 1915.132 Section 1915.132 Labor... § 1915.132 Portable electric tools. The provisions of this section shall apply to ship repairing... frames of portable electric tools and appliances, except double insulated tools approved by Underwriters...

  19. 21 CFR 868.5440 - Portable oxygen generator.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Portable oxygen generator. 868.5440 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5440 Portable oxygen generator. (a) Identification. A portable oxygen generator is a device that is intended to release oxygen for respiratory...

  20. Computer-Aided Detection with a Portable Electrocardiographic Recorder and Acceleration Sensors for Monitoring Obstructive Sleep Apnea

    Directory of Open Access Journals (Sweden)

    Ji-Won Baek

    2014-03-01

    Full Text Available Obstructive sleep apnea syndrome is a sleep-related breathing disorder that is caused by obstruction of the upper airway. This condition may be related with many clinical sequelae such as cardiovascular disease, high blood pressure, stroke, diabetes, and clinical depression. To diagnosis obstructive sleep apnea, in-laboratory full polysomnography is considered as a standard test to determine the severity of respiratory disturbance. However, polysomnography is expensive and complicated to perform. In this research, we explore a computer-aided diagnosis system with portable ECG equipment and tri-accelerometer (x, y, and z-axes that can automatically analyze biosignals and test for OSA. Traditional approaches to sleep apnea data analysis have been criticized; however, there are not enough suggestions to resolve the existing problems. As an effort to resolve this issue, we developed an approach to record ECG signals and abdominal movements induced by breathing by affixing ECG-enabled electrodes onto a triaxial accelerometer. With the two signals simultaneously measured, the apnea data obtained would be more accurate, relative to cases where a single signal is measured. This would be helpful in diagnosing OSA. Moreover, a useful feature point can be extracted from the two signals after applying a signal processing algorithm, and the extracted feature point can be applied in designing a computer-aided diagnosis algorithm using a machine learning technique.

  1. Understanding portable generators

    Energy Technology Data Exchange (ETDEWEB)

    Hills, A.; Hawkins, B. [Guelph Univ., ON (Canada); Clarke, S. [Ontario Ministry of Agriculture, Food and Rural Affairs, Toronto, ON (Canada)

    2000-06-01

    This factsheet is intended to help consumers select a small portable generator for emergency electrical needs. Interest in standby generators has been heightened ever since the prolonged power outage in Eastern Ontario and Southwestern Quebec during the 1998 ice storm and the concern over Y2K related outages. Farmers, in particular, have been reassessing their need for emergency electrical power supply. This document presents some of the factors that should be considered when purchasing and operating a portable generator in the 3 to 12 kW size. It provides a detailed review of power quality and describes the use of tractor-driven power-take-off generators of 15 kW and larger. Several manufacturers make portable generators in many sizes with a whole range of features. This document includes a table depicting generator Feature/Benefit analysis to help consumers understand the differences between features and benefits. A second table provides a check list for generator feature/benefits. Specific details for the operations of various generators are available from manufacturers, distributors and electrical contractors. 2 tabs., 1 fig.

  2. A HYPOTHESIS: COULD PORTABLE NATURAL GRASS BE A RISK FACTOR FOR KNEE INJURIES?

    Directory of Open Access Journals (Sweden)

    John Orchard

    2008-03-01

    Full Text Available Previous study has shown a likely link between increased shoe- surface traction and risk of knee Anterior Cruciate Ligament (ACL injury. Portable natural grass systems are being used more often in sport, but no study to date has investigated their relative safety. By their nature, they must have high resistance to falling apart and therefore newly laid systems may be at risk of creating excessive shoe-surface traction. This study describes two clusters of knee injuries (particularly non-contact ACL injuries, each occurring to players of one professional football team at single venue, using portable grass, in a short space of time. The first series included two ACL injuries, one posterolateral complex disruption and one lateral ligament tear occurring in two rugby league games on a portable bermudagrass surface in Brisbane, Australia. The second series included four non-contact ACL injuries over a period of ten weeks in professional soccer games on a portable Kentucky bluegrass/perennial ryegrass surface in Barcelona, Spain. Possible intrinsic risk factors are discussed but there was no common risk shared by the players. Although no measures of traction were made at the Brisbane venue, average rotational traction was measured towards the end of the injury cluster at Camp Nou, Barcelona, to be 48 Nm. Chance undoubtedly had a part to play in these clusters, but the only obvious common risk factor was play on a portable natural grass surface soon after it was laid. Further study is required to determine whether portable natural grass systems may exhibit high shoe-surface traction soon after being laid and whether this could be a risk factor for knee injury

  3. Multiocular image sensor with on-chip beam-splitter and inner meta-micro-lens for single-main-lens stereo camera.

    Science.gov (United States)

    Koyama, Shinzo; Onozawa, Kazutoshi; Tanaka, Keisuke; Saito, Shigeru; Kourkouss, Sahim Mohamed; Kato, Yoshihisa

    2016-08-08

    We developed multiocular 1/3-inch 2.75-μm-pixel-size 2.1M- pixel image sensors by co-design of both on-chip beam-splitter and 100-nm-width 800-nm-depth patterned inner meta-micro-lens for single-main-lens stereo camera systems. A camera with the multiocular image sensor can capture horizontally one-dimensional light filed by both the on-chip beam-splitter horizontally dividing ray according to incident angle, and the inner meta-micro-lens collecting the divided ray into pixel with small optical loss. Cross-talks between adjacent light field images of a fabricated binocular image sensor and of a quad-ocular image sensor are as low as 6% and 7% respectively. With the selection of two images from one-dimensional light filed images, a selective baseline for stereo vision is realized to view close objects with single-main-lens. In addition, by adding multiple light field images with different ratios, baseline distance can be tuned within an aperture of a main lens. We suggest the electrically selective or tunable baseline stereo vision to reduce 3D fatigue of viewers.

  4. Novel colorimetric sensor for oral malodour

    Energy Technology Data Exchange (ETDEWEB)

    Alagirisamy, Nethaji; Hardas, Sarita S. [Hindustan Unilever Research Center, 64 Main Road, Whitefield, Bangalore 560066 (India); Jayaraman, Sujatha, E-mail: sujatha.jayaraman@unilever.com [Hindustan Unilever Research Center, 64 Main Road, Whitefield, Bangalore 560066 (India)

    2010-02-19

    Volatile sulphur compounds are the primary constituents of oral malodour. Quantitative tools for the detection of oral malodour are beneficial to evaluate the intensity of malodour, analyse its causes and monitor the effectiveness of customized treatments. We have developed an objective, cost effective, do-it-yourself colorimetric sensor for oral malodour quantification. The sensor consisted of a sensing solution, a gas sampling unit for collecting a known volume of mouth air and a photometric detector. The sensing solution was iodine and the depletion of iodine on reaction with hydrogen sulphide was detected colorimetrically using starch. The detection limit of the sensor is 0.05 {mu}g L{sup -1} of hydrogen sulphide, which is fit-for-purpose for oral malodour detection in healthy subjects as well as halitosis patients. Volatile sulphur compounds in mouth air were quantified in healthy human volunteers using this portable sensor and the detected levels were in the range of 0.2-0.4 {mu}g L{sup -1}. There was a good correlation between the VSC levels detected by the colorimetric sensor and halimeter (R{sup 2} = 0.934). The developed sensor can be easily fabricated in the laboratory, and it shows high potential to be used as a clinical evaluation tool for oral malodour assessments.

  5. Novel colorimetric sensor for oral malodour

    International Nuclear Information System (INIS)

    Alagirisamy, Nethaji; Hardas, Sarita S.; Jayaraman, Sujatha

    2010-01-01

    Volatile sulphur compounds are the primary constituents of oral malodour. Quantitative tools for the detection of oral malodour are beneficial to evaluate the intensity of malodour, analyse its causes and monitor the effectiveness of customized treatments. We have developed an objective, cost effective, do-it-yourself colorimetric sensor for oral malodour quantification. The sensor consisted of a sensing solution, a gas sampling unit for collecting a known volume of mouth air and a photometric detector. The sensing solution was iodine and the depletion of iodine on reaction with hydrogen sulphide was detected colorimetrically using starch. The detection limit of the sensor is 0.05 μg L -1 of hydrogen sulphide, which is fit-for-purpose for oral malodour detection in healthy subjects as well as halitosis patients. Volatile sulphur compounds in mouth air were quantified in healthy human volunteers using this portable sensor and the detected levels were in the range of 0.2-0.4 μg L -1 . There was a good correlation between the VSC levels detected by the colorimetric sensor and halimeter (R 2 = 0.934). The developed sensor can be easily fabricated in the laboratory, and it shows high potential to be used as a clinical evaluation tool for oral malodour assessments.

  6. Clip-on wireless wearable microwave sensor for ambulatory cardiac monitoring.

    Science.gov (United States)

    Fletcher, Richard R; Kulkarni, Sarang

    2010-01-01

    We present a new type of non-contact sensor for use in ambulatory cardiac monitoring. The sensor operation is based on a microwave Doppler technique; however, instead of detecting the heart activity from a distance, the sensor is placed on the patient's chest over the clothing. The microwave sensor directly measures heart movement rather than electrical activity, and is thus complementary to ECG. The primary advantages of the microwave sensor includes small size, light weight, low power, low-cost, and the ability to operate through clothing. We present a sample sensor design that incorporates a 2.4 GHz Doppler circuit, integrated microstrip patch antenna, and microntroller with 12-bit ADC data sampling. The prototype sensor also includes a wireless data link for sending data to a remote PC or mobile phone. Sample data is shown for several subjects and compared to data from a commercial portable ECG device. Data collected from the microwave sensor exhibits a significant amount of features, indicating possible use as a tool for monitoring heart mechanics and detection of abnormalities such as fibrillation and akinesia.

  7. 30 CFR 47.44 - Temporary, portable containers.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Temporary, portable containers. 47.44 Section... TRAINING HAZARD COMMUNICATION (HazCom) Container Labels and Other Forms of Warning § 47.44 Temporary, portable containers. (a) The operator does not have to label a temporary, portable container if he or she...

  8. 48 CFR 1852.237-71 - Pension portability.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 6 2010-10-01 2010-10-01 true Pension portability. 1852... 1852.237-71 Pension portability. As prescribed at 1837.110-70(b), insert the following clause: Pension Portability (JAN 1997) (a) In order for pension costs attributable to employees assigned to this contract to...

  9. Spirometer Non-Invasive dengan Sensor Piezoelektrik untuk Deteksi Kesehatan Paru-Paru

    Directory of Open Access Journals (Sweden)

    KEMALASARI KEMALASARI

    2018-02-01

    Full Text Available ABSTRAK Polusi udara dapat mempengaruhi kesehatan paru-paru. Umumnya pengukuran fungsi paru menggunakan spirometer, dilakukan di rumah sakit dan membutuhkan waktu yang lama untuk mengetahui hasilnya. Untuk mengatasi masalah ini, dirancang Spirometer non-invasive yang portable dengan menggunakan sensor piezoelektrik yang diletakkan di dada. Perubahan tekanan yang diukur oleh sensor piezoelektrik adalah 10 – 80 mV, sehingga diperlukan rangkaian amplifier, filter, clamper, mikrokontroler AVR ATMega 32 sebagai pengolah data I/O dan LCD grafik untuk menampilkan hasil ukur serta SD card untuk menyimpan data. Alat ini mengukur  kapasitas vital paru-paru, respirasi rate, dan jika hasil ukur kapasitas vital paru-paru kurang  dari 80 % dari nilai prediksi kapasitas paru-paru maka kondisi paru-paru dideteksi tidak sehat.  Hasil dari pengujian menunjukkan bahwa persentase nilai keberhasilan alat adalah 95,70 %, hasil pengukuran dan deteksi kondisi paru-paru dapat langsung diketahui dari tampilan di LCD grafik, data hasil pengukuran bisa disimpan dan alat berukuran kecil sehingga portable, mudah digunakan oleh siapapun dan dimanapun dengan nyaman. Kata kunci: Spirometer, Piezoelektrik, Mikrokontroler, Kapasitas Paru-Paru, LCD Grafik. ABSTRACT Air pollution can be affected the health of the lungs. Generally the measurement of lungs function use a spirometry, performed  in the hospital and takes a long time to know the results. To overcome this problem, a portable non-invasive Spirometry is designed using a piezoelectric sensors placed on the chest. The changes of pressure is measured by the piezoelectric sensor are 10 - 80 mV, so it needs a amplifier circuit, filter, clamper, ATMega 32 AVR microcontroller as I/O data processor and LCD graph to display result of measurement and SD card for save the data. This instrument measure lungs vital capacity, respiration rate, and if the measured of lungs vital capacity is less than 80 % of the predicted of lung

  10. Report on a field-portable VME-based distributed data acquisition system

    International Nuclear Information System (INIS)

    Drigert, M.W.; Cole, J.D.; Reber, E.L.; Young, J.M.

    1996-01-01

    A development effort was started two years ago to develop a portable data acquisition system which could be used for performing arms control verification and environmental monitoring measurements with complex multi-detector systems in the field. A field portable data acquisition system has been developed around a VMEbus based micro-processor and standard TCP/IP network protocols. The hardware consists of a compact VME crate and a single CAMAC crate containing the signal processing electronics. The component processes of the data acquisition system transfer control and event data over a set of TCP/IP socket connections. The use of network sockets for the interprocess communications allows the data acquisition system to be operated transparently on one workstation or on a number of workstations distributed around a local network

  11. Electrochemically decorated ZnTe nanodots on single-walled carbon nanotubes for room-temperature NO2 sensor application.

    Science.gov (United States)

    Kim, Donguk; Park, Ki-Moon; Shanmugam, Rajakumar; Yoo, Bongyoung

    2014-11-01

    A gas sensor with ZnTe nanodot-modified single-walled carbon nanotubes (SWCNTs) is demonstrated for NO2 detection at room temperature. ZnTe nanodots are electrochemically deposited in an aqueous solution containing ZnSO4, TeO2 and citrate. A deposition potential range of ZnTe formation of -0.65 to -0.9 V is determined by cyclic voltammetry, and an intermetallic ZnTe compound is formed at above 50 degrees C bath. SWCNT-based sensors show the highly sensitive response down to 1 ppm NO2 gas at room temperature. In particular, the sensitivity of ZnTe nanodot-modified SWCNTs is increased by 6 times as compared to that of pristine SWCNT sensors. A selectivity test of SWCNT-ZnTe nanodots sensors is carried out with ammonia gas (NH3) and methanol vapor (MeOH), and the result confirms an excellent selectivity to NO2 gas.

  12. Feasibility of high-resolution one-dimensional relaxation imaging at low magnetic field using a single-sided NMR scanner applied to articular cartilage

    Science.gov (United States)

    Rössler, Erik; Mattea, Carlos; Stapf, Siegfried

    2015-02-01

    Low field Nuclear Magnetic Resonance increases the contrast of the longitudinal relaxation rate in many biological tissues; one prominent example is hyaline articular cartilage. In order to take advantage of this increased contrast and to profile the depth-dependent variations, high resolution parameter measurements are carried out which can be of critical importance in an early diagnosis of cartilage diseases such as osteoarthritis. However, the maximum achievable spatial resolution of parameter profiles is limited by factors such as sensor geometry, sample curvature, and diffusion limitation. In this work, we report on high-resolution single-sided NMR scanner measurements with a commercial device, and quantify these limitations. The highest achievable spatial resolution on the used profiler, and the lateral dimension of the sensitive volume were determined. Since articular cartilage samples are usually bent, we also focus on averaging effects inside the horizontally aligned sensitive volume and their impact on the relaxation profiles. Taking these critical parameters into consideration, depth-dependent relaxation time profiles with the maximum achievable vertical resolution of 20 μm are discussed, and are correlated with diffusion coefficient profiles in hyaline articular cartilage in order to reconstruct T2 maps from the diffusion-weighted CPMG decays of apparent relaxation rates.

  13. Disposable electrochemical sensor to evaluate the phytoremediation of the aquatic plant Lemna minor L. toward Pb(2+) and/or Cd(2+).

    Science.gov (United States)

    Neagu, Daniela; Arduini, Fabiana; Quintana, Josefina Calvo; Di Cori, Patrizia; Forni, Cinzia; Moscone, Danila

    2014-07-01

    In this work a miniaturized and disposable electrochemical sensor was developed to evaluate the cadmium and lead ion phytoremediation potential by the floating aquatic macrophyte Lemna minor L. The sensor is based on a screen-printed electrode modified "in-situ" with bismuth film, which is more environmentally friendly than the mercury-based sensor usually adopted for lead and cadmium ion detection. The sensor was coupled with a portable potentiostat for the simultaneous measurement of cadmium and lead ions by stripping analysis. The optimized analytical system allows the simultaneous detection of both heavy metals at the ppb level (LOD equal to 0.3 and 2 ppb for lead and cadmium ions, respectively) with the advantage of using a miniaturized and cost-effective system. The sensor was then applied for the evaluation of Pb(2+) or/and Cd(2+) uptake by measuring the amount of the heavy metals both in growth medium and in plant tissues during 1 week experiments. In this way, the use of Lemna minor coupled with a portable electrochemical sensor allows the set up of a model system able both to remove the heavy metals and to measure "in-situ" the magnitude of heavy metal removal.

  14. Portable rapid gas content measurement - an opportunity for a step change in the coal industry?

    International Nuclear Information System (INIS)

    Beamish, Basil; Kizil, Mehmet; Gu, Ming

    2013-01-01

    The last major advance in gas content measurement for coal seams was the introduction of the quick crush technique in the early 1990s. This is a laboratory test method that has proven very reliable over the years. Recent laboratory testing using a portable quick crushing device, known as the portable gas content analyser, has produced consistent gas content results for a set of core samples obtained from a single borehole that intersected four coal seams. The retained gas content values obtained for the seams show the same increasing gas content pattern and gas composition change with depth as the standard quick crush technique. Use of the portable gas content analyser provides the opportunity to produce rapid, reliable gas content measurement of coal that could be developed for assessing gas compliance cores and outburst-prone conditions at a mine site.

  15. Sensor Data Management with Probabilistic Models

    NARCIS (Netherlands)

    Evers, S.

    2009-01-01

    The anticipated 'sensing environments' of the near future pose new requirements to the data management systems that mediate between sensor data supply and demand sides. We identify and investigate one of them: the need to deal with the inherent uncertainty in sensor data due to measurement noise,

  16. ASIC and HMC designs for portable nuclear instruments

    International Nuclear Information System (INIS)

    Chandratre, V.B.

    2005-01-01

    This paper describes the seed activity done so far for realizing the goal of compact portable nuclear instruments and related instrumentation that can be designed, developed and manufactured without external constraints. This important activity requires critical components to be made in the country by tapping and gearing the established industrial units for this activity. A good deal of ground work has been carried out over a period of time in setting up IC design facility and CAD-FAB interface. There has been a close interaction with the production and semiconductor facilities to design and develop ASIC, hybrids, display devices, detectors/sensors etc. Efforts are also undertaken to develop the critical technologies that are required to fulfill the requirement. A status report on various technologies, ASIC, hybrids and their application development done in the face of out-standing challenges is being presented here. (author)

  17. A portable blood plasma clot micro-elastometry device based on resonant acoustic spectroscopy.

    Science.gov (United States)

    Krebs, C R; Li, Ling; Wolberg, Alisa S; Oldenburg, Amy L

    2015-07-01

    Abnormal blood clot stiffness is an important indicator of coagulation disorders arising from a variety of cardiovascular diseases and drug treatments. Here, we present a portable instrument for elastometry of microliter volume blood samples based upon the principle of resonant acoustic spectroscopy, where a sample of well-defined dimensions exhibits a fundamental longitudinal resonance mode proportional to the square root of the Young's modulus. In contrast to commercial thromboelastography, the resonant acoustic method offers improved repeatability and accuracy due to the high signal-to-noise ratio of the resonant vibration. We review the measurement principles and the design of a magnetically actuated microbead force transducer applying between 23 pN and 6.7 nN, providing a wide dynamic range of elastic moduli (3 Pa-27 kPa) appropriate for measurement of clot elastic modulus (CEM). An automated and portable device, the CEMport, is introduced and implemented using a 2 nm resolution displacement sensor with demonstrated accuracy and precision of 3% and 2%, respectively, of CEM in biogels. Importantly, the small strains (diagnostics and therapeutic monitoring.

  18. Campaign monitoring of railroad bridges in high-speed rail shared corridors using wireless smart sensors.

    Science.gov (United States)

    2015-06-01

    This research project used wireless smart sensors to develop a cost-effective and practical portable structural health monitoring : system for railroad bridges in North America. The system is designed for periodic deployment rather than as a permanen...

  19. Single-side electron multipacting at the photocathode in rf guns

    Directory of Open Access Journals (Sweden)

    Jang-Hui Han

    2008-01-01

    Full Text Available Multiple electron impacting (multipacting can take place in rf fields when the rf components are composed of materials with a secondary electron yield greater than one. In rf gun cavities, multipacting may change the properties of the vacuum components or even damage them. First systematic measurements of the multipacting occurring in a photocathode rf gun were made at the Fermilab/NICADD Photoinjector Laboratory in 2000. The multipacting properties were found to depend on the cathode material and the solenoid field configuration. In this study, we measure the multipacting properties in more detail and model the secondary electron generation for numerical simulation. Measurements and simulations for the photoinjectors at Fermilab and DESY are compared. The multipacting takes place at the photocathode in rf guns and is categorized as single-side multipacting. In a low rf field, the electrons emitted from the cathode area do not leave the gun cavity within one rf cycle and have an opportunity to travel back and hit the cathode. The solenoid field distribution in the vicinity of the cathode changes the probability of electron bombardment of the cathode and makes a major contribution to the multipacting behavior.

  20. Self-Assembly of Single-Crystal Silver Microflakes on Reduced Graphene Oxide and their Use in Ultrasensitive Sensors

    KAUST Repository

    Chen, Ye

    2016-01-19

    Compared to 1D structures, 2D structures have higher specific and active surface, which drastically improves electron transfer and extensibility along 2D plane. Herein, 2D-single crystal silver microflakes (AgMFs) are prepared for the first time in situ on reduced graphene oxide (RGO) by solvothermal synthesis with thickness around 100 nm and length around 10 μm. The oriented attachment mechanism is hypothesized to control the silver crystal growth and self-assembly of reduced silver units to form single-crystal AgMF structure on RGO sheets. Employing it as an electrode to fabricate reliable and extremely sensitive pressure sensors verifies the applicability of this novel 2D structure. Contrary to nanowires, 2D microflakes can intercalate better within the polymer matrix to provide an enhanced network for electron movement. The designed sensor can retain more than 4.7 MPa-1 after 10 000 cycles. The design proves functional for monitoring various actions such as wrist movement, squatting, walking, and delicate finger touch with high durability. A highly sensitive and flexible pressure sensor is fabricated based on the self-assembly of silver microflakes on reduced graphene oxide. This sensor exhibits an excellent pressure sensitivity as it can retain more than 4.7 MPa-1 after 10 000 cycles. This system is successfully used to monitor wrist movement, walking, and squatting and can be applied in touch screen panels, robotic systems, and prosthetics. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.