WorldWideScience

Sample records for single-shaft electric propulsion

  1. Electric vehicle propulsion alternatives

    Science.gov (United States)

    Secunde, R. R.; Schuh, R. M.; Beach, R. F.

    1983-01-01

    Propulsion technology development for electric vehicles is summarized. Analytical studies, technology evaluation, and the development of technology for motors, controllers, transmissions, and complete propulsion systems are included.

  2. The USAF Electric Propulsion Program

    National Research Council Canada - National Science Library

    Spores, Ronald

    1999-01-01

    ...: Propulsion Directorate and Air Force Office of Scientific Research (AFOSR). The Propulsion Directorate conducts electric propulsion efforts in basic research, engineering development, and space experiments...

  3. NASA Electric Propulsion System Studies

    Science.gov (United States)

    Felder, James L.

    2015-01-01

    An overview of NASA efforts in the area of hybrid electric and turboelectric propulsion in large transport. This overview includes a list of reasons why we are looking at transmitting some or all of the propulsive power for the aircraft electrically, a list of the different types of hybrid-turbo electric propulsion systems, and the results of 4 aircraft studies that examined different types of hybrid-turbo electric propulsion systems.

  4. Electric Propulsion Research Building (EPRB)

    Data.gov (United States)

    Federal Laboratory Consortium — The Electric Propulsion Research Building (EPRB) capability centers on its suite of vacuum chambers, which are configured to meet the unique requirements related to...

  5. Reactors for nuclear electric propulsion

    Energy Technology Data Exchange (ETDEWEB)

    Buden, D.; Angelo, J.A. Jr.

    1981-01-01

    Propulsion is the key to space exploitation and power is the key to propulsion. This paper examines the role of nuclear fission reactors as the primary power source for high specific impulse electric propulsion systems for space missions of the 1980s and 1990s. Particular mission applications include transfer to and a reusable orbital transfer vehicle from low-Earth orbit to geosynchronous orbit, outer planet exploration and reconnaissance missions, and as a versatile space tug supporting lunar resource development. Nuclear electric propulsion is examined as an indispensable component in space activities of the next two decades.

  6. Reactors for nuclear electric propulsion

    International Nuclear Information System (INIS)

    Buden, D.; Angelo, J.A. Jr.

    1981-01-01

    Propulsion is the key to space exploitation and power is the key to propulsion. This paper examines the role of nuclear fission reactors as the primary power source for high specific impulse electric propulsion systems for space missions of the 1980s and 1990s. Particular mission applications include transfer to and a reusable orbital transfer vehicle from low-Earth orbit to geosynchronous orbit, outer planet exploration and reconnaissance missions, and as a versatile space tug supporting lunar resource development. Nuclear electric propulsion is examined as an indispensable component in space activities of the next two decades

  7. Enabling Electric Propulsion for Flight

    Science.gov (United States)

    Ginn, Starr Renee

    2015-01-01

    Team Seedling project AFRC and LaRC 31ft distributed electric propulsion wing on truck bed up 75 miles per hour for coefficient of lift validation. Convergent Aeronautic Solutions project, sub-project Convergent Electric Propulsion Technologies AFRC, LaRC and GRC, re-winging a 4 passenger Tecnam aircraft with a 31ft distributed electric propulsion wing. Advanced Air Transport Technologies (Fixed Wing), Hybrid Electric Research Theme, developing a series hybrid ironbird and flight sim to study integration and performance challenges in preparation for a 1-2 MW flight project.

  8. Nuclear-microwave-electric propulsion

    International Nuclear Information System (INIS)

    Nordley, G.D.; Brown, W.C.

    1986-01-01

    Electric propulsion can move more mass through space than chemical propulsion by virtue of the higher exhaust velocities achieved by electric propulsion devices. This performance is achieved at the expense of very heavy power sources or very long trip times, which in turn create technical and economic penalties of varying severity. These penalties include: higher operations costs, delayed availability of the payload, and increased exposure to Van Allen Belt radiation. It is proposed to reduce these penalties by physically separating the power source from the propulsion and use microwave energy beaming technology, recently explored and partially developed/tested for Solar Power Satellite concept studies, as an extension cord. This paper summarizes the state of the art of the technology needed for space based beam microwave power cost/performance trades involved with the use beamed microwave/electric propulsion for some typical orbit transfer missions and offers some suggestions for additional work

  9. Lunar Robotic Precursor Missions Using Electric Propulsion

    OpenAIRE

    Winski, Richard G.

    2006-01-01

    A trade study is carried out for the design of electric propulsion based lunar robotic precursor missions. The focus is to understand the relationships between payload mass delivered, electric propulsion power, and trip time. The results are compared against a baseline system using chemical propulsion with LOX/H2. The major differences between the chemical propulsion based and electric propulsion based systems are presented in terms of the payload mass and trip time. It is shown that solar e...

  10. Solar Electric Propulsion Technology Development for Electric Propulsion

    Science.gov (United States)

    Mercer, Carolyn R.; Kerslake, Thomas W.; Scheidegger, Robert J.; Woodworth, Andrew A.; Lauenstein, Jean-Marie

    2015-01-01

    NASA is developing technologies to prepare for human exploration missions to Mars. Solar electric propulsion (SEP) systems are expected to enable a new cost effective means to deliver cargo to the Mars surface. Nearer term missions to Mars moons or near-Earth asteroids can be used to both develop and demonstrate the needed technology for these future Mars missions while demonstrating new capabilities in their own right. This presentation discusses recent technology development accomplishments for high power, high voltage solar arrays and power management that enable a new class of SEP missions.

  11. Power processing for electric propulsion

    Science.gov (United States)

    Finke, R. C.; Herron, B. G.; Gant, G. D.

    1975-01-01

    The potential of achieving up to 30 per cent more spacecraft payload or 50 per cent more useful operating life by the use of electric propulsion in place of conventional cold gas or hydrazine systems in science, communications, and earth applications spacecraft is a compelling reason to consider the inclusion of electric thruster systems in new spacecraft design. The propulsion requirements of such spacecraft dictate a wide range of thruster power levels and operational lifetimes, which must be matched by lightweight, efficient, and reliable thruster power processing systems. This paper will present electron bombardment ion thruster requirements; review the performance characteristics of present power processing systems; discuss design philosophies and alternatives in areas such as inverter type, arc protection, and control methods; and project future performance potentials for meeting goals in the areas of power processor weight (10 kg/kW), efficiency (approaching 92 per cent), reliability (0.96 for 15,000 hr), and thermal control capability (0.3 to 5 AU).

  12. Propulsion Wheel Motor for an Electric Vehicle

    Science.gov (United States)

    Figuered, Joshua M. (Inventor); Herrera, Eduardo (Inventor); Waligora, Thomas M. (Inventor); Bluethmann, William J. (Inventor); Farrell, Logan Christopher (Inventor); Lee, Chunhao J. (Inventor); Vitale, Robert L. (Inventor); Winn, Ross Briant (Inventor); Eggleston, IV, Raymond Edward (Inventor); Guo, Raymond (Inventor); hide

    2016-01-01

    A wheel assembly for an electric vehicle includes a wheel rim that is concentrically disposed about a central axis. A propulsion-braking module is disposed within an interior region of the wheel rim. The propulsion-braking module rotatably supports the wheel rim for rotation about the central axis. The propulsion-braking module includes a liquid cooled electric motor having a rotor rotatable about the central axis, and a stator disposed radially inside the rotor relative to the central axis. A motor-wheel interface hub is fixedly attached to the wheel rim, and is directly attached to the rotor for rotation with the rotor. The motor-wheel interface hub directly transmits torque from the electric motor to the wheel rim at a 1:1 ratio. The propulsion-braking module includes a drum brake system having an electric motor that rotates a cam device, which actuates the brake shoes.

  13. Electric Motors for Vehicle Propulsion

    OpenAIRE

    Larsson, Martin

    2014-01-01

    This work is intended to contribute with knowledge to the area of electic motorsfor propulsion in the vehicle industry. This is done by first studying the differentelectric motors available, the motors suitable for vehicle propulsion are then dividedinto four different types to be studied separately. These four types are thedirect current, induction, permanent magnet and switched reluctance motors. Thedesign and construction are then studied to understand how the different typesdiffer from ea...

  14. In-Space Propulsion Technology Program Solar Electric Propulsion Technologies

    Science.gov (United States)

    Dankanich, John W.

    2006-01-01

    NASA's In-space Propulsion (ISP) Technology Project is developing new propulsion technologies that can enable or enhance near and mid-term NASA science missions. The Solar Electric Propulsion (SEP) technology area has been investing in NASA s Evolutionary Xenon Thruster (NEXT), the High Voltage Hall Accelerator (HiVHAC), lightweight reliable feed systems, wear testing, and thruster modeling. These investments are specifically targeted to increase planetary science payload capability, expand the envelope of planetary science destinations, and significantly reduce the travel times, risk, and cost of NASA planetary science missions. Status and expected capabilities of the SEP technologies are reviewed in this presentation. The SEP technology area supports numerous mission studies and architecture analyses to determine which investments will give the greatest benefit to science missions. Both the NEXT and HiVHAC thrusters have modified their nominal throttle tables to better utilize diminished solar array power on outbound missions. A new life extension mechanism has been implemented on HiVHAC to increase the throughput capability on low-power systems to meet the needs of cost-capped missions. Lower complexity, more reliable feed system components common to all electric propulsion (EP) systems are being developed. ISP has also leveraged commercial investments to further validate new ion and hall thruster technologies and to potentially lower EP mission costs.

  15. Electric rail gun application to space propulsion

    International Nuclear Information System (INIS)

    Barber, J.P.

    1979-01-01

    The paper examines the possibility of using the DC electric gun principles as a space vehicle propulsion system, capable of producing intermediate thrust levels. The application of an electromagnetic launch technique, called the DC electric rail gun, to the space propulsion concept of O'Neill, is examined. It is determined that the DC electric rail gun offers very high projectile accelerations and a very significant potential for reducing the size and mass of a reaction motor for space application. A detailed description of rail gun principles is given and some simple expressions for the accelerating force, gun impedance, power supply requirements, and system performance are discussed

  16. NASA program planning on nuclear electric propulsion

    International Nuclear Information System (INIS)

    Bennett, G.L.; Miller, T.J.

    1992-03-01

    As part of the focused technology planning for future NASA space science and exploration missions, NASA has initiated a focused technology program to develop the technologies for nuclear electric propulsion and nuclear thermal propulsion. Beginning in 1990, NASA began a series of interagency planning workshops and meetings to identify key technologies and program priorities for nuclear propulsion. The high-priority, near-term technologies that must be developed to make NEP operational for space exploration include scaling thrusters to higher power, developing high-temperature power processing units, and developing high power, low-mass, long-lived nuclear reactors. 28 refs

  17. Solar electric propulsion for Mars transport vehicles

    Science.gov (United States)

    Hickman, J. M.; Curtis, H. B.; Alexander, S. W.; Gilland, J. H.; Hack, K. J.; Lawrence, C.; Swartz, C. K.

    1990-01-01

    Solar electric propulsion (SEP) is an alternative to chemical and nuclear powered propulsion systems for both piloted and unpiloted Mars transport vehicles. Photovoltaic solar cell and array technologies were evaluated as components of SEP power systems. Of the systems considered, the SEP power system composed of multijunction solar cells in an ENTECH domed fresnel concentrator array had the least array mass and area. Trip times to Mars optimized for minimum propellant mass were calculated. Additionally, a preliminary vehicle concept was designed.

  18. MW-Class Electric Propulsion System Designs

    Science.gov (United States)

    LaPointe, Michael R.; Oleson, Steven; Pencil, Eric; Mercer, Carolyn; Distefano, Salvador

    2011-01-01

    Electric propulsion systems are well developed and have been in commercial use for several years. Ion and Hall thrusters have propelled robotic spacecraft to encounters with asteroids, the Moon, and minor planetary bodies within the solar system, while higher power systems are being considered to support even more demanding future space science and exploration missions. Such missions may include orbit raising and station-keeping for large platforms, robotic and human missions to near earth asteroids, cargo transport for sustained lunar or Mars exploration, and at very high-power, fast piloted missions to Mars and the outer planets. The Advanced In-Space Propulsion Project, High Efficiency Space Power Systems Project, and High Power Electric Propulsion Demonstration Project were established within the NASA Exploration Technology Development and Demonstration Program to develop and advance the fundamental technologies required for these long-range, future exploration missions. Under the auspices of the High Efficiency Space Power Systems Project, and supported by the Advanced In-Space Propulsion and High Power Electric Propulsion Projects, the COMPASS design team at the NASA Glenn Research Center performed multiple parametric design analyses to determine solar and nuclear electric power technology requirements for representative 300-kW class and pulsed and steady-state MW-class electric propulsion systems. This paper describes the results of the MW-class electric power and propulsion design analysis. Starting with the representative MW-class vehicle configurations, and using design reference missions bounded by launch dates, several power system technology improvements were introduced into the parametric COMPASS simulations to determine the potential system level benefits such technologies might provide. Those technologies providing quantitative system level benefits were then assessed for technical feasibility, cost, and time to develop. Key assumptions and primary

  19. NASA's nuclear electric propulsion technology project

    International Nuclear Information System (INIS)

    Stone, J.R.; Sovey, J.S.

    1992-07-01

    The National Aeronautics and Space Administration (NASA) has initiated a program to establish the readiness of nuclear electric propulsion (NEP) technology for relatively near-term applications to outer planet robotic science missions with potential future evolution to system for piloted Mars vehicles. This program was initiated in 1991 with a very modest effort identified with nuclear thermal propulsion (NTP); however, NEP is also an integral part of this program and builds upon NASA's Base Research and Technology Program in power and electric propulsion as well as the SP-100 space nuclear power program. The NEP Program will establish the feasibility and practicality of electric propulsion for robotic and piloted solar system exploration. The performance objectives are high specific impulse (200 greater than I(sub sp) greater than 10000 s), high efficiency (over 0.50), and low specific mass. The planning for this program was initially focussed on piloted Mars missions, but has since been redirected to first focus on 100-kW class systems for relatively near-term robotic missions, with possible future evolution to megawatt-and multi-megawatt-class systems applicable to cargo vehicles supporting human missions as well as to the piloted vehicles. This paper reviews current plans and recent progress for the overall nuclear electric propulsion project and closely related activities. 33 refs

  20. Hybrid Electric Propulsion Technologies for Commercial Transports

    Science.gov (United States)

    Bowman, Cheryl; Jansen, Ralph; Jankovsky, Amy

    2016-01-01

    NASA Aeronautics Research Mission Directorate has set strategic research thrusts to address the major drivers of aviation such as growth in demand for high-speed mobility, addressing global climate and capitalizing in the convergence of technological advances. Transitioning aviation to low carbon propulsion is one of the key strategic research thrust and drives the search for alternative and greener propulsion system for advanced aircraft configurations. This work requires multidisciplinary skills coming from multiple entities. The Hybrid Gas-Electric Subproject in the Advanced Air Transportation Project is energizing the transport class landscape by accepting the technical challenge of identifying and validating a transport class aircraft with net benefit from hybrid propulsion. This highly integrated aircraft of the future will only happen if airframe expertise from NASA Langley, modeling and simulation expertise from NASA Ames, propulsion expertise from NASA Glenn, and the flight research capabilities from NASA Armstrong are brought together to leverage the rich capabilities of U.S. Industry and Academia.

  1. Visions of the Future: Hybrid Electric Aircraft Propulsion

    Science.gov (United States)

    Bowman, Cheryl L.

    2016-01-01

    The National Aeronautics and Space Administration (NASA) is investing continually in improving civil aviation. Hybridization of aircraft propulsion is one aspect of a technology suite which will transform future aircraft. In this context, hybrid propulsion is considered a combination of traditional gas turbine propulsion and electric drive enabled propulsion. This technology suite includes elements of propulsion and airframe integration, parallel hybrid shaft power, turbo-electric generation, electric drive systems, component development, materials development and system integration at multiple levels.

  2. New propulsion components for electric vehicles

    Science.gov (United States)

    Secunde, R. R.

    1983-01-01

    Improved component technology is described. This includes electronically commutated permanent magnet motors of both drum and disk configurations, an unconventional brush commutated motor, ac induction motors, various controllers, transmissions and complete systems. One or more of these approaches to electric vehicle propulsion may eventually displace presently used controllers and brush commutated dc motors. Previously announced in STAR as N83-25982

  3. Evolutionary use of nuclear electric propulsion

    International Nuclear Information System (INIS)

    Hack, K.J.; George, J.A.; Riehl, J.P.; Gilland, J.H.

    1990-01-01

    Evolving new propulsion technologies through a rational and conscious effort to minimize development costs and program risks while maximizing the performance benefits is intuitively practical. A phased approach to the evolution of nuclear electric propulsion from use on planetary probes, to lunar cargo vehicles, and finally to manned Mars missions with a concomitant growth in technology is considered. Technology levels and system component makeup are discussed for nuclear power systems and both ion and magnetoplasmadynamic thrusters. Mission scenarios are described, which include analysis of a probe to Pluto, a lunar cargo mission, Martian split, all-up, and quick-trip mission options. Evolutionary progression of the use of NEP in such missions is discussed. 26 refs

  4. ac propulsion system for an electric vehicle

    Science.gov (United States)

    Geppert, S.

    1980-01-01

    It is pointed out that dc drives will be the logical choice for current production electric vehicles (EV). However, by the mid-80's, there is a good chance that the price and reliability of suitable high-power semiconductors will allow for a competitive ac system. The driving force behind the ac approach is the induction motor, which has specific advantages relative to a dc shunt or series traction motor. These advantages would be an important factor in the case of a vehicle for which low maintenance characteristics are of primary importance. A description of an EV ac propulsion system is provided, taking into account the logic controller, the inverter, the motor, and a two-speed transmission-differential-axle assembly. The main barrier to the employment of the considered propulsion system in EV is not any technical problem, but inverter transistor cost.

  5. NASA's progress in nuclear electric propulsion technology

    International Nuclear Information System (INIS)

    Stone, J.R.; Doherty, M.P.; Peecook, K.M.

    1993-01-01

    The National Aeronautics and Space Administration (NASA) has established a requirement for Nuclear Electric Propulsion (NEP) technology for robotic planetary science mission applications with potential future evolution to systems for piloted Mars vehicles. To advance the readiness of NEP for these challenging missions, a near-term flight demonstration on a meaningful robotic science mission is very desirable. The requirements for both near-term and outer planet science missions are briefly reviewed, and the near-term baseline system established under a recent study jointly conducted by the Lewis Research Center (LeRC) and the Jet Propulsion Laboratory (JPL) is described. Technology issues are identified where work is needed to establish the technology for the baseline system, and technology opportunities which could provide improvement beyond baseline capabilities are discussed. Finally, the plan to develop this promising technology is presented and discussed. 19 refs

  6. Status report on nuclear electric propulsion systems

    Science.gov (United States)

    Stearns, J. W.

    1975-01-01

    Progress in nuclear electric propulsion (NEP) systems for a multipayload multimission vehicle needed in both deep-space missions and a variety of geocentric missions is reviewed. The space system power level is a function of the initial launch vehicle mass, but developments in out-of-core nuclear thermionic direct conversion have broadened design options. Cost, design, and performance parameters are compared for reusable chemical space tugs and NEP reusable space tugs. Improvements in heat pipes, ion engines, and magnetoplasmadynamic arc jet thrust subsystems are discussed.

  7. Hybrid-electric propulsion for automotive and aviation applications

    OpenAIRE

    Friedrich, C; Robertson, Paul Andrew

    2014-01-01

    In parallel with the automotive industry, hybrid-electric propulsion is becoming a viable alternative propulsion technology for the aviation sector and reveals potential advantages including fuel savings, lower pollution, and reduced noise emission. Hybrid-electric propulsion systems can take advantage of the synergy between two technologies by utilizing both internal combustion engines and electric motors together, each operating at their respective optimum conditions...

  8. Algorithms for computing efficient, electric-propulsion, spiralling trajectories

    Data.gov (United States)

    National Aeronautics and Space Administration — Develop techniques for rapidly designing many-revolution, electric-propulsion, spiralling trajectories, including the effects of shadowing, gravity harmonics, and...

  9. Electric Propulsion Induced Secondary Mass Spectroscopy

    Science.gov (United States)

    Amini, Rashied; Landis, Geoffrey

    2012-01-01

    A document highlights a means to complement remote spectroscopy while also providing in situ surface samples without a landed system. Historically, most compositional analysis of small body surfaces has been done remotely by analyzing reflection or nuclear spectra. However, neither provides direct measurement that can unambiguously constrain the global surface composition and most importantly, the nature of trace composition and second-phase impurities. Recently, missions such as Deep Space 1 and Dawn have utilized electric propulsion (EP) accelerated, high-energy collimated beam of Xe+ ions to propel deep space missions to their target bodies. The energies of the Xe+ are sufficient to cause sputtering interactions, which eject material from the top microns of a targeted surface. Using a mass spectrometer, the sputtered material can be determined. The sputtering properties of EP exhaust can be used to determine detailed surface composition of atmosphereless bodies by electric propulsion induced secondary mass spectroscopy (EPI-SMS). EPI-SMS operation has three high-level requirements: EP system, mass spectrometer, and altitude of about 10 km. Approximately 1 keV Xe+ has been studied and proven to generate high sputtering yields in metallic substrates. Using these yields, first-order calculations predict that EPI-SMS will yield high signal-to-noise at altitudes greater than 10 km with both electrostatic and Hall thrusters.

  10. Recent advances in nuclear powered electric propulsion for space exploration

    International Nuclear Information System (INIS)

    Cassady, R. Joseph; Frisbee, Robert H.; Gilland, James H.; Houts, Michael G.; LaPointe, Michael R.; Maresse-Reading, Colleen M.; Oleson, Steven R.; Polk, James E.; Russell, Derrek; Sengupta, Anita

    2008-01-01

    Nuclear and radioisotope powered electric thrusters are being developed as primary in space propulsion systems for potential future robotic and piloted space missions. Possible applications for high-power nuclear electric propulsion include orbit raising and maneuvering of large space platforms, lunar and Mars cargo transport, asteroid rendezvous and sample return, and robotic and piloted planetary missions, while lower power radioisotope electric propulsion could significantly enhance or enable some future robotic deep space science missions. This paper provides an overview of recent US high-power electric thruster research programs, describing the operating principles, challenges, and status of each technology. Mission analysis is presented that compares the benefits and performance of each thruster type for high priority NASA missions. The status of space nuclear power systems for high-power electric propulsion is presented. The paper concludes with a discussion of power and thruster development strategies for future radioisotope electric propulsion systems

  11. Recent advances in nuclear powered electric propulsion for space exploration

    Energy Technology Data Exchange (ETDEWEB)

    Cassady, R. Joseph [Aerojet Corp., Redmond, CA (United States); Frisbee, Robert H. [Jet Propulsion Laboratory, Pasadena, CA (United States); Gilland, James H. [Ohio Aerospace Institute, Cleveland, OH (United States); Houts, Michael G. [NASA Marshall Space Flight Center, Huntsville, AL 35812 (United States); LaPointe, Michael R. [NASA Marshall Space Flight Center, Huntsville, AL 35812 (United States)], E-mail: michael.r.lapointe@nasa.gov; Maresse-Reading, Colleen M. [Jet Propulsion Laboratory, Pasadena, CA (United States); Oleson, Steven R. [NASA Glenn Research Center, Cleveland, OH (United States); Polk, James E. [Jet Propulsion Laboratory, Pasadena, CA (United States); Russell, Derrek [Northrop Grumman Space Technology, Redondo Beach, CA (United States); Sengupta, Anita [Jet Propulsion Laboratory, Pasadena, CA (United States)

    2008-03-15

    Nuclear and radioisotope powered electric thrusters are being developed as primary in space propulsion systems for potential future robotic and piloted space missions. Possible applications for high-power nuclear electric propulsion include orbit raising and maneuvering of large space platforms, lunar and Mars cargo transport, asteroid rendezvous and sample return, and robotic and piloted planetary missions, while lower power radioisotope electric propulsion could significantly enhance or enable some future robotic deep space science missions. This paper provides an overview of recent US high-power electric thruster research programs, describing the operating principles, challenges, and status of each technology. Mission analysis is presented that compares the benefits and performance of each thruster type for high priority NASA missions. The status of space nuclear power systems for high-power electric propulsion is presented. The paper concludes with a discussion of power and thruster development strategies for future radioisotope electric propulsion systems.

  12. A Future with Hybrid Electric Propulsion Systems: A NASA Perspective

    Science.gov (United States)

    DelRosario, Ruben

    2014-01-01

    The presentation highlights a NASA perspective on Hybrid Electric Propulsion Systems for aeronautical applications. Discussed are results from NASA Advance Concepts Study for Aircraft Entering service in 2030 and beyond and the potential use of hybrid electric propulsion systems as a potential solution to the requirements for energy efficiency and environmental compatibility. Current progress and notional potential NASA research plans are presented.

  13. Power Processing Unit For Micro Satellite Electric Propulsion System

    Directory of Open Access Journals (Sweden)

    Savvas Spiridon

    2017-01-01

    Full Text Available The Micro Satellite Electric Propulsion System (MEPS program has been originated by the increasing need to provide a low-cost and low-power Electric Propulsion System (EPS for small satellites ( 92%, small size and weight and high reliability. Its functional modules and preliminary results obtained at breadboard level are also presented.

  14. Configurations of hybrid-electric cars propulsion systems

    OpenAIRE

    Cundev, Dobri; Sarac, Vasilija; Stefanov, Goce

    2011-01-01

    Over the last few years, hybrid electric cars have taken significant role in automotive market. There are successful technological solutions of hybrid-electric propulsion systems implemented in commercial passenger cars. Every automobile manufacturer of hybrid vehicles has unique hybrid propulsion system. In this paper, all implemented systems are described, analyzed and compared.

  15. Misconceptions of Electric Propulsion Aircraft and Their Emergent Aviation Markets

    Science.gov (United States)

    Moore, Mark D.; Fredericks, Bill

    2014-01-01

    Over the past several years there have been aircraft conceptual design and system studies that have reached conflicting conclusions relating to the feasibility of full and hybrid electric aircraft. Some studies and propulsion discipline experts have claimed that battery technologies will need to improve by 10 to 20 times before electric aircraft can effectively compete with reciprocating or turbine engines. However, such studies have approached comparative assessments without understanding the compelling differences that electric propulsion offers, how these technologies will fundamentally alter the way propulsion integration is approached, or how these new technologies can not only compete but far exceed existing propulsion solutions in many ways at battery specific energy densities of only 400 watt hours per kilogram. Electric propulsion characteristics offer the opportunity to achieve 4 to 8 time improvements in energy costs with dramatically lower total operating costs, while dramatically improving efficiency, community noise, propulsion system reliability and safety through redundancy, as well as life cycle Green House Gas emissions. Integration of electric propulsion will involve far greater degrees of distribution than existing propulsion solutions due to their compact and scale-free nature to achieve multi-disciplinary coupling and synergistic integration with the aerodynamics, highlift system, acoustics, vehicle control, balance, and aeroelasticity. Appropriate metrics of comparison and differences in analysis/design tools are discussed while comparing electric propulsion to other disruptive technologies. For several initial applications, battery energy density is already sufficient for competitive products, and for many additional markets energy densities will likely be adequate within the next 7 years for vibrant introduction. Market evolution and early adopter markets are discussed, along with the investment areas that will fill technology gaps and

  16. Sputter-Resistant Materials for Electric Propulsion, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase 2 project shall develop sputter-resistant materials for use in electric propulsion test facilities and for plume shields on spacecraft using electric...

  17. An analytical optimization method for electric propulsion orbit transfer vehicles

    International Nuclear Information System (INIS)

    Oleson, S.R.

    1993-01-01

    Due to electric propulsion's inherent propellant mass savings over chemical propulsion, electric propulsion orbit transfer vehicles (EPOTVs) are a highly efficient mode of orbit transfer. When selecting an electric propulsion device (ion, MPD, or arcjet) and propellant for a particular mission, it is preferable to use quick, analytical system optimization methods instead of time intensive numerical integration methods. It is also of interest to determine each thruster's optimal operating characteristics for a specific mission. Analytical expressions are derived which determine the optimal specific impulse (Isp) for each type of electric thruster to maximize payload fraction for a desired thrusting time. These expressions take into account the variation of thruster efficiency with specific impulse. Verification of the method is made with representative electric propulsion values on a LEO-to-GEO mission. Application of the method to specific missions is discussed

  18. Reactor design for nuclear electric propulsion

    International Nuclear Information System (INIS)

    Koenig, D.R.; Ranken, W.A.

    1979-01-01

    Conceptual design studies of a nuclear power plant for electric propulsion of spacecrafts have been on going for several years. An attractive concept which has evolved from these studies and which has been described in previous publications, is a heat-pipe cooled, fast spectrum nuclear reactor that provides 3 MW of thermal energy to out-of-core thermionic converters. The primary motivation for using heat pipes is to provide redundancy in the core cooling system that is not available in gas or liquid-metal cooled reactors. Detailed investigation of the consequences of heat pipe failures has resulted in modifications to the basic reactor design and has led to consideration of an entirely different core design. The new design features an integral laminated core configuration consisting of alternating layers of UO 2 and molybdenum sheets that span the entire diameter of the core. Design characteristics are presented and compared for the two reactors

  19. Nuclear modules for space electric propulsion

    International Nuclear Information System (INIS)

    Difilippo, F.C.

    1998-01-01

    Analysis of interplanetary cargo and piloted missions requires calculations of the performances and masses of subsystems to be integrated in a final design. In a preliminary and scoping stage the designer needs to evaluate options iteratively by using fast computer simulations. The Oak Ridge National Laboratory (ORNL) has been involved in the development of models and calculational procedures for the analysis (neutronic and thermal hydraulic) of power sources for nuclear electric propulsion. The nuclear modules will be integrated into the whole simulation of the nuclear electric propulsion system. The vehicles use either a Brayton direct-conversion cycle, using the heated helium from a NERVA-type reactor, or a potassium Rankine cycle, with the working fluid heated on the secondary side of a heat exchanger and lithium on the primary side coming from a fast reactor. Given a set of input conditions, the codes calculate composition. dimensions, volumes, and masses of the core, reflector, control system, pressure vessel, neutron and gamma shields, as well as the thermal hydraulic conditions of the coolant, clad and fuel. Input conditions are power, core life, pressure and temperature of the coolant at the inlet of the core, either the temperature of the coolant at the outlet of the core or the coolant mass flow and the fluences and integrated doses at the cargo area. Using state-of-the-art neutron cross sections and transport codes, a database was created for the neutronic performance of both reactor designs. The free parameters of the models are the moderator/fuel mass ratio for the NERVA reactor and the enrichment and the pitch of the lattice for the fast reactor. Reactivity and energy balance equations are simultaneously solved to find the reactor design. Thermalhydraulic conditions are calculated by solving the one-dimensional versions of the equations of conservation of mass, energy, and momentum with compressible flow. 10 refs., 1 tab

  20. The Ion Propulsion System for the Solar Electric Propulsion Technology Demonstration Mission

    Science.gov (United States)

    Herman, Daniel A.; Santiago, Walter; Kamhawi, Hani; Polk, James E.; Snyder, John Steven; Hofer, Richard R.; Parker, J. Morgan

    2015-01-01

    The Asteroid Redirect Robotic Mission is a candidate Solar Electric Propulsion Technology Demonstration Mission whose main objectives are to develop and demonstrate a high-power solar electric propulsion capability for the Agency and return an asteroidal mass for rendezvous and characterization in a companion human-crewed mission. The ion propulsion system must be capable of operating over an 8-year time period and processing up to 10,000 kg of xenon propellant. This high-power solar electric propulsion capability, or an extensible derivative of it, has been identified as a critical part of an affordable, beyond-low-Earth-orbit, manned-exploration architecture. Under the NASA Space Technology Mission Directorate the critical electric propulsion and solar array technologies are being developed. The ion propulsion system being co-developed by the NASA Glenn Research Center and the Jet Propulsion Laboratory for the Asteroid Redirect Vehicle is based on the NASA-developed 12.5 kW Hall Effect Rocket with Magnetic Shielding (HERMeS0 thruster and power processing technologies. This paper presents the conceptual design for the ion propulsion system, the status of the NASA in-house thruster and power processing activity, and an update on flight hardware.

  1. Optimization of extended propulsion time nuclear-electric propulsion trajectories

    Science.gov (United States)

    Sauer, C. G., Jr.

    1981-01-01

    This paper presents the methodology used in optimizing extended propulsion time NEP missions considering realistic thruster lifetime constraints. These missions consist of a powered spiral escape from a 700-km circular orbit at the earth, followed by a powered heliocentric transfer with an optimized coast phase, and terminating in a spiral capture phase at the target planet. This analysis is most applicable to those missions with very high energy requirements such as outer planet orbiter missions or sample return missions where the total propulsion time could greatly exceed the expected lifetime of an individual thruster. This methodology has been applied to the investigation of NEP missions to the outer planets where examples are presented of both constrained and optimized trajectories.

  2. Drag Reduction Through Distributed Electric Propulsion

    Science.gov (United States)

    Stoll, Alex M.; Bevirt, JoeBen; Moore, Mark D.; Fredericks, William J.; Borer, Nicholas K.

    2014-01-01

    One promising application of recent advances in electric aircraft propulsion technologies is a blown wing realized through the placement of a number of electric motors driving individual tractor propellers spaced along each wing. This configuration increases the maximum lift coefficient by providing substantially increased dynamic pressure across the wing at low speeds. This allows for a wing sized near the ideal area for maximum range at cruise conditions, imparting the cruise drag and ride quality benefits of this smaller wing size without decreasing takeoff and landing performance. A reference four-seat general aviation aircraft was chosen as an exemplary application case. Idealized momentum theory relations were derived to investigate tradeoffs in various design variables. Navier-Stokes aeropropulsive simulations were performed with various wing and propeller configurations at takeoff and landing conditions to provide insight into the effect of different wing and propeller designs on the realizable effective maximum lift coefficient. Similar analyses were performed at the cruise condition to ensure that drag targets are attainable. Results indicate that this configuration shows great promise to drastically improve the efficiency of small aircraft.

  3. Nuclear modules for space electric propulsion

    International Nuclear Information System (INIS)

    Difilippo, F.C.

    1998-01-01

    The analysis of interplanetary cargo and piloted missions requires the calculations of the performances and masses of subsystems to be integrated in a final design. In a preliminary and scoping stage the designer needs to evaluate options in an iterative way by using simulations that run fast on a computer. As a consequence of a collaborative agreement between the National Aeronautic and Space Administration (NASA) and the Oak Ridge National Laboratory (ORNL), ORNL has been involved in the development of models and calculational procedures for the analysis (neutronic and thermal hydraulic) of power sources for nuclear electric propulsion. The nuclear modules will be integrated into the whole simulation of the nuclear electric propulsion system. The vehicles use either a Brayton direct-conversion cycle, using the heated helium from a NERVA-type reactor, or a potassium Rankine cycle, with the working fluid heated on the secondary side of a heat exchanger and lithium on the primary side coming from a fast reactor. Given a set of input conditions, the codes calculate composition, dimensions, volumes, and masses of the core, reflector, control system, pressure vessel, neutron and gamma shields, as well as the thermal hydraulic conditions of the coolant, clad and fuel. Input conditions are power, core life, pressure and temperature of the coolant at the inlet of the core, either the temperature of the coolant at the outlet of the core or the coolant mass flow and the fluences and integrated doses at the cargo area. Using state-of-the-art neutron cross sections and transport codes, a database was created for the neutronic performance of both reactor designs. The free parameters of the models are the moderator/fuel mass ratio for the NERVA reactor and the enrichment and the pitch of the lattice for the fast reactor. Reactivity and energy balance equations are simultaneously solved to find the reactor design. Thermalhydraulic conditions are calculated by solving the one

  4. Aircraft Electric Propulsion Systems Applied Research at NASA

    Science.gov (United States)

    Clarke, Sean

    2015-01-01

    Researchers at NASA are investigating the potential for electric propulsion systems to revolutionize the design of aircraft from the small-scale general aviation sector to commuter and transport-class vehicles. Electric propulsion provides new degrees of design freedom that may enable opportunities for tightly coupled design and optimization of the propulsion system with the aircraft structure and control systems. This could lead to extraordinary reductions in ownership and operating costs, greenhouse gas emissions, and noise annoyance levels. We are building testbeds, high-fidelity aircraft simulations, and the first highly distributed electric inhabited flight test vehicle to begin to explore these opportunities.

  5. Nuclear electric propulsion: An integral part of NASA's nuclear propulsion project

    International Nuclear Information System (INIS)

    Stone, J.R.

    1992-01-01

    NASA has initiated a technology program to establish the readiness of nuclear propulsion technology for the Space Exploration Initiative (SEI). This program was initiated with a very modest effort identified with nuclear thermal propulsion (NTP); however, nuclear electric propulsion (NEP) is also an integral part of this program and builds upon NASA's Base Research and Technology Program in power and electric propulsion as well as the SP-100 space nuclear power program. Although the Synthesis Group On America's SEI has identified NEP only as an option for cargo missions, recent studies conducted by NASA-Lewis show that NEP offers the potential for early manned Mars missions as well. Lower power NEP is also of current interest for outer planetary robotic missions. Current plans are reviewed for the overall nuclear propulsion project, with emphasis on NEP and those elements of NTP program which have synergism with NEP

  6. Cooling of Electric Motors Used for Propulsion on SCEPTOR

    Science.gov (United States)

    Christie, Robert J.; Dubois, Arthur; Derlaga, Joseph M.

    2017-01-01

    NASA is developing a suite of hybrid-electric propulsion technologies for aircraft. These technologies have the benefit of lower emissions, diminished noise, increased efficiency, and reduced fuel burn. These will provide lower operating costs for aircraft operators. Replacing internal combustion engines with distributed electric propulsion is a keystone of this technology suite, but presents many new problems to aircraft system designers. One of the problems is how to cool these electric motors without adding significant aerodynamic drag, cooling system weight or fan power. This paper discusses the options evaluated for cooling the motors on SCEPTOR (Scalable Convergent Electric Propulsion Technology and Operations Research): a project that will demonstrate Distributed Electric Propulsion technology in flight. Options for external and internal cooling, inlet and exhaust locations, ducting and adjustable cowling, and axial and centrifugal fans were evaluated. The final design was based on a trade between effectiveness, simplicity, robustness, mass and performance over a range of ground and flight operation environments.

  7. Prognostics Applied to Electric Propulsion UAV

    Science.gov (United States)

    Goebel, Kai; Saha, Bhaskar

    2013-01-01

    Health management plays an important role in operations of UAV. If there is equipment malfunction on critical components, safe operation of the UAV might possibly be compromised. A technology with particular promise in this arena is equipment prognostics. This technology provides a state assessment of the health of components of interest and, if a degraded state has been found, it estimates how long it will take before the equipment will reach a failure threshold, conditional on assumptions about future operating conditions and future environmental conditions. This chapter explores the technical underpinnings of how to perform prognostics and shows an implementation on the propulsion of an electric UAV. A particle filter is shown as the method of choice in performing state assessment and predicting future degradation. The method is then applied to the batteries that provide power to the propeller motors. An accurate run-time battery life prediction algorithm is of critical importance to ensure the safe operation of the vehicle if one wants to maximize in-air time. Current reliability based techniques turn out to be insufficient to manage the use of such batteries where loads vary frequently in uncertain environments.

  8. Advanced Electric Propulsion NextSTEP BAA Activity

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of the AES Advanced Electric Propulsion Next Space Technologies for Exploration Partnerships (NextSTEP) Broad Agency Announcement (BAA) activity is to...

  9. Superconducting Electric Boost Pump for Nuclear Thermal Propulsion, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — A submersible, superconducting electric boost pump sized to meet the needs of future Nuclear Thermal Propulsion systems in the 25,000 lbf thrust range is proposed....

  10. Outer Planet Missions with Electric Propulsion Systems—Part I

    Directory of Open Access Journals (Sweden)

    Carlos Renato Huaura Solórzano

    2010-01-01

    Full Text Available For interplanetary missions, efficient electric propulsion systems can be used to increase the mass delivered to the destination. Outer planet exploration has experienced new interest with the launch of the Cassini and New Horizons Missions. At the present, new technologies are studied for better use of electric propulsion systems in missions to the outer planets. This paper presents low-thrust trajectories using the method of the transporting trajectory to Uranus, Neptune, and Pluto. They use nuclear and radio isotopic electric propulsion. These direct transfers have continuous electric propulsion of low power along the entire trajectory. The main goal of the paper is to optimize the transfers, that is, to provide maximum mass to be delivered to the outer planets.

  11. Nuclear electric propulsion mission engineering study. Volume 2: Final report

    Science.gov (United States)

    1973-01-01

    Results of a mission engineering analysis of nuclear-thermionic electric propulsion spacecraft for unmanned interplanetary and geocentric missions are summarized. Critical technologies associated with the development of nuclear electric propulsion (NEP) are assessed, along with the impact of its availability on future space programs. Outer planet and comet rendezvous mission analysis, NEP stage design for geocentric and interplanetary missions, NEP system development cost and unit costs, and technology requirements for NEP stage development are studied.

  12. Solar Electric Propulsion Concepts for Human Space Exploration

    Science.gov (United States)

    Mercer, Carolyn R.; Mcguire, Melissa L.; Oleson, Steven R.; Barrett, Michael J.

    2016-01-01

    Advances in solar array and electric thruster technologies now offer the promise of new, very capable space transportation systems that will allow us to cost effectively explore the solar system. NASA has developed numerous solar electric propulsion spacecraft concepts with power levels ranging from tens to hundreds of kilowatts for robotic and piloted missions to asteroids and Mars. This paper describes nine electric and hybrid solar electric/chemical propulsion concepts developed over the last 5 years and discusses how they might be used for human exploration of the inner solar system.

  13. Primary electric propulsion thrust subsystem definition

    Science.gov (United States)

    Masek, T. D.; Ward, J. W.; Kami, S.

    1975-01-01

    A review is presented of the current status of primary propulsion thrust subsystem (TSS) performance, packaging considerations, and certain operational characteristics. Thrust subsystem related work from recent studies by Jet Propulsion Laboratories (JPL), Rockwell and Boeing is discussed. Existing performance for 30-cm thrusters, power processors and TSS is present along with projections for future improvements. Results of analyses to determine (1) magnetic field distributions resulting from an array of thrusters, (2) thruster emitted particle flux distributions from an array of thrusters, and (3) TSS element failure rates are described to indicate the availability of analytical tools for evaluation of TSS designs.

  14. STG-ET: DLR electric propulsion test facility

    Directory of Open Access Journals (Sweden)

    Andreas Neumann

    2017-04-01

    Full Text Available DLR operates the High Vacuum Plume Test Facility Göttingen – Electric Thrusters (STG-ET. This electric propulsion test facility has now accumulated several years of EP-thruster testing experience. Special features tailored to electric space propulsion testing like a large vacuum chamber mounted on a low vibration foundation, a beam dump target with low sputtering, and a performant pumping system characterize this facility. The vacuum chamber is 12.2m long and has a diameter of 5m. With respect to accurate thruster testing, the design focus is on accurate thrust measurement, plume diagnostics, and plume interaction with spacecraft components. Electric propulsion thrusters have to run for thousands of hours, and with this the facility is prepared for long-term experiments. This paper gives an overview of the facility, and shows some details of the vacuum chamber, pumping system, diagnostics, and experiences with these components.

  15. Guide to Flow Measurement for Electric Propulsion Systems

    Science.gov (United States)

    Frieman, Jason D.; Walker, Mitchell L. R.; Snyder, Steve

    2013-01-01

    In electric propulsion (EP) systems, accurate measurement of the propellant mass flow rate of gas or liquid to the thruster and external cathode is a key input in the calculation of thruster efficiency and specific impulse. Although such measurements are often achieved with commercial mass flow controllers and meters integrated into propellant feed systems, the variability in potential propellant options and flow requirements amongst the spectrum of EP power regimes and devices complicates meter selection, integration, and operation. At the direction of the Committee on Standards for Electric Propulsion Testing, a guide was jointly developed by members of the electric propulsion community to establish a unified document that contains the working principles, methods of implementation and analysis, and calibration techniques and recommendations on the use of mass flow meters in laboratory and spacecraft electric propulsion systems. The guide is applicable to EP devices of all types and power levels ranging from microthrusters to high-power ion engines and Hall effect thrusters. The establishment of a community standard on mass flow metering will help ensure the selection of the proper meter for each application. It will also improve the quality of system performance estimates by providing comprehensive information on the physical phenomena and systematic errors that must be accounted for during the analysis of flow measurement data. This paper will outline the standard methods and recommended practices described in the guide titled "Flow Measurement for Electric Propulsion Systems."

  16. PEGASUS: a multi-megawatt nuclear electric propulsion system

    International Nuclear Information System (INIS)

    Coomes, E.P.; Cuta, J.M.; Webb, B.J.; King, D.Q.

    1985-06-01

    With the Space Transportation System (STS), the advent of space station Columbus and the development of expertise at working in space that this will entail, the gateway is open to the final frontier. The exploration of this frontier is possible with state-of-the-art hydrogen/oxygen propulsion but would be greatly enhanced by the higher specific impulse of electric propulsion. This paper presents a concept that uses a multi-megawatt nuclear power plant to drive an electric propulsion system. The concept has been named PEGASUS, PowEr GenerAting System for Use in Space, and is intended as a ''work horse'' for general space transportation needs, both long- and short-haul missions. The recent efforts of the SP-100 program indicate that a power system capable of producing upwards of 1 megawatt of electric power should be available in the next decade. Additionally, efforts in other areas indicate that a power system with a constant power capability an order of magnitude greater could be available near the turn of the century. With the advances expected in megawatt-class space power systems, the high specific impulse propulsion systems must be reconsidered as potential propulsion systems. The power system is capable of meeting both the propulsion system and spacecraft power requirements

  17. Fission-Based Electric Propulsion for Interstellar Precursor Missions

    International Nuclear Information System (INIS)

    HOUTS, MICHAEL G.; LENARD, ROGER X.; LIPINSKI, RONALD J.; PATTON, BRUCE; POSTON, DAVID; WRIGHT, STEVEN A.

    1999-01-01

    This paper reviews the technology options for a fission-based electric propulsion system for interstellar precursor missions. To achieve a total ΔV of more than 100 km/s in less than a decade of thrusting with an electric propulsion system of 10,000s Isp requires a specific mass for the power system of less than 35 kg/kWe. Three possible configurations are described: (1) a UZrH-fueled,NaK-cooled reactor with a steam Rankine conversion system,(2) a UN-fueled gas-cooled reactor with a recuperated Brayton conversion system, and (3) a UN-fueled heat pipe-cooled reactor with a recuperated Brayton conversion system. All three of these systems have the potential to meet the specific mass requirements for interstellar precursor missions in the near term. Advanced versions of a fission-based electric propulsion system might travel as much as several light years in 200 years

  18. Brayton Power Conversion Unit Tested: Provides a Path to Future High-Power Electric Propulsion Missions

    Science.gov (United States)

    Mason, Lee S.

    2003-01-01

    Closed-Brayton-cycle conversion technology has been identified as an excellent candidate for nuclear electric propulsion (NEP) power conversion systems. Advantages include high efficiency, long life, and high power density for power levels from about 10 kWe to 1 MWe, and beyond. An additional benefit for Brayton is the potential for the alternator to deliver very high voltage as required by the electric thrusters, minimizing the mass and power losses associated with the power management and distribution (PMAD). To accelerate Brayton technology development for NEP, the NASA Glenn Research Center is developing a low-power NEP power systems testbed that utilizes an existing 2- kWe Brayton power conversion unit (PCU) from previous solar dynamic technology efforts. The PCU includes a turboalternator, a recuperator, and a gas cooler connected by gas ducts. The rotating assembly is supported by gas foil bearings and consists of a turbine, a compressor, a thrust rotor, and an alternator on a single shaft. The alternator produces alternating-current power that is rectified to 120-V direct-current power by the PMAD unit. The NEP power systems testbed will be utilized to conduct future investigations of operational control methods, high-voltage PMAD, electric thruster interactions, and advanced heat rejection techniques. The PCU was tested in Glenn s Vacuum Facility 6. The Brayton PCU was modified from its original solar dynamic configuration by the removal of the heat receiver and retrofitting of the electrical resistance gas heater to simulate the thermal input of a steady-state nuclear source. Then, the Brayton PCU was installed in the 3-m test port of Vacuum Facility 6, as shown. A series of tests were performed between June and August of 2002 that resulted in a total PCU operational time of about 24 hr. An initial test sequence on June 17 determined that the reconfigured unit was fully operational. Ensuing tests provided the operational data needed to characterize PCU

  19. Evaluation and comparison of electric propulsion motors for submarines

    OpenAIRE

    Harbour, Joel P.

    2001-01-01

    CIVINS (Civilian Institutions) Thesis document The Navy has announced its conviction to make its warships run on electric power through the decision to make its newest line of destroyers propelled with an electric propulsion system. Several ship construction firms and electric motor manufacturers are thus striving to develop enabling technology, including high power density motors. The purpose of this thesis is to evaluate some of the proposed motor designs for use in a submarine. Permanen...

  20. Advanced electric propulsion system concept for electric vehicles

    Science.gov (United States)

    Raynard, A. E.; Forbes, F. E.

    1979-01-01

    Seventeen propulsion system concepts for electric vehicles were compared to determine the differences in components and battery pack to achieve the basic performance level. Design tradeoffs were made for selected configurations to find the optimum component characteristics required to meet all performance goals. The anticipated performance when using nickel-zinc batteries rather than the standard lead-acid batteries was also evaluated. The two systems selected for the final conceptual design studies included a system with a flywheel energy storage unit and a basic system that did not have a flywheel. The flywheel system meets the range requirement with either lead-acid or nickel-zinc batteries and also the acceleration of zero to 89 km/hr in 15 s. The basic system can also meet the required performance with a fully charged battery, but, when the battery approaches 20 to 30 percent depth of discharge, maximum acceleration capability gradually degrades. The flywheel system has an estimated life-cycle cost of $0.041/km using lead-acid batteries. The basic system has a life-cycle cost of $0.06/km. The basic system, using batteries meeting ISOA goals, would have a life-cycle cost of $0.043/km.

  1. Development costs for a nuclear electric propulsion stage.

    Science.gov (United States)

    Mondt, J. F.; Prickett, W. Z.

    1973-01-01

    Development costs are presented for an unmanned nuclear electric propulsion (NEP) stage based upon a liquid metal cooled, in-core thermionic reactor. A total of 120 kWe are delivered to the thrust subsystem which employs mercury ion engines for electric propulsion. This study represents the most recent cost evaluation of the development of a reactor power system for a wide range of nuclear space power applications. These include geocentric, and outer planet and other deep space missions. The development program is described for the total NEP stage, based upon specific development programs for key NEP stage components and subsystems.

  2. Nuclear electric propulsion mission engineering study. Volume 1: Executive summary

    Science.gov (United States)

    1973-01-01

    Results of a mission engineering analysis of nuclear-thermionic electric propulsion spacecraft for unmanned interplanetary and geocentric missions are summarized. Critical technologies associated with the development of nuclear electric propulsion (NEP) are assessed. Outer planet and comet rendezvous mission analysis, NEP stage design for geocentric and interplanetary missions, NEP system development cost and unit costs, and technology requirements for NEP stage development are studied. The NEP stage design provides both inherent reliability and high payload mass capability. The NEP stage and payload integration was found to be compatible with the space shuttle.

  3. Versatile Electric Propulsion Aircraft Testbed, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — An all-electric aircraft testbed is proposed to provide a dedicated development environment for the rigorous study and advancement of electrically powered aircraft....

  4. A summary of EHV propulsion technology. [Electric and Hybrid Vehicle

    Science.gov (United States)

    Schwartz, H. J.

    1983-01-01

    While the battery used by an electric vehicle is the primary determinant of range, and to a lesser extent of performance, the design of the vehicle's propulsion system establishes its performance level and is the greatest contributor to its purchase price. Propulsion system weight, efficiency and cost are related to the specific combination of components used. Attention is given to the development status of the U.S. Department of Energy's Electric and Hybrid Vehicle Program, through which propulsion component and system design improvements have been made which promise weight savings of 35-50 percent, efficiency gains of 25 percent, and lower costs, when compared to the state of the art at the program's inception.

  5. Power Requirements Determined for High-Power-Density Electric Motors for Electric Aircraft Propulsion

    Science.gov (United States)

    Johnson, Dexter; Brown, Gerald V.

    2005-01-01

    Future advanced aircraft fueled by hydrogen are being developed to use electric drive systems instead of gas turbine engines for propulsion. Current conventional electric motor power densities cannot match those of today s gas turbine aircraft engines. However, if significant technological advances could be made in high-power-density motor development, the benefits of an electric propulsion system, such as the reduction of harmful emissions, could be realized.

  6. Thermionic reactor power conditioner design for nuclear electric propulsion.

    Science.gov (United States)

    Jacobsen, A. S.; Tasca, D. M.

    1971-01-01

    Consideration of the effects of various thermionic reactor parameters and requirements upon spacecraft power conditioning design. A basic spacecraft is defined using nuclear electric propulsion, requiring approximately 120 kWe. The interrelationships of reactor operating characteristics and power conditioning requirements are discussed and evaluated, and the effects on power conditioner design and performance are presented.

  7. Sizing Analysis for Aircraft Utilizing Hybrid-Electric Propulsion Systems

    Science.gov (United States)

    2011-03-18

    world, the paragon of animals -William Shakespeare I would not have made it this far without the love and support of my parents. Their work-ethic...xiii  I.  Introduction ...Condition 1 SIZING ANALYSIS FOR AIRCRAFT UTILIZING HYBRID- ELECTRIC PROPULSION SYSTEMS I. Introduction 1. Background Physically

  8. Concept designs for NASA's Solar Electric Propulsion Technology Demonstration Mission

    Science.gov (United States)

    Mcguire, Melissa L.; Hack, Kurt J.; Manzella, David H.; Herman, Daniel A.

    2014-01-01

    Multiple Solar Electric Propulsion Technology Demonstration Mission were developed to assess vehicle performance and estimated mission cost. Concepts ranged from a 10,000 kilogram spacecraft capable of delivering 4000 kilogram of payload to one of the Earth Moon Lagrange points in support of future human-crewed outposts to a 180 kilogram spacecraft capable of performing an asteroid rendezvous mission after launched to a geostationary transfer orbit as a secondary payload. Low-cost and maximum Delta-V capability variants of a spacecraft concept based on utilizing a secondary payload adapter as the primary bus structure were developed as were concepts designed to be co-manifested with another spacecraft on a single launch vehicle. Each of the Solar Electric Propulsion Technology Demonstration Mission concepts developed included an estimated spacecraft cost. These data suggest estimated spacecraft costs of $200 million - $300 million if 30 kilowatt-class solar arrays and the corresponding electric propulsion system currently under development are used as the basis for sizing the mission concept regardless of launch vehicle costs. The most affordable mission concept developed based on subscale variants of the advanced solar arrays and electric propulsion technology currently under development by the NASA Space Technology Mission Directorate has an estimated cost of $50M and could provide a Delta-V capability comparable to much larger spacecraft concepts.

  9. Challenges and Experiences with Electric Propulsion Transit Buses in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Eudy, L.; Gifford, M.

    2003-11-01

    Document provides background for transit agencies and fleets that are considering electric propulsion technologies. It tells them what to expect and plan for when implementing vehicles with electric propulsion systems.

  10. Recent Electric Propulsion Development Activities for NASA Science Missions

    Science.gov (United States)

    Pencil, Eric J.

    2009-01-01

    (The primary source of electric propulsion development throughout NASA is managed by the In-Space Propulsion Technology Project at the NASA Glenn Research Center for the Science Mission Directorate. The objective of the Electric Propulsion project area is to develop near-term electric propulsion technology to enhance or enable science missions while minimizing risk and cost to the end user. Major hardware tasks include developing NASA s Evolutionary Xenon Thruster (NEXT), developing a long-life High Voltage Hall Accelerator (HIVHAC), developing an advanced feed system, and developing cross-platform components. The objective of the NEXT task is to advance next generation ion propulsion technology readiness. The baseline NEXT system consists of a high-performance, 7-kW ion thruster; a high-efficiency, 7-kW power processor unit (PPU); a highly flexible advanced xenon propellant management system (PMS); a lightweight engine gimbal; and key elements of a digital control interface unit (DCIU) including software algorithms. This design approach was selected to provide future NASA science missions with the greatest value in mission performance benefit at a low total development cost. The objective of the HIVHAC task is to advance the Hall thruster technology readiness for science mission applications. The task seeks to increase specific impulse, throttle-ability and lifetime to make Hall propulsion systems applicable to deep space science missions. The primary application focus for the resulting Hall propulsion system would be cost-capped missions, such as competitively selected, Discovery-class missions. The objective of the advanced xenon feed system task is to demonstrate novel manufacturing techniques that will significantly reduce mass, volume, and footprint size of xenon feed systems over conventional feed systems. This task has focused on the development of a flow control module, which consists of a three-channel flow system based on a piezo-electrically actuated

  11. A Novel UAV Electric Propulsion Testbed for Diagnostics and Prognostics

    Science.gov (United States)

    Gorospe, George E., Jr.; Kulkarni, Chetan S.

    2017-01-01

    This paper presents a novel hardware-in-the-loop (HIL) testbed for systems level diagnostics and prognostics of an electric propulsion system used in UAVs (unmanned aerial vehicle). Referencing the all electric, Edge 540T aircraft used in science and research by NASA Langley Flight Research Center, the HIL testbed includes an identical propulsion system, consisting of motors, speed controllers and batteries. Isolated under a controlled laboratory environment, the propulsion system has been instrumented for advanced diagnostics and prognostics. To produce flight like loading on the system a slave motor is coupled to the motor under test (MUT) and provides variable mechanical resistance, and the capability of introducing nondestructive mechanical wear-like frictional loads on the system. This testbed enables the verification of mathematical models of each component of the propulsion system, the repeatable generation of flight-like loads on the system for fault analysis, test-to-failure scenarios, and the development of advanced system level diagnostics and prognostics methods. The capabilities of the testbed are extended through the integration of a LabVIEW-based client for the Live Virtual Constructive Distributed Environment (LVCDC) Gateway which enables both the publishing of generated data for remotely located observers and prognosers and the synchronization the testbed propulsion system with vehicles in the air. The developed HIL testbed gives researchers easy access to a scientifically relevant portion of the aircraft without the overhead and dangers encountered during actual flight.

  12. Propulsion element requirements using electrical power system unscheduled power

    Science.gov (United States)

    Zimmermann, Frank; Hodge, Kathy

    1989-01-01

    The suitability of using the electrical energy from the Space Station's Electrical Power System (EPS) during the periods of peak solar insolation which is currently not specifically allocated (unscheduled power) to produce propulsion propellants, gaseous hydrogen, and oxygen by electrolyzing water is investigated. Reboost propellant requirements are emphasized, but the results are more generally relevant because the balance of recurring propellant requirements are an order of magnitude smaller and the nonrecurring requirements are not significant on an average basis.

  13. Multimission nuclear electric propulsion system for outer planet exploration missions

    International Nuclear Information System (INIS)

    Mondt, J.F.

    1981-01-01

    A 100-kW reactor power system with a specific mass of 15 to 30 kg/kW/sub e/ and an electric thrust system with a specific mass of 5 to 10 kg/kW/sub e/ can be combined into a nuclear electric propulsion system. The system can be used for outer planet missions as well as earth orbital transfer vehicle missions. 5 refs

  14. RF emission-based health monitoring for hybrid and/or all electric aircraft distributed propulsion systems, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Future aircraft propulsion is destined to be electric. All electric aircraft propulsion systems promise significant improvements in energy efficiency,...

  15. Electromagnetic Emission from Electric Propulsions under Ground Conditions

    Science.gov (United States)

    Baranov, S. V.; Vazhenin, N. A.; Plokhikh, A. P.; Popov, G. A.

    2017-12-01

    Analysis and methodological generalization of available methods used for determining characteristics of intrinsic emission from electric propulsions (EP) in a radio-frequency range that can be the interference for the "Earth-spacecraft (SC)" channel of the space communication system are the subjects of this paper. Intrinsic emission from the electric propulsion in a radio-frequency range is examined in detail by the example of a measuring complex developed in RIAME MAI and the measurement results are presented. The electric field intensity distribution in a radio-frequency range for the vertical and horizontal polarizations of the received emission is considered as the main characteristics. Measurements performed for the EP intrinsic emission by using the developed complex and measurements performed in metal vacuum chambers are compared and comparative results are presented in the paper.

  16. Radioactive waste disposal via electric propulsion

    Science.gov (United States)

    Burns, R. E.

    1975-01-01

    It is shown that space transportation is a feasible method of removal of radioactive wastes from the biosphere. The high decay heat of the isotopes powers a thermionic generator which provides electrical power for ion thrust engines. The massive shields (used to protect ground and flight personnel) are removed in orbit for subsequent reuse; the metallic fuel provides a shield for the avionics that guides the orbital stage to solar system escape. Performance calculations indicate that 4000 kg. of actinides may be removed per Shuttle flight. Subsidiary problems - such as cooling during ascent - are discussed.

  17. Fundamentals of Electrical Propulsion Plant Design,

    Science.gov (United States)

    1982-04-06

    contacts DVI and DV2 close the indicator light LS2 and L53 circuits. Electric Fan starter n. r. contacts DVl and DY2 close the red indicator light...forward rotation, /. corresponding tD vessel movement i///’,/iI X,, /;/forward; ’ are curves of GED -tJ ’ !’ i ’ " f \\ \\ ’ . . L---,torques after reversal...Calculation based on generator static characteristics, i. e., based on parameters Xd and Td , are linked with the most difficult GED operating conditions

  18. Evaluation of solar electric propulsion technologies for discovery class missions

    Science.gov (United States)

    Oh, David Y.

    2005-01-01

    A detailed study examines the potential benefits that advanced electric propulsion (EP) technologies offer to the cost-capped missions in NASA's Discovery program. The study looks at potential cost and performance benefits provided by three EP technologies that are currently in development: NASA's Evolutionary Xenon Thruster (NEXT), an Enhanced NSTAR system, and a Low Power Hall effect thruster. These systems are analyzed on three straw man Discovery class missions and their performance is compared to a state of the art system using the NSTAR ion thruster. An electric propulsion subsystem cost model is used to conduct a cost-benefit analysis for each option. The results show that each proposed technology offers a different degree of performance and/or cost benefit for Discovery class missions.

  19. Robotic planetary mission benefits from nuclear electric propulsion

    International Nuclear Information System (INIS)

    Kelley, J.H.; Yen, C.L.

    1992-01-01

    Several interesting planetary missions are either enabled or significantly enhanced by nuclear electric propulsion (NEP) in the 50 to 100 kW power range. These missions include a Pluto Orbiter/Probe with an 11-year flight time and several years of operational life in orbit versus a ballistic very fast (13 km/s) flyby which would take longer to get to Pluto and would have a very short time to observe the planet. (A ballistic orbiter would take about 40 years to get to Pluto.) Other missions include a Neptune Orbiter/Probe, a Jupiter Grand Tour orbiting each of the major moons in order, a Uranus Orbiter/Probe, a Multiple Mainbelt Asteroid Rendezvous orbiting six selected asteroids, and a Comet Nucleus Sample Return. This paper discusses potential missions and compares the nuclear electric propulsion option to the conventional ballistic approach on a parametric basis

  20. Analysis of Electric Propulsion System for Exploration of Saturn

    Directory of Open Access Journals (Sweden)

    Carlos Renato Huaura Solórzano

    2009-01-01

    Full Text Available Exploration of the outer planets has experienced new interest with the launch of the Cassini and the New Horizons Missions. At the present time, new technologies are under study for the better use of electric propulsion system in deep space missions. In the present paper, the method of the transporting trajectory is used to study this problem. This approximated method for the flight optimization with power-limited low thrust is based on the linearization of the motion of a spacecraft near a keplerian orbit that is close to the transfer trajectory. With the goal of maximizing the mass to be delivered in Saturn, several transfers were studied using nuclear, radioisotopic and solar electric propulsion systems.

  1. SP-100 multimegawatt scaleup to meet electric propulsion mission requirements

    International Nuclear Information System (INIS)

    Newkirk, D.W.; Salamah, S.A.; Stewart, S.L.; Pluta, P.R.

    1991-01-01

    The SP-100 space power nuclear reactor nuclear heat source technology, utilizing uranium nitride fuel clad in PWC-11 in a fast reactor with lithium coolant circulated by an electromagnetic pump, is shown in this paper to be directly extrapolatable to thermal power levels that meet NASA nuclear electric propulsion requirements using different power conversion techniques. The SP-100 nuclear technology can be applied for missions with NEP requirements as low as 10's of kWe to 10's of MWe

  2. Catalog of components for electric and hybrid vehicle propulsion systems

    Science.gov (United States)

    Eissler, H. C.

    1981-01-01

    This catalog of commercially available electric and hybrid vehicle propulsion system components is intended for designers and builders of these vehicles and contains 50 categories of components. These categories include those components used between the battery terminals and the output axle hub, as well as some auxiliary equipment. An index of the components and a listing of the suppliers and their addresses and phone numbers are included.

  3. Scoping calculations of power sources for nuclear electric propulsion

    International Nuclear Information System (INIS)

    Difilippo, F.C.

    1994-05-01

    This technical memorandum describes models and calculational procedures to fully characterize the nuclear island of power sources for nuclear electric propulsion. Two computer codes were written: one for the gas-cooled NERVA derivative reactor and the other for liquid metal-cooled fuel pin reactors. These codes are going to be interfaced by NASA with the balance of plant in order to making scoping calculations for mission analysis

  4. Example Solar Electric Propulsion System asteroid tours using variational calculus

    Science.gov (United States)

    Burrows, R. R.

    1985-01-01

    Exploration of the asteroid belt with a vehicle utilizing a Solar Electric Propulsion System has been proposed in past studies. Some of those studies illustrated multiple asteroid rendezvous with trajectories obtained using approximate methods. Most of the inadequacies of those approximations are overcome in this paper, which uses the calculus of variations to calculate the trajectories and associated payloads of four asteroid tours. The modeling, equations, and solution techniques are discussed, followed by a presentation of the results.

  5. Lightweight Radiator for in Space Nuclear Electric Propulsion

    Science.gov (United States)

    Craven, Paul; Tomboulian, Briana; SanSoucie, Michael

    2014-01-01

    Nuclear electric propulsion (NEP) is a promising option for high-speed in-space travel due to the high energy density of nuclear fission power sources and efficient electric thrusters. Advanced power conversion technologies may require high operating temperatures and would benefit from lightweight radiator materials. Radiator performance dictates power output for nuclear electric propulsion systems. Game-changing propulsion systems are often enabled by novel designs using advanced materials. Pitch-based carbon fiber materials have the potential to offer significant improvements in operating temperature, thermal conductivity, and mass. These properties combine to allow advances in operational efficiency and high temperature feasibility. An effort at the NASA Marshall Space Flight Center to show that woven high thermal conductivity carbon fiber mats can be used to replace standard metal and composite radiator fins to dissipate waste heat from NEP systems is ongoing. The goals of this effort are to demonstrate a proof of concept, to show that a significant improvement of specific power (power/mass) can be achieved, and to develop a thermal model with predictive capabilities making use of constrained input parameter space. A description of this effort is presented.

  6. Nuclear electric propulsion for planetary science missions: NASA technology program planning

    International Nuclear Information System (INIS)

    Doherty, M.P.

    1993-01-01

    This paper presents the status of technology program planning to achieve readiness of Nuclear Electric Propulsion technologies needed to meet the advanced propulsion system requirements for planetary science missions in the next century. The technology program planning is based upon technologies of significant maturity: ion electric propulsion and the SP-100 space nulcear power technologies. Detailed plans are presented herein for the required ion electric propulsion technology development and demonstration. Closer coordination between space nuclear power and space electric propulsion technology programs is a necessity as technology plans are being further refined in light of NEP concept definition and possible early NEP flight activities

  7. Nuclear electric propulsion for planetary science missions: NASA technology program planning

    International Nuclear Information System (INIS)

    Doherty, M.P.

    1993-05-01

    This paper presents the status of technology program planning to develop those Nuclear Electric Propulsion technologies needed to meet the advanced propulsion system requirements for planetary science missions in the next century. The technology program planning is based upon technologies with significant development heritage: ion electric propulsion and the SP-100 space nuclear power technologies. Detailed plans are presented for the required ion electric propulsion technology development and demonstration. Closer coordination between space nuclear power and space electric propulsion technology programs is a necessity as technology plans are being further refined in light of NEP concept definition and possible early NEP flight activities

  8. Concept for a shuttle-tended reusable interplanetary transport vehicle using nuclear electric propulsion

    Science.gov (United States)

    Nakagawa, R. Y.; Elliot, J. C.; Spilker, T. R.; Grayson, C. M.

    2003-01-01

    NASA has placed new emphasis on the development of advanced propulsion technologies including Nuclear Electric Propulsion (NEP). This technology would provide multiple benefits including high delta-V capability and high power for long duration spacecraft operations.

  9. Flywheel in an all-electric propulsion system

    Energy Technology Data Exchange (ETDEWEB)

    Lundin, Johan

    2011-07-01

    Energy storage is a crucial condition for both transportation purposes and for the use of electricity. Flywheels can be used as actual energy storage but also as power handling device. Their high power capacity compared to other means of storing electric energy makes them very convenient for smoothing power transients. These occur frequently in vehicles but also in the electric grid. In both these areas there is a lot to gain by reducing the power transients and irregularities. The research conducted at Uppsala Univ. and described in this thesis is focused on an all-electric propulsion system based on an electric flywheel with double stator windings. The flywheel is inserted in between the main energy storage (assumed to be a battery) and the traction motor in an electric vehicle. This system has been evaluated by simulations in a Matlab model, comparing two otherwise identical drivelines, one with and one without a flywheel. The flywheel is shown to have several advantages for an all-electric propulsion system for a vehicle. The maximum power from the battery decreases more than ten times as the flywheel absorbs and supplies all the high power fluxes occurring at acceleration and braking. The battery delivers a low and almost constant power to the flywheel. The amount of batteries needed de- creases whereas the battery lifetime and efficiency increases. Another benefit the flywheel configuration brings is a higher energy efficiency and hence less need for cooling. The model has also been used to evaluate the flywheel functionality for an electric grid application. The power from renewable intermittent energy sources such as wave, wind and current power can be smoothened by the fly- wheel, making these energy sources more efficient and thereby competitive with a remaining high power quality in the electric grid

  10. A High-power Electric Propulsion Test Platform in Space

    Science.gov (United States)

    Petro, Andrew J.; Reed, Brian; Chavers, D. Greg; Sarmiento, Charles; Cenci, Susanna; Lemmons, Neil

    2005-01-01

    This paper will describe the results of the preliminary phase of a NASA design study for a facility to test high-power electric propulsion systems in space. The results of this design study are intended to provide a firm foundation for subsequent detailed design and development activities leading to the deployment of a valuable space facility. The NASA Exploration Systems Mission Directorate is sponsoring this design project. A team from the NASA Johnson Space Center, Glenn Research Center, the Marshall Space Flight Center and the International Space Station Program Office is conducting the project. The test facility is intended for a broad range of users including government, industry and universities. International participation is encouraged. The objectives for human and robotic exploration of space can be accomplished affordably, safely and effectively with high-power electric propulsion systems. But, as thruster power levels rise to the hundreds of kilowatts and up to megawatts, their testing will pose stringent and expensive demands on existing Earth-based vacuum facilities. These considerations and the human access to near-Earth space provided by the International Space Station (ISS) have led to a renewed interest in space testing. The ISS could provide an excellent platform for a space-based test facility with the continuous vacuum conditions of the natural space environment and no chamber walls to modify the open boundary conditions of the propulsion system exhaust. The test platform could take advantage of the continuous vacuum conditions of the natural space environment. Space testing would provide open boundary conditions without walls, micro-gravity and a realistic thermal environment. Testing on the ISS would allow for direct observation of the test unit, exhaust plume and space-plasma interactions. When necessary, intervention by on-board personnel and post-test inspection would be possible. The ISS can provide electrical power, a location for

  11. Design of an Electric Propulsion System for SCEPTOR

    Science.gov (United States)

    Dubois, Arthur; van der Geest, Martin; Bevirt, JoeBen; Clarke, Sean; Christie, Robert J.; Borer, Nicholas K.

    2016-01-01

    The rise of electric propulsion systems has pushed aircraft designers towards new and potentially transformative concepts. As part of this effort, NASA is leading the SCEPTOR program which aims at designing a fully electric distributed propulsion general aviation aircraft. This article highlights critical aspects of the design of SCEPTOR's propulsion system conceived at Joby Aviation in partnership with NASA, including motor electromagnetic design and optimization as well as cooling system integration. The motor is designed with a finite element based multi-objective optimization approach. This provides insight into important design tradeoffs such as mass versus efficiency, and enables a detailed quantitative comparison between different motor topologies. Secondly, a complete design and Computational Fluid Dynamics analysis of the air breathing cooling system is presented. The cooling system is fully integrated into the nacelle, contains little to no moving parts and only incurs a small drag penalty. Several concepts are considered and compared over a range of operating conditions. The study presents trade-offs between various parameters such as cooling efficiency, drag, mechanical simplicity and robustness.

  12. Propulsion Electric Grid Simulator (PEGS) for Future Turboelectric Distributed Propulsion Aircraft

    Science.gov (United States)

    Choi, Benjamin B.; Morrison, Carlos; Dever, Timothy; Brown, Gerald V.

    2014-01-01

    NASA Glenn Research Center, in collaboration with the aerospace industry and academia, has begun the development of technology for a future hybrid-wing body electric airplane with a turboelectric distributed propulsion (TeDP) system. It is essential to design a subscale system to emulate the TeDP power grid, which would enable rapid analysis and demonstration of the proof-of-concept of the TeDP electrical system. This paper describes how small electrical machines with their controllers can emulate all the components in a TeDP power train. The whole system model in Matlab/Simulink was first developed and tested in simulation, and the simulation results showed that system dynamic characteristics could be implemented by using the closed-loop control of the electric motor drive systems. Then we designed a subscale experimental system to emulate the entire power system from the turbine engine to the propulsive fans. Firstly, we built a system to emulate a gas turbine engine driving a generator, consisting of two permanent magnet (PM) motors with brushless motor drives, coupled by a shaft. We programmed the first motor and its drive to mimic the speed-torque characteristic of the gas turbine engine, while the second motor and drive act as a generator and produce a torque load on the first motor. Secondly, we built another system of two PM motors and drives to emulate a motor driving a propulsive fan. We programmed the first motor and drive to emulate a wound-rotor synchronous motor. The propulsive fan was emulated by implementing fan maps and flight conditions into the fourth motor and drive, which produce a torque load on the driving motor. The stator of each PM motor is designed to travel axially to change the coupling between rotor and stator. This feature allows the PM motor to more closely emulate a wound-rotor synchronous machine. These techniques can convert the plain motor system into a unique TeDP power grid emulator that enables real-time simulation performance

  13. Evaluation of the use of on-board spacecraft energy storage for electric propulsion missions

    Science.gov (United States)

    Poeschel, R. L.; Palmer, F. M.

    1983-01-01

    On-board spacecraft energy storage represents an under utilized resource for some types of missions that also benefit from using relatively high specific impulse capability of electric propulsion. This resource can provide an appreciable fraction of the power required for operating the electric propulsion subsystem in some missions. The most probable mission requirement for utilization of this energy is that of geostationary satellites which have secondary batteries for operating at high power levels during eclipse. The study summarized in this report selected four examples of missions that could benefit from use of electric propulsion and on-board energy storage. Engineering analyses were performed to evaluate the mass saved and economic benefit expected when electric propulsion and on-board batteries perform some propulsion maneuvers that would conventionally be provided by chemical propulsion. For a given payload mass in geosynchronous orbit, use of electric propulsion in this manner typically provides a 10% reduction in spacecraft mass.

  14. Commercialization of an electric propulsion unit for ecological ice resurfacers

    Energy Technology Data Exchange (ETDEWEB)

    Giroux, M. [MG Service, L' Assomption, PQ (Canada); Sylvestre, P. [Environment Canada, Montreal, PQ (Canada)

    2000-03-01

    Community health departments (CHD) and the general public are greatly concerned about the air quality at indoor skating rinks. A solution now exists whereby municipalities can convert their internal combustion resurfacers to electricity, using a system proposed by MG Service. This electric propulsion unit was developed and designed by MG Service, in conjunction with the Centre d'experimentation des vehicules electriques du Quebec (CEVEQ) and TPR Inc., an engineering firm. The main advantage of this technology is the ease of integration into the chassis of conventional resurfacers currently in use throughout the various municipalities. The propulsion unit is battery-powered and designed to replace the internal combustion engine. As a result, it eliminates carbon monoxide and nitrogen dioxide emissions, and more than meets the requirements set by health boards with regard to air quality at indoor skating rinks. Recyclable, maintenance-free and manufactured according to the standards set by the Underwriters Laboratories of Canada (ULC), the gel-sealed batteries display great advantages. The cost effectiveness of the electric propulsion unit is more impressive when considering that electricity is clean and costs five times less than conventional fuels currently in use. Regular verifications and calibrations are not required and the maintenance is minimal. The ventilation requirements are also reduced, leading to savings in energy costs required for the aeration of the indoor skating rink. Finally, the elimination of tank rental and fuel costs represent an added benefit. A detailed description of the components is provided. Following a series of trials, the operators were impressed by the surface gripability, traction and manoeuvrability. The resurfacers also gave an impression of greater raw power and were very quiet and easy to use, resulting in better overall operation when compared to conventional resurfacers. 1 fig.

  15. Aeroelastic Analysis of a Distributed Electric Propulsion Wing

    Science.gov (United States)

    Massey, Steven J.; Stanford, Bret K.; Wieseman, Carol D.; Heeg, Jennifer

    2017-01-01

    An aeroelastic analysis of a prototype distributed electric propulsion wing is presented. Results using MSC Nastran (Registered Trademark) doublet lattice aerodynamics are compared to those based on FUN3D Reynolds Averaged Navier- Stokes aerodynamics. Four levels of grid refinement were examined for the FUN3D solutions and solutions were seen to be well converged. It was found that no oscillatory instability existed, only that of divergence, which occurred in the first bending mode at a dynamic pressure of over three times the flutter clearance condition.

  16. Carbon Nanotube Based Electric Propulsion Thruster with Low Power Consumption, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Field emission electric propulsion (FEEP) thrusters have gained considerable attention for spacecrafts disturbance compensation because of excellent characteristics....

  17. Carbon Nanotube Based Electric Propulsion Thruster with Low Power Consumption, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR project is to develop field emission electric propulsion (FEEP) thruster using carbon nanotubes (CNT) integrated anode. FEEP thrusters have gained...

  18. Distributed Electric Propulsion Aircraft Comprehensive Analysis and Design Tool, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The solicitation seeks innovative approaches in designing and analyzing Distributed Electric Propulsion (DEP) aircraft to support ARMD's Strategic Thrust #3...

  19. A Software Toolkit to Accelerate Emission Predictions for Turboelectric/Hybrid Electric Aircraft Propulsion, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Electric propulsion represents an attractive path for reducing overall emissions. For larger commercial aircrafts operating in the mega-watt range, power...

  20. Hybrid Electric Propulsion System for a 4 Passenger VTOL Aircraft, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The advancement of hybrid-electric propulsion systems for rotorcraft enables vertical takeoff and landing (VTOL) vehicles to take advantage of aerodynamic...

  1. Systems Analysis Developed for All-Electric Aircraft Propulsion

    Science.gov (United States)

    Kohout, Lisa L.

    2004-01-01

    There is a growing interest in the use of fuel cells as a power source for all-electric aircraft propulsion as a means to substantially reduce or eliminate environmentally harmful emissions. Among the technologies under consideration for these concepts are advanced proton exchange membrane (PEM) and solid oxide fuel cells (SOFCs), alternative fuels and fuel processing, and fuel storage. A multidisciplinary effort is underway at the NASA Glenn Research Center to develop and evaluate concepts for revolutionary, nontraditional fuel cell power and propulsion systems for aircraft applications. As part of this effort, system studies are being conducted to identify concepts with high payoff potential and associated technology areas for further development. To support this effort, a suite of component models was developed to estimate the mass, volume, and performance for a given system architecture. These models include a hydrogen-air PEM fuel cell; an SOFC; balance-of-plant components (compressor, humidifier, separator, and heat exchangers); compressed gas, cryogenic, and liquid fuel storage tanks; and gas turbine/generator models for hybrid system applications. First-order feasibility studies were completed for an all-electric personal air vehicle utilizing a fuel-cell-powered propulsion system. A representative aircraft with an internal combustion engine was chosen as a baseline to provide key parameters to the study, including engine power and subsystem mass, fuel storage volume and mass, and aircraft range. The engine, fuel tank, and associated ancillaries were then replaced with a fuel cell subsystem. Various configurations were considered including a PEM fuel cell with liquid hydrogen storage, a direct methanol PEM fuel cell, and a direct internal reforming SOFC/turbine hybrid system using liquid methane fuel. Each configuration was compared with the baseline case on a mass and range basis.

  2. Feasibility of the recent Russian nuclear electric propulsion concept: 2010

    International Nuclear Information System (INIS)

    Zakirov, Vadim; Pavshook, Vladimir

    2011-01-01

    Highlights: → The paper focuses on feasibility of the Russian nuclear electric propulsion (NEP) concept. → The Russian NEP concept is based on the past experience and is, therefore, technically feasible. → The big concern is that the program will be cancelled due to non-technical issues. - Abstract: The paper introduces recent Russian nuclear electric propulsion (NEP) concept for space exploration. The concept advantages are listed along with future missions. The current development status for the two main enabling technologies is presented and the feasibility analysis of the up-to-date experience is performed. The main features of NEP concept are discussed. Revision of these features and available technologies demonstrates that the NEP concept is a logical continuation of the previous efforts by the former Soviet Union. Because no breakthrough technologies are needed for NEP development while the existing technologies only need to be adapted to the megawatt (MW) class NEP the development is considered technically feasible, low risk program likely to succeed unless cancelled by the listed non-technical reasons. Successful NEP space vehicle development is going to bring practical space exploration of solar system to the new level as well as require supplementary payload program, supporting monitoring and communication radar networks. Nuclear safety during future NEP missions can be ensured by adherence to the United Nations guidelines in the same way it was done during the Soviet Topaz Nuclear Power System (NPS) missions.

  3. Feasibility of the recent Russian nuclear electric propulsion concept: 2010

    Energy Technology Data Exchange (ETDEWEB)

    Zakirov, Vadim, E-mail: v.zakirov@mail.tsinghua.edu.c [Room 3121, Yifu Building, School of Aerospace, Tsinghua University, Haidian District, Beijing 100084 (China); Pavshook, Vladimir, E-mail: vap_ki@mail.r [Russian Research Center ' Kurchatov Institute' , Kurchatov Sq. 1, Moscow 123182 (Russian Federation)

    2011-05-15

    Highlights: The paper focuses on feasibility of the Russian nuclear electric propulsion (NEP) concept. The Russian NEP concept is based on the past experience and is, therefore, technically feasible. The big concern is that the program will be cancelled due to non-technical issues. - Abstract: The paper introduces recent Russian nuclear electric propulsion (NEP) concept for space exploration. The concept advantages are listed along with future missions. The current development status for the two main enabling technologies is presented and the feasibility analysis of the up-to-date experience is performed. The main features of NEP concept are discussed. Revision of these features and available technologies demonstrates that the NEP concept is a logical continuation of the previous efforts by the former Soviet Union. Because no breakthrough technologies are needed for NEP development while the existing technologies only need to be adapted to the megawatt (MW) class NEP the development is considered technically feasible, low risk program likely to succeed unless cancelled by the listed non-technical reasons. Successful NEP space vehicle development is going to bring practical space exploration of solar system to the new level as well as require supplementary payload program, supporting monitoring and communication radar networks. Nuclear safety during future NEP missions can be ensured by adherence to the United Nations guidelines in the same way it was done during the Soviet Topaz Nuclear Power System (NPS) missions.

  4. Electric propulsion reliability: Statistical analysis of on-orbit anomalies and comparative analysis of electric versus chemical propulsion failure rates

    Science.gov (United States)

    Saleh, Joseph Homer; Geng, Fan; Ku, Michelle; Walker, Mitchell L. R.

    2017-10-01

    With a few hundred spacecraft launched to date with electric propulsion (EP), it is possible to conduct an epidemiological study of EP's on orbit reliability. The first objective of the present work was to undertake such a study and analyze EP's track record of on orbit anomalies and failures by different covariates. The second objective was to provide a comparative analysis of EP's failure rates with those of chemical propulsion. Satellite operators, manufacturers, and insurers will make reliability- and risk-informed decisions regarding the adoption and promotion of EP on board spacecraft. This work provides evidence-based support for such decisions. After a thorough data collection, 162 EP-equipped satellites launched between January 1997 and December 2015 were included in our dataset for analysis. Several statistical analyses were conducted, at the aggregate level and then with the data stratified by severity of the anomaly, by orbit type, and by EP technology. Mean Time To Anomaly (MTTA) and the distribution of the time to (minor/major) anomaly were investigated, as well as anomaly rates. The important findings in this work include the following: (1) Post-2005, EP's reliability has outperformed that of chemical propulsion; (2) Hall thrusters have robustly outperformed chemical propulsion, and they maintain a small but shrinking reliability advantage over gridded ion engines. Other results were also provided, for example the differentials in MTTA of minor and major anomalies for gridded ion engines and Hall thrusters. It was shown that: (3) Hall thrusters exhibit minor anomalies very early on orbit, which might be indicative of infant anomalies, and thus would benefit from better ground testing and acceptance procedures; (4) Strong evidence exists that EP anomalies (onset and likelihood) and orbit type are dependent, a dependence likely mediated by either the space environment or differences in thrusters duty cycles; (5) Gridded ion thrusters exhibit both

  5. Mars Mission Concepts: SAR and Solar Electric Propulsion

    Science.gov (United States)

    Elsperman, M.; Klaus, K.; Smith, D. B.; Clifford, S. M.; Lawrence, S. J.

    2012-12-01

    Introduction: The time has come to leverage technology advances (including advances in autonomous operation and propulsion technology) to reduce the cost and increase the flight rate of planetary missions, while actively developing a scientific and engineering workforce to achieve national space objectives. Mission Science at Mars: A SAR imaging radar offers an ability to conduct high resolution investigations of the shallow (Models uniquely useful for exploration planning and science purposes. Since the SAR and the notional high-resolution stereo imaging system would be huge data volume producers - to maximize the science return we are currently considering the usage of laser communications systems; this notional spacecraft represents one pathway to evaluate the utility of laser communications in planetary exploration while providing useful science return.. Mission Concept: Using a common space craft for multiple missions reduces costs. Solar electric propulsion (SEP) provides the flexibility required for multiple mission objectives. SEP provides the greatest payload advantage albeit at the sacrifice of mission time. Our concept involves using a SEP enabled space craft (Boeing 702SP) with a highly capable SAR imager that also conducts autonomous rendezvous and docking experiments accomplished from Mars orbit. Our concept of operations is to launch on May 5, 2018 using a launch vehicle with 2000kg launch capacity with a C3 of 7.4. After reaching Mars it takes 145 days to spiral down to a 250 km orbit above the surface of Mars when Mars SAR operations begin. Summary/Conclusions: A robust and compelling Mars mission can be designed to meet the 2018 Mars launch window opportunity. Using advanced in-space power and propulsion technologies like High Power Solar Electric Propulsion provides enormous mission flexibility to execute the baseline science mission and conduct necessary Mars Sample Return Technology Demonstrations in Mars orbit on the same mission. An

  6. Field emission electric propulsion thruster modeling and simulation

    Science.gov (United States)

    Vanderwyst, Anton Sivaram

    Electric propulsion allows space rockets a much greater range of capabilities with mass efficiencies that are 1.3 to 30 times greater than chemical propulsion. Field emission electric propulsion (FEEP) thrusters provide a specific design that possesses extremely high efficiency and small impulse bits. Depending on mass flow rate, these thrusters can emit both ions and droplets. To date, fundamental experimental work has been limited in FEEP. In particular, detailed individual droplet mechanics have yet to be understood. In this thesis, theoretical and computational investigations are conducted to examine the physical characteristics associated with droplet dynamics relevant to FEEP applications. Both asymptotic analysis and numerical simulations, based on a new approach combining level set and boundary element methods, were used to simulate 2D-planar and 2D-axisymmetric probability density functions of the droplets produced for a given geometry and electrode potential. The combined algorithm allows the simulation of electrostatically-driven liquids up to and after detachment. Second order accuracy in space is achieved using a volume of fluid correction. The simulations indicate that in general, (i) lowering surface tension, viscosity, and potential, or (ii) enlarging electrode rings, and needle tips reduce operational mass efficiency. Among these factors, surface tension and electrostatic potential have the largest impact. A probability density function for the mass to charge ratio (MTCR) of detached droplets is computed, with a peak around 4,000 atoms per electron. High impedance surfaces, strong electric fields, and large liquid surface tension result in a lower MTCR ratio, which governs FEEP droplet evolution via the charge on detached droplets and their corresponding acceleration. Due to the slow mass flow along a FEEP needle, viscosity is of less importance in altering the droplet velocities. The width of the needle, the composition of the propellant, the

  7. COMPASS Final Report: Enceladus Solar Electric Propulsion Stage

    Science.gov (United States)

    Oleson, Steven R.; McGuire, Melissa L.

    2011-01-01

    The results of the NASA Glenn Research Center (GRC) COllaborative Modeling and Parametric Assessment of Space Systems (COMPASS) internal Solar Electric Propulsion (SEP) stage design are documented in this report (Figure 1.1). The SEP Stage was designed to deliver a science probe to Saturn (the probe design was performed separately by the NASA Goddard Space Flight Center s (GSFC) Integrated Mission Design Center (IMDC)). The SEP Stage delivers the 2444 kg probe on a Saturn trajectory with a hyperbolic arrival velocity of 5.4 km/s. The design carried 30 percent mass, 10 percent power, and 6 percent propellant margins. The SEP Stage relies on the probe for substantial guidance, navigation and control (GN&C), command and data handling (C&DH), and Communications functions. The stage is configured to carry the probe and to minimize the packaging interference between the probe and the stage. The propulsion system consisted of a 1+1 (one active, one spare) configuration of gimbaled 7 kW NASA Evolutionary Xenon Thruster (NEXT) ion propulsion thrusters with a throughput of 309 kg Xe propellant. Two 9350 W GaAs triple junction (at 1 Astronomical Unit (AU), includes 10 percent margin) ultra-flex solar arrays provided power to the stage, with Li-ion batteries for launch and contingency operations power. The base structure was an Al-Li hexagonal skin-stringer frame built to withstand launch loads. A passive thermal control system consisted of heat pipes to north and south radiator panels, multilayer insulation (MLI) and heaters for the Xe tank. All systems except tanks and solar arrays were designed to be single fault tolerant.

  8. Modular Pulsed Plasma Electric Propulsion System for Cubesats

    Science.gov (United States)

    Perez, Andres Dono; Gazulla, Oriol Tintore; Teel, George Lewis; Mai, Nghia; Lukas, Joseph; Haque, Sumadra; Uribe, Eddie; Keidar, Michael; Agasid, Elwood

    2014-01-01

    Current capabilities of CubeSats must be improved in order to perform more ambitious missions. Electric propulsion systems will play a key role due to their large specific impulse. Compared to other propulsion alternatives, their simplicity allows an easier miniaturization and manufacturing of autonomous modules into the nano and pico-satellite platform. Pulsed Plasma Thrusters (PPTs) appear as one of the most promising technologies for the near term. The utilization of solid and non-volatile propellants, their low power requirements and their proven reliability in the large scale make them great candidates for rapid implementation. The main challenges are the integration and miniaturization of all the electronic circuitry into a printed circuit board (PCB) that can satisfy the strict requirements that CubeSats present. NASA Ames and the George Washington University have demonstrated functionality and control of three discrete Micro-Cathode Arc Thrusters (CAT) using a bench top configuration that was compatible with the ARC PhoneSat Bus. This demonstration was successfully conducted in a vaccum chamber at the ARC Environmental Test Laboratory. A new effort will integrate a low power Plasma Processing Unit and two plasma thrusters onto a single printed circuit board that will utilize less than 13 U of Bus volume. The target design will be optimized for the accommodation into the PhoneSatEDISON Demonstration of SmallSatellite Networks (EDSN) bus as it uses the same software interface application, which was demonstrated in the previous task. This paper describes the design, integration and architecture of the proposed propulsion subsystem for a planned Technology Demonstration Mission. In addition, a general review of the Pulsed Plasma technology available for CubeSats is presented in order to assess the necessary challenges to overcome further development.

  9. Low Current Surface Flashover for Initiation of Electric Propulsion Devices

    Science.gov (United States)

    Dary, Omar G.

    There has been a recent increase in interest in miniaturization of propulsion systems for satellites. These systems are needed to propel micro- and nano-satellites, where platforms are much smaller than conventional satellites and require smaller levels of thrust. Micro-propulsion systems for these satellites are in their infancy and they must manage with smaller power systems and smaller propellant volumes. Electric propulsion systems operating on various types of electric discharges are typically used for these needs. One of the central components of such electrical micropropulsion systems are ignitor subsystems, which are required for creation the breakdown and initiation of the main discharge. Ignitors have to provide reliable ignition for entire lifetime of the micropropulsion system. Electric breakdown in vacuum usually require high voltage potentials of hundreds of kilovolts per mm to induce breakdown. The breakdown voltage can be significantly decreased (down to several kVs per mm) if dielectric surface flashover is utilized. However, classical dielectric surface flashover operates at large electric current (100s of Amperes) and associated with overheating and damage of the electrodes/dielectric assembly after several flashover events. The central idea of this work was to eliminate the damage to the flashover electrode assembly by limiting the flashover currents to low values in milliampere range (Low Current Surface Flashover -LCSF) and utilize LCSF system as an ignition source for the main discharge on the micropropulsion system. The main objective of this research was to create a robust LCSF ignition system, capable producing a large number of surface flashover triggering events without significant damage to the LCSF electrode assembly. The thesis aims to characterize the plasma plume created at LCSF, study electrodes ablation and identify conditions required for robust triggering of main discharge utilized on micro-propulsion system. Conditioning of a

  10. Systems integration processes for space nuclear electric propulsion systems

    International Nuclear Information System (INIS)

    Olsen, C.S.; Rice, J.W.; Stanley, M.L.

    1991-01-01

    The various components and subsystems that comprise a nuclear electric propulsion system should be developed and integrated so that each functions ideally and so that each is properly integrated with the other components and subsystems in the optimum way. This paper discusses how processes similar to those used in the development and intergration of the subsystems that comprise the Multimegawatt Space Nuclear Power System concepts can be and are being efficiently and effectively utilized for these purposes. The processes discussed include the development of functional and operational requirements at the system and subsystem level; the assessment of individual nuclear power supply and thruster concepts and their associated technologies; the conduct of systems integration efforts including the evaluation of the mission benefits for each system; the identification and resolution of concepts development, technology development, and systems integration feasibility issues; subsystem, system, and technology development and integration; and ground and flight subsystem and integrated system testing

  11. Applications of nuclear reactor power systems to electric propulsion missions.

    Science.gov (United States)

    Schaupp, R. W.; Sawyer, C. D.

    1971-01-01

    The performance of nuclear electric propulsion systems (NEP) has been evaluated for a wide variety of missions in an attempt to establish the commonality of NEP system requirements. Emphasis was given to those requirements and system characteristics that serve as guidelines for current technology development programs. Various interactions and tradeoffs between NEP system and mission parameters are described. The results show that the most significant factors in selecting NEP system size are launch mode (direct or spiral escape) and, to a weaker extent, launch vehicle capability. Other factors such as mission, payload, and thrust time constraints, have little influence, thus allowing one NEP system to be used for many missions. The results indicated that a 100 kWe NEP would be suitable for most direct escape missions and a 250 kWe NEP system would be suitable for more demanding missions that use the spiral escape mode.

  12. Nuclear electric propulsion operational reliability and crew safety study

    International Nuclear Information System (INIS)

    Karns, J.J.; Fragola, J.R.; Kahan, L.; Pelaccio, D.

    1993-01-01

    The central purpose of this analysis is to assess the ''achievability'' of a nuclear electric propulsion (NEP) system in a given mission. ''Achievability'' is a concept introduced to indicate the extent to which a system that meets or achieves its design goals might be implemented using the existing technology base. In the context of this analysis, the objective is to assess the achievability of an NEP system for a manned Mars mission as it pertains to operational reliability and crew safety goals. By varying design parameters, then examining the resulting system achievability, the design and mission risk drivers can be identified. Additionally, conceptual changes in design approach or mission strategy which are likely to improve overall achievability of the NEP system can be examined

  13. Nuclear Electric Propulsion Application: RASC Mission Robotic Exploration of Venus

    Science.gov (United States)

    McGuire, Melissa L.; Borowski, Stanley K.; Packard, Thomas W.

    2004-01-01

    The following paper documents the mission and systems analysis portion of a study in which Nuclear Electric Propulsion (NEP) is used as the in-space transportation system to send a series of robotic rovers and atmospheric science airplanes to Venus in the 2020 to 2030 timeframe. As part of the NASA RASC (Revolutionary Aerospace Systems Concepts) program, this mission analysis is meant to identify future technologies and their application to far reaching NASA missions. The NEP systems and mission analysis is based largely on current technology state of the art assumptions. This study looks specifically at the performance of the NEP transfer stage when sending a series of different payload package point design options to Venus orbit.

  14. Comet rendezvous mission design using Solar Electric Propulsion

    Science.gov (United States)

    Sackett, L. L.; Hastrup, R. C.; Yen, C.-W. L.; Wood, L. J.

    1979-01-01

    A dual comet (Halley Flyby/Tempel 2 Rendezvous) mission, which is planned to be the first to use the Solar Electric Propulsion System (SEPS), is to be launched in 1985. The purpose of this paper is to describe how the mission design attempts to maximize science return while working within spacecraft and other constraints. Science requirements and desires are outlined and specific instruments are considered. Emphasis is on the strategy for operations in the vicinity of Tempel 2, for which a representative profile is described. The mission is planned to extend about one year past initial rendezvous. Because of the large uncertainty in the comet environment the Tempel 2 operations strategy must be highly adaptive.

  15. Systems Analysis Initiated for All-Electric Aircraft Propulsion

    Science.gov (United States)

    Kohout, Lisa L.

    2003-01-01

    A multidisciplinary effort is underway at the NASA Glenn Research Center to develop concepts for revolutionary, nontraditional fuel cell power and propulsion systems for aircraft applications. There is a growing interest in the use of fuel cells as a power source for electric propulsion as well as an auxiliary power unit to substantially reduce or eliminate environmentally harmful emissions. A systems analysis effort was initiated to assess potential concepts in an effort to identify those configurations with the highest payoff potential. Among the technologies under consideration are advanced proton exchange membrane (PEM) and solid oxide fuel cells, alternative fuels and fuel processing, and fuel storage. Prior to this effort, the majority of fuel cell analysis done at Glenn was done for space applications. Because of this, a new suite of models was developed. These models include the hydrogen-air PEM fuel cell; internal reforming solid oxide fuel cell; balance-of-plant components (compressor, humidifier, separator, and heat exchangers); compressed gas, cryogenic, and liquid fuel storage tanks; and gas turbine/generator models for hybrid system applications. Initial mass, volume, and performance estimates of a variety of PEM systems operating on hydrogen and reformate have been completed for a baseline general aviation aircraft. Solid oxide/turbine hybrid systems are being analyzed. In conjunction with the analysis efforts, a joint effort has been initiated with Glenn s Computer Services Division to integrate fuel cell stack and component models with the visualization environment that supports the GRUVE lab, Glenn s virtual reality facility. The objective of this work is to provide an environment to assist engineers in the integration of fuel cell propulsion systems into aircraft and provide a better understanding of the interaction between system components and the resulting effect on the overall design and performance of the aircraft. Initially, three

  16. Space Weather Concerns for All-Electric Propulsion Satellites

    Science.gov (United States)

    Horne, Richard B.; Pitchford, David

    2015-08-01

    The introduction of all-electric propulsion satellites is a game changer in the quest for low-cost access to space. It also raises new questions for satellite manufacturers, operators, and the insurance industry regarding the general risks and specifically the threat of adverse space weather. The issues surrounding this new concept were discussed by research scientists and up to 30 representatives from the space industry at a special meeting at the European Space Weather Week held in November 2014. Here we report on the discussions at that meeting. We show that for a satellite undergoing electric orbit raising for 200 days the radiation dose due to electrons is equivalent to approximately 6.7 year operation at geostationary orbit or approximately half the typical design life. We also show that electrons can be injected into the slot region (8000 km) where they pose a risk of satellite internal charging. The results highlight the importance of additional radiation protection. We also discuss the benefits, the operational considerations, the other risks from the Van Allen radiation belts, the new business opportunities for space insurance, and the need for space situation awareness in medium Earth orbit where electric orbit raising takes place.

  17. Status and Perspectives of Electric Propulsion in Italy

    Science.gov (United States)

    Svelto, F.; Marcuccio, S.; Matticari, G.

    2002-01-01

    Electric Propulsion (EP) is recognized as one of today's enabling technologies for scientific and commercial missions. In consideration of EP's major strategic impact on the near and long term scenarios, an EP development programme has been established within the Italian Space Agency (ASI), aimed at the development of a variety of propulsion capabilities covering different fields of application. This paper presents an overview of Electric Propulsion (EP) activities underway in Italy and outlines the planned development lines, both in research institutions and in industry. Italian EP activities are essentially concentrated in Pisa, at Centrospazio and Alta, and in Florence, at LABEN - Proel Tecnologie Division (LABEN/Proel). Centrospazio/Alta and LABEN/Proel have established a collaboration program for joint advanced developments in the EP field. Established in 1989, Centrospazio is a private research center closely related to the Department of Aerospace Engineering of Pisa University. Along the years, Centrospazio lines of development have included arcjets, magneto- plasma-dynamic thrusters, FEEP and Hall thrusters, as well as computational plasma dynamics and low-thrust mission studies. Alta, a small enterprise, was founded in 1999 to exploit in an industrial setting the results of research previously carried out at Centrospazio. Alta's activities include the development of micronewton and millinewton FEEP thrusters, and testing of high power Hall and ion thrusters in specialised facilities. A full micronewton FEEP propulsion system is being developed for the Microscope spacecraft, a scientific mission by CNES aimed at verification of the Equivalence Principle. FEEP will also fly on ASI's HypSEO, a technological demonstrator for Earth Observation, and is being considered for ESA's GOCE (geodesy) and SMART-2 (formation flying), as well as for the intended scientific spacecraft GG by ASI. The ASI-funded STEPS facility will be placed on an external site on the

  18. Extra-Zodiacal-Cloud Astronomy via Solar Electric Propulsion

    Science.gov (United States)

    Benson, Scott W.; Falck, Robert D.; Oleson, Steven R.; Greenhouse, Matthew A.; Kruk, Jeffrey W.; Gardner, Jonathan P.; Thronson, Harley A.; Vaughn, Frank J.; Fixsen, Dale J.

    2011-01-01

    Solar electric propulsion (SEP) is often considered as primary propulsion for robotic planetary missions, providing the opportunity to deliver more payload mass to difficult, high-delta-velocity destinations. However, SEP application to astrophysics has not been well studied. This research identifies and assesses a new application of SEP as primary propulsion for low-cost high-performance robotic astrophysics missions. The performance of an optical/infrared space observatory in Earth orbit or at the Sun-Earth L2 point (SEL2) is limited by background emission from the Zodiacal dust cloud that has a disk morphology along the ecliptic plane. By delivering an observatory to a inclined heliocentric orbit, most of this background emission can be avoided, resulting in a very substantial increase in science performance. This advantage enabled by SEP allows a small-aperture telescope to rival the performance of much larger telescopes located at SEL2. In this paper, we describe a novel mission architecture in which SEP technology is used to enable unprecedented telescope sensitivity performance per unit collecting area. This extra-zodiacal mission architecture will enable a new class of high-performance, short-development time, Explorer missions whose sensitivity and survey speed can rival flagship-class SEL2 facilities, thus providing new programmatic flexibility for NASA's astronomy mission portfolio. A mission concept study was conducted to evaluate this application of SEP. Trajectory analyses determined that a 700 kg-class science payload could be delivered in just over 2 years to a 2 AU mission orbit inclined 15 to the ecliptic using a 13 kW-class NASA's Evolutionary Xenon Thruster (NEXT) SEP system. A mission architecture trade resulted in a SEP stage architecture, in which the science spacecraft separates from the stage after delivery to the mission orbit. The SEP stage and science spacecraft concepts were defined in collaborative engineering environment studies. The

  19. Solar Electric Propulsion (SEP) Tug Power System Considerations

    Science.gov (United States)

    Kerslake, Thomas W.; Bury, Kristen M.; Hojinicki, Jeffrey S.; Sajdak, Adam M.; Scheiddegger, Robert J.

    2011-01-01

    Solar electric propulsion (SEP) technology is truly at the "intersection of commercial and military space" as well as the intersection of NASA robotic and human space missions. Building on the use of SEP for geosynchronous spacecraft station keeping, there are numerous potential commercial and military mission applications for SEP stages operating in Earth orbit. At NASA, there is a resurgence of interest in robotic SEP missions for Earth orbit raising applications, 1-AU class heliocentric missions to near Earth objects (NEOs) and SEP spacecraft technology demonstrations. Beyond these nearer term robotic missions, potential future human space flight missions to NEOs with high-power SEP stages are being considered. To enhance or enable this broad class of commercial, military and NASA missions, advancements in the power level and performance of SEP technologies are needed. This presentation will focus on design considerations for the solar photovoltaic array (PVA) and electric power system (EPS) vital to the design and operation of an SEP stage. The engineering and programmatic pros and cons of various PVA and EPS technologies and architectures will be discussed in the context of operating voltage and power levels. The impacts of PVA and EPS design options on the remaining SEP stage subsystem designs, as well as spacecraft operations, will also be discussed.

  20. Performance enhancement using power beaming for electric propulsion earth orbital transporters

    International Nuclear Information System (INIS)

    Dagle, J.E.

    1991-01-01

    An electric propulsion Earth orbital transport vehicle (EOTV) can effectively deliver large payloads using much less propellant than chemical transfer methods. By using an EOTV instead of a chemical upper stage, either a smaller launch vehicle can be used for the same satellite mass or a larger satellite can be deployed using the same launch vehicle. However, the propellant mass savings from using the higher specific impulse of electric propulsion may not be enough to overcome the disadvantage of the added mass and cost of the electric propulsion power source. Power system limitations have been a major factor delaying the acceptance and use of electric propulsion. This paper outlines the power requirements of electric propulsion technology being developed today, including arcjets, magnetoplasmadynamic (MPD) thrusters, and ion engines. Power supply characteristics are discussed for nuclear, solar, and power-beaming systems. Operational characteristics are given for each, as are the impacts of the power supply alternative on the overall craft performance. Because of its modular nature, the power-beaming approach is able to meet the power requirements of all three electric propulsion types. Also, commonality of approach allows different electric propulsion approaches to be powered by a single power supply approach. Power beaming exhibits better flexibility and performance than on-board nuclear or solar power systems

  1. Static Measurements on HTS Coils of Fully Superconducting AC Electric Machines for Aircraft Electric Propulsion System

    Science.gov (United States)

    Choi, Benjamin B.; Hunker, Keith R.; Hartwig, Jason; Brown, Gerald V.

    2017-01-01

    The NASA Glenn Research Center (GRC) has been developing the high efficiency and high-power density superconducting (SC) electric machines in full support of electrified aircraft propulsion (EAP) systems for a future electric aircraft. A SC coil test rig has been designed and built to perform static and AC measurements on BSCCO, (RE)BCO, and YBCO high temperature superconducting (HTS) wire and coils at liquid nitrogen (LN2) temperature. In this paper, DC measurements on five SC coil configurations of various geometry in zero external magnetic field are measured to develop good measurement technique and to determine the critical current (Ic) and the sharpness (n value) of the super-to-normal transition. Also, standard procedures for coil design, fabrication, coil mounting, micro-volt measurement, cryogenic testing, current control, and data acquisition technique were established. Experimentally measured critical currents are compared with theoretical predicted values based on an electric-field criterion (Ec). Data here are essential to quantify the SC electric machine operation limits where the SC begins to exhibit non-zero resistance. All test data will be utilized to assess the feasibility of using HTS coils for the fully superconducting AC electric machine development for an aircraft electric propulsion system.

  2. Radioisotope electric propulsion of sciencecraft to the outer solar system and near-interstellar space

    International Nuclear Information System (INIS)

    Noble, R.J.

    1998-08-01

    Recent results are presented in the study of radioisotope electric propulsion as a near-term technology for sending small robotic sciencecraft to the outer Solar System and near-interstellar space. Radioisotope electric propulsion (REP) systems are low-thrust, ion propulsion units based on radioisotope electric generators and ion thrusters. Powerplant specific masses are expected to be in the range of 100 to 200 kg/kW of thrust power. Planetary rendezvous missions to Pluto, fast missions to the heliopause (100 AU) with the capability to decelerate an orbiter for an extended science program and prestellar missions to the first gravitational lens focus of the Sun (550 AU) are investigated

  3. Electric Motors for Non-Cryogenic Hybrid Electric and Turboelectric Propulsion

    Science.gov (United States)

    Duffy, Kirsten P.

    2015-01-01

    NASA Glenn Research Center is investigating hybrid electric and turboelectric propulsion concepts for future aircraft to reduce fuel burn, emissions, and noise. Systems studies show that the weight and efficiency of the electric system components need to be improved for this concept to be feasible. However, advances in motor component materials such as soft magnetic materials, hard magnetic materials, conductors, thermal insulation, and structural materials are expected in the coming years, and should improve motor performance. This study investigates several motor types for a one megawatt application, and projects the motor performance benefits of new component materials that might be available in the coming decades.

  4. Electric Motor Considerations for Non-Cryogenic Hybrid Electric and Turboelectric Propulsion

    Science.gov (United States)

    Duffy, Kirsten P.

    2015-01-01

    NASA Glenn Research Center is investigating hybrid electric and turboelectric propulsion concepts for future aircraft to reduce fuel burn, emissions, and noise. Systems studies show that the weight and efficiency of the electric system components need to be improved for this concept to be feasible. However, advances in motor component materials such as soft magnetic materials, hard magnetic materials, conductors, thermal insulation, and structural materials are expected in the coming years, and should improve motor performance. This study investigates several motor types for a one megawatt application, and projects the motor performance benefits of new component materials that might be available in the coming decades.

  5. Hybrid propulsion testing using direct-drive electrical machines for super yacht and inland shipping

    NARCIS (Netherlands)

    Paulides, J.J.H.; Djukic, N.; de Roon, J.A.; Encica, L.

    2016-01-01

    Hybrid or full electric propulsions for inland ships are becoming more popular. In these application, direct-drive PM propulsion motors are a preferred machine configuration. This paper discusses the challenges to determine the losses, as estimated with simulations, during the testing procedures of

  6. Propulsion system research and development for electric and hybrid vehicles

    Science.gov (United States)

    Schwartz, H. J.

    1980-01-01

    An approach to propulsion subsystem technology is presented. Various tests of component reliability are described to aid in the production of better quality vehicles. component characterization work is described to provide engineering data to manufacturers on component performance and on important component propulsion system interactions.

  7. Hybrid-Electric and Distributed Propulsion Technologies for Large Commercial Transports: A NASA Perspective

    Science.gov (United States)

    Madavan, Nateri K.; Del Rosario, Ruben; Jankovsky, Amy L.

    2015-01-01

    Develop and demonstrate technologies that will revolutionize commercial transport aircraft propulsion and accelerate development of all-electric aircraft architectures. Enable radically different propulsion systems that can meet national environmental and fuel burn reduction goals for subsonic commercial aircraft. Focus on future large regional jets and single-aisle twin (Boeing 737- class) aircraft for greatest impact on fuel burn, noise and emissions. Research horizon is long-term but with periodic spinoff of technologies for introduction in aircraft with more- and all-electric architectures. Research aligned with new NASA Aeronautics strategic R&T thrusts in areas of transition to low-carbon propulsion and ultra-efficient commercial transports.

  8. Research, development, and demonstration of lead-acid batteries for electric vehicle propulsion. Annual report, 1980

    Energy Technology Data Exchange (ETDEWEB)

    1981-03-01

    The progress and status of Eltra's Electric Vehicle Battery Program during FY-80 are presented under five divisional headings: Research on Components and Processes; Development of Cells and Modules for Electric Vehicle Propulsion; Sub-Systems; Pilot Line Production of Electric Vehicle Battery Prototypes; and Program Management.

  9. Radioisotope electric propulsion of sciencecraft to the outer Solar System and near-interstellar space

    International Nuclear Information System (INIS)

    Noble, R.J.

    1999-01-01

    Radioisotopes have been used successfully for more than 25 years to supply the heat for thermoelectric generators on various deep-space probes. Radioisotope electric propulsion (REP) systems have been proposed as low-thrust ion propulsion units based on radioisotope electric generators and ion thrusters. The perceived liability of radioisotope electric generators for ion propulsion is their high mass. Conventional radioisotope thermoelectric generators have a specific mass of about 200 kg/kW of electric power. Many development efforts have been undertaken with the aim of reducing the specific mass of radioisotope electric systems. Recent performance estimates suggest that specific masses of 50 kg/kW may be achievable with thermophotovoltaic and alkali metal thermal-to-electric conversion generators. Powerplants constructed from these near-term radioisotope electric generators and long-life ion thrusters will likely have specific masses in the range of 100 to 200 kg/kW of thrust power if development continues over the next decade. In earlier studies, it was concluded that flight times within the Solar System are indeed insensitive to reductions in the powerplant specific mass, and that a timely scientific program of robotic planetary rendezvous and near-interstellar space missions is enabled by primary electric propulsion once the powerplant specific mass is in the range of 100 to 200 kg/kW. Flight times can be substantially reduced by using hybrid propulsion schemes that combine chemical propulsion, gravity assist, and electric propulsion. Hybrid schemes are further explored in this article to illustrate how the performance of REP is enhanced for Pluto rendezvous, heliopause orbiter, and gravitational lens missions

  10. High Temperature Radiators for Electric Propulsion Systems, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The VASIMR propulsion system uses a high temperature Loop Heat Pipe (LHP) radiator to reject heat from the helicon section. The current baseline radiator uses...

  11. An Evaluation of Electric Motors for Ship Propulsion

    Science.gov (United States)

    2003-06-01

    AIM). Permanent magnet motors are more power dense than a comparatively sized in- duction motor. The permanent magnet motor has been chosen to...study. They include the axial flux, the ra- dial flux, and the transverse flux permanent magnet motors . Each motor has its unique advantages...to be ideal for ship propulsion, work is ongoing to develop the PMSM for ship propulsion. Permanent magnet motors are expected to have significant

  12. Radioisotope electric propulsion for robotic science missions to near-interstellar space

    International Nuclear Information System (INIS)

    Noble, R.J.

    1994-10-01

    The use of radioisotope electric propulsion for sending small robotic probes on fast science missions several hundred astronomical units (AU) from the Sun is investigated. Such missions would address a large variety of solar, interstellar, galactic and cosmological science themes from unique vantage points at 100 to 600 AU, including parallax distance measurements for the entire Milky Way Galaxy, sampling of the interstellar medium and imaging of cosmological objects at the gravitational lens foci of the Sun (≥ 550 AU). Radioisotope electric propulsion (REP) systems are low-thrust, ion propulsion units based on multi-hundred watt, radioisotope electric generators and ion thrusters. In a previous work, the flight times for rendezvous missions to the outer planets (< 30 AU) using REP were found to be less than fifteen years. However fast prestellar missions to several hundred AU are not possible unless the probe's energy can be substantially increased in the inner Solar System so as to boost the final hyperbolic excess velocity. In this paper an economical hybrid propulsion scheme combining chemical propulsion and gravity assist in the inner Solar System and radioisotope electric propulsion in the outer Solar System is studied which enables fast prestellar missions. Total hyperbolic excess velocities of 15 AU/year and flight times to 550 AU of about 40 years are possible using REP technology that may be available in the next decade

  13. Propulsion Powertrain Real-Time Simulation Using Hardware-in-the-Loop (HIL) for Aircraft Electric Propulsion System

    Science.gov (United States)

    Choi, Benjamin B.; Brown, Gerald V.

    2017-01-01

    It is essential to design a propulsion powertrain real-time simulator using the hardware-in-the-loop (HIL) system that emulates an electrified aircraft propulsion (EAP) systems power grid. This simulator would enable us to facilitate in-depth understanding of the system principles, to validate system model analysis and performance prediction, and to demonstrate the proof-of-concept of the EAP electrical system. This paper describes how subscale electrical machines with their controllers can mimic the power components in an EAP powertrain. In particular, three powertrain emulations are presented to mimic 1) a gas turbo-=shaft engine driving a generator, consisting of two permanent magnet (PM) motors with brushless motor drives, coupled by a shaft, 2) a motor driving a propulsive fan, and 3) a turbo-shaft engine driven fan (turbofan engine) operation. As a first step towards the demonstration, experimental dynamic characterization of the two motor drive systems, coupled by a mechanical shaft, were performed. The previously developed analytical motor models1 were then replaced with the experimental motor models to perform the real-time demonstration in the predefined flight path profiles. This technique can convert the plain motor system into a unique EAP power grid emulator that enables rapid analysis and real-time simulation performance using hardware-in-the-loop (HIL).

  14. UAV Mission Optimization through Hybrid-Electric Propulsion

    Science.gov (United States)

    Blackwelder, Philip Scott

    Hybrid-electric powertrain leverages the superior range of petrol based systems with the quiet and emission free benefits of electric propulsion. The major caveat to hybrid-electric powertrain in an airplane is that it is inherently heavier than conventional petroleum powertrain due mostly to the low energy density of battery technology. The first goal of this research is to develop mission planning code to match powertrain components for a small-scale unmanned aerial vehicle (UAV) to complete a standard surveillance mission within a set of user input parameters. The second goal is to promote low acoustic profile loitering through mid-flight engine starting. The two means by which midmission engine starting will be addressed is through reverse thrust from the propeller and a servo actuated gear to couple and decouple the engine and motor. The mission planning code calculates the power required to complete a mission and assists the user in sourcing powertrain components including the propeller, motor, battery, motor controller, engine and fuel. Reverse thrust engine starting involves characterizing an off the shelf variable pitch propeller and using its torque coefficient to calculate the advance ratio required to provide sufficient torque and speed to start an engine. Geared engine starting works like the starter in a conventional automobile. A servo actuated gear will couple the motor to the engine to start it and decouple once the engine has started. Reverse thrust engine starting was unsuccessful due to limitations of available off the shelf variable pitch propellers. However, reverse thrust engine starting could be realized through a custom larger diameter propeller. Geared engine starting was a success, though the system was unable to run fully as intended. Due to counter-clockwise crank rotation of the engine and the right-hand threads on the crankshaft, cranking the engine resulted in the nut securing the engine starter gear to back off as the engine cranked

  15. Identifying Accessible Near-Earth Objects For Crewed Missions With Solar Electric Propulsion

    Science.gov (United States)

    Smet, Stijn De; Parker, Jeffrey S.; Herman, Jonathan F. C.; Aziz, Jonathan; Barbee, Brent W.; Englander, Jacob A.

    2015-01-01

    This paper discusses the expansion of the Near-Earth Object Human Space Flight Accessible Targets Study (NHATS) with Solar Electric Propulsion (SEP). The research investigates the existence of new launch seasons that would have been impossible to achieve using only chemical propulsion. Furthermore, this paper shows that SEP can be used to significantly reduce the launch mass and in some cases the flight time of potential missions as compared to the current, purely chemical trajectories identified by the NHATS project.

  16. Comparison of High-Fidelity Computational Tools for Wing Design of a Distributed Electric Propulsion Aircraft

    Science.gov (United States)

    Deere, Karen A.; Viken, Sally A.; Carter, Melissa B.; Viken, Jeffrey K.; Derlaga, Joseph M.; Stoll, Alex M.

    2017-01-01

    A variety of tools, from fundamental to high order, have been used to better understand applications of distributed electric propulsion to aid the wing and propulsion system design of the Leading Edge Asynchronous Propulsion Technology (LEAPTech) project and the X-57 Maxwell airplane. Three high-fidelity, Navier-Stokes computational fluid dynamics codes used during the project with results presented here are FUN3D, STAR-CCM+, and OVERFLOW. These codes employ various turbulence models to predict fully turbulent and transitional flow. Results from these codes are compared for two distributed electric propulsion configurations: the wing tested at NASA Armstrong on the Hybrid-Electric Integrated Systems Testbed truck, and the wing designed for the X-57 Maxwell airplane. Results from these computational tools for the high-lift wing tested on the Hybrid-Electric Integrated Systems Testbed truck and the X-57 high-lift wing presented compare reasonably well. The goal of the X-57 wing and distributed electric propulsion system design achieving or exceeding the required ?? (sub L) = 3.95 for stall speed was confirmed with all of the computational codes.

  17. Modeling and Dynamics of HTS Motors for Aircraft Electric Propulsion

    Directory of Open Access Journals (Sweden)

    Ranjan Vepa

    2018-02-01

    Full Text Available In this paper, the methodology of how a dynamic model of a conventional permanent magnet synchronous motor (PMSM may be modified to model the dynamics of a high-temperature superconductor (HTS machine is illustrated. Simulations of a typical PMSM operating under room temperature conditions and also at temperatures when the stator windings are superconducting are compared. Given a matching set of values for the stator resistance at superconducting temperature and flux-trapped rotor field, it is shown that the performance of the HTS PMSM is quite comparable to a PMSM under normal room temperature operating conditions, provided the parameters of the motor are appropriately related to each other. From these simulations, a number of strategies for operating the motor so as to get the propeller to deliver thrust with maximum propulsive efficiency are discussed. It is concluded that the motor–propeller system must be operated so as to deliver thrust at the maximum propulsive efficiency point. This, in turn, necessitates continuous tracking of the maximum propulsive efficiency point and consequently it is essential that the controller requires a maximum propulsive efficiency point tracking (MPEPT outer loop.

  18. MOA: Magnetic Field Oscillating Amplified Thruster and its Application for Nuclear Electric and Thermal Propulsion

    International Nuclear Information System (INIS)

    Frischauf, Norbert; Hettmer, Manfred; Grassauer, Andreas; Bartusch, Tobias; Koudelka, Otto

    2006-01-01

    More than 60 years after the later Nobel laureate Hannes Alfven had published a letter stating that oscillating magnetic fields can accelerate ionised matter via magneto-hydrodynamic interactions in a wave like fashion, the technical implementation of Alfven waves for propulsive purposes has been proposed, patented and examined for the first time by a group of inventors. The name of the concept, utilising Alfven waves to accelerate ionised matter for propulsive purposes, is MOA - Magnetic field Oscillating Amplified thruster. Alfven waves are generated by making use of two coils, one being permanently powered and serving also as magnetic nozzle, the other one being switched on and off in a cyclic way, deforming the field lines of the overall system. It is this deformation that generates Alfven waves, which are in the next step used to transport and compress the propulsive medium, in theory leading to a propulsion system with a much higher performance than any other electric propulsion system. Based on computer simulations, which were conducted to get a first estimate on the performance of the system, MOA is a highly flexible propulsion system, whose performance parameters might easily be adapted, by changing the mass flow and/or the power level. As such the system is capable to deliver a maximum specific impulse of 13116 s (12.87 mN) at a power level of 11.16 kW, using Xe as propellant, but can also be attuned to provide a thrust of 236.5 mN (2411 s) at 6.15 kW of power. While space propulsion is expected to be the prime application for MOA and is supported by numerous applications such as Solar and/or Nuclear Electric Propulsion or even as an 'afterburner system' for Nuclear Thermal Propulsion, other terrestrial applications can be thought of as well, making the system highly suited for a common space-terrestrial application research and utilisation strategy. (authors)

  19. Dual shear plate power processor packaging design. [for Solar Electric Propulsion spacecraft

    Science.gov (United States)

    Franzon, A. O.; Fredrickson, C. D.; Ross, R. G.

    1975-01-01

    The use of solar electric propulsion (SEP) for spacecraft primary propulsion imposes an extreme range of operational and environmental design requirements associated with the diversity of missions for which solar electric primary propulsion is advantageous. One SEP element which is particularly sensitive to these environmental extremes is the power processor unit (PPU) which powers and controls the electric ion thruster. An improved power processor thermal-mechanical packaging approach, referred to as dual shear plate packaging, has been designed to accommodate these different requirements with minimum change to the power processor design. Details of this packaging design are presented together with test results obtained from thermal-vacuum and structural-vibration tests conducted with prototype hardware.

  20. Architecture, Voltage, and Components for a Turboelectric Distributed Propulsion Electric Grid (AVC-TeDP)

    Science.gov (United States)

    Gemin, Paul; Kupiszewski, Tom; Radun, Arthur; Pan, Yan; Lai, Rixin; Zhang, Di; Wang, Ruxi; Wu, Xinhui; Jiang, Yan; Galioto, Steve; hide

    2015-01-01

    The purpose of this effort was to advance the selection, characterization, and modeling of a propulsion electric grid for a Turboelectric Distributed Propulsion (TeDP) system for transport aircraft. The TeDP aircraft would constitute a miniature electric grid with 50 MW or more of total power, two or more generators, redundant transmission lines, and multiple electric motors driving propulsion fans. The study proposed power system architectures, investigated electromechanical and solid state circuit breakers, estimated the impact of the system voltage on system mass, and recommended DC bus voltage range. The study assumed an all cryogenic power system. Detailed assumptions within the study include hybrid circuit breakers, a two cryogen system, and supercritical cyrogens. A dynamic model was developed to investigate control and parameter selection.

  1. Design and Development of a 200-kW Turbo-Electric Distributed Propulsion Testbed

    Science.gov (United States)

    Papathakis, Kurt V.

    2017-01-01

    There a few NASA funded electric and hybrid electric projects from different NASA Centers, including the NASA Armstrong Flight Research Center (AFRC) (Edwards, California). Each project identifies a specific technology gap that is currently inhibiting the growth and proliferation of relevant technologies in commercial aviation. This paper describes the design and development of a turbo-electric distributed propulsion (TeDP) hardware-in-the-loop (HIL) simulation bench, which is a test bed for discovering turbo-electric control, distributed electric control, power management control, and integration competencies while providing risk mitigation for future turbo-electric flying demonstrators.

  2. MW-Class Electric Propulsion System Designs for Mars Cargo Transport

    Science.gov (United States)

    Gilland, James H.; LaPointe, Michael R.; Oleson, Steven; Mercer, Carolyn; Pencil, Eric; Maosn, Lee

    2011-01-01

    Multi-kilowatt electric propulsion systems are well developed and have been used on commercial and military satellites in Earth orbit for several years. Ion and Hall thrusters have also propelled robotic spacecraft to encounters with asteroids, the Moon, and minor planetary bodies within the solar system. High power electric propulsion systems are currently being considered to support piloted missions to near earth asteroids, as cargo transport for sustained lunar or Mars exploration, and for very high-power piloted missions to Mars and the outer planets. Using NASA Mars Design Architecture 5.0 as a reference, a preliminary parametric analysis was performed to determine the suitability of a nuclear powered, MW-class electric propulsion system for Mars cargo transport. For this initial analysis, high power 100-kW Hall thrusters and 250-kW VASIMR engines were separately evaluated to determine optimum vehicle architecture and estimated performance. The DRA 5.0 cargo mission closed for both propulsion options, delivering a 100 t payload to Mars orbit and reducing the number of heavy lift launch vehicles from five in the baseline DRA 5.0 architecture to two using electric propulsion. Under an imposed single engine-out mission success criteria, the VASIMR system took longer to reach Mars than did the Hall system, arising from the need to operate the VASIMR thrusters in pairs during the spiral out from low Earth orbit.

  3. Power feature required for PEFC powered electric propulsion ship

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Isao [NKK Corp., Yokohama (Japan); Oka, Masaru [Mitsubishi Heavy Industries, Ltd., Nagasaki (Japan)

    1996-12-31

    This report covers part of a joint study on a PEFC system for ship propulsion, summarized in a presentation to this Seminar, entitled {open_quote}Study on a Polymer Electrolyte Fuel Cell (PEFC) Propulsion System for Surface Ships{close_quotes}, and which envisages application to a 1,500 DWT cargo vessel. The aspect treated here concerns an analysis of the load-following performance required and estimated of a PEFC system to power the envisaged ship. The analysis proved that difficulty should be expected of the fuel supply circuit in following with adequate rapidity the sharp changes of load on fuel cell under certain conditions. Further integrated experiments and simulation exercises are currently in progress to further analyze the response characteristics of the fuel supply circuit-particularly of the methanol reformer and gas reservoir-to determine the best measure to be adopted for overcoming the expected difficulty.

  4. Solar Electric and Chemical Propulsion Technology Applications to a Titan Orbiter/Lander Mission

    Science.gov (United States)

    Cupples, Michael

    2007-01-01

    Several advanced propulsion technology options were assessed for a conceptual Titan Orbiter/Lander mission. For convenience of presentation, the mission was broken into two phases: interplanetary and Titan capture. The interplanetary phase of the mission was evaluated for an advanced Solar Electric Propulsion System (SEPS), while the Titan capture phase was evaluated for state-of-art chemical propulsion (NTO/Hydrazine), three advanced chemical propulsion options (LOX/Hydrazine, Fluorine/Hydrazine, high Isp mono-propellant), and advanced tank technologies. Hence, this study was referred to as a SEPS/Chemical based option. The SEPS/Chemical study results were briefly compared to a 2002 NASA study that included two general propulsion options for the same conceptual mission: an all propulsive based mission and a SEPS/Aerocapture based mission. The SEP/Chemical study assumed identical science payload as the 2002 NASA study science payload. The SEPS/Chemical study results indicated that the Titan mission was feasible for a medium launch vehicle, an interplanetary transfer time of approximately 8 years, an advanced SEPS (30 kW), and current chemical engine technology (yet with advanced tanks) for the Titan capture. The 2002 NASA study showed the feasibility of the mission based on a somewhat smaller medium launch vehicle, an interplanetary transfer time of approximately 5.9 years, an advanced SEPS (24 kW), and advanced Aerocapture based propulsion technology for the Titan capture. Further comparisons and study results were presented for the advanced chemical and advanced tank technologies.

  5. A Concept Plane using electric distributed propulsion Evaluation of advanced power architecture

    OpenAIRE

    Ridel , M.; Paluch , B.; Doll , C.; Donjat , D.; Hermetz , J.; Guigon , A.; Schmollgruber , P.; Atinault , O.; Choy , P.; Le Tallec , P.; Dessornes , O.; Lefebvre , T.

    2015-01-01

    International audience; Starting from electrical distributed propulsion system concept, the ONERA’s engineers demonstrated the viability of an all electrical aircraft for a small business aircraft. This paper describes the advanced power architecture considering energy conversion and power distribution. The design of this advanced power architecture requires the multi-physic integration of different domains as flight performances, safety and environmental requirements (thermal, electric, elec...

  6. High Voltage Hybrid Electric Propulsion - Multilayered Functional Insulation System (MFIS) NASA-GRC

    Science.gov (United States)

    Lizcano, M.

    2017-01-01

    High power transmission cables pose a key challenge in future Hybrid Electric Propulsion Aircraft. The challenge arises in developing safe transmission lines that can withstand the unique environment found in aircraft while providing megawatts of power. High voltage AC, variable frequency cables do not currently exist and present particular electrical insulation challenges since electrical arcing and high heating are more prevalent at higher voltages and frequencies. Identifying and developing materials that maintain their dielectric properties at high voltage and frequencies is crucial.

  7. Overview: Solar Electric Propulsion Concept Designs for SEP Technology Demonstration Mission

    Science.gov (United States)

    Mcguire, Melissa L.; Hack, Kurt J.; Manzella, David; Herman, Daniel

    2014-01-01

    JPC presentation of the Concept designs for NASA Solar Electric Propulsion Technology Demonstration mission paper. Multiple Solar Electric Propulsion Technology Demonstration Missions were developed to assess vehicle performance and estimated mission cost. Concepts ranged from a 10,000 kg spacecraft capable of delivering 4000 kg of payload to one of the Earth Moon Lagrange points in support of future human-crewed outposts to a 180 kg spacecraft capable of performing an asteroid rendezvous mission after launched to a geostationary transfer orbit as a secondary payload.

  8. Design and Development of a 200-kW Turbo-Electric Distributed Propulsion Testbed

    Science.gov (United States)

    Papathakis, Kurt V.; Kloesel, Kurt J.; Lin, Yohan; Clarke, Sean; Ediger, Jacob J.; Ginn, Starr

    2016-01-01

    The National Aeronautics and Space Administration (NASA) Armstrong Flight Research Center (AFRC) (Edwards, California) is developing a Hybrid-Electric Integrated Systems Testbed (HEIST) Testbed as part of the HEIST Project, to study power management and transition complexities, modular architectures, and flight control laws for turbo-electric distributed propulsion technologies using representative hardware and piloted simulations. Capabilities are being developed to assess the flight readiness of hybrid electric and distributed electric vehicle architectures. Additionally, NASA will leverage experience gained and assets developed from HEIST to assist in flight-test proposal development, flight-test vehicle design, and evaluation of hybrid electric and distributed electric concept vehicles for flight safety. The HEIST test equipment will include three trailers supporting a distributed electric propulsion wing, a battery system and turbogenerator, dynamometers, and supporting power and communication infrastructure, all connected to the AFRC Core simulation. Plans call for 18 high performance electric motors that will be powered by batteries and the turbogenerator, and commanded by a piloted simulation. Flight control algorithms will be developed on the turbo-electric distributed propulsion system.

  9. Aircraft Electric/Hybrid-Electric Power and Propulsion Workshop Perspective of the V/STOL Aircraft Systems Tech Committee

    Science.gov (United States)

    Hange, Craig E.

    2016-01-01

    This presentation will be given at the AIAA Electric Hybrid-Electric Power Propulsion Workshop on July 29, 2016. The workshop is being held so the AIAA can determine how it can support the introduction of electric aircraft into the aerospace industry. This presentation will address the needs of the community within the industry that advocates the use of powered-lift as important new technologies for future aircraft and air transportation systems. As the current chairman of the VSTOL Aircraft Systems Technical Committee, I will be presenting generalized descriptions of the past research in developing powered-lift and generalized observations on how electric and hybrid-electric propulsion may provide advances in the powered-lift field.

  10. Reconfiguration of NASA GRC's Vacuum Facility 6 for Testing of Advanced Electric Propulsion System (AEPS) Hardware

    Science.gov (United States)

    Peterson, Peter Y.; Kamhawi, Hani; Huang, Wensheng; Yim, John T.; Haag, Thomas W.; Mackey, Jonathan A.; McVetta, Michael S.; Sorrelle, Luke T.; Tomsik, Thomas M.; Gilligan, Ryan P.; hide

    2018-01-01

    The NASA Hall Effect Rocket with Magnetic Shielding (HERMeS) 12.5 kW Hall thruster has been the subject of extensive technology maturation in preparation for development into a flight propulsion system. The HERMeS thruster is being developed and tested at NASA GRC and NASA JPL through support of the Space Technology Mission Directorate (STMD) and is intended to be used as the electric propulsion system on the Power and Propulsion Element (PPE) of the recently announced Deep Space Gateway (DSG). The Advanced Electric Propulsion System (AEPS) contract was awarded to Aerojet-Rocketdyne to develop the HERMeS system into a flight system for use by NASA. To address the hardware test needs of the AEPS project, NASA GRC launched an effort to reconfigure Vacuum Facility 6 (VF-6) for high-power electric propulsion testing including upgrades and reconfigurations necessary to conduct performance, plasma plume, and system level integration testing. Results of the verification and validation testing with HERMeS Technology Demonstration Unit (TDU)-1 and TDU-3 Hall thrusters are also included.

  11. Overview of the Development and Mission Application of the Advanced Electric Propulsion System (AEPS)

    Science.gov (United States)

    Herman, Daniel A.; Tofil, Todd A.; Santiago, Walter; Kamhawi, Hani; Polk, James E.; Snyder, John S.; Hofer, Richard R.; Picha, Frank Q.; Jackson, Jerry; Allen, May

    2018-01-01

    NASA remains committed to the development and demonstration of a high-power solar electric propulsion capability for the Agency. NASA is continuing to develop the 14 kW Advanced Electric Propulsion System (AEPS), which has recently completed an Early Integrated System Test and System Preliminary Design Review. NASA continues to pursue Solar Electric Propulsion (SEP) Technology Demonstration Mission partners and mature high-power SEP mission concepts. The recent announcement of the development of a Power and Propulsion Element (PPE) as the first element of an evolvable human architecture to Mars has replaced the Asteroid Redirect Robotic Mission (ARRM) as the most probable first application of the AEPS Hall thruster system. This high-power SEP capability, or an extensible derivative of it, has been identified as a critical part of an affordable, beyond-low-Earth-orbit, manned exploration architecture. This paper presents the status of the combined NASA and Aerojet Rocketdyne AEPS development activities and updated mission concept for implementation of the AEPS hardware as part of the ion propulsion system for a PPE.

  12. Modular Electric Propulsion Test Bed Aircraft, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — An all electric aircraft test bed is proposed to provide a dedicated development environment for the rigorous study and advancement of electrically powered aircraft....

  13. A Combined Solar Electric and Storable Chemical Propulsion Vehicle for Piloted Mars Missions

    Science.gov (United States)

    Mercer, Carolyn R.; Oleson, Steven R.; Drake, Bret G.

    2014-01-01

    The Mars Design Reference Architecture (DRA) 5.0 explored a piloted Mars mission in the 2030 timeframe, focusing on architecture and technology choices. The DRA 5.0 focused on nuclear thermal and cryogenic chemical propulsion system options for the mission. Follow-on work explored both nuclear and solar electric options. One enticing option that was found in a NASA Collaborative Modeling for Parametric Assessment of Space Systems (COMPASS) design study used a combination of a 1-MW-class solar electric propulsion (SEP) system combined with storable chemical systems derived from the planned Orion crew vehicle. It was found that by using each propulsion system at the appropriate phase of the mission, the entire SEP stage and habitat could be placed into orbit with just two planned Space Launch System (SLS) heavy lift launch vehicles assuming the crew would meet up at the Earth-Moon (E-M) L2 point on a separate heavy-lift launch. These appropriate phases use high-thrust chemical propulsion only in gravity wells when the vehicle is piloted and solar electric propulsion for every other phase. Thus the SEP system performs the spiral of the unmanned vehicle from low Earth orbit (LEO) to E-M L2 where the vehicle meets up with the multi-purpose crew vehicle. From here SEP is used to place the vehicle on a trajectory to Mars. With SEP providing a large portion of the required capture and departure changes in velocity (delta V) at Mars, the delta V provided by the chemical propulsion is reduced by a factor of five from what would be needed with chemical propulsion alone at Mars. This trajectory also allows the SEP and habitat vehicle to arrive in the highly elliptic 1-sol parking orbit compatible with envisioned Mars landing concepts. This paper explores mission options using between SEP and chemical propulsion, the design of the SEP system including the solar array and electric propulsion systems, and packaging in the SLS shroud. Design trades of stay time, power level

  14. A High Power Solar Electric Propulsion - Chemical Mission for Human Exploration of Mars

    Science.gov (United States)

    Burke, Laura M.; Martini, Michael C.; Oleson, Steven R.

    2014-01-01

    Recently Solar Electric Propulsion (SEP) as a main propulsion system has been investigated as an option to support manned space missions to near-Earth destinations for the NASA Gateway spacecraft. High efficiency SEP systems are able to reduce the amount of propellant long duration chemical missions require, ultimately reducing the required mass delivered to Low Earth Orbit (LEO) by a launch vehicle. However, for long duration interplanetary Mars missions, using SEP as the sole propulsion source alone may not be feasible due to the long trip times to reach and insert into the destination orbit. By combining an SEP propulsion system with a chemical propulsion system the mission is able to utilize the high-efficiency SEP for sustained vehicle acceleration and deceleration in heliocentric space and the chemical system for orbit insertion maneuvers and trans-earth injection, eliminating the need for long duration spirals. By capturing chemically instead of with low-thrust SEP, Mars stay time increases by nearly 200 days. Additionally, the size the of chemical propulsion system can be significantly reduced from that of a standard Mars mission because the SEP system greatly decreases the Mars arrival and departure hyperbolic excess velocities (V(sub infinity)).

  15. Control Strategy for Power Distribution in Dual Motor Propulsion System for Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Pedro Daniel Urbina Coronado

    2015-01-01

    Full Text Available Electric Vehicles with more than one electric motor can offer advantages in saving energy from the batteries. In order to do that, the control strategy plays an important role in distributing the required torque between the electric motors. A dual motor propulsion system with a differential transmission is simulated in this work. A rule based control strategy for this propulsion system is proposed and analyzed. Two parameters related to the output speed of the transmission and the required torque are used to switch the two modes of operation in which the propulsion system can work under acceleration. The effect of these parameters is presented over the driving cycles of NEDC, UDDS, and NYCC, which are followed using a PID controller. The produced energy losses are calculated as well as an indicator of drivability, which is related to the difference between the desired speed and the actual speed obtained. The results show that less energy losses are present when the vehicle is maintained with one electric motor most of the time, switching only when the extended speed granted by the second motor is required. The propulsion system with the proposed control strategy represents a feasible alternative in the spectrum of sustainable transportation architectures with extending range capabilities.

  16. Hydrogen , Hybrid and Electric Propulsion in a Strategy for Sustainable Transport

    DEFF Research Database (Denmark)

    Jørgensen, Kaj

    1998-01-01

    Analysis of the scope for application of hydrogen and electric propulsion for improvement of the fuel cycle efficiency and introduction of renewable energy in the transport sector. The paper compares these fuels with each other as well as with other fuels (especially bio fuels) and outlines...... their individual roles in a strategy for sustainable transport. Finally, the fuels are compared to the present fuels....

  17. Research, development and demonstration of nickel-zinc batteries for electric vehicle propulsion. Annual report, 1979

    Energy Technology Data Exchange (ETDEWEB)

    1980-06-01

    Activities in a program to develop a Ni/Zn battery for electric vehicle propulsion are reported. Aspects discussed include battery design and development, nickel cathode study, and basic electrochemistry. A number of engineering drawings are supplied. 61 figures, 11 tables. (RWR)

  18. A methodology for fostering commercialization of electric and hybrid vehicle propulsion systems

    Science.gov (United States)

    Thollot, P. A.; Musial, N. T.

    1980-01-01

    The rationale behind, and a proposed approach for, application of government assistance to accelerate the process of moving a new electric vehicle propulsion system product from technological readiness to profitable marketplace acceptance and utilization are described. Emphasis is on strategy, applicable incentives, and an implementation process.

  19. Conceptual Design of Electrical Propulsion System for Nuclear Operated Vessel Adventurer

    International Nuclear Information System (INIS)

    Halimi, B.; Suh, K. Y.

    2009-01-01

    A design concept of the electric propulsion system for the Nuclear Operated Vessel Adventure (NOVA) is presented. NOVA employs Battery Omnibus Reactor Integral System (BORIS), a liquid metal cooled small fast integral reactor, and Modular Optimized Brayton Integral System (MOBIS), a supercritical CO 2 (SCO 2 ) Brayton cycle as power converter to Naval Application Vessel Integral System (NAVIS)

  20. Flow Control of Liquid Metal Propellants for In-Space Electric Propulsion Systems

    Science.gov (United States)

    Bonds, Kevin W.; Polzin, Kurt A.

    2010-01-01

    Operation of Hall thrusters with bismuth propellant has been shown to be a promising path for development of high-power (140 kW per thruster), high performance (8000s I(sub sp at >70% efficiency) electric propulsion systems.

  1. Miniaturized Power Processing Unit Study: A Cubesat Electric Propulsion Technology Enabler Project

    Science.gov (United States)

    Ghassemieh, Shakib M.

    2014-01-01

    This study evaluates High Voltage Power Processing Unit (PPU) technology and driving requirements necessary to enable the Microfluidic Electric Propulsion technology research and development by NASA and university partners. This study provides an overview of the state of the art PPU technology with recommendations for technology demonstration projects and missions for NASA to pursue.

  2. Electrosprayed Heavy Ion and Nanodrop Beams for Surface Engineering and Electrical Propulsion

    Science.gov (United States)

    2014-09-10

    Studies At the macroscale, the surface of a Taylor cone just before ion emission is an equipotential with a normal electric field strength found from...AFRL-OSR-VA-TR-2014-0246 Electrosprayed Heavy Ion and Nanodrop Beams for Surface Engineering M Gamero-Castano UNIVERSITY OF CALIFORNIA IRVINE Final...298 (Re . 8-98) v Prescribed by ANSI Std. Z39.18 1 Electrosprayed Heavy Ion and Nanodrop Beams for Surface Engineering and Electrical Propulsion

  3. Challenges of future aircraft propulsion: A review of distributed propulsion technology and its potential application for the all electric commercial aircraft

    Science.gov (United States)

    Gohardani, Amir S.; Doulgeris, Georgios; Singh, Riti

    2011-07-01

    This paper highlights the role of distributed propulsion technology for future commercial aircraft. After an initial historical perspective on the conceptual aspects of distributed propulsion technology and a glimpse at numerous aircraft that have taken distributed propulsion technology to flight, the focal point of the review is shifted towards a potential role this technology may entail for future commercial aircraft. Technological limitations and challenges of this specific technology are also considered in combination with an all electric aircraft concept, as means of predicting the challenges associated with the design process of a next generation commercial aircraft.

  4. Xenon Acquisition Strategies for High-Power Electric Propulsion NASA Missions

    Science.gov (United States)

    Herman, Daniel A.; Unfried, Kenneth G.

    2015-01-01

    Solar electric propulsion (SEP) has been used for station-keeping of geostationary communications satellites since the 1980s. Solar electric propulsion has also benefitted from success on NASA Science Missions such as Deep Space One and Dawn. The xenon propellant loads for these applications have been in the 100s of kilograms range. Recent studies performed for NASA's Human Exploration and Operations Mission Directorate (HEOMD) have demonstrated that SEP is critically enabling for both near-term and future exploration architectures. The high payoff for both human and science exploration missions and technology investment from NASA's Space Technology Mission Directorate (STMD) are providing the necessary convergence and impetus for a 30-kilowatt-class SEP mission. Multiple 30-50- kilowatt Solar Electric Propulsion Technology Demonstration Mission (SEP TDM) concepts have been developed based on the maturing electric propulsion and solar array technologies by STMD with recent efforts focusing on an Asteroid Redirect Robotic Mission (ARRM). Xenon is the optimal propellant for the existing state-of-the-art electric propulsion systems considering efficiency, storability, and contamination potential. NASA mission concepts developed and those proposed by contracted efforts for the 30-kilowatt-class demonstration have a range of xenon propellant loads from 100s of kilograms up to 10,000 kilograms. This paper examines the status of the xenon industry worldwide, including historical xenon supply and pricing. The paper will provide updated information on the xenon market relative to previous papers that discussed xenon production relative to NASA mission needs. The paper will discuss the various approaches for acquiring on the order of 10 metric tons of xenon propellant to support potential near-term NASA missions. Finally, the paper will discuss acquisitions strategies for larger NASA missions requiring 100s of metric tons of xenon will be discussed.

  5. The outlook for application of powerful nuclear thermionic reactor -powered space electric jet propulsion engines

    International Nuclear Information System (INIS)

    Semyonov, Y.P.; Bakanov, Y.A.; Synyavsky, V.V.; Yuditsky, V.D.

    1997-01-01

    This paper summarizes main study results for application of powerful space electric jet propulsion unit (EJPUs) which is powered by Nuclear Thermionic Power Unit (NTPU). They are combined in Nuclear Power/Propulsion Unit (NPPU) which serves as means of spacecraft equipment power supply and spacecraft movement. Problems the paper deals with are the following: information satellites delivery and their on-orbit power supply during 10-15 years, removal of especially hazardous nuclear wastes, mining of asteroid resources and others. Evaluations on power/time/mass relationship for this type of mission are given. EJPU parameters are compatible with Russian existent or being under development launch vehicle. (author)

  6. Modular Electric Propulsion Test Bed Aircraft, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — A hybrid electric aircraft simulation system and test bed is proposed to provide a dedicated development environment for the rigorous study and advancement of hybrid...

  7. Leading Edge Asynchronous Propeller (LEAPTech) Distributed Electric Propulsion (DEP) Concept

    Data.gov (United States)

    National Aeronautics and Space Administration — The "Semi-Tandem Electric Distributed Wing Zip Aviation Advanced Concept Project" was renamed to LEAPTech DEP to better align with the content of the work. This...

  8. A Crewed Mission to Apophis Using a Hybrid Bimodal Nuclear Thermal Electric Propulsion (BNTEP) System

    Science.gov (United States)

    Mccurdy, David R.; Borowski, Stanley K.; Burke, Laura M.; Packard, Thomas W.

    2014-01-01

    A BNTEP system is a dual propellant, hybrid propulsion concept that utilizes Bimodal Nuclear Thermal Rocket (BNTR) propulsion during high thrust operations, providing 10's of kilo-Newtons of thrust per engine at a high specific impulse (Isp) of 900 s, and an Electric Propulsion (EP) system during low thrust operations at even higher Isp of around 3000 s. Electrical power for the EP system is provided by the BNTR engines in combination with a Brayton Power Conversion (BPC) closed loop system, which can provide electrical power on the order of 100's of kWe. High thrust BNTR operation uses liquid hydrogen (LH2) as reactor coolant propellant expelled out a nozzle, while low thrust EP uses high pressure xenon expelled by an electric grid. By utilizing an optimized combination of low and high thrust propulsion, significant mass savings over a conventional NTR vehicle can be realized. Low thrust mission events, such as midcourse corrections (MCC), tank settling burns, some reaction control system (RCS) burns, and even a small portion at the end of the departure burn can be performed with EP. Crewed and robotic deep space missions to a near Earth asteroid (NEA) are best suited for this hybrid propulsion approach. For these mission scenarios, the Earth return V is typically small enough that EP alone is sufficient. A crewed mission to the NEA Apophis in the year 2028 with an expendable BNTEP transfer vehicle is presented. Assembly operations, launch element masses, and other key characteristics of the vehicle are described. A comparison with a conventional NTR vehicle performing the same mission is also provided. Finally, reusability of the BNTEP transfer vehicle is explored.

  9. Hybrids of Solar Sail, Solar Electric, and Solar Thermal Propulsion for Solar-System Exploration

    Science.gov (United States)

    Wilcox, Brian H.

    2012-01-01

    Solar sails have long been known to be an attractive method of propulsion in the inner solar system if the areal density of the overall spacecraft (S/C) could be reduced to approx.10 g/sq m. It has also long been recognized that the figure (precise shape) of useful solar sails needs to be reasonably good, so that the reflected light goes mostly in the desired direction. If one could make large reflective surfaces with reasonable figure at an areal density of approx.10 g/sq m, then several other attractive options emerge. One is to use such sails as solar concentrators for solar-electric propulsion. Current flight solar arrays have a specific output of approx. 100W/kg at 1 Astronomical Unit (AU) from the sun, and near-term advances promise to significantly increase this figure. A S/C with an areal density of 10 g/sq m could accelerate up to 29 km/s per year as a solar sail at 1 AU. Using the same sail as a concentrator at 30 AU, the same spacecraft could have up to approx. 45 W of electric power per kg of total S/C mass available for electric propulsion (EP). With an EP system that is 50% power-efficient, exhausting 10% of the initial S/C mass per year as propellant, the exhaust velocity is approx. 119 km/s and the acceleration is approx. 12 km/s per year. This hybrid thus opens attractive options for missions to the outer solar system, including sample-return missions. If solar-thermal propulsion were perfected, it would offer an attractive intermediate between solar sailing in the inner solar system and solar electric propulsion for the outer solar system. In the example above, both the solar sail and solar electric systems don't have a specific impulse that is near-optimal for the mission. Solar thermal propulsion, with an exhaust velocity of the order of 10 km/s, is better matched to many solar system exploration missions. This paper derives the basic relationships between these three propulsion options and gives examples of missions that might be enabled by

  10. Research, development, and demonstration of nickel-iron batteries for electric vehicle propulsion. Annual report, 1980

    Energy Technology Data Exchange (ETDEWEB)

    1981-03-01

    The objective of the Eagle-Picher nickel-iron battery program is to develop a nickel-iron battery for use in the propulsion of electric and electric-hybrid vehicles. To date, the program has concentrated on the characterization, fabrication and testing of the required electrodes, the fabrication and testing of full-scale cells, and finally, the fabrication and testing of full-scale (270 AH) six (6) volt modules. Electrodes of the final configuration have now exceeded 1880 cycles and are showing minimal capacity decline. Full-scale cells have presently exceeded 600 cycles and are tracking the individual electrode tests almost identically. Six volt module tests have exceeded 500 cycles, with a specific energy of 48 Wh/kg. Results to date indicate the nickel-iron battery is beginning to demonstrate the performance required for electric vehicle propulsion.

  11. Solar array technology evaluation program for SEPS (Solar Electrical Propulsion Stage)

    Science.gov (United States)

    1974-01-01

    An evaluation of the technology and the development of a preliminary design for a 25 kilowatt solar array system for solar electric propulsion are discussed. The solar array has a power to weight ratio of 65 watts per kilogram. The solar array system is composed of two wings. Each wing consists of a solar array blanket, a blanket launch storage container, an extension/retraction mast assembly, a blanket tensioning system, an array electrical harness, and hardware for supporting the system for launch and in the operating position. The technology evaluation was performed to assess the applicable solar array state-of-the-art and to define supporting research necessary to achieve technology readiness for meeting the solar electric propulsion system solar array design requirements.

  12. An electric vehicle propulsion system's impact on battery performance: An overview

    Science.gov (United States)

    Bozek, J. M.; Smithrick, J. J.; Cataldo, R. C.; Ewashinka, J. G.

    1980-01-01

    The performance of two types of batteries, lead-acid and nickel-zinc, was measured as a function of the charging and discharging demands anticipated from electric vehicle propulsion systems. The benefits of rapid high current charging were mixed: although it allowed quick charges, the energy efficiency was reduced. For low power (overnight) charging the current wave shapes delivered by the charger to the battery tended to have no effect on the battery cycle life. The use of chopper speed controllers with series traction motors resulted in a significant reduction in the energy available from a battery whenever the motor operates at part load. The demand placed on a battery by an electric vehicle propulsion system containing electrical regenerative braking confirmed significant improvment in short term performance of the battery.

  13. Application of Solar-Electric Propulsion to Robotic and Human Missions in Near-Earth Space

    Science.gov (United States)

    Woodcock, Gordon R.; Dankanich, John

    2011-01-01

    Interest in applications of solar electric propulsion (SEP) is increasing. Application of SEP technology is favored when: (1) the mission is compatible with low-thrust propulsion, (2) the mission needs high total delta V such that chemical propulsion is disadvantaged; and (3) performance enhancement is needed. If all such opportunities for future missions are considered, many uses of SEP are likely. Representative missions are surveyed and several SEP applications selected for analysis, including orbit raising, lunar science, lunar exploration, lunar exploitation, planetary science, and planetary exploration. These missions span SEP power range from 10s of kWe to several MWe. Modes of use and benefits are described, and potential SEP evolution is discussed.

  14. Application of Solar-Electric Propulsion to Robotic Missions in Near-Earth Space

    Science.gov (United States)

    Woodcock, Gordon R.; Dankanich, John

    2007-01-01

    Interest in applications of solar electric propulsion (SEP) is increasing. Application of SEP technology is favored when: (1) the mission is compatible with low-thrust propulsion, (2) the mission needs high total delta V such that chemical propulsion is disadvantaged; and (3) performance enhancement is needed. If all such opportunities for future missions are considered, many uses of SEP are likely. Representative missions are surveyed and several SEP applications selected for analysis, including orbit raising, lunar science and robotic exploration, and planetary science. These missions span SEP power range from 10 kWe to about 100 kWe. A SEP design compatible with small inexpensive launch vehicles, and capable of lunar science missions, is presented. Modes of use and benefits are described, and potential SEP evolution is discussed.

  15. A closed Brayton power conversion unit concept for nuclear electric propulsion for deep space missions

    International Nuclear Information System (INIS)

    Joyner, Claude Russell II; Fowler, Bruce; Matthews, John

    2003-01-01

    In space, whether in a stable satellite orbit around a planetary body or traveling as a deep space exploration craft, power is just as important as the propulsion. The need for power is especially important for in-space vehicles that use Electric Propulsion. Using nuclear power with electric propulsion has the potential to provide increased payload fractions and reduced mission times to the outer planets. One of the critical engineering and design aspects of nuclear electric propulsion at required mission optimized power levels is the mechanism that is used to convert the thermal energy of the reactor to electrical power. The use of closed Brayton cycles has been studied over the past 30 or years and shown to be the optimum approach for power requirements that range from ten to hundreds of kilowatts of power. It also has been found to be scalable to higher power levels. The Closed Brayton Cycle (CBC) engine power conversion unit (PCU) is the most flexible for a wide range of power conversion needs and uses state-of-the-art, demonstrated engineering approaches. It also is in use with many commercial power plants today. The long life requirements and need for uninterrupted operation for nuclear electric propulsion demands high reliability from a CBC engine. A CBC engine design for use with a Nuclear Electric Propulsion (NEP) system has been defined based on Pratt and Whitney's data from designing long-life turbo-machines such as the Space Shuttle turbopumps and military gas turbines and the use of proven integrated control/health management systems (EHMS). An integrated CBC and EHMS design that is focused on using low-risk and proven technologies will over come many of the life-related design issues. This paper will discuss the use of a CBC engine as the power conversion unit coupled to a gas-cooled nuclear reactor and the design trends relative to its use for powering electric thrusters in the 25 kWe to 100kWe power level

  16. Multilayered Functional Insulation System (MFIS) for AC Power Transmission in High Voltage Hybrid Electrical Propulsion

    Science.gov (United States)

    Lizcano, Maricela

    2017-01-01

    High voltage hybrid electric propulsion systems are now pushing new technology development efforts for air transportation. A key challenge in hybrid electric aircraft is safe high voltage distribution and transmission of megawatts of power (>20 MW). For the past two years, a multidisciplinary materials research team at NASA Glenn Research Center has investigated the feasibility of distributing high voltage power on future hybrid electric aircraft. This presentation describes the team's approach to addressing this challenge, significant technical findings, and next steps in GRC's materials research effort for MW power distribution on aircraft.

  17. Design and Performance of the NASA SCEPTOR Distributed Electric Propulsion Flight Demonstrator

    Science.gov (United States)

    Borer, Nicholas K.; Patterson, Michael D.; Viken, Jeffrey K.; Moore, Mark D.; Clarke, Sean; Redifer, Matthew E.; Christie, Robert J.; Stoll, Alex M.; Dubois, Arthur; Bevirt, JoeBen; hide

    2016-01-01

    Distributed Electric Propulsion (DEP) technology uses multiple propulsors driven by electric motors distributed about the airframe to yield beneficial aerodynamic-propulsion interaction. The NASA SCEPTOR flight demonstration project will retrofit an existing internal combustion engine-powered light aircraft with two types of DEP: small "high-lift" propellers distributed along the leading edge of the wing which accelerate the flow over the wing at low speeds, and larger cruise propellers co-located with each wingtip for primary propulsive power. The updated high-lift system enables a 2.5x reduction in wing area as compared to the original aircraft, reducing drag at cruise and shifting the velocity for maximum lift-to-drag ratio to a higher speed, while maintaining low-speed performance. The wingtip-mounted cruise propellers interact with the wingtip vortex, enabling a further efficiency increase that can reduce propulsive power by 10%. A tradespace exploration approach is developed that enables rapid identification of salient trades, and subsequent creation of SCEPTOR demonstrator geometries. These candidates were scrutinized by subject matter experts to identify design preferences that were not modeled during configuration exploration. This exploration and design approach is used to create an aircraft that consumes an estimated 4.8x less energy at the selected cruise point when compared to the original aircraft.

  18. Cooling of Electric Motors Used for Propulsion on SCEPTOR

    Science.gov (United States)

    Christie, Robert; Dubois, Authur; Derlaga, Joseph

    2016-01-01

    Benefits of Electric Power: Reduced energy consumption, Lower emissions, Less noise. Traction motors: Permanent magnet, Synchronous, High torque at low rotational speeds, High power density, (High concentration of heat). Annular inlet: Very compatible with PM motors, (Provides cooling where needed, No need for complicated ducting, Leads to a larger motor diameter which is beneficial for motor torque) Effect of prop wash on heat transfer coefficients: Assumed propeller induced turbulence would increase heat transfer coefficients, Holmes, Obara Yip reported 'propeller slipstream showed little if any apparent effect of the slip stream', Derlaga @ LaRC also found little change in heat transfer in the wake of the propeller.

  19. A Step Towards Electric Propulsion Testing Standards: Pressure Measurements and Effective Pumping Speeds

    Science.gov (United States)

    Dankanich, John W.; Swiatek, Michael W.; Yim, John T.

    2012-01-01

    The electric propulsion community has been implored to establish and implement a set of universally applicable test standards during the research, development, and qualification of electric propulsion systems. Existing practices are fallible and result in testing variations which leads to suspicious results, large margins in application, or aversion to mission infusion. Performance measurements and life testing under appropriate conditions can be costly and lengthy. Measurement practices must be consistent, accurate, and repeatable. Additionally, the measurements must be universally transportable across facilities throughout the development, qualification, spacecraft integration and on-orbit performance. A preliminary step to progress towards universally applicable testing standards is outlined for facility pressure measurements and effective pumping speed calculations. The standard has been applied to multiple facilities at the NASA Glenn Research Center. Test results and analyses of universality of measurements are presented herein.

  20. High-Lift Propeller System Configuration Selection for NASA's SCEPTOR Distributed Electric Propulsion Flight Demonstrator

    Science.gov (United States)

    Patterson, Michael D.; Derlaga, Joseph M.; Borer, Nicholas K.

    2016-01-01

    Although the primary function of propellers is typically to produce thrust, aircraft equipped with distributed electric propulsion (DEP) may utilize propellers whose main purpose is to act as a form of high-lift device. These \\high-lift propellers" can be placed upstream of wing such that, when the higher-velocity ow in the propellers' slipstreams interacts with the wing, the lift is increased. This technique is a main design feature of a new NASA advanced design project called Scalable Convergent Electric Propulsion Technology Operations Research (SCEPTOR). The goal of the SCEPTOR project is design, build, and y a DEP aircraft to demonstrate that such an aircraft can be much more ecient than conventional designs. This paper provides details into the high-lift propeller system con guration selection for the SCEPTOR ight demonstrator. The methods used in the high-lift propeller system conceptual design and the tradeo s considered in selecting the number of propellers are discussed.

  1. Integrated Studies of Electric Propulsion Engines during Flights in the Earth's Ionosphere

    Science.gov (United States)

    Marov, M. Ya.; Filatyev, A. S.

    2018-03-01

    Fifty years ago, on October 1, 1966, the first Yantar satellite laboratory with a gas plasma-ion electric propulsion was launched into orbit as part of the Yantar Soviet space program. In 1966-1971, the program launched a total of four laboratories with thrusters operating on argon, nitrogen, and air with jet velocities of 40, 120, and 140 km/s, respectively. These space experiments were the first to demonstrate the long-term stable operation of these thrusters, which exceed chemical rocket engines in specific impulse by an order of magnitude and provide effective jet charge compensation, under the conditions of a real flight at altitudes of 100-400 km. In this article, we have analyzed the potential modern applications of the scientific results obtained by the Yantar space program for the development of air-breathing electric propulsion that ensure the longterm operation of spacecraft in very low orbits.

  2. Extended performance electric propulsion power processor design study. Volume 2: Technical summary

    Science.gov (United States)

    Biess, J. J.; Inouye, L. Y.; Schoenfeld, A. D.

    1977-01-01

    Electric propulsion power processor technology has processed during the past decade to the point that it is considered ready for application. Several power processor design concepts were evaluated and compared. Emphasis was placed on a 30 cm ion thruster power processor with a beam power rating supply of 2.2KW to 10KW for the main propulsion power stage. Extension in power processor performance were defined and were designed in sufficient detail to determine efficiency, component weight, part count, reliability and thermal control. A detail design was performed on a microprocessor as the thyristor power processor controller. A reliability analysis was performed to evaluate the effect of the control electronics redesign. Preliminary electrical design, mechanical design and thermal analysis were performed on a 6KW power transformer for the beam supply. Bi-Mod mechanical, structural and thermal control configurations were evaluated for the power processor and preliminary estimates of mechanical weight were determined.

  3. Nuclear electric propulsion: A better, safer, cheaper transportation system for human exploration of Mars

    International Nuclear Information System (INIS)

    Clark, J.S.; George, J.A.; Gefert, L.P.; Doherty, M.P.; Sefcik, R.J.

    1994-03-01

    NASA has completed a preliminary mission and systems study of nuclear electric propulsion (NEP) systems for 'split-sprint' human exploration and related robotic cargo missions to Mars. This paper describes the study, the mission architecture selected, the NEP system and technology development needs, proposed development schedules, and estimated development costs. Since current administration policy makers have delayed funding for key technology development activities that could make Mars exploration missions a reality in the near future, NASA will have time to evaluate various alternate mission options, and it appears prudent to ensure that Mars mission plans focus on astronaut and mission safety, while reducing costs to acceptable levels. The split-sprint nuclear electric propulsion system offers trip times comparable to nuclear thermal propulsion (NTP) systems, while providing mission abort opportunities that are not possible with 'reference' mission architectures. Thus, NEP systems offer short transit times for the astronauts, reducing the exposure of the crew to intergalactic cosmic radiation. The high specific impulse of the NEP system, which leads to very low propellant requirements, results in significantly lower 'initial mass in low earth orbit' (IMLEO). Launch vehicle packaging studies show that the NEP system can be launched, assembled, and deployed, with about one less 240-metric-ton heavy lift launch vehicle (HLLV) per mission opportunity - a very Technology development cost of the nuclear reactor for an NEP system would be shared with the proposed nuclear surface power systems, since nuclear systems will be required to provide substantial electrical power on the surface of Mars. The NEP development project plan proposed includes evolutionary technology development for nuclear electric propulsion systems that expands upon SP-100 (Space Power - 100 kw(e)) technology that has been developed for lunar and Mars surface nuclear power

  4. Benefits of Power and Propulsion Technology for a Piloted Electric Vehicle to an Asteroid

    Science.gov (United States)

    Mercer, Carolyn R.; Oleson, Steven R.; Pencil, Eric J.; Piszczor, Michael F.; Mason, Lee S.; Bury, Kristen M.; Manzella, David H.; Kerslake, Thomas W.; Hojinicki, Jeffrey S.; Brophy, John P.

    2012-01-01

    NASA s goal for human spaceflight is to expand permanent human presence beyond low Earth orbit (LEO). NASA is identifying potential missions and technologies needed to achieve this goal. Mission options include crewed destinations to LEO and the International Space Station; high Earth orbit and geosynchronous orbit; cis-lunar space, lunar orbit, and the surface of the Moon; near-Earth objects; and the moons of Mars, Mars orbit, and the surface of Mars. NASA generated a series of design reference missions to drive out required functions and capabilities for these destinations, focusing first on a piloted mission to a near-Earth asteroid. One conclusion from this exercise was that a solar electric propulsion stage could reduce mission cost by reducing the required number of heavy lift launches and could increase mission reliability by providing a robust architecture for the long-duration crewed mission. Similarly, solar electric vehicles were identified as critical for missions to Mars, including orbiting Mars, landing on its surface, and visiting its moons. This paper describes the parameterized assessment of power and propulsion technologies for a piloted solar electric vehicle to a near-Earth asteroid. The objective of the assessment was to determine technology drivers to advance the state of the art of electric propulsion systems for human exploration. Sensitivity analyses on the performance characteristics of the propulsion and power systems were done to determine potential system-level impacts of improved technology. Starting with a "reasonable vehicle configuration" bounded by an assumed launch date, we introduced technology improvements to determine the system-level benefits (if any) that those technologies might provide. The results of this assessment are discussed and recommendations for future work are described.

  5. The PEGASUS Drive: A nuclear electric propulsion system for the space exploration initiative

    International Nuclear Information System (INIS)

    Coomes, E.P.; Dagle, J.E.

    1991-01-01

    The advantages of using electric propulsion for propulsion are well-known in the aerospace community. The high specific impulse, lower propellant requirements, and lower system mass make it a very attractive propulsion option for the Space Exploration Initiative (SEI), especially for the transport of cargo. One such propulsion system is the PEGASUS Drive (Coomes et al. 1987). In its original configuration, the PEGASUS Drive consisted of a 10-MWe power source coupled to a 6-MW magnetoplasmadynamic (MPD) thruster system. The PEGASUS Drive propelled a manned vechicle to Mars and back in 601 days. By removing the crew and their associated support systems from the space craft and by incorporating technology advances in reactor design and heat rejection systems, a second generation PEGASUS Drive can be developed with an alpha less than two. Utilizing this propulsion system, a 400-MT cargo vechicle, assembled and loaded in low Earth orbit (LEO), could deliver 262 MT of supplies and hardware to MARS 282 days after escaping Earth orbit. Upon arrival at Mars the transport vehicle would place its cargo in the desired parking orbit around Mars and then proceed to synchronous orbit above the desired landing sight. Using a laser transmitter, PEGASUS could provide 2-MW on the surface to operate automated systems deployed earlier and then provide surface power to support crew activities after their arrival. The additional supplies and hardware, coupled with the availability of megawatt levels of electric power on the Mars surface, would greatly enhance and even expand the mission options being considered under SEI

  6. Stirling engine electric hybrid vehicle propulsion system conceptual design study. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Dochat, G; Artiles, A; Killough, J; Ray, A; Chen, H S

    1978-08-01

    Results of a six-month study to characterize a series Stirling engine electric hybrid vehicle propulsion system are presented. The Stirling engine was selected as the heat conversion element to exploit the high efficiency (> .36), low pollution, multi-fuel and quiet operation of this machine. A free-piston Stirling engine driving a linear alternator in a hermatically sealed enclosure was chosen to gain the reliability, long life, and maintenance free characteristics of a sealed unit. The study performs trade off evaluations, selection of engine, battery, motor and inverter size, optimization of components, and develops a conceptual design and characterization of the total propulsion system. The conclusion of the study is that a Stirling engine electric hybrid propulsion system can be used successfully to augment the battery storage of a passenger vehicle and will result in significant savings of petroleum energy over present passenger vehicles. The performance and range augmentation of the hybrid design results in significant improvements over an all electric vehicle. The hybrid will be capable of performing 99% of the passenger vehicle annual trip distribution requirements with extremely low fuel usage. (TFD)

  7. Proposal of space reactor for nuclear electric propulsion system

    International Nuclear Information System (INIS)

    Nishiyama, Takaaki; Nagata, Hidetaka; Nakashima, Hideki

    2009-01-01

    A nuclear reactor installed in spacecrafts is considered here. The nuclear reactor could stably provide an enough amount of electric power in deep space missions. Most of the nuclear reactors that have been developed up to now in the United States and the former Soviet Union have used uranium with 90% enrichment of 235 U as a fuel. On the other hand, in Japan, because the uranium that can be used is enriched to below 20%, the miniaturization of the reactor core is difficult. A Light-water nuclear reactor is an exception that could make the reactor core small. Then, the reactor core composition and characteristic are evaluated for the cases with the enrichment of the uranium fuel as 20%. We take up here Graphite reactor, Light-water reactor, and Sodium-cooled one. (author)

  8. Hybrid-Electric Rotorcraft Tool Development, Propulsion System Trade Space Exploration, and Demonstrator Conceptual Design, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Hybrid-electric propulsion is becoming widely accepted as a potential disruptive technology for aircraft that can provide significant reduction in fuel consumption...

  9. Janus particle microshuttle: 1D directional self-propulsion modulated by AC electrical field

    Directory of Open Access Journals (Sweden)

    Jiliang Chen

    2014-03-01

    Full Text Available A catalytic Janus particle is capable of gaining energy from the surrounding fuel solution to drive itself to move continuously, which has an important impact in different fields, especially the field of micro-systems. However, the randomness of self-propulsion at the microscale restricts its use in practice. Achieving a directed self-propelled movement would greatly promote the application of the Janus particle. We proved experimentally that an AC electric field was an effective way to suppress Brownian motion and control the direction of self-propelled movement. The self-propulsion and dielectrophoretic response of a 2μm Janus particle were observed and the related basic data were collected. Interdigital electrodes, 20 μm in width, were energized in pulsed style to modulate the self-propulsion, which resulted in a shuttle-style motion in which a single Janus particle moved to and fro inside the strip electrode. The change of direction depends on its unique position: the catalyst side is always pointed outward and the orientation angle relative to the electrode is about 60°. Numerical simulation also proved that this position is reasonable. The present study could be beneficial with regard to self-propulsion and AC electrokinetics of the Janus particle.

  10. Thrust stand for vertically oriented electric propulsion performance evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Moeller, Trevor [University of Tennessee Space Institute, Tullahoma, Tennessee 37388 (United States); Polzin, Kurt A. [NASA, Marshall Space Flight Center, Huntsville, Alabama 35812 (United States)

    2010-11-15

    A variation of a hanging pendulum thrust stand capable of measuring the performance of an electric thruster operating in the vertical orientation is presented. The vertical orientation of the thruster dictates that the thruster must be horizontally offset from the pendulum pivot arm, necessitating the use of a counterweight system to provide a neutrally stable system. Motion of the pendulum arm is transferred through a balance mechanism to a secondary arm on which deflection is measured. A noncontact light-based transducer is used to measure displacement of the secondary beam. The members experience very little friction, rotating on twisting torsional pivots with oscillatory motion attenuated by a passive, eddy-current damper. Displacement is calibrated using an in situ thrust calibration system. Thermal management and self-leveling systems are incorporated to mitigate thermal and mechanical drifts. Gravitational force and torsional spring constants associated with flexure pivots provide restoring moments. An analysis of the design indicates that the thrust measurement range spans roughly four decades, with the stand capable of measuring thrust up to 12 N for a 200 kg thruster and up to approximately 800 mN for a 10 kg thruster. Data obtained from calibration tests performed using a 26.8 lbm simulated thruster indicated a resolution of 1 mN on 100 mN level thrusts, while those tests conducted on a 200 lbm thruster yielded a resolution of roughly 2.5 mN at thrust levels of 0.5 N and greater.

  11. Thrust Stand for Vertically Oriented Electric Propulsion Performance Evaluation

    Science.gov (United States)

    Moeller, Trevor; Polzin, Kurt A.

    2010-01-01

    A variation of a hanging pendulum thrust stand capable of measuring the performance of an electric thruster operating in the vertical orientation is presented. The vertical orientation of the thruster dictates that the thruster must be horizontally offset from the pendulum pivot arm, necessitating the use of a counterweight system to provide a neutrally-stable system. Motion of the pendulum arm is transferred through a balance mechanism to a secondary arm on which deflection is measured. A non-contact light-based transducer is used to measure displacement of the secondary beam. The members experience very little friction, rotating on twisting torsional pivots with oscillatory motion attenuated by a passive, eddy current damper. Displacement is calibrated using an in situ thrust calibration system. Thermal management and self-leveling systems are incorporated to mitigate thermal and mechanical drifts. Gravitational restoring force and torsional spring constants associated with flexure pivots provide restoring moments. An analysis of the design indicates that the thrust measurement range spans roughly four decades, with the stand capable of measuring thrust up to 12 N for a 200 kg thruster and up to approximately 800 mN for a 10 kg thruster. Data obtained from calibration tests performed using a 26.8 lbm simulated thruster indicated a resolution of 1 mN on 100 mN-level thrusts, while those tests conducted on 200 lbm thruster yielded a resolution of roughly 2.5 micro at thrust levels of 0.5 N and greater.

  12. Thrust stand for vertically oriented electric propulsion performance evaluation

    International Nuclear Information System (INIS)

    Moeller, Trevor; Polzin, Kurt A.

    2010-01-01

    A variation of a hanging pendulum thrust stand capable of measuring the performance of an electric thruster operating in the vertical orientation is presented. The vertical orientation of the thruster dictates that the thruster must be horizontally offset from the pendulum pivot arm, necessitating the use of a counterweight system to provide a neutrally stable system. Motion of the pendulum arm is transferred through a balance mechanism to a secondary arm on which deflection is measured. A noncontact light-based transducer is used to measure displacement of the secondary beam. The members experience very little friction, rotating on twisting torsional pivots with oscillatory motion attenuated by a passive, eddy-current damper. Displacement is calibrated using an in situ thrust calibration system. Thermal management and self-leveling systems are incorporated to mitigate thermal and mechanical drifts. Gravitational force and torsional spring constants associated with flexure pivots provide restoring moments. An analysis of the design indicates that the thrust measurement range spans roughly four decades, with the stand capable of measuring thrust up to 12 N for a 200 kg thruster and up to approximately 800 mN for a 10 kg thruster. Data obtained from calibration tests performed using a 26.8 lbm simulated thruster indicated a resolution of 1 mN on 100 mN level thrusts, while those tests conducted on a 200 lbm thruster yielded a resolution of roughly 2.5 mN at thrust levels of 0.5 N and greater.

  13. High-Lift Propeller Noise Prediction for a Distributed Electric Propulsion Flight Demonstrator

    Science.gov (United States)

    Nark, Douglas M.; Buning, Pieter G.; Jones, William T.; Derlaga, Joseph M.

    2017-01-01

    Over the past several years, the use of electric propulsion technologies within aircraft design has received increased attention. The characteristics of electric propulsion systems open up new areas of the aircraft design space, such as the use of distributed electric propulsion (DEP). In this approach, electric motors are placed in many different locations to achieve increased efficiency through integration of the propulsion system with the airframe. Under a project called Scalable Convergent Electric Propulsion Technology Operations Research (SCEPTOR), NASA is designing a flight demonstrator aircraft that employs many "high-lift propellers" distributed upstream of the wing leading edge and two cruise propellers (one at each wingtip). As the high-lift propellers are operational at low flight speeds (take-off/approach flight conditions), the impact of the DEP configuration on the aircraft noise signature is also an important design consideration. This paper describes efforts toward the development of a mulit-fidelity aerodynamic and acoustic methodology for DEP high-lift propeller aeroacoustic modeling. Specifically, the PAS, OVERFLOW 2, and FUN3D codes are used to predict the aerodynamic performance of a baseline high-lift propeller blade set. Blade surface pressure results from the aerodynamic predictions are then used with PSU-WOPWOP and the F1A module of the NASA second generation Aircraft NOise Prediction Program to predict the isolated high-lift propeller noise source. Comparisons of predictions indicate that general trends related to angle of attack effects at the blade passage frequency are captured well with the various codes. Results for higher harmonics of the blade passage frequency appear consistent for the CFD based methods. Conversely, evidence of the need for a study of the effects of increased azimuthal grid resolution on the PAS based results is indicated and will be pursued in future work. Overall, the results indicate that the computational

  14. Architecture, Voltage, and Components for a Turboelectric Distributed Propulsion Electric Grid

    Science.gov (United States)

    Armstrong, Michael J.; Blackwelder, Mark; Bollman, Andrew; Ross, Christine; Campbell, Angela; Jones, Catherine; Norman, Patrick

    2015-01-01

    The development of a wholly superconducting turboelectric distributed propulsion system presents unique opportunities for the aerospace industry. However, this transition from normally conducting systems to superconducting systems significantly increases the equipment complexity necessary to manage the electrical power systems. Due to the low technology readiness level (TRL) nature of all components and systems, current Turboelectric Distributed Propulsion (TeDP) technology developments are driven by an ambiguous set of system-level electrical integration standards for an airborne microgrid system (Figure 1). While multiple decades' worth of advancements are still required for concept realization, current system-level studies are necessary to focus the technology development, target specific technological shortcomings, and enable accurate prediction of concept feasibility and viability. An understanding of the performance sensitivity to operating voltages and an early definition of advantageous voltage regulation standards for unconventional airborne microgrids will allow for more accurate targeting of technology development. Propulsive power-rated microgrid systems necessitate the introduction of new aircraft distribution system voltage standards. All protection, distribution, control, power conversion, generation, and cryocooling equipment are affected by voltage regulation standards. Information on the desired operating voltage and voltage regulation is required to determine nominal and maximum currents for sizing distribution and fault isolation equipment, developing machine topologies and machine controls, and the physical attributes of all component shielding and insulation. Voltage impacts many components and system performance.

  15. Recent developments of the MOA thruster concerning its application for nuclear electric and thermal propulsion

    International Nuclear Information System (INIS)

    Frischauf, N.; Hettmer, M.; Grassauer, A.; Bartusch, T.; Koudelka, O.

    2007-01-01

    The name of the concept, utilising Alfven waves to accelerate ionised matter for propulsive purposes, is MOA for Magnetic field Oscillating Amplified thruster. Alfven waves are generated by making use of 2 coils, one being permanently powered and serving also as magnetic nozzle, the other one being switched on and off in a cyclic way, deforming the field lines of the overall system. It is this deformation that generates Alfven waves, which are in the next step used to transport and compress the propulsive medium, in theory leading to a propulsion system with a much higher performance than any other electric propulsion system. Based on computer simulations, which were conducted to get a first estimate on the performance of the system, MOA is a highly flexible propulsion system, whose performance parameters might easily be adapted, by changing the mass flow and/or the power level. As such the system is capable to deliver a maximum specific impulse of 13116 s (12.87 mN) at a power level of 11.16 kW, using Xe as propellant, but can also be attuned to provide a thrust of 236.5 mN (2411 s) at 6.15 kW of power. Several prototypes have been built and tested, the results that were obtained are promising: with an overall power consumption of 400 W, 6 to 11 mN of thrust could be obtained, leading on the average to a specific power of about 50 W/mN. Better results are expected for optimised prototypes in terms of power consumption

  16. Concept Design of High Power Solar Electric Propulsion Vehicles for Human Exploration

    Science.gov (United States)

    Hoffman, David J.; Kerslake, Thomas W.; Hojnicki, Jeffrey S.; Manzella, David H.; Falck, Robert D.; Cikanek, Harry A., III; Klem, Mark D.; Free, James M.

    2011-01-01

    Human exploration beyond low Earth orbit will require enabling capabilities that are efficient, affordable and reliable. Solar electric propulsion (SEP) has been proposed by NASA s Human Exploration Framework Team as one option to achieve human exploration missions beyond Earth orbit because of its favorable mass efficiency compared to traditional chemical propulsion systems. This paper describes the unique challenges associated with developing a large-scale high-power (300-kWe class) SEP vehicle and design concepts that have potential to meet those challenges. An assessment of factors at the subsystem level that must be considered in developing an SEP vehicle for future exploration missions is presented. Overall concepts, design tradeoffs and pathways to achieve development readiness are discussed.

  17. Evolution of the Power Processing Units Architecture for Electric Propulsion at CRISA

    Science.gov (United States)

    Palencia, J.; de la Cruz, F.; Wallace, N.

    2008-09-01

    Since 2002, the team formed by EADS Astrium CRISA, Astrium GmbH Friedrichshafen, and QinetiQ has participated in several flight programs where the Electric Propulsion based on Kaufman type Ion Thrusters is the baseline conceptOn 2002, CRISA won the contract for the development of the Ion Propulsion Control Unit (IPCU) for GOCE. This unit together with the T5 thruster by QinetiQ provides near perfect atmospheric drag compensation offering thrust levels in the range of 1 to 20mN.By the end of 2003, CRISA started the adaptation of the IPCU concept to the QinetiQ T6 Ion Thruster for the Alphabus program.This paper shows how the Power Processing Unit design evolved in time including the current developments.

  18. Study and review of permanent magnets for electric vehicle propulsion motors

    Science.gov (United States)

    Strnat, K. J.

    1983-01-01

    A study of permanent magnets (PM) was performed in support of the DOE/NASA electric and hybrid vehicle program. PM requirements for electric propulsion motors are analyzed, design principles and relevant properties of magnets are discussed. Available PM types are reviewed. For the needed high-grade magnets, design data, commercial varieties and sources are tabulated, based on a survey of vendors. Economic factors such as raw material availability, production capability and cost are analyzed, especially for cobalt and the rare earths. Extruded Mn-Al-C magnets from Japan were experimentally characterized. Dynamic magnetic data for the range -50 deg to +150 deg C and some mechanical properties are reported. The state of development of the important PM material families is reviewed. Feasible improvements or new developments of magnets for electric vehicle motors are identified.

  19. Study to adapt solar electric propulsion to the Pioneer F and G spacecraft

    Science.gov (United States)

    1972-01-01

    The addition of an electric thrust subsystem to the spin-stabilized Pioneer F and G spacecraft to improve performance capability for certain missions is discussed. The evaluation was performed for the Atlas and Titan launch vehicles with Centaur and TE-364-4 stages and for electric thrust stages of 8- and 5-kw with three 30- and five 15-cm thrusters respectively. The combination of a spinning spacecraft with electric propulsion is a concept only recently evaluated and the penalty from spinning over three-axis stabilized is not as significant as might initally be thought. There are major gains in weight, cost, and reliability, the disadvantages being lower data rate during the thrust phase and less efficient pointing. A variety of missions were evaluated from a solar approach mission into 0.14 AU to a flyby mission of Neptune at approximately 30 AU. Performance improvements were present for all missions evaluated.

  20. Computational Analysis of a Wing Designed for the X-57 Distributed Electric Propulsion Aircraft

    Science.gov (United States)

    Deere, Karen A.; Viken, Jeffrey K.; Viken, Sally A.; Carter, Melissa B.; Wiese, Michael R.; Farr, Norma L.

    2017-01-01

    A computational study of the wing for the distributed electric propulsion X-57 Maxwell airplane configuration at cruise and takeoff/landing conditions was completed. Two unstructured-mesh, Navier-Stokes computational fluid dynamics methods, FUN3D and USM3D, were used to predict the wing performance. The goal of the X-57 wing and distributed electric propulsion system design was to meet or exceed the required lift coefficient 3.95 for a stall speed of 58 knots, with a cruise speed of 150 knots at an altitude of 8,000 ft. The X-57 Maxwell airplane was designed with a small, high aspect ratio cruise wing that was designed for a high cruise lift coefficient (0.75) at angle of attack of 0deg. The cruise propulsors at the wingtip rotate counter to the wingtip vortex and reduce induced drag by 7.5 percent at an angle of attack of 0.6deg. The unblown maximum lift coefficient of the high-lift wing (with the 30deg flap setting) is 2.439. The stall speed goal performance metric was confirmed with a blown wing computed effective lift coefficient of 4.202. The lift augmentation from the high-lift, distributed electric propulsion system is 1.7. The predicted cruise wing drag coefficient of 0.02191 is 0.00076 above the drag allotted for the wing in the original estimate. However, the predicted drag overage for the wing would only use 10.1 percent of the original estimated drag margin, which is 0.00749.

  1. Assessment of High Temperature Superconducting (HTS) electric motors for rotorcraft propulsion

    Science.gov (United States)

    Doernbach, Jay

    1990-01-01

    The successful development of high temperature superconductors (HTS) could have a major impact on future aeronautical propulsion and aeronautical flight vehicle systems. Applications of high temperature superconductors have been envisioned for several classes of aeronautical systems, including subsonic and supersonic transports, hypersonic aircraft, V/STOL aircraft, rotorcraft and solar powered aircraft. The potential of HTS electric motors and generators for providing primary shaft power for rotorcraft propulsion is examined. Three different sized production helicopters were investigated; namely, the Bell Jet Ranger, the Sikorsky Black Hawk and the Sikorsky Super Stallion. These rotorcraft have nominal horsepower ratings of 500, 3600, and 13400 respectively. Preliminary results indicated that an all-electric HTS drive system produces an improvement in rotorcraft Takeoff Gross Weight (TOGW) for those rotorcraft with power ratings above 2000 horsepower. The predicted TOGW improvements are up to 9 percent for the medium-sized Sikorsky Black Hawk and up to 20 percent for the large-sized Sikorsky Super Stallion. The small-sized Bell Jet Ranger, however, experienced a penalty in TOGW with the all-electric HTS drive system.

  2. Electric propulsion options for 10 kW class earth space missions

    Science.gov (United States)

    Patterson, M. J.; Curran, Francis M.

    1989-01-01

    Five and 10 kW ion and arcjet propulsion system options for a near-term space demonstration experiment have been evaluated. Analyses were conducted to determine first-order propulsion system performance and system component mass estimates. Overall mission performance of the electric propulsion systems was quantified in terms of the maximum thrusting time, total impulse, and velocity increment capability available when integrated onto a generic spacecraft under fixed mission model assumptions. Maximum available thrusting times for the ion-propelled spacecraft options, launched on a DELTA II 6920 vehicle, range from approximately 8,600 hours for a 4-engine 10 kW system to more than 29,600 hours for a single-engine 5 kW system. Maximum total impulse values and maximum delta-v's range from 1.2x10(7) to 2.1x10(7) N-s, and 3550 to 6200 m/s, respectively. Maximum available thrusting times for the arcjet propelled spacecraft launched on the DELTA II 6920 vehicle range from approximately 528 hours for the 6-engine 10 kW hydrazine system to 2328 hours for the single-engine 5 kW system. Maximum total impulse values and maximum delta-v's range from 2.2x10(6) to 3.6x10(6) N-s, and approximately 662 to 1072 m/s, respectively.

  3. Electric Propulsion Options for 10 kW Class Earth-Space Missions

    Science.gov (United States)

    Patterson, M. J.; Curran, Francis M.

    1989-01-01

    Five and 10 kW ion and arcjet propulsion system options for a near-term space demonstration experiment were evaluated. Analyses were conducted to determine first-order propulsion system performance and system component mass estimates. Overall mission performance of the electric propulsion systems was quantified in terms of the maximum thrusting time, total impulse, and velocity increment capability available when integrated onto a generic spacecraft under fixed mission model assumptions. Maximum available thrusting times for the ion-propelled spacecraft options, launched on a DELTA 2 6920 vehicle, range from approximately 8,600 hours for a 4-engine 10 kW system to more than 29,600 hours for a single-engine 5 kW system. Maximum total impulse values and maximum delta-v's range from 1.2x10 (exp 7) to 2.1x10 (exp 7) N-s, and 3550 to 6200 m/s, respectively. Maximum available thrusting times for the arcjet propelled spacecraft launched on the DELTA 2 6920 vehicle range from approximately 528 hours for the 6-engine 10 kW hydrazine system to 2328 hours for the single-engine 5 kW system. Maximum total impulse values and maximum delta-v's range from 2.2x10 (exp 6) to 3.6x10 (exp 6) N-s, and approximately 662 to 1072 m/s, respectively.

  4. Solar Electric Propulsion (SEP) Systems for SMD Mission Needs. Technology Infusion Study.

    Science.gov (United States)

    Anderson, David

    2014-01-01

    Two presentations for SBAG and OPAG meetings: 1) Solar Electric Propulsion Systems for SMD Missions, and 2) Technology Infusion Study - Draft Findings Recommendation Small Bodies Assessment Group (SBAG) meeting is January 9th in Washington D.C., and the Outer Planets Assessment Group (OPAG) meeting is January 23-14 in Tucson, AZ. NASA sponsors these assessment groups, through the NRC, for the science community to assess and provide advice. These talks are to provide a status of 2 NASA activities, and to seek feedback from the respective science communities.

  5. Space nuclear power system and the design of the nuclear electric propulsion OTV

    International Nuclear Information System (INIS)

    Buden, D.; Garrison, P.W.

    1984-01-01

    Payload increases of three to five times that of the Shuttle/Centaur can be achieved using nuclear electric propulsion. Various nuclear power plant options being pursued by the SP-100 Program are described. These concepts can grow from 100 kW/sub e/ to 1MW/sub e/ output. Spacecraft design aspects are addressed, including thermal interactions, plume interactions, and radiation fluences. A baseline configuration is described accounting for these issues. Safety aspects of starting the OTV transfer from an altitude of 300 km indicate no significant additional risk to the biosphere

  6. Planetary mission requirements, technology and design considerations for a solar electric propulsion stage

    Science.gov (United States)

    Cork, M. J.; Hastrup, R. C.; Menard, W. A.; Olson, R. N.

    1979-01-01

    High energy planetary missions such as comet rendezvous, Saturn orbiter and asteroid rendezvous require development of a Solar Electric Propulsion Stage (SEPS) for augmentation of the Shuttle-IUS. Performance and functional requirements placed on the SEPS are presented. These requirements will be used in evolution of the SEPS design, which must be highly interactive with both the spacecraft and the mission design. Previous design studies have identified critical SEPS technology areas and some specific design solutions which are also presented in the paper.

  7. Neural network control of a parallel hybrid-electric propulsion system for a small unmanned aerial vehicle

    Science.gov (United States)

    Harmon, Frederick G.

    2005-11-01

    Parallel hybrid-electric propulsion systems would be beneficial for small unmanned aerial vehicles (UAVs) used for military, homeland security, and disaster-monitoring missions. The benefits, due to the hybrid and electric-only modes, include increased time-on-station and greater range as compared to electric-powered UAVs and stealth modes not available with gasoline-powered UAVs. This dissertation contributes to the research fields of small unmanned aerial vehicles, hybrid-electric propulsion system control, and intelligent control. A conceptual design of a small UAV with a parallel hybrid-electric propulsion system is provided. The UAV is intended for intelligence, surveillance, and reconnaissance (ISR) missions. A conceptual design reveals the trade-offs that must be considered to take advantage of the hybrid-electric propulsion system. The resulting hybrid-electric propulsion system is a two-point design that includes an engine primarily sized for cruise speed and an electric motor and battery pack that are primarily sized for a slower endurance speed. The electric motor provides additional power for take-off, climbing, and acceleration and also serves as a generator during charge-sustaining operation or regeneration. The intelligent control of the hybrid-electric propulsion system is based on an instantaneous optimization algorithm that generates a hyper-plane from the nonlinear efficiency maps for the internal combustion engine, electric motor, and lithium-ion battery pack. The hyper-plane incorporates charge-depletion and charge-sustaining strategies. The optimization algorithm is flexible and allows the operator/user to assign relative importance between the use of gasoline, electricity, and recharging depending on the intended mission. A MATLAB/Simulink model was developed to test the control algorithms. The Cerebellar Model Arithmetic Computer (CMAC) associative memory neural network is applied to the control of the UAVs parallel hybrid-electric

  8. Analysis of Electric Propulsion Performance on Submersible with Motor DC, Supply Power 10260AH at Voltage 115VDC

    Directory of Open Access Journals (Sweden)

    Indra Ranu Kusuma

    2017-03-01

    Full Text Available Electric propulsion is the ship system using propulsion motor to replace performance of main engine. The application of diesel engine as propulsion system have some problems and weaknesses such as diesel engine unability to operate when submersible vessel is operating under sea. To overcome that problems in submersible vessel, alternative solution of ship propulsion is required. DC Motor can be used as this alternative solution. Submersible vessel use electric propulsion system with DC Motor because DC Motor has advantages of easy rotation setting and does not cause noise when submersible vessel is diving. This bachelor thesis will study the application of DC Motor as an electric propulsion system on submersible vessel with length 59,57 m in series and parallel circuit by simulation using MATLAB software. The simulation data obtained are rotation and torque of DC Motor. From these simulation, it can be concluded that parallel circuit rotation is greater than series circuit rotation. It caused the greater speed and lower power in parallel circuit. 

  9. NASA's Electric Sail Propulsion System Investigations over the Past Three Years

    Science.gov (United States)

    Wiegmann, Bruce M.

    2017-01-01

    Personnel from NASA's MSFC have been investigating the feasibility of an advanced propulsion system known as the Electric Sail for future scientific missions of exploration. This team initially won a NASA Space Technology Mission Directorate (STMD) Phase I NASA Innovative Advanced Concept (NIAC) award and then a two year follow-on Phase II NIAC award. This paper documents the findings from this three year investigation. An Electric sail propulsion system is a propellant-less and extremely fast propulsion system that takes advantage of the ions that are present in the solar wind to provide very rapid transit speeds whether to deep space or to the inner solar system. Scientific spacecraft could arrive to Pluto in 5 years, to the boundary of the solar system in ten to twelve years vs. thirty five plus years it took the Voyager spacecraft. The team's recent focused activities are: 1) Developing a Particle in Cell (PIC) numeric engineering model from the experimental data collected at MSFC's Solar Wind Facility on the interaction between simulated solar wind interaction with a charged bare wire that can be applied to a variety of missions, 2) The development of the necessary tether deployers/tethers to enable successful deployment of multiple, multi km length bare tethers, 3) Determining the different missions that can be captured from this revolutionary propulsion system 4) Conceptual designs of spacecraft to reach various destinations whether to the edge of the solar system, or as Heliophysics sentinels around the sun, or to trips to examine a multitude of asteroids These above activities, once demonstrated analytically, will require a technology demonstration mission (2021 to 2023) to demonstrate that all systems work together seamlessly before a Heliophysics Electrostatic Rapid Transit System (HERTS) could be given the go-ahead. The proposed demonstration mission will require that a small spacecraft must first travel to cis-lunar space as the Electric Sail must be

  10. Thermo-structural modelling of a plasma discharge tube for electric propulsion

    International Nuclear Information System (INIS)

    Faoite, D. de; Browne, D.J.; Del Valle Gamboa, J.I.; Stanton, K.T.

    2016-01-01

    Highlights: • Thermo-structural analyses were performed for an electric propulsion space thruster. • Thermal stresses arise primarily from mismatches in thermal expansion coefficients. • Aluminium nitride is a suitable material for a plasma containment tube. • A design is presented allowing a thruster to operate at a power of at least 250 kW. - Abstract: Potential thermal management strategies for the plasma generation section of a VASIMR"® high-power electric propulsion space thruster are assessed. The plasma is generated in a discharge tube using helicon waves. The plasma generation process causes a significant thermal load on the plasma discharge tube and on neighbouring components, caused by cross-field particle diffusion and UV radiation. Four potential cooling system design strategies are assessed to deal with this thermal load. Four polycrystalline ceramics are evaluated for use as the plasma discharge tube material: alumina, aluminium nitride, beryllia, and silicon nitride. A finite element analysis (FEA) method was used to model the steady-state temperature and stress fields resulting from the plasma heat flux. Of the four materials assessed, aluminium nitride would result in the lowest plasma discharge tube temperatures and stresses. It was found that a design consisting of a monolithic ceramic plasma containment tube fabricated from aluminium nitride would be capable of operating up to a power level of at least 250 kW.

  11. Computational Analysis of Powered Lift Augmentation for the LEAPTech Distributed Electric Propulsion Wing

    Science.gov (United States)

    Deere, Karen A.; Viken, Sally A.; Carter, Melissa B.; Viken, Jeffrey K.; Wiese, Michael R.; Farr, Norma L.

    2017-01-01

    A computational study of a distributed electric propulsion wing with a 40deg flap deflection has been completed using FUN3D. Two lift-augmentation power conditions were compared with the power-off configuration on the high-lift wing (40deg flap) at a 73 mph freestream flow and for a range of angles of attack from -5 degrees to 14 degrees. The computational study also included investigating the benefit of corotating versus counter-rotating propeller spin direction to powered-lift performance. The results indicate a large benefit in lift coefficient, over the entire range of angle of attack studied, by using corotating propellers that all spin counter to the wingtip vortex. For the landing condition, 73 mph, the unpowered 40deg flap configuration achieved a maximum lift coefficient of 2.3. With high-lift blowing the maximum lift coefficient increased to 5.61. Therefore, the lift augmentation is a factor of 2.4. Taking advantage of the fullspan lift augmentation at similar performance means that a wing powered with the distributed electric propulsion system requires only 42 percent of the wing area of the unpowered wing. This technology will allow wings to be 'cruise optimized', meaning that they will be able to fly closer to maximum lift over drag conditions at the design cruise speed of the aircraft.

  12. Xenon Acquisition Strategies for High-Power Electric Propulsion NASA Missions

    Science.gov (United States)

    Herman, Daniel A.; Unfried, Kenneth G.

    2015-01-01

    The benefits of high-power solar electric propulsion (SEP) for both NASA's human and science exploration missions combined with the technology investment from the Space Technology Mission Directorate have enabled the development of a 50kW-class SEP mission. NASA mission concepts developed, including the Asteroid Redirect Robotic Mission, and those proposed by contracted efforts for the 30kW-class demonstration have a range of xenon propellant loads from 100's of kg up to 10,000 kg. A xenon propellant load of 10 metric tons represents greater than 10% of the global annual production rate of xenon. A single procurement of this size with short-term delivery can disrupt the xenon market, driving up pricing, making the propellant costs for the mission prohibitive. This paper examines the status of the xenon industry worldwide, including historical xenon supply and pricing. The paper discusses approaches for acquiring on the order of 10 MT of xenon propellant considering realistic programmatic constraints to support potential near-term NASA missions. Finally, the paper will discuss acquisitions strategies for mission campaigns utilizing multiple high-power solar electric propulsion vehicles requiring 100's of metric tons of xenon over an extended period of time where a longer term acquisition approach could be implemented.

  13. New Opportunities for Outer Solar System Science using Radioisotope Electric Propulsion

    Energy Technology Data Exchange (ETDEWEB)

    Noble, Robert J.; /SLAC; Amini, Rashied; Beauchamp, Patricia M.; /Caltech, JPL; Bennett, Gary L.; /Metaspace Enterprises; Brophy, John R.; Buratti, Bonnie J.; Ervin, Joan; /Caltech, JPL; Fernandez, Yan R.; /Central Florida U.; Grundy, Will; /Lowell Observ.; Khan, Mohammed Omair; /Caltech, JPL; King, David Q.; /Aerojet; Lang, Jared; /Caltech, JPL; Meech, Karen J.; /Hawaii U.; Newhouse, Alan; Oleson, Steven R.; Schmidt, George R.; /GRC; Spilker, Thomas; West, John L.; /Caltech, JPL

    2010-05-26

    Today, our questions and hypotheses about the Solar System's origin have surpassed our ability to deliver scientific instruments to deep space. The moons of the outer planets, the Trojan and Centaur minor planets, the trans-Neptunian objects (TNO), and distant Kuiper Belt objects (KBO) hold a wealth of information about the primordial conditions that led to the formation of our Solar System. Robotic missions to these objects are needed to make the discoveries, but the lack of deep-space propulsion is impeding this science. Radioisotope electric propulsion (REP) will revolutionize the way we do deep-space planetary science with robotic vehicles, giving them unprecedented mobility. Radioisotope electric generators and lightweight ion thrusters are being developed today which will make possible REP systems with specific power in the range of 5 to 10 W/kg. Studies have shown that this specific power range is sufficient to perform fast rendezvous missions from Earth to the outer Solar System and fast sample return missions. This whitepaper discusses how mobility provided by REP opens up entirely new science opportunities for robotic missions to distant primitive bodies. We also give an overview of REP technology developments and the required next steps to realize REP.

  14. Steady-state and dynamic evaluation of the electric propulsion system test bed vehicle on a road load simulator

    Science.gov (United States)

    Dustin, M. O.

    1983-01-01

    The propulsion system of the Lewis Research Center's electric propulsion system test bed vehicle was tested on the road load simulator under the DOE Electric and Hybrid Vehicle Program. This propulsion system, consisting of a series-wound dc motor controlled by an infinitely variable SCR chopper and an 84-V battery pack, is typical of those used in electric vehicles made in 1976. Steady-state tests were conducted over a wide range of differential output torques and vehicle speeds. Efficiencies of all of the components were determined. Effects of temperature and voltage variations on the motor and the effect of voltage changes on the controller were examined. Energy consumption and energy efficiency for the system were determined over the B and C driving schedules of the SAE J227a test procedure.

  15. Control Demonstration of Multiple Doubly-Fed Induction Motors for Hybrid Electric Propulsion

    Science.gov (United States)

    Sadey, David J.; Bodson, Marc; Csank, Jeffrey T.; Hunker, Keith R.; Theman, Casey J.; Taylor, Linda M.

    2017-01-01

    The Convergent Aeronautics Solutions (CAS) High Voltage-Hybrid Electric Propulsion (HVHEP) task was formulated to support the move into future hybrid-electric aircraft. The goal of this project is to develop a new AC power architecture to support the needs of higher efficiency and lower emissions. This proposed architecture will adopt the use of the doubly-fed induction machine (DFIM) for propulsor drive motor application.The Convergent Aeronautics Solutions (CAS) High Voltage-Hybrid Electric Propulsion (HVHEP) task was formulated to support the move into future hybrid-electric aircraft. The goal of this project is to develop a new AC power architecture to support the needs of higher efficiency and lower emissions. This proposed architecture will adopt the use of the doubly-fed induction machine (DFIM) for propulsor drive motor application. DFIMs are attractive for several reasons, including but not limited to the ability to self-start, ability to operate sub- and super-synchronously, and requiring only fractionally rated power converters on a per-unit basis depending on the required range of operation. The focus of this paper is based specifically on the presentation and analysis of a novel strategy which allows for independent operation of each of the aforementioned doubly-fed induction motors. This strategy includes synchronization, soft-start, and closed loop speed control of each motor as a means of controlling output thrust; be it concurrently or differentially. The demonstration of this strategy has recently been proven out on a low power test bed using fractional horsepower machines. Simulation and hardware test results are presented in the paper.

  16. An Investigation into the Potential Benefits of Distributed Electric Propulsion on Small UAVs at Low Reynolds Numbers

    Science.gov (United States)

    Baris, Engin

    Distributed electric propulsion systems benefit from the inherent scale independence of electric propulsion. This property allows the designer to place multiple small electric motors along the wing of an aircraft instead of using a single or several internal combustion motors with gear boxes or other power train components. Aircraft operating at low Reynolds numbers are ideal candidates for benefiting from increased local flow velocities as provided by distributed propulsion systems. In this study, a distributed electric propulsion system made up of eight motor/propellers was integrated into the leading edge of a small fixed wing-body model to investigate the expected improvements on the aerodynamics available to small UAVs operating at low Reynolds numbers. Wind tunnel tests featuring a Design of Experiments (DOE) methodology were used for aerodynamic characterization. Experiments were performed in four modes: all-propellers-on, wing-tip-propellers-alone-on, wing-alone mode, and two-inboard-propellers-on-alone mode. In addition, the all-propeller-on, wing-alone, and a single-tractor configuration were analyzed using VSPAERO, a vortex lattice code, to make comparisons between these different configurations. Results show that the distributed propulsion system has higher normal force, endurance, and range features, despite a potential weight penalty.

  17. Benefits of Hybrid-Electric Propulsion to Achieve 4x Increase in Cruise Efficiency for a VTOL Aircraft

    Science.gov (United States)

    Fredericks, William J.; Moore, Mark D.; Busan, Ronald C.

    2013-01-01

    Electric propulsion enables radical new vehicle concepts, particularly for Vertical Takeoff and Landing (VTOL) aircraft because of their significant mismatch between takeoff and cruise power conditions. However, electric propulsion does not merely provide the ability to normalize the power required across the phases of flight, in the way that automobiles also use hybrid electric technologies. The ability to distribute the thrust across the airframe, without mechanical complexity and with a scale-free propulsion system, is a new degree of freedom for aircraft designers. Electric propulsion is scale-free in terms of being able to achieve highly similar levels of motor power to weight and efficiency across a dramatic scaling range. Applying these combined principles of electric propulsion across a VTOL aircraft permits an improvement in aerodynamic efficiency that is approximately four times the state of the art of conventional helicopter configurations. Helicopters typically achieve a lift to drag ratio (L/D) of between 4 and 5, while the VTOL aircraft designed and developed in this research were designed to achieve an L/D of approximately 20. Fundamentally, the ability to eliminate the problem of advancing and retreating rotor blades is shown, without resorting to unacceptable prior solutions such as tail-sitters. This combination of concept and technology also enables a four times increase in range and endurance while maintaining the full VTOL and hover capability provided by a helicopter. Also important is the ability to achieve low disc-loading for low ground impingement velocities, low noise and hover power minimization (thus reducing energy consumption in VTOL phases). This combination of low noise and electric propulsion (i.e. zero emissions) will produce a much more community-friendly class of vehicles. This research provides a review of the concept brainstorming, configuration aerodynamic and mission analysis, as well as subscale prototype construction and

  18. INFORMATION-ENERGY METHODOLOGY OF THE AIRCRAFT WITH ELECTRIC PROPULSION ENERGY COMPLEX DESIGN

    Directory of Open Access Journals (Sweden)

    Boris Vladimirovich Zhmurov

    2017-01-01

    Full Text Available Research in the field of aircraft development shows that from the point of view of sustainability and energy effi- ciency the most acceptable approach is the transition to all-electric aircraft (AEC. Electrification is aimed primarily on the aircraft most energy-intensive elements efficiency enhancing. Primarily these are power plant and air conditioning system. The actual problem discussed in this article is the development of methodology for the design of aircraft power complex with electric propulsion. The electric power plant literally extends the concept of aircraft power complex. The article con- siders two-level energy-informational design technology of the aircraft power complex. On the energetic level, the energy flows are optimized, and on the information level, the control laws that ensure restrictions compliance and loss minimiza- tion for a given level of entire system reliability are synthesized. From the point of view of sustainability and energy effi- ciency, the most acceptable is the transition to AEC. The proposed information-energy technique provides an opportunity to develop electric and hybrid aircraft with optimal weight and size and energy characteristics due to: electricity consump- tion timeline optimization through the redistribution of electric end users switch on moments, which provides a more uni- form power mode, allowing the same set of electric users to reduce generator rated power, and as a result reduce the flight weight; manage a distributed system of electricity generation that provides the ability to use diverse energy sources; faul tsafety management based on rapid changes in the power network topology; energy recovery control; the sources, convert- ers and users (input circuit and power network real-time diagnostic operations.

  19. Propulsion Systems Panel deliberations

    Science.gov (United States)

    Bianca, Carmelo J.; Miner, Robert; Johnston, Lawrence M.; Bruce, R.; Dennies, Daniel P.; Dickenson, W.; Dreshfield, Robert; Karakulko, Walt; Mcgaw, Mike; Munafo, Paul M.

    1993-01-01

    The Propulsion Systems Panel was established because of the specialized nature of many of the materials and structures technology issues related to propulsion systems. This panel was co-chaired by Carmelo Bianca, MSFC, and Bob Miner, LeRC. Because of the diverse range of missions anticipated for the Space Transportation program, three distinct propulsion system types were identified in the workshop planning process: liquid propulsion systems, solid propulsion systems and nuclear electric/nuclear thermal propulsion systems.

  20. Solar Electric Propulsion Technologies Being Designed for Orbit Transfer Vehicle Applications

    Science.gov (United States)

    Sarver-Verhey, Timothy R.; Hoffman, David J.; Kerslake, Thomas W.; Oleson, Steven R.; Falck, Robert D.

    2002-01-01

    There is increasing interest in employing Solar Electric Propulsion (SEP) for new missions requiring transfer from low Earth orbit to the Earth-Moon Lagrange point, L1. Mission architecture plans place the Gateway Habitat at L1 in the 2011 to 2016 timeframe. The Gateway Habitat is envisioned to be used for Lunar exploration, space telescopes, and planetary mission staging. In these scenarios, an SEP stage, or "tug," is used to transport payloads to L1--such as the habitat module, lunar excursion and return vehicles, and chemical propellant for return crew trips. SEP tugs are attractive because they are able to efficiently transport large (less than 10,000 kg) payloads while minimizing propellant requirements. To meet the needs of these missions, a preliminary conceptual design for a general-purpose SEP tug was developed that incorporates several of the advanced space power and in-space propulsion technologies (such as high-power gridded ion and Hall thrusters, high-performance thin-film photovoltaics, lithium-ion batteries, and advanced high-voltage power processing) being developed at the NASA Glenn Research Center. A spreadsheet-based vehicle system model was developed for component sizing and is currently being used for mission planning. This model incorporates a low-thrust orbit transfer algorithm to make preliminary determinations of transfer times and propellant requirements. Results from this combined tug mass estimation and orbit transfer model will be used in a higher fidelity trajectory model to refine the analysis.

  1. Tests of an alternating current propulsion subsystem for electric vehicles on a road load simulator

    Science.gov (United States)

    Stenger, F. J.

    1982-12-01

    The test results of a breadboard version of an ac electric-vehicle propulsion subsystem are presented. The breadboard was installed in the NASA Lewis Research Center Road Load Simulator facility and tested under steady-state and transient conditions. Steady-state tests were run to characterize the system and component efficiencies over the complete speed-torque range within the capability of the propulsion subsystem in the motoring mode of operation. Transient tests were performed to determine the energy consumption of the breadboard over the acceleration and cruise portions of SAE J227 and driving schedules B, C, and D. Tests in the regenerative mode were limited to the low-gear-speed range of the two speed transaxle used in the subsystem. The maximum steady-state subsystem efficiency observed for the breadboard was 81.5 percent in the high-gear-speed range in the motoring mode, and 76 percent in the regenerative braking mode (low gear). The subsystem energy efficiency during the transient tests ranged from 49.2 percent for schedule B to 68.4 percent for Schedule D.

  2. Multi-reactor power system configurations for multimegawatt nuclear electric propulsion

    Science.gov (United States)

    George, Jeffrey A.

    1991-01-01

    A modular, multi-reactor power system and vehicle configuration for piloted nuclear electric propulsion (NEP) missions to Mars is presented. Such a design could provide enhanced system and mission reliability, allowing a comfortable safety margin for early manned flights, and would allow a range of piloted and cargo missions to be performed with a single power system design. Early use of common power modules for cargo missions would also provide progressive flight experience and validation of standardized systems for use in later piloted applications. System and mission analysis are presented to compare single and multi-reactor configurations for piloted Mars missions. A conceptual design for the Hydra modular multi-reactor NEP vehicle is presented.

  3. Annoyance to Noise Produced by a Distributed Electric Propulsion High-Lift System

    Science.gov (United States)

    Rizzi, Stephen A.; Palumbo, Daniel L.; Rathsam, Jonathan; Christian, Andrew; Rafaelof, Menachem

    2017-01-01

    A psychoacoustic test was performed using simulated sounds from a distributed electric propulsion aircraft concept to help understand factors associated with human annoyance. A design space spanning the number of high-lift leading edge propellers and their relative operating speeds, inclusive of time varying effects associated with motor controller error and atmospheric turbulence, was considered. It was found that the mean annoyance response varies in a statistically significant manner with the number of propellers and with the inclusion of time varying effects, but does not differ significantly with the relative RPM between propellers. An annoyance model was developed, inclusive of confidence intervals, using the noise metrics of loudness, roughness, and tonality as predictors.

  4. Solar Cell and Array Technology Development for NASA Solar Electric Propulsion Missions

    Science.gov (United States)

    Piszczor, Michael; McNatt, Jeremiah; Mercer, Carolyn; Kerslake, Tom; Pappa, Richard

    2012-01-01

    NASA is currently developing advanced solar cell and solar array technologies to support future exploration activities. These advanced photovoltaic technology development efforts are needed to enable very large (multi-hundred kilowatt) power systems that must be compatible with solar electric propulsion (SEP) missions. The technology being developed must address a wide variety of requirements and cover the necessary advances in solar cell, blanket integration, and large solar array structures that are needed for this class of missions. Th is paper will summarize NASA's plans for high power SEP missions, initi al mission studies and power system requirements, plans for advanced photovoltaic technology development, and the status of specific cell and array technology development and testing that have already been conducted.

  5. Research, development and demonstration of nickel-zinc batteries for electric vehicle propulsion

    Science.gov (United States)

    1980-06-01

    The feasibility of the nickel zinc battery for electric vehicle propulsion is discussed. The program is divided into seven distinct but highly interactive tasks collectively aimed at the development and commercialization of nickel zinc technology. These basic technical tasks are separator development, electrode development, product design and analysis, cell/module battery testing, process development, pilot manufacturing, and thermal manufacturing, and thermal management. Significant progress has been made in the understanding of separator failure mechanisms, and a generic category of materials has been specified for the 300+ deep discharge applications. Shape change has been reduced significantly. Progress in the area of thermal management was significant, with the development of a model that accurately represents heat generation and rejection rates during battery operation.

  6. Comparison between internal combustion engines and simulated electrical propulsion of taxis; Vergleich zwischen verbrennungsmotorischem und simuliertem elektrischen Antrieb von Taxis

    Energy Technology Data Exchange (ETDEWEB)

    Wallner, Stefan [Stefan Wallner Energietechnik, Unterhaching (Germany); Thym, Jochen

    2011-03-15

    The term 'triumphal procession of electromobility' produces an enormous expectation at the end users side, but intensive development work has still to be done. The transition from today's vehicles towards electric propulsion is not to be expected to take place overnight but will start with slot applications. Energietechnik Wallner has analysed the potential of taxis. (orig.)

  7. Electronic load as part of the test complex of the power processing unit of electric and plasma propulsion

    OpenAIRE

    Chubov, S. V.; Soldatov, Aleksey Ivanovich

    2017-01-01

    This article provides the advantages and technical solutions for the use of electronic loads as part of a testing complex of power and management systems of electric and plasma propulsion of three types. The paper shows the parameters that were applied to select the electronic loads and describes their functionality.

  8. A One-year, Short-Stay Crewed Mars Mission Using Bimodal Nuclear Thermal Electric Propulsion (BNTEP) - A Preliminary Assessment

    Science.gov (United States)

    Burke, Laura A.; Borowski, Stanley K.; McCurdy, David R.; Packard, Thomas W.

    2013-01-01

    A crewed mission to Mars poses a signi cant challenge in dealing with the physiolog- ical issues that arise with the crew being exposed to a near zero-gravity environment as well as signi cant solar and galactic radiation for such a long duration. While long sur- face stay missions exceeding 500 days are the ultimate goal for human Mars exploration, short round trip, short surface stay missions could be an important intermediate step that would allow NASA to demonstrate technology as well as study the physiological e ects on the crew. However, for a 1-year round trip mission, the outbound and inbound hy- perbolic velocity at Earth and Mars can be very large resulting in a signi cant propellant requirement for a high thrust system like Nuclear Thermal Propulsion (NTP). Similarly, a low thrust Nuclear Electric Propulsion (NEP) system requires high electrical power lev- els (10 megawatts electric (MWe) or more), plus advanced power conversion technology to achieve the lower speci c mass values needed for such a mission. A Bimodal Nuclear Thermal Electric Propulsion (BNTEP) system is examined here that uses three high thrust Bimodal Nuclear Thermal Rocket (BNTR) engines allowing short departure and capture maneuvers. The engines also generate electrical power that drives a low thrust Electric Propulsion (EP) system used for ecient interplanetary transit. This combined system can help reduce the total launch mass, system and operational requirements that would otherwise be required for equivalent NEP or Solar Electric Propulsion (SEP) mission. The BNTEP system is a hybrid propulsion concept where the BNTR reactors operate in two separate modes. During high-thrust mode operation, each BNTR provides 10's of kilo- Newtons of thrust at reasonably high speci c impulse (Isp) of 900 seconds for impulsive trans-planetary injection and orbital insertion maneuvers. When in power generation / EP mode, the BNTR reactors are coupled to a Brayton power conversion system allowing each

  9. Overview of the Development of the Solar Electric Propulsion Technology Demonstration Mission 12.5-kW Hall Thruster

    Science.gov (United States)

    Kamhawi, Hani; Huang, Wensheng; Haag, Thomas; Yim, John; Chang, Li; Clayman, Lauren; Herman, Daniel; Shastry, Rohit; Thomas, Robert; Verhey, Timothy; hide

    2014-01-01

    NASA is developing mission concepts for a solar electric propulsion technology demonstration mission. A number of mission concepts are being evaluated including ambitious missions to near Earth objects. The demonstration of a high-power solar electric propulsion capability is one of the objectives of the candidate missions under consideration. In support of NASA's exploration goals, a number of projects are developing extensible technologies to support NASA's near and long term mission needs. Specifically, the Space Technology Mission Directorate Solar Electric Propulsion Technology Demonstration Mission project is funding the development of a 12.5-kilowatt magnetically shielded Hall thruster system to support future NASA missions. This paper presents the design attributes of the thruster that was collaboratively developed by the NASA Glenn Research Center and the Jet Propulsion Laboratory. The paper provides an overview of the magnetic, plasma, thermal, and structural modeling activities that were carried out in support of the thruster design. The paper also summarizes the results of the functional tests that have been carried out to date. The planned thruster performance, plasma diagnostics (internal and in the plume), thermal, wear, and mechanical tests are outlined.

  10. A synergistic glance at the prospects of distributed propulsion technology and the electric aircraft concept for future unmanned air vehicles and commercial/military aviation

    Science.gov (United States)

    Gohardani, Amir S.

    2013-02-01

    Distributed propulsion is one of the revolutionary candidates for future aircraft propulsion. In this journal article, the potential role of distributed propulsion technology in future aviation is investigated. Following a historical journey that revisits distributed propulsion technology in unmanned air vehicles and military aircraft, features of this specific technology are highlighted in synergy with an electric aircraft concept and a first-of-a-kind comparison to commercial aircraft employing distributed propulsion arrangements. In light of propulsion-airframe integration and complementary technologies such as boundary layer ingestion, thrust vectoring and circulation control, transpired opportunities and challenges are addressed in addition to a number of identified research directions proposed for future aircraft. The motivation behind enhanced means of communication between engineers, researchers and scientists has stimulated a novel proposed definition for the distributed propulsion technology in aviation and is presented herein.

  11. Solar Electric Propulsion Triple-Satellite-Aided Capture With Mars Flyby

    Science.gov (United States)

    Patrick, Sean

    Triple-Satellite-aided-capture sequences use gravity-assists at three of Jupiter's four massive Galilean moons to reduce the DeltaV required to enter into Jupiter orbit. A triple-satellite-aided capture at Callisto, Ganymede, and Io is proposed to capture a SEP spacecraft into Jupiter orbit from an interplanetary Earth-Jupiter trajectory that employs low-thrust maneuvers. The principal advantage of this method is that it combines the ISP efficiency of ion propulsion with nearly impulsive but propellant-free gravity assists. For this thesis, two main chapters are devoted to the exploration of low-thrust triple-flyby capture trajectories. Specifically, the design and optimization of these trajectories are explored heavily. The first chapter explores the design of two solar electric propulsion (SEP), low-thrust trajectories developed using the JPL's MALTO software. The two trajectories combined represent a full Earth to Jupiter capture split into a heliocentric Earth to Jupiter Sphere of Influence (SOI) trajectory and a Joviocentric capture trajectory. The Joviocentric trajectory makes use of gravity assist flybys of Callisto, Ganymede, and Io to capture into Jupiter orbit with a period of 106.3 days. Following this, in chapter two, three more SEP low-thrust trajectories were developed based upon those in chapter one. These trajectories, devised using the high-fidelity Mystic software, also developed by JPL, improve upon the original trajectories developed in chapter one. Here, the developed trajectories are each three separate, full Earth to Jupiter capture orbits. As in chapter one, a Mars gravity assist is used to augment the heliocentric trajectories. Gravity-assist flybys of Callisto, Ganymede, and Io or Europa are used to capture into Jupiter Orbit. With between 89.8 and 137.2-day periods, the orbits developed in chapters one and two are shorter than most Jupiter capture orbits achieved using low-thrust propulsion techniques. Finally, chapter 3 presents an

  12. Electron behavior in ion beam neutralization in electric propulsion: full particle-in-cell simulation

    International Nuclear Information System (INIS)

    Usui, Hideyuki; Hashimoto, Akihiko; Miyake, Yohei

    2013-01-01

    By performing full Particle-In-Cell simulations, we examined the transient response of electrons released for the charge neutralization of a local ion beam emitted from an ion engine which is one of the electric propulsion systems. In the vicinity of the engine, the mixing process of electrons in the ion beam region is not so obvious because of large difference of dynamics between electrons and ions. A heavy ion beam emitted from a spacecraft propagates away from the engine and forms a positive potential region with respect to the background. Meanwhile electrons emitted for a neutralizer located near the ion engine are electrically attracted or accelerated to the core of the ion beam. Some electrons with the energy lower than the ion beam potential are trapped in the beam region and move along with the ion beam propagation with a multi-streaming structure in the beam potential region. Since the locations of the neutralizer and the ion beam exit are different, the above-mentioned bouncing motion of electrons is also observed in the direction of the beam diameter

  13. Study on Vibration of Marine Diesel-Electric Hybrid Propulsion System

    OpenAIRE

    Nengqi Xiao; Ruiping Zhou; Xiang Xu; Xichen Lin

    2016-01-01

    This study analyzes the characteristics of hybrid propulsion shafting and builds mathematical models and vibration equations of shafting using the lumped parameter method. Main focus is on the asymmetric double diesel propulsion shafting operation process and the impact of the phase angle and motor excitation on torsional vibration of shafting. Model result is validated by testing results conducted on double diesel propulsion shafting bench. Mathematical model and model-building methods of sh...

  14. Nuclear propulsion for orbital transfer

    International Nuclear Information System (INIS)

    Beale, G.A.; Lawrence, T.J.

    1989-01-01

    The state of the art in nuclear propulsion for orbital transfer is discussed. Cryogenic propulsion, electric propulsion, solar-thermal propulsion and direct nuclear propulsion are examined in this context. New technologies with exceptional promise are addressed, emphasizing the particle test bed nuclear engine

  15. Experimental investigation into the fault response of superconducting hybrid electric propulsion electrical power system to a DC rail to rail fault

    Science.gov (United States)

    Nolan, S.; Jones, C. E.; Munro, R.; Norman, P.; Galloway, S.; Venturumilli, S.; Sheng, J.; Yuan, W.

    2017-12-01

    Hybrid electric propulsion aircraft are proposed to improve overall aircraft efficiency, enabling future rising demands for air travel to be met. The development of appropriate electrical power systems to provide thrust for the aircraft is a significant challenge due to the much higher required power generation capacity levels and complexity of the aero-electrical power systems (AEPS). The efficiency and weight of the AEPS is critical to ensure that the benefits of hybrid propulsion are not mitigated by the electrical power train. Hence it is proposed that for larger aircraft (~200 passengers) superconducting power systems are used to meet target power densities. Central to the design of the hybrid propulsion AEPS is a robust and reliable electrical protection and fault management system. It is known from previous studies that the choice of protection system may have a significant impact on the overall efficiency of the AEPS. Hence an informed design process which considers the key trades between choice of cable and protection requirements is needed. To date the fault response of a voltage source converter interfaced DC link rail to rail fault in a superconducting power system has only been investigated using simulation models validated by theoretical values from the literature. This paper will present the experimentally obtained fault response for a variety of different types of superconducting tape for a rail to rail DC fault. The paper will then use these as a platform to identify key trades between protection requirements and cable design, providing guidelines to enable future informed decisions to optimise hybrid propulsion electrical power system and protection design.

  16. Improved transistor-controlled and commutated brushless DC motors for electric vehicle propulsion

    Science.gov (United States)

    Demerdash, N. A.; Miller, R. H.; Nehl, T. W.; Nyamusa, T. A.

    1983-01-01

    The development, design, construction, and testing processes of two electronically (transistor) controlled and commutated permanent magnet brushless dc machine systems, for propulsion of electric vehicles are detailed. One machine system was designed and constructed using samarium cobalt for permanent magnets, which supply the rotor (field) excitation. Meanwhile, the other machine system was designed and constructed with strontium ferrite permanent magnets as the source of rotor (field) excitation. These machine systems were designed for continuous rated power output of 15 hp (11.2 kw), and a peak one minute rated power output of 35 hp (26.1 kw). Both power ratings are for a rated voltage of 115 volts dc, assuming a voltage drop in the source (battery) of about 5 volts. That is, an internal source voltage of 120 volts dc. Machine-power conditioner system computer-aided simulations were used extensively in the design process. These simulations relied heavily on the magnetic field analysis in these machines using the method of finite elements, as well as methods of modeling of the machine power conditioner system dynamic interaction. These simulation processes are detailed. Testing revealed that typical machine system efficiencies at 15 hp (11.2 kw) were about 88% and 84% for the samarium cobalt and strontium ferrite based machine systems, respectively. Both systems met the peak one minute rating of 35 hp.

  17. Perceived Annoyance to Noise Produced by a Distributed Electric Propulsion High Lift System

    Science.gov (United States)

    Palumbo, Dan; Rathsam, Jonathan; Christian, Andrew; Rafaelof, Menachem

    2016-01-01

    Results of a psychoacoustic test performed to understand the relative annoyance to noise produced by several configurations of a distributed electric propulsion high lift system are given. It is found that the number of propellers in the system is a major factor in annoyance perception. This is an intuitive result as annoyance increases, in general, with frequency, and, the blade passage frequency of the propellers increases with the number of propellers. Additionally, the data indicate that having some variation in the blade passage frequency from propeller-to-propeller is beneficial as it reduces the high tonality generated when all the propellers are spinning in synchrony at the same speed. The propellers can be set to spin at different speeds, but it was found that allowing the motor controllers to drift within 1% of nominal settings produced the best results (lowest overall annoyance). The methodology employed has been demonstrated to be effective in providing timely feedback to designers in the early stages of design development.

  18. Electrical Pressurization Concept for the Orion MPCV European Service Module Propulsion System

    Science.gov (United States)

    Meiss, Jan-Hendrik; Weber, Jorg; Ierardo, Nicola; Quinn, Frank D.; Paisley, Jonathan

    2015-01-01

    The paper presents the design of the pressurization system of the European Service Module (ESM) of the Orion Multi-Purpose Crew Vehicle (MPCV). Being part of the propulsion subsystem, an electrical pressurization concept is implemented to condition propellants according to the engine needs via a bang-bang regulation system. Separate pressurization for the oxidizer and the fuel tank permits mixture ratio adjustments and prevents vapor mixing of the two hypergolic propellants during nominal operation. In case of loss of pressurization capability of a single side, the system can be converted into a common pressurization system. The regulation concept is based on evaluation of a set of tank pressure sensors and according activation of regulation valves, based on a single-failure tolerant weighting of three pressure signals. While regulation is performed on ESM level, commanding of regulation parameters as well as failure detection, isolation and recovery is performed from within the Crew Module, developed by Lockheed Martin Space System Company. The overall design and development maturity presented is post Preliminary Design Review (PDR) and reflects the current status of the MPCV ESM pressurization system.

  19. An overview of the Nuclear Electric Propulsion Space Test Program (NEPSTP) satellite

    International Nuclear Information System (INIS)

    Voss, S.S.; Reynolds, E.L.

    1994-01-01

    Early in 1992 the idea of purchasing a Russian designed and fabricated space reactor power system and integrating it with a US designed satellite went from fiction to reality with the purchase of the first two Topaz II reactors by the Strategic Defense Initiative Organization (now the Ballistic Missile Defense Organization (BMDO)). The New Mexico Alliance was formed to establish a ground test facility in which to perform nonnuclear systems testing of the Topaz II, and to evaluate the Topaz II system for flight testing with respect to safety, performance, and operability. In conjunction, SDIO requested that the Applied Physics Laboratory in Laurel, MD propose a mission and design a satellite in which the Topaz II could be used as the power source. The outcome of these two activities was the design of the Nuclear Electric Propulsion Space Test Program (NEPSTP) satellite which combines a modified Russian Topaz II power system with a US designed satellite to achieve a specified mission. Due to funding reduction within the SDIO, the Topaz II flight program was postponed indefinitely at the end of Fiscal year 1993. The purpose of this paper is to present an overview of the NEPSTP mission and the satellite design at the time the flight program ended

  20. The NASA program on nuclear electric propulsion: Preparing for the future

    International Nuclear Information System (INIS)

    Bennett, G.L.; Doherty, M.P.; Miller, T.J.

    1993-01-01

    In 1990 NASA reestablished its nuclear electric propulsion (NEP) program with the overall objective of developing the technology to support piloted missions to Mars, cargo missions to Mars and the Moon, and robotic science missions. With changing mission requirements and fiscal constraints the NEP program is now focused on studies of robotic science missions which are enabled or enhanced by NEP. These studies are closely coupled with the ongoing work on the SP-100 space nuclear reactor power system and, as such, include consideration of an early, low-power flight to demonstrate the technology and to perform a science missions. These studies have identified some possible mission candidates such as missions to Mars (including a study of Phobos and Deimos), missions to near-Earth asteroids, and missions to the Jovian Trojan asteroids. In addition, work proceeded on high-temperature components for power processing units and on high-power magnetoplasmadynamic thrusters. The paper will summarize the work and indicate future directions being considered for the program

  1. Nuclear electric propulsion /NEP/ spacecraft for the outer planet orbiter mission

    International Nuclear Information System (INIS)

    Garrison, P.W.; Nock, K.T.

    1982-01-01

    The design, operating features, and a possible Neptune orbit for the spacecraft powered by the SP-100 nuclear electric propulsion (NEP) system under study by NASA and the DOE are described. The system features a reactor and a payload situated on opposite ends of a 0.5 m diam, 11 m long astromast. Mercury-ion thrusters are located beneath the reactor for side thrusting, and no contamination of the payload or obstruction of the viewing angles for scientific objectives occurs with the system, which would not degrade in performance even under high insolation during near-sun maneuvers. Results of a theoretical study of earth escapes are presented to show that an NEP powered spiral trajectory out of a 700 km Shuttle orbit and using a Triton gravity assist would be superior to departing from a 300 km orbit with a Centaur boost. The mission profile includes a 1249 kg Galileo payload. The SP-100 has a 1.4 MWth reactor with UO2 fuel tiles and weighs 19,904 kg

  2. Hybrid-Electric Aircraft TOGW Development Tool with Empirically-Based Airframe and Physics-Based Hybrid Propulsion System Component Analysis, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Hybrid-Electric distributed propulsion (HEDP) is becoming widely accepted and new tools will be required for future development. This Phase I SBIR proposal creates a...

  3. Research, development and demonstration of nickel-zinc batteries for electric vehicle propulsion. Annual report for 1978

    Energy Technology Data Exchange (ETDEWEB)

    1979-10-01

    This is the first annual report describing progress in the 33-month cooperative program between Argonne National Laboratory and Gould Inc.'s Nickel-Zinc/Electric Vehicle Project. The purpose of the program is to demonstrate the technical and economic feasibility of the nickel-zinc battery for electric vehicle propulsion. The successful completion of the program will qualify the nickel-zinc battery for use in the Department of Energy's demonstration program under the auspices of Public Law 94-413.

  4. Comprehensive Technical Report, General Electric Direct-Air-Cycle Aircraft Nuclear Propulsion Program, Program Summary and References

    Energy Technology Data Exchange (ETDEWEB)

    Thornton, G.; Rothstein, A.J.

    1962-06-28

    This is one of twenty-one volumes sumarizing the Aircraft Nuclear Propulsion Program of the General Electric Company. This volume discusses the background to the General Electric program, and summarizes the various direct-air-cycle nuclear test assemblies and power plants that were developed. Because of the requirements of high performance, low weight, and small size, vast improvements in existing technology were required to meet the flight objectives. The technological progress achieved during the program is also summarized. The last appendix contains a compilation of the abstracts, tables of contents, and reference lists of the other twenty volumes.

  5. The nuclear thermal electric rocket: a proposed innovative propulsion concept for manned interplanetary missions

    Science.gov (United States)

    Dujarric, C.; Santovincenzo, A.; Summerer, L.

    2013-03-01

    Conventional propulsion technology (chemical and electric) currently limits the possibilities for human space exploration to the neighborhood of the Earth. If farther destinations (such as Mars) are to be reached with humans on board, a more capable interplanetary transfer engine featuring high thrust, high specific impulse is required. The source of energy which could in principle best meet these engine requirements is nuclear thermal. However, the nuclear thermal rocket technology is not yet ready for flight application. The development of new materials which is necessary for the nuclear core will require further testing on ground of full-scale nuclear rocket engines. Such testing is a powerful inhibitor to the nuclear rocket development, as the risks of nuclear contamination of the environment cannot be entirely avoided with current concepts. Alongside already further matured activities in the field of space nuclear power sources for generating on-board power, a low level investigation on nuclear propulsion has been running since long within ESA, and innovative concepts have already been proposed at an IAF conference in 1999 [1, 2]. Following a slow maturation process, a new concept was defined which was submitted to a concurrent design exercise in ESTEC in 2007. Great care was taken in the selection of the design parameters to ensure that this quite innovative concept would in all respects likely be feasible with margins. However, a thorough feasibility demonstration will require a more detailed design including the selection of appropriate materials and the verification that these can withstand the expected mechanical, thermal, and chemical environment. So far, the predefinition work made clear that, based on conservative technology assumptions, a specific impulse of 920 s could be obtained with a thrust of 110 kN. Despite the heavy engine dry mass, a preliminary mission analysis using conservative assumptions showed that the concept was reducing the required

  6. Maneuvering Environment for Tiltwing Aircraft with Distributed Electric Propulsion, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The tiltwing class of aircraft consists of vehicles with the ability to rotate the wing and propulsion system as a unit a full 90 degrees from the standard fixed...

  7. Flight times to the heliopause using a combination of solar and radioisotope electric propulsion

    Energy Technology Data Exchange (ETDEWEB)

    Ohndorf, Andreas [DLR Deutsches Zentrum fuer Luft- und Raumfahrt e.V., Wessling (Germany); Dachwald, Bernd [FH Univ. of Applied Sciences, Aachen (Germany); Seboldt, Wolfgang [DLR Deutsches Zentrum fuer Luft- und Raumfahrt e.V., Koeln (Germany); Loeb, Horst W.; Schartner, Karl-Heinz [Giessen Univ. (Germany)

    2011-07-01

    We investigate the interplanetary flight of a low-thrust space probe to the heliopause, located at a distance of about 200 AU from the Sun. Our goal was to reach this distance within the 25 years postulated by ESA for such a mission (which is less ambitious than the 15-year goal set by NASA). Contrary to solar sail concepts and combinations of ballistic and electrically propelled flight legs, we have investigated whether the set flight time limit could also be kept with a combination of solar-electric propulsion and a second, RTG-powered upper stage. The used ion engine type was the RIT-22 for the first stage and the RIT-10 for the second stage. Trajectory optimization was carried out with the low-thrust optimization program InTrance, which implements the method of Evolutionary Neurocontrol, using Artificial Neural Networks for spacecraft steering and Evolutionary Algorithms to optimize the Neural Networks' parameter set. Based on a parameter space study, in which the number of thrust units, the unit's specific impulse, and the relative size of the solar power generator were varied, we have chosen one configuration as reference. The transfer time of this reference configuration was 29.6 years and the fastest one, which is technically more challenging, still required 28.3 years. As all flight times of this parameter study were longer than 25 years, we further shortened the transfer time by applying a launcher-provided hyperbolic excess energy up to 49 km{sup 2}/s{sup 2}. The resulting minimal flight time for the reference configuration was then 27.8 years. The following, more precise optimization to a launch with the European Ariane 5 ECA rocket reduced the transfer time to 27.5 years. This is the fastest mission design of our study that is flexible enough to allow a launch every year. The inclusion of a fly-by at Jupiter finally resulted in a flight time of 23.8 years, which is below the set transfer-time limit. However, compared to the 27.5-year transfer

  8. The control of a parallel hybrid-electric propulsion system for a small unmanned aerial vehicle using a CMAC neural network.

    Science.gov (United States)

    Harmon, Frederick G; Frank, Andrew A; Joshi, Sanjay S

    2005-01-01

    A Simulink model, a propulsion energy optimization algorithm, and a CMAC controller were developed for a small parallel hybrid-electric unmanned aerial vehicle (UAV). The hybrid-electric UAV is intended for military, homeland security, and disaster-monitoring missions involving intelligence, surveillance, and reconnaissance (ISR). The Simulink model is a forward-facing simulation program used to test different control strategies. The flexible energy optimization algorithm for the propulsion system allows relative importance to be assigned between the use of gasoline, electricity, and recharging. A cerebellar model arithmetic computer (CMAC) neural network approximates the energy optimization results and is used to control the parallel hybrid-electric propulsion system. The hybrid-electric UAV with the CMAC controller uses 67.3% less energy than a two-stroke gasoline-powered UAV during a 1-h ISR mission and 37.8% less energy during a longer 3-h ISR mission.

  9. The Jet Propulsion Laboratory Electric and Hybrid Vehicle System Research and Development Project, 1977-1984: A Review

    Science.gov (United States)

    Kurtz, D.; Roan, V.

    1985-01-01

    The JPL Electric and Hybrid Vehicle System Research and Development Project was established in the spring of 1977. Originally administered by the Energy Research and Development Administration (ERDA) and later by the Electric and Hybrid Vehicle Division of the U.S. Department of Energy (DOE), the overall Program objective was to decrease this nation's dependence on foreign petroleum sources by developing the technologies and incentives necessary to bring electric and hybrid vehicles successfully into the marketplace. The ERDA/DOE Program structure was divided into two major elements: (1) technology research and system development and (2) field demonstration and market development. The Jet Propulsion Laboratory (JPL) has been one of several field centers supporting the former Program element. In that capacity, the specific historical areas of responsibility have been: (1) Vehicle system developments (2) System integration and test (3) Supporting subsystem development (4) System assessments (5) Simulation tool development.

  10. Optimizing the e-beam profile of a single carbon nanotube field emission device for electric propulsion systems

    Directory of Open Access Journals (Sweden)

    Juliano Fujioka Mologni

    2010-04-01

    Full Text Available Preliminary studies on field emission (FE arrays comprised of carbon nanotubes (CNT as an electron source for electric propulsion system show remarkably promising results. Design parameters for a carbon nanotube (CNT field-emission device operating on triode configuration were numerically simulated and optimized in order to enhance the e-beam focusing quality. An additional focus gate (FG was integrated to the device to control the profile of the emitted e-beam. An axisymmetric finite element model was developed to calculate the electric field distribution on the vacuum region and a modified Fowler-Nordheim (FN equation was used to evaluate the current density emission and the effective emitter area. Afterward, a FE simulation was employed in order to calculate the trajectory of the emitted electrons and define the electron-optical properties of the e-beam. The integration of the FG was fully investigated via computational intelligence techniques. The best performance device according to our simulations presents a collimated e-beam profile that suits well for field emission displays, magnetic field detection and electron microscopy. The automated computational design tool presented in this study strongly benefits the robust design of integrated electron-optical systems for vacuum field emission applications, including electrodynamic tethering and electric propulsion systems.

  11. System analysis and test-bed for an atmosphere-breathing electric propulsion system using an inductive plasma thruster

    Science.gov (United States)

    Romano, F.; Massuti-Ballester, B.; Binder, T.; Herdrich, G.; Fasoulas, S.; Schönherr, T.

    2018-06-01

    Challenging space mission scenarios include those in low altitude orbits, where the atmosphere creates significant drag to the S/C and forces their orbit to an early decay. For drag compensation, propulsion systems are needed, requiring propellant to be carried on-board. An atmosphere-breathing electric propulsion system (ABEP) ingests the residual atmosphere particles through an intake and uses them as propellant for an electric thruster. Theoretically applicable to any planet with atmosphere, the system might allow to orbit for unlimited time without carrying propellant. A new range of altitudes for continuous operation would become accessible, enabling new scientific missions while reducing costs. Preliminary studies have shown that the collectible propellant flow for an ion thruster (in LEO) might not be enough, and that electrode erosion due to aggressive gases, such as atomic oxygen, will limit the thruster lifetime. In this paper an inductive plasma thruster (IPT) is considered for the ABEP system. The starting point is a small scale inductively heated plasma generator IPG6-S. These devices are electrodeless and have already shown high electric-to-thermal coupling efficiencies using O2 and CO2 . The system analysis is integrated with IPG6-S tests to assess mean mass-specific energies of the plasma plume and estimate exhaust velocities.

  12. Nuclear safety considerations in the conceptual design of a fast reactor for space electric power and propulsion

    Science.gov (United States)

    Hsieh, T.-M.; Koenig, D. R.

    1977-01-01

    Some nuclear safety aspects of a 3.2 mWt heat pipe cooled fast reactor with out-of-core thermionic converters are discussed. Safety related characteristics of the design including a thin layer of B4C surrounding the core, the use of heat pipes and BeO reflector assembly, the elimination of fuel element bowing, etc., are highlighted. Potential supercriticality hazards and countermeasures are considered. Impacts of some safety guidelines of space transportation system are also briefly discussed, since the currently developing space shuttle would be used as the primary launch vehicle for the nuclear electric propulsion spacecraft.

  13. Measurements of energy distribution and thrust for microwave plasma coupling of electrical energy to hydrogen for propulsion

    Science.gov (United States)

    Morin, T.; Chapman, R.; Filpus, J.; Hawley, M.; Kerber, R.; Asmussen, J.; Nakanishi, S.

    1982-01-01

    A microwave plasma system for transfer of electrical energy to hydrogen flowing through the system has potential application for coupling energy to a flowing gas in the electrothermal propulsion concept. Experimental systems have been designed and built for determination of the energy inputs and outputs and thrust for the microwave coupling of energy to hydrogen. Results for experiments with pressure in the range 100 microns-6 torr, hydrogen flow rate up to 1000 micronmoles/s, and total absorbed power to 700 w are presented.

  14. In-Space Propulsion (346620) Technology Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Technologies include, but are not limited to, electric and advanced chemical propulsion, propellantless propulsion such as aerocapture and solar sails, sample return...

  15. Simulation study of solar wind push on a charged wire: basis of solar wind electric sail propulsion

    Directory of Open Access Journals (Sweden)

    P. Janhunen

    2007-03-01

    Full Text Available One possibility for propellantless propulsion in space is to use the momentum flux of the solar wind. A way to set up a solar wind sail is to have a set of thin long wires which are kept at high positive potential by an onboard electron gun so that the wires repel and deflect incident solar wind protons. The efficiency of this so-called electric sail depends on how large force a given solar wind exerts on a wire segment and how large electron current the wire segment draws from the solar wind plasma when kept at a given potential. We use 1-D and 2-D electrostatic plasma simulations to calculate the force and present a semitheoretical formula which captures the simulation results. We find that under average solar wind conditions at 1 AU the force per unit length is (5±1×10−8 N/m for 15 kV potential and that the electron current is accurately given by the well-known orbital motion limited (OML theory cylindrical Langmuir probe formula. Although the force may appear small, an analysis shows that because of the very low weight of a thin wire per unit length, quite high final speeds (over 50 km/s could be achieved by an electric sailing spacecraft using today's flight-proved components. It is possible that artificial electron heating of the plasma in the interaction region could increase the propulsive effect even further.

  16. Nuclear Electric Propulsion mission engineering study covering the period April 1971 to January 1973. Volume I. Executive summary. Final report

    International Nuclear Information System (INIS)

    1973-03-01

    The results of a mission engineering analysis of nuclear-thermionic electric propulsion spacecraft for unmanned interplanetary and geocentric missions are presented. Critical technologies assessed are associated with the development of Nuclear Electric Propulsion (NEP), and the impact of its availability on future space programs. Specific areas of investigation include outer planet and comet rendezvous mission analysis, NEP Stage design for geocentric and interplanetary missions, NEP system development cost and unit costs, and technology requirements for NEP Stage development. A multimission NEP Stage can be developed to perform both multiple geocentric and interplanetary missions. Development program costs for a 1983 launch would be of the order of $275 M, including hardware and reactor development, flight system hardware, and mission support. Recurring unit costs for flight NEP systems would be of the order of $25 M for a 120 kWe NEP Stage. Identified pacing NEP technology requirements are the development of 20,000 full power hour ion thrusters and thermionic reactor, and the development of related power conditioning. The resulting NEP Stage design provides both inherent reliability and high payload mass capability. High payload mass capability can be translated into both low payload cost and high payload reliability. NEP Stage and payload integration is compatible with the Space Shuttle

  17. Nuclear Electric Propulsion mission engineering study covering the period April 1971 to January 1973. Volume II. Final report

    International Nuclear Information System (INIS)

    1973-03-01

    The results of a mission engineering analysis of nuclear-thermionic electric propulsion spacecraft for unmanned interplanetary and geocentric missions are summarized. Critical technologies assessed are associated with the development of Nuclear Electric Propulsion (NEP), and the impact of its availability on future space programs. Specific areas of investigation include outer planet and comet rendezvous mission analysis, NEP Stage design for geocentric and interplanetary missions NEP system development cost and unit costs, and technology requirements for NEP Stage development. A multi-mission NEP Stage can be developed to perform both multiple geocentric and interplanetary missions. Development program costs for a 1983 launch would be of the order of $275 M, including hardware and reactor development, flight system hardware, and mission support. Recurring unit costs for flight NEP systems would be of the order of $25 M for a 120kWe NEP Stage. Identified pacing NEP technology requirements are the development of 20,000 full power hour ion thrusters and thermionic reactor, and the development of related power conditioning. The resulting NEP Stage design provides both inherent reliability and high payload mass capability. High payload mass capability can be translated into both low payload cost and high payload reliability. NEP Stage and payload integration is compatible with the Space Shuttle

  18. Simulation study of solar wind push on a charged wire: basis of solar wind electric sail propulsion

    Directory of Open Access Journals (Sweden)

    P. Janhunen

    2007-03-01

    Full Text Available One possibility for propellantless propulsion in space is to use the momentum flux of the solar wind. A way to set up a solar wind sail is to have a set of thin long wires which are kept at high positive potential by an onboard electron gun so that the wires repel and deflect incident solar wind protons. The efficiency of this so-called electric sail depends on how large force a given solar wind exerts on a wire segment and how large electron current the wire segment draws from the solar wind plasma when kept at a given potential. We use 1-D and 2-D electrostatic plasma simulations to calculate the force and present a semitheoretical formula which captures the simulation results. We find that under average solar wind conditions at 1 AU the force per unit length is (5±1×10−8 N/m for 15 kV potential and that the electron current is accurately given by the well-known orbital motion limited (OML theory cylindrical Langmuir probe formula. Although the force may appear small, an analysis shows that because of the very low weight of a thin wire per unit length, quite high final speeds (over 50 km/s could be achieved by an electric sailing spacecraft using today's flight-proved components. It is possible that artificial electron heating of the plasma in the interaction region could increase the propulsive effect even further.

  19. Note: Possibilities of detecting the trace-level erosion products from an electric propulsion hollow cathode plasma source by the method of time-of-flight mass spectrometry

    Science.gov (United States)

    Ning, Zhong-Xi; Zhang, Hai-Guang; Zhu, Xi-Ming; Jiang, Bin-Hao; Zhou, Zhong-Yue; Yu, Da-Ren; An, Bing-Jian; Wang, Yan-Fei

    2018-02-01

    A hollow cathode produces electrons which neutralize ions from electric propulsion thrusters. After hundreds to thousands of hours of operation in space, the cathode materials can be significantly eroded due to ion bombardment. As a result, the electric propulsion system performance will be obviously changed or even fail. In this work, the erosion products from a LaB6 hollow cathode (widely used presently in electric propulsion systems) are studied by using a specific detection system, which consists of a molecular beam sampler and a time-of-flight mass spectrometer. This system measures trace-level-concentration (10-6-10-3) products. Boron (B), tantalum (Ta), and tungsten (W)—originating from the emitter, keeper, and orifice of the hollow cathode—are measured. It is found that the erosion rate is significantly influenced by the gas flow rate to the cathode.

  20. Comparative Analysis of Miniature Internal Combustion Engine and Electric Motor for UAV Propulsion

    Science.gov (United States)

    Chiclana, Branden Mark

    This thesis compares the performance of an engine/fuel tank based propulsion system to a motor/battery based propulsion system of equal total mass. The results show that the endurance of the engine/fuel system at the same thrust output is approximately 5 times greater than that of the motor/battery system. This is a direct result of the fact that the specific energy of the fuel is 20 times that of the lithium-polymer batteries used to power the motor. A method is also developed to account for the additional benefits of fuel consumption (and hence weight reduction) over the course of the flight. Accounting for this effect can increase endurance exponentially. Taken together, the results also demonstrate the dramatic performance improvements that are possible simply by replacing motor/battery systems with engine/fuel systems on small unmanned air vehicles.

  1. The Case for Small Spacecraft: An Integrated Perspective on Electric Propulsion

    Science.gov (United States)

    1995-01-01

    microsatellite classes (termed small saellites for the remaining por-tion of this paper). A -large body -of information has been generated over the past...there is a growing market for small satellite propulsion. This year several flight es:eriments and commercial systems will deploy with electtric ...determined from equation 7. Cd is the drag coefficient, which is generally on the order of one[ 2], and we will assume to be 2.2. Although it neglects lateral

  2. A Comparative Study of Various Electric Propulsion Systems and their Impact on a Nominal Ship Design

    Science.gov (United States)

    1987-06-01

    Permanent Magnet Motors ," Advanced Mechanical Technology, Inc., 1983. 20. Marshall, McMurray, Richter, Webster, and...December 1977. 21. Triezenbarg, Greene, Hannan, and Dvorsky, "Study of Permanent Magnet Motors for Naval Propulsion," Westinghcuse Research Report 80=9B2...34 Paper 71 CP 155-PWR, IEEE Winter Power Meeting, New York, February 1971. 34. Ireland, James R., Ceramic Permanent - Magnet Motors , McGraw-Hill, New York, 1968. 206

  3. Additive Manufacturing of Aerospace Propulsion Components

    Science.gov (United States)

    Misra, Ajay K.; Grady, Joseph E.; Carter, Robert

    2015-01-01

    The presentation will provide an overview of ongoing activities on additive manufacturing of aerospace propulsion components, which included rocket propulsion and gas turbine engines. Future opportunities on additive manufacturing of hybrid electric propulsion components will be discussed.

  4. Center for Advanced Space Propulsion Second Annual Technical Symposium Proceedings

    Science.gov (United States)

    1990-01-01

    The proceedings for the Center for Advanced Space Propulsion Second Annual Technical Symposium are divided as follows: Chemical Propulsion, CFD; Space Propulsion; Electric Propulsion; Artificial Intelligence; Low-G Fluid Management; and Rocket Engine Materials.

  5. Characterization of solar cells for space applications. Volume 11: Electrical characteristics of 2 ohm-cm, 228 micron wraparound solar cells as a function of intensity, temperature, and irradiation. [for solar electric propulsion

    Science.gov (United States)

    Anspaugh, B. E.; Beckert, D. M.; Downing, R. G.; Weiss, R. S.

    1980-01-01

    Parametric characterization data on Spectrolab 2 by 4 cm, 2 ohm/cm, 228 micron thick wraparound cell, a candidate for the Solar Electric Propulsion Mission, are presented. These data consist of the electrical characteristics of the solar cell under a wide range of temperature and illumination intensity combinations of the type encountered in space applications.

  6. Initial Validation of Robotic Operations for In-Space Assembly of a Large Solar Electric Propulsion Transport Vehicle

    Science.gov (United States)

    Komendera, Erik E.; Dorsey, John T.

    2017-01-01

    Developing a capability for the assembly of large space structures has the potential to increase the capabilities and performance of future space missions and spacecraft while reducing their cost. One such application is a megawatt-class solar electric propulsion (SEP) tug, representing a critical transportation ability for the NASA lunar, Mars, and solar system exploration missions. A series of robotic assembly experiments were recently completed at Langley Research Center (LaRC) that demonstrate most of the assembly steps for the SEP tug concept. The assembly experiments used a core set of robotic capabilities: long-reach manipulation and dexterous manipulation. This paper describes cross-cutting capabilities and technologies for in-space assembly (ISA), applies the ISA approach to a SEP tug, describes the design and development of two assembly demonstration concepts, and summarizes results of two sets of assembly experiments that validate the SEP tug assembly steps.

  7. Operations analysis (study 2.1). Program SEPSIM (solar electric propulsion stage simulation). [in FORTRAN: space tug

    Science.gov (United States)

    Lang, T. J.

    1974-01-01

    Program SEPSIM is a FORTRAN program which performs deployment, servicing, and retrieval missions to synchronous equatorial orbit using a space tug with a continuous low thrust upper stage known as a solar electric propulsion stage (SEPS). The SEPS ferries payloads back and forth between an intermediate orbit and synchronous orbit, and performs the necessary servicing maneuvers in synchronous orbit. The tug carries payloads between the orbiter and the intermediate orbit, deploys fully fueled SEPS vehicles, and retrieves exhausted SEPS vehicles when, and if, required. The program is presently contained in subroutine form in the Logistical On-orbit VEhicle Servicing (LOVES) Program, but can also be run independently with the addition of a simple driver program.

  8. Rare-earth-free propulsion motors for electric vehicles: a technology review

    OpenAIRE

    Riba Ruiz, Jordi-Roger; Lopez Torres, Carlos; Romeral Martínez, José Luis; García Espinosa, Antonio

    2016-01-01

    Several factors including fossil fuels scarcity, prices volatility, greenhouse gas emissions or current pollution levels in metropolitan areas are forcing the development of greener transportation systems based on more efficient electric and hybrid vehicles. Most of the current hybrid electric vehicles use electric motors containing powerful rare-earth permanent magnets. However, both private companies and estates are aware of possible future shortages, price uncertainty and geographical conc...

  9. Optimization and Model Validation of Operation Control Strategies for a Novel Dual-Motor Coupling-Propulsion Pure Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Jianjun Hu

    2018-03-01

    Full Text Available The strict operational condition of driving motors for vehicles propels the development of more complicated configurations in pure electric vehicles (PEVs. Multi-power-source powertrain configurations are one of the efficient technologies to reduce the manufacturing difficulty of driving motors. However, most of the existing studies are predominantly focused on optimal designs of powertrains and power distribution between the engine and motor of hybrid electric vehicles, which are not appropriate for PEVs. This paper proposes a novel dual-motor coupling-propulsion powertrain system that improves the dynamic and economic performance of the powertrain system in PEVs. The proposed powertrain system can realize both the single-motor driving mode and dual-motor coupling driving mode. The driving modes are divided and a power distribution strategy for the different driving modes based on an optimal system efficiency rule is employed, which enhances the performance of the proposed system. Further, a mode-switching strategy that ensures driving comfort by preventing jerk during mode switching is incorporated into the system. The results of comparative evaluations that were conducted using a dual-motor electric vehicle model implemented in MATLAB/Simulink, indicate that the mileage and dynamic performance of the proposed powertrain system are significantly better than those of the traditional single-motor powertrain system.

  10. Combining chemical and electric-nuclear propulsion for high speed flight

    International Nuclear Information System (INIS)

    Murthy, S.N.B.; Froning, H.D.

    1991-01-01

    In the development of propulsion for the high speed (greater than Mach 8) regime of a SSTO vehicle, an alternative to a combination of scramjets and conventional chemical rockets is a nuclear system such as the dense plasma fusion engine operated with aneutronic fuels. Several variants are then possible in the manner of energizing the working fluid. An attempt has been made to compare the effectiveness of nuclear and scramjet engines with respect to weights and utilization of energy availability. It is shown that nuclear engines can be as effective as the optimized combustion engines, and will yield a considerable reduction in GTOW in earth-based missions, and have a special use in other planetary atmospheres in which combustion may be difficult but collection and processing of working fluid is feasible. 9 refs

  11. Research, development, and demonstration of lead-acid batteries for electric vehicle propulsion

    Science.gov (United States)

    1984-06-01

    Research on electric motor vehicles is reported in the areas of active material utilization and active material integrity; design and fabrication of components, advanced cells, and modules; cell testing; and battery thermal management and electrolyte circulation subsystems.

  12. Research, development, and demonstration of nickel-iron batteries for electric vehicle propulsion. Annual report, 1978

    Energy Technology Data Exchange (ETDEWEB)

    1979-10-01

    The objective of this program is to develop a nickel-iron battery suitable for use in electric vehicles. Ultimately, it is expected that a number of these batteries will be demonstrated under the Electric and Hybrid Vehicle Act of 1976. The report presents the technical approach and a summary of the progress that was achieved under the contract. Work began 1 May 1978. The report covers the period through September 1978. (TFD)

  13. Use of High-Power Brayton Nuclear Electric Propulsion (NEP) for a 2033 Mars Round-Trip Mission

    International Nuclear Information System (INIS)

    McGuire, Melissa L.; Martini, Michael C.; Packard, Thomas W.; Weglian, John E.; Gilland, James H.

    2006-01-01

    The Revolutionary Aerospace Systems Concepts (RASC) team, led by the NASA Langley Research Center, is tasked with exploring revolutionary new approaches to enabling NASA to achieve its strategic goals and objectives in future missions. This paper provides the details from the 2004-2005 RASC study of a point-design that uses a high-power nuclear electric propulsion (NEP) based space transportation architecture to support a manned mission to Mars. The study assumes a high-temperature liquid-metal cooled fission reactor with a Brayton power conversion system to generate the electrical power required by magnetoplasmadynamic (MPD) thrusters. The architecture includes a cargo vehicle with an NEP system providing 5 MW of electrical power and a crewed vehicle with an NEP system with two reactors providing a combined total of 10 MW of electrical power. Both vehicles use a low-thrust, high-efficiency (5000 sec specific impulse) MPD system to conduct a spiral-out of the Earth gravity well, a low-thrust heliocentric trajectory, and a spiral-in at Mars with arrival late in 2033. The cargo vehicle carries two moon landers to Mars and arrives shortly before the crewed vehicle. The crewed vehicle and cargo vehicle rendezvous in Mars orbit and, over the course of the 60-day stay, the crew conducts nine-day excursions to Phobos and Deimos with the landers. The crewed vehicle then spirals out of Martian orbit and returns via a low-thrust trajectory to conduct an Earth flyby. The crew separates from the vehicle prior to Earth flyby and aerobrakes for a direct-entry landing

  14. Station-keeping of a high-altitude balloon with electric propulsion and wireless power transmission: A concept study

    Science.gov (United States)

    van Wynsberghe, Erinn; Turak, Ayse

    2016-11-01

    A stable, ultra long-duration high-altitude balloon (HAB) platform which can maintain stationary position would represent a new paradigm for telecommunications and high-altitude observation and transmission services, with greatly reduced cost and complexity compared to existing technologies including satellites, telecom towers, and unmanned aerial vehicles (UAVs). This contribution proposes a lightweight superpressure balloon platform for deployment to an altitude of 25 km. Electrohydrodynamic (EHD) thrusters are presented to maintain position by overcoming stratospheric winds. Critical to maintaining position is a continual supply of electrical power to operate the on-board propulsion system. One viable solution is to deliver power wirelessly to a high-altitude craft from a ground-based transmitter. Microwave energy, not heavily attenuated by the atmosphere, can be provided remotely from a ground-based generator (magnetron, klystron, etc.) and steered electrically with an antenna array (phased array) at a designated frequency (such as 2.45 or 5.8 GHz). A rectifying antenna ("rectenna") on the bottom of the balloon converts waves into direct current for on-board use. Preliminary mission architecture, energy requirements, and safety concerns for a proposed system are presented along with recommended future work.

  15. High-performance batteries for electric-vehicle propulsion and stationary energy storage. Progress report, October 1977--September 1978

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, P.A.; Barney, D.L.; Steunenberg, R.K.

    1978-11-01

    The research, development, and management activities of the programs at Argonne National Laboratory (ANL) and at industrial subcontractors' laboratories on high-temperature batteries during the period October 1977--September 1978 are reported. These batteries are being developed for electric-vehicle propulsion and for stationary-energy-storage applications. The present cells, which operate at 400 to 500/sup 0/C, are of a vertically oriented, prismatic design with one or more inner positive electrodes of FeS or FeS/sub 2/, facing electrodes of lithium--aluminum alloy, and molten LiCl--KCl electrolyte. During this fiscal year, cell and battery development work continued at ANL, Eagle--Picher Industries, Inc., the Energy Systems Group of Rockwell International, and Gould Inc. Related work was also in progress at the Carborundum Co., General Motors Research Laboratories, and various other organizations. A major event was the initiation of a subcontract with Eagle--Picher Industries to develop, design, and fabricate a 40-kWh battery (Mark IA) for testing in an electric van. Conceptual design studies on a 100-MWh stationary-energy-storage module were conducted as a joint effort between ANL and Rockwell International. A significant technical advance was the development of multiplate cells, which are capable of higher performance than bicells. 89 figures, 57 tables.

  16. Radio Frequency Trap for Containment of Plasmas in Antimatter Propulsion Systems Using Rotating Wall Electric Fields

    Science.gov (United States)

    Sims, William Herbert, III (Inventor); Martin, James Joseph (Inventor); Lewis, Raymond A. (Inventor)

    2003-01-01

    A containment apparatus for containing a cloud of charged particles comprises a cylindrical vacuum chamber having a longitudinal axis. Within the vacuum chamber is a containment region. A magnetic field is aligned with the longitudinal axis of the vacuum chamber. The magnetic field is time invariant and uniform in strength over the containment region. An electric field is also aligned with the longitudinal axis of the vacuum chamber and the magnetic field. The electric field is time invariant, and forms a potential well over the containment region. One or more means are disposed around the cloud of particles for inducing a rotating electric field internal to the vacuum chamber. The rotating electric field imparts energy to the charged particles within the containment region and compress the cloud of particles. The means disposed around the outer surface of the vacuum chamber for inducing a rotating electric field are four or more segments forming a segmented ring, the segments conforming to the outer surface of the vacuum chamber. Each of the segments is energized by a separate alternating voltage. The sum of the voltages imposed on each segment establishes the rotating field. When four segments form a ring, the rotating field is obtained by a signal generator applying a sinusoidal signal phase delayed by 90,180 and 270 degrees in sequence to the four segments.

  17. Optimization of Hybrid-Electric Propulsion Systems for Small Remotely-Piloted Aircraft

    Science.gov (United States)

    2011-03-24

    hades.mech.northwestern.edu/index.php/Brushed_DC_Motor_Theory [31 Robert J. Boucher, The Electric Motor Handbook, 2nd ed., 1995. [32 John D. Anderson...Jr., Introduction to Flight, 4th ed. Boston, MA: McGraw-Hill, 2000. 83 [33 Daniel P. Raymer , Aircraft Desigh: A Conceptual approach, 3rd ed

  18. Propulsion Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Propulsion Lab simulates field test conditions in a controlled environment, using standardized or customized test procedures. The Propulsion Lab's 11 cells can...

  19. Neutronics and Thermal Hydraulics Analysis of a Conceptual Ultra-High Temperature MHD Cermet Fuel Core for Nuclear Electric Propulsion

    Directory of Open Access Journals (Sweden)

    Jian Song

    2018-04-01

    Full Text Available Nuclear electric propulsion (NEP offers unique advantages for the interplanetary exploration. The extremely high conversion efficiency of magnetohydrodynamics (MHD conversion nuclear reactor makes it a highly potential space power source in the future, especially for NEP systems. Research on ultra-high temperature reactor suitable for MHD power conversion is performed in this paper. Cermet is chosen as the reactor fuel after a detailed comparison with the (U,ZrC graphite-based fuel and mixed carbide fuel. A reactor design is carried out as well as the analysis of the reactor physics and thermal-hydraulics. The specific design involves fuel element, reactor core, and radiation shield. Two coolant channel configurations of fuel elements are considered and both of them can meet the demands. The 91 channel configuration is chosen due to its greater heat transfer performance. Besides, preliminary calculation of nuclear criticality safety during launch crash accident is also presented. The calculation results show that the current design can meet the safety requirements well.

  20. Research, development, and demonstration of lead-acid batteries for electric vehicle propulsion. Annual report for 1980

    Energy Technology Data Exchange (ETDEWEB)

    1981-03-01

    Work performed during Oct. 1, 1979 to Sept. 30, 1980 for the development of lead-acid batteries for electric vehicle propulsion is described. During this report period many of the results frpm Globe Battery's design, materials and process development programs became evident in the achievement of the ISOA (Improved State of Art) specific energy, specific power, and energy efficiency goals while testing in progress also indicates that the cycle life goal can be met. These programs led to the establishment of a working pilot assembly line which produced the first twelve volt ISOA modules. Five of these modules were delivered to the National Battery Test Laboratory during the year for capacity, power and life testing, and assembly is in progress of three full battery systems for installation in vehicles. In the battery subsystem area, design of the acid circulation system for a ninety-six volt ISOA battery pack was completed and assembly of the first such system was initiated. Charger development has been slowed by problems encountered with reliability of some circuits but a prototype unit is being prepared which will meet the charging requirements of our ninety-six volt pack. This charger will be available during the 1981 fiscal year.

  1. Alternative propulsion for automobiles

    CERN Document Server

    Stan, Cornel

    2017-01-01

    The book presents – based on the most recent research and development results worldwide - the perspectives of new propulsion concepts such as electric cars with batteries and fuel cells, and furthermore plug in hybrids with conventional and alternative fuels. The propulsion concepts are evaluated based on specific power, torque characteristic, acceleration behaviour, specific fuel consumption and pollutant emissions. The alternative fuels are discussed in terms of availability, production, technical complexity of the storage on board, costs, safety and infrastructure. The book presents summarized data about vehicles with electric and hybrid propulsion. The propulsion of future cars will be marked by diversity – from compact electric city cars and range extender vehicles for suburban and rural areas up to hybrid or plug in SUV´s, Pick up´s and luxury class automobiles.

  2. Research, development and demonstration of nickel-zinc batteries for electric vehicle propulsion. Annual report, 1979. [70 W/lb

    Energy Technology Data Exchange (ETDEWEB)

    1980-06-01

    This second annual report under Contract No. 31-109-39-4200 covers the period July 1, 1978 through August 31, 1979. The program demonstrates the feasibility of the nickel-zinc battery for electric vehicle propulsion. The program is divided into seven distinct but highly interactive tasks collectively aimed at the development and commercialization of nickel-zinc technology. These basic technical tasks are separator development, electrode development, product design and analysis, cell/module battery testing, process development, pilot manufacturing, and thermal management. A Quality Assurance Program has also been established. Significant progress has been made in the understanding of separator failure mechanisms, and a generic category of materials has been specified for the 300+ deep discharge (100% DOD) applications. Shape change has been reduced significantly. A methodology has been generated with the resulting hierarchy: cycle life cost, volumetric energy density, peak power at 80% DOD, gravimetric energy density, and sustained power. Generation I design full-sized 400-Ah cells have yielded in excess of 70 W/lb at 80% DOD. Extensive testing of cells, modules, and batteries is done in a minicomputer-based testing facility. The best life attained with electric vehicle-size cell components is 315 cycles at 100% DOD (1.0V cutoff voltage), while four-cell (approx. 6V) module performance has been limited to about 145 deep discharge cycles. The scale-up of processes for production of components and cells has progressed to facilitate component production rates of thousands per month. Progress in the area of thermal management has been significant, with the development of a model that accurately represents heat generation and rejection rates during battery operation. For the balance of the program, cycle life of > 500 has to be demonstrated in modules and full-sized batteries. 40 figures, 19 tables. (RWR)

  3. High-performance batteries for stationary energy storage and electric-vehicle propulsion. Progress report, April--June 1977

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-10-01

    Research, development, and management activities of the program on lithium--aluminum/metal sulfide batteries during April--June 1977 are described. These batteries are being developed for electric-vehicle propulsion and stationary energy storage. The present cells, which operate at 400--450/sup 0/C, are of a vertically oriented, prismatic design with a central positive electrode of FeS or FeS/sub 2/, two facing negative electrodes of lithium--aluminum alloy, and an electrolyte of molten LiCl--KCl. Testing and evaluation of industrially fabricated cells is continuing. Li--Al/FeS and Li--Al/FeS/sub 2/ cells from Eagle--Picher Industries and from Gould Inc. were tested. These tests provided information on the effects of design modifications and alternative materials for cells. Improved electrode and cell designs are being developed and tested, and the more promising designs are incorporated into the industrially fabricated cells. Among the concepts receiving major attention are carbon-bonded positive electrodes, scaled-up designs of stationary energy storage cells, additives to extend electrode lifetime, alternative electrode separators, and pellet-grid electrodes. Materials development efforts included the development of a lightweight electrical feedthrough; studies of various current-collector designs; investigation of powder separators; wettability and corrosion tests of materials for cell components; and postoperative examinations of cells. Cell chemistry studies were concerned with discharge mechanisms of FeS electrodes and with other transition-metal sulfides as positive electrode materials. Voltammetric studies were conducted to investigate the reversibility of the FeS/sub 2/ electrode. The use of calcium and magnesium alloys for the negative electrode in advanced battery systems were investigated. 8 figures, 12 tables.

  4. Mission operations for unmanned nuclear electric propulsion outer planet exploration with a thermionic reactor spacecraft.

    Science.gov (United States)

    Spera, R. J.; Prickett, W. Z.; Garate, J. A.; Firth, W. L.

    1971-01-01

    Mission operations are presented for comet rendezvous and outer planet exploration NEP spacecraft employing in-core thermionic reactors for electric power generation. The selected reference missions are the Comet Halley rendezvous and a Jupiter orbiter at 5.9 planet radii, the orbit of the moon Io. The characteristics of the baseline multi-mission NEP spacecraft are presented and its performance in other outer planet missions, such as Saturn and Uranus orbiters and a Neptune flyby, are discussed. Candidate mission operations are defined from spacecraft assembly to mission completion. Pre-launch operations are identified. Shuttle launch and subsequent injection to earth escape by the Centaur D-1T are discussed, as well as power plant startup and the heliocentric mission phases. The sequence and type of operations are basically identical for all missions investigated.

  5. Research, development, and demonstration of lead-acid batteries for electric vehicle propulsion. Annual report, 1979

    Energy Technology Data Exchange (ETDEWEB)

    1980-06-01

    The initial phase of work comprises three factorial experiments to evaluate a variety of component combinations. Goals to be met by these batteries include the following: capacity at 3 h discharge, 20 to 30 kWh; specific energy, 40 Wh/kg; specific power, 1000 W/kg for 15 s; cycle life, 800 cycles to 80% depth; price, $50/kWh. The status of the factorial experiments is reviewed. The second phase of work, design of an advanced battery, has the following goals: 30 to 40 kWh; 60 Wh/kg; 150 W/kg for 15 s; 1000 cycles to 80% depth; $40/kWh. It is not yet possible to say whether these goals can be met. Numerous approaches are under study to increase the utilization of battery chemicals. A battery design with no live electrical connection above the battery is being developed. 52 figures, 52 tables. (RWR)

  6. Research, development and demonstration of nickel-zinc batteries for electric vehicle propulsion. Annual report, 1978

    Energy Technology Data Exchange (ETDEWEB)

    1979-10-01

    This is the first annual report of progress achieved under ANL Contract 31-109-38-4248. It covers the report period from 15 March 1978 to 15 August 1978. The nickel electrode development program is directed at the optimization of the electrical performance, specifically, in terms of increased cycle life. The work concentrated upon both the development of pilot plant facilities to produce nickel hydroxide and upon optimizing the manufacturing processes to produce nickel hydroxide which has high electrochemical utilization. The primary goal of the zinc electrode studies is to increase the cycle life of this electrode. This effort is primarily concentrating on the effect of additives upon shape change and cycle performance and on the mechanistic processes involved in the shape change. The separator effort has as its major goal the development of a low-cost separator which exhibits stability in the electrolyte, has uniform pores which are of a sufficiently small size to impede the growth of zinc dendrites, and exhibits low electrical resistance and good flexibility. The process itself is now optimized for pilot plant manufacture; hundreds of formulations have been produced and subsequently screened in both the laboratory and in actual cells. Promising formulations are presently being subjected to additional characterization tests and life cycles. The goal of the sealed cell studies is to determine the feasibility of sealed-cell operation. Large numbers of 20-Ah cells have been subjected to accelerated testing. These cells incorporated separator variations, active material additives, and internal design variations. Cycle lives up to 150 deep cycles were achieved. Cell failure modes are analyzed. 51 figures, 20 tables.

  7. A Cryogenic High-Power-Density Bearingless Motor for Future Electric Propulsion

    Science.gov (United States)

    Choi, Benjamin; Siebert, Mark

    2008-01-01

    The NASA Glenn Research Center (GRC) is developing a high-power-density switched-reluctance cryogenic motor for all-electric and pollution-free flight. However, cryogenic operation at higher rotational speeds markedly shortens the life of mechanical rolling element bearings. Thus, to demonstrate the practical feasibility of using this motor for future flights, a non-contact rotor-bearing system is a crucial technology to circumvent poor bearing life that ordinarily accompanies cryogenic operation. In this paper, a bearingless motor control technology for a 12-8 (12 poles in the stator and 8 poles in the rotor) switched-reluctance motor operating in liquid nitrogen (boiling point, 77 K (-196 C or -321 F)) was presented. We pushed previous disciplinary limits of electromagnetic controller technique by extending the state-of-the-art bearingless motor operating at liquid nitrogen for high-specific-power applications. The motor was levitated even in its nonlinear region of magnetic saturation, which is believed to be a world first for the motor type. Also we used only motoring coils to generate motoring torque and levitation force, which is an important feature for developing a high specific power motor.

  8. Harmonics in power systems of ships with electrical propulsion drives. Effects on the equipment

    Energy Technology Data Exchange (ETDEWEB)

    Lehtonen, M [VTT Energy, Espoo (Finland). Energy Systems

    1996-11-01

    In this report the effect of harmonics on the power system equipment and loads, with special attention given to the circumstances in ships, is discussed. Some guidelines are given for the computation of additional harmonic losses in power cables and transformers. It is also shown, that if the system is rich in harmonics, these losses must be taken into account when sizing the equipment. The effect of harmonics on electrical machines is also discussed. The influence on induction machines is usually small. However, in large synchronous machines a significant degree of harmonic losses may be expected. Especially in the high voltage system the harmonics must be taken into account when selecting the machine ratings. Also the harmonic resonances, which may arise when using reactive power compensation capacitors, are discussed. Due to the risk of harmonic resonances, the use of capacitors is not recommended in marine power systems. Also the immunity of different load devices to harmonic distortion is discussed. The equipment considered are resistive loads, discharge lamps, universal machines and electronic equipment. Finally a brief survey is given on the standards and recommendations for the maximum distortion levels allowed. (author)

  9. Single Stator Dual PM Rotor Synchronous Machine with two-frequency single-inverter control, for the propulsion of hybrid electric vehicles

    Directory of Open Access Journals (Sweden)

    Topor Marcel

    2017-01-01

    Full Text Available This paper introduces a novel brushless, single winding and single stator, dual PM rotor axial-air-gap machine capable to deliver independently torque at the two rotors by adequate dual vector control. The proposed topologies, the circuit model, controlled dynamics simulation and preliminary 3D FEM torque production on a case study constitute the core of the paper. The proposed dual mechanical port system should be instrumental in parallel (with planetary gears or series hybrid electric vehicles (HEV aiming at a more compact and efficient electric propulsion system solution.

  10. Radioisotope fueled pulsed power generation system for propulsion and electrical power for deep space missions

    Science.gov (United States)

    Howe, Troy

    Space exploration missions to the moon, Mars, and other celestial bodies have allowed for great scientific leaps to enhance our knowledge of the universe; yet the astronomical cost of these missions limits their utility to only a few select agencies. Reducing the cost of exploratory space travel will give rise to a new era of exploration, where private investors, universities, and world governments can send satellites to far off planets and gather important data. By using radioisotope power sources and thermal storage devices, a duty cycle can be introduced to extract large amounts of energy in short amounts of time, allowing for efficient space travel. The same device can also provide electrical power for subsystems such as communications, drills, lasers, or other components that can provide valuable scientific information. This project examines the use of multiple radioisotope sources combined with a thermal capacitor using Phase Change Materials (PCMs) which can collect energy over a period of time. The result of this design culminates in a variety of possible spacecraft with their own varying costs, transit times, and objectives. Among the most promising are missions to Mars which cost less than 17M, missions that can provide power to satellite constellations for decades, or missions that can deliver large, Opportunity-sized (185kg) payloads to mars for less than 53M. All made available to a much wider range of customer with commercially available satellite launches from earth. The true cost of such progress though lies in the sometimes substantial increase in transit times for these missions.

  11. Continued Development of Environmentally COnscious "ECO" Transport Aircraft Concepts as Hybrid Electric Distributed Propulsion Research Platforms, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — ESAero's vast TeDP and HEDP-specific experience, Helden Aerospace's distributed propulsion airframe integration effects (2) Advance the TMS design with a new TMS...

  12. The Heliopause Electrostatic Rapid Transit System (HERTS) - Design, Trades, and Analyses Performed in a Two Year NASA Investigation of Electric Sail Propulsion Systems

    Science.gov (United States)

    Wiegmann, Bruce M.; Scheider, Todd; Heaton, Andrew; Vaughn, Jason; Stone, Nobie; Wright, Ken

    2017-01-01

    Personnel from NASA's MSFC have been investigating the feasibility of an advanced propulsion system known as the Electric Sail (E-Sail) for future scientific exploration missions. This team initially won a NASA Space Technology Mission Directorate (STMD) Phase I NASA Innovative Advanced Concept (NIAC) award and then a two-year follow-on Phase II NIAC award in October 2015. This paper documents the findings from this three-year investigation. An Electric sail, a propellant-less propulsion system, uses solar wind ions to rapidly travel either to deep space or the inner solar system. Scientific spacecraft could reach Pluto in 5 years, or the boundary of the solar system in ten to twelve years compared to the thirty-five plus years the Voyager spacecraft took. The team's recent focuses have been: 1) Developing a Particle in Cell (PIC) numeric engineering model from MSFC's experimental data on the interaction between simulated solar wind and a charged bare wire that can be applied to a variety of missions, 2) Determining what missions could benefit from this revolutionary propulsion system, 3) Conceptualizing spacecraft designs for various tasks: to reach the solar system's edge, to orbit the sun as Heliophysics sentinels, or to examine a multitude of asteroids.

  13. Distributed propulsion for ships

    OpenAIRE

    Nylund, Vilde

    2017-01-01

    It is anticipated that using distributed electric propulsion (DEP) on conventional ships will increase the total propulsive efficiency. This is mainly due to two reasons; firstly, because the total propeller disk area can be increased. Secondly, because each propeller can be optimised for the local wake where it is operating. In this work, the benefits of using DEP has been investigated for a 14 000 TEU container ship. Based on a literary study of the present state of propeller modelling ...

  14. Solar Electric Propulsion

    Data.gov (United States)

    National Aeronautics and Space Administration — Mission planning for infusion in the ARRM mission with key technology developments including: - Design, develop, and test a high-power, 12.5 kW Hall Effect thruster....

  15. Distributed Propulsion Vehicles

    Science.gov (United States)

    Kim, Hyun Dae

    2010-01-01

    Since the introduction of large jet-powered transport aircraft, the majority of these vehicles have been designed by placing thrust-generating engines either under the wings or on the fuselage to minimize aerodynamic interactions on the vehicle operation. However, advances in computational and experimental tools along with new technologies in materials, structures, and aircraft controls, etc. are enabling a high degree of integration of the airframe and propulsion system in aircraft design. The National Aeronautics and Space Administration (NASA) has been investigating a number of revolutionary distributed propulsion vehicle concepts to increase aircraft performance. The concept of distributed propulsion is to fully integrate a propulsion system within an airframe such that the aircraft takes full synergistic benefits of coupling of airframe aerodynamics and the propulsion thrust stream by distributing thrust using many propulsors on the airframe. Some of the concepts are based on the use of distributed jet flaps, distributed small multiple engines, gas-driven multi-fans, mechanically driven multifans, cross-flow fans, and electric fans driven by turboelectric generators. This paper describes some early concepts of the distributed propulsion vehicles and the current turboelectric distributed propulsion (TeDP) vehicle concepts being studied under the NASA s Subsonic Fixed Wing (SFW) Project to drastically reduce aircraft-related fuel burn, emissions, and noise by the year 2030 to 2035.

  16. Exotic power and propulsion concepts

    International Nuclear Information System (INIS)

    Forward, R.L.

    1990-01-01

    The status of some exotic physical phenomena and unconventional spacecraft concepts that might produce breakthroughs in power and propulsion in the 21st Century are reviewed. The subjects covered include: electric, nuclear fission, nuclear fusion, antimatter, high energy density materials, metallic hydrogen, laser thermal, solar thermal, solar sail, magnetic sail, and tether propulsion

  17. In-Space Propulsion Technologies for Robotic Exploration of the Solar System

    Science.gov (United States)

    Johnson, Les; Meyer, Rae Ann; Frame, Kyle

    2006-01-01

    Supporting NASA's Science Mission Directorate, the In-Space Propulsion Technology Program is developing the next generation of space propulsion technologies for robotic, deep-space exploration. Recent technological advancements and demonstrations of key, high-payoff propulsion technologies have been achieved and will be described. Technologies under development and test include aerocapture, solar electric propulsion, solar sail propulsion, and advanced chemical propulsion.

  18. The Nuclear Cryogenic Propulsion Stage

    Science.gov (United States)

    Houts, Michael G.; Kim, Tony; Emrich, William J.; Hickman, Robert R.; Broadway, Jeramie W.; Gerrish, Harold P.; Doughty, Glen; Belvin, Anthony; Borowski, Stanley K.; Scott, John

    2014-01-01

    The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation Nuclear Cryogenic Propulsion Stage (NCPS) based on NTP could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. The role of the NCPS in the development of advanced nuclear propulsion systems could be analogous to the role of the DC-3 in the development of advanced aviation. Progress made under the NCPS project could help enable both advanced NTP and advanced Nuclear Electric Propulsion (NEP). Nuclear propulsion can be affordable and viable compared to other propulsion systems and must overcome a biased public fear due to hyper-environmentalism and a false perception of radiation and explosion risk.

  19. Propulsion for CubeSats

    Science.gov (United States)

    Lemmer, Kristina

    2017-05-01

    At present, very few CubeSats have flown in space featuring propulsion systems. Of those that have, the literature is scattered, published in a variety of formats (conference proceedings, contractor websites, technical notes, and journal articles), and often not available for public release. This paper seeks to collect the relevant publically releasable information in one location. To date, only two missions have featured propulsion systems as part of the technology demonstration. The IMPACT mission from the Aerospace Corporation launched several electrospray thrusters from Massachusetts Institute of Technology, and BricSAT-P from the United States Naval Academy had four micro-Cathode Arc Thrusters from George Washington University. Other than these two missions, propulsion on CubeSats has been used only for attitude control and reaction wheel desaturation via cold gas propulsion systems. As the desired capability of CubeSats increases, and more complex missions are planned, propulsion is required to accomplish the science and engineering objectives. This survey includes propulsion systems that have been designed specifically for the CubeSat platform and systems that fit within CubeSat constraints but were developed for other platforms. Throughout the survey, discussion of flight heritage and results of the mission are included where publicly released information and data have been made available. Major categories of propulsion systems that are in this survey are solar sails, cold gas propulsion, electric propulsion, and chemical propulsion systems. Only systems that have been tested in a laboratory or with some flight history are included.

  20. The Heliopause Electrostatic Rapid Transit System (HERTS) Design, Trades, and Analyses Performed in a Two Year NASA Investigation of Electric Sail Propulsion Systems

    Science.gov (United States)

    Wiegmann, Bruce M.

    2017-01-01

    The Heliopause Electrostatic Rapid Transit System (HERTS) was one of the seven total Phase II NASA Innovative Advanced Concepts (NIAC) that was down-selected in 2015 for continued funding and research. In Phase I our team learned that a spacecraft propelled by an Electric Sail (E-Sail) can travel great astronomical distances, such as to the Heliopause region of the solar system (approx. 100 to 120 AU) in approximately one quarter of the time (10 years) versus the time it took the Voyager spacecraft launched in 1977 (36 years). The completed work within the Phase II NIAC funded effort builds upon the work that was done in the Phase I NIAC and is focused on: 1) Testing of plasma interaction with a charged wire in a MSFC simulated solar environment vacuum test chamber. 2) Development of a Particle-in-Cell (PIC) models that are validated in the plasma testing and used to extrapolate to the E-Sail propulsion system design. 3) Conceptual design of a Technology Demonstration Mission (TDM) spacecraft developed to showcase E-Sail propulsion systems. 4) Down selection of both: a) Materials for a multi km length conductor and, b) Best configuration of the proposed conductor deployment subsystem. This paper will document the findings to date (June, 2017) of the above focused areas.

  1. Brief review on pulse laser propulsion

    Science.gov (United States)

    Yu, Haichao; Li, Hanyang; Wang, Yan; Cui, Lugui; Liu, Shuangqiang; Yang, Jun

    2018-03-01

    Pulse laser propulsion (PLP) is an advanced propulsion concept can be used across a variety of fields with a wide range of applications. PLP reflects superior payload as well as decreased launch costs in comparison with other conventional methods of producing thrust, such as chemical propulsion or electric propulsion. Numerous researchers have attempted to exploit the potential applications of PLP. This paper first reviews concepts relevant to PLP, including the propulsion modes, breakdown regimes, and propulsion efficiency; the propulsion targets for different materials with the pulse laser are then discussed in detail, including the propulsion of solid and liquid microspheres. PLP applications such as the driven microsatellite, target surface particle removal, and orbital debris removal are also discussed. Although the PLP has been applied to a variety of fields, further research is yet warranted to establish its application in the aerospace field.

  2. Research, development, and demonstration of nickel-zinc batteries for electric vehicle propulsion. Annual report for 1980

    Energy Technology Data Exchange (ETDEWEB)

    1981-03-01

    Progress in the development of nickel-zinc batteries for electric vehicles is reported. Information is presented on nickel electrode preparation and testing; zinc electrode preparation with additives and test results; separator development and the evaluation of polymer-blend separator films; sealed Ni-Zn cells; and the optimization of electric vehicle-type Ni-Zn cells. (LCL)

  3. Neural Network Control of a Parallel Hybrid-Electric Propulsion System for a Small Unmanned Aerial Vehicle

    National Research Council Canada - National Science Library

    Harmon, Frederick

    2004-01-01

    ... results, and simulation results are provided. The two-point conceptual design includes an internal combustion engine sized for cruise and an electric motor and lithium-ion battery pack sized for endurance speed...

  4. A Cost-effective and Emission-aware Power Management System for Ships with Integrated Full Electric Propulsion

    DEFF Research Database (Denmark)

    Kanellos, Fotis D.; Anvari-Moghaddam, Amjad; Guerrero, Josep M.

    2017-01-01

    The extensive exploitation of electric power in ships enables the development of more efficient and environmentally friendlier ships, as it allows for a more flexible ship power system operation and configuration. In this paper, an optimal power management method for ship electric power systems....... The proposed fuzzy-based particle swarm optimization (FPSO) algorithm aims at minimizing the operation cost, limiting the greenhouse gas (GHG) emissions and satisfying the technical and operational constraints of the ship....

  5. NASA's Nuclear Thermal Propulsion Project

    Science.gov (United States)

    Houts, Michael G.; Mitchell, Doyce P.; Kim, Tony; Emrich, William J.; Hickman, Robert R.; Gerrish, Harold P.; Doughty, Glen; Belvin, Anthony; Clement, Steven; Borowski, Stanley K.; hide

    2015-01-01

    The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation NTP system could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. The role of a first generation NTP in the development of advanced nuclear propulsion systems could be analogous to the role of the DC- 3 in the development of advanced aviation. Progress made under the NTP project could also help enable high performance fission power systems and Nuclear Electric Propulsion (NEP).

  6. A compactly integrated cooling system of a combination dual 1.5-MW HTS motors for electric propulsion

    Energy Technology Data Exchange (ETDEWEB)

    Le, T. D.; Kim, J. H.; Hyeon, C. J.; Kim, H. M.; Kim, D. K. [Jeju National University, Jeju (Korea, Republic of); Kim, Y. S. [Shin Ansan University, Ansan (Korea, Republic of); Lee, J.; Park, Y. G.; Jeon, H. [Yonsei University, Seoul (Korea, Republic of); Quach, H. L. [Electronic and Telecommunication Engineering, Can Tho University of Technology, Can Tho (Viet Nam)

    2016-12-15

    The high temperature superconducting (HTS) contra-rotating propulsion (CRP) systems comprise two coaxial propellers sited on behind the other and rotate in opposite directions. They have the hydrodynamic advantage of recovering the slipstream rotational energy which would otherwise be lost to a conventional single-screw system. However, the cooling systems used for HTS CRP system need a high cooling power enough to maintain a low temperature of 2G HTS material operating at liquid neon (LNe) temperature (24.5 - 27 K). In this paper, a single thermo-syphon cooling approach using a Gifford-McMahon (G-M) cryo-cooler is presented. First, an optimal thermal design of a 1.5 MW HTS motor was conducted varying to different types of commercial 2G HTS tapes. Then, a mono-cryogenic cooling system for an integration of two 1.5 MW HTS motors will be designed and analyzed. Finally, the 3D finite element analysis (FEA) simulation of thermal characteristics was also performed.

  7. Research, development, and demonstration of nickel-zinc batteries for electric vehicle propulsion. Annual report for 1980

    Energy Technology Data Exchange (ETDEWEB)

    1981-03-01

    Progress in developing nickel-zinc batteries for propelling electric vehicles is reported. Information is included on component design, battery fabrication, and module performance testing. Although full scale hardware performance has fallen short of the contract cycle life goals, significant progress has been made to warrant further development. (LCL)

  8. Development of an Android OS Based Controller of a Double Motor Propulsion System for Connected Electric Vehicles and Communication Delays Analysis

    Directory of Open Access Journals (Sweden)

    Pedro Daniel Urbina Coronado

    2015-01-01

    Full Text Available Developments of technologies that facilitate vehicle connectivity represent a market demand. In particular, mobile device (MD technology provides advanced user interface, customization, and upgradability characteristics that can facilitate connectivity and possibly aid in the goal of autonomous driving. This work explores the use of a MD in the control system of a conceptual electric vehicle (EV. While the use of MD for real-time control and monitoring has been reported, proper consideration has not been given to delays in data flow and their effects on system performance. The motor of a novel propulsion system for an EV was conditioned to be controlled in a wireless local area network by an ecosystem that includes a MD and an electronic board. An intended accelerator signal is predefined and sent to the motor and rotational speed values produced in the motor are sent back to the MD. Sample periods in which the communication really occurs are registered. Delays in the sample periods and produced errors in the accelerator and rotational speed signals are presented and analyzed. Maximum delays found in communications were of 0.2 s, while the maximum error produced in the accelerator signal was of 3.54%. Delays are also simulated, with a response that is similar to the behavior observed in the experiments.

  9. Nuclear merchant ship propulsion

    International Nuclear Information System (INIS)

    Schroeder, E.; Jager, W.; Schafstall, H.G.

    1977-01-01

    The operation of about 300 nuclear naval vessels has proven the feasibility of nuclear ship propulsion. Until now six non military ships have been built or are under construction. In the Soviet Union two nuclear icebreakers are in operation, and a third one is under construction. In the western world three prototype merchant ships have been built. Of these ships only the NS OTTO HAHN is in operation and provides valuable experience for future large scale use of nuclear merchant ship propulsion. In many countries studies and plans are made for future nuclear merchant ships. Types of vessels investigated are large containerships, tankers and specialized ships like icebreakers or ice-breaking ships. The future of nuclear merchant ship propulsion depends on three interrelated items: (1) nuclear ship technology; (2) economy of nuclear ship propulsion; (3) legal questions. Nuclear merchant ship technology is based until now on standard ship technology and light water reactor technology. Except for special questions due to the non-stationary type of the plant entirely new problems do not arise. This has been proven by the recent conceptual licensing procedure for a large nuclear containership in Germany. The economics of nuclear propulsion will be under discussion until they are proven by the operation of privately owned lead ships. Unsolved legal questions e.g. in connection with port entry permissions are at present another problem for nuclear shipping. Efforts are made to solve these questions on an international basis. The future development of nuclear energy electricity production in large land based plants will stimulate the employment of smaller units. Any future development of long distance sea transport will have to take this opportunity of a reliable and economic energy supply into account

  10. Distributed propulsion.

    OpenAIRE

    Lindström, Robin; Rosvall, Tobias

    2013-01-01

    En prestandaanalys utfördes på en SAAB 2000 som referensobjekt. Olika metoder för att driva flygplan på ett miljövänligare sätt utvärderades tillsammans med distributed propulsion. Efter undersökningar valdes elmotorer tillsammans med Zink-luft batterier för att driva SAAB 2000 med distributed propulsion. En prestandaanalys utfördes på detta plan på samma sätt som för den ursprungliga SAAB 2000. Resultaten jämfördes och slutsatsen blev att räckvidden var för kort för att konfigurationen skull...

  11. Propulsion materials

    Energy Technology Data Exchange (ETDEWEB)

    Wall, Edward J. [U.S. Dept. of Energy, Washington, D.C. (United States); Sullivan, Rogelio A. [U.S. Dept. of Energy, Washington, D.C. (United States); Gibbs, Jerry L. [U.S. Dept. of Energy, Washington, D.C. (United States)

    2008-01-01

    The Department of Energy’s (DOE’s) Office of Vehicle Technologies (OVT) is pleased to introduce the FY 2007 Annual Progress Report for the Propulsion Materials Research and Development Program. Together with DOE national laboratories and in partnership with private industry and universities across the United States, the program continues to engage in research and development (R&D) that provides enabling materials technology for fuel-efficient and environmentally friendly commercial and passenger vehicles.

  12. Testing of the permanent magnet material Mn-Al-C for potential use in propulsion motors for electric vehicles

    Science.gov (United States)

    Abdelnour, Z.; Mildrun, H.; Strant, K.

    1981-01-01

    The development of Mn-Al-C permanent magnets is reviewed. The general properties of the material are discussed and put into perspective relative to alnicos and ferrites. The traction motor designer's demands of a permanent magnet for potential use in electric vehicle drives are reviewed. Tests determined magnetic design data and mechanical strength properties. Easy axis hysteresis and demagnetization curves, recoil loops and other minor loop fields were measured over a temperature range from -50 to 150 C. Hysteresis loops were also measured for three orthogonal directions (the one easy and two hard axes of magnetization). Extruded rods of three different diameters were tested. The nonuniformity of properties over the cross section of the 31 mm diameter rod was studied. Mechanical compressive and bending strength at room temperature was determined on individual samples from the 31 mm rod.

  13. Research, development, and demonstration of lead-acid batteries for electric-vehicle propulsion. Annual report, 1980

    Energy Technology Data Exchange (ETDEWEB)

    1981-03-01

    The first development effort in improving lead-acid batteries fore electric vehicles was the improvement of electric vehicle batteries using flat pasted positive plates and the second was for a tubular long life positive plate. The investigation of 32 component variables based on a flat pasted positive plate configuration is described. The experiment tested 96 - six volt batteries for characterization at 0, 25, and 40/sup 0/C and for cycle life capability at the 3 hour discharge rate with a one cycle, to 80% DOD, per day regime. Four positive paste formulations were selected. Two commercially available microporous separators were used in conjunction with a layer of 0.076 mm thick glass mat. Two concentrations of battery grade sulfuric acid were included in the test to determine if an increase in concentration would improve the battery capacity sufficient to offset the added weight of the more concentrated solution. Two construction variations, 23 plate elements with outside negative plates and 23 plate elements with outside positive plates, were included. The second development effort was an experiment designed to study the relationship of 32 component variables based on a tubular positive plate configuration. 96-six volt batteries were tested at various discharge rates at 0, 25, and 40/sup 0/C along with cycle life testing at 80% DOD of the 3 hour rate. 75 batteries remain on cycle life testing with 17 batteries having in excess of 365 life cycles. Preliminary conclusions indicate: the tubular positive plate is far more capable of withstanding deep cycles than is the flat pasted plate; as presently designed 40 Whr/kg can not be achieved, since 37.7 Whr/kg was the best tubular data obtained; electrolyte circulation is impaired due to the tight element fit in the container; and a redesign is required to reduce the battery weight which will improve the Whr/kg value. This redesign is complete and new molds have been ordered.

  14. Advanced Propulsion Power Distribution System for Next Generation Electric/Hybrid Vehicle. Phase 1; Preliminary System Studies

    Science.gov (United States)

    Bose, Bimal K.; Kim, Min-Huei

    1995-01-01

    The report essentially summarizes the work performed in order to satisfy the above project objective. In the beginning, different energy storage devices, such as battery, flywheel and ultra capacitor are reviewed and compared, establishing the superiority of the battery. Then, the possible power sources, such as IC engine, diesel engine, gas turbine and fuel cell are reviewed and compared, and the superiority of IC engine has been established. Different types of machines for drive motor/engine generator, such as induction machine, PM synchronous machine and switched reluctance machine are compared, and the induction machine is established as the superior candidate. Similar discussion was made for power converters and devices. The Insulated Gate Bipolar Transistor (IGBT) appears to be the most superior device although Mercury Cadmium Telluride (MCT) shows future promise. Different types of candidate distribution systems with the possible combinations of power and energy sources have been discussed and the most viable system consisting of battery, IC engine and induction machine has been identified. Then, HFAC system has been compared with the DC system establishing the superiority of the former. The detailed component sizing calculations of HFAC and DC systems reinforce the superiority of the former. A preliminary control strategy has been developed for the candidate HFAC system. Finally, modeling and simulation study have been made to validate the system performance. The study in the report demonstrates the superiority of HFAC distribution system for next generation electric/hybrid vehicle.

  15. Propulsion and Power Technologies for the NASA Exploration Vision: A Research Perspective

    Science.gov (United States)

    Litchford, Ron J.

    2004-01-01

    Future propulsion and power technologies for deep space missions are profiled in this viewgraph presentation. The presentation includes diagrams illustrating possible future travel times to other planets in the solar system. The propulsion technologies researched at Marshall Space Flight Center (MSFC) include: 1) Chemical Propulsion; 2) Nuclear Propulsion; 3) Electric and Plasma Propulsion; 4) Energetics. The presentation contains additional information about these technologies, as well as space reactors, reactor simulation, and the Propulsion Research Laboratory (PRL) at MSFC.

  16. Reusable Orbit Transfer Vehicle Propulsion Technology Considerations

    National Research Council Canada - National Science Library

    Perkins, Dave

    1998-01-01

    .... ROTV propulsion technologies to consider chemical rockets have limited mission capture, solar thermal rockets capture most missions but LH2 issues, and electric has highest PL without volume constraint...

  17. Cryogenic and Non-Cryogenic Hybrid Electric Distributed Propulsion with Integration of Airframe and Thermal Systems to Analyze Technology Influence, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — A design iteration of ESAero's ECO-150 split wing turboelectric distributed propulsion (TeDP) concept is proposed to incorporate recent lessons learned in...

  18. Propulsion System and Orbit Maneuver Integration in CubeSats: Trajectory Control Strategies Using Micro Ion Propulsion

    Science.gov (United States)

    Hudson, Jennifer; Martinez, Andres; Petro, Andrew

    2015-01-01

    The Propulsion System and Orbit Maneuver Integration in CubeSats project aims to solve the challenges of integrating a micro electric propulsion system on a CubeSat in order to perform orbital maneuvers and control attitude. This represents a fundamentally new capability for CubeSats, which typically do not contain propulsion systems and cannot maneuver far beyond their initial orbits.

  19. The Study about Application of Transportation System of the Superconductive Electromagnetism Propulsion in the Harbor

    OpenAIRE

    涌井, 和也; 荻原, 宏康

    1999-01-01

    Electromagnetic propulsion is promising technique for a linear motor car, a ship and a space ship, in future. W. A Rice developed an electromagnetic pump for the liquid metal transfer. There are two electromagnetic propulsions : a superconductive electricity propulsion and a superconductive electromagnetic propulsion. A superconductive electricity propulsion ship uses a screw driven by a superconducting motor. This technique has merits of excellent navigation-ability, and the free degree of t...

  20. Laser Propulsion - Is it another myth or a real potential?

    International Nuclear Information System (INIS)

    Cook, Joung R.

    2008-01-01

    This paper discusses different principles of inducing propulsive power using lasers and examines the performance limits along with pros and cons with respect to different space propulsion applications: satellite launching, orbital transfer, space debris clearing, satellite propulsion, and space travels. It concludes that a use of electrical propulsion, in conjunction with laser power beaming, is the most feasible application with technological and economic advantages for commercial use within the next decades

  1. Chemistry and propulsion; Chimie et propulsions

    Energy Technology Data Exchange (ETDEWEB)

    Potier, P [Maison de la Chimie, 75 - Paris (France); Davenas, A [societe Nationale des Poudres et des Explosifs - SNPE (France); Berman, M [Air Force Office of Scientific Research, Arlington, VA (United States); and others

    2002-07-01

    During the colloquium on chemistry and propulsion, held in march 2002, ten papers have been presented. The proceedings are brought in this document: ramjet, scram-jet and Pulse Detonation Engine; researches and applications on energetic materials and propulsion; advances in poly-nitrogen chemistry; evolution of space propulsion; environmental and technological stakes of aeronautic propulsion; ramjet engines and pulse detonation engines, automobiles thermal engines for 2015, high temperature fuel cells for the propulsion domain, the hydrogen and the fuel cells in the future transports. (A.L.B.)

  2. Achievement report for fiscal 1989. Research and development of ceramic gas turbine (Regenerative single-shaft axial-flow turbine for cogeneration); 1989 nendo ceramic gas turbine no kenkyu kaihatsu seika hokokusho. Cogeneration yo saisei ichijikushiki jikuryu turbine

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1990-05-01

    With an objective to research and develop a 300-kW class regenerative single-shaft axial-flow turbine having inlet temperature of 1,350 degrees C and thermal efficiency of 42% or higher, activities were performed in the following three fields: 1) heat resistant ceramic members, 2) elementary technologies, and 3) studies on design, prototype fabrication, and operation. In Item 1, a mass production technology was discussed on stator blades and heat transfer pipes for a heat exchanger as the component manufacturing technology, and injection molding conditions were studied and mechanical strength measurement was performed on rotor blades of a separate type axial-flow turbine. In addition, a molding condition producing no cracks was discovered in an integrated type axial-flow turbine whose embedded section has a tapered shape, and the mass production technology was discussed. With regard to the bonding technology, preliminary discussions were given on bonding agents under a prerequisite that a bonding agent shall be used. In Item 2, detailed discussions were launched on the turbine, combustor, heat exchanger, and compressor, including shape decision on the turbine, for example, by using aerodynamic analysis, In Item 3, the basic design was performed following the conceptual design, and a metallic turbine was designed. (NEDO)

  3. Development of superconducting ship propulsion system

    International Nuclear Information System (INIS)

    Sakuraba, Junji; Mori, Hiroyuki; Hata, Fumiaki; Sotooka, Koukichi

    1991-01-01

    When we plan displacement-type monohull high speed vessels, it is difficult to get the hull form with the wave-making resistance minimum, because the stern shape is restricted by arrangement of propulsive machines and shafts. A small-sized and light-weight propulsive machines will reduce the limit to full form design. Superconducting technology will have capability of realizing the small-sized and light-weight propulsion motor. The superconducting electric propulsion system which is composed of superconducting propulsion motors and generators, seems to be an ideal propulsion system for future vehicles. We have constructed a 480 kW superconducting DC homopolar laboratory test motor for developing this propulsion system. The characteristic of this motor is that it has a superconducting field winding and a segmented armature drum. The superconducting field winding which operates in the persistent current mode, is cooled by a condensation heat exchanger and helium refigerating system built into the cryostat of the superconducting field winding. The operating parameters of this motor agreed well with the design parameters. Using the design concepts of this motor, we have conceptually designed a 150,000-200,000 PS superconducting electric propulsive system for a displacement-type monohull high speed ship. (author)

  4. Non-Contact Magnetic Transmission For Hybrid/Electric Rotorcraft, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Electric propulsion has the potential to revolutionize aircraft design and architecture. A distributed electric propulsion system for a VTOL aircraft can exploit...

  5. Advantages of electrical propulsion applied to the urban transportation with express lines; Vantagens da propulsao eletrica aplicada ao transporte urbano em linhas expressas

    Energy Technology Data Exchange (ETDEWEB)

    Schwob, Marcelo Rousseau Valenca; Rodrigues, Joaquim Augusto Pinto; Henriques Junior, Mauricio F.; Dresch, Patricia Miranda; Dantas, Fabricio dos Santos [Instituto Nacional de Tecnologia (INT), Rio de Janeiro, RJ (Brazil). Div. de Energia], E-mail: energia@int.gov.br; Bernardes, Fernanda Manhaes [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil)

    2010-07-01

    This paper intends to compare the various possible solutions for urban bus propulsion under the environmental aspects (gaseous emissions, vibrations and noises), energy efficiency and energetic operational costs, facing the evident signals of energy inefficiency and environmental limitations presented at urban highway transports of large cities.

  6. An overview of the NASA Advanced Propulsion Concepts program

    International Nuclear Information System (INIS)

    Curran, F.M.; Bennett, G.L.; Frisbee, R.H.; Sercel, J.C.; Lapointe, M.R.

    1992-07-01

    NASA Advanced Propulsion Concepts (APC) program for the development of long-term space propulsion system schemes is managed by both NASA-Lewis and the JPL and is tasked with the identification and conceptual development of high-risk/high-payoff configurations. Both theoretical and experimental investigations have been undertaken in technology areas deemed essential to the implementation of candidate concepts. These APC candidates encompass very high energy density chemical propulsion systems, advanced electric propulsion systems, and an antiproton-catalyzed nuclear propulsion concept. A development status evaluation is presented for these systems. 45 refs

  7. Powersail High Power Propulsion System Design Study

    Science.gov (United States)

    Gulczinski, Frank S., III

    2000-11-01

    A desire by the United States Air Force to exploit the space environment has led to a need for increased on-orbit electrical power availability. To enable this, the Air Force Research Laboratory Space Vehicles Directorate (AFRL/ VS) is developing Powersail: a two-phased program to demonstrate high power (100 kW to 1 MW) capability in space using a deployable, flexible solar array connected to the host spacecraft using a slack umbilical. The first phase will be a proof-of-concept demonstration at 50 kW, followed by the second phase, an operational system at full power. In support of this program, the AFRL propulsion Directorate's Spacecraft Propulsion Branch (AFRL/PRS ) at Edwards AFB has commissioned a design study of the Powersail High Power Propulsion System. The purpose of this study, the results of which are summarized in this paper, is to perform mission and design trades to identify potential full-power applications (both near-Earth and interplanetary) and the corresponding propulsion system requirements and design. The design study shall farther identify a suitable low power demonstration flight that maximizes risk reduction for the fully operational system. This propulsion system is expected to be threefold: (1) primary propulsion for moving the entire vehicle, (2) a propulsion unit that maintains the solar array position relative to the host spacecraft, and (3) control propulsion for maintaining proper orientation for the flexible solar array.

  8. Turboelectric Distributed Propulsion System Modelling

    OpenAIRE

    Liu, Chengyuan

    2013-01-01

    The Blended-Wing-Body is a conceptual aircraft design with rear-mounted, over wing engines. Turboelectric distributed propulsion system with boundary layer ingestion has been considered for this aircraft. It uses electricity to transmit power from the core turbine to the fans, therefore dramatically increases bypass ratio to reduce fuel consumption and noise. This dissertation presents methods on designing the TeDP system, evaluating effects of boundary layer ingestion, modelling engine perfo...

  9. A novel nuclear-powered propulsion system for ship

    International Nuclear Information System (INIS)

    Liu Tao; Han Weishi

    2003-01-01

    A novel nuclear-powered propulsion system for ship is presented in this paper. In this system, a minitype liquid sodium-cooled reactor is used as power; alkali-metal thermal-to-electric conversion (AMTEC) cells are utilized to transform the heat energy to electric energy and superconducting magneto-hydrodynamic (MHD) work as propulsion. This nuclear-powered propulsion system has great advantages in low noise, high speed, long survivability and simple manipulation. It has great significance for the development of propulsion system. (author)

  10. Advanced Propulsion Study

    National Research Council Canada - National Science Library

    Davis, Eric

    2004-01-01

    ... that show promise of leading to a major advance in Earth-to-orbit (ETO) propulsion. The study also reviewed and evaluated a select number of credible far-term breakthrough propulsion physics concepts pertaining...

  11. Simulation research on operation scheme of dissymmetrical main engine of CODOG propulsion system

    Directory of Open Access Journals (Sweden)

    HUANG Bin

    2018-02-01

    Full Text Available [Objectives] How to maintain propulsion capability in a CODOG propulsion system damage situation has important significance. [Methods] A ‘Hull-Engine-CPP-Rudder’ simulation model of a CODOG marine power plant is established on Simulink using the modularized method, and a dissymmetrical main engine urgent working mode is proposed and simulated. [Results] The results show that in the dissymmetrical working mode, two different engines cannot work simultaneously at designed capacity. However, by adjusting the pitch of the CPP, one engine can work at designed capacity and the other can work at partial load capacity; under this working mode, if high speed is demanded, the gas turbine should work at designed capacity. The CPP pitch driven by diesel should be maintained at a high value near the maximum. The maximum speed of this working mode is 84.4% of the designed speed, which is higher than the speed of the single shaft working mode driven by a gas turbine. [Conclusions] The research results of this paper can provide useful references for the design of ship propulsion systems.

  12. Propulsive options for a manned Mars transportation system

    International Nuclear Information System (INIS)

    Braun, R.D.; Blersch, D.J.

    1989-01-01

    In this investigation, five potential manned Mars transportation systems are compared. These options include: (1) a single vehicle, chemically propelled (CHEM) option, (2) a single vehicle, nuclear thermal propulsion (NTP) option, (3) a single vehicle solar electric propulsion (SEP) option, (4) a single vehicle hybrid nuclear electric propulsion (NEP)/CHEM option, and (5) a dual vehicle option (NEP cargo spacecraft and CHEM manned vehicle). In addition to utilizing the initial vehicle weight in low-earth orbit as a measure of mission feasibility, this study addresses the major technological barriers each propulsive scenario must surpass. It is shown that instead of a single clearly superior propulsion system, each means of propulsion may be favored depending upon the specified program policy and the extent of the desired manned flight time. Furthermore, the effect which aerobraking and multiple transfer cycles have upon mission feasibility is considered. 18 refs

  13. 28th Joint Propulsion Conference and Exhibit

    International Nuclear Information System (INIS)

    Stone, J.R.; Sovey, J.S.

    1992-07-01

    The National Aeronautics and Space Administration (NASA) has initiated a program to establish the readiness of nuclear electric propulsion (NEP) technology for relatively near-term applications to outer planet robotic science missions with potential future evolution to system for piloted Mars vehicles. This program was initiated in 1991 with a very modest effort identified with nuclear thermal propulsion (NTP); however, NEP is also an integral part of this program and builds upon NASA's Base Research and Technology Program in power and electric propulsion as well as the SP-100 space nuclear power program. The NEP Program will establish the feasibility and practicality of electric propulsion for robotic and piloted solar system exploration. The performance objectives are high specific impulse (200 greater than I(sub sp) greater than 10000 s), high efficiency (over 0.50), and low specific mass. The planning for this program was initially focussed on piloted Mars missions, but has since been redirected to first focus on 100-kW class systems for relatively near-term robotic missions, with possible future evolution to megawatt- and multi-megawatt-class systems applicable to cargo vehicles supporting human missions as well as to the piloted vehicles. This paper reviews current plans and recent progress for the overall nuclear electric propulsion project and closely related activities

  14. DISCRETION MAGNETIQUE DES MACHINES ELECTRIQUES DE PROPULSION NAVALE

    OpenAIRE

    Froidurot , Benoît

    2002-01-01

    For about ten years, electrical machines have been commonly used in naval propulsion systems for civilian applications. This is mainly due to new magnetic materials (magnets...) and power drive electronic, which increase the performances of the machines. This kind of propulsion is planed to be implemented on military ships. However, some constraints of discretion make this propulsion require specific systems for the ship security. This study is then dedicted to the magnetic discretion of nava...

  15. Centralized versus distributed propulsion

    Science.gov (United States)

    Clark, J. P.

    1982-01-01

    The functions and requirements of auxiliary propulsion systems are reviewed. None of the three major tasks (attitude control, stationkeeping, and shape control) can be performed by a collection of thrusters at a single central location. If a centralized system is defined as a collection of separated clusters, made up of the minimum number of propulsion units, then such a system can provide attitude control and stationkeeping for most vehicles. A distributed propulsion system is characterized by more numerous propulsion units in a regularly distributed arrangement. Various proposed large space systems are reviewed and it is concluded that centralized auxiliary propulsion is best suited to vehicles with a relatively rigid core. These vehicles may carry a number of flexible or movable appendages. A second group, consisting of one or more large flexible flat plates, may need distributed propulsion for shape control. There is a third group, consisting of vehicles built up from multiple shuttle launches, which may be forced into a distributed system because of the need to add additional propulsion units as the vehicles grow. The effects of distributed propulsion on a beam-like structure were examined. The deflection of the structure under both translational and rotational thrusts is shown as a function of the number of equally spaced thrusters. When two thrusters only are used it is shown that location is an important parameter. The possibility of using distributed propulsion to achieve minimum overall system weight is also examined. Finally, an examination of the active damping by distributed propulsion is described.

  16. Plasma propulsion for geostationary satellites for telecommunication and interplanetary missions

    International Nuclear Information System (INIS)

    Dudeck, M; Doveil, F; Arcis, N; Zurbach, S

    2012-01-01

    The advantages of electric propulsion for the orbit maintenance of geostationary satellites for telecommunications are described. Different types of plasma sources for space propulsion are presented. Due to its large performances, one of them, named Hall effect thruster is described in detail and two recent missions in space (Stentor and Smart1) using French Hall thrusters are briefly presented.

  17. Tools for advanced simulations to nuclear propulsion systems in rockets

    International Nuclear Information System (INIS)

    Torres Sepulveda, A.; Perez Vara, R.

    2004-01-01

    While chemical propulsion rockets have dominated space exploration, other forms of rocket propulsion based on nuclear power, electrostatic and magnetic drive, and other principles besides chemical reactions, have been considered from the earliest days of the field. The goal of most of these advanced rocket propulsion schemes is improved efficiency through higher exhaust velocities, in order to reduce the amount of fuel the rocket vehicle needs to carry, though generally at the expense of high thrust. Nuclear propulsion seems to be the most promising short term technology to plan realistic interplanetary missions. The development of a nuclear electric propulsion spacecraft shall require the development of models to analyse the mission and to understand the interaction between the related subsystems (nuclear reactor, electrical converter, power management and distribution, and electric propulsion) during the different phases of the mission. This paper explores the modelling of a nuclear electric propulsion (NEP) spacecraft type using EcosimPro simulation software. This software is a multi-disciplinary simulation tool with a powerful object-oriented simulation language and state-of-the-art solvers. EcosimPro is the recommended ESA simulation tool for environmental Control and Life Support Systems (ECLSS) and has been used successfully within the framework of the European activities of the International Space Station programme. Furthermore, propulsion libraries for chemical and electrical propulsion are currently being developed under ESA contracts to set this tool as standard usage in the propulsion community. At present, there is not any workable NEP spacecraft, but a standardized-modular, multi-purpose interplanetary spacecraft for post-2000 missions, called ISC-2000, has been proposed in reference. The simulation model presented on this paper is based on the preliminary designs for this spacecraft. (Author)

  18. Heavy Ion Propulsion in the Megadalton Range

    Science.gov (United States)

    2006-11-01

    atomizacidn electrostdtica, Universidad Carlos III, Madrid, Spain (2006) 15. D. Garoz, "Sintesis, estudio y mezclas de nuevos combustibles basados en...propellants for electrical propulsion from Taylor cones in vacuo), Proyecto fin de carrera (Senior Thesis), Universidad Politecnica de Madrid, Marzo 2004

  19. A comparison of propulsion systems for potential space mission applications

    International Nuclear Information System (INIS)

    Harvego, E.A.; Sulmeisters, T.K.

    1987-01-01

    A derivative of the NERVA nuclear rocket engine was compared with a chemical propulsion system and a nuclear electric propulsion system to assess the relative capabilities of the different propulsion system options for three potential space missions. The missions considered were (1) orbital transfer from low earth orbit (LEO) to geosynchronous earth orbit (GEO), (2) LEO to a lunar base, and (3) LEO to Mars. The results of this comparison indicate that the direct-thrust NERVA-derivative nuclear rocket engine has the best performance characteristics for the missions considered. The combined high thrust and high specific impulse achievable with a direct-thrust nuclear stage permits short operating times (transfer times) comparable to chemical propulsion systems, but with considerably less required propellant. While nuclear-electric propulsion systems are more fuel efficient than either direct-nuclear or chemical propulsion, they are not stand-alone systems, since their relatively low thrust levels require the use of high-thrust ferry or lander stages in high gravity applications such as surface-to-orbit propulsion. The extremely long transfer times and inefficient trajectories associated with electric propulsion systems were also found to be a significant drawback

  20. NASA's Propulsion Research Laboratory

    Science.gov (United States)

    2004-01-01

    The grand opening of NASA's new, world-class laboratory for research into future space transportation technologies located at the Marshall Space Flight Center (MSFC) in Huntsville, Alabama, took place in July 2004. The state-of-the-art Propulsion Research Laboratory (PRL) serves as a leading national resource for advanced space propulsion research. Its purpose is to conduct research that will lead to the creation and development of innovative propulsion technologies for space exploration. The facility is the epicenter of the effort to move the U.S. space program beyond the confines of conventional chemical propulsion into an era of greatly improved access to space and rapid transit throughout the solar system. The laboratory is designed to accommodate researchers from across the United States, including scientists and engineers from NASA, the Department of Defense, the Department of Energy, universities, and industry. The facility, with 66,000 square feet of useable laboratory space, features a high degree of experimental capability. Its flexibility allows it to address a broad range of propulsion technologies and concepts, such as plasma, electromagnetic, thermodynamic, and propellant propulsion. An important area of emphasis is the development and utilization of advanced energy sources, including highly energetic chemical reactions, solar energy, and processes based on fission, fusion, and antimatter. The Propulsion Research Laboratory is vital for developing the advanced propulsion technologies needed to open up the space frontier, and sets the stage of research that could revolutionize space transportation for a broad range of applications.

  1. Cold Gas Micro Propulsion

    NARCIS (Netherlands)

    Louwerse, M.C.

    2009-01-01

    This thesis describes the development of a micro propulsion system. The trend of miniaturization of satellites requires small sized propulsion systems. For particular missions it is important to maintain an accurate distance between multiple satellites. Satellites drift apart due to differences in

  2. Laser Propulsion - Quo Vadis

    International Nuclear Information System (INIS)

    Bohn, Willy L.

    2008-01-01

    First, an introductory overview of the different types of laser propulsion techniques will be given and illustrated by some historical examples. Second, laser devices available for basic experiments will be reviewed ranging from low power lasers sources to inertial confinement laser facilities. Subsequently, a status of work will show the impasse in which the laser propulsion community is currently engaged. Revisiting the basic relations leads to new avenues in ablative and direct laser propulsion for ground based and space based applications. Hereby, special attention will be devoted to the impact of emerging ultra-short pulse lasers on the coupling coefficient and specific impulse. In particular, laser sources and laser propulsion techniques will be tested in microgravity environment. A novel approach to debris removal will be discussed with respect to the Satellite Laser Ranging (SRL) facilities. Finally, some non technical issues will be raised aimed at the future prospects of laser propulsion in the international community

  3. Development of a lead acid battery suitable for electric vehicle propulsion. Final report. [96 V, 20 kWh, 50 Wh/kg

    Energy Technology Data Exchange (ETDEWEB)

    Schlotter, W J

    1977-08-26

    This report contains two detailed designs, and the design rationale, for an improved state-of-the-art electric vehicle battery incorporating expanded metal grids. The nominal 96-volt and 20-kWh battery incorporating this improved design is expected to cost about 25% less when manufactured in a mature plant. This report also contains detailed estimates for the capital cost and operating cost of a pilot plant to produce electric vehicle battery plates incorporating expanded metal grids. It is expected that the first electric vehicle batteries incorporating expanded metal grids can be available fifteen months after approval of this program. An additional program to improve lead acid batteries for electric vehicles further is also described. The advanced batteries resulting from this program are expected to incorporate either expanded metal grids and/or composite lead/plastic grids. In addition, these batteries are expected to contain low-density active materials. It is anticipated that those additional developments will result in an advanced battery capable of delivering 45 to 50 watt-hours/kg. As a result of the design and cost study, a ''First Buy'' improved state-of-the art vehicle battery proposed is included as part of this report. Eltra proposes to manufacture and deliver the required 2500 vehicle batteries within the time limits set forth by the Electric and Hybrid Vehicle Research, Development, and Demonstration Act of 1976. 20 figures, 13 tables.

  4. Advanced Propulsion Physics Lab: Eagleworks Investigations

    Science.gov (United States)

    Scogin, Tyler

    2014-01-01

    Eagleworks Laboratory is an advanced propulsions physics laboratory with two primary investigations currently underway. The first is a Quantum Vacuum Plasma Thruster (QVPT or Q-thrusters), an advanced electric propulsion technology in the development and demonstration phase. The second investigation is in Warp Field Interferometry (WFI). This is an investigation of Dr. Harold "Sonny" White's theoretical physics models for warp field equations using optical experiments in the Electro Optical laboratory (EOL) at Johnson Space Center. These investigations are pursuing technology necessary to enable human exploration of the solar system and beyond.

  5. The Ion Propulsion System for the Asteroid Redirect Robotic Mission

    Science.gov (United States)

    Herman, Daniel A.; Santiago, Walter; Kamhawi, Hani; Polk, James E.; Snyder, John Steven; Hofer, Richard; Sekerak, Michael

    2016-01-01

    The Asteroid Redirect Robotic Mission is a Solar Electric Propulsion Technology Demonstration Mission (ARRM) whose main objectives are to develop and demonstrate a high-power solar electric propulsion capability for the Agency and return an asteroidal mass for rendezvous and characterization in a companion human-crewed mission. This high-power solar electric propulsion capability, or an extensible derivative of it, has been identified as a critical part of NASA's future beyond-low-Earth-orbit, human-crewed exploration plans. This presentation presents the conceptual design of the ARRM ion propulsion system, the status of the NASA in-house thruster and power processing development activities, the status of the planned technology maturation for the mission through flight hardware delivery, and the status of the mission formulation and spacecraft acquisition.

  6. An Overview of Cube-Satellite Propulsion Technologies and Trends

    Directory of Open Access Journals (Sweden)

    Akshay Reddy Tummala

    2017-12-01

    Full Text Available CubeSats provide a cost effective means to perform scientific and technological studies in space. Due to their affordability, CubeSat technologies have been diversely studied and developed by educational institutions, companies and space organizations all over the world. The CubeSat technology that is surveyed in this paper is the propulsion system. A propulsion system is the primary mobility device of a spacecraft and helps with orbit modifications and attitude control. This paper provides an overview of micro-propulsion technologies that have been developed or are currently being developed for CubeSats. Some of the micro-propulsion technologies listed have also flown as secondary propulsion systems on larger spacecraft. Operating principles and key design considerations for each class of propulsion system are outlined. Finally, the performance factors of micro-propulsion systems have been summarized in terms of: first, a comparison of thrust and specific impulse for all propulsion systems; second, a comparison of power and specific impulse, as also thrust-to-power ratio and specific impulse for electric propulsion systems.

  7. Advanced Chemical Propulsion

    Science.gov (United States)

    Bai, S. Don

    2000-01-01

    Design, propellant selection, and launch assistance for advanced chemical propulsion system is discussed. Topics discussed include: rocket design, advance fuel and high energy density materials, launch assist, and criteria for fuel selection.

  8. Ship propulsion reactors technology

    International Nuclear Information System (INIS)

    Fribourg, Ch.

    2002-01-01

    This paper takes the state of the art on ship propulsion reactors technology. The french research programs with the corresponding technological stakes, the reactors specifications and advantages are detailed. (A.L.B.)

  9. An Overview of the CNES Propulsion Program for Spacecraft

    Science.gov (United States)

    Cadiou, A.; Darnon, F.; Gibek, I.; Jolivet, L.; Pillet, N.

    2004-10-01

    This paper presents an overview of the CNES spacecraft propulsion activities. The main existing and future projects corresponding to low earth orbit and geostationary platforms are described. These projects cover various types of propulsion subsystems: monopropellant, bipropellant and electric. Monopropellant is mainly used for low earth orbit applications such as earth observation (SPOT/Helios, PLEIADES) or scientific applications (minisatellite PROTEUS line and micro satellites MYRIADE line). Bipropellant is used for geostationary telecommunications satellites (@BUS). The field of application of electric propulsion is the station keeping of geostationary telecommunication satellites (@BUS), main propulsion for specific probes (SMART 1) and fine attitude control for dedicated micro satellites (MICROSCOPE). The preparation of the future and the associated Research and Technology program are also described in the paper. The future developments are mainly dedicated to the performance improvements of electric propulsion which leads to the development of thrusters with higher thrust and higher specific impulse than those existing today, the evaluation of the different low thrust technologies for formation flying applications, the development of new systems to pressurize the propellants (volatile liquid, micro pump), the research on green propellants and different actions concerning components such as over wrapped pressure vessels, valves, micro propulsion. A constant effort is also put on plume effect in chemical and electrical propulsion area (improvement of tools and test activities) in the continuity of the previous work. These different R &T activities are described in detail after a presentation of the different projects and of their propulsion subsystems. The scientific activity supporting the development of Hall thrusters is going on in the frame of the GDR (Groupement de Recherche) CNRS / Universities / CNES / SNECMA on Plasma Propulsion.

  10. Wheelchairs propulsion analysis: review

    Directory of Open Access Journals (Sweden)

    Yoshimasa Sagawa Júnior

    Full Text Available OBJECTIVES: To analyze aspects related with wheelchair propulsion. MATERIALS AND METHODS: In order to delineate this review the search for information was carried out within electronics databases, using the following descriptors: "wheelchair propulsion", "wheelchair biomechanics" e "wheelchair users". Full papers published in English and French were included in the study. RESULTS: The wheelchair propulsion is a complex movement that requires the execution of repeated bi manual forces applications during a short time period. In this movement high levels of force must be produced due to the bad mechanical performance of the wheelchair. Could be characterized that wheelchair users are not satisfied with their wheelchair, the places are not adapted to their presence and lack of specific criteria for the adjustment of this equipment. The main points to look at are the seat height in relation to elbow flexion (100-120 degrees with his hand in the propulsion rim and tire pressure. The semicircular mode of technique propulsion seems to be more appropriate; in this pattern the wheelchair user returns his hand under the rim after propulsion. Efforts in wheelchairs are high and the incidence of injuries in wheelchair users is high. CONCLUSION: One can conclude that in spite of researchers’ efforts there are still many divergences between topics and methods of evaluation, what makes difficult to apply the experimental results to the wheelchairs users’ daily life.

  11. Fuel Effective Photonic Propulsion

    Science.gov (United States)

    Rajalakshmi, N.; Srivarshini, S.

    2017-09-01

    With the entry of miniaturization in electronics and ultra-small light-weight materials, energy efficient propulsion techniques for space travel can soon be possible. We need to go for such high speeds so that the generation’s time long interstellar missions can be done in incredibly short time. Also renewable energy like sunlight, nuclear energy can be used for propulsion instead of fuel. These propulsion techniques are being worked on currently. The recently proposed photon propulsion concepts are reviewed, that utilize momentum of photons generated by sunlight or onboard photon generators, such as blackbody radiation or lasers, powered by nuclear or solar power. With the understanding of nuclear photonic propulsion, in this paper, a rough estimate of nuclear fuel required to achieve the escape velocity of Earth is done. An overview of the IKAROS space mission for interplanetary travel by JAXA, that was successful in demonstrating that photonic propulsion works and also generated additional solar power on board, is provided; which can be used as a case study. An extension of this idea for interstellar travel, termed as ‘Star Shot’, aims to send a nanocraft to an exoplanet in the nearest star system, which could be potentially habitable. A brief overview of the idea is presented.

  12. Ion Beam Propulsion Study

    Science.gov (United States)

    2008-01-01

    The Ion Beam Propulsion Study was a joint high-level study between the Applied Physics Laboratory operated by NASA and ASRC Aerospace at Kennedy Space Center, Florida, and Berkeley Scientific, Berkeley, California. The results were promising and suggested that work should continue if future funding becomes available. The application of ion thrusters for spacecraft propulsion is limited to quite modest ion sources with similarly modest ion beam parameters because of the mass penalty associated with the ion source and its power supply system. Also, the ion source technology has not been able to provide very high-power ion beams. Small ion beam propulsion systems were used with considerable success. Ion propulsion systems brought into practice use an onboard ion source to form an energetic ion beam, typically Xe+ ions, as the propellant. Such systems were used for steering and correction of telecommunication satellites and as the main thruster for the Deep Space 1 demonstration mission. In recent years, "giant" ion sources were developed for the controlled-fusion research effort worldwide, with beam parameters many orders of magnitude greater than the tiny ones of conventional space thruster application. The advent of such huge ion beam sources and the need for advanced propulsion systems for exploration of the solar system suggest a fresh look at ion beam propulsion, now with the giant fusion sources in mind.

  13. Mirror fusion propulsion system - A performance comparison with alternate propulsion systems for the manned Mars mission

    International Nuclear Information System (INIS)

    Deveny, M.; Carpenter, S.; O'connell, T.; Schulze, N.

    1993-06-01

    The performance characteristics of several propulsion technologies applied to piloted Mars missions are compared. The characteristics that are compared are Initial Mass in Low Earth Orbit (IMLEO), mission flexibility, and flight times. The propulsion systems being compared are both demonstrated and envisioned: Chemical (or Cryogenic), Nuclear Thermal Rocket (NTR) solid core, NTR gas core, Nuclear Electric Propulsion (NEP), and a mirror fusion space propulsion system. The proposed magnetic mirror fusion reactor, known as the Mirror Fusion Propulsion System (MFPS), is described. The description is an overview of a design study that was conducted to convert a mirror reactor experiment at Lawrence Livermore National Lab (LLNL) into a viable space propulsion system. Design principles geared towards minimizing mass and maximizing power available for thrust are identified and applied to the LLNL reactor design, resulting in the MFPS. The MFPS' design evolution, reactor and fuel choices, and system configuration are described. Results of the performance comparison shows that the MFPS minimizes flight time to 60 to 90 days for flights to Mars while allowing continuous return-home capability while at Mars. Total MFPS IMLEO including propellant and payloads is kept to about 1,000 metric tons. 50 refs

  14. A cermet fuel reactor for nuclear thermal propulsion

    Science.gov (United States)

    Kruger, Gordon

    1991-01-01

    Work on the cermet fuel reactor done in the 1960's by General Electric (GE) and the Argonne National Laboratory (ANL) that had as its goal the development of systems that could be used for nuclear rocket propulsion as well as closed cycle propulsion system designs for ship propulsion, space nuclear propulsion, and other propulsion systems is reviewed. It is concluded that the work done in the 1960's has demonstrated that we can have excellent thermal and mechanical performance with cermet fuel. Thousands of hours of testing were performed on the cermet fuel at both GE and AGL, including very rapid transients and some radiation performance history. We conclude that there are no feasibility issues with cermet fuel. What is needed is reactivation of existing technology and qualification testing of a specific fuel form. We believe this can be done with a minimum development risk.

  15. A cermet fuel reactor for nuclear thermal propulsion

    International Nuclear Information System (INIS)

    Kruger, G.

    1991-01-01

    Work on the cermet fuel reactor done in the 1960's by General Electric (GE) and the Argonne National Laboratory (ANL) that had as its goal the development of systems that could be used for nuclear rocket propulsion as well as closed cycle propulsion system designs for ship propulsion, space nuclear propulsion, and other propulsion systems is reviewed. It is concluded that we can have excellent thermal and mechanical performance with cermet fuel. Thousands of hours of testing were performed on the cermet fuel at both GE and AGL, including very rapid transients and some radiation performance history. We conclude that there are no feasibility issues with cermet fuel. What is needed is reactivation of existing technology and qualification testing of a specific fuel form. We believe this can be done with a minimum development risk

  16. Nuclear propulsion for the space exploration initiative

    International Nuclear Information System (INIS)

    Stanley, M.L.

    1991-01-01

    President Bush's speech of July 20, 1989, outlining a goal to go back to the moon and then Mars initiated the Space Exploration Initiative (SEI). The US Department of Defense (DOD), US Department of Energy (DOE), and NASA have been working together in the planning necessary to initiate a program to develop a nuclear propulsion system. Applications of nuclear technology for in-space transfer of personnel and cargo between Earth orbit and lunar or Martian orbit are being considered as alternatives to chemical propulsion systems. Mission and system concept studies conducted over the past 30 yr have consistently indicated that use of nuclear technology can substantially reduce in-space propellant requirements. A variety of nuclear technology options are currently being studied, including nuclear thermal rockets, nuclear electrical propulsion systems, and hybrid nuclear thermal rockets/nuclear electric propulsion concepts. Concept performance in terms of thrust, weight, power, and efficiency are dependent, and appropriate concept application is mission dependent (i.e., lunar, Mars, cargo, personnel, trajectory, transit time, payload). A comprehensive evaluation of mission application, technology performance capability and maturity, technology development programmatics, and safety characteristics is required to optimize both technology and mission selection to support the Presidential initiative

  17. Research Study Towards a MEFFV Electric Armament System

    National Research Council Canada - National Science Library

    Pappas, J

    2004-01-01

    .... One vehicle variant seeks to exploit synergies between electric mobility and electric armament systems by employing a hybrid electric mobility propulsion system and an electric gun for an all Electric MEFFV...

  18. Electricity

    CERN Document Server

    Basford, Leslie

    2013-01-01

    Electricity Made Simple covers the fundamental principles underlying every aspect of electricity. The book discusses current; resistance including its measurement, Kirchhoff's laws, and resistors; electroheat, electromagnetics and electrochemistry; and the motor and generator effects of electromagnetic forces. The text also describes alternating current, circuits and inductors, alternating current circuits, and a.c. generators and motors. Other methods of generating electromagnetic forces are also considered. The book is useful for electrical engineering students.

  19. Mars Hybrid Propulsion System Trajectory Analysis. Part II; Cargo Missions

    Science.gov (United States)

    Chai, Patrick R.; Merrill, Raymond G.; Qu, Min

    2015-01-01

    NASA's Human Spaceflight Architecture Team is developing a reusable hybrid transportation architecture in which both chemical and electric propulsion systems are used to send crew and cargo to Mars destinations such as Phobos, Deimos, the surface of Mars, and other orbits around Mars. By combining chemical and electrical propulsion into a single spaceship and applying each where it is more effective, the hybrid architecture enables a series of Mars trajectories that are more fuel-efficient than an all chemical architecture without significant increases in flight times. This paper shows the feasibility of the hybrid transportation architecture to pre-deploy cargo to Mars and Phobos in support of the Evolvable Mars Campaign crew missions. The analysis shows that the hybrid propulsion stage is able to deliver all of the current manifested payload to Phobos and Mars through the first three crew missions. The conjunction class trajectory also allows the hybrid propulsion stage to return to Earth in a timely fashion so it can be reused for additional cargo deployment. The 1,100 days total trip time allows the hybrid propulsion stage to deliver cargo to Mars every other Earth-Mars transit opportunity. For the first two Mars surface mission in the Evolvable Mars Campaign, the short trip time allows the hybrid propulsion stage to be reused for three round-trip journeys to Mars, which matches the hybrid propulsion stage's designed lifetime for three round-trip crew missions to the Martian sphere of influence.

  20. Hybrid Propulsion Systems for Remotely Piloted Aircraft Systems

    Directory of Open Access Journals (Sweden)

    Mithun Abdul Sathar Eqbal

    2018-03-01

    Full Text Available The development of more efficient propulsion systems for aerospace vehicles is essential to achieve key objectives. These objectives are to increase efficiency while reducing the amount of carbon-based emissions. Hybrid electric propulsion (HEP is an ideal means to maintain the energy density of hydrocarbon-based fuels and utilize energy-efficient electric machines. A system that integrates different propulsion systems into a single system, with one being electric, is termed an HEP system. HEP systems have been studied previously and introduced into Land, Water, and Aerial Vehicles. This work presents research into the use of HEP systems in Remotely Piloted Aircraft Systems (RPAS. The systems discussed in this paper are Internal Combustion Engine (ICE–Electric Hybrid systems, ICE–Photovoltaic (PV Hybrid systems, and Fuel-Cell Hybrid systems. The improved performance characteristics in terms of fuel consumption and endurance are discussed.

  1. Advanced Chemical Propulsion Study

    Science.gov (United States)

    Woodcock, Gordon; Byers, Dave; Alexander, Leslie A.; Krebsbach, Al

    2004-01-01

    A study was performed of advanced chemical propulsion technology application to space science (Code S) missions. The purpose was to begin the process of selecting chemical propulsion technology advancement activities that would provide greatest benefits to Code S missions. Several missions were selected from Code S planning data, and a range of advanced chemical propulsion options was analyzed to assess capabilities and benefits re these missions. Selected beneficial applications were found for higher-performing bipropellants, gelled propellants, and cryogenic propellants. Technology advancement recommendations included cryocoolers and small turbopump engines for cryogenic propellants; space storable propellants such as LOX-hydrazine; and advanced monopropellants. It was noted that fluorine-bearing oxidizers offer performance gains over more benign oxidizers. Potential benefits were observed for gelled propellants that could be allowed to freeze, then thawed for use.

  2. Philosophy for nuclear thermal propulsion

    International Nuclear Information System (INIS)

    Buden, D.; Madsen, W.; Redd, L.

    1993-01-01

    The philosophy used for development of nuclear thermal propulsion will determine the cost, schedule and risk associated with the activities. As important is the impression of the decision makers. If the development cost is higher than the product value, it is doubtful that funding will ever be available. On the other hand, if the development supports the economic welfare of the country with a high rate of return, the probability of funding greatly increases. The philosophy is divided into: realism, design, operations and qualification. ''Realism'' addresses such items as political acceptability, potential customers, robustness-flexibility, public acceptance, decisions as needed, concurrent engineering, and the possible role of the CIS. ''Design'' addresses ''minimum requirement,'' built in safety and reliability redundancy, emphasize on eliminating risk at lowest levels, and the possible inclusion of electric generation. ''Operations'' addresses sately, environment, operations, design margins and degradation modes. ''Qualification'' addresses testing needs and test facilities

  3. Space transportation propulsion USSR launcher technology, 1990

    Science.gov (United States)

    1991-01-01

    Space transportation propulsion U.S.S.R. launcher technology is discussed. The following subject areas are covered: Energia background (launch vehicle summary, Soviet launcher family) and Energia propulsion characteristics (booster propulsion, core propulsion, and growth capability).

  4. Propulsion controlled aircraft computer

    Science.gov (United States)

    Cogan, Bruce R. (Inventor)

    2010-01-01

    A low-cost, easily retrofit Propulsion Controlled Aircraft (PCA) system for use on a wide range of commercial and military aircraft consists of an propulsion controlled aircraft computer that reads in aircraft data including aircraft state, pilot commands and other related data, calculates aircraft throttle position for a given maneuver commanded by the pilot, and then displays both current and calculated throttle position on a cockpit display to show the pilot where to move throttles to achieve the commanded maneuver, or is automatically sent digitally to command the engines directly.

  5. Airbreathing Propulsion An Introduction

    CERN Document Server

    Bose, Tarit

    2012-01-01

    Airbreathing Propulsion covers the physics of combustion, fluid and thermo-dynamics, and structural mechanics of airbreathing engines, including piston, turboprop, turbojet, turbofan, and ramjet engines. End-of-chapter exercises allow the reader to practice the fundamental concepts behind airbreathing propulsion, and the included PAGIC computer code will help the reader to examine the relationships between the performance parameters of different engines. Large amounts of data on many different piston, turbojet, and turboprop engines have been compiled for this book and are included as an appendix. This textbook is ideal for senior undergraduate and graduate students studying aeronautical engineering, aerospace engineering, and mechanical engineering.

  6. Electric-hybrid-vehicle simulation

    Science.gov (United States)

    Pasma, D. C.

    The simulation of electric hybrid vehicles is to be performed using experimental data to model propulsion system components. The performance of an existing ac propulsion system will be used as the baseline for comparative purposes. Hybrid components to be evaluated include electrically and mechanically driven flywheels, and an elastomeric regenerative braking system.

  7. The Potential for Ambient Plasma Wave Propulsion

    Science.gov (United States)

    Gilland, James H.; Williams, George J.

    2016-01-01

    A truly robust space exploration program will need to make use of in-situ resources as much as possible to make the endeavor affordable. Most space propulsion concepts are saddled with one fundamental burden; the propellant needed to produce momentum. The most advanced propulsion systems currently in use utilize electric and/or magnetic fields to accelerate ionized propellant. However, significant planetary exploration missions in the coming decades, such as the now canceled Jupiter Icy Moons Orbiter, are restricted by propellant mass and propulsion system lifetimes, using even the most optimistic projections of performance. These electric propulsion vehicles are inherently limited in flexibility at their final destination, due to propulsion system wear, propellant requirements, and the relatively low acceleration of the vehicle. A few concepts are able to utilize the environment around them to produce thrust: Solar or magnetic sails and, with certain restrictions, electrodynamic tethers. These concepts focus primarily on using the solar wind or ambient magnetic fields to generate thrust. Technically immature, quasi-propellantless alternatives lack either the sensitivity or the power to provide significant maneuvering. An additional resource to be considered is the ambient plasma and magnetic fields in solar and planetary magnetospheres. These environments, such as those around the Sun or Jupiter, have been shown to host a variety of plasma waves. Plasma wave propulsion takes advantage of an observed astrophysical and terrestrial phenomenon: Alfven waves. These are waves that propagate in the plasma and magnetic fields around and between planets and stars. The generation of Alfven waves in ambient magnetic and plasma fields to generate thrust is proposed as a truly propellantless propulsion system which may enable an entirely new matrix of exploration missions. Alfven waves are well known, transverse electromagnetic waves that propagate in magnetized plasmas at

  8. Space Nuclear Thermal Propulsion Test Facilities Subpanel. Final report

    International Nuclear Information System (INIS)

    Allen, G.C.; Warren, J.W.; Martinell, J.; Clark, J.S.; Perkins, D.

    1993-04-01

    On 20 Jul. 1989, in commemoration of the 20th anniversary of the Apollo 11 lunar landing, President George Bush proclaimed his vision for manned space exploration. He stated, 'First for the coming decade, for the 1990's, Space Station Freedom, the next critical step in our space endeavors. And next, for the new century, back to the Moon. Back to the future. And this time, back to stay. And then, a journey into tomorrow, a journey to another planet, a manned mission to Mars.' On 2 Nov. 1989, the President approved a national space policy reaffirming the long range goal of the civil space program: to 'expand human presence and activity beyond Earth orbit into the solar system.' And on 11 May 1990, he specified the goal of landing Astronauts on Mars by 2019, the 50th anniversary of man's first steps on the Moon. To safely and ever permanently venture beyond near Earth environment as charged by the President, mankind must bring to bear extensive new technologies. These include heavy lift launch capability from Earth to low-Earth orbit, automated space rendezvous and docking of large masses, zero gravity countermeasures, and closed loop life support systems. One technology enhancing, and perhaps enabling, the piloted Mars missions is nuclear propulsion, with great benefits over chemical propulsion. Asserting the potential benefits of nuclear propulsion, NASA has sponsored workshops in Nuclear Electric Propulsion and Nuclear Thermal Propulsion and has initiated a tri-agency planning process to ensure that appropriate resources are engaged to meet this exciting technical challenge. At the core of this planning process, NASA, DOE, and DOD established six Nuclear Propulsion Technical Panels in 1991 to provide groundwork for a possible tri-agency Nuclear Propulsion Program and to address the President's vision by advocating an aggressive program in nuclear propulsion. To this end the Nuclear Electric Propulsion Technology Panel has focused it energies

  9. Modeling of Ship Propulsion Performance

    DEFF Research Database (Denmark)

    Pedersen, Benjamin Pjedsted; Larsen, Jan

    2009-01-01

    Full scale measurements of the propulsion power, ship speed, wind speed and direction, sea and air temperature, from four different loading conditions has been used to train a neural network for prediction of propulsion power. The network was able to predict the propulsion power with accuracy...

  10. Advanced propulsion system for hybrid vehicles

    Science.gov (United States)

    Norrup, L. V.; Lintz, A. T.

    1980-01-01

    A number of hybrid propulsion systems were evaluated for application in several different vehicle sizes. A conceptual design was prepared for the most promising configuration. Various system configurations were parametrically evaluated and compared, design tradeoffs performed, and a conceptual design produced. Fifteen vehicle/propulsion systems concepts were parametrically evaluated to select two systems and one vehicle for detailed design tradeoff studies. A single hybrid propulsion system concept and vehicle (five passenger family sedan)were selected for optimization based on the results of the tradeoff studies. The final propulsion system consists of a 65 kW spark-ignition heat engine, a mechanical continuously variable traction transmission, a 20 kW permanent magnet axial-gap traction motor, a variable frequency inverter, a 386 kg lead-acid improved state-of-the-art battery, and a transaxle. The system was configured with a parallel power path between the heat engine and battery. It has two automatic operational modes: electric mode and heat engine mode. Power is always shared between the heat engine and battery during acceleration periods. In both modes, regenerative braking energy is absorbed by the battery.

  11. FY2015 Propulsion Materials Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2016-12-30

    The Propulsion Materials Program actively supports the energy security and reduction of greenhouse emissions goals of VTO by investigating and identifying the materials properties that are most essential for continued development of cost-effective, highly efficient, and environmentally friendly next-generation heavy and light-duty powertrains. The technical approaches available to enhance propulsion systems focus on improvements in both vehicle efficiency and fuel substitution, both of which must overcome the performance limitations of the materials currently in use. Propulsion Materials Program activities work with national laboratories, industry experts, and VTO powertrain systems (e.g., Advanced Combustion Engines [ACE], Advanced Power Electronics and Electrical Machines [APEEM], and fuels) teams to develop strategies that overcome materials limitations in future powertrain performance. The technical maturity of the portfolio of funded projects ranges from basic science to subsystem prototype validation. Projects within a Propulsion Materials Program activity address materials concerns that directly impact critical technology barriers within each of the above programs, including barriers that impact fuel efficiency, thermal management, emissions reduction, improved reliability, and reduced manufacturing costs. The program engages only the barriers that result from material property limitations and represent fundamental, high-risk materials issues.

  12. Turboprop Propulsion Mechanic.

    Science.gov (United States)

    Chanute AFB Technical Training Center, IL.

    This instructional package consists of a plan of instruction, glossary, and student handouts and exercises for use in training Air Force personnel to become turboprop propulsion mechanics. Addressed in the individual lessons of the course are the following: common hand tools, hardware, measuring devices, and safety wiring; aircraft and engine…

  13. Reactors. Nuclear propulsion ships

    International Nuclear Information System (INIS)

    Fribourg, Ch.

    2001-01-01

    This article has for object the development of nuclear-powered ships and the conception of the nuclear-powered ship. The technology of the naval propulsion P.W.R. type reactor is described in the article B.N.3 141 'Nuclear Boilers ships'. (N.C.)

  14. Polar lunar power ring: Propulsion energy resource

    Science.gov (United States)

    Galloway, Graham Scott

    1990-01-01

    A ring shaped grid of photovoltaic solar collectors encircling a lunar pole at 80 to 85 degrees latitude is proposed as the primary research, development, and construction goal for an initial lunar base. The polar Lunar Power Ring (LPR) is designed to provide continuous electrical power in ever increasing amounts as collectors are added to the ring grid. The LPR can provide electricity for any purpose indefinitely, barring a meteor strike. The associated rail infrastructure and inherently expandable power levels place the LPR as an ideal tool to power an innovative propulsion research facility or a trans-Jovian fleet. The proposed initial output range is 90 Mw to 90 Gw.

  15. Comparison of Aero-Propulsive Performance Predictions for Distributed Propulsion Configurations

    Science.gov (United States)

    Borer, Nicholas K.; Derlaga, Joseph M.; Deere, Karen A.; Carter, Melissa B.; Viken, Sally A.; Patterson, Michael D.; Litherland, Brandon L.; Stoll, Alex M.

    2017-01-01

    NASA's X-57 "Maxwell" flight demonstrator incorporates distributed electric propulsion technologies in a design that will achieve a significant reduction in energy used in cruise flight. A substantial portion of these energy savings come from beneficial aerodynamic-propulsion interaction. Previous research has shown the benefits of particular instantiations of distributed propulsion, such as the use of wingtip-mounted cruise propellers and leading edge high-lift propellers. However, these benefits have not been reduced to a generalized design or analysis approach suitable for large-scale design exploration. This paper discusses the rapid, "design-order" toolchains developed to investigate the large, complex tradespace of candidate geometries for the X-57. Due to the lack of an appropriate, rigorous set of validation data, the results of these tools were compared to three different computational flow solvers for selected wing and propulsion geometries. The comparisons were conducted using a common input geometry, but otherwise different input grids and, when appropriate, different flow assumptions to bound the comparisons. The results of these studies showed that the X-57 distributed propulsion wing should be able to meet the as-designed performance in cruise flight, while also meeting or exceeding targets for high-lift generation in low-speed flight.

  16. Fusion propulsion systems

    International Nuclear Information System (INIS)

    Haloulakos, V.E.; Bourque, R.F.

    1989-01-01

    The continuing and expanding national efforts in both the military and commercial sectors for exploration and utilization of space will require launch, assembly in space, and orbital transfer of large payloads. The currently available delivery systems, utilizing various forms of chemical propulsion, do not have the payload capacity to fulfill the planned missions. National planning documents such as Air Force Project Forecast II and the National Commission on Space Report to the President contain numerous missions and payload delivery schedules that are beyond the present capabilities of the available systems, such as the Space Shuttle and the Expendable Launch Vehicles (ELVs). The need, therefore, is very pressing to design, develop, and deploy propulsion systems that offer a quantum level increase in delivered performance. One such potential system is fusion propulsion. This paper summarizes the result of an Air Force Astronautics Laboratory (AFAL) sponsored study of fusion propulsion conducted by the McDonnell Douglas Astronautics Company (MDAC), and its subcontractor General Atomics This study explored the potential of fusion propulsion for Air Force missions. Fusion fuels and existing confinement concepts were evaluated according to elaborate criteria. Two fuels, deuterium-tritium and deuterium-helium 3 (D- 3 He) were considered worthy of further consideration. D- 3 He was selected as the most attractive for this Air Force study. The colliding translating compact torus confinement concept was evaluated in depth and found to possibly possess the low mass and compactness required. Another possible concept is inertial confinement with the propellant surrounding the target. 5 refs., 5 figs., 8 tabs

  17. Nuclear propulsion technology development - A joint NASA/Department of Energy project

    Science.gov (United States)

    Clark, John S.

    1992-01-01

    NASA-Lewis has undertaken the conceptual development of spacecraft nuclear propulsion systems with DOE support, in order to establish the bases for Space Exploration Initiative lunar and Mars missions. This conceptual evolution project encompasses nuclear thermal propulsion (NTP) and nuclear electric propulsion (NEP) systems. A technology base exists for NTP in the NERVA program files; more fundamental development efforts are entailed in the case of NEP, but this option is noted to offer greater advantages in the long term.

  18. Rocket propulsion elements - An introduction to the engineering of rockets (6th revised and enlarged edition)

    Science.gov (United States)

    Sutton, George P.

    The subject of rocket propulsion is treated with emphasis on the basic technology, performance, and design rationale. Attention is given to definitions and fundamentals, nozzle theory and thermodynamic relations, heat transfer, flight performance, chemical rocket propellant performance analysis, and liquid propellant rocket engine fundamentals. The discussion also covers solid propellant rocket fundamentals, hybrid propellant rockets, thrust vector control, selection of rocket propulsion systems, electric propulsion, and rocket testing.

  19. Multipole superconducting electric motors for ship propulsion

    International Nuclear Information System (INIS)

    Thullen, P.; Keim, T.A.; Minervini, J.V.

    1975-01-01

    While a great deal of attention has been paid to two-pole superconducting synchronous machines, very little analysis of low speed, multipole superconducting synchronous machines has been done. Such machines may prove desirable as drive motors in ship drive systems. Results are presented of an analysis which assumes a motor of sufficient size that the airgap may be considered to be flat. A power output expression is given which shows the effects of machine geometry and superconductor characteristics on machine size. Based on this expression, a 40,000 hp 120 rpm motor is sized, and the resulting machine is compared with a conventional ship drive motor. The comparison illustrates possible size reductions through the application of superconductivity

  20. The NASA In-Space Propulsion Technology Project, Products, and Mission Applicability

    Science.gov (United States)

    Anderson, David J.; Pencil, Eric; Liou, Larry; Dankanich, John; Munk, Michelle M.; Kremic, Tibor

    2009-01-01

    The In-Space Propulsion Technology (ISPT) Project, funded by NASA s Science Mission Directorate (SMD), is continuing to invest in propulsion technologies that will enable or enhance NASA robotic science missions. This overview provides development status, near-term mission benefits, applicability, and availability of in-space propulsion technologies in the areas of aerocapture, electric propulsion, advanced chemical thrusters, and systems analysis tools. Aerocapture investments improved: guidance, navigation, and control models of blunt-body rigid aeroshells; atmospheric models for Earth, Titan, Mars, and Venus; and models for aerothermal effects. Investments in electric propulsion technologies focused on completing NASA s Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6 to 7 kW throttle-able gridded ion system. The project is also concluding its High Voltage Hall Accelerator (HiVHAC) mid-term product specifically designed for a low-cost electric propulsion option. The primary chemical propulsion investment is on the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance for lower cost. The project is also delivering products to assist technology infusion and quantify mission applicability and benefits through mission analysis and tools. In-space propulsion technologies are applicable, and potentially enabling for flagship destinations currently under evaluation, as well as having broad applicability to future Discovery and New Frontiers mission solicitations.

  1. CFD for hypersonic propulsion

    Science.gov (United States)

    Povinelli, Louis A.

    1991-01-01

    An overview is given of research activity on the application of computational fluid dynamics (CDF) for hypersonic propulsion systems. After the initial consideration of the highly integrated nature of air-breathing hypersonic engines and airframe, attention is directed toward computations carried out for the components of the engine. A generic inlet configuration is considered in order to demonstrate the highly three dimensional viscous flow behavior occurring within rectangular inlets. Reacting flow computations for simple jet injection as well as for more complex combustion chambers are then discussed in order to show the capability of viscous finite rate chemical reaction computer simulations. Finally, the nozzle flow fields are demonstrated, showing the existence of complex shear layers and shock structure in the exhaust plume. The general issues associated with code validation as well as the specific issue associated with the use of CFD for design are discussed. A prognosis for the success of CFD in the design of future propulsion systems is offered.

  2. Hydrodynamics of Peristaltic Propulsion

    Science.gov (United States)

    Athanassiadis, Athanasios; Hart, Douglas

    2014-11-01

    A curious class of animals called salps live in marine environments and self-propel by ejecting vortex rings much like jellyfish and squid. However, unlike other jetting creatures that siphon and eject water from one side of their body, salps produce vortex rings by pumping water through siphons on opposite ends of their hollow cylindrical bodies. In the simplest cases, it seems like some species of salp can successfully move by contracting just two siphons connected by an elastic body. When thought of as a chain of timed contractions, salp propulsion is reminiscent of peristaltic pumping applied to marine locomotion. Inspired by salps, we investigate the hydrodynamics of peristaltic propulsion, focusing on the scaling relationships that determine flow rate, thrust production, and energy usage in a model system. We discuss possible actuation methods for a model peristaltic vehicle, considering both the material and geometrical requirements for such a system.

  3. Fluidic electrodynamics: Approach to electromagnetic propulsion

    International Nuclear Information System (INIS)

    Martins, Alexandre A.; Pinheiro, Mario J.

    2009-01-01

    We report on a new methodological approach to electrodynamics based on a fluidic viewpoint. We develop a systematic approach establishing analogies between physical magnitudes and isomorphism (structure-preserving mappings) between systems of equations. This methodological approach allows us to give a general expression for the hydromotive force, thus re-obtaining the Navier-Stokes equation departing from the appropriate electromotive force. From this ground we offer a fluidic approach to different kinds of issues with interest in propulsion, e.g., the force exerted by a charged particle on a body carrying current; the magnetic force between two parallel currents; the Magnus's force. It is shown how the intermingle between the fluid vector fields and electromagnetic fields leads to new insights on their dynamics. The new concepts introduced in this work suggest possible applications to electromagnetic (EM) propulsion devices and the mastery of the principles of producing electric fields of required configuration in plasma medium.

  4. Electricity

    International Nuclear Information System (INIS)

    Tombs, F.

    1983-01-01

    The subject is discussed, with particular reference to the electricity industry in the United Kingdom, under the headings; importance and scope of the industry's work; future fuel supplies (estimated indigenous fossil fuels reserves); outlook for UK energy supplies; problems of future generating capacity and fuel mix (energy policy; construction programme; economics and pricing; contribution of nuclear power - thermal and fast reactors; problems of conversion of oil-burning to coal-burning plant). (U.K.)

  5. Why Density Dependent Propulsion?

    Science.gov (United States)

    Robertson, Glen A.

    2011-01-01

    In 2004 Khoury and Weltman produced a density dependent cosmology theory they call the Chameleon, as at its nature, it is hidden within known physics. The Chameleon theory has implications to dark matter/energy with universe acceleration properties, which implies a new force mechanism with ties to the far and local density environment. In this paper, the Chameleon Density Model is discussed in terms of propulsion toward new propellant-less engineering methods.

  6. Recent Advances in Airframe-Propulsion Concepts with Distributed Propulsion

    OpenAIRE

    Isikveren , A.T.; Seitz , A.; Bijewitz , J.; Hornung , M.; Mirzoyan , A.; Isyanov , A.; Godard , J.L.; Stückl , S.; Van Toor , J.

    2014-01-01

    International audience; This paper discusses design and integration associated with distributed propulsion as a means of providing motive power for future aircraft concepts. The technical work reflects activities performed within a European Commission funded Framework 7 project entitled Distributed Propulsion and Ultra-high By-Pass Rotor Study at Aircraft Level, or, DisPURSAL. In this instance, the approach of distributed propulsion includes one unique solution that integrates the fuselage wi...

  7. A Review on the Faults of Electric Machines Used in Electric Ships

    OpenAIRE

    Dionysios V. Spyropoulos; Epaminondas D. Mitronikas

    2013-01-01

    Electric propulsion systems are today widely applied in modern ships, including transport ships and warships. The ship of the future will be fully electric, and not only its propulsion system but also all the other services will depend on electric power. The robust and reliable operation of the ship’s power system is essential. In this work, a review on the mechanical and electrical faults of electric machines that are used in electric ships is presented.

  8. Steady State Thermal Analyses of SCEPTOR X-57 Wingtip Propulsion

    Science.gov (United States)

    Schnulo, Sydney L.; Chin, Jeffrey C.; Smith, Andrew D.; Dubois, Arthur

    2017-01-01

    Electric aircraft concepts enable advanced propulsion airframe integration approaches that promise increased efficiency as well as reduced emissions and noise. NASA's fully electric Maxwell X-57, developed under the SCEPTOR program, features distributed propulsion across a high aspect ratio wing. There are 14 propulsors in all: 12 high lift motor that are only active during take off and climb, and 2 larger motors positioned on the wingtips that operate over the entire mission. The power electronics involved in the wingtip propulsion are temperature sensitive and therefore require thermal management. This work focuses on the high and low fidelity heat transfer analysis methods performed to ensure that the wingtip motor inverters do not reach their temperature limits. It also explores different geometry configurations involved in the X-57 development and any thermal concerns. All analyses presented are performed at steady state under stressful operating conditions, therefore predicting temperatures which are considered the worst-case scenario to remain conservative.

  9. NASA Fixed Wing Project Propulsion Research and Technology Development Activities to Reduce Thrust Specific Energy Consumption

    Science.gov (United States)

    Hathaway, Michael D.; DelRasario, Ruben; Madavan, Nateri K.

    2013-01-01

    This paper presents an overview of the propulsion research and technology portfolio of NASA Fundamental Aeronautics Program Fixed Wing Project. The research is aimed at significantly reducing the thrust specific fuel/energy consumption of notional advanced fixed wing aircraft (by 60 % relative to a baseline Boeing 737-800 aircraft with CFM56-7B engines) in the 2030-2035 time frame. The research investments described herein are aimed at improving propulsive efficiency through higher bypass ratio fans, improving thermal efficiency through compact high overall pressure ratio gas generators, and exploring the potential benefits of boundary layer ingestion propulsion and hybrid gas-electric propulsion concepts.

  10. Nuclear rocket propulsion

    International Nuclear Information System (INIS)

    Clark, J.S.; Miller, T.J.

    1991-01-01

    NASA has initiated planning for a technology development project for nuclear rocket propulsion systems for Space Exploration Initiative (SEI) human and robotic missions to the Moon and to Mars. An Interagency project is underway that includes the Department of Energy National Laboratories for nuclear technology development. This paper summarizes the activities of the project planning team in FY 1990 and FY 1991, discusses the progress to date, and reviews the project plan. Critical technology issues have been identified and include: nuclear fuel temperature, life, and reliability; nuclear system ground test; safety; autonomous system operation and health monitoring; minimum mass and high specific impulse

  11. Nuclear propulsion systems engineering

    International Nuclear Information System (INIS)

    Madsen, W.W.; Neuman, J.E.: Van Haaften, D.H.

    1992-01-01

    The Nuclear Energy for Rocket Vehicle Application (NERVA) program of the 1960's and early 1970's was dramatically successful, with no major failures during the entire testing program. This success was due in large part to the successful development of a systems engineering process. Systems engineering, properly implemented, involves all aspects of the system design and operation, and leads to optimization of theentire system: cost, schedule, performance, safety, reliability, function, requirements, etc. The process must be incorporated from the very first and continued to project completion. This paper will discuss major aspects of the NERVA systems engineering effort, and consider the implications for current nuclear propulsion efforts

  12. Advanced hybrid vehicle propulsion system study

    Science.gov (United States)

    Schwarz, R.

    1982-01-01

    Results are presented of a study of an advanced heat engine/electric automotive hybrid propulsion system. The system uses a rotary stratified charge engine and ac motor/controller in a parallel hybrid configuration. The three tasks of the study were (1) parametric studies involving five different vehicle types, (2) design trade-off studies to determine the influence of various vehicle and propulsion system paramaters on system performance fuel economy and cost, and (3) a conceptual design establishing feasibility at the selected approach. Energy consumption for the selected system was .034 1/km (61.3 mpg) for the heat engine and .221 kWh/km (.356 kWh/mi) for the electric power system over a modified J227 a schedule D driving cycle. Life cycle costs were 7.13 cents/km (11.5 cents/mi) at $2/gal gasoline and 7 cents/kWh electricity for 160,000 km (100,000 mi) life.

  13. Legal Implications of Nuclear Propulsion for Space Objects

    Science.gov (United States)

    Pop, V.

    2002-01-01

    This paper is intended to examine nuclear propulsion concepts such as "Project Orion", "Project Daedalus", NERVA, VASIMIR, from the legal point of view. The UN Principles Relevant to the Use of Nuclear Power Sources in Outer Space apply to nuclear power sources in outer space devoted to the generation of electric power on board space objects for non-propulsive purposes, and do not regulate the use of nuclear energy as a means of propulsion. However, nuclear propulsion by means of detonating atomic bombs (ORION) is, in principle, banned under the 1963 Treaty Banning Nuclear Weapon Tests in the Atmosphere, in Outer Space, and Under Water. The legality of use of nuclear propulsion will be analysed from different approaches - historical (i.e. the lawfulness of these projects at the time of their proposal, at the present time, and in the future - in the light of the mutability and evolution of international law), spatial (i.e. the legal regime governing peaceful nuclear explosions in different spatial zones - Earth atmosphere, Earth orbit, Solar System, and interstellar space), and technical (i.e, the legal regime applicable to different nuclear propulsion techniques, and to the various negative effects - e.g. damage to other space systems as an effect of the electromagnetic pulse, etc). The paper will analyse the positive law, and will also come with suggestions "de lege ferenda".

  14. Direct Energy Conversion for Nuclear Propulsion at Low Specific Mass Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Low specific mass (< 3  kg/kW) in-space electric power and propulsion can drastically alter the paradigm for exploration of the Solar System, changing human...

  15. Superconducting Materials Applied to EP Systems: Applications of Superconductivity to Hall Thrusters Propulsion

    National Research Council Canada - National Science Library

    Bruno, Claudio

    2001-01-01

    This report results from a contract tasking University of Rome as follows: The contractor will investigate the use of superconducting materials for use in high power hall effect type electric propulsion motors...

  16. Effect of Ambipolar Potential on the Propulsive Performance of the GDM Plasma Thruster, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The Gasdynamic Mirror (GDM) thruster is an electric propulsion device, without electrodes, that will magnetically confine a plasma with such density and temperature...

  17. Energy management and sizing of fuel cell hybrid propulsion systems

    NARCIS (Netherlands)

    Tazelaar, E.

    2013-01-01

    Our dependency on road transportation of people and goods is huge. Unfortunately, this transportation is mainly fed by fossil fuels, with as accompanying disadvantages undesired local and global emissions and politically less desired dependencies. Electric propulsion systems can help to cover the

  18. Advanced propulsion system concept for hybrid vehicles

    Science.gov (United States)

    Bhate, S.; Chen, H.; Dochat, G.

    1980-01-01

    A series hybrid system, utilizing a free piston Stirling engine with a linear alternator, and a parallel hybrid system, incorporating a kinematic Stirling engine, are analyzed for various specified reference missions/vehicles ranging from a small two passenger commuter vehicle to a van. Parametric studies for each configuration, detail tradeoff studies to determine engine, battery and system definition, short term energy storage evaluation, and detail life cycle cost studies were performed. Results indicate that the selection of a parallel Stirling engine/electric, hybrid propulsion system can significantly reduce petroleum consumption by 70 percent over present conventional vehicles.

  19. Experimental approach of plasma supersonic expansion physics and of Hall effect propulsion systems

    International Nuclear Information System (INIS)

    Mazouffre, Stephane

    2009-01-01

    This report for accreditation to supervise research (HDR) proposes a synthesis of scientific and research works performed by the author during about ten years. Thus, a first part addresses studies on plasma rarefied supersonic flows: expansion through a sonic hole and through a Laval nozzle. The next part addresses the study of plasma propulsion for spacecraft, and more particularly electric propulsion based on the Hall effect: phenomena of ionic and atomic transport, characteristics of the electric field, energy deposition on walls, basic scale laws, related works, hybrid Hall-RF propulsion systems. The third part presents perspectives and projects related to propulsion by Hall effect (research topics, planned researches, a European project on high power, hybrid Hall-RF propulsion) and to ions-ions plasma (the PEGASES concept, the NExET test installation, RF source of negative ions and magnetic trap)

  20. Monofilament Vaporization Propulsion (MVP) System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Monofilament Vaporization Propulsion (MVP) is a new propulsion technology targeted at secondary payload applications. It does not compromise on performance while...

  1. Hybrid and Electric Advanced Vehicle Systems Simulation

    Science.gov (United States)

    Beach, R. F.; Hammond, R. A.; Mcgehee, R. K.

    1985-01-01

    Predefined components connected to represent wide variety of propulsion systems. Hybrid and Electric Advanced Vehicle System (HEAVY) computer program is flexible tool for evaluating performance and cost of electric and hybrid vehicle propulsion systems. Allows designer to quickly, conveniently, and economically predict performance of proposed drive train.

  2. Magnetohydrodynamic Augmented Propulsion Experiment

    Science.gov (United States)

    Litchford, Ron J.; Cole, John; Lineberry, John; Chapman, Jim; Schmidt, Harold; Cook, Stephen (Technical Monitor)

    2002-01-01

    A fundamental obstacle to routine space access is the specific energy limitations associated with chemical fuels. In the case of vertical take-off, the high thrust needed for vertical liftoff and acceleration to orbit translates into power levels in the 10 GW range. Furthermore, useful payload mass fractions are possible only if the exhaust particle energy (i.e., exhaust velocity) is much greater than that available with traditional chemical propulsion. The electronic binding energy released by the best chemical reactions (e.g., LOX/LH2 for example, is less than 2 eV per product molecule (approx. 1.8 eV per H2O molecule), which translates into particle velocities less than 5 km/s. Useful payload fractions, however, will require exhaust velocities exceeding 15 km/s (i.e., particle energies greater than 20 eV). As an added challenge, the envisioned hypothetical RLV (reusable launch vehicle) should accomplish these amazing performance feats while providing relatively low acceleration levels to orbit (2-3g maximum). From such fundamental considerations, it is painfully obvious that planned and current RLV solutions based on chemical fuels alone represent only a temporary solution and can only result in minor gains, at best. What is truly needed is a revolutionary approach that will dramatically reduce the amount of fuel and size of the launch vehicle. This implies the need for new compact high-power energy sources as well as advanced accelerator technologies for increasing engine exhaust velocity. Electromagnetic acceleration techniques are of immense interest since they can be used to circumvent the thermal limits associated with conventional propulsion systems. This paper describes the Magnetohydrodynamic Augmented Propulsion Experiment (MAPX) being undertaken at NASA Marshall Space Flight Center (MSFC). In this experiment, a 1-MW arc heater is being used as a feeder for a 1-MW magnetohydrodynamic (MHD) accelerator. The purpose of the experiment is to demonstrate

  3. Production and use of metals and oxygen for lunar propulsion

    Science.gov (United States)

    Hepp, Aloysius F.; Linne, Diane L.; Groth, Mary F.; Landis, Geoffrey A.; Colvin, James E.

    1991-01-01

    Production, power, and propulsion technologies for using oxygen and metals derived from lunar resources are discussed. The production process is described, and several of the more developed processes are discussed. Power requirements for chemical, thermal, and electrical production methods are compared. The discussion includes potential impact of ongoing power technology programs on lunar production requirements. The performance potential of several possible metal fuels including aluminum, silicon, iron, and titanium are compared. Space propulsion technology in the area of metal/oxygen rocket engines is discussed.

  4. Status and Mission Applicability of NASA's In-Space Propulsion Technology Project

    Science.gov (United States)

    Anderson, David J.; Munk, Michelle M.; Dankanich, John; Pencil, Eric; Liou, Larry

    2009-01-01

    The In-Space Propulsion Technology (ISPT) project develops propulsion technologies that will enable or enhance NASA robotic science missions. Since 2001, the ISPT project developed and delivered products to assist technology infusion and quantify mission applicability and benefits through mission analysis and tools. These in-space propulsion technologies are applicable, and potentially enabling for flagship destinations currently under evaluation, as well as having broad applicability to future Discovery and New Frontiers mission solicitations. This paper provides status of the technology development, near-term mission benefits, applicability, and availability of in-space propulsion technologies in the areas of advanced chemical thrusters, electric propulsion, aerocapture, and systems analysis tools. The current chemical propulsion investment is on the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance for lower cost. Investments in electric propulsion technologies focused on completing NASA's Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system, and the High Voltage Hall Accelerator (HiVHAC) thruster, which is a mid-term product specifically designed for a low-cost electric propulsion option. Aerocapture investments developed a family of thermal protections system materials and structures; guidance, navigation, and control models of blunt-body rigid aeroshells; atmospheric models for Earth, Titan, Mars and Venus; and models for aerothermal effects. In 2009 ISPT started the development of propulsion technologies that would enable future sample return missions. The paper describes the ISPT project's future focus on propulsion for sample return missions. The future technology development areas for ISPT is: Planetary Ascent Vehicles (PAV), with a Mars Ascent Vehicle (MAV) being the initial development focus; multi-mission technologies for Earth Entry Vehicles (MMEEV) needed

  5. Electric Aircraft Systems Technology Development

    Data.gov (United States)

    National Aeronautics and Space Administration — This project looks at multiple manned/unmanned full-scale/sub-scale flying research prototypes that will lead to the integration of electric propulsion technology on...

  6. VIII international electric vehicle symposium

    Energy Technology Data Exchange (ETDEWEB)

    1986-01-01

    The proceedings from the symposium are presented. Major topics discussed include: battery technology, powertrains; hybrid vehicles, marketing and economics, propulsion, and electric vehicle design and performance. Each paper has been separately indexed for inclusion in the Energy Data Base.

  7. The Economics of Advanced In-Space Propulsion

    Science.gov (United States)

    Bangalore, Manju; Dankanich, John

    2016-01-01

    The cost of access to space is the single biggest driver is commercial space sector. NASA continues to invest in both launch technology and in-space propulsion. Low-cost launch systems combined with advanced in-space propulsion offer the greatest potential market capture. Launch market capture is critical to national security and has a significant impact on domestic space sector revenue. NASA typically focuses on pushing the limits on performance. However, the commercial market is driven by maximum net revenue (profits). In order to maximum the infusion of NASA investments, the impact on net revenue must be known. As demonstrated by Boeing's dual launch, the Falcon 9 combined with all Electric Propulsion (EP) can dramatically shift the launch market from foreign to domestic providers.

  8. Overview of NASA Iodine Hall Thruster Propulsion System Development

    Science.gov (United States)

    Smith, Timothy D.; Kamhawi, Hani; Hickman, Tyler; Haag, Thomas; Dankanich, John; Polzin, Kurt; Byrne, Lawrence; Szabo, James

    2016-01-01

    NASA is continuing to invest in advancing Hall thruster technologies for implementation in commercial and government missions. The most recent focus has been on increasing the power level for large-scale exploration applications. However, there has also been a similar push to examine applications of electric propulsion for small spacecraft in the range of 300 kg or less. There have been several recent iodine Hall propulsion system development activities performed by the team of the NASA Glenn Research Center, the NASA Marshall Space Flight Center, and Busek Co. Inc. In particular, the work focused on qualification of the Busek 200-W BHT-200-I and development of the 600-W BHT-600-I systems. This paper discusses the current status of iodine Hall propulsion system developments along with supporting technology development efforts.

  9. Analysis of Engine Propeller Matching of DC Motor as a Main Propulsion

    Directory of Open Access Journals (Sweden)

    Eddy Setyo Koenhardono

    2017-12-01

    Full Text Available The development of ship always searches through the most benefits system for reducing costs of propulsion system without increase pollution. Diesel propulsion system or also known as conventional propulsion system is efficient but requires high operating costs and increase high level of marine pollution. Electrical propulsion system is using electric motors as the prime mover of the propeller. There are 2 types of electric motors that will be used for research of electric propulsion system, there are; DC motors and three-phases induction motor. As the use of DC motor as a prime mover for this electrical propulsion system, this study determines the characteristic between voltage terminal with torque and also field current with torque. It results that torque produced by the DC motor is in the same magnitude with the speed (RPM. The higher the speed have shaped the value of the torque. The input and terminal voltages adjusts all variables and results. In this study, different field voltage creates different pattern of motor envelope. Its manner to propeller curve occurs total different results. With field voltage of 50 V, the ranges of motor envelope immoveable in the point of 150% of present speed and 160%. While field voltage of 60 V serves larger ranges of motor envelope which possible to reach further than 50 V curve.

  10. Revolutionary Aeropropulsion Concept for Sustainable Aviation: Turboelectric Distributed Propulsion

    Science.gov (United States)

    Kim, Hyun Dae; Felder, James L.; Tong, Michael. T.; Armstrong, Michael

    2013-01-01

    In response to growing aviation demands and concerns about the environment and energy usage, a team at NASA proposed and examined a revolutionary aeropropulsion concept, a turboelectric distributed propulsion system, which employs multiple electric motor-driven propulsors that are distributed on a large transport vehicle. The power to drive these electric propulsors is generated by separately located gas-turbine-driven electric generators on the airframe. This arrangement enables the use of many small-distributed propulsors, allowing a very high effective bypass ratio, while retaining the superior efficiency of large core engines, which are physically separated but connected to the propulsors through electric power lines. Because of the physical separation of propulsors from power generating devices, a new class of vehicles with unprecedented performance employing such revolutionary propulsion system is possible in vehicle design. One such vehicle currently being investigated by NASA is called the "N3-X" that uses a hybrid-wing-body for an airframe and superconducting generators, motors, and transmission lines for its propulsion system. On the N3-X these new degrees of design freedom are used (1) to place two large turboshaft engines driving generators in freestream conditions to minimize total pressure losses and (2) to embed a broad continuous array of 14 motor-driven fans on the upper surface of the aircraft near the trailing edge of the hybrid-wing-body airframe to maximize propulsive efficiency by ingesting thick airframe boundary layer flow. Through a system analysis in engine cycle and weight estimation, it was determined that the N3-X would be able to achieve a reduction of 70% or 72% (depending on the cooling system) in energy usage relative to the reference aircraft, a Boeing 777-200LR. Since the high-power electric system is used in its propulsion system, a study of the electric power distribution system was performed to identify critical dynamic and

  11. The Enabling Use of Ion Propulsion on Dawn

    Science.gov (United States)

    Rayman, M.; Russell, C. T.; Raymond, C. A.; Mase, R. M.

    2011-12-01

    Dawn's mission to orbit both Vesta and Ceres is enabled by its use of ion propulsion. Even orbiting Vesta alone with conventional propulsion would have been unaffordable within the constraints of the Discovery Program, and orbiting both would have been impossible. In fact, no other spacecraft has been targeted to orbit two solar system destinations, which is only one of the many firsts that Dawn will achieve. The successful testing of ion propulsion on Deep Space 1 paved the way for Dawn not only to use the hardware with confidence but also to learn how to design the flight system and design the mission to take advantage of its capabilities. In addition to allowing Dawn to reach these two important targets, ion propulsion allows the spacecraft to accomplish significant changes in its orbit. Therefore, science observations of Vesta are planned from four different orbits, at varying altitudes and solar geometry. The use of ion propulsion results in a significant mission design effort since the trajectory is constantly being refined. This also creates a flexible mission architecture, which allows for optimization of the mission as conditions change. Solar electric ion propulsion is especially well suited to missions to the Main Asteroid Belt since solar energy is still a viable power source, whereas the size of the solar array needed beyond 3.5 AU is a potential limitation. Dawn has already surpassed the record for greatest propulsive velocity, but its greatest achievements will no doubt be the incredible bounty of science data enabled by this innovative flight system.

  12. Integrated propulsion for near-Earth space missions. Volume 1: Executive summary

    Science.gov (United States)

    Dailey, C. L.; Meissinger, H. F.; Lovberg, R. H.; Zafran, S.

    1981-01-01

    Tradeoffs between electric propulsion system mass ratio and transfer time from LEO to GEO were conducted parametrically for various thruster efficiency, specific impulse, and other propulsion parameters. A computer model was developed for performing orbit transfer calculations which included the effects of aerodynamic drag, radiation degradation, and occultation. The tradeoff results showed that thruster technology areas for integrated propulsion should be directed towards improving primary thruster efficiency in the range from 1500 to 2500 seconds, and be continued towards reducing specific mass. Comparison of auxiliary propulsion systems showed large total propellant mass savings with integrated electric auxiliary propulsion. Stationkeeping is the most demanding on orbit propulsion requirement. At area densities above 0.5 sq m/kg, East-West stationkeeping requirements from solar pressure exceed North-South stationkeeping requirements from gravitational forces. A solar array pointing strategy was developed to minimize the effects of atmospheric drag at low altitude, enabling electric propulsion to initiate orbit transfer at Shuttle's maximum cargo carrying altitude. Gravity gradient torques are used during ascent to sustain the spacecraft roll motion required for optimum solar array illumination. A near optimum cover glass thickness of 6 mils was established for LEO to GEO transfer.

  13. Development of Cubesat Propulsion Systems

    Data.gov (United States)

    National Aeronautics and Space Administration — The overall objective of this IRAD will be to develop a propulsion system that can be cheaply and reliably used for NASA GSFC cubesat missions. Reliability will be...

  14. Propulsion Systems Laboratory, Bldg. 125

    Data.gov (United States)

    Federal Laboratory Consortium — The Propulsion Systems Laboratory (PSL) is NASAs only ground test facility capable of providing true altitude and flight speed simulation for testing full scale gas...

  15. Semi-Tandem Electric Distributed Wing Zip Aviation Advanced Concept

    Data.gov (United States)

    National Aeronautics and Space Administration — This project aims to develop a unique distributed electric propulsion approach that provides breakthrough capability improvements across conventional take-off and...

  16. Mars mission performance enhancement with hybrid nuclear propulsion

    Energy Technology Data Exchange (ETDEWEB)

    Dagle, J. E. [Pacific Northwest Lab., Richland, WA (United States); Noffsinger, K. E. [Pacific Northwest Lab., Richland, WA (United States); Segna, D. R. [USDOE Richland Operations Office, WA (United States)

    1992-01-01

    Nuclear electric propulsion (NEP), compared with chemical and nuclear thermal propulsion (NTP), can effectively deliver the same mass to Mars using much less propellant, consequently requiring less mass delivered to Earth orbit. The lower thrust of NEP requires a spiral trajectory near planetary bodies, which significantly increases the travel time. Although the total travel time is long, the portion of the flight time spent during interplanetary transfer is shorter, because the vehicle is thrusting for much longer periods of time. This has led to the supposition that NEP, although very attractive for cargo missions, is not suitable for piloted missions to Mars. However, with the application of a hybrid application of a hybrid approach to propulsion, the benefits of NEP can be utilized while drastically reducing the overall travel time required. Development of a dual-mode system, which utilizes high-thrust NTP to propel the spacecraft from the planetary gravitational influence and low-thrust NEP to accelerate in interplanetary space, eliminates the spiral trajectory and results in a much faster transit time than could be obtained by either NEP or NTP alone. This results in a mission profile with a lower initial mass in low Earth orbit. In addition, the propulsion system would have the capability to provide electrical power for mission applications.

  17. The Gasdynamic Mirror Fusion Propulsion System -- Revisited

    International Nuclear Information System (INIS)

    Kammash, Terry; Tang, Ricky

    2005-01-01

    Many of the previous studies assessing the capability of the gasdynamic mirror (GDM) fusion propulsion system employed analyses that ignored the 'ambipolar' potential. This electrostatic potential arises as a result of the rapid escape of the electrons due to their small mass. As they escape, they leave behind an excess positive charge which manifests itself in an electric field that slows down the electrons while speeding up the ions until their respective axial diffusions are equalized. The indirect effect on the ions is that their confinement time is reduced relative to that of zero potential, and hence the plasma length must be increased to accommodate that change. But as they emerge from the thruster mirror - which serves as a magnetic nozzle - the ions acquire an added energy equal to that of the potential energy, and that in turn manifests itself in increased specific impulse and thrust. We assess the propulsive performance of the GDM thruster, based on the more rigorous theory, by applying it to a round trip Mars mission employing a continuous burn acceleration/deceleration type of trajectory. We find that the length of the device and travel time decrease with increasing plasma density, while the total vehicle mass reaches a minimum at a plasma density of 3 x 1016 cm-3. At such a density, and an initial DT ion temperature of 10 keV, a travel time of 60 days is found to be achievable at GDM propulsion parameters of about 200,000 seconds of specific impulse and approximately 47 kN of thrust

  18. Microwave Thermal Propulsion

    Science.gov (United States)

    Parkin, Kevin L. G.; Lambot, Thomas

    2017-01-01

    We have conducted research in microwave thermal propulsion as part of the space exploration access technologies (SEAT) research program, a cooperative agreement (NNX09AF52A) between NASA and Carnegie Mellon University. The SEAT program commenced on the 19th of February 2009 and concluded on the 30th of September 2015. The DARPA/NASA Millimeter-wave Thermal Launch System (MTLS) project subsumed the SEAT program from May 2012 to March 2014 and one of us (Parkin) served as its principal investigator and chief engineer. The MTLS project had no final report of its own, so we have included the MTLS work in this report and incorporate its conclusions here. In the six years from 2009 until 2015 there has been significant progress in millimeter-wave thermal rocketry (a subset of microwave thermal rocketry), most of which has been made under the auspices of the SEAT and MTLS programs. This final report is intended for multiple audiences. For researchers, we present techniques that we have developed to simplify and quantify the performance of thermal rockets and their constituent technologies. For program managers, we detail the facilities that we have built and the outcomes of experiments that were conducted using them. We also include incomplete and unfruitful lines of research. For decision-makers, we introduce the millimeter-wave thermal rocket in historical context. Considering the economic significance of space launch, we present a brief but significant cost-benefit analysis, for the first time showing that there is a compelling economic case for replacing conventional rockets with millimeter-wave thermal rockets.

  19. Mars Earth Return Vehicle (MERV) Propulsion Options

    Science.gov (United States)

    Oleson, Steven R.; McGuire, Melissa L.; Burke, Laura; Fincannon, James; Warner, Joe; Williams, Glenn; Parkey, Thomas; Colozza, Tony; Fittje, Jim; Martini, Mike; hide

    2010-01-01

    The COMPASS Team was tasked with the design of a Mars Sample Return Vehicle. The current Mars sample return mission is a joint National Aeronautics and Space Administration (NASA) and European Space Agency (ESA) mission, with ESA contributing the launch vehicle for the Mars Sample Return Vehicle. The COMPASS Team ran a series of design trades for this Mars sample return vehicle. Four design options were investigated: Chemical Return /solar electric propulsion (SEP) stage outbound, all-SEP, all chemical and chemical with aerobraking. The all-SEP and Chemical with aerobraking were deemed the best choices for comparison. SEP can eliminate both the Earth flyby and the aerobraking maneuver (both considered high risk by the Mars Sample Return Project) required by the chemical propulsion option but also require long low thrust spiral times. However this is offset somewhat by the chemical/aerobrake missions use of an Earth flyby and aerobraking which also take many months. Cost and risk analyses are used to further differentiate the all-SEP and Chemical/Aerobrake options.

  20. Propulsion using the electron spiral toroid

    International Nuclear Information System (INIS)

    Seward, Clint

    1998-01-01

    A new propulsion method is proposed which could potentially reduce propellant needed for space travel by three orders of magnitude. It uses the newly patented electron spiral toroid (EST), which stores energy as magnetic field energy. The EST is a hollow toroid of electrons, all spiraling in parallel paths in a thin outer shell. The electrons satisfy the coupling condition, forming an electron matrix. Stability is assured as long as the coupling condition is satisfied. The EST is held in place with a small external electric field; without an external magnetic field. The EST system is contained in a vacuum chamber. The EST can be thought of as an energetic entity, with electrons at 10,000 electron volts. Propulsion would not use combustion, but would heat propellant through elastic collisions with the EST surface and eject them for thrust. Chemical rocket combustion heats propellant to 4000 deg. C; an EST will potentially heat the propellant 29,000 times as much, reducing propellant needs accordingly. The thrust can be turned ON and OFF. The EST can be recharged as needed

  1. Green Propulsion Technologies for Advanced Air Transports

    Science.gov (United States)

    Del Rosario, Ruben

    2015-01-01

    Air transportation is critical to U.S. and Global economic vitality. However, energy and climate issues challenge aviations ability to be sustainable in the long term. Aviation must dramatically reduce fuel use and related emissions. Energy costs to U.S. airlines nearly tripled between 1995 and 2011, and continue to be the highest percentage of operating costs. The NASA Advanced Air Transports Technology Project addresses the comprehensive challenge of enabling revolutionary energy efficiency improvements in subsonic transport aircraft combined with dramatic reductions in harmful emissions and perceived noise to facilitate sustained growth of the air transportation system. Advanced technologies and the development of unconventional aircraft systems offer the potential to achieve these improvements. The presentation will highlight the NASA vision of revolutionary systems and propulsion technologies needed to achieve these challenging goals. Specifically, the primary focus is on the N+3 generation; that is, vehicles that are three generations beyond the current state of the art, requiring mature technology solutions in the 2025-30 timeframe, which are envisioned as being powered by Hybrid Electric Propulsion Systems.

  2. Research Opportunities in Space Propulsion

    Science.gov (United States)

    Rodgers, Stephen L.

    2007-01-01

    Rocket propulsion determines the primary characteristics of any space vehicle; how fast and far it can go, its lifetime, and its capabilities. It is the primary factor in safety and reliability and the biggest cost driver. The extremes of heat and pressure produced by propulsion systems push the limits of materials used for manufacturing. Space travel is very unforgiving with little room for errors, and so many things can go wrong with these very complex systems. So we have to plan for failure and that makes it costly. But what is more exciting than the roar of a rocket blasting into space? By its nature the propulsion world is conservative. The stakes are so high at every launch, in terms of payload value or in human life, that to introduce new components to a working, qualified system is extremely difficult and costly. Every launch counts and no risks are tolerated, which leads to the space world's version of Catch-22:"You can't fly till you flown." The last big 'game changer' in propulsion was the use of liquid hydrogen as a fuel. No new breakthrough, low cost access to space system will be developed without new efficient propulsion systems. Because there is no large commercial market driving investment in propulsion, what propulsion research is done is sponsored by government funding agencies. A further difficulty in propulsion technology development is that there are so few new systems flying. There is little opportunity to evolve propulsion technologies and to update existing systems with results coming out of research as there is in, for example, the auto industry. The biggest hurdle to space exploration is getting off the ground. The launch phase will consume most of the energy required for any foreseeable space exploration mission. The fundamental physical energy requirements of escaping earth's gravity make it difficult. It takes 60,000 kJ to put a kilogram into an escape orbit. The vast majority (-97%) of the energy produced by a launch vehicle is used

  3. Integrated propulsion for near-Earth space missions. Volume 2: Technical

    Science.gov (United States)

    Dailey, C. L.; Meissinger, H. F.; Lovberg, R. H.; Zafran, S.

    1981-01-01

    The calculation approach is described for parametric analysis of candidate electric propulsion systems employed in LEO to GEO missions. Occultation relations, atmospheric density effects, and natural radiation effects are presented. A solar cell cover glass tradeoff is performed to determine optimum glass thickness. Solar array and spacecraft pointing strategies are described for low altitude flight and for optimum array illumination during ascent. Mass ratio tradeoffs versus transfer time provide direction for thruster technology improvements. Integrated electric propulsion analysis is performed for orbit boosting, inclination change, attitude control, stationkeeping, repositioning, and disposal functions as well as power sharing with payload on orbit. Comparison with chemical auxiliary propulsion is made to quantify the advantages of integrated propulsion in terms of weight savings and concomittant launch cost savings.

  4. Advanced Plasma Propulsion

    Science.gov (United States)

    2011-11-01

    field lines are believed to form equipotential surfaces , creating an electric field that has a significant axial component. This causes a convergent...evolution of the magnetic field profile as it gets farther from the centerline of the channel. The resulting equipotential surfaces provide an...among others, the effect of avoiding the use of a central pole piece, which reduces exposed surface area and facilitates miniaturization as well as

  5. Liquid Oxygen/Liquid Methane Integrated Power and Propulsion

    Science.gov (United States)

    Banker, Brian; Ryan, Abigail

    2016-01-01

    The proposed paper will cover ongoing work at the National Aeronautics and Space Administration (NASA) Johnson Space Center (JSC) on integrated power and propulsion for advanced human exploration. Specifically, it will present findings of the integrated design, testing, and operational challenges of a liquid oxygen / liquid methane (LOx/LCH4) propulsion brassboard and Solid Oxide Fuel Cell (SOFC) system. Human-Mars architectures point to an oxygen-methane economy utilizing common commodities, scavenged from the planetary atmosphere and soil via In-Situ Resource Utilization (ISRU), and common commodities across sub-systems. Due to the enormous mass gear-ratio required for human exploration beyond low-earth orbit, (for every 1 kg of payload landed on Mars, 226 kg will be required on Earth) increasing commonality between spacecraft subsystems such as power and propulsion can result in tremendous launch mass and volume savings. Historically, propulsion and fuel cell power subsystems have had little interaction outside of the generation (fuel cell) and consumption (propulsion) of electrical power. This was largely due to a mismatch in preferred commodities (hypergolics for propulsion; oxygen & hydrogen for fuel cells). Although this stove-piped approach benefits from simplicity in the design process, it means each subsystem has its own tanks, pressurization system, fluid feed system, etc. increasing overall spacecraft mass and volume. A liquid oxygen / liquid methane commodities architecture across propulsion and power subsystems would enable the use of common tankage and associated pressurization and commodity delivery hardware for both. Furthermore, a spacecraft utilizing integrated power and propulsion could use propellant residuals - propellant which could not be expelled from the tank near depletion due to hydrodynamic considerations caused by large flow demands of a rocket engine - to generate power after all propulsive maneuvers are complete thus utilizing

  6. Development priorities for in-space propulsion technologies

    Science.gov (United States)

    Johnson, Les; Meyer, Michael; Palaszewski, Bryan; Coote, David; Goebel, Dan; White, Harold

    2013-02-01

    During the summer of 2010, NASA's Office of Chief Technologist assembled 15 civil service teams to support the creation of a NASA integrated technology roadmap. The Aero-Space Technology Area Roadmap is an integrated set of technology area roadmaps recommending the overall technology investment strategy and prioritization for NASA's technology programs. The integrated set of roadmaps will provide technology paths needed to meet NASA's strategic goals. The roadmaps have been reviewed by senior NASA management and the National Research Council. With the exception of electric propulsion systems used for commercial communications satellite station-keeping and a handful of deep space science missions, almost all of the rocket engines in use today are chemical rockets; that is, they obtain the energy needed to generate thrust by combining reactive chemicals to create a hot gas that is expanded to produce thrust. A significant limitation of chemical propulsion is that it has a relatively low specific impulse. Numerous concepts for advanced propulsion technologies with significantly higher values of specific impulse have been developed over the past 50 years. Advanced in-space propulsion technologies will enable much more effective exploration of our solar system, near and far, and will permit mission designers to plan missions to "fly anytime, anywhere, and complete a host of science objectives at the destinations" with greater reliability and safety. With a wide range of possible missions and candidate propulsion technologies with very diverse characteristics, the question of which technologies are 'best' for future missions is a difficult one. A portfolio of technologies to allow optimum propulsion solutions for a diverse set of missions and destinations are described in the roadmap and herein.

  7. Sources plasma RF magnétisées : applications à la propulsion spatiale

    OpenAIRE

    Gerst , Jan Dennis

    2013-01-01

    The PEGASES thruster (Plasma Propulsion with Electronegative Gases) is a novel type of electric thruster for space propulsion. It uses negative and positive ions produced by an inductively coupled radio frequency discharge to create the thrust by electrostatically accelerating the ions through a set of grids. A magnetic filter is used to increase the amount of negative ions in the cavity of the thruster. The PEGASES thruster is not only a source to create a strongly negative ion plasma or eve...

  8. Magnetic levitation and MHD propulsion

    Energy Technology Data Exchange (ETDEWEB)

    Tixador, P [CNRS/CRTBT-LEG, 38 - Grenoble (France)

    1994-04-01

    Magnetic levitation and MHD propulsion are now attracting attention in several countries. Different superconducting MagLev and MHD systems will be described concentrating on, above all, the electromagnetic aspect. Some programmes occurring throughout the world will be described. Magnetic levitated trains could be the new high speed transportation system for the 21st century. Intensive studies involving MagLev trains using superconductivity have been carried our in Japan since 1970. The construction of a 43 km long track is to be the next step. In 1991 a six year programme was launched in the United States to evaluate the performances of MagLev systems for transportation. The MHD (MagnetoHydroDynamic) offers some interesting advantages (efficiency, stealth characteristics, ..) for naval propulsion and increasing attention is being paid towards it nowadays. Japan is also up at the top with the tests of Yamato I, a 260 ton MHD propulsed ship. (orig.).

  9. Magnetic levitation and MHD propulsion

    International Nuclear Information System (INIS)

    Tixador, P.

    1994-01-01

    Magnetic levitation and MHD propulsion are now attracting attention in several countries. Different superconducting MagLev and MHD systems will be described concentrating on, above all, the electromagnetic aspect. Some programmes occurring throughout the world will be described. Magnetic levitated trains could be the new high speed transportation system for the 21st century. Intensive studies involving MagLev trains using superconductivity have been carried our in Japan since 1970. The construction of a 43 km long track is to be the next step. In 1991 a six year programme was launched in the United States to evaluate the performances of MagLev systems for transportation. The MHD (MagnetoHydroDynamic) offers some interesting advantages (efficiency, stealth characteristics, ..) for naval propulsion and increasing attention is being paid towards it nowadays. Japan is also up at the top with the tests of Yamato I, a 260 ton MHD propulsed ship. (orig.)

  10. Main Propulsion Test Article (MPTA)

    Science.gov (United States)

    Snoddy, Cynthia

    2010-01-01

    Scope: The Main Propulsion Test Article integrated the main propulsion subsystem with the clustered Space Shuttle Main Engines, the External Tank and associated GSE. The test program consisted of cryogenic tanking tests and short- and long duration static firings including gimbaling and throttling. The test program was conducted on the S1-C test stand (Position B-2) at the National Space Technology Laboratories (NSTL)/Stennis Space Center. 3 tanking tests and 20 hot fire tests conducted between December 21 1 1977 and December 17, 1980 Configuration: The main propulsion test article consisted of the three space shuttle main engines, flightweight external tank, flightweight aft fuselage, interface section and a boilerplate mid/fwd fuselage truss structure.

  11. Nuclear thermal propulsion workshop overview

    International Nuclear Information System (INIS)

    Clark, J.S.

    1991-01-01

    NASA is planning an Exploration Technology Program as part of the Space Exploration Initiative to return U.S. astronauts to the moon, conduct intensive robotic exploration of the moon and Mars, and to conduct a piloted mission to Mars by 2019. Nuclear Propulsion is one of the key technology thrust for the human mission to Mars. The workshop addresses NTP (Nuclear Thermal Rocket) technologies with purpose to: assess the state-of-the-art of nuclear propulsion concepts; assess the potential benefits of the concepts for the mission to Mars; identify critical, enabling technologies; lay-out (first order) technology development plans including facility requirements; and estimate the cost of developing these technologies to flight-ready status. The output from the workshop will serve as a data base for nuclear propulsion project planning

  12. Prospects for applications of ship-propulsion nuclear reactors

    International Nuclear Information System (INIS)

    Mitenkov, F.M.

    1994-01-01

    The use of ship-propulsion nuclear power reactors in remote areas of Russia is examined. Two ship reactors were analyzed: the KLT-40, a 170 MW-thermal reactor; and the KN-3, a 300 MW-thermal reactor. The applications considered were electricity generation, desalination, and drinking water production. Analyses showed that the applications are technically justified and could be economically advantageous. 5 refs., 9 figs., 1 tab

  13. Alert-derivative bimodal space power and propulsion systems

    International Nuclear Information System (INIS)

    Houts, M.G.; Ranken, W.A.; Buksa, J.J.

    1994-01-01

    Safe, reliable, low-mass bimodal space power and propulsion systems could have numerous civilian and military applications. This paper discusses potential bimodal systems that could be derived from the ALERT space fission power supply concept. These bimodal concepts have the potential for providing 5 to 10 kW of electrical power and a total impulse of 100 MN-s at an average specific impulse of 770 s. System mass is on the order of 1000 kg

  14. Mini and Micro Propulsion for Medical Swimmers

    Directory of Open Access Journals (Sweden)

    JianFeng

    2014-02-01

    Full Text Available Mini and micro robots, which can swim in an underwater environment, have drawn widespread research interests because of their potential applicability to the medical or biological fields, including delivery and transportation of bio-materials and drugs, bio-sensing, and bio-surgery. This paper reviews the recent ideas and developments of these types of self-propelling devices, ranging from the millimeter scale down to the micro and even the nano scale. Specifically, this review article makes an emphasis on various propulsion principles, including methods of utilizing smart actuators, external magnetic/electric/acoustic fields, bacteria, chemical reactions, etc. In addition, we compare the propelling speed range, directional control schemes, and advantages of the above principles.

  15. Materials Advance Chemical Propulsion Technology

    Science.gov (United States)

    2012-01-01

    In the future, the Planetary Science Division of NASA's Science Mission Directorate hopes to use better-performing and lower-cost propulsion systems to send rovers, probes, and observers to places like Mars, Jupiter, and Saturn. For such purposes, a new propulsion technology called the Advanced Materials Bipropellant Rocket (AMBR) was developed under NASA's In-Space Propulsion Technology (ISPT) project, located at Glenn Research Center. As an advanced chemical propulsion system, AMBR uses nitrogen tetroxide oxidizer and hydrazine fuel to propel a spacecraft. Based on current research and development efforts, the technology shows great promise for increasing engine operation and engine lifespan, as well as lowering manufacturing costs. In developing AMBR, ISPT has several goals: to decrease the time it takes for a spacecraft to travel to its destination, reduce the cost of making the propulsion system, and lessen the weight of the propulsion system. If goals like these are met, it could result in greater capabilities for in-space science investigations. For example, if the amount (and weight) of propellant required on a spacecraft is reduced, more scientific instruments (and weight) could be added to the spacecraft. To achieve AMBR s maximum potential performance, the engine needed to be capable of operating at extremely high temperatures and pressure. To this end, ISPT required engine chambers made of iridium-coated rhenium (strong, high-temperature metallic elements) that allowed operation at temperatures close to 4,000 F. In addition, ISPT needed an advanced manufacturing technique for better coating methods to increase the strength of the engine chamber without increasing the costs of fabricating the chamber.

  16. Propulsion of magnetically levitated trains

    Energy Technology Data Exchange (ETDEWEB)

    Wipf, S L

    1976-05-01

    A propulsion system for magnetically levitated trains is proposed. A method of periodically energizing magnetic loops on a train moving over a periodically undulating track allows the net repulsive magnetic force to tilt forward or backward for either propulsion or braking. The principle is explained and a specific example discussed. Approximate calculations show feasibility. Problems requiring technical solutions which cannot be considered present state-of-the-art are AC losses at frequencies up to 20 Hz and mechanical fatigue properties at low temperatures. Suitable primary power could be derived from hydrogen-fueled turbines yet to be developed.

  17. Aeronautic propulsion systems; Propulseurs aeronautiques

    Energy Technology Data Exchange (ETDEWEB)

    Lepourry, P; Ciryci, R

    1992-12-31

    This book is devoted to airplane pilots having a private licence and who would like to take up a professional rank. It comprises 8 chapters dealing with: the different type of propulsion systems, turbojet, turbofan and piston engines; the propeller (characteristics, different types, functioning, protection systems..); the piston engines (4-stroke cycle, power and efficiency, description, characteristics); the gas generator and its limitations (air intake, combustion chamber, turbines, nozzles, fuel systems..); the performances of propulsion systems; the drive, control and instruments; and the use of engines. The last chapter is a self-evaluation questionnaire about the notions developed in the book. (J.S.)

  18. Antimatter Propulsion Developed by NASA

    Science.gov (United States)

    1999-01-01

    This Quick Time movie shows possible forms of an antimatter propulsion system being developed by NASA. Antimatter annihilation offers the highest possible physical energy density of any known reaction substance. It is about 10 billion times more powerful than that of chemical energy such as hydrogen and oxygen combustion. Antimatter would be the perfect rocket fuel, but the problem is that the basic component of antimatter, antiprotons, doesn't exist in nature and has to manufactured. The process of antimatter development is ongoing and making some strides, but production of this as a propulsion system is far into the future.

  19. Phase 1 space fission propulsion system design considerations

    International Nuclear Information System (INIS)

    Houts, Mike; Van Dyke, Melissa; Godfroy, Tom; Pedersen, Kevin; Martin, James; Dickens, Ricky; Salvail, Pat; Hrbud, Ivana; Carter, Robert

    2002-01-01

    Fission technology can enable rapid, affordable access to any point in the solar system. If fission propulsion systems are to be developed to their full potential; however, near-term customers must be identified and initial fission systems successfully developed, launched, and operated. Studies conducted in fiscal year 2001 (IISTP, 2001) show that fission electric propulsion (FEP) systems operating at 80 kWe or above could enhance or enable numerous robotic outer solar system missions of interest. At these power levels it is possible to develop safe, affordable systems that meet mission performance requirements. In selecting the system design to pursue, seven evaluation criteria were identified: safety, reliability, testability, specific mass, cost, schedule, and programmatic risk. A top-level comparison of three potential concepts was performed: an SP-100 based pumped liquid lithium system, a direct gas cooled system, and a heatpipe cooled system. For power levels up to at least 500 kWt (enabling electric power levels of 125-175 kWe, given 25-35% power conversion efficiency) the heatpipe system has advantages related to several criteria and is competitive with respect to all. Hardware-based research and development has further increased confidence in the heatpipe approach. Successful development and utilization of a 'Phase 1' fission electric propulsion system will enable advanced Phase 2 and Phase 3 systems capable of providing rapid, affordable access to any point in the solar system

  20. THE FUTURE OF SPACECRAFT NUCLEAR PROPULSION

    OpenAIRE

    Jansen, Frank

    2014-01-01

    This paper summarizes the advantages of space nuclear power and propulsion systems. It describes the actual status of international power level dependent spacecraft nuclear propulsion missions, especially the high power EU-Russian MEGAHIT study including the Russian Megawatt-Class Nuclear Power Propulsion System, the NASA GRC project and the low and medium power EU DiPoP study. Space nuclear propulsion based mission scenarios of these studies are sketched as well.

  1. Development of technology for creating intelligent control systems for power plants and propulsion systems for marine robotic systems

    Science.gov (United States)

    Iakovleva, E. V.; Momot, B. A.

    2017-10-01

    The object of this study is to develop a power plant and an electric propulsion control system for autonomous remotely controlled vessels. The tasks of the study are as follows: to assess remotely controlled vessels usage reasonability, to define the requirements for this type of vessel navigation. In addition, the paper presents the analysis of technical diagnostics systems. The developed electric propulsion control systems for vessels should provide improved reliability and efficiency of the propulsion complex to ensure the profitability of remotely controlled vessels.

  2. Vehicle with inclinable caterpillar propulsion units

    International Nuclear Information System (INIS)

    Clar, G.

    1991-01-01

    This vehicle usable in hostile environment such nuclear industry has four propulsion units with a caterpillar track and two integrated motors: one for advancing the caterpillar track and the other for inclining the propulsion unit when overcoming obstacles. Each propulsion unit is easily replaceable because there are no mechanical parts in the body of the vehicle [fr

  3. Distributed propulsion and future aerospace technologies

    OpenAIRE

    Ameyugo, Gregorio

    2007-01-01

    This thesis describes an Engineering Doctorate project in Distributed Propulsion carried out from 2004 to 2007 at Cranfield University. Distributed propulsion is a propulsion system arrangement that consists in spreading the engine thrust along the aircraft span. This can be accomplished by distributing a series of driven fans or the engines themselves. The aim of this project is to determine the feasibility of ...

  4. FY2014 Propulsion Materials R&D Annual Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-05-01

    The Propulsion Materials Program actively supports the energy security and reduction of greenhouse emissions goals of VTO by investigating and identifying the materials properties that are most essential for continued development of cost-effective, highly efficient, and environmentally friendly next-generation heavy and light-duty powertrains. The technical approaches available to enhance propulsion systems focus on improvements in both vehicle efficiency and fuel substitution, both of which must overcome the performance limitations of the materials currently in use. Propulsion Materials Program activities work with national laboratories, industry experts, and VTO powertrain systems (e.g., Advanced Combustion Engines [ACE], Advanced Power Electronics and Electrical Machines [APEEM], and fuels) teams to develop strategies that overcome materials limitations in future powertrain performance. The technical maturity of the portfolio of funded projects ranges from basic science to subsystem prototype validation. Projects within a Propulsion Materials Program activity address materials concerns that directly impact critical technology barriers within each of the above programs, including barriers that impact fuel efficiency, thermal management, emissions reduction, improved reliability, and reduced manufacturing costs. The program engages only the barriers that result from material property limitations and represent fundamental, high-risk materials issues.

  5. Results from a large-scale MHD propulsion experiment

    International Nuclear Information System (INIS)

    Petrick, M.; Libera, J.; Bouillard, J.X.; Pierson, E.S.; Hill, D.

    1992-01-01

    This paper reports on magnetohydrodynamic (MHD) thrusters which have long been recognized as potentially attractive candidates for ship propulsion because such systems eliminate the conventional rotating drive components. The MHD thruster is essentially an electromagnet (EM) pump operating in seawater. An electrical current is passed directly through the seawater and interacts with an applied magnetic field; the interaction of the magnetic field and the electrode current in the seawater results in a Lorentz force acting on the water, and the reaction to this force propels the vessel forward. The concept of EM propulsion has been examined periodically during the past 35 years as an alternative method of propulsion for surface ships and submersibles. The conclusions reached in early studies were that MHD thrusters restricted to fields of 2T (the state-of-the-art at that time) were impractical and very inefficient. With the evolution of superconducting magnet technology, later studies investigated the performance of MHD thrusters with much higher magnetic field strengths and concluded that at higher fields (>6 T) practical MHD propulsion systems appear possible

  6. Ultrasonic propulsion of kidney stones.

    Science.gov (United States)

    May, Philip C; Bailey, Michael R; Harper, Jonathan D

    2016-05-01

    Ultrasonic propulsion is a novel technique that uses short bursts of focused ultrasonic pulses to reposition stones transcutaneously within the renal collecting system and ureter. The purpose of this review is to discuss the initial testing of effectiveness and safety, directions for refinement of technique and technology, and opinions on clinical application. Preclinical studies with a range of probes, interfaces, and outputs have demonstrated feasibility and consistent safety of ultrasonic propulsion with room for increased outputs and refinement toward specific applications. Ultrasonic propulsion was used painlessly and without adverse events to reposition stones in 14 of 15 human study participants without restrictions on patient size, stone size, or stone location. The initial feasibility study showed applicability in a range of clinically relevant situations, including facilitating passage of residual fragments following ureteroscopy or shock wave lithotripsy, moving a large stone at the ureteropelvic junction with relief of pain, and differentiating large stones from a collection of small fragments. Ultrasonic propulsion shows promise as an office-based system for transcutaneously repositioning kidney stones. Potential applications include facilitating expulsion of residual fragments following ureteroscopy or shock wave lithotripsy, repositioning stones prior to treatment, and repositioning obstructing ureteropelvic junction stones into the kidney to alleviate acute renal colic.

  7. Comparative analysis of aluminum-air battery propulsion systems for passenger vehicles

    Science.gov (United States)

    Salisbury, J. D.; Behrin, E.; Kong, M. K.; Whisler, D. J.

    1980-02-01

    Three electric propulsion systems using an aluminum air battery were analyzed and compared to the internal combustion engine (ICE) vehicle. The engine and fuel systems of a representative five passenger highway vehicle were replaced conceptually by each of the three electric propulsion systems. The electrical vehicles were constrained by the computer simulation to be equivalent to the ICE vehicle in range and acceleration performance. The vehicle masses and aluminum consumption rates were then calculated for the electric vehicles and these data were used as figures of merit. The Al-air vehicles analyzed were (1) an Al-air battery only electric vehicle; (2) an Al-air battery combined with a nickel zinc secondary battery for power leveling and regenerative braking; and (3) an Al-air battery combined with a flywheel for power leveling and regenerative braking. All three electric systems compared favorably with the ICE vehicle.

  8. Software To Secure Distributed Propulsion Simulations

    Science.gov (United States)

    Blaser, Tammy M.

    2003-01-01

    Distributed-object computing systems are presented with many security threats, including network eavesdropping, message tampering, and communications middleware masquerading. NASA Glenn Research Center, and its industry partners, has taken an active role in mitigating the security threats associated with developing and operating their proprietary aerospace propulsion simulations. In particular, they are developing a collaborative Common Object Request Broker Architecture (CORBA) Security (CORBASec) test bed to secure their distributed aerospace propulsion simulations. Glenn has been working with its aerospace propulsion industry partners to deploy the Numerical Propulsion System Simulation (NPSS) object-based technology. NPSS is a program focused on reducing the cost and time in developing aerospace propulsion engines

  9. Accounting for electric vehicles in air quality conformity \\0x2012 final report.

    Science.gov (United States)

    2014-12-01

    Electric vehicles (EVs) obtain at least a part of the energy required for their propulsion from electricity. The : market for EVs, including hybrid, plug-in hybrid, and battery electric vehicles continues to grow, as many : new and affordable models ...

  10. 0-6763 : accounting for electric vehicles in air quality conformity.

    Science.gov (United States)

    2014-08-01

    Electric vehicles (EVs) are broadly defined as : vehicles that obtain at least a part of the energy : required for their propulsion from electricity. This : research focused on the three main types of EVs: : Hybrid electric vehicles. : Plug-i...

  11. Electric and hybrid vehicle system R/D

    Science.gov (United States)

    Schwartz, H. J.

    1980-01-01

    The work being done to characterize the level of current propulsion technology through component testing is described. Important interactions between the battery and the propulsion system will be discussed. Component development work, involving traction motors, motor controllers and transmissions are described and current results are presented. Studies of advanced electric and hybrid propulsion system studies are summarized and the status of propulsion system development work supported by the project is described. A strategy for fostering joint industry/government projects for commercialization of propulsion components and systems is described briefly.

  12. Nuclear thermal propulsion technology: Results of an interagency panel in FY 1991

    International Nuclear Information System (INIS)

    Clark, J.S.; Mcdaniel, P.; Howe, S.; Helms, I.; Stanley, M.

    1993-04-01

    NASA LeRC was selected to lead nuclear propulsion technology development for NASA. Also participating in the project are NASA MSFC and JPL. The U.S. Department of Energy will develop nuclear technology and will conduct nuclear component, subsystem, and system testing at appropriate DOE test facilities. NASA program management is the responsibility of NASA/RP. The project includes both nuclear electric propulsion (NEP) and nuclear thermal propulsion (NTP) technology development. This report summarizes the efforts of an interagency panel that evaluated NTP technology in 1991. Other panels were also at work in 1991 on other aspects of nuclear propulsion, and the six panels worked closely together. The charters for the other panels and some of their results are also discussed. Important collaborative efforts with other panels are highlighted. The interagency (NASA/DOE/DOD) NTP Technology Panel worked in 1991 to evaluate nuclear thermal propulsion concepts on a consistent basis. Additionally, the panel worked to continue technology development project planning for a joint project in nuclear propulsion for the Space Exploration Initiative (SEI). Five meetings of the panel were held in 1991 to continue the planning for technology development of nuclear thermal propulsion systems. The state-of-the-art of the NTP technologies was reviewed in some detail. The major technologies identified were as follows: fuels, coatings, and other reactor technologies; materials; instrumentation, controls, health monitoring and management, and associated technologies; nozzles; and feed system technology, including turbopump assemblies

  13. Magnetic levitation and MHD propulsion

    Science.gov (United States)

    Tixador, P.

    1994-04-01

    Magnetic levitation and MHD propulsion are now attracting attention in several countries. Different superconducting MagLev and MHD systems will be described concentrating on, above all, the electromagnetic aspect. Some programmes occurring throughout the world will be described. Magnetic levitated trains could be the new high speed transportation system for the 21st century. Intensive studies involving MagLev trains using superconductivity have been carried out in Japan since 1970. The construction of a 43 km long track is to be the next step. In 1991 a six year programme was launched in the United States to evaluate the performances of MagLev systems for transportation. The MHD (MagnetoHydroDynamic) offers some interesting advantages (efficiency, stealth characteristics, ...) for naval propulsion and increasing attention is being paid towards it nowadays. Japan is also up at the top with the tests of Yamato I, a 260 ton MHD propulsed ship. Depuis quelques années nous assistons à un redémarrage de programmes concernant la lévitation et la propulsion supraconductrices. Différents systèmes supraconducteurs de lévitation et de propulsion seront décrits en examinant plus particulièrement l'aspect électromagnétique. Quelques programmes à travers le monde seront abordés. Les trains à sustentation magnétique pourraient constituer un nouveau mode de transport terrestre à vitesse élevée (500 km/h) pour le 21^e siècle. Les japonais n'ont cessé de s'intéresser à ce système avec bobine supraconductrice. Ils envisagent un stade préindustriel avec la construction d'une ligne de 43 km. En 1991 un programme américain pour une durée de six ans a été lancé pour évaluer les performances des systèmes à lévitation pour le transport aux Etats Unis. La MHD (Magnéto- Hydro-Dynamique) présente des avantages intéressants pour la propulsion navale et un regain d'intérêt apparaît à l'heure actuelle. Le japon se situe là encore à la pointe des d

  14. Mars Hybrid Propulsion System Trajectory Analysis. Part I; Crew Missions

    Science.gov (United States)

    Chai, Patrick R.; Merrill, Raymond G.; Qu, Min

    2015-01-01

    NASAs Human spaceflight Architecture team is developing a reusable hybrid transportation architecture in which both chemical and electric propulsion systems are used to send crew and cargo to Mars destinations such as Phobos, Deimos, the surface of Mars, and other orbits around Mars. By combining chemical and electrical propulsion into a single space- ship and applying each where it is more effective, the hybrid architecture enables a series of Mars trajectories that are more fuel-efficient than an all chemical architecture without significant increases in flight times. This paper provides the analysis of the interplanetary segments of the three Evolvable Mars Campaign crew missions to Mars using the hybrid transportation architecture. The trajectory analysis provides departure and arrival dates and propellant needs for the three crew missions that are used by the campaign analysis team for campaign build-up and logistics aggregation analysis. Sensitivity analyses were performed to investigate the impact of mass growth, departure window, and propulsion system performance on the hybrid transportation architecture. The results and system analysis from this paper contribute to analyses of the other human spaceflight architecture team tasks and feed into the definition of the Evolvable Mars Campaign.

  15. Propulsion Utilizing Laser-Driven Ponderomotive Fields for Deep-Space Missions

    International Nuclear Information System (INIS)

    Williams, George J.; Gilland, James H.

    2009-01-01

    The generation of large amplitude electric fields in plasmas by high-power lasers has been studied for several years in the context of high-energy particle acceleration. Fields on the order of GeV/m are generated in the plasma wake of the laser by non-linear ponderomotive forces. The laser fields generate longitudinal and translational electron plasma waves with phase velocities close to the speed of light. These fields and velocities offer the potential to revolutionize spacecraft propulsion, leading to extended deep space robotic probes. Based on these initial calculations, plasma acceleration by means of laser-induced ponderomotive forces appears to offer significant potential for spacecraft propulsion. Relatively high-efficiencies appear possible with proper beam conditioning, resulting in an order of magnitude more thrust than alternative concepts for high I SP (>10 5 s) and elimination of the primary life-limiting erosion phenomena associated with conventional electric propulsion systems. Ponderomotive propulsion readily lends itself to beamed power which might overcome some of the constraints of power-limited propulsion concepts. A preliminary assessment of the impact of these propulsion systems for several promising configurations on mission architectures has been conducted. Emphasizing interstellar and interstellar-precursor applications, performance and technical requirements are identified for a number of missions. The use of in-situ plasma and gas for propellant is evaluated as well.

  16. Planetary explorer liquid propulsion study

    Science.gov (United States)

    Mckevitt, F. X.; Eggers, R. F.; Bolz, C. W.

    1971-01-01

    An analytical evaluation of several candidate monopropellant hydrazine propulsion system approaches is conducted in order to define the most suitable configuration for the combined velocity and attitude control system for the Planetary Explorer spacecraft. Both orbiter and probe-type missions to the planet Venus are considered. The spacecraft concept is that of a Delta launched spin-stabilized vehicle. Velocity control is obtained through preprogrammed pulse-mode firing of the thrusters in synchronism with the spacecraft spin rate. Configuration selection is found to be strongly influenced by the possible error torques induced by uncertainties in thruster operation and installation. The propulsion systems defined are based on maximum use of existing, qualified components. Ground support equipment requirements are defined and system development testing outlined.

  17. Advanced Propulsion and TPS for a Rapidly-Prototyped CEV

    Science.gov (United States)

    Hudson, Gary C.

    2005-02-01

    Transformational Space Corporation (t/Space) is developing for NASA the initial designs for the Crew Exploration Vehicle family, focusing on a Launch CEV for transporting NASA and civilian passengers from Earth to orbit. The t/Space methodology is rapid prototyping of major vehicle systems, and deriving detailed specifications from the resulting hardware, avoiding "written-in-advance" specs that can force the costly invention of new capabilities simply to meet such specs. A key technology shared by the CEV family is Vapor Pressurized propulsion (Vapak) for simplicity and reliability, which provides electrical power, life support gas and a heat sink in addition to propulsion. The CEV family also features active transpiration cooling of re-entry surfaces (for reusability) backed up by passive thermal protection.

  18. Cryogenic system options for a superconducting aircraft propulsion system

    International Nuclear Information System (INIS)

    Berg, F; Dodds, Graham; Palmer, J; Bertola, L; Miller, Paul

    2015-01-01

    There is a perceived need in the future for a move away from traditional aircraft designs in order to meet ambitious emissions and fuel burn targets. High temperature superconducting distributed propulsion may be an enabler for aircraft designs that have better propulsive efficiency and lower drag. There has been significant work considering the electrical systems required, but less on the cryogenics to enable it. This paper discusses some of the major choices to be faced in cryocooling for aircraft. The likely need for a disposable cryogen to reduce power demand is explained. A set of cryocooling methods are considered in a sensitivity study, which shows that the feasibility of the cryogenic system will depend strongly on the superconducting technology and the aircraft platform. It is argued that all three aspects must be researched and designed in close collaboration to reach a viable solution. (paper)

  19. A Cubesat Asteroid Mission: Propulsion Trade-offs

    Science.gov (United States)

    Landis, Geoffrey A.; Oleson, Steven R.; McGuire, Melissa L.; Bur, Michael J.; Burke, Laura M.; Fittje, James E.; Kohout, Lisa L.; Fincannon, James; Packard, Thomas W.; Martini, Michael C.

    2014-01-01

    A conceptual design was performed for a 6-U cubesat for a technology demonstration to be launched on the NASA Space Launch System (SLS) test launch EM-1, to be launched into a free-return translunar trajectory. The mission purpose was to demonstrate use of electric propulsion systems on a small satellite platform. The candidate objective chosen was a mission to visit a Near-Earth asteroid. Both asteroid fly-by and asteroid rendezvous missions were analyzed. Propulsion systems analyzed included cold-gas thruster systems, Hall and ion thrusters, incorporating either Xenon or Iodine propellant, and an electrospray thruster. The mission takes advantage of the ability of the SLS launch to place it into an initial trajectory of C3=0.

  20. NASA Puffin Electric Tailsitter VTOL Concept

    Science.gov (United States)

    Moore, Mark D.

    2010-01-01

    Electric propulsion offers dramatic new vehicle mission capabilities, not possible with turbine or reciprocating engines; including high reliability and efficiency, low engine weight and maintenance, low cooling drag and volume required, very low noise and vibration, and zero emissions. The only penalizing characteristic of electric propulsion is the current energy storage technology level, which is set to triple over the next 5-10 years through huge new investments in this field. Most importantly, electric propulsion offers incredible new degrees of freedom in aircraft system integration to achieve unprecedented levels of aerodynamic, propulsive, control, and structural synergistic coupling. A unique characteristic of electric propulsion is that the technology is nearly scale-free, permitting small motors to be parallelized for fail-safe redundancy, or distributed across the airframe for tightly coupled interdisciplinary functionality without significant impacts in motor-controller efficiency or specific weight. Maximizing the potential benefit of electric propulsion is dependent on applying this technology to synergistic mission concepts. The vehicle missions with the most benefit include those which constrain environmental impact (or limit noise, exhaust, or emission signatures) are short range, or where large differences exist in the propulsion system sizing between takeoff and cruise conditions. Electric propulsion offers the following unique capabilities that other propulsion systems can t provide for short range Vertical Takeoff and Landing (VTOL) aircraft; elimination of engine noise and emissions, drastic reduction in engine cooling and radiated heat, drastic reduction in vehicle vibration levels, drastic improvement in reliability and operating costs, variable speed output at full power, for improved cruise efficiency at low tip-speed, elimination of high/hot sizing penalty, and reduction of engine-out penalties.

  1. Assessing Hypothetical Gravity Control Propulsion

    OpenAIRE

    Millis, Marc G.

    2006-01-01

    Gauging the benefits of hypothetical gravity control propulsion is difficult, but addressable. The major challenge is that such breakthroughs are still only notional concepts rather than being specific methods from which performance can be rigorously quantified. A recent assessment by Tajmar and Bertolami used the rocket equation to correct naive misconceptions, but a more fundamental analysis requires the use of energy as the basis for comparison. The energy of a rocket is compared to an ide...

  2. Nuclear Thermal Propulsion Development Risks

    Science.gov (United States)

    Kim, Tony

    2015-01-01

    There are clear advantages of development of a Nuclear Thermal Propulsion (NTP) for a crewed mission to Mars. NTP for in-space propulsion enables more ambitious space missions by providing high thrust at high specific impulse ((is) approximately 900 sec) that is 2 times the best theoretical performance possible for chemical rockets. Missions can be optimized for maximum payload capability to take more payload with reduced total mass to orbit; saving cost on reduction of the number of launch vehicles needed. Or missions can be optimized to minimize trip time significantly to reduce the deep space radiation exposure to the crew. NTR propulsion technology is a game changer for space exploration to Mars and beyond. However, 'NUCLEAR' is a word that is feared and vilified by some groups and the hostility towards development of any nuclear systems can meet great opposition by the public as well as from national leaders and people in authority. The public often associates the 'nuclear' word with weapons of mass destruction. The development NTP is at risk due to unwarranted public fears and clear honest communication of nuclear safety will be critical to the success of the development of the NTP technology. Reducing cost to NTP development is critical to its acceptance and funding. In the past, highly inflated cost estimates of a full-scale development nuclear engine due to Category I nuclear security requirements and costly regulatory requirements have put the NTP technology as a low priority. Innovative approaches utilizing low enriched uranium (LEU). Even though NTP can be a small source of radiation to the crew, NTP can facilitate significant reduction of crew exposure to solar and cosmic radiation by reducing trip times by 3-4 months. Current Human Mars Mission (HMM) trajectories with conventional propulsion systems and fuel-efficient transfer orbits exceed astronaut radiation exposure limits. Utilizing extra propellant from one additional SLS launch and available

  3. Propulsion Systems in Water Tunnel

    Directory of Open Access Journals (Sweden)

    Nobuyuki Fujisawa

    1995-01-01

    agreement with the field experiment with prototype craft. Measurements are also made for the losses in the intake and the nozzle. The optimization study of the water jet systems is conducted by simulating the change of the nozzle outlet diameter with the variable nozzle arrangement. It is suggested that the nozzle outlet diameter should be decreased as the craft velocity increases to obtain an optimum propulsive efficiency in a wide range of craft velocity.

  4. Space station propulsion requirements study

    Science.gov (United States)

    Wilkinson, C. L.; Brennan, S. M.

    1985-01-01

    Propulsion system requirements to support Low Earth Orbit (LEO) manned space station development and evolution over a wide range of potential capabilities and for a variety of STS servicing and space station operating strategies are described. The term space station and the overall space station configuration refers, for the purpose of this report, to a group of potential LEO spacecraft that support the overall space station mission. The group consisted of the central space station at 28.5 deg or 90 deg inclinations, unmanned free-flying spacecraft that are both tethered and untethered, a short-range servicing vehicle, and a longer range servicing vehicle capable of GEO payload transfer. The time phasing for preferred propulsion technology approaches is also investigated, as well as the high-leverage, state-of-the-art advancements needed, and the qualitative and quantitative benefits of these advancements on STS/space station operations. The time frame of propulsion technologies applicable to this study is the early 1990's to approximately the year 2000.

  5. Antimatter propulsion, status and prospects

    Science.gov (United States)

    Howe, Steven D.; Hynes, Michael V.

    1986-01-01

    The use of advanced propulsion techniques must be considered if the currently envisioned launch date of the manned Mars mission were delayed until 2020 or later. Within the next thirty years, technological advances may allow such methods as beaming power to the ship, inertial-confinement fusion, or mass-conversion of antiprotons to become feasible. A propulsion system with an ISP of around 5000 s would allow the currently envisioned mission module to fly to Mars in 3 months and would require about one million pounds to be assembled in Earth orbit. Of the possible methods to achieve this, the antiproton mass-conversion reaction offers the highest potential, the greatest problems, and the most fascination. Increasing the production rates of antiprotons is a high priority task at facilities around the world. The application of antiprotons to propulsion requires the coupling of the energy released in the mass-conversion reaction to thrust-producing mechanisms. Recent proposals entail using the antiprotons to produce inertial confinement fusion or to produce negative muons which can catalyze fusion. By increasing the energy released per antiproton, the effective cost, (dollars/joule) can be reduced. These proposals and other areas of research can be investigated now. These short term results will be important in assessing the long range feasibility of an antiproton powered engine.

  6. The MOA thruster. A high performance plasma accelerator for nuclear power and propulsion applications

    International Nuclear Information System (INIS)

    Frischauf, Norbert; Hettmer, Manfred; Grassauer, Andreas; Bartusch, Tobias; Koudelka, Otto

    2009-01-01

    More than 60 years after the late Nobel laureate Hannes Alfven had published a letter stating that oscillating magnetic fields can accelerate ionised matter via magneto-hydrodynamic interactions in a wave like fashion, the technical implementation of Alfven waves for propulsive purposes has been proposed, patented and examined for the first time by a group of inventors. The name of the concept, utilising Alfven waves to accelerate ionised matter for propulsive purposes, is MOA - Magnetic field Oscillating Amplified thruster. Alfven waves are generated by making use of two coils, one being permanently powered and serving also as magnetic nozzle, the other one being switched on and off in a cyclic way, deforming the field lines of the overall system. It is this deformation that generates Alfven waves, which are in the next step used to transport and compress the propulsive medium, in theory leading to a propulsion system with a much higher performance than any other electric propulsion system. While space propulsion is expected to be the prime application for MOA and is supported by numerous applications such as Solar and/or Nuclear Electric Propulsion or even as an 'afterburner system' for Nuclear Thermal Propulsion, other, terrestrial applications, like coating, semiconductor implantation and manufacturing as well as steel cutting can be thought of as well, making the system highly suited for a common space-terrestrial application research and utilisation strategy. This paper presents the recent developments of the MOA Thruster R and D activities at QASAR, the company in Vienna, Austria, which has been set up to further develop and test the Alfven wave technology and its applications. (author)

  7. Catalyzed Combustion In Micro-Propulsion Devices: Project Status

    Science.gov (United States)

    Sung, C. J.; Schneider, S. J.

    2003-01-01

    In recent years, there has been a tendency toward shrinking the size of spacecraft. New classes of spacecraft called micro-spacecraft have been defined by their mass, power, and size ranges. Spacecraft in the range of 20 to 100 kg represent the class most likely to be utilized by most small sat users in the near future. There are also efforts to develop 10 to 20 kg class spacecraft for use in satellite constellations. More ambitious efforts will be to develop spacecraft less than 10 kg, in which MEMS fabrication technology is required. These new micro-spacecraft will require new micro-propulsion technology. Although micro-propulsion includes electric propulsion approaches, the focus of this proposed program is micro-chemical propulsion which requires the development of microcombustors. As combustors are scaled down, the surface to volume ratio increases. The heat release rate in the combustor scales with volume, while heat loss rate scales with surface area. Consequently, heat loss eventually dominates over heat release when the combustor size becomes smaller, thereby leading to flame quenching. The limitations imposed on chamber length and diameter has an immediate impact on the degree of miniaturization of a micro-combustor. Before micro-combustors can be realized, such a difficulty must be overcome. One viable combustion alternative is to take advantage of surface catalysis. Micro-chemical propulsion for small spacecraft can be used for primary thrust, orbit insertion, trajectory-control, and attitude control. Grouping micro-propulsion devices in arrays will allow their use for larger thrust applications. By using an array composed of hundreds or thousands of micro-thruster units, a particular configuration can be arranged to be best suited for a specific application. Moreover, different thruster sizes would provide for a range of thrust levels (from N s to mN s) within the same array. Several thrusters could be fired simultaneously for thrust levels higher than

  8. Powered Flight The Engineering of Aerospace Propulsion

    CERN Document Server

    Greatrix, David R

    2012-01-01

    Whilst most contemporary books in the aerospace propulsion field are dedicated primarily to gas turbine engines, there is often little or no coverage of other propulsion systems and devices such as propeller and helicopter rotors or detailed attention to rocket engines. By taking a wider viewpoint, Powered Flight - The Engineering of Aerospace Propulsion aims to provide a broader context, allowing observations and comparisons to be made across systems that are overlooked by focusing on a single aspect alone. The physics and history of aerospace propulsion are built on step-by-step, coupled with the development of an appreciation for the mathematics involved in the science and engineering of propulsion. Combining the author’s experience as a researcher, an industry professional and a lecturer in graduate and undergraduate aerospace engineering, Powered Flight - The Engineering of Aerospace Propulsion covers its subject matter both theoretically and with an awareness of the practicalities of the industry. To ...

  9. In-Space Propulsion (ISP) Solar Sail Propulsion Technology Development

    Science.gov (United States)

    Montgomery, Edward E., IV

    2004-01-01

    An overview of the rationale and content for Solar Sail Propulsion (SSP), the on-going project to advance solar technology from technology readiness level 3 to 6 will be provided. A descriptive summary of the major and minor component efforts underway will include identification of the technology providers and a listing of anticipated products Recent important results from major system ground demonstrators will be provided. Finally, a current status of all activities will provided along with the most recent roadmap for the SSP technology development program.

  10. Propulsion of liposomes using bacterial motors

    International Nuclear Information System (INIS)

    Zhang Zhenhai; Li Kejie; Li Zhifei; Yu Wei; Xie Zhihong; Shi Zhiguo

    2013-01-01

    Here we describe the utilization of flagellated bacteria as actuators to propel spherical liposomes by attaching bacteria to the liposome surface. Bacteria were stably attached to liposomes using a cross-linking antibody. The effect of the number of attached bacteria on propulsion speed was experimentally determined. The effects of bacterial propulsion on the bacteria–antibody–liposome complex were stochastic. We demonstrated that liposomal mobility increased when bacteria were attached, and the propulsion speed correlated with the number of bacteria. (paper)

  11. A Conceptual Tree of Laser Propulsion

    International Nuclear Information System (INIS)

    Pakhomov, Andrew V.; Sinko, John E.

    2008-01-01

    An original attempt to develop a conceptual tree for laser propulsion is offered. The tree provides a systematic view for practically all possible laser propulsion concepts and all inter-conceptual links, based on propellant phases and phase transfers. It also helps to see which fields of laser propulsion have been already thoroughly explored, where the next effort must be applied, and which paths should be taken with proper care or avoided entirely

  12. Laddermill-sailing. Ship propulsion by wind energy independent from the wind direction

    Energy Technology Data Exchange (ETDEWEB)

    Ockels, W. J.

    2007-12-15

    The use of large kites in ship propulsion has been getting a growing attention because of the urgent need to reduce the CO2 production and thus stop the use of fossil fuels. A novel application of ship propulsion by kites is proposed based on a Laddermill apparatus mounted on a ship. Such an apparatus consist of a winch, an electric motor/generator, a kite system (including launch and retrieval) and controlling electronics. Rather than the traditional sailing by wind force the Laddermill propulsion is achieved by a combination of the production and use of electrical power and the direct pulling force from the kite system. The feasibility of this application is investigated. It is shown that when the overall Laddermill to ship thrust efficiency can be made around 50% the resulting speed of the ship becomes practically independent from the wind direction. Such a capability could thus well change the world's seafaring.

  13. Mini-cavity plasma core reactors for dual-mode space nuclear power/propulsion systems

    International Nuclear Information System (INIS)

    Chow, S.

    1976-01-01

    A mini-cavity plasma core reactor is investigated for potential use in a dual-mode space power and propulsion system. In the propulsive mode, hydrogen propellant is injected radially inward through the reactor solid regions and into the cavity. The propellant is heated by both solid driver fuel elements surrounding the cavity and uranium plasma before it is exhausted out the nozzle. The propellant only removes a fraction of the driver power, the remainder is transferred by a coolant fluid to a power conversion system, which incorporates a radiator for heat rejection. In the power generation mode, the plasma and propellant flows are shut off, and the driver elements supply thermal power to the power conversion system, which generates electricity for primary electric propulsion purposes

  14. Aeroelastic Wing Shaping Using Distributed Propulsion

    Science.gov (United States)

    Nguyen, Nhan T. (Inventor); Reynolds, Kevin Wayne (Inventor); Ting, Eric B. (Inventor)

    2017-01-01

    An aircraft has wings configured to twist during flight. Inboard and outboard propulsion devices, such as turbofans or other propulsors, are connected to each wing, and are spaced along the wing span. A flight controller independently controls thrust of the inboard and outboard propulsion devices to significantly change flight dynamics, including changing thrust of outboard propulsion devices to twist the wing, and to differentially apply thrust on each wing to change yaw and other aspects of the aircraft during various stages of a flight mission. One or more generators can be positioned upon the wing to provide power for propulsion devices on the same wing, and on an opposite wing.

  15. Electrospray Propulsion Engineering Toolkit (ESPET), Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — To accelerate the development of scaled-up Electrospray Propulsion emitter array systems with practical thrust levels, Spectral Sciences, Inc. (SSI), in...

  16. Design and development of the MITEE-B bi-modal nuclear propulsion engine

    International Nuclear Information System (INIS)

    Paniagua, John C.; Powell, James R.; Maise, George

    2003-01-01

    Previous studies of compact, ultra-lightweight high performance nuclear thermal propulsion engines have concentrated on systems that only deliver high thrust. However, many potential missions also require substantial amounts of electric power. Studies of a new, very compact and lightweight bi-modal nuclear engine that provides both high propulsive thrust and high electric power for planetary science missions are described. The design is a modification of the MITEE nuclear thermal engine concept that provided only high propulsive thrust. In the new design, MITEE-B, separate closed cooling circuits are incorporated into the reactor, which transfers useful amounts of thermal energy to a small power conversion system that generates continuous electric power over the full life of the mission, even when the engine is not delivering propulsive thrust. Two versions of the MITEE-B design are described and analyzed. Version 1 generates 1 kW(e) of continuous power for control of the spacecraft, sensors, data transmission, etc. This power level eliminates the need for RTG's on missions to the outer planets, and allowing considerably greater operational capability for the spacecraft. This, plus its high thrust and high specific impulse propulsive capabilities, makes MITEE-B very attractive for such missions. In Version 2, of MITEE-B, a total of 20 kW(e) is generated, enabling the use of electric propulsion. The combination of high open cycle propulsion thrust (20,000 Newtons) with a specific impulse of ∼1000 seconds for short impulse burns, and long term (months to years), electric propulsion greatly increases MITEE's ΔV capability. Version 2 of MITEE-B also enables the production and replenishment of H2 propellant using in-situ resources, such as electrolysis of water from the ice sheet on Europa and other Jovian moons. This capability would greatly increase the ΔV available for certain planetary science missions. The modifications to the MITEE multiple pressure tube

  17. Compact Hybrid Automotive Propulsion System

    Science.gov (United States)

    Lupo, G.

    1986-01-01

    Power train proposed for experimental vehicle powered by internal combustion engine and electric motor. Intended for front-wheel drive automobile, power train mass produced using existing technology. System includes internal-combustion engine, electric motor, continuously variable transmission, torque converter, differential, and control and adjustment systems for electric motor and transmission. Continuously variable transmission integrated into hydraulic system that also handles power steering and power brakes. Batteries for electric motor mounted elsewhere in vehicle.

  18. The SMPR for the naval propulsion; Les RPMP pour la propulsion navale

    Energy Technology Data Exchange (ETDEWEB)

    Gauducheau, B. [Technicatome, Centre d' Etudes Nucleaires de Saclay, 91 - Gif sur Yvette (France)

    2002-07-01

    The first controlled application of the fissile energy was the american nuclear reactor for the ship propulsion. Since the sixties, the France begun researches to secure the independence of its nuclear propulsion program. The historical aspects, the french program management and the perspectives of the ship nuclear propulsion, are discussed in this paper. (A.L.B.)

  19. Advanced Chemical Propulsion System Study

    Science.gov (United States)

    Portz, Ron; Alexander, Leslie; Chapman, Jack; England, Chris; Henderson, Scott; Krismer, David; Lu, Frank; Wilson, Kim; Miller, Scott

    2007-01-01

    A detailed; mission-level systems study has been performed to show the benefit resulting from engine performance gains that will result from NASA's In-Space Propulsion ROSS Cycle 3A NRA, Advanced Chemical Technology sub-topic. The technology development roadmap to accomplish the NRA goals are also detailed in this paper. NASA-Marshall and NASA-JPL have conducted mission-level studies to define engine requirements, operating conditions, and interfaces. Five reference missions have been chosen for this analysis based on scientific interest, current launch vehicle capability and trends in space craft size: a) GTO to GEO, 4800 kg, delta-V for GEO insertion only approx.1830 m/s; b) Titan Orbiter with aerocapture, 6620 kg, total delta V approx.210 m/s, mostly for periapsis raise after aerocapture; c) Enceladus Orbiter (Titan aerocapture) 6620 kg, delta V approx.2400 m/s; d) Europa Orbiter, 2170 kg, total delta V approx.2600 m/s; and e) Mars Orbiter, 2250 kg, total delta V approx.1860 m/s. The figures of merit used to define the benefit of increased propulsion efficiency at the spacecraft level include propulsion subsystem wet mass, volume and overall cost. The objective of the NRA is to increase the specific impulse of pressure-fed earth storable bipropellant rocket engines to greater than 330 seconds with nitrogen tetroxide and monomothylhydrazine propellants and greater than 335 , seconds with nitrogen tetroxide and hydrazine. Achievement of the NRA goals will significantly benefit NASA interplanetary missions and other government and commercial opportunities by enabling reduced launch weight and/or increased payload. The study also constitutes a crucial stepping stone to future development, such as pump-fed storable engines.

  20. Propulsion at low Reynolds number

    International Nuclear Information System (INIS)

    Najafi, Ali; Golestanian, Ramin

    2005-01-01

    We study the propulsion of two model swimmers at low Reynolds number. Inspired by Purcell's model, we propose a very simple one-dimensional swimmer consisting of three spheres that are connected by two arms whose lengths can change between two values. The proposed swimmer can swim with a special type of motion, which breaks the time-reversal symmetry. We also show that an ellipsoidal membrane with tangential travelling wave on it can also propel itself in the direction preferred by the travelling wave. This system resembles the realistic biological animals like Paramecium

  1. Propulsion at low Reynolds number

    Energy Technology Data Exchange (ETDEWEB)

    Najafi, Ali [Institute for Advanced Studies in Basic Sciences, Zanjan 45195-159 (Iran, Islamic Republic of); Faculty of Science, Zanjan University, Zanjan 313 (Iran, Islamic Republic of); Golestanian, Ramin [Institute for Advanced Studies in Basic Sciences, Zanjan 45195-159 (Iran, Islamic Republic of)

    2005-04-13

    We study the propulsion of two model swimmers at low Reynolds number. Inspired by Purcell's model, we propose a very simple one-dimensional swimmer consisting of three spheres that are connected by two arms whose lengths can change between two values. The proposed swimmer can swim with a special type of motion, which breaks the time-reversal symmetry. We also show that an ellipsoidal membrane with tangential travelling wave on it can also propel itself in the direction preferred by the travelling wave. This system resembles the realistic biological animals like Paramecium.

  2. Space storable propulsion components development

    Science.gov (United States)

    Hagler, R., Jr.

    1982-01-01

    The current development status of components to control the flow of propellants (liquid fluorine and hydrazine) in a demonstration space storable propulsion system is discussed. The criteria which determined the designs for the pressure regulator, explosive-actuated valves, propellant shutoff valve, latching solenoid-actuated valve and propellant filter are presented. The test philosophy that was followed during component development is outlined. The results from compatibility demonstrations for reusable connectors, flange seals, and CRES/Ti-6Al4V transition tubes and the evaluations of processes for welding (hand-held TIG, automated TIG, and EB), cleaning for fluorine service, and decontamination after fluorine exposure are described.

  3. Laser Diagnostics for Spacecraft Propulsion

    Science.gov (United States)

    2015-10-13

    for public release; distribution unlimited.  AFTC/PA Clearance No.  XXXX 3 Motivation • Many satellite propulsion technologies were developed in the...distribution unlimited.  AFTC/PA Clearance No.  XXXX Propellant Catalyst Bed Decomposition Chamber Thrust Chamber 5 Diode Laser Absorption Spectroscopy Beer...Hydrazine Thruster NH3 Iν(L)Iν0 Ramp t I L DISTRIBUTION A:  Approved for public release; distribution unlimited.  AFTC/PA Clearance No.  XXXX 6 Wavelength

  4. Comparison of Propulsion Options for Human Exploration of Mars

    Science.gov (United States)

    Drake, Bret G.; McGuire, Melissa L.; McCarty, Steven L.

    2018-01-01

    NASA continues to advance plans to extend human presence beyond low-Earth orbit leading to human exploration of Mars. The plans being laid out follow an incremental path, beginning with initial flight tests followed by deployment of a Deep Space Gateway (DSG) in cislunar space. This Gateway, will serve as the initial transportation node for departing and returning Mars spacecraft. Human exploration of Mars represents the next leap for humankind because it will require leaving Earth on a long mission with very limited return, rescue, or resupply capabilities. Although Mars missions are long, approaches and technologies are desired which can reduce the time that the crew is away from Earth. This paper builds off past analyses of NASA's exploration strategy by providing more detail on the performance of alternative in-space transportation options with an emphasis on reducing total mission duration. Key options discussed include advanced chemical, nuclear thermal, nuclear electric, solar electric, as well as an emerging hybrid propulsion system which utilizes a combination of both solar electric and chemical propulsion.

  5. Full fuel-cycle comparison of forklift propulsion systems

    International Nuclear Information System (INIS)

    Gaines, L.L.; Elgowainy, A.; Wang, M.Q.

    2008-01-01

    Hydrogen has received considerable attention as an alternative to fossil fuels. The U.S. Department of Energy (DOE) investigates the technical and economic feasibility of promising new technologies, such as hydrogen fuel cells. A recent report for DOE identified three near-term markets for fuel cells: (1) Emergency power for state and local emergency response agencies, (2) Forklifts in warehousing and distribution centers, and (3) Airport ground support equipment markets. This report examines forklift propulsion systems and addresses the potential energy and environmental implications of substituting fuel-cell propulsion for existing technologies based on batteries and fossil fuels. Industry data and the Argonne Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model are used to estimate full fuel-cycle emissions and use of primary energy sources, back to the primary feedstocks for fuel production. Also considered are other environmental concerns at work locations. The benefits derived from using fuel-cell propulsion are determined by the sources of electricity and hydrogen. In particular, fuel-cell forklifts using hydrogen made from the reforming of natural gas had lower impacts than those using hydrogen from electrolysis

  6. Full fuel-cycle comparison of forklift propulsion systems.

    Energy Technology Data Exchange (ETDEWEB)

    Gaines, L. L.; Elgowainy, A.; Wang, M. Q.; Energy Systems

    2008-11-05

    Hydrogen has received considerable attention as an alternative to fossil fuels. The U.S. Department of Energy (DOE) investigates the technical and economic feasibility of promising new technologies, such as hydrogen fuel cells. A recent report for DOE identified three near-term markets for fuel cells: (1) Emergency power for state and local emergency response agencies, (2) Forklifts in warehousing and distribution centers, and (3) Airport ground support equipment markets. This report examines forklift propulsion systems and addresses the potential energy and environmental implications of substituting fuel-cell propulsion for existing technologies based on batteries and fossil fuels. Industry data and the Argonne Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model are used to estimate full fuel-cycle emissions and use of primary energy sources, back to the primary feedstocks for fuel production. Also considered are other environmental concerns at work locations. The benefits derived from using fuel-cell propulsion are determined by the sources of electricity and hydrogen. In particular, fuel-cell forklifts using hydrogen made from the reforming of natural gas had lower impacts than those using hydrogen from electrolysis.

  7. Energetic Combustion Devices for Aerospace Propulsion and Power

    Science.gov (United States)

    Litchford, Ron J.

    2000-01-01

    Chemical reactions have long been the mainstay thermal energy source for aerospace propulsion and power. Although it is widely recognized that the intrinsic energy density limitations of chemical bonds place severe constraints on maximum realizable performance, it will likely be several years before systems based on high energy density nuclear fuels can be placed into routine service. In the mean time, efforts to develop high energy density chemicals and advanced combustion devices which can utilize such energetic fuels may yield worthwhile returns in overall system performance and cost. Current efforts in this vein are being carried out at NASA MSFC under the direction of the author in the areas of pulse detonation engine technology development and light metals combustion devices. Pulse detonation engines are touted as a low cost alternative to gas turbine engines and to conventional rocket engines, but actual performance and cost benefits have yet to be convincingly demonstrated. Light metal fueled engines also offer potential benefits in certain niche applications such as aluminum/CO2 fueled engines for endo-atmospheric Martian propulsion. Light metal fueled MHD generators also present promising opportunities with respect to electric power generation for electromagnetic launch assist. This presentation will discuss the applications potential of these concepts with respect to aero ace propulsion and power and will review the current status of the development efforts.

  8. Applying design principles to fusion reactor configurations for propulsion in space

    International Nuclear Information System (INIS)

    Carpenter, S.A.; Deveny, M.E.; Schulze, N.R.

    1993-01-01

    The application of fusion power to space propulsion requires rethinking the engineering-design solution to controlled-fusion energy. Whereas the unit cost of electricity (COE) drives the engineering-design solution for utility-based fusion reactor configurations; initial mass to low earth orbit (IMLEO), specific jet power (kW(thrust)/kg(engine)), and reusability drive the engineering-design solution for successful application of fusion power to space propulsion. Three design principles (DP's) were applied to adapt and optimize three candidate-terrestrial-fusion-reactor configurations for propulsion in space. The three design principles are: provide maximum direct access to space for waste radiation, operate components as passive radiators to minimize cooling-system mass, and optimize the plasma fuel, fuel mix, and temperature for best specific jet power. The three candidate terrestrial fusion reactor configurations are: the thermal barrier tandem mirror (TBTM), field reversed mirror (FRM), and levitated dipole field (LDF). The resulting three candidate space fusion propulsion systems have their IMLEO minimized and their specific jet power and reusability maximized. A preliminary rating of these configurations was performed, and it was concluded that the leading engineering-design solution to space fusion propulsion is a modified TBTM that we call the Mirror Fusion Propulsion System (MFPS)

  9. RSMASS-D nuclear thermal propulsion and bimodal system mass models

    Science.gov (United States)

    King, Donald B.; Marshall, Albert C.

    1997-01-01

    Two relatively simple models have been developed to estimate reactor, radiation shield, and balance of system masses for a particle bed reactor (PBR) nuclear thermal propulsion concept and a cermet-core power and propulsion (bimodal) concept. The approach was based on the methodology developed for the RSMASS-D models. The RSMASS-D approach for the reactor and shield sub-systems uses a combination of simple equations derived from reactor physics and other fundamental considerations along with tabulations of data from more detailed neutron and gamma transport theory computations. Relatively simple models are used to estimate the masses of other subsystem components of the nuclear propulsion and bimodal systems. Other subsystem components include instrumentation and control (I&C), boom, safety systems, radiator, thermoelectrics, heat pipes, and nozzle. The user of these models can vary basic design parameters within an allowed range to achieve a parameter choice which yields a minimum mass for the operational conditions of interest. Estimated system masses are presented for a range of reactor power levels for propulsion for the PBR propulsion concept and for both electrical power and propulsion for the cermet-core bimodal concept. The estimated reactor system masses agree with mass predictions from detailed calculations with xx percent for both models.

  10. Turboelectric Distributed Propulsion in a Hybrid Wing Body Aircraft

    Science.gov (United States)

    Felder, James L.; Brown, Gerald V.; DaeKim, Hyun; Chu, Julio

    2011-01-01

    The performance of the N3-X, a 300 passenger hybrid wing body (HWB) aircraft with turboelectric distributed propulsion (TeDP), has been analyzed to see if it can meet the 70% fuel burn reduction goal of the NASA Subsonic Fixed Wing project for N+3 generation aircraft. The TeDP system utilizes superconducting electric generators, motors and transmission lines to allow the power producing and thrust producing portions of the system to be widely separated. It also allows a small number of large turboshaft engines to drive any number of propulsors. On the N3-X these new degrees of freedom were used to (1) place two large turboshaft engines driving generators in freestream conditions to maximize thermal efficiency and (2) to embed a broad continuous array of 15 motor driven propulsors on the upper surface of the aircraft near the trailing edge. That location maximizes the amount of the boundary layer ingested and thus maximizes propulsive efficiency. The Boeing B777-200LR flying 7500 nm (13890 km) with a cruise speed of Mach 0.84 and an 118100 lb payload was selected as the reference aircraft and mission for this study. In order to distinguish between improvements due to technology and aircraft configuration changes from those due to the propulsion configuration changes, an intermediate configuration was included in this study. In this configuration a pylon mounted, ultra high bypass (UHB) geared turbofan engine with identical propulsion technology was integrated into the same hybrid wing body airframe. That aircraft achieved a 52% reduction in mission fuel burn relative to the reference aircraft. The N3-X was able to achieve a reduction of 70% and 72% (depending on the cooling system) relative to the reference aircraft. The additional 18% - 20% reduction in the mission fuel burn can therefore be attributed to the additional degrees of freedom in the propulsion system configuration afforded by the TeDP system that eliminates nacelle and pylon drag, maximizes boundary

  11. Spark Ignition of Combustible Vapor in a Plastic Bottle as a Demonstration of Rocket Propulsion

    Science.gov (United States)

    Mattox, J. R.

    2017-01-01

    I report an innovation that provides a compelling demonstration of rocket propulsion, appropriate for students of physics and other physical sciences. An electrical spark is initiated from a distance to cause the deflagration of a combustible vapor mixed with air in a lightweight plastic bottle that is consequently propelled as a rocket by the…

  12. Mission Capability Gains from Multi-Mode Propulsion Thrust Variations on a Variety Spacecraft Orbital Maneuvers

    Science.gov (United States)

    2011-03-01

    Geocentric -Equatorial Reference Frame2 ....................................................................... 31  Figure 8: Perifocal and Geocentric ...67  Figure 25: Mission 3 Geocentric Equatorial Reference Frame ...................................................... 69  Figure 26: Mission 3...but at the cost of the propellant required. Spacecraft electric propulsion systems provide high specific impulse which result in low propellant

  13. Fuel cells: a real option for Unmanned Aerial Vehicles propulsion.

    Science.gov (United States)

    González-Espasandín, Óscar; Leo, Teresa J; Navarro-Arévalo, Emilio

    2014-01-01

    The possibility of implementing fuel cell technology in Unmanned Aerial Vehicle (UAV) propulsion systems is considered. Potential advantages of the Proton Exchange Membrane or Polymer Electrolyte Membrane (PEMFC) and Direct Methanol Fuel Cells (DMFC), their fuels (hydrogen and methanol), and their storage systems are revised from technical and environmental standpoints. Some operating commercial applications are described. Main constraints for these kinds of fuel cells are analyzed in order to elucidate the viability of future developments. Since the low power density is the main problem of fuel cells, hybridization with electric batteries, necessary in most cases, is also explored.

  14. Fuel Cells: A Real Option for Unmanned Aerial Vehicles Propulsion

    Science.gov (United States)

    2014-01-01

    The possibility of implementing fuel cell technology in Unmanned Aerial Vehicle (UAV) propulsion systems is considered. Potential advantages of the Proton Exchange Membrane or Polymer Electrolyte Membrane (PEMFC) and Direct Methanol Fuel Cells (DMFC), their fuels (hydrogen and methanol), and their storage systems are revised from technical and environmental standpoints. Some operating commercial applications are described. Main constraints for these kinds of fuel cells are analyzed in order to elucidate the viability of future developments. Since the low power density is the main problem of fuel cells, hybridization with electric batteries, necessary in most cases, is also explored. PMID:24600326

  15. Fuel Cells: A Real Option for Unmanned Aerial Vehicles Propulsion

    Directory of Open Access Journals (Sweden)

    Óscar González-Espasandín

    2014-01-01

    Full Text Available The possibility of implementing fuel cell technology in Unmanned Aerial Vehicle (UAV propulsion systems is considered. Potential advantages of the Proton Exchange Membrane or Polymer Electrolyte Membrane (PEMFC and Direct Methanol Fuel Cells (DMFC, their fuels (hydrogen and methanol, and their storage systems are revised from technical and environmental standpoints. Some operating commercial applications are described. Main constraints for these kinds of fuel cells are analyzed in order to elucidate the viability of future developments. Since the low power density is the main problem of fuel cells, hybridization with electric batteries, necessary in most cases, is also explored.

  16. Radio Frequency Plasma Applications for Space Propulsion

    International Nuclear Information System (INIS)

    Baity, F.W. Jr.; Barber, G.C.; Carter, M.D.; Chang-Diaz, F.R.; Goulding, R.H.; Ilin, A.V.; Jaeger, E.F.; Sparks, D.O.; Squire, J.P.

    1999-01-01

    Recent developments in solid-state radio frequency (RF) power technologies allow for the practical consideration of RF heated plasmas for space propulsion. These technologies permit the use of any electrical power source, de-couple the power and propellant sources, and allow for the efficient use of both the propellant mass and power. Efficient use of the propellant is obtained by expelling the rocket exhaust at the highest possible velocity, which can be orders of magnitude higher than those achieved in chemical rockets. Handling the hot plasma exhaust requires the use of magnetic nozzles, and the basic physics of ion detachment from the magnetic eld is discussed. The plasma can be generated by RF using helicon waves to heat electrons. Further direct heating of the ions helps to reduce the line radiation losses, and the magnetic geometry is tailored to allow ion cyclotron resonance heating. RF eld and ion trajectory calculations are presented to give a reasonably self-consistent picture of the ion acceleration process

  17. Civilian application of propulsion reactor in Indonesia

    International Nuclear Information System (INIS)

    Djokolelono, M.; Arbie, B.; Lasman, A.N.

    2000-01-01

    It has been learned that to cope with energy requirement in the remote islands and less developed regions of Indonesia, small or very small nuclear reactors producing electricity and/or process heat could be appropriately applied. The barge mounted propulsion power reactors are the attractive examples so far envisioned, and technology information of which is being exposed to the world these last years. The solutions for least maintenance and no on-site refueling, no radioactive discharge, and no radioactive waste to remain in the user country are among the attractions for further deliberations. It has been understood, however, that there are many uncertainties to overcome, especially for the developing countries to introduce this novel application. International acceptance is the most crucial, availability of first-of-the-kind engineering, prototype or reference plant that would prove licensibility in the vendor's country is the second, and economic competitiveness due to very small size is the third among issues to enlighten. The relevant regulations concerning marine nuclear safety, marine transportation, and proliferation of information, as well as international forums to justify the feasibility of related transfer of technology, are the items that the IAEA could help to provide to smoothen any possible international transaction. Indonesia supports this AGM as one of the appropriate IAEA efforts in this line, and expects from it positive international consensus and possible studies/R and D work that this country could participate in. (author)

  18. Gasdynamic Mirror Fusion Propulsion Experiment

    Science.gov (United States)

    Emrich, Bill; Rodgers, Stephen L. (Technical Monitor)

    2000-01-01

    A gasdynamic mirror (GDM) fusion propulsion experiment is currently being constructed at the NASA Marshall Space Flight Center (MSFC) to test the feasibility of this particular type of fusion device. Because of the open magnetic field line configuration of mirror fusion devices, they are particularly well suited for propulsion system applications since they allow for the easy ejection of thrust producing plasma. Currently, the MSFC GDM is constructed in three segments. The vacuum chamber mirror segment, the plasma injector mirror segment, and the main plasma chamber segment. Enough magnets are currently available to construct up to three main plasma chamber segments. The mirror segments are also segmented such that they can be expanded to accommodate new end plugging strategies with out requiring the disassembly of the entire mirror segment. The plasma for the experiment is generated in a microwave cavity located between the main magnets and the mirror magnets. Ion heating is accomplished through ambipolar diffusion. The objective of the experiment is to investigate the stability characteristics of the gasdynamic mirror and to map a region of parameter space within which the plasma can be confined in a stable steady state configuration. The mirror ratio, plasma density, and plasma "b" will be varied over a range of values and measurements subsequently taken to determine the degree of plasma stability.

  19. METHODOLOGY OF THE HYBRID PROPULSION SYSTEM (DMP & DEP FOR TRIMARAN TYPE FAST PATROL BOAT

    Directory of Open Access Journals (Sweden)

    Aulia Widyandari

    2012-04-01

    Full Text Available There are lot of research done to develop a patrol boat, from the modification of hull model until propulsion system equipment. For example the model ship type AMV (Advanced Marine Vehicle was developed starting from the Catamaran, Trimaran and  Pentamaran model. Everything is aimed at obtaining the ship design that has the speed and stability. In addition to achieving high-speed vessel must be equipped with propulsion (Main Power is great, that means the main engine dimensions, auxiliary equipments and fuel tanks is too large. Many Limitations of space on the ship's engine room trimaran vessel is the main obstacle in designing propulsion system. Beside that Patrol boat should have many missions speed, so propulsion system should be designed at that conditions.   Hybrid propulsion is a combination of Diesel Mechanical Propulsion (DMP with Diesel Electric Propulsion (DEP. DMP system is connected directly to the propeller shaft (or through a reduction-gear. DMP has provide more efficiency rate of 95%. While DEP is only able to provide efficiency by 85% - 89% is slightly lower than DMP, but the DEP offers many advantages such as simplicity and suitability in the rotational speed settings, control systems, engine power production Redundancy, Flexibility in the design of equipments layout in engine rooms, noise, vibration and fuel consumption efficiency which affects the lower pollution.   Design of Hybrid Propulsion system can be satisfied and achieved the Power requirements and optimally at all speed condition of patrol boat. Therefore the author made using modeling Maxsurf-11.12 software and carried out various optimization of the choice of main engine, propeller and system conditions for fast patrol boat cruise. 

  20. Techno-economic investigation of alternative propulsion plants for Ferries and RoRo ships

    International Nuclear Information System (INIS)

    Livanos, George A.; Theotokatos, Gerasimos; Pagonis, Dimitrios-Nikolaos

    2014-01-01

    Highlights: • Alternative Diesel and Gas engine propulsion plants of Ferries and RoRos were studied. • Special focus on marine Natural Gas burning engines and ship waste heat recovery systems. • Significant savings in annual operating costs were predicted in the case of Natural Gas engines. • Environmental and economic optimum propulsion plant alternative was proposed in a specific case study. - Abstract: In this paper, the main alternative propulsion plants based on reciprocating internal combustion engines of a ferry or RoRo ship operating in routes that include Emission Control Areas (ECAs) are comparatively assessed. Specifically, a dual fuel engine propulsion plant is compared with a conventional Diesel engine plant. For both cases, the installation of a waste heat recovery system, which covers a part of the ship electric energy demand, is also considered. The ship main DF engines are assumed to operate using LNG and a small amount of MDO for initiating combustion, whereas low sulphur MDO was regarded as the fuel for the case of the Diesel engine plant. The installation of Selective Catalytic Reduction (SCR) after-treatment unit for reducing the NOx emissions for the case of Diesel engines plant is also taken into account. The propulsion plants were modelled under steady state conditions, and the simulation results were analysed in order to compare the alternative configurations. Furthermore, the Energy Efficiency Design Index (EEDI) values were calculated and the two examined propulsion system cases were compared on EEDI basis. Finally, the Life Cycle Cost for each alternative propulsion plant was calculated and used for completing an economic evaluation of the Dual fuel propulsion plant versus the conventional designs applied in ferries