WorldWideScience

Sample records for single-shell nuclear waste

  1. Organic carbon in Hanford single-shell tank waste

    International Nuclear Information System (INIS)

    Toth, J.J.; Willingham, C.E.; Heasler, P.G.; Whitney, P.D.

    1994-04-01

    Safety of Hanford single-shell tanks (SSTs) containing organic carbon is a concern because the carbon in the presence of oxidizers (NO 3 or NO 2 ) is combustible when sufficiently concentrated and exposed to elevated temperatures. A propagating chemical reaction could potentially occur at high temperature (above 200 C). The rapid increase in temperature and pressure within a tank might result in the release of radioactive waste constituents to the environment. The purpose of this study is to gather available laboratory information about the organic carbon waste inventories stored in the Hanford SSTs. Specifically, the major objectives of this investigation are: Review laboratory analytical data and measurements for SST composite core and supernatant samples for available organic data; Assess the correlation of organic carbon estimated utilizing the TRAC computer code compared to laboratory measurements; and From the laboratory analytical data, estimate the TOC content with confidence levels for each of the 149 SSTs

  2. Organic carbon in Hanford single-shell tank waste

    International Nuclear Information System (INIS)

    Toth, J.J.; Willingham, C.E.; Heasler, P.G.; Whitney, P.D.

    1994-07-01

    This report documents an analysis performed by Pacific Northwest Laboratory (PNL) involving the organic carbon laboratory measurement data for Hanford single-shell tanks (SSTS) obtained from a review of the laboratory analytical data. This activity was undertaken at the request of Westinghouse Hanford Company (WHC). The objective of this study is to provide a best estimate, including confidence levels, of total organic carbon (TOC) in each of the 149 SSTs at Hanford. The TOC analyte information presented in this report is useful as part of the criteria to identify SSTs for additional measurements or monitoring for the organic safety program. This report is a precursor to an investigation of TOC and moisture in Hanford SSTS, in order to provide best estimates for each together in one report. Measured laboratory data were obtained for 75 of the 149 SSTS. The data represent a thorough investigation of data from 224 tank characterization datasets, including core-sampling and process laboratory data. Liquid and solid phase TOC values were investigated by examining selected tanks with both reported TOC values in solid and liquid phases. Some relationships were noted, but there was no clustering of data or significance between the solid and liquid phases. A methodology was developed for estimating the distribution and levels of TOC in SSTs using a logarithmic scale and an analysis of variance (ANOVA) technique. The methodology grouped tanks according to waste type using the Sort On Radioactive Waste Type (SORWT) grouping method. The SORWT model categorizes Hanford SSTs into groups of tanks expected to exhibit similar characteristics based on major waste types and processing histories. The methodology makes use of laboratory data for the particular tank and information about the SORWT group of which the tank is a member. Recommendations for a simpler tank grouping strategy based on organic transfer records were made

  3. Review of technologies for the pretreatment of retrieved single-shell tank waste at Hanford

    International Nuclear Information System (INIS)

    Gerber, M.A.

    1992-08-01

    The purpose of the study reported here was to identify and evaluate innovative processes that could be used to pretreat mixed waste retrieved from the 149 single-shell tanks (SSTs) on the US Department of Energy's (DOE) Hanford site. The information was collected as part of the Single Shell Tank Waste Treatment project at Pacific Northwest Laboratory (PNL). The project is being conducted for Westinghouse Hanford Company under their SST Disposal Program

  4. A Survey of Vapors in the Headspaces of Single-Shell Waste Tanks

    Energy Technology Data Exchange (ETDEWEB)

    Stock, Leon M.; Huckaby, James L.

    2000-10-31

    This report summarizes data on the organic vapors in the single-shell high level radioactive waste tanks at the Hanford site to support a forthcoming toxicological study. All data were obtained from the Tank Characterization Database (PNNL 1999). The TCD contains virtually all the available tank headspace characterization data from 1992 to the present, and includes data for 109 different single-shell waste tanks. Each single-shell tank farm and all major waste types are represented. Descriptions of the sampling and analysis methods have been given elsewhere (Huckaby et al. 1995, Huckaby et al. 1996), and references for specific data are available in the TCD. This is a revision of a report with the same title issued on March 1, 2000 (Stock and Huckaby 2000).

  5. Static internal pressure capacity of Hanford Single-Shell Waste Tanks

    International Nuclear Information System (INIS)

    Julyk, L.J.

    1994-01-01

    Underground single-shell waste storage tanks located at the Hanford Site in Richland, Washington, generate gaseous mixtures that could be ignited, challenging the structural integrity of the tanks. The structural capacity of the single-shell tanks to internal pressure is estimated through nonlinear finite-element structural analyses of the reinforced concrete tank. To determine their internal pressure capacity, designs for both the million-gallon and the half-million-gallon tank are evaluated on the basis of gross structural instability

  6. Static internal pressure capacity of Hanford Single-Shell Waste Tanks

    Energy Technology Data Exchange (ETDEWEB)

    Julyk, L.J.

    1994-07-19

    Underground single-shell waste storage tanks located at the Hanford Site in Richland, Washington, generate gaseous mixtures that could be ignited, challenging the structural integrity of the tanks. The structural capacity of the single-shell tanks to internal pressure is estimated through nonlinear finite-element structural analyses of the reinforced concrete tank. To determine their internal pressure capacity, designs for both the million-gallon and the half-million-gallon tank are evaluated on the basis of gross structural instability.

  7. Polyethylene encapsulation of single shell tank low-level wastes

    International Nuclear Information System (INIS)

    Kalb, P.D.; Fuhrmann, M.; Colombo, P.

    1993-01-01

    Polyethylene encapsulation is being explored for potential use in treating nitrate salts and sludges at US Department of Energy (US DOE) underground storage tank facilities. Some of these wastes contain high concentrations of fission products and are expected to maintain equilibrium temperatures of 50--70 degrees C for many years. The potential effects of elevated temperature and high radiation conditions on key waste form properties (e.g., mechanical integrity, leachability) are examined. After 6 months of thermal conditioning, waste form tests specimens show no degradation in mechanical integrity. Leaching at elevated temperature resulted in a small increase in leach rate (a factor of less than two), while diffusion remained the dominant mechanism of release. Full-scale polyethylene waste forms containing 50--70 wt % nitrate salt can be expected to leach a total of 5--17% of the original contaminant source term after 300 years of leaching under worst-case conditions (fully saturated at 70 degrees C)

  8. Research of documents pertaining to waste migration from leaking single-shell tanks

    Energy Technology Data Exchange (ETDEWEB)

    Consort, S.D. [ICF Kaiser Hanford Co., Richland, WA (United States)

    1994-09-30

    This report contains the results from an investigation of the literature concerning single-shell tank (SST) leaks on the Hanford Site. The purpose of the investigation is to determine if available data confirm or refute the assertion that leaked waste from the SSTs has reached ground water. There are 67 leaking single-shell tanks (SSTs) on the Hanford Site. Although the maximum volume of leaked waste is approximately 4,013,000 L (1,060,000 gal), it is not the only waste in the ground beneath the 200 Area. Before 1966, supernatant solution was intentionally discharged from the cascading SSTs to the ground. Other leaks from piping and surface spills contributed to the waste in the ground. The maximum estimated volume of unintentionally leaked waste from the tanks is less than 1% of the intentionally released liquid waste that was sent to the cribs and trenches from the SSTs. The volume does not include the liquid waste sent intentionally from other facilities directly to the cribs, trenches, and injection wells. The components and concentrations of the intentionally released waste were in compliance with applicable standards at the time of release.

  9. Gas retention and release behavior in Hanford single-shell waste tanks

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, C.W.; Brewster, M.E.; Gauglitz, P.A.; Mahoney, L.A.; Meyer, P.A.; Recknagle, K.P.; Reid, H.C.

    1996-12-01

    This report describes the current understanding of flammable gas retention and release in Hanford single-shell waste tanks based on theory, experimental results, and observations of tank behavior. The single-shell tanks likely to pose a flammable gas hazard are listed and described, and photographs of core extrusions and the waste surface are included. The credible mechanisms for significant flammable gas releases are described, and release volumes and rates are quantified as much as possible. The only mechanism demonstrably capable of producing large ({approximately}100 m{sup 3}) spontaneous gas releases is the buoyant displacement, which occurs only in tanks with a relatively deep layer of supernatant liquid. Only the double-shell tanks currently satisfy this condition. All release mechanisms believed plausible in single-shell tanks have been investigated, and none have the potential for large spontaneous gas releases. Only small spontaneous gas releases of several cubic meters are likely by these mechanisms. The reasons several other postulated gas release mechanisms are implausible or incredible are also given.

  10. Gas retention and release behavior in Hanford single-shell waste tanks

    International Nuclear Information System (INIS)

    Stewart, C.W.; Brewster, M.E.; Gauglitz, P.A.; Mahoney, L.A.; Meyer, P.A.; Recknagle, K.P.; Reid, H.C.

    1996-12-01

    This report describes the current understanding of flammable gas retention and release in Hanford single-shell waste tanks based on theory, experimental results, and observations of tank behavior. The single-shell tanks likely to pose a flammable gas hazard are listed and described, and photographs of core extrusions and the waste surface are included. The credible mechanisms for significant flammable gas releases are described, and release volumes and rates are quantified as much as possible. The only mechanism demonstrably capable of producing large (∼100 m 3 ) spontaneous gas releases is the buoyant displacement, which occurs only in tanks with a relatively deep layer of supernatant liquid. Only the double-shell tanks currently satisfy this condition. All release mechanisms believed plausible in single-shell tanks have been investigated, and none have the potential for large spontaneous gas releases. Only small spontaneous gas releases of several cubic meters are likely by these mechanisms. The reasons several other postulated gas release mechanisms are implausible or incredible are also given

  11. Preliminary performance assessment strategy for single-shell tank waste disposal

    International Nuclear Information System (INIS)

    Sonnichsen, J.C. Jr.

    1991-10-01

    The disposal of the waste stored in single-shell tanks at the Hanford Site is recognized as a major environmental concern. A comprehensive program has been initiated to evaluate the various alternatives available for disposal of these wastes. Theses wastes will be disposed of in a manner consistent with applicable laws and regulations. Long-term waste isolation is one measure of performance that will be used for purposes of selection. The performance of each disposal alternative will be simulated using numerical models. Contained herein is a discussion of the strategy that has and continues to evolve to establish a general analytical framework to evaluate this performance. This general framework will be used to construct individual models of each waste disposal alternative selected for purposes of evaluation. 30 refs., 3 figs

  12. Functions and requirements for subsurface barriers used in support of single-shell tank waste retrieval

    International Nuclear Information System (INIS)

    Lowe, S.S.

    1993-01-01

    The mission of the Tank Waste Remediation System (TWRS) Program is to store, treat, and immobilize highly radioactive Hanford waste in an environmentally sound, safe, and cost-effective manner. The scope of the TWRS Program includes project and program activities for receiving, storing, maintaining, treating, and disposing onsite, or packaging for offsite disposal, all Hanford tank waste. Hanford tank waste includes the contents of 149 single-shell tanks (SSTs) and 28 double-shell tanks (DSTs), plus any new waste added to these facilities, and all encapsulated cesium and strontium stored onsite and returned from offsite users. A key element of the TWRS Program is retrieval of the waste in the SSTs. The waste stored in these underground tanks must be removed in order to minimize environmental, safety, and health risks associated with continuing waste storage. Subsurface barriers are being considered as a means to mitigate the effects of tank leaks including those occurring during SST waste retrieval. The functions to be performed by subsurface barriers based on their role in retrieving waste from the SSTs are described, and the requirements which constrain their application are identified. These functions and requirements together define the functional baseline for subsurface barriers

  13. Analysis of organic carbon and moisture in Hanford single-shell tank waste

    Energy Technology Data Exchange (ETDEWEB)

    Toth, J.J.; Heasler, P.G.; Lerchen, M.E.; Hill, J.G.; Whitney, P.D.

    1995-05-01

    This report documents a revised analysis performed by Pacific Northwest Laboratory involving the organic carbon laboratory measurement data for Hanford single-shell tanks (SSTs) obtained from a review of the laboratory analytical data. This activity has as its objective to provide a best-estimate, including confidence levels, of total organic carbon (TOC) and moisture in each of the 149 SSTs at Hanford. The TOC and moisture information presented in this report is useful as part of the criteria to identify SSTs for additional measurements, or monitoring for the Organic Safety Program. In April 1994, an initial study of the organic carbon in Hanford single-shell tanks was completed at PNL. That study reflected the estimates of TOC based on tank characterizations datasets that were available at the time. Also in that study, estimation of dry basis TOC was based on generalized assumptions pertaining to the moisture of the tank wastes. The new information pertaining to tank moisture and TOC data that has become available from the current study influences the best estimates of TOC in each of the SSTs. This investigation of tank TOC and moisture has resulted in improved estimates based on waste phase: saltcake, sludge, or liquid. This report details the assumptions and methodologies used to develop the estimates of TOC and moisture in each of the 149 SSTs at Hanford.

  14. Analysis of organic carbon and moisture in Hanford single-shell tank waste

    International Nuclear Information System (INIS)

    Toth, J.J.; Heasler, P.G.; Lerchen, M.E.; Hill, J.G.; Whitney, P.D.

    1995-05-01

    This report documents a revised analysis performed by Pacific Northwest Laboratory involving the organic carbon laboratory measurement data for Hanford single-shell tanks (SSTs) obtained from a review of the laboratory analytical data. This activity has as its objective to provide a best-estimate, including confidence levels, of total organic carbon (TOC) and moisture in each of the 149 SSTs at Hanford. The TOC and moisture information presented in this report is useful as part of the criteria to identify SSTs for additional measurements, or monitoring for the Organic Safety Program. In April 1994, an initial study of the organic carbon in Hanford single-shell tanks was completed at PNL. That study reflected the estimates of TOC based on tank characterizations datasets that were available at the time. Also in that study, estimation of dry basis TOC was based on generalized assumptions pertaining to the moisture of the tank wastes. The new information pertaining to tank moisture and TOC data that has become available from the current study influences the best estimates of TOC in each of the SSTs. This investigation of tank TOC and moisture has resulted in improved estimates based on waste phase: saltcake, sludge, or liquid. This report details the assumptions and methodologies used to develop the estimates of TOC and moisture in each of the 149 SSTs at Hanford

  15. FRACTIONAL CRYSTALLIZATION OF HANFORD SINGLE-SHELL TANK WASTES. A MODELING APPROACH

    International Nuclear Information System (INIS)

    HAMILTON, D.W.

    2006-01-01

    The Hanford site has 149 underground single-shell tanks (SST) storing mostly soluble, multi-salt, mixed wastes resulting from Cold War era weapons material production. These wastes must be retrieved and the salts immobilized before the tanks can be closed to comply with an overall site closure consent order entered into by the U.S. Department of Energy (DOE), the Environmental Protection Agency, and Washington State. Water will be used to retrieve the wastes and the resulting solution will be pumped to the proposed treatment process where a high curie (primarily 137 Cs) waste fraction will be separated from the other waste constituents. The separated waste streams will then be vitrified to allow for safe storage as an immobilized high level waste, or low level waste, borosilicate glass. Fractional crystallization, a common unit operation for production of industrial chemicals and pharmaceuticals, was proposed as the method to separate the salt wastes; it works by evaporating excess water until the solubilities of various species in the solution are exceeded (the solubility of a particular species depends on its concentration, temperature of the solution, and the presence of other ionic species in the solution). By establishing the proper conditions, selected pure salts can be crystallized and separated from the radioactive liquid phase

  16. Trade study of leakage detection, monitoring, and mitigation technologies to support Hanford single-shell waste retrieval

    International Nuclear Information System (INIS)

    Hertzel, J.S.

    1996-03-01

    The U.S. Department of Energy has established the Tank Waste Remediation System to safely manage and dispose of low-level, high-level, and transuranic wastes currently stored in underground storage tanks at the Hanford Site in Eastern Washington. This report supports the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone No. M-45-08-T01 and addresses additional issues regarding single-shell tank leakage detection, monitoring, and mitigation technologies and provide an indication of the scope of leakage detection, monitoring, and mitigation activities necessary to support the Tank Waste Remedial System Initial Single-shell Tank Retrieval System project

  17. Developing a scarifier to retrieve radioactive waste from Hanford single-shell tanks

    International Nuclear Information System (INIS)

    Bamberger, J.A.; Steele, D.E.

    1993-08-01

    Radioactive waste is stored in 149 3,785 m 3 (million gal) single-shell tanks on the US Department of Energy's Hanford Reservation in eastern Washington. To minimize leakage as the tanks age, the free liquid has been pumped out, leaving concentrated solidified salt cake and sludge deposits. Now methods to dislodge and remove this waste are being developed so that the waste can be retrieved and processed for permanent storage. This paper presents research and development on ultrahigh-pressure water-jet technology to fracture and dislodge the wastes in these tanks. A water-based prototype scarifier with an integral conveyance system is being developed, and its performance demonstrated in a coupled analytical and experimental investigation. This paper describes experimental objectives and approach and results of the single jet experiments. Previous testing indicates that the method can be readily applied to salt cake waste forms; retrieval and conveyance of sludge and viscous fluid waste forms may present additional challenges

  18. Nuclear waste

    International Nuclear Information System (INIS)

    1989-01-01

    This paper reviews the Department of Energy's management of underground single-shell waste storage tanks at its Hanford, Washington, site. The tanks contain highly radioactive and nonradioactive hazardous liquid and solid wastes from nuclear materials production. Hundreds of thousands of gallons of these wastes have leaked, contaminating the soil, and a small amount of leaked waste has reached the groundwater. DOE does not collect sufficient data to adequately trace the migration of the leaks through the soil, and studies predicting the eventual environmental impact of tank leaks do not provide convincing support for DOE's conclusion that the impact will be low or nonexistent. DOE can do more to minimize the environmental risks associated with leaks. To reduce the environmental impact of past leaks, DOE may be able to install better ground covering over the tanks to reduce the volume of precipitation that drains through the soil and carries contaminants toward groundwater

  19. FRACTIONAL CRYSTALLIZATION OF HANFORD SINGLE SHELL TANK (SST) WASTES FROM CONCEPT TO PILOT PLANT

    Energy Technology Data Exchange (ETDEWEB)

    GENIESSE, D.J.; NELSON, E.A.; HAMILTON, D.W.; MAJORS, J.H.; NORDAHL, T.K.

    2006-12-08

    The Hanford site has 149 underground single-shell tanks (SST) storing mostly soluble, multi-salt mixed wastes resulting from Cold War era weapons material production. These wastes must be retrieved and the salts immobilized before the tanks can be closed to comply with an overall site-closure consent order entered into by the US Department of Energy, the Environmental Protection Agency, and the State of Washington. Water will be used to retrieve the wastes and the resulting solution will be pumped to a proposed pretreatment process where a high-curie (primarily {sup 137}Cs) waste fraction will be separated from the other waste constituents. The separated waste streams will then be vitrified to allow for safe storage as an immobilized high-level waste, or low-level waste, borosilicate glass. Fractional crystallization, a common unit operation for production of industrial chemicals and pharmaceuticals, was proposed as the method to separate the salt wastes; it works by evaporating excess water until the solubilities of various species in the solution are exceeded (the solubility of a particular species depends on its concentration, temperature of the solution, and the presence of other ionic species in the solution). By establishing the proper conditions, selected pure salts can be crystallized and separated from the radioactive liquid phase. The aforementioned parameters, along with evaporation rate, proper agitation, and residence time, determine nucleation and growth kinetics and the resulting habit and size distribution of the product crystals. These crystals properties are important considerations for designing the crystallizer and solid/liquid separation equipment. A structured program was developed to (a) demonstrate that fractional crystallization could be used to pre-treat Hanford tank wastes and (b) provide data to develop a pilot plant design.

  20. FRACTIONAL CRYSTALLIZATION OF HANFORD SINGLE-SHELL TANK WASTES FROM CONCEPT TO PILOT PLANT

    International Nuclear Information System (INIS)

    GENIESSE, D.J.; NELSON, E.A.; HAMILTON, D.W.; MAJORS, J.H.; NORDAHL, T.K.

    2006-01-01

    The Hanford site has 149 underground single-shell tanks (SST) storing mostly soluble, multi-salt mixed wastes resulting from Cold War era weapons material production. These wastes must be retrieved and the salts immobilized before the tanks can be closed to comply with an overall site-closure consent order entered into by the US Department of Energy, the Environmental Protection Agency, and the State of Washington. Water will be used to retrieve the wastes and the resulting solution will be pumped to a proposed pretreatment process where a high-curie (primarily 137 Cs) waste fraction will be separated from the other waste constituents. The separated waste streams will then be vitrified to allow for safe storage as an immobilized high-level waste, or low-level waste, borosilicate glass. Fractional crystallization, a common unit operation for production of industrial chemicals and pharmaceuticals, was proposed as the method to separate the salt wastes; it works by evaporating excess water until the solubilities of various species in the solution are exceeded (the solubility of a particular species depends on its concentration, temperature of the solution, and the presence of other ionic species in the solution). By establishing the proper conditions, selected pure salts can be crystallized and separated from the radioactive liquid phase. The aforementioned parameters, along with evaporation rate, proper agitation, and residence time, determine nucleation and growth kinetics and the resulting habit and size distribution of the product crystals. These crystals properties are important considerations for designing the crystallizer and solid/liquid separation equipment. A structured program was developed to (a) demonstrate that fractional crystallization could be used to pre-treat Hanford tank wastes and (b) provide data to develop a pilot plant design

  1. Contaminant Release from Residual Waste in Single Shell Tanks at the Hanford Site, Washington, USA - 9276

    International Nuclear Information System (INIS)

    Cantrell, Kirk J.; Krupka, Kenneth M.; Deutsch, William J.; Lindberg, Michael J.

    2009-01-01

    Determinations of elemental and solid-phase compositions, and contaminant release studies have been applied in an ongoing study of residual tank wastes (i.e., waste remaining after final retrieval operations) from five of 149 underground single-shell storage tanks (241-C-103, 241-C-106, 241-C-202, 241-C-203, and 241-S-112) at the U.S. Department of Energy's Hanford Site in Washington State. This work is being conducted to support performance assessments that will be required to evaluate long-term health and safety risks associated with tank site closure. The results of studies completed to date show significant variability in the compositions, solid phase properties, and contaminant release characteristics from these residual tank wastes. This variability is the result of differences in waste chemistry/composition of wastes produced from several different spent fuel reprocessing schemes, subsequent waste reprocessing to remove certain target constituents, tank farm operations that concentrated wastes and mixed wastes between tanks, and differences in retrieval processes used to remove the wastes from the tanks. Release models were developed based upon results of chemical characterization of the bulk residual waste, solid-phase characterization (see companion paper 9277 by Krupka et al.), leaching and extraction experiments, and geochemical modeling. In most cases empirical release models were required to describe contaminant release from these wastes. Release of contaminants from residual waste was frequently found to be controlled by the solubility of phases that could not be identified and/or for which thermodynamic data and/or dissolution rates have not been measured. For example, significant fractions of Tc-99, I-129, and Cr appear to be coprecipitated at trace concentrations in metal oxide phases that could not be identified unambiguously. In the case of U release from tank 241-C-103 residual waste, geochemical calculations indicated that leachate

  2. Contaminant Release from Residual Waste in Closed Single-Shell Tanks and Other Waste Forms Associated with the Tanks

    International Nuclear Information System (INIS)

    Deutsch, William J.

    2008-01-01

    This chapter describes the release of contaminants from the various waste forms that are anticipated to be associated with closure of the single-shell tanks. These waste forms include residual sludge or saltcake that will remain in the tanks after waste retrieval. Other waste forms include engineered glass and cementitious materials as well as contaminated soil impacted by previous tank leaks. This chapter also describes laboratory testing to quantify contaminant release and how the release data are used in performance/risk assessments for the tank waste management units and the onsite waste disposal facilities. The chapter ends with a discussion of the surprises and lessons learned to date from the testing of waste materials and the development of contaminant release models

  3. SAFETY EVALUATION OF OXALIC ACID WASTE RETRIEVAL IN SINGLE SHELL TANK (SST) 241-C-106

    International Nuclear Information System (INIS)

    SHULTZ, M.V.

    2003-01-01

    This report documents the safety evaluation of the process of retrieving sludge waste from single-shell tank 241-C-106 using oxalic acid. The results of the HAZOP, safety evaluation, and control allocation/decision are part of the report. This safety evaluation considers the use of oxalic acid to recover residual waste in single-shell tank (SST) 241-C-106. This is an activity not addressed in the current tank farm safety basis. This evaluation has five specific purposes: (1) Identifying the key configuration and operating assumptions needed to evaluate oxalic acid dissolution in SST 241-C-106. (2) Documenting the hazardous conditions identified during the oxalic acid dissolution hazard and operability study (HAZOP). (3) Documenting the comparison of the HAZOP results to the hazardous conditions and associated analyzed accident currently included in the safety basis, as documented in HNF-SD-WM-TI-764, Hazard Analysis Database Report. (4) Documenting the evaluation of the oxalic acid dissolution activity with respect to: (A) Accident analyses described in HNF-SD-WM-SAR-067, Tank Farms Final Safety Analysis Report (FSAR), and (B) Controls specified in HNF-SD-WM-TSR-006, Tank Farms Technical Safety Requirements (TSR). (5) Documenting the process and results of control decisions as well as the applicability of preventive and/or mitigative controls to each oxalic acid addition hazardous condition. This safety evaluation is not intended to be a request to authorize the activity. Authorization issues are addressed by the unreviewed safety question (USQ) evaluation process. This report constitutes an accident analysis

  4. Polyethylene encapsulation of single-shell tank low-level wastes

    International Nuclear Information System (INIS)

    Kalb, P.D.

    1993-06-01

    For the past 50 years, the US Department of Energy and its predecessor agencies have stored large volumes of defense-related radioactive and mixed wastes in underground tanks. Initially, these tanks were constructed of single steel walls surrounded by reinforced concrete and are known as single-shell tanks (SSTs). Over time, the highly corrosive contents caused many of the tanks to begin to leak. As part of its effort to remediate leaking and potentially leaky tanks, DOE has established the Underground Storage Tank Integrated Demonstration (UST-ID). The overall objectives of the UST-ID include facilitating the development and demonstration of enhanced technologies that will lead to improved treatment and stabilization of underground storage tank wastes. The host site for the UST-ID is Hanford, but the program addresses potential use of these emerging technologies in remediation of tanks at five DOE facilities: Hanford, Fernald, Idaho, Oak Ridge, and Savannah River. In order to meet its objectives, the UST-ID supports technology development in six focus areas including: (1) waste characterization, (2) high- and low-level waste treatment and disposal, (3) retrieval, transfer, and storage, (4) waste separation, (5) in situ treatment and disposal, and (6) site closure. This report describes work supported by the UST-ID, conducted at Brookhaven National Laboratory, to develop and demonstrate a polyethylene waste encapsulation process for low-level radioactive and hazardous mixed wastes stored in underground tanks. The objective of Phase I is to investigate the potential impacts of residual heat and high radiation doses on key waste forms properties including mechanical integrity, strength, and leachability

  5. RCRA Assessment Plan for Single-Shell Tank Waste Management Area TX-TY

    Energy Technology Data Exchange (ETDEWEB)

    Horton, Duane G.

    2007-03-26

    WMA TX-TY contains underground, single-shell tanks that were used to store liquid waste that contained chemicals and radionuclides. Most of the liquid has been removed, and the remaining waste is regulated under the RCRA as modi¬fied in 40 CFR Part 265, Subpart F and Washington State’s Hazardous Waste Management Act . WMA TX-TY was placed in assessment monitoring in 1993 because of elevated specific conductance. A groundwater quality assessment plan was written in 1993 describing the monitoring activities to be used in deciding whether WMA TX-TY had affected groundwater. That plan was updated in 2001 for continued RCRA groundwater quality assessment as required by 40 CFR 265.93 (d)(7). This document further updates the assessment plan for WMA TX-TY by including (1) information obtained from ten new wells installed at the WMA after 1999 and (2) information from routine quarterly groundwater monitoring during the last five years. Also, this plan describes activities for continuing the groundwater assessment at WMA TX TY.

  6. Phase 1 RCRA Facility Investigation and Corrective Measures Study Work Plan for Single Shell Tank Waste Management Areas

    International Nuclear Information System (INIS)

    ROGERS, P.M.

    2000-01-01

    This document is the master work plan for the Resource Conservation and Recovery Act of 1976 (RCRA) for single-shell tank (SST) farms at the Hanford Site. Evidence indicates that releases at four of the seven SST waste management areas have impacted

  7. Phase 1 RCRA Facility Investigation and Corrective Measures Study Work Plan for Single Shell Tank Waste Management Areas

    Energy Technology Data Exchange (ETDEWEB)

    ROGERS, P.M.

    2000-06-01

    This document is the master work plan for the Resource Conservation and Recovery Act of 1976 (RCRA) for single-shell tank (SST) farms at the Hanford Site. Evidence indicates that releases at four of the seven SST waste management areas have impacted.

  8. Load requirements for maintaining structural integrity of Hanford single-shell tanks during waste feed delivery and retrieval activities

    International Nuclear Information System (INIS)

    JULYK, L.J.

    1999-01-01

    This document provides structural load requirements and their basis for maintaining the structural integrity of the Hanford Single-Shell Tanks during waste feed delivery and retrieval activities. The requirements are based on a review of previous requirements and their basis documents as well as load histories with particular emphasis on the proposed lead transfer feed tanks for the privatized vitrification plant

  9. Load requirements for maintaining structural integrity of Hanford single-shell tanks during waste feed delivery and retrieval activities

    Energy Technology Data Exchange (ETDEWEB)

    JULYK, L.J.

    1999-09-22

    This document provides structural load requirements and their basis for maintaining the structural integrity of the Hanford Single-Shell Tanks during waste feed delivery and retrieval activities. The requirements are based on a review of previous requirements and their basis documents as well as load histories with particular emphasis on the proposed lead transfer feed tanks for the privatized vitrification plant.

  10. Performance and risk assessment of subsurface barriers for single-shell tank waste retrieval

    Energy Technology Data Exchange (ETDEWEB)

    Bazinet, G.D.; Cruse, J.M.; Hampsten, K.L. [Westinghouse Hanford Co., Richland, WA (United States); Treat, R.L.

    1995-02-01

    Subsurface barriers are among various alternatives under evaluation to mitigate the threat of leakage from the Hanford Site`s 149 single-shell high-level radioactive waste tanks. The Tank Waste Remediation System (TWRS) division of Westinghouse Hanford Company is conducting this evaluation of subsurface barriers and other alternatives, focusing on risk and cost as performance measures. A number of alternative retrieval/closure approaches were evaluated in terms of risks (carcinogenic and toxicological) to a postulated maximally exposed individual. In addition, worker and accident risks were evaluated and factors developed for each alternative on a relative basis. The work performed to date indicates the use of subsurface barriers may potentially reduce public risk by limiting contamination of groundwater below the Hanford Site; however, the cost in terms of actual funding and in elevated worker risk is significant. The analyses also assume certain performance levels for technologies that have not been demonstrated in field conditions similar to Hanford Site tank farms. The evaluations summarized herein are being used to support a decision by representatives of the US Department of Energy, Richland Operations Office, the Washington State Department of Ecology (Ecology), and the US Environmental Protection Agency (EPA) regarding potential further development of subsurface barrier technology.

  11. Performance and risk assessment of subsurface barriers for single-shell tank waste retrieval

    International Nuclear Information System (INIS)

    Bazinet, G.D.; Cruse, J.M.; Hampsten, K.L.; Treat, R.L.

    1995-02-01

    Subsurface barriers are among various alternatives under evaluation to mitigate the threat of leakage from the Hanford Site's 149 single-shell high-level radioactive waste tanks. The Tank Waste Remediation System (TWRS) division of Westinghouse Hanford Company is conducting this evaluation of subsurface barriers and other alternatives, focusing on risk and cost as performance measures. A number of alternative retrieval/closure approaches were evaluated in terms of risks (carcinogenic and toxicological) to a postulated maximally exposed individual. In addition, worker and accident risks were evaluated and factors developed for each alternative on a relative basis. The work performed to date indicates the use of subsurface barriers may potentially reduce public risk by limiting contamination of groundwater below the Hanford Site; however, the cost in terms of actual funding and in elevated worker risk is significant. The analyses also assume certain performance levels for technologies that have not been demonstrated in field conditions similar to Hanford Site tank farms. The evaluations summarized herein are being used to support a decision by representatives of the US Department of Energy, Richland Operations Office, the Washington State Department of Ecology (Ecology), and the US Environmental Protection Agency (EPA) regarding potential further development of subsurface barrier technology

  12. Data Package for Past and Current Groundwater Flow and Contamination beneath Single-Shell Tank Waste Management Areas

    Energy Technology Data Exchange (ETDEWEB)

    Horton, Duane G.

    2007-03-16

    This appendix summarizes historic and recent groundwater data collected from the uppermost aquifer beneath the 200 East and 200 West Areas. Although the area of interest is the Hanford Site Central Plateau, most of the information discussed in this appendix is at the scale of individual single-shell tank waste management areas. This is because the geologic, and thus the hydraulic, properties and the geochemical properties (i.e., groundwater composition) are different in different parts of the Central Plateau.

  13. Single Shell Tank Waste Characterization Project for Tank B-110, Core 9 - data package and PNL validation summary report

    International Nuclear Information System (INIS)

    Pool, K.N.; Jones, T.E.; McKinley, S.G.; Tingey, J.M.; Longaker, T.M.; Gibson, J.A.

    1990-01-01

    This Data Package contains results obtained by Pacific Northwest Laboratory (PNL) staff in the characterization and analyses of Core 9 segments taken from the Single-Shell Tank (SST) 110B. The characterization and analysis of Core 9 segments are outlined in the Waste Characterization Plan for Hanford Site Single-Shell Tanks and in the Pacific Northwest Laboratory (PNL) Single-Shell Tank Waste Characterization Support FY 89/90 Statement of Work (SOW), Rev. 1 dated March, 1990. Specific analyses for each sub-sample taken from a segment are delineated in Test Instructions prepared by the PNL Single-Shell Tank Waste Characterization Project Management Office (SST Project) in accordance with procedures contained in the SST Waste Characterization Procedure Compendium (PNL-MA-599). Analytical procedures used in the characterization activities are also included in PNL-MA-599. Core 9 included five segments although segment 1 did not have sufficient material for characterization. The five samplers were received from Westinghouse Hanford Company (WHC) on 11/21-22/89. Each segment was contained in a sampler and was enclosed in a shipping cask. The shipping cask was butted up to the 325-A hot cell and the sampler moved into the hot cell. The material in the sampler (i.e., the segment) was extruded from the sampler, limited physical characteristics assessed, and photographed. At this point samples were taken for particle size and volatile organic analyses. Each segment was then homogenized. Sub-samples were taken for required analyses as delineated in the appropriate Test Instruction. Table 1 includes sample numbers assigned to Core 9 segment materials being transferred from 325-A Hot Cell. Sample numbers 90-0298, 90-0299, 90-0302, and 90-0303 were included in Table 1 although no analyses were requested for these samples. Table 2 lists Core 9 sub-sample numbers per sample preparation method

  14. Geology Data Package for the Single-Shell Tank Waste Management Areas at the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Reidel, Steve P.; Chamness, Mickie A.

    2007-01-01

    This data package discusses the geology of the single-shell tank (SST) farms and the geologic history of the area. The focus of this report is to provide the most recent geologic information available for the SST farms. This report builds upon previous reports on the tank farm geology and Integrated Disposal Facility geology with information available after those reports were published.

  15. Status report: Pretreatment chemistry evaluation FY1997 -- Wash and leach factors for the single-shell tank waste inventory

    Energy Technology Data Exchange (ETDEWEB)

    Colton, N.G.

    1997-08-01

    The wash factors will be used to partition the single-shell tank (SST) inventory into soluble and insoluble portions. The leach factors will be used to estimate the further removal of bulk analytes, such as chromium, aluminum, and phosphate, as well as minor components. Wash and leach factors are given here for 18 analytes, elements expected to drive the volume of material disposed of as high-level waste (HLW). These factors are determined by a weighting methodology developed earlier by this task. Tank-specific analyte inventory values depicted in Tank Waste Data Summary Worksheets, are calculated from concentrations obtained from characterization reports; the waste density; and the tank waste volume. The experimentally determined percentage of analytes removed by washing and leaching in a particular tank waste are translated into a mass (metric tons) in Experimental Washing and Leaching Data Summary Worksheets.

  16. Evaluation of Hanford Single-Shell Waste Tanks Suspected of Water Intrusion

    International Nuclear Information System (INIS)

    Feero, Amie J.; Washenfelder, Dennis J.; Johnson, Jeremy M.; Schofield, John S.

    2013-01-01

    Intrusions evaluations for twelve single-shell tanks were completed in 2013. The evaluations consisted of remote visual inspections, data analysis, and calculations of estimated intrusion rates. The observation of an intrusion or the preponderance of evidence confirmed that six of the twelve tanks evaluated had intrusions. These tanks were tanks 241-A-103, BX-101, BX-103, BX-110, BY-102, and SX-106

  17. Status Report: Pretreatment chemistry evaluation-Wash and leach factors for the single-shell tank waste inventory

    Energy Technology Data Exchange (ETDEWEB)

    Colton, N.G.

    1996-09-01

    This report discusses a methodology developed to depict overall wash and leach factors for the Hanford single-shell tank (SST) inventory. The factors derived from this methodology, which is based on available partitioning data, are applicable to a composite SST inventory rather than only an assumed insoluble portion. The purpose of considering the entire inventory is to provide a more representative picture of the partitioning behavior of the analytes during envisioned waste retrieval and processing activities. The work described in this report was conducted by the Pretreatment Chemistry Evaluation task of the Tank Waste Remediation System (TWRS). The leach factors will be used to estimate the further removal of analytes, such as sodium, aluminum, phosphate, and other minor components. Wash and leach factors are given for elements expected to drive the volume of material disposed of as high-level waste (HLW).

  18. Phase 1 RCRA Facility Investigation/Corrective Measures Study Work Plan for Single-Shell Tank (SST) Waste Management Areas

    International Nuclear Information System (INIS)

    MCCARTHY, M.M.

    1999-01-01

    This document is the master work plan for the Resource Conservation and Recovery Act of 1976 (RCRA) Corrective Action Program (RCAP) for single-shell tank (SST) farms at the US. Department of Energy's (DOE'S) Hanford Site. The DOE Office of River Protection (ORP) initiated the RCAP to address the impacts of past and potential future tank waste releases to the environment. This work plan defines RCAP activities for the four SST waste management areas (WMAs) at which releases have contaminated groundwater. Recognizing the potential need for future RCAP activities beyond those specified in this master work plan, DOE has designated the currently planned activities as ''Phase 1.'' If a second phase of activities is needed for the WMAs addressed in Phase 1, or if releases are detected at other SST WMAs, this master work plan will be updated accordingly

  19. Phase 1 RCRA Facility Investigation & Corrective Measures Study Work Plan for Single Shell Tank (SST) Waste Management Areas

    Energy Technology Data Exchange (ETDEWEB)

    MCCARTHY, M.M.

    1999-08-01

    This document is the master work plan for the Resource Conservation and Recovery Act of 1976 (RCRA) Corrective Action Program (RCAP) for single-shell tank (SST) farms at the US. Department of Energy's (DOE'S) Hanford Site. The DOE Office of River Protection (ORP) initiated the RCAP to address the impacts of past and potential future tank waste releases to the environment. This work plan defines RCAP activities for the four SST waste management areas (WMAs) at which releases have contaminated groundwater. Recognizing the potential need for future RCAP activities beyond those specified in this master work plan, DOE has designated the currently planned activities as ''Phase 1.'' If a second phase of activities is needed for the WMAs addressed in Phase 1, or if releases are detected at other SST WMAs, this master work plan will be updated accordingly.

  20. Development and Deployment of the Extended Reach Sluicing System (ERSS) for Retrieval of Hanford Single Shell Tank Waste. Draft

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, Roger E.; Figley, Reed R.; Innes, A. G.

    2013-11-11

    A history of the evolution and the design development of Extended Reach Sluicer System (ERSS) is presented. Several challenges are described that had to be overcome to create a machine that went beyond the capabilities of prior generation sluicers to mobilize waste in Single Shell Tanks for pumping into Double Shell Tank receiver tanks. Off-the-shelf technology and traditional hydraulic fluid power systems were combined with the custom-engineered components to create the additional functionality of the ERSS, while still enabling it to fit within very tight entry envelope into the SST. Problems and challenges inevitably were encountered and overcome in ways that enhance the state of the art of fluid power applications in such constrained environments. Future enhancements to the ERSS design are explored for retrieval of tanks with different dimensions and internal obstacles.

  1. Development and Deployment of the Extended Reach Sluicing System (ERSS) for Retrieval of Hanford Single Shell Tank Waste. Draft

    International Nuclear Information System (INIS)

    Bauer, Roger E.; Figley, Reed R.; Innes, A. G.

    2013-01-01

    A history of the evolution and the design development of Extended Reach Sluicer System (ERSS) is presented. Several challenges are described that had to be overcome to create a machine that went beyond the capabilities of prior generation sluicers to mobilize waste in Single Shell Tanks for pumping into Double Shell Tank receiver tanks. Off-the-shelf technology and traditional hydraulic fluid power systems were combined with the custom-engineered components to create the additional functionality of the ERSS, while still enabling it to fit within very tight entry envelope into the SST. Problems and challenges inevitably were encountered and overcome in ways that enhance the state of the art of fluid power applications in such constrained environments. Future enhancements to the ERSS design are explored for retrieval of tanks with different dimensions and internal obstacles

  2. Origin of Wastes in Single Shell Tanks [SST] 241-B-110 & 241B-111

    Energy Technology Data Exchange (ETDEWEB)

    JOHNSON, M.E.

    2003-05-02

    A review of waste transfer documents was conducted to identify the origin of wastes present in tanks B-110 and B-111. These tanks initially received second decontamination cycle (2C) waste from the 221-B Bismuth Phosphate Plant, which separated into 2C sludge and supernatant. The supernatant was discharged to cribs. 242-B Evaporator bottoms were briefly stored in these tanks. Later, these tanks received waste from fission product separations conducted at the 221-B Plant.

  3. First generation long-reach manipulator for retrieval of waste from Hanford single-shell tanks

    International Nuclear Information System (INIS)

    Gibbons, P.W.; McDaniel, L.B.

    1994-10-01

    The US Department of Energy, Richland Operations Office, has established the Tank Waste Remediation System to resolve environmental and safety issues related to underground waste-storage tanks at the Hanford Site. The Tank Waste Remediation System has identified the use of an advanced-technology, long-reach manipulator system as a low-water-addition retrieval alternative to past-practice sluicing

  4. First generation long-reach manipulator for retrieval of waste from Hanford single-shell tanks

    Energy Technology Data Exchange (ETDEWEB)

    Gibbons, P.W.; McDaniel, L.B.

    1994-10-01

    The US Department of Energy, Richland Operations Office, has established the Tank Waste Remediation System to resolve environmental and safety issues related to underground waste-storage tanks at the Hanford Site. The Tank Waste Remediation System has identified the use of an advanced-technology, long-reach manipulator system as a low-water-addition retrieval alternative to past-practice sluicing.

  5. Development and testing of single-shell tank waste retrieval technologies: Milestone M-45-01 summary report

    International Nuclear Information System (INIS)

    Shen, E.J.

    1994-08-01

    This report summarizes the activities undertaken to develop single-shell tank (SST) waste retrieval technology and complete scale-model testing. Completion of these activities fulfills the commitment of Milestone M-45-01 of the Hanford Federal Facility Agreement and Consent Order (the Tri-Party Agreement). Initial activities included engineering studies that compiled and evaluated data on all known retrieval technologies. Based on selection criteria incorporating regulatory, safety, and operational issues, several technologies were selected for further evaluation and testing. The testing ranged from small-scale, bench-top evaluations of individual technologies to full-scale integrated tests of multiple subsystems operating concurrently as a system using simulated wastes. The current baseline retrieval method for SSTs is hydraulic sluicing. This method has been used successfully in the past to recover waste from SSTs. Variations of this hydraulic or ''past practice'' sluicing may be used to retrieve the waste from the majority of the SSTs. To minimize the potential for releases to the soil, arm-based retrieval systems may be used to recover waste from tanks that are known or suspected to have leaked. Both hydraulic sluicing and arm-based retrieval will be demonstrated in the first SST. Hydraulic sluicing is expected to retrieve most of the waste, and arm-based retrieval will retrieve wastes that remain after sluicing. Subsequent tanks will be retrieved by either hydraulic sluicing or arm-based methods, but not both. The method will be determined by waste characterization, tank integrity (leak status), and presence of in-tank hardware. Currently, it is assumed that approximately 75% of all SSTs will be retrieved by hydraulic sluicing and the remaining tanks by arm-based methods

  6. Regulatory requirements important to Hanford single-shell tank waste management decisions

    International Nuclear Information System (INIS)

    Keller, J.F.; Woodruff, M.G.

    1989-06-01

    This report provides an initial analysis of the regulations that may be pertinent to SST management activities (e.g., characterization, disposal, retrieval, processing, etc.) and the interrelationships among those regulations. Waste disposal decisions regarding SST waste must consider the regulatory requirements against which technical solutions will be evaluated. Regulatory requirements can also be used as guidelines for management and disposal of waste in a manner that protects human health and safety and the environment. Also, in cases where waste management regulations do not specifically address a waste form, such as radioactive mixed waste, the SST waste may come under the purview of a number of regulations related to radioactive waste management, hazardous waste management, and water and air quality protection. This report provides a comprehensive review of the environmental pollution control and radioactive waste management statutes and regulations that are relevant to SST waste characterization and management. Also, other statutes and regulations that contain technical standards that may be used in the absence of directly applicable regulations are analyzed. 8 refs., 4 figs

  7. Proposed strategy for leak detection, monitoring, and mitigation during Hanford single-shell tank waste retrieval

    Energy Technology Data Exchange (ETDEWEB)

    Hertzel, J.S.

    1996-07-18

    The objective of this document is to propose a strategy for addressing applicable LDMM-related criteria in order to determine an allowable leakage volume for SSTs targeted for waste retrieval using sluicing. A strategy is required to work through the individual ALV criterion (and related issues) in a prioritized,orderly, and efficient manner. All components of the strategy are based upon LDMM-related issues, functions and requirements,and technology alternatives.

  8. Borehole Data Package for Calendar Year 2000 - 2001 RCRA Wells at Single-Shell Tank Waste Management Area S-SX

    Energy Technology Data Exchange (ETDEWEB)

    Horton, Duane G.; Johnson, Vernon G.

    2001-08-15

    Six new resource conservation and Recovery Act (RCRA) groundwater monitoring wells were installed at the single-shell tank farm Waste Management Area S-SX in July 2000 through March 2001 in partial fulfillment of Tri-Party Agreement milestones M-24-00L and M-24-00M. This document describes the drilling, construction, sampling and analyses of samples from the wells.

  9. Results of phase 1 groundwater quality assessment for Single-Shell Tank Waste Management Areas B-BX-BY at the Hanford Site

    International Nuclear Information System (INIS)

    Narbutovskih, S.M.

    1998-02-01

    Pacific Northwest National Laboratory conducted a Phase 1 (or first determination) groundwater quality assessment for the US Department of Energy, Richland Operations Office, in accordance with the Federal Facility Compliance Agreement. The purpose of the assessment was to determine if the Single-Shell Tank Waste Management Area (WMA) B-BX-BY has impacted groundwater quality. This report will document the evidence demonstrating that the WMA has impacted groundwater quality

  10. Results of phase 1 groundwater quality assessment for Single-Shell Tank Waste Management Areas B-BX-BY at the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Narbutovskih, S.M.

    1998-02-01

    Pacific Northwest National Laboratory conducted a Phase 1 (or first determination) groundwater quality assessment for the US Department of Energy, Richland Operations Office, in accordance with the Federal Facility Compliance Agreement. The purpose of the assessment was to determine if the Single-Shell Tank Waste Management Area (WMA) B-BX-BY has impacted groundwater quality. This report will document the evidence demonstrating that the WMA has impacted groundwater quality.

  11. Initial Single-Shell Tank Retrieval System mission analysis report

    International Nuclear Information System (INIS)

    Hertzel, J.S.

    1996-03-01

    This document provides the mission analysis for the Initial Single-Shell Tank Retrieval System task, which supports the Single-Shell Tank Waste Retrieval Program in its commitment to remove waste from single-shell tanks for treatment and final closure

  12. Single Shell Tank (SST) Program Plan

    International Nuclear Information System (INIS)

    HAASS, C.C.

    2000-01-01

    This document provides an initial program plan for retrieval of the single-shell tank waste. Requirements, technical approach, schedule, organization, management, and cost and funding are discussed. The program plan will be refined and updated in fiscal year 2000

  13. Single Shell Tank (SST) Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    HAASS, C.C.

    2000-03-21

    This document provides an initial program plan for retrieval of the single-shell tank waste. Requirements, technical approach, schedule, organization, management, and cost and funding are discussed. The program plan will be refined and updated in fiscal year 2000.

  14. Proposed strategy for leak detection, monitoring, and mitigation (LDMM) during Hanford single-shell tank waste retrieval

    Energy Technology Data Exchange (ETDEWEB)

    Iwatate, D.F., Westinghouse Hanford

    1996-07-08

    This document proposes a strategy to address issues related to leakage from single-shell tanks (SSTs) during sluicing. A set of criteria are proposed to capture the relevant issues pertaining to leak detection, monitoring, and mitigation (LDMM), and allow DOE-RL, the Contractor, Ecology, and Hanford Stakeholders to reach consensus on allowable leakage volumes (ALVs). Technical studies and findings that support the proposed strategy, and ALV criteria, are summarized and referenced. This document specifically addresses LDMM for SSTs at Hanford, Washington.

  15. Nuclear waste

    International Nuclear Information System (INIS)

    1992-05-01

    The Nuclear Waste Policy Act of 1982, as amended in 1987, directed the Secretary of Energy to, among other things, investigate Yucca Mountain, Nevada, as a potential site for permanently disposing of highly radioactive wastes in an underground repository. In April 1991, the authors testified on Yucca Mountain project expenditures before your Subcommittee. Because of the significance of the authors findings regrading DOE's program management and expenditures, you asked the authors to continue reviewing program expenditures in depth. As agreed with your office, the authors reviewed the expenditures of project funds made available to the Department of Energy's (DOE) Lawrence Livermore National Laboratory, which is the lead project contractor for developing a nuclear waste package that wold be used for disposing of nuclear waste at Yucca Mountain. This report discusses the laboratory's use of nuclear waste funds to support independent research projects and to manage Yucca Mountain project activities. It also discusses the laboratory's project contracting practices

  16. Nuclear waste

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    The NEA Nuclear Waste Bulletin has been prepared by the Radiation Protection and Waste Management Division of the OECD Nuclear Energy Agency to provide a means of communication amongst the various technical and policy groups within the waste management community. In particular, it is intended to provide timely and concise information on radioactive waste management activities, policies and programmes in Member countries and at the NEA. It is also intended that the Bulletin assists in the communication of recent developments in a variety of areas contributing to the development of acceptable technology for the management and disposal of nuclear waste (e.g., performance assessment, in-situ investigations, repository engineering, scientific data bases, regulatory developments, etc)

  17. Single-Shell tank system description

    International Nuclear Information System (INIS)

    FIELD, J.G.

    2003-01-01

    The Hanford Site single-shell tank (SST) system consists of 149 underground SSTs and processing equipment designed and constructed between 1940 and 1964 to transport and store radioactive hazardous/dangerous wastes generated from irradiated nuclear fuel processing. The tanks, designed to store waste, vary in size from between 190,000 to 3,800,000 L (50,000 gal to 1,000,000 gal) and contain a variety of solid and liquid waste. The system also includes miscellaneous underground storage tanks (IMUST). In addition to the tanks, there is a large amount of ancillary equipment associated with the system and although not designed to store wastes, the ancillary equipment is contaminated through contact with the waste. Waste was routed to the tanks through a network of underground piping, with interconnections provided in concrete pits that allowed changes to the routing through instrumentation. Processing vaults used during waste handling operations, evaporators used to reduce the waste stored in the system, and other miscellaneous structures used for a variety of waste handling operations are also included in the system. The SST system was taken out of service in 1980 and no additional waste has been added to the tanks. The SSTs and ancillary equipment were designed and constructed before promulgation of Resource Conservation and Recovery Act (RCRA) in 1986. The purpose of this document is to describe the SST system for use in performing an engineering and compliance assessment in support of M-23 milestones (Ecology, et al. 2000). This system description provides estimated locations and volumes of waste within the SST system, including storage tanks, transfer systems, evaporators aid miscellaneous support facilities

  18. Nuclear waste

    International Nuclear Information System (INIS)

    1990-01-01

    Each year, nuclear power plants, businesses, hospitals, and universities generate more than 1 million cubic feet of hardware, rags, paper, liquid waste, and protective clothing that have been contaminated with radioactivity. While most of this waste has been disposed of in facilities in Nevada, South Carolina, and Washington state, recent legislation made the states responsible - either individually, or through groups of states called compacts - for developing new disposal facilities. This paper discusses the states' progress and problems in meeting facility development milestones in the law, federal and state efforts to resolve issues related to mixed waste (low-level waste that also contains hazardous chemicals) and waste with very low levels of radioactivity, and the Department of Energy's progress in discharging the federal government's responsibility under the law to manage the most hazardous low-level waste

  19. Nuclear waste

    International Nuclear Information System (INIS)

    1990-06-01

    DOE estimates that disposing of radioactive waste from civilian nuclear power plants and its defense-related nuclear facilities could eventually end up costing $32 billion. To pay for this, DOE collects fees from utilities on electricity generated by nuclear power plants and makes payments from its defense appropriation. This report states that unless careful attention is given to its financial condition, the nuclear waste program is susceptible to future shortfalls. Without a fee increase, the civilian-waste part of the program may already be underfunded by at least $2.4 billion (in discounted 1988 dollars). Also, DOE has not paid its share of cost-about $480 million-nor has it disclosed this liability in its financial records. Indexing the civilian fee to the inflation rate would address one major cost uncertainty. However, while DOE intends to do this at an appropriate time, it does not use a realistic rate of inflation as its most probable scenario in assessing whether that time has arrived

  20. Results of Phase I groundwater quality assessment for single-shell tank waste management areas T and TX-TY at the Hanford Site

    International Nuclear Information System (INIS)

    Hodges, F.N.

    1998-01-01

    Pacific Northwest National Laboratory (PNNL) conducted a Phase I, Resource Conservation and Recovery Act of 1976 (RCRA) groundwater quality assessment for the Richland Field Office of the U.S. Department of Energy (DOE-RL) under the requirements of the Federal Facility Compliance Agreement. The purpose of the investigation was to determine if the Single-Shell Tank Waste Management Areas (WMAs) T and TX-TY have impacted groundwater quality. Waste Management Areas T and TX-TY, located in the northern part of the 200 West Area of the Hanford Site, contain the 241-T, 241-TX, and 241-TY tank farms and ancillary waste systems. These two units are regulated under RCRA interim-status regulations (under 40 CFR 265.93) and were placed in assessment groundwater monitoring because of elevated specific conductance in downgradient wells. Anomalous concentrations of technetium-99, chromium, nitrate, iodine-129, and cobalt-60 also were observed in some downgradient wells. Phase I assessment, allowed under 40 CFR 265, provides the owner-operator of a facility with the opportunity to show that the observed contamination has a source other than the regulated unit. For this Phase I assessment, PNNL evaluated available information on groundwater chemistry and past waste management practices in the vicinity of WMAs T and TX-TY. Background contaminant concentrations in the vicinity of WMAs T and TX-TY are the result of several overlapping contaminant plumes resulting from past-practice waste disposal operations. This background has been used as baseline for determining potential WMA impacts on groundwater

  1. Addendum to the RCRA Assessment Report for Single-Shell Tank Waste Management Area S-SX at the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Chou, C.J.; Johnson, V.G.

    1999-10-07

    The initial Resource Conservation and Recovery Act (RCRA) groundwater quality assessment report for Waste Management Area S-SX (PNNL-11810) was issued in January 1998. The report stated a plan for conducting continued assessment would be developed after addressing Washington State Department of Ecology (Ecology) comments on initial findings in PNNL-11810. Comments from Ecology were received by US Department of Energy, Richland Operations Office (DOE-RL) on September 24, 1998. Shortly thereafter, Ecology and DOE began dispute resolution and related negotiations about tank farm vadose issues. This led to proposed new Tri-Party Agreement milestones covering a RCRA Facility Investigation-Corrective Measures Study (RFI/CMS) of the four single-shell tank farm waste management areas that were in assessment status (Waste Management Areas B-BX-BY, S-SX, T and TX-TY). The RCRA Facility Investigation includes both subsurface (vadose zone and groundwater) and surface (waste handling facilities and grounds) characterization. Many of the Ecology comments on PNNL-11810 are more appropriate for, and in many cases are superseded by, the RFI/CMS at Waste Management Area S-SX. The proposed Tri-Party Agreement milestone changes that specify the scope and schedule for the RFI/CMS work plans (Tri-Party Agreement change number M-45-98-0) were issued for public comment in February 1999. The Tri-Party Agreement narrative indicates the ongoing groundwater assessments will be integrated with the RFI/CMS work plans. This addendum documents the disposition of the Ecology comments on PNNL-11810 and identifies which comments were more appropriate for the RFI/CMS work plan.

  2. A low-temperature process for the denitration of Hanford single-shell tank, nitrate-based waste utilizing the nitrate to ammonia and ceramic (NAC) process

    International Nuclear Information System (INIS)

    Mattus, A.J.; Lee, D.D.; Dillow, T.A.; Farr, L.L.; Loghry, S.L.; Pitt, W.W.; Gibson, M.R.

    1994-12-01

    Bench-top feasibility studies with Hanford single-shell tank (SST) simulants, using a new, low-temperature (50 to 60C) process for converting nitrate to ammonia and ceramic (NAC), have conclusively shown that between 85 to 99% of the nitrate can be readily converted. In this process, aluminum powders or shot can be used to convert alkaline, nitrate-based supernate to ammonia and an aluminum oxide-sodium aluminate-based solid which might function as its own waste form. The process may actually be able to utilize already contaminated aluminum scrap metal from various DOE sites to effect the conversion. The final, nearly nitrate-free ceramic-like product can be pressed and sintered like other ceramics. Based upon the starting volumes of 6.2 and 3.1 M sodium nitrate solution, volume reductions of 50 to 55% were obtained for the waste form produced, compared to an expected 35 to 50% volume increase if the Hanford supernate were grouted. Engineering data extracted from bench-top studies indicate that the process will be very economical to operate, and data were used to cost a batch, 1,200-kg NO 3 /h plant for working off Hanford SST waste over 20 years. Their total process cost analysis presented in the appendix, indicates that between $2.01 to 2.66 per kilogram of nitrate converted will be required. Additionally, data on the fate of select radioelements present in solution are presented in this report as well as kinetic, operational, and control data for a number of experiments. Additionally, if the ceramic product functions as its own waste form, it too will offer other cost savings associated with having a smaller volume of waste form as well as eliminating other process steps such as grouting

  3. RCRA Assessment Plan for Single-Shell Tank Waste Management Area S-SX at the Hanford Site

    International Nuclear Information System (INIS)

    Chou, C.J.; Johnson, V.G.

    1999-01-01

    A groundwater quality assessment plan was prepared for waste management area S-SX at the Hanford Site. Groundwater monitoring is conducted at this facility in accordance with Title 40, Code of Federal Regulation (CFR) Part 265, Subpart F [and by reference of Washington Administrative Code (WAC) 173-303-400(3)]. The facility was placed in assessment groundwater monitoring program status after elevated waste constituents and indicator parameter measurements (i.e., chromium, technetium-99 and specific conductance) in downgradient monitoring wells were observed and confirmed. A first determination, as allowed under 40 CFR 265.93(d), provides the owner/operator of a facility an opportunity to demonstrate that the regulated unit is not the source of groundwater contamination. Based on results of the first determination it was concluded that multiple source locations in the waste management area could account for observed spatial and temporal groundwater contamination patterns. Consequently, a continued investigation is required. This plan, developed using the data quality objectives process, is intended to comply with the continued investigation requirement. Accordingly, the primary purpose of the present plan is to determine the rate and extent of dangerous waste (hexavalent chromium and nitrate) and radioactive constituents (e.g., technetium-99) in groundwater and to determine their concentrations in groundwater beneath waste management area S-SX. Comments and concerns expressed by the Washington State Department of Ecology on the initial waste management area S-SX assessment report were addressed in the descriptive narrative of this plan as well as in the planned activities. Comment disposition is documented in a separate addendum to this plan

  4. The Sort on Radioactive Waste Type model: A method to sort single-shell tanks into characteristic groups. Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    Hill, J.G.; Anderson, G.S. [Pacific Northwest Lab., Richland, WA (United States); Simpson, B.C. [Westinghouse Hanford Co., Richland, WA (United States)

    1995-03-01

    The SORWT model presents a methodology to group SSTs that is both simple to understand and logical in its assumptions and construction. The SORWT model has predicted the existence of 24 groups of SSTs ranging from 22 tanks per group to two tanks per group. These 24 groups encompass 133 tanks and 93% of the total waste contained in SSTs. The first 14 groups (i.e., those that contain four tanks per group or more) represent 109 tanks and 83% of the total waste volume. This demonstrates the potential for using the SORWT model to efficiently allocate resources and to maximize characterization information gained by a minimum number of sampling events. The verification study has shown that the SST groups predicted by the SORWT model are statistically significant and reduce the variability in the concentrations for all analytes examined. The SORWT model organizes a vast amount of information and presents clear options on which SSTs are more desirable to sample. The model is also simple and flexible in its ability to incorporate new parameters such as new SST analytical data, shifting programmatic needs, and/or risk assessment-oriented criteria. This report presents the nominal composition, inventory, and uncertainty for five of the 24 SORWT groups, representing 28 tanks, 10% of the total waste volume, and 29% of the total sludge volume in SSTs. Consequently, this document provides a logical beginning framework for tank waste characterization until further information becomes available or different programmatic needs are identified.

  5. Survey package: Technical and contracting strategies for single-shell tank waste retrieval on the Hanford Site

    International Nuclear Information System (INIS)

    Ramsower, D.C.

    1995-01-01

    Westinghouse Hanford Company is interested in innovative, commercially available or adaptable retrieval system equipment, concepts, and contracting strategies that will ad to existing Hanford Site technology and significantly reduce cost and/or risk from the baseline retrieval approach of sluicing (hydraulically mining) the waste from the SSTs onsite. The objective of this request is to gather information from industry to identify and summarize a suite of retrieval-related components, systems, and contracting approaches. This information will be used to ensure that WHC understands the various waste retrieval alternative approaches, their risks, and their application on the Hanford Site tanks for those occasions when sluicing is not sufficiently effective, appropriate, or cost-effective. An additional objective is to facilitate industry's understanding of the tank and site interface requirements for SST waste retrieval and the complex statutory, legal, regulatory, labor, and other institutional standards being applied to the Hanford Site. This effort will identify and summarize retrieval solutions by the end of September 1996 so that a clear basis for future retrieval program decisions can be established

  6. Borehole data package for well 299-W15-41 at single-shell tank waste management Area TX-TY

    International Nuclear Information System (INIS)

    Horton, D.G.; Hodges, F.N.

    2000-01-01

    One new Resource Conservation and Recovery Act (RCRA) groundwater monitoring well was installed at the single-shell tank farm Waste Management Area (WMA) TX-TY during December 1999 and January 2000 in fulfillment of Tri-Party Agreement (Ecology 1996) milestone M-24-43. The well is 299-W15-41 and is located south of the 241-TX tank farm and south of 20th Street in the 200 West Area. A figure shows the locations of all wells in the WMA TX-TY monitoring network. The new well was constructed to the specifications and requirements described in Washington Administrative Code (WAC) 173-160 and WAC 173-303, the groundwater monitoring plan for WMA TX-TY (Caggiano and Goodwin 1991), the assessment plan for WMA TX-TY (Caggiano and Chou 1993), and the description of work for well drilling and installation. This document compiles information on the drilling and construction, well development, pump installation, and sediment testing applicable to well 299-W1 5-41. Appendix A contains the geologist's log, the Well Construction Summary Report, and Well Summary Sheet (as-built diagram) and Appendix B contains borehole geophysical logs. Additional documentation concerning well construction is on file with Bechtel Hanford, Inc., Richland, Washington

  7. IMPROVED EX-TANK LEAK DETECTION and MONITORING TECHNOLOGY DEMONSTRATIONS IN SUPPORT OF SINGLE SHELL TANK (SST) WASTE RETRIEVAL AT HANFORD SITE

    International Nuclear Information System (INIS)

    ROGER, R.M.; CAMMANN, J.W.

    2002-01-01

    Led by the United States Department of Energy Office of River Protection (DOE-ORP) and CH2M HILL Hanford Group, Inc. (CHG), a team of experts from other facilities have been working together to narrow the field of new external tank leak detection technologies. The ability to detect and assess potential leaks more quickly will help reduce potential risks to public health and the environment during efforts to retrieve millions of gallons of waste from Hanford's older single-shell tanks (SST's). A method for early and reliable detection of leaks around and below the entire 75-foot diameter bottom of a SST is needed. ''Proof-of-concept'' testing of six ex-tank leak detection and monitoring technologies was conducted at Hanford's 105-A Mock Tank Site in August 2001. A workshop was conducted in January, 2002 to review the results and select the best of the methods tested for further testing and demonstration in support of an SST retrieval. Three methods were selected: High Resolution Resistivity; Electrical Resistance Tomography--Long Electrodes; and Electrical Resistance Tomography--Point Electrode Arrays. Planned development activity includes performance evaluation tests to determine probability of detection and the probability of false alarm for each technology and deployability tests in an actual Hanford tank farm environment

  8. Nuclear waste

    International Nuclear Information System (INIS)

    1991-01-01

    The Privacy Act of 1974 restricts both the type of information on private individuals that federal agencies may maintain in their records and the conditions under which such information may be disclosed. The Nuclear Regulatory Commission, which must approve DOE plans to build a nuclear waste repository at the Yucca Mountain site in Nevada, requires a quality assurance program to guarantee that studies of the site are done by qualified employees. Under such a program, the training and qualifications of DOE and contractor employees would be verified. This report reviews DOE's efforts to identify and resolve the implications of the Privacy Act for DOE's quality assurance program and how the delay in resolving Privacy Act issues may have affected preliminary work on the Yucca Mountain project

  9. Groundwater quality assessment plan for single-shell tank waste management Area U at the Hanford Site

    International Nuclear Information System (INIS)

    FN Hodges; CJ Chou

    2000-01-01

    Waste Management Area U (WMA U) includes the U Tank Farm, is currently regulated under RCRA interim-status regulations, and is scheduled for closure probably post-2030. Groundwater monitoring has been under an evaluation program that compared general contaminant indicator parameters from downgradient wells to background values established from upgradient wells. One of the indicator parameters, specific conductance, exceeded its background value in one downgradient well triggering a change from detection monitoring to a groundwater quality assessment program. The objective of the first phase of this assessment program is to determine whether the increased concentrations of nitrate and chromium in groundwater are from WMA U or from an upgradient source. Based on the results of the first determination, if WMA U is not the source of contamination, then the site will revert to detection monitoring. If WMA U is the source, then a second part of the groundwater quality assessment plan will be prepared to define the rate and extent of migration of contaminants in the groundwater and their concentrations

  10. Nuclear waste

    International Nuclear Information System (INIS)

    1989-10-01

    The Department of Energy is awarding grants to the state of Nevada for the state's participation in DOE's program to investigate Yucca Mountain as a possible site for the disposal of civilian nuclear waste. This report has found that DOE's financial assistance budget request of $15 million for Nevada's fiscal year 1990 was not based on the amount the state requested but rather was derived by increasing Nevada's grant funds from the previous year in proportion to the increase that DOE requested for its own activities at the Nevada site. DOE's evaluations of Nevada's requests are performed too late to be used in DOE's budget formulation process because Nevada has been applying for financial assistance at about the same time that DOE submits its budget request to Congress

  11. Geochemical Processes Data Package for the Vadose Zone in the Single-Shell Tank Waste Management Areas at the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Cantrell, Kirk J.; Zachara, John M.; Dresel, P. Evan; Krupka, Kenneth M.; Serne, R. Jeffrey

    2007-09-28

    This data package discusses the geochemistry of vadose zone sediments beneath the single-shell tank farms at the U.S. Department of Energy’s (DOE’s) Hanford Site. The purpose of the report is to provide a review of the most recent and relevant geochemical process information available for the vadose zone beneath the single-shell tank farms and the Integrated Disposal Facility. Two companion reports to this one were recently published which discuss the geology of the farms (Reidel and Chamness 2007) and groundwater flow and contamination beneath the farms (Horton 2007).

  12. Nuclear wastes

    International Nuclear Information System (INIS)

    2004-01-01

    Here is made a general survey of the situation relative to radioactive wastes. The different kinds of radioactive wastes and the different way to store them are detailed. A comparative evaluation of the situation in France and in the world is made. The case of transport of radioactive wastes is tackled. (N.C.)

  13. Nuclear waste management

    International Nuclear Information System (INIS)

    1982-12-01

    The subject is discussed, with special reference to the UK, under the headings: radiation; origins of the waste (mainly from nuclear power programme; gas, liquid, solid; various levels of activity); dealing with waste (methods of processing, storage, disposal); high-active waste (storage, vitrification, study of means of eventual disposal); waste management (UK organisation to manage low and intermediate level waste). (U.K.)

  14. Single-shell tank retrieval program mission analysis report

    Energy Technology Data Exchange (ETDEWEB)

    Stokes, W.J.

    1998-08-11

    This Mission Analysis Report was prepared to provide the foundation for the Single-Shell Tank (SST) Retrieval Program, a new program responsible for waste removal for the SSTS. The SST Retrieval Program is integrated with other Tank Waste Remediation System activities that provide the management, technical, and operations elements associated with planning and execution of SST and SST Farm retrieval and closure. This Mission Analysis Report provides the basis and strategy for developing a program plan for SST retrieval. This Mission Analysis Report responds to a US Department of Energy request for an alternative single-shell tank retrieval approach (Taylor 1997).

  15. Single-shell tank retrieval program mission analysis report

    International Nuclear Information System (INIS)

    Stokes, W.J.

    1998-01-01

    This Mission Analysis Report was prepared to provide the foundation for the Single-Shell Tank (SST) Retrieval Program, a new program responsible for waste removal for the SSTS. The SST Retrieval Program is integrated with other Tank Waste Remediation System activities that provide the management, technical, and operations elements associated with planning and execution of SST and SST Farm retrieval and closure. This Mission Analysis Report provides the basis and strategy for developing a program plan for SST retrieval. This Mission Analysis Report responds to a US Department of Energy request for an alternative single-shell tank retrieval approach (Taylor 1997)

  16. Sample preparation for semivolatile organics analysis of Hanford single-shell tank waste with high nitrate/nitrite and water content

    International Nuclear Information System (INIS)

    Stromatt, R.W.; Hoppe, E.W.; Steele, M.J.

    1993-11-01

    This report describes research work carried out to solve sample preparation problems associated with applying gas chromatography with mass spectrometric detection (GC/MS) to the analysis of single shell tank (SST) samples from Hanford for semivolatile organic compounds. Poor performance was found when applying the procedures based on the U.S. Environmental Protection Agency (EPA), Contract Laboratory Program, Statement of Work (CLP SOW). Analysis work was carried out on simulated drainable liquid modeled after the SST core samples which had evidenced analysis problems. Some work was also conducted on true SST samples. It was found that the pH range was too broad in the original procedure. It was also found that by decreasing the amount of methanol used in the extraction process, problems associated with the formation of an azeotrope phase could be avoided. The authors suggest a new procedure, whose eventual application to a wide array of SST samples will lend itself to better quality control limits

  17. Japanese Nuclear Waste Avatars

    International Nuclear Information System (INIS)

    Wynn Kirby, Peter; Stier, Daniel

    2016-01-01

    Japan's cataclysmic 2011 tsunami has become a vast, unwanted experiment in waste management. The seismic event and resulting Fukushima Daiichi radiation crisis created an awkwardly fortuitous rupture in Japanese nuclear practice that exposed the lax and problematic management of nuclear waste in this country to broader scrutiny, as well as distortions in its very conception. This article looks at the full spectrum of nuclear waste in post-tsunami Japan, from spent fuel rods to contorted reactor containment, and the ways that nuclear waste mirrors or diverges from more quotidian waste practices in Japanese culture. Significantly, the Fukushima Daiichi plant itself and its erstwhile banal surroundings have themselves transmuted into an unwieldy form of nuclear waste. The immense challenges of the Fukushima Daiichi site have stimulated a series of on-the-fly innovations that furnish perspective on more everyday nuclear waste practices in the industry. While some HLW can be reprocessed for limited use in today's reactors, it cannot be ignored that much of Japan's nuclear waste is simply converted into other forms of waste. In a society that has long been fixated on segregating filth, maintaining (imagined) purity, and managing proximity to pollution, the specter of nuclear waste looms over contemporary Japan and its ongoing debates over resources, risk, and Japanese nuclear identity itself

  18. Nuclear wastes: overview

    International Nuclear Information System (INIS)

    Billard, Isabelle

    2006-01-01

    Nuclear wastes are a major concern for all countries dealing with civil nuclear energy, whatever these countries have decided yet about reprocessing/storage options. In this chapter, a (exact) definition of a (radioactive) waste is given, together with definitions of waste classes and their characteristics (volumes, types etc.). The various options that are currently experienced in the world will be presented but focus will be put on the French case. Envision evolutions will be briefly presented. (author)

  19. Mechanisms of gas bubble retention and release: results for Hanford Waste Tanks 241-S-102 and 241-SY-103 and single-shell tank simulants

    Energy Technology Data Exchange (ETDEWEB)

    Gauglitz, P.A.; Rassat, S.D.; Bredt, P.R.; Konynenbelt, J.H.; Tingey, S.M.; Mendoza, D.P.

    1996-09-01

    Research at Pacific Northwest National Laboratory (PNNL) has probed the physical mechanisms and waste properties that contribute to the retention and release of flammable gases from radioactive waste stored in underground tanks at Hanford. This study was conducted for Westinghouse Hanford Company as part of the PNNL Flammable Gas Project. The wastes contained in the tanks are mixes of radioactive and chemical products, and some of these wastes are known to generate mixtures of flammable gases, including hydrogen, nitrous oxide, and ammonia. Because these gases are flammable, their retention and episodic release pose a number of safety concerns.

  20. Mechanisms of gas bubble retention and release: results for Hanford Waste Tanks 241-S-102 and 241-SY-103 and single-shell tank simulants

    International Nuclear Information System (INIS)

    Gauglitz, P.A.; Rassat, S.D.; Bredt, P.R.; Konynenbelt, J.H.; Tingey, S.M.; Mendoza, D.P.

    1996-09-01

    Research at Pacific Northwest National Laboratory (PNNL) has probed the physical mechanisms and waste properties that contribute to the retention and release of flammable gases from radioactive waste stored in underground tanks at Hanford. This study was conducted for Westinghouse Hanford Company as part of the PNNL Flammable Gas Project. The wastes contained in the tanks are mixes of radioactive and chemical products, and some of these wastes are known to generate mixtures of flammable gases, including hydrogen, nitrous oxide, and ammonia. Because these gases are flammable, their retention and episodic release pose a number of safety concerns

  1. Nuclear waste issue

    International Nuclear Information System (INIS)

    Ryhanen, V.

    2000-01-01

    A prerequisite for future use of nuclear energy in electricity production is safe management of the radioactive wastes generated by nuclear power industry. A number of facilities have been constructed for different stages of nuclear waste management around the world, for example for conditioning of different kind of process wastes and for intermediate storage of spent nuclear fuel. Difficulties have often been encountered particularly when trying to advance plans for final stage of waste management, which is permanent disposal in stable geological formations. The main problems have not been technical, but poor public acceptance and lack of necessary political decisions have delayed the progress in many countries. However, final disposal facilities are already in operation for low- and medium-level nuclear wastes. The most challenging task is the development of final disposal solutions for long-lived high-level wastes (spent fuel or high-level reprocessing waste). The implementation of deep geological repositories for these wastes requires persistent programmes for technology development, siting and safety assessments, as well as for building public confidence in long-term safety of the planned repositories. Now, a few countries are proceeding towards siting of these facilities, and the first high-level waste repositories are expected to be commissioned in the years 2010 - 2020. (author)

  2. Politics of nuclear waste

    International Nuclear Information System (INIS)

    Colglazier, E.W. Jr.

    1982-01-01

    In November of 1979, the Program in Science, Technology and Humanism and the Energy Committee of the Aspen Institute organized a conference on resolving the social, political, and institutional conflicts over the permanent siting of radioactive wastes. This book was written as a result of this conference. The chapters provide a comprehensive and up-to-date overview of the governance issues connected with radioactive waste management as well as a sampling of the diverse views of the interested parties. Chapter 1 looks in depth of radioactive waste management in the United States, with special emphasis on the events of the Carter Administration as well as on the issues with which the Reagen administration must deal. Chapter 2 compares waste management policies and programs among the industralized countries. Chapter 3 examines the factional controversies in the last administration and Congress over nuclear waste issues. Chapter 4 examines the complex legal questions involved in the federal-state conflicts over nuclear waste management. Chapter 5 examines the concept of consultation and concurrence from the perspectives of a host state that is a candidate for a repository and an interested state that has special concerns regarding the demonstration of nuclear waste disposal technology. Chapter 6 examines US and European perspectives concerning public participation in nuclear waste management. Chapter 7 discusses propaganda in the issues. The epilogue attempts to assess the prospects for consensus in the United States on national policies for radioactive waste management. All of the chapter in this book should be interpreted as personal assessments

  3. Nuclear waste packaging facility

    International Nuclear Information System (INIS)

    Mallory, C.W.; Watts, R.E.; Paladino, J.B.; Razor, J.E.; Lilley, A.W.; Winston, S.J.; Stricklin, B.C.

    1987-01-01

    A nuclear waste packaging facility comprising: (a) a first section substantially surrounded by radiation shielding, including means for remotely handling waste delivered to the first section and for placing the waste into a disposal module; (b) a second section substantially surrounded by radiation shielding, including means for handling a deformable container bearing waste delivered to the second section, the handling means including a compactor and means for placing the waste bearing deformable container into the compactor, the compactor capable of applying a compacting force to the waste bearing containers sufficient to inelastically deform the waste and container, and means for delivering the deformed waste bearing containers to a disposal module; (c) a module transportation and loading section disposed between the first and second sections including a means for handling empty modules delivered to the facility and for loading the empty modules on the transport means; the transport means moving empty disposal modules to the first section and empty disposal modules to the second section for locating empty modules in a position for loading with nuclear waste, and (d) a grouting station comprising means for pouring grout into the waste bearing disposal module, and a capping station comprising means for placing a lid onto the waste bearing grout-filled disposal module to completely encapsulate the waste

  4. The nuclear wastes in France

    International Nuclear Information System (INIS)

    2003-01-01

    This document aims to give succinctly information on the nuclear wastes by the answer to four questions: what are the different types of nuclear wastes?; what happened to nuclear wastes?; who is responsible of the nuclear wastes management in France?; what about the spent fuels processing and recycling?. (A.L.B.)

  5. Transmuting nuclear waste

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    With the problems of disposing of nuclear waste material increasingly the cause for widespread concern, attention is turning to possible new techniques for handling discarded radioactive material and even putting it to good use

  6. Nuclear Waste and Ethics

    Energy Technology Data Exchange (ETDEWEB)

    Damveld, Herman [Groningen (Netherlands)

    2003-10-01

    In the past years in almost all conferences on storage of nuclear waste, ethics has been considered as an important theme. But what is ethics? We will first give a sketch of this branch of philosophy. We will then give a short explanation of the three principal ethical theories. In the discussion about storage of nuclear waste, the ethical theory of utilitarianism is often implicitly invoked. In this system future generations weigh less heavily than the present generation, so that people of the future are not considered as much as those now living. We reject this form of reasoning. The discussion about nuclear waste is also sometimes pursued from ethical points of departure such as equality and justice. But many loose ends remain in these arguments, which gives rise to the question of whether the production and storage of nuclear waste is responsible.

  7. Nuclear Waste and Ethics

    International Nuclear Information System (INIS)

    Damveld, Herman

    2003-01-01

    In the past years in almost all conferences on storage of nuclear waste, ethics has been considered as an important theme. But what is ethics? We will first give a sketch of this branch of philosophy. We will then give a short explanation of the three principal ethical theories. In the discussion about storage of nuclear waste, the ethical theory of utilitarianism is often implicitly invoked. In this system future generations weigh less heavily than the present generation, so that people of the future are not considered as much as those now living. We reject this form of reasoning. The discussion about nuclear waste is also sometimes pursued from ethical points of departure such as equality and justice. But many loose ends remain in these arguments, which gives rise to the question of whether the production and storage of nuclear waste is responsible

  8. Nuclear fuel waste disposal

    International Nuclear Information System (INIS)

    Merrett, G.J.; Gillespie, P.A.

    1983-07-01

    This report discusses events and processes that could adversely affect the long-term stability of a nuclear fuel waste disposal vault or the regions of the geosphere and the biosphere to which radionuclides might migrate from such a vault

  9. Nuclear Waste Fund management

    International Nuclear Information System (INIS)

    Rosselli, R.

    1984-01-01

    The Nuclear Waste Policy Act of 1982 (NWPA) established two separate special bank accounts: the Nuclear Waste Fund (NWF) was established to finance all of the Federal Government activities associated with the disposal of High-Level Waste (HLW) or Spent Nuclear Fuel (SNF). The Interim Storage Fund (ISF) is the financial mechanism for the provision of Federal Interim Storage capacity, not to exceed 1900 metric tons of SNF at civilian power reactors. The management of these funds is discussed. Since the two funds are identical in features and the ISF has not yet been activated, the author's remarks are confined to the Nuclear Waste Fund. Three points discussed include legislative features, current status, and planned activities

  10. Nuclear waste solutions

    Science.gov (United States)

    Walker, Darrel D.; Ebra, Martha A.

    1987-01-01

    High efficiency removal of technetium values from a nuclear waste stream is achieved by addition to the waste stream of a precipitant contributing tetraphenylphosphonium cation, such that a substantial portion of the technetium values are precipitated as an insoluble pertechnetate salt.

  11. Nuclear waste for NT

    International Nuclear Information System (INIS)

    Nelson, Brendan

    2005-01-01

    The Northern Territory may be powerless to block the dumping of low-level nuclear waste in the Territory under legislation introduced into Parliament by Minister for Education Science and Training, Dr Brendan Nelson, in October. Despite strong opposition to the dumping of nuclear waste in the NT, the Australian Government will be able to send waste to one of the three nominated Commonwealth-owned Defence sites within the NT under the Commonwealth Radioactive Waste Management Bill 2005 and the Commonwealth Radioactive Waste Management (Related Amendment) Bill 2005. The Bills veto recently drafted NT legislation designed to scuttle the plans. Low-level nuclear waste is stored at more than 100 sites around Australia, including hospitals, factories, universities and defence facilities. Medical isotopes produced at Lucas Heights and provided for medical procedures are the source of much of this waste, including some 16 cubic metres currently held at Darwin Hospital. Dr Nelson stressed that the Government would take all die necessary steps to comply with safety and regulatory precautions, including handling waste in line with relevant environmental, nuclear safety and proliferation safeguards

  12. High level nuclear wastes

    International Nuclear Information System (INIS)

    Lopez Perez, B.

    1987-01-01

    The transformations involved in the nuclear fuels during the burn-up at the power nuclear reactors for burn-up levels of 33.000 MWd/th are considered. Graphs and data on the radioactivity variation with the cooling time and heat power of the irradiated fuel are presented. Likewise, the cycle of the fuel in light water reactors is presented and the alternatives for the nuclear waste management are discussed. A brief description of the management of the spent fuel as a high level nuclear waste is shown, explaining the reprocessing and giving data about the fission products and their radioactivities, which must be considered on the vitrification processes. On the final storage of the nuclear waste into depth geological burials, both alternatives are coincident. The countries supporting the reprocessing are indicated and the Spanish programm defined in the Plan Energetico Nacional (PEN) is shortly reviewed. (author) 8 figs., 4 tabs

  13. Nuclear waste: good news

    International Nuclear Information System (INIS)

    Gay, Michel

    2014-01-01

    The author states that the problem of nuclear wastes is solved. He states that 90 per cent of radioactive wastes are now permanently managed and that technical solutions for deep geological storage and for transmutation will soon solve the problem for the remaining 10 pc. He states that geological storage will be funded (it is included in electricity price). He denounces why these facts which he consider as good news, do not prevail. He proposes several documents in appendix: a text explaining the nuclear fuel cycle in France, and an extract of a report made by the national inventory of radioactive materials and wastes

  14. Nuclear Waste Fund management

    International Nuclear Information System (INIS)

    Mills, L.

    1984-01-01

    The Nuclear Waste Policy Acts requires that DOE enter into contracts with nuclear utilities and others to accept their nuclear wastes at some unspecified date, at some unspecified rate, hopefully starting in 1998. Contracts between DOE and the states, and with civilian and other government agencies must be sufficiently detailed to secure competitive bids on definable chunks of work at a fixed-cost basis with incentives. The need is stressed for a strong central program for the selection of contractors on the basis of competitive bidding on a fixed price basis to perform the task with defined deliverables

  15. Nuclear waste in Seibersdorf

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    Forschungszentrum Seibersdorf (short: Seibersdorf) is the company operating the research reactor ASTRA. A controversy arose, initied by the Greens and some newspapers on the fact that the waste conditioning plant in Seibersdorf treated not only Austrian waste (from hospitals etc.) but also a large quantity of ion exchange resins from the Caorso nuclear power station, against payment. The author argues that it is untenable that an Austrian institution (peaceful use of nuclear energy in Austria being abandoned by a referendum) should support nuclear power abroad. There is also a short survey on nuclear waste conditioning and an account of an exchange of letters, between the Seibersdorf and the Ecology Institute on the claim of being an 'independent measuring institution' of food, soil, etc. samples. The author argues that the Ecology Institute is the sole independent institution in Austria because it is part of the ecology- and antinuclear movement, whereas Seibersdorf is dependent on the state. (qui)

  16. Environmental Hazards of Nuclear Wastes

    Science.gov (United States)

    Micklin, Philip P.

    1974-01-01

    Present methods for storage of radioactive wastes produced at nuclear power facilities are described. Problems arising from present waste management are discussed and potential solutions explored. (JP)

  17. Regulatory Closure Options for the Residue in the Hanford Site Single-Shell Tanks

    International Nuclear Information System (INIS)

    Cochran, J.R.; Shyr, L.J.

    1998-01-01

    Liquid, mixed, high-level radioactive waste (HLW) has been stored in 149 single-shell tanks (SSTS) located in tank farms on the U.S. Department of Energy's (DOE's) Hanford Site. The DOE is developing technologies to retrieve as much remaining HLW as technically possible prior to physically closing the tank farms. In support of the Hanford Tanks Initiative, Sandia National Laboratories has addressed the requirements for the regulatory closure of the radioactive component of any SST residue that may remain after physical closure. There is significant uncertainty about the end state of each of the 149 SSTS; that is, the nature and amount of wastes remaining in the SSTS after retrieval is uncertain. As a means of proceeding in the face of these uncertainties, this report links possible end-states with associated closure options. Requirements for disposal of HLW and low-level radioactive waste (LLW) are reviewed in detail. Incidental waste, which is radioactive waste produced incidental to the further processing of HLW, is then discussed. If the low activity waste (LAW) fraction from the further processing of HLW is determined to be incidental waste, then DOE can dispose of that incidental waste onsite without a license from the U.S. Nuclear Regulatory Commissions (NRC). The NRC has proposed three Incidental Waste Criteria for determining if a LAW fraction is incidental waste. One of the three Criteria is that the LAW fraction should not exceed the NRC's Class C limits

  18. Regulatory Closure Options for the Residue in the Hanford Site Single-Shell Tanks

    Energy Technology Data Exchange (ETDEWEB)

    Cochran, J.R. Shyr, L.J.

    1998-10-05

    Liquid, mixed, high-level radioactive waste (HLW) has been stored in 149 single-shell tanks (SSTS) located in tank farms on the U.S. Department of Energy's (DOE's) Hanford Site. The DOE is developing technologies to retrieve as much remaining HLW as technically possible prior to physically closing the tank farms. In support of the Hanford Tanks Initiative, Sandia National Laboratories has addressed the requirements for the regulatory closure of the radioactive component of any SST residue that may remain after physical closure. There is significant uncertainty about the end state of each of the 149 SSTS; that is, the nature and amount of wastes remaining in the SSTS after retrieval is uncertain. As a means of proceeding in the face of these uncertainties, this report links possible end-states with associated closure options. Requirements for disposal of HLW and low-level radioactive waste (LLW) are reviewed in detail. Incidental waste, which is radioactive waste produced incidental to the further processing of HLW, is then discussed. If the low activity waste (LAW) fraction from the further processing of HLW is determined to be incidental waste, then DOE can dispose of that incidental waste onsite without a license from the U.S. Nuclear Regulatory Commissions (NRC). The NRC has proposed three Incidental Waste Criteria for determining if a LAW fraction is incidental waste. One of the three Criteria is that the LAW fraction should not exceed the NRC's Class C limits.

  19. Radioactive wastes of Nuclear Industry

    International Nuclear Information System (INIS)

    1995-01-01

    This conference studies the radioactive waste of nuclear industry. Nine articles and presentations are exposed here; the action of the direction of nuclear installations safety, the improvement of industrial proceedings to reduce the waste volume, the packaging of radioactive waste, the safety of radioactive waste disposal and environmental impact studies, a presentation of waste coming from nuclear power plants, the new waste management policy, the international panorama of radioactive waste management, the international transport of radioactive waste, finally an economic analysis of the treatment and ultimate storage of radioactive waste. (N.C.)

  20. Swedish nuclear waste efforts

    Energy Technology Data Exchange (ETDEWEB)

    Rydberg, J.

    1981-09-01

    After the introduction of a law prohibiting the start-up of any new nuclear power plant until the utility had shown that the waste produced by the plant could be taken care of in an absolutely safe way, the Swedish nuclear utilities in December 1976 embarked on the Nuclear Fuel Safety Project, which in November 1977 presented a first report, Handling of Spent Nuclear Fuel and Final Storage of Vitrified Waste (KBS-I), and in November 1978 a second report, Handling and Final Storage of Unreprocessed Spent Nuclear Fuel (KBS II). These summary reports were supported by 120 technical reports prepared by 450 experts. The project engaged 70 private and governmental institutions at a total cost of US $15 million. The KBS-I and KBS-II reports are summarized in this document, as are also continued waste research efforts carried out by KBS, SKBF, PRAV, ASEA and other Swedish organizations. The KBS reports describe all steps (except reprocessing) in handling chain from removal from a reactor of spent fuel elements until their radioactive waste products are finally disposed of, in canisters, in an underground granite depository. The KBS concept relies on engineered multibarrier systems in combination with final storage in thoroughly investigated stable geologic formations. This report also briefly describes other activities carried out by the nuclear industry, namely, the construction of a central storage facility for spent fuel elements (to be in operation by 1985), a repository for reactor waste (to be in operation by 1988), and an intermediate storage facility for vitrified high-level waste (to be in operation by 1990). The R and D activities are updated to September 1981.

  1. Safeguards on nuclear waste

    International Nuclear Information System (INIS)

    Crawford, D.W.

    1995-01-01

    Safeguards and security policies within the Department of Energy (DOE) have been implemented in a graded fashion for the protection, control and accountability of nuclear materials. This graded philosophy has meant that safeguards on low-equity nuclear materials, typically considered of low diversion attractiveness such as waste, has been relegated to minimal controls. This philosophy has been and remains today an acceptable approach for the planning and implementation of safeguards on this material. Nuclear waste protection policy and guidance have been issued due to a lack of clear policy and guidance on the identification and implementation of safeguards controls on waste. However, there are issues related to safe-guarding waste that need to be clarified. These issues primarily stem from increased budgetary and resource pressures to remove materials from safeguards. Finally, there may be an unclear understanding, as to the scope and content of vulnerability assessments required prior to terminating safeguards on waste and other discardable materials and where the authority should lie within the Department for making decisions regarding safeguards termination. This paper examines these issues and the technical basis for Departmental policy for terminating safeguards on waste

  2. A low-temperature process for the denitration of Hanford single-shell tank, nitrate-based waste utilizing the nitrate to ammonia and ceramic (NAC) or nitrate to ammonia and glass (NAG) process: Phase 2 report

    International Nuclear Information System (INIS)

    Mattus, A.J.; Walker, J.F. Jr.; Youngblood, E.L.; Farr, L.L.; Lee, D.D.; Dillow, T.A.; Tiegs, T.N.

    1994-12-01

    Continuing benchtop studies using Hanford single-shell tank (SST) simulants and actual Oak Ridge National Laboratory (ORNL) low-level waste (LLW), employing a new denitration process for converting nitrate to ammonia and ceramic (NAC), have conclusively shown that between 85 and 99% of the nitrate can be readily converted to gaseous ammonia. In this process, aluminum powders can be used to convert alkaline, nitrate-based supernate to ammonia and an aluminum oxide-sodium aluminate-based solid. The process may be able to use contaminated aluminum scrap metal from DOE sites to effect the conversion. The final, nitrate-free ceramic product can be pressed and sintered like other ceramics or silica and/or fluxing agents can be added to form a glassy ceramic or a flowable glass product. Based upon the starting volumes of 6.2 and 3.1 M sodium nitrate solution, volume reductions of 50 to 70% were obtained for the waste form produced. Sintered pellets produced from supernate from Melton Valley Storage Tanks (MVSTs) have been leached in accordance with the 16.1 leach test for the radioelements 85 Sr and 137 Cs. Despite lengthy counting times, 85 Sr could not be detected in the leachates. 137 Cs was only slightly above background and corresponded to a leach index of 12.2 to 13.7 after 8 months of leaching. Leach testing of unsintered and sintered reactor product spiked with hazardous metals proved that both sintered and unsintered product passed the Toxicity Characteristic Leaching Procedure (TCLP) test. Design of the equipment and flowsheet for a pilot demonstration-scale system to prove the nitrate destruction portion of the NAC process and product formation is under way

  3. Ten questions on nuclear wastes

    International Nuclear Information System (INIS)

    Guillaumont, R.; Bacher, P.

    2004-01-01

    The authors give explanations and answers to ten issues related to nuclear wastes: when a radioactive material becomes a waste, how radioactive wastes are classified and particularly nuclear wastes in France, what are the risks associated with radioactive wastes, whether the present management of radioactive wastes is well controlled in France, which wastes are raising actual problems and what are the solutions, whether amounts and radio-toxicity of wastes can be reduced, whether all long life radionuclides or part of them can be transmuted, whether geologic storage of final wastes is inescapable, whether radioactive material can be warehoused over long durations, and how the information on radioactive waste management is organised

  4. Attitudes to nuclear waste

    International Nuclear Information System (INIS)

    Sjoeberg, L.; Drottz-Sjoeberg, B.M.

    1993-08-01

    This is a study of risk perception and attitudes with regard to nuclear waste. Two data sets are reported. In the first set, data were obtained from a survey of the general population, using an extensive questionnaire. The second set constituted a follow-up 7 years later, with a limited number of questions. The data showed that people considered the topic of nuclear waste risks to be very important and that they were not convinced that the technological problems had been solved. Experts associated with government agencies were moderately trusted, while those employed by the nuclear industry were much distrusted by some respondents, and very much trusted by others. Moral obligations to future generations were stressed. A large portion (more than 50 per cent) of the variances in risk perception could be explained by attitude to nuclear power, general risk sensitivity and trust in expertise. Most background variables, except gender, had little influence on risk perception and attitudes. The follow-up study showed that the attitude to nuclear power had become more positive over time, but that people still doubted that the problems of nuclear waste disposal had been solved. 49 refs

  5. Nuclear waste repository siting

    International Nuclear Information System (INIS)

    Soloman, B.D.; Cameron, D.M.

    1987-01-01

    This paper discusses the geopolitics of nuclear waste disposal in the USA. Constitutional choice and social equity perspectives are used to argue for a more open and just repository siting program. The authors assert that every potential repository site inevitably contains geologic, environmental or other imperfections and that the political process is the correct one for determining sites selected

  6. Nuclear Waste Education Project

    International Nuclear Information System (INIS)

    1989-01-01

    In summary, both the Atlanta and Albuquerque pilot seminars achieved the Nuclear Waste Education Project's goal of informing citizens on both the substance and the process of nuclear waste policy so that they can better participate in future nuclear waste decisions. Nuclear waste issues are controversial, and the seminars exposed the nature of the controversy, and utilized the policy debates to create lively and provocative sessions. The format and content of any citizen education curriculum must be made to fit the particular goal that has been chosen. If the Department of Energy and the LWVEF decide to continue to foster an informed dialogue among presenters and participants, the principles of controversial issues education would serve this goal well. If, however, the Department of Energy and/or the LWVEF decide to go beyond imparting information and promoting a lively discussion of the issues, towards some kind of consensus-building process, it would be appropriate to integrate more interactive sessions into the format. As one evaluator wrote, ''In-depth participation in finding solutions or establishing policy -- small group discussion'' would have been preferable to the plenary sessions that mostly were in the form of lectures and expert panel discussion. The evaluator continued by saying, ''Since these [small group discussions] would require more time commitment, they might be part of follow-up workshops focused on particular topics.''

  7. Nuclear waste - perceptions and realities

    International Nuclear Information System (INIS)

    Wilkinson, D.

    1984-01-01

    This paper discusses the complex scientific, sociological, political and emotive aspects of nuclear waste. The public perception of the hazards and risks, to present and future generations, in the management of nuclear wastes are highlighted. The cost of nuclear waste management to socially acceptable and technically achievable standards is discussed. (UK)

  8. Nuclear waste. Last stop Siberia?

    International Nuclear Information System (INIS)

    Popova, L.

    2006-01-01

    Safe and environmentally sound management of nuclear waste and spent fuel is an unresolved problem of nuclear power. But unlike other nuclear nations, Russia has much more problems with nuclear waste. Russia inherited these problems from the military programs and decades of nuclear fuel cycle development. Nuclear waste continue to mount, while the government does not pay serious enough attention to the solution of the waste problem and considers to increase the capacity of nuclear power plants (NPPs). There are more than 1000 nuclear waste storages in Russia.1 More than 70 million tons of the solid waste has been accumulated by the year 2005, including 14 million tons of tails of the decommissioned uranium mine in the North Caucasus. President Putin said that ''infrastructure of the waste processing is extremely insufficient''. (orig.)

  9. Commercial nuclear-waste management

    International Nuclear Information System (INIS)

    Andress, D.A.

    1981-04-01

    This report is primarily concerned with nuclear waste generated by commercial power operations. It is clear, however, that the total generation of commercial nuclear waste does not tell the whole story, there are sizeable stockpiles of defense nuclear wastes which will impact areas such as total nuclide exposure to the biosphere and the overall economics of waste disposal. The effects of these other nuclear waste streams can be factored in as exogenous inputs. Their generation is essentially independent of nuclear power operations. The objective of this report is to assess the real-world problems associated with nuclear waste management and to design the analytical framework, as appropriate, for handling nuclear waste management issues in the International Nuclear Model. As such, some issues that are not inherently quantifiable, such as the development of environmental Impact Statements to satisfy the National Environmental Protection Act requirements, are only briefly mentioned, if at all

  10. Ceramics in nuclear waste management

    Energy Technology Data Exchange (ETDEWEB)

    Chikalla, T D; Mendel, J E [eds.

    1979-05-01

    Seventy-three papers are included, arranged under the following section headings: national programs for the disposal of radioactive wastes, waste from stability and characterization, glass processing, ceramic processing, ceramic and glass processing, leaching of waste materials, properties of nuclear waste forms, and immobilization of special radioactive wastes. Separate abstracts were prepared for all the papers. (DLC)

  11. Materials in Nuclear Waste Disposition

    Science.gov (United States)

    Rebak, Raul B.

    2014-03-01

    Commercial nuclear energy has been used for over 6 decades; however, to date, none of the 30+ countries with nuclear power has opened a repository for high-level waste (HLW). All countries with nuclear waste plan to dispose of it in metallic containers located in underground geologically stable repositories. Some countries also have liquid nuclear waste that needs to be reduced and vitrified before disposition. The five articles included in this topic offer a cross section of the importance of alloy selection to handle nuclear waste at the different stages of waste processing and disposal.

  12. Nuclear waste vs. democracy

    Energy Technology Data Exchange (ETDEWEB)

    Treichel, J. [Nevada Nuclear Waste Task Force, Las Vegas (United States)

    1999-04-01

    In the United States the storage and disposal of high-level nuclear waste is a highly contentious issue because under current plans the public is subjected to unaccepted, involuntary risks. The proposed federal policy includes the forced siting of a repository and interim storage facilities in Nevada, and the transport of waste across the entire nation through large cities and within 2 mile of over 50 million people. At its destination in Nevada, the residents would face coexistence with a facility housing highly radioactive wastes that remain dangerous for many thousands of years. Scientific predictions about the performance and safety of these facilities is highly uncertain and the people foresee possibly catastrophic threats to their health, safety and economic well-being for generations to come. The public sees this currently proposed plan as one that seeks to maximise the profits of the commercial nuclear industry through imposing risk and sacrifice to communities who reap no benefit. And there is no evidence that this plan is actually a solution to the problem. The American public has never had the opportunity to participate in the nuclear waste debate and government plans are presented to people as being necessary and inevitable. To allow democracy into the decisions could be costly to the nuclear industry and it might thwart the government program, but that is the nature of democracy. If the utilities are established to provide a public service, and the government is founded on the principle of public representation, then the nuclear waste debate must conform to those requirements. What we see in this case is a continuing change of rule and law to accommodate a corporate power and the subrogation of national principle. The result of this situation has been that the public exercises its only option - which is obstructing the federal plan. Because the odds are so heavily stacked in favour of government and industry and average citizens have so little access

  13. Nuclear waste vs. democracy

    International Nuclear Information System (INIS)

    Treichel, J.

    1999-01-01

    In the United States the storage and disposal of high-level nuclear waste is a highly contentious issue because under current plans the public is subjected to unaccepted, involuntary risks. The proposed federal policy includes the forced siting of a repository and interim storage facilities in Nevada, and the transport of waste across the entire nation through large cities and within 2 mile of over 50 million people. At its destination in Nevada, the residents would face coexistence with a facility housing highly radioactive wastes that remain dangerous for many thousands of years. Scientific predictions about the performance and safety of these facilities is highly uncertain and the people foresee possibly catastrophic threats to their health, safety and economic well-being for generations to come. The public sees this currently proposed plan as one that seeks to maximise the profits of the commercial nuclear industry through imposing risk and sacrifice to communities who reap no benefit. And there is no evidence that this plan is actually a solution to the problem. The American public has never had the opportunity to participate in the nuclear waste debate and government plans are presented to people as being necessary and inevitable. To allow democracy into the decisions could be costly to the nuclear industry and it might thwart the government program, but that is the nature of democracy. If the utilities are established to provide a public service, and the government is founded on the principle of public representation, then the nuclear waste debate must conform to those requirements. What we see in this case is a continuing change of rule and law to accommodate a corporate power and the subrogation of national principle. The result of this situation has been that the public exercises its only option - which is obstructing the federal plan. Because the odds are so heavily stacked in favour of government and industry and average citizens have so little access

  14. Single-shell tank interim stabilization project plan

    International Nuclear Information System (INIS)

    Ross, W.E.

    1998-01-01

    Solid and liquid radioactive waste continues to be stored in 149 single-shell tanks at the Hanford Site. To date, 119 tanks have had most of the pumpable liquid removed by interim stabilization. Thirty tanks remain to be stabilized. One of these tanks (C-106) will be stabilized by retrieval of the tank contents. The remaining 29 tanks will be interim stabilized by saltwell pumping. In the summer of 1997, the US Department of Energy (DOE) placed a moratorium on the startup of additional saltwell pumping systems because of funding constraints and proposed modifications to the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) milestones to the Washington State Department of Ecology (Ecology). In a letter dated February 10, 1998, Final Determination Pursuant to Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) in the Matter of the Disapproval of the DOE's Change Control Form M-41-97-01 (Fitzsimmons 1998), Ecology disapproved the DOE Change Control Form M-41-97-01. In response, Fluor Daniel Hanford, Inc. (FDH) directed Lockheed Martin Hanford Corporation (LNMC) to initiate development of a project plan in a letter dated February 25, 1998, Direction for Development of an Aggressive Single-Shell Tank (SST) Interim Stabilization Completion Project Plan in Support of Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement). In a letter dated March 2, 1998, Request for an Aggressive Single-Shell Tank (SST) Interim Stabilization Completion Project Plan, the DOE reaffirmed the need for an aggressive SST interim stabilization completion project plan to support a finalized Tri-Party Agreement Milestone M-41 recovery plan. This project plan establishes the management framework for conduct of the TWRS Single-Shell Tank Interim Stabilization completion program. Specifically, this plan defines the mission needs and requirements; technical objectives and approach; organizational structure, roles, responsibilities

  15. Functions and requirements for single-shell tank leakage mitigation

    International Nuclear Information System (INIS)

    Cruse, J.M.

    1994-01-01

    This document provides the initial functions and requirements for the leakage mitigation mission applicable to past and potential future leakage from the Hanford Site's 149 single-shell high-level waste tanks. This mission is a part of the overall mission of the Westinghouse Hanford Company Tank Waste Remediation System division to remediate the tank waste in a safe and acceptable manner. Systems engineering principles are being applied to this effort. A Mission Analysis has been completed, this document reflects the next step in the systems engineering approach to decompose the mission into primary functions and requirements. The functions and requirements in this document apply to mitigative actions to be taken regarding below ground leaks from SST containment boundaries and the resulting soil contamination. Leakage mitigation is invoked in the TWRS Program in three fourth level functions: (1) Store Waste, (2) Retrieve Waste, and (3) Disposition Excess Facilities

  16. Nuclear wastes: research programs

    International Nuclear Information System (INIS)

    Anon.

    2003-01-01

    The management of long-living and high level radioactive wastes in France belongs to the framework of the December 30, 1991 law which defines three ways of research: the separation and transmutation of radionuclides, their reversible storage or disposal in deep geologic formations, and their processing and surface storage during long duration. Research works are done in partnership between public research and industrial organizations in many French and foreign laboratories. Twelve years after its enforcement, the impact of this law has overstepped the simple research framework and has led to a deep reflection of the society about the use of nuclear energy. This short paper presents the main results obtained so far in the three research ways, the general energy policy of the French government, the industrial progresses made in the framework of the 1991 law and the international context of the management of nuclear wastes. (J.S.)

  17. Risks from nuclear waste

    Energy Technology Data Exchange (ETDEWEB)

    Liljenzin, J.O.; Rydberg, J. [Radiochemistry Consultant Group, Vaestra Froelunda (Sweden)

    1996-11-01

    The first part of this review discusses the importance of risk. If there is any relation between the emotional and rational risk perceptions (for example, it is believed that increased knowledge will decrease emotions), it will be a desirable goal for society, and the nuclear industry in particular, to improve the understanding by the laymen of the rational risks from nuclear energy. This review surveys various paths to a more common comprehension - perhaps a consensus - of the nuclear waste risks. The second part discusses radioactivity as a risk factor and concludes that it has no relation in itself to risk, but must be connected to exposure leading to a dose risk, i.e. a health detriment, which is commonly expressed in terms of cancer induction rate. Dose-effect relations are discussed in light of recent scientific debate. The third part of the report describes a number of hazard indexes for nuclear waste found in the literature and distinguishes between absolute and relative risk scales. The absolute risks as well as the relative risks have changed over time due to changes in radiological and metabolic data and by changes in the mode of calculation. To judge from the literature, the risk discussion is huge, even when it is limited to nuclear waste. It would be very difficult to make a comprehensive review and extract the essentials from that. Therefore, we have chosen to select some publications, out of the over 100, which we summarize rather comprehensively; in some cases we also include our remarks. 110 refs, 22 figs.

  18. Risks from nuclear waste

    International Nuclear Information System (INIS)

    Liljenzin, J.O.; Rydberg, J.

    1996-11-01

    The first part of this review discusses the importance of risk. If there is any relation between the emotional and rational risk perceptions (for example, it is believed that increased knowledge will decrease emotions), it will be a desirable goal for society, and the nuclear industry in particular, to improve the understanding by the laymen of the rational risks from nuclear energy. This review surveys various paths to a more common comprehension - perhaps a consensus - of the nuclear waste risks. The second part discusses radioactivity as a risk factor and concludes that it has no relation in itself to risk, but must be connected to exposure leading to a dose risk, i.e. a health detriment, which is commonly expressed in terms of cancer induction rate. Dose-effect relations are discussed in light of recent scientific debate. The third part of the report describes a number of hazard indexes for nuclear waste found in the literature and distinguishes between absolute and relative risk scales. The absolute risks as well as the relative risks have changed over time due to changes in radiological and metabolic data and by changes in the mode of calculation. To judge from the literature, the risk discussion is huge, even when it is limited to nuclear waste. It would be very difficult to make a comprehensive review and extract the essentials from that. Therefore, we have chosen to select some publications, out of the over 100, which we summarize rather comprehensively; in some cases we also include our remarks. 110 refs, 22 figs

  19. Nuclear waste: the political realities

    International Nuclear Information System (INIS)

    Arnott, D.

    1983-01-01

    The land dumping of nuclear waste has again come to the attention of anti-nuclear groups, environmentalists and the media, following the announcement of the proposed sites for intermediate-level nuclear waste at Billingham and Bedford. Opposition has already surfaced on a large scale, with public meetings in both areas and a revitalisation of the waste dumping network. This article explains some of the political realities in the nuclear debate, and suggests how we can tackle the issue of waste dumping, remembering that, even if the industry closes tomorrow, there are vast quantities of waste which must be safely and democratically dealt with. (author)

  20. Borehole data package for wells 299-W22-48, 299-W22-49, and 299-W22-50 at single-shell tank waste management Area S-SX

    International Nuclear Information System (INIS)

    Horton, D.G.; Johnson, V.G.

    2000-01-01

    Three new Resource Conservation and Recovery Act (RCRA) groundwater monitoring wells were installed at the single-shell tank farm Waste Management Area (WMA) S-SX in October 1999 through February 2000 in fulfillment of Tri-Party Agreement (Ecology 1996) milestone M-24-41. The wells are 299-W22-48, 299-W22-49, and 299-W22-50. Well 299-W22-48 is located east of the southeast corner of 241-S tank farm and is a new downgradient well in the monitoring network. Well 299-W22-49 is located on the east side of the 241-SX tank farm, adjacent to well 299-W22-39, which it replaces in the monitoring network. Well 299-W22-50 is located at the southeast corner of the 241-SX tank farm and is a replacement for downgradient monitoring well 299-W22-46, which is going dry. The original assessment monitoring plan for WMA S-SX was issued in 1996 (Caggiano 1996). That plan was updated for the continued assessment at WMA S-SX in 1999 (Johnson and Chou 1999). The updated plan provides justification for the new wells. The new wells were constructed to the specifications and requirements described in Washington Administrative Code (WAC) 173-160 and WAC 173-303, the updated assessment plan for WMA S-SX (Johnson and Chou 1999), and the description of work for well drilling and construction. This document compiles information on the drilling and construction, well development, pump installation, and sediment and groundwater sampling applicable to the installation of wells 299-W22-48, 299-W22-49 and 299-W22-50. Appendix A contains the Well Summary Sheets (as-built diagrams), the Well Construction Summary Reports, and the geologist's logs. Appendix B contains results of laboratory analyses of the physical properties of sediment samples obtained during drilling. Appendix C contains borehole geophysical logs, and Appendix D contains the analytical results from groundwater samples obtained during well drilling and construction

  1. Borehole data package for wells 299-W22-48, 299-W22-49, and 299-W22-50 at single-shell tank waste management Area S-SX

    Energy Technology Data Exchange (ETDEWEB)

    DG Horton; VG Johnson

    2000-05-18

    Three new Resource Conservation and Recovery Act (RCRA) groundwater monitoring wells were installed at the single-shell tank farm Waste Management Area (WMA) S-SX in October 1999 through February 2000 in fulfillment of Tri-Party Agreement (Ecology 1996) milestone M-24-41. The wells are 299-W22-48, 299-W22-49, and 299-W22-50. Well 299-W22-48 is located east of the southeast corner of 241-S tank farm and is a new downgradient well in the monitoring network. Well 299-W22-49 is located on the east side of the 241-SX tank farm, adjacent to well 299-W22-39, which it replaces in the monitoring network. Well 299-W22-50 is located at the southeast corner of the 241-SX tank farm and is a replacement for downgradient monitoring well 299-W22-46, which is going dry. The original assessment monitoring plan for WMA S-SX was issued in 1996 (Caggiano 1996). That plan was updated for the continued assessment at WMA S-SX in 1999 (Johnson and Chou 1999). The updated plan provides justification for the new wells. The new wells were constructed to the specifications and requirements described in Washington Administrative Code (WAC) 173-160 and WAC 173-303, the updated assessment plan for WMA S-SX (Johnson and Chou 1999), and the description of work for well drilling and construction. This document compiles information on the drilling and construction, well development, pump installation, and sediment and groundwater sampling applicable to the installation of wells 299-W22-48, 299-W22-49 and 299-W22-50. Appendix A contains the Well Summary Sheets (as-built diagrams), the Well Construction Summary Reports, and the geologist's logs. Appendix B contains results of laboratory analyses of the physical properties of sediment samples obtained during drilling. Appendix C contains borehole geophysical logs, and Appendix D contains the analytical results from groundwater samples obtained during well drilling and construction.

  2. Nuclear Waste Fund management

    International Nuclear Information System (INIS)

    Hobart, L.

    1984-01-01

    The Nuclear Waste Fund involves a number of features which make it a unique federal program. Its primary purpose is to finance one of the largest and most controversial public works programs in the history of the United States. Despite the program's indicated size and advance publicity, no one knows exactly where the anticipated projects will be built, who will construct them, what they will look like when they are done or how they will be operated and by whom. Implimentation of this effort, if statutory targets are actually met, covers a 16-year period. To cover the costs of the program, the Federal Government will tax nuclear power at the rate of 1 mil per kilowatt hour generated. This makes it one of the biggest and longest-lived examples of advance collections for construction work in progress in the history of the United States. While the Department of Energy is authorized to collect funds for the program the Nuclear Regulatory Commission has the authority to cut off this revenue stream by the shutdown of particular reactors or particular reactor types. If all goes well, the Federal Government will begin receiving spent nuclear fuel by 1998, continuing to assess a fee which will cover operating and maintenance costs. If all does not go well, the Federal Government and/or utilities will have to take other steps to solve the problem of permanent disposal. Should the latter circumstance prevail, presumably not only used to date but the $7.5 billion would be spent. The Nuclear Waste Policy Act of 1982, contains no clear provision for utility refunds in that case

  3. Whither nuclear waste disposal?

    International Nuclear Information System (INIS)

    Cotton, T.A.

    1990-01-01

    With respect to the argument that geologic disposal has failed, I do not believe that the evidence is yet sufficient to support that conclusion. It is certainly true that the repository program is not progressing as hoped when the Nuclear Waste Policy Act of 1982 established a 1998 deadline for initial operation of the first repository. The Department of Energy (DOE) now expects the repository to be available by 2010, and tat date depends upon a finding that the Yucca Mountain site - the only site that DOE is allowed by law to evaluate - is in fact suitable for use. Furthermore, scientific evaluation of the site to determine its suitability is stopped pending resolution of two lawsuits. However, I believe it is premature to conclude that the legal obstacles are insuperable, since DOE just won the first of the two lawsuits, and chances are good it will win the second. The concept of geologic disposal is still broadly supported. A recent report by the Board on Radioactive Waste Management of the National Research Council noted that 'There is a worldwide scientific consensus that deep geological disposal, the approach being followed in the United States, is the best option for disposing of high-level radioactive waste'. The U.S. Nuclear Regulatory Commission (USNRC) recently implicitly endorsed this view in adopting an updated Waste Confidence position that found confidence that a repository could be available in the first quarter of the next century - sufficient time to allow for rejection of Yucca Mountain and evaluation of a new site

  4. Preliminary tank characterization report for single-shell tank 241-SX-112: Best-basis inventory

    International Nuclear Information System (INIS)

    Kupfer, M.J.; Schulz, W.W.; Winward, R.T.

    1997-01-01

    An effort is underway to provide waste inventory estimates that will serve as standard characterization source terms for the various waste management activities. As part of this effort, an evaluation of available information for single-shell tank 241-SX-112 was performed, and a best-basis, inventory was established. This work follows the methodology that was established by the standard inventory task

  5. Preliminary tank characterization report for single-shell tank 241-BY-101: best-basis inventory

    International Nuclear Information System (INIS)

    Kupfer, M.J.

    1997-01-01

    An effort is underway to provide waste inventory estimates that will serve as standard characterization source terms for the various waste management activities. As part of this effort, an evaluation of available information for single-shell tank 241-BY-101 was performed, and a best-basis inventory was established. This work follows the methodology that was established by the standard inventory task

  6. Preliminary tank characterization report for single-shell tank 241-c-102: best-basis inventory

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, S.L.

    1997-08-26

    An effort is underway to provide waste inventory estimates that will serve as standard characterization source terms for the various waste management activities. As part of this effort, an evaluation of available information for single-shell tank 241-C-102 was performed, and a best-basis inventory was established. This work follows the methodology that was established by the standard inventory task.

  7. Preliminary tank characterization report for single-shell tank 241-TX-116: best-basis inventory

    Energy Technology Data Exchange (ETDEWEB)

    Place, D.E.

    1997-06-01

    An effort is underway to provide waste inventory estimates that will serve as standard characterization source terms for the various waste management activities. As part of this effort, an evaluation of available information for single-shell tank 241-TX-116 was performed, and a bost-basis inventory was established. This work follows the methodology that was established by the standard inventory task.

  8. Preliminary tank characterization report for single-shell tank 241-TX-117: best-basis inventory

    Energy Technology Data Exchange (ETDEWEB)

    Place, D.E.

    1997-06-01

    An effort is underway to provide waste inventory estimates that will serve as standard characterization source terms for the various waste management activities. As part of this effort, an evaluation of available information for single-shell tank 241-TX-117 was performed, and a best-basis inventory was established. This work follows the methodology that was established by the standard inventory task.

  9. Preliminary tank characterization report for single-shell tank 241-TY-101: best-basis inventory

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, S.L.

    1997-09-02

    An effort is underway to provide waste inventory estimates that will serve as standard characterization source terms for the various waste management activities. As part of this effort, an evaluation of available information for single-shell tank 241-TY-101 was performed, and a best-basis inventory was established. This work follows the methodology that was established by the standard inventory task.

  10. Preliminary tank characterization report for single-shell tank 241-BX-111: best-basis inventory

    International Nuclear Information System (INIS)

    Kupfer, M.J.

    1997-01-01

    An effort is underway to provide waste inventory estimates that will serve as standard characterization source terms for the various waste management activities. As part of this effort, an evaluation of available information for single-shell tank 241-BX-111 was performed, and a best-basis inventory was established. This work follows the methodology that was established by the standard inventory task

  11. Prelimainary tank characterization report for single-shell tank 241-TY-103 : Best-Basis inventory

    International Nuclear Information System (INIS)

    Hendrickson, D.W.

    1997-01-01

    An effort is underway to provide waste inventory estimates that will serve as standard characterization source terms for the various waste management activities. As part of this effort, an evaluation of available information for single-shell tank 241'-TY-103 was performed, and a best-basis inventory was established. This work follows the methodology that was established by the standard inventory task

  12. Preliminary tank characterization report for single-shell tank 241-TX-117: best-basis inventory

    International Nuclear Information System (INIS)

    Place, D.E.

    1997-01-01

    An effort is underway to provide waste inventory estimates that will serve as standard characterization source terms for the various waste management activities. As part of this effort, an evaluation of available information for single-shell tank 241-TX-117 was performed, and a best-basis inventory was established. This work follows the methodology that was established by the standard inventory task

  13. Preliminary tank characterization report for single-shell tank 241-TX-116: best-basis inventory

    International Nuclear Information System (INIS)

    Place, D.E.

    1997-01-01

    An effort is underway to provide waste inventory estimates that will serve as standard characterization source terms for the various waste management activities. As part of this effort, an evaluation of available information for single-shell tank 241-TX-116 was performed, and a bost-basis inventory was established. This work follows the methodology that was established by the standard inventory task

  14. Preliminary tank characterization report for single-shell tank 241-BX-102: best-basis inventory

    International Nuclear Information System (INIS)

    Kupfer, M.J.

    1997-01-01

    An effort is underway to provide waste inventory estimates that will serve as standard characterization source terms for the various waste management activities. As part of this effort, an evaluation of available information for single-shell tank 241-BX-102 was performed, and a best-basis inventory was established. This work follows the methodology that was established by the standard inventory task

  15. Preliminary tank characterization report for single-shell tank 241-TY-101: best-basis inventory

    International Nuclear Information System (INIS)

    Lambert, S.L.

    1997-01-01

    An effort is underway to provide waste inventory estimates that will serve as standard characterization source terms for the various waste management activities. As part of this effort, an evaluation of available information for single-shell tank 241-TY-101 was performed, and a best-basis inventory was established. This work follows the methodology that was established by the standard inventory task

  16. Nuclear wastes management

    International Nuclear Information System (INIS)

    2005-01-01

    This document is the proceedings of the debate that took place at the French Senate on April 13, 2005 about the long-term French policy of radioactive wastes management. The different points tackled during the debate concern: the 3 axes of research of the 1991 law, the public acceptance about the implementation of repositories, the regional economic impact, the cost and financing, the lack of experience feedback, the reversibility or irreversibility of the storage, the share of nuclear energy in the sustainable development policy, the European Pressurized Reactor (EPR) project, the privatization of Electricite de France (EdF) etc. (J.S.)

  17. Waste canister for storage of nuclear wastes

    Science.gov (United States)

    Duffy, James B.

    1977-01-01

    A waste canister for storage of nuclear wastes in the form of a solidified glass includes fins supported from the center with the tips of the fins spaced away from the wall to conduct heat away from the center without producing unacceptable hot spots in the canister wall.

  18. Science, society, and America's nuclear waste: Unit 1, Nuclear waste

    International Nuclear Information System (INIS)

    1992-01-01

    This is unit 1 in a four-unit secondary curriculum. It is intended to provide information about scientific and societal issues related to the management of spent nuclear fuel from generation of electricity at nuclear powerplants and high-level radioactive waste from US national defense activities. The curriculum, supporting classroom activities, and teaching materials present a brief discussion of energy and electricity generation, including that produced at nuclear powerplants; information on sources, amounts, location, and characteristics of spent nuclear fuel and high-level radioactive waste; sources, types and effects of radiation; US policy for managing and disposing of spent nuclear fuel and high-level radioactive waste and what other countries are doing; and the components of the nuclear waste management system

  19. Nuclear waste disposal in space

    Science.gov (United States)

    Burns, R. E.; Causey, W. E.; Galloway, W. E.; Nelson, R. W.

    1978-01-01

    Work on nuclear waste disposal in space conducted by the George C. Marshall Space Flight Center, National Aeronautics and Space Administration, and contractors are reported. From the aggregate studies, it is concluded that space disposal of nuclear waste is technically feasible.

  20. Geological disposal of nuclear waste

    International Nuclear Information System (INIS)

    1979-01-01

    Fourteen papers dealing with disposal of high-level radioactive wastes are presented. These cover disposal in salt deposits, geologic deposits and marine disposal. Also included are papers on nuclear waste characterization, transport, waste processing technology, and safety analysis. All of these papers have been abstracted and indexed

  1. The problematic of nuclear wastes

    International Nuclear Information System (INIS)

    Rozon, D.

    2004-01-01

    Within the frame of a project of modification of radioactive waste storage installations, and of refurbishing the Gentilly-2 nuclear plant (Quebec, Canada), the author first gives an overview and comments assessments of the volume and nature of nuclear wastes produced by Canadian nuclear power plants. He presents the Canadian program of nuclear waste management (history, Seaborn assessment Commission, mission of the SGDN-NWMO). He discusses the relationship between risk and dose, the risk duration, and the case of non radioactive wastes. He discusses energy challenges in terms of CO 2 emissions and with respect to climate change, proposes an alternative scenario on a long term, compares nuclear energy and wind energy, and discusses the nuclear technology evolution

  2. Nuclear waste management and disposal

    International Nuclear Information System (INIS)

    Czibolya, L.

    1983-01-01

    The general demands for radioactive waste management, the key problem of nuclear fuel cycle are discussed. Various processes have been developed to solidify highly radioactive, long-lived wastes of the reprocessing plants in the form of borosilicate or phosphate glasses. Wastes of medium and low activity are generally solidified using either cement or bitumen or polyethylene as matrices. The alternatives of final waste disposal are reviewed according to French, Soviet, American, British, Swedish, Indian and Japanese experiences. (V.N.)

  3. Space disposal of nuclear wastes

    Science.gov (United States)

    Priest, C. C.; Nixon, R. F.; Rice, E. E.

    1980-01-01

    The DOE has been studying several options for nuclear waste disposal, among them space disposal, which NASA has been assessing. Attention is given to space disposal destinations noting that a circular heliocentric orbit about halfway between Earth and Venus is the reference option in space disposal studies. Discussion also covers the waste form, showing that parameters to be considered include high waste loading, high thermal conductivity, thermochemical stability, resistance to leaching, fabrication, resistance to oxidation and to thermal shock. Finally, the Space Shuttle nuclear waste disposal mission profile is presented.

  4. Aspects of nuclear waste management

    International Nuclear Information System (INIS)

    Moberg, L.

    1990-10-01

    Six areas of concern in nuclear waste management have been dealt with in a four-year Nordic research programme. They include work in two international projects, Hydrocoin dealing with modelling of groundwater flow in crystalline rock, and Biomovs, concerned with biosphere models. Geologic questions of importance to the prediction of future behaviour are examined. Waste quantities from the decommissioning of nuclear power stations are estimated, and total amounts of waste to be transported in the Nordic countries are evaluated. Waste amounts from a hypothetical reactor accident are also calculated. (au)

  5. Nuclear waste solidification

    Science.gov (United States)

    Bjorklund, William J.

    1977-01-01

    High level liquid waste solidification is achieved on a continuous basis by atomizing the liquid waste and introducing the atomized liquid waste into a reaction chamber including a fluidized, heated inert bed to effect calcination of the atomized waste and removal of the calcined waste by overflow removal and by attrition and elutriation from the reaction chamber, and feeding additional inert bed particles to the fluidized bed to maintain the inert bed composition.

  6. Single-Shell Tank (SST) Retrieval Sequence Fiscal Year 2000 Update

    International Nuclear Information System (INIS)

    GARFIELD, J.S.

    2000-01-01

    This document describes the baseline single-shell tank (SST) waste retrieval sequence for the River Protection Project (RPP) updated for Fiscal Year 2000. The SST retrieval sequence identifies the proposed retrieval order (sequence), the tank selection and prioritization rationale, and planned retrieval dates for Hanford SSTs. In addition, the tank selection criteria and reference retrieval method for this sequence are discussed

  7. Nuclear waste management. Pioneering solutions from Finland

    International Nuclear Information System (INIS)

    Rasilainen, Kari

    2016-01-01

    Presentation outline: Background: Nuclear energy in Finland; Nuclear Waste Management (NWM) Experiences; Low and Intermediate Level Waste (LILW); High Level Waste - Deep Geological Repository (DGR); NWM cost estimate in Finland; Conclusions: World-leading expert services

  8. Preliminary design requirements document for the initial single-shell tank retrieval system

    Energy Technology Data Exchange (ETDEWEB)

    Hertzel, J.S., Westinghouse Hanford

    1996-07-24

    The scope of this Preliminary Design Requirements Document is to identify and define the functions, with associated requirements, which must be performed to demonstrate and accomplish the initial single-shell tank saltcake retrieval from selected tanks. This document sets forth functions, requirements, performance requirements and design constraints necessary to begin conceptual design for the Initial Single-shell Tank Retrieval System. System and physical interfaces between the Initial Single-shell Tank Retrieval System project and the Tank Waste Remediation are identified. The constraints, performance requirements, and transfer of information and data across a technical interface will be documented in an Interface Control Document. The design requirements provided in this document will be augmented by additional detailed design to be documented by the project.

  9. Nuclear waste management in Korea

    International Nuclear Information System (INIS)

    Kim, O.-K.

    2006-01-01

    The presentation covers overall status of nuclear waste management in Korea from low level radioactive waste to spent nuclear fuel, especially the construction of LILW repository of which site had been selected in November 2005. The expansion of on-site spent fuel storage capacity, transshipment between neighboring plants, construction of space-efficient dry storage system for CANDU spent fuel and application of vitrification technology for the treatment of LILW will be included in the discussion. (author)

  10. Nuclear wastes; Dechets nucleaires

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    Here is made a general survey of the situation relative to radioactive wastes. The different kinds of radioactive wastes and the different way to store them are detailed. A comparative evaluation of the situation in France and in the world is made. The case of transport of radioactive wastes is tackled. (N.C.)

  11. Nuclear waste in the EC

    International Nuclear Information System (INIS)

    Riihonen, M.

    1993-01-01

    The relationship between EC membership and the free movement of radioactive wastes from one Member State to another is considered in the article. France, Germany and the UK currently apply a fairly uniform policy banning the importation of radioactive waste for disposal in their territories. Sweden has also recently amended its nuclear energy legislation to the same effect. The current Nuclear Energy Act allows Finland to decide independently what radioactive waste may be disposed in Finland. According to the policy guidelines of the leading EC countries, Finland would retain its power of decision also after joining the EC

  12. Characterization of the corrosion behavior of the carbon steel liner in Hanford Site single-shell tanks

    International Nuclear Information System (INIS)

    Anantatmula, R.P.; Schwenk, E.B.; Danielson, M.J.

    1994-06-01

    Six safety initiatives have been identified for accelerating the resolution of waste tank safety issues and closure of unreviewed safety questions. Safety Initiative 5 is to reduce safety and environmental risk from tank leaks. Item d of Safety Initiative 5 is to complete corrosion studies of single-shell tanks to determine failure mechanisms and corrosion control options to minimize further degradation by June 1994. This report has been prepared to fulfill Safety Initiative 5, Item d. The corrosion mechanisms that apply to Hanford Site single-shell tanks are stress corrosion cracking, pitting/crevice corrosion, uniform corrosion, hydrogen embrittlement, and microbiologically influenced corrosion. The corrosion data relevant to the single-shell tanks dates back three decades, when results were obtained from in-situ corrosion coupons in a few single-shell tanks. Since that time there have been intertank transfers, evaporation, and chemical alterations of the waste. These activities have changed the character and the present composition of the waste is not well characterized. All conclusions and recommendations are made in the absence of relevant laboratory experimental data and tank inspection data. The report attempts to identify the failure mechanisms by a literature survey of carbon steel data in environments similar to the single-shell tank wastes, and by a review of the work performed at the Savannah River Site where similar wastes are stored in similar carbon steel tanks. Based on these surveys, and in the absence of data specific to Hanford single-shell tanks, it may be concluded that the single-shell tanks identified as leakers failed primarily by stress corrosion cracking due to the presence of high nitrate/low hydroxide wastes and residual stresses. In addition, some failures may be attributed to pitting under crevices in low hydroxide locations

  13. Vitrification chemistry and nuclear waste

    International Nuclear Information System (INIS)

    Plodinec, M.J.

    1985-01-01

    The vitrification of nuclear waste offers unique challenges to the glass technologist. The waste contains 50 or 60 elements, and often varies widely in composition. Most of these elements are seldom encountered in processing commercial glasses. The melter to vitrify the waste must be able to tolerate these variations in composition, while producing a durable glass. This glass must be produced without releasing hazardous radionuclides to the environment during any step of the vitrification process. Construction of a facility to convert the nearly 30 million gallons of high-level nuclear waste at the Savannah River Plant into borosilicate glass began in late 1983. In developing the vitrification process, the Savannah River Laboratory has had to overcome all of these challenges to the glass technologist. Advances in understanding in three areas have been crucial to our success: oxidation-reduction phenomena during glass melting; the reaction between glass and natural wastes; and the causes of foaming during glass melting

  14. Public and nuclear waste management

    International Nuclear Information System (INIS)

    Zinberg, D.

    1979-01-01

    Public concern on nuclear power is centered on the waste disposal problem. Some of the environmentalist and anti-nuclear movements are discussed, both in USA and abroad. The public is skeptical in part because of the secrecy legacy, although scientists are still largely trusted. However, the scientists are far from united in their viewpoints on the nuclear issue. The task for scientists are to put into perspective the limits to scientific knowledge and to interpret this knowledge to the public

  15. Preliminary tank characterization report for single-shell tank 241-SX-111: Best-basis inventory

    International Nuclear Information System (INIS)

    Kupfer, M.J.; Schulz, W.W.; Winward, R.T.

    1997-01-01

    An effort is underway to provide waste inventory estimates that will serve as standard characterization source terms for the various waste management activities. As part of this effort,.an evaluation of available information for single-shell tank 241-SX-111 was performed, and a best-basis inventory was established. This work follows the methodology that was established by the standard inventory task

  16. Storage - Nuclear wastes are overflowing

    International Nuclear Information System (INIS)

    Dupin, Ludovic

    2016-01-01

    This article highlights that the dismantling of French nuclear installations will generate huge volumes of radioactive wastes and that France may lack space to store them. The Cigeo project (underground storage) only concerns 0.2 per cent of the nuclear waste volume produced by France in 50 years. If storage solutions exist for less active wastes, they will soon be insufficient, notably because of the quantity of wastes produced by the dismantling of existing reactors and fuel processing plants. Different assessments of these volumes are evoked. In order to store them, the ANDRA made a second call for innovating projects which would enable a reduction of this volume by 20 to 30 per cent. The article also evokes projects selected after the first call for projects. They mainly focus on nuclear waste characterization which will result in a finer management of wastes regarding their storage destination. Cost issues and the opposition of anti-nuclear NGOs are still obstacles to the development of new sites

  17. Waste management considerations in nuclear facility decommissioning

    International Nuclear Information System (INIS)

    Elder, H.K.; Murphy, E.S.

    1981-01-01

    Decommissioning of nuclear facilities involves the management of significant quantities of radioactive waste. This paper summarizes information on volumes of waste requiring disposal and waste management costs developed in a series of decommissioning studies performed for the U.S. Nuclear Regulatory Commission by the Pacific Northwest Laboratory. These studies indicate that waste management is an important cost factor in the decommissioning of nuclear facilities. Alternatives for managing decommissioning wastes are defined and recommendations are made for improvements in waste management practices

  18. Glasses and nuclear waste vitrification

    International Nuclear Information System (INIS)

    Ojovan, Michael I.

    2012-01-01

    Glass is an amorphous solid material which behaves like an isotropic crystal. Atomic structure of glass lacks long-range order but possesses short and most probably medium range order. Compared to crystalline materials of the same composition glasses are metastable materials however crystallisation processes are kinetically impeded within times which typically exceed the age of universe. The physical and chemical durability of glasses combined with their high tolerance to compositional changes makes glasses irreplaceable when hazardous waste needs immobilisation for safe long-term storage, transportation and consequent disposal. Immobilisation of radioactive waste in glassy materials using vitrification has been used successfully for several decades. Nuclear waste vitrification is attractive because of its flexibility, the large number of elements which can be incorporated in the glass, its high corrosion durability and the reduced volume of the resulting wasteform. Vitrification involves melting of waste materials with glass-forming additives so that the final vitreous product incorporates the waste contaminants in its macro- and micro-structure. Hazardous waste constituents are immobilised either by direct incorporation into the glass structure or by encapsulation when the final glassy material can be in form of a glass composite material. Both borosilicate and phosphate glasses are currently used to immobilise nuclear wastes. In addition to relatively homogeneous glasses novel glass composite materials are used to immobilise problematic waste streams. (author)

  19. Glass and nuclear wastes

    International Nuclear Information System (INIS)

    Sombret, C.

    1982-10-01

    Glass shows interesting technical and economical properties for long term storage of solidified radioactive wastes by vitrification or embedding. Glass composition, vitrification processes, stability under irradiation, thermal stability and aqueous corrosion are studied [fr

  20. Nuclear waste and nimby

    International Nuclear Information System (INIS)

    Marshall, W.

    1986-01-01

    A report of the Tizard lecture by Lord Marshall, chairman of the UK CEGB, on the health risks associated with the disposal of radioactive wastes is given. The risks from inhalation and ingestion of various types of radioactive waste disposal are compared to the risks from radioactive material occurring naturally in the average garden soil in the UK occupying one tenth of an acre. The relative potential health risk from inhalation of coal ash is also contrasted. (UK)

  1. French people and nuclear wastes

    International Nuclear Information System (INIS)

    D'Iribarne, Ph.

    2005-01-01

    On March 21, 2005, the French minister of industry gave to the author of this document, the mission to shade a sociological light on the radioactive wastes perception by French people. The objective of this study was to supply an additional information before the laying down in 2006 of the decisions about the management of high-level and long-lived radioactive wastes. This inquiry, carried out between April 2004 and March 2005, stresses on the knowledge and doubts of the questioned people, on the vision they have of radioactive wastes and of their hazards, and on their opinion about the actors in concern (experts, nuclear companies, government, anti-nuclear groups, public). The last two parts of the report consider the different ways of waste management under study today, and the differences between the opinion of people living close to the Bure site and the opinion of people living in other regions. (J.S.)

  2. Ethical aspects on Nuclear Waste

    International Nuclear Information System (INIS)

    Persson, Lars

    1989-01-01

    In an ethical assessment of how we shall deal with nuclear waste, one of the chief questions that arises is how to initiate action while at the same time taking into consideration uncertainties which are unavoidable seen from a long-term perspective. By means of different formulation and by proceeding from various starting-points, a two edged objective is established vis-a-vis repository facilities: safety in operation combined with reparability, with controls not necessary, but not impossible. Prerequisites for the realization of this objective are the continued advancement of knowledge and refinement of the qualifications required to deal with nuclear waste. The ethical considerations above could be the bases for the future legislation in the field of nuclear energy waste. (author)

  3. Nuclear power and radioactive waste

    International Nuclear Information System (INIS)

    Grimston, M.

    1991-03-01

    The gap between the relative perceptions in the area of nuclear waste is wide. The broad view of the industry is that the disposal of nuclear waste is not a serious technical problem, and that solutions are already available to provide safe disposal of all our waste. The broad view of those who oppose the industry is that radioactive waste is so unpleasant, and will remain lethal for so long, that no acceptable policy will ever be developed, and so production of such waste (except, oddly, the significant amounts arising from uses of radioactive materials in medicine, agriculture, industrial safety research, etc) should stop immediately. This booklet will not attempt to describe in great detail the technicalities of the United Kingdom nuclear industry's current approach to radioactive waste: such issues are described in detail in other publications, especially those by Nirex. It is our intention to outline some of the main issues involved, and to associate these issues with the divergence in perceptions of various parties. (author)

  4. Underground storage of nuclear waste

    International Nuclear Information System (INIS)

    Russell, J.E.

    1977-06-01

    The objective of the National Waste Terminal Storage (NWTS) Program is to provide facilities in various deep geologic formations at multiple locations in the United States which will safely dispose of commerical radioactive waste. The NWTS Program is being administered for the Energy Research and Development Administration (ERDA) by the Office of Waste Isolation (OWI), Union Carbide Corporation, Nuclear Division. OWI manages projects that will lead to the location, construction, and operation of repositories, including all surface and underground engineering and facility design projects and technical support projects. 7 refs., 5 figs

  5. Arctic Nuclear Waste Assessment Program

    International Nuclear Information System (INIS)

    Edson, R.

    1995-01-01

    The Arctic Nuclear Waste Assessment Program (ANWAP) was initiated in 1993 as a result of US congressional concern over the disposal of nuclear materials by the former Soviet Union into the Arctic marine environment. The program is comprised of appr. 70 different projects. To date appr. ten percent of the funds has gone to Russian institutions for research and logistical support. The collaboration also include the IAEA International Arctic Seas Assessment Program. The major conclusion from the research to date is that the largest signals for region-wide radionuclide contamination in the Arctic marine environment appear to arise from the following: 1) atmospheric testing of nuclear weapons, a practice that has been discontinued; 2) nuclear fuel reprocessing wastes carried in the Arctic from reprocessing facilities in Western Europe, and 3) accidents such as Chernobyl and the 1957 explosion at Chelyabinsk-65

  6. Regulating nuclear fuel waste

    International Nuclear Information System (INIS)

    1995-01-01

    When Parliament passed the Atomic Energy Control Act in 1946, it erected the framework for nuclear safety in Canada. Under the Act, the government created the Atomic Energy Control Board and gave it the authority to make and enforce regulations governing every aspect of nuclear power production and use in this country. The Act gives the Control Board the flexibility to amend its regulations to adapt to changes in technology, health and safety standards, co-operative agreements with provincial agencies and policy regarding trade in nuclear materials. This flexibility has allowed the Control Board to successfully regulate the nuclear industry for more than 40 years. Its mission statement 'to ensure that the use of nuclear energy in Canada does not pose undue risk to health, safety, security and the environment' concisely states the Control Board's primary objective. The Atomic Energy Control Board regulates all aspects of nuclear energy in Canada to ensure there is no undue risk to health, safety, security or the environment. It does this through a multi-stage licensing process

  7. The Geopolitics of Nuclear Waste.

    Science.gov (United States)

    Marshall, Eliot

    1991-01-01

    The controversy surrounding the potential storage of nuclear waste at Yucca Mountain, Nevada, is discussed. Arguments about the stability of the site and the groundwater situation are summarized. The role of the U.S. Department of Energy and other political considerations are described. (CW)

  8. Nuclear waste package thermal performance

    International Nuclear Information System (INIS)

    Lundberg, W.

    1985-01-01

    Given the geology, the corrosion of deep geologic nuclear waste packages depends largely on the package temperature history. Factors affecting package temperature are described, and predictions of package temperatures and resulting corrosion vs time relationships are presented and discussed for candidate geologies

  9. Regulatory compliance analysis for the closure of single-shell tanks

    International Nuclear Information System (INIS)

    Smith, E.H.; Boomer, K.D.; Letourneau, M.; Oakes, L.; Lorang, R.

    1991-08-01

    This document provides a regulatory compliance analysis of the baseline environmental protection requirements for the closure of single-shell tanks. In preparing this document, the Westinghouse Hanford Company has analyzed the regulatory pathways and decisions points that have been identified to data through systems engineering and related studies as they relate to environmental protection. This regulatory compliance analysis has resulted in several conclusions that will aid the US Department of Energy in managing the single-shell tank waste and in developing strategies for the closure of these tanks. These conclusions include likely outcomes of current strategies, regulatory rulings that are required for future actions, variances and exemptions to be pursued, where appropriate, and potential rulings that may affect systems engineering and other portions of the single-shell tank closure effort. The conclusions and recommendations presented here are based on analysis of current regulations, regulatory exemptions and variances, and federal facility agreements. Because the remediation of the single-shell tanks will span 30 years, regulations that have yet to be promulgated and future interpretations of existing laws and regulations may impact the recommendations and conclusions presented here. 50 refs., 22 figs

  10. Scientific basis for nuclear waste management XX

    International Nuclear Information System (INIS)

    Gray, W.J.; Triay, I.R.

    1997-01-01

    The proceedings are divided into the following topical sections: Glass formulations and properties; Glass/water interactions; Cements in radioactive waste management; Ceramic and crystalline waste forms; Spent nuclear fuel; Waste processing and treatment; Radiation effects in ceramics, glasses, and nuclear waste materials; Waste package materials; Radionuclide solubility and speciation; Radionuclide sorption; Radionuclide transport; Repository backfill; Performance assessment; Natural analogues; Excess plutonium dispositioning; and Chernobyl-related waste disposal issues. Papers within scope have been processed separately for inclusion on the data base

  11. Single-shell tank closure work plan. Revision A

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    In January 1994, the Hanford Federal Facility Agreement and Conset Order (Tri-Party Agreement) was amended to reflect a revised strategy for remediation of radioactive waste in underground storage tanks. These amendments include milestones for closure of the single-shell tank (SST) operable units, to be initiated by March 2012 and completed by September 2024. This SST-CWP has been prepared to address the principal topical areas identified in Tri-Party Agreement Milestone M-45-06 (i.e., regulatory pathway, operable unit characterization, waste retrieval, technology development, and a strategy for achieving closure). Chapter 2.0 of this SST-CWP provides a brief description of the environmental setting, SST System, the origin and characteristics of SST waste, and ancillary equipment that will be remediated as part of SST operable unit closure. Appendix 2A provides a description of the hydrogeology of the Hanford Site, including information on the unsaturated sediments (vadose zone) beneath the 200 Areas Plateau. Chapter 3.0 provides a discussion of the laws and regulations applicable to closure of the SST farm operable units. Chapter 4.0 provides a summary description of the ongoing characterization activities that best align with the proposed regulatory pathway for closure. Chapter 5.0 describes aspects of the SST waste retrieval program, including retrieval strategy, technology, and sequence, potential tank leakage during retrieval, and considerations of deployment of subsurface barriers. Chapter 6.0 outlines a proposed strategy for closure. Chapter 7.0 provides a summary of the programs underway or planned to develop technologies to support closure. Ca. 325 refs.

  12. Single-shell tank closure work plan. Revision A

    International Nuclear Information System (INIS)

    1995-06-01

    In January 1994, the Hanford Federal Facility Agreement and Conset Order (Tri-Party Agreement) was amended to reflect a revised strategy for remediation of radioactive waste in underground storage tanks. These amendments include milestones for closure of the single-shell tank (SST) operable units, to be initiated by March 2012 and completed by September 2024. This SST-CWP has been prepared to address the principal topical areas identified in Tri-Party Agreement Milestone M-45-06 (i.e., regulatory pathway, operable unit characterization, waste retrieval, technology development, and a strategy for achieving closure). Chapter 2.0 of this SST-CWP provides a brief description of the environmental setting, SST System, the origin and characteristics of SST waste, and ancillary equipment that will be remediated as part of SST operable unit closure. Appendix 2A provides a description of the hydrogeology of the Hanford Site, including information on the unsaturated sediments (vadose zone) beneath the 200 Areas Plateau. Chapter 3.0 provides a discussion of the laws and regulations applicable to closure of the SST farm operable units. Chapter 4.0 provides a summary description of the ongoing characterization activities that best align with the proposed regulatory pathway for closure. Chapter 5.0 describes aspects of the SST waste retrieval program, including retrieval strategy, technology, and sequence, potential tank leakage during retrieval, and considerations of deployment of subsurface barriers. Chapter 6.0 outlines a proposed strategy for closure. Chapter 7.0 provides a summary of the programs underway or planned to develop technologies to support closure. Ca. 325 refs

  13. Geopolitics of nuclear waste

    International Nuclear Information System (INIS)

    Marshall, E.

    1991-01-01

    More debate has begun over questions related to the safety of high-level waste disposal at the Yucca Mountain site in the Nevada desert. An engineering geologists, Jerry Szymanski, one of the Department of Energy's (DOE) own staffers in Las Vegas, has proposed that the $15-billion repository would sit on top of an intensely active structure that, if altered by an earthquake, would send a slug of ground water up from deep within the mountain into the waste storage area. This theory has already been slammed in two formal reviews and has virtually no support among geologists. However, enough doubt has been raised that much more geological testing will be necessary to prove or disprove Szymanski's theory. Nevada state officials are also using all methods to thwart or block the project. The question of the origin of a series of calcium carbonate and opal veins exposed in an exploratory pit, trench 14, near the top of the mountain is also far from answered. The DOE and US Geological Survey may have to collect much more information on the quantity, size, and location of carbonate sites in the area at a high financial outlay to the US government before a complete case on the origin of the material in trench 14 can be made

  14. Nuclear wastes and public trust

    International Nuclear Information System (INIS)

    Flynn, J.; Slovic, P.

    1993-01-01

    Citing public fear and mistrust, strong opposition to the proposed Yucca Mountain repository site, and less-than-exemplary performance by the Department of Energy (DOE), two private researchers believe present high-level radioactive waste-disposal plans may have to be scrapped. Government and the nuclear industry may have to start over. Policy makers should seek to develop new relationships with communities and states where suitable disposal sites exist. These relationships may require that citizen groups and local institutions be given unprecedented authority in locating and operating such facilities. Contrary to popular impressions, there is still time to take a new approach. The US Nuclear Regulatory Commission says present on-site storage arrangements offer a safe alternative for 100 years or more. The sense of immediate crisis and cries for immediate solutions should be calmed and a more considered strategy brought to the public debate. For starters, the researchers propose that the problems of defense waste be separated from the problems of commercial waste. They also suggest that DOE be assigned responsibility for defense waste and a new agency be created to handle high-level commercial waste

  15. Nuclear waste disposal site

    International Nuclear Information System (INIS)

    Mallory, C.W.; Watts, R.E.; Sanner, W.S. Jr.; Paladino, J.B.; Lilley, A.W.; Winston, S.J.; Stricklin, B.C.; Razor, J.E.

    1988-01-01

    This patent describes a disposal site for the disposal of toxic or radioactive waste, comprising: (a) a trench in the earth having a substantially flat bottom lined with a layer of solid, fluent, coarse, granular material having a high hydraulic conductivity for obstructing any capillary-type flow of ground water to the interior of the trench; (b) a non-rigid, radiation-blocking cap formed from a first layer of alluvium, a second layer of solid, fluent, coarse, granular material having a high hydraulic conductivity for blocking any capillary-type flow of water between the layer of alluvium and the rest of the cap, a layer of water-shedding silt for directing surface water away from the trench, and a layer of rip-rap over the silt layer for protecting the silt layer from erosion and for providing a radiation barrier; (c) a solidly-packed array of abutting modules of uniform size and shape disposed in the trench and under the cap for both encapsulating the wastes from water and for structurally supporting the cap, wherein each module in the array is slidable movable in the vertical direction in order to allow the array of modules to flexibly conform to variations in the shape of the flat trench bottom caused by seismic disturbances and to facilitate the recoverability of the modules; (d) a layer of solid, fluent, coarse, granular materials having a high hydraulic conductivity in the space between the side of the modules and the walls of the trench for obstructing any capillary-type flow of ground water to the interior of the trench; and (e) a drain and wherein the layer of silt is sloped to direct surface water flowing over the cap into the drain

  16. Nuclear waste and hazardous waste in the public perception

    International Nuclear Information System (INIS)

    Kruetli, Pius; Seidl, Roman; Stauffacher, Michael

    2015-01-01

    The disposal of nuclear waste has gained attention of the public for decades. Accordingly, nuclear waste has been a prominent issue in natural, engineer and social science for many years. Although bearing risks for todays and future generations hazardous waste in contrast is much less an issue of public concern. In 2011, we conducted a postal survey among Swiss Germans (N = 3.082) to learn more about, how nuclear waste is perceived against hazardous waste. We created a questionnaire with two versions, nuclear waste and hazardous waste, respectively. Each version included an identical part with well-known explanatory factors for risk perception on each of the waste types separately and additional questions directly comparing the two waste types. Results show that basically both waste types are perceived similarly in terms of risk/benefit, emotion, trust, knowledge and responsibility. However, in the direct comparison of the two waste types a complete different pattern can be observed: Respondents perceive nuclear waste as more long-living, more dangerous, less controllable and it, furthermore, creates more negative emotions. On the other hand, respondents feel more responsible for hazardous waste and indicate to have more knowledge about this waste type. Moreover, nuclear waste is perceived as more carefully managed. We conclude that mechanisms driving risk perception are similar for both waste types but an overarching negative image of nuclear waste prevails. We propose that hazardous waste should be given more attention in the public as well as in science which may have implications on further management strategies of hazardous waste.

  17. Nuclear waste and hazardous waste in the public perception

    Energy Technology Data Exchange (ETDEWEB)

    Kruetli, Pius; Seidl, Roman; Stauffacher, Michael [ETH Zurich (Switzerland). Inst. for Environmental Decisions

    2015-07-01

    The disposal of nuclear waste has gained attention of the public for decades. Accordingly, nuclear waste has been a prominent issue in natural, engineer and social science for many years. Although bearing risks for todays and future generations hazardous waste in contrast is much less an issue of public concern. In 2011, we conducted a postal survey among Swiss Germans (N = 3.082) to learn more about, how nuclear waste is perceived against hazardous waste. We created a questionnaire with two versions, nuclear waste and hazardous waste, respectively. Each version included an identical part with well-known explanatory factors for risk perception on each of the waste types separately and additional questions directly comparing the two waste types. Results show that basically both waste types are perceived similarly in terms of risk/benefit, emotion, trust, knowledge and responsibility. However, in the direct comparison of the two waste types a complete different pattern can be observed: Respondents perceive nuclear waste as more long-living, more dangerous, less controllable and it, furthermore, creates more negative emotions. On the other hand, respondents feel more responsible for hazardous waste and indicate to have more knowledge about this waste type. Moreover, nuclear waste is perceived as more carefully managed. We conclude that mechanisms driving risk perception are similar for both waste types but an overarching negative image of nuclear waste prevails. We propose that hazardous waste should be given more attention in the public as well as in science which may have implications on further management strategies of hazardous waste.

  18. Nuclear waste forms for actinides

    Science.gov (United States)

    Ewing, Rodney C.

    1999-01-01

    The disposition of actinides, most recently 239Pu from dismantled nuclear weapons, requires effective containment of waste generated by the nuclear fuel cycle. Because actinides (e.g., 239Pu and 237Np) are long-lived, they have a major impact on risk assessments of geologic repositories. Thus, demonstrable, long-term chemical and mechanical durability are essential properties of waste forms for the immobilization of actinides. Mineralogic and geologic studies provide excellent candidate phases for immobilization and a unique database that cannot be duplicated by a purely materials science approach. The “mineralogic approach” is illustrated by a discussion of zircon as a phase for the immobilization of excess weapons plutonium. PMID:10097054

  19. Nuclear waste: A cancer cure?

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    In a marriage of strange bedfellows, scientists at one of the country's most contaminated nuclear waste sites are collaborating with medical researchers to turn nuclear waste into an experimental therapy for cancer. Patients with Hodgkin's disease and brain, ovarian, and breast cancers may be able to receive the new radiatio-based treatments in the next five to ten years. Recently, scientists at the Hanford site found a way to chemically extract a pure form of the radioisotope yttrium-90 from strontium-90, a by-product of plutonium production. Yttrium-90 is being tested in clinical trials at medical centers around the country as a treatment for various types of cancers, and the initial results are encouraging. The advantage of yttrium-90 over other radioisotopes is its short half-life

  20. Nuclear waste immobilization. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Ringwood, A.E.; Sinclair, W.; McLaughlin, G.M.

    1979-11-20

    United States defense nuclear wastes are presently in tank storage, largely as sludges comprising Fe, Mn, Ni, U and Na oxides and hydroxides, together with 0.5 to 5 percent of fission products and actinides (exclusive of uranium). The relative proportions of Al, Fe, Mn, Ni, U and Na in the sludges from different tanks vary considerably, except that (Fe + Al + Mn) are by far the major components and Fe is more abundant than Mn. Typical compositions of some calcined sludges from Savannah River are given. This paper briefly describes how the SYNROC process, utilizing straightforward technology, can be readily adapted to the problem of defense waste immobilization, yielding a dense, inert, ceramic waste-form, SYNROC-D. Two classes of processes are discussed - one designed to immobilize sludges containing normal amounts of sodium and the other designed for otherwise similar sludges which are, however, strongly depleted in sodium as a result of more efficient washing procedures.

  1. Single-shell tank riser resistance to ground test plan

    International Nuclear Information System (INIS)

    Kiewert, L.R.

    1996-01-01

    This Test Procedure provides the general directions for conducting Single-Shell Tank Riser to Earth Measurements which will be used by engineering as a step towards providing closure for the Lightning Hazard Issue

  2. Nuclear wastes and public acceptance

    International Nuclear Information System (INIS)

    Hammond, R.P.

    1979-01-01

    A new approach to the storage of nuclear wastes is described. Certain criteria for a nuclear waste storage system that is based on ideas of technical soundess and public acceptability are set forth. These criteria are 1.) the wastes must be reliably contained at all times, 2.) the containers must be retrievable and maintainable, 3.) the storage facility must also provide isolation from external events and must also permit careful control of human access, 4.) the storage facility and containers must have plausible or demonstratble likelihood of lasting for 100 years, and 5.) the storage system should be able to accept and retrieve both processed waste and spent fuel elements interchangeably. A specific storage system concept that is based on proved data and that meets the 5 criteria is described. The waste, either glassified high-level waste or spent fuel-fuel bundles from which the end structures have been removed, is stored in sealed stainless steel containers, which is sealed in a second sealed container made of a durable metal such as Ti. The space between the two containers is filled with a gas that can be detected at very low concentrations. These containers are stored in a tunnel excavated into the side of a convenient mountain. The tunnel is excavated above flood level, is accessible by rail and/or road, and is designed for self-draining. A free-standing inner lining is constructed within the tunnel. Offset vertical shafts provide for ventilation. Continuous monitoring leak detectors are maintained in the tunnel and in the stack

  3. Plasma filtering techniques for nuclear waste remediation.

    Science.gov (United States)

    Gueroult, Renaud; Hobbs, David T; Fisch, Nathaniel J

    2015-10-30

    Nuclear waste cleanup is challenged by the handling of feed stocks that are both unknown and complex. Plasma filtering, operating on dissociated elements, offers advantages over chemical methods in processing such wastes. The costs incurred by plasma mass filtering for nuclear waste pretreatment, before ultimate disposal, are similar to those for chemical pretreatment. However, significant savings might be achieved in minimizing the waste mass. This advantage may be realized over a large range of chemical waste compositions, thereby addressing the heterogeneity of legacy nuclear waste. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Nuclear waste transmutation

    International Nuclear Information System (INIS)

    Salvatores, M.; Girard, C.; Delpech, M.; Slessarev, I.; Tommasi, J.

    1994-01-01

    Waste management strategies foresee the use of a deep geological repository either for final disposal of irradiated fuel or, after reprocessing and reuse of U and Pu for final disposal of long-lived radio-active materials. In the second case, partitioning and transmutation of these materials can be considered to reduce the impact of radiation on man due to the storage. On the basis of the SPIN programme developed by CEA in this field, the main features of transmutation is presented. The goal to achieve and the criteria to use are quite difficult to establish. The rights para-meters to characterize the risk are the potential radiotoxicity in the the repository and the residual radiotoxicity at the outlet. Transmutation studies in CEA used the potential radiotoxicity which is based on well-known parameters and less precise hazardous factors. The second point to appreciate the trans- mutation interest is to dispose of a criteria for the radio-radiotoxicity reduction. As there is no general agreement, we try to have a toxicity as low as possible within reasonable technical limits. To reduce the long term radio- toxicity, Pu, minor actinides and some long-lived fission products have to be transmuted. To assess the feasibility of such trans-mutation in reactors or advanced systems, one has to consider constraints on neutronic balance, safety, fuel cycle, technology , economy. Taking in account the main conclusions of this analysis, parametric studies of homogeneous and heterogenous transmutation permit a choice of promising solutions. Goals are to use every long-lived element with a minimized production of other long- lived elements in order to obtain an appreciable radiotoxicity reduction. It implies multi recycling of Pu which favours fast neutron reactors and different strategies of multi recycling for Np, Am, Cm. Multi recycling makes the results strongly dependant of losses. Researches to obtain the high partitioning efficiency needed are in progress. Calculations

  5. Nuclear wastes: fission

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    Progress is reported on investigations of transuranics in soils and plants that have demonstrated the importance of valence state, complexation, competing elements, migration down the soil profile, and weathering cycles in governing transuranic, 129 I and 99 Tc availability to plants and, in the case of Pu, to the consuming animals. In the latter case, it was demonstrated, for the first time, that ingestion of plant tissues containing Pu may result in greater transfer across the gut compared to gavaging animals with inorganic Pu solutions, underscoring the importance of detailed studies of the soil, plant, and animal factors influencing uptake by the ingestion pathway. Further evidence of the importance of the ingestion pathway was provided in studies of foliar interception of airborne transuranic elements in which it was shown that Pu in particles in the respiratory size range were effectively intercepted and retained by plants, and significant quantities of intercepted Pu were transported to roots and seeds. Similar studies on the terrestrial ingestion pathway have been initiated with other actinides including, U, Am, Cm, and Np. Radioecological field studies were directed toward establishment of pertinent ingestion pathways and exposure levels through description of habitat types, population densities, and, in several instances, dosimetry, for major insects, reptiles, birds, and mammalian species. These studies were extended to agricultural ecosystems through definition of the uptake of long-lived nuclides and digestibility in cattle of several forage species. In studies on a pond ecosystem at the nuclear fuel reprocessing plant, Pu and Am uptake rates were studied for major biotic components including organic floc, algae, fish, and ducks. The results indicated that assimilation of transuranics by the biota and export from the pond system were low compared to the total inventory

  6. Characterization of Direct Push Vadose Zone Sediments from the 241-U Single-Shell Tank Farm

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Christopher F.; Valenta, Michelle M.; Serne, R. Jeffrey; Bjornstad, Bruce N.; Lanigan, David C.; Iovin, Cristian; Clayton, Ray E.; Geiszler, Keith N.; Clayton, Eric T.; Kutnyakov, Igor V.; Baum, Steven R.; Lindberg, Michael J.; Orr, Robert D.

    2007-12-20

    The overall goals of the Tank Farm Vadose Zone Project, led by CH2M HILL Hanford Group, Inc., are 1) to define risks from past and future single-shell tank farm activities, 2) to identify and evaluate the efficacy of interim measures, and 3) to aid, via collection of geochemical information and data, the future decisions that must be made by the U.S. Department of Energy (DOE) regarding the near-term operations, future waste retrieval, and final closure activities for the single-shell tank Waste Management Areas (WMAs). For a more complete discussion of the goals of the Tank Farm Vadose Zone Project, see the overall work plan, Phase 1 RCRA Facility Investigation/Corrective Measures Study Work Plan for the Single-Shell Tank Waste Management Areas (DOE 1999). Specific details on the rationale for activities performed at WMA U are found in Crumpler (2003). To meet these goals, CH2M HILL Hanford Group, Inc., asked scientists from Pacific Northwest National Laboratory (PNNL) to perform detailed analyses of vadose zone sediment collected within the U Single-Shell Tank Farm. Specifically, this report contains all the geochemical and selected physical characterization data collected on vadose zone sediment recovered from ten direct push characterization holes emplaced to investigate vadose zone contamination associated with potential leaks within the 241-U Single-Shell Tank Farm. Specific tanks targeted during this characterization campaign included tanks 241-U-104/241-U-105, 241-U-110, and 241-U-112. Additionally, this report compiles data from direct push samples collected north of tank 241-U-201, as well as sediment collected from the background borehole (C3393). After evaluating all the characterization and analytical data, there is no question that the vadose zone in the vicinity of tanks 241-U-104 and 241-U-105 has been contaminated by tank-related waste. This observation is not new, as gamma logging of drywells in the area has identified uranium contamination at the

  7. Final disposal of nuclear waste

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1995-10-01

    The nuclear industry argues that high level radioactive waste can be safely disposed of in deep underground repositories. As yet, however, no such repositories are in use and the amount of spent nuclear fuel in ponds and dry storage is steadily increasing. Although the nuclear industry further argues that storage is a safe option for up to 50 years and has the merit of allowing the radioactivity of the fuel to decay to a more manageable level, the situation seems to be far from ideal. The real reasons for procrastination over deep disposal seem to have as much to do with politics as safe technology. The progress of different countries in finding a solution to the final disposal of high level waste is examined. In some, notably the countries of the former Soviet Union, cost is a barrier; in others, the problem has not yet been faced. In these countries undertaking serious research into deep disposal there has been a tendency, in the face of opposition from environmental groups, to retreat to sites close to existing nuclear installations and to set up rock laboratories to characterize them. These sites are not necessarily the best geologically, but the laboratories may end up being converted into actual repositories because of the considerable financial investment they represent. (UK).

  8. Final disposal of nuclear waste

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    The nuclear industry argues that high level radioactive waste can be safely disposed of in deep underground repositories. As yet, however, no such repositories are in use and the amount of spent nuclear fuel in ponds and dry storage is steadily increasing. Although the nuclear industry further argues that storage is a safe option for up to 50 years and has the merit of allowing the radioactivity of the fuel to decay to a more manageable level, the situation seems to be far from ideal. The real reasons for procrastination over deep disposal seem to have as much to do with politics as safe technology. The progress of different countries in finding a solution to the final disposal of high level waste is examined. In some, notably the countries of the former Soviet Union, cost is a barrier; in others, the problem has not yet been faced. In these countries undertaking serious research into deep disposal there has been a tendency, in the face of opposition from environmental groups, to retreat to sites close to existing nuclear installations and to set up rock laboratories to characterize them. These sites are not necessarily the best geologically, but the laboratories may end up being converted into actual repositories because of the considerable financial investment they represent. (UK)

  9. Nuclear waste management. Semiannual progress report, October 1983-March 1984

    Energy Technology Data Exchange (ETDEWEB)

    McElroy, J.L.; Powell, J.A.

    1984-06-01

    Progress in the following studies on radioactive waste management is reported: defense waste technology; Nuclear Waste Materials Characterization Center; waste isolation; and supporting studies. 58 figures, 22 tables.

  10. Waste management in the nuclear engineering curriculum

    International Nuclear Information System (INIS)

    Tulenko, J.S.

    1989-01-01

    One of the most significant challenges facing the nuclear industry is to successfully close the nuclear fuel cycle and effectively demonstrate to the public that nuclear wastes do not present a health risk. This issue is currently viewed by many as the most important issue affecting public acceptance of nuclear power, and it is imperative that nuclear engineers be able to effectively address the question of nuclear waste from both a generation and disposal standpoint. To address the issue, the area of nuclear waste management has been made one of the fields of specialized study in the Department of Nuclear Engineering Sciences at the University of Florida. The study of radioactive waste management at the University of Florida is designed both for background for the general nuclear engineering student and for those wishing to specialize in it as a multidiscipline study area involving the Departments of Nuclear Engineering Sciences, Environmental Sciences, Material Science and Engineering, Geology, Civil Engineering, and Industrial Engineering

  11. Organic diagenesis in commercial nuclear wastes

    International Nuclear Information System (INIS)

    Toste, A.P.; Lechner-Fish, T.J.

    1988-01-01

    The nuclear industry currently faces numerous challenges. Large volumes of already existing wastes must be permanently disposed using environmentally acceptable technologies. Numerous criteria must be addressed before wastes can be permanently disposed. Waste characterization is certainly one of the key criteria for proper waste management. some wastes are complex melting pots of inorganics, radiochemicals, and, occasionally, organics. It is clear, for example, that organics have been used extensively in nuclear operations, such as waste reprocessing, and continue to be used widely as solvents, decontamination agents, etc. The authors have analyzed the organic content of many kinds of nuclear wastes, ranging from commercial to defense wastes. In this paper, the finale analyses are described of three commercial wastes: one waste from a pressurized water reactor (PWR) and two wastes from a boiling water reactor (BWR). The PWR waste is a boric acid concentrate waste. The two BWR wastes, BWR wastes Nos. 1 and 2, are evaporator concentrates of liquid wastes produced during the regeneration of ion-exchange resins used to purify reactor process water. In preliminary analyses, which were reported previously, a few know organics and myriad unknowns were detected. Recent reexamination of mass-spectral data, coupled with reanalysis of the wastes, has resulted in the firm identification of the unknowns. Most of the compounds, over thirty distinct organics, are derived from the degradation, or diagenesis, of source-term organics, revealing, for the first time, that organic diagenesis in commercial wastes is both vigorous and varied

  12. Uranium immobilization and nuclear waste

    International Nuclear Information System (INIS)

    Duffy, C.J.; Ogard, A.E.

    1982-02-01

    Considerable information useful in nuclear waste storage can be gained by studying the conditions of uranium ore deposit formation. Further information can be gained by comparing the chemistry of uranium to nuclear fission products and other radionuclides of concern to nuclear waste disposal. Redox state appears to be the most important variable in controlling uranium solubility, especially at near neutral pH, which is characteristic of most ground water. This is probably also true of neptunium, plutonium, and technetium. Further, redox conditions that immobilize uranium should immobilize these elements. The mechanisms that have produced uranium ore bodies in the Earth's crust are somewhat less clear. At the temperatures of hydrothermal uranium deposits, equilibrium models are probably adequate, aqueous uranium (VI) being reduced and precipitated by interaction with ferrous-iron-bearing oxides and silicates. In lower temperature roll-type uranium deposits, overall equilibrium may not have been achieved. The involvement of sulfate-reducing bacteria in ore-body formation has been postulated, but is uncertain. Reduced sulfur species do, however, appear to be involved in much of the low temperature uranium precipitation. Assessment of the possibility of uranium transport in natural ground water is complicated because the system is generally not in overall equilibrium. For this reason, Eh measurements are of limited value. If a ground water is to be capable of reducing uranium, it must contain ions capable of reducing uranium both thermodynamically and kinetically. At present, the best candidates are reduced sulfur species

  13. Nuclear Waste Disposal: Alternatives to Yucca Mountain

    Science.gov (United States)

    2009-02-06

    judgment fund, rather than the Nuclear Waste Fund, and require no congressional appropriations. DOE calculates that its nuclear waste liabilities to...in existing light and heavy water reactors, and subsequent recycling in high- burnup gas-cooled reactors, reactors fueled by thorium and plutonium...level nuclear waste repository was a calculated risk that the site could be developed successfully. There is no backup plan in place. Yucca Mountain

  14. Chemical risks from nuclear waste repositories

    International Nuclear Information System (INIS)

    Persson, L.

    1988-01-01

    Studies concerning the chemical risks of nuclear waste are reviewed. The radiological toxicity of the material is of primary concern but the potential nonradiological toxicity should not be overlooked as the chemotoxic substances may reach the biosphere from a nuclear waste repository. In the report is concluded that the possible chemotoxic effects of a repository for nuclear waste should be studied as a part of the formal risk assessment of the disposal concept. (author)

  15. Nuclear waste management, reactor decommisioning, nuclear liability and public attitudes

    International Nuclear Information System (INIS)

    Green, R.E.

    1982-01-01

    This paper deals with several issues that are frequently raised by the public in any discussion of nuclear energy, and explores some aspects of public attitudes towards nuclear-related activities. The characteristics of the three types of waste associated with the nuclear fuel cycle, i.e. mine/mill tailings, reactor wastes and nuclear fuel wastes, are defined, and the methods currently being proposed for their safe handling and disposal are outlined. The activities associated with reactor decommissioning are also described, as well as the Canadian approach to nuclear liability. The costs associated with nuclear waste management, reactor decommissioning and nuclear liability are also discussed. Finally, the issue of public attitudes towards nuclear energy is addressed. It is concluded that a simple and comprehensive information program is needed to overcome many of the misconceptions that exist about nuclear energy and to provide the public with a more balanced information base on which to make decisions

  16. Nuclear power, nuclear fuel cycle and waste management

    International Nuclear Information System (INIS)

    1991-01-01

    The following topics are discussed in 5 chapters: nuclear power, nuclear fuel cycle, radioactive waste management, special events, highlights of the IAEA's work. In the field of nuclear power, the status of nuclear energy generation at the end of 1990 is presented, as well as power plant performance, nuclear power costs, power plant aging and life extension, advanced reactor systems, quality management and quality assurance, automation and human action in nuclear power plant operation and finally the trends of nuclear power to 2010. The following aspects concerning nuclear fuel cycle are discussed: uranium exploration, resources, supply and demand, refining and conversion, enrichment, reactor fuel technology, spent fuel management, economics of the nuclear fuel cycle and trends for the near future. In the field of radioactive waste management, problems concerning treatment and conditioning of radioactive waste, radioactive waste disposal, decontamination and decommissioning and trends for the near future are discussed. Refs, figs and tabs

  17. Global Nuclear Energy Partnership Waste Treatment Baseline

    Energy Technology Data Exchange (ETDEWEB)

    Gombert, Dirk; Ebert, William; Marra, James; Jubin, Robert; Vienna, John [Idaho National laboratory, 2525 Fremont Ave., Idaho Falls, ID 83402 (United States)

    2008-07-01

    The Global Nuclear Energy Partnership (GNEP) program is designed to demonstrate that a proliferation-resistant and sustainable integrated nuclear fuel cycle can be commercialized and used internationally. Alternative stabilization concepts for byproducts and waste streams generated by fuel recycling processes were evaluated and a baseline set of waste forms was recommended for the safe disposition of waste streams. Specific waste forms are recommended based on the demonstrated or expected commercial practicability and technical maturity of the processes needed to make the waste forms, and expected performance of the waste form materials when disposed. Significant issues remain in developing technologies to process some of the wastes into the recommended waste forms, and a detailed analysis of technology readiness may lead to the choice of a different waste form than what is recommended herein. Evolving regulations could also affect the selection of waste forms. (authors)

  18. Global Nuclear Energy Partnership Waste Treatment Baseline

    International Nuclear Information System (INIS)

    Gombert, Dirk; Ebert, William; Marra, James; Jubin, Robert; Vienna, John

    2008-01-01

    The Global Nuclear Energy Partnership (GNEP) program is designed to demonstrate that a proliferation-resistant and sustainable integrated nuclear fuel cycle can be commercialized and used internationally. Alternative stabilization concepts for byproducts and waste streams generated by fuel recycling processes were evaluated and a baseline set of waste forms was recommended for the safe disposition of waste streams. Specific waste forms are recommended based on the demonstrated or expected commercial practicability and technical maturity of the processes needed to make the waste forms, and expected performance of the waste form materials when disposed. Significant issues remain in developing technologies to process some of the wastes into the recommended waste forms, and a detailed analysis of technology readiness may lead to the choice of a different waste form than what is recommended herein. Evolving regulations could also affect the selection of waste forms. (authors)

  19. Global Nuclear Energy Partnership Waste Treatment Baseline

    Energy Technology Data Exchange (ETDEWEB)

    Dirk Gombert; William Ebert; James Marra; Robert Jubin; John Vienna

    2008-05-01

    The Global Nuclear Energy Partnership program (GNEP) is designed to demonstrate a proliferation-resistant and sustainable integrated nuclear fuel cycle that can be commercialized and used internationally. Alternative stabilization concepts for byproducts and waste streams generated by fuel recycling processes were evaluated and a baseline of waste forms was recommended for the safe disposition of waste streams. Waste forms are recommended based on the demonstrated or expected commercial practicability and technical maturity of the processes needed to make the waste forms, and performance of the waste form materials when disposed. Significant issues remain in developing technologies to process some of the wastes into the recommended waste forms, and a detailed analysis of technology readiness and availability may lead to the choice of a different waste form than what is recommended herein. Evolving regulations could also affect the selection of waste forms.

  20. Questioning nuclear waste substitution: a case study.

    Science.gov (United States)

    Marshall, Alan

    2007-03-01

    This article looks at the ethical quandaries, and their social and political context, which emerge as a result of international nuclear waste substitution. In particular it addresses the dilemmas inherent within the proposed return of nuclear waste owned by Japanese nuclear companies and currently stored in the United Kingdom. The UK company responsible for this waste, British Nuclear Fuels Limited (BNFL), wish to substitute this high volume intermediate-level Japanese-owned radioactive waste for a much lower volume of much more highly radioactive waste. Special focus is given to ethical problems that they, and the UK government, have not wished to address as they move forward with waste substitution. The conclusion is that waste substitution can only be considered an ethical practice if a set of moderating conditions are observed by all parties. These conditions are listed and, as of yet, they are not being observed.

  1. Nuclear waste repository simulation experiments

    International Nuclear Information System (INIS)

    Rothfuchs, T.; Wieczorek, K.; Feddersen, H.K.; Staupendahl, G.; Coyle, A.J.; Kalia, H.; Eckert, J.

    1986-12-01

    This document is the third joint annual report on the Cooperative German-American 'Brine Migration Tests' that are in progress at the Asse salt mine in the Federal Republic of Germany (FRG). This Government supported mine serves as an underground test facility for research and development (R and D)-work in the field of nuclear waste repository research and simulation experiments. The tests are designed to simulate a nuclear waste repository to measure the effects of heat and gamma radiation on brine migration, salt decrepitation, disassociation of brine, and gases collected. The thermal mechanical behavior of salt, such as room closure, stresses and changes of the properties of salt are measured and compared with predicted behavior. This document covers the following sections: Issues and test objectives: This section presents issues that are investigated by the Brine Migration Test, and the test objectives derived from these issues; test site: This section describes the test site location and geology in the Asse mine; test description: A description of the test configuration, procedures, equipment, and instrumentation is given in this section; actual test chronology: The actual history of the test, in terms of the dates at which major activities occured, is presented in this section. Test results: This section presents the test results observed to data and the planned future work that is needed to complete the test; conclusions and recommendations: This section summarizes the conclusions derived to date regarding the Brine Migration Test. Additional work that would be useful to resolve the issues is discussed. (orig.)

  2. Space disposal of nuclear wastes

    International Nuclear Information System (INIS)

    Priest, C.C.; Nixon, R.F.; Rice, E.E.

    1980-01-01

    It is proposed that certain types of high-level nuclear wastes obtained from the Purex process be injected into space with the aid of Space Shuttles uprated with liquid rocket boosters able to deliver about 45,000 kg to low Earth orbit, a reusable cryogenic orbit-transfer vehicle (OTV) for Earth escape, and an expendable storable-propellant vehicle for the solar-orbit insertion maneuver. It appears feasible to employ the space option for disposing of Purex wastes, but the mass of waste for space disposal is still large and thus consideration needs to be given to additional processes that will selectively separate only the most hazardous radionuclides for disposal in space. Space disposal should present a lower long-term risk to human health than options calling for disposal on Earth. But short-term risks may not be lower than for terrestrial disposal. They must be acceptable for policy-makers to act on the space option. 37 refs

  3. Transport and nuclear waste disposal

    International Nuclear Information System (INIS)

    Wild, E.

    1999-01-01

    The author assesses both past and future of nuclear waste disposal in Germany. The failure of the disposal concept is, he believes, mainly the fault of the Federal Government. On the basis of the Nuclear Energy Act, the government is obliged to ensure that ultimate-storage sites are established and operated. Up to the present, however, the government has failed - apart from the episode in Asse and Morsleben and espite existing feasible proposals in Konrad and Gorleben - to achieve this objective. This negative development is particularly evident from the projects which have had to be prematurely abandoned. The costs of such 'investment follies' meanwhile amount to several billion DM. At least 92% of the capacity in the intermediate-storage sites are at present unused. Following the closure of the ultimate-storage site in Morsleben, action must be taken to change over to long-term intermediate-storage of operational waste. The government has extensive intermediate-storage capacity at the intermediate-storage site Nord in Greifswald. There, the wate originally planned for storage in Morsleben could be intermediately stored at ERAM-rates. Nuclear waste transportation, too, could long ago have been resumed, in the author's view. For the purpose of improving the transport organisation, a new company was founded which represents exclusively the interests of the reprocessing firms at the nuclear power stations. The author's conclusion: The EVU have done their homework properly and implemented all necessary measures in order to be able to resume transport of fuel elements as soon as possible. The generating station operators favour a solution based upon agreement with the Federal Government. The EVU have already declared their willingness - in the event of unanimous agreement - to set up intermediate-storage sites near the power stations. The ponds in the generating stations, however, are unsuitable for use as intermediate-storage areas. If intermediate-storage areas for

  4. Tank characterization report for single-shell tank 241-C-109

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, B.C.

    1997-05-23

    One of the major functions of the Tank Waste Remediation System (TWRS) is to characterize wastes in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis, along with other available information about a tank, are compiled and maintained in a tank characterization report (TCR). This report and its appendices serve as the TCR for single-shell tank 241-C-109. The objectives of this report are: (1) to use characterization data in response to technical issues associated with tank 241 C-109 waste; and (2) to provide a standard characterization of this waste in terms of a best-basis inventory estimate. The response to technical issues is summarized in Section 2.0, and the best-basis inventory estimate is presented in Section 3.0. Recommendations regarding safety status and additional sampling needs are provided in Section 4.0. Supporting data and information are contained in the appendices.

  5. Tank characterization report for single-shell tank 241-C-109

    International Nuclear Information System (INIS)

    Simpson, B.C.

    1997-01-01

    One of the major functions of the Tank Waste Remediation System (TWRS) is to characterize wastes in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis, along with other available information about a tank, are compiled and maintained in a tank characterization report (TCR). This report and its appendices serve as the TCR for single-shell tank 241-C-109. The objectives of this report are: (1) to use characterization data in response to technical issues associated with tank 241 C-109 waste; and (2) to provide a standard characterization of this waste in terms of a best-basis inventory estimate. The response to technical issues is summarized in Section 2.0, and the best-basis inventory estimate is presented in Section 3.0. Recommendations regarding safety status and additional sampling needs are provided in Section 4.0. Supporting data and information are contained in the appendices

  6. Nuclear waste in public acceptance

    International Nuclear Information System (INIS)

    Vastchenko, Svetlana V.

    2003-01-01

    The existing problem on a faithful acceptance of nuclear information by population is connected, to a considerable extent, with a bad nuclear 'reputation' because of a great amount of misrepresented and false information from 'the greens'. In contrast to a bare style of professionals often neglecting an emotional perception, a loud voice of 'the greens' appeals both to the head, and to the heart of the audience. People pattern their behaviour weakly on problems of safe application of different irradiation sources in industry, conditions of life, medicine and everyday life. Radiation danger of some sources is often exaggerated (computers, nuclear technologies, radiation treatment) and the danger of the others is, on the contrary, underestimated (nuclear and roentgen methods of diagnostics and medical treatment). The majority of our citizens do not know which level of radiation is normal and safe, which ways radioactive substances intake into the organism of a human being and how to diminish the dose load on the organism by simple measures. Only specialists can be orientated themselves in a great number of radiation units. Low level of knowledge of the population and false conceptions are connected with the fact that they are mainly informed about nuclear technologies from mass media, where the voice of 'Greenpeace' is loudly sounded, but they often give misrepresented and false information doing it in the very emotional form. In contrast to them, scientists-professionals often ignore a sensitive part of apprehending of information and do not attach importance to it. As a rule, the style of specialists is of a serious academician character when they meet with the public. People preconception to nuclear waste and distrust to a positive information concerning nuclear technologies are explained, to a considerable extent, by a bivalent type of thinking when people operate by two opposite conceptions only, such as 'there is' or 'there is not' (there is or there is not

  7. Organic analyses of mixed nuclear wastes

    International Nuclear Information System (INIS)

    Toste, A.P.; Lucke, R.B.; Lechner-Fish, T.J.; Hendren, D.J.; Myers, R.B.

    1987-04-01

    Analytical methods are being developed for the organic analysis of nuclear wastes. Our laboratory analyzed the organic content of three commercial wastes and an organic-rich, complex concentrate waste. The commercial wastes contained a variety of hydrophobic and hydrophilic organics, at concentrations ranging from nanomolar to micromolar. Alkyl phenols, chelating and complexing agents, as well as their degradation products, and carboxylic acids were detected in the commercial wastes. The complex concentrate waste contained chelating and complexing agents, as well as numerous degradation products, at millimolar concentrations. 75.1% of the complex concentrate waste's total organic carbon content has been identified. The presence of chelator fragments in all of the wastes analyzed, occasionally at elevated concentrations, indicates that organic diagenesis, or degradation, in nuclear wastes is both widespread and quite vigorous. 23 refs., 3 tabs

  8. Nuclear waste and nuclear ethics. Societal and ethical aspects of retrievable storage of nuclear waste

    International Nuclear Information System (INIS)

    Damveld, H.; Van den Berg, R.J.

    2000-01-01

    The aim of the literature study on the title subject is to provide information to researchers, engineers, decision makers, administrators, and the public in the Netherlands on the subject of retrievable storage of nuclear waste, mainly from nuclear power plants. Conclusions and recommendations are formulated with respect to retrievability and ethics, sustainability, risk assessment, information transfer, environmental impacts, and discussions on radioactive waste storage. 170 refs

  9. Overview of Hanford Single Shell Tank (SST) Structural Integrity

    Energy Technology Data Exchange (ETDEWEB)

    Rast, Richard S.; Washenfelder, Dennis J.; Johnson, Jeremy M.

    2013-11-14

    To improve the understanding of the single-shell tanks (SSTs) integrity, Washington River Protection Solutions, LLC (WRPS), the USDOE Hanford Site tank contractor, developed an enhanced Single-Shell Tank Integrity Project (SSTIP) in 2009. An expert panel on SST integrity, consisting of various subject matters experts in industry and academia, was created to provide recommendations supporting the development of the project. This panel developed 33 recommendations in four main areas of interest: structural integrity, liner degradation, leak integrity and prevention, and mitigation of contamination migration, Seventeen of these recommendations were used to develop the basis for the M-45-10-1 Change Package for the Hanford Federal Agreement and Compliance Order, which is also known as the Tri-Party Agreement. The structural integrity of the tanks is a key element in completing the cleanup mission at the Hanford Site. There are eight primary recommendations related to the structural integrity of Hanford Single-Shell Tanks. Six recommendations are being implemented through current and planned activities. The structural integrity of the Hanford is being evaluated through analysis, monitoring, inspection, materials testing, and construction document review. Structural evaluation in the form of analysis is performed using modern finite element models generated in ANSYS. The analyses consider in-situ, thermal, operating loads and natural phenomena such as earthquakes. Structural analysis of 108 of 149 Hanford Single-Shell Tanks has concluded that the tanks are structurally sound and meet current industry standards. Analysis of the remaining Hanford Single-Shell Tanks is scheduled for FY2014. Hanford Single-Shell Tanks are monitored through a dome deflection program. The program looks for deflections of the tank dome greater than 1/4 inch. No such deflections have been recorded. The tanks are also subjected to visual inspection. Digital cameras record the interior surface of

  10. Single-shell tank interim stabilization risk analysis

    International Nuclear Information System (INIS)

    Basche, A.D.

    1998-01-01

    The purpose of the Single-Shell Tank (SST) Interim Stabilization Risk Analysis is to provide a cost and schedule risk analysis of HNF-2358, Rev. 1, Single-Shell Tank Interim Stabilization Project Plan (Project Plan) (Ross et al. 1998). The analysis compares the required cost profile by fiscal year (Section 4.2) and revised schedule completion date (Section 4.5) to the Project Plan. The analysis also evaluates the executability of the Project Plan and recommends a path forward for risk mitigation

  11. Standard test for nuclear waste materials

    International Nuclear Information System (INIS)

    Nelson, R.D.; Mendel, J.E.; Turcotte, R.P.

    1981-01-01

    The function of the Materials Characterization Center (MCC) is to provide the standardized materials data base and supporting documentation to help ensure safe disposal of nuclear waste. The methods and data are being published in a Nuclear Waste Materials Handbook DOE/TIC 11400. (DG)

  12. Nuclide inventory for nuclear fuel waste management

    International Nuclear Information System (INIS)

    Mehta, K.

    1982-09-01

    To assist research projects in the Canadian Nuclear Fuel Waste Management Prgram, a compilation has been made of all the nuclides that are likely to be present in a nuclear fuel waste disposal vault and that are potentially hazardous to man during the post-closure phase. The compilation includes radiologically toxic and chemically toxic nuclides

  13. Nuclear waste: the battle for Gorleben

    International Nuclear Information System (INIS)

    Michaelis, A.R.

    1980-01-01

    Rioting and bloodshed are nothing new to oppose the progress of technology and a current example is Gorleben, the site of the proposed nuclear waste depository, near Brunswick, Federal Republic of Germany. The disposal of nuclear waste in space, and into and below the oceans as well as on to and below the ground are reviewed and critically discussed. (author)

  14. Waste management and the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Molinari, J.

    1982-01-01

    The present lecture deals with energy needs and nuclear power, the importance of waste and its relative place in the fuel cycle, the games of controversies over nuclear waste in the strategies of energy and finally with missions and functions of the IAEA for privileging the rational approach and facilitating the transfer of technology. (RW)

  15. Concept for Underground Disposal of Nuclear Waste

    Science.gov (United States)

    Bowyer, J. M.

    1987-01-01

    Packaged waste placed in empty oil-shale mines. Concept for disposal of nuclear waste economically synergistic with earlier proposal concerning backfilling of oil-shale mines. New disposal concept superior to earlier schemes for disposal in hard-rock and salt mines because less uncertainty about ability of oil-shale mine to contain waste safely for millenium.

  16. The political challenges of nuclear waste

    International Nuclear Information System (INIS)

    Andren, Mats; Strandberg, Urban

    2005-01-01

    This anthology is made up of nine essays on the nuclear waste issue, both its political, social and technical aspects, with the aim to create a platform for debate and planning of research. The contributions are titled: 'From clean energy to dangerous waste - the regulatory management of nuclear power in the Swedish welfare society. An economic-historic review , 'The course of the high-level waste into the national political arena', 'The technical principles behind the Swedish repository for spent fuels', 'Waste, legitimacy and local citizenship', 'Nuclear issues in societal planning', 'Usefulness or riddance - transmutation or just disposal?', 'National nuclear fuel policy in an European Union?', 'Conclusion - the challenges of the nuclear waste issue', 'Final words - about the need for critical debate and multi-disciplinary research'

  17. An introduction to nuclear waste immobilisation

    International Nuclear Information System (INIS)

    Ojovan, M.I.; Lee, W.E.

    2005-08-01

    Safety and environmental impact is of uppermost concern when dealing with the movement and storage of nuclear waste. The 20 chapters in this book cover all important aspects of immobilisation, from nuclear decay, to regulations, to new technologies and methods. Significant focus is given to the analysis of the various matrices used in transport: cement, bitumen and glass, with the greatest attention being given to glass. The last chapter concentrates on the performance assessment of each matrix, and on new developments of ceramics and glass composite materials, thermochemical methods and in-situ metal matrix immobilisation. The book thoroughly covers all issues surrounding nuclear waste: from where to locate nuclear waste in the environment, through nuclear waste generation and sources, treatment schemes and technologies, immobilisation technologies and waste forms, disposal and long term behaviour. Particular attention is paid to internationally approved and worldwide-applied approaches and technologies

  18. Safety Aspects of Nuclear Waste Treatment

    International Nuclear Information System (INIS)

    Glubrecht, H.

    1986-01-01

    In the nuclear fuel cycle - like in most other industrial processes - some waste is produced which can be harmful to the environment and has to be stored safely and isolated from the Biosphere. This radioactive waste can be compared with toxic chemical waste under many aspects, but it has some special features, some of which make its handling more difficult, others make it easier. The difficulties are that radioactive waste does not only affect living organisms after incorporation, but also from some distance through its radiation. Therefore this waste has not only to be encapsuled, but also shielded. At higher concentrations radioactive waste produces heat and this has to be continuously derived from the storage area. On the other hand the control of even extremely small amounts of radioactive waste is very much easier than that of toxic chemical waste due to the high sensitivity of radiation detection methods. Furthermore radioactive waste is not persistent like most of the chemical waste. Of course some components will decay only after millennia, but a high percentage of radioactive waste becomes inactive after days, weeks or years. An important feature of safety aspects related to nuclear waste is the fact that problems of its treatment and storage have been discussed from the very beginning of Nuclear Energy Technology - what has not been the case in relation to most other industrial wastes

  19. Waste as an argument against nuclear energy

    International Nuclear Information System (INIS)

    Kowalski, E.

    1996-01-01

    Compared with conventional thermal power stations, production of electricity in nuclear power plants has distinct ecological advantages. The entire chain of events, from nuclear fission through waste treatment to waste disposal, can easily be isolated from the human environment. Added to this is the fact that the waste volumes arising are small relative to the amount of electricity produced and the toxicity of these wastes decreases with time. In contrast with incineration processes in conventional thermal power stations, which release a certain volume of waste products into the atmosphere (dilution strategy), the production and disposal of radioactive waste strictly follows a containment strategy. Repositories represent the final link in the waste management chain. Switzerland adheres to the concept of geological disposal which relies on a system of engineered barriers to ensure the safety of waste disposal without any need for supervision measures. (author) 3 figs., 1 ref

  20. Nuclear waste problem: does new Europe need new nuclear energy?

    International Nuclear Information System (INIS)

    Alekseev, P.; Dudnikov, A.; Subbotin, S.

    2003-01-01

    Nuclear Energy for New Europe - what does it mean? New Europe - it means in first order joined Europe. And it is quite clear that also efforts in nuclear energy must be joined. What can be proposed as a target of joint efforts. Improvement of existing plants, technologies, materials? - Certainly, but it is performed already by designers and industry themselves. There exists a problem, which each state using nuclear energy faces alone. It is nuclear waste problem. Nowadays nuclear waste problem is not completely solved in any country. It seems reasonable for joining Europe to join efforts in solving this problem. A satisfactory solution would reduce a risk connected with nuclear waste. In addition to final disposal problem solution it is necessary to reduce total amount of nuclear waste, that means: reducing the rates of accumulation of long-lived dangerous radionuclides; reducing the existing amounts of these radionuclides by transmutation. These conditions can be satisfied in reasonable time by burning of minor actinides and, if possible, by transmutation of long-lived fission products. However we can use this strategy effectively if we will design and construct nuclear energy as a system of which components are united by nuclear fuel cycle as a system-forming factor. The existing structures and approaches may become insufficient for new Europe. Therefore among the initial steps in considering nuclear waste problem must be considering possible promising fuel cycles for European nuclear energy. So, does new Europe need new nuclear energy? It seems, yes. (author)

  1. A global nuclear waste repository

    Science.gov (United States)

    Lin, Wunan

    As a concerned scientist, I think that having a global nuclear waste repository is a reachable goal for human beings. Maybe through this common goal, mankind can begin to treat each other as brothers and sisters. So far, most human activities are framed by national boundaries, which are purely arbitrary. Breaking through these national boundaries will be very beneficial to human beings.Formation of the International Geosphere-Biosphere Program in 1986 indicates a growing awareness on the part of scientists regarding Earth as a system. The Apollo missions gave us a chance to look back at Earth from space. That perspective emphasized that our Earth is just one system: our only home. It is in deed a lonely boat in the high sea of dark space. We must take good care of our “boat.”

  2. Nuclear waste disposal educational forum

    International Nuclear Information System (INIS)

    1982-01-01

    In keeping with a mandate from the US Congress to provide opportunities for consumer education and information and to seek consumer input on national issues, the Department of Energy's Office of Consumer Affairs held a three-hour educational forum on the proposed nuclear waste disposal legislation. Nearly one hundred representatives of consumer, public interest, civic and environmental organizations were invited to attend. Consumer affairs professionals of utility companies across the country were also invited to attend the forum. The following six papers were presented: historical perspectives; status of legislation (Senate); status of legislation (House of Representatives); impact on the legislation on electric utilities; impact of the legislation on consumers; implementing the legislation. All six papers have been abstracted and indexed for the Energy Data Base

  3. Application of Direct Assessment Approaches and Methodologies to Cathodically Protected Nuclear Waste Transfer Lines

    International Nuclear Information System (INIS)

    Dahl, Megan M.; Pikas, Joseph; Edgemon, Glenn L.; Philo, Sarah

    2013-01-01

    The U.S. Department of Energy's (DOE) Hanford Site is responsible for the safe storage, retrieval, treatment, and disposal of approximately 54 million gallons (204 million liters) of radioactive waste generated since the site's inception in 1943. Today, the major structures involved in waste management at Hanford include 149 carbon steel single-shell tanks, 28 carbon-steel double-shell tanks, plus a network of buried metallic transfer lines and ancillary systems (pits, vaults, catch tanks, etc.) required to store, retrieve, and transfer waste within the tank farm system. Many of the waste management systems at Hanford are still in use today. In response to uncertainties regarding the structural integrity of these systems,' an independent, comprehensive integrity assessment of the Hanford Site piping system was performed. It was found that regulators do not require the cathodically protected pipelines located within the Hanford Site to be assessed by External Corrosion Direct Assessment (ECDA) or any other method used to ensure integrity. However, a case study is presented discussing the application of the direct assessment process on pipelines in such a nuclear environment. Assessment methodology and assessment results are contained herein. An approach is described for the monitoring, integration of outside data, and analysis of this information in order to identify whether coating deterioration accompanied by external corrosion is a threat for these waste transfer lines

  4. International Nuclear Waste Management Fact Book

    International Nuclear Information System (INIS)

    Leigh, I.W.

    1994-05-01

    International Nuclear Waste Management Fact Book has been compiled in an effort to provide current data concerning fuel cycle and waste management facilities, R ampersand D programs, and key personnel in 24 countries, including the US, four multinational agencies and 21 nuclear societies. This publication succeeds the previously issued International Nuclear Fuel Cycle Fact Book (PNL-3594), which appeared annually for 13 years. While the title is different, there are no substantial changes in the content

  5. Nuclear Waste Management. Semiannual progress report, October 1984-March 1985

    Energy Technology Data Exchange (ETDEWEB)

    McElroy, J.L.; Powell, J.A. (comps.)

    1985-06-01

    Progress reports are presented for the following studies on radioactive waste management: defense waste technology; nuclear waste materials characterization center; and supporting studies. 19 figs., 29 tabs.

  6. Nuclear Waste Management. Semiannual progress report, October 1984-March 1985

    International Nuclear Information System (INIS)

    McElroy, J.L.; Powell, J.A.

    1985-06-01

    Progress reports are presented for the following studies on radioactive waste management: defense waste technology; nuclear waste materials characterization center; and supporting studies. 19 figs., 29 tabs

  7. Arisings and management of nuclear wastes

    International Nuclear Information System (INIS)

    Dejonghe, P.; Heremans, R.; Proost, J.; Voorde, N. van de

    1978-01-01

    The paper contains a brief description of volumes and composition of radioactive wastes expected to occur in Belgium, taking into account the present nuclear program. Various conditioning and management techniques are described and discussed. Some discussion is paid to disposal of conditioned radioactive wastes either into the ocean (low level) or in geologic formations (long lived or high level wastes). Some ideas are given as to the structure optimization in radioactive waste management and the associated R and D. (author)

  8. Nuclear chemistry research for the safe disposal of nuclear waste

    International Nuclear Information System (INIS)

    Fanghaenel, Thomas

    2011-01-01

    The safe disposal of high-level nuclear waste and spent nuclear fuel is of key importance for the future sustainable development of nuclear energy. Concepts foresee the isolation of the nuclear waste in deep geological formations. The long-term radiotoxicity of nuclear waste is dominated by plutonium and the minor actinides. Hence it is essential for the performance assessment of a nuclear waste disposal to understand the chemical behaviour of actinides in a repository system. The aqueous chemistry and thermodynamics of actinides is rather complex in particular due to their very rich redox chemistry. Recent results of our detailed study of the Plutonium and Neptunium redox - and complexation behaviour are presented and discussed. (author)

  9. Single-shell tank interim stabilization project plan

    Energy Technology Data Exchange (ETDEWEB)

    Ross, W.E.

    1998-05-11

    This project plan establishes the management framework for conduct of the TWRS Single-Shell Tank Interim Stabilization completion program. Specifically, this plan defines the mission needs and requirements; technical objectives and approach; organizational structure, roles, responsibilities, and interfaces; and operational methods. This plan serves as the project executional baseline.

  10. Single shell tank sluicing history and failure frequency

    Energy Technology Data Exchange (ETDEWEB)

    HERTZEL, J.S.

    1998-11-10

    This document assesses the potential for failure of the single-shell tanks (SSTs) that are presumably sound and helps to establish the retrieval priorities for these and the assumed leakers. Furthermore, this report examines probabilities of SST failure as a function of age and operational history, and provides a simple statistical summary of historical leak volumes, leak rates, and corrosion factor.

  11. Single Shell Tank (SST) Interim Stabilization Project Plan

    Energy Technology Data Exchange (ETDEWEB)

    VLADIMIROFF, D.T.; BOYLES, V.C.

    2000-05-22

    This project plan establishes the management framework for the conduct of the CHG Single-Shell Tank Interim Stabilization completion program. Specifically, this plan defines the mission needs and requirements; technical objectives and approach; organization structure, roles, responsibilities, and interfaces; and operational methods. This plan serves as the project executional baseline.

  12. Nuclear fuel waste policy in Canada

    International Nuclear Information System (INIS)

    Brown, P.A.; Letourneau, C.

    1999-01-01

    The 1996 Policy Framework for Radioactive Waste established the approach in Canada for dealing with all radioactive waste, and defined the respective roles of Government and waste producers and owners. The Policy Framework sets the stage for the development of institutional and financial arrangements to implement long-term waste management solutions in a safe, environmentally sound, comprehensive, cost-effective and integrated manner. For nuclear fuel waste, a 10-year environmental review of the concept to bury nuclear fuel waste bundles at a depth of 500 m to 1000 m in stable rock of the Canadian Shield was completed in March 1998. The Review Panel found that while the concept was technically safe, it did not have the required level of public acceptability to be adopted at this time as Canada's approach for managing its nuclear fuel waste. The Panel recommended that a Waste Management Organization be established at arm's length from the nuclear industry, entirely funded by the waste producers and owners, and that it be subject to oversight by the Government. In its December 1998 Response to the Review Panel, the Government of Canada provided policy direction for the next steps towards developing Canada's approach for the long-term management of nuclear fuel waste. The Government chose to maintain the responsibility for long-term management of nuclear fuel waste close with the producers and owners of the waste. This is consistent with its 1996 Policy Framework for Radioactive Waste. This approach is also consistent with experience in many countries. In addition, the federal government identified the need for credible federal oversight. Cabinet directed the Minister of NRCan to consult with stakeholders, including the public, and return to ministers within 12 months with recommendations on means to implement federal oversight. (author)

  13. Alternative solidified forms for nuclear wastes

    International Nuclear Information System (INIS)

    McElroy, J.L.; Ross, W.A.

    1976-01-01

    Radioactive wastes will occur in various parts of the nuclear fuel cycle. These wastes have been classified in this paper as high-level waste, intermediate and low-level waste, cladding hulls, and residues. Solidification methods for each type of waste are discussed in a multiple barrier context of primary waste form, applicable coatings or films, matrix encapsulation, canister, engineered structures, and geological storage. The four major primary forms which have been most highly developed are glass for HLW, cement for ILW, organics for LLW, and metals for hulls

  14. Tank selection for Light Duty Utility Arm (LDUA) system hot testing in a single shell tank

    Energy Technology Data Exchange (ETDEWEB)

    Bhatia, P.K.

    1995-01-31

    The purpose of this report is to recommend a single shell tank in which to hot test the Light Duty Utility Arm (LDUA) for the Tank Waste Remediation System (TWRS) in Fiscal Year 1996. The LDUA is designed to utilize a 12 inch riser. During hot testing, the LDUA will deploy two end effectors (a High Resolution Stereoscopic Video Camera System and a Still/Stereo Photography System mounted on the end of the arm`s tool interface plate). In addition, three other systems (an Overview Video System, an Overview Stereo Video System, and a Topographic Mapping System) will be independently deployed and tested through 4 inch risers.

  15. Nuclear waste handbook. Elements for a debate on nuclear wastes in France

    International Nuclear Information System (INIS)

    2005-01-01

    This handbook contains a set of sheets discussing the different aspects associated with the nuclear waste issue: materials and risks (nuclear material and waste characterization and associated risks), choice and indicators (the French reprocessing-recycling option, valuable and ultimate wastes, long life waste management, long life waste indicators), flows and stocks (flows in the present management, stored, conditioned, waiting and valuable wastes). It also describes the regulatory environment (its principles and gaps) and researches. Then, it proposes a prospective view in terms of electricity production strategies, energy scenarios and technological strategies, nuclear materials with respect to the different scenarios. The decision process and economical and international aspects are finally discussed

  16. Science, Society, and America's Nuclear Waste: Nuclear Waste, Unit 1. Teacher Guide. Second Edition.

    Science.gov (United States)

    Department of Energy, Washington, DC. Office of Civilian Radioactive Waste Management, Washington, DC.

    This guide is Unit 1 of the four-part series Science, Society, and America's Nuclear Waste produced by the U.S. Department of Energy's Office of Civilian Radioactive Waste Management. The goal of this unit is to help students establish the relevance of the topic of nuclear waste to their everyday lives and activities. Particular attention is…

  17. The present situation of nuclear wastes

    International Nuclear Information System (INIS)

    Courtois, Charles

    2012-01-01

    This Power Point presentation contains graphs, tables and comments on different aspects of nuclear wastes: origin in France (fuel composition, long-life and short life wastes), definition of the different types of wastes (with respect to their life and their activity level), fuel cycle (processing of the different wastes, actors in France, waste management), waste characterization (controls, tests), laws on wastes published in 1991 (objectives with respect to separation and transmutation technologies, to storage possibilities, to conditioning and long term storage) and in 2006 (which defines a national plan for radioactive material and waste management, and a research program), the French national inventory, low activity wastes (production and storage), the transmutation technology (notably the Astrid project), the geological storage (the Cigeo project for a geological storage), and the situation in other countries

  18. Best-basis estimates of solubility of selected radionuclides in sludges in Hanford single-shell tanks

    International Nuclear Information System (INIS)

    HARMSEN, R.W.

    1999-01-01

    The Hanford Defined Waste (HDW) model (Rev. 4) (Agnew et al. 1997) projects inventories (as of January 1, 1994) of 46 radionuclides in the Hanford Site underground waste storage tanks. To model the distribution of the 46 radionuclides among the 177 tanks, it was necessary for Agnew et al. to estimate the solubility of each radionuclide in the various waste types originally added to the single-shell tanks. Previous editions of the HDW model used single-point solubility estimates. The work described in this report was undertaken to provide more accurate estimates of the solubility of all 46 radionuclides in the various wastes

  19. Best-basis estimates of solubility of selected radionuclides in sludges in Hanford single-shell tanks

    Energy Technology Data Exchange (ETDEWEB)

    HARMSEN, R.W.

    1999-02-24

    The Hanford Defined Waste (HDW) model (Rev. 4) (Agnew et al. 1997) projects inventories (as of January 1, 1994) of 46 radionuclides in the Hanford Site underground waste storage tanks. To model the distribution of the 46 radionuclides among the 177 tanks, it was necessary for Agnew et al. to estimate the solubility of each radionuclide in the various waste types originally added to the single-shell tanks. Previous editions of the HDW model used single-point solubility estimates. The work described in this report was undertaken to provide more accurate estimates of the solubility of all 46 radionuclides in the various wastes.

  20. Nuclear, energy, environment, wastes, society - NEEDS

    International Nuclear Information System (INIS)

    2013-01-01

    This document presents the seven projects based on partnerships between several bodies, companies and agencies (CNRS, CEA, Areva, EDF, IRSN, ANDRA, BRGM) on research programmes on nuclear systems and scenarios, on resources (mines, processes, economy), on the processing and packaging of radioactive wastes, on the behaviour of materials for storage, on the impact of nuclear activities on the environment, on the relationship between nuclear, risks and society, and on materials for nuclear energy

  1. Credible nuclear waste management: a legislative perspective

    International Nuclear Information System (INIS)

    Jeffords, J.M.

    1978-01-01

    The past credibility of the AEC, ERDA, and NRC, along with the present credibility of DOE and NRC, are questioned. The results of voter responses to a moratorium on expansion of nuclear power are linked to the question of past credibility of these Federal agencies. It is proposed that the future of nuclear power be linked directly to the Executive Branch of the government via a new bureaucracy, a Waste Management Authority. This new bureaucracy would be completely separated from the construction or licensing phase of nuclear power, except it would have final say over any nuclear power expansion pending an acceptable solution to the waste reprocessing question

  2. Science, society, and America's nuclear waste: Unit 3, The Nuclear Waste Policy Act

    International Nuclear Information System (INIS)

    1992-01-01

    This teachers guide is unit 3, the nuclear waste policy act, in a four-unit secondary curriculum. It is intended to provide information about scientific and societal issues related to the management of spent nuclear fuel from generation of electricity at nuclear powerplants and high-level radioactive waste from US national defense activities. The curriculum, supporting classroom activities, and teaching materials present a brief discussion of energy and electricity generation, including that produced at nuclear power plants; information on sources, amounts, location, and characteristics of spent nuclear fuel and high-level radioactive waste; sources, types and effects of radiation; US policy for managing and disposing of spent nuclear fuel and high-level radioactive waste and what other countries are doing; and the components of the nuclear waste management system

  3. Science, society, and America's nuclear waste: Unit 3, The Nuclear Waste Policy Act

    International Nuclear Information System (INIS)

    1992-01-01

    This is the 3rd unit, (The Nuclear Waste Policy Act) a four-unit secondary curriculum. It is intended to provide information about scientific and societal issues related to the management of spent nuclear fuel from generation of electricity at nuclear powerplants and high-level radioactive waste from US national defense activities. The curriculum, supporting classroom activities, and teaching materials present a brief discussion of energy and electricity generation, including that produced at nuclear powerplants; information on sources, amounts, location, and characteristics of spent nuclear fuel and high-level radioactive waste; sources, types and effects of radiation; US policy for managing and disposing of spent nuclear fuel and high-level radioactive waste and what other countries are doing; and the components of the nuclear waste management system

  4. Nuclear Waste Disposal: Alternatives to Yucca Mountain

    National Research Council Canada - National Science Library

    Holt, Mark

    2009-01-01

    Congress designated Yucca Mountain, NV, as the nation's sole candidate site for a permanent high-level nuclear waste repository in 1987, following years of controversy over the site-selection process...

  5. Public policy issues in nuclear waste management

    International Nuclear Information System (INIS)

    Nealey, S.M.; Radford, L.M.

    1978-10-01

    This document aims to raise issues and to analyze them, not resolve them. The issues were: temporal equity, geographic and socioeconomic equity, implementation of a nuclear waste management system, and public involvement

  6. Public policy issues in nuclear waste management

    Energy Technology Data Exchange (ETDEWEB)

    Nealey, S.M.; Radford, L.M.

    1978-10-01

    This document aims to raise issues and to analyze them, not resolve them. The issues were: temporal equity, geographic and socioeconomic equity, implementation of a nuclear waste management system, and public involvement.

  7. Tergiversating the price of nuclear waste storage

    International Nuclear Information System (INIS)

    Mills, R.L.

    1984-01-01

    Tergiversation, the evasion of straightforward action of clearcut statement of position, was a characteristic of high-level nuclear waste disposal until the US Congress passed the Nuclear Waste Policy Act of 1982. How the price of waste storage is administered will affect the design requirements of monitored retrievable storage (MRS) facilities as well as repositories. Those decisions, in part, are internal to the Department of Energy. From the utility's viewpoint, the options are few but clearer. Reprocessing, as performed in Europe, is not a perfect substitute for MRS. The European reprocess-repository sequence will not yield the same nuclear resource base as the American MRS-repository scheme. For the future price of the energy resource represented by nuclear waste, the author notes that tergiversation continues. 3 references

  8. Transport packages for nuclear material and waste

    International Nuclear Information System (INIS)

    1997-01-01

    The regulations and responsibilities concerning the transport packages of nuclear materials and waste are given in the guide. The approval procedure, control of manufacturing, commissioning of the packaging and the control of use are specified. (13 refs.)

  9. Risk decisions and nuclear waste

    International Nuclear Information System (INIS)

    Hansson, S.O.

    1987-11-01

    The risk concept is multidimensional, and much of its contents is lost in the conventional reduction to a unidimensional and quantifiable term. Eight major dimensions of the risk concept are discussed, among them the time factor and the lack-of-knowledge factor. The requirements of a rational discourse are discussed, in general and in relation to risk issues. It is concluded that no single method for the comparison and assessment of risks can be seen as the only rational method. Different methods can all be rational, although based on different values. Risk evaluations cannot be performed as expert assessments, divorced from the political decision process. Instead, risk evaluation must be seen as an essentially political process. Public participation is necessary in democratic decision-making on risks as well as on other issues. Important conclusions can be drawn for the management of nuclear waste, concerning specifications for the technical solution, the need for research on risk concepts, and the decision-making process. (orig.)

  10. Radioactive waste management policy for nuclear power

    International Nuclear Information System (INIS)

    Andrei, V.; Glodeanu, F.; Simionov, V.

    1998-01-01

    Nuclear power is part of energy future as a clean and environmental friendly source of energy. For the case of nuclear power, two specific aspects come more often in front of public attention: how much does it cost and what happens with radioactive waste. The competitiveness of nuclear power vs other sources of energy is already proved in many developed and developing countries. As concerns the radioactive wastes treatment and disposal, industrial technologies are available. Even final solutions for disposal of high level radioactive waste, including spent fuel, are now fully developed and ready for large scale implementation. Policies and waste management strategies are established by all countries having nuclear programs. Once, the first nuclear power reactor was commissioned in Romania, and based on the national legal provisions, our company prepared the first issue of a general strategy for radioactive waste management. The general objective of the strategy is to dispose the waste according to adequate safety standards protecting the man and the environment, without undue burden on future generations. Two target objectives were established for long term: an interim spent fuel dry storage facility and a low and intermediate level waste repository. A solution for spent fuel disposal will be implemented in the next decade, based on international experience. Principles for radioactive waste management, recommended by IAEA are closely followed in the activities of our company. The continuity of responsibilities is considered to be very important. The radioactive waste management cost will be supported by the company. A tax on unit price of electricity will be applied. The implementation of radioactive waste management strategy includes as a major component the public information. A special attention will be paid by the company to an information program addressed to different categories of public in order to have a better acceptance of our nuclear power projects

  11. Waste from decommissioning of nuclear power plants

    International Nuclear Information System (INIS)

    Nielsen, P.O.

    1992-05-01

    This report is based on the assumption that all twelve nuclear power plants will be shut down no later than A.D. 2010, as was decided by the parliament after the referendum on the future of nuclear power in Sweden. The recent 'Party agreement on the energy policy' of January 15, 1991 does, indeed, leave the door open for an extension of the operational period for the nuclear reactors. This will, however, not change the recommendations and conclusions drawn in this report. The report consists of two parts. Part 1 discusses classification of waste from decommissioning and makes comparisons with the waste arising from reactor operation. Part 2 discusses the documentation required for decommissioning waste. Also this part of the report draws parallels with the documentation required by the authorities for the radioactive waste arising from operation of the nuclear power plants. To some extent these subjects depend on the future use of the nuclear power plant sites after decommissioning of the plants. The options for future site use are briefly discussed in an appendix to the report. There are many similarities between the waste from reactor operations and the waste arising from dismantling and removal of decommissioned nuclear power plants. Hence it seems natural to apply the same criteria and recommendations to decommissioning waste as those presently applicable to reactor waste. This is certainly true also with respect to documentation, and it is strongly recommended that the documentation requirements on decommissioning waste are made identical, or at least similar, to the documentation requirements for reactor waste in force today. (au)

  12. Management of radioactive waste nuclear power plants

    International Nuclear Information System (INIS)

    Dlouhy, Z.; Marek, J.

    1976-01-01

    The authors give a survey of the sources, types and amounts of radioactive waste in LWR nuclear power stations (1,300 MWe). The amount of solid waste produced by a Novovorenezh-type PWR reactor (2 x 400 resp. 1 x 1,000 MWe) is given in a table. Treatment, solidification and final storage of radioactive waste are shortly discussed with special reference to the problems of final storage in the CSR. (HR) [de

  13. Overview assessment of nuclear-waste management

    International Nuclear Information System (INIS)

    Burton, B.W.; Gutschick, V.P.; Perkins, B.A.

    1982-08-01

    After reviewing the environmental control technologies associated with Department of Energy nuclear waste management programs, we have identified the most urgent problems requiring further action or follow-up. They are in order of decreasing importance: (1) shallow land disposal technology development; (2) active uranium mill tailings piles; (3) uranium mine dewatering; (4) site decommissioning; (5) exhumation/treatment of transuranic waste at Idaho National Engineering Laboratory; (6) uranium mine spoils; and (7) medical/institutional wastes. 7 figures, 33 tables

  14. Waste management in Canadian nuclear programs

    International Nuclear Information System (INIS)

    Dyne, P.J.

    1975-08-01

    The report describes the wide-ranging program of engineering developments and applications to provide the Canadian nuclear industry with the knowledge and expertise it needs to conduct its waste management program. The need for interim dry storage of spent fuel, and the storage and ultimate disposal of waste from fuel reprocessing are examined. The role of geologic storage in AECL's current waste management program is also considered. (R.A.)

  15. Status of technology for nuclear waste management

    International Nuclear Information System (INIS)

    Lieberman, J.A.

    1984-01-01

    In the area of low- and intermediate-level radioactive wastes the successful development and application of specific management technologies have been demonstrated over the years. The major area in which technology remains to be effectively implemented is in the management of high-level wastes from the nuclear fuel cycle. Research and development specifically directed at the management of high-level radioactive wastes in the USA and other countries is briefly reviewed in the article introduced

  16. Nuclear Waste Primer: A Handbook for Citizens.

    Science.gov (United States)

    Weber, Isabelle P.; Wiltshire, Susan D.

    This publication was developed with the intention of offering the nonexpert a concise, balanced introduction to nuclear waste. It outlines the dimensions of the problem, discussing the types and quantities of waste. Included are the sources, types, and hazards of radiation, and some of the history, major legislation, and current status of both…

  17. A plan for Soviet nuclear waste

    International Nuclear Information System (INIS)

    Stone, R.

    1992-01-01

    If environmentalist forces are successful, the Russian government may soon establish the country's first comprehensive program for dealing with nuclear waste. Later this month the Russian parliament, back from its summer recess, is expected to begin considering a bill on this topic. A draft copy indicates that Russia is starting with the basics: It orders the government to develop a means of insulting waste from the environment, to form a national waste processing program, and to create a registry for tracking where spent atomic fuel is stored or buried. The bill comes on the heels of a November 1991 decree by Russian President Boris Yeltsin to step up efforts to deal with nuclear waste issues and to create a government registry of nuclear waste disposal sites by 1 January 1993. The former Soviet Union has come under fire from environmentalists for dumping low- and intermediate-level nuclear wastes in the Arctic Ocean and for improperly storing waste at sites in the southern Urals and Belarus. Adding to the bill's urgency is the fact that Russia is considering sites for underground repositories for high-level waste at Tomsk, Krasnoyarsk, Chelyabinsk, and on the Kola Peninsula

  18. Radioactive waste management from nuclear facilities

    International Nuclear Information System (INIS)

    2005-06-01

    This report has been published as a NSA (Nuclear Systems Association, Japan) commentary series, No. 13, and documents the present status on management of radioactive wastes produced from nuclear facilities in Japan and other countries as well. Risks for radiation accidents coming from radioactive waste disposal and storage together with risks for reactor accidents from nuclear power plants are now causing public anxiety. This commentary concerns among all high-level radioactive waste management from nuclear fuel cycle facilities, with including radioactive wastes from research institutes or hospitals. Also included is wastes produced from reactor decommissioning. For low-level radioactive wastes, the wastes is reduced in volume, solidified, and removed to the sites of storage depending on their radioactivities. For high-level radioactive wastes, some ten thousand years must be necessary before the radioactivity decays to the natural level and protection against seismic or volcanic activities, and terrorist attacks is unavoidable for final disposals. This inevitably results in underground disposal at least 300 m below the ground. Various proposals for the disposal and management for this and their evaluation techniques are described in the present document. (S. Ohno)

  19. Disposal of high-activity nuclear wastes

    International Nuclear Information System (INIS)

    Hamilton, E.I.

    1983-01-01

    A discussion is presented on the deep sea ocean disposal for high-activity nuclear wastes. The following topics are covered: effect of ionizing radiation on marine ecosystems; pathways by which radionuclides are transferred to man from the marine environment; information about releases of radioactivity to the sea; radiological protection; storage and disposal of radioactive wastes and information needs. (U.K.)

  20. The legal system of nuclear waste disposal

    International Nuclear Information System (INIS)

    Dauk, W.

    1983-01-01

    This doctoral thesis presents solutions to some of the legal problems encountered in the interpretation of the various laws and regulations governing nuclear waste disposal, and reveals the legal system supporting the variety of individual regulations. Proposals are made relating to modifications of problematic or not well defined provisions, in order to contribute to improved juridical security, or inambiguity in terms of law. The author also discusses the question of the constitutionality of the laws for nuclear waste disposal. Apart from the responsibility of private enterprise to contribute to safe treatment or recycling, within the framework of the integrated waste management concept, and apart from the Government's responsibility for interim or final storage of radioactive waste, there is a third possibility included in the legal system for waste management, namely voluntary measures taken by private enterprise for radioactive waste disposal. The licence to be applied for in accordance with section 3, sub-section (1) of the Radiation Protection Ordinance is interpreted to pertain to all measures of radioactive waste disposal, thus including final storage of radioactive waste by private companies. Although the terminology and systematic concept of nuclear waste disposal are difficult to understand, there is a functionable system of legal provisions contained therein. This system fits into the overall concept of laws governing technical safety and safety engineering. (orig./HSCH) [de

  1. Nuclear Waste Disposal Program 2016

    International Nuclear Information System (INIS)

    2016-12-01

    This comprehensive brochure published by the Swiss National Cooperative for the Disposal of Radioactive Waste (NAGRA) discusses the many important steps in the management of radioactive waste that have already been implemented in Switzerland. The handling and packaging of waste, its characterisation and inventorying, as well as its interim storage and transport are examined. The many important steps in Swiss management of radioactive waste already implemented and wide experience gained in carrying out the associated activities are discussed. The legal framework and organisational measures that will allow the selection of repository sites are looked at. The various aspects examined include the origin, type and volume of radioactive wastes, along with concepts and designs for deep geological repositories and the types of waste to be stored therein. Also, an implementation plan for the deep geological repositories, the required capacities and the financing of waste management activities are discussed as is NAGRA’s information concept. Several diagrams and tables illustrate the program

  2. Radiation Effects in Nuclear Waste Materials

    International Nuclear Information System (INIS)

    Weber, William J.; Wang, Lumin; Hess, Nancy J.; Icenhower, Jonathan P.; Thevuthasan, Suntharampillai

    2003-01-01

    The objective of this project is to develop a fundamental understanding of radiation effects in glasses and ceramics, as well as the influence of solid-state radiation effects on aqueous dissolution kinetics, which may impact the performance of nuclear waste forms and stabilized nuclear materials. This work provides the underpinning science to develop improved glass and ceramic waste forms for the immobilization and disposition of high-level tank waste, excess plutonium, plutonium residues and scrap, other actinides, and other nuclear waste streams. Furthermore, this work is developing develop predictive models for the performance of nuclear waste forms and stabilized nuclear materials. Thus, the research performed under this project has significant implications for the immobilization of High-Level Waste (HLW) and Nuclear Materials, two mission areas within the Office of Environmental Management (EM). With regard to the HLW mission, this research will lead to improved understanding of radiation-induced degradation mechanisms and their effects on dissolution kinetics, as well as development of predictive models for waste form performance. In the Nuclear Materials mission, this research will lead to improvements in the understanding of radiation effects on the chemical and structural properties of materials for the stabilization and long-term storage of plutonium, highly-enriched uranium, and other actinides. The research uses plutonium incorporation, ion-beam irradiation, and electron-beam irradiation to simulate the effects of alpha decay and beta decay on relevant glasses and ceramics. The research under this project has the potential to result in improved glass and ceramic materials for the stabilization and immobilization of high-level tank waste, plutonium residues and scraps, surplus weapons plutonium, highly-enriched uranium, other actinides, and other radioactive materials

  3. Natural analogues of nuclear waste glass corrosion

    International Nuclear Information System (INIS)

    Abrajano, T.A. Jr.; Ebert, W.L.; Luo, J.S.

    1999-01-01

    This report reviews and summarizes studies performed to characterize the products and processes involved in the corrosion of natural glasses. Studies are also reviewed and evaluated on how well the corrosion of natural glasses in natural environments serves as an analogue for the corrosion of high-level radioactive waste glasses in an engineered geologic disposal system. A wide range of natural and experimental corrosion studies has been performed on three major groups of natural glasses: tektite, obsidian, and basalt. Studies of the corrosion of natural glass attempt to characterize both the nature of alteration products and the reaction kinetics. Information available on natural glass was then compared to corresponding information on the corrosion of nuclear waste glasses, specifically to resolve two key questions: (1) whether one or more natural glasses behave similarly to nuclear waste glasses in laboratory tests, and (2) how these similarities can be used to support projections of the long-term corrosion of nuclear waste glasses. The corrosion behavior of basaltic glasses was most similar to that of nuclear waste glasses, but the corrosion of tektite and obsidian glasses involves certain processes that also occur during the corrosion of nuclear waste glasses. The reactions and processes that control basalt glass dissolution are similar to those that are important in nuclear waste glass dissolution. The key reaction of the overall corrosion mechanism is network hydrolysis, which eventually breaks down the glass network structure that remains after the initial ion-exchange and diffusion processes. This review also highlights some unresolved issues related to the application of an analogue approach to predicting long-term behavior of nuclear waste glass corrosion, such as discrepancies between experimental and field-based estimates of kinetic parameters for basaltic glasses

  4. Natural analogues of nuclear waste glass corrosion.

    Energy Technology Data Exchange (ETDEWEB)

    Abrajano, T.A. Jr.; Ebert, W.L.; Luo, J.S.

    1999-01-06

    This report reviews and summarizes studies performed to characterize the products and processes involved in the corrosion of natural glasses. Studies are also reviewed and evaluated on how well the corrosion of natural glasses in natural environments serves as an analogue for the corrosion of high-level radioactive waste glasses in an engineered geologic disposal system. A wide range of natural and experimental corrosion studies has been performed on three major groups of natural glasses: tektite, obsidian, and basalt. Studies of the corrosion of natural glass attempt to characterize both the nature of alteration products and the reaction kinetics. Information available on natural glass was then compared to corresponding information on the corrosion of nuclear waste glasses, specifically to resolve two key questions: (1) whether one or more natural glasses behave similarly to nuclear waste glasses in laboratory tests, and (2) how these similarities can be used to support projections of the long-term corrosion of nuclear waste glasses. The corrosion behavior of basaltic glasses was most similar to that of nuclear waste glasses, but the corrosion of tektite and obsidian glasses involves certain processes that also occur during the corrosion of nuclear waste glasses. The reactions and processes that control basalt glass dissolution are similar to those that are important in nuclear waste glass dissolution. The key reaction of the overall corrosion mechanism is network hydrolysis, which eventually breaks down the glass network structure that remains after the initial ion-exchange and diffusion processes. This review also highlights some unresolved issues related to the application of an analogue approach to predicting long-term behavior of nuclear waste glass corrosion, such as discrepancies between experimental and field-based estimates of kinetic parameters for basaltic glasses.

  5. Neutralization and storage of radioactive wastes from nuclear power plants

    International Nuclear Information System (INIS)

    Minczewski, J.

    1989-01-01

    Radioactive wastes from nuclear power plants are described. The methods of radioactive wastes processing are shortly presented. Their volume is compared with the quantity of wastes from fossil-fuel power plants and municipal wastes. (A.S.)

  6. A disposal centre for immobilized nuclear waste

    International Nuclear Information System (INIS)

    1980-02-01

    This report describes a conceptual design of a disposal centre for immobilized nuclear waste. The surface facilities consist of plants for the preparation of steel cylinders containing nuclear waste immobilized in glass, shaft headframe buildings and all necessary support facilities. The underground disposal vault is located on one level at a depth of 1000 m. The waste cylinders are emplaced into boreholes in the tunnel floors. All surface and subsurface facilities are described, operations and schedules are summarized, and cost estimates and manpower requirements are given. (auth)

  7. Social dimensions of nuclear waste disposal

    International Nuclear Information System (INIS)

    Grunwald, Armin

    2015-01-01

    Nuclear waste disposal is a two-faceted challenge: a scientific and technological endeavour, on the one hand, and confronted with social dimensions, on the other. In this paper I will sketch the respective social dimensions and will give a plea for interdisciplinary research approaches. Relevant social dimensions of nuclear waste disposal are concerning safety standards, the disposal 'philosophy', the process of determining the disposal site, and the operation of a waste disposal facility. Overall, cross-cutting issues of justice, responsibility, and fairness are of major importance in all of these fields.

  8. Social dimensions of nuclear waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Grunwald, Armin [Karlsruhe Institute of Technology, Karlsruhe (Germany). Inst. for Technology Assessment and Systems Analysis

    2015-07-01

    Nuclear waste disposal is a two-faceted challenge: a scientific and technological endeavour, on the one hand, and confronted with social dimensions, on the other. In this paper I will sketch the respective social dimensions and will give a plea for interdisciplinary research approaches. Relevant social dimensions of nuclear waste disposal are concerning safety standards, the disposal 'philosophy', the process of determining the disposal site, and the operation of a waste disposal facility. Overall, cross-cutting issues of justice, responsibility, and fairness are of major importance in all of these fields.

  9. Corrosion of simulated nuclear waste glass

    International Nuclear Information System (INIS)

    Music, S.; Ristic, M.; Gotic, M.; Foric, J.

    1988-01-01

    In this study the preparation and characterization of borosilicate glasses of different chemical composition were investigated. Borosilicate glasses were doped with simulated nuclear waste oxides. The chemical corrosion in water of these glasses was followed by measuring the leach rates as a function of time. It was found that a simulated nuclear waste glass with the chemical composition (weight %), 15.61% Na 2 O, 10.39% B 2 O 3 , 45.31% SiO 2 , 13.42% ZnO, 6.61% TiO 2 and 8.66% waste oxides, is characterized by low melting temperature and with good corrosion resistance in water. Influence of passive layers on the leaching behaviour of nuclear waste glasses is discussed. (author) 20 refs.; 7 figs.; 4 tabs

  10. Nuclear waste package fabricated from concrete

    International Nuclear Information System (INIS)

    Pfeiffer, P.A.; Kennedy, J.M.

    1987-03-01

    After the United States enacted the Nuclear Waste Policy Act in 1983, the Department of Energy must design, site, build and operate permanent geologic repositories for high-level nuclear waste. The Department of Energy has recently selected three sites, one being the Hanford Site in the state of Washington. At this particular site, the repository will be located in basalt at a depth of approximately 3000 feet deep. The main concern of this site, is contamination of the groundwater by release of radionuclides from the waste package. The waste package basically has three components: the containment barrier (metal or concrete container, in this study concrete will be considered), the waste form, and other materials (such as packing material, emplacement hole liners, etc.). The containment barriers are the primary waste container structural materials and are intended to provide containment of the nuclear waste up to a thousand years after emplacement. After the containment barriers are breached by groundwater, the packing material (expanding sodium bentonite clay) is expected to provide the primary control of release of radionuclide into the immediate repository environment. The loading conditions on the concrete container (from emplacement to approximately 1000 years), will be twofold; (1) internal heat of the high-level waste which could be up to 400 0 C; (2) external hydrostatic pressure up to 1300 psi after the seepage of groundwater has occurred in the emplacement tunnel. A suggested container is a hollow plain concrete cylinder with both ends capped. 7 refs

  11. The disposal of nuclear waste in space

    Science.gov (United States)

    Burns, R. E.

    1978-01-01

    The important problem of disposal of nuclear waste in space is addressed. A prior study proposed carrying only actinide wastes to space, but the present study assumes that all actinides and all fission products are to be carried to space. It is shown that nuclear waste in the calcine (oxide) form can be packaged in a container designed to provide thermal control, radiation shielding, mechanical containment, and an abort reentry thermal protection system. This package can be transported to orbit via the Space Shuttle. A second Space Shuttle delivers an oxygen-hydrogen orbit transfer vehicle to a rendezvous compatible orbit and the mated OTV and waste package are sent to the preferred destination. Preferred locations are either a lunar crater or a solar orbit. Shuttle traffic densities (which vary in time) are given and the safety of space disposal of wastes discussed.

  12. Nuclear waste : Is everthing under control ?

    OpenAIRE

    Giuliani, Gregory; De Bono, Andréa; Kluser, Stéphane; Peduzzi, Pascal

    2007-01-01

    50 years after the opening of the world's first civil nuclear power station, very little radioac- tive waste produced has been permanently disposed of. Moreover, the average age of today's reactors is approximately 22 years, meaning most of them will be decommissioned over the next decades. All of these wastes will have to be disposed of even if no more nuclear reactors are built. But is it wise to take further advantage of the “nuclear path”, without proven and widely-utilized solutions to t...

  13. Nuclear waste incineration technology status

    International Nuclear Information System (INIS)

    Ziegler, D.L.; Lehmkuhl, G.D.; Meile, L.J.

    1981-01-01

    The incinerators developed and/or used for radioactive waste combustion are discussed and suggestions are made for uses of incineration in radioactive waste management programs and for incinerators best suited for specific applications. Information on the amounts and types of radioactive wastes are included to indicate the scope of combustible wastes being generated and in existence. An analysis of recently developed radwaste incinerators is given to help those interested in choosing incinerators for specific applications. Operating information on US and foreign incinerators is also included to provide additional background information. Development needs are identified for extending incinerator applications and for establishing commercial acceptance

  14. Nuclear Waste--Physics and Policy

    Science.gov (United States)

    Ahearne, John H.

    1996-03-01

    Managing and disposing of radioactive waste are major policy and financial issues in the United States and many other countries. Low-level waste sites, once thought to be possible in many states, remain fixed at the few sites that have been operating for decades. High-level waste remains at former nuclear weapons facilities and at nuclear power plants, and the DOE estimates a repository is unlikely before 2010, at the earliest. Physics and chemistry issues relate to criticality, plutonium loading in glass, leach rates, and diffusion. The public policy issues concern non-proliferation, states' rights, stakeholder participation, and nuclear power. Cleaning up the legacy of cold war driven nuclear weapons production is estimated to cost at least $250 billion and take three-quarters of a century. Some possible steps towards resolution of these issues will be described.

  15. Preliminary tank characterization report for single-shell tank 241-TX-101: best-basis inventory

    International Nuclear Information System (INIS)

    Kupfer, M.J.

    1997-01-01

    This document is a preliminary Tank Characterization Report (TCR). It only contains the current best-basis inventory (Appendix D) for single-shell tank 241-TX-101. No TCRs have been previously issued for this tank, and current core sample analyses are not available. The best-basis inventory, therefore, is based on an engineering assessment of waste type, process flowsheet data, early sample data, and/or other available information. The Standard Inventories of Chemicals and Radionuclides in Hanford Site Tank Wastes describes standard methodology used to derive the tank-by-tank best-basis inventories. This preliminary TCR will be updated using this same methodology when additional data on tank contents become available

  16. Engineering evaluation of intrusion prevention strategies for single-shell tanks

    International Nuclear Information System (INIS)

    Jenkins, C.E.

    1994-01-01

    In this study, previously implemented actions to prevent liquid intrusion into out-of-service single-shell tanks (SSTs), i.e., interim isolation or partial interim isolation, are investigated and expanded to identify additional cost-effective intrusion prevention techniques that could be reasonably taken until SSTs are ready for waste retrieval. Possible precipitation, groundwater, and condensation pathways and internal tank connections that could provide possible pathways for liquids are examined. Techniques to block identified potential pathways are developed and costed to determine the potential benefit to costed trade-offs for implementing the techniques. (Note: Surveillance data show increased waste surface levels for several SSTs that indicate possible liquid intrusion despite interim isolation activities.)

  17. Nuclear waste management at DOE

    International Nuclear Information System (INIS)

    Perge, A.F.

    1979-01-01

    DOE is responsible for interim storage for some radioactive wastes and for the disposal for most of them. Of the wastes that have to be managed a significant part are a result of treatment systems and devices for cleaning gases. The long term waste management objectives place minimal reliance on surveillance and maintenance. Thus, the concerns about the chemical, thermal, and radiolytic degradation of wastes require technology for converting the wastes to forms acceptable for long term isolation. The strategy of the DOE airborne radioactive waste management program is to increase the service life and reliability of filters; to reduce filter wastes; and in anticipation of regulatory actions that would require further reductions in airborne radioactive releases from defense program facilities, to develop improved technology for additional collection, fixation, and long-term management of gaseous wastes. Available technology and practices are adequate to meet current health and safety standards. The program is aimed primarily at cost effective improvements, quality assurance, and the addition of new capability in areas where more restrictive standards seem likely to apply in the future

  18. Construction Method Study For Installation Of A Large Riser In A Single-Shell Tank

    International Nuclear Information System (INIS)

    Adkisson, D.A.

    2010-01-01

    This study evaluates and identifies a construction method for cutting a hole in a single-shell tank dome. This study also identifies and evaluates vendors for performing the cut. Single-shell tanks (SST) in the 241-C tank farm are currently being retrieved using various retrieval technologies (e.g., modified sluicing). The Hanford Federal Facility Agreement and Consent Order require that the SSTs be retrieved to less than 360 cubic feet of radioactive waste. The current technologies identified and deployed for tank retrieval have not been able to retrieve waste in accordance with the Hanford Federal Facility Agreement and Consent Order. As such, alternative retrieval systems have been proposed and are currently under construction that will have the ability to retrieve waste to this defined level. The proposed retrieval systems will not fit down existing risers. New risers will need to be installed to provide the retrieval systems access to the inside of the SSTs. The purpose of this study is two-fold. The first objective is to identify multiple concrete cutting technologies and perform an initial pre-screening, evaluate the technologies identified for more in-depth analysis, and recommend a technology/methodology for cutting a hole in the tank dome. The identified/pre-screened methods will be evaluated based on the following criteria: (1) Maturity/complexity; (2) Waste generation; (3) Safety; (4) Cost; and (5) Schedule. Once the preferred method is identified to cut the hole in the tank dome, the second objective is to identify, evaluate, and recommend a vendor for the technology selected that will perform the cutting process.

  19. Influences of microbiology on nuclear waste disposal

    International Nuclear Information System (INIS)

    Dunk, M.

    1991-05-01

    This study was carried out to determine the effects of microbial activity on the disposal of nuclear waste. The areas chosen for study include nutrient availability (both organic and inorganic), the effect of increased pH and potential gas generation from the waste. Microbes from various soil habitats could grow on a variety of cellulose-based substrates including simulant waste. Increased pH did not appear to greatly effect the growth of these microbes. Gas generation by microbes growing on a simulant waste was determined over an extended period under a variety of nutritional conditions. The simulant waste was a good substrate for microbes and adding inorganic nutrients did not significantly affect the final yield of gas; extrapolated to about 14.6 3 gas per tonne of waste. The experiments have highlighted a number of areas for further research and they are currently being addressed. (author)

  20. Mechanical properties of nuclear waste glasses

    International Nuclear Information System (INIS)

    Connelly, A.J.; Hand, R.J.; Bingham, P.A.; Hyatt, N.C.

    2011-01-01

    The mechanical properties of nuclear waste glasses are important as they will determine the degree of cracking that may occur either on cooling or following a handling accident. Recent interest in the vitrification of intermediate level radioactive waste (ILW) as well as high level radioactive waste (HLW) has led to the development of new waste glass compositions that have not previously been characterised. Therefore the mechanical properties, including Young's modulus, Poisson's ratio, hardness, indentation fracture toughness and brittleness of a series of glasses designed to safely incorporate wet ILW have been investigated. The results are presented and compared with the equivalent properties of an inactive simulant of the current UK HLW glass and other nuclear waste glasses from the literature. The higher density glasses tend to have slightly lower hardness and indentation fracture toughness values and slightly higher brittleness values, however, it is shown that the variations in mechanical properties between these different glasses are limited, are well within the range of published values for nuclear waste glasses, and that the surveyed data for all radioactive waste glasses fall within relatively narrow range.

  1. Nuclear waste disposal: perspective of a geochemist

    International Nuclear Information System (INIS)

    Sengupta, Pranesh; Dey, G.K.

    2011-01-01

    Satisfying the growing requirement in an environment friendly way is one of the most important tasks we need to accomplish these days. Considering the restricted non-renewable energy resources and limited technological progresses achieved in the renewable energy sectors in India, nuclear energy appears to be one of the most lucrative solutions towards the forthcoming energy crisis. Successful implementation of nuclear energy program however requires careful execution of high level nuclear waste management activities. One very important aspect of this process is to identify and develop suitable inert matrix(ces) for conditioning of nuclear waste(s) using natural analogue studies. And this establishes the very vital linkage between geochemical studies and nuclear waste immobilization. One good example of such an interdisciplinary approach can be seen in the methodologies adopted for immobilization of sulfate bearing high level nuclear wastes (SO 4 -HLW). It has been reported on several occasions that sulfur-rich melt get separated from silicate melt within magma chamber. Similar process has also been witnessed within vitrification furnaces whenever an attempt has been made to condition SO 4 -HLW within borosilicate glass matrices. Since such liquid-liquid phase separation leads to multiple difficulties in connection to radionuclide immobilization and plant scale vitrification processes, solutions were sought from natural analogue studies. Such as integrated approach ultimately resulted in establishing two different methodologies e.g. (i) modifying the borosilicate network through introduction of Ba 2+ cation; a process being followed in India and (ii) using phosphatic melt as a host instead of borosilicate melt; a process being followed in Russia. Detail of these two routes and the geochemical linkage in nuclear waste immobilization will be discussed.(author)

  2. Management of radioactive waste from nuclear applications

    International Nuclear Information System (INIS)

    1997-01-01

    Radioactive waste arises from the generation of nuclear energy and from the production of radioactive materials and their applications in industry, agriculture, research and medicine. The importance of safe management of radioactive waste for the protection of human health and the environment has long been recognized and considerable experience has been gained in this field. Technical expertise is a prerequisite for safe and cost-effective management of radioactive waste. A training course is considered an effective tool for providing technical expertise in various aspects of waste management. The IAEA, in co-operation with national authorities concerned with radioactive waste management, has organized and conducted a number of radioactive waste management training courses. The results of the courses conducted by the IAEA in 1991-1995 have been evaluated at consultants meetings held in December 1995 and May 1996. This guidance document for use by Member States in arranging national training courses on the management of low and intermediate level radioactive waste from nuclear applications has been prepared as the result of that effort. The report outlines the various requirements for the organization, conduct and evaluation of training courses in radioactive waste management and proposes an annotated outline of a reference training course

  3. Science, Society, and America's Nuclear Waste: The Nuclear Waste Policy Act, Unit 3. Teacher Guide. Second Edition.

    Science.gov (United States)

    Department of Energy, Washington, DC. Office of Civilian Radioactive Waste Management, Washington, DC.

    This guide is Unit 3 of the four-part series, Science, Society, and America's Nuclear Waste, produced by the U.S. Department of Energy's Office of Civilian Radioactive Waste Management. The goal of this unit is to identify the key elements of the United States' nuclear waste dilemma and introduce the Nuclear Waste Policy Act and the role of the…

  4. Nuclear waste isolation activities report

    International Nuclear Information System (INIS)

    1980-12-01

    Included are: a report from the Deputy Assistant Secretary, a summary of recent events, new literature, a list of upcoming waste management meetings, and background information on DOE's radwaste management programs

  5. Analysis of nuclear waste management

    International Nuclear Information System (INIS)

    Center, J.L.; Crawford, B.S.; Ross, B.; Sutherland, A.A. Jr.

    1976-01-01

    An event tree is developed, outlining ways which radioactivity can be accidentally released from high level solidified wastes. Probabilities are assigned to appropriate events in the tree and the major contributors to dose to the general population are identified. All doses are computed on a per megawatt electric-year basis. Sensitivity relations between the expected dose and key characteristics of the solidified wasted are developed

  6. FLAMMABLE GAS DIFFUSION THROUGH SINGLE SHELL TANK (SST) DOMES

    Energy Technology Data Exchange (ETDEWEB)

    MEACHAM, J.E.

    2003-11-10

    This report quantified potential hydrogen diffusion through Hanford Site Single-Shell tank (SST) domes if the SSTs were hypothetically sealed airtight. Results showed that diffusion would keep headspace flammable gas concentrations below the lower flammability limit in the 241-AX and 241-SX SST. The purpose of this document is to quantify the amount of hydrogen that could diffuse through the domes of the SSTs if they were hypothetically sealed airtight. Diffusion is assumed to be the only mechanism available to reduce flammable gas concentrations. The scope of this report is limited to the 149 SSTs.

  7. Transmutation of long-lived nuclear waste

    International Nuclear Information System (INIS)

    Abrahams, K.

    1992-10-01

    Nuclear waste disposal in geologically stable repositories is considered to be safe and effective, and the assumptions, which lead to very long term predictions seem to be satisfied. As possibilities to perturb repositories, can never be entirely excluded, it could be an attractive option to reduce the toxicity of waste by supplementing the uranium-plutonium cycle with minor actinide burning cycles. In this option the amount of mining waste is limited at the same time because uranium is used economically. If requests for reduction of long-lived actinide waste would result in much higher costs for nuclear energy, the innovative thorium-uranium cycle might become competitive. It is of vital interest that efforts are now being internationalized in networks to make proper use of experience from past civil and military programs. Visions for almost pollution-free energy production could arise if well prepared minds are concentrated on this issue. (author). 5 refs., 2 figs., 1 tab

  8. Trilingual vocabulary of nuclear waste management

    International Nuclear Information System (INIS)

    Jacob, H.

    1996-01-01

    This reference document is produced in cooperation with partners in the Union Latine, an international organization dedicated to promoting the Romance languages. In 1992 acting on a request submitted by the Montreal Environment Section of the Translation Bureau, the Terminology and Standardization Directorate published an in-house glossary containing 2500 entries on nuclear waste management. The glossary was produced by scanning bilingual terms in the reports submitted to Atomic Energy of Canada Limited by the Siting Process Task Force on Low-Level Radioactive Waste Disposal. Because the scale of the nuclear waste management problem has grown considerably since then, the glossary needed to be expanded and revised. The Vocabulary contains some 1000 concepts for a total of approximately 3000 terms in each of the three languages, english, french and spanish. Special attention has been given to defining basic physical concepts, waste classifications and disposal methods

  9. Spray solidification of nuclear waste

    International Nuclear Information System (INIS)

    Bonner, W.F.; Blair, H.T.; Romero, L.S.

    1976-08-01

    The spray calciner is a relatively simple machine. Operation is simple and is easily automated. Startup and shutdown can be performed in less than an hour. A wide variety of waste compositions and concentrations can be calcined under easily maintainable conditions. Spray calcination of high-level and mixed high- and intermediate-level liquid wastes has been demonstrated. Waste concentrations of from near infinite dilution to less than 225 liters per tonne of fuel are calcinable. Wastes have been calcined containing over 2M sodium. Feed concentration, composition, and flowrate can vary rapidly by over a factor of two without requiring operator action. Wastes containing mainly sodium cations can be spray calcined by addition of finely divided silica to the feedstock. A remotely replaceable atomizing nozzle has been developed for use in plant-scale equipment. Calciner capacity of over 75 l/h has been demonstrated in pilot-scale equipment. Sintered stainless steel filters are effective in deentraining over 99.9 percent of the solids that result from calcining the feedstock. The volume of recycle required from the effluent treatment system is very small. Vibrator action maintains the calcine holdup in the calciner at less than 1 kg. Successful remote operation and maintenance of a heated-wall spray calciner have been demonstrated while processing high-level waste. Radionuclide volatilization was acceptably low

  10. Some political logistics of nuclear waste

    International Nuclear Information System (INIS)

    Pulsipher, A.G.

    1991-01-01

    The need for a centralized, federal, interim storage facility for nuclear waste, or MRS, alledgedly has become more urgent because the date for the opening of the permanent repository has been slipped from 2003 to 2010 at the earliest. However, a MRS constrained by the linkages in the Nuclear Waste Policy Act would make little sense and has no support. DOE wants to change the NWPAA linkages but unless the size of the MRS is constrained to approximately that now permitted, DOE's proposal would be so directly antithetical to the strategic vision and political aspirations of opponents of interim storage that it would seriously retard the development of the badly needed political consensus on national nuclear waste disposal policy. A new linkage, an acceptance rate limitation, is analyzed and the argument advanced that it would yield most of the benefits attributed to an MRS by DOE without aggravating the political concerns of MRS opponents

  11. The local community and the nuclear waste

    International Nuclear Information System (INIS)

    Lidskog, R.

    1998-01-01

    In this book social and political scientists discuss different aspects of the selection of a site for disposal of the Swedish nuclear waste. Special attention is given to the preliminary studies that have been performed at a few localities. The authors study the chain of events after a community is proposed for a site study. What powers are set in motion? How do different groups act in order to support or stop the study? Which is the role played by political parties, local environmentalist movements, media and experts? Why is there a forceful opposition in one community and not in another? Why does one local government invite the nuclear waste company to perform the study, while another refuses? The role of the local government has become crucial, since the nuclear waste company have chosen to perform studies only in municipalities that show a positive interest

  12. Project safety studies - nuclear waste management (PSE)

    International Nuclear Information System (INIS)

    1981-10-01

    The project 'Safety Studies-Nuclear Waste Management' (PSE) is a research project performed by order of the Federal Minister for Research and Technology, the general purpose of which is to deepen and ensure the understanding of the safety aspects of the nuclear waste management and to prepare a risk analysis which will have to be established in the future. Owing to this the project is part of a series of projects which serve the further development of the concept of nuclear waste management and its safety, and which are set up in such a way as to accompany the realization of that concept. This report contains the results of the first stage of the project from 1978 to mid-1981. (orig./RW) [de

  13. Tank characterization report for single-shell tank 241-U-103

    Energy Technology Data Exchange (ETDEWEB)

    SASAKI, L.M.

    1999-02-24

    A major function of the Tank Waste Remediation System (TWRS) is to characterize waste in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis and other available information about a tank are compiled and maintained in a tank characterization report. This report and its appendices serve as the tank characterization report for single-shell tank 241-U-103. The objectives of this report are (1) to use characterization data in response to technical issues associated with tank 241-U-103 waste and (2) to provide a standard characterization of this waste in terms of a best-basis inventory estimate. Section 2.0 summarizes the response to technical issues, Section 3.0 shows the best-basis inventory estimate, Section 4.0 makes recommendations about the safety status of the tank and additional sampling needs. The appendices contain supporting data and information. This report supports the requirements of the Hanford Federal Facility Agreement and Consent Order (Ecology et al. 1997), Milestone M-44-15b, change request M-44-97-03 to ''issue characterization deliverables consistent with Waste Information Requirements Documents developed for 1998.''

  14. Tank characterization report for single-shell tank 241-SX-115

    Energy Technology Data Exchange (ETDEWEB)

    HULSE, N.L.

    1999-05-13

    A major function of the Tank Waste Remediation System (TWRS) is to characterize waste in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis and other available information about a tank are compiled and maintained in a tank characterization report (TCR). This report and its appendices serve as the TCR for single-shell tank 241-SX-115. The objectives of this report are (1) to use characterization data in response to technical issues associated with tank 241-SX-115 waste, and (2) to provide a standard characterization of this waste in terms of a best-basis inventory estimate. Section 2.0 summarizes the response to technical issues, Section 3.0 shows the best-basis inventory estimate, Section 4.0 makes recommendations about the safety status of the tank and additional sampling needs. The appendices contain supporting data and information. This report supports the requirements of the Hanford Federal Facility Agreement and Consent Order (Ecology et al. 1997), Milestone M-44-15c, change request M-44-97-03 to ''issue characterization deliverables consistent with the Waste Information Requirements Document developed for FY 1999'' (Adams et al. 1998).

  15. Functions and requirements for Hanford single-shell tank leakage detection and monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Cruse, J.M.; Ohl, P.C.

    1995-04-19

    This document provides the initial functions and requirements for leakage detection and monitoring applicable to past and potential future leakage from the Hanford Site`s 149 single-shell high-level waste tanks. This mission is a part of the overall mission of the Westinghouse Hanford Company Tank Waste Remediation System division to remediate the tank waste in a safe and acceptable manner. Systems engineering principles are being applied to this effort. This document reflects the an initial step in the systems engineering approach to decompose the mission into primary functions and requirements. The document is considered approximately 30% complete relative to the effort required to produce a final version that can be used to support demonstration and/or procurement of technologies. The functions and requirements in this document apply to detection and monitoring of below ground leaks from SST containment boundaries and the resulting soil contamination. Leakage detection and monitoring is invoked in the TWRS Program in three fourth level functions: (1) Store Waste, (2) Retrieve Waste, and (3) Disposition Excess Facilities (as identified in DOE/RL-92-60 Rev. 1, Tank Waste Remediation System Functions and Requirements).

  16. Tank characterization report for single-shell tank 241-T-105

    Energy Technology Data Exchange (ETDEWEB)

    Field, J.G.

    1998-06-18

    A major function of the Tank Waste Remediation System (TWRS) is to characterize waste in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis and other available information about a tank are compiled and maintained in a tank characterization report (TCR). This report and its appendices serve as the TCR for single-shell tank 241-T-105. The objectives of this report are (1) to use characterization data in response to technical issues associated with tank 241-T-105 waste and (2) to provide a standard characterization of this waste in terms of a best-basis inventory estimate. Section 2.0 summarizes the response to technical issues, Section 3.0 shows the best-basis inventory estimate, Section 4.0 makes recommendations about the safety status of the tank and additional sampling needs. The appendices contain supporting data and information. This report supports the requirements of the Hanford Federal Facility Agreement and Consent Order (Ecology et al. 1997), Milestone M-44-15b, change request M-44-97-03, to ``issue characterization deliverables consistent with the waste information requirements documents developed for 1998``.

  17. Tank characterization report for single-shell tank 241-TX-104

    International Nuclear Information System (INIS)

    FIELD, J.G.

    1999-01-01

    A major function of the Tank Waste Remediation System (TWRS) is to characterize waste in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis and other available information about a tank are compiled and maintained in a tank characterization report (TCR). This report and its appendices serve as the TCR for single-shell tank 241-TX-104. The objectives of this report are (1) to use characterization data in response to technical issues associated with tank 241-TX-104 waste, and (2) to provide a standard characterization of this waste in terms of a best-basis inventory estimate. Section 2.0 summarizes the response to technical issues, Section 3.0 shows the best-basis inventory estimate, Section 4.0 makes recommendations about the safety status of the tank and additional sampling needs. The appendices contain supporting data and information. This report supports the requirements of the Hanford Federal Facility Agreement and Consent Order (Ecology et al. 1997), Milestone M-44-15c, change request M-44-97-03 to ''issue characterization deliverables consistent with the Waste Information Requirements Document developed for FY 1999'' (Adams et al. 1998)

  18. Tank characterization report for single-shell tank 241-T-104

    International Nuclear Information System (INIS)

    DiCenso, A.T.; Simpson, B.C.

    1994-01-01

    In August 1992, Single-Shell Tank 241-T-104 was sampled to determine proper handling of the waste, to address corrosivity and compatibility issues, and to comply with requirements of the Washington Administrative Code (Ecology, 1991). This Tank Characterization Report presents an overview of that tank sampling and analysis effort, and contains observations regarding waste characteristics. It also addresses expected concentration and bulk inventory data for the waste contents based on this latest sampling data and background tank information. The purpose of this report is to describe and characterize the waste in Single-Shall Tank 241-T-104 (hereafter, Tank 241-T-104) based on information given from various sources. This report summarizes the available information regarding the waste in Tank 241-T-104, and using the historical information to place the analytical data in context, arranges this information in a useful format for making management and technical decisions concerning this waste tank. In addition, conclusions and recommendations are given based on safety issues and further characterization needs

  19. Tank Characterization report for single-shell tank 241-SX-103

    International Nuclear Information System (INIS)

    WILMARTH, S.R.

    1999-01-01

    A major function of the Tank Waste Remediation System (TWRS) is to characterize waste in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis and other available information about a tank are compiled and maintained in a tank characterization report. This report and its appendices serve as the tank characterization report for single-shell tank 241-SX-103. The objectives of this report are (1) to use characterization data in response to technical issues associated with tank 241-SX-103 waste, and (2) to provide a standard characterization of this waste in terms of a best-basis inventory estimate. Section 2.0 summarizes the response to technical issues, Section 3.0 shows the best-basis inventory estimate, and Section 4.0 makes recommendations about the safety status of the tank and additional sampling needs. The appendices contain supporting data and information. This report supports the requirements of Hanford Federal Facility Agreement and Consent Order (Ecology et al. 1997), Milestone M-44-15c, change request M-44-97-03 to ''issue characterization deliverables consistent with the Waste Information Requirements Document developed for fiscal year 1999'' (Adams et al. 1998)

  20. Tank characterization report for single-shell tank 241-T-105

    International Nuclear Information System (INIS)

    Field, J.G.

    1998-01-01

    A major function of the Tank Waste Remediation System (TWRS) is to characterize waste in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis and other available information about a tank are compiled and maintained in a tank characterization report (TCR). This report and its appendices serve as the TCR for single-shell tank 241-T-105. The objectives of this report are (1) to use characterization data in response to technical issues associated with tank 241-T-105 waste and (2) to provide a standard characterization of this waste in terms of a best-basis inventory estimate. Section 2.0 summarizes the response to technical issues, Section 3.0 shows the best-basis inventory estimate, Section 4.0 makes recommendations about the safety status of the tank and additional sampling needs. The appendices contain supporting data and information. This report supports the requirements of the Hanford Federal Facility Agreement and Consent Order (Ecology et al. 1997), Milestone M-44-15b, change request M-44-97-03, to ''issue characterization deliverables consistent with the waste information requirements documents developed for 1998''

  1. Nuclear Waste Fund cash management procedures

    International Nuclear Information System (INIS)

    1988-04-01

    The Nuclear Waste Policy Act if 1982 (NWPA) provided for the Office of Radioactive Waste Management (OCRWM) to adopt financial and accounting methods comparable to those used by private industry, including borrowing and investing authority. This document describes the procedures OCRWM follows to meet its borrowing and investing authority under the NWPA. These procedures are a supplement to, and are, therefore, not intended to supersede, existing Departmental policies and procedures

  2. The Canadian nuclear fuel waste management program

    International Nuclear Information System (INIS)

    Dixon, R.S.; Rosinger, E.L.J.

    1984-04-01

    This report, the fifth of a series of annual reports, reviews the progress that has been made in the research and development program for the safe management and disposal of Canada's nuclear fuel waste. The report summarizes activities over the past year in the following areas: public interaction; used fuel storage and transportation; immobilization of used fuel and fuel recycle waste; geoscience research related to deep underground disposal; environmental research; and environmental and safety assessment

  3. Microstructural characterization of nuclear-waste ceramics

    International Nuclear Information System (INIS)

    Ryerson, F.J.; Clarke, D.R.

    1982-01-01

    Characterization of nuclear waste ceramics requires techniques possessing high spatial and x-ray resolution. XRD, SEM, electron microprobe, TEM and analytical EM techniques are applied to ceramic formulations designed to immobilize both commercial and defense-related reactor wastes. These materials are used to address the strengths and limitations of the techniques above. An iterative approach combining all these techniques is suggested. 16 figures, 2 tables

  4. Public perception of nuclear waste management issues

    International Nuclear Information System (INIS)

    Rankin, W.L.; Melber, B.D.

    1980-02-01

    The purpose of this report is to examine perceptions of nuclear waste management held by the general public. First, trends in general levels of public concern over issues surrounding nuclear waste storage and disposal will be discussed for the decade of the 1970s. Second, the extent to which beliefs concerning nuclear waste issues are associated with attitudes toward the continued development of nuclear power will be analyzed. The data presented are based on two comprehensive analyses of survey research dealing with public attitudes toward nuclear power and related energy issues (Melber, B.D., Nealey, S.M., Weiss, C.S., and Rankin, W.L. Nuclear Power and the Public: Update of Collected Survey Research, Battelle Human Affairs Research Centers, B-HARC-411-021, 1980; Melber, B.D., Nealey, S.M., Hammersla, J., and Rankin, W.L. Nuclear Power and the Public: Analysis of Collected Survey Research, Battelle Human Affairs Research Centers, PNL-2430, 1977). Over 150 national, state and special group surveys were included in those research reviews. 9 references

  5. Final disposal of nuclear waste. An investigated issue

    International Nuclear Information System (INIS)

    Palmu, J.; Nikula, A.

    1996-01-01

    Since 1978, the nuclear power companies have co-ordinated joint studies of nuclear waste disposal through the Nuclear Waste Commission of Finnish Power Companies. The studies are done primarily to gather basic data, with a view to implementing nuclear waste management in a safe, economical and timely way. The power companies' research, development and design work with regard to nuclear waste has been progressing according to the schedule set by the Government, and Finland has received international recognition for its advanced nuclear waste management programme. Last year, the nuclear power companies set up a joint company, Posiva Oy, to manage the final disposal of spent uranium fuel. (orig.)

  6. Spray calcination of nuclear wastes

    International Nuclear Information System (INIS)

    Bonner, W.F.; Blair, H.T.; Romero, L.S.

    1976-01-01

    The spray calciner is a relatively simple machine; operation is simple and is easily automated. Startup and shutdown can be performed in less than an hour. A wide variety of waste compositions and concentrations can be calcined under easily maintainable conditions. Spray calcination of all commercial fuel reprocessor high-level liquid wastes and mixed high and intermediate-level wastes have been demonstrated. Wastes have been calcined containing over 2M sodium. Thus waste generated during plant startup and shutdown can be blended with normal waste and calcined. Spray calcination of ILLW has also been demonstrated. A remotely replaceable atomizing nozzle has been developed for use in plant scale equipment. The 6 mm (0.25 inch) orifice and ceramic tip offer freedom from plugging and erosion thus nozzle replacement should be required only after several months operation. Calciner capacity of over 75 l/h (20 gal/h) has been demonstrated in pilot scale equipment. Sintered stainless steel filters are effective in deentraining over 99.9 percent of the solids that result from calcining the feedstock. Since such a small amount of radionuclides escape the calciner the volume of recycle required from the effluent treatment system is very small. The noncondensable off-gas volume is also low, less than 0.5 m 3 /min (15 scfm) for a liquid feedrate of 75 l/hr (20 gal/hr). Calcine holdup in the calciner is less than 1 kg, thus the liquid feedrate is directly relatable to calcine flowrate. The calcine produced is very fine and reactive. Successful remote operation and maintenance of a heated wall spray calciner has been demonstrated while processing actual high-level waste. During these operations radionuclide volatilization from the calciner was acceptably low. 8 figures

  7. High-level nuclear waste disposal

    International Nuclear Information System (INIS)

    Burkholder, H.C.

    1985-01-01

    The meeting was timely because many countries had begun their site selection processes and their engineering designs were becoming well-defined. The technology of nuclear waste disposal was maturing, and the institutional issues arising from the implementation of that technology were being confronted. Accordingly, the program was structured to consider both the technical and institutional aspects of the subject. The meeting started with a review of the status of the disposal programs in eight countries and three international nuclear waste management organizations. These invited presentations allowed listeners to understand the similarities and differences among the various national approaches to solving this very international problem. Then seven invited presentations describing nuclear waste disposal from different perspectives were made. These included: legal and judicial, electric utility, state governor, ethical, and technical perspectives. These invited presentations uncovered several issues that may need to be resolved before high-level nuclear wastes can be emplaced in a geologic repository in the United States. Finally, there were sixty-six contributed technical presentations organized in ten sessions around six general topics: site characterization and selection, repository design and in-situ testing, package design and testing, disposal system performance, disposal and storage system cost, and disposal in the overall waste management system context. These contributed presentations provided listeners with the results of recent applied RandD in each of the subject areas

  8. Radiation Effects in Nuclear Waste Materials

    Energy Technology Data Exchange (ETDEWEB)

    Weber, William J.; Corrales, L. Rene; Ness, Nancy J.; Williford, Ralph E.; Heinisch, Howard L.; Thevuthasan, Suntharampillai; Icenhower, Jonathan P.; McGrail, B. Peter; Devanathan, Ramaswami; Van Ginhoven, Renee M.; Song, Jakyoung; Park, Byeongwon; Jiang, Weilin; Begg, Bruce D.; Birtcher, R. B.; Chen, X.; Conradson, Steven D.

    2000-10-02

    Radiation effects from the decay of radionuclides may impact the long-term performance and stability of nuclear waste forms and stabilized nuclear materials. In an effort to address these concerns, the objective of this project was the development of fundamental understanding of radiation effects in glasses and ceramics, particularly on solid-state radiation effects and their influence on aqueous dissolution kinetics. This study has employed experimental, theoretical and computer simulation methods to obtain new results and insights into radiation damage processes and to initiate the development of predictive models. Consequently, the research that has been performed under this project has significant implications for the High-Level Waste and Nuclear Materials focus areas within the current DOE/EM mission. In the High-Level Waste (HLW) focus area, the results of this research could lead to improvements in the understanding of radiation-induced degradation mechanisms and their effects on dissolution kinetics, as well as development of predictive models for waste form performance. In the Nuclear Materials focus area, the results of this research could lead to improvements in the understanding of radiation effects on the chemical and structural properties of materials for the stabilization and long-term storage of plutonium, highly-enriched uranium, and other actinides. Ultimately, this research could result in improved glass and ceramic materials for the stabilization and immobilization of high-level tank waste, plutonium residues and scraps, surplus weapons plutonium, highly-enriched uranium, other actinides, and other radioactive materials.

  9. Next nuclear gamble: transportation and storage of nuclear waste

    International Nuclear Information System (INIS)

    Resnikoff, M.

    1983-01-01

    Accidents during transport of nuclear waste are more threatening - though less likely - than a reactor meltdown because transportation accidents could occur in the middle of a populous city, affecting more people and property than a plant accident, according to the Council on Economic Priorities, a non-profit public service research organization. Transportation, as presently practiced, is unsafe. Shipping containers, called casks, are poorly designed and constructed, CEP says. The problem needs attention because the number of casks filled with nuclear waste on the nation's highways could increase a hundred times during the next 15 years under the Nuclear Waste Policy Act of 1982, which calls for storage areas. Recommendations, both technical and regulatory, for reducing the risks are presented

  10. Nuclear fuel waste disposal in Canada

    International Nuclear Information System (INIS)

    Dormuth, K.W.; Gillespie, P.A.

    1990-05-01

    Atomic Energy of Canada Limited (AECL) has developed a concept for disposing of Canada's nuclear fuel waste and is submitting it for review under the Federal Environmental Assessment and Review Process. During this review, AECL intends to show that careful, controlled burial 500 to 1000 metres deep in plutonic rock of the Canadian Precambrian Shield is a safe and feasible way to dispose of Canada's nuclear fuel waste. The concept has been assessed without identifying or evaluating any particular site for disposal. AECL is now preparing a comprehensive report based on more than 10 years of research and development

  11. Citizen participation in nuclear waste repository siting

    International Nuclear Information System (INIS)

    Howell, R.E.; Olsen, D.

    1982-12-01

    The following study presents a proposed strategy for citizen participation during the planning stages of nuclear waste repository siting. It discusses the issue from the general perspective of citizen participation in controversial issues and in community development. Second, rural institutions and attitudes toward energy development as the context for developing a citizen participation program are examined. Third, major citizen participation techniques and the advantages and disadvantages of each approach for resolving public policy issues are evaluated. Fourth, principles of successful citizen participation are presented. Finally, a proposal for stimulating and sustaining effective responsible citizen participation in nuclear waste repository siting and management is developed

  12. The Canadian nuclear fuel waste management program

    International Nuclear Information System (INIS)

    Rummery, T.E.; Rosinger, E.L.J.

    1983-05-01

    The Canadian Nuclear Fuel Waste Management Program is now well established. This report outlines the generic research and technological development underway in this program to assess the concept of immobilization and subsequent disposal of nuclear fuel waste deep in a stable plutonic rock in the Canadian Shield. The program participants, funding, schedule and associated external review processes are briefly outlined. The major scientific and engineering components of the program, namely, immobilization studies, geoscience research and environmental and safety assessment, are described in more detail

  13. The international politics of nuclear waste

    International Nuclear Information System (INIS)

    Blowers, A.; Lowry, D.; Solomon, B.D.

    1993-01-01

    This book depicts the wide diversity and the striking similarities in the international politics of nuclear waste management, using good organization and well defined terminology. The authors provide a background of geography, geology and demographics, and provide informed and common-sensical observations and conclusions. They question the ethics of leaving nuclear wastes where they are and waiting for better solutions, and they put forward a rational set of siting options, including coupling repository plans with environmental enhancement programs such as protection of coastal access, landscape improvements, and erosion control

  14. The Next Nuclear Gamble. Transportation and storage of nuclear waste

    International Nuclear Information System (INIS)

    Resnikoff, M.

    1985-01-01

    The Next Nuclear Gamble examines risks, costs, and alternatives in handling irradiated nuclear fuel. The debate over nuclear power and the disposal of its high-level radioactive waste is now nearly four decades old. Ever larger quantities of commercial radioactive fuel continue to accumulate in reactor storage pools throughout the country and no permanent storage solution has yet been designated. As an interim solution, the government and utilities prefer that radioactive wastes be transported to temporary storage facilities and subsequently to a permanent depository. If this temporary and centralized storage system is implemented, however, the number of nuclear waste shipments on the highway will increase one hundredfold over the next fifteen years. The question directly addressed is whether nuclear transport is safe or represents the American public's domestic nuclear gamble. This Council on Economic Priorities study, directed by Marvin Resnikoff, shows on the basis of hundreds of government and industry reports, interviews and surveys, and original research, that transportation of nuclear materials as currently practiced is unsafe

  15. NRC nuclear waste geochemistry 1983

    International Nuclear Information System (INIS)

    Alexander, D.H.; Birchard, G.F.

    1984-05-01

    The purpose of the meeting was to present results from NRC-sponsored research and to identify regulatory research issues which need to be addressed prior to licensing a high-level waste repository. Important summaries of technical issues and recommendations are included with each paper. The issue reflect areas of technical uncertainty addressed by the NRC Research program in geochemistry. The objectives of the NRC Research Program in geochemistry are to provide a technical basis for waste management rulemaking, to provide the NRC Waste Management Licensing Office with information that can be used to support sound licensing decisions, and to identify investigations that need to be conducted by DOE to support a license application. Individual papers were processed for inclusion in the Energy Data Base

  16. Salvaging of nuclear waste by nuclear-optical converters

    Science.gov (United States)

    Karelin, A. V.; Shirokov, R. V.

    2007-06-01

    In modern conditions of power consumption growing in Russia, apparently, it is difficult to find alternative to further development of nuclear power engineering. The negative party of nuclear power engineering is the spent fuel of nuclear reactors (radioactive waste). The gaseous and fluid radioactive waste furbished of highly active impurity, dumps in atmosphere or pools. The highly active fluid radioactive waste stores by the way of saline concentrates in special tanks in surface layers of ground, above the level of groundwaters. A firm radioactive waste bury in pods from a stainless steel in underground workings, salt deposits, at the bottom of oceans. However this problem can be esteemed in a positive direction, as irradiation is a hard radiation, which one can be used as a power source in nuclear - optical converters with further conversion of optical radiation into the electric power with the help of photoelectric converters. Thus waste at all do not demand special processing and exposure in temporary storehouses. And the electricity can be worked out in a constant mode within many years practically without gang of a stimulus source, if a level of a residual radioactivity and the half-lives of component are high enough.

  17. Global nuclear waste repository proposal highlights Australia's nuclear energy vacuum

    International Nuclear Information System (INIS)

    Anon.

    1999-01-01

    The Pangea proposal is disscused and considered relevant to Australia. A five-year research program by the company has identified Australia and Argentina as having the appropriate geological, economic and democratic credentials for such a deep repository, with Australia being favoured. A deep repository would be located where the geology has been stable for several hundred million years, so that there need not be total reliance on a robust engineered barrier system to keep the waste securely isolated for thousands of years. It would be a commercial undertaking and would have dedicated port and rail infrastructure. It would take spent fuel and other wastes from commercial reactors, and possibly also waste from weapons disposal programs. Clearly, while the primary ethical and legal principle is that each country is entirely responsible for its own waste, including nuclear waste (polluter pays etc), the big question is whether the concept of an international waste repository is acceptable ethically. Political and economic questions are secondary to this. By taking a fresh look at the reasons for the difficulties which have faced most national repository programs, and discarding the preconception that each country must develop its own disposal facilities, it is possible to define a class of simple, superior high isolation sites which may provide a multi-national basis for solving the nuclear waste disposal problem. The relatively small volumes of high-level wastes or spent fuel which arise from nuclear power production make shared repositories a feasible proposition. For small countries, the economies of scale which can be achieved make the concept attractive. For all countries, objective consideration of the relative merits of national and multi-national solutions is a prudent part of planning the management of long-lived radioactive wastes

  18. Recent Developments in Nuclear Waste Management in Canada

    International Nuclear Information System (INIS)

    King, F.

    2002-01-01

    This paper describes recent developments in the field of nuclear waste management in Canada with a focus on management of nuclear fuel waste. Of particular significance is the April 2001 tabling in the Canadian House of Commons of Bill C-27, An Act respecting the long-term management of nuclear fuel waste. At the time of finalizing this paper (January 15, 2002), Bill C-27 is in Third Reading in the House of Commons and is expected to move to the Senate in February. The Nuclear Fuel Waste Act is expected to come into force later in 2002. This Act requires the three nuclear utilities in Canada owning nuclear fuel waste to form a waste management organization and deposit funds into a segregated fund for nuclear fuel waste long-term management. The waste management organization is then required to perform a study of long-term management approaches for nuclear fuel waste and submit the study to the federal government within three years. The federal government will select an approach for implementation by the waste management organization. The paper discusses the activities that the nuclear fuel waste owners currently have underway to prepare for the formation of the waste management organization. As background, the paper reviews the status of interim storage of nuclear fuel waste in Canada, and describes previous initiatives related to the development of a national strategy for nuclear fuel waste long-term management

  19. Tank characterization report for single-shell tank 241-C-104

    Energy Technology Data Exchange (ETDEWEB)

    Baldwin, J.H.

    1997-05-21

    A major function of the Tank Waste Remediation System is to characterize wastes in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis, along with other available information about a tank, are compiled and maintained in a tank characterization report (TCR). This report and its appendices serve as the TCR for single-shell tank 241-C-104. The objectives of this report are: (1) to use characterization data in response to technical issues associated with tank 241-C-104 waste; and (2) to provide a standard characterization of this waste in terms of a best-basis inventory estimate. The response to technical issues is summarized in Section 2.0, and the best-basis inventory estimate is presented in Section 3.0. Recommendations regarding safety status and additional sampling needs are provided in Section 4.0. Supporting data and information are contained in the appendices. This report supports the requirements of the Hanford Federal Facility Agreement and Consent Order (Ecology et al. 1996) milestone M-44-10.

  20. Tank characterization report for single-shell tank 241-U-106

    Energy Technology Data Exchange (ETDEWEB)

    Brown, T.M.

    1997-04-15

    One major function of the Tank Waste Remediation System (TWRS) is to characterize wastes in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis, along with other available information, are compiled and maintained in a tank characterization report (TCR). This report and its appendixes serve as the TCR for single-shell tank 241-U-106. The objectives of this report are: (1) to use characterization data in response to technical issues associated with tank 241-U-106 waste, and (2) to provide a standard characterization of this waste in terms of a best-basis inventory estimate. Section 2.0 of this report summarizes the response to technical issues, Section 3.0 shows the best-basis inventory estimate, and Section 4.0 makes recommendations regarding safety status and additional sampling. The appendixes contain supporting data and information. This report also supports the requirements of the Hanford Federal Facility Agreement and Consent Order (Ikology et al. 1996), Milestone M-44-10.

  1. Tank characterization report for single-shell tank 241-U-106

    International Nuclear Information System (INIS)

    Brown, T.M.

    1997-01-01

    One major function of the Tank Waste Remediation System (TWRS) is to characterize wastes in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis, along with other available information, are compiled and maintained in a tank characterization report (TCR). This report and its appendixes serve as the TCR for single-shell tank 241-U-106. The objectives of this report are: (1) to use characterization data in response to technical issues associated with tank 241-U-106 waste, and (2) to provide a standard characterization of this waste in terms of a best-basis inventory estimate. Section 2.0 of this report summarizes the response to technical issues, Section 3.0 shows the best-basis inventory estimate, and Section 4.0 makes recommendations regarding safety status and additional sampling. The appendixes contain supporting data and information. This report also supports the requirements of the Hanford Federal Facility Agreement and Consent Order (Ikology et al. 1996), Milestone M-44-10

  2. Tank characterization report for single-shell tank 241-S-111

    International Nuclear Information System (INIS)

    Conner, J.M.

    1997-01-01

    One of the major functions of the Tank Waste Remediation System (TWRS) is to characterize wastes in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis, along with other available information about a tank, are compiled and maintained in a tank characterization report (TCR). This report and its appendices serve as the TCR for single-shell tank 241-S-111. The objectives of this report are: (1) to use characterization data to address technical issues associated with tank 241-S-111 waste; and (2) to provide a standard characterization of this waste in terms of a best-basis inventory estimate. The response to technical issues is summarized in Section 2.0, and the best-basis inventory estimate is presented in Section 3.0. Recommendations regarding safety status and additional sampling needs are provided in Section 4.0. Supporting data and information are contained in the appendices. This report also supports the requirements of Hanford Federal Facility Agreement and Consent Order (Ecology et al. 1996) milestone M-44-10

  3. Tank characterization report for single-shell tank 241-S-104

    International Nuclear Information System (INIS)

    Jo, J.

    1997-01-01

    One of the major functions of the Tank Waste Remediation System (TWRS) is to characterize wastes in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis, along with other available information about a tank, are compiled and maintained in a tank characterization report (TCR). This report and its appendixes serve as the TCR for single-shell tank 241-S-104. The objectives of this report are: (1) to use characterization data in response to technical issues associated with 241-S- 104 waste; and (2) to provide a standard characterization of this waste in terms of a best-basis inventory estimate. The response to technical issues is summarized in Section 2.0, and the best-basis inventory estimate is presented in Section 3.0. Recommendations regarding safety status and additional sampling needs are provided in Section 4.0. Supporting data and information are contained in the appendixes. This report also supports the requirements of the Hanford Federal Facility Agreement and Consent Order (Ecology et al. 1996) milestone M-44-05

  4. Tank characterization report for single-shell tak 241-C-112. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, B.C.

    1997-06-11

    One major function of the Tank Waste Remediation System (IWRS) is to characterize wastes in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis and other available information about a tank are compiled and maintained in a tank characterization report (CR). This report and its appendixes serve as the CR for single-shell tank 24 1 -C- 1 12. The objectives of this report are: 1) to use characterization data in response to technical issues associated with tank 24 1 -C- 1 12 waste, and 2) to provide a standard characterization of this waste in terms of a best-basis inventory estimate. Section 2.0 summarizes the response to technical issues, Section 3.0 shows the best-basis inventory estimate, and Section 4.0 makes recommendations regarding safety status and additional sampling needs. The appendixes contain supporting data and information. This report supports the requirements of the Hanford Federal Facility Agreement and Consent Order, Milestone M-44-05 (Ecology et al. 1996).

  5. Recovery of fissile materials from nuclear wastes

    Science.gov (United States)

    Forsberg, Charles W.

    1999-01-01

    A process for recovering fissile materials such as uranium, and plutonium, and rare earth elements, from complex waste feed material, and converting the remaining wastes into a waste glass suitable for storage or disposal. The waste feed is mixed with a dissolution glass formed of lead oxide and boron oxide resulting in oxidation, dehalogenation, and dissolution of metal oxides. Carbon is added to remove lead oxide, and a boron oxide fusion melt is produced. The fusion melt is essentially devoid of organic materials and halogens, and is easily and rapidly dissolved in nitric acid. After dissolution, uranium, plutonium and rare earth elements are separated from the acid and recovered by processes such as PUREX or ion exchange. The remaining acid waste stream is vitrified to produce a waste glass suitable for storage or disposal. Potential waste feed materials include plutonium scrap and residue, miscellaneous spent nuclear fuel, and uranium fissile wastes. The initial feed materials may contain mixtures of metals, ceramics, amorphous solids, halides, organic material and other carbon-containing material.

  6. Permanent Disposal of Nuclear Waste in Salt

    Science.gov (United States)

    Hansen, F. D.

    2016-12-01

    Salt formations hold promise for eternal removal of nuclear waste from our biosphere. Germany and the United States have ample salt formations for this purpose, ranging from flat-bedded formations to geologically mature dome structures. Both nations are revisiting nuclear waste disposal options, accompanied by extensive collaboration on applied salt repository research, design, and operation. Salt formations provide isolation while geotechnical barriers reestablish impermeability after waste is placed in the geology. Between excavation and closure, physical, mechanical, thermal, chemical, and hydrological processes ensue. Salt response over a range of stress and temperature has been characterized for decades. Research practices employ refined test techniques and controls, which improve parameter assessment for features of the constitutive models. Extraordinary computational capabilities require exacting understanding of laboratory measurements and objective interpretation of modeling results. A repository for heat-generative nuclear waste provides an engineering challenge beyond common experience. Long-term evolution of the underground setting is precluded from direct observation or measurement. Therefore, analogues and modeling predictions are necessary to establish enduring safety functions. A strong case for granular salt reconsolidation and a focused research agenda support salt repository concepts that include safety-by-design. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. Author: F. D. Hansen, Sandia National Laboratories

  7. Nuclear Waste Management under Approaching Disaster

    NARCIS (Netherlands)

    Ilg, Patrick; Gabbert, Silke; Weikard, Hans Peter

    2017-01-01

    This article compares different strategies for handling low- and medium-level nuclear waste buried in a retired potassium mine in Germany (Asse II) that faces significant risk of uncontrollable brine intrusion and, hence, long-term groundwater contamination. We survey the policy process that has

  8. What can be done with nuclear wastes?

    International Nuclear Information System (INIS)

    Simon, A.; Piechowski, J.; Monchicourt, M.O.

    2001-01-01

    In this book, a technical adviser of the French atomic energy commission (CEA) answers the questions of the author about nuclear wastes: how are they produced? Where are they stored? Are they dangerous? How do we protect against their harmful effects? (J.S.)

  9. Nuclear Waste Fund fee adequacy: An assessment

    International Nuclear Information System (INIS)

    1990-11-01

    The purpose of this report is to present the Department of Energy's (the Department) analysis of the adequacy of the 1.00 mill per kilowatt-hour (kWh) fee being paid by the utilities generating nuclear power for the permanent disposal of their spent nuclear fuel (SNF). In accordance with the Nuclear Waste Policy Act (NWPA), the SNF would be disposed of in a geologic repository to be developed by the Department. An annual analysis of the fee's adequacy is required by the NWPA

  10. Fate of nuclear waste site remains unclear

    International Nuclear Information System (INIS)

    Anderson, E.V.

    1980-01-01

    The only commercial nuclear fuel reprocessing plant in the U.S., located in West Valley, N.Y., has been shut down since 1972, and no efforts have yet been made to clean up the site. The site contains a spent-fuel pool, high level liquid waste storage tanks, and two radioactive waste burial grounds. Nuclear Fuel Services, Inc., has been leasing the site from the New York State Energy RandD Authority. Federal litigation may ensue, prompted by NRC and DOE, if the company refuses to decontaminate the area when its lease expires at the end of 1980. DOE has developed a plan to solidify the liquid wastes at the facility but needs additional legislation and funding to implement the scheme

  11. Nuclear waste issues: a perspectives document

    International Nuclear Information System (INIS)

    Cohen, J.J.; Smith, C.F.; Ciminese, F.J.

    1983-02-01

    This report contains the results of systematic survey of perspectives on the question of radioactive waste management. Sources of information for this review include the scientific literature, regulatory and government documents, pro-nuclear and anti-nuclear publications, and news media articles. In examining the sources of information, it has become evident that a major distinction can be made between the optimistic or positive viewpoints, and the pessimistic or negative ones. Consequently, these form the principal categories for presentation of the perspectives on the radioactive waste management problem have been further classified as relating to the following issue areas: the physical aspects of radiation, longevity, radiotoxicity, the quantity of radioactive wastes, and perceptual factors

  12. Nuclear waste issues: a perspectives document

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, J.J.; Smith, C.F.; Ciminese, F.J.

    1983-02-01

    This report contains the results of systematic survey of perspectives on the question of radioactive waste management. Sources of information for this review include the scientific literature, regulatory and government documents, pro-nuclear and anti-nuclear publications, and news media articles. In examining the sources of information, it has become evident that a major distinction can be made between the optimistic or positive viewpoints, and the pessimistic or negative ones. Consequently, these form the principal categories for presentation of the perspectives on the radioactive waste management problem have been further classified as relating to the following issue areas: the physical aspects of radiation, longevity, radiotoxicity, the quantity of radioactive wastes, and perceptual factors.

  13. Public values associated with nuclear waste disposal

    International Nuclear Information System (INIS)

    Maynard, W.S.; Nealey, S.M.; Hebert, J.A.; Lindell, M.K.

    1976-06-01

    This report presents the major findings from a study designed to assess public attitudes and values associated with nuclear waste disposal. The first objective was to obtain from selected individuals and organizations value and attitude information which would be useful to decision-makers charged with deciding the ultimate disposal of radioactive waste materials. A second research objective was to obtain information that could be structured and quantified for integration with technical data in a computer-assisted decision model. The third general objective of this research was to test several attitude-value measurement procedures for their relevance and applicability to nuclear waste disposal. The results presented in this report are based on questionnaire responses from 465 study participants

  14. Robotic inspection of nuclear waste storage facilities

    International Nuclear Information System (INIS)

    Fulbright, R.; Stephens, L.M.

    1995-01-01

    The University of South Carolina and the Westinghouse Savannah River Company have developed a prototype mobile robot designed to perform autonomous inspection of nuclear waste storage facilities. The Stored Waste Autonomous Mobile Inspector (SWAMI) navigates and inspects rows of nuclear waste storage drums, in isles as narrow as 34 inches with drums stacked three high on each side. SWAMI reads drum barcodes, captures drum images, and monitors floor-level radiation levels. The topics covered in this article reporting on SWAMI include the following: overall system design; typical mission scenario; barcode reader subsystem; video subsystem; radiation monitoring subsystem; position determination subsystem; onboard control system hardware; software development environment; GENISAS, a C++ library; MOSAS, an automatic code generating tool. 10 figs

  15. Radioactive waste management and the nuclear renaissance

    International Nuclear Information System (INIS)

    McCombie, C.

    2006-01-01

    Full text: Full text: For many years, nuclear supporters have been talking of a possible nuclear power renaissance. Today there are definite signs that this is finally beginning to happen. New plants are being built or planned in China, Japan, Korea, Finland, France and even the USA. Phase-out policies are being rethought in countries like Sweden, Belgium and Germany. Countries like Vietnam, Indonesia, the Baltic States and even Australia are choosing or debating initiating a nuclear programme. Support for these nuclear power developments may be strongly influenced by the progress of waste management programmes, especially final disposal. Conversely, the growing realisation of the potential global benefits of nuclear power may well lead to increased support, effort and funding for initiatives to ensure that all nations have access to safe and secure waste management facilities. This implies that large nuclear programmes must make progress with implementation of treatment, storage and disposal facilities for all of their radioactive wastes. For small nuclear programmes (and for countries with nuclear applications other than power generation) such facilities are also necessary. For economic and other reasons, these small programmes may not be able to implement all of the required national facilities. Multinational cooperation is needed. This can be realised by large countries providing back-end services such as reprocessing and disposal, or by small countries forming regional or international partnerships to implement shared facilities for storage and/or disposal. This paper will trace through the past decades the mutual interactions between programmes in nuclear power and in waste management. The relevant issues of concern for both include radiological safety, environmental impacts and, most topically, non-proliferation and security. Debates on these issues have strongly affected national efforts to implement power plants and repositories, and also influenced the

  16. Nuclear waste disposal: two social criteria

    International Nuclear Information System (INIS)

    Rochlin, G.I.

    1977-01-01

    Two criteria--technical irreversibility and site multiplicity--have been suggested for use in establishing standards for the disposal of nuclear wastes. They have been constructed specifically to address the reduction of future risk in the face of inherent uncertainty concerning the social and political developments that might occur over the required periods of waste isolation, to provide for safe disposal without the requirement of a guaranteed future ability to recognize, detect, or repair errors and failures. Decisions as to how to apply or weigh these criteria in conjunction with other waste management goals must be made by societies and their governments. The purpose of this paper was not to preempt this process, but to construct a framework that facilitates consideration of the ethical and normative components of the problem of nuclear waste disposal. The minimum ethical obligation of a waste disposal plan is to examine most thoroughly the potential consequences of present actions, to acknowledge them openly, and to minimize the potential for irremediable harm. An ethically sound waste management policy must reflect not only our knowledge and skills, but our limitations as well

  17. Overview of nuclear waste disposal in space

    International Nuclear Information System (INIS)

    Rice, E.E.; Priest, C.C.

    1981-01-01

    One option receiving consideration by the Department of Energy (DOE) is the space disposal of certain high-level nuclear wastes. The National Aeronautics and Space Administration is assessing the space disposal option in support of DOE studies on alternatives for nuclear waste management. The space disposal option is viewed as a complement, since total disposal of fuel rods from commercial power plants is not considered to be economically practical with Space Shuttle technology. The space disposal of certain high-level wastes may, however, provide reduced calculated and perceived risks. The space disposal option in conjunction with terrestrial disposal may offer a more flexible and lower risk overall waste management system. For the space disposal option to be viable, it must be demonstrated that the overall long-term risks associated with this activity, as a complement to the mined geologic repository, would be significantly less than the long-term risk associated with disposing of all the high-level waste. The long-term risk benefit must be achieved within an acceptable short-term and overall program cost. This paper briefly describes space disposal alternatives, the space disposal destination, possible waste mixes and forms, systems and typical operations, and the energy and cost analysis

  18. Scientific Solutions to Nuclear Waste Environmental Challenges

    International Nuclear Information System (INIS)

    Johnson, Bradley R.

    2014-01-01

    The Hidden Cost of Nuclear Weapons The Cold War arms race drove an intense plutonium production program in the U.S. This campaign produced approximately 100 tons of plutonium over 40 years. The epicenter of plutonium production in the United States was the Hanford site, a 586 square mile reservation owned by the Department of Energy and located on the Colombia River in Southeastern Washington. Plutonium synthesis relied on nuclear reactors to convert uranium to plutonium within the reactor fuel rods. After a sufficient amount of conversion occurred, the rods were removed from the reactor and allowed to cool. They were then dissolved in an acid bath and chemically processed to separate and purify plutonium from the rest of the constituents in the used reactor fuel. The acidic waste was then neutralized using sodium hydroxide and the resulting mixture of liquids and precipitates (small insoluble particles) was stored in huge underground waste tanks. The byproducts of the U.S. plutonium production campaign include over 53 million gallons of high-level radioactive waste stored in 177 large underground tanks at Hanford and another 34 million gallons stored at the Savannah River Site in South Carolina. This legacy nuclear waste represents one of the largest environmental clean-up challenges facing the world today. The nuclear waste in the Hanford tanks is a mixture of liquids and precipitates that have settled into sludge. Some of these tanks are now over 60 years old and a small number of them are leaking radioactive waste into the ground and contaminating the environment. The solution to this nuclear waste challenge is to convert the mixture of solids and liquids into a durable material that won't disperse into the environment and create hazards to the biosphere. What makes this difficult is the fact that the radioactive half-lives of some of the radionuclides in the waste are thousands to millions of years long. (The half-life of a radioactive substance is the amount

  19. 10 CFR 1.18 - Advisory Committee on Nuclear Waste.

    Science.gov (United States)

    2010-01-01

    ... hazardous substances, and uranium mill tailings. In performing its work, the committee examines and reports... Nuclear Waste (ACNW) provides advice to the Commission on all aspects of nuclear waste management, as... disposal but will also include other aspects of nuclear waste management such as handling, processing...

  20. Thirty years nuclear energy. 240,000 years of nuclear waste. Why Greenpeace campaigns against nuclear energy

    International Nuclear Information System (INIS)

    Teule, R.

    2004-01-01

    A brief overview is given of the arguments that Greenpeace has against nuclear energy, and why this environmental organization campaigns against the processing of nuclear waste and transportation of Dutch nuclear waste to France [nl

  1. Ethical Issues in Nuclear Waste Management

    Energy Technology Data Exchange (ETDEWEB)

    Oughton, Deborah [Agricultural Univ. of Norway, Aas (Norway). Dept. of Chemistry and Biotechnology

    2001-07-01

    Nuclear experts claim that the health risks from radioactive waste disposal are low compared to other environmental hazards, yet the general public is sceptical of the industry's ability to guarantee acceptable safety standards. Many allude to what might be deemed morally relevant factors, such as potential harms to future generations, possibly catastrophic consequences and environmental effects. Industry has often tended to respond with a claim that the public has an irrational perception of radiation risks, particularly those from man-made rather than natural sources. From a philosophical point of view it is interesting to consider exactly how nuclear risks might differ from other hazards, not least to evaluate which ethically relevant factors could be used to defend the stringent demands made by society for nuclear waste disposal.

  2. Ethical Issues in Nuclear Waste Management

    International Nuclear Information System (INIS)

    Oughton, Deborah

    2001-01-01

    Nuclear experts claim that the health risks from radioactive waste disposal are low compared to other environmental hazards, yet the general public is sceptical of the industry's ability to guarantee acceptable safety standards. Many allude to what might be deemed morally relevant factors, such as potential harms to future generations, possibly catastrophic consequences and environmental effects. Industry has often tended to respond with a claim that the public has an irrational perception of radiation risks, particularly those from man-made rather than natural sources. From a philosophical point of view it is interesting to consider exactly how nuclear risks might differ from other hazards, not least to evaluate which ethically relevant factors could be used to defend the stringent demands made by society for nuclear waste disposal

  3. Nuclear waste water being cleaned in Paldinski

    International Nuclear Information System (INIS)

    Lahtinen, A.

    1995-01-01

    The cleaning of nuclear waste water in the former military base of Paldiski, Estonia, has started with Finnish assistance. During the Soviet era, Paldiski served as a site for training nuclear submarine crews. Spent fuel has already been removed from the two nuclear reactors on the base. The volume of water to be cleaned totals some 450 cubic metres. The work is estimated to take till May 1995. The filtering technique used for cleaning has been developed in cooperation by IVO International and the Department of Radiochemistry of the University of Helsinki. The project is one aspect of an extensive international cooperation programme for reducing environmental hazards arising from the base. The experience of the cleaning obtained so far has been positive. In the first water tank, filtering reduced the cesium activity of waste water from 1,500 becquerels to less than one becquerel. Two water tanks, however, have bottom sediment that probably cannot be treated during the present project. (orig.)

  4. Can shale safely host US nuclear waste?

    Science.gov (United States)

    Neuzil, C.E.

    2013-01-01

    "Even as cleanup efforts after Japan’s Fukushima disaster offer a stark reminder of the spent nuclear fuel (SNF) stored at nuclear plants worldwide, the decision in 2009 to scrap Yucca Mountain as a permanent disposal site has dimmed hope for a repository for SNF and other high-level nuclear waste (HLW) in the United States anytime soon. About 70,000 metric tons of SNF are now in pool or dry cask storage at 75 sites across the United States [Government Accountability Office, 2012], and uncertainty about its fate is hobbling future development of nuclear power, increasing costs for utilities, and creating a liability for American taxpayers [Blue Ribbon Commission on America’s Nuclear Future, 2012].However, abandoning Yucca Mountain could also result in broadening geologic options for hosting America’s nuclear waste. Shales and other argillaceous formations (mudrocks, clays, and similar clay-rich media) have been absent from the U.S. repository program. In contrast, France, Switzerland, and Belgium are now planning repositories in argillaceous formations after extensive research in underground laboratories on the safety and feasibility of such an approach [Blue Ribbon Commission on America’s Nuclear Future, 2012; Nationale Genossenschaft für die Lagerung radioaktiver Abfälle (NAGRA), 2010; Organisme national des déchets radioactifs et des matières fissiles enrichies, 2011]. Other nations, notably Japan, Canada, and the United Kingdom, are studying argillaceous formations or may consider them in their siting programs [Japan Atomic Energy Agency, 2012; Nuclear Waste Management Organization (NWMO), (2011a); Powell et al., 2010]."

  5. Advanced waste forms from spent nuclear fuel

    International Nuclear Information System (INIS)

    Ackerman, J.P.; McPheeters, C.C.

    1995-01-01

    More than one hundred spent nuclear fuel types, having an aggregate mass of more than 5000 metric tons (2700 metric tons of heavy metal), are stored by the United States Department of Energy. This paper proposes a method for converting this wide variety of fuel types into two waste forms for geologic disposal. The method is based on a molten salt electrorefining technique that was developed for conditioning the sodium-bonded, metallic fuel from the Experimental Breeder Reactor-II (EBR-II) for geologic disposal. The electrorefining method produces two stable, optionally actinide-free, high-level waste forms: an alloy formed from stainless steel, zirconium, and noble metal fission products, and a ceramic waste form containing the reactive metal fission products. Electrorefining and its accompanying head-end process are briefly described, and methods for isolating fission products and fabricating waste forms are discussed

  6. Overview Of Enhanced Hanford Single-Shell Tank (SST) Integrity Project - 12128

    International Nuclear Information System (INIS)

    Venetz, T.J.; Boomer, K.D.; Washenfelder, D.J.; Johnson, J.B.

    2012-01-01

    current mechanics properties. The work on the liner leak integrity has examined the leaks from 23 tanks with liner failures. Individual leak assessments are being developed for each tank to identify the leak cause and location. Also a common cause study is being performed to take the data from individual tanks to look for trends in the failure. Supporting this work is an assessment of the leak rate from tanks at both Hanford and the Savannah River Site and a new method to locate leak sites in tank liner using ionic conductivity. A separate activity is being conducted to examine the propensity for corrosion in select single shell tanks with aggressive waste layers. The work for these two main efforts will provide the basis for the phase two planning. If the margins identified aren't sufficient to ensure the integrity through the life of the mission, phase two would focus on activities to further enhance the understanding of tank integrity. Also coincident with any phase-two work would be the integrity analysis for the tanks, which would be complete in 2018. With delays in the completion of waste treatment facilities at Hanford, greater reliance on safe, continued storage of waste in the single shell tanks is increased in importance. The goal of integrity assessment would provide basis to continue SST activities till the end of the treatment mission.

  7. OVERVIEW OF ENHANCED HANFORD SINGLE-SHELL TANK (SST) INTEGRITY PROJECT - 12128

    Energy Technology Data Exchange (ETDEWEB)

    VENETZ TJ; BOOMER KD; WASHENFELDER DJ; JOHNSON JB

    2012-01-25

    of current mechanics properties. The work on the liner leak integrity has examined the leaks from 23 tanks with liner failures. Individual leak assessments are being developed for each tank to identify the leak cause and location. Also a common cause study is being performed to take the data from individual tanks to look for trends in the failure. Supporting this work is an assessment of the leak rate from tanks at both Hanford and the Savannah River Site and a new method to locate leak sites in tank liner using ionic conductivity. A separate activity is being conducted to examine the propensity for corrosion in select single shell tanks with aggressive waste layers. The work for these two main efforts will provide the basis for the phase two planning. If the margins identified aren't sufficient to ensure the integrity through the life of the mission, phase two would focus on activities to further enhance the understanding of tank integrity. Also coincident with any phase-two work would be the integrity analysis for the tanks, which would be complete in 2018. With delays in the completion of waste treatment facilities at Hanford, greater reliance on safe, continued storage of waste in the single shell tanks is increased in importance. The goal of integrity assessment would provide basis to continue SST activities till the end of the treatment mission.

  8. Subseabed disposal of nuclear wastes.

    Science.gov (United States)

    Hollister, C D; Anderson, D R; Health, G R

    1981-09-18

    Fine-grained clay formations within stable (predictable) deep-sea regions away from lithospheric plate boundaries and productive surface waters have properties that might serve to permanently isolate radioactive waste. The most important characteristics of such clays are their vertical and lateral unifomity, low permeability, very high cation retention capacity, and potential for self-healing when disturbed. The most attractive abyssal clay formation (oxidized red ciay)covers nearly 30 percent of the sea floor and hence 20 percent of the earth's surface.

  9. Subseabed disposal of nuclear wastes

    International Nuclear Information System (INIS)

    Hollister, C.D.; Anderson, D.R.; Heath, G.R.

    1981-01-01

    Fine-grained clay formations within stable (predictable) deep-sea regions away from lithospheric plate boundaries and productive surface waters have properties that might serve to permanently isolate radioactive waste. The most important characteristics of such clays are their vertical and lateral uniformity, low permeability, very high cation retention capacity, and potential for self-healing when disturbed. The most attractive abyssal clay formation (oxidized red clay) covers nearly 30 percent of the sea floor and hence 20 percent of the earth's surface

  10. RADIATION EFFECTS IN NUCLEAR WASTE MATERIALS

    International Nuclear Information System (INIS)

    Weber, William J.

    2000-01-01

    The objective of this research was to develop fundamental understanding and predictive models of radiation effects in glasses and ceramics at the atomic, microscopic, and macroscopic levels, as well as an understanding of the effects of these radiation-induced solid-state changes on dissolution kinetics (i.e., radionuclide release). The research performed during the duration of this project has addressed many of the scientific issues identified in the reports of two DOE panels [1,2], particularly those related to radiation effects on the structure of glasses and ceramics. The research approach taken by this project integrated experimental studies and computer simulations to develop comprehensive fundamental understanding and capabilities for predictive modeling of radiation effects and dissolution kinetics in both glasses and ceramics designed for the stabilization and immobilization of high-level tank waste (HLW), plutonium residues and scraps, surplus weapons plutonium, other actinides, and other highly radioactive waste streams. Such fundamental understanding is necessary in the development of predictive models because all experimental irradiation studies on nuclear waste materials are ''accelerated tests'' that add a great deal of uncertainty to predicted behavior because the damage rates are orders of magnitude higher than the actual damage rates expected in nuclear waste materials. Degradation and dissolution processes will change with damage rate and temperature. Only a fundamental understanding of the kinetics of all the physical and chemical processes induced or affected by radiation will lead to truly predictive models of long-term behavior and performance for nuclear waste materials. Predictive models of performance of nuclear waste materials must be scientifically based and address both radiation effects on structure (i.e., solid-state effects) and the effects of these solid-state structural changes on dissolution kinetics. The ultimate goal of this

  11. Management of radioactive wastes from nuclear power plants

    International Nuclear Information System (INIS)

    1985-01-01

    This Code of Practice defines the minimum requirements for the design and operation of structures, systems and components important for the management of radioactive wastes from thermal neutron nuclear power plants. The topics covered include design and operation of gaseous, liquid and solid waste systems, waste transport, storage and disposal, decommissioning wastes and wastes from unplanned events

  12. Disposal of Canada's nuclear fuel waste

    International Nuclear Information System (INIS)

    Dormuth, K.W.; Nuttall, K.

    1994-01-01

    In 1978, the governments of Canada and Ontario established the Nuclear Fuel Waste Management program. As of the time of the conference, the research performed by AECL was jointly funded by AECL and Ontario Hydro through the CANDU owners' group. Ontario Hydro have also done some of the research on disposal containers and vault seals. From 1978 to 1992, AECL's research and development on disposal cost about C$413 million, of which C$305 was from funds provided to AECL by the federal government, and C$77 million was from Ontario Hydro. The concept involves the construction of a waste vault 500 to 1000 metres deep in plutonic rock of the Canadian Precambrian Shield. Used fuel (or possibly solidified reprocessing waste) would be sealed into containers (of copper, titanium or special steel) and emplaced (probably in boreholes) in the vault floor, surrounded by sealing material (buffer). Disposal rooms might be excavated on more than one level. Eventually all excavated openings in the rock would be backfilled and sealed. Research is organized under the following headings: disposal container, waste form, vault seals, geosphere, surface environment, total system, assessment of environmental effects. A federal Environmental Assessment Panel is assessing the concept (holding public hearings for the purpose) and will eventually make recommendations to assist the governments of Canada and Ontario in deciding whether to accept the concept, and how to manage nuclear fuel waste. 16 refs., 1 tab., 3 figs

  13. Nuclear waste management. Quarterly progress report, October-December 1979

    Energy Technology Data Exchange (ETDEWEB)

    Platt, A.M.; Powell, J.A. (comps.)

    1980-04-01

    Progress and activities are reported on the following: high-level waste immobilization, alternative waste forms, nuclear waste materials characterization, TRU waste immobilization programs, TRU waste decontamination, krypton solidification, thermal outgassing, iodine-129 fixation, monitoring of unsaturated zone transport, well-logging instrumentation development, mobile organic complexes of fission products, waste management system and safety studies, assessment of effectiveness of geologic isolation systems, waste/rock interactions technology, spent fuel and fuel pool integrity program, and engineered barriers. (DLC)

  14. The management of nuclear fuel waste

    International Nuclear Information System (INIS)

    1980-06-01

    A Select Committee of the Legislature of Ontario was established to examine the affairs of Ontario Hydro, the provincial electrical utility. The Committee's terms of reference included examination of the waste management program being carried out jointly by the Ontario provincial government and the Canadian federal government. Public hearings were held which included private citizens as well as officials of organizations in the nuclear field and independent experts. Recommendations were made concerning the future direction of the Canadian fuel waste management program. (O.T.)

  15. The chemistry of nuclear fuel waste disposal

    International Nuclear Information System (INIS)

    Wiles, D.R.

    2002-01-01

    About one-fifth of the world's supply of energy is derived from nuclear fission. While this important source of power avoids the environmental and resource problems of most other fuels, and although nuclear accident statistics are much less alarming, no other peacetime technology has evoked such public disquiet and impassioned feeling. Central to dealing with these fears is the management and disposal of radioactive waste. An expert Canadian panel in 1977 recommended permanent disposal of wastes in deep geological formations, providing a basis for subsequent policies and research. In 1988, the Federal Environmental Assessment Review Office (FEARO) appointed a panel to assess the proposed disposal concepts and to recommend government policy. The panel in turn appointed a Scientific Review Group to examine the underlying science. Behind all these issues lay one central question: How well is the chemistry understood? This became the principal concern of Professor Donald Wiles, the senior nuclear chemist of the Scientific Review Group. In this book, Dr. Wiles carefully describes the nature of radioactivity and of nuclear power and discusses in detail the management of radioactive waste by the multi-barrier system, but also takes an unusual approach to assessing the risks. Using knowledge of the chemical properties of the various radionuclides in spent fuel, this book follows each of the important radionuclides as it travels through the many barriers placed in its path. It turns out that only two radionuclides are able to reach the biosphere, and they arrive at the earth's surface only after many thousands of years. A careful analysis of the critical points of the disposal plan emphasizes site rejection criteria and other stages at which particular care must be taken, demonstrating how dangers can be anticipated and putting to rest the fear of nuclear fuel waste and its geological burial

  16. Nuclear waste: Quarterly report on DOE's Nuclear Waste Program as of March 31, 1987

    International Nuclear Information System (INIS)

    1987-01-01

    The Nuclear Waste Policy Act established a national program and policy for safely storing, transporting, and disposing of nuclear waste. This fact sheet provides the status of the Department of Energy's program activities. They include (1) the release of a draft amendment to the mission plan in which DOE extends by 5 years its target date for beginning first repository operations and information on DOE's decision to postpone site-specific activities for the second repository; (2) a monitored retrievable storage proposal and related documents; (3) receipts of comments from utilities, state regulators, and others on its Notice of Inquiry on proposals for the calculation of fees for defense waste disposal; and (4) information on the Nuclear Waste Fund collection of over /135.4 million in fees and investment income and obligations of $139 million for program activities. The fund balance as of March 31, 1987, was about $1.5 billion

  17. Review of radiation effects in solid-nuclear-waste forms

    International Nuclear Information System (INIS)

    Weber, W.J.

    1981-09-01

    Radiation effects on the stability of high-level nuclear waste (HLW) forms are an important consideration in the development of technology to immobilize high-level radioactive waste because such effects may significantly affect the containment of the radioactive waste. Since the required containment times are long (10 3 to 10 6 years), an understanding of the long-term cumulative effects of radiation damage on the waste forms is essential. Radiation damage of nuclear waste forms can result in changes in volume, leach rate, stored energy, structure/microstructure, and mechanical properties. Any one or combination of these changes might significantly affect the long-term stability of the nuclear waste forms. This report defines the general radiation damage problem in nuclear waste forms, describes the simulation techniques currently available for accelerated testing of nuclear waste forms, and reviews the available data on radiation effects in both glass and ceramic (primarily crystalline) waste forms. 76 references

  18. Nuclear waste management programme 2003 for the Loviisa and Olkiluoto nuclear power plants

    International Nuclear Information System (INIS)

    2002-09-01

    A joint company Posiva Oy founded by nuclear energy producing Teollisuuden Voima Oy (TVO) and Fortum Power and Heat Oy coordinates the research work of the companies on nuclear waste management in Finland. In Posiva's Nuclear Waste Management Programme 2003, an account of the nuclear waste management measures of TVO and Fortum is given as required by the sections 74 and 75 of the Finnish Nuclear Energy Degree. At first, nuclear waste management situation and the programme of activities are reported. The nuclear waste management research for the year 2003 and more generally for the years 2003-2007 is presented

  19. Radioactive wastes in nuclear fuel cycle

    International Nuclear Information System (INIS)

    Sakata, Sadahiro; Nagaike, Tadakatsu; Emura, Satoru; Matsumoto, Akira; Morisawa, Shinsuke.

    1978-01-01

    Recent topics concerning radioactive water management and disposal are widely reviewed. As the introduction, various sources of radioactivity including uranium mining, fuel fabrication, reactor operation and fuel reprocessing and their amount of wastes accumulated per 1000 MWe year operation of a LWR are presented together with the typical methods of disposal. The second section discusses the problems associated with uranium fuel fabrication and with nuclear power plants. Typical radioactive nuclides and their sources in PWRs and BWRs are discussed. The third section deals with the problems associated with reprocessing facilities and with mixed oxide fuel fabrication. Solidification of high-level wastes and the methods of the disposal of transuranic nuclides are the main topics in this section. The fourth section discusses the methods and the problems of final disposal. Various methods being proposed or studied for the final disposal of low- and high-level wastes and transuranic wastes are reviewed. The fifth section concerns with the risk analysis of waste disposal. Both deterministic and probabilistic methods are treated. As the example, the assessment of the risk due to floods is explained. The associated event tree and fault three are presented together with the estimated probability of the occurrence of each constituent failure. In the final section, the environmental problems of radioactive wastes are widely reviewed. (Aoki, K.)

  20. International nuclear waste management fact book

    Energy Technology Data Exchange (ETDEWEB)

    Abrahms, C W; Patridge, M D; Widrig, J E

    1995-11-01

    The International Nuclear Waste Management Fact Book has been compiled to provide current data on fuel cycle and waste management facilities, R and D programs, and key personnel in 24 countries, including the US; four multinational agencies; and 20 nuclear societies. This document, which is in its second year of publication supersedes the previously issued International Nuclear Fuel Cycle Fact Book (PNL-3594), which appeared annually for 12 years. The content has been updated to reflect current information. The Fact Book is organized as follows: National summaries--a section for each country that summarizes nuclear policy, describes organizational relationships, and provides addresses and names of key personnel and information on facilities. International agencies--a section for each of the international agencies that has significant fuel cycle involvement and a list of nuclear societies. Glossary--a list of abbreviations/acronyms of organizations, facilities, and technical and other terms. The national summaries, in addition to the data described above, feature a small map for each country and some general information that is presented from the perspective of the Fact Book user in the US.

  1. International nuclear waste management fact book

    International Nuclear Information System (INIS)

    Abrahms, C.W.; Patridge, M.D.; Widrig, J.E.

    1995-11-01

    The International Nuclear Waste Management Fact Book has been compiled to provide current data on fuel cycle and waste management facilities, R and D programs, and key personnel in 24 countries, including the US; four multinational agencies; and 20 nuclear societies. This document, which is in its second year of publication supersedes the previously issued International Nuclear Fuel Cycle Fact Book (PNL-3594), which appeared annually for 12 years. The content has been updated to reflect current information. The Fact Book is organized as follows: National summaries--a section for each country that summarizes nuclear policy, describes organizational relationships, and provides addresses and names of key personnel and information on facilities. International agencies--a section for each of the international agencies that has significant fuel cycle involvement and a list of nuclear societies. Glossary--a list of abbreviations/acronyms of organizations, facilities, and technical and other terms. The national summaries, in addition to the data described above, feature a small map for each country and some general information that is presented from the perspective of the Fact Book user in the US

  2. Rock support for nuclear waste repositories

    International Nuclear Information System (INIS)

    Abramson, L.W.; Schmidt, B.

    1984-01-01

    The design of rock support for underground nuclear waste repositories requires consideration of special construction and operation requirements, and of the adverse environmental conditions in which some of the support is placed. While repository layouts resemble mines, design, construction and operation are subject to quality assurance and public scrutiny similar to what is experienced for nuclear power plants. Exploration, design, construction and operation go through phases of review and licensing by government agencies as repositories evolve. This paper discusses (1) the various stages of repository development; (2) the environment that supports must be designed for; (3) the environmental effects on support materials; and (4) alternative types of repository rock support

  3. An overview of nuclear waste managment

    International Nuclear Information System (INIS)

    Shemilt, L.W.; Sheng, G.

    1982-01-01

    A very large amount of scientific and engineering work on nuclear waste managment is being done primarily, but not exclusively, in countries with a nuclear power program. There are basically no technical problems with regard to the safe, temporary storage of either used fuel or reprocessed high-level waste from civilian power programs. Deep terrestrial geologic disposal is the concept that has gained the widest acceptance and for which the technology is best known. Sub-seabed disposal has strong potential in the longer term, but further technological development is required. No clear evidence yet exists for the superiority of any type of host geologic medium over any other for a repository. Salt and granite have been studied most, and each has advantages and disadvantages with respect to the other

  4. Nuclear waste management: the ocean alternative

    International Nuclear Information System (INIS)

    Jackson, T.C.

    1981-01-01

    Both the International Atomic Energy Agency (IAEA) and the Nuclear Energy Agency (NEA) are working on sea disposal. This forum related to this problem. Past practices and policies for sea disposal of radioactive wastes are examined in this paper by Robert S. Dyer, Office of Radiation Programs, US Environmental Protection Agency. Mr. Dyer's analysis served as the principal background paper for the Forum. He reviewed the scope of American sea disposal programs between 1946 and 1970; then he discussed the concentrations of radioactive wastes at 35 dump sites used by the United States. The US decision to halt sea disposal of low-level radioactive wastes in 1970 and current federal laws are also discussed. International regulations based on the London Dumping Convention and a review of sea disposal practices by other nations are included

  5. Advanced pyrochemical technologies for minimizing nuclear waste

    International Nuclear Information System (INIS)

    Bronson, M.C.; Dodson, K.E.; Riley, D.C.

    1994-01-01

    The Department of Energy (DOE) is seeking to reduce the size of the current nuclear weapons complex and consequently minimize operating costs. To meet this DOE objective, the national laboratories have been asked to develop advanced technologies that take uranium and plutonium, from retired weapons and prepare it for new weapons, long-term storage, and/or final disposition. Current pyrochemical processes generate residue salts and ceramic wastes that require aqueous processing to remove and recover the actinides. However, the aqueous treatment of these residues generates an estimated 100 liters of acidic transuranic (TRU) waste per kilogram of plutonium in the residue. Lawrence Livermore National Laboratory (LLNL) is developing pyrochemical techniques to eliminate, minimize, or more efficiently treat these residue streams. This paper will present technologies being developed at LLNL on advanced materials for actinide containment, reactors that minimize residues, and pyrochemical processes that remove actinides from waste salts

  6. Identification of single-shell tank in-tank hardware obstructions to retrieval at Hanford Site Tank Farms

    International Nuclear Information System (INIS)

    Ballou, R.A.

    1994-10-01

    Two retrieval technologies, one of which uses robot-deployed end effectors, will be demonstrated on the first single-shell tank (SST) waste to be retrieved at the Hanford Site. A significant impediment to the success of this technology in completing the Hanford retrieval mission is the presence of unique tank contents called in-tank hardware (ITH). In-tank hardware includes installed and discarded equipment and various other materials introduced into the tank. This paper identifies those items of ITH that will most influence retrieval operations in the arm-based demonstration project and in follow-on tank operations within the SST farms

  7. Seal welded cast iron nuclear waste container

    Science.gov (United States)

    Filippi, Arthur M.; Sprecace, Richard P.

    1987-01-01

    This invention identifies methods and articles designed to circumvent metallurgical problems associated with hermetically closing an all cast iron nuclear waste package by welding. It involves welding nickel-carbon alloy inserts which are bonded to the mating plug and main body components of the package. The welding inserts might be bonded in place during casting of the package components. When the waste package closure weld is made, the most severe thermal effects of the process are restricted to the nickel-carbon insert material which is far better able to accommodate them than is cast iron. Use of nickel-carbon weld inserts should eliminate any need for pre-weld and post-weld heat treatments which are a problem to apply to nuclear waste packages. Although the waste package closure weld approach described results in a dissimilar metal combination, the relative surface area of nickel-to-iron, their electrochemical relationship, and the presence of graphite in both materials will act to prevent any galvanic corrosion problem.

  8. Nuclear waste immobilization in iron phosphate glasses

    International Nuclear Information System (INIS)

    Garcia, D.A.; Rodriguez, Diego A.; Menghini, Jorge E.; Bevilacqua, Arturo

    2007-01-01

    Iron-phosphate glasses have become important in the nuclear waste immobilization area because they have some advantages over silicate-based glasses, such as a lower processing temperature and a higher nuclear waste load without losing chemical and mechanical properties. Structure and chemical properties of iron-phosphate glasses are determined in terms of the main components, in this case, phosphate oxide along with the other oxides that are added to improve some of the characteristics of the glasses. For example, Iron oxide improves chemical durability, lead oxide lowers fusion temperature and sodium oxide reduces viscosity at high temperature. In this work a study based on the composition-property relations was made. We used different techniques to characterize a series of iron-lead-phosphate glasses with uranium and aluminium oxide as simulated nuclear waste. We used the Arquimedes method to determine the bulk density, differential temperature analysis (DTA) to determine both glass transition temperature and crystallization temperature, dilatometric analysis to calculate the linear thermal expansion coefficient, chemical durability (MCC-1 test) and X-ray diffraction (XRD). We also applied some theoretic models to calculate activation energies associated with the glass transition temperature and crystallization processes. (author)

  9. Overview Of Hanford Single Shell Tank (SST) Structural Integrity - 12123

    International Nuclear Information System (INIS)

    Rast, R.S.; Rinker, M.W.; Washenfelder, D.J.; Johnson, J.B.

    2012-01-01

    To improve the understanding of the single-shell tanks (SSTs) integrity, Washington River Protection Solutions, LLC (WRPS), the USDOE Hanford Site tank contractor, developed an enhanced Single-Shell Tank Integrity Project in 2009. An expert panel on SST integrity, consisting of various subject matters experts in industry and academia, was created to provide recommendations supporting the development of the project. This panel developed 33 recommendations in four main areas of interest: structural integrity, liner degradation, leak integrity and prevention, and mitigation of contamination migration. Seventeen of these recommendations were used to develop the basis for the M-45-10-1 Change Package for the Hanford Federal Agreement and Compliance Order, which is also known as the Tri-Party Agreement. The structural integrity of the tanks is a key element in completing the cleanup mission at the Hanford Site. There are eight primary recommendations related to the structural integrity of Hanford SSTs. Six recommendations are being implemented through current and planned activities. The structural integrity of the Hanford SSTs is being evaluated through analysis, monitoring, inspection, materials testing, and construction document review. Structural evaluation in the form of analysis is performed using modern finite element models generated in ANSYS(reg s ign) The analyses consider in-situ, thermal, operating loads and natural phenomena such as earthquakes. Structural analysis of 108 of 149 Hanford SSTs has concluded that the tanks are structurally sound and meet current industry standards. Analyses of the remaining Hanford SSTs are scheduled for FY2013. Hanford SSTs are monitored through a dome deflection program. The program looks for deflections of the tank dome greater than 1/4 inch. No such deflections have been recorded. The tanks are also subjected to visual inspection. Digital cameras record the interior surface of the concrete tank domes, looking for cracks and

  10. OVERVIEW OF HANFORD SINGLE SHELL TANK (SST) STRUCTURAL INTEGRITY - 12123

    Energy Technology Data Exchange (ETDEWEB)

    RAST RS; RINKER MW; WASHENFELDER DJ; JOHNSON JB

    2012-01-25

    To improve the understanding of the single-shell tanks (SSTs) integrity, Washington River Protection Solutions, LLC (WRPS), the USDOE Hanford Site tank contractor, developed an enhanced Single-Shell Tank Integrity Project in 2009. An expert panel on SST integrity, consisting of various subject matters experts in industry and academia, was created to provide recommendations supporting the development of the project. This panel developed 33 recommendations in four main areas of interest: structural integrity, liner degradation, leak integrity and prevention, and mitigation of contamination migration. Seventeen of these recommendations were used to develop the basis for the M-45-10-1 Change Package for the Hanford Federal Agreement and Compliance Order, which is also known as the Tri-Party Agreement. The structural integrity of the tanks is a key element in completing the cleanup mission at the Hanford Site. There are eight primary recommendations related to the structural integrity of Hanford SSTs. Six recommendations are being implemented through current and planned activities. The structural integrity of the Hanford SSTs is being evaluated through analysis, monitoring, inspection, materials testing, and construction document review. Structural evaluation in the form of analysis is performed using modern finite element models generated in ANSYS{reg_sign} The analyses consider in-situ, thermal, operating loads and natural phenomena such as earthquakes. Structural analysis of 108 of 149 Hanford SSTs has concluded that the tanks are structurally sound and meet current industry standards. Analyses of the remaining Hanford SSTs are scheduled for FY2013. Hanford SSTs are monitored through a dome deflection program. The program looks for deflections of the tank dome greater than 1/4 inch. No such deflections have been recorded. The tanks are also subjected to visual inspection. Digital cameras record the interior surface of the concrete tank domes, looking for cracks and

  11. Stakeholder involvement in Swedish nuclear waste management

    Energy Technology Data Exchange (ETDEWEB)

    Elam, Mark; Sundqvist, Goeran [Goeteborg Univ. (Sweden). Section for Science and Technology Studies

    2006-09-15

    This report concerning Swedish nuclear waste management has been produced as part of a cross national research project: CARL - A Social Science Research Project into the Effects of Stakeholder involvement on Decision-Making in Radioactive Waste Management. Besides Sweden, the participating countries are Belgium, Canada, Finland, Slovenia and United Kingdom. A social science research team, working for three years, is in the first phase conducting research in their own countries in order to produce 6 country reports. During the next years the focus will shift to comparisons of stakeholder involvement practices in the participating countries. The report addresses current practices of Swedish nuclear waste management and their historical development. The main focus is on past, current and emerging patterns of stakeholder involvement in the siting of a deep repository for the final disposal of Sweden's spent nuclear fuel. The general questions attended to in the report are: Who are the main stakeholders, and how have they emerged and gained recognition as such? What are the issues currently subject to stakeholder involvement and how have these been decided upon? How is stakeholder involvement organized locally and nationally and how has this changed over time? How has stakeholder involvement gained acceptance as an activity of value in the siting of major waste facilities? The report have attempted to show the development of stakeholder involvement in the siting of a final repository for Sweden's spent nuclear fuel as resembling something other than a straightforward linear process of improvement and refinement. Stakeholder involvement has developed, over the past 15 years or so, into something more like a patchwork of different shapes and forms. Some of the forces that may well contribute to the further elaboration of the patchwork of stakeholder involvement have been pointed out, contingently modifying once more its overall colour and orientation. Questions

  12. Stakeholder involvement in Swedish nuclear waste management

    International Nuclear Information System (INIS)

    Elam, Mark; Sundqvist, Goeran

    2006-09-01

    This report concerning Swedish nuclear waste management has been produced as part of a cross national research project: CARL - A Social Science Research Project into the Effects of Stakeholder involvement on Decision-Making in Radioactive Waste Management. Besides Sweden, the participating countries are Belgium, Canada, Finland, Slovenia and United Kingdom. A social science research team, working for three years, is in the first phase conducting research in their own countries in order to produce 6 country reports. During the next years the focus will shift to comparisons of stakeholder involvement practices in the participating countries. The report addresses current practices of Swedish nuclear waste management and their historical development. The main focus is on past, current and emerging patterns of stakeholder involvement in the siting of a deep repository for the final disposal of Sweden's spent nuclear fuel. The general questions attended to in the report are: Who are the main stakeholders, and how have they emerged and gained recognition as such? What are the issues currently subject to stakeholder involvement and how have these been decided upon? How is stakeholder involvement organized locally and nationally and how has this changed over time? How has stakeholder involvement gained acceptance as an activity of value in the siting of major waste facilities? The report have attempted to show the development of stakeholder involvement in the siting of a final repository for Sweden's spent nuclear fuel as resembling something other than a straightforward linear process of improvement and refinement. Stakeholder involvement has developed, over the past 15 years or so, into something more like a patchwork of different shapes and forms. Some of the forces that may well contribute to the further elaboration of the patchwork of stakeholder involvement have been pointed out, contingently modifying once more its overall colour and orientation. Questions have been

  13. The puzzle of nuclear wastes. Radioactive threat to your health..

    International Nuclear Information System (INIS)

    2007-01-01

    This document, published by the French association 'Sortir du nucleaire' (Get out of nuclear), gives some information on what is radioactivity, the radioactive materials as a risk for living organisms, nuclear wastes all over France (list and map of the storage sites, power plants and fuel cycle centers), nuclear wastes at every step of the nuclear connection, the insolvable problem of high activity wastes, burying nuclear wastes in order to better forget them, radioactivity as a time bomb for our health, radioactive effluents as an under-estimated risk, artificial radioactivity already responsible for the death of 61 million people in the world, and so on

  14. Nuclear Power, its Waste in the World and in Turkey

    OpenAIRE

    Temiz, Fatih

    2017-01-01

    Nuclear power plants were born in 1950s. Taking only 30 grams of used fuel annually for a person’s energy consumption many countries built their own nuclear power plants. In this story, there is the fuel on one hand and the waste on the other. In general sense, used up fuel rods from nuclear reactors and the waste from reprocessing plants are referred to as nuclear waste. These wastes can be stored for decades in the cooling pools of nuclear reacto...

  15. The future of the civil nuclear industry: the challenge of nuclear wastes

    International Nuclear Information System (INIS)

    2001-01-01

    This research thesis first gives an overview of the nuclear waste processing and storage in France (reasons and future of this political choice, legal framework, storage means and sites, weaknesses of waste storage). Then it comments various aspects of the processing of foreign nuclear wastes in France: economy and media impact, law and contracts, waste transport, temporary storage in France

  16. Nuclear Waste, Risks and Sustainable Development

    International Nuclear Information System (INIS)

    Karlsson, Mikael; Swahn, Johan

    2006-01-01

    The proposed Swedish nuclear waste project is not in line with the three principles of sustainable development. In some aspects, it is not even compatible with Swedish law and ought therefore not to be given a permit under present circumstances. In our view, a number of measures need to be taken to improve the likelihood that the waste repository will promote and not further jeopardise sustainable development. One obvious measure would be to follow the recommendations concerning polluter pays principle put forward by the 2004 governmental committee. Further, it can be credible argued that the focus of the present disposal process has not been to find the best site and method from environmental point of view. If the precautionary principle is to be applied (and Swedish law is to be followed), alternative methods and sites have to be examined to see if they could provide better long-term safety. Concerning method, there are options that deserve much more attention such as so called 'deep boreholes'. In this approach the nuclear waste is placed in deep boreholes at depths of 2-4 km. Studies show that the long-term environmental safety and the possibility of hindering intentional intrusion may improve using the deep borehole method. Regarding localisation, one option would be to avoid siting the repository on the coast, but in what is called a 'recharge area'. In such an area groundwater on a regional scale travels downwards into the bedrock and it may take 50 000 years for a release of radioactivity to reach the surface, compared to less than 100 years with a coastal siting. Evidently, there may be better methods and sites than those now proposed by the Swedish nuclear industry. These options must be examined in detail before a decision is taken to implement the KBS method at a coastal site. If such methods or sites are found better they have to be used in the first place. Improvements are also necessary when it comes to public participation. We believe it is possible

  17. Nuclear Waste, Risks and Sustainable Development

    Energy Technology Data Exchange (ETDEWEB)

    Karlsson, Mikael [Swedish Society for Nature Conservation, Stockholm (Sweden); Swahn, Johan [Swedish NGO Office for Nuclear Waste Review (MKG), Goeteborg (Sweden)

    2006-09-15

    The proposed Swedish nuclear waste project is not in line with the three principles of sustainable development. In some aspects, it is not even compatible with Swedish law and ought therefore not to be given a permit under present circumstances. In our view, a number of measures need to be taken to improve the likelihood that the waste repository will promote and not further jeopardise sustainable development. One obvious measure would be to follow the recommendations concerning polluter pays principle put forward by the 2004 governmental committee. Further, it can be credible argued that the focus of the present disposal process has not been to find the best site and method from environmental point of view. If the precautionary principle is to be applied (and Swedish law is to be followed), alternative methods and sites have to be examined to see if they could provide better long-term safety. Concerning method, there are options that deserve much more attention such as so called 'deep boreholes'. In this approach the nuclear waste is placed in deep boreholes at depths of 2-4 km. Studies show that the long-term environmental safety and the possibility of hindering intentional intrusion may improve using the deep borehole method. Regarding localisation, one option would be to avoid siting the repository on the coast, but in what is called a 'recharge area'. In such an area groundwater on a regional scale travels downwards into the bedrock and it may take 50 000 years for a release of radioactivity to reach the surface, compared to less than 100 years with a coastal siting. Evidently, there may be better methods and sites than those now proposed by the Swedish nuclear industry. These options must be examined in detail before a decision is taken to implement the KBS method at a coastal site. If such methods or sites are found better they have to be used in the first place. Improvements are also necessary when it comes to public participation. We

  18. Spent fuel, plutonium and nuclear waste: long-term management

    International Nuclear Information System (INIS)

    Collard, G.

    1998-11-01

    Different options for the management of nuclear waste arising from the nuclear fuel cycle are discussed. Special emphasis is on reprocessing followed by geological disposal, geological disposal of reprocessing waste, direct geological disposal of spent nuclear fuel, long term storage. Particular emphasis is on the management of plutonium including recycling, immobilisation and disposal, partitioning and transmutation

  19. Nuclear waste treatment using Iranian natural zeolites

    International Nuclear Information System (INIS)

    Kazemian, H.; Ghannadi Maraghe, M.

    2001-01-01

    Full text: The zeolite researches in Iran is a relatively new subject which has started about 10 years ago. The motivation for this scientific and interesting field was provided after discovery of significant deposits of natural zeolites in different regions of Iran as well as further developments of research institutions and the national concern to environmental protection especially the wastewater clean-up in point of view of recycling of such waste water to compensate some needs to water in other utilizations. This paper intends to review and describes scientific researches which have done on using zeolites in the field of nuclear waste treatment in Iran to introduce the potential resources to the world in more details. Zeolite tuffs are widely distributed in huge deposits in different regions of Iran. So far, the clinoptilolite tuffs are the most abundant natural zeolite which exist with zeolite content of 65%- 95%. Nowadays several different types of Iranian natural zeolites are characterized in point of view of chemical composition, type of structure, chemical, thermal, and radiation resistance using different instrumental and classical methods such as; X-ray diffraction (XRD), X-ray fluoresce (XRF), thermal methods of analysis (TA), scanning electron microscopy (SEM), analytical chemistry and radioanalytical methods as well as different ion-exchange techniques (e.g.3-7). The ability of Iranian natural clinoptilolite for removal of some fission products from nuclear wastewaters have been investigated. The selectivity of all investigated zeolites toward radiocesium and radiostrontium have been promising (e.g. 8-10). The successful synthesize of P zeolite from Iranian clinoptilolite-reach tuffs under different conditions were performed. The compatibility of zeolites with glass and cement matrices, for final disposal of radwaste, as well as their selectivity toward most dangerous heat generating radionuclides (e.g. 137 Cs and 90 Sr) is very important in using

  20. Nuclear wastes beneath the deep sea floor

    International Nuclear Information System (INIS)

    Bishop, W.P.; Hollister, C.D.

    1974-01-01

    Projections of energy demands for the year 2000 show that nuclear power will likely be one of our energy sources. But the benefits of nuclear power must be balanced against the drawbacks of its by-product: high-level wastes. While it may become possible to completely destroy or eliminate these wastes, it is at least equally possible that we may have to dispose of them on earth in such a way as to assure their isolation from man for periods of the order of a million years. Undersea regions in the middle of tectonic plates and in the approximate center of major current gyres offer some conceptual promise for waste disposal because of their geologic stability and comparatively low organic productivity. The advantages of this concept and the types of detailed information needed for its accurate assessment are discussed. The technical feasibility of permanent disposal beneath the deep sea floor cannot be accurately assessed with present knowledge, and there is a need for a thorough study of the types and rates of processes that affect this part of the earth's surface. Basic oceanographic research aimed at understanding these processes is yielding answers that apply to this societal need. (U.S.)

  1. Nuclear waste: The problem that won't go away

    International Nuclear Information System (INIS)

    Lenssen, N.

    1991-01-01

    This book presents an overview of the problems of permanent and safe disposal of nuclear waste. The introduction has a brief history of the politics of nuclear waste. Major sections of the book include the following: permanent hazards of nuclear waste, including examples and the politics; health and radiation (history of recommended dosages, health risks, and problems of environmental transport are included); They call it disposal talks about technical options for dealing with nuclear waste, the actual number of sites in different countries, and the inadequacies of scientific knowledge in this area; Technical Fixes? Includes a discussion of other suggested ways of handling nuclear waste; The politics of nuclear waste and beyond illusion conclude the book. 105 refs., 5 tabs

  2. Nanoporous Glasses for Nuclear Waste Containment

    Directory of Open Access Journals (Sweden)

    Thierry Woignier

    2016-01-01

    Full Text Available Research is in progress to incorporate nuclear waste in new matrices with high structural stability, resistance to thermal shock, and high chemical durability. Interactions with water are important for materials used as a containment matrix for the radio nuclides. It is indispensable to improve their chemical durability to limit the possible release of radioactive chemical species, if the glass structure is attacked by corrosion. By associating high structural stability and high chemical durability, silica glass optimizes the properties of a suitable host matrix. According to an easy sintering stage, nanoporous glasses such as xerogels, aerogels, and composite gels are alternative ways to synthesize silica glass at relatively low temperatures (≈1,000–1,200°C. Nuclear wastes exist as aqueous salt solutions and we propose using the open pore structure of the nanoporous glass to enable migration of the solution throughout the solid volume. The loaded material is then sintered, thereby trapping the radioactive chemical species. The structure of the sintered materials (glass ceramics is that of nanocomposites: actinide phases (~100 nm embedded in a vitreous silica matrix. Our results showed a large improvement in the chemical durability of glass ceramic over conventional nuclear glass.

  3. Extraction of cesium and strontium from nuclear waste

    Science.gov (United States)

    Davis, Jr., Milton W.; Bowers, Jr., Charles B.

    1988-01-01

    Cesium is extracted from acidified nuclear waste by contacting the waste with a bis 4,4'(5) [1-hydroxy-2-ethylhexyl]benzo 18-crown-6 compound and a cation exchanger in a matrix solution. Strontium is extracted from acidified nuclear waste by contacting the waste with a bis 4,4'(5') [1-hydroxyheptyl]cyclohexo 18-crown-6 compound, and a cation exchanger in a matrix solution.

  4. Nuclear Waste Treatment Program: Annual report for FY 1986

    International Nuclear Information System (INIS)

    Burkholder, H.C.; Brouns, R.A.; Powell, J.A.

    1987-09-01

    To support DOE's attainment of its goals, Nuclear Waste Treatment Program (NWTP) is to provide technology necessary for the design and operation of nuclear waste treatment facilities by commercial enterprises as part of a licensed waste management system and problem-specific treatment approaches, waste form and treatment process adaptations, equipment designs, and trouble-shooting. This annual report describes progress during FY 1986 toward meeting these two objectives. 29 refs., 59 figs., 25 tabs

  5. Nuclear Waste Treatment Program: Annual report for FY 1986

    Energy Technology Data Exchange (ETDEWEB)

    Burkholder, H.C.; Brouns, R.A. (comps.); Powell, J.A. (ed.)

    1987-09-01

    To support DOE's attainment of its goals, Nuclear Waste Treatment Program (NWTP) is to provide technology necessary for the design and operation of nuclear waste treatment facilities by commercial enterprises as part of a licensed waste management system and problem-specific treatment approaches, waste form and treatment process adaptations, equipment designs, and trouble-shooting. This annual report describes progress during FY 1986 toward meeting these two objectives. 29 refs., 59 figs., 25 tabs.

  6. nuclear fuel strategies and environmental geophysics in waste management

    International Nuclear Information System (INIS)

    Yueksel, F. A.; Kanli, A. I.

    1997-01-01

    Geophysicists contribute their knowledge to the solution of many societal problems-seismic and volcanic risk, exploration and mapping to name a few. A field of special demand which has recently grown important is nuclear waste disposal. This article summarizes the background of nuclear waste disposal problem and how geophysicists are contributing to its solution and what kind of geophysical techniques are used to solve the nuclear waste disposal problem

  7. Science, society, and America's nuclear waste: Unit 2, Ionizing radiation

    International Nuclear Information System (INIS)

    1992-01-01

    ''Science, Society and America's Nuclear Waste'' is a four-unit secondary curriculum. It is intended to provide information about scientific and societal issues related to the management of spent nuclear fuel from generation of electricity at nuclear powerplants and high-level radioactive waste from US national defense activities. The curriculum, supporting classroom activities, and teaching materials present a brief discussion of energy and electricity generation, including that produced at nuclear powerplants; information on sources, amounts, location, and characteristics of spent nuclear fuel and high-level radioactive waste; sources, types and effects of radiation; US policy for managing and disposing of spent nuclear fuel and high-level radioactive waste and what other countries are doing; and the components of the nuclear waste management system

  8. JYT - Publicly financed nuclear waste management research programme

    International Nuclear Information System (INIS)

    Vuori, S.

    1991-07-01

    The nuclear waste management research in Finland is funded both by the state and the utilities (represented in cooperation by the Nuclear Waste Commission of the Finnish power companies). A coordinated research programme (JYT) comprising the publicly financed waste management studies was started in 1989 and continues until 1993. The utilities continue to carry out a parallel research programme according to their main financial and operational responsibility for nuclear waste management. The research programme covers the following main topic areas: (1) Bedrock characteristics, groundwater and repository, (2) Release and transport of radionuclides, (3) Performance and safety assessment of repositories, and (4) Waste management technology and costs

  9. JYT - Publicly financed nuclear waste management research programme

    International Nuclear Information System (INIS)

    Vuori, S.

    1992-07-01

    The nuclear waste management research in Finland is funded both by the state and the utilities (represented in cooperation by the Nuclear Waste Commission of the Finnish power companies). A coordinated research programme (JYT) comprising the publicly financed waste management studies was started in 1989 and continues until 1993. The utilities continue to carry out a parallel research programme according to their main financial and operational responsibility for nuclear waste management. The research programme covers the following main topic areas: (1) Bedrock characteristics, groundwater and repository, (2) Release and transport of radionuclides, (3) Performance and safety assessment of repositories, and (4) Waste management technology and costs

  10. JYT - Publicly financed nuclear waste management research programme

    International Nuclear Information System (INIS)

    Vuori, S.

    1993-06-01

    The nuclear waste management research in Finland is funded both by the state and the utilities (represented in cooperation by the Nuclear Waste Commission of the Finnish power companies). A coordinated research programme (JYT) comprising the publicly financed waste management studies was started in 1989 and continues until 1993. The utilities continue to carry out a parallel research programme according to their main financial and operational responsibility for nuclear waste management. The research programme covers the following main topic areas: (1) Bedrock characteristics, groundwater and repository, (2) Release and transport of radionuclides, (3) Performance and safety assessment of repositories, and (4) Waste management technology and costs

  11. Political considerations of nuclear waste disposal policy

    International Nuclear Information System (INIS)

    Friedman, R.S.

    1985-01-01

    In order to create a program for the establishment of nuclear waste repositories several conditions must prevail. Perhaps foremost is the need to alter the public perception of risk. In short, there will need to be recognition that cigarette smoking and automobile driving, acts of volition, are potentially more dangerous to one's health than radiation leaks from nuclear power plants or waste repositories. Second, the process of repository site selection will have to include wide public participation in the process in order to obtain legitimacy. Without it Congress and the state legislatures are certain to override any proposal no matter how widely accepted by scientists and engineers. Finally, states and localities selected as sites for repositories will need to be compensated adequately in exchange for accepting the onus of serving as host. Political scientists have not been notably successful forecasters of policy outcomes. However, the evidence of American history does not provide encouragement that maximization of control at the state and local level and oversight by Congress of administrative actions, as meritorious as they might appear in terms of democracy, are harbingers of success for unpleasant policy decisions. States rights and Congressional intervention to block executive action were used to maintain second-class citizenship status for Black Americans until the judicial process was resorted to as a device to alter policy. Most likely, a major policy breakthrough will occur only after a mishap or tragedy, the final product involving either a waste disposal program in the context of continued use of nuclear power or one premised on its abandonment

  12. Development of the Pushered Single Shell Experimental Platform on NIF

    Science.gov (United States)

    Salmonson, Jay; Dewald, Eduard; Graziani, Frank; MacLaren, Stephan; Pino, Jesse; Ralph, Joseph; Sacks, Ryan; Smalyuk, Vladimir; Tipton, Robert

    2017-10-01

    The goal of the Pushered Single Shell (PSS) experimental campaign is to study mix of partially ionized ablator material into the hotspot. To do this we use a uniformly Si doped plastic capsule, the inner few microns of which can be doped with a few percent Ge. To diagnose mix, we use separated reactants; deuterating the inner Ge-doped layer, CD/Ge, while putting Tritium into the Hydrogen capsule fill gas. Mix is then inferred by measuring the neutron yields from DD, DT, and TT reactions. In order to accentuate the cooling of the hot-spot due to Bremsstrahlung radiation when Ge is present, we required high hot-spot ion temperatures: 3 keV. This, in turn, requires a fast, symmetric implosion. Using the Two-Shock campaign as a starting point, we increased the capsule radius by 25% to 844 μm and the peak laser power by over 10% to 475 TW. We also used a low, 0.3 mg/cc, He fill in the hohlraum to maintain control over implosion symmetry. This paper will describe the sequence of keyhole, 1DConA, 2DConA, and Symcap experiments we performed over the last year to tune the PSS implosions. We were successful in achieving our design goals; the PSS is the fastest CH capsule implosion in the laboratory, with peak velocity 400 μm, a round hot-spot, with hotspot P2 = 0 within errors, and a hot-spot ion temperature 3.5 keV. This work was performed under the auspices of the Lawrence Livermore National Security, LLC, (LLNS) under Contract No. DE-AC52-07NA27344.

  13. Radioactive Waste as an Argument against Nuclear Energy

    International Nuclear Information System (INIS)

    Kowalski, E.

    1996-01-01

    The issue of safe radioactive waste is commonly regarded as the Achilles Heel of nuclear energy production. To add strength to the 'unsolved' waste problem as an argument in favour of abandoning nuclear energy production, anti-nuclear groups systematically seek to discredit waste management projects and stand in the way of progress in this field. The paradox in this situation is that it is exactly in the field of waste management that nuclear energy production allows ecologically sound procedures to be followed. (author)

  14. Nuclear waste transmutation and related innovative technologies

    International Nuclear Information System (INIS)

    2002-01-01

    The main topics of the summer school meeting were 1. Motivation and programs for waste transmutation: The scientific perspective roadmaps; 2. The physics and scenarios of transmutation: The physics of transmutation and adapted reactor types. Impact on the fuel cycle and possible scenarios; 3. Accelerator driven systems and components: High intensity accelerators. Spallation targets and experiments. The sub critical core safety and simulation physics experiments; 4. Technologies and materials: Specific issues related to transmutation: Dedicated fuels for transmutation. Fuel processing - the role of pyrochemistry. Materials of irradiation. Lead/lead alloys. 5. Nuclear data: The N-TOF facility. Intermediate energy data and experiments. (orig./GL)

  15. Thermodynamic tables for nuclear waste isolation

    International Nuclear Information System (INIS)

    Phillips, S.L.; Hale, F.V.; Silvester, L.F.; Siegel, M.D.

    1988-05-01

    Tables of consistent thermodynamic property values for nuclear waste isolation are given. The tables include critically assessed values for Gibbs energy of formation, enthalpy of formation, entropy and heat capacity for minerals; solids; aqueous ions; ion pairs and complex ions of selected actinide and fission decay products at 25 degree C and zero ionic strength. These intrinsic data are used to calculate equilibrium constants and standard potentials which are compared with typical experimental measurements and other work. Recommendations for additional research are given. 13 figs., 23 tabs

  16. Curriculum and instruction in nuclear waste disposal

    International Nuclear Information System (INIS)

    Robinson, M.; Lugaski, T.; Pankratius, B.

    1991-01-01

    Curriculum and instruction in nuclear waste disposal is part of the larger problem of curriculum and instruction in science. At a time when science and technological literacy is crucial to the nation's economic future fewer students are electing to take needed courses in science that might promote such literacy. The problem is directly related to what science teachers teach and how they teach it. Science content that is more relevant and interesting to students must be a part of the curriculum. Science instruction must allow students to be actively involved in investigating or playing the game of science

  17. Nuclear waste geochemistry: natural and anthropic analogues

    International Nuclear Information System (INIS)

    Petit, J.C.

    1997-01-01

    The geochemical evolution of nuclear waste storage is difficult to describe, due to the long time scales involved, the radioactivity confinement complexity and the un-natural radionuclides which evolution is not known. In order to carry out a long term prediction, a special approach is used, based on a combination of experiments conducted in laboratories and in situ, modelizations and comparisons with process and material analogues (natural or man-made, such as basaltic and rhyolitic volcanic glasses, plutonium, historical and archaeological artefacts)

  18. Nuclear wastes management; Gestion des dechets nucleaires

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    This document is the proceedings of the debate that took place at the French Senate on April 13, 2005 about the long-term French policy of radioactive wastes management. The different points tackled during the debate concern: the 3 axes of research of the 1991 law, the public acceptance about the implementation of repositories, the regional economic impact, the cost and financing, the lack of experience feedback, the reversibility or irreversibility of the storage, the share of nuclear energy in the sustainable development policy, the European Pressurized Reactor (EPR) project, the privatization of Electricite de France (EdF) etc. (J.S.)

  19. Nevada may lose nuclear waste funds

    International Nuclear Information System (INIS)

    Marshall, E.

    1988-01-01

    The people of Nevada are concerned that a cut in DOE funding for a nuclear waste repository at Yucca Mountain, Nevada will result in cuts in the state monitoring program, e.g. dropping a seismic monitoring network and a sophisticated drilling program. Economic and social impact studies will be curtailed. Even though a provision to curtail local research forbids duplication of DOE's work and would limit the ability of Nevada to go out an collect its own data, Nevada State University at Las Vegas would receive a nice plum, a top-of-the-line supercomputer known as the ETA-10 costing almost $30 million financed by DOE

  20. Informing future societies about nuclear waste repositories

    International Nuclear Information System (INIS)

    Jensen, M.

    1994-01-01

    In 1990 a working group of the NKS (the Nordic nuclear safety program) was formed and give the task of established a basis for a common Nordic view of the need for information conservation for nuclear waste repositories. The Group investigated what tipy of information should be conserved; in what form the information should be kept; the quality of the information; and the problems of future retrieval of information, including retrieval after very long periods of time. Topics covered include the following: scientific aspects including social context of scientific solutions; information management; systems for conservation and retrieval of information including the problems of prediction; archives, markers, archives vs. markers, and continuing processes in society; Archive media including paper documents, microfilm, digital media, media lifetimes; and finally conclusions and recommendations

  1. Nuclear fuel cycle waste recycling technology deverlopment - Radioactive metal waste recycling technology development

    International Nuclear Information System (INIS)

    Oh, Won Zin; Moon, Jei Kwon; Jung, Chong Hun; Park, Sang Yoon

    1998-08-01

    With relation to recycling of the radioactive metal wastes which are generated during operation and decommissioning of nuclear facilities, the following were described in this report. 1. Analysis of the state of the art on the radioactive metal waste recycling technologies. 2. Economical assessment on the radioactive metal waste recycling. 3. Process development for radioactive metal waste recycling, A. Decontamination technologies for radioactive metal waste recycling. B. Decontamination waste treatment technologies, C. Residual radioactivity evaluation technologies. (author). 238 refs., 60 tabs., 79 figs

  2. Radioactive waste management and advanced nuclear fuel cycle technologies

    International Nuclear Information System (INIS)

    2007-01-01

    In 2007 ENEA's Department of Nuclear Fusion and Fission, and Related Technologies acted according to national policy and the role assigned to ENEA FPN by Law 257/2003 regarding radioactive waste management and advanced nuclear fuel cycle technologies

  3. Premises for removal of regulatory control from nuclear waste

    International Nuclear Information System (INIS)

    2002-03-01

    The guide presents the general principles to be applied in planning and executing the removal of control from very low level waste originating from nuclear facilities, the disposal, recycling and reuse of such waste, and the determination of the activity of and record keeping on the waste. The guide is applicable for restricted amounts of waste generated during the operation of a nuclear facility. The guide applies also to restricted amounts of imported waste which is known or supposed to be generated in a nuclear facility. The guide is to be applied only for waste resulting from the utilization of nuclear energy. The regulation of radioactive wastes generated by the use of radiation or natural resources is laid out in chapter 13 of the Finnish Radiation Act (592/1991), chapter 6 of the Finnish Radiation Decree (1512/1991) and in STUK Guides ST 6.2 and ST 12.1. (orig.)

  4. Nuclear waste management, a European task

    International Nuclear Information System (INIS)

    Strassburg, W.

    1989-01-01

    The coming into force of the Single European Act on July 1, 1987, which is to stepwise create a truly frontierless internal market of the European Community up to the year 1992, will have an effect also on the nuclear waste management sector. The goals of the energy policy and fuel cycle policy of the FRG, however, will not be changed by this. The contribution in hand discusses in particular some problems encountered at the back-end of the nuclear fuel cycle, namely nuclear spent fuel reprocessing. Activities in this branch of nuclear industry for more than ten years already have been a joint, European task. Spent fuel elements from West German reactors have been sent for reprocessing to facilities in France and in Great Britain, for example. The task of spent fuel reprocessing in the eyes of the author has a dimension exceeding the scope of the European single market: cooperation in this field for years has been including Switzerland and Sweden, for example, and is likely to include in future some countries of the Eastern Bloc. (orig.) [de

  5. The legal basis for nuclear waste disposal in Switzerland

    International Nuclear Information System (INIS)

    Egloff, V.

    1981-10-01

    The legal authority for the peaceful use of nuclear energy in Switzerland is laid down in the Federal Act of 1959 on the peaceful uses of atomic energy and on protection against radiation, revised in 1978. With this revision the further development on nuclear energy has thus become dependent on fulfilment of the legal request for proof of safe and final disposal of nuclear wastes. This paper discusses in particular the obligations of nuclear waste producers in this respect. (NEA) [fr

  6. Nuclear waste repository in basalt: a design description

    International Nuclear Information System (INIS)

    Ritchie, J.S.; Schmidt, B.

    1982-01-01

    The conceptual design of a nuclear waste repository in basalt is described. Nuclear waste packages are placed in holes drilled into the floor of tunnels at a depth of 3700 ft. About 100 miles of tunnels are required to receive 35,000 packages. Five shafts bring waste packages, ventilation air, excavated rock, personnel, material, and services to and from the subsurface. The most important surface facility is the waste handling building, located over the waste handling shaft, where waste is received and packaged for storage. Two independent ventilation systems are provided to avoid potential contamination of spaces that do not contain nuclear waste. Because of the high temperatures at depth, an elaborate air chilling system is provided. Because the waste packages deliver a considerable amount of heat energy to the rock mass, particular attention is paid to heat transfer and thermal stress studies. 3 references, 31 figures, 3 tables

  7. Tank characterization report for single-shell tank 241-BY-104

    Energy Technology Data Exchange (ETDEWEB)

    Benar, C.J.

    1996-09-26

    This characterization report summarizes the available information on the historical uses, current status, and the sampling and analysis results of waste contained in underground storage tank 241-BY-104. This report supports the requirements of the Hanford Federal Facility Agreement and Consent Order, Milestone M-44-09. Tank 241-BY-104 is one of 12 single-shell tanks located in the BY-Tank Farm in the 200 East Area of the Hanford Site. Tank 241-BY-104 entered service in the first quarter of 1950 with a transfer of metal waste from an unknown source. Through cascading, the tank was full of metal waste by the second quarter of 1951. The waste was sluiced in the second quarter of 1954. Uranium recovery (tributyl phosphate) waste was sent from tank 241-BY-107 during the second quarter of 1955 and from tank 241-BY-110 during the third quarter of 1955. Most of this waste was sent to a crib during the fourth quarter of 1955. During the third and fourth quarters of 1956 and the second and third quarters of 1957, the tank received waste from the in-plant ferrocyanide scavenging process (PFeCN2) from tanks 241-BY-106, -107, -108, and -110. This waste type is predicted to compose the bottom layer of waste currently in the tank. The tank received PUREX cladding waste (CWP) periodically from 1961 to 1968. Ion-exchange waste from cesium recovery operations was received from tank 241-BX-104 during the second and third quarters of 1968. Tank 241-BY-104 received evaporator bottoms waste from the in-tank solidification process that was conducted in the BY-Tank Farm 0247from tanks 241 -BY- 109 and 241 -BY- 1 12 from 1970 to 1974. The upper portion of tank waste is predicted to be composed of BY saltcake. Tank 241-BY-104 was declared inactive in 1977. Waste was saltwell pumped from the tank during the third quarter of 1982 and the fourth quarter of 1985. Table ES-1 and Figure ES-1 describe tank 241-BY-104 and its status. The tank has an operating capacity of 2,869 kL and presently

  8. NUCLEAR WASTE state-of-the-art reports 2004

    International Nuclear Information System (INIS)

    2004-01-01

    The report is organized in three parts. First part: 'The nuclear waste question in international and Swedish perspective' takes up questions about how the handling of nuclear waste is organized. This part starts with an international overview of nuclear waste handling in several countries. The overview gives a hint about how countries look for solutions that are judged to be appropriate in the own country. The overview shows clearly that the responsibility for the nuclear waste includes both private and public operators, in varying degrees from country to country. A detailed review is presented of the Swedish process in the chapter 'The municipalities - major stakeholders in the nuclear waste issue'. In the light of the the international overview it is shown that great efforts are spent in order to reach mutual understanding and agreement at the local basis in the Swedish consultation procedure. Part two 'To handle nuclear waste risks: An overview over methods, problems and possibilities' contains an overview of our knowledge in estimating and handling risks and about methods to produce data for assessments associated with the disposal of nuclear waste from a scientific perspective. This part first presents two geoscientific methods that are used to calculate stability and hydraulic conductivity of the bedrock. In the chapter 'Fractioning of different isotopes' the possibility to consider properties of different isotopes for estimation of transport velocities of radioactive substances is discussed, for a repository for spent nuclear fuel or other radioactive wastes. In the chapter 'Copper canisters - production, sealing, durability' an overview is given of the methods used for manufacture and control of those copper canisters that constitute one of the protective barriers around the waste at geologic disposal according to the KBS-3-method. In the last chapter, an experiment to compare classification of radioactive wastes and chemical wastes, is discussed. 'The

  9. Nuclear waste - where to go?; Atommuell - wohin?

    Energy Technology Data Exchange (ETDEWEB)

    Dornsiepen, Ulrich

    2015-07-01

    The question of the final di9sposal of nuclear waste is a problem of international importance. The solution of the problem is of increasing urgency; the discussion is controversial and implies a lot of emotions. In Germany there is consensus that the nuclear wastes have to be disposed within the country in deep geological formations. This kind of final disposal is predominantly a geological problem and has to be solved from the geological point of view. The geologist Ulrich Dornsiepen presents the problems of the final disposal in an objective way without ideology and generally understandable. Such a presentation is necessary since the public information and participation is demanded but the open geological questions and their scientific solutions are never explained for the public. [German] Die Frage der endgueltigen Lagerung von Atommuell ist ein Problem von nationaler Tragweite, dessen Loesung immer dringender wird, bisher aber sehr kontrovers diskutiert wird und mit vielen Emotionen verknuepft ist. Es besteht in Deutschland ein Konsens, diese Abfaelle innerhalb der Landesgrenzen dauerhaft in tief liegenden Gesteinsschichten abzulagern. Diese Art der Endlagerung ist aber in erster Linie ein geologisches Problem und so auch nur von geologischer Seite her zu loesen. Daher stellt der Geologe Ulrich Dornsiepen die Problematik der Endlagerung objektiv, ideologiefrei und allgemein verstaendlich dar. Ein solches Hoerbuch ist dringend noetig, da zwar die Information und Beteiligung breiter, betroffener Bevoelkerungsteile eingefordert, aber niemals versucht wird, die offenen geologischen Fragen und ihre wissenschaftliche Loesung verstaendlich zu machen.

  10. Nuclear waste: beyond Faust and fate

    International Nuclear Information System (INIS)

    Maxey, M.N.

    1979-01-01

    Regarding development of the nuclear industry and the resulting turmoil over generation of nuclear wastes, Dr. Maxey presents as a fundamental bioethical principle for organizing evidence and dealing with conflicting opinions the following formulation: social justice requires an equitable mangement of potential hazards that might have harmful health effects and unjustifiable social consequences. By equitable management she means: (1) comprehensively informing policymakers about the broad spectrum of hazards; (2) make comparisons of actual costs to reduce the effects; and (3) only then make policies and set standards that will get the most public protection out of a finite amount of money. Translating this principle into public policy is no easy task, since opponents have developed several arguments that appeal to nonscientific moral and ethical premises. Briefly, these statements can be summarized as: (a) indefinite delay of high-level waste disposal facilities is regarded as morally preferable to a policy of implementing one of several currently available options, and (b) it is claimed that involuntary risks of radiation exposure imposed on present and unconsulted future generations violate ethical principles of social justice and equity. Dr. Maxey uses most of the article in countering these premises and finally suggests the following bioethical principle for guidance: any involuntary risks imposed by social policies for radiation protection must be congruent with, must not be in excess of, and may be reasonably less than, those involuntary risks imposed by the naturally occurring toxic elements and harmful effects from our natural environment

  11. Geologic environments for nuclear waste repositories

    Directory of Open Access Journals (Sweden)

    Paleologos Evan K.

    2017-01-01

    Full Text Available High-level radioactive waste (HLW results from spent reactor fuel and reprocessed nuclear material. Since 1957 the scientific consensus is that deep geologic disposal constitutes the safest means for isolating HLW for long timescales. Nuclear power is becoming significant for the Arab Gulf countries as a way to diversify energy sources and drive economic developments. Hence, it is of interest to the UAE to examine the geologic environments currently considered internationally to guide site selection. Sweden and Finland are proceeding with deep underground repositories mined in bedrock at depths of 500m, and 400m, respectively. Equally, Canada’s proposals are deep burial in the plutonic rock masses of the Canadian Shield. Denmark and Switzerland are considering disposal of their relative small quantities of HLW into crystalline basement rocks through boreholes at depths of 5,000m. In USA, the potential repository at Yucca Mountain, Nevada lies at a depth of 300m in unsaturated layers of welded volcanic tuffs. Disposal of low and intermediate-level radioactive wastes, as well as the German HLW repository favour structurally-sound layered salt stata and domes. Our article provides a comprehensive review of the current concepts regarding HLW disposal together with some preliminary analysis of potentially appropriate geologic environments in the UAE.

  12. Fate of Gases generated from Nuclear Wastes

    International Nuclear Information System (INIS)

    Srinivasulu, M.; Francis, A. J.; Francis, A. J.

    2013-01-01

    The backfill materials such as cement, bentonite or crushed rock are used as engineered barriers against groundwater infiltration and radionuclide transport. Gas generation from radioactive wastes is attributed to radiolysis, corrosion of metals, and degradation of organic materials. Corrosion of steel drums and biodegradation of organic materials in L/ILW can generate gas which causes pressure build up and has the potential to compromise the integrity of waste containers and release the radionuclides and other contaminants into the environment. Performance assessment therefore requires a detailed understanding of the source and fate of gas generation and transport within the disposal system. Here we review the sources and fate of various type of gases generated from nuclear wastes and repositories. Studies on modeling of the fate and transport of repository gases primarily deal with hydrogen and CO 2 . Although hydrogen and carbon dioxide are the major gases of concern, microbial transformations of these gases in the subterranean environments could be significant. Metabolism of hydrogen along with the carbon dioxide results in the formation of methane, low molecular weight organic compounds and cell biomass and thus could affect the total inventory in a repository environment. Modeling studies should take into consideration of both the gas generation and consumption processes over the long-term

  13. The international politics of nuclear waste

    International Nuclear Information System (INIS)

    Blowers, Andrew; Lowry, David; Solomon, B.D.

    1991-01-01

    The dilemma of disposing nuclear waste is likened to dealing with the menace of the Ring in Tolkein's 'Lord of the Ring'; there are only two courses open 'to hide the Ring or to unmake it; both are beyond our power'. This book attempts an understanding of the contemporary politics of radioactive waste. Chapters 1 and 2 set out the background and historical context for the current position where the options have been narrowed by public opposition. The main story of the book looks at the situation in the United Kingdom, but comparisons are drawn with the USA, western Germany, Sweden and France. The studies spanned six years and are based on visits, discussions and observations. The last chapter asks the question-what are the political conditions necessary for the development of publicly acceptable policies for the management of radioactive wastes ? As Tolkein put it 'we should seek a final end of this menace, even if we do not hope to make one'. (UK)

  14. Nuclear and radiological safety nuclear power nuclear fuel cycle and waste management

    International Nuclear Information System (INIS)

    1997-05-01

    This catalogue lists all sales publications of the International Atomic Energy Agency dealing with Nuclear and Radiological Safety, Nuclear Power and Nuclear Fuel Cycle and Waste Management and issued during the period of 1995-1996. Most publications are in English. Proceedings of conferences, symposia and panels of experts may contain some papers in languages other than English (Arabic, Chinese, French, Russian or Spanish), but all these papers have abstracts in English

  15. Tank characterization report for single-shell tank 241-C-110. Revision 1

    International Nuclear Information System (INIS)

    Benar, C.J.

    1997-01-01

    One of the major functions of the Tank Waste Remediation System (IWRS) is to characterize wastes in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis, along with other available information about a tank, are compiled and maintained in a tank characterization report (TCR). This report and its appendixes serve as the TCR for single-shell tank 241-C-110. The objectives of this report are to use characterization data in response to technical issues associated with 241-C-110 waste and to provide a standard characterization of this waste in terms of a best-basis inventory estimate. Supporting data and information are contained in the appendixes. This report also supports the requirements of the Hanford Federal Facility Agreement and Consent Order milestone M-44-05. Characterization information presented in this report originated from sample analyses and known historical sources. While only the results from recent sample events will be used to fulfill the requirements of the data quality objectives (DQOs), other information can be used to support or question conclusions derived from these results. Historical information for tank 241-C-110 are provided included surveillance information, records pertaining to waste transfers and tank operations, and 1124 expected tank contents derived from a process knowledge model. The sampling events are listed, as well as sample data obtained before 1989. The results of the 1992 sampling events are also reported in the data package. The statistical analysis and numerical manipulation of data used in issue resolution are reported in Appendix C. Appendix D contains the evaluation to establish the best basis for the inventory estimate and the statistical analysis performed for this evaluation. A bibliography that resulted from an in-depth literature search of all known information sources applicable to tank 241-C-110 and its respective waste types is contained in Appendix E

  16. Preliminary recommendations on the design of the characterization program for the Hanford Site single-shell tanks: A system analysis

    Energy Technology Data Exchange (ETDEWEB)

    Buck, J.W.; Peffers, M.S.; Hwang, S.T.

    1991-11-01

    The work described in this volume was conducted by Pacific Northwest Laboratory to provide preliminary recommendations on data quality objectives (DQOs) to support the Waste Characterization Plan (WCP) and closure decisions for the Hanford Site single-shell tanks (SSTs). The WCP describes the first of a two-phase characterization program that will obtain information to assess and implement disposal options for SSTs. This work was performed for the Westinghouse Hanford Company (WHC), the current operating contractor on the Hanford Site. The preliminary DQOs contained in this volume deal with the analysis of SST wastes in support of the WCP and final closure decisions. These DQOs include information on significant contributors and detection limit goals (DLGs) for SST analytes based on public health risk.

  17. Corrective action strategy for single-shell tanks containing organic chemicals

    International Nuclear Information System (INIS)

    Turner, D.A.

    1993-08-01

    A Waste Tank Organic Safety Program (Program) Plan is to be transmitted to the U.S. Department of Energy, Richland Operations Office (RL) for approval by December 31, 1993. In April 1993 an agreement was reached among cognizant U.S. Department of Energy - Headquarters (HQ), RL and Westinghouse Hanford Company (WHC) staff that the Program Plan would be preceded by a ''Corrective Action Strategy,'' which addressed selected planning elements supporting the Program Plan. The ''Corrective Action Strategy'' would be reviewed and consensus reached regarding the planning elements. A Program Plan reflecting this consensus would then be prepared. A preliminary ''corrective action strategy'' is presented for resolving the organic tanks safety issue based on the work efforts recommended in the ISB (Interim Safety Basis for Hanford Site tank farm facilities). A ''corrective action strategy'' logic was prepared for individual SSTs (single-shell tanks), or a group of SSTs having similar characteristics, as appropriate. Four aspects of the organic tanks safety issue are addressed in the ISB: SSTs with the potential for combustion in the tank's headspace; combustion of a floating organic layer as a pool fire; surface fires in tanks that formerly held floating organic layers; SSTs with the potential for organic-nitrate reactions. A preliminary ''corrective action strategy'' for each aspect of the organic tanks safety issue is presented

  18. Candidate reagents and procedures for the dissolution of Hanford Site single-shell tank sludges

    International Nuclear Information System (INIS)

    Schulz, W.W.; Kupfer, M.J.

    1991-10-01

    At least some of the waste in the 149 single-shell tanks (SST) at the US Department of Energy (DOE) Hanford Site will be retrieved, treated, and disposed of. Although the importance of devising efficient and cost-effective sludge dissolution procedures has long been recognized, a concerted bench-scale effort to devise and test such procedures with actual solids representative of those in Hanford Site SSTs has not been performed. Reagents that might be used, either individually or serially, to dissolve sludges include HNO 3 , HNO 3 -oxalic acid, and HNO 3 -HF. This report consolidates and updates perspectives and recommendations concerning reagents and procedures for dissolving Hanford Site SST and selected double-shell tank (DST) sludges. The principal objectives of this report are as follows: (1) Compile and review existing experimental data on dissolution of actual Hanford Site SST and DST sludges. (2) Further inform Hanford Site engineers and scientists concerning the utility of combinations of thermally unstable complexants (TUCS) reagents and various reducing agents for dissolving SST and DST sludges. (This latter technology has recently been explored at the Argonne National Laboratory.) (3) Provide guidance in laying out a comprehensive experimental program to develop technology for dissolving all types of Hanford Site SST and DST sludges. 6 refs., 1 fig., 4 tabs

  19. Management of abnormal radioactive wastes at nuclear power plants

    International Nuclear Information System (INIS)

    1989-01-01

    As with any other industrial activity, a certain level of risk is associated with the operation of nuclear power plants and other nuclear facilities. That is, on occasions nuclear power plants or nuclear facilities may operate under conditions which were not specifically anticipated during the design and construction of the plant. These abnormal conditions and situations may cause the production of abnormal waste, which can differ in character or quantity from waste produced during normal routine operation of nuclear facilities. Abnormal waste can also occur during decontamination programmes, replacement of a reactor component, de-sludging of storage ponds, etc. The management of such kinds of waste involves the need to evaluate existing waste management systems in order to determine how abnormal wastes should best be handled and processed. There are no known publications on this subject, and the IAEA believes that the development and exchange of such information among its Member States would be useful for specialists working in the waste management area. The main objective of this report is to review existing waste management practices which can be applied to abnormal waste and provide assistance in the selection of appropriate technologies and processes that can be used when abnormal situations occur. Naturally, the subject of abnormal waste is complex and this report can only be considered as a guide for the management of abnormal waste. Refs, figs and tabs.

  20. A Nuclear Waste Management Cost Model for Policy Analysis

    Science.gov (United States)

    Barron, R. W.; Hill, M. C.

    2017-12-01

    Although integrated assessments of climate change policy have frequently identified nuclear energy as a promising alternative to fossil fuels, these studies have often treated nuclear waste disposal very simply. Simple assumptions about nuclear waste are problematic because they may not be adequate to capture relevant costs and uncertainties, which could result in suboptimal policy choices. Modeling nuclear waste management costs is a cross-disciplinary, multi-scale problem that involves economic, geologic and environmental processes that operate at vastly different temporal scales. Similarly, the climate-related costs and benefits of nuclear energy are dependent on environmental sensitivity to CO2 emissions and radiation, nuclear energy's ability to offset carbon emissions, and the risk of nuclear accidents, factors which are all deeply uncertain. Alternative value systems further complicate the problem by suggesting different approaches to valuing intergenerational impacts. Effective policy assessment of nuclear energy requires an integrated approach to modeling nuclear waste management that (1) bridges disciplinary and temporal gaps, (2) supports an iterative, adaptive process that responds to evolving understandings of uncertainties, and (3) supports a broad range of value systems. This work develops the Nuclear Waste Management Cost Model (NWMCM). NWMCM provides a flexible framework for evaluating the cost of nuclear waste management across a range of technology pathways and value systems. We illustrate how NWMCM can support policy analysis by estimating how different nuclear waste disposal scenarios developed using the NWMCM framework affect the results of a recent integrated assessment study of alternative energy futures and their effects on the cost of achieving carbon abatement targets. Results suggest that the optimism reflected in previous works is fragile: Plausible nuclear waste management costs and discount rates appropriate for intergenerational cost

  1. Nuclear waste disposal utilizing a gaseous core reactor

    Science.gov (United States)

    Paternoster, R. R.

    1975-01-01

    The feasibility of a gaseous core nuclear reactor designed to produce power to also reduce the national inventories of long-lived reactor waste products through nuclear transmutation was examined. Neutron-induced transmutation of radioactive wastes is shown to be an effective means of shortening the apparent half life.

  2. For Sale: Nuclear Waste Sites--Anyone Buying?

    Science.gov (United States)

    Hancock, Don

    1992-01-01

    Explores why the United States Nuclear Waste Program has been unable to find a volunteer state to host either a nuclear waste repository or monitored retrieval storage facility. Discusses the Department of Energy's plans for Nevada's Yucca Mountain as a repository and state and tribal responses to the plan. (21 references) (MCO)

  3. Nuclear waste problem and transmutation of transuranium elements

    International Nuclear Information System (INIS)

    Oezgener, H. A.

    2009-01-01

    One of the major obstacles that prevents the widespread acceptance of nuclear energy by the public is the perception of the spent fuel as nuclear waste. However, the spent fuel is reprocessed in many countries and uranium and plutonium are chemically separated from the waste. After reprocessing, the volume of the waste is greatly reduced. In this way, plutonium which is the major cause of the radiotoxicity of the nuclear waste in the long run is thus removed and can be used as mixed oxide fuel in nuclear reactors. After reprocessing the remaining waste consists of fission products and minor actinides. Since the majority of fission products decays in a few centuries, they do not constitute a waste problem in the long run. Minor actinides, namely neptunium, americium and curium, contribute strongly to the radiotoxicity of the nuclear waste especially in the first millennium. If minor actinides are separated from the spent fuel and fissioned in nuclear systems, they would be transmuted into fission products. In that case, a major step would have been taken towards the solution of the nuclear waste problem. Minor actinides can be transmuted to fission products in nuclear reactors and accelerator-driven subcritical systems. At the present time there are unresolved technical problems concerning minor actinide transmutation. Research is being currently carried out in many countries to resolve the technical problems regarding transmutation.

  4. Answers to your questions on high-level nuclear waste

    International Nuclear Information System (INIS)

    1987-11-01

    This booklet contains answers to frequently asked questions about high-level nuclear wastes. Written for the layperson, the document contains basic information on the hazards of radiation, the Nuclear Waste Management Program, the proposed geologic repository, the proposed monitored retrievable storage facility, risk assessment, and public participation in the program

  5. Evaluation of bitumens for nuclear facilities radioactive waste immobilization

    International Nuclear Information System (INIS)

    Guzella, Marcia F.R.; Silva, Tania V. da; Loiola, Roberto; Monte, Lauro J.B.

    2000-01-01

    The activities developed at the Nuclear Technology Development Centre, Centro de Desenvolvimento da Tecnologia Nuclear - CDTN/CNEN, include the research and development work of the radioactive wastes immobilization in different kind of bitumen. The present work describes the bituminization of simulated low level wastes of evaporator concentrates.Two types of bitumen are used for incorporation of the simulated wastes generated by nuclear power plants. Studies on rheological properties, leaching data, differential thermoanalysis and water content of the waste-products have been carried out. (author)

  6. Discharged of the nuclear wastes by health service centres

    International Nuclear Information System (INIS)

    Mazur, G.; Jednorog, S.

    1993-01-01

    In this paper Polish national regulation in radiation protection on nuclear medical domain was discussed. The method of utilized nuclear wastes in medical and science centres was deliberate. From many years activity of wastes from Nuclear Medicine Department of Central Clinical Hospital Armed Forces Medical Academy and Radiation Protection Department of Armed Forces Institute of Hygiene and Epidemiology was measured. In debate centres radiation monitoring was performed. In this purpose the beta global activity and gamma spectrometry measurement of discharged wastes occurred. From last year in discussed centres wastes activity do not increased permissible levels. (author). 3 refs, 5 tabs

  7. Radioactive wastes database at Brazilian Nuclear Technology Development Center - CDTN

    International Nuclear Information System (INIS)

    Reis, L.C.A.; Silva, F.

    1994-01-01

    Development and implementation of a radioactive waste management data base are being carried out at Centro de Desenvolvimento da Tecnologia Nuclear - CDTN. The objectives are to treat and retrieve information about wastes generated and received at the Centre in order to facilitate the waste management. (author)

  8. Nuclear waste information made accessible: A case study

    International Nuclear Information System (INIS)

    Willis, Y.A.; Morris, W.R.

    1987-01-01

    The Nuclear Industry has made great technical strides toward the safe and efficient management of nuclear waste but public acceptance and cooperation lag far behind. The challenge is to better inform the public of the technical options available to safely manage the various types of nuclear wastes. Westinghouse responded to this challenge by creating the Nuclear Waste Management Outreach Program with the goal to make nuclear waste information accessible as well as available. The Outreach Program is an objective informational seminar series comprises of modules which may be adopted to various audiences. The seminars deal with radioactive wastes and the legislative and regulatory framework within which the Industry must function. The Outreach Program provides a forum to present relevant information, encourage an interchange of ideas and experiences, elicit feedback, and it provides for field site visits where feasible and appropriate. The program has been well received by the participants including technologists, government officials, educators, and the general public

  9. Tank characterization report for single shell tank 241-SX-108

    Energy Technology Data Exchange (ETDEWEB)

    Eggers, R.F., Westinghouse Hanford

    1996-07-11

    This document summarizes the information on the historical uses, present status, and the sampling and analysis results of waste stored in tank 241-SX-108. This report supports the requirements of Tri-Party Agreement Milestone M-44-09.

  10. Tank characterization report for single shell tank 241-S-107

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, B.C.

    1996-09-19

    This document summarizes the information on the historical uses, present status, and the sampling and analysis results of waste stored in Tank 241-S-107. This report supports the requirements of Tri- Party Agreement Milestone M-44-09.

  11. Environmental and waste disposal options in nuclear engineering curricula

    International Nuclear Information System (INIS)

    Elleman, T.S.; Gilligan, J.G.

    1991-01-01

    The strong national emphasis on waste and environmental issues has prompted increasing interest among nuclear engineering students in study options that will prepare them for careers in these areas. Student interest appears to focus principally on health physics, radioactive waste disposal, and environmental interactions with radionuclides. One motivation for this interest appears to be the growing national programs in environmental restoration and waste remediation that have produced fellowship support for nuclear engineering students as well as employment opportunities. Also, the recent National Academy of sciences study on nuclear engineering education specifically emphasized the importance of expanding nuclear engineering curricula and research programs to include a greater emphasis on radioactive waste and environmental issues. The North Carolina State University (NCSU) Department of Nuclear Engineering is attempting to respond to these needs through the development of course options that will allow students to acquire background in environmental subjects as a complement to the traditional nuclear engineering education

  12. Radioactive waste management perspectives in Malaysian Nuclear Agency

    International Nuclear Information System (INIS)

    Nurul Wahida Ahmad Khairuddin; Nik Marzukee Nik Ibrahim; Mat Bakar Mahusin; Mohamad Hakiman Mohamad Yusoff; Muhammad Zahid Azrmi

    2009-01-01

    Waste Technology Development Centre (WasTeC) has been mandated to carry out radioactive waste management activities since 1984. The main objective of WasTeC is to deal with radioactive waste in a manner that protects health and the environment now and in the future, without imposing undue burdens on the future generations. This centre provides services for waste generators within Nuclear Malaysia and also for external waste generators. Services provided include transportation of radioactive waste, decontamination, treatment and storage. This paper will discuss on procedure for applying for services, responsibility of waste generator, responsibility of waste operator, need to comply with waste acceptance criteria and regulations related to management of radioactive waste. (Author)

  13. Quality assurance considerations in nuclear waste management

    International Nuclear Information System (INIS)

    Delvin, W.L.

    1982-01-01

    Proper use of quality assurance will provide the basis for an effective management control system for nuclear waste management programs. Control is essential for achieving successful programs free from costly losses and failures and for assuring the public and regulators that the environment and health and safety are being protected. The essence of quality assurance is the conscientious use of planned and systematic actions, based on selecting and applying appropriate requirements from an established quality assurance standard. Developing a quality assurance program consists of using knowledge of the technical and managerial aspects of a project to identify and evaluate risks of loss and failure and then to select appropriate quality assurance requirements that will minimize the risks. Those requirements are integrated into the project planning documents and are carried out as specific actions during the life of the project

  14. Materials aspects of nuclear waste management

    International Nuclear Information System (INIS)

    Pohl, R.O.

    1984-01-01

    Detailed discussion of the heat flow in granitic rocks is presented because temperature is one of the most important parameters determining the containment of nuclear waste in a geologic repository. This paper focusses on a review of our present understanding of the thermal conductivity of igneous rocks. It is suggested that the low, glass-like thermal conductivity of one of the major constituents of these rocks, namely the plagioclase feldspars, is caused by a disorder intrinsic to these solids. Because of the strong phonon scattering in the plagioclases, it is their presence, and only to a lesser degree the disorder in the other constituent minerals in the igneous rocks, which determines their conductivity

  15. Helium behaviour in nuclear waste materials

    Energy Technology Data Exchange (ETDEWEB)

    Wiss, T.; Hiernaut, J.P.; Colle, J.Y.; Maugeri, E.; Raison, P.; Konings, R.; Rondinella, V.V. [European Commission, Joint Research Centre, Institute for Transuranium Elements, P.O. Box 2340, 76125 Karlsruhe (Germany); Roudil, D.; Deschanel, X.; Peuget, S. [Commissariat a l' Energie Atomique, Centre de VALRHO, B.P. 30207 Bagnols-sur-Ceze (France)

    2008-07-01

    Waste conditioning matrices like synthetic zirconolite (CaZrTi{sub 2}O{sub 7}) were fabricated and doped with either the short-lived alpha-emitters {sup 238}Pu or {sup 244}Cm, or with {sup 239}Pu to generate various amounts of helium and of alpha-damage. The samples were annealed in a Knudsen cell, and the helium desorption profiles interpreted in conjunction with parallel radiation damage and previous annealing behaviour studies. To understand the long term behaviour of spent nuclear fuel, UO{sub 2} samples doped with the alpha-emitters {sup 233}U, {sup 238}Pu have been investigated by transmission electron microscopy (TEM), by XRD and by thermal desorption spectroscopy. The release of helium has been explained by the recrystallization of amorphized zirconolite on one hand and partially during alpha-damage recovery in the case of the spent fuel. This study mostly highlights the correlation between restructuring of damaged materials and gas release.

  16. Science, society, and America's nuclear waste: Unit 4, The waste management system

    International Nuclear Information System (INIS)

    1992-01-01

    This is the teachers guide to unit 4, (The Waste Management System), of a four-unit secondary curriculum. It is intended to provide information about scientific and societal issues related to the management of spent nuclear fuel from generation of electricity at nuclear powerplants and high-level radioactive waste from US national defense activities. The curriculum, supporting classroom activities, and teaching materials present a brief discussion of energy and electricity generation, including that produced at nuclear powerplants; information on sources, amounts, location, and characteristics of spent nuclear fuel and high-level radioactive waste; sources, types and effects of radiation; US policy for managing and disposing of spent nuclear fuel and high-level radioactive waste and what other countries are doing; and the components of the nuclear waste management system

  17. Solid waste generation in reprocessing nuclear fuel

    International Nuclear Information System (INIS)

    North, E.D.

    1975-01-01

    Estimates are made of the solid wastes generated annually from a 750-ton/year plant (such as the NFS West Valley plant): high-level waste, hulls, intermediate level waste, failed equipment, HEPA filters, spent solvent, alpha contaminated combustible waste, and low specific activity waste. The annual volume of each category is plotted versus the activity level

  18. Hydration process of nuclear-waste glass: an interim report

    International Nuclear Information System (INIS)

    Bates, J.K.; Jardine, L.J.; Steindler, M.J.

    1982-07-01

    Aging of simulated nuclear waste glass by contact with a controlled-temperature, humid atmosphere results in the formation of a double hydration layer penetrating the glass, as well as the formation of minerals on the glass surface. The hydration process can be described by Arrhenius behavior between 120 and 240 0 C. Results suggest that simulated aging reactions are necessary for demonstrating that nuclear waste forms can meet projected Nuclear Regulatory Commission regulations. 16 figures, 4 tables

  19. Nuclear wastes. The spent fuel using as false problem

    International Nuclear Information System (INIS)

    Garcia Gomez, A.

    2006-01-01

    Firstly this article presents the energy potential and advantages of nuclear waste in comparison with other types of energy residues. As a consequences the existing denomination of residue or waste applied to the uranium used in nuclear power plants is discussed. This semantic issue is relevant when analysing present opposition to nuclear energy and also favours the arguments against its viability posed by antinuclear groups. (Author)

  20. Nuclear engineering questions: power, reprocessing, waste, decontamination, fusion

    International Nuclear Information System (INIS)

    Walton, R.D. Jr.

    1979-01-01

    This volume contains papers presented at the chemical engineering symposium on nuclear questions. Specific questions addressed by the speakers included: nuclear power - why and how; commercial reprocessing - permanent death or resurrection; long-term management of commercial high-level wastes; long-term management of defense high-level waste; decontamination and decommissioning of nuclear facilities, engineering aspects of laser fusion I; and engineering aspects of laser fusion II. Individual papers have been input to the Energy Data Base previously

  1. Micro-organisms and nuclear waste: a neglected problem

    International Nuclear Information System (INIS)

    Arnott, Don.

    1989-01-01

    The paper addresses the problem of bacteria in nuclear waste disposal. A description is given of how bacteria colonised the Three Mile Island Nuclear Reactor soon after meltdown, demonstrating the ability of some bacteria to operate under extreme conditions. Work is also described indicating that microbial corrosion of metal canisters can occur. Thus the author recommends that studies of nuclear waste disposal should take into account the interrelations between geology, geochemistry and microbiology. (U.K.)

  2. Nuclear waste under glass, further discussion

    Science.gov (United States)

    O'Keefe, J. A.; Barkatt, A.; Glass, B. P.; Alterescu, S.

    J. J. Crovisier and J. Honnorez [1988] discuss an article by W. W. Maggs, “Mg May Protect Waste Under Glass” [Maggs, 1988] summarizing work by A. Barkatt (Catholic University, Washington, D.C.), B. P. Glass (University of Delaware, Newark), and S. Alterescu and J. A. O'Keefe (NASA/GSFC, Greenbelt, Md.). We found that seawater is orders of magnitude less corrosive t h an fresh water in attacking tektite glass; traced the protective effect to the presence of magnesium, at a level of about 1.3 g/L in seawater; and suggested that the effect might be useful in protecting nuclear waste glasses from corrosion.Crovisier and Honnorez first make the point that the rate of corrosion of glass is, in principle, a function of the ratio of surface area 5 to the effective volume V. This concept, which is usually discussed in American literature under the name of S/V effects, is discussed by Crovisier and Honnorez in terms of the “permeability of the environment.” These effects have been carefully considered throughout our work (see, for example, Barkatt et al. [19867rsqb;). It turns out that in the sea the effective S/V is so small that the effects referred to by Crovisier and Honnorez can be ignored.

  3. Symposium on the development of nuclear waste policy: Siting the high-level nuclear waste repository

    International Nuclear Information System (INIS)

    Pijawka, K.D.; Mushkatel, A.H.

    1991-01-01

    The Nuclear Waste Policy Act of 1982 (NWPA) attempted to formulate a viable national policy for managing the disposal of high-level nuclear wastes. The NWPA authorized the selection of two repository sites: the first to be constructed in the West and a second site developed in the eastern United States. A detailed process for site selection was outlined in the NWPA. In addition, the NWPA authorized open-quotes the development of a waste transportation system; required the Department of Energy (DOE) to submit a proposal to construct a facility for monitored retrievable storage (MRS) after conducting a study of the need for, and feasibility of such a facility; and required the President to evaluate the use of the repositories ... for the disposal of high-level waste resulting from defense activitiesclose quotes (DOE, 1988, p. 1). A series of provisions granting oversight participation to states and Indian tribes, as well as a compensation package for the ultimate host state were also included. Responsibility for implementing the NWPA was assigned to DOE

  4. A QUARTER CENTURY OF NUCLEAR WASTE MANAGEMENT IN JAPAN

    International Nuclear Information System (INIS)

    Masuda, S.

    2002-01-01

    This paper is entitled ''A QUARTER CENTURY OF NUCLEAR WASTE MANAGEMENT IN JAPAN''. Since the first statement on the strategy for radioactive waste management in Japan was made by the Atomic Energy Commission (AEC) in 1976, a quarter century has passed, in which much experience has been accumulated both in technical and social domains. This paper looks back in this 25-year history of radioactive waste management in Japan by highlighting activities related to high-level radioactive waste (HLW) disposal

  5. Process control plan for Single Shell Tank (SST) Saltcake Dissolution Proof of Concept

    International Nuclear Information System (INIS)

    ESTEY, S.D.

    2001-01-01

    This document describes the process controls for the tank 241-U-107 (U-107) saltcake dissolution proof-of-concept operations. Saltcake dissolution is defined as a method by which water-soluble salts will be retrieved from the Hanford Site radioactive waste tanks utilizing dissolution as the mobilizing mechanism. The proof-of-concept operations will monitor the retrieval process and transfer at least 100 kgal of fluid from tank U-107 to the double-shell tank (DST) system during the performance period. Tank U-107 has been identified as posing the highest long-term risk to the Columbia River of all single shell tanks (SSTs). This is because of the high content of mobile, long-lived radionuclides mostly in the saltcake waste in the tank. To meet current contractual and consent decree commitments, tank U-107 is being prepared for interim stabilization in August 2001. It is currently scheduled for saltcake retrieval in 2023, near the end of the SST retrieval campaign because of a lack of infrastructure in U-Farm. The proof-of-concept test will install a system to dissolve and retrieve a portion of the saltcake as part of, and operating in parallel with, the standard interim stabilization system to be installed on tank U-107. This proof-of-concept should provide key information on spray nozzle selection and effective spray patterns, leak detection, monitoring, and mitigation (LDMM) and in-tank saltcake solubility data that will help in the design of a full-tank retrieval demonstration system

  6. Tank characterization report for Single-Shell Tank 241-BX-107

    International Nuclear Information System (INIS)

    Raphael, G.F.

    1994-09-01

    This study examined and assessed the status, safety issues, composition, and distribution of the wastes contained in the tank 241-BX-107. Historical and most recent information, ranging from engineering structural assessment experiments, process history, monitoring and remediation activities, to analytical core sample data, were compiled and interpreted in an effort to develop a realistic, contemporary profile for the tank BX-107 contents. The results of this is study revealed that tank BX-107, a 2,006,050 L (530,000 gal) cylindrical single-shell, dished-bottom carbon-steel tank in the 200 East Area of the Hanford Site, was classified as sound. It has been interim stabilized and thus contains less than 189,250 L (50,000 gal) of interstitial liquid, and less than 18,925 L (5,000 gal) of supernatant. It has also been partially interim isolated, whereby all inlets to the tank are sealed to prevent inadvertent addition of liquid. At a residual waste level of ∼3.07 m (120.7 ± 2 in. from sidewall bottom or ∼132.9 in. from center bottom), it is estimated that the tank BX-107 contents are equivalent to 1,305,825 L (345,000 gal). The vapor space pressure is at atmospheric. The latest temperature readings, which were taken in July 1994, show a moderate temperature value of 19 degrees C (66 degrees F). Two supernatant samples were collected in 1974 and 1990, prior to interim stabilization. Sludge core samples were obtained in 1979 and 1992

  7. PIME '98, proposal for opening contribution: Nuclear waste

    International Nuclear Information System (INIS)

    Raurnolin, Heikki

    1998-01-01

    Full text: Would a debate about an international nuclear waste repository help us win greater public acceptance for our disposal plans? My opening points will be: - International nuclear waste repositories can be accepted by the public only after the acceptance of national repositories. If there are no accepted national plans or existing national repositories, nobody is accepting any international repository in his or her own country; - The focus of gaining public acceptance should therefore be on the national programmes and on the technology itself, i.e. 'Deep disposal is a safe solution independent on the type of rock formations, crystalline, salt, clay etc.'; - The Finnish situation is quite clear. Our people are rather confident on the stability of our old crystalline granite bedrock. Finnish politicians and ordinary people are very much against accepting high-level waste or spent nuclear fuel of foreign origin to be disposed of in Finland. This was one of the reasons why the Finnish Nuclear Act was amended before Finland joined to EU, so that the import and export of nuclear waste are forbidden; - Our site selection programme in Finland is in a very sensitive phase. The Government has just confirmed the target, site selection at the end of year 2000, and the statutory Environmental Impact Assesment process has just been initiated in four candidate sites. Certain opponents try to frighten people by claiming that accepting the site and the deep disposal of our domestic waste means also definitely accepting the same for foreign waste, in any case for any nuclear waste from other EU countries; - So, all news on discussion about international nuclear waste repositories will create more suspicions against the Finnish nuclear authorities, waste company and utilities. Summary: The answer is no, the debate about international nuclear waste repository does not help us to win greater public acceptance for our disposal plans. (author)

  8. Effects on the environment of the dumping of nuclear wastes

    International Nuclear Information System (INIS)

    1990-07-01

    Nationally and internationally accepted procedures and technologies are available for the safe handling and disposal of radioactive wastes. Authorized waste disposal practices are designed to ensure that there will be no significant impacts on man and his environment. 'Dumping' of nuclear wastes may result in the elimination of one or more of the multibarriers of protection inherent in an effective radioactive waste management system, thereby increasing the risk of radiological exposure to man and his environment. Quantitative assessments of the degree of environmental contamination and of the resulting hazards to man depend on the specific conditions surrounding the 'uncontrolled disposal' of radioactive waste. These include the nature and activity level of the waste, the physical form of the waste, the package that the waste is contained in and the characteristics of the dumping site. Depending on the scenario envisaged, the consequences of 'uncontrolled disposal' could vary from being insignificant to a situation where there is a significant hazard to an exposed population group. International transactions involving nuclear wastes are taking place between countries on the basis of bilateral agreements and under strict regulatory supervision so that radioactive wastes are transferred safely from one controlled area to another. Such transactions may increase in the future with increased international co-operation in sharing common waste repositories. No evidence exists that confirms that transboundary dumping of radioactive waste has occurred. Investigation of alleged dumping of radioactive wastes by the International Atomic Energy Agency has revealed that the 'suspect wastes' did not contain radioactive material. 2 tabs

  9. Materials Science of High-Level Nuclear Waste Immobilization

    International Nuclear Information System (INIS)

    Weber, William J.; Navrotsky, Alexandra; Stefanovsky, S. V.; Vance, E. R.; Vernaz, Etienne Y.

    2009-01-01

    With the increasing demand for the development of more nuclear power comes the responsibility to address the technical challenges of immobilizing high-level nuclear wastes in stable solid forms for interim storage or disposition in geologic repositories. The immobilization of high-level nuclear wastes has been an active area of research and development for over 50 years. Borosilicate glasses and complex ceramic composites have been developed to meet many technical challenges and current needs, although regulatory issues, which vary widely from country to country, have yet to be resolved. Cooperative international programs to develop advanced proliferation-resistant nuclear technologies to close the nuclear fuel cycle and increase the efficiency of nuclear energy production might create new separation waste streams that could demand new concepts and materials for nuclear waste immobilization. This article reviews the current state-of-the-art understanding regarding the materials science of glasses and ceramics for the immobilization of high-level nuclear waste and excess nuclear materials and discusses approaches to address new waste streams

  10. Technical basis for classification of low-activity waste fraction from Hanford site tanks

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, C.A., Westinghouse Hanford

    1996-07-17

    The overall objective of this report is to provide a technical basis to support a U.S. Nuclear Regulatory Commission determination to classify the low-activity waste from the Hanford Site single-shell and double-shell tanks as `incidental` wastes after removal of additional radionuclides and immobilization.The proposed processing method, in addition to the previous radionuclide removal efforts, will remove the largest practical amount of total site radioactivity, attributable to high-level wastes, for disposal in a deep geologic repository. The remainder of the waste would be considered `incidental` waste and could be disposed onsite.

  11. Technical basis for classification of low-activity waste fraction from Hanford site tanks

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, C.A.

    1996-09-20

    The overall objective of this report is to provide a technical basis to support a U.S. Nuclear Regulatory Commission determination to classify the low-activity waste from the Hanford Site single-shell and double-shell tanks as `incidental` wastes after removal of additional radionuclides and immobilization.The proposed processing method, in addition to the previous radionuclide removal efforts, will remove the largest practical amount of total site radioactivity, attributable to high-level waste, for disposal is a deep geologic repository. The remainder of the waste would be considered `incidental` waste and could be disposed onsite.

  12. Nuclear waste storage container with metal matrix

    Science.gov (United States)

    Sump, Kenneth R.

    1978-01-01

    The invention relates to a storage container for high-level waste having a metal matrix for the high-level waste, thereby providing greater impact strength for the waste container and increasing heat transfer properties.

  13. Nuclear waste storage container with metal matrix

    International Nuclear Information System (INIS)

    Sump, K.R.

    1978-01-01

    The invention relates to a storage container for high-level waste having a metal matrix for the high-level waste, thereby providing greater impact strength for the waste container and increasing heat transfer properties

  14. Rock solid: the geology of nuclear waste disposal

    International Nuclear Information System (INIS)

    Reid, Elspeth.

    1990-01-01

    With a number of nuclear submarines and power stations due to be decommissioned in the next decade, stores of radioactive waste, and arguments about storage increase. Whatever the direction taken by the nuclear industry in Britain, the legacy of waste remains for the foreseeable future. Geology is at the heart of the safety argument for nuclear wastes. It is claimed that rocks should act as the main safety barrier, protecting present and future generations from radiation. Rock Solid presents a clear, accessible and up to date account of the geological problems involved in building a nuclear waste repository. The author describes the geology of some of the possible UK repository sites (Sellafield, Dounreay, Altnabreac, Billingham), explains how sites are investigated (including computer models), and finally considers the crucial question: 'would geological containment of radioactive waste actually work?'. (author)

  15. Defence nuclear waste disposal in Russia. International perspective

    International Nuclear Information System (INIS)

    Stenhouse, M.J.; Kirko, V.I.

    1998-01-01

    Significant amounts of liquid and solid radioactive waste have been generated in Russia during the production of nuclear weapons, and there is an urgent need to find suitable ways to manage these wastes in a way that protects both the current population and future generations. This book contains contributions from pure and applied scientists and other representatives from Europe, North America, and Russia, who are, or have been, actively involved in the field of radioactive waste management and disposal. First-hand experience of specific problems associated with defence-related wastes in the USA and the Russian Federation is presented, and current plans are described for the disposal of solid wastes arising from civilian nuclear power production programmes in other countries, including Belgium, Bulgaria, Canada, Germany and the UK. The book provides a good insight into ongoing research at local and national level within Russia, devoted to the safe disposal of defence-related radioactive waste. It also demonstrates how existing expertise and technology from civilian nuclear waste management programmes can be applied to solving the problems created by nuclear defence programmes. Contributions address methods of immobilisation, site selection methodology, site characterisation techniques and data interpretation, the key elements of safety/performance assessments of planned deep (geological) repositories for radioactive waste, and radionuclide transport modelling. Concerns associated with certain specific nuclear waste disposal concepts and repository sites are also presented. refs

  16. Nuclear Waste Management Program summary document, FY 1981

    International Nuclear Information System (INIS)

    1980-03-01

    The Nuclear Waste Management Program Summary Document outlines the operational and research and development (R and D) activities of the Office of Nuclear Waste Management (NEW) under the Assistant Secretary for Nuclear Energy, US Department of Energy (DOE). This document focuses on the current and planned activities in waste management for FY 1981. This Program Summary Document (PSD) was prepared in order to explain the Federal nuclear waste management and spent fuel storage programs to Congress and its committees and to interested members of the public, the private sector, and the research community. The national energy policy as it applies to waste management and spent fuel storage is presented first. The program strategy, structure, budget, management approach, and public participation programs are then identified. The next section describes program activities and outlines their status. Finally, the applicability of departmental policies to NEW programs is summarized, including field and regional activities, commercialization plans, and environmental and socioeconomic implications of waste management activities, and international programs. This Nuclear Waste Management Program Summary Document is meant to serve as a guide to the progress of R and D and other energy technology programs in radioactive waste management. The R and D objective is to provide the Nation with acceptable solutions to short- and long-term management problems for all forms of radioactive waste and spent fuel

  17. Nuclear waste treatment program: Annual report for FY 1987

    Energy Technology Data Exchange (ETDEWEB)

    Brouns, R.A.; Powell, J.A. (comps.)

    1988-09-01

    Two of the US Department of Energy's (DOE) nuclear waste management-related goals are to ensure that waste management is not an obstacle to the further development of light-water reactors and the closure of the nuclear fuel cycle and to fulfill its institutional responsibility for providing safe storage and disposal of existing and future nuclear wastes. As part of its approach to achieving these goals, the Office of Remedial Action and Waste Technology of DOE established what is now called the Nuclear Waste Treatment Program (NWTP) at the Pacific Northwest Laboratory during the second half of FY 1982. To support DOE's attainment of its goals, the NWTP is to provide technology necessary for the design and operation of nuclear waste treatment facilities by commercial enterprises as part of a licensed waste management system and problem-specific treatment approaches, waste form and treatment process adaptations, equipment designs, and trouble-shooting assistance, as required to treat existing wastes. This annual report describes progress during FY 1987 towards meeting these two objectives. 24 refs., 59 figs., 24 tabs.

  18. Nuclear Waste Management Program summary document, FY 1981

    Energy Technology Data Exchange (ETDEWEB)

    Meyers, Sheldon

    1980-03-01

    The Nuclear Waste Management Program Summary Document outlines the operational and research and development (R and D) activities of the Office of Nuclear Waste Management (NEW) under the Assistant Secretary for Nuclear Energy, US Department of Energy (DOE). This document focuses on the current and planned activities in waste management for FY 1981. This Program Summary Document (PSD) was prepared in order to explain the Federal nuclear waste management and spent fuel storage programs to Congress and its committees and to interested members of the public, the private sector, and the research community. The national energy policy as it applies to waste management and spent fuel storage is presented first. The program strategy, structure, budget, management approach, and public participation programs are then identified. The next section describes program activities and outlines their status. Finally, the applicability of departmental policies to NEW programs is summarized, including field and regional activities, commercialization plans, and environmental and socioeconomic implications of waste management activities, and international programs. This Nuclear Waste Management Program Summary Document is meant to serve as a guide to the progress of R and D and other energy technology programs in radioactive waste management. The R and D objective is to provide the Nation with acceptable solutions to short- and long-term management problems for all forms of radioactive waste and spent fuel.

  19. Transmutation of radioactive nuclear waste – present status and ...

    Indian Academy of Sciences (India)

    Transmutation of radioactive nuclear waste – present status and requirement for the problem-oriented nuclear data base. YU A KOROVIN, V V ARTISYUK, A V IGNATYUK1, G B PILNOV,. A YU STANKOVSKY, YU E TITARENKO2 and S G YAVSHITS3. Obninsk State Technical University for Nuclear Power Engineering, 1, ...

  20. Nuclear waste in the anthropocene. Uncertainties and unforeseeable timescales in the disposal of nuclear waste

    Energy Technology Data Exchange (ETDEWEB)

    Brunnengraeber, Achim [Freie Univ. Berlin (Germany). Environmental Policy Research Centre (FFU); Goerg, Christoph [Klagenfurt Univ., Vienna (Austria). Inst. of Social Ecology

    2017-09-01

    From a scientific perspective, in particular following the Working Group on the Anthropocene of the International Commission on Stratigraphy (WGA-ISC), the major challenge for determining the Anthropocene and its start is the search for a ''golden spike''. The WGA-ISC agreed on nuclear fallout from disasters. For a full understanding of the Anthropocene, it however seems necessary to go further than that. We obtain a much broader understanding of the challenges that the new era represents for humanity if we take into account the so-called civilian use of nuclear energy and in particular the challenges posed by nuclear waste - long timescales and scientific uncertainties.

  1. Nuclear waste management. Quarterly progress report, April-June 1980

    Energy Technology Data Exchange (ETDEWEB)

    Platt, A.M.; Powell, J.A. (comps.)

    1980-09-01

    The status of the following programs is reported: high-level waste immobilization; alternative waste forms; Nuclear Waste Materials Characterization Center; TRU waste immobilization; TRU waste decontamination; krypton solidification; thermal outgassing; iodine-129 fixation; monitoring and physical characterization of unsaturated zone transport; well-logging instrumentation development; mobility of organic complexes of fission products in soils; waste management system studies; waste management safety studies; assessment of effectiveness of geologic isolation systems; waste/rock interactions technology; systems study on engineered barriers; criteria for defining waste isolation; spent fuel and fuel pool component integrity program; analysis of spent fuel policy implementation; asphalt emulsion sealing of uranium tailings; application of long-term chemical biobarriers for uranium tailings; and development of backfill material.

  2. Nuclear waste management. Quarterly progress report, October through December 1980

    Energy Technology Data Exchange (ETDEWEB)

    Chikalla, T.D.; Powell, J.A. (comps.)

    1981-03-01

    Progress reports and summaries are presented under the following headings: high-level waste process development; alternative waste forms; nuclear waste materials characterization center; TRU waste immobilization; TRU waste decontamination; krypton solidification; thermal outgassing; iodine-129 fixation; monitoring and physical characterization of unsaturated zone transport; well-logging instrumentation development; mobility of organic complexes of radionuclides in soils; waste management system studies; waste management safety studies; assessment of effectiveness of geologic isolation systems; waste/rock interactions technology; high level waste form preparation; development of backfill material; development of structural engineered barriers; ONWI disposal charge analysis; spent fuel and fuel component integrity program; analysis of spent fuel policy implementation; analysis of postulated criticality events in a storage array of spent LWR fuel; asphalt emulsion sealing of uranium tailings; liner evaluation for uranium mill tailings; multilayer barriers for sealing of uranium tailings; application of long-term chemical biobarriers for uranium tailings; revegetation of inactive uranium tailing sites; verification instrument development.

  3. Financing responsibility for nuclear waste disposal

    International Nuclear Information System (INIS)

    2004-01-01

    The basic premise for financing arrangements for the disposal of nuclear waste is that the nuclear industry - not the taxpayer - must bear the costs. Present regulations, however, are imperfect in this regard. The Inquiry therefore proposes extending the financial liability of the nuclear industry and introducing new fee-setting arrangements. It is proposed that a new law be enacted to regulate these changes. The present financing system is regulated in the 'Financing Act' 1. Under this Act, the licensed owner and operator of a nuclear reactor is required to pay an annual fee and provide guarantees to the State. Four companies are reactor owners. These companies are wholly or partly owned by other companies according to various arrangements. Each reactor owner is responsible for its own dismantling costs and for its share of allocated common costs of disposal and related measures. If there is insufficient money in the funds, the nuclear industry will still be liable. The basic premise of the Inquiry is that the financing system should be designed so as to minimise the risk that the State (and taxpayers) will need to step in and pay. Although the nuclear industry is intended to have full liability for payment, in practice it does not. This is because the formal full liability for payment in the nuclear industry rests with the reactor companies and not where the industry's long-term ability to pay is to be found. Essentially, the present arrangements mean that: - Companies that cannot be expected to have any long-term ability to pay have unlimited liability, and - Companies that can be expected to have an ability to pay have very limited liability. The Inquiry therefore proposes that ability to pay and liability are brought into line by a formal assumption by owning companies of the sort of liability for payment that now rests solely with the reactor companies. This means that the owning company in each group that is best suited to bear the liability for payment

  4. Cement-Based Materials for Nuclear Waste Storage

    CERN Document Server

    Cau-di-Coumes, Céline; Frizon, Fabien; Lorente, Sylvie

    2013-01-01

    As the re-emergence of nuclear power as an acceptable energy source on an international basis continues, the need for safe and reliable ways to dispose of radioactive waste becomes ever more critical. The ultimate goal for designing a predisposal waste-management system depends on producing waste containers suitable for storage, transportation and permanent disposal. Cement-Based Materials for Nuclear-Waste Storage provides a roadmap for the use of cementation as an applied technique for the treatment of low- and intermediate-level radioactive wastes.Coverage includes, but is not limited to, a comparison of cementation with other solidification techniques, advantages of calcium-silicate cements over other materials and a discussion of the long-term suitability and safety of waste packages as well as cement barriers. This book also: Discusses the formulation and production of cement waste forms for storing radioactive material Assesses the potential of emerging binders to improve the conditioning of problemati...

  5. Risk perception as it applies to nuclear power and nuclear waste disposal

    International Nuclear Information System (INIS)

    Sprecher, W.M.

    1988-01-01

    Disparate perceptions of risk have emerged as one of the critical issues confronting the future of commercial nuclear power. This paper explores the origins and possible ramifications of the public's perception of risks associated with commercial nuclear power and related high-level nuclear waste disposal programs. This paper summarizes the results of numerous psychometric studies and public opinion polls that analyze the relationship of risk to nuclear power and waste management

  6. Opinions of the Swedish people on nuclear power and final disposal of nuclear wastes after Chernobyl

    International Nuclear Information System (INIS)

    Holmberg, Soeren

    1988-10-01

    Swedish public opinion, post-Chernobyl, on nuclear power and waste is analyzed and commented. The three main issues are: To what extent did the Chernobyl-accidendt influence the public opinion on nuclear power; How are the opinions on nuclear power connected to sex, age, political preferences; Should disposed high level nuclear waste be retrievable or not. The report is the result of several public opinion surveys. (L.E)

  7. Nuclear waste management: options and implications

    International Nuclear Information System (INIS)

    Bartlett, J.W.

    1976-01-01

    This paper addresses three topics relevant to the technology of waste management: an overview describing the types of waste and the status of technologies used to manage them, a review of high-level waste management, and final disposition of the waste

  8. Program summary. Nuclear waste management and fuel cycle programs

    International Nuclear Information System (INIS)

    1982-07-01

    This Program Summary Document describes the US Department of Energy (DOE) Nuclear Waste Management and Fuel Cycle Programs. Particular emphasis is given to near-term, specifically Fiscal Year (FY) 1982, activities. The overall objective of these programs will be achieved by the demonstration of: (1) safe radioactive waste management practices for storage and disposal of high-level waste and (2) advanced technologies necessary to close the nuclear fuel cycle on a schedule which would assure a healthy future for the development of nuclear power in this country

  9. Formation of public opinion on the question of nuclear waste

    International Nuclear Information System (INIS)

    Asp, K.; Hedberg, P.

    1988-06-01

    The aim of the report is double. Firstly will bases and issues behind the media studies within the research project be presented. Secondly will the empirical investigations which are included in this part of the project be shown. Headings: - The question of nuclear waste - a controversial question. - The mass media as intermediaries of information and opinion. - The information merit of the mass media. The bias of the mass media. - The decision merit of the mass media. - Empirical investigations. * The question of nuclear waste in the news-distribution. * The question of nuclear waste in the public debate. (O.S.)

  10. The disposition of nuclear waste: an integrated international approach

    International Nuclear Information System (INIS)

    Waltar, A.E.

    2001-01-01

    This paper proposes the establishment of a new, globally integrated approach for dealing with spent nuclear fuel (SNF), high-level waste, and plutonium supplies. The end product is envisioned to be a new global agency (tentatively called the International Nuclear Waste Authority, or INWA), which would have the authority to establish and enforce all nuclear waste disposal standards and subsequently execute all financial arrangements appropriate for obtaining full-scale global implementation. We suggest the IAEA as the logical existing organization to facilitate generating the structure for the INWA. (author)

  11. Researches on nuclear wastes: results and outlooks

    International Nuclear Information System (INIS)

    2001-01-01

    In the framework of a sustainable development, the CEA is engaged in the design, evaluation and development of new fuels and in the research process on radioactive wastes management. This paper gathers the CEA actions in the domain giving general information on the radioactive wastes nature and management, the wastes sorting to reduce the toxicity, the wastes conditioning and the packages long-dated behavior and the wastes storage and disposal. (A.L.B.)

  12. Understanding nuclear waste management within a global framework

    International Nuclear Information System (INIS)

    Powell, R.R.; Robinson, M.; Pankratius, W.

    1992-01-01

    Within the past two decades important questions have emerged relative to the increased use of nuclear power worldwide and to the need to store high level radioactive waste from nuclear power plants. Because students in today's classrooms will become future decision-makers and caretakers of both nuclear power plants and radioactive waste repositories, they will be faced with these questions. This paper considers the value of nuclear power and radioactive waste management (RWM) as topics for science classrooms. First, nuclear power as a global educational topic is discussed. Second, the results of the first international workshop on education in the field of RWM are presented. Finally, questions for developing school classroom curriculum materials on nuclear power and RWM are considered

  13. The application of nuclear geophysics method to evaluate the geological environment of nuclear waste repository

    International Nuclear Information System (INIS)

    Fang, Fang; Xiaoqin, Wang; Kuanliang, Li; Xinsheng, Hou; Jingliang, Zhu; Binxin, Hu

    2002-01-01

    'Cleanly land should be given back ground.' This is a task while nuclear engineering have to be retired. We applied the nuclear geophysics methods and combined with geology, hydrology, geochemistry, and other methods, to evaluate the environment of nuclear waste repository. It is the important work to renovate environment and prepare technology before ex-service of the nuclear engineering

  14. Storage of High Level Nuclear Waste in Germany

    Directory of Open Access Journals (Sweden)

    Dietmar P. F. Möller

    2007-01-01

    Full Text Available Nuclear energy is very often used to generate electricity. But first the energy must be released from atoms what can be done in two ways: nuclear fusion and nuclear fission. Nuclear power plants use nuclear fission to produce electrical energy. The electrical energy generated in nuclear power plants does not produce polluting combustion gases but a renewable energy, an important fact that could play a key role helping to reduce global greenhouse gas emissions and tackling global warming especially as the electricity energy demand rises in the years ahead. This could be assumed as an ideal win-win situation, but the reverse site of the medal is that the production of high-level nuclear waste outweighs this advantage. Hence the paper attempt to highlight the possible state-of-art concepts for the safe and sustaining storage of high-level nuclear waste in Germany.

  15. Nuclear Waste Fund fee adequacy: An assessment: Nuclear Waste Policy Act

    International Nuclear Information System (INIS)

    1987-06-01

    The estimated long-term impact of the costs and fees associated with disposal of defense high-level wastes (DHLW) in the Office of Civilian Radioactive Waste Management (OCRWM) repository system is assessed. It is assumed that the DHLW disposal fees paid will provide funds equivalent to the OCRWM costs for disposing of this waste, including interest on costs incurred before the payment of the fee(s) to cover these costs, and the appropriate share of the common costs of the OCRWM waste disposal system. The DHLW disposal fee payments into the Nuclear Waste Fund will be subject to Congressional appropriations. This report is based on the assumptions that the first repository will open in 2003 and the second repository in 2023. In addition, this analysis features an Improved Performance System (IPS), a major component of which is a proposed (but currently unauthorized) Monitored Retrievable Storage (MRS) facility that is assumed to open in 1998. The possibility of adverse developments in inflation and real interest rates should be considered in assessing the findings of this analysis which are based on a cash flow analysis that utilized methods very similar to those employed in previous fee adequacy studies. Revisions were made in the areas of system logistics, repository schedules, real interest rates, inflation rates, and the estimation of costs for design and evaluation work, transportation, and repositories in differing host rocks. The principal recommendation is that the ongoing disposal fee should remain at 1.0 mill per (net) kilowatt-hour (kWh) for 1987 based on the assumption that defense waste fees will be adequate to cover the defense share of the program costs

  16. Introduction - types and quantitites of nuclear waste - principles of waste management

    International Nuclear Information System (INIS)

    Krause, H.

    1982-01-01

    In all areas of the nuclear technology and the application of radioisotopes radioactive wastes are generated. The largest amounts arise in nuclear power plants. The radionuclides contained in these wastes, however, have only relatively short half-lifes as a rule. The highest activities are contained in the wastes from the reprocessing of spent nuclear fuels. Most of these wastes as well as the wastes arising from the fabrication of mixed oxide fuels contain actinides. The amounts and activities of the wastes arising from isotope application are in general small compared to those from the nuclear fuel cycle. Wastes with short-lifed radionuclides need only collection and storage until sufficient decay. Dispersion in the environment is frequently applied for noble gases and tritium. The most frequently applied principle in radioactive waste management, however, is concentration and isolation. Several methods are available for this purpose and will be outlined in the lecture. Mechanical filtration and absorption are often applied for the treatment of exhaust air and off-gases. Liquid effluents are mostly cleaning by evaporation, ion exchange of flocculation prior to re-use or discharge. The resulting residues are unmobilized. Solid wastes can be reduced in volume by incineration or baling. For the long-term isolation (disposal) of the conditioned wastes ground disposal, sea dumping and disposal into deep geological formations are available. Their application depends to some degree on the local conditions and the activity level. The radioactive wastes must meet certain criteria for being suitable to disposal. (orig./RW)

  17. Stakeholder Involvement in Swedish Nuclear Waste Management

    International Nuclear Information System (INIS)

    Elam, Mark; Sundqvist, Goeran

    2006-01-01

    The focus in this paper is on past, current and emerging patterns of stakeholder involvement in the siting of a deep repository for final disposal of Sweden's spent nuclear fuel. In particular, we concentrate on how the two municipalities of Oskarshamn and Oesthammar have acted as engaged stakeholders, and have gained recognition as such, in the siting process. In general: How has stakeholder involvement gained acceptance as an activity of value in the siting of major waste facilities? What are the issues currently subject to stakeholder involvement and how have these been decided upon? An effect of the history of nuclear activity in Oskarshamn and Oesthammar is that stakeholder involvement over a final repository can be divided into social and technical issues. Both municipalities have out of tradition, as part of their social acceptance of a new repository, been prepared to surrender extended involvement in key safety issues. They have been prepared to do this because they also see themselves being able to delegate these safety issues to the government authorities SSI and SKI. These two authorities have been acceptable to the two municipalities as their legitimate 'technological guardians'. As physical geology re-enters the siting process for a deep repository, Oskarshamn appear more prepared to break with tradition than Oesthammar. Oskarshamn are currently demanding transparency from SKB in relation to the exact technical and geological criteria they will use to choose between them and Oesthammar as a repository site. In contrast to Oesthammar, Oskarshamn are preparing with the expected help of SKI and SSI to dispute their geology and its relation to nuclear safety with SKB if they consider it necessary. If Oskarshamn act to draw safety issues in relation to alternative methods and sitings into the EIA process where might this lead? As environmental groups now enter the process (three groups were granted funding in the first round - 2005) the character of site

  18. Demonstration and Dialogue: Mediation in Swedish Nuclear Waste Management

    International Nuclear Information System (INIS)

    Elam, Mark; Lidberg, Maria; Soneryd, Linda; Sundqvist, Goeran

    2009-01-01

    This report analyses mediation and mediators in Swedish nuclear waste management. Mediation is about establishing agreement and building common knowledge. It is argued that demonstrations and dialogue are the two prominent approaches to mediation in Swedish nuclear waste management. Mediation through demonstration is about showing, displaying, and pointing out a path to safe disposal for inspection. It implies a strict division between demonstrator and audience. Mediation through dialogue on the other hand, is about collective acknowledgements of uncertainty and suspensions of judgement creating room for broader discussion. In Sweden, it is the Swedish Nuclear Fuel and Waste Management Co. (SKB) that is tasked with finding a method and a site for the final disposal of the nation's nuclear waste. Two different legislative frameworks cover this process. In accordance with the Act on Nuclear Activities, SKB is required to demonstrate the safety of its planned nuclear waste management system to the government, while in respect of the Swedish Environmental Code, they are obliged to organize consultations with the public. How SKB combines these requirements is the main question under investigation in this report in relation to materials deriving from three empirical settings: 1) SKB's safety analyses, 2) SKB's public consultation activities and 3) the 'dialogue projects', initiated by other actors than SKB broadening the public arena for discussion. In conclusion, an attempt is made to characterise the long- term interplay of demonstration and dialogue in Swedish nuclear waste management

  19. Nuclear incineration method for long life radioactive wastes

    International Nuclear Information System (INIS)

    Matsumoto, Takaaki; Uematsu, Kunihiko.

    1987-01-01

    Nuclear incineration method is the method of converting the long life radioactive nuclides in wastes to short life or stable nuclides by utilizing the nuclear reaction caused by radiation, unlike usual chemical incineration. By the nuclear incineration, the radioactivity of wastes increases in a short period, but the problems at the time of the disposal are reduced because of the decrease of long life radioactive nuclides. As the radiation used for the nuclear incineration, the neutron beam from fission and fusion reactors and accelerators, the proton beam and gamma ray from accelerators have been studied. The object of the nuclear incineration is actinide, Sr-90, Cs-137, I-129 and Tc-99. In particular, waste actinide emits alpha ray, and is strongly toxic, accordingly, the motive of attempting the nuclear incineration is strong. In Japan, about 24t of waste actinide will accumulate by 2000. The principle of the nuclear incineration, and the nuclear incineration using nuclear fission and fusion reactors and accelerators are described. The nuclear incineration using fission reactors was examined for the first time in 1972 in USA. It is most promising because it is feasible by the present technology without particular research and development. (Kako, I.)

  20. Electrical resistivity tomography for early vadose leak detection under single shell storage tanks

    International Nuclear Information System (INIS)

    Narbutovshih, S.M.

    1996-01-01

    This document describes planned testing with Electrical Resistivity Tomography (ERT). It is prepared in support of TTP RL46WT51 Rev. 1, funded by the Tank Focus Area through the Office of Technology Integration. The primary goal of the testing for fiscal year 1996 (FY96) is to develop and demonstrate the ability to place vertical electrode arrays (VEA) with the cone penetrometer technology (CPT) to depths below existing single shell tanks (SST) at the DOE Hanford Site. It is desirable to have the capability to use CPT for this application for obvious reasons. First, current methods of emplacement, drilled boreholes, are expensive with respect to the rest of the ERT operation. Cone penetrometer VEA emplacements offer the opportunity to significantly reduce installation costs. Second, use of CPT will reduce emplacement time from weeks or months to just several days depending on the number of VEAs and the depth of placement. ERT is preferable to other monitoring methods since operation costs and turn around time are less than the current baselines of either groundwater sampling networks or borehole logging techniques. ERT cost savings can be substantial and will continue into the future. ERT can also provide complete coverage under a tank or other facility which is an important supplement to existing monitoring methods. Groundwater sampling provides one data point per well and borehole logging provides data along a line in the ground. Neither provide information from beneath a facility and thus, are not able to locate release points. These electrode arrays are used to acquire subsurface electrical resistance data in a manner appropriate for tomographic inversion. The resulting tomograms can then be used to detect, monitor and track contaminated moisture plumes leaking from underground storage tanks during waste retrieval operations

  1. Safe management of non-nuclear radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Lindhe, J.C. [Swedish Radiation Protection Authority, Stockholm (Sweden)

    2005-09-15

    In May 2002, the Swedish Government set up a non-standing committee for the management of radioactive waste unrelated to nuclear technology i.e. outside the nuclear fuel cycle - in this report called non-nuclear radioactive waste. The objective was to elaborate proposals for a national system for the management of all types of non-nuclear radioactive wastes with special consideration of inter alia the polluter pays principle and the responsibility of the producers. The author was principal secretary in the Committee. The proposals from the Committee was delivered to the Government by December 3, 2003. Funds for future costs for the management and final storage of waste from nuclear power are collected in a state-governed funding system. The power sector pays a flat fee per kilowatt-hour nuclear power. For non-nuclear radioactive waste, however, there are no means today to secure the funding. If a company goes bankrupt and leaves radioactive waste behind it might be up to the taxpayers to pay for its safe management. This is because the holder of the waste is responsible for its disposal. The costs appear at the time of disposal and it is usually the last owner/holder of a radioactive product that has to pay. Sometimes the costs come as a surprise and the owner might not have the money available. Thus the waste might be kept longer than warranted or end up as orphan waste. To solve this dilemma and other weaknesses in the Swedish system the Committee proposes a funding system paralleling the system for nuclear waste. The cost for the waste should be paid up front, i.e. when a customer buys a product using a radioactive source, the cost for the future waste management should be included in the price. In this way the consumer will not have to pay for this the day he disposes of the product by returning it to the original producer or leaving it to some waste treatment organization. It should be the responsibility of the producer (manufacturer, importer) to guarantee

  2. Nuclear waste management and problems arising from constitutional law

    International Nuclear Information System (INIS)

    Rauschning, D.

    1983-01-01

    The author discusses the problems arising in the field of nuclear waste management on account of the constitutional law. Especially the difficulties emanating from the conflict between the provisions of section 9a of the Atomic Energy Act and the provisions of constitutional law are dealt with in detail, referring to the monography of H. Hofmann, 'legal aspects of nuclear waste management'. The author comes to the conclusion that the reqquirements laid down in section 9a-9c of the Atomic Energy Act are in agreement with the Basic law. There is, he says, no unreasonable risk for future generations, as the provisions of the nuclear law provide for sufficient safety of sites and equipment selected for the final storage of nuclear waste, ensuring that radioactive leakage is excluded over long periods of time. In the second part of his lecture, the author discusses the problem of competency and delegation of authority with regard to the reprocessing of radioactive waste. (BW) [de

  3. Delegated Democracy. The Siting of Swedish Nuclear Waste

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, Hanna Sofia [Stockholm Univ., SCORE, SE-106 91 Stockholm (Sweden)

    2009-12-15

    This paper aims to characterise Swedish democracy in connection with the disposal of Swedish nuclear waste. To this end, an analysis is performed to discern which democratic ideals that can be found within the nuclear waste issue. The study analyses various actors' views on democracy and expertise as well as their definitions of the nuclear waste issue, and discusses this from the perspective of democracy theory. Which definitions that become influential has democratic implications. In addition, various actors' possible attempts to help or hinder other actors from gaining influence over the nuclear waste issue in the four municipalities are studied. In connection with the case studies the aim of the paper can be narrowed to comprise the following questions: Which democratic ideals can be found within SKB's siting process during the feasibility studies and in the consultation process during the site investigations? Which democratic ideals were influential during the feasibility studies and in the consultation process?.

  4. Delegated Democracy. The Siting of Swedish Nuclear Waste

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, Hanna Sofia (Stockholm Univ., SCORE, SE-106 91 Stockholm (Sweden))

    2009-12-15

    This paper aims to characterise Swedish democracy in connection with the disposal of Swedish nuclear waste. To this end, an analysis is performed to discern which democratic ideals that can be found within the nuclear waste issue. The study analyses various actors' views on democracy and expertise as well as their definitions of the nuclear waste issue, and discusses this from the perspective of democracy theory. Which definitions that become influential has democratic implications. In addition, various actors' possible attempts to help or hinder other actors from gaining influence over the nuclear waste issue in the four municipalities are studied. In connection with the case studies the aim of the paper can be narrowed to comprise the following questions: Which democratic ideals can be found within SKB's siting process during the feasibility studies and in the consultation process during the site investigations? Which democratic ideals were influential during the feasibility studies and in the consultation process?

  5. Nuclear-waste problems are deemed less technological than institutional

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    Nuclear waste management needs administrative re-organization to separate management, regulation, and research and development responsibilities. New stable, but adaptable, institutions need to be established to clarify criteria for containing and isolating nuclear waste and to ensure that criteria are met. Present structure, which puts much of the temporary responsibility on the private sector and permanent responsibility on ERDA, does not encourage efficiency. Government regulations and public pressure have provided some incentives, but military nuclear wastes have no independent regulation to protect the public, and the states have proved ineffective in regulating commercial operations. Recommendations for reorganization are: (1) to establish a national public corporation to manage high-level and transuranic wastes; (2) to consolidate regulatory authority under a comprehensive Nuclear Regulatory Commission; and (3) to establish a commission within the International Atomic Energy Agency for licensing and review of disposal operations

  6. Delegated Democracy. The Siting of Swedish Nuclear Waste

    International Nuclear Information System (INIS)

    Johansson, Hanna Sofia

    2009-12-01

    This paper aims to characterise Swedish democracy in connection with the disposal of Swedish nuclear waste. To this end, an analysis is performed to discern which democratic ideals that can be found within the nuclear waste issue. The study analyses various actors' views on democracy and expertise as well as their definitions of the nuclear waste issue, and discusses this from the perspective of democracy theory. Which definitions that become influential has democratic implications. In addition, various actors' possible attempts to help or hinder other actors from gaining influence over the nuclear waste issue in the four municipalities are studied. In connection with the case studies the aim of the paper can be narrowed to comprise the following questions: Which democratic ideals can be found within SKB's siting process during the feasibility studies and in the consultation process during the site investigations? Which democratic ideals were influential during the feasibility studies and in the consultation process?

  7. Corrosion process studies in a nuclear waste container

    International Nuclear Information System (INIS)

    Guasp, Ruben A.; Lanzani, Liliana A.; Coronel, Pascual; Bruzzoni, Pablo; Semino, Carlos J.

    1999-01-01

    Latest results on corrosion behavior studies on high activity nuclear waste container are reported. Corrosion evaluation on lead base alloys and modeling to predict carbon steel external container cover generalized corrosion, are the main issues of these studies. (author)

  8. Searching for acceptable solutions to nuclear-waste disposal

    International Nuclear Information System (INIS)

    Bernero, R.M.

    1995-01-01

    Three lettes are presented here, all addressing the problem of nuclear waste disposal. Robert M. Bernero (former director of the Office of Nuclear Material Safety and Safeguards, US NRC) points out there are only 4 options for managing toxic and nuclear waste (recycling, outer space disposal; deep-ocean disposal, geologic disposal) and that the stragegy should prevent people from inadvertently stumbling onto the waste site. Robert Holden (director nuclear Waste Program, National Congress of American Indians) uses Yucca Mountain to illustrate problems and solutions that must be implemented if tribal people's concerns are to be respected. George E. Dials (Manager, Carlsbad Area Office, US DOE) focuses on a positive assessment of WIPP as part of the solution

  9. Seismic safety in nuclear-waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, D.W.; Towse, D.

    1979-04-26

    Seismic safety is one of the factors that must be considered in the disposal of nuclear waste in deep geologic media. This report reviews the data on damage to underground equipment and structures from earthquakes, the record of associated motions, and the conventional methods of seismic safety-analysis and engineering. Safety considerations may be divided into two classes: those during the operational life of a disposal facility, and those pertinent to the post-decommissioning life of the facility. Operational hazards may be mitigated by conventional construction practices and site selection criteria. Events that would materially affect the long-term integrity of a decommissioned facility appear to be highly unlikely and can be substantially avoided by conservative site selection and facility design. These events include substantial fault movement within the disposal facility and severe ground shaking in an earthquake epicentral region. Techniques need to be developed to address the question of long-term earthquake probability in relatively aseismic regions, and for discriminating between active and extinct faults in regions where earthquake activity does not result in surface ruptures.

  10. Seismic safety in nuclear-waste disposal

    International Nuclear Information System (INIS)

    Carpenter, D.W.; Towse, D.

    1979-01-01

    Seismic safety is one of the factors that must be considered in the disposal of nuclear waste in deep geologic media. This report reviews the data on damage to underground equipment and structures from earthquakes, the record of associated motions, and the conventional methods of seismic safety-analysis and engineering. Safety considerations may be divided into two classes: those during the operational life of a disposal facility, and those pertinent to the post-decommissioning life of the facility. Operational hazards may be mitigated by conventional construction practices and site selection criteria. Events that would materially affect the long-term integrity of a decommissioned facility appear to be highly unlikely and can be substantially avoided by conservative site selection and facility design. These events include substantial fault movement within the disposal facility and severe ground shaking in an earthquake epicentral region. Techniques need to be developed to address the question of long-term earthquake probability in relatively aseismic regions, and for discriminating between active and extinct faults in regions where earthquake activity does not result in surface ruptures

  11. Chemistry of nuclear resources, technology, and waste

    International Nuclear Information System (INIS)

    Keller, O.L. Jr.

    1978-01-01

    Chemistry is being called on today to obtain useful results in areas that have been found very difficult for it in the past, but new instrumentation and new theories are allowing much progress. The area of hydrolytic phenomena and colloid chemistry, as exemplified by the plutonium polymer problem, is clearly entering a new phase in which it can be studied in a much more controlled and understandable manner. The same is true of the little studied interfacial regions, where so much important chemistry occurs in solvent extraction and other systems. The studies of the adsorption phenomena on clays are an illustration of the new and useful modeling of geochemical phenomena that is now possible. And finally, the chemist is called upon to participate in the developement and evaluation of models for nuclear waste isolation requiring extrapolations of hundreds to hundreds of thousands of years into the future. It is shown that chemistry may be useful in keeping the extrapolations in the shorter time spans, and also in selecting the best materials for containment. 36 figures

  12. Iron Phosphate Glasses: An Alternative for Vitrifying Certain Nuclear Wastes

    International Nuclear Information System (INIS)

    Day, Delbert E.; Ray, Chandra S.; Cheol-Woon Kim

    2004-01-01

    Vitrification of nuclear waste in a glass is currently the preferred process for waste disposal. DOE currently approves only borosilicate (BS) type glasses for such purposes. However, many nuclear wastes, presently awaiting disposal, have complex and diverse chemical compositions, and often contain components that are poorly soluble or chemically incompatible in BS glasses. Such problematic wastes can be pre-processed and/or diluted to compensate for their incompatibility with a BS glass matrix, but both of these solutions increases the wasteform volume and the overall cost for vitrification. Direct vitrification using alternative glasses that utilize the major components already present in the waste is preferable, since it avoids pre-treating or diluting the waste, and, thus, minimizes the wasteform volume and overall cost

  13. Development of recycling techniques for nuclear power plant decommissioning waste

    International Nuclear Information System (INIS)

    Ishikura, Takeshi; Oguri, Daiichiro; Abe, Seiji; Ohnishi, Kazuhiko

    2003-01-01

    Recycling of concrete and metal waste will provide solution to reduce waste volume, contributing to save the natural resources and to protect the environment. Nuclear Power Engineering Corporation has developed techniques of concrete and metal recycling for decommissioning waste of commercial nuclear power plants. A process of radioactive concrete usage for mortar solidification was seen to reduce concrete waste volume by 2/3. A concrete reclamation process for high quality aggregate was confirmed that the reclaimed aggregate concrete is equivalent to ordinary concrete. Its byproduct powder was seen to be utilized various usage. A process of waste metal casting to use radioactive metal as filler could substantially decrease the waste metal volume when thinner containers are applied. A pyro-metallurgical separation process was seen to decrease cobalt concentration by 1/100. Some of these techniques are finished of demonstration tests for future decommissioning activity. (author)

  14. Iron Phosphate Glasses: An Alternative for Vitrifying Certain Nuclear Wastes

    Energy Technology Data Exchange (ETDEWEB)

    Delbert E. Day; Chandra S. Ray; Cheol-Woon Kim

    2004-12-28

    Vitrification of nuclear waste in a glass is currently the preferred process for waste disposal. DOE currently approves only borosilicate (BS) type glasses for such purposes. However, many nuclear wastes, presently awaiting disposal, have complex and diverse chemical compositions, and often contain components that are poorly soluble or chemically incompatible in BS glasses. Such problematic wastes can be pre-processed and/or diluted to compensate for their incompatibility with a BS glass matrix, but both of these solutions increases the wasteform volume and the overall cost for vitrification. Direct vitrification using alternative glasses that utilize the major components already present in the waste is preferable, since it avoids pre-treating or diluting the waste, and, thus, minimizes the wasteform volume and overall cost.

  15. The role of the operator of nuclear power plants in disposal of nuclear waste

    International Nuclear Information System (INIS)

    Chaussade, J.P.

    1995-01-01

    Public opinion polls show that the French have largely understood the importance of our nuclear programme in maintaining French independence with regard to power supply and its security and that they have confidence in the technicians for the proper construction and operation of these power plants, but that they retain many questions concerning the disposal of nuclear waste. They have the impression that solutions remain to be found, and especially that the Electricite de France (EDF) devised the nuclear power programme without concern for the disposal of waste. This lack of information is fortunately far from reality, EDF, under the supervision of the security authorities, manages the waste produced in the nuclear power plants. Final stocking of waste is handled by a body that is independent of the waste producer, the ''Agence nationale pour la gestion des dechets radioactifs'' (Andra) (National Agency for the Management of Radioactive Waste). (author). 7 refs., 1 tab

  16. Nuclear waste: attitudes and risk experience

    International Nuclear Information System (INIS)

    Sjoeberg, L.

    1988-01-01

    The lecture is presented under the following headings: - Risk, benefit, and 'voluntariness'. - Risk and moral. - Future. - Reactions to risks from waste. - Background data and attitudes to wastes. - Experts and the public. (39 refs.) (O.S.)

  17. Underlying chemistry research for the nuclear fuel waste management program

    International Nuclear Information System (INIS)

    Torgerson, D.F.; Sagert, N.H.; Shoesmith, D.W.; Taylor, P.

    1984-04-01

    This document reviews the underlying chemistry research part of the Canadian Nuclear Fuel Waste Management Program, carried out in the Research Chemistry Branch. This research is concerned with developing the basic chemical knowledge and under-standing required in other parts of the Program. There are four areas of underlying research: Waste Form Chemistry, Solute and Solution Chemistry, Rock-Water-Waste Interactions, and Abatement and Monitoring of Gas-Phase Radionuclides

  18. Management of radioactive wastes from nuclear power plants

    International Nuclear Information System (INIS)

    Dlouhy, Z.

    1977-01-01

    In the present paper the main emphasis will be laid on wastes from nuclear power stations, on the ways of their processing and final storage, from the viewpoint of man safety and environmental protection, above all that of feed and drinking water sources. Wastes from uranium ore extraction and processing and spent fuel wastes processing must be also mentioned in short. (orig./RW) [de

  19. Geologic disposal of nuclear wastes: salt's lead is challenged

    International Nuclear Information System (INIS)

    Kerr, R.A.

    1979-01-01

    The types of radioactive waste disposal sites available are outlined. The use of salt deposits and their advantages are discussed. The reasons for the selection of the present site for the Waste Isolation Pilot Plant are presented. The possibilities of using salt domes along the Gulf Coast and not-salt rocks as nuclear waste repositories are also discussed. The sea bed characteristics are described and advantages of this type of site selection are presented

  20. Benefits and risks of P & T of nuclear waste

    Energy Technology Data Exchange (ETDEWEB)

    Abrahams, K. [Netherlands Energy Research Foundation, Petten (Netherlands)

    1995-10-01

    Efforts on waste transmutation are coordinated in a research programme called RAS. One of the aims of this RAS program is to inform the public and advise the authorities on methods for transmutation/conditioning of nuclear waste, and on techniques which are being developed. Such new procedures for the treatment of waste should of course not lead to significant risks for the present population. Small risks might be accepted, but these should sufficiently be compensated for by favours to future generations.