WorldWideScience

Sample records for single-shell storage tanks

  1. Performance requirements for the single-shell tank

    International Nuclear Information System (INIS)

    GRENARD, C.E.

    1999-01-01

    This document provides performance requirements for the waste storage and waste feed delivery functions of the Single-Shell Tank (SST) System. The requirements presented here in will be used as a basis for evaluating the ability of the system to complete the single-shell tank waste feed delivery mission. They will also be used to select the technology or technologies for retrieving waste from the tanks selected for the single-shell tank waste feed delivery mission, assumed to be 241-C-102 and 241-C-104. This revision of the Performance Requirements for the SST is based on the findings of the SST Functional Analysis, and are reflected in the current System Specification for the SST System

  2. Static internal pressure capacity of Hanford Single-Shell Waste Tanks

    Energy Technology Data Exchange (ETDEWEB)

    Julyk, L.J.

    1994-07-19

    Underground single-shell waste storage tanks located at the Hanford Site in Richland, Washington, generate gaseous mixtures that could be ignited, challenging the structural integrity of the tanks. The structural capacity of the single-shell tanks to internal pressure is estimated through nonlinear finite-element structural analyses of the reinforced concrete tank. To determine their internal pressure capacity, designs for both the million-gallon and the half-million-gallon tank are evaluated on the basis of gross structural instability.

  3. Static internal pressure capacity of Hanford Single-Shell Waste Tanks

    International Nuclear Information System (INIS)

    Julyk, L.J.

    1994-01-01

    Underground single-shell waste storage tanks located at the Hanford Site in Richland, Washington, generate gaseous mixtures that could be ignited, challenging the structural integrity of the tanks. The structural capacity of the single-shell tanks to internal pressure is estimated through nonlinear finite-element structural analyses of the reinforced concrete tank. To determine their internal pressure capacity, designs for both the million-gallon and the half-million-gallon tank are evaluated on the basis of gross structural instability

  4. Initial Single-Shell Tank Retrieval System mission analysis report

    International Nuclear Information System (INIS)

    Hertzel, J.S.

    1996-03-01

    This document provides the mission analysis for the Initial Single-Shell Tank Retrieval System task, which supports the Single-Shell Tank Waste Retrieval Program in its commitment to remove waste from single-shell tanks for treatment and final closure

  5. Tank characterization report for single-shell tank 241-B-104

    International Nuclear Information System (INIS)

    Field, J.G.

    1996-01-01

    This document summarizes information on the historical uses, present status, and the sampling and analysis results of waste stored in Tank 241-B-104. Sampling and analyses meet safety screening and historical data quality objectives. This report supports the requirements of Tri-party Agreement Milestone M-44-09. his characterization report summoned the available information on the historical uses and the current status of single-shell tank 241-B-104, and presents the analytical results of the June 1995 sampling and analysis effort. This report supports the requirements of the Hanford Federal Facility Agreement and Consent Order Milestone M-44-09 (Ecology et al. 1994). Tank 241-B-104 is a single-shell underground waste storage tank located in the 200 East Area B Tank Farm on the Hanford Site. It is the first tank in a three-tank cascade series. The tank went into service in August 1946 with a transfer of second-cycle decontamination waste generated from the bismuth phosphate process. The tank continued to receive this waste type until the third quarter of 1950, when it began receiving first-cycle decontamination waste also produced during the bismuth phosphate process. Following this, the tank received evaporator bottoms sludge from the 242-B Evaporator and waste generated from the flushing of transfer lines. A description and the status of tank 241-B-104 are sum in Table ES-1 and Figure ES-1. The tank has an operating capacity of 2,010 kL (530 kgal), and presently contains 1,400 kL (371 kgal) of waste. The total amount is composed of 4 kL (1 kgal) of supernatant, 260 kL (69 kgal) of saltcake, and 1,140 kL (301 kgal) of sludge (Hanlon 1995). Current surveillance data and observations appear to support these results

  6. Overview of Hanford Single Shell Tank (SST) Structural Integrity

    Energy Technology Data Exchange (ETDEWEB)

    Rast, Richard S.; Washenfelder, Dennis J.; Johnson, Jeremy M.

    2013-11-14

    To improve the understanding of the single-shell tanks (SSTs) integrity, Washington River Protection Solutions, LLC (WRPS), the USDOE Hanford Site tank contractor, developed an enhanced Single-Shell Tank Integrity Project (SSTIP) in 2009. An expert panel on SST integrity, consisting of various subject matters experts in industry and academia, was created to provide recommendations supporting the development of the project. This panel developed 33 recommendations in four main areas of interest: structural integrity, liner degradation, leak integrity and prevention, and mitigation of contamination migration, Seventeen of these recommendations were used to develop the basis for the M-45-10-1 Change Package for the Hanford Federal Agreement and Compliance Order, which is also known as the Tri-Party Agreement. The structural integrity of the tanks is a key element in completing the cleanup mission at the Hanford Site. There are eight primary recommendations related to the structural integrity of Hanford Single-Shell Tanks. Six recommendations are being implemented through current and planned activities. The structural integrity of the Hanford is being evaluated through analysis, monitoring, inspection, materials testing, and construction document review. Structural evaluation in the form of analysis is performed using modern finite element models generated in ANSYS. The analyses consider in-situ, thermal, operating loads and natural phenomena such as earthquakes. Structural analysis of 108 of 149 Hanford Single-Shell Tanks has concluded that the tanks are structurally sound and meet current industry standards. Analysis of the remaining Hanford Single-Shell Tanks is scheduled for FY2014. Hanford Single-Shell Tanks are monitored through a dome deflection program. The program looks for deflections of the tank dome greater than 1/4 inch. No such deflections have been recorded. The tanks are also subjected to visual inspection. Digital cameras record the interior surface of

  7. Overview of Hanford Single Shell Tank (SST) Structural Integrity

    International Nuclear Information System (INIS)

    Rast, Richard S.; Washenfelder, Dennis J.; Johnson, Jeremy M.

    2013-01-01

    To improve the understanding of the single-shell tanks (SSTs) integrity, Washington River Protection Solutions, LLC (WRPS), the USDOE Hanford Site tank contractor, developed an enhanced Single-Shell Tank Integrity Project (SSTIP) in 2009. An expert panel on SST integrity, consisting of various subject matters experts in industry and academia, was created to provide recommendations supporting the development of the project. This panel developed 33 recommendations in four main areas of interest: structural integrity, liner degradation, leak integrity and prevention, and mitigation of contamination migration, Seventeen of these recommendations were used to develop the basis for the M-45-10-1 Change Package for the Hanford Federal Agreement and Compliance Order, which is also known as the Tri-Party Agreement. The structural integrity of the tanks is a key element in completing the cleanup mission at the Hanford Site. There are eight primary recommendations related to the structural integrity of Hanford Single-Shell Tanks. Six recommendations are being implemented through current and planned activities. The structural integrity of the Hanford is being evaluated through analysis, monitoring, inspection, materials testing, and construction document review. Structural evaluation in the form of analysis is performed using modern finite element models generated in ANSYS. The analyses consider in-situ, thermal, operating loads and natural phenomena such as earthquakes. Structural analysis of 108 of 149 Hanford Single-Shell Tanks has concluded that the tanks are structurally sound and meet current industry standards. Analysis of the remaining Hanford Single-Shell Tanks is scheduled for FY2014. Hanford Single-Shell Tanks are monitored through a dome deflection program. The program looks for deflections of the tank dome greater than 1/4 inch. No such deflections have been recorded. The tanks are also subjected to visual inspection. Digital cameras record the interior surface of

  8. Single-shell tank interim stabilization risk analysis

    International Nuclear Information System (INIS)

    Basche, A.D.

    1998-01-01

    The purpose of the Single-Shell Tank (SST) Interim Stabilization Risk Analysis is to provide a cost and schedule risk analysis of HNF-2358, Rev. 1, Single-Shell Tank Interim Stabilization Project Plan (Project Plan) (Ross et al. 1998). The analysis compares the required cost profile by fiscal year (Section 4.2) and revised schedule completion date (Section 4.5) to the Project Plan. The analysis also evaluates the executability of the Project Plan and recommends a path forward for risk mitigation

  9. Single-shell tank interim stabilization project plan

    Energy Technology Data Exchange (ETDEWEB)

    Ross, W.E.

    1998-03-27

    Solid and liquid radioactive waste continues to be stored in 149 single-shell tanks at the Hanford Site. To date, 119 tanks have had most of the pumpable liquid removed by interim stabilization. Thirty tanks remain to be stabilized. One of these tanks (C-106) will be stabilized by retrieval of the tank contents. The remaining 29 tanks will be interim stabilized by saltwell pumping. In the summer of 1997, the US Department of Energy (DOE) placed a moratorium on the startup of additional saltwell pumping systems because of funding constraints and proposed modifications to the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) milestones to the Washington State Department of Ecology (Ecology). In a letter dated February 10, 1998, Final Determination Pursuant to Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) in the Matter of the Disapproval of the DOE`s Change Control Form M-41-97-01 (Fitzsimmons 1998), Ecology disapproved the DOE Change Control Form M-41-97-01. In response, Fluor Daniel Hanford, Inc. (FDH) directed Lockheed Martin Hanford Corporation (LNMC) to initiate development of a project plan in a letter dated February 25, 1998, Direction for Development of an Aggressive Single-Shell Tank (SST) Interim Stabilization Completion Project Plan in Support of Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement). In a letter dated March 2, 1998, Request for an Aggressive Single-Shell Tank (SST) Interim Stabilization Completion Project Plan, the DOE reaffirmed the need for an aggressive SST interim stabilization completion project plan to support a finalized Tri-Party Agreement Milestone M-41 recovery plan. This project plan establishes the management framework for conduct of the TWRS Single-Shell Tank Interim Stabilization completion program. Specifically, this plan defines the mission needs and requirements; technical objectives and approach; organizational structure, roles, responsibilities

  10. Single-shell tank interim stabilization project plan

    International Nuclear Information System (INIS)

    Ross, W.E.

    1998-01-01

    Solid and liquid radioactive waste continues to be stored in 149 single-shell tanks at the Hanford Site. To date, 119 tanks have had most of the pumpable liquid removed by interim stabilization. Thirty tanks remain to be stabilized. One of these tanks (C-106) will be stabilized by retrieval of the tank contents. The remaining 29 tanks will be interim stabilized by saltwell pumping. In the summer of 1997, the US Department of Energy (DOE) placed a moratorium on the startup of additional saltwell pumping systems because of funding constraints and proposed modifications to the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) milestones to the Washington State Department of Ecology (Ecology). In a letter dated February 10, 1998, Final Determination Pursuant to Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) in the Matter of the Disapproval of the DOE's Change Control Form M-41-97-01 (Fitzsimmons 1998), Ecology disapproved the DOE Change Control Form M-41-97-01. In response, Fluor Daniel Hanford, Inc. (FDH) directed Lockheed Martin Hanford Corporation (LNMC) to initiate development of a project plan in a letter dated February 25, 1998, Direction for Development of an Aggressive Single-Shell Tank (SST) Interim Stabilization Completion Project Plan in Support of Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement). In a letter dated March 2, 1998, Request for an Aggressive Single-Shell Tank (SST) Interim Stabilization Completion Project Plan, the DOE reaffirmed the need for an aggressive SST interim stabilization completion project plan to support a finalized Tri-Party Agreement Milestone M-41 recovery plan. This project plan establishes the management framework for conduct of the TWRS Single-Shell Tank Interim Stabilization completion program. Specifically, this plan defines the mission needs and requirements; technical objectives and approach; organizational structure, roles, responsibilities

  11. Gravity settling of Hanford single-shell tank sludges

    International Nuclear Information System (INIS)

    Brooks, K.P.; Rector, D.R.; Smith, P.A.

    1999-01-01

    The US Department of Energy plans to use gravity settling in million-gallon storage tanks while pretreating sludge on the Hanford site. To be considered viable in these large tanks, the supernatant must become clear, and the sludge must be concentrated in an acceptable time. These separations must occur over the wide range of conditions associated with sludge pretreatment. In the work reported here, gravity settling was studied with liter quantities of actual single-shell tank sludge from hanford Tank 241-C-107. Because of limited sludge availability, an approach was developed using the results of these liter-scale tests to predict full-scale operation. Samples were centrifuged at various g-forces to simulate compaction with higher layers of sludge. A semi-empirical settling model was then developed incorporating both the liter-scale settling data and the centrifuge compression results to describe the sludge behavior in a million-gallon tank. The settling model predicted that the compacted sludge solids would exceed 20 wt% in less than 30 days of settling in a 10-m-tall tank for all pretreatment steps

  12. Single-shell tank retrieval program mission analysis report

    Energy Technology Data Exchange (ETDEWEB)

    Stokes, W.J.

    1998-08-11

    This Mission Analysis Report was prepared to provide the foundation for the Single-Shell Tank (SST) Retrieval Program, a new program responsible for waste removal for the SSTS. The SST Retrieval Program is integrated with other Tank Waste Remediation System activities that provide the management, technical, and operations elements associated with planning and execution of SST and SST Farm retrieval and closure. This Mission Analysis Report provides the basis and strategy for developing a program plan for SST retrieval. This Mission Analysis Report responds to a US Department of Energy request for an alternative single-shell tank retrieval approach (Taylor 1997).

  13. Single-shell tank retrieval program mission analysis report

    International Nuclear Information System (INIS)

    Stokes, W.J.

    1998-01-01

    This Mission Analysis Report was prepared to provide the foundation for the Single-Shell Tank (SST) Retrieval Program, a new program responsible for waste removal for the SSTS. The SST Retrieval Program is integrated with other Tank Waste Remediation System activities that provide the management, technical, and operations elements associated with planning and execution of SST and SST Farm retrieval and closure. This Mission Analysis Report provides the basis and strategy for developing a program plan for SST retrieval. This Mission Analysis Report responds to a US Department of Energy request for an alternative single-shell tank retrieval approach (Taylor 1997)

  14. Tank characterization report for single-shell tank 241-S-104

    International Nuclear Information System (INIS)

    DiCenso, A.T.; Simpson, B.C.

    1994-01-01

    In July and August 1992, Single-Shell Tank 241-S-104 was sampled as part of the overall characterization effort directed by the Hanford Federal Facility Agreement and Consent Order. Sampling was also performed to determine proper handling of the waste, to address corrosivity and compatibility issues, and to comply with requirements of the Washington Administrative Code. This Tank Characterization Report presents an overview of that tank sampling and analysis effort, and contains observations regarding waste characteristics. It also presents expected concentration and bulk inventory data for the waste contents based on this latest sampling data and background historical and surveillance tank information. Finally, this report makes recommendations and conclusions regarding operational safety. The purpose of this report is to describe the characteristics the waste in Single-Shell Tank 241-S-104 (hereafter, Tank 241-S-104) based on information obtained from a variety of sources. This report summarizes the available information regarding the chemical and physical properties of the waste in Tank 241-S-104, and using the historical information to place the analytical data in context, arranges this information in a format useful for making management and technical decisions concerning waste tank safety and disposal issues. In addition, conclusions and recommendations are presented based on safety issues and further characterization needs

  15. Tank characterization report for single-shell Tank 241-B-110

    International Nuclear Information System (INIS)

    Amato, L.C.; De Lorenzo, D.S.; DiCenso, A.T.; Rutherford, J.H.; Stephens, R.H.; Heasler, P.G.; Brown, T.M.; Simpson, B.C.

    1994-08-01

    Single-shell Tank 241-B-110 is an underground storage tank containing radioactive waste. The tank was sampled at various times between August and November of 1989 and later in April of 1990. The analytical data gathered from these sampling efforts were used to generate this Tank Characterization Report. Tank 241-B-110, located in the 200 East Area B Tank Farm, was constructed in 1943 and 1944, and went into service in 1945 by receiving second cycle decontamination waste from the B and T Plants. During the service life of the tank, other wastes were added including B Plant flush waste, B Plant fission product waste, B Plant ion exchange waste, PUREX Plant coating waste, and waste from Tank 241-B-105. The tank currently contains 246,000 gallons of non-complexed waste, existing primarily as sludge. Approximately 22,000 gallons of drainable interstitial liquid and 1,000 gallons of supernate remain. The solid phase of the waste is heterogeneous, for the top layer and subsequent layers have significantly different chemical compositions and are visually distinct. A complete analysis of the top layer has not been done, and auger sampling of the top layer is recommended to fully characterize the waste in Tank 241-B-110. The tank is not classified as a Watch List tank; however, it is a Confirmed Leaker, having lost nearly 10,000 gallons of waste. The waste in Tank 241-B-110 is primarily precipitated salts, some of which are composed of radioactive isotopes. The most prevalent analytes include water, bismuth, iron, nitrate, nitrite, phosphate, silicon, sodium, and sulfate. The major radionuclide constituents are 137 Cs and 90 Sr

  16. Regulatory compliance analysis for the closure of single-shell tanks

    International Nuclear Information System (INIS)

    Smith, E.H.; Boomer, K.D.; Letourneau, M.; Oakes, L.; Lorang, R.

    1991-08-01

    This document provides a regulatory compliance analysis of the baseline environmental protection requirements for the closure of single-shell tanks. In preparing this document, the Westinghouse Hanford Company has analyzed the regulatory pathways and decisions points that have been identified to data through systems engineering and related studies as they relate to environmental protection. This regulatory compliance analysis has resulted in several conclusions that will aid the US Department of Energy in managing the single-shell tank waste and in developing strategies for the closure of these tanks. These conclusions include likely outcomes of current strategies, regulatory rulings that are required for future actions, variances and exemptions to be pursued, where appropriate, and potential rulings that may affect systems engineering and other portions of the single-shell tank closure effort. The conclusions and recommendations presented here are based on analysis of current regulations, regulatory exemptions and variances, and federal facility agreements. Because the remediation of the single-shell tanks will span 30 years, regulations that have yet to be promulgated and future interpretations of existing laws and regulations may impact the recommendations and conclusions presented here. 50 refs., 22 figs

  17. Gas retention and release behavior in Hanford single-shell waste tanks

    International Nuclear Information System (INIS)

    Stewart, C.W.; Brewster, M.E.; Gauglitz, P.A.; Mahoney, L.A.; Meyer, P.A.; Recknagle, K.P.; Reid, H.C.

    1996-12-01

    This report describes the current understanding of flammable gas retention and release in Hanford single-shell waste tanks based on theory, experimental results, and observations of tank behavior. The single-shell tanks likely to pose a flammable gas hazard are listed and described, and photographs of core extrusions and the waste surface are included. The credible mechanisms for significant flammable gas releases are described, and release volumes and rates are quantified as much as possible. The only mechanism demonstrably capable of producing large (∼100 m 3 ) spontaneous gas releases is the buoyant displacement, which occurs only in tanks with a relatively deep layer of supernatant liquid. Only the double-shell tanks currently satisfy this condition. All release mechanisms believed plausible in single-shell tanks have been investigated, and none have the potential for large spontaneous gas releases. Only small spontaneous gas releases of several cubic meters are likely by these mechanisms. The reasons several other postulated gas release mechanisms are implausible or incredible are also given

  18. Single Shell Tank (SST) Program Plan

    International Nuclear Information System (INIS)

    HAASS, C.C.

    2000-01-01

    This document provides an initial program plan for retrieval of the single-shell tank waste. Requirements, technical approach, schedule, organization, management, and cost and funding are discussed. The program plan will be refined and updated in fiscal year 2000

  19. Single Shell Tank (SST) Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    HAASS, C.C.

    2000-03-21

    This document provides an initial program plan for retrieval of the single-shell tank waste. Requirements, technical approach, schedule, organization, management, and cost and funding are discussed. The program plan will be refined and updated in fiscal year 2000.

  20. Gas retention and release behavior in Hanford single-shell waste tanks

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, C.W.; Brewster, M.E.; Gauglitz, P.A.; Mahoney, L.A.; Meyer, P.A.; Recknagle, K.P.; Reid, H.C.

    1996-12-01

    This report describes the current understanding of flammable gas retention and release in Hanford single-shell waste tanks based on theory, experimental results, and observations of tank behavior. The single-shell tanks likely to pose a flammable gas hazard are listed and described, and photographs of core extrusions and the waste surface are included. The credible mechanisms for significant flammable gas releases are described, and release volumes and rates are quantified as much as possible. The only mechanism demonstrably capable of producing large ({approximately}100 m{sup 3}) spontaneous gas releases is the buoyant displacement, which occurs only in tanks with a relatively deep layer of supernatant liquid. Only the double-shell tanks currently satisfy this condition. All release mechanisms believed plausible in single-shell tanks have been investigated, and none have the potential for large spontaneous gas releases. Only small spontaneous gas releases of several cubic meters are likely by these mechanisms. The reasons several other postulated gas release mechanisms are implausible or incredible are also given.

  1. Technical bases for leak detection surveillance of waste storage tanks. Revision 1

    International Nuclear Information System (INIS)

    Johnson, M.G.; Badden, J.J.

    1995-01-01

    This document provides the technical bases for specification limits, monitoring frequencies and baselines used for leak detection and intrusion (for single shell tanks only) in all single and double shell radioactive waste storage tanks, waste transfer lines, and most catch tanks and receiver tanks in the waste tank farms and associated areas at Hanford

  2. Best-basis estimates of solubility of selected radionuclides in sludges in Hanford single-shell tanks

    International Nuclear Information System (INIS)

    HARMSEN, R.W.

    1999-01-01

    The Hanford Defined Waste (HDW) model (Rev. 4) (Agnew et al. 1997) projects inventories (as of January 1, 1994) of 46 radionuclides in the Hanford Site underground waste storage tanks. To model the distribution of the 46 radionuclides among the 177 tanks, it was necessary for Agnew et al. to estimate the solubility of each radionuclide in the various waste types originally added to the single-shell tanks. Previous editions of the HDW model used single-point solubility estimates. The work described in this report was undertaken to provide more accurate estimates of the solubility of all 46 radionuclides in the various wastes

  3. Best-basis estimates of solubility of selected radionuclides in sludges in Hanford single-shell tanks

    Energy Technology Data Exchange (ETDEWEB)

    HARMSEN, R.W.

    1999-02-24

    The Hanford Defined Waste (HDW) model (Rev. 4) (Agnew et al. 1997) projects inventories (as of January 1, 1994) of 46 radionuclides in the Hanford Site underground waste storage tanks. To model the distribution of the 46 radionuclides among the 177 tanks, it was necessary for Agnew et al. to estimate the solubility of each radionuclide in the various waste types originally added to the single-shell tanks. Previous editions of the HDW model used single-point solubility estimates. The work described in this report was undertaken to provide more accurate estimates of the solubility of all 46 radionuclides in the various wastes.

  4. Tank characterization report for single-shell tank 241-T-104

    International Nuclear Information System (INIS)

    DiCenso, A.T.; Simpson, B.C.

    1994-01-01

    In August 1992, Single-Shell Tank 241-T-104 was sampled to determine proper handling of the waste, to address corrosivity and compatibility issues, and to comply with requirements of the Washington Administrative Code (Ecology, 1991). This Tank Characterization Report presents an overview of that tank sampling and analysis effort, and contains observations regarding waste characteristics. It also addresses expected concentration and bulk inventory data for the waste contents based on this latest sampling data and background tank information. The purpose of this report is to describe and characterize the waste in Single-Shall Tank 241-T-104 (hereafter, Tank 241-T-104) based on information given from various sources. This report summarizes the available information regarding the waste in Tank 241-T-104, and using the historical information to place the analytical data in context, arranges this information in a useful format for making management and technical decisions concerning this waste tank. In addition, conclusions and recommendations are given based on safety issues and further characterization needs

  5. Structural acceptance criteria for the evaulation of existing double-shell waste storage tanks located at the Hanford site, Richland, Washington

    International Nuclear Information System (INIS)

    Julyk, L.J.; Day, A.D.; Dyrness, A.D.; Moore, C.J.; Peterson, W.S.; Scott, M.A.; Shrivastava, H.P.; Sholman, J.S.; Watts, T.N.

    1995-09-01

    The structural acceptance criteria contained herein for the evaluation of existing underground double-shell waste storage tanks located at the Hanford Site is part of the Life Management/Aging Management Program of the Tank Waste Remediation System. The purpose of the overall life management program is to ensure that confinement of the waste is maintained over the required service life of the tanks. Characterization of the present condition of the tanks, understanding and characterization of potential degradation mechanisms, and development of tank structural acceptance criteria based on previous service and projected use are prerequisites to assessing tank integrity, to projecting the length of tank service, and to developing and applying prudent fixes or repairs. The criteria provided herein summarize the requirements for the analysis and structural qualification of the existing double-shell tanks for continued operation. Code reconciliation issues and material degradation under aging conditions are addressed. Although the criteria were developed for double-shell tanks, many of the provisions are equally applicable to single-shell tanks. However, the criteria do not apply to the evaluation of tank appurtenances and buried piping

  6. Electrical resistivity tomography for early vadose leak detection under single shell storage tanks

    International Nuclear Information System (INIS)

    Narbutovshih, S.M.

    1996-01-01

    This document describes planned testing with Electrical Resistivity Tomography (ERT). It is prepared in support of TTP RL46WT51 Rev. 1, funded by the Tank Focus Area through the Office of Technology Integration. The primary goal of the testing for fiscal year 1996 (FY96) is to develop and demonstrate the ability to place vertical electrode arrays (VEA) with the cone penetrometer technology (CPT) to depths below existing single shell tanks (SST) at the DOE Hanford Site. It is desirable to have the capability to use CPT for this application for obvious reasons. First, current methods of emplacement, drilled boreholes, are expensive with respect to the rest of the ERT operation. Cone penetrometer VEA emplacements offer the opportunity to significantly reduce installation costs. Second, use of CPT will reduce emplacement time from weeks or months to just several days depending on the number of VEAs and the depth of placement. ERT is preferable to other monitoring methods since operation costs and turn around time are less than the current baselines of either groundwater sampling networks or borehole logging techniques. ERT cost savings can be substantial and will continue into the future. ERT can also provide complete coverage under a tank or other facility which is an important supplement to existing monitoring methods. Groundwater sampling provides one data point per well and borehole logging provides data along a line in the ground. Neither provide information from beneath a facility and thus, are not able to locate release points. These electrode arrays are used to acquire subsurface electrical resistance data in a manner appropriate for tomographic inversion. The resulting tomograms can then be used to detect, monitor and track contaminated moisture plumes leaking from underground storage tanks during waste retrieval operations

  7. Tank characterization report for single-shell Tank B-201

    International Nuclear Information System (INIS)

    Heasler, P.G.; Remund, K.M.; Tingey, J.M.; Baird, D.B.; Ryan, F.M.

    1994-09-01

    The purpose of this report is to characterize the waste in single shell Tank B-201. Characterization includes the determination of the physical, chemical (e.g., concentrations of elements and organic species), and radiological properties of the waste. These determinations are made using analytical results from B-201 core samples as well as historical information about the tank. The main objective is to determine average waste properties: but in some cases, concentrations of analytes as a function of depth were also determined. This report also consolidates the available historical information regarding Tank B-201, arranges the analytical information from the recent core sampling in a useful format, and provides an interpretation of the data within the context of what is known about the tank

  8. Overview Of Enhanced Hanford Single-Shell Tank (SST) Integrity Project - 12128

    International Nuclear Information System (INIS)

    Venetz, T.J.; Boomer, K.D.; Washenfelder, D.J.; Johnson, J.B.

    2012-01-01

    current mechanics properties. The work on the liner leak integrity has examined the leaks from 23 tanks with liner failures. Individual leak assessments are being developed for each tank to identify the leak cause and location. Also a common cause study is being performed to take the data from individual tanks to look for trends in the failure. Supporting this work is an assessment of the leak rate from tanks at both Hanford and the Savannah River Site and a new method to locate leak sites in tank liner using ionic conductivity. A separate activity is being conducted to examine the propensity for corrosion in select single shell tanks with aggressive waste layers. The work for these two main efforts will provide the basis for the phase two planning. If the margins identified aren't sufficient to ensure the integrity through the life of the mission, phase two would focus on activities to further enhance the understanding of tank integrity. Also coincident with any phase-two work would be the integrity analysis for the tanks, which would be complete in 2018. With delays in the completion of waste treatment facilities at Hanford, greater reliance on safe, continued storage of waste in the single shell tanks is increased in importance. The goal of integrity assessment would provide basis to continue SST activities till the end of the treatment mission.

  9. Decision analysis of Hanford underground storage tank waste retrieval systems

    International Nuclear Information System (INIS)

    Merkhofer, M.W.; Bitz, D.A.; Berry, D.L.; Jardine, L.J.

    1994-05-01

    A decision analysis approach has been proposed for planning the retrieval of hazardous, radioactive, and mixed wastes from underground storage tanks. This paper describes the proposed approach and illustrates its application to the single-shell storage tanks (SSTs) at Hanford, Washington

  10. Soil structure interaction analysis for the Hanford Site 241-SY-101 double-shell waste storage tanks

    International Nuclear Information System (INIS)

    Giller, R.A.; Weiner, E.O.

    1991-09-01

    The 241-SY-101 tank is a double-shell waste storage tank buried in the 241-SY tank farm in the 200 West Area of the Hanford Site. This analysis addresses the effects of seismic soil-structure interaction on the tank structure and includes a parametric soil-structure interaction study addressing three configurations: two-dimensional soil structure, a two-dimensional structure-soil-structure, and a three-dimensional soil-structure interaction. This study was designed to determine an optimal method for addressing seismic-soil effects on underground storage tanks. The computer programs calculate seismic-soil pressures on the double-shell tank walls and and seismic acceleration response spectra in the tank. The results of this soil-structure interaction parametric study as produced by the computer programs are given in terms of seismic soil pressures and response spectra. The conclusions of this soil-structure interaction evaluation are that dynamically calculated soil pressures in the 241-SY-101 tank are significantly reduce from those using standard hand calculation methods and that seismic evaluation of underground double-shell waste storage tanks must consider soil-structure interaction effects in order to predict conservative structural response. Appendixes supporting this study are available in Volume 2 of this report

  11. OVERVIEW OF ENHANCED HANFORD SINGLE-SHELL TANK (SST) INTEGRITY PROJECT - 12128

    Energy Technology Data Exchange (ETDEWEB)

    VENETZ TJ; BOOMER KD; WASHENFELDER DJ; JOHNSON JB

    2012-01-25

    of current mechanics properties. The work on the liner leak integrity has examined the leaks from 23 tanks with liner failures. Individual leak assessments are being developed for each tank to identify the leak cause and location. Also a common cause study is being performed to take the data from individual tanks to look for trends in the failure. Supporting this work is an assessment of the leak rate from tanks at both Hanford and the Savannah River Site and a new method to locate leak sites in tank liner using ionic conductivity. A separate activity is being conducted to examine the propensity for corrosion in select single shell tanks with aggressive waste layers. The work for these two main efforts will provide the basis for the phase two planning. If the margins identified aren't sufficient to ensure the integrity through the life of the mission, phase two would focus on activities to further enhance the understanding of tank integrity. Also coincident with any phase-two work would be the integrity analysis for the tanks, which would be complete in 2018. With delays in the completion of waste treatment facilities at Hanford, greater reliance on safe, continued storage of waste in the single shell tanks is increased in importance. The goal of integrity assessment would provide basis to continue SST activities till the end of the treatment mission.

  12. Developing a scarifier to retrieve radioactive waste from Hanford single-shell tanks

    International Nuclear Information System (INIS)

    Bamberger, J.A.; Steele, D.E.

    1993-08-01

    Radioactive waste is stored in 149 3,785 m 3 (million gal) single-shell tanks on the US Department of Energy's Hanford Reservation in eastern Washington. To minimize leakage as the tanks age, the free liquid has been pumped out, leaving concentrated solidified salt cake and sludge deposits. Now methods to dislodge and remove this waste are being developed so that the waste can be retrieved and processed for permanent storage. This paper presents research and development on ultrahigh-pressure water-jet technology to fracture and dislodge the wastes in these tanks. A water-based prototype scarifier with an integral conveyance system is being developed, and its performance demonstrated in a coupled analytical and experimental investigation. This paper describes experimental objectives and approach and results of the single jet experiments. Previous testing indicates that the method can be readily applied to salt cake waste forms; retrieval and conveyance of sludge and viscous fluid waste forms may present additional challenges

  13. Single-shell tank interim stabilization project plan

    Energy Technology Data Exchange (ETDEWEB)

    Ross, W.E.

    1998-05-11

    This project plan establishes the management framework for conduct of the TWRS Single-Shell Tank Interim Stabilization completion program. Specifically, this plan defines the mission needs and requirements; technical objectives and approach; organizational structure, roles, responsibilities, and interfaces; and operational methods. This plan serves as the project executional baseline.

  14. Safety evaluation of interim stabilization of non-stabilized single-shell watch list tanks

    International Nuclear Information System (INIS)

    Stahl, S.M.

    1994-01-01

    This report provides results of a review of recently completed safety analyses related to hazards associated with Interim Stabilization of Single analyses related to hazards included oh the Hanford Site Waste Tank-Watch Shell Tanks (SSTs) that are included on the Hanford List. The purpose of the review was to identify and summarize conclusions regarding the safety of interim stabilization of Watch List SSTs, and to highlight applicable limitations, restrictions, and controls. The scope of this review was restricted to SSTs identified List in the categories of flammable gas ferrocyanide, and organic salts. High heat tanks were not included in the scope. A Watch List tank is defined as an underground storage tank containing waste that requires special safety precautions because it may have a serious potential for release of high level radioactive waste because of uncontrolled increases in temperature or pressure. Special restrictions have been placed on these tanks

  15. Assessment of single-shell tank residual-liquid issues at Hanford Site, Washington

    International Nuclear Information System (INIS)

    Murthy, K.S.; Stout, L.A.; Napier, B.A.; Reisenauer, A.E.; Landstrom, D.K.

    1983-06-01

    This report provides an assessment of the overall effectiveness and implications of jet pumping the interstitial liquids (IL) from single-shell tanks at Hanford. The jet-pumping program, currently in progress at Hanford, involves the planned removal of IL contained in 89 of the 149 single-shell tanks and its transfer to double-shell tanks after volume reduction by evaporation. The purpose of this report is to estimate the public and worker doses associated with (1) terminating pumping immediately, (2) pumping to a 100,000-gal limit per tank, (3) pumping to a 50,000-gal limit per tank, and (4) pumping to the maximum practical liquid removal level of 30,000 gal. Assessment of the cost-effectiveness of these various levels of pumping in minimizing any undue health and safety risks to the public or worker is also presented

  16. Functions and requirements for subsurface barriers used in support of single-shell tank waste retrieval

    International Nuclear Information System (INIS)

    Lowe, S.S.

    1993-01-01

    The mission of the Tank Waste Remediation System (TWRS) Program is to store, treat, and immobilize highly radioactive Hanford waste in an environmentally sound, safe, and cost-effective manner. The scope of the TWRS Program includes project and program activities for receiving, storing, maintaining, treating, and disposing onsite, or packaging for offsite disposal, all Hanford tank waste. Hanford tank waste includes the contents of 149 single-shell tanks (SSTs) and 28 double-shell tanks (DSTs), plus any new waste added to these facilities, and all encapsulated cesium and strontium stored onsite and returned from offsite users. A key element of the TWRS Program is retrieval of the waste in the SSTs. The waste stored in these underground tanks must be removed in order to minimize environmental, safety, and health risks associated with continuing waste storage. Subsurface barriers are being considered as a means to mitigate the effects of tank leaks including those occurring during SST waste retrieval. The functions to be performed by subsurface barriers based on their role in retrieving waste from the SSTs are described, and the requirements which constrain their application are identified. These functions and requirements together define the functional baseline for subsurface barriers

  17. Characterization of the corrosion behavior of the carbon steel liner in Hanford Site single-shell tanks

    International Nuclear Information System (INIS)

    Anantatmula, R.P.; Schwenk, E.B.; Danielson, M.J.

    1994-06-01

    Six safety initiatives have been identified for accelerating the resolution of waste tank safety issues and closure of unreviewed safety questions. Safety Initiative 5 is to reduce safety and environmental risk from tank leaks. Item d of Safety Initiative 5 is to complete corrosion studies of single-shell tanks to determine failure mechanisms and corrosion control options to minimize further degradation by June 1994. This report has been prepared to fulfill Safety Initiative 5, Item d. The corrosion mechanisms that apply to Hanford Site single-shell tanks are stress corrosion cracking, pitting/crevice corrosion, uniform corrosion, hydrogen embrittlement, and microbiologically influenced corrosion. The corrosion data relevant to the single-shell tanks dates back three decades, when results were obtained from in-situ corrosion coupons in a few single-shell tanks. Since that time there have been intertank transfers, evaporation, and chemical alterations of the waste. These activities have changed the character and the present composition of the waste is not well characterized. All conclusions and recommendations are made in the absence of relevant laboratory experimental data and tank inspection data. The report attempts to identify the failure mechanisms by a literature survey of carbon steel data in environments similar to the single-shell tank wastes, and by a review of the work performed at the Savannah River Site where similar wastes are stored in similar carbon steel tanks. Based on these surveys, and in the absence of data specific to Hanford single-shell tanks, it may be concluded that the single-shell tanks identified as leakers failed primarily by stress corrosion cracking due to the presence of high nitrate/low hydroxide wastes and residual stresses. In addition, some failures may be attributed to pitting under crevices in low hydroxide locations

  18. Structural qualification of the multifunctional instrument tree for installation in double-shell and 100-series single-shell tanks

    International Nuclear Information System (INIS)

    Strohlow, J.P.

    1995-12-01

    This document provides the technical basis and methodology for qualifying the multifunctional instrument tree (MIT) structure for installation in double-shell and 100-series single-shell tanks. Structural qualification for MIT installations in specific tanks are also contained in this document

  19. Single-Shell Tank (SST) Retrieval Sequence Fiscal Year 2000 Update

    International Nuclear Information System (INIS)

    GARFIELD, J.S.

    2000-01-01

    This document describes the baseline single-shell tank (SST) waste retrieval sequence for the River Protection Project (RPP) updated for Fiscal Year 2000. The SST retrieval sequence identifies the proposed retrieval order (sequence), the tank selection and prioritization rationale, and planned retrieval dates for Hanford SSTs. In addition, the tank selection criteria and reference retrieval method for this sequence are discussed

  20. Identification of single-shell tank in-tank hardware obstructions to retrieval at Hanford Site Tank Farms

    International Nuclear Information System (INIS)

    Ballou, R.A.

    1994-10-01

    Two retrieval technologies, one of which uses robot-deployed end effectors, will be demonstrated on the first single-shell tank (SST) waste to be retrieved at the Hanford Site. A significant impediment to the success of this technology in completing the Hanford retrieval mission is the presence of unique tank contents called in-tank hardware (ITH). In-tank hardware includes installed and discarded equipment and various other materials introduced into the tank. This paper identifies those items of ITH that will most influence retrieval operations in the arm-based demonstration project and in follow-on tank operations within the SST farms

  1. Single-shell tank riser resistance to ground test plan

    International Nuclear Information System (INIS)

    Kiewert, L.R.

    1996-01-01

    This Test Procedure provides the general directions for conducting Single-Shell Tank Riser to Earth Measurements which will be used by engineering as a step towards providing closure for the Lightning Hazard Issue

  2. Tank characterization report for single-shell tank 241-C-109

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, B.C.

    1997-05-23

    One of the major functions of the Tank Waste Remediation System (TWRS) is to characterize wastes in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis, along with other available information about a tank, are compiled and maintained in a tank characterization report (TCR). This report and its appendices serve as the TCR for single-shell tank 241-C-109. The objectives of this report are: (1) to use characterization data in response to technical issues associated with tank 241 C-109 waste; and (2) to provide a standard characterization of this waste in terms of a best-basis inventory estimate. The response to technical issues is summarized in Section 2.0, and the best-basis inventory estimate is presented in Section 3.0. Recommendations regarding safety status and additional sampling needs are provided in Section 4.0. Supporting data and information are contained in the appendices.

  3. Tank characterization report for single-shell tank 241-C-109

    International Nuclear Information System (INIS)

    Simpson, B.C.

    1997-01-01

    One of the major functions of the Tank Waste Remediation System (TWRS) is to characterize wastes in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis, along with other available information about a tank, are compiled and maintained in a tank characterization report (TCR). This report and its appendices serve as the TCR for single-shell tank 241-C-109. The objectives of this report are: (1) to use characterization data in response to technical issues associated with tank 241 C-109 waste; and (2) to provide a standard characterization of this waste in terms of a best-basis inventory estimate. The response to technical issues is summarized in Section 2.0, and the best-basis inventory estimate is presented in Section 3.0. Recommendations regarding safety status and additional sampling needs are provided in Section 4.0. Supporting data and information are contained in the appendices

  4. Progress of the Enhanced Hanford Single Shell Tank (SST) Integrity Project

    Energy Technology Data Exchange (ETDEWEB)

    Venetz, Theodore J. [Washington River Protection Solutions, Richland, WA (United States); Washenfelder, Dennis J. [Washington River Protection Solutions, Richland, WA (United States); Boomer, Kayle D. [Washington River Protection Solutions, Richland, WA (United States); Johnson, Jeremy M. [USDOE Office of River Protection, Richland, WA (United States); Castleberry, Jim L. [Washington River Protection Solutions, Richland, WA (United States)

    2015-01-07

    To improve the understanding of the single-shell tanks (SSTs) integrity, Washington River Protection Solutions, LLC (WRPS), the USDOE Hanford Site tank contractor, developed an enhanced Single-Shell Tank Integrity Project (SSTIP) in 2009. An expert panel on SST integrity, consisting of various subject matters experts in industry and academia, was created to provide recommendations supporting the development of the project. This panel developed 33 recommendations in four main areas of interest: structural integrity, liner degradation, leak integrity and prevention, and mitigation of contamination migration. In late 2010, seventeen of these recommendations were used to develop the basis for the M-45-10-1 Change Package for the Hanford Federal Agreement and Compliance Order, which is also known as the Tri-Party Agreement.

  5. Evaluation of Hanford Single-Shell Waste Tanks Suspected of Water Intrusion

    International Nuclear Information System (INIS)

    Feero, Amie J.; Washenfelder, Dennis J.; Johnson, Jeremy M.; Schofield, John S.

    2013-01-01

    Intrusions evaluations for twelve single-shell tanks were completed in 2013. The evaluations consisted of remote visual inspections, data analysis, and calculations of estimated intrusion rates. The observation of an intrusion or the preponderance of evidence confirmed that six of the twelve tanks evaluated had intrusions. These tanks were tanks 241-A-103, BX-101, BX-103, BX-110, BY-102, and SX-106

  6. Single-Shell Tank (SST) Interim Stabilization Project Plan

    International Nuclear Information System (INIS)

    VLADIMIROFF, D.T.; BOYLES, V.C.

    2000-01-01

    This project plan establishes the management framework for the conduct of the CHG Single-Shell Tank Interim Stabilization completion program. Specifically, this plan defines the mission needs and requirements; technical objectives and approach; organization structure, roles, responsibilities, and interfaces; and operational methods. This plan serves as the project executional baseline

  7. Tank Characterization report for single-shell tank 241-SX-103

    International Nuclear Information System (INIS)

    WILMARTH, S.R.

    1999-01-01

    A major function of the Tank Waste Remediation System (TWRS) is to characterize waste in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis and other available information about a tank are compiled and maintained in a tank characterization report. This report and its appendices serve as the tank characterization report for single-shell tank 241-SX-103. The objectives of this report are (1) to use characterization data in response to technical issues associated with tank 241-SX-103 waste, and (2) to provide a standard characterization of this waste in terms of a best-basis inventory estimate. Section 2.0 summarizes the response to technical issues, Section 3.0 shows the best-basis inventory estimate, and Section 4.0 makes recommendations about the safety status of the tank and additional sampling needs. The appendices contain supporting data and information. This report supports the requirements of Hanford Federal Facility Agreement and Consent Order (Ecology et al. 1997), Milestone M-44-15c, change request M-44-97-03 to ''issue characterization deliverables consistent with the Waste Information Requirements Document developed for fiscal year 1999'' (Adams et al. 1998)

  8. Tank characterization report for single-shell tank 241-U-103

    Energy Technology Data Exchange (ETDEWEB)

    SASAKI, L.M.

    1999-02-24

    A major function of the Tank Waste Remediation System (TWRS) is to characterize waste in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis and other available information about a tank are compiled and maintained in a tank characterization report. This report and its appendices serve as the tank characterization report for single-shell tank 241-U-103. The objectives of this report are (1) to use characterization data in response to technical issues associated with tank 241-U-103 waste and (2) to provide a standard characterization of this waste in terms of a best-basis inventory estimate. Section 2.0 summarizes the response to technical issues, Section 3.0 shows the best-basis inventory estimate, Section 4.0 makes recommendations about the safety status of the tank and additional sampling needs. The appendices contain supporting data and information. This report supports the requirements of the Hanford Federal Facility Agreement and Consent Order (Ecology et al. 1997), Milestone M-44-15b, change request M-44-97-03 to ''issue characterization deliverables consistent with Waste Information Requirements Documents developed for 1998.''

  9. Preliminary tank characterization report for single-shell tank 241-TX-101: best-basis inventory

    International Nuclear Information System (INIS)

    Kupfer, M.J.

    1997-01-01

    This document is a preliminary Tank Characterization Report (TCR). It only contains the current best-basis inventory (Appendix D) for single-shell tank 241-TX-101. No TCRs have been previously issued for this tank, and current core sample analyses are not available. The best-basis inventory, therefore, is based on an engineering assessment of waste type, process flowsheet data, early sample data, and/or other available information. The Standard Inventories of Chemicals and Radionuclides in Hanford Site Tank Wastes describes standard methodology used to derive the tank-by-tank best-basis inventories. This preliminary TCR will be updated using this same methodology when additional data on tank contents become available

  10. Preliminary tank characterization report for single-shell tank 241-TY-102: best-basis inventory

    International Nuclear Information System (INIS)

    Place, D.E.

    1997-01-01

    This document is a preliminary Tank Characterization Report (TCR). It only contains the current best-basis inventory (Appendix D) for single-shell tank 241-TY-102. No TCRs have been previously issued for this tank, and current core sample analyses are not available. The best-basis inventory, therefore, is based on an engineering assessment of waste type, process flowsheet data, early sample data, and/or other available information. The Standard Inventories of Chemicals and Radionuclides in Hanford Site Tank Wastes describes standard methodology used to derive the tank-by-tank best-basis inventories. This preliminary TCR will be updated using this same methodology when additional data on tank contents become available

  11. Preliminary tank characterization report for single-shell tank 241-TX-113: best-basis inventory

    International Nuclear Information System (INIS)

    Place, D.E.

    1997-01-01

    This document is a preliminary Tank Characterization Report (TCR). It only contains the current best-basis inventory (Appendix D) for single-shell tank 241-TX-113. No TCRs have been previously issued for this tank, and current core sample analyses are not available. The best-basis inventory, therefore, is based on an engineering assessment of waste type, process flowsheet data, early sample data, and/or other available information. The Standard Inventories of Chemicals and Radionuclides in Hanford Site Tank Wastes describes standard methodology used to derive the tank-by-tank best-basis inventories. This preliminary TCR will be updated using this same methodology when additional data on tank contents become available

  12. Functions and Requirements for Automated Liquid Level Gauge Instruments in Single-Shell and Double-Shell Tank Farms

    International Nuclear Information System (INIS)

    CARPENTER, K.E.

    1999-01-01

    This functions and requirements document defines the baseline requirements and criteria for the design, purchase, fabrication, construction, installation, and operation of automated liquid level gauge instruments in the Tank Farms. This document is intended to become the technical baseline for current and future installation, operation and maintenance of automated liquid level gauges in single-shell and double-shell tank farms

  13. Tank characterization report for single-shell tank 241-U-106

    International Nuclear Information System (INIS)

    Brown, T.M.

    1997-01-01

    One major function of the Tank Waste Remediation System (TWRS) is to characterize wastes in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis, along with other available information, are compiled and maintained in a tank characterization report (TCR). This report and its appendixes serve as the TCR for single-shell tank 241-U-106. The objectives of this report are: (1) to use characterization data in response to technical issues associated with tank 241-U-106 waste, and (2) to provide a standard characterization of this waste in terms of a best-basis inventory estimate. Section 2.0 of this report summarizes the response to technical issues, Section 3.0 shows the best-basis inventory estimate, and Section 4.0 makes recommendations regarding safety status and additional sampling. The appendixes contain supporting data and information. This report also supports the requirements of the Hanford Federal Facility Agreement and Consent Order (Ikology et al. 1996), Milestone M-44-10

  14. Tank characterization report for single-shell tank 241-U-106

    Energy Technology Data Exchange (ETDEWEB)

    Brown, T.M.

    1997-04-15

    One major function of the Tank Waste Remediation System (TWRS) is to characterize wastes in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis, along with other available information, are compiled and maintained in a tank characterization report (TCR). This report and its appendixes serve as the TCR for single-shell tank 241-U-106. The objectives of this report are: (1) to use characterization data in response to technical issues associated with tank 241-U-106 waste, and (2) to provide a standard characterization of this waste in terms of a best-basis inventory estimate. Section 2.0 of this report summarizes the response to technical issues, Section 3.0 shows the best-basis inventory estimate, and Section 4.0 makes recommendations regarding safety status and additional sampling. The appendixes contain supporting data and information. This report also supports the requirements of the Hanford Federal Facility Agreement and Consent Order (Ikology et al. 1996), Milestone M-44-10.

  15. Tank characterization report for single-shell tank 241-S-111

    International Nuclear Information System (INIS)

    Conner, J.M.

    1997-01-01

    One of the major functions of the Tank Waste Remediation System (TWRS) is to characterize wastes in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis, along with other available information about a tank, are compiled and maintained in a tank characterization report (TCR). This report and its appendices serve as the TCR for single-shell tank 241-S-111. The objectives of this report are: (1) to use characterization data to address technical issues associated with tank 241-S-111 waste; and (2) to provide a standard characterization of this waste in terms of a best-basis inventory estimate. The response to technical issues is summarized in Section 2.0, and the best-basis inventory estimate is presented in Section 3.0. Recommendations regarding safety status and additional sampling needs are provided in Section 4.0. Supporting data and information are contained in the appendices. This report also supports the requirements of Hanford Federal Facility Agreement and Consent Order (Ecology et al. 1996) milestone M-44-10

  16. Tank characterization report for single-shell tank 241-C-104

    Energy Technology Data Exchange (ETDEWEB)

    Baldwin, J.H.

    1997-05-21

    A major function of the Tank Waste Remediation System is to characterize wastes in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis, along with other available information about a tank, are compiled and maintained in a tank characterization report (TCR). This report and its appendices serve as the TCR for single-shell tank 241-C-104. The objectives of this report are: (1) to use characterization data in response to technical issues associated with tank 241-C-104 waste; and (2) to provide a standard characterization of this waste in terms of a best-basis inventory estimate. The response to technical issues is summarized in Section 2.0, and the best-basis inventory estimate is presented in Section 3.0. Recommendations regarding safety status and additional sampling needs are provided in Section 4.0. Supporting data and information are contained in the appendices. This report supports the requirements of the Hanford Federal Facility Agreement and Consent Order (Ecology et al. 1996) milestone M-44-10.

  17. Tank characterization report for single-shell tank 241-S-111

    Energy Technology Data Exchange (ETDEWEB)

    Conner, J.M.

    1997-04-28

    One of the major functions of the Tank Waste Remediation System (TWRS) is to characterize wastes in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis, along with other available information about a tank, are compiled and maintained in a tank characterization report (TCR). This report and its appendices serve as the TCR for single-shell tank 241-S-111. The objectives of this report are: (1) to use characterization data to address technical issues associated with tank 241-S-111 waste; and (2) to provide a standard characterization of this waste in terms of a best-basis inventory estimate. The response to technical issues is summarized in Section 2.0, and the best-basis inventory estimate is presented in Section 3.0. Recommendations regarding safety status and additional sampling needs are provided in Section 4.0. Supporting data and information are contained in the appendices. This report also supports the requirements of Hanford Federal Facility Agreement and Consent Order (Ecology et al. 1996) milestone M-44-10.

  18. Tank characterization report for single-shell tank 241-T-105

    International Nuclear Information System (INIS)

    Field, J.G.

    1998-01-01

    A major function of the Tank Waste Remediation System (TWRS) is to characterize waste in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis and other available information about a tank are compiled and maintained in a tank characterization report (TCR). This report and its appendices serve as the TCR for single-shell tank 241-T-105. The objectives of this report are (1) to use characterization data in response to technical issues associated with tank 241-T-105 waste and (2) to provide a standard characterization of this waste in terms of a best-basis inventory estimate. Section 2.0 summarizes the response to technical issues, Section 3.0 shows the best-basis inventory estimate, Section 4.0 makes recommendations about the safety status of the tank and additional sampling needs. The appendices contain supporting data and information. This report supports the requirements of the Hanford Federal Facility Agreement and Consent Order (Ecology et al. 1997), Milestone M-44-15b, change request M-44-97-03, to ''issue characterization deliverables consistent with the waste information requirements documents developed for 1998''

  19. Tank characterization report for single-shell tank 241-U-112

    International Nuclear Information System (INIS)

    Field, J.G.

    1998-01-01

    A major function of the Tank Waste Remediation System (TWRS) is to characterize waste in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis and other available information about a tank are compiled and maintained in a tank characterization report (TCR). This report and its appendixes serve as the TCR for single-shell tank 241-U-112. The objectives of this report are (1) to use characterization data in response to technical issues associated with tank 241-U-112 waste, and (2) to provide a standard characterization of this waste in terms of a best-basis inventory estimate. Section 2.0 summarizes the response to technical issues, Section 3.0 shows the best-basis inventory estimate, Section 4.0 makes recommendations about the safety status of the tank and additional sampling needs. The appendixes contain supporting data and information. This report supports the requirements of the Hanford Federal Facility Agreement and Consent Order (Ecology et al. 1997), Milestone M-44-15b, change request M-44-97-03 to issue characterization deliverables consistent with the Waste Information Requirements Document developed for 1998

  20. Tank characterization report for single-shell tank 241-T-112

    International Nuclear Information System (INIS)

    McCain, D.J.

    1998-01-01

    A major function of the Tank Waste Remediation System (TWRS) is to characterize waste in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis and other available information about a tank are compiled and maintained in a tank characterization report (TCR). This report and its appendices serve as the TCR for single-shell tank 241-T-112. The objectives of this report are (1) to use characterization data in response to technical issues associated with tank 241-T-112 waste and (2) to provide a standard characterization of this waste in terms of a best-basis inventory estimate. Section 2.0 summarizes the response to technical issues, Section 3.0 shows the best-basis inventory estimate, Section 4.0 makes recommendations about the safety status of the tank and additional sampling needs. The appendices contain supporting data and information. This report supports the requirements of the Hanford Federal Facility Agreement and Consent Order (Ecology et al. 1997), Milestone M-44-15b, change request M-44-97-03, to ''issue characterization deliverables consistent with the Waste Information Requirements Documents developed for 1998.''

  1. Tank characterization report for single-shell tank 241-T-105

    Energy Technology Data Exchange (ETDEWEB)

    Field, J.G.

    1998-06-18

    A major function of the Tank Waste Remediation System (TWRS) is to characterize waste in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis and other available information about a tank are compiled and maintained in a tank characterization report (TCR). This report and its appendices serve as the TCR for single-shell tank 241-T-105. The objectives of this report are (1) to use characterization data in response to technical issues associated with tank 241-T-105 waste and (2) to provide a standard characterization of this waste in terms of a best-basis inventory estimate. Section 2.0 summarizes the response to technical issues, Section 3.0 shows the best-basis inventory estimate, Section 4.0 makes recommendations about the safety status of the tank and additional sampling needs. The appendices contain supporting data and information. This report supports the requirements of the Hanford Federal Facility Agreement and Consent Order (Ecology et al. 1997), Milestone M-44-15b, change request M-44-97-03, to ``issue characterization deliverables consistent with the waste information requirements documents developed for 1998``.

  2. Tank characterization report for single-shell tank 241-TX-104

    International Nuclear Information System (INIS)

    FIELD, J.G.

    1999-01-01

    A major function of the Tank Waste Remediation System (TWRS) is to characterize waste in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis and other available information about a tank are compiled and maintained in a tank characterization report (TCR). This report and its appendices serve as the TCR for single-shell tank 241-TX-104. The objectives of this report are (1) to use characterization data in response to technical issues associated with tank 241-TX-104 waste, and (2) to provide a standard characterization of this waste in terms of a best-basis inventory estimate. Section 2.0 summarizes the response to technical issues, Section 3.0 shows the best-basis inventory estimate, Section 4.0 makes recommendations about the safety status of the tank and additional sampling needs. The appendices contain supporting data and information. This report supports the requirements of the Hanford Federal Facility Agreement and Consent Order (Ecology et al. 1997), Milestone M-44-15c, change request M-44-97-03 to ''issue characterization deliverables consistent with the Waste Information Requirements Document developed for FY 1999'' (Adams et al. 1998)

  3. Fifth Single-Shell Tank Integrity Project Expert Panel Meeting August 28-29, 2014

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Todd M. [Washington River Protection Solutions, LLC, Richland, WA (United States; Gunter, Jason R. [Washington River Protection Solutions, LLC, Richland, WA (United States); Boomer, Kayle D. [Washington River Protection Solutions, LLC, Richland, WA (United States)

    2015-01-07

    On August 28th and 29th, 2014 the Single-Shell Tank Integrity Project (SSTIP) Expert Panel (Panel) convened in Richland, Washington. This was the Panel’s first meeting since 2011 and, as a result, was focused primarily on updating the Panel on progress in response to the past recommendations (Single-Shell Tank Integrity Expert Panel Report, RPP-RPT-45921, Rev 0, May 2010). This letter documents the Panel’s discussions and feedback on Phase I activities and results.

  4. Preventing Buoyant Displacement Gas Release Events in Hanford Double-Shell Waste Tanks

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Perry A.; Stewart, Charles W.

    2001-01-01

    This report summarizes the predictive methods used to ensure that waste transfer operations in Hanford waste tanks do not create waste configurations that lead to unsafe gas release events. The gas release behavior of the waste in existing double-shell tanks has been well characterized, and the flammable gas safety issues associated with safe storage of waste in the current configuration are being formally resolved. However, waste is also being transferred between double-shell tanks and from single-shell tanks into double-shell tanks by saltwell pumping and sluicing that create new wastes and waste configurations that have not been studied as well. Additionally, planning is underway for various waste transfer scenarios to support waste feed delivery to the proposed vitrification plant. It is critical that such waste transfers do not create waste conditions with the potential for dangerous gas release events.

  5. Tank Waste Remediation System Inactive Miscellaneous Underground Storage Tanks Program Plan

    International Nuclear Information System (INIS)

    Gustavson, R.D.

    1995-12-01

    The Program Management Plan (PMP) describes the approach that will be used to manage the Tank Waste Remediation System (TWRS) Inactive Miscellaneous Underground Storage Tank (IMUST) Program. The plan describes management, technical, and administrative control systems that will be used to plan and control the IMUSTs Program performance. The technical data to determine the IMUSTs status for inclusion in the Single Shell Tank Farm Controlled Clean and Stable (CCS) Program. The second is to identify and implement surveillance, characterization, stabilization, and modifications to support CCS prior to final closure

  6. Risks from Past, Current, and Potential Hanford Single Shell Tank Leaks

    Energy Technology Data Exchange (ETDEWEB)

    Triplett, Mark B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Watson, David J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wellman, Dawn M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2013-05-01

    Due to significant delays in constructing and operating the Waste Treatment Plant, which is needed to support retrieval of waste from Hanford’s single shell tanks (SSTs), SSTs may now be required to store tank waste for two to three more decades into the future. Many SSTs were built almost 70 years ago, and all SSTs are well beyond their design lives. Recent examination of monitoring data suggests several of the tanks, which underwent interim stabilization a decade or more ago, may be leaking small amounts (perhaps 150–300 gallons per year) to the subsurface environment. A potential leak from tank T-111 is estimated to have released approximately 2,000 gallons into the subsurface. Observations of past leak events, recently published simulation results, and new simulations all suggest that recent leaks are unlikely to affect underlying groundwater above regulatory limits. However, these recent observations remind us that much larger source terms are still contained in the tanks and are also present in the vadose zone from historical intentional and unintentional releases. Recently there have been significant improvements in methods for detecting and characterizing soil moisture and contaminant releases, understanding and controlling mass-flux, and remediating deep vadose zone and groundwater plumes. To ensure extended safe storage of tank waste in SSTs, the following actions are recommended: 1) Improve capabilities for intrusion and leak detection. 2) Develop defensible conceptual models of intrusion and leak mechanisms. 3) Apply enhanced subsurface characterization methods to improve detection and quantification of moisture changes beneath tanks. 4) Maintain a flux-based assessment of past, present, and potential tank leaks to assess risks and to maintain priorities for applying mitigation actions. 5) Implement and maintain effective mitigation and remediation actions to protect groundwater resources. These actions will enable limited resources to be applied to

  7. Test procedures and instructions for single shell tank saltcake cesium removal with crystalline silicotitanate

    Energy Technology Data Exchange (ETDEWEB)

    Duncan, J.B.

    1997-01-07

    This document provides specific test procedures and instructions to implement the test plan for the preparation and conduct of a cesium removal test, using Hanford Single Shell Tank Saltcake from tanks 24 t -BY- I 10, 24 1 -U- 108, 24 1 -U- 109, 24 1 -A- I 0 1, and 24 t - S-102, in a bench-scale column. The cesium sorbent to be tested is crystalline siticotitanate. The test plan for which this provides instructions is WHC-SD-RE-TP-024, Hanford Single Shell Tank Saltcake Cesium Removal Test Plan.

  8. Single shell tank sluicing history and failure frequency

    International Nuclear Information System (INIS)

    HERTZEL, J.S.

    1998-01-01

    This document assesses the potential for failure of the single-shell tanks (SSTs) that are presumably sound and helps to establish the retrieval priorities for these and the assumed leakers. Furthermore, this report examines probabilities of SST failure as a function of age and operational history, and provides a simple statistical summary of historical leak volumes, leak rates, and corrosion factor

  9. Tank characterization report for single-shell tank 241-S-104

    International Nuclear Information System (INIS)

    Jo, J.

    1997-01-01

    One of the major functions of the Tank Waste Remediation System (TWRS) is to characterize wastes in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis, along with other available information about a tank, are compiled and maintained in a tank characterization report (TCR). This report and its appendixes serve as the TCR for single-shell tank 241-S-104. The objectives of this report are: (1) to use characterization data in response to technical issues associated with 241-S- 104 waste; and (2) to provide a standard characterization of this waste in terms of a best-basis inventory estimate. The response to technical issues is summarized in Section 2.0, and the best-basis inventory estimate is presented in Section 3.0. Recommendations regarding safety status and additional sampling needs are provided in Section 4.0. Supporting data and information are contained in the appendixes. This report also supports the requirements of the Hanford Federal Facility Agreement and Consent Order (Ecology et al. 1996) milestone M-44-05

  10. Tank characterization report for Single-Shell Tank B-111

    International Nuclear Information System (INIS)

    Remund, K.M.; Tingey, J.M.; Heasler, P.G.; Toth, J.J.; Ryan, F.M.; Hartley, S.A.; Simpson, D.B.; Simpson, B.C.

    1994-09-01

    Tank 241-B-111 (hereafter referred to as B-111) is a 2,006,300 liter (530,000 gallon) single-shell waste tank located in the 200 East B tank farm at Hanford. Two cores were taken from this tank in 1991 and analysis of the cores was conducted by Battelle's 325-A Laboratory in 1993. Characterization of the waste in this tank is being done to support Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-44-05. Tank B-111 was constructed in 1943 and put into service in 1945; it is the second tank in a cascade system with Tanks B-110 and B-112. During its process history, B-111 received mostly second-decontamination-cycle waste and fission products waste via the cascade from Tank B-110. This tank was retired from service in 1976, and in 1978 the tank was assumed to have leaked 30,300 liters (8,000 gallons). The tank was interim stabilized and interim isolated in 1985. The tank presently contains approximately 893,400 liters (236,000 gallons) of sludge-like waste and approximately 3,800 liters (1,000 gallons) of supernate. Historically, there are no unreviewed safety issues associated with this tank and none were revealed after reviewing the data from the latest core sampling event in 1991. An extensive set of analytical measurements was performed on the core composites. The major constituents (> 0.5 wt%) measured in the waste are water, sodium, nitrate, phosphate, nitrite, bismuth, iron, sulfate and silicon, ordered from largest concentration to the smallest. The concentrations and inventories of these and other constituents are given. Since Tanks B-110 and B-111 have similar process histories, their sampling results were compared. The results of the chemical analyses have been compared to the dangerous waste codes in the Washington Dangerous Waste Regulations (WAC 173-303). This assessment was conducted by comparing tank analyses against dangerous waste characteristics 'D' waste codes; and against state waste codes

  11. Review of technologies for the pretreatment of retrieved single-shell tank waste at Hanford

    International Nuclear Information System (INIS)

    Gerber, M.A.

    1992-08-01

    The purpose of the study reported here was to identify and evaluate innovative processes that could be used to pretreat mixed waste retrieved from the 149 single-shell tanks (SSTs) on the US Department of Energy's (DOE) Hanford site. The information was collected as part of the Single Shell Tank Waste Treatment project at Pacific Northwest Laboratory (PNL). The project is being conducted for Westinghouse Hanford Company under their SST Disposal Program

  12. Single-shell tank closure work plan. Revision A

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    In January 1994, the Hanford Federal Facility Agreement and Conset Order (Tri-Party Agreement) was amended to reflect a revised strategy for remediation of radioactive waste in underground storage tanks. These amendments include milestones for closure of the single-shell tank (SST) operable units, to be initiated by March 2012 and completed by September 2024. This SST-CWP has been prepared to address the principal topical areas identified in Tri-Party Agreement Milestone M-45-06 (i.e., regulatory pathway, operable unit characterization, waste retrieval, technology development, and a strategy for achieving closure). Chapter 2.0 of this SST-CWP provides a brief description of the environmental setting, SST System, the origin and characteristics of SST waste, and ancillary equipment that will be remediated as part of SST operable unit closure. Appendix 2A provides a description of the hydrogeology of the Hanford Site, including information on the unsaturated sediments (vadose zone) beneath the 200 Areas Plateau. Chapter 3.0 provides a discussion of the laws and regulations applicable to closure of the SST farm operable units. Chapter 4.0 provides a summary description of the ongoing characterization activities that best align with the proposed regulatory pathway for closure. Chapter 5.0 describes aspects of the SST waste retrieval program, including retrieval strategy, technology, and sequence, potential tank leakage during retrieval, and considerations of deployment of subsurface barriers. Chapter 6.0 outlines a proposed strategy for closure. Chapter 7.0 provides a summary of the programs underway or planned to develop technologies to support closure. Ca. 325 refs.

  13. Single-shell tank closure work plan. Revision A

    International Nuclear Information System (INIS)

    1995-06-01

    In January 1994, the Hanford Federal Facility Agreement and Conset Order (Tri-Party Agreement) was amended to reflect a revised strategy for remediation of radioactive waste in underground storage tanks. These amendments include milestones for closure of the single-shell tank (SST) operable units, to be initiated by March 2012 and completed by September 2024. This SST-CWP has been prepared to address the principal topical areas identified in Tri-Party Agreement Milestone M-45-06 (i.e., regulatory pathway, operable unit characterization, waste retrieval, technology development, and a strategy for achieving closure). Chapter 2.0 of this SST-CWP provides a brief description of the environmental setting, SST System, the origin and characteristics of SST waste, and ancillary equipment that will be remediated as part of SST operable unit closure. Appendix 2A provides a description of the hydrogeology of the Hanford Site, including information on the unsaturated sediments (vadose zone) beneath the 200 Areas Plateau. Chapter 3.0 provides a discussion of the laws and regulations applicable to closure of the SST farm operable units. Chapter 4.0 provides a summary description of the ongoing characterization activities that best align with the proposed regulatory pathway for closure. Chapter 5.0 describes aspects of the SST waste retrieval program, including retrieval strategy, technology, and sequence, potential tank leakage during retrieval, and considerations of deployment of subsurface barriers. Chapter 6.0 outlines a proposed strategy for closure. Chapter 7.0 provides a summary of the programs underway or planned to develop technologies to support closure. Ca. 325 refs

  14. Double shell tank waste analysis plan

    International Nuclear Information System (INIS)

    Mulkey, C.H.; Jones, J.M.

    1994-01-01

    Waste analysis plan for the double shell tanks. SD-WM-EV-053 is Superseding SD-WM-EV-057.This document provides the plan for obtaining information needed for the safe waste handling and storage of waste in the Double Shell Tank Systems. In Particular it addresses analysis necessary to manage waste according to Washington Administrative Code 173-303 and Title 40, parts 264 and 265 of the Code of Federal Regulations

  15. Summary of Group Development and Testing for Single Shell Tank Closure at Hanford

    International Nuclear Information System (INIS)

    Harbour, John R.

    2005-01-01

    This report is a summary of the bench-scale and large scale experimental studies performed by Savannah River National Laboratory for CH2M HILL to develop grout design mixes for possible use in producing fill materials as a part of Tank Closure of the Single-Shell Tanks at Hanford. The grout development data provided in this report demonstrates that these design mixes will produce fill materials that are ready for use in Hanford single shell tank closure. The purpose of this report is to assess the ability of the proposed grout specifications to meet the current requirements for successful single shell tank closure which will include the contracting of services for construction and operation of a grout batch plant. The research and field experience gained by SRNL in the closure of Tanks 17F and 20F at the Savannah River Site was leveraged into the grout development efforts for Hanford. It is concluded that the three Hanford grout design mixes provide fill materials that meet the current requirements for successful placement. This conclusion is based on the completion of recommended testing using Hanford area materials by the operators of the grout batch plant. This report summarizes the regulatory drivers and the requirements for grout mixes as tank fill material. It is these requirements for both fresh and cured grout properties that drove the development of the grout formulations for the stabilization, structural and capping layers

  16. Technology Successes in Hanford Tank Waste Storage and Retrieval

    International Nuclear Information System (INIS)

    Cruz, E. J.

    2002-01-01

    The U. S. Department of Energy (DOE), Office of River Protection (ORP) is leading the River Protection Project (RPP), which is responsible for dispositioning approximately 204,000 cubic meters (54 million gallons) of high-level radioactive waste that has accumulated in 177 large underground tanks at the Hanford Site since 1944. The RPP is comprised of five major elements: storage of the waste, retrieval of the waste from the tanks, treatment of the waste, disposal of treated waste, and closure of the tank facilities. Approximately 3785 cubic meters (1 million gallons) of waste have leaked from the older ''single-shell tanks.'' Sixty-seven of the 147 single shell tanks are known or assumed ''leakers.'' These leaks have resulted in contaminant plumes that extend from the tank to the groundwater in a number of tank farms. Retrieval and closure of the leaking tanks complicates the ORP technical challenge because cleanup decisions must consider the impacts of past leaks along with a strategy for retrieving the waste in the tanks. Completing the RPP mission as currently planned and with currently available technologies will take several decades and tens of billions of dollars. RPP continue to pursue the benefits from deploying technologies that reduce risk to human health and the environment, as well as, the cost of cleanup. This paper discusses some of the recent technology partnering activities with the DOE Office of Science and Technology activities in tank waste retrieval and storage

  17. Accelerated safety analyses - structural analyses Phase I - structural sensitivity evaluation of single- and double-shell waste storage tanks

    International Nuclear Information System (INIS)

    Becker, D.L.

    1994-11-01

    Accelerated Safety Analyses - Phase I (ASA-Phase I) have been conducted to assess the appropriateness of existing tank farm operational controls and/or limits as now stipulated in the Operational Safety Requirements (OSRs) and Operating Specification Documents, and to establish a technical basis for the waste tank operating safety envelope. Structural sensitivity analyses were performed to assess the response of the different waste tank configurations to variations in loading conditions, uncertainties in loading parameters, and uncertainties in material characteristics. Extensive documentation of the sensitivity analyses conducted and results obtained are provided in the detailed ASA-Phase I report, Structural Sensitivity Evaluation of Single- and Double-Shell Waste Tanks for Accelerated Safety Analysis - Phase I. This document provides a summary of the accelerated safety analyses sensitivity evaluations and the resulting findings

  18. Double shell tanks emergency pumping plan

    International Nuclear Information System (INIS)

    Tangen, M.J.

    1994-01-01

    At the request of the Department of Energy (DOE), a formal plan for the emergency transfer of waste from a leaking double shell tank to a designated receiver tank has been developed. This plan is in response to the priority 2 safety issue ''Response to a leaking double-shell tank'' in the DOE Report to Congress, 1991. The plan includes the tanks in four of the east tank farms and one of the west farms. The background information and supporting calculations used for the creation of the emergency plan are discussed in this document. The scope of this document is all of the double shell tanks in the AN, AP, AW, AY, and SY farms. The transfer lines, flush pits, and valve pits involved in the transfer of waste between these farms are also included in the scope. Due to the storage of high heat waste, AZ farm is excluded at this time

  19. Steel corrosion in radioactive waste storage tanks

    International Nuclear Information System (INIS)

    Carranza, Ricardo M.; Giordano, Celia M.; Saenz, E.; Weier, Dennis R.

    2004-01-01

    A collaborative study is being conducted by CNEA and USDOE (Department of Energy of the United States of America) to investigate the effects of tank waste chemistry on radioactive waste storage tank corrosion. Radioactive waste is stored in underground storage tanks that contain a combination of salts, consisting primarily of sodium nitrate, sodium nitrite and sodium hydroxide. The USDOE, Office of River Protection at the Hanford Site, has identified a need to conduct a laboratory study to better understand the effects of radioactive waste chemistry on the corrosion of waste storage tanks at the Hanford Site. The USDOE science need (RL-WT079-S Double-Shell Tanks Corrosion Chemistry) called for a multi year effort to identify waste chemistries and temperatures within the double-shell tank (DST) operating limits for corrosion control and operating temperature range that may not provide the expected corrosion protection and to evaluate future operations for the conditions outside the existing corrosion database. Assessment of corrosion damage using simulated (non-radioactive) waste is being made of the double-shell tank wall carbon steel alloy. Evaluation of the influence of exposure time, and electrolyte composition and/or concentration is being also conducted. (author) [es

  20. Assessment of vadose zone radionuclide contamination around Single Shell Tank 241-C-103

    International Nuclear Information System (INIS)

    Kos, S.E.

    1995-12-01

    Five drywells surrounding single shell tank 241-C-103 were logged with the high-purity germanium logging system to investigate possible leakage of radioactive contamination from the tank. The investigation included integration of the drywell survey results with several other data sources. There is no conclusive evidence showing indications that the 241-C-103 tank has leaked

  1. Characterization of Direct Push Vadose Zone Sediments from the 241-U Single-Shell Tank Farm

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Christopher F.; Valenta, Michelle M.; Serne, R. Jeffrey; Bjornstad, Bruce N.; Lanigan, David C.; Iovin, Cristian; Clayton, Ray E.; Geiszler, Keith N.; Clayton, Eric T.; Kutnyakov, Igor V.; Baum, Steven R.; Lindberg, Michael J.; Orr, Robert D.

    2007-12-20

    The overall goals of the Tank Farm Vadose Zone Project, led by CH2M HILL Hanford Group, Inc., are 1) to define risks from past and future single-shell tank farm activities, 2) to identify and evaluate the efficacy of interim measures, and 3) to aid, via collection of geochemical information and data, the future decisions that must be made by the U.S. Department of Energy (DOE) regarding the near-term operations, future waste retrieval, and final closure activities for the single-shell tank Waste Management Areas (WMAs). For a more complete discussion of the goals of the Tank Farm Vadose Zone Project, see the overall work plan, Phase 1 RCRA Facility Investigation/Corrective Measures Study Work Plan for the Single-Shell Tank Waste Management Areas (DOE 1999). Specific details on the rationale for activities performed at WMA U are found in Crumpler (2003). To meet these goals, CH2M HILL Hanford Group, Inc., asked scientists from Pacific Northwest National Laboratory (PNNL) to perform detailed analyses of vadose zone sediment collected within the U Single-Shell Tank Farm. Specifically, this report contains all the geochemical and selected physical characterization data collected on vadose zone sediment recovered from ten direct push characterization holes emplaced to investigate vadose zone contamination associated with potential leaks within the 241-U Single-Shell Tank Farm. Specific tanks targeted during this characterization campaign included tanks 241-U-104/241-U-105, 241-U-110, and 241-U-112. Additionally, this report compiles data from direct push samples collected north of tank 241-U-201, as well as sediment collected from the background borehole (C3393). After evaluating all the characterization and analytical data, there is no question that the vadose zone in the vicinity of tanks 241-U-104 and 241-U-105 has been contaminated by tank-related waste. This observation is not new, as gamma logging of drywells in the area has identified uranium contamination at the

  2. Preliminary tank characterization report for single-shell tank 241-TX-111: Best-basis inventory

    International Nuclear Information System (INIS)

    Place, D.E.

    1997-01-01

    An effort is underway to provide waste inventory estimates that will serve as standard characterization source terms for the various waste management activities. As part of this effort, an evaluation of available information for single-shell tank 241-TX-111 was performed, and a best-basis inventory was established. This work follows the methodology that was established by the standard inventory task. The best-basis inventory is based on an engineering assessment of waste type, process flowsheet data, early sample data, and/or other available information. The Standard Inventories of Chemicals and Radionuclides in Hanford Site Tank Wastes (Kupfer et al. 1997) describes standard methodology used to derive the tank-by-tank best-basis inventories. This preliminary TCR will be updated using this same methodology when additional data on tank contents become available

  3. Preliminary tank characterization report for single-shell tank 241-TX-103: Best-basis inventory

    International Nuclear Information System (INIS)

    Hendrickson, D.W.

    1997-01-01

    An effort is underway to provide waste inventory estimates that will serve as standard characterization source terms for the various waste management activities. As part of this effort, an evaluation of available information for single-shell tank 241-TX-103 was performed, and a best-basis inventory was established. This work follows the methodology that was established by the standard inventory task. The best-basis inventory is based on an engineering assessment of waste type, process flowsheet data, early sample data, and/or other available information. The Standard Inventories of Chemicals and Radionuclides in Hanford Site Tank Wastes (Kupfer et al. 1997) describes standard methodology used to derive the tank-by-tank best-basis inventories. This preliminary TCR will be updated using this same methodology when additional data on tank contents become available

  4. Mission analysis report for single-shell tank leakage mitigation

    International Nuclear Information System (INIS)

    Cruse, J.M.

    1994-01-01

    This document provides an analysis of the leakage mitigation mission applicable to past and potential future leakage from the Hanford Site's 149 single-shell high-level waste tanks. This mission is a part of the overall missions of the Westinghouse Hanford Company Tank Waste Remediation System division to remediate the tank waste in a safe and acceptable manner. Systems engineers principles are being applied to this effort. Mission analysis supports early decision making by clearly defining program objectives. This documents identifies the initial conditions and acceptable final conditions, defines the programmatic and physical interfaces and constraints, estimates the resources to carry out the mission, and establishes measures of success. The results of the mission analysis provide a consistent basis for subsequent systems engineering work

  5. Hanford double shell tank corrosion monitoring instrument tree prototype

    International Nuclear Information System (INIS)

    Nelson, J.L.; Edgemon, G.L.; Ohl, P.C.

    1995-11-01

    High-level nuclear wastes at the Hanford site are stored underground in carbon steel double-shell and single-shell tanks (DSTs and SSTs). The installation of a prototype corrosion monitoring instrument tree into DST 241-A-101 was completed in December 1995. The instrument tree has the ability to detect and discriminate between uniform corrosion, pitting, and stress corrosion cracking (SCC) through the use of electrochemical noise measurements and a unique stressed element, three-electrode probe. The tree itself is constructed of AISI 304L stainless steel (UNS S30403), with probes in the vapor space, vapor/liquid interface and liquid. Successful development of these trees will allow their application to single shell tanks and the transfer of technology to other US Department of Energy (DOE) sites. Keywords: Hanford, radioactive waste, high-level waste tanks, electrochemical noise, probes, double-shell tanks, single-shell tanks, corrosion

  6. Tank characterization report for Single-Shell Tank 241-BX-107

    International Nuclear Information System (INIS)

    Raphael, G.F.

    1994-09-01

    This study examined and assessed the status, safety issues, composition, and distribution of the wastes contained in the tank 241-BX-107. Historical and most recent information, ranging from engineering structural assessment experiments, process history, monitoring and remediation activities, to analytical core sample data, were compiled and interpreted in an effort to develop a realistic, contemporary profile for the tank BX-107 contents. The results of this is study revealed that tank BX-107, a 2,006,050 L (530,000 gal) cylindrical single-shell, dished-bottom carbon-steel tank in the 200 East Area of the Hanford Site, was classified as sound. It has been interim stabilized and thus contains less than 189,250 L (50,000 gal) of interstitial liquid, and less than 18,925 L (5,000 gal) of supernatant. It has also been partially interim isolated, whereby all inlets to the tank are sealed to prevent inadvertent addition of liquid. At a residual waste level of ∼3.07 m (120.7 ± 2 in. from sidewall bottom or ∼132.9 in. from center bottom), it is estimated that the tank BX-107 contents are equivalent to 1,305,825 L (345,000 gal). The vapor space pressure is at atmospheric. The latest temperature readings, which were taken in July 1994, show a moderate temperature value of 19 degrees C (66 degrees F). Two supernatant samples were collected in 1974 and 1990, prior to interim stabilization. Sludge core samples were obtained in 1979 and 1992

  7. Analysis of organic carbon and moisture in Hanford single-shell tank waste

    Energy Technology Data Exchange (ETDEWEB)

    Toth, J.J.; Heasler, P.G.; Lerchen, M.E.; Hill, J.G.; Whitney, P.D.

    1995-05-01

    This report documents a revised analysis performed by Pacific Northwest Laboratory involving the organic carbon laboratory measurement data for Hanford single-shell tanks (SSTs) obtained from a review of the laboratory analytical data. This activity has as its objective to provide a best-estimate, including confidence levels, of total organic carbon (TOC) and moisture in each of the 149 SSTs at Hanford. The TOC and moisture information presented in this report is useful as part of the criteria to identify SSTs for additional measurements, or monitoring for the Organic Safety Program. In April 1994, an initial study of the organic carbon in Hanford single-shell tanks was completed at PNL. That study reflected the estimates of TOC based on tank characterizations datasets that were available at the time. Also in that study, estimation of dry basis TOC was based on generalized assumptions pertaining to the moisture of the tank wastes. The new information pertaining to tank moisture and TOC data that has become available from the current study influences the best estimates of TOC in each of the SSTs. This investigation of tank TOC and moisture has resulted in improved estimates based on waste phase: saltcake, sludge, or liquid. This report details the assumptions and methodologies used to develop the estimates of TOC and moisture in each of the 149 SSTs at Hanford.

  8. Analysis of organic carbon and moisture in Hanford single-shell tank waste

    International Nuclear Information System (INIS)

    Toth, J.J.; Heasler, P.G.; Lerchen, M.E.; Hill, J.G.; Whitney, P.D.

    1995-05-01

    This report documents a revised analysis performed by Pacific Northwest Laboratory involving the organic carbon laboratory measurement data for Hanford single-shell tanks (SSTs) obtained from a review of the laboratory analytical data. This activity has as its objective to provide a best-estimate, including confidence levels, of total organic carbon (TOC) and moisture in each of the 149 SSTs at Hanford. The TOC and moisture information presented in this report is useful as part of the criteria to identify SSTs for additional measurements, or monitoring for the Organic Safety Program. In April 1994, an initial study of the organic carbon in Hanford single-shell tanks was completed at PNL. That study reflected the estimates of TOC based on tank characterizations datasets that were available at the time. Also in that study, estimation of dry basis TOC was based on generalized assumptions pertaining to the moisture of the tank wastes. The new information pertaining to tank moisture and TOC data that has become available from the current study influences the best estimates of TOC in each of the SSTs. This investigation of tank TOC and moisture has resulted in improved estimates based on waste phase: saltcake, sludge, or liquid. This report details the assumptions and methodologies used to develop the estimates of TOC and moisture in each of the 149 SSTs at Hanford

  9. Status of containment integrity studies for continued in-tank storage of Hanford defense high-level waste

    International Nuclear Information System (INIS)

    Baca, R.G.; Beitel, G.A.; Mercier, P.F.; Moore, E.L.; Vollert, F.R.

    1978-09-01

    Information is provided on the technical studies that have been implemented for evaluating the containment integrity of the single-shell waste storage tanks. The major areas of study are an analysis of storage tank integrity, a failure mode analysis, and storage tank improvements. Evaluations of tank structural integrity include theoretical studies on static and dynamic load responses, laboratory studies on concrete durability, and experimental studies on the potential for exothermic reactions of salt cake. The structural analyses completed to date show that the tanks are in good condition and have a safety margin against overload. Environmental conditions that could cause a loss of durability are limited to the waste chemicals stored (which do not have access to the concrete). Concern that a salt cake exothermic reaction may initiate a loss of containment is not justifiable based on extensive testing completed. A failure mode analysis of a tank liner failure, a sidewall failure, and a dome collapse shows that no radiologic hazard to man results. Storage tank improvement studies completed show that support of a tank dome is achievable. Secondary containment provided by chemical grouts and bentonite clay slurry walls does not appear promising. It is now estimated that the single-shell tanks will be serviceable for the storage of salt cake waste for decades under currently established operating temperature and load limits

  10. Preliminary tank characterization report for single-shell tank 241-BY-101: best-basis inventory

    International Nuclear Information System (INIS)

    Kupfer, M.J.

    1997-01-01

    An effort is underway to provide waste inventory estimates that will serve as standard characterization source terms for the various waste management activities. As part of this effort, an evaluation of available information for single-shell tank 241-BY-101 was performed, and a best-basis inventory was established. This work follows the methodology that was established by the standard inventory task

  11. Preliminary tank characterization report for single-shell tank 241-U-103: best-basis inventory

    International Nuclear Information System (INIS)

    Kupfer, M.J.; Stout, R.E.; Winward, R.T.

    1997-01-01

    An effort is underway to provide waste inventory estimates that will serve as standard characterization source terms for the various waste management activities. As part of this effort, an evaluation of available information for single-shell tank 241-U-103 was performed, and a best-basis inventory was established. This work follows the methodology that was established by the standard inventory task

  12. Preliminary tank characterization report for single-shell tank 241-TX-116: best-basis inventory

    International Nuclear Information System (INIS)

    Place, D.E.

    1997-01-01

    An effort is underway to provide waste inventory estimates that will serve as standard characterization source terms for the various waste management activities. As part of this effort, an evaluation of available information for single-shell tank 241-TX-116 was performed, and a bost-basis inventory was established. This work follows the methodology that was established by the standard inventory task

  13. Preliminary tank characterization report for single-shell tank 241-TX-110: Best-basis inventory

    International Nuclear Information System (INIS)

    Place, D.E.

    1997-01-01

    An effort is underway to provide waste inventory estimates that will serve as standard characterization source terms for the various waste management activities. As part of this effort, an evaluation of available information for single-shell tank 241-TX-110 was performed, and a best-basis inventory was established. This work follows the methodology that was established by the standard inventory task

  14. Preliminary tank characterization report for single-shell tank 241-BX-102: best-basis inventory

    International Nuclear Information System (INIS)

    Kupfer, M.J.

    1997-01-01

    An effort is underway to provide waste inventory estimates that will serve as standard characterization source terms for the various waste management activities. As part of this effort, an evaluation of available information for single-shell tank 241-BX-102 was performed, and a best-basis inventory was established. This work follows the methodology that was established by the standard inventory task

  15. Preliminary tank characterization report for single-shell tank 241-TY-101: best-basis inventory

    International Nuclear Information System (INIS)

    Lambert, S.L.

    1997-01-01

    An effort is underway to provide waste inventory estimates that will serve as standard characterization source terms for the various waste management activities. As part of this effort, an evaluation of available information for single-shell tank 241-TY-101 was performed, and a best-basis inventory was established. This work follows the methodology that was established by the standard inventory task

  16. Prelimainary tank characterization report for single-shell tank 241-TY-103 : Best-Basis inventory

    International Nuclear Information System (INIS)

    Hendrickson, D.W.

    1997-01-01

    An effort is underway to provide waste inventory estimates that will serve as standard characterization source terms for the various waste management activities. As part of this effort, an evaluation of available information for single-shell tank 241'-TY-103 was performed, and a best-basis inventory was established. This work follows the methodology that was established by the standard inventory task

  17. Preliminary tank characterization report for single-shell tank 241-SX-111: Best-basis inventory

    International Nuclear Information System (INIS)

    Kupfer, M.J.; Schulz, W.W.; Winward, R.T.

    1997-01-01

    An effort is underway to provide waste inventory estimates that will serve as standard characterization source terms for the various waste management activities. As part of this effort,.an evaluation of available information for single-shell tank 241-SX-111 was performed, and a best-basis inventory was established. This work follows the methodology that was established by the standard inventory task

  18. Preliminary tank characterization report for single-shell tank 241-SX-112: Best-basis inventory

    International Nuclear Information System (INIS)

    Kupfer, M.J.; Schulz, W.W.; Winward, R.T.

    1997-01-01

    An effort is underway to provide waste inventory estimates that will serve as standard characterization source terms for the various waste management activities. As part of this effort, an evaluation of available information for single-shell tank 241-SX-112 was performed, and a best-basis, inventory was established. This work follows the methodology that was established by the standard inventory task

  19. Preliminary tank characterization report for single-shell tank 241-SX-107: Best-basis inventory

    International Nuclear Information System (INIS)

    Kupfer, M.J.; Schulz, W.W.; Jones, T.E.

    1997-01-01

    An effort is underway to provide waste inventory estimates that will serve as standard characterization source terms for the various waste management activities. As part of this effort, an evaluation of available information for single-shell tank 241-SX-107 was performed, and a best-basis inventory was established. This work follows the methodology that was established by the standard inventory task

  20. Preliminary tank characterization report for single-shell tank 241-BX-111: best-basis inventory

    International Nuclear Information System (INIS)

    Kupfer, M.J.

    1997-01-01

    An effort is underway to provide waste inventory estimates that will serve as standard characterization source terms for the various waste management activities. As part of this effort, an evaluation of available information for single-shell tank 241-BX-111 was performed, and a best-basis inventory was established. This work follows the methodology that was established by the standard inventory task

  1. Single Shell Tank Waste Characterization Project for Tank B-110, Core 9 - data package and PNL validation summary report

    International Nuclear Information System (INIS)

    Pool, K.N.; Jones, T.E.; McKinley, S.G.; Tingey, J.M.; Longaker, T.M.; Gibson, J.A.

    1990-01-01

    This Data Package contains results obtained by Pacific Northwest Laboratory (PNL) staff in the characterization and analyses of Core 9 segments taken from the Single-Shell Tank (SST) 110B. The characterization and analysis of Core 9 segments are outlined in the Waste Characterization Plan for Hanford Site Single-Shell Tanks and in the Pacific Northwest Laboratory (PNL) Single-Shell Tank Waste Characterization Support FY 89/90 Statement of Work (SOW), Rev. 1 dated March, 1990. Specific analyses for each sub-sample taken from a segment are delineated in Test Instructions prepared by the PNL Single-Shell Tank Waste Characterization Project Management Office (SST Project) in accordance with procedures contained in the SST Waste Characterization Procedure Compendium (PNL-MA-599). Analytical procedures used in the characterization activities are also included in PNL-MA-599. Core 9 included five segments although segment 1 did not have sufficient material for characterization. The five samplers were received from Westinghouse Hanford Company (WHC) on 11/21-22/89. Each segment was contained in a sampler and was enclosed in a shipping cask. The shipping cask was butted up to the 325-A hot cell and the sampler moved into the hot cell. The material in the sampler (i.e., the segment) was extruded from the sampler, limited physical characteristics assessed, and photographed. At this point samples were taken for particle size and volatile organic analyses. Each segment was then homogenized. Sub-samples were taken for required analyses as delineated in the appropriate Test Instruction. Table 1 includes sample numbers assigned to Core 9 segment materials being transferred from 325-A Hot Cell. Sample numbers 90-0298, 90-0299, 90-0302, and 90-0303 were included in Table 1 although no analyses were requested for these samples. Table 2 lists Core 9 sub-sample numbers per sample preparation method

  2. Engineering task plan for determining breathing rates in single shell tanks using tracer gas

    International Nuclear Information System (INIS)

    Andersen, J.A.

    1997-01-01

    The testing of single shell tanks to determine breathing rates. Inert tracer gases helium, and sulfur hexafluoride will be injected into the tanks AX-103, BY-105, C-107 and U-103. Periodic samples will be taken over a three month interval to determine actual headspace breathing rates

  3. Ventilation system consequence calculations to support salt well pumping single-shell tank 241-A-101

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, G.W.

    1997-05-07

    This document presents the radiological dose and toxicological exposure calculations for an accident scenario involved with the ventilation system used to support salt well pumping single-shell tank 241-A-101. This tank has been listed on the Hydrogen Watch List.

  4. Ventilation system consequence calculations to support salt well pumping single-shell tank 241-A-101

    International Nuclear Information System (INIS)

    Ryan, G.W.

    1997-01-01

    This document presents the radiological dose and toxicological exposure calculations for an accident scenario involved with the ventilation system used to support salt well pumping single-shell tank 241-A-101. This tank has been listed on the Hydrogen Watch List

  5. Functions and requirements for single-shell tank leakage mitigation

    International Nuclear Information System (INIS)

    Cruse, J.M.

    1994-01-01

    This document provides the initial functions and requirements for the leakage mitigation mission applicable to past and potential future leakage from the Hanford Site's 149 single-shell high-level waste tanks. This mission is a part of the overall mission of the Westinghouse Hanford Company Tank Waste Remediation System division to remediate the tank waste in a safe and acceptable manner. Systems engineering principles are being applied to this effort. A Mission Analysis has been completed, this document reflects the next step in the systems engineering approach to decompose the mission into primary functions and requirements. The functions and requirements in this document apply to mitigative actions to be taken regarding below ground leaks from SST containment boundaries and the resulting soil contamination. Leakage mitigation is invoked in the TWRS Program in three fourth level functions: (1) Store Waste, (2) Retrieve Waste, and (3) Disposition Excess Facilities

  6. Underground Storage Tank Integrated Demonstration (UST-ID)

    International Nuclear Information System (INIS)

    1994-02-01

    The DOE complex currently has 332 underground storage tanks (USTs) that have been used to process and store radioactive and chemical mixed waste generated from weapon materials production. Very little of the over 100 million gallons of high-level and low-level radioactive liquid waste has been treated and disposed of in final form. Two waste storage tank design types are prevalent across the DOE complex: single-shell wall and double-shell wall designs. They are made of stainless steel, concrete, and concrete with carbon steel liners, and their capacities vary from 5000 gallons (19 m 3 ) to 10 6 gallons (3785 m 3 ). The tanks have an overburden layer of soil ranging from a few feet to tens of feet. Responding to the need for remediation of tank waste, driven by Federal Facility Compliance Agreements (FFCAs) at all participating sites, the Underground Storage Tank Integrated Demonstration (UST-ID) Program was created by the US DOE Office of Technology Development in February 1991. Its mission is to focus the development, testing, and evaluation of remediation technologies within a system architecture to characterize, retrieve, treat to concentrate, and dispose of radioactive waste stored in USTs at DOE facilities. The ultimate goal is to provide safe and cost-effective solutions that are acceptable to the public and the regulators. The UST-ID has focused on five DOE locations: the Hanford Site, which is the host site, in Richland, Washington; the Fernald Site in Fernald, Ohio; the Idaho National Engineering Laboratory near Idaho Falls, Idaho; the Oak Ridge Reservation in Oak Ridge, Tennessee, and the Savannah River Site in Savannah River, South Carolina

  7. Trade study of leakage detection, monitoring, and mitigation technologies to support Hanford single-shell waste retrieval

    International Nuclear Information System (INIS)

    Hertzel, J.S.

    1996-03-01

    The U.S. Department of Energy has established the Tank Waste Remediation System to safely manage and dispose of low-level, high-level, and transuranic wastes currently stored in underground storage tanks at the Hanford Site in Eastern Washington. This report supports the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone No. M-45-08-T01 and addresses additional issues regarding single-shell tank leakage detection, monitoring, and mitigation technologies and provide an indication of the scope of leakage detection, monitoring, and mitigation activities necessary to support the Tank Waste Remedial System Initial Single-shell Tank Retrieval System project

  8. FRACTIONAL CRYSTALLIZATION OF HANFORD SINGLE-SHELL TANK WASTES. A MODELING APPROACH

    International Nuclear Information System (INIS)

    HAMILTON, D.W.

    2006-01-01

    The Hanford site has 149 underground single-shell tanks (SST) storing mostly soluble, multi-salt, mixed wastes resulting from Cold War era weapons material production. These wastes must be retrieved and the salts immobilized before the tanks can be closed to comply with an overall site closure consent order entered into by the U.S. Department of Energy (DOE), the Environmental Protection Agency, and Washington State. Water will be used to retrieve the wastes and the resulting solution will be pumped to the proposed treatment process where a high curie (primarily 137 Cs) waste fraction will be separated from the other waste constituents. The separated waste streams will then be vitrified to allow for safe storage as an immobilized high level waste, or low level waste, borosilicate glass. Fractional crystallization, a common unit operation for production of industrial chemicals and pharmaceuticals, was proposed as the method to separate the salt wastes; it works by evaporating excess water until the solubilities of various species in the solution are exceeded (the solubility of a particular species depends on its concentration, temperature of the solution, and the presence of other ionic species in the solution). By establishing the proper conditions, selected pure salts can be crystallized and separated from the radioactive liquid phase

  9. Extended tank use analysis

    International Nuclear Information System (INIS)

    DeFigh-Price, C.; Green, D.J.

    1991-01-01

    The single-shell tanks at the Hanford Site were originally designed for open-quotes temporaryclose quotes use. The newer double-shell tanks were designed for 50 years of use. A number of single-shell tanks failed their original design criteria to contain liquid waste soon after they were constructed. These single-shell and double-shell tanks now will be required to contain semi-solid high-activity waste well beyond their design lives. It must be determined that the waste contained in these tanks will remain stable for up to an additional 30 years of storage. This paper describes the challenge of demonstrating that the tanks that have exceeded or will exceed their design lifetime can safely store high-level waste until planned disposal actions are taken. Considerations will include structural and chemical analyses

  10. Overview Of Hanford Single Shell Tank (SST) Structural Integrity - 12123

    International Nuclear Information System (INIS)

    Rast, R.S.; Rinker, M.W.; Washenfelder, D.J.; Johnson, J.B.

    2012-01-01

    To improve the understanding of the single-shell tanks (SSTs) integrity, Washington River Protection Solutions, LLC (WRPS), the USDOE Hanford Site tank contractor, developed an enhanced Single-Shell Tank Integrity Project in 2009. An expert panel on SST integrity, consisting of various subject matters experts in industry and academia, was created to provide recommendations supporting the development of the project. This panel developed 33 recommendations in four main areas of interest: structural integrity, liner degradation, leak integrity and prevention, and mitigation of contamination migration. Seventeen of these recommendations were used to develop the basis for the M-45-10-1 Change Package for the Hanford Federal Agreement and Compliance Order, which is also known as the Tri-Party Agreement. The structural integrity of the tanks is a key element in completing the cleanup mission at the Hanford Site. There are eight primary recommendations related to the structural integrity of Hanford SSTs. Six recommendations are being implemented through current and planned activities. The structural integrity of the Hanford SSTs is being evaluated through analysis, monitoring, inspection, materials testing, and construction document review. Structural evaluation in the form of analysis is performed using modern finite element models generated in ANSYS(reg s ign) The analyses consider in-situ, thermal, operating loads and natural phenomena such as earthquakes. Structural analysis of 108 of 149 Hanford SSTs has concluded that the tanks are structurally sound and meet current industry standards. Analyses of the remaining Hanford SSTs are scheduled for FY2013. Hanford SSTs are monitored through a dome deflection program. The program looks for deflections of the tank dome greater than 1/4 inch. No such deflections have been recorded. The tanks are also subjected to visual inspection. Digital cameras record the interior surface of the concrete tank domes, looking for cracks and

  11. OVERVIEW OF HANFORD SINGLE SHELL TANK (SST) STRUCTURAL INTEGRITY - 12123

    Energy Technology Data Exchange (ETDEWEB)

    RAST RS; RINKER MW; WASHENFELDER DJ; JOHNSON JB

    2012-01-25

    To improve the understanding of the single-shell tanks (SSTs) integrity, Washington River Protection Solutions, LLC (WRPS), the USDOE Hanford Site tank contractor, developed an enhanced Single-Shell Tank Integrity Project in 2009. An expert panel on SST integrity, consisting of various subject matters experts in industry and academia, was created to provide recommendations supporting the development of the project. This panel developed 33 recommendations in four main areas of interest: structural integrity, liner degradation, leak integrity and prevention, and mitigation of contamination migration. Seventeen of these recommendations were used to develop the basis for the M-45-10-1 Change Package for the Hanford Federal Agreement and Compliance Order, which is also known as the Tri-Party Agreement. The structural integrity of the tanks is a key element in completing the cleanup mission at the Hanford Site. There are eight primary recommendations related to the structural integrity of Hanford SSTs. Six recommendations are being implemented through current and planned activities. The structural integrity of the Hanford SSTs is being evaluated through analysis, monitoring, inspection, materials testing, and construction document review. Structural evaluation in the form of analysis is performed using modern finite element models generated in ANSYS{reg_sign} The analyses consider in-situ, thermal, operating loads and natural phenomena such as earthquakes. Structural analysis of 108 of 149 Hanford SSTs has concluded that the tanks are structurally sound and meet current industry standards. Analyses of the remaining Hanford SSTs are scheduled for FY2013. Hanford SSTs are monitored through a dome deflection program. The program looks for deflections of the tank dome greater than 1/4 inch. No such deflections have been recorded. The tanks are also subjected to visual inspection. Digital cameras record the interior surface of the concrete tank domes, looking for cracks and

  12. Elephant's foot phenomenon in liquid storage tanks

    Energy Technology Data Exchange (ETDEWEB)

    Chen, C.Q.

    1983-01-01

    This paper presents a method for analyzing the seismic response of a flat bottomed cylindrical liquid storage tank to vertical earthquake excitation. Here, vertical earthquake acceleration is considered to correspond to an increase in the density of a stored liquid. Taking into account the vertical and horizontal earthquake loads, hydrostatic pressure, and considering restrictive moment and shear forces at shell-bottom welded joint, the author has calculated circumferential and longitudinal stresses. These are combined to more accurately approximate the stresses at the base shell course. The calculated result closely conforms to the actual damage, termed ''elephant's foot,'' observed in the fuel storage tanks damaged in the Tangshan earthquake. This result shows that the ''elephant's foot'' phenomenon is not caused by buckling of the tank shell due to longitudinal compressive stresses resulting from horizontal earthquake acceleration, but rather by the combined stresses in the base shell course of the storage tank exceeding the yield strength of the shell course material. The effect due to vertical earthquake load is more than the effect from the horizontal load. Finally, some earthquake resistant methods to prevent the ''elephant's foot'' phenomenon are suggested by the author.

  13. Characterization of Solids in Residual Wastes from Single-Shell Tanks at the Hanford Site, Washington, USA - 9277

    International Nuclear Information System (INIS)

    Krupka, Kenneth M.; Cantrell, Kirk J.; Schaef, Herbert T.; Arey, Bruce W.; Heald, Steve M.; Deutsch, William J.; Lindberg, Michael J.

    2009-01-01

    Solid-phase characterization methods have been used in an ongoing study of residual wastes (i.e., waste remaining after final retrieval operations) from the underground single-shell storage tanks 241-C-103, 241-C-106, 241-C-202, 241-C-203, and 241-S-112 at the U.S. Department of Energy's Hanford Site in Washington State. The results of studies completed to date show significant variability in the compositions of those residual wastes and the compositions, morphologies, and crystallinities of the individual phases that make up these wastes. These differences undoubtedly result from the various waste types stored and transferred in and out each tank and the sluicing and retrieval operations used for waste retrieval. Our studies indicate that these residual wastes are chemically-complex assemblages of crystalline and amorphous solids that contain contaminants as discrete phases and/or co-precipitated within oxide phases. Depending on the specific tank, various solids (e.g., gibbsite; boehmite; dawsonite; cancrinite; Fe oxides such as hematite, goethite, and maghemite; rhodochrosite; lindbergite; whewellite; nitratine; and numerous amorphous or poorly crystalline phases) have been identified by X-ray diffraction and scanning electron microscopy/energy dispersive X-ray spectroscopy in residual wastes studied to date. Our studies also show that contact of residual wastes with Ca(OH)2- and CaCO3-saturated aqueous solutions, which were used as surrogates for the compositions of pore-fluid leachants derived from young and aged cements respectively, may alter the compositions of solid phases present in the contacted wastes. Fe oxides/hydroxides have been identified in all residual wastes studied to date. They occur in these wastes as discrete particles, particles intergrown within a matrix of other phases, and surface coatings on other particles or particle aggregates. These Fe oxides/hydroxides typically contain trace concentrations of other transition metals, such Cr, Mn

  14. EVALUATION OF BEST AVAILABLE CONTROL TECHNOLOGY FOR TOXICS (TBACT) DOUBLE SHELL TANK FARMS PRIMARY VENTILATION SYSTEM SUPPORTING WASTE TRANSFER OPERATIONS

    International Nuclear Information System (INIS)

    Kelly, S.E.; Haass, C.C.; Kovach, J.L.; Turner, D.A.

    2010-01-01

    This report is an evaluation of Best Available Control Technology for Toxics (tBACT) for installation and operation of the Hanford double shell (DST) tank primary ventilation systems. The DST primary ventilation systems are being modified to support Hanford's waste retrieval, mixing, and delivery of single shell tank (SST) and DST waste through out the DST storage system to the Waste Treatment and Immobilization Plant (WTP).

  15. EVALUATION OF BEST AVAILABLE CONTROL TECHNOLOGY FOR TOXICS (TBACT) DOUBLE SHELL TANK FARMS PRIMARY VENTILATION SYSTEMS SUPPORTING WASTE TRANSFER OPERATIONS

    International Nuclear Information System (INIS)

    Haas, C.C.; Kovach, J.L.; Kelly, S.E.; Turner, D.A.

    2010-01-01

    This report is an evaluation of Best Available Control Technology for Toxics (tBACT) for installation and operation of the Hanford double shell (DST) tank primary ventilation systems. The DST primary ventilation systems are being modified to support Hanford's waste retrieval, mixing, and delivery of single shell tank (SST) and DST waste through the DST storage system to the Waste Treatment and Immobilization Plant (WTP).

  16. EVALUATION OF BEST AVAILABLE CONTROL TECHNOLOGY FOR TOXICS (TBACT) DOUBLE SHELL TANK FARMS PRIMARY VENTILATION SYSTEM SUPPORTING WASTE TRANSFER OPERATIONS

    Energy Technology Data Exchange (ETDEWEB)

    KELLY SE; HAASS CC; KOVACH JL; TURNER DA

    2010-06-03

    This report is an evaluation of Best Available Control Technology for Toxics (tBACT) for installation and operation of the Hanford double shell (DST) tank primary ventilation systems. The DST primary ventilation systems are being modified to support Hanford's waste retrieval, mixing, and delivery of single shell tank (SST) and DST waste throught the DST storage system to the Waste Treatment and Immobilization Plant (WTP).

  17. EVALUATION OF BEST AVAILABLE CONTROL TECHNOLOGY FOR TOXICS -TBACT- DOUBLE SHELL TANK FARMS PRIMARY VENTILATION SYSTEMS SUPPORTING WASTE TRANSFER OPERATIONS

    Energy Technology Data Exchange (ETDEWEB)

    HAAS CC; KOVACH JL; KELLY SE; TURNER DA

    2010-06-24

    This report is an evaluation of Best Available Control Technology for Toxics (tBACT) for installation and operation of the Hanford double shell (DST) tank primary ventilation systems. The DST primary ventilation systems are being modified to support Hanford's waste retrieval, mixing, and delivery of single shell tank (SST) and DST waste through the DST storage system to the Waste Treatment and Immobilizaiton Plant (WTP).

  18. Engineering evaluation of intrusion prevention strategies for single-shell tanks

    International Nuclear Information System (INIS)

    Jenkins, C.E.

    1994-01-01

    In this study, previously implemented actions to prevent liquid intrusion into out-of-service single-shell tanks (SSTs), i.e., interim isolation or partial interim isolation, are investigated and expanded to identify additional cost-effective intrusion prevention techniques that could be reasonably taken until SSTs are ready for waste retrieval. Possible precipitation, groundwater, and condensation pathways and internal tank connections that could provide possible pathways for liquids are examined. Techniques to block identified potential pathways are developed and costed to determine the potential benefit to costed trade-offs for implementing the techniques. (Note: Surveillance data show increased waste surface levels for several SSTs that indicate possible liquid intrusion despite interim isolation activities.)

  19. Organic carbon in Hanford single-shell tank waste

    International Nuclear Information System (INIS)

    Toth, J.J.; Willingham, C.E.; Heasler, P.G.; Whitney, P.D.

    1994-04-01

    Safety of Hanford single-shell tanks (SSTs) containing organic carbon is a concern because the carbon in the presence of oxidizers (NO 3 or NO 2 ) is combustible when sufficiently concentrated and exposed to elevated temperatures. A propagating chemical reaction could potentially occur at high temperature (above 200 C). The rapid increase in temperature and pressure within a tank might result in the release of radioactive waste constituents to the environment. The purpose of this study is to gather available laboratory information about the organic carbon waste inventories stored in the Hanford SSTs. Specifically, the major objectives of this investigation are: Review laboratory analytical data and measurements for SST composite core and supernatant samples for available organic data; Assess the correlation of organic carbon estimated utilizing the TRAC computer code compared to laboratory measurements; and From the laboratory analytical data, estimate the TOC content with confidence levels for each of the 149 SSTs

  20. Organic carbon in Hanford single-shell tank waste

    International Nuclear Information System (INIS)

    Toth, J.J.; Willingham, C.E.; Heasler, P.G.; Whitney, P.D.

    1994-07-01

    This report documents an analysis performed by Pacific Northwest Laboratory (PNL) involving the organic carbon laboratory measurement data for Hanford single-shell tanks (SSTS) obtained from a review of the laboratory analytical data. This activity was undertaken at the request of Westinghouse Hanford Company (WHC). The objective of this study is to provide a best estimate, including confidence levels, of total organic carbon (TOC) in each of the 149 SSTs at Hanford. The TOC analyte information presented in this report is useful as part of the criteria to identify SSTs for additional measurements or monitoring for the organic safety program. This report is a precursor to an investigation of TOC and moisture in Hanford SSTS, in order to provide best estimates for each together in one report. Measured laboratory data were obtained for 75 of the 149 SSTS. The data represent a thorough investigation of data from 224 tank characterization datasets, including core-sampling and process laboratory data. Liquid and solid phase TOC values were investigated by examining selected tanks with both reported TOC values in solid and liquid phases. Some relationships were noted, but there was no clustering of data or significance between the solid and liquid phases. A methodology was developed for estimating the distribution and levels of TOC in SSTs using a logarithmic scale and an analysis of variance (ANOVA) technique. The methodology grouped tanks according to waste type using the Sort On Radioactive Waste Type (SORWT) grouping method. The SORWT model categorizes Hanford SSTs into groups of tanks expected to exhibit similar characteristics based on major waste types and processing histories. The methodology makes use of laboratory data for the particular tank and information about the SORWT group of which the tank is a member. Recommendations for a simpler tank grouping strategy based on organic transfer records were made

  1. Contaminant Release from Residual Waste in Single Shell Tanks at the Hanford Site, Washington, USA - 9276

    International Nuclear Information System (INIS)

    Cantrell, Kirk J.; Krupka, Kenneth M.; Deutsch, William J.; Lindberg, Michael J.

    2009-01-01

    Determinations of elemental and solid-phase compositions, and contaminant release studies have been applied in an ongoing study of residual tank wastes (i.e., waste remaining after final retrieval operations) from five of 149 underground single-shell storage tanks (241-C-103, 241-C-106, 241-C-202, 241-C-203, and 241-S-112) at the U.S. Department of Energy's Hanford Site in Washington State. This work is being conducted to support performance assessments that will be required to evaluate long-term health and safety risks associated with tank site closure. The results of studies completed to date show significant variability in the compositions, solid phase properties, and contaminant release characteristics from these residual tank wastes. This variability is the result of differences in waste chemistry/composition of wastes produced from several different spent fuel reprocessing schemes, subsequent waste reprocessing to remove certain target constituents, tank farm operations that concentrated wastes and mixed wastes between tanks, and differences in retrieval processes used to remove the wastes from the tanks. Release models were developed based upon results of chemical characterization of the bulk residual waste, solid-phase characterization (see companion paper 9277 by Krupka et al.), leaching and extraction experiments, and geochemical modeling. In most cases empirical release models were required to describe contaminant release from these wastes. Release of contaminants from residual waste was frequently found to be controlled by the solubility of phases that could not be identified and/or for which thermodynamic data and/or dissolution rates have not been measured. For example, significant fractions of Tc-99, I-129, and Cr appear to be coprecipitated at trace concentrations in metal oxide phases that could not be identified unambiguously. In the case of U release from tank 241-C-103 residual waste, geochemical calculations indicated that leachate

  2. Underground Storage Tanks - Storage Tank Locations

    Data.gov (United States)

    NSGIC Education | GIS Inventory — A Storage Tank Location is a DEP primary facility type, and its sole sub-facility is the storage tank itself. Storage tanks are aboveground or underground, and are...

  3. Structural analysis of Hanford's single-shell 241-C-106 tank: A first step toward waste-tank remediation

    International Nuclear Information System (INIS)

    Harris, J.P.; Julyk, L.J.; Marlow, R.S.; Moore, C.J.; Day, J.P.; Dyrness, A.D.; Jagadish, P.; Shulman, J.S.

    1993-10-01

    The buried single-shell waste tank 241-C-106, located at the US Department of Energy's Hanford Site, has been a repository for various liquid radioactive waste materials since its construction in 1943. A first step toward waste tank remediation is demonstrating that remediation activities can be performed safely. Determination of the current structural capacity of this high-heat tank is an important element in this assessment. A structural finite-element model of tank 241-C-106 has been developed to assess the tank's structural integrity with respect to in situ conditions and additional remediation surface loads. To predict structural integrity realistically, the model appropriately addresses two complex issues: (1) surrounding soil-tank interaction associated with thermal expansion cycling and surcharge load distribution and (2) concrete-property degradation and creep resulting from exposure to high temperatures generated by the waste. This paper describes the development of the 241-C-106 structural model, analysis methodology, and tank-specific structural acceptance criteria

  4. Corrective action strategy for single-shell tanks containing organic chemicals

    International Nuclear Information System (INIS)

    Turner, D.A.

    1993-08-01

    A Waste Tank Organic Safety Program (Program) Plan is to be transmitted to the U.S. Department of Energy, Richland Operations Office (RL) for approval by December 31, 1993. In April 1993 an agreement was reached among cognizant U.S. Department of Energy - Headquarters (HQ), RL and Westinghouse Hanford Company (WHC) staff that the Program Plan would be preceded by a ''Corrective Action Strategy,'' which addressed selected planning elements supporting the Program Plan. The ''Corrective Action Strategy'' would be reviewed and consensus reached regarding the planning elements. A Program Plan reflecting this consensus would then be prepared. A preliminary ''corrective action strategy'' is presented for resolving the organic tanks safety issue based on the work efforts recommended in the ISB (Interim Safety Basis for Hanford Site tank farm facilities). A ''corrective action strategy'' logic was prepared for individual SSTs (single-shell tanks), or a group of SSTs having similar characteristics, as appropriate. Four aspects of the organic tanks safety issue are addressed in the ISB: SSTs with the potential for combustion in the tank's headspace; combustion of a floating organic layer as a pool fire; surface fires in tanks that formerly held floating organic layers; SSTs with the potential for organic-nitrate reactions. A preliminary ''corrective action strategy'' for each aspect of the organic tanks safety issue is presented

  5. Process control plan for Single Shell Tank (SST) Saltcake Dissolution Proof of Concept

    International Nuclear Information System (INIS)

    ESTEY, S.D.

    2001-01-01

    This document describes the process controls for the tank 241-U-107 (U-107) saltcake dissolution proof-of-concept operations. Saltcake dissolution is defined as a method by which water-soluble salts will be retrieved from the Hanford Site radioactive waste tanks utilizing dissolution as the mobilizing mechanism. The proof-of-concept operations will monitor the retrieval process and transfer at least 100 kgal of fluid from tank U-107 to the double-shell tank (DST) system during the performance period. Tank U-107 has been identified as posing the highest long-term risk to the Columbia River of all single shell tanks (SSTs). This is because of the high content of mobile, long-lived radionuclides mostly in the saltcake waste in the tank. To meet current contractual and consent decree commitments, tank U-107 is being prepared for interim stabilization in August 2001. It is currently scheduled for saltcake retrieval in 2023, near the end of the SST retrieval campaign because of a lack of infrastructure in U-Farm. The proof-of-concept test will install a system to dissolve and retrieve a portion of the saltcake as part of, and operating in parallel with, the standard interim stabilization system to be installed on tank U-107. This proof-of-concept should provide key information on spray nozzle selection and effective spray patterns, leak detection, monitoring, and mitigation (LDMM) and in-tank saltcake solubility data that will help in the design of a full-tank retrieval demonstration system

  6. A risk management approach to double-shell tank waste volume versus storage capacity

    Energy Technology Data Exchange (ETDEWEB)

    Coles, G.A. [Westinghouse Hanford Co., Richland, WA (United States); Thurkow, T.J.; Fritz, R.L.; Nuhlestein, L.O.; Allen, M.R.; Stuart, R.J. [ARES Corp. (United States)

    1996-01-01

    A risk-based assessment of the overall waste volume versus double-shell tank storage capacity was conducted to develop fallback positions for projections where the waste volume was at a high risk of exceeding capacity. This study was initiated to provide that assessment. A working simulation model was the primary deliverable of this study. The model validates the approach and demonstrates that simulation analysis can provide a method of tracking uncertainties in available data, assessing probabilities, and serves as a tool to be used by management to determine the consequences of various off-normal occurrences.

  7. A risk management approach to double-shell tank waste volume versus storage capacity

    International Nuclear Information System (INIS)

    Coles, G.A.; Thurkow, T.J.; Fritz, R.L.; Nuhlestein, L.O.; Allen, M.R.; Stuart, R.J.

    1996-01-01

    A risk-based assessment of the overall waste volume versus double-shell tank storage capacity was conducted to develop fallback positions for projections where the waste volume was at a high risk of exceeding capacity. This study was initiated to provide that assessment. A working simulation model was the primary deliverable of this study. The model validates the approach and demonstrates that simulation analysis can provide a method of tracking uncertainties in available data, assessing probabilities, and serves as a tool to be used by management to determine the consequences of various off-normal occurrences

  8. FLAMMABLE GAS DIFFUSION THROUGH SINGLE SHELL TANK (SST) DOMES

    Energy Technology Data Exchange (ETDEWEB)

    MEACHAM, J.E.

    2003-11-10

    This report quantified potential hydrogen diffusion through Hanford Site Single-Shell tank (SST) domes if the SSTs were hypothetically sealed airtight. Results showed that diffusion would keep headspace flammable gas concentrations below the lower flammability limit in the 241-AX and 241-SX SST. The purpose of this document is to quantify the amount of hydrogen that could diffuse through the domes of the SSTs if they were hypothetically sealed airtight. Diffusion is assumed to be the only mechanism available to reduce flammable gas concentrations. The scope of this report is limited to the 149 SSTs.

  9. Double-shell tank annulus pumping alternative evaluation

    International Nuclear Information System (INIS)

    RIESENWEBER, S.D.

    1999-01-01

    This engineering evaluation compares five alternative schemes for maintaining emergency annulus pumping equipment in a reliable condition. The five schemes are: (1) continue status quo; (2) periodic pump removal and run-in; (3) periodic in-place limited maintenance; (4) uninstalled ready spares; and (5) expanded mission of Single-Shell Tank Emergency Pumping Trailer. Each alternative is described, the pros and cons identified, and rough order of magnitude life-cycle costs computed. The alternatives are compared using weighted evaluation criteria. The evaluation concludes that staging adjustable length submersible pumps in the Single-Shell Tank Emergency Pumping Trailer has the best cost-benefit characteristics

  10. INITIAL SINGLE-SHELL TANK (SST) SYSTEM PERFORMANCE ASSESSMENT OF THE HANFORD SITE

    International Nuclear Information System (INIS)

    JARAYSI, M.N.

    2007-01-01

    The ''Initial Single-Shell Tank System Performance Assessment for the Hanford Site [1] (SST PA) presents the analysis of the long-term impacts of residual wastes assumed to remain after retrieval of tank waste and closure of the SST farms at the US Department of Energy (DOE) Hanford Site. The SST PA supports key elements of the closure process agreed upon in 2004 by DOE, the Washington State Department of Ecology (Ecology), and the US Environmental Protection Agency (EPA). The SST PA element is defined in Appendix I of the ''Hanford Federal Facility Agreement and Consent Order'' (HFFACO) (Ecology et al. 1989) [2], the document that establishes the overall closure process for the SST and double-shell tank (DST) systems. The approach incorporated in the SST PA integrates substantive features of both hazardous and radioactive waste management regulations into a single analysis. The defense-in-depth approach used in this analysis defined two major engineering barriers (a surface barrier and the grouted tank structure) and one natural barrier (the vadose zone) that will be relied on to control waste release into the accessible environment and attain expected performance metrics. The analysis evaluates specific barrier characteristics and other site features that influence contaminant migration by the various pathways. A ''reference'' case and a suite of sensitivity/uncertainty cases are considered. The ''reference case'' evaluates environmental impacts assuming central tendency estimates of site conditions. ''Reference'' case analysis results show residual tank waste impacts on nearby groundwater, air resources; or inadvertent intruders to be well below most important performance objectives. Conversely, past releases to the soil, from previous tank farm operations, are shown to have groundwater impacts that re significantly above most performance objectives. Sensitivity/uncertainty cases examine single and multiple parameter variability along with plausible alternatives

  11. Geology Data Package for the Single-Shell Tank Waste Management Areas at the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Reidel, Steve P.; Chamness, Mickie A.

    2007-01-01

    This data package discusses the geology of the single-shell tank (SST) farms and the geologic history of the area. The focus of this report is to provide the most recent geologic information available for the SST farms. This report builds upon previous reports on the tank farm geology and Integrated Disposal Facility geology with information available after those reports were published.

  12. Tank selection for Light Duty Utility Arm (LDUA) system hot testing in a single shell tank

    Energy Technology Data Exchange (ETDEWEB)

    Bhatia, P.K.

    1995-01-31

    The purpose of this report is to recommend a single shell tank in which to hot test the Light Duty Utility Arm (LDUA) for the Tank Waste Remediation System (TWRS) in Fiscal Year 1996. The LDUA is designed to utilize a 12 inch riser. During hot testing, the LDUA will deploy two end effectors (a High Resolution Stereoscopic Video Camera System and a Still/Stereo Photography System mounted on the end of the arm`s tool interface plate). In addition, three other systems (an Overview Video System, an Overview Stereo Video System, and a Topographic Mapping System) will be independently deployed and tested through 4 inch risers.

  13. Tank selection for Light Duty Utility Arm (LDUA) system hot testing in a single shell tank

    International Nuclear Information System (INIS)

    Bhatia, P.K.

    1995-01-01

    The purpose of this report is to recommend a single shell tank in which to hot test the Light Duty Utility Arm (LDUA) for the Tank Waste Remediation System (TWRS) in Fiscal Year 1996. The LDUA is designed to utilize a 12 inch riser. During hot testing, the LDUA will deploy two end effectors (a High Resolution Stereoscopic Video Camera System and a Still/Stereo Photography System mounted on the end of the arm's tool interface plate). In addition, three other systems (an Overview Video System, an Overview Stereo Video System, and a Topographic Mapping System) will be independently deployed and tested through 4 inch risers

  14. Tank characterization report for double-shell tank 241-AN-102

    International Nuclear Information System (INIS)

    Jo, J.

    1996-01-01

    This characterization report summarizes the available information on the historical uses, current status, and sampling and analysis results of waste stored in double-shell underground storage tank 241- AN-102. This report supports the requirements of the Hanford Federal Facility Agreement and Consent Order, Milestone M-44-09 (Ecology et al. 1996). Tank 241-AN-102 is one of seven double-shell tanks located in the AN Tank Farm in the Hanford Site 200 East Area. The tank was hydrotested in 1981, and when the water was removed, a 6-inch heel was left. Tank 241-AN-102 began receiving waste from tank 241-SY-102 beginning in 1982. The tank was nearly emptied in the third quarter of 1983, leaving only 125 kL (33 kgal) of waste. Between the fourth quarter of 1983 and the first quarter of 1984, tank 241-AN-102 received waste from tanks 241-AY-102, 241-SY-102, 241-AW-105, and 241- AN-101. The tank was nearly emptied in the second quarter of 1984, leaving a heel of 129 kL (34 kgal). During the second and third quarters of 1984, the tank was filled with concentrated complexant waste from tank 241-AW-101. Since that time, only minor amounts of Plutonium-Uranium Extraction (PUREX) Plant miscellaneous waste and water have been received; there have been no waste transfer to or from the tank since 1992. Therefore, the waste currently in the tank is considered to be concentrated complexant waste. Tank 241-AN-102 is sound and is not included on any of the Watch Lists

  15. Contaminant Release from Residual Waste in Closed Single-Shell Tanks and Other Waste Forms Associated with the Tanks

    International Nuclear Information System (INIS)

    Deutsch, William J.

    2008-01-01

    This chapter describes the release of contaminants from the various waste forms that are anticipated to be associated with closure of the single-shell tanks. These waste forms include residual sludge or saltcake that will remain in the tanks after waste retrieval. Other waste forms include engineered glass and cementitious materials as well as contaminated soil impacted by previous tank leaks. This chapter also describes laboratory testing to quantify contaminant release and how the release data are used in performance/risk assessments for the tank waste management units and the onsite waste disposal facilities. The chapter ends with a discussion of the surprises and lessons learned to date from the testing of waste materials and the development of contaminant release models

  16. Tank characterization report for single-shell tank 241-C-110. Revision 1

    International Nuclear Information System (INIS)

    Benar, C.J.

    1997-01-01

    One of the major functions of the Tank Waste Remediation System (IWRS) is to characterize wastes in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis, along with other available information about a tank, are compiled and maintained in a tank characterization report (TCR). This report and its appendixes serve as the TCR for single-shell tank 241-C-110. The objectives of this report are to use characterization data in response to technical issues associated with 241-C-110 waste and to provide a standard characterization of this waste in terms of a best-basis inventory estimate. Supporting data and information are contained in the appendixes. This report also supports the requirements of the Hanford Federal Facility Agreement and Consent Order milestone M-44-05. Characterization information presented in this report originated from sample analyses and known historical sources. While only the results from recent sample events will be used to fulfill the requirements of the data quality objectives (DQOs), other information can be used to support or question conclusions derived from these results. Historical information for tank 241-C-110 are provided included surveillance information, records pertaining to waste transfers and tank operations, and 1124 expected tank contents derived from a process knowledge model. The sampling events are listed, as well as sample data obtained before 1989. The results of the 1992 sampling events are also reported in the data package. The statistical analysis and numerical manipulation of data used in issue resolution are reported in Appendix C. Appendix D contains the evaluation to establish the best basis for the inventory estimate and the statistical analysis performed for this evaluation. A bibliography that resulted from an in-depth literature search of all known information sources applicable to tank 241-C-110 and its respective waste types is contained in Appendix E

  17. Tank characterization report for single-shell tank 241-T-102

    International Nuclear Information System (INIS)

    Baldwin, J.H.

    1997-01-01

    A major function of the Tank Waste Remediation System (TWRS) is to characterize wastes in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis, along with other available information about a tank, are compiled and maintained in a tank characterization report (TCR). This report and its appendixes serve as the TCR for single-shell tank 241-T-102. The objectives of this report are to use characterization data in response to technical issues associated with tank 241-T-102 waste; and to provide a standard characterization of this waste in terms of a best-basis inventory estimate. The response to technical issues is summarized in Section 2.0, and the best-basis inventory estimate is presented in Section 3.0. Recommendations regarding safety status and additional sampling needs are provided in Section 4.0. Supporting data and information are contained in the appendixes. This report supports the requirements of the Hanford Federal Facility Agreement and Consent Order milestone M-44-05. Characterization information presented in this report originated from sample analyses and known historical sources. The most recent core sampling of tank 241-T-102 (March 1993) predated the existence of data quality objectives (DQOs). An assessment of the technical issues from the currently applicable DQOs was made using data from the 1993 push mode core sampling event, a July 1994 grab sampling event, and a May 1996 vapor flammability measurement. Historical information for tank 241-T-102, provided in Appendix A, includes surveillance information, records pertaining to waste transfers and tank operations, and expected tank contents derived from a process knowledge model. Appendix B contains further sampling and analysis data from the March 1993 push mode core sampling event and data from the grab sampling event in August 1994 and May 1996 vapor flammability measurement. Of the two push mode cores taken in March of 1993, cores 55

  18. Tank characterization report for single-shell tank 241-T-102

    Energy Technology Data Exchange (ETDEWEB)

    Baldwin, J.H.

    1997-06-24

    A major function of the Tank Waste Remediation System (TWRS) is to characterize wastes in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis, along with other available information about a tank, are compiled and maintained in a tank characterization report (TCR). This report and its appendixes serve as the TCR for single-shell tank 241-T-102. The objectives of this report are to use characterization data in response to technical issues associated with tank 241-T-102 waste; and to provide a standard characterization of this waste in terms of a best-basis inventory estimate. The response to technical issues is summarized in Section 2.0, and the best-basis inventory estimate is presented in Section 3.0. Recommendations regarding safety status and additional sampling needs are provided in Section 4.0. Supporting data and information are contained in the appendixes. This report supports the requirements of the Hanford Federal Facility Agreement and Consent Order milestone M-44-05. Characterization information presented in this report originated from sample analyses and known historical sources. The most recent core sampling of tank 241-T-102 (March 1993) predated the existence of data quality objectives (DQOs). An assessment of the technical issues from the currently applicable DQOs was made using data from the 1993 push mode core sampling event, a July 1994 grab sampling event, and a May 1996 vapor flammability measurement. Historical information for tank 241-T-102, provided in Appendix A, includes surveillance information, records pertaining to waste transfers and tank operations, and expected tank contents derived from a process knowledge model. Appendix B contains further sampling and analysis data from the March 1993 push mode core sampling event and data from the grab sampling event in August 1994 and May 1996 vapor flammability measurement. Of the two push mode cores taken in March of 1993, cores 55

  19. Soil load above Hanford waste storage tanks (2 volumes)

    International Nuclear Information System (INIS)

    Pianka, E.W.

    1995-01-01

    This document is a compilation of work performed as part of the Dome Load Control Project in 1994. Section 2 contains the calculations of the weight of the soil over the tank dome for each of the 75-feet-diameter waste-storage tanks located at the Hanford Site. The chosen soil specific weight and soil depth measured at the apex of the dome crown are the same as those used in the primary analysis that qualified the design. Section 3 provides reference dimensions for each of the tank farm sites. The reference dimensions spatially orient the tanks and provide an outer diameter for each tank. Section 4 summarizes the available soil surface elevation data. It also provides examples of the calculations performed to establish the present soil elevation estimates. The survey data and other data sources from which the elevation data has been obtained are printed separately in Volume 2 of this Supporting Document. Section 5 contains tables that provide an overall summary of the present status of dome loads. Tables summarizing the load state corresponding to the soil depth and soil specific weight for the original qualification analysis, the gravity load requalification for soil depth and soil specific weight greater than the expected actual values, and a best estimate condition of soil depth and specific weight are presented for the Double-Shell Tanks. For the Single-Shell Tanks, only the original qualification analysis is available; thus, the tabulated results are for this case only. Section 6 provides a brief overview of past analysis and testing results that given an indication of the load capacity of the waste storage tanks that corresponds to a condition approaching ultimate failure of the tank. 31 refs

  20. Construction Method Study For Installation Of A Large Riser In A Single-Shell Tank

    International Nuclear Information System (INIS)

    Adkisson, D.A.

    2010-01-01

    This study evaluates and identifies a construction method for cutting a hole in a single-shell tank dome. This study also identifies and evaluates vendors for performing the cut. Single-shell tanks (SST) in the 241-C tank farm are currently being retrieved using various retrieval technologies (e.g., modified sluicing). The Hanford Federal Facility Agreement and Consent Order require that the SSTs be retrieved to less than 360 cubic feet of radioactive waste. The current technologies identified and deployed for tank retrieval have not been able to retrieve waste in accordance with the Hanford Federal Facility Agreement and Consent Order. As such, alternative retrieval systems have been proposed and are currently under construction that will have the ability to retrieve waste to this defined level. The proposed retrieval systems will not fit down existing risers. New risers will need to be installed to provide the retrieval systems access to the inside of the SSTs. The purpose of this study is two-fold. The first objective is to identify multiple concrete cutting technologies and perform an initial pre-screening, evaluate the technologies identified for more in-depth analysis, and recommend a technology/methodology for cutting a hole in the tank dome. The identified/pre-screened methods will be evaluated based on the following criteria: (1) Maturity/complexity; (2) Waste generation; (3) Safety; (4) Cost; and (5) Schedule. Once the preferred method is identified to cut the hole in the tank dome, the second objective is to identify, evaluate, and recommend a vendor for the technology selected that will perform the cutting process.

  1. Development of a multi-functional scarifier dislodger with an integral pneumatic conveyance retrieval system for single-shell tank remediation. FY93 summary report

    International Nuclear Information System (INIS)

    Bamberger, J.A.; McKinnon, M.A.; Alberts, D.A.; Steele, D.E.; Crowe, C.T.

    1994-10-01

    The Underground Storage Tank Integrated Demonstration (UST-ID) is evaluating several hydraulic dislodger concepts and retrieval technologies to develop specifications for system that can retrieve wastes from single-shell tanks. Each of the dislodgers will be evaluated sequentially to determine its ability to fracture and dislodge various waste simulants such as salt cake, sludge, and viscous liquid. The retrieval methods will be evaluated to determine their ability to convey this dislodged material from the tank. This report describes on-going research that commenced in FY93 to develop specifications for a scarifier dislodger coupled with a pneumatic conveyance retrieval system. The scarifier development is described in Section 3; pneumatic conveyance development is described in Section 4. Preliminary system specifications are listed in Section 5. FY94 plans are summarized in Section 6

  2. Geochemical Processes Data Package for the Vadose Zone in the Single-Shell Tank Waste Management Areas at the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Cantrell, Kirk J.; Zachara, John M.; Dresel, P. Evan; Krupka, Kenneth M.; Serne, R. Jeffrey

    2007-09-28

    This data package discusses the geochemistry of vadose zone sediments beneath the single-shell tank farms at the U.S. Department of Energy’s (DOE’s) Hanford Site. The purpose of the report is to provide a review of the most recent and relevant geochemical process information available for the vadose zone beneath the single-shell tank farms and the Integrated Disposal Facility. Two companion reports to this one were recently published which discuss the geology of the farms (Reidel and Chamness 2007) and groundwater flow and contamination beneath the farms (Horton 2007).

  3. Acoustic imaging of underground storage tank wastes

    International Nuclear Information System (INIS)

    Mech, S.J.

    1995-09-01

    Acoustics is a potential tool to determine the properties of high level wastes stored in Underground Storage Tanks. Some acoustic properties were successfully measured by a limited demonstration conducted in 114-TX. This accomplishment provides the basis for expanded efforts to qualify techniques which depend on the acoustic properties of tank wastes. This work is being sponsored by the Department of Energy under the Office of Science and Technology. In FY-1994, limited Tank Waste Remediation Systems EM-30 support was available at Hanford and Los Alamos National Laboratory. The Massachusetts Institute of Technology (MIT) and Earth Resources Laboratory (ERL) were engaged for analysis support, and Elohi Geophysics, Inc. for seismic testing services. Westinghouse-Hanford Company provided the testing and training, supplied the special engineering and safety analysis equipment and procedures, and provided the trained operators for the actual tank operations. On 11/9/94, limited in-tank tests were successfully conducted in tank 114-TX. This stabilized Single Shell Tank was reported as containing 16.8 feet of waste, the lower 6.28 feet of which contained interstitial liquid. Testing was conducted over the lower 12 feet, between two Liquid Observation Wells thirty feet apart. The ''quick-look'' data was reviewed on-site by MIT and Elohi

  4. Integrity assessment of a storage tank

    Energy Technology Data Exchange (ETDEWEB)

    Goncalves, Osorio Correa; Santos, Jose Henrique Gomes dos; Carvalho, Alexis Fernandes [PETROBRAS Transporte S.A. (TRANSPETRO), Rio de Janeiro, RJ (Brazil)

    2005-07-01

    In the last internal inspection of a 5000 bbl freshwater storage tank located in a shipping terminal, widespread pitting corrosion was detected on the shell courses. In some of these pits, its depth was such that the remaining thickness was bellow the minimum thickness required according to the design code. Nevertheless, this approach is overly conservative since it does not consider the pits size, depth and spacing. Thanks to advances in stress analysis, new tools are available for the evaluation of damaged equipment widely employed in the oil industry such as pressure vessels, piping and storage tanks. In the present work, the authors present the integrity assessment performed on this tank using the Fitness for Service approach using the methods and procedures contained in the document API RP 579 (Fitness-for-service). (author)

  5. Underground storage tank soft waste dislodging and conveyance

    International Nuclear Information System (INIS)

    Wellner, A.F.S.

    1993-01-01

    The primary objective of this task is to demonstrate potential technical solutions and to acquire engineering data and information on the retrieval technologies applicable for use in retrieving waste from underground storage tanks. This task focuses on soft waste dislodging and conveyance technologies that would be used in conjunction with a manipulator-based retrieval system. This retrieval task focuses on Hanford single-shell tanks, but the results may also have applications to other waste retrieval problems. This work is part of the U.S. Department of Energy's (DOE's) Office of Technology Development, sponsored by the DOE's Richland Operations Office under the Underground Storage Tanks Integrated Demonstration (USTID) program. This task is one element of the whole waste dislodging and conveyance system in the USTID. The tank wastes contain both hazardous and radioactive constituents. This task focuses on the processes for dislodging and retrieving soft wastes, mainly sludge. Sludge consists primarily of heavy-metal, iron, and aluminum precipitates. Sludges vary greatly in their physical properties and may contain pockets of liquid. Sludges have been described as varying in consistency from thick slurry to sticky clay and as sandy with hard chunks of material. The waste is believed to have adhesive and cohesive properties. The quantitative physical properties of the wastes have yet to be measured. The waste simulants used in the testing program emulate the physical properties of the tank waste

  6. Updated Drainable Interstitial Liquid Volume Estimates for 119 Single Shell Tanks (SST) Declared Stabilized

    International Nuclear Information System (INIS)

    FIELD, J.G.

    2000-01-01

    This document assesses the volume of drainable interstitial liquid (DIL) and pumpable liquid remaining in 119 single-shell tanks (SSTs) that were previously stabilized. Based on the methodology and assumptions presented, the DIL exceeded the stabilization criterion of less than 50,000 gal in two of the 119 SSTs. Tank 241-C-102 had an estimated DIL of 62,000 gal, and the estimated DIL for tank 241-BY-103 was 58,000 gal. In addition, tanks 241-BX-103, 241-T-102, and 241-T-112 appear to exceed the stabilization criterion of 5,000 gal supernatant. An assessment of the source of the supernatant in these tanks is beyond the scope of this document. The actual DIL and pumpable liquid remaining volumes for each tank may vary significantly from estimated volumes as a result of specific tank waste characteristics that are not currently measured or defined. Further refinement to the pumpable liquid and DIL volume estimates may be needed as additional tank waste information is obtained

  7. SAFETY EVALUATION OF OXALIC ACID WASTE RETRIEVAL IN SINGLE SHELL TANK (SST) 241-C-106

    International Nuclear Information System (INIS)

    SHULTZ, M.V.

    2003-01-01

    This report documents the safety evaluation of the process of retrieving sludge waste from single-shell tank 241-C-106 using oxalic acid. The results of the HAZOP, safety evaluation, and control allocation/decision are part of the report. This safety evaluation considers the use of oxalic acid to recover residual waste in single-shell tank (SST) 241-C-106. This is an activity not addressed in the current tank farm safety basis. This evaluation has five specific purposes: (1) Identifying the key configuration and operating assumptions needed to evaluate oxalic acid dissolution in SST 241-C-106. (2) Documenting the hazardous conditions identified during the oxalic acid dissolution hazard and operability study (HAZOP). (3) Documenting the comparison of the HAZOP results to the hazardous conditions and associated analyzed accident currently included in the safety basis, as documented in HNF-SD-WM-TI-764, Hazard Analysis Database Report. (4) Documenting the evaluation of the oxalic acid dissolution activity with respect to: (A) Accident analyses described in HNF-SD-WM-SAR-067, Tank Farms Final Safety Analysis Report (FSAR), and (B) Controls specified in HNF-SD-WM-TSR-006, Tank Farms Technical Safety Requirements (TSR). (5) Documenting the process and results of control decisions as well as the applicability of preventive and/or mitigative controls to each oxalic acid addition hazardous condition. This safety evaluation is not intended to be a request to authorize the activity. Authorization issues are addressed by the unreviewed safety question (USQ) evaluation process. This report constitutes an accident analysis

  8. Hanford Waste Tank Bump Accident and Consequence Analysis

    International Nuclear Information System (INIS)

    BRATZEL, D.R.

    2000-01-01

    This report provides a new evaluation of the Hanford tank bump accident analysis and consequences for incorporation into the Authorization Basis. The analysis scope is for the safe storage of waste in its current configuration in single-shell and double-shell tanks

  9. Assuring safe interim storage of Hanford high-level tank wastes

    International Nuclear Information System (INIS)

    Bacon, R.F.; Babad, H.; Lerch, R.E.

    1996-01-01

    The federal government established the Hanford Site in South-Eastern Washington near the City of Richland in 1943 to produce plutonium for national defense purposes. The Hanford Site occupies approximately 1,450 square kilometers (560 square miles) of land North of the City of Richland. The production mission ended in 1988, transforming the Hanford Site mission to waste management, environmental restoration, and waste disposal. Thus the primary site mission has shifted from production to the management and disposal of radioactive, hazardous, and mixed waste that exist at the Hanford Site. This paper describes the focus and challenges facing the Tank Waste Remediation System (TWRS) Program related to the dual and parallel missions of interim safe storage and disposal of the tank associated waste. These wastes are presently stored in 2.08E+05 liters (55,000) to 4.16E+06 liters (1,100,000) gallon low-carbon steel tanks. There are 149 single- and 28 double-shell radioactive underground storage tanks, as well as approximately 40 inactive miscellaneous underground storage tanks. In addition, the TWRS mission includes the storage and disposal of the inventory of 1,929 cesium and strontium capsules created as part of waste management efforts. Tank waste was a by-product of producing plutonium and other defense related materials. From 1944 through 1990, four (4) different major chemical processing facilities at the Hanford Site processed irradiated (spent) fuel from defense reactors to separate and recover plutonium for weapons production. As new and improved processes were developed over the last 50 years, the processing efficiency improved and the waste compositions sent to the tanks for storage changed both chemically and radiologically. The earliest separation processes (e.g., bismuth phosphate coprecipitation) carried out in T Plant (1944-1956) and B Plant (1945-1952) recovered only plutonium

  10. Simplified design and evaluation of liquid storage tanks relative to earthquake loading

    Energy Technology Data Exchange (ETDEWEB)

    Poole, A.B.

    1994-06-01

    A summary of earthquake-induced damage in liquid storage tanks is provided. The general analysis steps for dynamic response of fluid-filled tanks subject to horizontal ground excitation are discussed. This work will provide major attention to the understanding of observed tank-failure modes. These modes are quite diverse in nature, but many of the commonly appearing patterns are believed to be shell buckling. A generalized and simple-to-apply shell loading will be developed using Fluegge shell theory. The input to this simplified analysis will be horizontal ground acceleration and tank shell form parameters. A dimensionless parameter will be developed and used in predictions of buckling resulting from earthquake-imposed loads. This prediction method will be applied to various tank designs that have failed during major earthquakes and during shaker table tests. Tanks that have not failed will also be reviewed. A simplified approach will be discussed for early design and evaluation of tank shell parameters and materials to provide a high confidence of low probability of failure during earthquakes.

  11. Interface Control Document Between the Double-Shell Tank (DST) system and the Waste Encapsulation and Storage Facility (WESF)

    International Nuclear Information System (INIS)

    HOFFERBER, G.A.

    2000-01-01

    This Interface Control Document (ICD) describes interfaces between the Double-Shell Tanks (DST) System and Waste Encapsulation and Storage Facility (WESF) (figure 1). WESF is currently operational as a storage facility for cesium and strontium capsules. This ICD covers current operational interfaces and those envisioned during Terminal Clean Out (TCO) activities in the future. WESF and the DST System do not have a direct physical interface. The waste will be moved by tank trailer to the 204-AR waste unloading facility. The purpose of the ICD process is to formalize working agreements between the River Protection Project (RPP) DST System and systems/facilities operated by organizations or companies internal and external to RPP. This ICD has been developed as part of the requirements basis for design of the DST System to support the Phase I Privatization effort

  12. Tank Space Options Report

    International Nuclear Information System (INIS)

    BOYLES, V.C.

    2001-01-01

    A risk-based priority for the retrieval of Hanford Site waste from the 149 single-shell tanks (SSTs) has been adopted as a result of changes to the Hanford Federal Facility Agreement and Consent Order (HFFACO) (Ecology et al. 1997) negotiated in 2000. Retrieval of the first three tanks in the retrieval sequence fills available capacity in the double-shell tanks (DSTs) by 2007. As a result, the HFFACO change established a milestone (M-45-12-TO1) requiring the determination of options that could increase waste storage capacity for single-shell tank waste retrieval. The information will be considered in future negotiations. This document fulfills the milestone requirement. This study presents options that were reviewed for the purpose of increasing waste storage capacity. Eight options are identified that have the potential for increasing capacity from 5 to 10 million gallons, thus allowing uninterrupted single-shell tank retrieval until the planned Waste Treatment Plant begins processing substantial volumes of waste from the double-shell tanks in 2009. The cost of implementing these options is estimated to range from less than $1 per gallon to more than $14 per gallon. Construction of new double-shell tanks is estimated to cost about $63 per gallon. Providing 5 to 10 million gallons of available double-shell tank space could enable early retrieval of 5 to 9 high-risk single-shell tanks beyond those identified for retrieval by 2007. These tanks are A-101, AX-101, AX-103, BY-102, C-107, S-105, S-106, S-108, and S-109 (Garfield et al. 2000). This represents a potential to retrieve approximately 14 million total curies, including 3,200 curies of long-lived mobile radionuclides. The results of the study reflect qualitative analyses conducted to identify promising options. The estimated costs are rough-order-of magnitude and, therefore, subject to change. Implementing some of the options would represent a departure from the current baseline and may adversely impact the

  13. Underground storage tanks soft waste dislodging and conveyance

    International Nuclear Information System (INIS)

    Wellner, A.F.

    1993-10-01

    Currently 140 million liters (37 million gallons) of waste are stored in the single shell underground storage tanks (SSTs) at Hanford. The wastes contain both hazardous and radioactive constituents. This paper focuses on the Westinghouse Hanford Company's testing program for soft waste dislodging and conveyance technology. This program was initialized to investigate methods of dislodging and conveying soft waste. The main focus was on using air jets, water jets, and/or mechanical blades to dislodge the waste and air conveyance to convey the dislodged waste. These waste dislodging and conveyance technologies would be used in conjunction with a manipulator based retrieval system

  14. Load requirements for maintaining structural integrity of Hanford single-shell tanks during waste feed delivery and retrieval activities

    International Nuclear Information System (INIS)

    JULYK, L.J.

    1999-01-01

    This document provides structural load requirements and their basis for maintaining the structural integrity of the Hanford Single-Shell Tanks during waste feed delivery and retrieval activities. The requirements are based on a review of previous requirements and their basis documents as well as load histories with particular emphasis on the proposed lead transfer feed tanks for the privatized vitrification plant

  15. Computational analysis of coupled fluid, heat, and mass transport in ferrocyanide single-shell tanks: FY 1994 interim report. Ferrocyanide Tank Safety Project

    International Nuclear Information System (INIS)

    McGrail, B.P.

    1994-11-01

    A computer modeling study was conducted to determine whether natural convection processes in single-shell tanks containing ferrocyanide wastes could generate localized precipitation zones that significantly concentrate the major heat-generating radionuclide, 137 Cs. A computer code was developed that simulates coupled fluid, heat, and single-species mass transport on a regular, orthogonal finite-difference grid. The analysis showed that development of a ''hot spot'' is critically dependent on the temperature dependence for the solubility of Cs 2 NiFe(CN) 6 or CsNaNiFe(CN) 6 . For the normal case, where solubility increases with increasing temperature, the net effect of fluid flow, heat, and mass transport is to disperse any local zones of high heat generation rate. As a result, hot spots cannot physically develop for this case. However, assuming a retrograde solubility dependence, the simulations indicate the formation of localized deposition zones that concentrate the 137 Cs near the bottom center of the tank where the temperatures are highest. Recent experimental studies suggest that Cs 2 NiFe(CN) 6 (c) does not exhibit retrograde solubility over the temperature range 25 degree C to 90 degree C and NaOH concentrations to 5 M. Assuming these preliminary results are confirmed, no natural mass transport process exists for generating a hot spot in the ferrocyanide single-shell tanks

  16. Tank 241-BY-110 tank characterization plan. Revision 1

    International Nuclear Information System (INIS)

    Homi, C.S.

    1995-01-01

    This document is a plan that identifies the information needed to address relevant issues concerning short-term and long-term safe storage and long-term management of Single-Shell Tank (SST) 241-BY-110

  17. Tank 241-AN-102 tank characterization plan. Revision 1

    International Nuclear Information System (INIS)

    Homi, C.S.

    1995-01-01

    This document is a plan that identifies the information needed to address relevant issues concerning short-term and long-term safe storage and long-term management of Single-Shell Tank (SST) 241-AN-102

  18. Tank 241-U-111 tank characterization plan. Revision 1

    International Nuclear Information System (INIS)

    Homi, C.S.

    1995-01-01

    This document is a plan that identifies the information needed to address relevant issues concerning short-term and long-term safe storage and long-term management of Single-Shell Tank (SST) 241-U-111

  19. Tank 241-S-107 tank characterization plan. Revision 1

    International Nuclear Information System (INIS)

    Homi, C.S.

    1995-01-01

    This document is a plan that identifies the information needed to address relevant issues concerning short-term and long-term safe storage and long-term management of Single-Shell Tank (SST) 241-S-107

  20. Tank 241-B-106 tank characterization plan. Revision 1

    International Nuclear Information System (INIS)

    Homi, C.S.

    1995-01-01

    This document is a plan that identifies the information needed to address relevant issues concerning short-term and long-term safe storage and long-term management of Single-Shell Tank (SST) 241-B-106

  1. Tank 241-SY-103 tank characterization plan. Revision 1

    International Nuclear Information System (INIS)

    Homi, C.S.

    1995-01-01

    This document is a plan that identifies the information needed to address relevant issues concerning short-term and long-term safe storage and long-term management of Single-Shell Tank (SST) 241-SY-103

  2. TANK SPACE OPTIONS REPORT

    International Nuclear Information System (INIS)

    Willis, W.L.; Ahrendt, M.R.

    2009-01-01

    Since this report was originally issued in 2001, several options proposed for increasing double-shell tank (DST) storage space were implemented or are in the process of implementation. Changes to the single-shell tank (SST) waste retrieval schedule, completion of DST space saving options, and the DST space saving options in progress have delayed the projected shortfall of DST storage space from the 2007-2011 to the 2018-2025 timeframe (ORP-11242, River Protection Project System Plan). This report reevaluates options from Rev. 0 and includes evaluations of new options for alleviating projected restrictions on SST waste retrieval beginning in 2018 because of the lack of DST storage space.

  3. Functions and requirements for Hanford single-shell tank leakage detection and monitoring

    International Nuclear Information System (INIS)

    Cruse, J.M.; Ohl, P.C.

    1995-01-01

    This document provides the initial functions and requirements for leakage detection and monitoring applicable to past and potential future leakage from the Hanford Site's 149 single-shell high-level waste tanks. This mission is a part of the overall mission of the Westinghouse Hanford Company Tank Waste Remediation System division to remediate the tank waste in a safe and acceptable manner. Systems engineering principles are being applied to this effort. This document reflects the an initial step in the systems engineering approach to decompose the mission into primary functions and requirements. The document is considered approximately 30% complete relative to the effort required to produce a final version that can be used to support demonstration and/or procurement of technologies. The functions and requirements in this document apply to detection and monitoring of below ground leaks from SST containment boundaries and the resulting soil contamination. Leakage detection and monitoring is invoked in the TWRS Program in three fourth level functions: (1) Store Waste, (2) Retrieve Waste, and (3) Disposition Excess Facilities (as identified in DOE/RL-92-60 Rev. 1, Tank Waste Remediation System Functions and Requirements)

  4. Tank 244A tank characterization plan

    International Nuclear Information System (INIS)

    Schreiber, R.D.

    1994-01-01

    The Double-Shell Tank (DST) System currently receives waste from the Single-Shell Tank (SST) System in support of SST stabilization efforts or from other on-site facilities which generate or store waste. Waste is also transferred between individual DSTs. The mixing or commingling of potentially incompatible waste types at the Hanford Site must be addressed prior to any waste transfers into the DSTs. The primary goal of the Waste Compatibility Program is to prevent the formation of an Unreviewed Safety Question (USQ) as a result of improper waste management. Tank 244A is a Double Contained Receiver Tank (DCRT) which serves as any overflow tank for the East Area Farms. Waste material is able to flow freely between the underground storage tanks and tank 244A. Therefore, it is necessary to test the waste in tank 244A for compatibility purposes. Two issues related to the overall problem of waste compatibility must be evaluated: Assurance of continued operability during waste transfer and waste concentration and Assurance that safety problems are not created as a result of commingling wastes under interim storage. The results of the grab sampling activity prescribed by this Tank Characterization Plan shall help determine the potential for four kinds of safety problems: criticality, flammable gas accumulation, energetics, and corrosion and leakage

  5. Development of simulated tank wastes for the US Department of Energy's Underground Storage Tank Integrated Demonstration

    International Nuclear Information System (INIS)

    Elmore, M.R.; Colton, N.G.; Jones, E.O.

    1992-08-01

    The purpose of the Underground Storage Tank Integrated Demonstration (USTID) is to identify and evaluate technologies that may be used to characterize, retrieve, treat, and dispose of hazardous and radioactive wastes contained in tanks on US Department of Energy sites. Simulated wastes are an essential component of the evaluation process because they provide controlled samples for technology assessment, and minimize costs and risks involved when working with radioactive wastes. Pacific Northwest Laboratory has developed a recipe to simulate Hanford single-shell tank, (SST) waste. The recipe is derived from existing process recipes, and elemental concentrations are based on characterization data from 18 SSTs. In this procedure, salt cake and metal oxide/hydroxide sludge are prepared individually, and mixed together at varying ratios depending on the specific tank, waste to be simulated or the test being conducted. Elemental and physical properties of the stimulant are comparable with analyzed tank samples, and chemical speciation in the simulant is being improved as speciation data for actual wastes become available. The nonradioactive chemical waste simulant described here is useful for testing technologies on a small scale

  6. Development and Deployment of the Extended Reach Sluicing System (ERSS) for Retrieval of Hanford Single Shell Tank Waste. Draft

    International Nuclear Information System (INIS)

    Bauer, Roger E.; Figley, Reed R.; Innes, A. G.

    2013-01-01

    A history of the evolution and the design development of Extended Reach Sluicer System (ERSS) is presented. Several challenges are described that had to be overcome to create a machine that went beyond the capabilities of prior generation sluicers to mobilize waste in Single Shell Tanks for pumping into Double Shell Tank receiver tanks. Off-the-shelf technology and traditional hydraulic fluid power systems were combined with the custom-engineered components to create the additional functionality of the ERSS, while still enabling it to fit within very tight entry envelope into the SST. Problems and challenges inevitably were encountered and overcome in ways that enhance the state of the art of fluid power applications in such constrained environments. Future enhancements to the ERSS design are explored for retrieval of tanks with different dimensions and internal obstacles

  7. Engineering report single-shell tank farms interim measures to limit infiltration through the vadose zone

    International Nuclear Information System (INIS)

    HAASS, C.C.

    1999-01-01

    Identifies, evaluates and recommends interim measures for reducing or eliminating water sources and preferential pathways within the vadose zone of the single-shell tank farms. Features studied: surface water infiltration and leaking water lines that provide recharge moisture, and wells that could provide pathways for contaminant migration. An extensive data base, maps, recommended mitigations, and rough order of magnitude costs are included

  8. Engineering report single-shell tank farms interim measures to limit infiltration through the vadose zone

    Energy Technology Data Exchange (ETDEWEB)

    HAASS, C.C.

    1999-10-14

    Identifies, evaluates and recommends interim measures for reducing or eliminating water sources and preferential pathways within the vadose zone of the single-shell tank farms. Features studied: surface water infiltration and leaking water lines that provide recharge moisture, and wells that could provide pathways for contaminant migration. An extensive data base, maps, recommended mitigations, and rough order of magnitude costs are included.

  9. FRACTIONAL CRYSTALLIZATION OF HANFORD SINGLE-SHELL TANK WASTES FROM CONCEPT TO PILOT PLANT

    International Nuclear Information System (INIS)

    GENIESSE, D.J.; NELSON, E.A.; HAMILTON, D.W.; MAJORS, J.H.; NORDAHL, T.K.

    2006-01-01

    The Hanford site has 149 underground single-shell tanks (SST) storing mostly soluble, multi-salt mixed wastes resulting from Cold War era weapons material production. These wastes must be retrieved and the salts immobilized before the tanks can be closed to comply with an overall site-closure consent order entered into by the US Department of Energy, the Environmental Protection Agency, and the State of Washington. Water will be used to retrieve the wastes and the resulting solution will be pumped to a proposed pretreatment process where a high-curie (primarily 137 Cs) waste fraction will be separated from the other waste constituents. The separated waste streams will then be vitrified to allow for safe storage as an immobilized high-level waste, or low-level waste, borosilicate glass. Fractional crystallization, a common unit operation for production of industrial chemicals and pharmaceuticals, was proposed as the method to separate the salt wastes; it works by evaporating excess water until the solubilities of various species in the solution are exceeded (the solubility of a particular species depends on its concentration, temperature of the solution, and the presence of other ionic species in the solution). By establishing the proper conditions, selected pure salts can be crystallized and separated from the radioactive liquid phase. The aforementioned parameters, along with evaporation rate, proper agitation, and residence time, determine nucleation and growth kinetics and the resulting habit and size distribution of the product crystals. These crystals properties are important considerations for designing the crystallizer and solid/liquid separation equipment. A structured program was developed to (a) demonstrate that fractional crystallization could be used to pre-treat Hanford tank wastes and (b) provide data to develop a pilot plant design

  10. Flammable gas project expert elicitation results for Hanford Site double-shell tanks

    International Nuclear Information System (INIS)

    Bratzel, D.R.

    1998-01-01

    This report documents the results of the second phase of parameter quantification by the flammable gas expert panel. This second phase is focused on the analysis of flammable gas accidents in the Hanford Site double-shell tanks. The first phase of parameter quantification, performed in 1997 was focused on the analysis of Hanford single-shell tanks

  11. Fuel storage tank

    International Nuclear Information System (INIS)

    Peehs, M.; Stehle, H.; Weidinger, H.

    1979-01-01

    The stationary fuel storage tank is immersed below the water level in the spent fuel storage pool. In it there is placed a fuel assembly within a cage. Moreover, the storage tank has got a water filling and a gas buffer. The water in the storage tank is connected with the pool water by means of a filter, a surge tank and a water purification facility, temperature and pressure monitoring being performed. In the buffer compartment there are arranged catalysts a glow plugs for recombination of radiolysis products into water. The supply of water into the storage tank is performed through the gas buffer compartment. (DG) [de

  12. Single bi-temperature thermal storage tank for application in solar thermal plant

    Science.gov (United States)

    Litwin, Robert Zachary; Wait, David; Lancet, Robert T.

    2017-05-23

    Thermocline storage tanks for solar power systems are disclosed. A thermocline region is provided between hot and cold storage regions of a fluid within the storage tank cavity. One example storage tank includes spaced apart baffles fixed relative to the tank and arranged within the thermocline region to substantially physically separate the cavity into hot and cold storage regions. In another example, a flexible baffle separated the hot and cold storage regions and deflects as the thermocline region shifts to accommodate changing hot and cold volumes. In yet another example, a controller is configured to move a baffle within the thermocline region in response to flow rates from hot and cold pumps, which are used to pump the fluid.

  13. HANFORD SITE RIVER PROTECTION PROJECT (RPP) TANK FARM CLOSURE

    International Nuclear Information System (INIS)

    JARAYSI, M.N.; SMITH, Z.; QUINTERO, R.; BURANDT, M.B.; HEWITT, W.

    2006-01-01

    The U. S. Department of Energy, Office of River Protection and the CH2M HILL Hanford Group, Inc. are responsible for the operations, cleanup, and closure activities at the Hanford Tank Farms. There are 177 tanks overall in the tank farms, 149 single-shell tanks (see Figure 1), and 28 double-shell tanks (see Figure 2). The single-shell tanks were constructed 40 to 60 years ago and all have exceeded their design life. The single-shell tanks do not meet Resource Conservation and Recovery Act of 1976 [1] requirements. Accordingly, radioactive waste is being retrieved from the single-shell tanks and transferred to double-shell tanks for storage prior to treatment through vitrification and disposal. Following retrieval of as much waste as is technically possible from the single-shell tanks, the Office of River Protection plans to close the single-shell tanks in accordance with the Hanford Federal Facility Agreement and Consent Order [2] and the Atomic Energy Act of 1954 [3] requirements. The double-shell tanks will remain in operation through much of the cleanup mission until sufficient waste has been treated such that the Office of River Protection can commence closing the double-shell tanks. At the current time, however, the focus is on retrieving waste and closing the single-shell tanks. The single-shell tanks are being managed and will be closed in accordance with the pertinent requirements in: Resource Conservation and Recovery Act of 1976 and its Washington State-authorized Dangerous Waste Regulations [4], US DOE Order 435.1 Radioactive Waste Management [5], the National Environmental Policy Act of 1969 [6], and the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 [7]. The Hanford Federal Facility Agreement and Consent Order, which is commonly referred to as the Tri-Party Agreement or TPA, was originally signed by Department of Energy, the State of Washington, and the U. S. Environmental Protection Agency in 1989. Meanwhile, the

  14. Mechanistic analysis of double-shell tank gas release

    Energy Technology Data Exchange (ETDEWEB)

    Allemann, R.T.; Antoniak, Z.I.; Friley, J.R.; Haines, C.E.; Liljegren, L.M.; Somasundaram, S.

    1991-12-01

    Pacific Northwest Laboratory (PNL) is studying possible mechanisms and fluid dynamics contributing to the periodic release of gases from the double-shell waste storage tanks at Hanford. This study is being conducted for Westinghouse Hanford Company (WHC), a contractor for the US Department of Energy (DOE). This interim report discusses the work done through November 1990. Safe management of the wastes at Hanford depends on an understanding of the chemical and physical mechanisms that take place in the waste tanks. An example of the need to understand these mechanisms is tank 101-SY. The waste in this tank is generating and periodically releasing potentially flammable gases into the tank vent system according to observations of the tank. How these gases are generated and become trapped, the causes of periodic release, and the mechanism of the release are not known in detail. In order to develop a safe mitigation strategy, possible physical mechanisms for the periodic release of flammable gases need to be understood.

  15. Hanford Tank Cleanup Update

    International Nuclear Information System (INIS)

    Berriochoa, M.V.

    2011-01-01

    Access to Hanford's single-shell radioactive waste storage tank C-107 was significantly improved when workers completed the cut of a 55-inch diameter hole in the top of the tank. The core and its associated cutting equipment were removed from the tank and encased in a plastic sleeve to prevent any potential spread of contamination. The larger tank opening allows use of a new more efficient robotic arm to complete tank retrieval.

  16. SINGLE-SHELL TANKS LEAK INTEGRITY ELEMENTS/SX FARM LEAK CAUSES AND LOCATIONS - 12127

    Energy Technology Data Exchange (ETDEWEB)

    VENETZ TJ; WASHENFELDER D; JOHNSON J; GIRARDOT C

    2012-01-25

    Washington River Protection Solutions, LLC (WRPS) developed an enhanced single-shell tank (SST) integrity project in 2009. An expert panel on SST integrity was created to provide recommendations supporting the development of the project. One primary recommendation was to expand the leak assessment reports (substitute report or LD-1) to include leak causes and locations. The recommendation has been included in the M-045-9IF Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) as one of four targets relating to SST leak integrity. The 241-SX Farm (SX Farm) tanks with leak losses were addressed on an individual tank basis as part of LD-1. Currently, 8 out of 23 SSTs that have been reported to having a liner leak are located in SX Farm. This percentage was the highest compared to other tank farms which is why SX Farm was analyzed first. The SX Farm is comprised of fifteen SSTs built 1953-1954. The tanks are arranged in rows of three tanks each, forming a cascade. Each of the SX Farm tanks has a nominal I-million-gal storage capacity. Of the fifteen tanks in SX Farm, an assessment reported leak losses for the following tanks: 241-SX-107, 241-SX-108, 241-SX-109, 241-SX-111, 241-SX-112, 241-SX-113, 241-SX-114 and 241-SX-115. The method used to identify leak location consisted of reviewing in-tank and ex-tank leak detection information. This provided the basic data identifying where and when the first leaks were detected. In-tank leak detection consisted of liquid level measurement that can be augmented with photographs which can provide an indication of the vertical leak location on the sidewall. Ex-tank leak detection for the leaking tanks consisted of soil radiation data from laterals and drywells near the tank. The in-tank and ex-tank leak detection can provide an indication of the possible leak location radially around and under the tank. Potential leak causes were determined using in-tank and ex-tank information that is not directly related to

  17. Single-Shell Tanks Leak Integrity Elements/ SX Farm Leak Causes and Locations - 12127

    Energy Technology Data Exchange (ETDEWEB)

    Girardot, Crystal [URS- Safety Management Solutions, Richland, Washington 99352 (United States); Harlow, Don [ELR Consulting Richland, Washington 99352 (United States); Venetz, Theodore; Washenfelder, Dennis [Washington River Protection Solutions, LLC Richland, Washington 99352 (United States); Johnson, Jeremy [U.S. Department of Energy, Office of River Protection Richland, Washington 99352 (United States)

    2012-07-01

    Washington River Protection Solutions, LLC (WRPS) developed an enhanced single-shell tank (SST) integrity project in 2009. An expert panel on SST integrity was created to provide recommendations supporting the development of the project. One primary recommendation was to expand the leak assessment reports (substitute report or LD-1) to include leak causes and locations. The recommendation has been included in the M-045-91F Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) as one of four targets relating to SST leak integrity. The 241-SX Farm (SX Farm) tanks with leak losses were addressed on an individual tank basis as part of LD-1. Currently, 8 out of 23 SSTs that have been reported to having a liner leak are located in SX Farm. This percentage was the highest compared to other tank farms which is why SX Farm was analyzed first. The SX Farm is comprised of fifteen SSTs built 1953-1954. The tanks are arranged in rows of three tanks each, forming a cascade. Each of the SX Farm tanks has a nominal 1-million-gal storage capacity. Of the fifteen tanks in SX Farm, an assessment reported leak losses for the following tanks: 241-SX-107, 241-SX-108, 241-SX-109, 241-SX- 111, 241-SX-112, 241-SX-113, 241-SX-114 and 241-SX-115. The method used to identify leak location consisted of reviewing in-tank and ex-tank leak detection information. This provided the basic data identifying where and when the first leaks were detected. In-tank leak detection consisted of liquid level measurement that can be augmented with photographs which can provide an indication of the vertical leak location on the sidewall. Ex-tank leak detection for the leaking tanks consisted of soil radiation data from laterals and dry-wells near the tank. The in-tank and ex-tank leak detection can provide an indication of the possible leak location radially around and under the tank. Potential leak causes were determined using in-tank and ex-tank information that is not directly related to

  18. Phase 1 RCRA Facility Investigation and Corrective Measures Study Work Plan for Single Shell Tank Waste Management Areas

    International Nuclear Information System (INIS)

    ROGERS, P.M.

    2000-01-01

    This document is the master work plan for the Resource Conservation and Recovery Act of 1976 (RCRA) for single-shell tank (SST) farms at the Hanford Site. Evidence indicates that releases at four of the seven SST waste management areas have impacted

  19. Phase 1 RCRA Facility Investigation and Corrective Measures Study Work Plan for Single Shell Tank Waste Management Areas

    Energy Technology Data Exchange (ETDEWEB)

    ROGERS, P.M.

    2000-06-01

    This document is the master work plan for the Resource Conservation and Recovery Act of 1976 (RCRA) for single-shell tank (SST) farms at the Hanford Site. Evidence indicates that releases at four of the seven SST waste management areas have impacted.

  20. Hanford double shell tank corrosion monitoring instrument trees

    International Nuclear Information System (INIS)

    Nelson, J.L.

    1995-03-01

    High-level nuclear wastes at the Hanford site are stored underground in carbon steel double-shell and single-shell tanks - (DSTs and SSTS). Westinghouse Hanford Company is considering installation of a prototype corrosion monitoring instrument tree in at least one DST in the summer of 1995. The instrument tree will have the ability to detect and discriminate between uniform corrosion, stress corrosion cracking (SCC), and pitting. Additional instrument trees will follow in later years. Proof-of-technology testing is currently underway for the use of commercially available electric field pattern (EFP) analysis and electrochemical noise (EN) corrosion monitoring equipment. Creative use and combinations of other existing technologies is also being considered. Successful demonstration of these technologies will be followed by the development of a Hanford specific instrument tree. The first instrument tree will incorporate one of these technologies. Subsequent trees may include both technologies, as well as a more standard assembly of corrosion coupons. Successful development of these trees will allow their application to single shell tanks and the transfer of technology to other U.S. Department of Energy (DOE) sites

  1. High-level waste storage tank farms/242-A evaporator standards/requirements identification document (S/RID), Vol. 4

    Energy Technology Data Exchange (ETDEWEB)

    1994-04-01

    Radiation protection of personnel and the public is accomplished by establishing a well defined Radiation Protection Organization to ensure that appropriate controls on radioactive materials and radiation sources are implemented and documented. This Requirements Identification Document (RID) applies to the activities, personnel, structures, systems, components, and programs involved in executing the mission of the Tank Farms. The physical boundaries within which the requirements of this RID apply are the Single Shell Tank Farms, Double Shell Tank Farms, 242-A Evaporator-Crystallizer, 242-S, T Evaporators, Liquid Effluent Retention Facility (LERF), Purgewater Storage Facility (PWSF), and all interconnecting piping, valves, instrumentation, and controls. Also included is all piping, valves, instrumentation, and controls up to and including the most remote valve under Tank Farms control at any other Hanford Facility having an interconnection with Tank Farms. The boundary of the structures, systems, components, and programs to which this RID applies, is defined by those that are dedicated to and/or under the control of the Tank Farms Operations Department and are specifically implemented at the Tank Farms.

  2. High-level waste storage tank farms/242-A evaporator standards/requirements identification document (S/RID), Vol. 4

    International Nuclear Information System (INIS)

    1994-04-01

    Radiation protection of personnel and the public is accomplished by establishing a well defined Radiation Protection Organization to ensure that appropriate controls on radioactive materials and radiation sources are implemented and documented. This Requirements Identification Document (RID) applies to the activities, personnel, structures, systems, components, and programs involved in executing the mission of the Tank Farms. The physical boundaries within which the requirements of this RID apply are the Single Shell Tank Farms, Double Shell Tank Farms, 242-A Evaporator-Crystallizer, 242-S, T Evaporators, Liquid Effluent Retention Facility (LERF), Purgewater Storage Facility (PWSF), and all interconnecting piping, valves, instrumentation, and controls. Also included is all piping, valves, instrumentation, and controls up to and including the most remote valve under Tank Farms control at any other Hanford Facility having an interconnection with Tank Farms. The boundary of the structures, systems, components, and programs to which this RID applies, is defined by those that are dedicated to and/or under the control of the Tank Farms Operations Department and are specifically implemented at the Tank Farms

  3. Preliminary performance assessment strategy for single-shell tank waste disposal

    International Nuclear Information System (INIS)

    Sonnichsen, J.C. Jr.

    1991-10-01

    The disposal of the waste stored in single-shell tanks at the Hanford Site is recognized as a major environmental concern. A comprehensive program has been initiated to evaluate the various alternatives available for disposal of these wastes. Theses wastes will be disposed of in a manner consistent with applicable laws and regulations. Long-term waste isolation is one measure of performance that will be used for purposes of selection. The performance of each disposal alternative will be simulated using numerical models. Contained herein is a discussion of the strategy that has and continues to evolve to establish a general analytical framework to evaluate this performance. This general framework will be used to construct individual models of each waste disposal alternative selected for purposes of evaluation. 30 refs., 3 figs

  4. AX Tank Farm tank removal study

    International Nuclear Information System (INIS)

    SKELLY, W.A.

    1998-01-01

    This report considers the feasibility of exposing, demolishing, and removing underground storage tanks from the 241-AX Tank Farm at the Hanford Site. For the study, it was assumed that the tanks would each contain 360 ft 3 of residual waste (corresponding to the one percent residual Inventory target cited in the Tri-Party Agreement) at the time of demolition. The 241-AX Tank Farm is being employed as a ''strawman'' in engineering studies evaluating clean and landfill closure options for Hanford single-shell tank farms. The report is one of several reports being prepared for use by the Hanford Tanks Initiative Project to explore potential closure options and to develop retrieval performance evaluation criteria for tank farms

  5. Cost analysis for final disposal of double-shell tank waste

    International Nuclear Information System (INIS)

    Seifert, T.W.; Markillie, K.D.

    1996-01-01

    The Cost Analysis For Final Disposal of Double-Shell Tank Waste provides the Department of Energy (DOE) and DOE contractors with a better understanding of costs associated with the transfer, storage, and treatment of liquid mixed wasted within the Double-Shell Tank System (DST). In order to evaluate waste minimization/pollution prevention ideas, it is necessary to have reliable cost data that can be used in cost/benefit analyses; preparation of funding requests and/or proposals; and provide a way for prioritizing and allocating limited resources. This cost per gallon rate will be used by DST waste generators to assess the feasibility of Pollution Prevention Opportunity Assessments (P20A) and to determine the cost avoidances or savings associated with the implementation of those P20As

  6. Tank waste remediation system dangerous waste training plan

    International Nuclear Information System (INIS)

    POHTO, R.E.

    1999-01-01

    This document outlines the dangerous waste training program developed and implemented for all Treatment, Storage, and Disposal (TSD) Units operated by Lockheed Martin Hanford Corporation (LMHC) Tank Waste Remediation System (TWRS) in the Hanford 200 East, 200 West and 600 Areas and the <90 Day Accumulation Area at 209E. Operating TSD Units operated by TWRS are: the Double-Shell Tank (DST) System (including 204-AR Waste Transfer Building), the 600 Area Purgewater Storage and the Effluent Treatment Facility. TSD Units undergoing closure are: the Single-Shell Tank (SST) System, 207-A South Retention Basin, and the 216-B-63 Trench

  7. Overview of the closure approach for the Hanford Site single-shell tank farm

    International Nuclear Information System (INIS)

    Smith, E.H.

    1991-09-01

    The disposal of chemical and radioactive waste stored within the single-shell tanks (SST) represents one of the most significant waste management problems at the Hanford Site. A comprehensive program has been established to obtain analytical data regarding the chemical and radiological constituents within these tanks. This information will be used to support the development of a supplemental environmental impact statement (SEIS) and ultimately to aid in the selection of a final disposal option. This paper discusses some of the technical options and major regulatory issues associated with SST waste retrieval and in situ waste treatment and disposal. Certain closure options and treatment technologies will require further development before they can be implemented or accepted as being useful. In addition, continued negotiations with the regulatory authorities will be required to determine the preferred closure option and the regulatory pathway to accommodate such closure

  8. DESIGN OF LIQUID-STORAGE TANK: RESULTS OF SOFTWARE MODELING VS CALCULATIONS ACCORDING TO EUROCODE

    Directory of Open Access Journals (Sweden)

    Matko Gulin

    2017-01-01

    Full Text Available The objective of this article is to show the design process of a liquid-storage tank shell according to Eurocode and compare the results obtained using the norms with those from a finite element method (FEM analysis. The calculations were performed for an aboveground vertical steel water-storage tank with a variable thickness wall and stiffening ring on top. First, the types of liquid storage tanks are briefly explained. Second, the given tank is described. Third, an analysis of the tank wall according to the Eurocode was carried out. The FEM analysis was performed using the Scia Engineer ver. 17 software. Finally, all the results are presented in tables and compared.

  9. Risk based inspection for atmospheric storage tank

    Science.gov (United States)

    Nugroho, Agus; Haryadi, Gunawan Dwi; Ismail, Rifky; Kim, Seon Jin

    2016-04-01

    Corrosion is an attack that occurs on a metallic material as a result of environment's reaction.Thus, it causes atmospheric storage tank's leakage, material loss, environmental pollution, equipment failure and affects the age of process equipment then finally financial damage. Corrosion risk measurement becomesa vital part of Asset Management at the plant for operating any aging asset.This paper provides six case studies dealing with high speed diesel atmospheric storage tank parts at a power plant. A summary of the basic principles and procedures of corrosion risk analysis and RBI applicable to the Process Industries were discussed prior to the study. Semi quantitative method based onAPI 58I Base-Resource Document was employed. The risk associated with corrosion on the equipment in terms of its likelihood and its consequences were discussed. The corrosion risk analysis outcome used to formulate Risk Based Inspection (RBI) method that should be a part of the atmospheric storage tank operation at the plant. RBI gives more concern to inspection resources which are mostly on `High Risk' and `Medium Risk' criteria and less on `Low Risk' shell. Risk categories of the evaluated equipment were illustrated through case study analysis outcome.

  10. METHODOLOGY AND CALCULATIONS FOR THE ASSIGNMENT OF WASTE GROUPS FOR THE LARGE UNDERGROUND WASTE STORAGE TANKS AT THE HANFORD SITE

    Energy Technology Data Exchange (ETDEWEB)

    WEBER RA

    2009-01-16

    The Hanford Site contains 177 large underground radioactive waste storage tanks (28 double-shell tanks and 149 single-shell tanks). These tanks are categorized into one of three waste groups (A, B, and C) based on their waste and tank characteristics. These waste group assignments reflect a tank's propensity to retain a significant volume of flammable gases and the potential of the waste to release retained gas by a buoyant displacement gas release event. Assignments of waste groups to the 177 double-shell tanks and single-shell tanks, as reported in this document, are based on a Monte Carlo analysis of three criteria. The first criterion is the headspace flammable gas concentration following release of retained gas. This criterion determines whether the tank contains sufficient retained gas such that the well-mixed headspace flammable gas concentration would reach 100% of the lower flammability limit if the entire tank's retained gas were released. If the volume of retained gas is not sufficient to reach 100% of the lower flammability limit, then flammable conditions cannot be reached and the tank is classified as a waste group C tank independent of the method the gas is released. The second criterion is the energy ratio and considers whether there is sufficient supernatant on top of the saturated solids such that gas-bearing solids have the potential energy required to break up the material and release gas. Tanks that are not waste group C tanks and that have an energy ratio < 3.0 do not have sufficient potential energy to break up material and release gas and are assigned to waste group B. These tanks are considered to represent a potential induced flammable gas release hazard, but no spontaneous buoyant displacement flammable gas release hazard. Tanks that are not waste group C tanks and have an energy ratio {ge} 3.0, but that pass the third criterion (buoyancy ratio < 1.0, see below) are also assigned to waste group B. Even though the designation as

  11. METHODOLOGY AND CALCULATIONS FOR THE ASSIGNMENT OF WASTE GROUPS FOR THE LARGE UNDERGROUND WASTE STORAGE TANKS AT THE HANFORD SITE

    Energy Technology Data Exchange (ETDEWEB)

    FOWLER KD

    2007-12-27

    This document categorizes each of the large waste storage tanks into one of several categories based on each tank's waste characteristics. These waste group assignments reflect a tank's propensity to retain a significant volume of flammable gases and the potential of the waste to release retained gas by a buoyant displacement event. Revision 7 is the annual update of the calculations of the flammable gas Waste Groups for DSTs and SSTs. The Hanford Site contains 177 large underground radioactive waste storage tanks (28 double-shell tanks and 149 single-shell tanks). These tanks are categorized into one of three waste groups (A, B, and C) based on their waste and tank characteristics. These waste group assignments reflect a tank's propensity to retain a significant volume of flammable gases and the potential of the waste to release retained gas by a buoyant displacement gas release event. Assignments of waste groups to the 177 double-shell tanks and single-shell tanks, as reported in this document, are based on a Monte Carlo analysis of three criteria. The first criterion is the headspace flammable gas concentration following release of retained gas. This criterion determines whether the tank contains sufficient retained gas such that the well-mixed headspace flammable gas concentration would reach 100% of the lower flammability limit if the entire tank's retained gas were released. If the volume of retained gas is not sufficient to reach 100% of the lower flammability limit, then flammable conditions cannot be reached and the tank is classified as a waste group C tank independent of the method the gas is released. The second criterion is the energy ratio and considers whether there is sufficient supernatant on top of the saturated solids such that gas-bearing solids have the potential energy required to break up the material and release gas. Tanks that are not waste group C tanks and that have an energy ratio < 3.0 do not have sufficient

  12. Underground storage tanks

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    Environmental contamination from leaking underground storage tanks poses a significant threat to human health and the environment. An estimated five to six million underground storage tanks containing hazardous substances or petroleum products are in use in the US. Originally placed underground as a fire prevention measure, these tanks have substantially reduced the damages from stored flammable liquids. However, an estimated 400,000 underground tanks are thought to be leaking now, and many more will begin to leak in the near future. Products released from these leaking tanks can threaten groundwater supplies, damage sewer lines and buried cables, poison crops, and lead to fires and explosions. As required by the Hazardous and Solid Waste Amendments (HSWA), the EPA has been developing a comprehensive regulatory program for underground storage tanks. The EPA proposed three sets of regulations pertaining to underground tanks. The first addressed technical requirements for petroleum and hazardous substance tanks, including new tank performance standards, release detection, release reporting and investigation, corrective action, and tank closure. The second proposed regulation addresses financial responsibility requirements for underground petroleum tanks. The third addressed standards for approval of state tank programs

  13. Engineering study: disposition of terminal liquors for interim storage

    International Nuclear Information System (INIS)

    Metz, W.P.; Ogren, W.E.

    1975-02-01

    Eight alternative processes were chosen as being technologically feasible within the time frame dictated by budgeting procedures and terminal liquor availability. Solidified waste products acceptable for single-shell tank storage were assumed to be placed in available single-shell tanks. Double-shell tanks were used only for the more mobile terminal liquors or semi-solid mush products. The mush, chemical neutralization, and clay in-tank processes offer potential savings of tens of millions of dollars over double-shell tank storage of terminal liquors. In order to achieve this cost savings, the process development and demonstration must be completed prior to the beginning of double-shell tank construction (Dec. 1976) expected to be funded from a fiscal year 1977 line item. Budgeting for these additional double-shell tanks must proceed since the processing options discussed here are not yet available and may not prove to be available at the required time. This study indicates the following topics for additional study: Process technology development to achieve interim storage of terminal liquor products receives the greatest emphasis as a means of reducing capital expenditures. Interim storage product criteria, waste inventory, and conversion to final form require definition to allow comparison of the alternatives for disposition of terminal liquors. The pseudotechnical nature of product acceptability criteria is important to the evaluation of the partial neutralization and aluminum removal alternatives. More accurate estimates of terminal liquor quantity and composition are required to give a sound technical basis for choosing the appropriate processing alternative. Retrieval and reprocessing operations may affect the comparisons presented by this study

  14. Status report: Pretreatment chemistry evaluation FY1997 -- Wash and leach factors for the single-shell tank waste inventory

    Energy Technology Data Exchange (ETDEWEB)

    Colton, N.G.

    1997-08-01

    The wash factors will be used to partition the single-shell tank (SST) inventory into soluble and insoluble portions. The leach factors will be used to estimate the further removal of bulk analytes, such as chromium, aluminum, and phosphate, as well as minor components. Wash and leach factors are given here for 18 analytes, elements expected to drive the volume of material disposed of as high-level waste (HLW). These factors are determined by a weighting methodology developed earlier by this task. Tank-specific analyte inventory values depicted in Tank Waste Data Summary Worksheets, are calculated from concentrations obtained from characterization reports; the waste density; and the tank waste volume. The experimentally determined percentage of analytes removed by washing and leaching in a particular tank waste are translated into a mass (metric tons) in Experimental Washing and Leaching Data Summary Worksheets.

  15. Status report: Pretreatment chemistry evaluation FY1997 - Wash and leach factors for the single-shell tank waste inventory

    International Nuclear Information System (INIS)

    Colton, N.G.

    1997-08-01

    The wash factors will be used to partition the single-shell tank (SST) inventory into soluble and insoluble portions. The leach factors will be used to estimate the further removal of bulk analytes, such as chromium, aluminum, and phosphate, as well as minor components. Wash and leach factors are given here for 18 analytes, elements expected to drive the volume of material disposed of as high-level waste (HLW). These factors are determined by a weighting methodology developed earlier by this task. Tank-specific analyte inventory values depicted in Tank Waste Data Summary Worksheets, are calculated from concentrations obtained from characterization reports; the waste density; and the tank waste volume. The experimentally determined percentage of analytes removed by washing and leaching in a particular tank waste are translated into a mass (metric tons) in Experimental Washing and Leaching Data Summary Worksheets

  16. HANFORD TANK CLEANUP UPDATE MAY 2009

    International Nuclear Information System (INIS)

    Holloway, J.N.

    2009-01-01

    Retrieval of waste from single-shell tank C-110 resumed in January making it the first waste retrieval operation for WRPS since taking over Hanford's Tank Operations Contract last October. Now, with approximately 90 percent of the waste removed, WRPS believes that modified sluicing has reached the limits of the technology to remove any further waste and is preparing documentation for use in decision making about any future retrieval actions. Tank C-110 is located in C Fann near the center of the Hanford Site. It is a 530,000 gallon tank, built in 1946, and held approximately 126,000 gallons of sludge and other radioactive and chemical waste materials when retrieval resumed. Modified sluicing technology uses liquid waste from a nearby double-shell tank to break up, dissolve and mobilize the solid material so it can be pumped. Because of the variety of waste fon11S, sluicing is often not able to remove all of the waste. The remaining waste will next be sampled for analysis, and results will be used to guide decisions regarding future actions. Work is moving rapidly in preparation to retrieve waste from a second single-shell tank this summer and transfer it to safer double-shell tank storage. Construction activities necessary to retrieve waste from Tank C-104, a 530,000 gallon tank built in 1943, are approximately 60 percent complete as WRPS maintains its focus on reducing the risk posed by Hanford's aging single-shell waste tanks. C-104 is one of Hanford's oldest radioactive and chemical waste storage tanks, containing approximately 263,000 gallons of wet sludge with a top layer that is dry and powdery. This will be the largest sludge volume retrieval ever attempted using modified sluicing technology. Modified sluicing uses high pressure water or liquid radioactive waste sprayed from nozzles above the waste. The liquid dissolves and/or mobilizes the waste so it can be pumped. In addition to other challenges, tank C-104 contains a significant amount of plutonium and

  17. A safety equipment list for rotary mode core sampling systems operation in single shell flammable gas tanks

    International Nuclear Information System (INIS)

    SMALLEY, J.L.

    1999-01-01

    This document identifies all interim safety equipment to be used for rotary mode core sampling of single-shell flammable gas tanks utilizing Rotary Mode Core Sampling systems (RMCS). This document provides the safety equipment for RMCS trucks HO-68K-4600, HO-68K-4647, trucks three and four respectively, and associated equipment. It is not intended to replace or supersede WHC-SD-WM-SEL-023, (Kelly 1991), or WHC-SD-WM-SEL-032, (Corbett 1994), which classifies 80-68K-4344 and HO-68K-4345 respectively. The term ''safety equipment'' refers to safety class (SC) and safety significant (SS) equipment, where equipment refers to structures, systems and components (SSC's). The identification of safety equipment in this document is based on the credited design safety features and analysis contained in the Authorization Basis (AB) for rotary mode core sampling operations in single-shell flammable gas tanks. This is an interim safety classification since the AB is interim. This document will be updated to reflect the final RMCS equipment safety classification designations upon completion of a final AB which will be implemented with the release of the Final Safety Analysis Report (FSAR)

  18. Preliminary tank characterization report for single-shell tank 241-B-105: best-basis inventory

    International Nuclear Information System (INIS)

    Higley, B.A.

    1997-01-01

    An effort is underway to provide waste inventory estimates that will serve as standard characterization source terms for the at sign various waste management activities. As part of this effort, an evaluation of available information for singlb-shell tank 241-B-105 was performed, and a best-basis inventory was established. This work follows the methodology that was established by the standard inventory task

  19. Candidate reagents and procedures for the dissolution of Hanford Site single-shell tank sludges

    International Nuclear Information System (INIS)

    Schulz, W.W.; Kupfer, M.J.

    1991-10-01

    At least some of the waste in the 149 single-shell tanks (SST) at the US Department of Energy (DOE) Hanford Site will be retrieved, treated, and disposed of. Although the importance of devising efficient and cost-effective sludge dissolution procedures has long been recognized, a concerted bench-scale effort to devise and test such procedures with actual solids representative of those in Hanford Site SSTs has not been performed. Reagents that might be used, either individually or serially, to dissolve sludges include HNO 3 , HNO 3 -oxalic acid, and HNO 3 -HF. This report consolidates and updates perspectives and recommendations concerning reagents and procedures for dissolving Hanford Site SST and selected double-shell tank (DST) sludges. The principal objectives of this report are as follows: (1) Compile and review existing experimental data on dissolution of actual Hanford Site SST and DST sludges. (2) Further inform Hanford Site engineers and scientists concerning the utility of combinations of thermally unstable complexants (TUCS) reagents and various reducing agents for dissolving SST and DST sludges. (This latter technology has recently been explored at the Argonne National Laboratory.) (3) Provide guidance in laying out a comprehensive experimental program to develop technology for dissolving all types of Hanford Site SST and DST sludges. 6 refs., 1 fig., 4 tabs

  20. Double-shell tank emergency pumping guide

    International Nuclear Information System (INIS)

    BROWN, M.H.

    1999-01-01

    This Double-Shell Tank Emergency Pumping Guide provides the preplanning necessary to expeditiously remove any waste that may leak from the primary tank to the secondary tank for Hanfords 28 DSTs. The strategy is described, applicable emergency procedures are referenced, and transfer routes and pumping equipment for each tank are identified

  1. Double-shell tank emergency pumping guide

    International Nuclear Information System (INIS)

    BROWN, M.H.

    1999-01-01

    This Double-Shell Tank Emergency Pumping Guide provides the preplanning necessary to expeditiously remove any waste that may leak from the primary tank to the secondary tank for Hanford's 28 DSTS. The strategy is described, applicable emergency procedures are referenced, and transfer routes and pumping equipment for each tank are identified

  2. Double-shell tank system dangerous waste permit application

    International Nuclear Information System (INIS)

    1991-06-01

    This Double-Shell Tank System Dangerous Waste Permit Application should be read in conjunction with the 242-A Evaporator Dangerous Waste Permit Application and the Liquid Effluent Retention Facility Dangerous Waste Permit Application, also submitted on June 28, 1991. Information contained in the Double-Shell Tank System permit application is referenced in the other two permit applications. The Double-Shell Tank System stores and treats mixed waste received from a variety of sources on the Hanford Site. The 242-A Evaporator treats liquid mixed waste received from the double-shell tanks. The 242-A Evaporator returns a mixed-waste slurry to the double-shell tanks and generates the dilute mixed-waste stream stored in the Liquid Effluent Retention Facility. This report contains information on the following topics: Facility Description and General Provisions; Waste Characteristics; Process Information; Groundwater Monitoring; Procedures to Prevent Hazards; Contingency Plan; Personnel Training; Exposure Information Report; Waste Minimization Plan; Closure and Postclosure Requirements; Reporting and Recordkeeping; other Relevant Laws; and Certification. 150 refs., 141 figs., 118 tabs

  3. Test Plan for the Demonstration of Geophysical Techniques for Single-Shell Tank Leak Detection at the Hanford Mock Tank Site: Fiscal Year 2001

    Energy Technology Data Exchange (ETDEWEB)

    Barnett, D. Brent; Gee, Glendon W.; Sweeney, Mark D.

    2001-07-31

    As part of the Leak Detection, Monitoring and Mitigation (LDMM) program conducted by CH2M HILL 105-A during FY 2001. These tests are being conducted to assess the applicability of these methods (Electrical Resistance Tomography [ERT], High Resolution Resistivity [HRR], Cross-Borehole Seismography [XBS], Cross-Borehole Radar [XBR], and Cross-Borehole Electromagnetic Induction [CEMI]) to the detection and measurement of Single Shell Tank (SST) leaks into the vadose zone during planned sluicing operations. The testing in FY 2001 will result in the selection of up to two methods for further testing in FY 2002. In parallel with the geophysical tests, a Partitioning Interwell Tracer Test (PITT) study will be conducted simultaneously at the Mock Tank to assess the effectiveness of this technology in detecting and quantifying tank leaks in the vadose zone. Preparatory and background work using Cone Penetrometer methods (CPT) will be conducted at the Mock Tank site and an adjacent test area to derive soil properties for groundtruthing purposes for all methods.

  4. The Sort on Radioactive Waste Type model: A method to sort single-shell tanks into characteristic groups. Revision 1

    International Nuclear Information System (INIS)

    Hill, J.G.; Simpson, B.C.

    1994-08-01

    The Sort on Radioactive Waste Type (SORWT) model presents a method to categorize Hanford Site single-shell tanks (SSTs) into groups of tanks expected to exhibit similar chemical and physical characteristics based on their major waste types and processing histories. This model has identified 29 different waste-type groups encompassing 135 of the 149 SSTs and 93% of the total waste volume in SSTs. The remaining 14 SSTs and associated wastes could not be grouped according to the established criteria and were placed in an ungrouped category. This letter report will detail the assumptions and methodologies used to develop the SORWT model and present the grouping results. Included with this report is a brief description and approximate compositions of the single-shell tank waste types. In the near future, the validity of the predicted groups will be statistically tested using analysis of variance of characterization data obtained from recent (post-1989) core sampling and analysis activities. In addition, the SORWT model will be used to project the nominal waste characteristics of entire waste type groups that have some recent characterization data available. These subsequent activities will be documented along with these initial results in a comprehensive, formal PNL report cleared for public release by September 1994

  5. Performance and risk assessment of subsurface barriers for single-shell tank waste retrieval

    Energy Technology Data Exchange (ETDEWEB)

    Bazinet, G.D.; Cruse, J.M.; Hampsten, K.L. [Westinghouse Hanford Co., Richland, WA (United States); Treat, R.L.

    1995-02-01

    Subsurface barriers are among various alternatives under evaluation to mitigate the threat of leakage from the Hanford Site`s 149 single-shell high-level radioactive waste tanks. The Tank Waste Remediation System (TWRS) division of Westinghouse Hanford Company is conducting this evaluation of subsurface barriers and other alternatives, focusing on risk and cost as performance measures. A number of alternative retrieval/closure approaches were evaluated in terms of risks (carcinogenic and toxicological) to a postulated maximally exposed individual. In addition, worker and accident risks were evaluated and factors developed for each alternative on a relative basis. The work performed to date indicates the use of subsurface barriers may potentially reduce public risk by limiting contamination of groundwater below the Hanford Site; however, the cost in terms of actual funding and in elevated worker risk is significant. The analyses also assume certain performance levels for technologies that have not been demonstrated in field conditions similar to Hanford Site tank farms. The evaluations summarized herein are being used to support a decision by representatives of the US Department of Energy, Richland Operations Office, the Washington State Department of Ecology (Ecology), and the US Environmental Protection Agency (EPA) regarding potential further development of subsurface barrier technology.

  6. Performance and risk assessment of subsurface barriers for single-shell tank waste retrieval

    International Nuclear Information System (INIS)

    Bazinet, G.D.; Cruse, J.M.; Hampsten, K.L.; Treat, R.L.

    1995-02-01

    Subsurface barriers are among various alternatives under evaluation to mitigate the threat of leakage from the Hanford Site's 149 single-shell high-level radioactive waste tanks. The Tank Waste Remediation System (TWRS) division of Westinghouse Hanford Company is conducting this evaluation of subsurface barriers and other alternatives, focusing on risk and cost as performance measures. A number of alternative retrieval/closure approaches were evaluated in terms of risks (carcinogenic and toxicological) to a postulated maximally exposed individual. In addition, worker and accident risks were evaluated and factors developed for each alternative on a relative basis. The work performed to date indicates the use of subsurface barriers may potentially reduce public risk by limiting contamination of groundwater below the Hanford Site; however, the cost in terms of actual funding and in elevated worker risk is significant. The analyses also assume certain performance levels for technologies that have not been demonstrated in field conditions similar to Hanford Site tank farms. The evaluations summarized herein are being used to support a decision by representatives of the US Department of Energy, Richland Operations Office, the Washington State Department of Ecology (Ecology), and the US Environmental Protection Agency (EPA) regarding potential further development of subsurface barrier technology

  7. Tank characterization report for single-shell tanks 241-T-201, 241-T-202, 241-T-203, and 241-T-204

    International Nuclear Information System (INIS)

    Simpson, B.C.

    1998-01-01

    A major function of the Tank Waste Remediation System (TWRS) is to characterize waste in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis, in addition to other available information about a tank are compiled and maintained in a tank characterization report (TCR). This report and its appendices serve as the TCR for the single-shell tank series consisting of 241-T-201, -T-202, -T-203, and -T-204. The objectives of this report are: (1) to use characterization data in response to technical issues associated with T-200 series tank waste and (2) to provide a standard characterization of this waste in terms of a best-basis inventory estimate. Section 2.0 summarizes the response to technical issues, Section 3.0 shows the best-basis inventory estimate, Section 4.0 makes recommendations about the safety status of the tank and additional sampling needs. The appendices contain supporting data and information. Appendix A contains historical information for 241-T-201 to T-204, including surveillance information, records pertaining to waste transfers and tank operations, and expected tank contents derived from a process knowledge-based computer program. Appendix B summarizes sampling events, sample data obtained before 1989, and the most current sampling results. Appendix C reports the statistical analysis and numerical manipulation of data used in issue resolution. Appendix D contains the evaluation to establish the best-basis for the inventory estimate and the statistical analysis performed for this evaluation. Appendix E is a bibliography that resulted from an in-depth literature search of all known information sources applicable to tanks 241-T-201, -T-202, -T-203, and -T-204. The reports listed in Appendix E are available in the Tank Characterization and Safety Resource Center

  8. 40 CFR 280.220 - Ownership of an underground storage tank or underground storage tank system or facility or...

    Science.gov (United States)

    2010-07-01

    ... tank or underground storage tank system or facility or property on which an underground storage tank or underground storage tank system is located. 280.220 Section 280.220 Protection of Environment ENVIRONMENTAL... underground storage tank or underground storage tank system or facility or property on which an underground...

  9. Project management plan double-shell tank system specification development

    International Nuclear Information System (INIS)

    Conrads, T.J.

    1998-01-01

    The Project Hanford Management Contract (PHMC) members have been tasked by the US Department of Energy (DOE) to support removal of wastes from the Hanford Site 200 Area tanks in two phases. The schedule for these phases allows focusing on requirements for the first phase of providing feed to the privatized vitrification plants. The Tank Waste Retrieval Division near-term goal is to focus on the activities to support Phase 1. These include developing an integrated (technical, schedule, and cost) baseline and, with regard to private contractors, establishing interface agreements, constructing infrastructure systems, retrieving and delivering waste feed, and accepting immobilized waste products for interim onsite storage. This document describes the process for developing an approach to designing a system for retrieving waste from double-shell tanks. It includes a schedule and cost account for the work breakdown structure task

  10. A safety equipment list for rotary mode core sampling systems operation in single shell flammable gas tanks; TOPICAL

    International Nuclear Information System (INIS)

    SMALLEY, J.L.

    1999-01-01

    This document identifies all interim safety equipment to be used for rotary mode core sampling of single-shell flammable gas tanks utilizing Rotary Mode Core Sampling systems (RMCS). This document provides the safety equipment for RMCS trucks HO-68K-4600, HO-68K-4647, trucks three and four respectively, and associated equipment. It is not intended to replace or supersede WHC-SD-WM-SEL-023, (Kelly 1991), or WHC-SD-WM-SEL-032, (Corbett 1994), which classifies 80-68K-4344 and HO-68K-4345 respectively. The term ''safety equipment'' refers to safety class (SC) and safety significant (SS) equipment, where equipment refers to structures, systems and components (SSC's). The identification of safety equipment in this document is based on the credited design safety features and analysis contained in the Authorization Basis (AB) for rotary mode core sampling operations in single-shell flammable gas tanks. This is an interim safety classification since the AB is interim. This document will be updated to reflect the final RMCS equipment safety classification designations upon completion of a final AB which will be implemented with the release of the Final Safety Analysis Report (FSAR)

  11. Functional Analysis for Double Shell Tank (DST) Subsystems

    International Nuclear Information System (INIS)

    SMITH, D.F.

    2000-01-01

    This functional analysis identifies the hierarchy and describes the subsystem functions that support the Double-Shell Tank (DST) System described in HNF-SD-WM-TRD-007, System Specification for the Double-Shell Tank System. Because of the uncertainty associated with the need for upgrades of the existing catch tanks supporting the Waste Feed Delivery (WFD) mission, catch tank functions are not addressed in this document. The functions identified herein are applicable to the Phase 1 WFD mission only

  12. Engineering study: disposition of terminal liquors for interim storage. [Eight alternative processes

    Energy Technology Data Exchange (ETDEWEB)

    Metz, W.P.; Ogren, W.E.

    1975-02-01

    Eight alternative processes were chosen as being technologically feasible within the time frame dictated by budgeting procedures and terminal liquor availability. Solidified waste products acceptable for single-shell tank storage were assumed to be placed in available single-shell tanks. Double-shell tanks were used only for the more mobile terminal liquors or semi-solid mush products. The mush, chemical neutralization, and clay in-tank processes offer potential savings of tens of millions of dollars over double-shell tank storage of terminal liquors. In order to achieve this cost savings, the process development and demonstration must be completed prior to the beginning of double-shell tank construction (Dec. 1976) expected to be funded from a fiscal year 1977 line item. Budgeting for these additional double-shell tanks must proceed since the processing options discussed here are not yet available and may not prove to be available at the required time. This study indicates the following topics for additional study: Process technology development to achieve interim storage of terminal liquor products receives the greatest emphasis as a means of reducing capital expenditures. Interim storage product criteria, waste inventory, and conversion to final form require definition to allow comparison of the alternatives for disposition of terminal liquors. The pseudotechnical nature of product acceptability criteria is important to the evaluation of the partial neutralization and aluminum removal alternatives. More accurate estimates of terminal liquor quantity and composition are required to give a sound technical basis for choosing the appropriate processing alternative. Retrieval and reprocessing operations may affect the comparisons presented by this study. (DLC)

  13. Regulatory Closure Options for the Residue in the Hanford Site Single-Shell Tanks

    Energy Technology Data Exchange (ETDEWEB)

    Cochran, J.R. Shyr, L.J.

    1998-10-05

    Liquid, mixed, high-level radioactive waste (HLW) has been stored in 149 single-shell tanks (SSTS) located in tank farms on the U.S. Department of Energy's (DOE's) Hanford Site. The DOE is developing technologies to retrieve as much remaining HLW as technically possible prior to physically closing the tank farms. In support of the Hanford Tanks Initiative, Sandia National Laboratories has addressed the requirements for the regulatory closure of the radioactive component of any SST residue that may remain after physical closure. There is significant uncertainty about the end state of each of the 149 SSTS; that is, the nature and amount of wastes remaining in the SSTS after retrieval is uncertain. As a means of proceeding in the face of these uncertainties, this report links possible end-states with associated closure options. Requirements for disposal of HLW and low-level radioactive waste (LLW) are reviewed in detail. Incidental waste, which is radioactive waste produced incidental to the further processing of HLW, is then discussed. If the low activity waste (LAW) fraction from the further processing of HLW is determined to be incidental waste, then DOE can dispose of that incidental waste onsite without a license from the U.S. Nuclear Regulatory Commissions (NRC). The NRC has proposed three Incidental Waste Criteria for determining if a LAW fraction is incidental waste. One of the three Criteria is that the LAW fraction should not exceed the NRC's Class C limits.

  14. Regulatory Closure Options for the Residue in the Hanford Site Single-Shell Tanks

    International Nuclear Information System (INIS)

    Cochran, J.R.; Shyr, L.J.

    1998-01-01

    Liquid, mixed, high-level radioactive waste (HLW) has been stored in 149 single-shell tanks (SSTS) located in tank farms on the U.S. Department of Energy's (DOE's) Hanford Site. The DOE is developing technologies to retrieve as much remaining HLW as technically possible prior to physically closing the tank farms. In support of the Hanford Tanks Initiative, Sandia National Laboratories has addressed the requirements for the regulatory closure of the radioactive component of any SST residue that may remain after physical closure. There is significant uncertainty about the end state of each of the 149 SSTS; that is, the nature and amount of wastes remaining in the SSTS after retrieval is uncertain. As a means of proceeding in the face of these uncertainties, this report links possible end-states with associated closure options. Requirements for disposal of HLW and low-level radioactive waste (LLW) are reviewed in detail. Incidental waste, which is radioactive waste produced incidental to the further processing of HLW, is then discussed. If the low activity waste (LAW) fraction from the further processing of HLW is determined to be incidental waste, then DOE can dispose of that incidental waste onsite without a license from the U.S. Nuclear Regulatory Commissions (NRC). The NRC has proposed three Incidental Waste Criteria for determining if a LAW fraction is incidental waste. One of the three Criteria is that the LAW fraction should not exceed the NRC's Class C limits

  15. Final report of the systems engineering technical advisory board for the Tank Waste Remediation Program

    Energy Technology Data Exchange (ETDEWEB)

    Baranowski, F.P.; Goodlett, C.B.; Beard, S.J.; Duckworth, J.P.; Schneider, A.; Zahn, L.L.

    1993-03-01

    The Tank Waste Remediation System (TWRS) is one segment of the environmental restoration program at the Hanford site. The scope is to retrieve the contents of both the single shell and double shell tanks and process the wastes into forms acceptable for long term storage and/or permanent disposal. The quantity of radioactive waste in tanks is significantly larger and substantially more complex in composition than the radioactive waste stored in tanks at other DOE sites. The waste is stored in 149 single shell tanks and 28 double shell tanks. The waste was produced over a period from the mid 1940s to the present. The single shell tanks have exceeded their design life and are experiencing failures. The oldest of the double shell tanks are approaching their design life. Spar double shell tank waste volume is limited. The priorities in the Board`s view are to manage safely the waste tank farms, accelerate emptying of waste tanks, provide spare tank capacity and assure a high degree of confidence in performance of the TWRS integrated program. At its present design capacity, the glass vitrification plant (HWVP) will require a period of about 15 years to empty the double shell tanks; the addition of the waste in single shell tanks adds another 100 years. There is an urgent need to initiate now a well focused and centralized development and engineering program on both larger glass melters and advanced separations processes that reduce radioactive constituents in the low-level waste (LLW). The Board presents its conclusions and has other suggestions for the management plan. The Board reviews planning schedules for accelerating the TWRS program.

  16. Final report of the systems engineering technical advisory board for the Tank Waste Remediation Program

    International Nuclear Information System (INIS)

    Baranowski, F.P.; Goodlett, C.B.; Beard, S.J.; Duckworth, J.P.; Schneider, A.; Zahn, L.L.

    1993-03-01

    The Tank Waste Remediation System (TWRS) is one segment of the environmental restoration program at the Hanford site. The scope is to retrieve the contents of both the single shell and double shell tanks and process the wastes into forms acceptable for long term storage and/or permanent disposal. The quantity of radioactive waste in tanks is significantly larger and substantially more complex in composition than the radioactive waste stored in tanks at other DOE sites. The waste is stored in 149 single shell tanks and 28 double shell tanks. The waste was produced over a period from the mid 1940s to the present. The single shell tanks have exceeded their design life and are experiencing failures. The oldest of the double shell tanks are approaching their design life. Spar double shell tank waste volume is limited. The priorities in the Board's view are to manage safely the waste tank farms, accelerate emptying of waste tanks, provide spare tank capacity and assure a high degree of confidence in performance of the TWRS integrated program. At its present design capacity, the glass vitrification plant (HWVP) will require a period of about 15 years to empty the double shell tanks; the addition of the waste in single shell tanks adds another 100 years. There is an urgent need to initiate now a well focused and centralized development and engineering program on both larger glass melters and advanced separations processes that reduce radioactive constituents in the low-level waste (LLW). The Board presents its conclusions and has other suggestions for the management plan. The Board reviews planning schedules for accelerating the TWRS program

  17. Tank characterization report for double-shell tank 241-AP-102

    International Nuclear Information System (INIS)

    LAMBERT, S.L.

    1999-01-01

    In April 1993, Double-Shell Tank 241-AP-102 was sampled to determine waste feed characteristics for the Hanford Grout Disposal Program. This Tank Characterization Report presents an overview of that tank sampling and analysis effort, and contains observations regarding waste characteristics, expected bulk inventory, and concentration data for the waste contents based on this latest sampling data and information on the history of the tank. Finally, this report makes recommendations and conclusions regarding tank operational safety issues

  18. Interim criteria for Organic Watch List tanks at the Hanford Site

    International Nuclear Information System (INIS)

    Babad, S.; Turner, D.A.

    1993-09-01

    This document establishes interim criteria for identifying single-shell radioactive waste storage tanks at the Hanford Site that contain organic chemicals mixed with nitrate/nitrite salts in potentially hazardous concentrations. These tanks are designated as ''organic Watch List tanks.'' Watch List tanks are radioactive waste storage tanks that have the potential for release of high-level waste as a result of uncontrolled increases in temperature or pressure. Organic Watch List tanks are those Watch List tanks that contain relatively high concentrations of organic chemicals. Because of the potential for release of high-level waste resulting from uncontrolled increases in temperature or pressure, the organic Watch List tanks (collectively) constitute a Hanford Site radioactive waste storage tank ''safety issue.''

  19. Vapor and gas sampling of single-shell tank 241-BX-110 using the in situ vapor sampling system

    International Nuclear Information System (INIS)

    Lockrem, L.L.

    1997-01-01

    The Vapor Issue Resolution Program tasked the Vapor Team (the team) to collect representative headspace samples from Hanford Site single-shell tank (SST) 241-BX-110. This document presents sampling data resulting from the April 30, 1996 sampling of SST 241-BX-110. Analytical results will be presented in a separate report issued by Pacific Northwest National Laboratory (PNNL), which supplied and analyzed the sampling media

  20. Position paper, need for additional waste storage capacity and recommended path forward for project W-236a, Multi-function Waste Tank Facility

    International Nuclear Information System (INIS)

    Awadalla, N.G.

    1994-01-01

    Project W-236a, Multi-function waste Tank Facility (MWTF), was initiated to increase the safe waste storage capacity for the Tank Waste Remediation System (TWRS) by building two new one million gallon underground storage tanks in the 200 West Area and four tanks in the 200 East Area. Construction of the tanks was scheduled to begin in September 1994 with operations beginning in calendar year (CY) 1998. However, recent reviews have raised several issues regarding the mission, scope, and schedule of the MWTF. The decision to build new tanks must consider several elements, such as: Operational risk and needs -- Operational risk and flexibility must be managed such that any identified risk is reduced as soon as practicable; The amount of waste that will be generated in the future -- Additional needed tank capacity must be made available to support operations and maintain currently planned safety improvement activities; Safety issues -- The retrieval of waste from single-shell tanks (SSTs) and watch list tanks will add to the total amount of waste that must be stored in a double-shell tank (DST); Availability of existing DSTs -- The integrity of the 28 existing DSTs must be continuously managed; and Affect on other projects and programs -- Because MWTF systems have been integrated with other projects, a decision on one project will affect another. In addition the W-236a schedule is logically tied to support retrieval and safety program plans. Based on the above, two new tanks are needed for safe waste storage in the 200 West Area, and they need to be built as soon as practicable. Design should continue for the tanks in the 200 East Area with a decision made by September, on whether to construct them. Construction of the cross-site transfer line should proceed as scheduled. To implement this recommendation several actions need to be implemented

  1. Industrial mixing techniques for Hanford double-shell tanks

    International Nuclear Information System (INIS)

    Daymo, E.A.

    1997-09-01

    Jet mixer pumps are currently the baseline technology for sludge mobilization and mixing in one-million gallon double-shell tanks at the Hanford and Savannah River Sites. Improvements to the baseline jet mixer pump technology are sought because jet mixer pumps have moving parts that may fail or require maintenance. Moreover, jet mixers are relatively expensive, they heat the waste, and, in some cases, may not mobilize enough of the sludge. This report documents a thorough literature search for commercially available applicable mixing technologies that could be used for double-shell tank sludge mobilization and mixing. Textbooks, research articles, conference proceedings, mixing experts, and the Thomas Register were consulted to identify applicable technologies. While there are many commercial methods that could be used to mobilize sludge or mix the contents of a one-million gallon tank, few will work given the geometrical constraints (e.g., the mixer must fit through a 1.07-m-diameter riser) or the tank waste properties (e.g., the sludge has such a high yield stress that it generally does not flow under its own weight). Pulsed fluid jets and submersible Flygt mixers have already been identified at Hanford and Savannah River Sites for double-shell tank mixing applications. While these mixing technologies may not be applicable for double-shell tanks that have a thick sludge layer at the bottom (since too many of these mixers would need to be installed to mobilize most of the sludge), they may have applications in tanks that do not have a settled solids layer. Retrieval projects at Hanford and other U.S. Department of Energy sites are currently evaluating the effectiveness of these mixing techniques for tank waste applications. The literature search did not reveal any previously unknown technologies that should be considered for sludge mobilization and mixing in one-million gallon double-shell tanks

  2. Vapor and gas sampling of single-shell tank 241-U-104 using the in situ vapor sampling system

    International Nuclear Information System (INIS)

    Lockrem, L.L.

    1997-01-01

    The Vapor Issue.Resolution Program tasked the Vapor Team (VT) to collect representative headspace samples from Hanford Site single-shell tank (SST) 241-U-104. This document presents In Situ Vapor Sampling System (ISVS) data resulting from the July 16, 1996 sampling of SST 241-U-104. Analytical results will be presented in separate reports issued by the Pacific Northwest National Laboratory (PNNL) which supplied and analyzed the sample media

  3. Vapor and gas sampling of single-shell tank 241-S-103 using the in situ vapor sampling system

    International Nuclear Information System (INIS)

    Lockrem, L.L.

    1997-01-01

    The Vapor Issue Resolution Program tasked the Vapor Team (VT) to collect representative headspace samples from Hanford Site single-shell tank (SST) 241-S-103. This document presents In Situ Vapor Sampling System (ISVS) data resulting from the June 12, 1996 sampling of SST 241-S-103. Analytical results will be presented in separate reports issued by the Pacific Northwest National Laboratory (PNNL) which supplied and analyzed the sample media

  4. Vapor and gas sampling of single-shell tank 241-S-106 using the in situ vapor sampling system

    International Nuclear Information System (INIS)

    Lockrem, L.L.

    1997-01-01

    The Vapor Issue Resolution Program tasked the Vapor Team (VT) to collect representative headspace samples from Hanford Site single-shell tank (SST) 241-S-106. This document presents In Situ vapor Sampling System (ISVS) data resulting from the June 13, 1996 sampling of SST 241-S-106. Analytical results will be presented in separate reports issued by the Pacific Northwest National Laboratory (PNNL) which'supplied and analyzed the sample media

  5. Hanford tank initiative test facility site selection study

    International Nuclear Information System (INIS)

    Staehr, T.W.

    1997-01-01

    The Hanford Tanks Initiative (HTI) project is developing equipment for the removal of hard heel waste from the Hanford Site underground single-shell waste storage tanks. The HTI equipment will initially be installed in the 241-C-106 tank where its operation will be demonstrated. This study evaluates existing Hanford Site facilities and other sites for functional testing of the HTI equipment before it is installed into the 241-C-106 tank

  6. Evaluation of mitigation strategies in Facility Group 1 double-shell flammable-gas tanks at the Hanford Site

    International Nuclear Information System (INIS)

    Unal, C.; Sadasivan, P.; Kubic, W.L.; White, J.R.

    1997-11-01

    Radioactive nuclear waste at the Hanford Site is stored in underground waste storage tanks at the site. The tanks fall into two main categories: single-shell tanks (SSTs) and double-shell tanks (DSTs). There are a total of 149 SSTs and 28 DSTs. The wastes stored in the tanks are chemically complex. They basically involve various sodium salts (mainly nitrite, nitrate, carbonates, aluminates, and hydroxides), organic compounds, heavy metals, and various radionuclides, including cesium, strontium, plutonium, and uranium. The waste is known to generate flammable gas (FG) [hydrogen, ammonia, nitrous oxide, hydrocarbons] by complex chemical reactions. The process of gas generation, retention, and release is transient. Some tanks reach a quasi-steady stage where gas generation is balanced by the release rate. Other tanks show continuous cycles of retention followed by episodic release. There currently are 25 tanks on the Flammable Gas Watch List (FGWL). The objective of this report is to evaluate possible mitigation strategies to eliminate the FG hazard. The evaluation is an engineering study of mitigation concepts for FG generation, retention, and release behavior in Tanks SY-101, AN-103, AN 104, An-105, and Aw-101. Where possible, limited quantification of the effects of mitigation strategies on the FG hazard also is considered. The results obtained from quantification efforts discussed in this report should be considered as best-estimate values. Results and conclusions of this work are intended to help in establishing methodologies in the contractor's controls selection analysis to develop necessary safety controls for closing the FG unreviewed safety question. The general performance requirements of any mitigation scheme are discussed first

  7. Tank 241-C-103 tank characterization plan

    International Nuclear Information System (INIS)

    Schreiber, R.D.

    1994-01-01

    The data quality objective (DQO) process was chosen as a tool to be used to identify the sampling analytical needs for the resolution of safety issues. A Tank Characterization Plant (TCP) will be developed for each double shell tank (DST) and single-shell tank (SST) using the DQO process. There are four Watch list tank classifications (ferrocyanide, organic salts, hydrogen/flammable gas, and high heat load). These classifications cover the six safety issues related to public and worker health that have been associated with the Hanford Site underground storage tanks. These safety issues are as follows: ferrocyanide, flammable gas, organic, criticality, high heat, and vapor safety issues. Tank C-103 is one of the twenty tanks currently on the Organic Salts Watch List. This TCP will identify characterization objectives pertaining to sample collection, hot cell sample isolation, and laboratory analytical evaluation and reporting requirements in accordance with the appropriate DQO documents. In addition, the current contents and status of the tank are projected from historical information. The relevant safety issues that are of concern for tanks on the Organic Salts Watch List are: the potential for an exothermic reaction occurring from the flammable mixture of organic materials and nitrate/nitrite salts that could result in a release of radioactive material and the possibility that other safety issues may exist for the tank

  8. Aboveground storage tanks

    International Nuclear Information System (INIS)

    Rizzo, J.A.

    1992-01-01

    With the 1988 promulgation of the comprehensive Resource Conservation and Recovery Act (RCRA) regulations for underground storage of petroleum and hazardous substances, many existing underground storage tank (UST) owners have been considering making the move to aboveground storage. While on the surface, this may appear to be the cure-all to avoiding the underground leakage dilemma, there are many other new and different issues to consider with aboveground storage. The greatest misconception is that by storing materials above ground, there is no risk of subsurface environmental problems. it should be noted that with the aboveground storage tank (AGST) systems, there is still considerable risk of environmental contamination, either by the failure of onground tank bottoms or the spillage of product onto the ground surface where it subsequently finds its way to the ground water. In addition, there are added safety concerns that must be addressed. So what are the other specific areas of concern besides environmental to be addressed when making the decision between underground and aboveground tanks? The primary issues that will be addressed in this paper are: Safety, Product Losses, Cost Comparison of USTs vs AGSTs, Space Availability/Accessibility, Precipitation Handling, Aesthetics and Security, Pending and Existing Regulations

  9. Performance requirements for the double-shell tank system: Phase 1

    International Nuclear Information System (INIS)

    Claghorn, R.D.

    1998-01-01

    This document establishes performance requirements for the double-shell tank system. These requirements, in turn, will be incorporated in the System Specification for the Double-Shell Tank System (Grenard and Claghorn 1998). This version of the document establishes requirements that are applicable to the first phase (Phase 1) of the Tank Waste Remediation System (TWRS) mission described in the TWRS Mission Analysis Report (Acree 1998). It does not specify requirements for either the Phase 2 mission or the double-shell tank system closure period

  10. Single-Shell Tank (SST) Retrieval Project Plan for Tank 241-C-104 Retrieval

    International Nuclear Information System (INIS)

    DEFIGH PRICE, C.

    2000-01-01

    In support of the SST Interim Closure Project, Project W-523 ''Tank 241-C-104 Waste Retrieval System'' will provide systems for retrieval and transfer of radioactive waste from tank 241-C-104 (C-104) to the DST staging tank 241-AY-101 (AY-101). At the conclusion of Project W-523, a retrieval system will have been designed and tested to meet the requirements for Acceptance of Beneficial Use and been turned over to operations. Completion of construction and operations of the C-104 retrieval system will meet the recently proposed near-term Tri-Party Agreement milestone, M-45-03F (Proposed Tri-Party Agreement change request M-45-00-01A, August, 30 2000) for demonstrating limits of retrieval technologies on sludge and hard heels in SSTs, reduce near-term storage risks associated with aging SSTs, and provide feed for the tank waste treatment plant. This Project Plan documents the methodology for managing Project W-523; formalizes responsibilities; identifies key interfaces required to complete the retrieval action; establishes the technical, cost, and schedule baselines; and identifies project organizational requirements pertaining to the engineering process such as environmental, safety, quality assurance, change control, design verification, testing, and operational turnover

  11. Damage detection in hazardous waste storage tank bottoms using ultrasonic guided waves

    Science.gov (United States)

    Cobb, Adam C.; Fisher, Jay L.; Bartlett, Jonathan D.; Earnest, Douglas R.

    2018-04-01

    Detecting damage in storage tanks is performed commercially using a variety of techniques. The most commonly used inspection technologies are magnetic flux leakage (MFL), conventional ultrasonic testing (UT), and leak testing. MFL and UT typically involve manual or robotic scanning of a sensor along the metal surfaces to detect cracks or corrosion wall loss. For inspection of the tank bottom, however, the storage tank is commonly emptied to allow interior access for the inspection system. While there are costs associated with emptying a storage tank for inspection that can be justified in some scenarios, there are situations where emptying the tank is impractical. Robotic, submersible systems have been developed for inspecting these tanks, but there are some storage tanks whose contents are so hazardous that even the use of these systems is untenable. Thus, there is a need to develop an inspection strategy that does not require emptying the tank or insertion of the sensor system into the tank. This paper presents a guided wave system for inspecting the bottom of double-shelled storage tanks (DSTs), with the sensor located on the exterior side-wall of the vessel. The sensor used is an electromagnetic acoustic transducer (EMAT) that generates and receives shear-horizontal guided plate waves using magnetostriction principles. The system operates by scanning the sensor around the circumference of the storage tank and sending guided waves into the tank bottom at regular intervals. The data from multiple locations are combined using the synthetic aperture focusing technique (SAFT) to create a color-mapped image of the vessel thickness changes. The target application of the system described is inspection of DSTs located at the Hanford site, which are million-gallon vessels used to store nuclear waste. Other vessels whose exterior walls are accessible would also be candidates for inspection using the described approach. Experimental results are shown from tests on multiple

  12. Storage Tanks - Selection Of Type, Design Code And Tank Sizing

    International Nuclear Information System (INIS)

    Shatla, M.N; El Hady, M.

    2004-01-01

    The present work gives an insight into the proper selection of type, design code and sizing of storage tanks used in the Petroleum and Process industries. In this work, storage tanks are classified based on their design conditions. Suitable design codes and their limitations are discussed for each tank type. The option of storage under high pressure and ambient temperature, in spherical and cigar tanks, is compared to the option of storage under low temperature and slight pressure (close to ambient) in low temperature and cryogenic tanks. The discussion is extended to the types of low temperature and cryogenic tanks and recommendations are given to select their types. A study of pressurized tanks designed according to ASME code, conducted in the present work, reveals that tanks designed according to ASME Section VIII DIV 2 provides cost savings over tanks designed according to ASME Section VIII DlV 1. The present work is extended to discuss the parameters that affect sizing of flat bottom cylindrical tanks. The analysis shows the effect of height-to-diameter ratio on tank instability and foundation loads

  13. Pretreatment chemistry evaluation: Wash and leach factors for the single-shell tank waste inventory. Status report

    International Nuclear Information System (INIS)

    Colton, N.G.

    1996-09-01

    This report discusses a methodology developed to depict overall wash and leach factors for the Hanford single-shell tank (SST) inventory. The factors derived from this methodology, which is based on available partitioning data, are applicable to a composite SST inventory rather than only an assumed insoluble portion. The purpose of considering the entire inventory is to provide a more representative picture of the partitioning behavior of the analytes during envisioned waste retrieval and processing activities. The work described in this report was conducted by the Pretreatment Chemistry Evaluation task of the Tank Waste Remediation System (TWRS). The leach factors will be used to estimate the further removal of analytes, such as sodium, aluminum, phosphate, and other minor components. Wash and leach factors are given for elements expected to drive the volume of material disposed of as high-level waste (HLW)

  14. Annular Air Leaks in a liquid hydrogen storage tank

    Science.gov (United States)

    Krenn, AG; Youngquist, RC; Starr, SO

    2017-12-01

    Large liquid hydrogen (LH2) storage tanks are vital infrastructure for NASA, the DOD, and industrial users. Over time, air may leak into the evacuated, perlite filled annular region of these tanks. Once inside, the extremely low temperatures will cause most of the air to freeze. If a significant mass of air is allowed to accumulate, severe damage can result from nominal draining operations. Collection of liquid air on the outer shell may chill it below its ductility range, resulting in fracture. Testing and analysis to quantify the thermal conductivity of perlite that has nitrogen frozen into its interstitial spaces and to determine the void fraction of frozen nitrogen within a perlite/frozen nitrogen mixture is presented. General equations to evaluate methods for removing frozen air, while avoiding fracture, are developed. A hypothetical leak is imposed on an existing tank geometry and a full analysis of that leak is detailed. This analysis includes a thermal model of the tank and a time-to-failure calculation. Approaches to safely remove the frozen air are analyzed, leading to the conclusion that the most feasible approach is to allow the frozen air to melt and to use a water stream to prevent the outer shell from chilling.

  15. METHODOLOGY & CALCULATIONS FOR THE ASSIGNMENT OF WASTE GROUPS FOR THE LARGE UNDERGROUND WASTE STORAGE TANKS AT THE HANFORD SITE

    Energy Technology Data Exchange (ETDEWEB)

    BARKER, S.A.

    2006-07-27

    Waste stored within tank farm double-shell tanks (DST) and single-shell tanks (SST) generates flammable gas (principally hydrogen) to varying degrees depending on the type, amount, geometry, and condition of the waste. The waste generates hydrogen through the radiolysis of water and organic compounds, thermolytic decomposition of organic compounds, and corrosion of a tank's carbon steel walls. Radiolysis and thermolytic decomposition also generates ammonia. Nonflammable gases, which act as dilutents (such as nitrous oxide), are also produced. Additional flammable gases (e.g., methane) are generated by chemical reactions between various degradation products of organic chemicals present in the tanks. Volatile and semi-volatile organic chemicals in tanks also produce organic vapors. The generated gases in tank waste are either released continuously to the tank headspace or are retained in the waste matrix. Retained gas may be released in a spontaneous or induced gas release event (GRE) that can significantly increase the flammable gas concentration in the tank headspace as described in RPP-7771. The document categorizes each of the large waste storage tanks into one of several categories based on each tank's waste characteristics. These waste group assignments reflect a tank's propensity to retain a significant volume of flammable gases and the potential of the waste to release retained gas by a buoyant displacement event. Revision 5 is the annual update of the methodology and calculations of the flammable gas Waste Groups for DSTs and SSTs.

  16. Mechanistic analysis of double-shell tank gas release. Progress report, November 1990

    Energy Technology Data Exchange (ETDEWEB)

    Allemann, R.T.; Antoniak, Z.I.; Friley, J.R.; Haines, C.E.; Liljegren, L.M.; Somasundaram, S.

    1991-12-01

    Pacific Northwest Laboratory (PNL) is studying possible mechanisms and fluid dynamics contributing to the periodic release of gases from the double-shell waste storage tanks at Hanford. This study is being conducted for Westinghouse Hanford Company (WHC), a contractor for the US Department of Energy (DOE). This interim report discusses the work done through November 1990. Safe management of the wastes at Hanford depends on an understanding of the chemical and physical mechanisms that take place in the waste tanks. An example of the need to understand these mechanisms is tank 101-SY. The waste in this tank is generating and periodically releasing potentially flammable gases into the tank vent system according to observations of the tank. How these gases are generated and become trapped, the causes of periodic release, and the mechanism of the release are not known in detail. In order to develop a safe mitigation strategy, possible physical mechanisms for the periodic release of flammable gases need to be understood.

  17. Statistical characterization report for Single-Shell Tank 241-T-104

    International Nuclear Information System (INIS)

    Cromar, R.D.; Wilmarth, S.R.; Jensen, L.

    1994-01-01

    This report contains the results of the statistical analysis of data from two core samples obtained from single-shell tank 241-T-104 (T-104). Section 2.0 contains a description of the core samples and the chemical analyses performed on the core samples. Section 3.0 contains mean concentration estimates and associated 95% confidence intervals (CIs) on the mean for each of the analytes found in the core composite samples. Section 4.0 contains estimates of the spatial variability (variability between cores) and estimates of the analytical variability from the core composite data. Two types of analytical variability were estimated from the core composite data: (1) sample composite variability (variability between composite samples within the same core) and (2) analytical measurement variability (variability between the primary and duplicate analyses within each core composite sample). Estimates of the analytical measurement variability were used as the reference value to test the significance of the spatial and sample composite variability. Spatial variability was significantly different from zero for 32 out of 80 analytes. The sample composite variance was significantly different from zero for 18 out of the 80 analytes

  18. Statistical characterization report for single-shell tank 241-T-111

    International Nuclear Information System (INIS)

    Cromar, R.D.; Wilmarth, S.R.

    1994-01-01

    This report contains the results of the statistical analysis of data from two core samples obtained from single-shell tank 241-T-111 (T-111). Section 2.0 contains a description of the core samples and the chemical analyses performed on the core samples. Section 3.0 contains mean concentration estimates and associated 95% confidence intervals (CIs) on the mean for each of the analytes found in the core samples from T-111. Section 4.0 contains estimates of the spatial variability (variability between cores) and estimates of the analytical variability from the core composite data. Two types of analytical variability were estimated from the core composite data: (1) sample composite variability (variability between composite samples within the same core) and (2) analytical measurement variability (variability between the primary and duplicate analyses within each core composite sample). Estimates of the analytical measurement variability were used as the reference value to test the significance of the spatial and sample composite variability. Spatial variability was significantly different from zero for 39 out of 85 analytes. The sample composite variance was significantly different from zero for (a different) 39 out of the 85 analytes

  19. METHODOLOGY & CALCULATIONS FOR THE ASSIGNMENT OF WASTE FOR THE LARGE UNDERGROUND WASTE STORAGE TANKS AT THE HANFORD SITE

    Energy Technology Data Exchange (ETDEWEB)

    TU, T.A.

    2007-01-04

    Waste stored within tank farm double-shell tanks (DST) and single-shell tanks (SST) generates flammable gas (principally hydrogen) to varying degrees depending on the type, amount, geometry, and condition of the waste. The waste generates hydrogen through the radiolysis of water and organic compounds, thermolytic decomposition of organic compounds, and corrosion of a tank's carbon steel walls. Radiolysis and thermolytic decomposition also generates ammonia. Nonflammable gases, which act as dilutents (such as nitrous oxide), are also produced. Additional flammable gases (e.g., methane) are generated by chemical reactions between various degradation products of organic chemicals present in the tanks. Volatile and semi-volatile organic chemicals in tanks also produce organic vapors. The generated gases in tank waste are either released continuously to the tank headspace or are retained in the waste matrix. Retained gas may be released in a spontaneous or induced gas release event (GRE) that can significantly increase the flammable gas concentration in the tank headspace as described in RPP-7771, Flammable Gas Safety Isme Resolution. Appendices A through I provide supporting information. The document categorizes each of the large waste storage tanks into one of several categories based on each tank's waste and characteristics. These waste group assignments reflect a tank's propensity to retain a significant volume of flammable gases and the potential of the waste to release retained gas by a buoyant displacement event. Revision 6 is the annual update of the flammable gas Waste Groups for DSTs and SSTs.

  20. Results of Phase I groundwater quality assessment for single-shell tank waste management Area S-SX at the Hanford Site

    International Nuclear Information System (INIS)

    Johnson, V.G.; Chou, C.J.

    1998-01-01

    Pacific Northwest National Laboratory (PNNL) conducted a Phase I, Resource Conservation and Recovery Act of 1976 (RCRA) groundwater quality assessment for the Richland Field Office of the U.S. Department of Energy (DOE-RL), in accordance with the Federal Facility Compliance Agreement. The purpose of the investigation was to determine if the Single-Shell Tank Waste Management Area (WMA) S-SX has impacted groundwater quality. The WMA is located in the southern portion of the 200 West Area of the Hanford Site and consists of the 241-S and 241-SX tank farms and ancillary waste systems. The unit is regulated under RCRA interim-status regulations (40 CFR 265, Subpart F) and was placed in assessment groundwater monitoring (40 CFR 265.93 [d]) in August 1996 because of elevated specific conductance and technetium-99, a non-RCRA co-contaminant, in downgradient monitoring wells. Major findings of the assessment are summarized below: (1) Distribution patterns for radionuclides and RCRA/dangerous waste constituents indicate WMA S-SX has contributed to groundwater contamination observed in downgradient monitoring wells. (2) Drinking water standards for nitrate and technetium-99 are currently exceeded in one RCRA-compliant well (299-W22-46) located at the southeastern comer of the SX tank farm. (3) Technetium-99, nitrate, and chromium concentrations in downgradient well 299-W22-46 (the well with the highest current concentrations) appear to be declining after reaching maximum concentrations in May 1997. (4) Cesium-137 and strontium-90, major constituents of concern in single-shell tank waste, were not detected in any of the RCRA-compliant wells in the WMA network, including the well with the highest current technetium-99 concentrations (299-W22-46). (5) Low but detectable strontium-90 and cesium-137 were found in one old well (2-W23-7), located inside and between the S and SX tank farms

  1. First generation long-reach manipulator for retrieval of waste from Hanford single-shell tanks

    International Nuclear Information System (INIS)

    Gibbons, P.W.; McDaniel, L.B.

    1994-10-01

    The US Department of Energy, Richland Operations Office, has established the Tank Waste Remediation System to resolve environmental and safety issues related to underground waste-storage tanks at the Hanford Site. The Tank Waste Remediation System has identified the use of an advanced-technology, long-reach manipulator system as a low-water-addition retrieval alternative to past-practice sluicing

  2. Static tilt tests of a full-sized cylindrical liquid storage tank model

    International Nuclear Information System (INIS)

    Sakai, F.

    1988-01-01

    This paper is explaining a static tilt test with a full-scaled tank model, the objects of which are the above-ground type LNG,LPG and oil storage tanks. Main points of view to investigate are as follows: Stress and deformation at each part of the tank wall, the bottom plate and the anchor straps in case that the anchor straps are very effective; Behavior in case that the anchor straps are not very effective; Behavior in case of no anchors; Influence of the roof above the shell; and Influence of the foundation rigidity under the bottom plate

  3. Double-shell tank integrity assessments ultrasonic test equipment performance test

    Energy Technology Data Exchange (ETDEWEB)

    Pfluger, D.C.

    1996-09-26

    A double-shell tank (DST) inspection (DSTI) system was performance tested over three months until August 1995 at Pittsburgh, Pennsylvania, completing a contract initiated in February 1993 to design, fabricate, and test an ultrasonic inspection system intended to provide ultrasonic test (UT) and visual data to determine the integrity of 28 DSTs at Hanford. The DSTs are approximately one-million-gallon underground radioactive-waste storage tanks. The test was performed in accordance with a procedure (Jensen 1995) that included requirements described in the contract specification (Pfluger 1995). This report documents the results of tests conducted to evaluate the performance of the DSTI system against the requirements of the contract specification. The test of the DSTI system also reflects the performance of qualified personnel and operating procedures.

  4. Constraints for system specifications for the double-shell and single-shell tank systems

    International Nuclear Information System (INIS)

    SHAW, C.P.

    1999-01-01

    This is a supporting document for the Level 1 Double-Shell and Single-Shell System Specifications. The rationale for selection of specific regulatory constraining documents cited in the two system specifications is provided. many of the regulations have been implemented by the Project Hanford Management Contract procedures (HNF-PROs) and as such noted and traced back to their origins in State and Federal regulations

  5. Constraints for system specifications for the double-shell and single-shell tank systems

    Energy Technology Data Exchange (ETDEWEB)

    SHAW, C.P.

    1999-05-18

    This is a supporting document for the Level 1 Double-Shell and Single-Shell System Specifications. The rationale for selection of specific regulatory constraining documents cited in the two system specifications is provided. many of the regulations have been implemented by the Project Hanford Management Contract procedures (HNF-PROs) and as such noted and traced back to their origins in State and Federal regulations.

  6. The Sort on Radioactive Waste Type Model: A method to sort single-shell tanks into characteristics groups

    International Nuclear Information System (INIS)

    Hill, J.G.; Anderson, G.S.; Simpson, B.C.

    1995-02-01

    The Sort on Radioactive Waste Type (SORWT) Model is a method to categorize Hanford Site single-shell tanks (SSTS) into groups of tanks expected to exhibit similar chemical and physical characteristics based on their major waste types and processing histories. The model has identified 24 different waste-type groups encompassing 133 of the 149 SSTs and 93% of the total waste volume in SSTS. The remaining 16 SSTs and associated wastes could not be grouped. according to the established criteria and were placed in an ungrouped category. A detailed statistical verification study has been conducted that employs analysis of variance (ANOVA) and the core sample analysis data collected since 1989. These data cover eight tanks and five SORWT groups. The verification study showed that these five SORWT groups are highly statistically significant; they represent approximately 10% of the total waste volume and 26% of the total sludge volume in SSTS. Future sampling recommendations based on the SORWT Model results include 32 core samples from 16 tanks and 18 auger samples from six tanks. Combining these data with the existing body of information will form the basis for characterizing 98 SSTs (66%). These 98 SSTs represent 78% of the total waste volume, 61% of the total sludge volume, and 88 % of the salt cake volume

  7. Pad B Liquid Hydrogen Storage Tank

    Science.gov (United States)

    Hall, Felicia

    2007-01-01

    Kennedy Space Center is home to two liquid hydrogen storage tanks, one at each launch pad of Launch Complex 39. The liquid hydrogen storage tank at Launch Pad B has a significantly higher boil off rate that the liquid hydrogen storage tank at Launch Pad A. This research looks at various calculations concerning the at Launch Pad B in an attempt to develop a solution to the excess boil off rate. We will look at Perlite levels inside the tank, Boil off rates, conductive heat transfer, and radiant heat transfer through the tank. As a conclusion to the research, we will model the effects of placing an external insulation to the tank in order to reduce the boil off rate and increase the economic efficiency of the liquid hydrogen storage tanks.

  8. Test plan for determining breathing rates in single shell tanks using tracer gases. Revision 1

    International Nuclear Information System (INIS)

    Andersen, J.A.

    1997-01-01

    This test plan specifies the requirements and conditions for the injection of tracer gas (Helium (He)) into single shell tanks to determine breathing rates using periodic sampling. The eight tanks which have been selected at the time this Test Plan was developed are A-101, AX-102, AX-103, BY-105, C-107, U-103 (U-103 is counted twice, once during the winter months and once during the summer), and U-105. Other tanks to be sampled will be assigned by Pacific Northwest National Laboratory (PNNL) at a later date in the study process as resources allow, the document shall be revised as required. The sampling of headspace for each of these tanks shall be performed using available risers or the Standard Hydrogen Monitoring System (SHMS) cabinet as available. The tank farm vapor cognizant engineer shall assign the injection and sample testing point for each tank and document the point in the field work package. SUMMA TMI canisters, equipped in-line with dual particulate air filters and two silica gel sorbent traps will be used to collect the gas samples. The purpose of dual particulate air filters is to ensure no radioactive particulates are transferred to the SUMMA TMI canisters. The silica gel sorbent traps will effectively eliminate any tritiated water vapor that may be present in the sample gas stream. PNNL shall supply the tracer gases injection system and shall perform the analysis on the headspace samples. TWRS Characterization project shall inject the tracer gas and perform the sampling. Refer to Engineering Task Plan HNF-SD-TWR-ETP-002 for a detailed description of the responsibilities for this task

  9. Tank Characterization Report for Single-Shell Tank 241-C-104

    International Nuclear Information System (INIS)

    ADAMS, M.R.

    2000-01-01

    Interprets information about the tank answering a series of six questions covering areas such as information drivers, tank history, tank comparisons, disposal implications, data quality and quantity, and unique aspects of the tank

  10. Tank characterization report for double-shell tank 241-AP-105

    International Nuclear Information System (INIS)

    DeLorenzo, D.S.; Simpson, B.C.

    1994-01-01

    Double-Shell Tank 241-AP-105 is a radioactive waste tank most recently sampled in March of 1993. Sampling and characterization of the waste in Tank 241-AP-105 contributes toward the fulfillment of Milestone M-44-05 of the Hanford Federal Facility Agreement and Consent Order (Ecology, EPA, and DOE, 1993). Characterization is also needed tot evaluate the waste's fitness for safe processing through an evaporator as part of an overall waste volume reduction program. Tank 241-AP-105, located in the 200 East Area AP Tank Farm, was constructed and went into service in 1986 as a dilute waste receiver tank; Tank 241AP-1 05 was considered as a candidate tank for the Grout Treatment Facility. With the cancellation of the Grout Program, the final disposal of the waste in will be as high- and low-level glass fractions. The tank has an operational capacity of 1,140,000 gallons, and currently contains 821,000 gallons of double-shell slurry feed. The waste is heterogeneous, although distinct layers do not exist. Waste has been removed periodically for processing and concentration through the 242-A Evaporator. The tank is not classified as a Watch List tank and is considered to be sound. There are no Unreviewed Safety Questions associated with Tank 241-AP-105 at this time. The waste in Tank 241-AP-105 exists as an aqueous solution of metallic salts and radionuclides, with limited amounts of organic complexants. The most prevalent soluble analytes include aluminum, potassium, sodium, hydroxide, carbonate, nitrate, and nitrite. The calculated pH is greater than the Resource Conservation and Recovery Act established limit of 12.5 for corrosivity. In addition, cadmium, chromium, and lead concentrations were found at levels greater than their regulatory thresholds. The major radionuclide constituent is 137 Cs, while the few organic complexants present include glycolate and oxalate. Approximately 60% of the waste by weight is water

  11. Results of Tank-Leak Detection Demonstration Using Geophysical Techniques at the Hanford Mock Tank Site-Fiscal Year 2001

    International Nuclear Information System (INIS)

    Barnett, D BRENT.; Gee, Glendon W.; Sweeney, Mark D.

    2002-01-01

    During July and August of 2001, Pacific Northwest National Laboratory (PNNL), hosted researchers from Lawrence Livermore and Lawrence Berkeley National laboratories, and a private contractor, HydroGEOPHYSICS, Inc., for deployment of the following five geophysical leak-detection technologies at the Hanford Site Mock Tank in a Tank Leak Detection Demonstration (TLDD): Electrical Resistivity Tomography (ERT); Cross-Borehole Electromagnetic Induction (CEMI) ; High-Resolution Resistivity (HRR); Cross-Borehole Radar (XBR); Cross-Borehole Seismic Tomography (XBS). Under a ''Tri-party Agreement'' with Federal and state regulators, the U.S. Department of Energy will remove wastes from single-shell tanks (SSTs) and other miscellaneous underground tanks for storage in the double-shell tank system. Waste retrieval methods are being considered that use very little, if any, liquid to dislodge, mobilize, and remove the wastes. As additional assurance of protection of the vadose zone beneath the SSTs, tank wastes and tank conditions may be aggressively monitored during retrieval operations by methods that are deployed outside the SSTs in the vadose zone

  12. DOUBLE SHELL TANK INTEGRITY PROJECT HIGH LEVEL WASTE CHEMISTRY OPTIMIZATION

    International Nuclear Information System (INIS)

    WASHENFELDER DJ

    2008-01-01

    The U.S. Department of Energy's Office (DOE) of River Protection (ORP) has a continuing program for chemical optimization to better characterize corrosion behavior of High-Level Waste (HLW). The DOE controls the chemistry in its HLW to minimize the propensity of localized corrosion, such as pitting, and stress corrosion cracking (SCC) in nitrate-containing solutions. By improving the control of localized corrosion and SCC, the ORP can increase the life of the Double-Shell Tank (DST) carbon steel structural components and reduce overall mission costs. The carbon steel tanks at the Hanford Site are critical to the mission of safely managing stored HLW until it can be treated for disposal. The DOE has historically used additions of sodium hydroxide to retard corrosion processes in HLW tanks. This also increases the amount of waste to be treated. The reactions with carbon dioxide from the air and solid chemical species in the tank continually deplete the hydroxide ion concentration, which then requires continued additions. The DOE can reduce overall costs for caustic addition and treatment of waste, and more effectively utilize waste storage capacity by minimizing these chemical additions. Hydroxide addition is a means to control localized and stress corrosion cracking in carbon steel by providing a passive environment. The exact mechanism that causes nitrate to drive the corrosion process is not yet clear. The SCC is less of a concern in the newer stress relieved double shell tanks due to reduced residual stress. The optimization of waste chemistry will further reduce the propensity for SCC. The corrosion testing performed to optimize waste chemistry included cyclic potentiodynamic volarization studies. slow strain rate tests. and stress intensity factor/crack growth rate determinations. Laboratory experimental evidence suggests that nitrite is a highly effective:inhibitor for pitting and SCC in alkaline nitrate environments. Revision of the corrosion control

  13. TANK FARM REMEDIATION TECHNOLOGY DEVELOPMENT PROJECT AN EXERCISE IN TECHNICAL & REGULATORY COLLABORATION

    Energy Technology Data Exchange (ETDEWEB)

    JARAYSI, M.N.

    2007-01-08

    The Tank Farm Remediation Technology Development Project at the Hanford Site focuses on waste storage tanks, pipelines and associated ancillary equipment that are part of the C-200 single-shell tank (SST) farm system located in the C Tank Farm. The purpose of the project is to obtain information on the implementation of a variety of closure activities and to answer questions on technical, operational and regulatory issues associated with closure.

  14. HANFORD DOUBLE SHELL TANK (DST) THERMAL & SEISMIC PROJECT SEISMIC ANALYSIS OF HANFORD DOUBLE SHELL TANKS

    Energy Technology Data Exchange (ETDEWEB)

    MACKEY, T.C.

    2006-03-17

    M&D Professional Services, Inc. (M&D) is under subcontract to Pacific Northwest National Laboratory (PNNL) to perform seismic analysis of the Hanford Site double-shell tanks (DSTs) in support of a project entitled ''Double-Shell Tank (DSV Integrity Project--DST Thermal and Seismic Analyses)''. The overall scope of the project is to complete an up-to-date comprehensive analysis of record of the DST system at Hanford in support of Tri-Party Agreement Milestone M-48-14, The work described herein was performed in support of the seismic analysis of the DSTs. The thermal and operating loads analysis of the DSTs is documented in Rinker et al. (2004). The work statement provided to M&D (PNNL 2003) required that the seismic analysis of the DSTs assess the impacts of potentially non-conservative assumptions in previous analyses and account for the additional soil mass due to the as-found soil density increase, the effects of material degradation, additional thermal profiles applied to the full structure including the soil-structure response with the footings, the non-rigid (low frequency) response of the tank roof, the asymmetric seismic-induced soil loading, the structural discontinuity between the concrete tank wall and the support footing and the sloshing of the tank waste. The seismic analysis considers the interaction of the tank with the surrounding soil and the effects of the primary tank contents. The DSTs and the surrounding soil are modeled as a system of finite elements. The depth and width of the soil incorporated into the analysis model are sufficient to obtain appropriately accurate analytical results. The analyses required to support the work statement differ from previous analysis of the DSTs in that the soil-structure interaction (SSI) model includes several (nonlinear) contact surfaces in the tank structure, and the contained waste must be modeled explicitly in order to capture the fluid-structure interaction behavior between the primary

  15. Tank characterization report for double-shell Tank 241-AW-105

    International Nuclear Information System (INIS)

    DiCenso, A.T.; Amato, L.C.; Franklin, J.D.; Lambie, R.W.; Stephens, R.H.; Simpson, B.C.

    1994-01-01

    In May 1990, double-shell Tank 241-AW-105 was sampled to determine proper handling of the waste, to address corrosivity and compatibility issues, and to comply with requirements of the Washington Administrative Code. This Tank Characterization Report presents an overview of that tank sampling and analysis effort, and contains observations regarding waste characteristics. It also addresses expected concentration and bulk inventory data for the waste contents based on this latest sampling data and background tank information. This report summarizes the available information regarding the waste in Tank 241-AW-105, and using the historical information to place the analytical data in context, arranges this information in a useful format for making management and technical decisions concerning this waste tank. In addition, conclusions and recommendations are given based on safety issues and further characterization needs

  16. Combined long reach and dexterous manipulation for waste storage tank applications

    International Nuclear Information System (INIS)

    Burks, B.L.; Armstrong, G.A.; Butler, P.L.; Boissiere, P.

    1991-01-01

    One of the highest priority environmental restoration tasks within the Department of Energy (DOE) is the remediation of single-shell waste storage tanks (WSTs), especially those suspected of, or documented as, leakers. Most currently proposed approaches for remediation of large underground WSTs require application of remotely operated long-reach (greater than 10 m), high-lift capacity (greater than 200 kg) manipulator systems. Because of the complexity of in-tank hardware, waste forms, remediation tasks, and variety of end-effector tools, these manipulator systems must also be capable of performing a diverse set of dexterous manipulations. This presentation will describe the integration of a Spar RMS 2500 manipulator system, a Schilling Titan-7F manipulator, and control systems developed at ORNL and SNL to provide a combined long reach and dexterous manipulation system. The purpose of integrating these two manipulator systems was to study and demonstrate their combined performance, evaluate design requirements for a deployed system, and provide a testbed for control and end-effector technologies that might be applicable to remediation of WSTs. 5 refs

  17. Tank 241-BY-108 tank characterization plan

    International Nuclear Information System (INIS)

    Carpenter, B.C.

    1994-01-01

    The sampling and analytical needs associated with the 51 Hanford Site underground storage tanks classified on one or more of the four Watch Lists (ferrocyanide, organic, flammable gas, and high heat), and the safety screening of all 177 tanks have been identified through the Data Quality Objective (DQO) process. DQOs identity information needed by a program group in the Tank Waste Remediation System concerned with safety issues, regulatory requirements, or the transporting and processing of tank waste. This Tank Characterization Plan will identify characterization objectives for tank BY-108 pertaining to sample collection, sample preparation and analysis, and laboratory analytical evaluation and reporting requirements. In addition, an estimate of the current contents and status of the tank is given. Single-shell tank BY-108 is classified as a Ferrocyanide Watch List tank. The tank was declared an assumed leaker and removed from service in 1972; interim stabilized was completed in February 1985. Although not officially an Organic Watch List tank, restrictions have been placed on intrusive operations by Standing Order number-sign 94-16 (dated 09/08/94) since the tank is suspected to contain or to have contained a floating organic layer

  18. Seismic design and evaluation guidelines for the Department of Energy high-level waste storage tanks and appurtenances

    International Nuclear Information System (INIS)

    Bandyopadhyay, K.; Cornell, A.; Costantino, C.; Kennedy, R.; Miller, C.; Veletsos, A.

    1993-01-01

    This document provides guidelines for the design and evaluation of underground high-level waste storage tanks due to seismic loads. Attempts were made to reflect the knowledge acquired in the last two decades in the areas of defining the ground motion and calculating hydrodynamic loads and dynamic soil pressures for underground tank structures. The application of the analysis approach is illustrated with an example. The guidelines are developed for specific design of underground storage tanks, namely double-shell structures. However, the methodology discussed is applicable for other types of tank structures as well. The application of these and of suitably adjusted versions of these concepts to other structural types will be addressed in a future version of this document

  19. Tank 241-U-203: Tank Characterization Plan

    International Nuclear Information System (INIS)

    Sathyanarayana, P.

    1995-01-01

    The revised Federal Facility Agreement and Consent Order states that a tank characterization plan will be developed for each double-shell tank and single-shell tank using the data quality objective process. The plans are intended to allow users and regulators to ensure their needs will be met and resources are devoted to gaining only necessary information. This document satisfies that requirement for Tank 241-U-203 sampling activities

  20. Tank characterization report for double-shell Tank 241-AP-107

    International Nuclear Information System (INIS)

    DeLorenzo, D.S.; Simpson, B.C.

    1994-01-01

    The purpose of this tank characterization report is to describe and characterize the waste in Double-Shell Tank 241-AP-107 based on information gathered from various sources. This report summarizes the available information regarding the waste in Tank 241-AP-107, and arranges it in a useful format for making management and technical decisions concerning this particular waste tank. In addition, conclusion and recommendations based on safety and further characterization needs are given. Specific objectives reached by the sampling and characterization of the waste in Tank 241-AP-107 are: Contribute toward the fulfillment of the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-44-05 concerning the characterization of Hanford Site high-level radioactive waste tanks; Complete safety screening of the contents of Tank 241-AP-107 to meet the characterization requirements of the Defense Nuclear Facilities Safety board (DNFSB) Recommendation 93-5; and Provide tank waste characterization to the Tank Waste Remediation System (TWRS) Program Elements in accordance with the TWRS Tank Waste Analysis Plan

  1. TANK FARM REMEDIATION TECHNOLOGY DEVELOPMENT PROJECT AN EXERCISE IN TECHNICAL and REGULATORY COLLABORATION

    International Nuclear Information System (INIS)

    JARAYSI, M.N.

    2007-01-01

    The Tank Farm Remediation Technology Development Project at the Hanford Site focuses on waste storage tanks, pipelines and associated ancillary equipment that are part of the C-200 single-shell tank (SST) farm system located in the C Tank Farm. The purpose of the project is to obtain information on the implementation of a variety of closure activities and to answer questions on technical, operational and regulatory issues associated with closure

  2. Safe interim storage of Hanford tank wastes, draft environmental impact statement, Hanford Site, Richland, Washington

    Energy Technology Data Exchange (ETDEWEB)

    1994-07-01

    This Draft EIS is prepared pursuant to the National Environmental Policy Act (NEPA) and the Washington State Environmental Policy Act (SEPA). DOE and Ecology have identified the need to resolve near-term tank safety issues associated with Watchlist tanks as identified pursuant to Public Law (P.L.) 101-510, Section 3137, ``Safety Measures for Waste Tanks at Hanford Nuclear Reservation,`` of the National Defense Authorization Act for Fiscal Year 1991, while continuing to provide safe storage for other Hanford wastes. This would be an interim action pending other actions that could be taken to convert waste to a more stable form based on decisions resulting from the Tank Waste Remediation System (TWRS) EIS. The purpose for this action is to resolve safety issues concerning the generation of unacceptable levels of hydrogen in two Watchlist tanks, 101-SY and 103-SY. Retrieving waste in dilute form from Tanks 101-SY and 103-SY, hydrogen-generating Watchlist double shell tanks (DSTs) in the 200 West Area, and storage in new tanks is the preferred alternative for resolution of the hydrogen safety issues.

  3. Safe interim storage of Hanford tank wastes, draft environmental impact statement, Hanford Site, Richland, Washington

    International Nuclear Information System (INIS)

    1994-07-01

    This Draft EIS is prepared pursuant to the National Environmental Policy Act (NEPA) and the Washington State Environmental Policy Act (SEPA). DOE and Ecology have identified the need to resolve near-term tank safety issues associated with Watchlist tanks as identified pursuant to Public Law (P.L.) 101-510, Section 3137, ''Safety Measures for Waste Tanks at Hanford Nuclear Reservation,'' of the National Defense Authorization Act for Fiscal Year 1991, while continuing to provide safe storage for other Hanford wastes. This would be an interim action pending other actions that could be taken to convert waste to a more stable form based on decisions resulting from the Tank Waste Remediation System (TWRS) EIS. The purpose for this action is to resolve safety issues concerning the generation of unacceptable levels of hydrogen in two Watchlist tanks, 101-SY and 103-SY. Retrieving waste in dilute form from Tanks 101-SY and 103-SY, hydrogen-generating Watchlist double shell tanks (DSTs) in the 200 West Area, and storage in new tanks is the preferred alternative for resolution of the hydrogen safety issues

  4. Tank characterization report for single-shell tank 241-U-110

    International Nuclear Information System (INIS)

    Brown, T.M.; Jensen, L.

    1993-04-01

    This report investigates the nature of the waste in tank U-110 using historical and current information. When characterizing tank waste, several important properties are considered. First, the physical characteristics of the waste are presented, including waste appearance, density, and size of waste particles. The existence of any exotherms in the tank that may present a safety concern is investigated. Finally, the radiological and chemical composition of the tank are presented

  5. 40 CFR 280.230 - Operating an underground storage tank or underground storage tank system.

    Science.gov (United States)

    2010-07-01

    ... underground storage tank or underground storage tank system. (a) Operating an UST or UST system prior to...) Operating an UST or UST system after foreclosure. The following provisions apply to a holder who, through..., the purchaser must decide whether to operate or close the UST or UST system in accordance with...

  6. Development and testing of single-shell tank waste retrieval technologies: Milestone M-45-01 summary report

    International Nuclear Information System (INIS)

    Shen, E.J.

    1994-08-01

    This report summarizes the activities undertaken to develop single-shell tank (SST) waste retrieval technology and complete scale-model testing. Completion of these activities fulfills the commitment of Milestone M-45-01 of the Hanford Federal Facility Agreement and Consent Order (the Tri-Party Agreement). Initial activities included engineering studies that compiled and evaluated data on all known retrieval technologies. Based on selection criteria incorporating regulatory, safety, and operational issues, several technologies were selected for further evaluation and testing. The testing ranged from small-scale, bench-top evaluations of individual technologies to full-scale integrated tests of multiple subsystems operating concurrently as a system using simulated wastes. The current baseline retrieval method for SSTs is hydraulic sluicing. This method has been used successfully in the past to recover waste from SSTs. Variations of this hydraulic or ''past practice'' sluicing may be used to retrieve the waste from the majority of the SSTs. To minimize the potential for releases to the soil, arm-based retrieval systems may be used to recover waste from tanks that are known or suspected to have leaked. Both hydraulic sluicing and arm-based retrieval will be demonstrated in the first SST. Hydraulic sluicing is expected to retrieve most of the waste, and arm-based retrieval will retrieve wastes that remain after sluicing. Subsequent tanks will be retrieved by either hydraulic sluicing or arm-based methods, but not both. The method will be determined by waste characterization, tank integrity (leak status), and presence of in-tank hardware. Currently, it is assumed that approximately 75% of all SSTs will be retrieved by hydraulic sluicing and the remaining tanks by arm-based methods

  7. Analysis Bounding Double Shell Tank (DST) Performance for the Hanford Tank Waste Operation Simulator Case 2

    International Nuclear Information System (INIS)

    SMITH, D.F.

    2002-01-01

    The purpose of this analysis is to compare the latest Tank Farm Contractor Operation and Utilization Plan (HNF-SD-WM-SP-012, Rev. 3) ''Case 2'' operating scenarios with a previous bounding analysis for the Double-Shell Tank (DST) System in order to provide a technical assessment against the current set of DST System performance requirements. A later update to HNF-SD-WM-SP-012 (i.e., Rev. 3A), released in late December 2001, did not impact the results of this analysis. This analysis provides technical support for revising the Performance Requirements for the Double-Shell Tank System, HNF-2168, Rev. 3, used as the basis for defining performance requirements noted in System Specification for the Double-Shell Tank System, HNF-SD-WM-TRD-007. Rev. 1

  8. Double Shell Tank AY-102 Radioactive Waste Leak Investigation

    International Nuclear Information System (INIS)

    Washenfelder, Dennis J.

    2014-01-01

    PowerPoint. The objectives of this presentation are to: Describe Effort to Determine Whether Tank AY-102 Leaked; Review Probable Causes of the Tank AY-102 Leak; and, Discuss Influence of Leak on Hanford's Double-Shell Tank Integrity Program

  9. Application of mass-spring model in seismic analysis of liquid storage tank

    International Nuclear Information System (INIS)

    Liu Jiayi; Bai Xinran; Li Xiaoxuan

    2013-01-01

    There are many tanks for storing liquid in nuclear power plant. When seismic analysis is performed, swaying of liquid may change the mechanical parameters of those tanks, such as the center of mass and the moment of inertia, etc., so the load due to swaying of liquid can't be neglected. Mass-spring model is a simplified model to calculate the dynamic pressure of liquid in tank under earthquake, which is derived by the theory of Housner and given in the specification of seismic analysis of Safety-Related Nuclear Structures and Commentary-4-98 (ASCE-4-98 for short hereinafter). According to the theory of Housner and ASCE-4-98, the mass-spring 3-D FEM model for storage tank and liquid in it was established, by which the force of stored liquid acted on liquid storage tank in nuclear power plant under horizontal seismic load was calculated. The calculated frequency of liquid swaying and effect of liquid convection on storage tank were compared with those calculated by simplified formula. It is shown that the results of 3-D FEM model are reasonable and reliable. Further more, it is more direct and convenient compared with description in ASCE-4-98 when the mass-spring model is applied to 3-D FEM model for seismic analysis, from which the displacement and stress distributions of the plate-shell elements or the 3-D solid finite elements can be obtained directly from the seismic input model. (authors)

  10. Hazard assessments of double-shell flammable gas tanks

    International Nuclear Information System (INIS)

    Fox, G.L.; Stepnewski, D.D.

    1994-01-01

    This report is the fourth in a series of hazard assessments performed on the double-shell flammable gas watch list tanks. This report focuses on hazards associated with the double-shell watch list tanks (101-AW, 103-AN, 104-AN, and 105-AN). While a similar assessment has already been performed for tank 103-SY, it is also included here to incorporate a more representative slurry gas mixture and provide a consistent basis for comparing results for all the flammable gas tanks. This report is intended to provide an in-depth assessment by considering the details of the gas release event and slurry gas mixing as the gas is released from the waste. The consequences of postulated gas ignition are evaluated using a plume burn model and updated ignition frequency predictions. Tank pressurization which results from a gas burn, along with the structural response, is also considered. The report is intended to support the safety basis for work activities in flammable gas tanks by showing margins to safety limits that are available in the design and procedures

  11. Phase 1 RCRA Facility Investigation/Corrective Measures Study Work Plan for Single-Shell Tank (SST) Waste Management Areas

    International Nuclear Information System (INIS)

    MCCARTHY, M.M.

    1999-01-01

    This document is the master work plan for the Resource Conservation and Recovery Act of 1976 (RCRA) Corrective Action Program (RCAP) for single-shell tank (SST) farms at the US. Department of Energy's (DOE'S) Hanford Site. The DOE Office of River Protection (ORP) initiated the RCAP to address the impacts of past and potential future tank waste releases to the environment. This work plan defines RCAP activities for the four SST waste management areas (WMAs) at which releases have contaminated groundwater. Recognizing the potential need for future RCAP activities beyond those specified in this master work plan, DOE has designated the currently planned activities as ''Phase 1.'' If a second phase of activities is needed for the WMAs addressed in Phase 1, or if releases are detected at other SST WMAs, this master work plan will be updated accordingly

  12. Tank characterization report for single-shell tank 241-U-110

    International Nuclear Information System (INIS)

    Brown, T.M.; Jensen, L.

    1993-09-01

    Tank 241-U-110 (U-110) is a Hanford Site waste tank that was;most recently sampled in November and December 1989. Analysis of the samples obtained from tank U-110 was conducted to support the characterization of the contents of this tank and to support Hanford Federal Facility Agreement and Consent Order milestone M-10-00 (Ecology, et al. 1992). Because of incomplete recovery of the waste during sampling, there may be bias in the results of this characterization report

  13. Tank characterization report for single-shell tank 241-BY-112

    International Nuclear Information System (INIS)

    Baldwin, J.H.

    1997-01-01

    This document summarizes the information on the historical uses, present status, and the sampling and analysis results of waste stored in Tank 241-BY-112. This report supports the requirements of the Tri-Party Agreement Milestone M-44-10. (This tank has been designated a Ferrocyanide Watch List tank.)

  14. Results of phase 1 groundwater quality assessment for Single-Shell Tank Waste Management Areas B-BX-BY at the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Narbutovskih, S.M.

    1998-02-01

    Pacific Northwest National Laboratory conducted a Phase 1 (or first determination) groundwater quality assessment for the US Department of Energy, Richland Operations Office, in accordance with the Federal Facility Compliance Agreement. The purpose of the assessment was to determine if the Single-Shell Tank Waste Management Area (WMA) B-BX-BY has impacted groundwater quality. This report will document the evidence demonstrating that the WMA has impacted groundwater quality.

  15. Results of phase 1 groundwater quality assessment for Single-Shell Tank Waste Management Areas B-BX-BY at the Hanford Site

    International Nuclear Information System (INIS)

    Narbutovskih, S.M.

    1998-02-01

    Pacific Northwest National Laboratory conducted a Phase 1 (or first determination) groundwater quality assessment for the US Department of Energy, Richland Operations Office, in accordance with the Federal Facility Compliance Agreement. The purpose of the assessment was to determine if the Single-Shell Tank Waste Management Area (WMA) B-BX-BY has impacted groundwater quality. This report will document the evidence demonstrating that the WMA has impacted groundwater quality

  16. RCRA Assessment Plan for Single-Shell Tank Waste Management Area TX-TY

    Energy Technology Data Exchange (ETDEWEB)

    Horton, Duane G.

    2007-03-26

    WMA TX-TY contains underground, single-shell tanks that were used to store liquid waste that contained chemicals and radionuclides. Most of the liquid has been removed, and the remaining waste is regulated under the RCRA as modi¬fied in 40 CFR Part 265, Subpart F and Washington State’s Hazardous Waste Management Act . WMA TX-TY was placed in assessment monitoring in 1993 because of elevated specific conductance. A groundwater quality assessment plan was written in 1993 describing the monitoring activities to be used in deciding whether WMA TX-TY had affected groundwater. That plan was updated in 2001 for continued RCRA groundwater quality assessment as required by 40 CFR 265.93 (d)(7). This document further updates the assessment plan for WMA TX-TY by including (1) information obtained from ten new wells installed at the WMA after 1999 and (2) information from routine quarterly groundwater monitoring during the last five years. Also, this plan describes activities for continuing the groundwater assessment at WMA TX TY.

  17. 78 FR 75913 - Final Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site...

    Science.gov (United States)

    2013-12-13

    ... site, including the disposal of Hanford's low-level radioactive waste (LLW) and mixed low-level... would be processed for disposal in Low- Level Radioactive Waste Burial Grounds (LLBGs) Trenches 31 and... treating radioactive waste from 177 underground storage tanks (149 Single-Shell Tanks [SSTs] and 28 Double...

  18. Results of Tank-Leak Detection Demonstration Using Geophysical Techniques at the Hanford Mock Tank Site-Fiscal Year 2001

    Energy Technology Data Exchange (ETDEWEB)

    Barnett, D BRENT.; Gee, Glendon W.; Sweeney, Mark D.

    2002-03-01

    During July and August of 2001, Pacific Northwest National Laboratory (PNNL), hosted researchers from Lawrence Livermore and Lawrence Berkeley National laboratories, and a private contractor, HydroGEOPHYSICS, Inc., for deployment of the following five geophysical leak-detection technologies at the Hanford Site Mock Tank in a Tank Leak Detection Demonstration (TLDD): (1) Electrical Resistivity Tomography (ERT); (2) Cross-Borehole Electromagnetic Induction (CEMI); (3) High-Resolution Resistivity (HRR); (4) Cross-Borehole Radar (XBR); and (5) Cross-Borehole Seismic Tomography (XBS). Under a ''Tri-party Agreement'' with Federal and state regulators, the U.S. Department of Energy will remove wastes from single-shell tanks (SSTs) and other miscellaneous underground tanks for storage in the double-shell tank system. Waste retrieval methods are being considered that use very little, if any, liquid to dislodge, mobilize, and remove the wastes. As additional assurance of protection of the vadose zone beneath the SSTs, tank wastes and tank conditions may be aggressively monitored during retrieval operations by methods that are deployed outside the SSTs in the vadose zone.

  19. FFTF vertical sodium storage tank preliminary thermal analysis

    International Nuclear Information System (INIS)

    Irwin, J.J.

    1995-01-01

    In the FFTF Shutdown Program, sodium from the primary and secondary heat transport loops, Interim Decay Storage (IDS), and Fuel Storage Facility (FSF) will be transferred to four large storage tanks for temporary storage. Three of the storage tanks will be cylindrical vertical tanks having a diameter of 28 feet, height of 22 feet and fabricated from carbon steel. The fourth tank is a horizontal cylindrical tank but is not the subject of this report. The storage tanks will be located near the FFTF in the 400 Area and rest on a steel-lined concrete slab in an enclosed building. The purpose of this work is to document the thermal analyses that were performed to ensure that the vertical FFTF sodium storage tank design is feasible from a thermal standpoint. The key criterion for this analysis is the time to heat up the storage tank containing frozen sodium at ambient temperature to 400 F. Normal operating conditions include an ambient temperature range of 32 F to 120 F. A key parameter in the evaluation of the sodium storage tank is the type of insulation. The baseline case assumed six inches of calcium silicate insulation. An alternate case assumed refractory fiber (Cerablanket) insulation also with a thickness of six inches. Both cases assumed a total electrical trace heat load of 60 kW, with 24 kW evenly distributed on the bottom head and 36 kW evenly distributed on the tank side wall

  20. Analysis and characterization of double shell tank 241-AP-108

    International Nuclear Information System (INIS)

    Miller, G.L.

    1994-01-01

    This document is the first part of a three-part report describing the analysis and characterization of double shell tank 241-AP-108 which is located at the Hanford Reservation.This document is the analytical laboratory data package entitled 'Analysis and Characterization of Double Shell Tank 241-AP-108' which contains a case sampling history, the sampling protocols, the analytical procedures, sampling and analysis quality assurance and quality control measures, and chemical analysis results for samples obtained from the tank

  1. 30 CFR 56.4401 - Storage tank foundations.

    Science.gov (United States)

    2010-07-01

    ... tanks settling. ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Storage tank foundations. 56.4401 Section 56... Control Flammable and Combustible Liquids and Gases § 56.4401 Storage tank foundations. Fixed, unburied...

  2. Safety basis for selected activities in single-shell tanks with flammable gas concerns. Revision 1

    International Nuclear Information System (INIS)

    Schlosser, R.L.

    1996-01-01

    This is full revision to Revision 0 of this report. The purpose of this report is to provide a summary of analyses done to support activities performed for single-shell tanks. These activities are encompassed by the flammable gas Unreviewed Safety Question (USQ). The basic controls required to perform these activities involve the identification, elimination and/or control of ignition sources and monitoring for flammable gases. Controls are implemented through the Interim Safety Basis (ISB), IOSRs, and OSDs. Since this report only provides a historical compendium of issues and activities, it is not to be used as a basis to perform USQ screenings and evaluations. Furthermore, these analyses and others in process will be used as the basis for developing the Flammable Gas Topical Report for the ISB Upgrade

  3. Nonliner analysis techniques for use in the assessment of high-level waste storage tank structures

    International Nuclear Information System (INIS)

    Moore, C.J.; Julyk, L.J.; Fox, G.L.; Dyrness, A.D.

    1991-09-01

    Reinforced concrete in combination with a steel liner has had a wide application to structures containing hazardous material. The buried double-shell waste storage tanks at the US Department of Energy's Hanford Site use this construction method. The generation and potential ignition of combustible gases within the primary tank is postulated to develop beyond-design-basis internal pressure and possible impact loading. The scope of this paper includes the illustration of analysis techniques for the assessment of these beyond-design-basis loadings. The analysis techniques include the coupling of the gas dynamics with the structural response, the treatment of reinforced concrete in regimes of inelastic behavior, and the treatment of geometric nonlinearities. The techniques and software tools presented provide a powerful nonlinear analysis capability for storage tanks. 10 refs., 13 figs., 1 tab

  4. Phase 1 RCRA Facility Investigation & Corrective Measures Study Work Plan for Single Shell Tank (SST) Waste Management Areas

    Energy Technology Data Exchange (ETDEWEB)

    MCCARTHY, M.M.

    1999-08-01

    This document is the master work plan for the Resource Conservation and Recovery Act of 1976 (RCRA) Corrective Action Program (RCAP) for single-shell tank (SST) farms at the US. Department of Energy's (DOE'S) Hanford Site. The DOE Office of River Protection (ORP) initiated the RCAP to address the impacts of past and potential future tank waste releases to the environment. This work plan defines RCAP activities for the four SST waste management areas (WMAs) at which releases have contaminated groundwater. Recognizing the potential need for future RCAP activities beyond those specified in this master work plan, DOE has designated the currently planned activities as ''Phase 1.'' If a second phase of activities is needed for the WMAs addressed in Phase 1, or if releases are detected at other SST WMAs, this master work plan will be updated accordingly.

  5. 30 CFR 57.4401 - Storage tank foundations.

    Science.gov (United States)

    2010-07-01

    ... leaks caused by tanks settling. ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Storage tank foundations. 57.4401 Section 57... and Control Flammable and Combustible Liquids and Gases § 57.4401 Storage tank foundations. Fixed...

  6. Expert Panel Recommendations for Hanford Double-Shell Tank Life Extension

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, Charles W; Bush, Spencer H; Berman, Herbert Stanton; Czajkowski, Carl J; Divine, James R; Posakony, Gerald J; Johnson, A B; Elmore, Monte R; Reynolds, D A; Anantatmula, Ramamohan P; Sindelar, Robert L; Zapp, Philip E

    2001-06-29

    Expert workshops were held in Richland in May 2001 to review the Hanford Double-Shell Tank Integrity Project and make recommendations to extend the life of Hanford's double-shell waste tanks. The workshop scope was limited to corrosion of the primary tank liner, and the main areas for review were waste chemistry control, tank inspection, and corrosion monitoring. Participants were corrosion experts from Hanford, Savannah River Site, Brookhaven National Lab., Pacific Northwest National Lab., and several consultants. This report describes the current state of the three areas of the program, the final recommendations of the workshop, and the rationale for their selection.

  7. Evaluation of Flygt Propeller Mixers for Double-Shell Tank (DST) High Level Waste Auxiliary Solids Mobilization

    International Nuclear Information System (INIS)

    PACQUET, E.A.

    2000-01-01

    The River Protection Project (RPP) is planning to retrieve radioactive waste from the single-shell tanks (SST) and double-shell tanks (DST) underground at the Hanford Site. This waste will then be transferred to a waste treatment plant to be immobilized (vitrified) in a stable glass form. Over the years, the waste solids in many of the tanks have settled to form a layer of sludge at the bottom. The thickness of the sludge layer varies from tank to tank, from no sludge or a few inches of sludge to about 15 ft of sludge. The purpose of this technology and engineering case study is to evaluate the Flygt(trademark) submersible propeller mixer as a potential technology for auxiliary mobilization of DST HLW solids. Considering the usage and development to date by other sites in the development of this technology, this study also has the objective of expanding the knowledge base of the Flygt(trademark) mixer concept with the broader perspective of Hanford Site tank waste retrieval. More specifically, the objectives of this study delineated from the work plan are described

  8. Evaluation of Flygt Propeller Xixers for Double Shell Tank (DST) High Level Waste Auxiliary Solids Mobilization

    Energy Technology Data Exchange (ETDEWEB)

    PACQUET, E.A.

    2000-07-20

    The River Protection Project (RPP) is planning to retrieve radioactive waste from the single-shell tanks (SST) and double-shell tanks (DST) underground at the Hanford Site. This waste will then be transferred to a waste treatment plant to be immobilized (vitrified) in a stable glass form. Over the years, the waste solids in many of the tanks have settled to form a layer of sludge at the bottom. The thickness of the sludge layer varies from tank to tank, from no sludge or a few inches of sludge to about 15 ft of sludge. The purpose of this technology and engineering case study is to evaluate the Flygt{trademark} submersible propeller mixer as a potential technology for auxiliary mobilization of DST HLW solids. Considering the usage and development to date by other sites in the development of this technology, this study also has the objective of expanding the knowledge base of the Flygt{trademark} mixer concept with the broader perspective of Hanford Site tank waste retrieval. More specifically, the objectives of this study delineated from the work plan are described.

  9. SIGNIFICANT PROGRESS IN THE DEPLOYMENT OF NEW TECHNOLOGIES FOR THE RETRIEVAL OF HANFORD RADIOACTIVE WASTE STORAGE TANKS

    International Nuclear Information System (INIS)

    RAYMOND RE; DODD RA; CARPENTER KE; STURGES MH

    2008-01-01

    Significant enhancements in the development and deployment of new technologies for removing waste from storage tanks at the Hanford Site have resulted in accelerated progress and reduced costs for tank cleanup. CH2M HILL Hanford Group, Inc. is the U.S. Department of Energy, Office of River Protection's prime contractor responsible for safely storing and retrieving approximately 53 million gallons of highly-radioactive and hazardous waste stored in 177 underground tanks. The waste is stored in 149 older single-shell tanks (SST) and 28 newer double-shell tanks (DST) that are grouped in 18 so-called farms near the center of the Hanford Site, located in southeastern Washington State. Tank contents include materials from years of World-War II and post-war weapons production, which account for 60 percent by volume of the nation's high-level radioactive waste. A key strategy for improved cleanup is the development and deployment of innovative technologies, which enhance worker safety, resolve technical challenges, streamline retrieval processes, and cut project costs and durations. During the past seven years of tank cleanout projects we have encountered conditions and waste chemistry that defy conventional approaches, requiring a variety of new tools and techniques. Through the deployment of advanced technology and the creative application of resources, we are finding ways to accomplish the retrieval process safely, swiftly, and economically. To date, retrieval operations have been completed in seven tanks, including a record six tanks in a two-year period. Retrieval operations are in progress for another three tanks. This paper describes the following tank cleanup technologies deployed at Hanford in the past few years: Modified waste sluicing, High pressure water lance, Mobile retrieval tools, Saltcake dissolution, Vacuum retrieval, Sparging of wastes, Selective dissolution for waste treatment, Oxalic acid dissolution, High-pressure water mixers, Variable height pumps

  10. Hanford Double-Shell Tank Extent-of-Condition Construction Review

    International Nuclear Information System (INIS)

    Venetz, Theodore J.; Johnson, Jeremy M.; Gunter, Jason R.; Barnes, Travis J.; Washenfelder, Dennis J.; Boomer, Kayle D.

    2013-01-01

    During routine visual inspections of Hanford double-shell waste tank 241-AY-102 (AY-102), anomalies were identified on the annulus floor which resulted in further evaluations. Following a formal leak assessment in October 2012, Washington River Protection Solutions, LLC (WRPS) determined that the primary tank of AY-102 was leaking. The formal leak assessment, documented in RPP-ASMT-53793,Tank 241-AY-102 Leak Assessment Report, identified first-of-a-kind construction difficulties and trial-and-error repairs as major contributing factors to tank failure. To determine if improvements in double-shell tank (DST) construction occurred after construction of tank AY-102, a detailed review and evaluation of historical construction records were performed for the first three DST tank farms constructed, which included tanks 241-AY-101, 241-AZ-101, 241-AZ-102, 241-SY-101, 241-SY-102, and 241-SY-103. The review for these six tanks involved research and review of dozens of boxes of historical project documentation. These reviews form a basis to better understand the current condition of the three oldest Hanford DST farms. They provide a basis for changes to the current tank inspection program and also provide valuable insight into future tank use decisions. If new tanks are constructed in the future, these reviews provide valuable 'lessons-learned' information about expected difficulties as well as construction practices and techniques that are likely to be successful

  11. Tank 241-AP-104 tank characterization plan

    International Nuclear Information System (INIS)

    Homi, C.S.

    1995-11-01

    This document is a plan that identifies the information needed to address relevant issues concerning short-term and long-term safe storage and long-term management of Double-Shell Tank (DST) 241-AP-104

  12. Vapor and gas sampling of single-shell tank 241-B-102 using the in situ vapor sampling system

    International Nuclear Information System (INIS)

    Lockrem, L.L.

    1997-01-01

    The Vapor Issue Resolution Program tasked the Vapor Team (the team) to collect representative headspace samples from Hanford Site single-shell tank (SST) 241-B-102. This document presents sampling data resulting from the April 18, 1996 sampling of SST 241-B-102. Analytical results will be presented in a separate report issued by Pacific Northwest National Laboratory (PNNL), which supplied and analyzed the sampling media. The team, consisting of Sampling and Mobile Laboratories (SML) and Special Analytical Studies (SAS) personnel, used the vapor sampling system (VSS) to collect representative samples of the air, gases, and vapors from the headspace of SST 241-B-102 with sorbent traps and SUMMA canisters

  13. Prevention of stress corrosion cracking in nuclear waste storage tanks

    International Nuclear Information System (INIS)

    Ondrejcin, R.S.

    1983-01-01

    At the Savannah River Plant, stress corrosion of carbon steel storage tanks containing alkaline nitrate radioactive waste is prevented by stress relief and specification of limits on waste composition and temperature. Actual cases of cracking have occurred in the primary steel shell of tanks designed and built before 1960 and were attributed to a combination of high residual stresses from fabrication welding and aggressiveness of fresh wastes from the reactor fuel reprocessing plants. The fresh wastes have the highest concentration of nitrate, which has been shown to be the cracking agent. Also, as the waste solutions age and are reduced in volume by evaporation of water, nitrite and hydroxide ions become more concentrated and inhibit stress corrosion. Thus, by providing a heel of aged evaporated waste in tanks that receive fresh wastes, concentrations of the inhibitor ions are maintained within specific ranges to protect against nitrate cracking. The concentration and temperature range limits to prevent cracking were determined by a series of statistically designed experiments

  14. Discovery of the First Leaking Double-Shell Tank - Hanford Tank 241-AY-102

    International Nuclear Information System (INIS)

    Harrington, Stephanie J.; Sams, Terry L.

    2013-01-01

    A routine video inspection of the annulus space between the primary tank and secondary liner of double-shell tank 241-AY-102 was performed in August 2012. During the inspection, unexpected material was discovered. A subsequent video inspection revealed additional unexpected material on the opposite side of the tank, none of which had been observed during inspections performed in December 2006 and January 2007. A formal leak assessment team was established to review the tank's construction and operating histories, and preparations for sampling and analysis began to determine the material's origin. A new sampling device was required to collect material from locations that were inaccessible to the available sampler. Following its design and fabrication, a mock-up test was performed for the new sampling tool to ensure its functionality and capability of performing the required tasks. Within three months of the discovery of the unexpected material, sampling tools were deployed, material was collected, and analyses were performed. Results indicated that some of the unknown material was indicative of soil, whereas the remainder was consistent with tank waste. This, along with the analyses performed by the leak assessment team on the tank's construction history, lead to the conclusion that the primary tank was leaking into the annulus. Several issues were encountered during the deployment of the samplers into the annulus. As this was the first time samples had been required from the annulus of a double-shell tank, a formal lessons learned was created concerning designing equipment for unique purposes under time constraints

  15. Environmental Assessment: Waste Tank Safety Program, Hanford Site, Richland, Washington

    International Nuclear Information System (INIS)

    1994-02-01

    The US Department of Energy (DOE) needs to take action in the near-term, to accelerate resolution of waste tank safety issues at the Hanford Site near the City of Richland, Washington, and reduce the risks associated with operations and management of the waste tanks. The DOE has conducted nuclear waste management operations at the Hanford Site for nearly 50 years. Operations have included storage of high-level nuclear waste in 177 underground storage tanks (UST), both in single-shell tank (SST) and double-shell tank configurations. Many of the tanks, and the equipment needed to operate them, are deteriorated. Sixty-seven SSTs are presumed to have leaked a total approximately 3,800,000 liters (1 million gallons) of radioactive waste to the soil. Safety issues associated with the waste have been identified, and include (1) flammable gas generation and episodic release; (2) ferrocyanide-containing wastes; (3) a floating organic solvent layer in Tank 241-C-103; (4) nuclear criticality; (5) toxic vapors; (6) infrastructure upgrades; and (7) interim stabilization of SSTs. Initial actions have been taken in all of these areas; however, much work remains before a full understanding of the tank waste behavior is achieved. The DOE needs to accelerate the resolution of tank safety concerns to reduce the risk of an unanticipated radioactive or chemical release to the environment, while continuing to manage the wastes safely

  16. Mathematical Modeling of the Thermal Shell State of the Cylindrical Cryogenic Tank During Filling and Emptying

    Directory of Open Access Journals (Sweden)

    V. S. Zarubin

    2015-01-01

    Full Text Available Liquid hydrogen and oxygen are used as the oxidizer and fuel for liquid rocket engines. Liquefied natural gas, which is based on methane, is seen as a promising motor fuel for internal combustion engines. One of the technical problems arising from the use of said cryogenic liquid is to provide containers for storage, transport and use in the propulsion system. In the design and operation of such vessels it is necessary to have reliable information about their temperature condition, on which depend the loss of cryogenic fluids due to evaporation and the stress-strain state of the structural elements of the containers.Uneven temperature distribution along the generatrix of the cylindrical thin-walled shell of rocket cryogenic tanks, in a localized zone of cryogenic liquid level leads to a curvature of the shell and reduce the permissible axle load in a hazard shell buckling in the preparation for the start of the missile in flight with an increasing acceleration. Moving the level of the cryogenic liquid during filling or emptying the tank at a certain combination of parameters results in an increase of the local temperature distribution nonuniformity.Along with experimental study of the shell temperature state of the cryogenic container, methods of mathematical modeling allow to have information needed for designing and testing the construction of cryogenic tanks. In this study a mathematical model is built taking into account features of heat transfer in a cryogenic container, including the boiling cryogenic liquid in the inner surface of the container. This mathematical model describes the temperature state of the thin-walled shell of cylindrical cryogenic tank during filling and emptying. The work also presents a quantitative analysis of this model in case of fixed liquid level, its movement at a constant speed, and harmonic oscillations relative to a middle position. The quantitative analysis of this model has allowed to find the limit options

  17. Tank characterization report for single-shell tank 241-A-101

    International Nuclear Information System (INIS)

    Field, J.M.

    1997-01-01

    This document summarizes the information on the historical uses, present status, and the sampling and analysis results of waste stored in Tank 241-A-101. This tank has been listed on the Hydrogen Watch List. This report supports the requirements of the Tri-Party Agreement Milestone M-44-10

  18. Tank waste processing analysis: Database development, tank-by-tank processing requirements, and examples of pretreatment sequences and schedules as applied to Hanford Double-Shell Tank Supernatant Waste - FY 1993

    International Nuclear Information System (INIS)

    Colton, N.G.; Orth, R.J.; Aitken, E.A.

    1994-09-01

    This report gives the results of work conducted in FY 1993 by the Tank Waste Processing Analysis Task for the Underground Storage Tank Integrated Demonstration. The main purpose of this task, led by Pacific Northwest Laboratory, is to demonstrate a methodology to identify processing sequences, i.e., the order in which a tank should be processed. In turn, these sequences may be used to assist in the development of time-phased deployment schedules. Time-phased deployment is implementation of pretreatment technologies over a period of time as technologies are required and/or developed. The work discussed here illustrates how tank-by-tank databases and processing requirements have been used to generate processing sequences and time-phased deployment schedules. The processing sequences take into account requirements such as the amount and types of data available for the tanks, tank waste form and composition, required decontamination factors, and types of compact processing units (CPUS) required and technology availability. These sequences were developed from processing requirements for the tanks, which were determined from spreadsheet analyses. The spreadsheet analysis program was generated by this task in FY 1993. Efforts conducted for this task have focused on the processing requirements for Hanford double-shell tank (DST) supernatant wastes (pumpable liquid) because this waste type is easier to retrieve than the other types (saltcake and sludge), and more tank space would become available for future processing needs. The processing requirements were based on Class A criteria set by the U.S. Nuclear Regulatory Commission and Clean Option goals provided by Pacific Northwest Laboratory

  19. Tank characterization report for double-shell tank 241-AN-105

    International Nuclear Information System (INIS)

    Jo, J.

    1997-01-01

    A major function of the Tank Waste Remediation System (TWRS) is to characterize wastes in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis, along with other available information about a tank, are compiled and maintained in a tank characterization report (TCR). This report and its appendixes serve as the TCR for double-shell tank 241-AN-105. The objectives of this report are: (1) to use characterization data in response to technical issues associated with tank 241-AN-105 waste; and (2) to provide a standard characterization of this waste in terms of a best-basis inventory estimate. The response to technical issues is summarized in Section 2.0, and the best-basis inventory estimate is presented in Section 3.0. Recommendations regarding safety status and additional sampling needs are provided in Section 4.0. Supporting data and information are contained in the appendices. This report also supports the requirements of the Hanford Federal Facility Agreement and Consent Order (Ecology et al. 1996) milestone M-44-10

  20. Jet mixing long horizontal storage tanks

    International Nuclear Information System (INIS)

    Perona, J.J.; Hylton, T.D.; Youngblood, E.L.; Cummins, R.L.

    1994-12-01

    Large storage tanks may require mixing to achieve homogeneity of contents for several reasons: prior to sampling for mass balance purposes, for blending in reagents, for suspending settled solids for removal, or for use as a feed tank to a process. At ORNL, mixed waste evaporator concentrates are stored in 50,000-gal tanks, about 12 ft in diameter and 60 ft long. This tank configuration has the advantage of permitting transport by truck and therefore fabrication in the shop rather than in the field. Jet mixing experiments were carried out on two model tanks: a 230-gal (1/6-linear-scale) Plexiglas tank and a 25,000-gal tank (about 2/3 linear scale). Mixing times were measured using sodium chloride tracer and several conductivity probes distributed through the tanks. Several jet sizes and configurations were tested. One-directional and two-directional jets were tested in both tanks. Mixing times for each tank were correlated with the jet Reynolds number. Mixing times were correlated for the two tank sizes using the recirculation time for the developed jet. When the recirculation times were calculated using the distance from the nozzle to the end of the tank as the length of the developed jet, the correlation was only marginally successful. Data for the two tank sizes were correlated empirically using a modified effective jet length expressed as a function of the Reynolds number raised to the 1/3 power. Mixing experiments were simulated using the TEMTEST computer program. The simulations predicted trends correctly and were within the scatter of the experimental data with the lower jet Reynolds numbers. Agreement was not as good at high Reynolds numbers except for single nozzles in the 25,000-gal tank, where agreement was excellent over the entire range

  1. Tank characterization report for single-shell tank 241-BX-107

    International Nuclear Information System (INIS)

    Raphael, G.F.

    1996-01-01

    This study examined and assessed the status, safety issues, composition, and distribution of the wastes contained in the tank 241-BX-107. Historical and most recent information, ranging from engineering structural assessment experiments, process history, monitoring and remediation activities, to analytical core sample data, were compiled and interpreted in an effort to develop a realistic, contemporary profile for the tank BX-107 contents

  2. Seismic response of unanchored and partially anchored liquid-storage tanks. Final report

    International Nuclear Information System (INIS)

    Malhotra, P.K.; Veletsos, A.S.

    1995-12-01

    Ground-mounted vertical storage tanks are important components of nuclear plant safety systems. A systematic study is made of the principal effects of base uplifting on the seismic response of laterally excited, unanchored and partially anchored cylindrical liquid-storage tanks. The study consists of two parts: the first deals with the static uplifting resistance of the flexible base plate, and the second deals with the dynamic response of the uplifting system. An insight into the behavior of the uplifting base plate is first gained with the help of a prismatic beam solution. In Section 2, the solution is implemented exactly, whereas in Section 3 it is implemented approximately by use of the Ritz energy procedure. Solutions are next presented for axisymmetrically and asymmetrically uplifted base plate of tanks, in Section 4. For the axisymmetric case the solution is implemented exactly, as well as approximately by modeling the plate by a series of semiinfinite prismatic beams. The accuracy of the latter approach is confirmed by comparing its predictions with those of the former. In Section 5, a highly efficient and rational method is presented for the dynamic response analysis of uplifting tanks. Both unanchored tanks and partially anchored tanks, for which the number of anchor bolts at the base is insufficient to ensure full fixity, are considered. It is shown that base uplifting may reduce significantly the hydrodynamic pressures, but these reductions may be associated with increased axial compressive stresses in the tank wall and large plastic rotations at the plate-shell junction. For partially anchored tanks, energy loss due to bolt yielding is found to be small

  3. HANFORD DOUBLE SHELL TANK (DST) THERMAL & SEISMIC PROJECT BUCKLING EVALUATION METHODS & RESULTS FOR THE PRIMARY TANKS

    Energy Technology Data Exchange (ETDEWEB)

    MACKEY TC; JOHNSON KI; DEIBLER JE; PILLI SP; RINKER MW; KARRI NK

    2007-02-14

    This report documents a detailed buckling evaluation of the primary tanks in the Hanford double-shell waste tanks (DSTs), which is part of a comprehensive structural review for the Double-Shell Tank Integrity Project. This work also provides information on tank integrity that specifically responds to concerns raised by the Office of Environment, Safety, and Health (ES&H) Oversight (EH-22) during a review of work performed on the double-shell tank farms and the operation of the aging waste facility (AWF) primary tank ventilation system. The current buckling review focuses on the following tasks: (1) Evaluate the potential for progressive I-bolt failure and the appropriateness of the safety factors that were used for evaluating local and global buckling. The analysis will specifically answer the following questions: (a) Can the EH-22 scenario develop if the vacuum is limited to -6.6-inch water gage (w.g.) by a relief valve? (b) What is the appropriate factor of safety required to protect against buckling if the EH-22 scenario can develop? (c) What is the appropriate factor of safety required to protect against buckling if the EH-22 scenario cannot develop? (2) Develop influence functions to estimate the axial stresses in the primary tanks for all reasonable combinations of tank loads, based on detailed finite element analysis. The analysis must account for the variation in design details and operating conditions between the different DSTs. The analysis must also address the imperfection sensitivity of the primary tank to buckling. (3) Perform a detailed buckling analysis to determine the maximum allowable differential pressure for each of the DST primary tanks at the current specified limits on waste temperature, height, and specific gravity. Based on the I-bolt loads analysis and the small deformations that are predicted at the unfactored limits on vacuum and axial loads, it is very unlikely that the EH-22 scenario (i.e., progressive I-bolt failure leading to global

  4. Control of stress corrosion cracking in storage tanks containing radioactive waste

    International Nuclear Information System (INIS)

    Ondrejcin, R.S.; Rideout, S.P.; Donovan, J.A.

    1978-01-01

    Stress corrosion of carbon steel storage tanks containing alkaline nitrate radioactive waste, at the Savannah River Plant is controlled by specification of limits on waste composition and temperature. Cases of cracking have been observed in the primary steel shell of tanks designed and built before 1960 that were attributed to a combination of high residual stresses from fabrication welding and aggressiveness of fresh wastes from the reactor fuel reprocessing plants. The fresh wastes have the highest concentration of nitrate, which has been shown to be the cracking agent. Also as the waste solutions age and are reduced in volume by evaporation of water, nitrite and hydroxide ions become more concentrated and inhibit stress corrosion. Thus, by providing a heel of aged evaporated waste in tanks that receive fresh waste, concentrations of the inhibitor ions are maintained within specified ranges to protect against nitrate cracking. Tanks designed and built since 1960 have been made of steels with greater resistance to stress corrosion; these tanks have also been heat treated after fabrication to relieve residual stresses from construction operations. Temperature limits are also specified to protect against stress corrosion at elevated temperatures

  5. Compartmentalized storage tank for electrochemical cell system

    Science.gov (United States)

    Piecuch, Benjamin Michael (Inventor); Dalton, Luke Thomas (Inventor)

    2010-01-01

    A compartmentalized storage tank is disclosed. The compartmentalized storage tank includes a housing, a first fluid storage section disposed within the housing, a second fluid storage section disposed within the housing, the first and second fluid storage sections being separated by a movable divider, and a constant force spring. The constant force spring is disposed between the housing and the movable divider to exert a constant force on the movable divider to cause a pressure P1 in the first fluid storage section to be greater than a pressure P2 in the second fluid storage section, thereby defining a pressure differential.

  6. Glass Bubbles Insulation for Liquid Hydrogen Storage Tanks

    Science.gov (United States)

    Sass, J. P.; SaintCyr, W. W.; Barrett, T. M.; Baumgartner, R. G.; Lott, J. W.; Fesmire, J. E.

    2009-01-01

    A full-scale field application of glass bubbles insulation has been demonstrated in a 218,000 L liquid hydrogen storage tank. This work is the evolution of extensive materials testing, laboratory scale testing, and system studies leading to the use of glass bubbles insulation as a cost efficient and high performance alternative in cryogenic storage tanks of any size. The tank utilized is part of a rocket propulsion test complex at the NASA Stennis Space Center and is a 1960's vintage spherical double wall tank with an evacuated annulus. The original perlite that was removed from the annulus was in pristine condition and showed no signs of deterioration or compaction. Test results show a significant reduction in liquid hydrogen boiloff when compared to recent baseline data prior to removal of the perlite insulation. The data also validates the previous laboratory scale testing (1000 L) and full-scale numerical modeling (3,200,000 L) of boiloff in spherical cryogenic storage tanks. The performance of the tank will continue to be monitored during operation of the tank over the coming years. KEYWORDS: Glass bubble, perlite, insulation, liquid hydrogen, storage tank.

  7. 49 CFR 193.2181 - Impoundment capacity: LNG storage tanks.

    Science.gov (United States)

    2010-10-01

    ... LIQUEFIED NATURAL GAS FACILITIES: FEDERAL SAFETY STANDARDS Design Impoundment Design and Capacity § 193.2181 Impoundment capacity: LNG storage tanks. Each impounding system serving an LNG storage tank must have a... 49 Transportation 3 2010-10-01 2010-10-01 false Impoundment capacity: LNG storage tanks. 193.2181...

  8. Safety evaluation for packaging transportation of equipment for tank 241-C-106 waste sluicing system

    International Nuclear Information System (INIS)

    Calmus, D.B.

    1994-01-01

    A Waste Sluicing System (WSS) is scheduled for installation in nd waste storage tank 241-C-106 (106-C). The WSS will transfer high rating sludge from single shell tank 106-C to double shell waste tank 241-AY-102 (102-AY). Prior to installation of the WSS, a heel pump and a transfer pump will be removed from tank 106-C and an agitator pump will be removed from tank 102-AY. Special flexible receivers will be used to contain the pumps during removal from the tanks. After equipment removal, the flexible receivers will be placed in separate containers (packagings). The packaging and contents (packages) will be transferred from the Tank Farms to the Central Waste Complex (CWC) for interim storage and then to T Plant for evaluation and processing for final disposition. Two sizes of packagings will be provided for transferring the equipment from the Tank Farms to the interim storage facility. The packagings will be designated as the WSSP-1 and WSSP-2 packagings throughout the remainder of this Safety Evaluation for Packaging (SEP). The WSSP-1 packagings will transport the heel and transfer pumps from 106-C and the WSSP-2 packaging will transport the agitator pump from 102-AY. The WSSP-1 and WSSP-2 packagings are similar except for the length

  9. The Sort on Radioactive Waste Type model: A method to sort single-shell tanks into characteristic groups

    International Nuclear Information System (INIS)

    Hill, J.G.; Simpson, B.C.

    1994-04-01

    The Sort on Radioactive Waste Type (SORWT) model presents a method to categorize Hanford Site single-shell tanks (SSTs) into groups of tank expected to exhibit similar chemical and physical characteristics based on their major waste types and processing histories. This model has identified 29 different waste-type groups encompassing 135 of the 149 SSTs and 93% of the total waste volume in SSTs. The remaining 14 SSTs and associated wastes could not be grouped according to the established criteria and were placed in an ungrouped category. This letter report will detail the assumptions and methodologies used to develop the SORWT model and present the grouping results. In the near future, the validity of the predicted groups will be statistically tested using analysis of variance of characterization data obtained from recent (post-1989) core sampling and analysis activities. In addition, the SORWT model will be used to project the nominal waste characteristics of entire waste type groups that have some recent characterization data available. These subsequent activities will be documented along with these initial results in a comprehensive, formal PNL report cleared for public release by September 1994

  10. Underground Storage Tanks in Iowa

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — Underground storage tank (UST) sites which store petroleum in Iowa. Includes sites which have been reported to DNR, and have active or removed underground storage...

  11. 241-AY Double Shell Tanks (DST) Integrity Assessment Report

    Energy Technology Data Exchange (ETDEWEB)

    JENSEN, C.E.

    1999-09-21

    This report presents the results of the integrity assessment of the 241-AY double-shell tank farm facility located in the 200 East Area of the Hanford Site. The assessment included the design evaluation and integrity examinations of the tanks and concluded that the facility is adequately designed, is compatible with the waste, and is fit for use. Recommendations including subsequent examinations. are made to ensure the continued safe operation of the tanks.

  12. 241-AN Double Shell Tanks (DST) Integrity Assessment Report

    International Nuclear Information System (INIS)

    JENSEN, C.E.

    1999-01-01

    This report presents the results of the integrity assessment of the 241-AN double-shell tank farm facility located in the 200 East Area of the Hanford Site. The assessment included the design evaluation and integrity examinations of the tanks and concluded that the facility is adequately designed, is compatible with the waste, and is fit for use. Recommendations including subsequent examinations, are made to ensure the continued safe operation of the tanks

  13. 241-AY Double Shell Tanks (DST) Integrity Assessment Report

    International Nuclear Information System (INIS)

    JENSEN, C.E.

    1999-01-01

    This report presents the results of the integrity assessment of the 241-AY double-shell tank farm facility located in the 200 East Area of the Hanford Site. The assessment included the design evaluation and integrity examinations of the tanks and concluded that the facility is adequately designed, is compatible with the waste, and is fit for use. Recommendations including subsequent examinations, are made to ensure the continued safe operation of the tanks

  14. 241-SY Double Shell Tanks (DST) Integrity Assessment Report

    International Nuclear Information System (INIS)

    JENSEN, C.E.

    1999-01-01

    This report presents the results of the integrity assessment of the 241-SY double-shell tank farm facility located in the 200 West Area of the Hanford Site. The assessment included the design evaluation and integrity examinations of the tanks and concluded that the facility is adequately designed, is compatible with the waste, and is fit for use. Recommendations including subsequent examinations, are made to ensure the continued safe operation of the tanks

  15. 241-AZ Double-Shell Tanks (DST) Integrity Assessment Report

    International Nuclear Information System (INIS)

    JENSEN, C.E.

    1999-01-01

    This report presents the results of the integrity assessment of the 241-A2 double-shell tank farm facility located in the 200 East Area of the Hanford Site. The assessment included the design evaluation and integrity examinations of the tanks and concluded that the facility is adequately designed, is compatible with the waste, and is fit for use. Recommendations including subsequent examinations, are made to ensure the continued safe operation of the tanks

  16. 241-AW Double Shell Tanks (DST) Integrity Assessment Report

    International Nuclear Information System (INIS)

    JENSEN, C.E.

    1999-01-01

    This report presents the results of the integrity assessment of the 241-AW double-shell tank farm facility located in the 200 East Area of the Hanford Site. The assessment included the design evaluation and integrity examinations of the tanks and concluded that the facility is adequately designed, is compatible with the waste, and is fit for use. Recommendations including subsequent examinations, are made to ensure the continued safe operation of the tanks

  17. Underground or aboveground storage tanks - A critical decision

    International Nuclear Information System (INIS)

    Rizzo, J.A.

    1992-01-01

    With the 1988 promulgation of the comprehensive Resource Conservation and Recovery Act (RCRA) regulations for underground storage of petroleum and hazardous substances, many existing underground storage tank (UST) owners have been considering making the move to aboveground storage. While on the surface, this may appear to be the cure-all to avoiding the underground leakage dilemma, there are many other new and different issues to consider with aboveground storage. The greatest misconception is that by storing materials above ground, there is no risk of subsurface environmental problems. It should be noted that with the aboveground storage tank (AGST) systems, there is still considerable risk of environmental contamination, either by the failure of onground tank bottoms or the spillage of product onto the ground surface where it subsequently finds its way to the ground water. In addition, there are added safety concerns that must be addressed. The greatest interest in AGSTs comes from managers with small volumes of used oil, fresh oil, solvents, chemicals, or heating oil. Dealing with small capacity tanks is not so different than large bulk storage - and, in fact, it lends itself to more options, such as portable storage, tank within tank configurations and inside installations. So what are the other specific areas of concern besides environmental to be addressed when making the decision between underground and aboveground tanks? The primary issues that will be addressed in this presentation are: (1) safety; (2) product losses; (3) cost comparison of USTs vs AGSTs; (4) space availability/accessibility; (5) precipitation handling; (6) aesthetics and security; (7) pending and existing regulations

  18. Double-shell tank system dangerous waste permit application

    International Nuclear Information System (INIS)

    1991-06-01

    This appendix contains the engineering design drawings for the double-shell tank system. Included are drawings of the electrical systems, structural members, piping systems, instrumentation and the many auxiliary systems. (JL)

  19. Tank characterization report for single-shell tank 241-U-110. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Brown, T.M.; Jensen, L.

    1993-09-01

    Tank 241-U-110 (U-110) is a Hanford Site waste tank that was ;most recently sampled in November and December 1989. Analysis of the samples obtained from tank U-110 was conducted to support the characterization of the contents of this tank and to support Hanford Federal Facility Agreement and Consent Order milestone M-10-00 (Ecology, et al. 1992). Because of incomplete recovery of the waste during sampling, there may be bias in the results of this characterization report.

  20. Mixer pump test plan for double shell tank AZ-101

    International Nuclear Information System (INIS)

    STAEHR, T.W.

    1999-01-01

    Mixer pump systems have been chosen as the method for retrieval of tank wastes contained in double shell tanks at Hanford. This document describes the plan for testing and demonstrating the ability of two 300 hp mixer pumps to mobilize waste in tank AZ-101. The mixer pumps, equipment and instrumentation to monitor the test were installed by Project W-151

  1. Final results of double-shell tank 241-AN-105 ultrasonic inspection

    International Nuclear Information System (INIS)

    JENSEN, C.E.

    1999-01-01

    This document presents the results and documentation of the nondestructive ultrasonic examination of tank 241-AN-105. A tank inspection supplier was retained to provide and use an ultrasonic examination system (equipment, procedures, and inspectors) to scan a limited area of double-shell tank 241-AN-105 primary tank wall primary knuckle, and secondary tank bottom. The inspection found some indication of general and local wall thinning with no cracks detected

  2. Ferrocyanide tank waste stability

    International Nuclear Information System (INIS)

    Fowler, K.D.

    1993-01-01

    Ferrocyanide wastes were generated at the Hanford Site during the mid to late 1950s as a result of efforts to create more tank space for the storage of high-level nuclear waste. The ferrocyanide process was developed to remove 137 CS from existing waste and newly generated waste that resulted from the recovery of valuable uranium in Hanford Site waste tanks. During the course of research associated with the ferrocyanide process, it was recognized that ferrocyanide materials, when mixed with sodium nitrate and/or sodium nitrite, were capable of violent exothermic reaction. This chemical reactivity became an issue in the 1980s, when safety issues associated with the storage of ferrocyanide wastes in Hanford Site tanks became prominent. These safety issues heightened in the late 1980s and led to the current scrutiny of the safety issues associated with these wastes, as well as current research and waste management programs. Testing to provide information on the nature of possible tank reactions is ongoing. This document supplements the information presented in Summary of Single-Shell Tank Waste Stability, WHC-EP-0347, March 1991 (Borsheim and Kirch 1991), which evaluated several issues. This supplement only considers information particular to ferrocyanide wastes

  3. Heat transfer analyses for grout disposal of radioactive double-shell slurry and customer wastes

    International Nuclear Information System (INIS)

    Robinson, S.M.; Gilliam, T.M.; McDaniel, E.W.

    1987-04-01

    Grout immobilization is being considered by Rockwell Hanford Operations (Rockwell Hanford) as a permanent disposal method for several radioactive waste streams. These include disposal of customer and double-shell slurry wastes in earthen trenches and in single-shell underground waste storage tanks. Heat transfer studies have previously been made to determine the maximum heat loading for grout disposal of various wastes under similar conditions, but a sensitivity analysis of temperature profiles to input parameters was needed. This document presents the results of heat transfer calculations for trenches containing grouted customer and double-shell slurry wastes and for in situ disposal of double-shell wastes in single-shell, domed concrete storage tanks. It discusses the conditions that lead to maximum grout temperatures of 250 0 F during the curing stage and 350 0 F thereafter and shows the dependence of these temperatures on input parameters such as soil and grout thermal conductivity, grout specific heat, waste loading, and disposal geometries. Transient heat transfer calculations were made using the HEATING6 computer code to predict temperature profiles in solidified low-level radioactive waste disposal scenarios at the Rockwell Hanford site. The calculations provide guidance for the development of safe, environmentally acceptable grout formulas for the Transportable Grout Facility. 11 refs

  4. Tank waste remediation system integrated technology plan. Revision 2

    International Nuclear Information System (INIS)

    Eaton, B.; Ignatov, A.; Johnson, S.; Mann, M.; Morasch, L.; Ortiz, S.; Novak, P.

    1995-01-01

    The Hanford Site, located in southeastern Washington State, is operated by the US Department of Energy (DOE) and its contractors. Starting in 1943, Hanford supported fabrication of reactor fuel elements, operation of production reactors, processing of irradiated fuel to separate and extract plutonium and uranium, and preparation of plutonium metal. Processes used to recover plutonium and uranium from irradiated fuel and to recover radionuclides from tank waste, plus miscellaneous sources resulted in the legacy of approximately 227,000 m 3 (60 million gallons) of high-level radioactive waste, currently in storage. This waste is currently stored in 177 large underground storage tanks, 28 of which have two steel walls and are called double-shell tanks (DSTs) an 149 of which are called single-shell tanks (SSTs). Much of the high-heat-emitting nuclides (strontium-90 and cesium-137) has been extracted from the tank waste, converted to solid, and placed in capsules, most of which are stored onsite in water-filled basins. DOE established the Tank Waste Remediation System (TWRS) program in 1991. The TWRS program mission is to store, treat, immobilize and dispose, or prepare for disposal, the Hanford tank waste in an environmentally sound, safe, and cost-effective manner. Technology will need to be developed or improved to meet the TWRS program mission. The Integrated Technology Plan (ITP) is the high-level consensus plan that documents all TWRS technology activities for the life of the program

  5. Tank waste remediation system integrated technology plan. Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    Eaton, B.; Ignatov, A.; Johnson, S.; Mann, M.; Morasch, L.; Ortiz, S.; Novak, P. [eds.] [Pacific Northwest Lab., Richland, WA (United States)

    1995-02-28

    The Hanford Site, located in southeastern Washington State, is operated by the US Department of Energy (DOE) and its contractors. Starting in 1943, Hanford supported fabrication of reactor fuel elements, operation of production reactors, processing of irradiated fuel to separate and extract plutonium and uranium, and preparation of plutonium metal. Processes used to recover plutonium and uranium from irradiated fuel and to recover radionuclides from tank waste, plus miscellaneous sources resulted in the legacy of approximately 227,000 m{sup 3} (60 million gallons) of high-level radioactive waste, currently in storage. This waste is currently stored in 177 large underground storage tanks, 28 of which have two steel walls and are called double-shell tanks (DSTs) an 149 of which are called single-shell tanks (SSTs). Much of the high-heat-emitting nuclides (strontium-90 and cesium-137) has been extracted from the tank waste, converted to solid, and placed in capsules, most of which are stored onsite in water-filled basins. DOE established the Tank Waste Remediation System (TWRS) program in 1991. The TWRS program mission is to store, treat, immobilize and dispose, or prepare for disposal, the Hanford tank waste in an environmentally sound, safe, and cost-effective manner. Technology will need to be developed or improved to meet the TWRS program mission. The Integrated Technology Plan (ITP) is the high-level consensus plan that documents all TWRS technology activities for the life of the program.

  6. Acceptance criteria for non-destructive examination of double-shell tanks

    International Nuclear Information System (INIS)

    Jensen, C.E.

    1995-09-01

    This supporting document provides requirements for acceptance of relevant indications found during non-destructive examination of double-shell tanks (DSTs) at Hanford 200 areas. Requirements for evaluation of relevant indications are provided to determine acceptability of continued safe operation of the DSTs. Areas of the DSTs considered include the tank wall vapor space, liquid-vapor interface, wetted tank wall, sludge-liquid interface, and the knuckle region

  7. Final results of double-shell tank 241-AZ-101 ultrasonic inspection

    International Nuclear Information System (INIS)

    JENSEN, C.E.

    1999-01-01

    This document presents the results and documentation of the nondestructive ultrasonic examination of tank 241-AZ-101. A tank inspection supplier was retained to provide and use an ultrasonic examination system (equipment, procedures, and inspectors) to scan a limited area of double-shell tank 241-AZ-101 primary tank wall and welds. The inspection found one reportable indication of thinning and no reportable pitting, corrosion, or cracking

  8. Double-Shell Tank (DST) Utilities Specification

    International Nuclear Information System (INIS)

    SUSIENE, W.T.

    2000-01-01

    This specification establishes the performance requirements and provides the references to the requisite codes and standards to he applied during the design of the Double-Shell Tank (DST) Utilities Subsystems that support the first phase of waste feed delivery (WFD). The DST Utilities Subsystems provide electrical power, raw/potable water, and service/instrument air to the equipment and structures used to transfer low-activity waste (LAW) and high-level waste (HLW) to designated DST staging tanks. The DST Utilities Subsystems also support the equipment and structures used to deliver blended LAW and HLW feed from these staging tanks to the River Protection Project (RPP) Privatization Contractor facility where the waste will be immobilized. This specification is intended to be the basis for new projects/installations. This specification is not intended to retroactively affect previously established project design criteria without specific direction by the program

  9. Mobile storage tank-facility made of Polyethylene for evaporator concentrates

    Energy Technology Data Exchange (ETDEWEB)

    Koischwitz, Ingmar [Gesellschaft fuer Nuklear-Service mbH, 45127 Essen (Germany); Dinter, Andreas [E.ON Kernkraft GmbH, Kernkraftwerk Stade, 21657 Stade (Germany)

    2008-07-01

    In Nuclear Power Plants (NPP) there is the need to store any kind of liquid waste such as contaminated evaporator concentrates. NPPs which are in the decommissioning phase had to dismantle their installed storage tanks sometimes at an earlier step than the waste treatment facilities (evaporator). For that reason, GNS has developed a new mobile storage tank-facility (MOTA) for buffer storage of evaporator concentrates by using a capacity of 10 m{sup 3} in total, equally distributed into four storage tanks with a capacity of max 3 m{sup 3} for each. With this modular design it is even easier to install storage tanks in any location in any NPP in Germany. The design of the mobile storage tank-facility will be described under chemical engineering aspects as well as the results from the first experiences during the cold test at the end of the construction phase. GNS applied for a license to use and install the mobile storage tank-facility in nuclear installations and NPPs in Germany in accordance with chap. 7 of the Radioprotection Provision (Strahlenschutzverordnung) in Germany. GNS gets this license in February 2008 and will put the mobile storage tank system into operation in the first quarter of 2008 in Stade NPP. (authors)

  10. Mobile storage tank-facility made of Polyethylene for evaporator concentrates

    International Nuclear Information System (INIS)

    Koischwitz, Ingmar; Dinter, Andreas

    2008-01-01

    In Nuclear Power Plants (NPP) there is the need to store any kind of liquid waste such as contaminated evaporator concentrates. NPPs which are in the decommissioning phase had to dismantle their installed storage tanks sometimes at an earlier step than the waste treatment facilities (evaporator). For that reason, GNS has developed a new mobile storage tank-facility (MOTA) for buffer storage of evaporator concentrates by using a capacity of 10 m 3 in total, equally distributed into four storage tanks with a capacity of max 3 m 3 for each. With this modular design it is even easier to install storage tanks in any location in any NPP in Germany. The design of the mobile storage tank-facility will be described under chemical engineering aspects as well as the results from the first experiences during the cold test at the end of the construction phase. GNS applied for a license to use and install the mobile storage tank-facility in nuclear installations and NPPs in Germany in accordance with chap. 7 of the Radioprotection Provision (Strahlenschutzverordnung) in Germany. GNS gets this license in February 2008 and will put the mobile storage tank system into operation in the first quarter of 2008 in Stade NPP. (authors)

  11. Final results of double-shell tank 241-AY-102 ultrasonic inspection

    International Nuclear Information System (INIS)

    JENSEN, C.E.

    1999-01-01

    This document presents the results and documentation of the nondestructive ultrasonic examination of tank 241-AY-102. A tank inspection supplier was retained to provide and use an ultrasonic examination system (equipment, procedures, and inspectors) to scan a limited area of double-shell tank 241-AY-102 primary tank wall and welds. The inspection found some indication of insignificant general and local wall thinning with no cracks detected

  12. Multi-Function Waste Tank Facility phase out basis. Revision 2

    International Nuclear Information System (INIS)

    Awadalla, N.G.

    1995-01-01

    Additional double-shell tank storage capacity is not needed until FY 2004 or later. The waste volume in the current baseline program can be managed within the existing tank capacity. However, this requires implementation of some risk management actions and significant investment in software and hardware to accomplish the actions necessary to maximize use of existing storage tank space

  13. Multi-Function Waste Tank Facility phase out basis. Revision 1

    International Nuclear Information System (INIS)

    Awadalla, N.G.

    1995-01-01

    Additional double-shell tank storage capacity is not needed until FY 2004 or later. The waste volume in the current baseline program can be managed within the existing tank capacity. However, this requires implementation of some risk management actions and significant investment in software and hardware to accomplish the actions necessary to maximize use of existing storage tank space.''

  14. Double Shell Tank (DST) Transfer Piping Subsystem Specification

    International Nuclear Information System (INIS)

    GRAVES, C.E.

    2000-01-01

    This specification establishes the performance requirements and provides references to the requisite codes and standards to be applied during design of the Double-Shell Tank (DST) Transfer Piping Subsystem that supports the first phase of Waste Feed Delivery. This specification establishes the performance requirements and provides references to the requisite codes and standards to be applied during design of the Double-Shell Tank (DST) Transfer Piping Subsystem that supports the first phase of waste feed delivery. This subsystem transfers waste between transfer-associated structures (pits) and to the River Protection Project (RPP) Privatization Contractor Facility where it will be processed into an immobilized waste form. This specification is intended to be the basis for new projects/installations (W-521, etc.). This specification is not intended to retroactively affect previously established project design criteria without specific direction by the program

  15. Data Observations on Double Shell Tank (DST) Flammable Gas Watch List Tank Behavior

    Energy Technology Data Exchange (ETDEWEB)

    HEDENGREN, D.C.

    2000-09-28

    This report provides the data from the retained gas sampler, void fraction instrument, ball rheometer, standard hydrogen monitoring system, and other tank data pertinent to gas retention and release behavior in the waste stored in double-shelled Flammable Gas Watch List tanks at Hanford. These include tanks 241-AN-103,241-AN-104, 241-AN-105, 241-AW-101, 241-SY-101, and 241-SY-103. The tanks and the waste they contain are described in terms of fill history and chemistry. The results of mixer pump operation and recent waste transfers and back-dilution in SY-101 are also described. In-situ measurement and monitoring systems are described and the data are summarized under the categories of thermal behavior, waste configuration and properties, gas generation and composition, gas retention and historical gas release behavior.

  16. Performance of a solid oxide fuel cell CHP system coupled with a hot water storage tank for single household

    DEFF Research Database (Denmark)

    Liso, Vincenzo; Zhao, Yingru; Yang, Wenyuan

    2014-01-01

    In this paper a solid oxide fuel cell (SOFC) system for cogeneration of heat and power integrated with a stratified heat storage tank is studied. Thermal stratification in the tank increases the heat recovery performance as it allows existence of a temperature gradient with the benefit of deliver......In this paper a solid oxide fuel cell (SOFC) system for cogeneration of heat and power integrated with a stratified heat storage tank is studied. Thermal stratification in the tank increases the heat recovery performance as it allows existence of a temperature gradient with the benefit...... of delivering hot water for the household and returning the coldest fluid back to SOFC heat recovery heat-exchanger. A model of the SOFC system is developed to determine the energy required to meet the hourly average electric load of the residence. The model evaluates the amount of heat generated and the amount...... of heat used for thermal loads of the residence. Two fuels are considered, namely syngas and natural gas. The tank model considers the temperature gradients over the tank height. The results of the numerical simulation is used to size the SOFC system and storage heat tank to provide energy for a small...

  17. Statistical characterization report for Single-Shell Tank 241-T-107

    International Nuclear Information System (INIS)

    Cromar, R.D.; Wilmarth, S.R.; Jensen, L.

    1994-01-01

    This report contains the results of the statistical analysis of data from three core samples obtained from single-shell tank 241-T-107 (T-107). Four specific topics are addressed. They are summarized below. Section 3.0 contains mean concentration estimates of analytes found in T-107. The estimates of open-quotes errorclose quotes associated with the concentration estimates are given as 95% confidence intervals (CI) on the mean. The results given are based on three types of samples: core composite samples, core segment samples, and drainable liquid samples. Section 4.0 contains estimates of the spatial variability (variability between cores and between segments) and the analytical variability (variability between the primary and the duplicate analysis). Statistical tests were performed to test the hypothesis that the between cores and the between segments spatial variability is zero. The results of the tests are as follows. Based on the core composite data, the between cores variance is significantly different from zero for 35 out of 74 analytes; i.e., for 53% of the analytes there is no statistically significant difference between the concentration means for two cores. Based on core segment data, the between segments variance is significantly different from zero for 22 out of 24 analytes and the between cores variance is significantly different from zero for 4 out of 24 analytes; i.e., for 8% of the analytes there is no statistically significant difference between segment means and for 83% of the analytes there is no difference between the means from the three cores. Section 5.0 contains the results of the application of multiple comparison methods to the core composite data, the core segment data, and the drainable liquid data. Section 6.0 contains the results of a statistical test conducted to determine the 222-S Analytical Laboratory's ability to homogenize solid core segments

  18. Material Balance Assessment for Double-Shell Tank Waste Pipeline Transfer

    International Nuclear Information System (INIS)

    Onishi, Yasuo; Wells, Beric E; Hartley, Stacey A; Enderlin, Carl W

    2001-01-01

    PNNL developed a material balance assessment methodology based on conservation of mass for detecting leaks and mis-routings in pipeline transfer of double-shell tank waste at Hanford. The main factors causing uncertainty in these transfers are variable property and tank conditions of density, existence of crust, and surface disturbance due to mixer pump operation during the waste transfer. The methodology was applied to three waste transfers from Tanks AN-105 and AZ-102

  19. Double-shell tank ultrasonic inspection plan. Revision 1

    International Nuclear Information System (INIS)

    Pfluger, D.C.

    1994-01-01

    The waste tank systems managed by the Tank Waste Remediation System Division of Westinghouse Hanford Company includes 28 large underground double-shell tanks (DST) used for storing hazardous radioactive waste. The ultrasonic (UT) inspection of these tanks is part of their required integrity assessment (WAC 1993) as described in the tank systems integrity assessment program plan (IAPP) (Pfluger 1994a) submitted to the Ecology Department of the State of Washington. Because these tanks hold radioactive waste and are located underground examinations and inspections must be done remotely from the tank annuli with specially designed equipment. This document describes the UT inspection system (DSTI system), the qualification of the equipment and procedures, field inspection readiness, DST inspections, and post-inspection activities. Although some of the equipment required development, the UT inspection technology itself is the commercially proven and available projection image scanning technique (P-scan). The final design verification of the DSTI system will be a performance test in the Hanford DST annulus mockup that includes the demonstration of detecting and sizing corrosion-induced flaws

  20. HANFORD DOUBLE SHELL TANK THERMAL AND SEISMIC PROJECT SEISMIC ANALYSIS OF HANFORD DOUBLE SHELL TANKS

    Energy Technology Data Exchange (ETDEWEB)

    MACKEY TC; RINKER MW; CARPENTER BG; HENDRIX C; ABATT FG

    2009-01-15

    M&D Professional Services, Inc. (M&D) is under subcontract to Pacific Northwest National Laboratories (PNNL) to perform seismic analysis of the Hanford Site Double-Shell Tanks (DSTs) in support of a project entitled Double-Shell Tank (DST) Integrity Project - DST Thermal and Seismic Analyses. The original scope of the project was to complete an up-to-date comprehensive analysis of record of the DST System at Hanford in support of Tri-Party Agreement Milestone M-48-14. The work described herein was performed in support of the seismic analysis of the DSTs. The thermal and operating loads analysis of the DSTs is documented in Rinker et al. (2004). Although Milestone M-48-14 has been met, Revision I is being issued to address external review comments with emphasis on changes in the modeling of anchor bolts connecting the concrete dome and the steel primary tank. The work statement provided to M&D (PNNL 2003) required that a nonlinear soil structure interaction (SSI) analysis be performed on the DSTs. The analysis is required to include the effects of sliding interfaces and fluid sloshing (fluid-structure interaction). SSI analysis has traditionally been treated by frequency domain computer codes such as SHAKE (Schnabel, et al. 1972) and SASSI (Lysmer et al. 1999a). Such frequency domain programs are limited to the analysis of linear systems. Because of the contact surfaces, the response of the DSTs to a seismic event is inherently nonlinear and consequently outside the range of applicability of the linear frequency domain programs. That is, the nonlinear response of the DSTs to seismic excitation requires the use of a time domain code. The capabilities and limitations of the commercial time domain codes ANSYS{reg_sign} and MSC Dytran{reg_sign} for performing seismic SSI analysis of the DSTs and the methodology required to perform the detailed seismic analysis of the DSTs has been addressed in Rinker et al (2006a). On the basis of the results reported in Rinker et al

  1. HANFORD DOUBLE-SHELL TANK (DST) THERMAL and SEISMIC PROJECT-BUCKLING EVALUATION METHODS and RESULTS FOR THE PRIMARY TANKS

    International Nuclear Information System (INIS)

    Mackey, T.C.; Johnson, K.I.; Deibler, J.E.; Pilli, S.P.; Rinker, M.W.; Karri, N.K.

    2007-01-01

    This report documents a detailed buckling evaluation of the primary tanks in the Hanford double-shell waste tanks (DSTs), which is part of a comprehensive structural review for the Double-Shell Tank Integrity Project. This work also provides information on tank integrity that specifically responds to concerns raised by the Office of Environment, Safety, and Health (ES and H) Oversight (EH-22) during a review of work performed on the double-shell tank farms and the operation of the aging waste facility (AWF) primary tank ventilation system. The current buckling review focuses on the following tasks: (1) Evaluate the potential for progressive I-bolt failure and the appropriateness of the safety factors that were used for evaluating local and global buckling. The analysis will specifically answer the following questions: (a) Can the EH-22 scenario develop if the vacuum is limited to -6.6-inch water gage (w.g.) by a relief valve? (b) What is the appropriate factor of safety required to protect against buckling if the EH-22 scenario can develop? (c) What is the appropriate factor of safety required to protect against buckling if the EH-22 scenario cannot develop? (2) Develop influence functions to estimate the axial stresses in the primary tanks for all reasonable combinations of tank loads, based on detailed finite element analysis. The analysis must account for the variation in design details and operating conditions between the different DSTs. The analysis must also address the imperfection sensitivity of the primary tank to buckling. (3) Perform a detailed buckling analysis to determine the maximum allowable differential pressure for each of the DST primary tanks at the current specified limits on waste temperature, height, and specific gravity. Based on the I-bolt loads analysis and the small deformations that are predicted at the unfactored limits on vacuum and axial loads, it is very unlikely that the EH-22 scenario (i.e., progressive I-bolt failure leading to

  2. HANFORD DOUBLE SHELL TANK (DST) THERMAL & SEISMIC PROJECT SUMMARY OF COMBINED THERMAL & OPERATING LOADS

    Energy Technology Data Exchange (ETDEWEB)

    MACKEY, T.C.

    2006-03-17

    This report summarizes the results of the Double-Shell Tank Thermal and Operating Loads Analysis (TOLA) combined with the Seismic Analysis. This combined analysis provides a thorough, defensible, and documented analysis that will become a part of the overall analysis of record for the Hanford double-shell tanks (DSTs).

  3. 49 CFR 193.2623 - Inspecting LNG storage tanks.

    Science.gov (United States)

    2010-10-01

    ... MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY LIQUEFIED NATURAL GAS FACILITIES: FEDERAL SAFETY STANDARDS Maintenance § 193.2623 Inspecting LNG storage tanks. Each LNG... 49 Transportation 3 2010-10-01 2010-10-01 false Inspecting LNG storage tanks. 193.2623 Section 193...

  4. Polymeric hydrogen diffusion barrier, high-pressure storage tank so equipped, method of fabricating a storage tank and method of preventing hydrogen diffusion

    Science.gov (United States)

    Lessing, Paul A [Idaho Falls, ID

    2008-07-22

    An electrochemically active hydrogen diffusion barrier which comprises an anode layer, a cathode layer, and an intermediate electrolyte layer, which is conductive to protons and substantially impermeable to hydrogen. A catalytic metal present in or adjacent to the anode layer catalyzes an electrochemical reaction that converts any hydrogen that diffuses through the electrolyte layer to protons and electrons. The protons and electrons are transported to the cathode layer and reacted to form hydrogen. The hydrogen diffusion barrier is applied to a polymeric substrate used in a storage tank to store hydrogen under high pressure. A storage tank equipped with the electrochemically active hydrogen diffusion barrier, a method of fabricating the storage tank, and a method of preventing hydrogen from diffusing out of a storage tank are also disclosed.

  5. HANFORD DOUBLE SHELL TANK THERMAL AND SEISMIC PROJECT BUCKLING EVALUATION METHODS AND RESULTS FOR THE PRIMARY TANKS

    Energy Technology Data Exchange (ETDEWEB)

    MACKEY TC; JOHNSON KI; DEIBLER JE; PILLI SP; RINKER MW; KARRI NK

    2009-01-14

    This report documents a detailed buckling evaluation of the primary tanks in the Hanford double-shell waste tanks (DSTs), which is part of a comprehensive structural review for the Double-Shell Tank Integrity Project. This work also provides information on tank integrity that specifically responds to concerns raised by the Office of Environment, Safety, and Health (ES&H) Oversight (EH-22) during a review of work performed on the double-shell tank farms and the operation of the aging waste facility (AWF) primary tank ventilation system. The current buckling review focuses on the following tasks: (1) Evaluate the potential for progressive anchor bolt failure and the appropriateness of the safety factors that were used for evaluating local and global buckling. The analysis will specifically answer the following questions: (a) Can the EH-22 scenario develop if the vacuum is limited to -6.6-inch water gage (w.g.) by a relief valve? (b) What is the appropriate factor of safety required to protect against buckling if the EH-22 scenario can develop? (c) What is the appropriate factor of safety required to protect against buckling if the EH-22 scenario cannot develop? (2) Develop influence functions to estimate the axial stresses in the primary tanks for all reasonable combinations of tank loads based on detailed finite element analysis. The analysis must account for the variation in design details and operating conditions between the different DSTs. The analysis must also address the imperfection sensitivity of the primary tank to buckling. (3) Perform a detailed buckling analysis to determine the maximum allowable differential pressure for each of the DST primary tanks at the current specified limits on waste temperature, height, and specific gravity. Based on the concrete anchor bolt loads analysis and the small deformations that are predicted at the unfactored limits on vacuum and axial loads, it is very unlikely that the EH-22 scenario (i.e., progressive anchor bolt

  6. HANFORD DOUBLE-SHELL TANK THERMAL AND SEISMIC PROJECT-BUCKLING EVALUATION METHODS AND RESULTS FOR THE PRIMARY TANKS

    International Nuclear Information System (INIS)

    Mackey, T.C.; Johnson, K.I.; Deibler, J.E.; Pilli, S.P.; Rinker, M.W.; Karri, N.K.

    2009-01-01

    This report documents a detailed buckling evaluation of the primary tanks in the Hanford double-shell waste tanks (DSTs), which is part of a comprehensive structural review for the Double-Shell Tank Integrity Project. This work also provides information on tank integrity that specifically responds to concerns raised by the Office of Environment, Safety, and Health (ES and H) Oversight (EH-22) during a review of work performed on the double-shell tank farms and the operation of the aging waste facility (AWF) primary tank ventilation system. The current buckling review focuses on the following tasks: (1) Evaluate the potential for progressive anchor bolt failure and the appropriateness of the safety factors that were used for evaluating local and global buckling. The analysis will specifically answer the following questions: (a) Can the EH-22 scenario develop if the vacuum is limited to -6.6-inch water gage (w.g.) by a relief valve? (b) What is the appropriate factor of safety required to protect against buckling if the EH-22 scenario can develop? (c) What is the appropriate factor of safety required to protect against buckling if the EH-22 scenario cannot develop? (2) Develop influence functions to estimate the axial stresses in the primary tanks for all reasonable combinations of tank loads based on detailed finite element analysis. The analysis must account for the variation in design details and operating conditions between the different DSTs. The analysis must also address the imperfection sensitivity of the primary tank to buckling. (3) Perform a detailed buckling analysis to determine the maximum allowable differential pressure for each of the DST primary tanks at the current specified limits on waste temperature, height, and specific gravity. Based on the concrete anchor bolt loads analysis and the small deformations that are predicted at the unfactored limits on vacuum and axial loads, it is very unlikely that the EH-22 scenario (i.e., progressive anchor

  7. Progress in evaluating the hazard of ferrocyanide waste storage tanks

    International Nuclear Information System (INIS)

    Babad, Harry; Cash, Robert J.; Postma, Arlin

    1992-01-01

    There are 177 high-level waste tanks on the Hanford site. Twenty-four single-shell tanks are identified as potential safety issues. These tanks contain quantities of ferrocyanide, nitrate, and nitrite salts that potentially could explode under certain conditions. Efforts were initiated in September 1990 to determine the reactive properties of the ferrocyanide waste and to define the criteria necessary to ensure tank safety until mitigation or remediation actions, if required, could be implemented. This paper describes the results of recent chemical and physical studies on synthetic ferrocyanide waste mixtures. Data obtained from monitoring, tank behavior modeling, and research studies on waste have provided sufficient understanding of the tank behavior. The Waste Tank Safety Program is exploring whether the waste in many of the ferrocyanide tanks actually represents an unreviewed safety question. The General Accounting Office (GAO) in October 1990 suggested that ferrocyanide tank accident scenarios exceed the bounds of the Hanford Environmental Impact Statement. Using the same assumptions Westinghouse Hanford Company (WHC) staff confirmed the consistency of the GAO report calculations. The hypothetical accident scenario in the GAO report, and in the EIS, are based on several assumptions that may, or may not reflect actual tank conditions. The Ferrocyanide Stabilization Program at Westinghouse Hanford (summarized in this paper) will provide updated and new data using scientific research with synthetic wastes and characterization of actual tank samples. This new information will replace the assumptions on tank waste chemical and physical properties allowing an improved recalculation of current safety and future risk associated with these tanks. (author)

  8. Progress in evaluating the hazards of ferrocyanide waste storage tanks

    International Nuclear Information System (INIS)

    Babad, H.; Cash, R.; Postma, A.

    1992-03-01

    There are 177 high-level waste tanks on the Hanford site. Twenty-four single-shell tanks are identified as potential safety issues. These tanks contain quantities of ferrocyanide, nitrate, and nitrite salts that potentially could explode under certain conditions. Efforts were initiated in September 1990 to determine the reactive properties of the ferrocyanide waste and to define the criteria necessary to ensure tank safety until mitigation or remediation actions, if required, could be implemented. This paper describes the results of recent chemical and physical studies on synthetic ferrocyanide waste mixtures. Data obtained from monitoring, tank behavior modeling, and research studies on waste have provided sufficient understanding of the tank behavior. The Waste Tank Safety Program is exploring to determine whether the waste in many of the ferrocyanide tanks actually represents an unreviewed safety question. The General Accounting Office (GAO) in October 1990 (1) suggested that ferrocyanide-tanks accident scenarios exceed the bounds of the Hanford Environmental Impact Statement (2). Using the same assumptions Westinghouse Hanford Company (WHC) staff confirmed the consistency of the GAO report calculations. The hypothetical accident scenario in the GAO report, and in the EIS, are based on several assumptions that may, or may not reflect actual tank conditions. The Ferrocyanide Stabilization Program at Westinghouse Hanford (summarized in this paper) will provide updated and new data using scientific research with synthetic and actual waste tank characterization. This new information will replace the assumptions on tank waste chemical and physical properties allowing an improved recalculation of current safety and future risk associated with these tanks

  9. Performance testing of a system for remote ultrasonic examination of the Hanford double-shell waste storage tanks

    International Nuclear Information System (INIS)

    Pfluger, D.C.; Somers, T.; Berger, A.D.

    1995-02-01

    A mobile robotic inspection system is being developed for remote ultrasonic examination of the double wall waste storage tanks at Hanford. Performance testing of the system includes demonstrating robot mobility within the tank annulus, evaluating the accuracy of the vision based navigation process, and verifying ultrasonic and video system performance. This paper briefly describes the system and presents a summary of the plan for performance testing of the ultrasonic testing system. Performance test results will be presented at the conference

  10. Preliminary recommendations on the design of the characterization program for the Hanford Site single-shell tanks: A system analysis

    International Nuclear Information System (INIS)

    Buck, J.W.; Peffers, M.S.; Hwang, S.T.

    1991-11-01

    The work described in this volume was conducted by Pacific Northwest Laboratory to provide preliminary recommendations on data quality objectives (DQOs) to support the Waste Characterization Plan (WCP) and closure decisions for the Hanford Site single-shell tanks (SSTs). The WCP describes the first of a two-phase characterization program that will obtain information to assess and implement disposal options for SSTs. This work was performed for the Westinghouse Hanford Company (WHC), the current operating contractor on the Hanford Site. The preliminary DQOs contained in this volume deal with the analysis of SST wastes in support of the WCP and final closure decisions. These DQOs include information on significant contributors and detection limit goals (DLGs) for SST analytes based on public health risk

  11. Computer modeling of ORNL storage tank sludge mobilization and mixing

    International Nuclear Information System (INIS)

    Terrones, G.; Eyler, L.L.

    1993-09-01

    This report presents and analyzes the results of the computer modeling of mixing and mobilization of sludge in horizontal, cylindrical storage tanks using submerged liquid jets. The computer modeling uses the TEMPEST computational fluid dynamics computer program. The horizontal, cylindrical storage tank configuration is similar to the Melton Valley Storage Tanks (MVST) at Oak Ridge National (ORNL). The MVST tank contents exhibit non-homogeneous, non-Newtonian rheology characteristics. The eventual goals of the simulations are to determine under what conditions sludge mobilization using submerged liquid jets is feasible in tanks of this configuration, and to estimate mixing times required to approach homogeneity of the contents of the tanks

  12. 40 CFR 52.1931 - Petroleum storage tank controls.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 4 2010-07-01 2010-07-01 false Petroleum storage tank controls. 52... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS (CONTINUED) Oklahoma § 52.1931 Petroleum... plan, the petroleum storage tanks listed in paragraphs (b) through (e) of this section shall be subject...

  13. Design and fabrication of a prototype sensor system for waste storage tank characterization. CRADA final report for CRADA Number ORNL92-0094

    International Nuclear Information System (INIS)

    Burks, B.L.; Wagner, J.

    1994-01-01

    On February 15--16 1994, ORNL and MTI presented a technology demonstration showcasing the results of a CRADA between the two organizations. The CRADA project entailed design and development of a structured light mapping system suitable for deployment in underground waste storage tanks. The CRADA expanded upon a system previously designed and deployed at the DOE Fernald site by ORNL. Enhancements in the new system include: a factor of ten increase in mapping speed; radiation and environmental hardening sufficient for use in the Hanford single-shell tanks (up to 5,000 rad/hr, pH = 12, high heat, etc.); capability to map and display data for both vertical surfaces, such as pipes, and horizontal surfaces; rugged, compact design that can be deployed through a ten centimeter riser; and a design that can be decontaminated easily after deployment

  14. Underground storage tanks containing hazardous chemicals

    International Nuclear Information System (INIS)

    Wise, R.F.; Starr, J.W.; Maresca, J.W. Jr.; Hillger, R.W.; Tafuri, A.N.

    1991-01-01

    The regulations issued by the United States Environmental Protection Agency in 1988 require, with several exceptions, that underground storage tank systems containing petroleum fuels and hazardous chemicals be routinely tested for releases. This paper summarizes the release detection regulations for tank systems containing chemicals and gives a preliminary assessment of the approaches to release detection currently being used. To make this assessment, detailed discussions were conducted with providers and manufacturers of leak detection equipment and testing services, owners or operators of different types of chemical storage tank systems, and state and local regulators. While these discussions were limited to a small percentage of each type of organization, certain observations are sufficiently distinctive and important that they are reported for further investigation and evaluation. To make it clearer why certain approaches are being used, this paper also summarizes the types of chemicals being stored, the effectiveness of several leak detection testing systems, and the number and characteristics of the tank systems being used to store these products

  15. Cathodic Protection Design Algorithms for Refineries Aboveground Storage Tanks

    Directory of Open Access Journals (Sweden)

    Kosay Abdul sattar Majbor

    2017-12-01

    Full Text Available Storage tanks condition and integrity is maintained by joint application of coating and cathodic protection. Iraq southern region rich in oil and petroleum product refineries need and use plenty of aboveground storage tanks. Iraq went through conflicts over the past thirty five years resulting in holding the oil industry infrastructure behind regarding maintenance and modernization. The primary concern in this work is the design and implementation of cathodic protection systems for the aboveground storage tanks farm in the oil industry. Storage tank external base area and tank internal surface area are to be protected against corrosion using impressed current and sacrificial anode cathodic protection systems. Interactive versatile computer programs are developed to provide the necessary system parameters data including the anode requirements, composition, rating, configuration, etc. Microsoft-Excel datasheet and Visual Basic.Net developed software were used throughout the study in the design of both cathodic protection systems. The case study considered in this work is the eleven aboveground storage tanks farm situated in al-Shauiba refinery in southern IRAQ. The designed cathodic protection systems are to be installed and monitored realistically in the near future. Both systems were designed for a life span of (15-30 years, and all their parameters were within the internationally accepted standards.

  16. Underground storage tank program

    International Nuclear Information System (INIS)

    Lewis, M.W.

    1994-01-01

    Underground storage tanks, UST'S, have become a major component of the Louisville District's Environmental Support Program. The District's Geotechnical and Environmental Engineering Branch has spear-headed an innovative effort to streamline the time, effort and expense for removal, replacement, upgrade and associated cleanup of USTs at military and civil work installations. This program, called Yank-A-Tank, creates generic state-wide contracts for removal, remediation, installation and upgrade of storage tanks for which individual delivery orders are written under the basic contract. The idea is to create a ''JOC type'' contract containing all the components of work necessary to remove, reinstall or upgrade an underground or above ground tank. The contract documents contain a set of generic specifications and unit price books in addition to the standard ''boiler plate'' information. Each contract requires conformance to the specific regulations for the state in which it is issued. The contractor's bid consists of a bid factor which in the multiplier used with the prices in the unit price book. The solicitation is issued as a Request for Proposal (RPP) which allows the government to select a contractor based on technical qualification an well as bid factor. Once the basic contract is awarded individual delivery orders addressing specific areas of work are scoped, negotiated and awarded an modifications to the original contract. The delivery orders utilize the prepriced components and the contractor's factor to determine the value of the work

  17. Maximum surface level and temperature histories for Hanford waste tanks

    International Nuclear Information System (INIS)

    Flanagan, B.D.; Ha, N.D.; Huisingh, J.S.

    1994-01-01

    Radioactive defense waste resulting from the chemical processing of spent nuclear fuel has been accumulating at the Hanford Site since 1944. This waste is stored in underground waste-storage tanks. The Hanford Site Tank Farm Facilities Interim Safety Basis (ISB) provides a ready reference to the safety envelope for applicable tank farm facilities and installations. During preparation of the ISB, tank structural integrity concerns were identified as a key element in defining the safety envelope. These concerns, along with several deficiencies in the technical bases associated with the structural integrity issues and the corresponding operational limits/controls specified for conduct of normal tank farm operations are documented in the ISB. Consequently, a plan was initiated to upgrade the safety envelope technical bases by conducting Accelerated Safety Analyses-Phase 1 (ASA-Phase 1) sensitivity studies and additional structural evaluations. The purpose of this report is to facilitate the ASA-Phase 1 studies and future analyses of the single-shell tanks (SSTs) and double-shell tanks (DSTs) by compiling a quantitative summary of some of the past operating conditions the tanks have experienced during their existence. This report documents the available summaries of recorded maximum surface levels and maximum waste temperatures and references other sources for more specific data

  18. Leak detection for underground storage tanks

    International Nuclear Information System (INIS)

    Durgin, P.B.; Young, T.M.

    1993-01-01

    This symposium was held in New Orleans, Louisiana on January 29, 1992. The purpose of this conference was to provide a forum for exchange of state-of-the-art information on leak detection for underground storage tanks that leaked fuel. A widespread concern was protection of groundwater supplies from these leaking tanks. In some cases, the papers report on research that was conducted two or three years ago but has never been adequately directed to the underground storage tank leak-detection audience. In other cases, the papers report on the latest leak-detection research. The symposium was divided into four sessions that were entitled: Internal Monitoring; External Monitoring; Regulations and Standards; and Site and Risk Evaluation. Individual papers have been cataloged separately for inclusion in the appropriate data bases

  19. Slurry growth, gas retention, and flammable gas generation by Hanford radioactive waste tanks: Synthetic waste studies, FY 1991

    International Nuclear Information System (INIS)

    Bryan, S.A.; Pederson, L.R.; Ryan, J.L.; Scheele, R.D.; Tingey, J.M.

    1992-08-01

    Of 177 high-level waste storage tanks on the Hanford Site, 23 have been placed on a safety watch list because they are suspected of producing flammable gases in flammable or explosive concentrate. One tankin particular, Tank 241-SY-101 (Tank 101-SY), has exhibited slow increases in waste volume followed by a rapid decrease accompanied by venting of large quantities of gases. The purpose of this study is to help determine the processes by which flammable gases are produced, retained, and eventually released from Tank 101-SY. Waste composition data for single- and double-shell waste tanks on the flammable gas watch listare critically reviewed. The results of laboratory studies using synthetic double-shell wastes are summarized, including physical and chemical properties of crusts that are formed, the stoichiometry and rate ofgas generation, and mechanisms responsible for formation of a floating crust

  20. Borehole data package for well 299-W15-41 at single-shell tank waste management Area TX-TY

    International Nuclear Information System (INIS)

    Horton, D.G.; Hodges, F.N.

    2000-01-01

    One new Resource Conservation and Recovery Act (RCRA) groundwater monitoring well was installed at the single-shell tank farm Waste Management Area (WMA) TX-TY during December 1999 and January 2000 in fulfillment of Tri-Party Agreement (Ecology 1996) milestone M-24-43. The well is 299-W15-41 and is located south of the 241-TX tank farm and south of 20th Street in the 200 West Area. A figure shows the locations of all wells in the WMA TX-TY monitoring network. The new well was constructed to the specifications and requirements described in Washington Administrative Code (WAC) 173-160 and WAC 173-303, the groundwater monitoring plan for WMA TX-TY (Caggiano and Goodwin 1991), the assessment plan for WMA TX-TY (Caggiano and Chou 1993), and the description of work for well drilling and installation. This document compiles information on the drilling and construction, well development, pump installation, and sediment testing applicable to well 299-W1 5-41. Appendix A contains the geologist's log, the Well Construction Summary Report, and Well Summary Sheet (as-built diagram) and Appendix B contains borehole geophysical logs. Additional documentation concerning well construction is on file with Bechtel Hanford, Inc., Richland, Washington

  1. Double-shell tank waste system assessment status and schedule

    International Nuclear Information System (INIS)

    Walter, E.J.

    1995-01-01

    The integrated program for completing the integrity assessments of the dangerous waste tank systems managed by the Tank Waste Remediation System (TWRS) Division of Westinghouse Hanford Company is presented in the Tank Waste Remediation System Tank System Integrity Assessments Program Plan, WHC-SD-AP017, Rev. 1. The program plan identified the assessment requirements and the general scope to which these requirements applied. Some of these assessment requirements have been met and others are either in process of completion or scheduled to be worked. To define the boundary of the double-shell tank (DST) system and the boundaries of the DST system components (or system parts) for the purpose of performing integrity assessment activities; To identify the planned activities to meet the assessment requirements for each component; Provide the status of the assessment activities; and Project a five year assessment activity schedule

  2. Radioactive air emissions notice of construction use of a portable exhauster on single-shell tanks (SSTs) during salt well pumping and other activities

    International Nuclear Information System (INIS)

    GRANDO, C.J.

    1999-01-01

    This document serves as a notice of construction (NOC), pursuant to the requirements of Washington Administrative Code (WAC) 246-247-060, and as a request for approval to construct, pursuant to 40 Code of Federal Regulations (CFR) 61.07, portable exhausters for use on single-shell tanks (SSTs) during salt well pumping. Table 1-1 lists 18 SSTs covered by this NOC. This NOC also addresses other activities that are performed in support of salt well pumping but do not require the application of a portable exhauster. Specifically this NOC analyzes the following three activities that have the potential for emissions. (1) Salt well pumping (i.e., the actual transferring of waste from one tank to another) under nominal tank operating conditions. Nominal tank operating conditions include existing passive breathing rates. (2) Salt well pumping (the actual transferring of waste from one tank to another) with use of a portable exhauster. (3) Use of a water lance on the waste to facilitate salt well screen and salt well jet pump installation into the waste. This activity is to be performed under nominal (existing passive breathing rates) tank operating conditions. The use of portable exhausters represents a cost savings because one portable exhauster can be moved back and forth between SSTs as schedules for salt well pumping dictate. A portable exhauster also could be used to simultaneously exhaust more than one SST during salt well pumping

  3. Storage Tank Legionella and Community

    Data.gov (United States)

    U.S. Environmental Protection Agency — Storage Tank Legionella and Community. This dataset is associated with the following publication: Qin, K., I. Struewing, J. Santodomingo, D. Lytle, and J. Lu....

  4. Tank characterization report for single-shell tank 241-C-204

    International Nuclear Information System (INIS)

    Conner, J.M.

    1996-01-01

    This document summarizes the information on the historical uses, present status, and the sampling and analysis results of waste stored in Tank 241-C-204. This report supports the requirements of Tri Party Agreement Milestone M 44 09

  5. Tank characterization report for single shell tank 241-SX-108

    Energy Technology Data Exchange (ETDEWEB)

    Eggers, R.F., Westinghouse Hanford

    1996-07-11

    This document summarizes the information on the historical uses, present status, and the sampling and analysis results of waste stored in tank 241-SX-108. This report supports the requirements of Tri-Party Agreement Milestone M-44-09.

  6. Tank characterization report for single-shell tank 241-B-101

    International Nuclear Information System (INIS)

    Schreiber, R.D.

    1996-01-01

    This document summarizes the information on the historical uses, present status, and the sampling and analysis results of waste stored in tank 241-B-101. This report supports the requirements of Tri-Party Agreement Milestone M-44-09

  7. Tank characterization report for single-shell tank 241-T-108

    International Nuclear Information System (INIS)

    Baldwin, J.H.

    1996-01-01

    This document summarizes the information on the historical uses, present status, and the sampling and analysis results of waste stored in Tank 241-T-108. This report supports the requirements of Tri-Party Agreement Milestone M-44-09

  8. Tank characterization report for single-shell tank 241-T-106

    International Nuclear Information System (INIS)

    Jo, J.

    1996-03-01

    This document summarizes the information on the historical uses, present status, and the sampling and analysis results of waste stored in Tank 241-T-106. This report supports the requirements of Tri-Party Agreement Milestone M-44-09

  9. [Study on the quantitative estimation method for VOCs emission from petrochemical storage tanks based on tanks 4.0.9d model].

    Science.gov (United States)

    Li, Jing; Wang, Min-Yan; Zhang, Jian; He, Wan-Qing; Nie, Lei; Shao, Xia

    2013-12-01

    VOCs emission from petrochemical storage tanks is one of the important emission sources in the petrochemical industry. In order to find out the VOCs emission amount of petrochemical storage tanks, Tanks 4.0.9d model is utilized to calculate the VOCs emission from different kinds of storage tanks. VOCs emissions from a horizontal tank, a vertical fixed roof tank, an internal floating roof tank and an external floating roof tank were calculated as an example. The consideration of the site meteorological information, the sealing information, the tank content information and unit conversion by using Tanks 4.0.9d model in China was also discussed. Tanks 4.0.9d model can be used to estimate VOCs emissions from petrochemical storage tanks in China as a simple and highly accurate method.

  10. Tank characterization report for single-shell tank 241-B-107

    International Nuclear Information System (INIS)

    Conner, J.M.

    1998-01-01

    This document summarizes the information on the historical uses, present status, and the sampling and analysis results of waste stored in Tank 241-B-107. This report supports the requirements of the Tri-Party Agreement Milestone M-44-ISB

  11. Tank characterization report for single-shell tank 241-BX-111

    International Nuclear Information System (INIS)

    Anantatmula, R.P.

    1998-01-01

    This document summarizes the information on the historical uses, present status, and the sampling and analysis results of waste, stored in Tank 241-BX-111. This report supports the requirements of the Tri-Party Agreement Milestone M-44-ISB

  12. Tank characterization report for single-shell tank 241-B-108

    International Nuclear Information System (INIS)

    Schreiber, R.D.

    1997-01-01

    This document summarizes the information on the historical uses, present status, and the sampling and analysis results of waste stored in Tank 241-B-108. This report supports the requirements of the Tri-Party Agreement Milestone M-44-05

  13. Tank characterization report for single-shell tank 241-b-110

    International Nuclear Information System (INIS)

    Field, J.G.

    1997-01-01

    This document summarizes the information on the historical uses, present status, and the sampling and analysis results of waste stored in Tank 241-B-110. This report supports the requirements of the Tri-Party Agreement Milestone M-44-05

  14. Underground storage tank integrated demonstration: Evaluation of pretreatment options for Hanford tank wastes

    International Nuclear Information System (INIS)

    Lumetta, G.J.; Wagner, M.J.; Colton, N.G.; Jones, E.O.

    1993-06-01

    Separation science plays a central role inn the pretreatment and disposal of nuclear wastes. The potential benefits of applying chemical separations in the pretreatment of the radioactive wastes stored at the various US Department of Energy sites cover both economic and environmental incentives. This is especially true at the Hanford Site, where the huge volume (>60 Mgal) of radioactive wastes stored in underground tanks could be partitioned into a very small volume of high-level waste (HLW) and a relatively large volume of low-level waste (LLW). The cost associated with vitrifying and disposing of just the HLW fraction in a geologic repository would be much less than those associated with vitrifying and disposing of all the wastes directly. Futhermore, the quality of the LLW form (e.g., grout) would be improved due to the lower inventory of radionuclides present in the LLW stream. In this report, we present the results of an evaluation of the pretreatment options for sludge taken from two different single-shell tanks at the Hanford Site-Tanks 241-B-110 and 241-U-110 (referred to as B-110 and U-110, respectively). The pretreatment options examined for these wastes included (1) leaching of transuranic (TRU) elements from the sludge, and (2) dissolution of the sludge followed by extraction of TRUs and 90 Sr. In addition, the TRU leaching approach was examined for a third tank waste type, neutralized cladding removal waste

  15. Tank farm nuclear criticality review

    International Nuclear Information System (INIS)

    Bratzel, D.R.

    1996-01-01

    The technical basis for the nuclear criticality safety of stored wastes at the Hanford Site Tank Farm Complex was reviewed by a team of senior technical personnel whose expertise covered all appropriate aspects of fissile materials chemistry and physics. The team concluded that the detailed and documented nucleonics-related studies underlying the waste tanks criticality safety basis were sound. The team concluded that, under current plutonium inventories and operating conditions, a nuclear criticality accident is incredible in any of the Hanford single-shell tanks (SST), double-shell tanks (DST), or double-contained receiver tanks (DCRTS) on the Hanford Site

  16. Tank Characterization Report for Single-Shell Tank 241-U-103

    International Nuclear Information System (INIS)

    ADAMS, M.R.

    2000-01-01

    This document summarizes the information on the historical uses, present status, and the sampling and analysis results of waste stored in Tank 241-U-103. This report supports the requirements of the Tri-Party Agreement Milestone M-44-15B

  17. Tank characterization report for single-shell tank 241-BY-109

    International Nuclear Information System (INIS)

    Jo, J.

    1998-01-01

    This document summarizes the information on the historical uses, present status, and the sampling and analysis results of waste stored in Tank 241-BY-109. This report supports the requirements of the Tri-Party Agreement Milestone M-44-15B

  18. Nondestructive assay of plutonium residue in horizontal storage tanks

    International Nuclear Information System (INIS)

    Marsh, S.F.

    1985-01-01

    Aqueous plutonium recovery and purification processes often involve the temporary storage of plutonium solutions in holding tanks. Because plutonium is known to precipitate from aqueous solutions under certain conditions, there is a continuing need to assay emptied tanks for plutonium residue. A portable gamma spectrometer system, specifically designed for this purpose, provides rapid assay of such plutonium residues in horizontal storage tanks. A means is thus available for the nondestructive analysis of these tanks on a regular schedule to ensure that significant deposits of plutonium are not allowed to accumulate. 5 figs

  19. Safety considerations on LPG storage tanks

    International Nuclear Information System (INIS)

    Paff, R.

    1993-01-01

    The safety of liquefied petroleum gas (LPG) storage tanks, in refineries, petrochemicals plants, or distribution storage, is an important concern. Some serious accidents in recent years, have highlighted the need for a good safety policy for such equipment. Accidents in LPG storage are mainly due to losses of containment of the LPG. Formation of a cloud can lead to a ''Unconfined Vapor Cloud Explosion'' (UVCE). Liquid leakage can lead to pool fires in the retention area. In some circumstances the heat input of the tank, combined with the loss of mechanical resistance of the steel under high temperature, can lead to a BLEVE ''Boiling Liquid Expanding Vapor Explosion''. It is obvious that such equipment needs a proper design, maintenance and operating policy. The details to be considered are set out. (4 figures). (Author)

  20. Double-Shell Tank (DST) Monitor and Control Subsystem Specification

    International Nuclear Information System (INIS)

    BAFUS, R.R.

    2000-01-01

    This specification establishes the performance requirements and provides references to the requisite codes and standards to be applied during design of the Double-Shell Tank (DST) Monitor and Control Subsystem that supports the first phase of Waste Feed Delivery. This subsystem specification establishes the interface and performance requirements and provides references to the requisite codes and standards to be applied during the design of the Double-Shell Tank (DST) Monitor and Control Subsystem. The DST Monitor and Control Subsystem consists of the new and existing equipment that will be used to provide tank farm operators with integrated local monitoring and control of the DST systems to support Waste Feed Delivery (WFD). New equipment will provide automatic control and safety interlocks where required and provide operators with visibility into the status of DST subsystem operations (e.g., DST mixer pump operation and DST waste transfers) and the ability to manually control specified DST functions as necessary. This specification is intended to be the basis for new project/installations (W-521, etc.). This specification is not intended to retroactively affect previously established project design criteria without specific direction by the program

  1. Double-Shell Tank Visual Inspection Changes Resulting from the Tank 241-AY-102 Primary Tank Leak

    International Nuclear Information System (INIS)

    Girardot, Crystal L.; Washenfelder, Dennis J.; Johnson, Jeremy M.; Engeman, Jason K.

    2013-01-01

    As part of the Double-Shell Tank (DST) Integrity Program, remote visual inspections are utilized to perform qualitative in-service inspections of the DSTs in order to provide a general overview of the condition of the tanks. During routine visual inspections of tank 241-AY-102 (AY-102) in August 2012, anomalies were identified on the annulus floor which resulted in further evaluations. In October 2012, Washington River Protection Solutions, LLC determined that the primary tank of AY-102 was leaking. Following identification of the tank AY-102 probable leak cause, evaluations considered the adequacy of the existing annulus inspection frequency with respect to the circumstances of the tank AY-102 1eak and the advancing age of the DST structures. The evaluations concluded that the interval between annulus inspections should be shortened for all DSTs, and each annulus inspection should cover > 95 percent of annulus floor area, and the portion of the primary tank (i.e., dome, sidewall, lower knuckle, and insulating refractory) that is visible from the annulus inspection risers. In March 2013, enhanced visual inspections were performed for the six oldest tanks: 241-AY-101, 241-AZ-101,241-AZ-102, 241-SY-101, 241-SY-102, and 241-SY-103, and no evidence of leakage from the primary tank were observed. Prior to October 2012, the approach for conducting visual examinations of DSTs was to perform a video examination of each tank's interior and annulus regions approximately every five years (not to exceed seven years between inspections). Also, the annulus inspection only covered about 42 percent of the annulus floor

  2. Mobilization and mixing of settled solids in horizontal storage tanks

    International Nuclear Information System (INIS)

    Cummins, R.L.

    1995-01-01

    Studies were conducted using submerged jets for the mobilization and mixing of settled solids to form a suspension that can easily be removed from storage tanks. These studies focus on the specific problems relating to horizontal, cylindrical storage tanks. Of primary consideration are the storage tanks located at the Oak Ridge National Laboratory which are used for the collection of remote-handled, radioactive liquid wastes. These wastes are in two phases. A layer of undissolved, settled solids varying from 2 to 4 feet in depth under a layer of supernate. Using a surrogate of the tank contents and an approximate 2/3 dimensional scale tank, tests were performed to determine the optimum design and location of suction and discharge nozzles as well as the minimum discharge velocity required to achieve complete mobilization of the solids in the tank

  3. Energy Policy Act of 2005 and Underground Storage Tanks (USTs)

    Science.gov (United States)

    The Energy Policy Act of 2005 significantly affected federal and state underground storage tank programs, required major changes to the programs, and is aimed at reducing underground storage tank releases to our environment.

  4. Performance Requirements for the Double Shell Tank (DST) System

    International Nuclear Information System (INIS)

    SMITH, D.F.

    2001-01-01

    This document identifies the upper-level Double-Shell Tank (DST) System functions and bounds the associated performance requirements. The functions and requirements are provided along with supporting bases. These functions and requirements, in turn, will be incorporated into specifications for the DST System

  5. Hanford Site Waste Storage Tank Information Notebook

    International Nuclear Information System (INIS)

    Husa, E.I.; Raymond, R.E.; Welty, R.K.; Griffith, S.M.; Hanlon, B.M.; Rios, R.R.; Vermeulen, N.J.

    1993-07-01

    This report provides summary data on the radioactive waste stored in underground tanks in the 200 East and West Areas at the Hanford Site. The summary data covers each of the existing 161 Series 100 underground waste storage tanks (500,000 gallons and larger). It also contains information on the design and construction of these tanks. The information in this report is derived from existing reports that document the status of the tanks and their materials. This report also contains interior, surface photographs of each of the 54 Watch List tanks, which are those tanks identified as Priority I Hanford Site Tank Farm Safety Issues in accordance with Public Law 101-510, Section 3137*

  6. Project management plan for Project W-320, Tank 241-C-106 sluicing. Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, D.R.

    1994-07-01

    A major mission of the US Department of Energy (DOE) is the permanent disposal of Hanford Site defense wastes by utilizing safe, environmentally acceptable, and cost-effective disposal methods that meet applicable regulations. The Tank Waste Remediation System (TWRS) Program was established at the Hanford Site to manage and control activities specific to the remediation of safety watch list tanks, including high-heat-producing tanks, and for the ultimate characterization, retrieval, pretreatment, and disposal of the low- and high-level fractions of the tank waste. Project W-320, Tank 241-C-106 Sluicing, provides the methodology, equipment, utilities, and facilities necessary for retrieving the high-heat waste from single-shell tank (SST) 24-C-106. Project W-320 is a fiscal year (FY) 1993 expense-funded major project, and has a design life of 2 years. Retrieval of the waste in tank 241-C-106 will be accomplished through mobilization of the sludge into a pumpable slurry using past-practice sluicing. The waste is then transferred directly to a double-shell tank for interim storage, subsequent pretreatment, and eventual disposal. A detailed description of the management organization and responsibilities of all participants is presented in this document.

  7. Project management plan for Project W-320, Tank 241-C-106 sluicing. Revision 2

    International Nuclear Information System (INIS)

    Phillips, D.R.

    1994-07-01

    A major mission of the US Department of Energy (DOE) is the permanent disposal of Hanford Site defense wastes by utilizing safe, environmentally acceptable, and cost-effective disposal methods that meet applicable regulations. The Tank Waste Remediation System (TWRS) Program was established at the Hanford Site to manage and control activities specific to the remediation of safety watch list tanks, including high-heat-producing tanks, and for the ultimate characterization, retrieval, pretreatment, and disposal of the low- and high-level fractions of the tank waste. Project W-320, Tank 241-C-106 Sluicing, provides the methodology, equipment, utilities, and facilities necessary for retrieving the high-heat waste from single-shell tank (SST) 24-C-106. Project W-320 is a fiscal year (FY) 1993 expense-funded major project, and has a design life of 2 years. Retrieval of the waste in tank 241-C-106 will be accomplished through mobilization of the sludge into a pumpable slurry using past-practice sluicing. The waste is then transferred directly to a double-shell tank for interim storage, subsequent pretreatment, and eventual disposal. A detailed description of the management organization and responsibilities of all participants is presented in this document

  8. Risk Based Inspection Methodology and Software Applied to Atmospheric Storage Tanks

    Science.gov (United States)

    Topalis, P.; Korneliussen, G.; Hermanrud, J.; Steo, Y.

    2012-05-01

    A new risk-based inspection (RBI) methodology and software is presented in this paper. The objective of this work is to allow management of the inspections of atmospheric storage tanks in the most efficient way, while, at the same time, accident risks are minimized. The software has been built on the new risk framework architecture, a generic platform facilitating efficient and integrated development of software applications using risk models. The framework includes a library of risk models and the user interface is automatically produced on the basis of editable schemas. This risk-framework-based RBI tool has been applied in the context of RBI for above-ground atmospheric storage tanks (AST) but it has been designed with the objective of being generic enough to allow extension to the process plants in general. This RBI methodology is an evolution of an approach and mathematical models developed for Det Norske Veritas (DNV) and the American Petroleum Institute (API). The methodology assesses damage mechanism potential, degradation rates, probability of failure (PoF), consequence of failure (CoF) in terms of environmental damage and financial loss, risk and inspection intervals and techniques. The scope includes assessment of the tank floor for soil-side external corrosion and product-side internal corrosion and the tank shell courses for atmospheric corrosion and internal thinning. It also includes preliminary assessment for brittle fracture and cracking. The data are structured according to an asset hierarchy including Plant, Production Unit, Process Unit, Tag, Part and Inspection levels and the data are inherited / defaulted seamlessly from a higher hierarchy level to a lower level. The user interface includes synchronized hierarchy tree browsing, dynamic editor and grid-view editing and active reports with drill-in capability.

  9. Double-shell tank waste transfer facilities integrity assessment plan

    International Nuclear Information System (INIS)

    Hundal, T.S.

    1998-01-01

    This document presents the integrity assessment plan for the existing double-shell tank waste transfer facilities system in the 200 East and 200 West Areas of Hanford Site. This plan identifies and proposes the integrity assessment elements and techniques to be performed for each facility. The integrity assessments of existing tank systems that stores or treats dangerous waste is required to be performed to be in compliance with the Washington State Department of Ecology Dangerous Waste Regulations, Washington Administrative Code WAC-173-303-640 requirements

  10. Design criteria tank farm storage and staging facility

    International Nuclear Information System (INIS)

    Lott, D.T.

    1995-01-01

    Tank Farms Operations must store/stage material and equipment until work packages are ready to work. Consumable materials are also required to be stored for routine and emergency work. Safety issues based on poor housekeeping and material deterioration due to weather damage has resulted from inadequate storage space. It has been determined that a storage building in close proximity to the Tank Farm work force would be cost effective. This document provides the design criteria for the design of the storage and staging buildings near 272AW and 272WA buildings

  11. Effect of viscosity on seismic response of waste storage tanks

    International Nuclear Information System (INIS)

    Tang, Yu; Uras, R.A.; Chang, Yao-Wen.

    1992-06-01

    The dynamic response of liquid-storage tanks subjected to harmonic excitations and earthquake ground motions has been studied. A rigid tank of negligible mass, rigidly supported at the base having a diameter of 50 ft. and fluid height of 20.4 ft. was used in the computer analysis. The liquid is assumed to have a density of 1.5 g/ml. Viscosity values, μ = 60, 200, 100, and 10,000 cP, were used in the numerical analyses to study the effects of viscosity on sloshing wave height, impulsive and convective pressure on the tank wall, base shear and base moments. Harmonic excitations as well as earthquake ground motions were used as input motions. The harmonic excitations used in the analyses covers a wide range of frequencies, including both the resonant and non-resonant frequencies. Two earthquake motions were used. One matches the Newmark-Hall median response spectrum and is anchored at 0.24 g for a rock site with a damping of 2% and a time duration of 10 s. The other is the 1978 Tabas earthquake which had a peak ZPA of 0.81 g and a time duration of 29 s. A small tank, about 1/15 the size of the typical waste storage tank, was used in the harmonic excitation study to investigate the effect of viscosity on the response of liquid-storage tanks and how the viscosity effect is affected by the size of the storage tank. The results of this study show that for the typical waste storage tank subjected to earthquake motions, the effect of viscosity on sloshing wave height and impulsive and convective pressures is very small and can be neglected. For viscosity effect to become noticeable in the response of the typical waste storage tank, the waste viscosity must be greater than 10,000 cP. This value is far greater than the estimated viscosity value of the high level wastes, which may range from 60 to 200 cP for some tanks

  12. Tank 241-C-106 waste retrieval sluicing system process control plan

    Energy Technology Data Exchange (ETDEWEB)

    Carothers, K.G.

    1998-07-25

    Project W-320 has installed the Waste Retrieval Sluicing System at the 200 East Area on the Hanford Site to retrieve the sludge from single-shell tank 241-C-106 and transfer it into double-shell tank 241-AY-102. Operation of the WRSS process will resolve the high-heat safety issue for tank 241-C-106 and demonstrate a technology for the retrieval of single-shell tank wastes. This process control plan coordinates the technical operating requirements (primarily mass transfer, temperature, and flammable gas) for the sluicing operation and provides overall technical guidance for the retrieval activity.

  13. Tank 241-C-106 waste retrieval sluicing system process control plan

    International Nuclear Information System (INIS)

    Carothers, K.G.

    1998-01-01

    Project W-320 has installed the Waste Retrieval Sluicing System at the 200 East Area on the Hanford Site to retrieve the sludge from single-shell tank 241-C-106 and transfer it into double-shell tank 241-AY-102. Operation of the WRSS process will resolve the high-heat safety issue for tank 241-C-106 and demonstrate a technology for the retrieval of single-shell tank wastes. This process control plan coordinates the technical operating requirements (primarily mass transfer, temperature, and flammable gas) for the sluicing operation and provides overall technical guidance for the retrieval activity

  14. Design and analysis of a multi-cell subscale tank for liquid hydrogen storage

    NARCIS (Netherlands)

    Tapeinos, I.; Koussios, S.; Groves, R.M.

    2015-01-01

    This paper outlines the structural performance of a conformable pressurizable tank consisting of intersecting spherical shells (multi-cell tank). Multi-cell tanks outrival conventional multiple cylindrical tanks in volumetric efficiency when required to fit in a rectangular envelope in the

  15. Tank characterization report for double-shell tank 241-AW-105

    International Nuclear Information System (INIS)

    Sasaki, L.M.

    1997-01-01

    One of the major functions of the Tank Waste Remediation System (TWRS) is to characterize wastes in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis, along with other available information about a tank, are compiled and maintained in a tank characterization report (TCR). This report and its appendices serve as the TCR for double-shell tank 241-AW-105. The objectives of this report are to use characterization data in response to technical issues associated with tank 241-AW-105 waste; and to provide a standard characterization of this waste in terms of a best-basis inventory estimate. The response to technical issues is summarized in Section 2.0, and the best-basis inventory estimate is presented in Section 3.0. Recommendations regarding safety status and additional sampling needs are provided in Section 4.0. Supporting data and information are contained in the appendices. This report supports the requirements of the Hanford Federal Facility Agreement and Consent Order milestone Characterization. information presented in this report originated from sample analyses and known historical sources. While only the results of a recent sampling event will be used to fulfill the requirements of the data quality objectives (DQOs), other information can be used to support or question conclusions derived from these results. Historical information for tank 241-AW-105 is provided in Appendix A, including surveillance information, records pertaining to waste transfers and tank operations, and expected tank contents derived from a process knowledge model. The recent sampling event listed, as well as pertinent sample data obtained before 1996, are summarized in Appendix B along with the sampling results. The results of the 1996 grab sampling event satisfied the data requirements specified in the sampling and analysis plan (SAP) for this tank. In addition, the tank headspace flammability was measured, which addresses

  16. Tank Waste Remediation System, Hanford Site, Richland, Washington. Final Environmental Impact Statement. Volume II

    International Nuclear Information System (INIS)

    1996-08-01

    This document, Volume 2, provides the inventory of waste addressed in this Final Environmental Impact Statement (EIS) for the Tank Waste Remediation System, Hanford Site, Richland, Washington. The inventories consist of waste from the following four groups: (1) Tank waste; (2) Cesium (Cs) and Strontium (Sr) capsules; (3) Inactive miscellaneous underground storage tanks (MUSTs); and (4) Anticipated future tank waste additions. The major component by volume of the overall waste is the tank waste inventory (including future tank waste additions). This component accounts for more than 99 percent of the total waste volume and approximately 70 percent of the radiological activity of the four waste groups identified previously. Tank waste data are available on a tank-by-tank basis, but the accuracy of these data is suspect because they primarily are based on historical records of transfers between tanks rather than statistically based sampling and analyses programs. However, while the inventory of any specific tank may be suspect, the overall inventory for all of the tanks combined is considered more accurate. The tank waste inventory data are provided as the estimated overall chemical masses and radioactivity levels for the single-shell tanks (SSTs) and double-shell tanks (DSTs). The tank waste inventory data are broken down into tank groupings or source areas that were developed for analyzing groundwater impacts

  17. Permanent Closure of the TAN-664 Underground Storage Tank

    Energy Technology Data Exchange (ETDEWEB)

    Bradley K. Griffith

    2011-12-01

    This closure package documents the site assessment and permanent closure of the TAN-664 gasoline underground storage tank in accordance with the regulatory requirements established in 40 CFR 280.71, 'Technical Standards and Corrective Action Requirements for Owners and Operators of Underground Storage Tanks: Out-of-Service UST Systems and Closure.'

  18. Technetium Inventory, Distribution, and Speciation in Hanford Tanks

    Energy Technology Data Exchange (ETDEWEB)

    Serne, R. Jeffrey [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rapko, Brian M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Pegg, Ian L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-11-13

    The purpose of this report is three fold: 1) assemble the available information regarding Tc inventory, distribution between phases, and speciation in Hanford’s 177 storage tanks into a single, detailed, comprehensive assessment; 2) discuss the fate (distribution/speciation) of Tc once retrieved from the storage tanks and processed into final waste forms; and 3) discuss/document in less detail the available data on the inventory of Tc in other “pools” such as the vadose zone below inactive cribs and trenches, below single-shell tanks (SSTs) that have leaked, and in the groundwater below the Hanford Site. This report was revised in September 2014 to add detail and correct inaccuracies in Section 5.0 on the fate of technetium (Tc) recycle from the off-gas systems downstream of the low-activity waste (LAW) melters back to the melters, based on several reports that were not found in the original literature search on the topic. The newly provided reports, from experts active in the Hanford Tank Waste Treatment and Immobilization Plant (WTP) glass studies, the Vitreous State Laboratory at The Catholic University of America (VSL) melter and off-gas system demonstrations and overall WTP systems analysis, were not originally found on electronic databases commonly searched. The major revisions to Section 5.0 also required changes to Section 7.0 (Summary and Conclusions) and this executive summary.

  19. Engineering study - installation of new risers in Single-Shell Tanks

    International Nuclear Information System (INIS)

    Magruder, W.J.

    1994-08-01

    A sampling program is being developed to characterize the 149 underground SSTs on the Hanford Site. The sampling effort will require access to the tank interior in a minimum of two locations per tank. Some of the risers suitable for sampling are either unavailable or are not in locations for proper characterization of the tank contents. Additional risers will be required in the SSTs to support the tank characterization sampling program. The purpose of this engineering study is to review alternatives for installation of new riser in the SSTs

  20. AX Tank Farm tank removal study

    Energy Technology Data Exchange (ETDEWEB)

    SKELLY, W.A.

    1999-02-24

    This report examines the feasibility of remediating ancillary equipment associated with the 241-AX Tank Farm at the Hanford Site. Ancillary equipment includes surface structures and equipment, process waste piping, ventilation components, wells, and pits, boxes, sumps, and tanks used to make waste transfers to/from the AX tanks and adjoining tank farms. Two remedial alternatives are considered: (1) excavation and removal of all ancillary equipment items, and (2) in-situ stabilization by grout filling, the 241-AX Tank Farm is being employed as a strawman in engineering studies evaluating clean and landfill closure options for Hanford single-shell tanks. This is one of several reports being prepared for use by the Hanford Tanks Initiative Project to explore potential closure options and to develop retrieval performance evaluation criteria for tank farms.

  1. Criticality Safety Evaluation of Hanford Site High Level Waste Storage Tanks

    Energy Technology Data Exchange (ETDEWEB)

    ROGERS, C.A.

    2000-02-17

    This criticality safety evaluation covers operations for waste in underground storage tanks at the high-level waste tank farms on the Hanford site. This evaluation provides the bases for criticality safety limits and controls to govern receipt, transfer, and long-term storage of tank waste. Justification is provided that a nuclear criticality accident cannot occur for tank farms operations, based on current fissile material and operating conditions.

  2. Criticality Safety Evaluation of Hanford Site High-Level Waste Storage Tanks

    International Nuclear Information System (INIS)

    ROGERS, C.A.

    2000-01-01

    This criticality safety evaluation covers operations for waste in underground storage tanks at the high-level waste tank farms on the Hanford site. This evaluation provides the bases for criticality safety limits and controls to govern receipt, transfer, and long-term storage of tank waste. Justification is provided that a nuclear criticality accident cannot occur for tank farms operations, based on current fissile material and operating conditions

  3. Physical and Liquid Chemical Simulant Formulations for Transuranic Waste in Hanford Single-Shell Tanks

    International Nuclear Information System (INIS)

    Rassat, Scot D.; Bagaasen, Larry M.; Mahoney, Lenna A.; Russell, Renee L.; Caldwell, Dustin D.; Mendoza, Donaldo P.

    2003-01-01

    CH2M HILL Hanford Group, Inc. (CH2M HILL) is in the process of identifying and developing supplemental process technologies to accelerate the tank waste cleanup mission. A range of technologies is being evaluated to allow disposal of Hanford waste types, including transuranic (TRU) process wastes. Ten Hanford single-shell tanks (SSTs) have been identified whose contents may meet the criteria for designation as TRU waste: the B-200 series (241-B-201, -B-202, -B 203, and B 204), the T-200 series (241-T-201, T 202, -T-203, and -T-204), and Tanks 241-T-110 and -T-111. CH2M HILL has requested vendor proposals to develop a system to transfer and package the contact-handled TRU (CH-TRU) waste retrieved from the SSTs for subsequent disposal at the Waste Isolation Pilot Plant (WIPP). Current plans call for a modified ''dry'' retrieval process in which a liquid stream is used to help mobilize the waste for retrieval and transfer through lines and vessels. This retrieval approach requires that a significant portion of the liquid be removed from the mobilized waste sludge in a ''dewatering'' process such as centrifugation prior to transferring to waste packages in a form suitable for acceptance at WIPP. In support of CH2M HILL's effort to procure a TRU waste handling and packaging process, Pacific Northwest National Laboratory (PNNL) developed waste simulant formulations to be used in evaluating the vendor's system. For the SST CH-TRU wastes, the suite of simulants includes (1) nonradioactive chemical simulants of the liquid fraction of the waste, (2) physical simulants that reproduce the important dewatering properties of the waste, and (3) physical simulants that can be used to mimic important rheological properties of the waste at different points in the TRU waste handling and packaging process. To validate the simulant formulations, their measured properties were compared with the limited data for actual TRU waste samples. PNNL developed the final simulant formulations

  4. System Description for the Double Shell Tank (DST) Confinement System

    International Nuclear Information System (INIS)

    ROSSI, H.

    2000-01-01

    This document provides a description of the Double-Shell Tank (DST) Confinement System. This description will provide a basis for developing functional, performance and test requirements (i.e., subsystem specification), as necessary, for the DST Confinement System

  5. Method of storing the fuel storage pot in a fuel storage tank for away-from-reactor-storage

    International Nuclear Information System (INIS)

    Ishiguro, Jun-ichi.

    1980-01-01

    Purpose: To prevent the contact of sodium in the away-from-reactor-storage fuel storage tank with sodium in a fuel storage pool having radioactivity ana always retain clean state therein. Method: Sodium is filled in a container body of the away-from-reactor-storage fuel storage tank, and a conduit, a cycling pump, and cooling means are disposed to form a sodium coolant cycling loop. The fuel storage pool is so stored in the container body that the heat of the pool is projected from the liquid surface of the sodium in the container. Therefore, the sodium in the container is isolated from the sodium in the pool containing strong radioactivity to prevent contact of the former sodium from the latter sodium. (Sekiya, K.)

  6. Remediation and recycling of oil-contaminated soil beneath a large above-ground storage tank

    International Nuclear Information System (INIS)

    Wallace, G.

    1994-01-01

    While retrofitting a large 30-year-old, above-ground petroleum storage tank, Southern California Edison Company (SCE) discovered that soil beneath the fixed-roof, single-bottom tank was contaminated with 40,000 gallons of number-sign 6 fuel oil. The steel tank was left in place during the excavation and remediation of the contaminated soil to retain the operating permit. The resulting 2,000 tons of contaminated aggregate was recycled to make asphalt concrete for paving the tank basin and the remaining 5,600 tons of oily soil was thermally treated on site for use as engineered fill at another location. This successful operation provided an economical cleanup solution for a common leakage problem of single-lined tanks and eliminated the long-term liability of Class 1 landfill disposal. As a pro-active environmental effort, this paper shares SCE's site assessment procedure, reveals the engineering method developed to stabilize the tank, discusses the soil treatment technologies used, describes the problems encountered and lessons learned during the cleanup, discloses the costs of the operation, and offers guidelines and recommendations for similar tank remediation. This paper does not describe the work or costs for removing or replacing the tank bottom

  7. Specialized video systems for use in underground storage tanks

    International Nuclear Information System (INIS)

    Heckendom, F.M.; Robinson, C.W.; Anderson, E.K.; Pardini, A.F.

    1994-01-01

    The Robotics Development Groups at the Savannah River Site and the Hanford site have developed remote video and photography systems for deployment in underground radioactive waste storage tanks at Department of Energy (DOE) sites as a part of the Office of Technology Development (OTD) program within DOE. Figure 1 shows the remote video/photography systems in a typical underground storage tank environment. Viewing and documenting the tank interiors and their associated annular spaces is an extremely valuable tool in characterizing their condition and contents and in controlling their remediation. Several specialized video/photography systems and robotic End Effectors have been fabricated that provide remote viewing and lighting. All are remotely deployable into and from the tank, and all viewing functions are remotely operated. Positioning all control components away from the facility prevents the potential for personnel exposure to radiation and contamination. Overview video systems, both monaural and stereo versions, include a camera, zoom lens, camera positioner, vertical deployment system, and positional feedback. Each independent video package can be inserted through a 100 mm (4 in.) diameter opening. A special attribute of these packages is their design to never get larger than the entry hole during operation and to be fully retrievable. The End Effector systems will be deployed on the large robotic Light Duty Utility Arm (LDUA) being developed by other portions of the OTD-DOE programs. The systems implement a multi-functional ''over the coax'' design that uses a single coaxial cable for all data and control signals over the more than 900 foot cable (or fiber optic) link

  8. Large-Scale Wireless Temperature Monitoring System for Liquefied Petroleum Gas Storage Tanks

    Directory of Open Access Journals (Sweden)

    Guangwen Fan

    2015-09-01

    Full Text Available Temperature distribution is a critical indicator of the health condition for Liquefied Petroleum Gas (LPG storage tanks. In this paper, we present a large-scale wireless temperature monitoring system to evaluate the safety of LPG storage tanks. The system includes wireless sensors networks, high temperature fiber-optic sensors, and monitoring software. Finally, a case study on real-world LPG storage tanks proves the feasibility of the system. The unique features of wireless transmission, automatic data acquisition and management, local and remote access make the developed system a good alternative for temperature monitoring of LPG storage tanks in practical applications.

  9. Large-Scale Wireless Temperature Monitoring System for Liquefied Petroleum Gas Storage Tanks.

    Science.gov (United States)

    Fan, Guangwen; Shen, Yu; Hao, Xiaowei; Yuan, Zongming; Zhou, Zhi

    2015-09-18

    Temperature distribution is a critical indicator of the health condition for Liquefied Petroleum Gas (LPG) storage tanks. In this paper, we present a large-scale wireless temperature monitoring system to evaluate the safety of LPG storage tanks. The system includes wireless sensors networks, high temperature fiber-optic sensors, and monitoring software. Finally, a case study on real-world LPG storage tanks proves the feasibility of the system. The unique features of wireless transmission, automatic data acquisition and management, local and remote access make the developed system a good alternative for temperature monitoring of LPG storage tanks in practical applications.

  10. Regulatory issues associated with closure of the Hanford AX Tank Farm ancillary equipment

    International Nuclear Information System (INIS)

    Becker, D.L.

    1998-01-01

    Liquid mixed, high-level radioactive waste has been stored in underground single-shell tanks at the US Department of Energy's (DOE's) Hanford Site. After retrieval of the waste from the single-shell tanks, the DOE will proceed with closure of the tank farm. The 241-AX Tank Farm includes four one-million gallon single-shell tanks in addition to sluice lines, transfer lines, ventilation headers, risers, pits, cribs, catch tanks, buildings, well and associated buried piping. This equipment is classified as ancillary equipment. This document addresses the requirements for regulatory close of the ancillary equipment in the Hanford Site 241-AX Tank Farm. The options identified for physical closure of the ancillary equipment include disposal in place, disposal in place after treatment, excavation and disposal on site in an empty single-shell tank, and excavation and disposal outside the AX Tank Farm. The document addresses the background of the Hanford Site and ancillary equipment in the AX Tank Farm, regulations for decontamination and decommissioning of radioactively contaminated equipment, requirements for the cleanup and disposal of radioactive wastes, cleanup and disposal requirements governing hazardous and mixed waste, and regulatory requirements and issues associated with each of the four physical closure options. This investigation was conducted by the Sandia National Laboratories, Albuquerque, New Mexico, during Fiscal Year 1998 for the Hanford Tanks Initiative Project

  11. Analysis of large concrete storage tank under seismic response

    Energy Technology Data Exchange (ETDEWEB)

    Le, Jingyuan; Cui, Hongcheng; He, Qiang; Ju, Jinsan [China Agricultural University, Beijing (China); You, Xiaochuan [Tsinghua University, Beijing (China)

    2015-01-15

    This study adopted the finite element software ABAQUS to trace the dynamic response history of large reinforced concrete storage tank during different seismic excitations. The dynamic characteristics and failure modes of the tank's structure were investigated by considering the rebar's effect. Calculation results show that the large concrete storage tank remains in safe working conditions under a seismic acceleration of 55 cm/s{sup 2}. The joint of the concrete wall and dome begins to crack when seismic acceleration reaches 250 cm/s{sup 2}. As the earthquake continues, cracks spread until the top of the wall completely fails and stops working. The maximum displacement of the concrete tank and seismic acceleration are in proportion. Peak displacement and stress of the tank always appear behind the maximum acceleration.

  12. Optimization of quantitative waste volume determination technique for hanford waste tank closure

    International Nuclear Information System (INIS)

    Monts, David L.; Jang, Ping-Rey; Long, Zhiling; Okhuysen, Walter P.; Norton, Olin P.; Gresham, Lawrence L.; Su, Yi; Lindner, Jeffrey S.

    2011-01-01

    The Hanford Site is currently in the process of an extensive effort to empty and close its radioactive single-shell and double-shell waste storage tanks. Before this can be accomplished, it is necessary to know how much residual material is left in a given waste tank and the uncertainty with which that volume is known. The Institute for Clean Energy Technology (ICET) at Mississippi State University is currently developing a quantitative in-tank imaging system based on Fourier Transform Profilometry, FTP. FTP is a non-contact, 3-D shape measurement technique. By projecting a fringe pattern onto a target surface and observing its deformation due to surface irregularities from a different view angle, FTP is capable of determining the height (depth) distribution (and hence volume distribution) of the target surface, thus reproducing the profile of the target accurately under a wide variety of conditions. Hence FTP has the potential to be utilized for quantitative determination of residual wastes within Hanford waste tanks. In this paper, efforts to characterize the accuracy and precision of quantitative volume determination using FTP and the use of these results to optimize the FTP system for deployment within Hanford waste tanks are described. (author)

  13. State Certification of Underground Storage Tanks

    National Research Council Canada - National Science Library

    Granetto, Paul

    1998-01-01

    .... The audit was performed in response to a Senate Armed Services Committee inquiry about whether state environmental regulatory agencies would be able to certify that DoD underground storage tanks...

  14. Polymers for subterranean containment barriers for underground storage tanks (USTs)

    International Nuclear Information System (INIS)

    Heiser, J.H.; Colombo, P.; Clinton, J.

    1992-12-01

    The US Department of Energy (DOE) set up the Underground Storage Tank Integrated Demonstration Program (USTID) to demonstrate technologies for the retrieval and treatment of tank waste, and closure of underground storage tanks (USTs). There are more than 250 underground storage tanks throughout the DOE complex. These tanks contain a wide variety of wastes including high level, low level, transuranic, mixed and hazardous wastes. Many of the tanks have performed beyond the designed lifetime resulting in leakage and contamination of the local geologic media and groundwater. To mitigate this problem it has been proposed that an interim subterranean containment barrier be placed around the tanks. This would minimize or prevent future contamination of soil and groundwater in the event that further tank leakages occur before or during remediation. Use of interim subterranean barriers can also provide sufficient time to evaluate and select appropriate remediation alternatives. The DOE Hanford site was chosen as the demonstration site for containment barrier technologies. A panel of experts for the USTID was convened in February, 1992, to identify technologies for placement of subterranean barriers. The selection was based on the ability of candidate grouts to withstand high radiation doses, high temperatures and aggressive tank waste leachates. The group identified and ranked nine grouting technologies that have potential to place vertical barriers and five for horizontal barriers around the tank. The panel also endorsed placement technologies that require minimal excavation of soil surrounding the tanks

  15. Double-Shell Tank (DST) Maintenance and Recovery Subsystem Definition Report

    International Nuclear Information System (INIS)

    SMITH, E.A.

    2000-01-01

    The description of the Double-Shell Tank (DST) Maintenance and Recovery Subsystem presented in this document was developed to establish its boundaries. The DST Maintenance and Recovery Subsystem consists of new and existing equipment and facilities used to provide tank farm operators logistic support and problem resolution for the DST System during operations. This support will include evaluating equipment status, performing preventive and corrective maintenance, developing work packages, managing spares and consumables, supplying tooling, and training maintenance and operations personnel

  16. Risk management guidelines for petroleum storage tank sites

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-10-01

    These guidelines provide a site management process designed particularly for soil and groundwater pollution originating from existing or former petroleum storage tank (PST) facilities and provide uniform standards for the remediation of polluted PST sites in Alberta. The numerical criteria, risk management objectives and technical information described in this document were compiled from four documents including Remediation Guidelines for Petroleum Storage Tank Sites 1994, the Canada-Wide Standards for Petroleum Hydrocarbons in Soil, Alberta Soil and Water Quality Guidelines for Hydrocarbons at Upstream Oil and Gas Facilities, and Guidelines for Managing Risks at Contaminated Sites in Alberta. The changes in these updated guidelines reflect new remediation criteria and provide a process for determining alternate site-specific management objectives for more petroleum storage tank sites. The guidelines were developed using a risk-based approach that ensures the protection of human health, safety and the environment. The guidelines apply to aboveground and underground storage tank facilities that contain gasoline, diesel, heating oil, and aviation fuel. The guidelines specify requirements by Alberta Environment and the Alberta Fire Code. The chapter on risk management process included information on site investigation, determination of soil type, pollution source removal, land use assessment, selection of exposure pathways, depth of remediation, human inhalation and groundwater protection pathways, and verification of remediation. figs, 4 tabs., 2 appendices.

  17. Supplemental design requirements document, Multifunction Waste Tank Facility, Project W-236A. Revision 1

    International Nuclear Information System (INIS)

    Groth, B.D.

    1995-01-01

    The Multi-Function Waste Tank Facility (MWTF) consists of four, nominal 1 million gallon, underground double-shell tanks, located in the 200-East area, and two tanks of the same capacity in the 200-West area. MWTF will provide environmentally safe storage capacity for wastes generated during remediation/retrieval activities of existing waste storage tanks. This document delineates in detail the information to be used for effective implementation of the Functional Design Criteria requirements

  18. Organic reactivity analysis in Hanford single-shell tanks: Experimental and modeling basis for an expanded safety criterion

    International Nuclear Information System (INIS)

    Fauske, H.; Grigsby, J.M.; Turner, D.A.; Babad, H.; Meacham, J.E.

    1996-01-01

    De-spite demonstrated safe storage in terms of chemical stability of the Hanford high level waste for many decades, including decreasing waste temperatures and continuing aging of chemicals to less energetic states, concerns continue relative to assurance of long-term safe storage. Review of potential chemical safety hazards has been of particular recent interest in response to serious incidents within the Nuclear Weapons Complexes in the former Soviet Union (the 1957 Kyshtym and the 1993 Tomsk-7 incidents). Based upon an evaluation of the extensive new information and understanding that have developed over the last few years, it is concluded that the Hanford waste is stored safely and that concerns related to potential chemical safety hazards are not warranted. Spontaneous bulk runaway reactions of the Kyshtym incident type and other potential condensed-phase propagating reactions can be ruled out by assuring appropriate tank operating controls are in place and by limiting tank intrusive activities. This paper summarizes the technical basis for this position

  19. Tank characterization report for double-shell tank 241-AP-101. Revision 1

    International Nuclear Information System (INIS)

    Conner, J.M.

    1997-01-01

    One major function of the Tank Waste Remediation System (TWRS) is to characterize wastes m support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis and other available information about a tank are compiled and maintained in a tank characterization report (TCR). This report and its appendixes serve as the TCR for double-shell tank 241-AP-101. The objectives of this report are to use characterization data in response to technical issues associated with tank 241-AP-101 waste; and to provide a standard characterization of this waste in terms of a best-basis inventory estimate. Section 2.0 summarizes the response to technical issues, Section 3.0 provides the best-basis inventory estimate, and Section 4.0 makes recommendations about safety status and additional sampling needs. The appendixes contain supporting data and information. This report supported the requirements of the Hanford Federal Facility Agreement and Consent Order, Milestone M-44-05. The characterization information in this report originated from sample analyses and known historical sources. Appendix A provides historical information for tank 241-AP-101 including surveillance, information, records pertaining to waste transfers and tank operations, and expected tank contents derived from a model based upon process knowledge. Appendix B summarizes recent sampling events and historical sampling information. Tank 241-AP-101 was grab sampled in November 1995, when the tank contained 2,790 kL (737 kgal) of waste. An addition1034al 1,438 kL (380 kgal) of waste was received from tank 241-AW-106 in transfers on March 1996 and January 1997. This waste was the product of the 242-A Evaporator Campaign 95-1. Characterization information for the additional 1,438 kL (380 kgal) was obtained using grab sampling data from tank 241-AW-106 and a slurry sample from the evaporator. Appendix C reports on the statistical analysis and numerical manipulation of data used in

  20. Waste Tank Safety Screening Module: An aspect of Hanford Site tank waste characterization

    International Nuclear Information System (INIS)

    Hill, J.G.; Wood, T.W.; Babad, H.; Redus, K.S.

    1994-01-01

    Forty-five (45) of the 149 Hanford single-shell tanks have been designated as Watch-List tanks for one or more high-priority safety issues, which include significant concentrations of organic materials, ferrocyanide salts, potential generation of flammable gases, high heat generation, criticality, and noxious vapor generation. While limited waste characterization data have been acquired on these wastes under the original Tri-Party Agreement, to date all of the tank-by-tank assessments involved in these safety issue designations have been based on historical data rather than waste on data. In response to guidance from the Defense Nuclear Facilities Safety Board (DNFSB finding 93-05) and related direction from the US Department of Energy (DOE), Westinghouse Hanford Company, assisted by Pacific Northwest Laboratory, designed a measurements-based screening program to screen all single-shell tanks for all of these issues. This program, designated the Tank Safety Screening Module (TSSM), consists of a regime of core, supernatant, and auger samples and associated analytical measurements intended to make first-order discriminations of the safety status on a tank-by-tank basis. The TSSM combines limited tank sampling and analysis with monitoring and tank history to provide an enhanced measurement-based categorization of the tanks relative to the safety issues. This program will be implemented beginning in fiscal year (FY) 1994 and supplemented by more detailed characterization studies designed to support safety issue resolution

  1. Dynamic modeling of stratification for chilled water storage tank

    International Nuclear Information System (INIS)

    Osman, Kahar; Al Khaireed, Syed Muhammad Nasrul; Ariffin, Mohd Kamal; Senawi, Mohd Yusoff

    2008-01-01

    Air conditioning of buildings can be costly and energy consuming. Application of thermal energy storage (TES) reduces cost and energy consumption. The efficiency of the overall operation is affected by storage tank sizing design, which affects thermal stratification of water during charging and discharging processes in TES system. In this study, numerical simulation is used to determine the relationship between tank size and good thermal stratification. Three dimensional simulations with different tank height-to-diameter ratio (HD) and inlet Reynolds number (Re) are investigated. The effect of the number of diffuser holes is also studied. For shallow tanks (low HD) simulations, no acceptable thermocline thickness can be seen for all Re experimented. Partial mixing is observed throughout the process. Medium HD tanks simulations show good thermocline behavior and clear distinction between warm and cold water can be seen. Finally, deep tanks (high HD) show less acceptable thermocline thickness as compared to that of medium HD tanks. From this study, doubling and halving the number of diffuser holes show no significant effect on the thermocline behavior

  2. Nuclear criticality project plan for the Hanford Site tank farms

    Energy Technology Data Exchange (ETDEWEB)

    Bratzel, D.R., Westinghouse Hanford

    1996-08-06

    The mission of this project is to provide a defensible technical basis report in support of the Final Safety Analysis Report (FSAR). This technical basis report will also be used to resolve technical issues associated with the nuclear criticality safety issue. The strategy presented in this project plan includes an integrated programmatic and organizational approach. The scope of this project plan includes the provision of a criticality technical basis supporting document (CTBSD) to support the FSAR as well as for resolution of the nuclear criticality safety issue. Specifically, the CTBSD provides the requisite technical analysis to support the FSAR hazard and accident analysis as well as for the determination of the required FSAR limits and controls. The scope of The CTBSD will provide a baseline for understanding waste partitioning and distribution phenomena and mechanistics for current operational activities inclusive of single-shell tanks, double-shell tanks, double-contained receiver tanks, and miscellaneous underground storage tanks.. Although the FSAR does not include future operational activities, the waste partitioning and distribution phenomena and mechanistics work scope identified in this project plan provide a sound technical basis as a point of departure to support independent safety analyses for future activities. The CTBSD also provides the technical basis for resolution of the technical issues associated with the nuclear criticality safety issue. In addition to the CTBSD, additional documentation will be required to fully resolve U.S. Department of Energy-Headquarters administrative and programmatic issues. The strategy and activities defined in this project plan provide a CTBSD for the FSAR and for accelerated resolution of the safety issue in FY 1996. On April 30, 1992, a plant review committee reviewed the Final Safety Analysis Reports for the single-shell, double-shell, and aging waste tanks in light of the conclusions of the inadequate waste

  3. Double Shell Tank (DST) Transfer Pump Subsystem Specification

    International Nuclear Information System (INIS)

    GRAVES, C.E.

    2001-01-01

    This specification establishes the performance requirements and provides the references to the requisite codes and standards to be applied during the design of the Double-Shell Tank (DST) Transfer Pump Subsystem that supports the first phase of waste feed delivery (WFD). The DST Transfer Pump Subsystem consists of a pump for supernatant and/or slurry transfer for the DSTs that will be retrieved during the Phase 1 WFD operations. This system is used to transfer low-activity waste (LAW) and high-level waste (HLW) to designated DST staging tanks. It also will deliver blended LAW and HLW feed from these staging tanks to the River Protection Project (RPP) Waste Treatment Plant where it will be processed into an immobilized waste form. This specification is intended to be the basis for new projects/installations (W-521, etc.). This specification is not intended to retroactively affect previously established project design criteria without specific direction by the program

  4. Waste analysis plan for 222-S dangerous and mixed waste storage area

    International Nuclear Information System (INIS)

    Warwick, G.J.

    1994-01-01

    The 222-S Laboratory Complex, in the southeast corner of the 200 West Area, consists of the 222-S Laboratory, the 222-SA Standards Laboratory, and several ancillary facilities. Currently, 222-S Laboratory activities are in supporting efforts to characterize the waste stored in the 200 Areas single shell and double shell tanks. Besides this work, the laboratory also provides analytical services for waste-management processing plants, Tank Farms, B Plant, 242-A Evaporator Facility, Plutonium-Uranium Extraction Plant, Plutonium Finishing Plant, Uranium-Oxide Plant, Waste Encapsulation Storage Facility, environmental monitoring and surveillance programs, and activities involving essential materials and research and development. One part of the 222-SA Laboratory prepares nonradioactive standards for the 200 Area laboratories. The other section of the laboratory is used for cold (nonradioactive) process development work and standards preparation. The 219-S Waste Handling Facility has three storage tanks in which liquid acid waste from 222-S can be received, stored temporarily, and neutralized. From this facility, neutralized waste, containing radionuclides, is transferred to the Tank Farms. A 700-gallon sodium-hydroxide supply tank is also located in this facility. This plan provides the methods used to meet the acceptance criteria required by the 204-AR Waste Receiving Facility

  5. Treatment of radioactive wastes from DOE underground storage tanks

    International Nuclear Information System (INIS)

    Collins, J.L.; Egan, B.Z.; Spencer, B.B.; Chase, C.W.; Anderson, K.K.; Bell, J.T.

    1994-01-01

    Bench-scale batch tests have been conducted with sludge and supernate tank waste from the Melton Valley Storage Tank (MVST) Facility at Oak Ridge National Laboratory (ORNL) to evaluate separation technology process for use in a comprehensive sludge processing flow sheet as a means of concentrating the radionuclides and reducing the volumes of storage tank waste at national sites for final disposal. This paper discusses the separation of the sludge solids and supernate, the basic washing of the sludge solids, the acidic dissolution of the sludge solids, and the removal of the radionuclides from the supernate

  6. Remote inspection of underground storage tanks

    International Nuclear Information System (INIS)

    Griebenow, B.L.; Martinson, L.M.

    1992-01-01

    Westinghouse Idaho Nuclear Company, Inc. (WINCO) operates the Idaho Chemical Processing Plant (ICPP) for the US Department of Energy. The ICPP's mission is to process government-owned spent nuclear fuel. The process involves dissolving the fuel, extracting off uranium, and calcining the waste to a solid form for storage, Prior to calcining, WINCO temporarily stores the liquid waste from this process in eleven 1,135,600-l(300,000-gal), 15,2-m (50-ft)-diam, high-level liquid waste tanks. Each of these stainless steel tanks is contained within an underground concrete vault. The only access to the interior of the tanks is through risers that extend from ground level to the dome of the tanks. WINCO is replacing these tanks because of their age and the fact that they do not meet all of the current design requirements. The tanks will be replaced in two phases. WINCO is now in the Title I design stage for four new tank and vault systems to replace five of the existing systems. The integrity of the six remaining tanks must be verified to continue their use until they can be replaced in the second phase. To perform any integrity analysis, the inner surface of the tanks must be inspected. The remote tank inspection (RTI) robotic system, designed by RedZone Robotics of Pittsburgh, Pennsylvania, was developed to access the interior of the tanks and position various end effectors required to perform tank wall inspections

  7. Double Shell Tank (DST) Monitor and Control Subsystem Definition Report

    International Nuclear Information System (INIS)

    BAFUS, R.R.

    2000-01-01

    The system description of the Double-Shell Tank (DST) Monitor and Control Subsystem establishes the system boundaries and describes the interface of the DST Monitor and Control Subsystem with new and existing systems that are required to accomplish the Waste Feed Delivery (WFD) mission

  8. Sample preparation for semivolatile organics analysis of Hanford single-shell tank waste with high nitrate/nitrite and water content

    International Nuclear Information System (INIS)

    Stromatt, R.W.; Hoppe, E.W.; Steele, M.J.

    1993-11-01

    This report describes research work carried out to solve sample preparation problems associated with applying gas chromatography with mass spectrometric detection (GC/MS) to the analysis of single shell tank (SST) samples from Hanford for semivolatile organic compounds. Poor performance was found when applying the procedures based on the U.S. Environmental Protection Agency (EPA), Contract Laboratory Program, Statement of Work (CLP SOW). Analysis work was carried out on simulated drainable liquid modeled after the SST core samples which had evidenced analysis problems. Some work was also conducted on true SST samples. It was found that the pH range was too broad in the original procedure. It was also found that by decreasing the amount of methanol used in the extraction process, problems associated with the formation of an azeotrope phase could be avoided. The authors suggest a new procedure, whose eventual application to a wide array of SST samples will lend itself to better quality control limits

  9. Storage tank materials for biodiesel blends; the analysis of fuel property changes

    Directory of Open Access Journals (Sweden)

    Nurul Komariah Leily

    2017-01-01

    Full Text Available Fuel stability is one of major problem in biodiesel application. Some of the physical properties of biodiesel are commonly changed during storage. The change in physico-chemical properties is strongly correlated to the stability of the fuel. This study is objected to observe the potential materials for biodiesel storage. The test was conducted in three kinds of tank materials, such as glass, HDPE, and stainless steel. The fuel properties are monitored in 12 weeks, while the sample was analyzed every week. Biodiesel used is palm oil based. The storage tanks were placed in a confined indoor space with range of temperature 27–34 °C. The relative humidity and sunshine duration on the location was also evaluated. The observed properties of the fuel blends were density, viscosity and water content. During 12 weeks of storage, the average density of B20 was changed very slightly in all tanks, while the viscosity was tend to increase sharply, especially in polimerics tank. Water content of B20 was increased by the increase of storage time especially in HDPE tank. In short period of storage, the biodiesel blends is found more stable in glass tank due to its versatility to prohibit oxidation, degradation, and its chemical resistance.

  10. Retrieval technology development for Hanford double-shell tanks

    International Nuclear Information System (INIS)

    Bamberger, J.A.; Wise, B.M.; Miller, W.C.

    1992-05-01

    This paper describes the combined analytical, computational, and experimental program developed for identifying operating strategies for mobilization and retrieval of radioactive waste stored in double-shell tanks at Hanford. Sludge mobilization, slurry uniformity, and slurry retrieval investigations will produce guidelines for mixer pump and retrieval pump operation based on the physical properties of the waste and the geometric properties of the system (number of operating pumps and pump design and placement)

  11. Treatment options for tank farms long-length contaminated equipment

    International Nuclear Information System (INIS)

    Josephson, W.S.

    1995-01-01

    This study evaluated a variety of treatment and disposal technologies for mixed waste (MW) meeting the following criteria: 1. Single-Shell and Double-Shell Tank System (tank farms) equipment and other debris; 2. length greater than 12 feet; and contaminated with listed MW from the tank farms. This waste stream, commonly referred to as tank farms long-length contaminated equipment (LLCE), poses a unique and costly set of challenges during all phases of the waste management lifecycle

  12. Gas retention and release behavior in Hanford double-shell waste tanks

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, P.A.; Brewster, M.E.; Bryan, S.A. [and others

    1997-05-01

    This report describes the current understanding of flammable gas retention and release in Hanford double-shell waste tanks AN-103, AN-104, AN-105, AW-101, SY-101, and SY-103. This knowledge is based on analyses, experimental results, and observations of tank behavior. The applicable data available from the void fraction instrument, retained gas sampler, ball rheometer, tank characterization, and field monitoring are summarized. Retained gas volumes and void fractions are updated with these new data. Using the retained gas compositions from the retained gas sampler, peak dome pressures during a gas burn are calculated as a function of the fraction of retained gas hypothetically released instantaneously into the tank head space. Models and criteria are given for gas generation, initiation of buoyant displacement, and resulting gas release; and predictions are compared with observed tank behavior.

  13. Gas retention and release behavior in Hanford double-shell waste tanks

    International Nuclear Information System (INIS)

    Meyer, P.A.; Brewster, M.E.; Bryan, S.A.

    1997-05-01

    This report describes the current understanding of flammable gas retention and release in Hanford double-shell waste tanks AN-103, AN-104, AN-105, AW-101, SY-101, and SY-103. This knowledge is based on analyses, experimental results, and observations of tank behavior. The applicable data available from the void fraction instrument, retained gas sampler, ball rheometer, tank characterization, and field monitoring are summarized. Retained gas volumes and void fractions are updated with these new data. Using the retained gas compositions from the retained gas sampler, peak dome pressures during a gas burn are calculated as a function of the fraction of retained gas hypothetically released instantaneously into the tank head space. Models and criteria are given for gas generation, initiation of buoyant displacement, and resulting gas release; and predictions are compared with observed tank behavior

  14. Tank 241-AZ-101 tank characterization plan

    International Nuclear Information System (INIS)

    Schreiber, R.D.

    1995-01-01

    The Defense Nuclear Facilities Safety Board has advised the DOE to concentrate the near-term sampling and analysis activities on identification and resolution of safety issues. The Data Quality Objective (DQO) process was chosen as a tool to be used in the resolution of safety issues. As a result, A revision in the Federal Facilities Agreement and Consent Order (Tri-Party Agreement) milestone M-44 has been made, which states that ''A Tank Characterization Plan (TCP) will also be developed for each double-shell tank (DST) and single-shell tank (SST) using the DQO process. Development of TCPs by the DQO process is intended to allow users to ensure their needs will be met and that resources are devoted to gaining only necessary information''. This document satisfies that requirement for Tank 241-AZ-101 (AZ-101) sampling activities. Tank AZ-101 is currently a non-Watch List tank, so the only DQOs applicable to this tank are the safety screening DQO and the compatibility DQO, as described below. The contents of Tank AZ-101, as of October 31, 1994, consisted of 3,630 kL (960 kgal) of dilute non-complexed waste and aging waste from PUREX (NCAW, neutralized current acid waste). Tank AZ-101 is expected to have two primary layers. The bottom layer is composed of 132 kL of sludge, and the top layer is composed of 3,500 kL of supernatant, with a total tank waste depth of approximately 8.87 meters

  15. Position paper -- Waste storage tank heat removal

    International Nuclear Information System (INIS)

    Stine, M.D.

    1995-01-01

    The purpose of this paper is to develop and document a position on the heat removal system to be used on the waste storage tanks currently being designed for the Multi-Function Waste Tank Facility (MWTF), project W-236A. The current preliminary design for the waste storage primary tank heat removal system consists of the following subsystems: (1) a once-through dome space ventilation system; (2) a recirculation dome space ventilation system; and (3) an annulus ventilation system. Recently completed and ongoing studies have evaluated alternative heat removal systems in an attempt to reduce system costs and to optimize heat removal capabilities. In addition, a thermal/heat transfer analysis is being performed that will provide assurance that the heat removal systems selected will be capable of removing the total primary tank design heat load of 1.25 MBtu/hr at an allowable operating temperature of 190 F. Although 200 F is the design temperature limit, 190 F has been selected as the maximum allowable operating temperature limit based on instrumentation sensitivity, instrumentation location sensitivity, and other factors. Seven options are discussed and recommendations are made

  16. Thermophysical properties of Hanford high-level tank wastes: A preliminary survey of recent data

    International Nuclear Information System (INIS)

    Willingham, C.E.

    1994-03-01

    This report documents an analysis performed by Pacific Northwest Laboratory (PNL) involving thermophysical properties of Hanford high-level tank wastes. PNL has gathered and summarized the available information on density, viscosity, thermal conductivity, heat capacity, particle size, shear strength, and heat generation. The information was compiled from documented characterization reports of Hanford single-shell and double-shell tanks. The report summarizes the thermophysical properties of the various waste materials, the anticipated range for the various waste forms, and estimates of the variability of the measured data. The thermophysical information compiled in this study is useful as input to sensitivity and parametric studies for the Multi-Function Waste Tank Facility Project. Information from only 33 of the 177 high-level waste storage tanks was compiled. Density data are well characterized for the tanks selected in this study. It was found that the reported viscosity of the wastes varies widely and that a single value should not be used to represent viscosity for all waste. Significant variations in reported shear strength and heat generation values were also found. Very few of the tank characterization reports described information on waste heat capacity. In addition, there was no supernatant vapor pressure information reported in the waste characterization reports examined in this study. Although thermal conductivity measurements were made for a number of tanks, most of the measurements were made in 1975. Finally, particle size distribution measurements of waste in 20 tanks were compiled. The analyst must be cognizant of differences between the number and volume distributions reported for particle size

  17. Particle behaviour consideration to maximize the settling capacity of rainwater storage tanks.

    Science.gov (United States)

    Han, M Y; Mun, J S

    2007-01-01

    Design of a rainwater storage tank is mostly based on the mass balance of rainwater with respect to the tank, considering aspects such as rainfall runoff, water usage and overflow. So far, however, little information is available on the quality aspects of the stored rainwater, such as the behavior of particles, the effect of retention time of the water in the tank and possible influences of system configuration on water quality in the storage tank. In this study, we showed that the performance of rainwater storage tanks could be maximized by recognizing the importance of water quality improvement by sedimentation and the importance of the system configuration within the tank, as well as the efficient collection of runoff. The efficiency of removal of the particles was increased by there being a considerable distance between the inlet and the outlet in the rainwater storage tank. Furthermore, it is recommended that the effective water depth in a rainwater tank be designed to be more than 3 m and that the rainwater be drawn from as close to the water surface as possible by using a floating suction device. An operation method that increases the retention time by stopping rainwater supply when the turbidity of rainwater runoff is high will ensure low turbidity in the rainwater collected from the tank.

  18. Nondestructive examination of DOE high-level waste storage tanks

    International Nuclear Information System (INIS)

    Bush, S.; Bandyopadhyay, K.; Kassir, M.; Mather, B.; Shewmon, P.; Streicher, M.; Thompson, B.; van Rooyen, D.; Weeks, J.

    1995-01-01

    A number of DOE sites have buried tanks containing high-level waste. Tanks of particular interest am double-shell inside concrete cylinders. A program has been developed for the inservice inspection of the primary tank containing high-level waste (HLW), for testing of transfer lines and for the inspection of the concrete containment where possible. Emphasis is placed on the ultrasonic examination of selected areas of the primary tank, coupled with a leak-detection system capable of detecting small leaks through the wall of the primary tank. The NDE program is modelled after ASME Section XI in many respects, particularly with respects to the sampling protocol. Selected testing of concrete is planned to determine if there has been any significant degradation. The most probable failure mechanisms are corrosion-related so that the examination program gives major emphasis to possible locations for corrosion attack

  19. A robotic end effector for inspection of storage tanks

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, G.; Gittleman, M. [Oceaneering Space Systems, Houston, TX (United States)

    1995-10-01

    The structural integrity of waste storage tanks is of primary importance to the DOE, and is one aspect of the High-Level Waste Tank Remediation focus area. Cracks and/or corrosion damage in the inner tank walls can lead to the release of dangerous substances into the environment. The detection and sizing of corrosion and cracking in steel tank walls through remote non destructive evaluation (NDE) is the primary focus of this work.

  20. A robotic end effector for inspection of storage tanks

    International Nuclear Information System (INIS)

    Hughes, G.; Gittleman, M.

    1995-01-01

    The structural integrity of waste storage tanks is of primary importance to the DOE, and is one aspect of the High-Level Waste Tank Remediation focus area. Cracks and/or corrosion damage in the inner tank walls can lead to the release of dangerous substances into the environment. The detection and sizing of corrosion and cracking in steel tank walls through remote non destructive evaluation (NDE) is the primary focus of this work

  1. The safe removal of frozen air from the annulus of an LH2 storage tank

    Science.gov (United States)

    Krenn, A.; Starr, S.; Youngquist, R.; Nurge, M.; Sass, J.; Fesmire, J.; Cariker, C.; Bhattacharya, A.

    2015-12-01

    Large Liquid Hydrogen (LH2) storage tanks are vital infrastructure for NASA. Eventually, air may leak into the evacuated and perlite filled annular region of these tanks. Although the vacuum level is monitored in this region, the extremely cold temperature causes all but the helium and neon constituents of air to freeze. A small, often unnoticeable pressure rise is the result. As the leak persists, the quantity of frozen air increases, as does the thermal conductivity of the insulation system. Consequently, a notable increase in commodity boil-off is often the first indicator of an air leak. Severe damage can result from normal draining of the tank. The warming air will sublimate which will cause a pressure rise in the annulus. When the pressure increases above the triple point, the frozen air will begin to melt and migrate downward. Collection of liquid air on the carbon steel outer shell may chill it below its ductility range, resulting in fracture. In order to avoid a structural failure, as described above, a method for the safe removal of frozen air is needed. A thermal model of the storage tank has been created using SINDA/FLUINT modelling software. Experimental work is progressing in an attempt to characterize the thermal conductivity of a perlite/frozen nitrogen mixture. A statistical mechanics model is being developed in parallel for comparison to experimental work. The thermal model will be updated using the experimental/statistical mechanical data, and used to simulate potential removal scenarios. This paper will address methodologies and analysis techniques for evaluation of two proposed air removal methods.

  2. CHANGING THE SAFETY CULTURE IN HANFORD TANK FARMS

    Energy Technology Data Exchange (ETDEWEB)

    BERRIOCHOA MV; ALCALA LJ

    2009-01-06

    In 2000 the Hanford Tank Farms had one of the worst safety records in the Department of Energy Complex. By the end of FY08 the safety performance of the workforce had turned completely around, resulting in one of the best safety records in the DOE complex for operations of its kind. This paper describes the variety of programs and changes that were put in place to accomplish such a dramatic turn-around. The U.S. Department of Energy's 586-square-mile Hanford Site in Washington State was established during World War II as part of the Manhattan Project to develop nuclear materials to end the war. For the next several decades it continued to produce plutonium for the nation's defense, leaving behind vast quantities of radioactive and chemical waste. Much of this waste, 53,000,000 gallons, remains stored in 149 aging single-shell tanks and 28 newer double-shell tanks. One of the primary objectives at Hanford is to safely manage this waste until it can be prepared for disposal, but this has not always been easy. These giant underground tanks, many of which date back to the beginning of the Manhattan Project, range in size from 55,000 gallons up to 1.1 million gallons, and are buried beneath 10 feet of soil near the center of the site. Up to 67 of the older single-shell tanks have leaked as much as one million gallons into the surrounding soil. Liquids from the single-shell tanks were removed by 2003 but solids remain in the form of saltcake, sludges and a hardened heel at the bottom of some tanks. The Department of Energy's Office of River Protection was established to safely manage this waste until it could be prepared for disposal. For most of the last seven years the focus has been on safely retrieving waste from the 149 aging single-shell and moving it to the newer double-shell tanks. Removing waste from the tanks is a difficult and complex task. The tanks were made to put waste in, not take it out. Because of the toxic nature of the waste, both

  3. Radioactive air emissions notice of construction use of a portable exhauster on single-shell tanks during salt well pumping and other activities

    International Nuclear Information System (INIS)

    Hays, C.B.

    1997-01-01

    This document serves as a notice of construction (NOC), pursuant to the requirements of Washington Administrative Code (WAC) 246-247-060, and as a request for approval to construct, pursuant to 40 Code of Federal Regulations (CFR) 61.96, portable exhausters for use on single-shell tanks (SSTs) during salt well pumping and other activities. The reference to 'other activities' throughout this NOC means those activities described in Appendix A. The use of portable exhausters represents a cost savings feature because one portable exhauster can be moved back and forth between SSTS as schedules for salt well pumping or other activities dictate. A portable exhauster also could be used to simultaneously exhaust more than one SST during salt well pumping or during performance of other activities. The primary objective of providing active ventilation to these SSTS is to reduce the risk of postulated accidents to remain within risk guidelines. It is anticipated that salt well pumping will release gases entrapped within the waste as the liquid level is lowered, because of less hydrostatic force keeping the gases in place. Other activities also have the potential to release trapped gases by interrupting gas pockets within the waste. Hanford Site waste tanks must comply with the Tank Farms Safety Basis (OESH 1997) which requires that the flammable gas concentration be less than 25 percent of the lower flammability limit (LFL). The Los Alamos National Laboratory (LANL) safety analysis indicates that the LFL might be exceeded in some tanks during certain postulated accident scenarios. Also, the potential for electrical (pump motor, heat tracing) and mechanical (equipment installation) spark sources exist. Therefore, because of the presence of ignition sources and the potential for released flammable gases, active ventilation might be required in some SSTS to reduce the 'time at risk' while salt well pumping or performing other activities. Thirty tanks remain to be salt well pumped

  4. VOLUMETRIC LEAK DETECTION IN LARGE UNDERGROUND STORAGE TANKS - VOLUME I

    Science.gov (United States)

    A set of experiments was conducted to determine whether volumetric leak detection system presently used to test underground storage tanks (USTs) up to 38,000 L (10,000 gal) in capacity could meet EPA's regulatory standards for tank tightness and automatic tank gauging systems whe...

  5. Monitoring and analysis of liquid storage in LNG tank based on different support springs

    Science.gov (United States)

    He, Hua; Sun, Jianping; Li, Ke; Wu, Zheng; Chen, Qidong; Chen, Guodong; Cao, Can

    2018-04-01

    With the rapid development of social modernization, LNG vehicles are springing up in daily life. However, it is difficult to monitor and judge the liquid storage tanks accurately and quickly. Based on this, this paper presents a new method of liquid storage monitoring, LNG tank on-line vibration monitoring system. By collecting the vibration frequency of LNG tank and tank liquid and supporting spring system, the liquid storage quality in the tank can be calculated. In this experiment, various vibration modes of the tank spring system are fully taken into account. The vibration effects of different types of support springs on the LNG tank system were investigated. The results show that the spring model has a great influence on the test results. This study provides a technical reference for the selection of suitable support springs for liquid storage monitoring.

  6. Tank 241-B-103 tank characterization plan

    International Nuclear Information System (INIS)

    Carpenter, B.C.

    1995-01-01

    The Defense Nuclear Facilities Safety Board (DNFSB) has advised the US Department of Energy (DOE) to concentrate the near-term sampling and analysis activities on identification and resolution of safety issues. The data quality objective (DQO) process was chosen as a tool to be used to identify sampling and analytical needs for the resolution of safety issues. As a result, a revision in the Federal Facility Agreement and Consent Order (Tri-Party Agreement or TPA) milestone M-44-00 has been made, which states that ''A Tank Characterization Plan (TCP) will also be developed for each double-shell tank (DST) and single-shell tank (SST) using the DQO process... Development of TCPs by the DQO process is intended to allow users (e.g., Hanford Facility user groups, regulators) to ensure their needs will be met and that resources are devoted to gaining only necessary information.'' This document satisfies that requirement for Tank 241-B-103 (B-103) sampling activities. Tank B-103 was placed on the Organic Watch List in January 1991 due to review of TRAC data that predicts a TOC content of 3.3 dry weight percent. The tank was classified as an assumed leaker of approximately 30,280 liters (8,000 gallons) in 1978 and declared inactive. Tank B-103 is passively ventilated with interim stabilization and intrusion prevention measures completed in 1985

  7. Demand-Based Optimal Design of Storage Tank with Inerter System

    Directory of Open Access Journals (Sweden)

    Shiming Zhang

    2017-01-01

    Full Text Available A parameter optimal design method for a tank with an inerter system is proposed in this study based on the requirements of tank vibration control to improve the effectiveness and efficiency of vibration control. Moreover, a response indicator and a cost control indicator are selected based on the control targets for liquid storage tanks for simultaneously minimizing the dynamic response and controlling costs. These indicators are reformulated through a random vibration analysis under virtual excitation. The problem is then transformed from a multiobjective optimization problem to a single-objective nonlinear problem using the ε-constraint method, which is consistent with the demand-based method. White noise excitation can be used to design the tank with the inerter system under seismic excitation to simplify the calculation. Subsequently, a MATLAB-based calculation program is compiled, and several optimization cases are examined under different excitation conditions. The effectiveness of the demand-based method is proven through a time history analysis. The results show that specific vibration control requirements can be met at the lowest cost with a simultaneous reduction in base shears and overturning base moments.

  8. Closure Report for Corrective Action Unit 134: Aboveground Storage Tanks, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    2009-01-01

    Corrective Action Unit (CAU) 134 is identified in the Federal Facility Agreement and Consent Order (FFACO) as 'Aboveground Storage Tanks' and consists of the following four Corrective Action Sites (CASs), located in Areas 3, 15, and 29 of the Nevada Test Site: (1) CAS 03-01-03, Aboveground Storage Tank; (2) CAS 03-01-04, Tank; (3) CAS 15-01-05, Aboveground Storage Tank; and (4) CAS 29-01-01, Hydrocarbon Stain

  9. Program plan for the resolution of tank vapor issues

    International Nuclear Information System (INIS)

    Osborne, J.W.

    1992-09-01

    The purpose of this document is to provide a detailed description of the priorities, logic, work breakdown structure (WBS), task descriptions, and program milestones required for the resolution of tank vapor issues associated with the single-shell tanks (SST) and double-shell tanks (DST). The primary objective of this plan is to determine whether a health (personnel exposure) and/or safety (flammability) hazard exists. This plan is focused upon one waste tank, 241-C-103, but contains all elements required to bring the vapor issues to resolution

  10. IMPACT ASSESSMENT OF EXISTING VADOSE ZONE CONTAMINATION AT THE HANFORD SITE SX TANK FARM

    International Nuclear Information System (INIS)

    KHALEEL R

    2007-01-01

    The USDOE has initiated an impact assessment of existing vadose zone contamination at the Hanford Site SX tank farm in southeastern Washington State. The assessment followed the Resource Conservation and Recovery Act (RCRA) Corrective Action process to address the impacts of past tank waste releases to the vadose zone at the single-shell tank farm. Numerical models were developed that consider the extent of contamination presently within the vadose zone and predict contaminant movement through the vadose zone to groundwater. The transport of representative mobile (technetium-99) and immobile (cesium-137) constituents was evaluated in modeling. The model considered the accelerated movement of moisture around and beneath single-shell tanks that is attributed to bare, gravel surfaces resulting from the construction of the underground storage tanks. Infiltration, possibly nearing 100 mm yr -1 , is further amplified in the tank farm because of the umbrella effect created by percolating moisture being diverted by the impermeable, sloping surface of the large, 24-m-diameter, buried tank domes. For both the base case (no-action alternative) simulation and a simulation that considered placement of an interim surface barrier to minimize infiltration, predicted, groundwater concentrations for technetium-99 at the SX tank farm boundary were exceedingly high, on the order of 10 6 pCi L -1 . The predicted concentrations are, however, somewhat conservative because of our use of two-dimensional modeling for a three-dimensional problem. A series of simulations were performed, using recharge rates of 50, 30, and 10 mm yr -1 , and compared to the basecase(100 mm yr -1 ) results. As expected, lowering meteoric recharge delayed peak arrival times and reduced peak concentrations at the tank farm boundary

  11. Impact Assessment of Existing Vadose Zone Contamination at the Hanford Site SX Tank Farm

    International Nuclear Information System (INIS)

    Khaleel, Raziuddin; White, Mark D.; Oostrom, Martinus; Wood, Marcus I.; Mann, Frederick M.; Kristofzski, John G.

    2007-01-01

    The USDOE has initiated an impact assessment of existing vadose zone contamination at the Hanford Site SX tank farm in southeastern Washington State. The assessment followed the Resource Conservation and Recovery Act (RCRA) Corrective Action process to address the impacts of past tank waste releases to the vadose zone at the single-shell tank farm. Numerical models were developed that consider the extent of contamination presently within the vadose zone and predict contaminant movement through the vadose zone to groundwater. The transport of representative mobile (technetium-99) and immobile (cesium-137) constituents was evaluated in modeling. The model considered the accelerated movement of moisture around and beneath single-shell tanks that is attributed to bare, gravel surfaces resulting from the construction of the underground storage tanks. Infiltration, possibly nearing 100 mm yr -1 , is further amplified in the tank farm because of the umbrella effect created by percolating moisture being diverted by the impermeable, sloping surface of the large, 24-m-diameter, buried tank domes. For both the base case (no-action alternative) simulation and a simulation that considered placement of an interim surface barrier to minimize infiltration, predicted groundwater concentrations for technetium-99 at the SX tank farm boundary were exceedingly high, on the order of 106 pCi L-1. The predicted concentrations are, however, somewhat conservative because of our use of two-dimensional modeling for a three-dimensional problem. A series of simulations were performed, using recharge rates of 50, 30, and 10 mm yr -1 , and compared to the base case (100 mm yr -1 ) results. As expected, lowering meteoric recharge delayed peak arrival times and reduced peak concentrations at the tank farm boundary.

  12. HANFORD DOUBLE-SHELL TANK THERMAL and SEISMIC PROJECT. DYTRAN ANALYSIS OF SEISMICALLY INDUCED FLUID-STRUCTURE INTERACTION IN A HANFORD DOUBLE-SHELL PRIMARY TANK

    International Nuclear Information System (INIS)

    MACKEY, T.C.

    2006-01-01

    M and D Professional Services, Inc. (M and D) is under subcontract to Pacific Northwest National Laboratories (PNNL) to perform seismic analysis of the Hanford Site Double-Shell Tanks (DSTs) in support of a project entitled ''Double-Shell Tank (DSV Integrity Project-DST Thermal and Seismic Analyses)''. The overall scope of the project is to complete an up-to-date comprehensive analysis of record of the DST System at Hanford in support of Tri-Party Agreement Milestone M-48-14. The work described herein was performed in support of the seismic analysis of the DSTs. The thermal and operating loads analysis of the DSTs is documented in Rinker et al. (2004). The overall seismic analysis of the DSTs is being performed with the general-purpose finite element code ANSYS'. The global model used for the seismic analysis of the DSTs includes the DST structure, the contained waste, and the surrounding soil. The seismic analysis of the DSTs must address the fluid-structure interaction behavior and sloshing response of the primary tank and contained liquid. ANSYS has demonstrated capabilities for structural analysis, but has more limited capabilities for fluid-structure interaction analysis. The purpose of this study is to demonstrate the capabilities and investigate the limitations of the finite element code MSC.Dytranz for performing a dynamic fluid-structure interaction analysis of the primary tank and contained waste. To this end, the Dytran solutions are benchmarked against theoretical solutions appearing in BNL 1995, when such theoretical solutions exist. When theoretical solutions were not available, comparisons were made to theoretical solutions to similar problems, and to the results from ANSYS simulations. Both rigid tank and flexible tank configurations were analyzed with Dytran. The response parameters of interest that are evaluated in this study are the total hydrodynamic reaction forces, the impulsive and convective mode frequencies, the waste pressures, and slosh

  13. 78 FR 70076 - Aging Management of Internal Surfaces, Fire Water Systems, Atmospheric Storage Tanks, and...

    Science.gov (United States)

    2013-11-22

    ... Systems, Atmospheric Storage Tanks, and Corrosion Under Insulation AGENCY: Nuclear Regulatory Commission... Internal Surfaces, Fire Water Systems, Atmospheric Storage Tanks, and Corrosion Under Insulation.'' This LR... related to internal surface aging effects, fire water systems, atmospheric storage tanks, and corrosion...

  14. Melton Valley Storage Tanks Capacity Increase Project, Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1995-04-01

    The US Department of Energy (DOE) proposes to construct and maintain additional storage capacity at Oak Ridge National Laboratory (ORNL), Oak Ridge, Tennessee, for liquid low-level radioactive waste (LLLW). New capacity would be provided by a facility partitioned into six individual tank vaults containing one 100,000 gallon LLLW storage tank each. The storage tanks would be located within the existing Melton Valley Storage Tank (MVST) facility. This action would require the extension of a potable water line approximately one mile from the High Flux Isotope Reactor (HFIR) area to the proposed site to provide the necessary potable water for the facility including fire protection. Alternatives considered include no-action, cease generation, storage at other ORR storage facilities, source treatment, pretreatment, and storage at other DOE facilities

  15. Tank 241-C-106 past-practice sluicing waste retrieval, Hanford Site, Richland, Washington. Environmental Assessment

    International Nuclear Information System (INIS)

    1995-02-01

    The US Department of Energy (DOE) needs to take action to eliminate safety concerns with storage of the high-heat waste in Tank 241-C-106 (Tank C-106), and demonstrate a tank waste retrieval technology. This Environmental Assessment (EA) was prepared to analyze the potential impacts associated with the proposed action, past-practice sluicing of Tank C-106, an underground single-shell tank (SST). Past-practice sluicing is defined as the mode of waste retrieval used extensively in the past at the Hanford Site on the large underground waste tanks, and involves introducing a high-volume, low-pressure stream of liquid to mobilize sludge waste prior to pumping. It is proposed to retrieve the waste from Tank C-106 because this waste is classified not only as transuranic and high-level, but also as high-heat, which is caused by the radioactive decay of strontium. This waste characteristic has led DOE to place Tank C-106 on the safety ''Watchlist.''

  16. The relation of collector and storage tank size in solar heating systems

    International Nuclear Information System (INIS)

    Çomaklı, Kemal; Çakır, Uğur; Kaya, Mehmet; Bakirci, Kadir

    2012-01-01

    Highlights: ► A storage tank is used in many solar water heating systems for the storage of hot water. ► Using larger storage tanks decrease the efficiency and increases the cost of the system. ► The optimum tank size for the collector area is very important for economic solar heating systems. ► The optimum sizes of the collectors and the storage tank are determined. - Abstract: The most popular method to benefit from the solar energy is to use solar water heating systems since it is one of the cheapest way to benefit from the solar energy. The investment cost of a solar water heating system is very low, and the maintenance costs are nearly zero. Using the solar energy for solar water heating (SWH) technology has been greatly improved during the past century. A storage tank is used in many solar water heating systems for the conservation of heat energy or hot water for use when some need it. In addition, domestic hot water consumption is strongly variable in many buildings. It depends on the geographical situation, also on the country customs, and of course on the type of building usage. Above all, it depends on the inhabitants’ specific lifestyle. For that reason, to provide the hot water for consumption at the desirable temperature whenever inhabitants require it, there must be a good relevance between the collectors and storage tank. In this paper, the optimum sizes of the collectors and the storage tank are determined to design more economic and efficient solar water heating systems. A program has been developed and validated with the experimental study and environmental data. The environmental data were obtained through a whole year of operation for Erzurum, Turkey.

  17. Fuel storage tanks at FAA facilities : Order 1050.15A : executive summary.

    Science.gov (United States)

    1997-04-30

    The Federal Aviation Administration (FAA) has over 4,000 fuel storage tanks (FST) in its inventory. Most of these FSTs are underground storage tanks (UST) that contain fuel for emergency backup generators providing secondary power to air navigational...

  18. Tank 241-AZ-102 tank characterization plan

    International Nuclear Information System (INIS)

    Schreiber, R.D.

    1995-01-01

    The Defense Nuclear Facilities Safety Board has advised the DOE to concentrate the near-term sampling and analysis activities on identification and resolution of safety issues. The Data Quality Objective (DQO) process was chosen as a tool to be used in the resolution of safety issues. As a result, a revision in the Federal Facilities Agreement and Consent Order (Tri-Party Agreement) milestone M-44 has been made, which states that ''A Tank Characterization Plan (TCP) will also be developed for each double-shell tank (DST) and single-shell tank (SST) using the DQO process ... Development of TCPs by the DQO process is intended to allow users to ensure their needs will be met and that resources are devoted to gaining only necessary information''. This document satisfies that requirement for tank 241-AZ-102 (AZ-102) sampling activities. Tank AZ-102 is currently a non-Watch List tank, so the only DQOs applicable to this tank are the safety screening DQO and the compatibility DQO, as described below. The current contents of Tank AZ-102, as of October 31, 1994, consisted of 3,600 kL (950 kgal) of dilute non-complexed waste and aging waste from PUREX (NCAW, neutralized current acid waste). Tank AZ-102 is expected to have two primary layers. The bottom layer is composed of 360 kL of sludge, and the top layer is composed of 3,240 kL of supernatant, with a total tank waste depth of approximately 8.9 meters

  19. Thermal stratification in storage tanks of integrated collector storage solar water heaters

    International Nuclear Information System (INIS)

    Oshchepkov, M.Y.; Frid, S.E.

    2015-01-01

    To determine the influence of the shape of the tank, the installation angle, and the magnitude of the absorbed heat flux on thermal stratification in integrated collector-storage solar water heaters, numerical simulation of thermal convection in tanks of different shapes and same volume was carried out. Idealized two-dimensional models were studied; auto model stratification profiles were obtained at the constant heat flux. The shape of the tank, the pattern of the heat flux dynamics, the adiabatic mixing on the circulation rate and the degree of stratification were shown to have significant influence. (authors)

  20. Engineering Task Plan for the Ultrasonic Inspection of Hanford Double Shell Tanks (DST) FY2000

    International Nuclear Information System (INIS)

    JENSEN, C.E.

    2000-01-01

    This document facilitates the ultrasonic examination of Hanford double-shell tanks. Included are a plan for engineering activities (individual responsibilities), plan for performance demonstration testing, and a plan for field activities (tank inspection). Also included are a Statement of Work for contractor performance of the work and a protocol to be followed should tank flaws that exceed the acceptance criteria be discovered

  1. Experimental investigation of a molten salt thermocline storage tank

    Science.gov (United States)

    Yang, Xiaoping; Yang, Xiaoxi; Qin, Frank G. F.; Jiang, Runhua

    2016-07-01

    Thermal energy storage is considered as an important subsystem for solar thermal power stations. Investigations into thermocline storage tanks have mainly focused on numerical simulations because conducting high-temperature experiments is difficult. In this paper, an experimental study of the heat transfer characteristics of a molten salt thermocline storage tank was conducted by using high-temperature molten salt as the heat transfer fluid and ceramic particle as the filler material. This experimental study can verify the effectiveness of numerical simulation results and provide reference for engineering design. Temperature distribution and thermal storage capacity during the charging process were obtained. A temperature gradient was observed during the charging process. The temperature change tendency showed that thermocline thickness increased continuously with charging time. The slope of the thermal storage capacity decreased gradually with the increase in time. The low-cost filler material can replace the expensive molten salt to achieve thermal storage purposes and help to maintain the ideal gravity flow or piston flow of molten salt fluid.

  2. Technetium Inventory, Distribution, and Speciation in Hanford Tanks

    Energy Technology Data Exchange (ETDEWEB)

    Serne, R. Jeffrey; Rapko, Brian M.

    2014-05-02

    The purpose of this report is three fold: 1) assemble the available information regarding technetium (Tc) inventory, distribution between phases, and speciation in Hanford’s 177 storage tanks into a single, detailed, comprehensive assessment; 2) discuss the fate (distribution/speciation) of Tc once retrieved from the storage tanks and processed into a final waste form; and 3) discuss/document in less detail the available data on the inventory of Tc in other "pools" such as the vadose zone below inactive cribs and trenches, below single-shell tanks (SSTs) that have leaked, and in the groundwater below the Hanford Site. A thorough understanding of the inventory for mobile contaminants is key to any performance or risk assessment for Hanford Site facilities because potential groundwater and river contamination levels are proportional to the amount of contaminants disposed at the Hanford Site. Because the majority of the total 99Tc produced at Hanford (~32,600 Ci) is currently stored in Hanford’s 177 tanks (~26,500 Ci), there is a critical need for knowledge of the fate of this 99Tc as it is removed from the tanks and processed into a final solid waste form. Current flow sheets for the Hanford Waste Treatment and Immobilization Plant process show most of the 99Tc will be immobilized as low-activity waste glass that will remain on the Hanford Site and disposed at the Integrated Disposal Facility (IDF); only a small fraction will be shipped to a geologic repository with the immobilized high-level waste. Past performance assessment studies, which focused on groundwater protection, have shown that 99Tc would be the primary dose contributor to the IDF performance.

  3. Case study to remove radioactive hazardous sludge from long horizontal storage tanks

    International Nuclear Information System (INIS)

    Hylton, T.D.; Youngblood, E.L.; Cummins, R.L.

    1995-01-01

    The removal of radioactive hazardous sludge from waste tanks is a significant problem at several US Department of Energy (DOE) sites. The use of submerged jets produced by mixing pumps lowered into the supernatant/sludge interface to produce a homogeneous slurry is being studied at several DOE facilities. The homogeneous slurry can be pumped from the tanks to a treatment facility or alternative storage location. Most of the previous and current studies with this method are for flat-bottom tanks with vertical walls. Because of the difference in geometry, the results of these studies are not directly applicable to long horizontal tanks such as those used at the Oak Ridge National Laboratory. Mobilization and mixing studies were conducted with a surrogate sludge (e.g., kaolin clay) using submerged jets in two sizes of horizontal tanks. The nominal capacities of these tanks were 0.87 m 3 (230 gal) and 95 m 3 (25,000 gal). Mobilization efficiencies and mixing times were determined for single and bidirectional jets in both tanks with the discharge nozzles positioned at two locations in the tanks. Approximately 80% of the surrogate sludge was mobilized in the 95-m 3 tank using a fixed bidirectional jet (inside diameter = 0.035 m) and a jet velocity of 6.4 m/s (21 ft/s)

  4. DOUBLE-SHELL TANK WASTE TRANSFER LINE ENCASEMENT INTEGRITY ASSESSMENT TECHNOLOGY STUDY

    International Nuclear Information System (INIS)

    BOWER, R.R.

    2006-01-01

    The report provides various alternative methods of performing integrity assessment inspections of buried Hanford Double Shell Tank waste transfer line encasements, and provides method recommendations as an alternative to costly encasement pneumatic leak testing. A schedule for future encasement integrity assessments is also included

  5. Leaking Underground Storage Tank Sites in Iowa

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — Leaking Underground Storage Tank (LUST) sites where petroleum contamination has been found. There may be more than one LUST site per UST site.

  6. Public involvement in the Hanford Double-Shell Tank waste disposal program

    International Nuclear Information System (INIS)

    Triplett, M.B.; Hunter, V.L.

    1992-06-01

    Hanford's Double-Shell Tank (DST) waste disposal program was redefined following serious challenges to the viability of the previous strategy due to increased regulatory requirements and operating expectations. Redefinition of the DST waste disposal program involved a far-reaching set of decisions and actions. A formal stakeholder involvement process was used to bring the concerns of outside groups into the definition and evaluation of altemative tank waste disposal strategies, broadening the participation and ownership of the revised pregrain. Hanford's Double-Shell Tank (DST) waste disposal strategy, calls for using B-Plant to separate the low-level and high-level portions of the DST waste. This separations step would provide feed to the Hanford Waste Vitrification Plant (HWVP), viewed by many as the cornerstone to Site cleanup. The State of Washington strongly opposed using the 47-year-old B-Plant because it was not built to comply with current environmental regulations. Because of this and other challenges to Hanford's tank waste disposal strategy, the Department of Energy (DOE) Richland Field Office (RL) initiated efforts to redefine the strategy. To support this effort, Pacific Northwest Laboratory (PNL) and Westinghouse Hanford Company (WHCP) sought input from outside stakeholder groups (stakeholders are those interest groups that are affected by the outcome of the decision and have a strong desire to ensure that their concerns are addressed) through a formal stakeholder involvement and multi-attribute utility (MAU) analysis process. This paper describes that process and its results

  7. Performance evaluation of rotating pump jet mixing of radioactive wastes in Hanford Tanks 241-AP-102 and -104

    International Nuclear Information System (INIS)

    Onishi, Y.; Recknagle, K.P.

    1998-07-01

    The purpose of this study was to confirm the adequacy of a single mixer pump to fully mix the wastes that will be stored in Tanks 241-AP-102 and -104. These Hanford double-shell tanks (DSTs) will be used as staging tanks to receive low-activity wastes from other Hanford storage tanks and, in turn, will supply the wastes to private waste vitrification facilities for eventual solidification. The TEMPEST computer code was applied to Tanks AP-102 and -104 to simulate waste mixing generated by the 60-ft/s rotating jets and to determine the effectiveness of the single rotating pump to mix the waste. TEMPEST simulates flow and mass/heat transport and chemical reactions (equilibrium and kinetic reactions) coupled together. Section 2 describes the pump jet mixing conditions the authors evaluated, the modeling cases, and their parameters. Section 3 reports model applications and assessment results. The summary and conclusions are presented in Section 4, and cited references are listed in Section 5

  8. DEEP VADOSE ZONE CONTAMINATION DUE TO RELEASES FROM HANFORD SITE TANKS

    International Nuclear Information System (INIS)

    JARAYSI MN

    2008-01-01

    CH2M HILL Hanford Group, Inc. (the Hanford Tank Farm Operations contractor) and the Department of Energy's Office of River Protection have just completed the first phase of the Hanford Single-Shell Tank RCRA Corrective Action Program. The focus of this first phase was to characterize the nature and extent of past Hanford single-shell tank releases and to characterize the resulting fate and transport of the released contaminants. Most of these plumes are below 20 meters, with some reaching groundwater (at 60 to 120 meters below ground surface [bgs])

  9. Engineering Task Plan for the Ultrasonic Inspection of Hanford Double-Shell Tanks - FY 2001

    International Nuclear Information System (INIS)

    JENSEN, C.E.

    2000-01-01

    This document facilitates the ultrasonic examination of Hanford double-shell tanks. Included are a plan for engineering activities, plan for performance demonstration testing, and a plan for field activities. Also included are a Statement of Work for contractor performance and a protocol to be followed should tank flaws that exceed the acceptance criteria are found

  10. Seismic performance of spherical liquid storage tanks: a case study

    Science.gov (United States)

    Fiore, Alessandra; Demartino, Cristoforo; Greco, Rita; Rago, Carlo; Sulpizio, Concetta; Vanzi, Ivo

    2018-02-01

    Spherical storage tanks are widely used for various types of liquids, including hazardous contents, thus requiring suitable and careful design for seismic actions. On this topic, a significant case study is described in this paper, dealing with the dynamic analysis of a spherical storage tank containing butane. The analyses are based on a detailed finite element (FE) model; moreover, a simplified single-degree-of-freedom idealization is also set up and used for verification of the FE results. Particular attention is paid to the influence of sloshing effects and of the soil-structure interaction for which no special provisions are contained in technical codes for this reference case. Sloshing effects are investigated according to the current literature state of the art. An efficient methodology based on an "impulsive-convective" decomposition of the container-fluid motion is adopted for the calculation of the seismic force. With regard to the second point, considering that the tank is founded on piles, soil-structure interaction is taken into account by computing the dynamic impedances. Comparison between seismic action effects, obtained with and without consideration of sloshing and soil-structure interaction, shows a rather important influence of these parameters on the final results. Sloshing effects and soil-structure interaction can produce, for the case at hand, beneficial effects. For soil-structure interaction, this depends on the increase of the fundamental period and of the effective damping of the overall system, which leads to reduced design spectral values.

  11. Maintaining of the demineralized water quality in storage tanks

    International Nuclear Information System (INIS)

    Hochmueller, K.; Wandelt, E.

    1981-03-01

    Two processes for maintaining the quality of the mineralized water in storage tanks are considered. A slight overpressure of nitrogen can be created above the water, or the air flowing in the tank can be cleaned by passing it through a soda-containing lime filter [fr

  12. Permanent Closure of MFC Biodiesel Underground Storage Tank 99ANL00013

    Energy Technology Data Exchange (ETDEWEB)

    Kerry L. Nisson

    2012-10-01

    This closure package documents the site assessment and permanent closure of the Materials and Fuels Complex biodiesel underground storage tank 99ANL00013 in accordance with the regulatory requirements established in 40 CFR 280.71, “Technical Standards and Corrective Action Requirements for Owners and Operators of Underground Storage Tanks: Out-of-Service UST Systems and Closure.”

  13. Solar Storage Tank Insulation Influence on the Solar Systems Efficiency

    Directory of Open Access Journals (Sweden)

    Negoitescu Arina

    2012-09-01

    Full Text Available For the storage tank of a solar system for domestic hot water production was analyzed the insulation thickness and material influence. To this end, it was considered a private house, occupied by 3 persons, located in zone I of thermal radiation, for which has been simulated the domestic hot water production process. The tank outlet hot water temperature was considered of 45°C. For simulation purposes, as insulation materials for the storage tank were taking into account glass wool and polyurethane with various thicknesses. Finally, was carried out the comparative analysis of two types of tanks, in terms of the insulation thickness influence on the solar fraction, annual solar contribution and solar annual productivity. It resulted that polyurethane is the most advantageous from all points of view.

  14. Design of crude oil storage tank for acoustic emission testing

    International Nuclear Information System (INIS)

    Shukri Mohd; Masrul Nizam Salleh; Abd Razak Hamzah; Norasiah Abd Kasim

    2005-01-01

    The integrity of crude oil storage tank needs to be well managed because they can contain a large inventory of hazardous material and because of the high cost such as cleaning and waste disposal prior to disposal and maintenance. Costs involved in cleaning and inspection can be up to several hundreds thousand Malaysian Ranting. If the floor then proves to be in good condition, these costs have been wasted. Acoustic Emission (AE) is proposed to be use for monitoring the floor of the storage tank on line without doing cleaning and waste disposal. A storage tank will be fabricated for storing the crude oil and then the corrosion process will be monitor using AE method. This paper will discuss the background, material and is technical specification, design and also the difficulties faced during design and fabrication process. (Author)

  15. Underground storage tank 431-D1U1, Closure Plan

    Energy Technology Data Exchange (ETDEWEB)

    Mancieri, S.

    1993-09-01

    This document contains information about the decommissioning of Tank 431-D1U1. This tank was installed in 1965 for diesel fuel storage. This tank will remain in active usage until closure procedures begin. Soils and ground water around the tank will be sampled to check for leakage. Appendices include; proof of proper training for workers, health and safety briefing record, task hazard analysis summary, and emergency plans.

  16. An approximate-reasoning-based method for screening flammable gas tanks

    International Nuclear Information System (INIS)

    Eisenhawer, S.W.; Bott, T.F.; Smith, R.E.

    1998-03-01

    High-level waste (HLW) produces flammable gases as a result of radiolysis and thermal decomposition of organics. Under certain conditions, these gases can accumulate within the waste for extended periods and then be released quickly into the dome space of the storage tank. As part of the effort to reduce the safety concerns associated with flammable gas in HLW tanks at Hanford, a flammable gas watch list (FGWL) has been established. Inclusion on the FGWL is based on criteria intended to measure the risk associated with the presence of flammable gas. It is important that all high-risk tanks be identified with high confidence so that they may be controlled. Conversely, to minimize operational complexity, the number of tanks on the watchlist should be reduced as near to the true number of flammable risk tanks as the current state of knowledge will support. This report presents an alternative to existing approaches for FGWL screening based on the theory of approximate reasoning (AR) (Zadeh 1976). The AR-based model emulates the inference process used by an expert when asked to make an evaluation. The FGWL model described here was exercised by performing two evaluations. (1) A complete tank evaluation where the entire algorithm is used. This was done for two tanks, U-106 and AW-104. U-106 is a single shell tank with large sludge and saltcake layers. AW-104 is a double shell tank with over one million gallons of supernate. Both of these tanks had failed the screening performed by Hodgson et al. (2) Partial evaluations using a submodule for the predictor likelihood for all of the tanks on the FGWL that had been flagged previously by Whitney (1995)

  17. Double Shell Tank (DST) Transfer Pump Subsystem Specification

    International Nuclear Information System (INIS)

    LESHIKAR, G.A.

    2000-01-01

    This specification establishes the performance requirements and provides references to the requisite codes and standards to be applied to the Double-Shell Tank (DST) Transfer Pump Subsystem which supports the first phase of Waste Feed Delivery (WFD). This specification establishes the performance requirements and provides the references to the requisite codes and standards to be applied during the design of the DST Transfer Pump Subsystem that supports the first phase of (WFD). The DST Transfer Pump Subsystem consists of a pump for supernatant and or slurry transfer for the DSTs that will be retrieved during the Phase 1 WFD operations. This system is used to transfer low-activity waste (LAW) and high-level waste (HLW) to designated DST staging tanks. It also will deliver blended LAW and HLW feed from these staging tanks to the River Protection Project (RPP) Privatization Contractor facility where it will be processed into an immobilized waste form. This specification is intended to be the basis for new projects/installations (W-521, etc.). This specification is not intended to retroactively affect previously established project design criteria without specific direction by the program

  18. Petroleum storage tank cleaning using commercial microbial culture products

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, D.R.; Entzeroth, L.C.; Timmis, A.; Whiteside, A.; Hoskins, B.C.

    1995-12-31

    The removal of paraffinic bottom accumulations from refinery storage tanks represents an increasingly costly area of petroleum storage management. Microorganisms can be used to reduce paraffinic bottoms by increasing the solubility of bottom material and by increasing the wax-carrying capacity of carrier oil used in the cleaning process. The economic savings of such treatments are considerable. The process is also intrinsically safer than alternative methods, as it reduces and even eliminates the need for personnel to enter the tank during the cleaning process. Both laboratory and field sample analyses can be used to document changes in tank material during the treatment process. These changes include increases in volatile content and changes in wax distribution. Several case histories illustrating these physical and chemical changes are presented along with the economics of treatment.

  19. Technical Performance Capability of Fourier Transform Profilometry for Quantitative Waste Volume Determination under Hanford Waste Tank Condition

    International Nuclear Information System (INIS)

    Monts, D.L.; Jang, P.R.; Long, Z.; Norton, O.P.; Okhuysen, W.P.; Su, Y.; Waggoner, Ch.A.

    2009-01-01

    The Hanford Site is currently in the process of an extensive effort to empty and close its radioactive single-shell and double-shell waste storage tanks. Before this can be accomplished, it is necessary to know how much residual material is left in a given waste tank and the chemical makeup of the residue. The Institute for Clean Energy Technology (ICET) at Mississippi State University is currently developing a quantitative in-tank inspection system based on Fourier Transform Profilometry (FTP). FTP is a non-contact, 3-D shape measurement technique. By projecting a fringe pattern onto a target surface and observing its deformation due to surface irregularities from a different view angle, FTP is capable of determining the height (depth) distribution (and hence volume distribution) of the target surface, thus reproducing the profile of the target accurately under a wide variety of conditions. Hence FTP has the potential to be utilized for quantitative determination of residual wastes within Hanford waste tanks. We report the results of a technical feasibility study to document the accuracy and precision of quantitative volume determination using the Fourier transform profilometry technique under simulated Hanford waste tank conditions. (authors)

  20. Hanford tanks initiative - test implementation plan for demonstration of in-tank retrieval technology

    International Nuclear Information System (INIS)

    Schaus, P.S.

    1997-01-01

    This document presents a Systems Engineering approach for performing the series of tests associated with demonstrating in-tank retrieval technologies. The testing ranges from cold testing of individual components at the vendor's facility to the final fully integrated demonstration of the retrieval system's ability to remove hard heel high-level waste from the bottom of a Hanford single-shell tank

  1. Impact analysis of a water storage tank

    International Nuclear Information System (INIS)

    Jhung, Myung Jo; Jo, Jong Chull; Jeong, Sang Jin

    2006-01-01

    This study investigates the dynamic response characteristics of a structure impacted by a high speed projectile. The impact of a 300 kg projectile on a water storage tank is simulated by the general purpose computer codes ANSYS and LS-DYNA. Several methods to simulate the impact are considered and their results are compared. Based upon this, an alternative impact analysis method that equivalent to an explicit dynamic analysis is proposed. The effect of fluid on the responses of the tank is also addressed

  2. Evaluation of alternatives for upgrading double shell tank corrosion monitoring at Hanford

    International Nuclear Information System (INIS)

    Nelson, J.L.

    1996-01-01

    Recent discovery of low hydroxide conditions in Double Shell Tanks have demonstrated that the current corrosion control system of waste sampling and analysis is inadequate to monitor and maintain specified chemistries for dilute and low volume waste tanks. Moreover, waste sampling alone cannot provide adequate information to resolve the questions raised regarding tank corrosion. This report evaluates available technologies which could be used to improve on the existing corrosion control system. The evaluation concludes that a multi-technique corrosion monitoring system is necessary, utilizing ultrasonic and visual examinations for direct evaluation of tank liner condition, probes for rapid detection (alarm) of corrosive conditions, and waste sampling and analysis for determination of corrective action. The probes would incorporate electrochemical noise and linear polarization resistance techniques. When removed from the waste tank, the probe electrodes would be physically examined as corrosion coupons. The probes would be used in addition to a modified regimen of waste sampling and the existing schedule for ultrasonic examination of the tank liners. Supporting information would be obtained by examination of in-tank equipment as it is removed

  3. Addendum to the RCRA Assessment Report for Single-Shell Tank Waste Management Area S-SX at the Hanford Site

    International Nuclear Information System (INIS)

    Chou, C.J.; Johnson, V.G.

    1999-01-01

    The initial Resource Conservation and Recovery Act (RCRA) groundwater quality assessment report for Waste Management Area S-SX (PNNL-11810) was issued in January 1998. The report stated a plan for conducting continued assessment would be developed after addressing Washington State Department of Ecology (Ecology) comments on initial findings in PNNL-11810. Comments from Ecology were received by US Department of Energy, Richland Operations Office (DOE-RL) on September 24, 1998. Shortly thereafter, Ecology and DOE began dispute resolution and related negotiations about tank farm vadose issues. This led to proposed new Tri-Party Agreement milestones covering a RCRA Facility Investigation-Corrective Measures Study (RFI/CMS) of the four single-shell tank farm waste management areas that were in assessment status (Waste Management Areas B-BX-BY, S-SX, T and TX-TY). The RCRA Facility Investigation includes both subsurface (vadose zone and groundwater) and surface (waste handling facilities and grounds) characterization. Many of the Ecology comments on PNNL-11810 are more appropriate for, and in many cases are superseded by, the RFI/CMS at Waste Management Area S-SX. The proposed Tri-Party Agreement milestone changes that specify the scope and schedule for the RFI/CMS work plans (Tri-Party Agreement change number M-45-98-0) were issued for public comment in February 1999. The Tri-Party Agreement narrative indicates the ongoing groundwater assessments will be integrated with the RFI/CMS work plans. This addendum documents the disposition of the Ecology comments on PNNL-11810 and identifies which comments were more appropriate for the RFI/CMS work plan

  4. Addendum to the RCRA Assessment Report for Single-Shell Tank Waste Management Area S-SX at the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Chou, C.J.; Johnson, V.G.

    1999-10-07

    The initial Resource Conservation and Recovery Act (RCRA) groundwater quality assessment report for Waste Management Area S-SX (PNNL-11810) was issued in January 1998. The report stated a plan for conducting continued assessment would be developed after addressing Washington State Department of Ecology (Ecology) comments on initial findings in PNNL-11810. Comments from Ecology were received by US Department of Energy, Richland Operations Office (DOE-RL) on September 24, 1998. Shortly thereafter, Ecology and DOE began dispute resolution and related negotiations about tank farm vadose issues. This led to proposed new Tri-Party Agreement milestones covering a RCRA Facility Investigation-Corrective Measures Study (RFI/CMS) of the four single-shell tank farm waste management areas that were in assessment status (Waste Management Areas B-BX-BY, S-SX, T and TX-TY). The RCRA Facility Investigation includes both subsurface (vadose zone and groundwater) and surface (waste handling facilities and grounds) characterization. Many of the Ecology comments on PNNL-11810 are more appropriate for, and in many cases are superseded by, the RFI/CMS at Waste Management Area S-SX. The proposed Tri-Party Agreement milestone changes that specify the scope and schedule for the RFI/CMS work plans (Tri-Party Agreement change number M-45-98-0) were issued for public comment in February 1999. The Tri-Party Agreement narrative indicates the ongoing groundwater assessments will be integrated with the RFI/CMS work plans. This addendum documents the disposition of the Ecology comments on PNNL-11810 and identifies which comments were more appropriate for the RFI/CMS work plan.

  5. Large underground radioactive waste storage tanks successfully cleaned at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Billingsley, K.; Burks, B.L.; Johnson, M.; Mims, C.; Powell, J.; Hoesen, D. van

    1998-05-01

    Waste retrieval operations were successfully completed in two large underground radioactive waste storage tanks in 1997. The US Department of Energy (DOE) and the Gunite Tanks Team worked cooperatively during two 10-week waste removal campaigns and removed approximately 58,300 gallons of waste from the tanks. About 100 gallons of a sludge and liquid heel remain in each of the 42,500 gallon tanks. These tanks are 25 ft. in diameter and 11 ft. deep, and are located in the North Tank Farm in the center of Oak Ridge National Laboratory. Less than 2% of the radioactive contaminants remain in the tanks, proving the effectiveness of the Radioactive Tank Cleaning System, and accomplishing the first field-scale cleaning of contaminated underground storage tanks with a robotic system in the DOE complex

  6. TECHNICAL BASIS FOR VENTILATION REQUIREMENTS IN TANK FARMS OPERATING SPECIFICATIONS DOCUMENTS

    Energy Technology Data Exchange (ETDEWEB)

    BERGLIN, E J

    2003-06-23

    This report provides the technical basis for high efficiency particulate air filter (HEPA) for Hanford tank farm ventilation systems (sometimes known as heating, ventilation and air conditioning [HVAC]) to support limits defined in Process Engineering Operating Specification Documents (OSDs). This technical basis included a review of older technical basis and provides clarifications, as necessary, to technical basis limit revisions or justification. This document provides an updated technical basis for tank farm ventilation systems related to Operation Specification Documents (OSDs) for double-shell tanks (DSTs), single-shell tanks (SSTs), double-contained receiver tanks (DCRTs), catch tanks, and various other miscellaneous facilities.

  7. Tank 241-C-107 tank characterization plan

    International Nuclear Information System (INIS)

    Schreiber, R.D.

    1995-01-01

    The Defense Nuclear Facilities Safety Board (DNFSB) has advised the US Department of Energy (DOE) to concentrate the near-term sampling and analysis activities on identification and resolution of safety issues. The data quality objective (DQO) process was chosen as a tool to be used to identify sampling and analytical needs for the resolution of safety issues. As a result, a revision in the Federal Facility Agreement and Consent Order (Tri-Party Agreement or TPA) milestone M-44-00 has been made, which states that ''A Tank Characterization Plan (TCP) will also be developed for each double-shell tank (DST) and single-shell tank (SST) using the DQO process... Development of TCPs by the DQO process is intended to allow users (e.g., Hanford Facility user groups, regulators) to ensure their needs will be met and that resources are devoted to gaining only necessary information.'' This document satisfies that requirement for the Tank 241-C-107 (C-107) sampling activities. Currently tank C-107 is categorized as a sound, low-heat load tank with partial isolation completed in December 1982. The tank is awaiting stabilization. Tank C-107 is expected to contain three primary layers of waste. The bottom layer should contain a mixture of the following wastes: ion exchange, concentrated phosphate waste from N-Reactor, Hanford Lab Operations, strontium semi-works, Battelle Northwest, 1C, TBP waste, cladding waste, and the hot semi-works. The middle layer should contain strontium recovery supernate. The upper layer should consist of non-complexed waste

  8. A methodology to define the flow rate and pressure requirements for transfer of double-shell tank waste slurries

    International Nuclear Information System (INIS)

    Bamberger, J.A.; Liljegren, L.M.

    1993-04-01

    This document presents an analysis of the pressure drop and flow rate double-shell tank slurries. Experiments to requirements for transport of characterize the transport of double-shell tank slurries through piping networks and to resuspend materials that settle during pump outages are proposed. Reported values of physical properties of double-shell tank slurries were analyzed to evaluate the flow regimes that are likely to occur during transport. The results of these evaluations indicate that the slurry will be pseudohomogeneous during transport and that the slurry rheology is sufficiently non-Newtonian to affect both the pressure drop achieved during transport and the critical Reynolds number. The transport data collected in the non-Newtonian experiment will be used to determine whether a non-Newtonian correlation developed by Hanks (1978) adequately describes the experimental results

  9. Los Alamos National Laboratory environmental restoration program group audit report for underground storage tank removal: Audit ER-92- 04, July 22--August 11, 1992

    International Nuclear Information System (INIS)

    Gillespie, P.F.

    1992-01-01

    Audit ER-92-04 was conducted on activities being performed by Waste Management (EM-7), Environmental Protection (EM-8), and Environmental Restoration (EM-13) groups for the LANL's underground storage tank removal program. Scope of the audit was limited to an evaluation of the implementation of the State of New Mexico requirements for underground storage-tank removal. Activities were evaluated using requirements specified in the State of New Mexico Environmental Improvement Board Underground Storage Tank Regulations, EIB/USTR. Two recommendations are made: (1) that a single organization be given the responsibility and authority for the implementation of the program, and (2) that the requirements of the NM State environmental improvement board underground storage tank regulations be reviewed and a Los Alamos procedure written to address requirements and interfaces not contained in SOP-EM7-D ampersand D-001

  10. Operational tank leak detection and minimization during retrieval

    International Nuclear Information System (INIS)

    Hertzel, J.S.

    1996-03-01

    This report evaluates the activities associated with the retrieval of wastes from the single-shell tanks proposed under the initial Single-Shell Tank Retrieval System. This report focuses on minimizing leakage during retrieval by using effective leak detection and mitigating actions. After reviewing the historical data available on single-shell leakage, and evaluating current leak detection technology, this report concludes that the only currently available leak detection method which can function within the most probable leakage range is the mass balance system. If utilized after each sluicing campaign, this method should allow detection at a leakage value well below the leakage value where significant health effects occur which is calculated for each tank. Furthermore, this report concludes that the planned sequence or sluicing activities will serve to further minimize the probability and volume of leaks by keeping liquid away from areas with the greatest potential for leaking. Finally, this report identifies a series of operational responses which when used in conjunction with the recommended sluicing sequence and leak detection methods will minimize worker exposure and environmental safety health risks

  11. Integrated heat exchanger design for a cryogenic storage tank

    Energy Technology Data Exchange (ETDEWEB)

    Fesmire, J. E.; Bonner, T.; Oliveira, J. M.; Johnson, W. L.; Notardonato, W. U. [NASA Kennedy Space Center, Cryogenics Test Laboratory, NE-F6, KSC, FL 32899 (United States); Tomsik, T. M. [NASA Glenn Research Center, 21000 Brookpark Road, Cleveland, OH 44135 (United States); Conyers, H. J. [NASA Stennis Space Center, Building 3225, SSC, MS 39529 (United States)

    2014-01-29

    Field demonstrations of liquid hydrogen technology will be undertaken for the proliferation of advanced methods and applications in the use of cryofuels. Advancements in the use of cryofuels for transportation on Earth, from Earth, or in space are envisioned for automobiles, aircraft, rockets, and spacecraft. These advancements rely on practical ways of storage, transfer, and handling of liquid hydrogen. Focusing on storage, an integrated heat exchanger system has been designed for incorporation with an existing storage tank and a reverse Brayton cycle helium refrigerator of capacity 850 watts at 20 K. The storage tank is a 125,000-liter capacity horizontal cylindrical tank, with vacuum jacket and multilayer insulation, and a small 0.6-meter diameter manway opening. Addressed are the specific design challenges associated with the small opening, complete modularity, pressure systems re-certification for lower temperature and pressure service associated with hydrogen densification, and a large 8:1 length-to-diameter ratio for distribution of the cryogenic refrigeration. The approach, problem solving, and system design and analysis for integrated heat exchanger are detailed and discussed. Implications for future space launch facilities are also identified. The objective of the field demonstration will be to test various zero-loss and densified cryofuel handling concepts for future transportation applications.

  12. Conceptual models for waste tank mechanistic analysis

    International Nuclear Information System (INIS)

    Allemann, R.T.; Antoniak, Z.I.; Eyler, L.L.; Liljegren, L.M.; Roberts, J.S.

    1992-02-01

    Pacific Northwest Laboratory (PNL) is conducting a study for Westinghouse Hanford Company (Westinghouse Hanford), a contractor for the US Department of Energy (DOE). The purpose of the work is to study possible mechanisms and fluid dynamics contributing to the periodic release of gases from double-shell waste storage tanks at the Hanford Site in Richland, Washington. This interim report emphasizing the modeling work follows two other interim reports, Mechanistic Analysis of Double-Shell Tank Gas Release Progress Report -- November 1990 and Collection and Analysis of Existing Data for Waste Tank Mechanistic Analysis Progress Report -- December 1990, that emphasized data correlation and mechanisms. The approach in this study has been to assemble and compile data that are pertinent to the mechanisms, analyze the data, evaluate physical properties and parameters, evaluate hypothetical mechanisms, and develop mathematical models of mechanisms

  13. Preliminary Heat Transfer Studies for the Double Shell Tanks (DST) Transfer Piping

    International Nuclear Information System (INIS)

    HECHT, S.L.

    2000-01-01

    Heat transfer studies were made to determine the thermal characteristics of double-shell tank transfer piping under both transient and steady-state conditions. A number of design and operation options were evaluated for this piping system which is in its early design phase

  14. Design of cryogenic tanks for space vehicles shell structures analytical modeling

    Science.gov (United States)

    Copper, Charles; Mccarthy, K.; Pilkey, W. D.; Haviland, J. K.

    1991-01-01

    The initial objective was to study the use of superplastically formed corrugated hat section stringers and frames in place of integrally machined stringers over separate frames for the tanks of large launch vehicles subjected to high buckling loads. The ALS was used as an example. The objective of the follow-on project was to study methods of designing shell structures subjected to severe combinations of structural loads and thermal gradients, with emphasis on new combinations of structural arrangements and materials. Typical applications would be to fuselage sections of high speed civil transports and to cryogenic tanks on the National Aerospace Plane.

  15. Thermoeconomic analysis of storage systems for solar heating and cooling systems: A comparison between variable-volume and fixed-volume tanks

    International Nuclear Information System (INIS)

    Buonomano, Annamaria; Calise, Francesco; Ferruzzi, Gabriele

    2013-01-01

    The paper investigates different control strategies for the thermal storage management in SHC (Solar Heating and Cooling) systems. The SHC system under investigation is based on a field of evacuated solar collectors coupled with a single-stage LiBr–H 2 O absorption chiller; auxiliary thermal energy is supplied by a gas-fired boiler. The SHC is also equipped with a novel thermal storage system, consisting in a variable volume storage tank. It includes three separate tanks and a number of mixers and diverters managed by novel control strategies, based on combinations of series/parallel charging and discharging approaches. The aim of this component is to vary the thermal storage capacity as a function of the combinations of solar radiation availability and user thermal/cooling energy demands. The system allows one to increase the number of active tanks when the time shift between solar energy and user demand is high. Conversely, when this time shift is low, the number of active tanks is automatically reduced. In addition, when the solar energy in excess cannot be stored in such tanks, a heat exchanger is also used in the solar loop for producing DHW (Domestic Hot Water). The analysis is carried out by means of a zero-dimensional transient simulation model, developed by using the TRNSYS software. In order to assess the operating and capital costs of the systems under analysis, an economic model is also proposed. In addition, in order to determine the set of the synthesis/design variables which maximize the system profitability, a parametric analysis was implemented. The novel variable-volume storage system, in both the proposed configurations, was also compared with a constant-volume storage system from the energy and economic points of view. The results showed that the presented storage system allows one to save up to 20% of the natural gas used by the auxiliary boiler only for very high solar fractions. In all the other cases, marginal savings are achieved by the

  16. HANFORD DOUBLE-SHELL TANK THERMAL and SEISMIC PROJECT-ANSYS BENCHMARK ANALYSIS OF SEISMICALLY INDUCED FLUID-STRUCTURE INTERACTION IN A HANFORD DOUBLE-SHELL PRIMARY TANK

    International Nuclear Information System (INIS)

    MACKEY, T.C.

    2006-01-01

    M and D Professional Services, Inc. (M and D) is under subcontract to Pacific Northwest National Laboratories (PNNL) to perform seismic analysis of the Hanford Site Double-Shell Tanks (DSTs) in support of a project entitled ''Double-Shell Tank (DSV Integrity Project-DST Thermal and Seismic Analyses)''. The overall scope of the project is to complete an up-to-date comprehensive analysis of record of the DST System at Hanford in support of Tri-Party Agreement Milestone M-48-14. The work described herein was performed in support of the seismic analysis of the DSTs. The thermal and operating loads analysis of the DSTs is documented in Rinker et al. (2004). The overall seismic analysis of the DSTs is being performed with the general-purpose finite element code ANSYS. The overall model used for the seismic analysis of the DSTs includes the DST structure, the contained waste, and the surrounding soil. The seismic analysis of the DSTs must address the fluid-structure interaction behavior and sloshing response of the primary tank and contained liquid. ANSYS has demonstrated capabilities for structural analysis, but the capabilities and limitations of ANSYS to perform fluid-structure interaction are less well understood. The purpose of this study is to demonstrate the capabilities and investigate the limitations of ANSYS for performing a fluid-structure interaction analysis of the primary tank and contained waste. To this end, the ANSYS solutions are benchmarked against theoretical solutions appearing in BNL 1995, when such theoretical solutions exist. When theoretical solutions were not available, comparisons were made to theoretical solutions of similar problems and to the results from Dytran simulations. The capabilities and limitations of the finite element code Dytran for performing a fluid-structure interaction analysis of the primary tank and contained waste were explored in a parallel investigation (Abatt 2006). In conjunction with the results of the global ANSYS

  17. Refurbishment and retrofitting of SF6 gas storage tanks of the pelletron accelerator

    International Nuclear Information System (INIS)

    Reddy, G.R.; Datar, V.M.; Parulekar, Y.M.

    2015-01-01

    The BARC-TIFR Pelletron Accelerator Facility has completed more than twenty six years of successful round-the-clock operation, serving diverse users from institutions within and outside DAE. The main accelerating structure and associated subsystems are housed in the accelerator tank under SF 6 gas medium. During maintenance of the accelerator, the SF 6 gas present in the accelerator tank is transferred in the four storage tanks located on the terrace of the building open to outside environment. These four storage tanks (with ∼ 1/4th of the main tank volume each) are ∼ 4.27 m in diameter and ∼ 10 m in height each and are supported on RCC ring beams which are monolithically connected with the RCC structure below. Over the years, the anchor bolts and the base plates of support structure of storage tanks were found corroded and the foundation RCC ring beam indicated a few corrosion cracks. Health assessment of relevant structures and components were carried out. Considering the limitations of existing anchorage and also giving due considerations for reparability and replaceability, a new anchorage system was designed. The entire refurbishment and retrofitting works pertaining to the four SF 6 gas storage tanks was executed in a time bound manner to comply with the then PASC (Particle Accelerator Safety Committee) recommendations successfully, without disrupting the operations of the round-the-clock running Pelletron Accelerator facility. In addition, the thickness measurements for the storage tanks were performed. The relief valves and rupture disc assemblies across the storage tanks were replaced and reinstalled after introducing appropriate manual valves as suggested by the PASC. A new test set up was fabricated to perform pneumatic testing at the recommended pressure off-line for these relief valves and rupture disc assemblies prior to reinstallation. This paper describes the comprehensive rehabilitation and retrofitting procedures that were carried out at the

  18. Modeling and analysis of ORNL horizontal storage tank mobilization and mixing

    International Nuclear Information System (INIS)

    Mahoney, L.A.; Terrones, G.; Eyler, L.L.

    1994-06-01

    The retrieval and treatment of radioactive sludges that are stored in tanks constitute a prevalent problem at several US Department of Energy sites. The tanks typically contain a settled sludge layer with non-Newtonian rheological characteristics covered by a layer of supernatant. The first step in retrieval is the mobilization and mixing of the supernatant and sludge in the storage tanks. Submerged jets have been proposed to achieve sludge mobilization in tanks, including the 189 m 3 (50,000 gallon) Melton Valley Storage tanks (MVST) at Oak Ridge National Laboratory (ORNL) and the planned 378 m 3 (100,000 gallon) tanks being designed as part of the MVST Capacity Increase Project (MVST-CIP). This report focuses on the modeling of mixing and mobilization in horizontal cylindrical tanks like those of the MVST design using submerged, recirculating liquid jets. The computer modeling of the mobilization and mixing processes uses the TEMPEST computational fluid dynamics program (Trend and Eyler 1992). The goals of the simulations are to determine under what conditions sludge mobilization using submerged liquid jets is feasible in tanks of this configuration, and to estimate mixing times required to approach homogeneity of the contents

  19. Design criteria tank farm storage and staging facility. Revision 1

    International Nuclear Information System (INIS)

    Lott, D.T.

    1994-01-01

    Tank Farms Operations must store/stage material and equipment until work packages are ready to work. Consumable materials are also required to be stored for routine and emergency work. Connex boxes and open storage is currently used for much of the storage because of the limited space at 272AW and 272WA. Safety issues based on poor housekeeping and material deteriorating due to weather damage has resulted from this inadequate storage space. It has been determined that a storage building in close proximity to the Tank Farm work force would be cost effective. Project W-402 and W-413 will provide a storage/staging area in 200 East and West Areas by the construction of two new storage facilities. The new facilities will be used by Operations, Maintenance and Materials groups to adequately store material and equipment. These projects will also furnish electrical services to the facilities for lighting and HVAC. Fire Protection shall be extended to the 200 East facility from 272AW if necessary

  20. Tank Farm Interim Surface Barrier Materials And Runoff Alternatives Study

    International Nuclear Information System (INIS)

    Holm, M.J.

    2009-01-01

    This report identifies candidate materials and concepts for interim surface barriers in the single-shell tank farms. An analysis of these materials for application to the TY tank farm is also provided.