WorldWideScience

Sample records for single-shaft electric propulsion

  1. TOWARDS THE ELECTRIC PROPULSION

    Directory of Open Access Journals (Sweden)

    Mihai Victor PRICOP

    2010-03-01

    Full Text Available The paper presents benefits and drawbacks of the electric propulsion for the case of a ten seat commuter aircraft. An efficiency evaluation is made for an electric version of AEROTAXI, considered as a reference. The evaluation is projected to 2020, trying to meet the expected progresses in energy storage systems.

  2. NASA Electric Propulsion System Studies

    Science.gov (United States)

    Felder, James L.

    2015-01-01

    An overview of NASA efforts in the area of hybrid electric and turboelectric propulsion in large transport. This overview includes a list of reasons why we are looking at transmitting some or all of the propulsive power for the aircraft electrically, a list of the different types of hybrid-turbo electric propulsion systems, and the results of 4 aircraft studies that examined different types of hybrid-turbo electric propulsion systems.

  3. Nuclear electric propulsion

    International Nuclear Information System (INIS)

    Keaton, P.W.; Tubb, D.J.

    1986-01-01

    The feasibility is investigated of using nuclear electric propulsion (NEP) for slow freighter ships traveling from a 500 km low Earth orbit (LEO) to the Moon's orbit about the Earth, and on to Mars. NEP is also shown to be feasible for transporting people to Mars on long conjunction-class missions lasting about nine months one way, and on short sprint missions lasting four months one way. Generally, it was not attempted to optimize ion exhaust velocities, but rather suitable parameters to demonstrate NEP feasibility were chosen. Various combinations of missions are compared with chemical and nuclear thermal propulsion (NTR) systems. Typically, NEP and NTR can accomplish the same lifting task with similar mass in LEO. When compared to chemical propulsion, NEP was found to accomplish the same missions with 40% less mass in LEO. These findings are sufficiently encouraging as to merit further studies with optimum systems

  4. Electric Propulsion Research Building (EPRB)

    Data.gov (United States)

    Federal Laboratory Consortium — The Electric Propulsion Research Building (EPRB) capability centers on its suite of vacuum chambers, which are configured to meet the unique requirements related to...

  5. Reactors for nuclear electric propulsion

    Energy Technology Data Exchange (ETDEWEB)

    Buden, D.; Angelo, J.A. Jr.

    1981-01-01

    Propulsion is the key to space exploitation and power is the key to propulsion. This paper examines the role of nuclear fission reactors as the primary power source for high specific impulse electric propulsion systems for space missions of the 1980s and 1990s. Particular mission applications include transfer to and a reusable orbital transfer vehicle from low-Earth orbit to geosynchronous orbit, outer planet exploration and reconnaissance missions, and as a versatile space tug supporting lunar resource development. Nuclear electric propulsion is examined as an indispensable component in space activities of the next two decades.

  6. Reactors for nuclear electric propulsion

    International Nuclear Information System (INIS)

    Buden, D.; Angelo, J.A. Jr.

    1981-01-01

    Propulsion is the key to space exploitation and power is the key to propulsion. This paper examines the role of nuclear fission reactors as the primary power source for high specific impulse electric propulsion systems for space missions of the 1980s and 1990s. Particular mission applications include transfer to and a reusable orbital transfer vehicle from low-Earth orbit to geosynchronous orbit, outer planet exploration and reconnaissance missions, and as a versatile space tug supporting lunar resource development. Nuclear electric propulsion is examined as an indispensable component in space activities of the next two decades

  7. Electric propulsion for small satellites

    Science.gov (United States)

    Keidar, Michael; Zhuang, Taisen; Shashurin, Alexey; Teel, George; Chiu, Dereck; Lukas, Joseph; Haque, Samudra; Brieda, Lubos

    2015-01-01

    Propulsion is required for satellite motion in outer space. The displacement of a satellite in space, orbit transfer and its attitude control are the task of space propulsion, which is carried out by rocket engines. Electric propulsion uses electric energy to energize or accelerate the propellant. The electric propulsion, which uses electrical energy to accelerate propellant in the form of plasma, is known as plasma propulsion. Plasma propulsion utilizes the electric energy to first, ionize the propellant and then, deliver energy to the resulting plasma leading to plasma acceleration. Many types of plasma thrusters have been developed over last 50 years. The variety of these devices can be divided into three main categories dependent on the mechanism of acceleration: (i) electrothermal, (ii) electrostatic and (iii) electromagnetic. Recent trends in space exploration associate with the paradigm shift towards small and efficient satellites, or micro- and nano-satellites. A particular example of microthruster considered in this paper is the micro-cathode arc thruster (µCAT). The µCAT is based on vacuum arc discharge. Thrust is produced when the arc discharge erodes some of the cathode at high velocity and is accelerated out the nozzle by a Lorentz force. The thrust amount is controlled by varying the frequency of pulses with demonstrated range to date of 1-50 Hz producing thrust ranging from 1 µN to 0.05 mN.

  8. Electric propulsion system technology

    Science.gov (United States)

    Brophy, John R.; Garner, Charles E.; Goodfellow, Keith D.; Pivirotto, Thomas J.; Polk, James E.

    1992-01-01

    The work performed in fiscal year (FY) 1991 under the Propulsion Technology Program RTOP (Research and Technology Objectives and Plans) No. (55) 506-42-31 for Low-Thrust Primary and Auxiliary Propulsion technology development is described. The objectives of this work fall under two broad categories. The first of these deals with the development of ion engines for primary propulsion in support of solar system exploration. The second with the advancement of steady-state magnetoplasmadynamic (MPD) thruster technology at 100 kW to multimegawatt input power levels. The major technology issues for ion propulsion are demonstration of adequate engine life at the 5 to 10 kW power level and scaling ion engines to power levels of tens to hundreds of kilowatts. Tests of a new technique in which the decelerator grid of a three-grid ion accelerator system is biased negative of neutralizer common potential in order to collect facility induced charge-exchange ions are described. These tests indicate that this SAND (Screen, Accelerator, Negative Decelerator) configuration may enable long duration ion engine endurance tests to be performed at vacuum chamber pressures an order of magnitude higher than previously possible. The corresponding reduction in pumping speed requirements enables endurance tests of 10 kW class ion engines to be performed within the resources of existing technology programs. The results of a successful 5,000-hr endurance of a xenon hollow cathode operating at an emission current of 25 A are described, as well as the initial tests of hollow cathodes operating on a mixture of argon and 3 percent nitrogen. Work performed on the development of carbon/carbon grids, a multi-orifice hollow cathode, and discharge chamber erosion reduction through the addition of nitrogen are also described. Critical applied-field MPD thruster technical issues remain to be resolved, including demonstration of reliable steady-state operation at input powers of hundreds to thousands of

  9. Electric propulsion system technology

    Science.gov (United States)

    Brophy, John R.; Garner, Charles E.; Goodfellow, Keith D.; Pivirotto, Thomas J.; Polk, James E.

    1992-11-01

    The work performed in fiscal year (FY) 1991 under the Propulsion Technology Program RTOP (Research and Technology Objectives and Plans) No. (55) 506-42-31 for Low-Thrust Primary and Auxiliary Propulsion technology development is described. The objectives of this work fall under two broad categories. The first of these deals with the development of ion engines for primary propulsion in support of solar system exploration. The second with the advancement of steady-state magnetoplasmadynamic (MPD) thruster technology at 100 kW to multimegawatt input power levels. The major technology issues for ion propulsion are demonstration of adequate engine life at the 5 to 10 kW power level and scaling ion engines to power levels of tens to hundreds of kilowatts. Tests of a new technique in which the decelerator grid of a three-grid ion accelerator system is biased negative of neutralizer common potential in order to collect facility induced charge-exchange ions are described. These tests indicate that this SAND (Screen, Accelerator, Negative Decelerator) configuration may enable long duration ion engine endurance tests to be performed at vacuum chamber pressures an order of magnitude higher than previously possible. The corresponding reduction in pumping speed requirements enables endurance tests of 10 kW class ion engines to be performed within the resources of existing technology programs. The results of a successful 5,000-hr endurance of a xenon hollow cathode operating at an emission current of 25 A are described, as well as the initial tests of hollow cathodes operating on a mixture of argon and 3 percent nitrogen. Work performed on the development of carbon/carbon grids, a multi-orifice hollow cathode, and discharge chamber erosion reduction through the addition of nitrogen are also described. Critical applied-field MPD thruster technical issues remain to be resolved, including demonstration of reliable steady-state operation at input powers of hundreds to thousands of

  10. Diverse expansion of electric propulsion

    OpenAIRE

    Kuninaka, Hitoshi; 國中 均

    2007-01-01

    The microwave discharge ion engine mu 10 has long life and high reliability because of electrode-less plasma generation in both the ion generator and the neutralizer. Four mu 10s, each generating a thrust of 8 mN, propelled Hayabusa explorer to asteroid Itokawa. Electric propulsions including DC arcjets, MPD (Magneto Plasma Dynamic) arcjets, Hall thrusters as well as ion engines generate jets much faster than those of chemical rockets and make spacecraft fly by power in deep space so as to re...

  11. Propulsion Wheel Motor for an Electric Vehicle

    Science.gov (United States)

    Figuered, Joshua M. (Inventor); Herrera, Eduardo (Inventor); Waligora, Thomas M. (Inventor); Bluethmann, William J. (Inventor); Farrell, Logan Christopher (Inventor); Lee, Chunhao J. (Inventor); Vitale, Robert L. (Inventor); Winn, Ross Briant (Inventor); Eggleston, IV, Raymond Edward (Inventor); Guo, Raymond (Inventor); hide

    2016-01-01

    A wheel assembly for an electric vehicle includes a wheel rim that is concentrically disposed about a central axis. A propulsion-braking module is disposed within an interior region of the wheel rim. The propulsion-braking module rotatably supports the wheel rim for rotation about the central axis. The propulsion-braking module includes a liquid cooled electric motor having a rotor rotatable about the central axis, and a stator disposed radially inside the rotor relative to the central axis. A motor-wheel interface hub is fixedly attached to the wheel rim, and is directly attached to the rotor for rotation with the rotor. The motor-wheel interface hub directly transmits torque from the electric motor to the wheel rim at a 1:1 ratio. The propulsion-braking module includes a drum brake system having an electric motor that rotates a cam device, which actuates the brake shoes.

  12. Electric Propulsion System Characterization through Experiments

    OpenAIRE

    Hattenberger, Gautier; Drouin, Antoine; Bronz, Murat

    2016-01-01

    International audience; Electrical propulsion system characteristics are very important in UAV design, operation and control. This article presents the characterization of electric propulsion sets through experiments. A motor test bench have been build based on previous experience in order to improve the quality of the measurements. Moreover, the bench fits in a wind tunnel, allowing to perform a complete characterization over the full airspeed range of the considered mini and micro-UAVs. Aft...

  13. Simulation of Electric Propulsion Thrusters

    Science.gov (United States)

    2011-01-01

    pp. 764-773. [17] Boyd, I.D., “Monte Carlo Simulation of Nonequilibrium Flow in Low Power Hydrogen Arcjets ,” Physics of Fluids, Vol. 9, 1997, pp...Habiger, H., Hammer, F., Kurtz, H., Riehle, M., and Sleziona, C., “High- Power Hydrogen Arcjet Thrusters,” Journal of Propulsion and Power , Vol. 14, 1998...3086-3095. [18] Boyd, I.D., “Extensive Validation of a Monte Carlo Model for Hydrogen Arcjet Flow Fields,” Journal of Propulsion and Power , Vol. 13

  14. Electric rail gun application to space propulsion

    International Nuclear Information System (INIS)

    Barber, J.P.

    1979-01-01

    The paper examines the possibility of using the DC electric gun principles as a space vehicle propulsion system, capable of producing intermediate thrust levels. The application of an electromagnetic launch technique, called the DC electric rail gun, to the space propulsion concept of O'Neill, is examined. It is determined that the DC electric rail gun offers very high projectile accelerations and a very significant potential for reducing the size and mass of a reaction motor for space application. A detailed description of rail gun principles is given and some simple expressions for the accelerating force, gun impedance, power supply requirements, and system performance are discussed

  15. NASA program planning on nuclear electric propulsion

    Science.gov (United States)

    Bennett, Gary L.; Miller, Thomas J.

    1992-01-01

    As part of the focused technology planning for future NASA space science and exploration missions, NASA has initiated a focused technology program to develop the technologies for nuclear electric propulsion and nuclear thermal propulsion. Beginning in 1990, NASA began a series of interagency planning workshops and meetings to identify key technologies and program priorities for nuclear propulsion. The high-priority, near-term technologies that must be developed to make NEP operational for space exploration include scaling thrusters to higher power, developing high-temperature power processing units, and developing high power, low-mass, long-lived nuclear reactors.

  16. MW-Class Electric Propulsion System Designs

    Science.gov (United States)

    LaPointe, Michael R.; Oleson, Steven; Pencil, Eric; Mercer, Carolyn; Distefano, Salvador

    2011-01-01

    Electric propulsion systems are well developed and have been in commercial use for several years. Ion and Hall thrusters have propelled robotic spacecraft to encounters with asteroids, the Moon, and minor planetary bodies within the solar system, while higher power systems are being considered to support even more demanding future space science and exploration missions. Such missions may include orbit raising and station-keeping for large platforms, robotic and human missions to near earth asteroids, cargo transport for sustained lunar or Mars exploration, and at very high-power, fast piloted missions to Mars and the outer planets. The Advanced In-Space Propulsion Project, High Efficiency Space Power Systems Project, and High Power Electric Propulsion Demonstration Project were established within the NASA Exploration Technology Development and Demonstration Program to develop and advance the fundamental technologies required for these long-range, future exploration missions. Under the auspices of the High Efficiency Space Power Systems Project, and supported by the Advanced In-Space Propulsion and High Power Electric Propulsion Projects, the COMPASS design team at the NASA Glenn Research Center performed multiple parametric design analyses to determine solar and nuclear electric power technology requirements for representative 300-kW class and pulsed and steady-state MW-class electric propulsion systems. This paper describes the results of the MW-class electric power and propulsion design analysis. Starting with the representative MW-class vehicle configurations, and using design reference missions bounded by launch dates, several power system technology improvements were introduced into the parametric COMPASS simulations to determine the potential system level benefits such technologies might provide. Those technologies providing quantitative system level benefits were then assessed for technical feasibility, cost, and time to develop. Key assumptions and primary

  17. Hybrid Electric Propulsion Technologies for Commercial Transports

    Science.gov (United States)

    Bowman, Cheryl; Jansen, Ralph; Jankovsky, Amy

    2016-01-01

    NASA Aeronautics Research Mission Directorate has set strategic research thrusts to address the major drivers of aviation such as growth in demand for high-speed mobility, addressing global climate and capitalizing in the convergence of technological advances. Transitioning aviation to low carbon propulsion is one of the key strategic research thrust and drives the search for alternative and greener propulsion system for advanced aircraft configurations. This work requires multidisciplinary skills coming from multiple entities. The Hybrid Gas-Electric Subproject in the Advanced Air Transportation Project is energizing the transport class landscape by accepting the technical challenge of identifying and validating a transport class aircraft with net benefit from hybrid propulsion. This highly integrated aircraft of the future will only happen if airframe expertise from NASA Langley, modeling and simulation expertise from NASA Ames, propulsion expertise from NASA Glenn, and the flight research capabilities from NASA Armstrong are brought together to leverage the rich capabilities of U.S. Industry and Academia.

  18. Visions of the Future: Hybrid Electric Aircraft Propulsion

    Science.gov (United States)

    Bowman, Cheryl L.

    2016-01-01

    The National Aeronautics and Space Administration (NASA) is investing continually in improving civil aviation. Hybridization of aircraft propulsion is one aspect of a technology suite which will transform future aircraft. In this context, hybrid propulsion is considered a combination of traditional gas turbine propulsion and electric drive enabled propulsion. This technology suite includes elements of propulsion and airframe integration, parallel hybrid shaft power, turbo-electric generation, electric drive systems, component development, materials development and system integration at multiple levels.

  19. NASA's progress in nuclear electric propulsion technology

    Science.gov (United States)

    Stone, James R.; Doherty, Michael P.; Peecook, Keith M.

    1993-01-01

    The National Aeronautics and Space Administration (NASA) has established a requirement for Nuclear Electric Propulsion (NEP) technology for robotic planetary science mission applications with potential future evolution to systems for piloted Mars vehicles. To advance the readiness of NEP for these challenging missions, a near-term flight demonstration on a meaningful robotic science mission is very desirable. The requirements for both near-term and outer planet science missions are briefly reviewed, and the near-term baseline system established under a recent study jointly conducted by the Lewis Research Center (LeRC) and the Jet Propulsion Laboratory (JPL) is described. Technology issues are identified where work is needed to establish the technology for the baseline system, and technology opportunities which could provide improvement beyond baseline capabilities are discussed. Finally, the plan to develop this promising technology is presented and discussed.

  20. ac propulsion system for an electric vehicle

    Science.gov (United States)

    Geppert, S.

    1980-01-01

    It is pointed out that dc drives will be the logical choice for current production electric vehicles (EV). However, by the mid-80's, there is a good chance that the price and reliability of suitable high-power semiconductors will allow for a competitive ac system. The driving force behind the ac approach is the induction motor, which has specific advantages relative to a dc shunt or series traction motor. These advantages would be an important factor in the case of a vehicle for which low maintenance characteristics are of primary importance. A description of an EV ac propulsion system is provided, taking into account the logic controller, the inverter, the motor, and a two-speed transmission-differential-axle assembly. The main barrier to the employment of the considered propulsion system in EV is not any technical problem, but inverter transistor cost.

  1. Algorithms for computing efficient, electric-propulsion, spiralling trajectories

    Data.gov (United States)

    National Aeronautics and Space Administration — Develop techniques for rapidly designing many-revolution, electric-propulsion, spiralling trajectories, including the effects of shadowing, gravity harmonics, and...

  2. Electric Propulsion Induced Secondary Mass Spectroscopy

    Science.gov (United States)

    Amini, Rashied; Landis, Geoffrey

    2012-01-01

    A document highlights a means to complement remote spectroscopy while also providing in situ surface samples without a landed system. Historically, most compositional analysis of small body surfaces has been done remotely by analyzing reflection or nuclear spectra. However, neither provides direct measurement that can unambiguously constrain the global surface composition and most importantly, the nature of trace composition and second-phase impurities. Recently, missions such as Deep Space 1 and Dawn have utilized electric propulsion (EP) accelerated, high-energy collimated beam of Xe+ ions to propel deep space missions to their target bodies. The energies of the Xe+ are sufficient to cause sputtering interactions, which eject material from the top microns of a targeted surface. Using a mass spectrometer, the sputtered material can be determined. The sputtering properties of EP exhaust can be used to determine detailed surface composition of atmosphereless bodies by electric propulsion induced secondary mass spectroscopy (EPI-SMS). EPI-SMS operation has three high-level requirements: EP system, mass spectrometer, and altitude of about 10 km. Approximately 1 keV Xe+ has been studied and proven to generate high sputtering yields in metallic substrates. Using these yields, first-order calculations predict that EPI-SMS will yield high signal-to-noise at altitudes greater than 10 km with both electrostatic and Hall thrusters.

  3. Recent Advances in Nuclear Powered Electric Propulsion for Space Exploration

    Science.gov (United States)

    Cassady, R. Joseph; Frisbee, Robert H.; Gilland, James H.; Houts, Michael G.; LaPointe, Michael R.; Maresse-Reading, Colleen M.; Oleson, Steven R.; Polk, James E.; Russell, Derrek; Sengupta, Anita

    2007-01-01

    Nuclear and radioisotope powered electric thrusters are being developed as primary in-space propulsion systems for potential future robotic and piloted space missions. Possible applications for high power nuclear electric propulsion include orbit raising and maneuvering of large space platforms, lunar and Mars cargo transport, asteroid rendezvous and sample return, and robotic and piloted planetary missions, while lower power radioisotope electric propulsion could significantly enhance or enable some future robotic deep space science missions. This paper provides an overview of recent U.S. high power electric thruster research programs, describing the operating principles, challenges, and status of each technology. Mission analysis is presented that compares the benefits and performance of each thruster type for high priority NASA missions. The status of space nuclear power systems for high power electric propulsion is presented. The paper concludes with a discussion of power and thruster development strategies for future radioisotope electric propulsion systems,

  4. Configurations of hybrid-electric cars propulsion systems

    OpenAIRE

    Cundev, Dobri; Sarac, Vasilija; Stefanov, Goce

    2011-01-01

    Over the last few years, hybrid electric cars have taken significant role in automotive market. There are successful technological solutions of hybrid-electric propulsion systems implemented in commercial passenger cars. Every automobile manufacturer of hybrid vehicles has unique hybrid propulsion system. In this paper, all implemented systems are described, analyzed and compared.

  5. A Future with Hybrid Electric Propulsion Systems: A NASA Perspective

    Science.gov (United States)

    DelRosario, Ruben

    2014-01-01

    The presentation highlights a NASA perspective on Hybrid Electric Propulsion Systems for aeronautical applications. Discussed are results from NASA Advance Concepts Study for Aircraft Entering service in 2030 and beyond and the potential use of hybrid electric propulsion systems as a potential solution to the requirements for energy efficiency and environmental compatibility. Current progress and notional potential NASA research plans are presented.

  6. Sputter-Resistant Materials for Electric Propulsion, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase 2 project shall develop sputter-resistant materials for use in electric propulsion test facilities and for plume shields on spacecraft using electric...

  7. Misconceptions of Electric Propulsion Aircraft and Their Emergent Aviation Markets

    Science.gov (United States)

    Moore, Mark D.; Fredericks, Bill

    2014-01-01

    Over the past several years there have been aircraft conceptual design and system studies that have reached conflicting conclusions relating to the feasibility of full and hybrid electric aircraft. Some studies and propulsion discipline experts have claimed that battery technologies will need to improve by 10 to 20 times before electric aircraft can effectively compete with reciprocating or turbine engines. However, such studies have approached comparative assessments without understanding the compelling differences that electric propulsion offers, how these technologies will fundamentally alter the way propulsion integration is approached, or how these new technologies can not only compete but far exceed existing propulsion solutions in many ways at battery specific energy densities of only 400 watt hours per kilogram. Electric propulsion characteristics offer the opportunity to achieve 4 to 8 time improvements in energy costs with dramatically lower total operating costs, while dramatically improving efficiency, community noise, propulsion system reliability and safety through redundancy, as well as life cycle Green House Gas emissions. Integration of electric propulsion will involve far greater degrees of distribution than existing propulsion solutions due to their compact and scale-free nature to achieve multi-disciplinary coupling and synergistic integration with the aerodynamics, highlift system, acoustics, vehicle control, balance, and aeroelasticity. Appropriate metrics of comparison and differences in analysis/design tools are discussed while comparing electric propulsion to other disruptive technologies. For several initial applications, battery energy density is already sufficient for competitive products, and for many additional markets energy densities will likely be adequate within the next 7 years for vibrant introduction. Market evolution and early adopter markets are discussed, along with the investment areas that will fill technology gaps and

  8. Electric propulsion flight experience and technology readiness

    Science.gov (United States)

    Pollard, J. E.; Jackson, D. E.; Marvin, D. C.; Jenkin, A. B.; Janson, S. W.

    1993-06-01

    Spacecraft electric propulsion technology is reviewed here to provide mission planners and potential users with a better appreciation of its capabilities and limitations. Flight experience provides the best measure of EP technology readiness. We describe and document the flight history and development status of EP in domestic, foreign, and commercial programs. Low-power resistojets, arcjets, ion engines, and plasma thrusters are applicable today for stationkeeping and drag compensation. Future high-power systems would enable large velocity-change maneuvers. The trade-space of EP encompasses significant performance benefits (reduced propellant mass, enhanced payload, system-level synergism), along with challenges (hardware development, system operations, non-technical issues). The choice of design parameters (thrust, specific impulse, input power) depends on how much of a change from traditional spacecraft operations is acceptable for a given mission - greater change will yield a greater payoff.

  9. Nuclear modules for space electric propulsion

    International Nuclear Information System (INIS)

    Difilippo, F.C.

    1998-01-01

    Analysis of interplanetary cargo and piloted missions requires calculations of the performances and masses of subsystems to be integrated in a final design. In a preliminary and scoping stage the designer needs to evaluate options iteratively by using fast computer simulations. The Oak Ridge National Laboratory (ORNL) has been involved in the development of models and calculational procedures for the analysis (neutronic and thermal hydraulic) of power sources for nuclear electric propulsion. The nuclear modules will be integrated into the whole simulation of the nuclear electric propulsion system. The vehicles use either a Brayton direct-conversion cycle, using the heated helium from a NERVA-type reactor, or a potassium Rankine cycle, with the working fluid heated on the secondary side of a heat exchanger and lithium on the primary side coming from a fast reactor. Given a set of input conditions, the codes calculate composition. dimensions, volumes, and masses of the core, reflector, control system, pressure vessel, neutron and gamma shields, as well as the thermal hydraulic conditions of the coolant, clad and fuel. Input conditions are power, core life, pressure and temperature of the coolant at the inlet of the core, either the temperature of the coolant at the outlet of the core or the coolant mass flow and the fluences and integrated doses at the cargo area. Using state-of-the-art neutron cross sections and transport codes, a database was created for the neutronic performance of both reactor designs. The free parameters of the models are the moderator/fuel mass ratio for the NERVA reactor and the enrichment and the pitch of the lattice for the fast reactor. Reactivity and energy balance equations are simultaneously solved to find the reactor design. Thermalhydraulic conditions are calculated by solving the one-dimensional versions of the equations of conservation of mass, energy, and momentum with compressible flow. 10 refs., 1 tab

  10. Nuclear Electric Propulsion for Outer Space Missions

    Science.gov (United States)

    Barret, Chris

    2003-01-01

    Today we know of 66 moons in our very own Solar System, and many of these have atmospheres and oceans. In addition, the Hubble (optical) Space Telescope has helped us to discover a total of 100 extra-solar planets, i.e., planets going around other suns, including several solar systems. The Chandra (X-ray) Space Telescope has helped us to discover 33 Black Holes. There are some extremely fascinating things out there in our Universe to explore. In order to travel greater distances into our Universe, and to reach planetary bodies in our Solar System in much less time, new and innovative space propulsion systems must be developed. To this end NASA has created the Prometheus Program. When one considers space missions to the outer edges of our Solar System and far beyond, our Sun cannot be relied on to produce the required spacecraft (s/c) power. Solar energy diminishes as the square of the distance from the Sun. At Mars it is only 43% of that at Earth. At Jupiter, it falls off to only 3.6% of Earth's. By the time we get out to Pluto, solar energy is only .066% what it is on Earth. Therefore, beyond the orbit of Mars, it is not practical to depend on solar power for a s/c. However, the farther out we go the more power we need to heat the s/c and to transmit data back to Earth over the long distances. On Earth, knowledge is power. In the outer Solar System, power is knowledge. It is important that the public be made aware of the tremendous space benefits offered by Nuclear Electric Propulsion (NEP) and the minimal risk it poses to our environment. This paper presents an overview of the reasons for NEP systems, along with their basic components including the reactor, power conversion units (both static and dynamic), electric thrusters, and the launch safety of the NEP system.

  11. Nuclear modules for space electric propulsion

    Science.gov (United States)

    Difilippo, F. C.

    1998-01-01

    Analysis of interplanetary cargo and piloted missions requires calculations of the performances and masses of subsystems to be integrated in a final design. In a preliminary and scoping stage the designer needs to evaluate options iteratively by using fast computer simulations. The Oak Ridge National Laboratory (ORNL) has been involved in the development of models and calculational procedures for the analysis (neutronic and thermal hydraulic) of power sources for nuclear electric propulsion. The nuclear modules will be integrated into the whole simulation of the nuclear electric propulsion system. The vehicles use either a Brayton direct-conversion cycle, using the heated helium from a NERVA-type reactor, or a potassium Rankine cycle, with the working fluid heated on the secondary side of a heat exchanger and lithium on the primary side coming from a fast reactor. Given a set of input conditions, the codes calculate composition. dimensions, volumes, and masses of the core, reflector, control system, pressure vessel, neutron and gamma shields, as well as the thermal hydraulic conditions of the coolant, clad and fuel. Input conditions are power, core life, pressure and temperature of the coolant at the inlet of the core, either the temperature of the coolant at the outlet of the core or the coolant mass flow and the fluences and integrated doses at the cargo area. Using state-of-the-art neutron cross sections and transport codes, a database was created for the neutronic performance of both reactor designs. The free parameters of the models are the moderator/fuel mass ratio for the NERVA reactor and the enrichment and the pitch of the lattice for the fast reactor. Reactivity and energy balance equations are simultaneously solved to find the reactor design. Thermalhydraulic conditions are calculated by solving the one-dimensional versions of the equations of conservation of mass, energy, and momentum with compressible flow.

  12. Liquid Bismuth Feed System for Electric Propulsion

    Science.gov (United States)

    Markusic, T. E.; Polzin, K. A.; Stanojev, B. J.

    2006-01-01

    Operation of Hall thrusters with bismuth propellant has been shown to be a promising path toward high-power, high-performance, long-lifetime electric propulsion for spaceflight missions. For example, the VHITAL project aims td accurately, experimentally assess the performance characteristics of 10 kW-class bismuth-fed Hall thrusters - in order to validate earlier results and resuscitate a promising technology that has been relatively dormant for about two decades. A critical element of these tests will be the precise metering of propellant to the thruster, since performance cannot be accurately assessed without an accurate accounting of mass flow rate. Earlier work used a pre/post-test propellant weighing scheme that did not provide any real-time measurement of mass flow rate while the thruster was firing, and makes subsequent performance calculations difficult. The motivation of the present work was to develop a precision liquid bismuth Propellant Management System (PMS) that provides real-time propellant mass flow rate measurement and control, enabling accurate thruster performance measurements. Additionally, our approach emphasizes the development of new liquid metal flow control components and, hence, will establish a basis for the future development of components for application in spaceflight. The design of various critical components in a bismuth PMS are described - reservoir, electromagnetic pump, hotspot flow sensor, and automated control system. Particular emphasis is given to material selection and high-temperature sealing techniques. Open loop calibration test results are reported, which validate the systems capability to deliver bismuth at mass flow rates ranging from 10 to 100 mg/sec with an uncertainty of less than +/- 5%. Results of integrated vaporizer/liquid PMS tests demonstrate all of the necessary elements of a complete bismuth feed system for electric propulsion.

  13. The Ion Propulsion System for the Solar Electric Propulsion Technology Demonstration Mission

    Science.gov (United States)

    Herman, Daniel A.; Santiago, Walter; Kamhawi, Hani; Polk, James E.; Snyder, John Steven; Hofer, Richard R.; Parker, J. Morgan

    2015-01-01

    The Asteroid Redirect Robotic Mission is a candidate Solar Electric Propulsion Technology Demonstration Mission whose main objectives are to develop and demonstrate a high-power solar electric propulsion capability for the Agency and return an asteroidal mass for rendezvous and characterization in a companion human-crewed mission. The ion propulsion system must be capable of operating over an 8-year time period and processing up to 10,000 kg of xenon propellant. This high-power solar electric propulsion capability, or an extensible derivative of it, has been identified as a critical part of an affordable, beyond-low-Earth-orbit, manned-exploration architecture. Under the NASA Space Technology Mission Directorate the critical electric propulsion and solar array technologies are being developed. The ion propulsion system being co-developed by the NASA Glenn Research Center and the Jet Propulsion Laboratory for the Asteroid Redirect Vehicle is based on the NASA-developed 12.5 kW Hall Effect Rocket with Magnetic Shielding (HERMeS0 thruster and power processing technologies. This paper presents the conceptual design for the ion propulsion system, the status of the NASA in-house thruster and power processing activity, and an update on flight hardware.

  14. Chemical and Electric Propulsion Options for Small Satellites

    OpenAIRE

    Myers, Roger; Oleson, Steven; Currant, Francis; Schneider, Steven

    1994-01-01

    Advanced chemical and low power electric propulsion systems offer attractive options for near-term small satellite propulsion. Applications include orbit raising, orbit maintenance, attitude control, repositioning, and deorbit of both Earth-space and planetary spacecraft. Potential propulsion technologies for these functions include high pressure Ir/Re bipropellant engines, very low power arcjets, Hall thrusters, and pulsed plasma thrusters, all of which have been shown to operate in manners ...

  15. Iodine Plasma (Electric Propulsion) Interaction with Spacecraft Materials

    Science.gov (United States)

    2016-12-28

    steel , aluminum, tantalum, etc.) have been determined and tested. 15. SUBJECT TERMS iodine, space, propulsion, ion propulsion, electric propulsion...propellant 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT UU 18. NUMBER OF PAGES 19a. NAME OF RESPONSIBLE PERSON Richard D. Branam a...4. TITLE. Enter title and subtitle with volume number and part number, if applicable. On classified documents, enter the title classification in

  16. Aircraft Electric Propulsion Systems Applied Research at NASA

    Science.gov (United States)

    Clarke, Sean

    2015-01-01

    Researchers at NASA are investigating the potential for electric propulsion systems to revolutionize the design of aircraft from the small-scale general aviation sector to commuter and transport-class vehicles. Electric propulsion provides new degrees of design freedom that may enable opportunities for tightly coupled design and optimization of the propulsion system with the aircraft structure and control systems. This could lead to extraordinary reductions in ownership and operating costs, greenhouse gas emissions, and noise annoyance levels. We are building testbeds, high-fidelity aircraft simulations, and the first highly distributed electric inhabited flight test vehicle to begin to explore these opportunities.

  17. Prognostics Applied to Electric Propulsion UAV

    Science.gov (United States)

    Goebel, Kai; Saha, Bhaskar

    2013-01-01

    Health management plays an important role in operations of UAV. If there is equipment malfunction on critical components, safe operation of the UAV might possibly be compromised. A technology with particular promise in this arena is equipment prognostics. This technology provides a state assessment of the health of components of interest and, if a degraded state has been found, it estimates how long it will take before the equipment will reach a failure threshold, conditional on assumptions about future operating conditions and future environmental conditions. This chapter explores the technical underpinnings of how to perform prognostics and shows an implementation on the propulsion of an electric UAV. A particle filter is shown as the method of choice in performing state assessment and predicting future degradation. The method is then applied to the batteries that provide power to the propeller motors. An accurate run-time battery life prediction algorithm is of critical importance to ensure the safe operation of the vehicle if one wants to maximize in-air time. Current reliability based techniques turn out to be insufficient to manage the use of such batteries where loads vary frequently in uncertain environments.

  18. Electric Propulsion Concepts for an Inverted Joined Wing Airplane Demonstrator

    Directory of Open Access Journals (Sweden)

    Cezary Galinski

    2017-05-01

    Full Text Available One of the airplane design concepts that potentially allows for significantly increased efficiency, but has not yet been investigated thoroughly, is the inverted joined wing configuration, where the upper wing is positioned in front of the lower one. We performed wind tunnel and flight testing of a demonstrator of this concept, first by applying electrical propulsion to simplify wind tunnel testing, and then the same electrical-propulsion demonstrator performed several flights. As the chosen propulsion method proved to be too cumbersome for an intensive flight campaign and significant loss of battery performance was also observed, the electrical propulsion was then replaced by internal combustion propulsion in the second phase, involving longer-duration flight testing. Next we identified and analyzed two potentially beneficial modifications to the design tested: one involved shifting the center of gravity towards the aft, the other involved modifying the thrust vector position, both with the assumption that electric motors can be applied for propulsion. On this basis, the paper finishes with some conclusions concerning a new concept of electrical propulsion for an inverted joined wing design, combining two ideas: hybridization and distribution along the aft wing leading edge.

  19. Radioisotope Electric Propulsion (REP): A Near-Term Approach to Nuclear Propulsion

    Science.gov (United States)

    Schmidt, George R.; Manzella, David H.; Kamhawi, Hani; Kremic, Tibor; Oleson, Steven R.; Dankanich, John W.; Dudzinski, Leonard A.

    2009-01-01

    Studies over the last decade have shown radioisotope-based nuclear electric propulsion to be enhancing and, in some cases, enabling for many potential robotic science missions. Also known as radioisotope electric propulsion (REP), the technology offers the performance advantages of traditional reactor-powered electric propulsion (i.e., high specific impulse propulsion at large distances from the Sun), but with much smaller, affordable spacecraft. Future use of REP requires development of radioisotope power sources with system specific powers well above that of current systems. The US Department of Energy and NASA have developed an advanced Stirling radioisotope generator (ASRG) engineering unit, which was subjected to rigorous flight qualification-level tests in 2008, and began extended lifetime testing later that year. This advancement, along with recent work on small ion thrusters and life extension technology for Hall thrusters, could enable missions using REP sometime during the next decade.

  20. The Prometheus 1 spacecraft preliminary electric propulsion system design

    Science.gov (United States)

    Randolph, Thomas M.; Dougherty, Ryan C.; Oleson, Steven R.; Fiehler, Douglas I.; Dipprey, Neil

    2005-01-01

    The proposed Prometheus 1 mission is an ambitious plan to orbit and explore the Jovian moons of Callisto, Ganymede, and Europa. Such an ambitious mission is enabled by the first interplanetary nuclear electric propulsion (EP) system.

  1. Rapid Manufacturing of High Power Electric Propulsion Components, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — A flexible, lower cost approach to the rapid manufacture of high power electric propulsion components is desirable. Today's near-net fabrication technologies are...

  2. Advanced Electric Propulsion NextSTEP BAA Activity

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of the AES Advanced Electric Propulsion Next Space Technologies for Exploration Partnerships (NextSTEP) Broad Agency Announcement (BAA) activity is to...

  3. Reservoir Scandate Cathode for Electric Propulsion, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to combine two revolutionary cathode technologies into a single device for use in electric space propulsion. This will overcome problems that both...

  4. Superconducting Electric Boost Pump for Nuclear Thermal Propulsion, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — A submersible, superconducting electric boost pump sized to meet the needs of future Nuclear Thermal Propulsion systems in the 25,000 lbf thrust range is proposed....

  5. Outer Planet Missions with Electric Propulsion Systems—Part I

    Directory of Open Access Journals (Sweden)

    Carlos Renato Huaura Solórzano

    2010-01-01

    Full Text Available For interplanetary missions, efficient electric propulsion systems can be used to increase the mass delivered to the destination. Outer planet exploration has experienced new interest with the launch of the Cassini and New Horizons Missions. At the present, new technologies are studied for better use of electric propulsion systems in missions to the outer planets. This paper presents low-thrust trajectories using the method of the transporting trajectory to Uranus, Neptune, and Pluto. They use nuclear and radio isotopic electric propulsion. These direct transfers have continuous electric propulsion of low power along the entire trajectory. The main goal of the paper is to optimize the transfers, that is, to provide maximum mass to be delivered to the outer planets.

  6. Parametric studies of electric propulsion systems for orbit transfer vehicles

    Science.gov (United States)

    Manvi, R.; Fujita, T.

    1988-01-01

    The present parametric tradeoff study for OTV electric propulsion systems encompasses ammonia and hydrogen arcjets as well as Xe-ion propulsion systems with performance characteristics currently being projected for 1993 operation. In all cases, the power source is a nuclear-electric system with 30 kg/kW(e) specific mass, and the mission involves the movement of payloads from lower orbits to GEO. Attention is given to payload capabilities and associated propellant requirements. Mission trip time is identified as the key parameter for selection; while arcjets are preferable for shorter trip times, ion propulsion is more advantageous for longer trip times due to reduced propellant mass fraction.

  7. Solar Electric Propulsion Concepts for Human Space Exploration

    Science.gov (United States)

    Mercer, Carolyn R.; Mcguire, Melissa L.; Oleson, Steven R.; Barrett, Michael J.

    2016-01-01

    Advances in solar array and electric thruster technologies now offer the promise of new, very capable space transportation systems that will allow us to cost effectively explore the solar system. NASA has developed numerous solar electric propulsion spacecraft concepts with power levels ranging from tens to hundreds of kilowatts for robotic and piloted missions to asteroids and Mars. This paper describes nine electric and hybrid solar electric/chemical propulsion concepts developed over the last 5 years and discusses how they might be used for human exploration of the inner solar system.

  8. Lunar transfer vehicle design issues with electric propulsion systems

    Science.gov (United States)

    Palaszewski, Bryan

    1989-01-01

    This paper describes parametric design studies of electric propulsion lunar transfer vehicles. In designing a lunar transfer vehicle, selecting the 'best' operating points for the design parameters allows significant reductions in the mass in low earth orbit (LEO) for the mission. These parameters include the specific impulse, the power level, and the propulsion technology. Many of the decisions regarding the operating points are controlled by the propulsion and power system technologies that are available for the spacecraft. The relationship between these technologies is discussed and analyzed here. It is found that both ion and MPD propulsion offer significant LEO mass reductions over O2/H2 for lunar transfer vehicle missions. The recommended operating points for the lunar transfer vehicle are an I(sp) of 5000 lb(f)-s/lb(m) and a 1 MW power level. For large lunar missions, krypton may be the best choice for ion propulsion.

  9. Primary electric propulsion thrust subsystem definition

    Science.gov (United States)

    Masek, T. D.; Ward, J. W.; Kami, S.

    1975-01-01

    A review is presented of the current status of primary propulsion thrust subsystem (TSS) performance, packaging considerations, and certain operational characteristics. Thrust subsystem related work from recent studies by Jet Propulsion Laboratories (JPL), Rockwell and Boeing is discussed. Existing performance for 30-cm thrusters, power processors and TSS is present along with projections for future improvements. Results of analyses to determine (1) magnetic field distributions resulting from an array of thrusters, (2) thruster emitted particle flux distributions from an array of thrusters, and (3) TSS element failure rates are described to indicate the availability of analytical tools for evaluation of TSS designs.

  10. STG-ET: DLR electric propulsion test facility

    Directory of Open Access Journals (Sweden)

    Andreas Neumann

    2017-04-01

    Full Text Available DLR operates the High Vacuum Plume Test Facility Göttingen – Electric Thrusters (STG-ET. This electric propulsion test facility has now accumulated several years of EP-thruster testing experience. Special features tailored to electric space propulsion testing like a large vacuum chamber mounted on a low vibration foundation, a beam dump target with low sputtering, and a performant pumping system characterize this facility. The vacuum chamber is 12.2m long and has a diameter of 5m. With respect to accurate thruster testing, the design focus is on accurate thrust measurement, plume diagnostics, and plume interaction with spacecraft components. Electric propulsion thrusters have to run for thousands of hours, and with this the facility is prepared for long-term experiments. This paper gives an overview of the facility, and shows some details of the vacuum chamber, pumping system, diagnostics, and experiences with these components.

  11. High-Power Solar Electric Propulsion for Future NASA Missions

    Science.gov (United States)

    Manzella, David; Hack, Kurt

    2014-01-01

    NASA has sought to utilize high-power solar electric propulsion as means of improving the affordability of in-space transportation for almost 50 years. Early efforts focused on 25 to 50 kilowatt systems that could be used with the Space Shuttle, while later efforts focused on systems nearly an order of magnitude higher power that could be used with heavy lift launch vehicles. These efforts never left the concept development phase in part because the technology required was not sufficiently mature. Since 2012 the NASA Space Technology Mission Directorate has had a coordinated plan to mature the requisite solar array and electric propulsion technology needed to implement a 30 to 50 kilowatt solar electric propulsion technology demonstration mission. Multiple solar electric propulsion technology demonstration mission concepts have been developed based on these maturing technologies with recent efforts focusing on an Asteroid Redirect Robotic Mission. If implemented, the Asteroid Redirect Vehicle will form the basis for a capability that can be cost-effectively evolved over time to provide solar electric propulsion transportation for a range of follow-on mission applications at power levels in excess of 100 kilowatts.

  12. Guide to Flow Measurement for Electric Propulsion Systems

    Science.gov (United States)

    Frieman, Jason D.; Walker, Mitchell L. R.; Snyder, Steve

    2013-01-01

    In electric propulsion (EP) systems, accurate measurement of the propellant mass flow rate of gas or liquid to the thruster and external cathode is a key input in the calculation of thruster efficiency and specific impulse. Although such measurements are often achieved with commercial mass flow controllers and meters integrated into propellant feed systems, the variability in potential propellant options and flow requirements amongst the spectrum of EP power regimes and devices complicates meter selection, integration, and operation. At the direction of the Committee on Standards for Electric Propulsion Testing, a guide was jointly developed by members of the electric propulsion community to establish a unified document that contains the working principles, methods of implementation and analysis, and calibration techniques and recommendations on the use of mass flow meters in laboratory and spacecraft electric propulsion systems. The guide is applicable to EP devices of all types and power levels ranging from microthrusters to high-power ion engines and Hall effect thrusters. The establishment of a community standard on mass flow metering will help ensure the selection of the proper meter for each application. It will also improve the quality of system performance estimates by providing comprehensive information on the physical phenomena and systematic errors that must be accounted for during the analysis of flow measurement data. This paper will outline the standard methods and recommended practices described in the guide titled "Flow Measurement for Electric Propulsion Systems."

  13. Satellite auxiliary-propulsion selection techniques. Addendum: A survey of auxiliary electric propulsion systems

    Science.gov (United States)

    Holcomb, L. B.

    1971-01-01

    A review of electric thrusters for satellite auxiliary propulsion was conducted at JPL during the past year. Comparisons of the various thrusters for attitude propulsion and east-west and north-south stationkeeping were made based upon performance, mass, power, and demonstrated life. Reliability and cost are also discussed. The method of electrical acceleration of propellant served to divide the thruster systems into two groups: electrostatic and electromagnetic. Ion and colloid thrusters fall within the electrostatically accelerated group while MPD and pulsed plasma thrusters comprise the electromagnetically accelerated group. The survey was confined to research in the United States with accent on flight and flight prototype systems.

  14. Fission-Based Electric Propulsion for Interstellar Precursor Missions

    Energy Technology Data Exchange (ETDEWEB)

    HOUTS,MICHAEL G.; LENARD,ROGER X.; LIPINSKI,RONALD J.; PATTON,BRUCE; POSTON,DAVID; WRIGHT,STEVEN A.

    1999-11-03

    This paper reviews the technology options for a fission-based electric propulsion system for interstellar precursor missions. To achieve a total {Delta}V of more than 100 km/s in less than a decade of thrusting with an electric propulsion system of 10,000s Isp requires a specific mass for the power system of less than 35 kg/kWe. Three possible configurations are described: (1) a UZrH-fueled,NaK-cooled reactor with a steam Rankine conversion system,(2) a UN-fueled gas-cooled reactor with a recuperated Brayton conversion system, and (3) a UN-fueled heat pipe-cooled reactor with a recuperated Brayton conversion system. All three of these systems have the potential to meet the specific mass requirements for interstellar precursor missions in the near term. Advanced versions of a fission-based electric propulsion system might travel as much as several light years in 200 years.

  15. Fission-Based Electric Propulsion for Interstellar Precursor Missions

    International Nuclear Information System (INIS)

    HOUTS, MICHAEL G.; LENARD, ROGER X.; LIPINSKI, RONALD J.; PATTON, BRUCE; POSTON, DAVID; WRIGHT, STEVEN A.

    1999-01-01

    This paper reviews the technology options for a fission-based electric propulsion system for interstellar precursor missions. To achieve a total ΔV of more than 100 km/s in less than a decade of thrusting with an electric propulsion system of 10,000s Isp requires a specific mass for the power system of less than 35 kg/kWe. Three possible configurations are described: (1) a UZrH-fueled,NaK-cooled reactor with a steam Rankine conversion system,(2) a UN-fueled gas-cooled reactor with a recuperated Brayton conversion system, and (3) a UN-fueled heat pipe-cooled reactor with a recuperated Brayton conversion system. All three of these systems have the potential to meet the specific mass requirements for interstellar precursor missions in the near term. Advanced versions of a fission-based electric propulsion system might travel as much as several light years in 200 years

  16. Advanced electric propulsion system concept for electric vehicles

    Science.gov (United States)

    Raynard, A. E.; Forbes, F. E.

    1979-01-01

    Seventeen propulsion system concepts for electric vehicles were compared to determine the differences in components and battery pack to achieve the basic performance level. Design tradeoffs were made for selected configurations to find the optimum component characteristics required to meet all performance goals. The anticipated performance when using nickel-zinc batteries rather than the standard lead-acid batteries was also evaluated. The two systems selected for the final conceptual design studies included a system with a flywheel energy storage unit and a basic system that did not have a flywheel. The flywheel system meets the range requirement with either lead-acid or nickel-zinc batteries and also the acceleration of zero to 89 km/hr in 15 s. The basic system can also meet the required performance with a fully charged battery, but, when the battery approaches 20 to 30 percent depth of discharge, maximum acceleration capability gradually degrades. The flywheel system has an estimated life-cycle cost of $0.041/km using lead-acid batteries. The basic system has a life-cycle cost of $0.06/km. The basic system, using batteries meeting ISOA goals, would have a life-cycle cost of $0.043/km.

  17. Review of ESA Experimental Research Activities for Electric Propulsion

    Science.gov (United States)

    2011-01-01

    Arcjets Ion Engines FEEP Colloids Plasma Thrusters HET HEMPT MPD PPT Power (kW) 0.1 – 2 0.02-5 0.1-5 10-100 Specific Impulse...very low thrust and very small impulse bit. On the other hand, to obtain high specific impulses, the Electric Propulsion System needs a high power to...assess the real thrust noise at these low levels inside the EPL vacuum chambers. Furthermore, medium power electric propulsion thrusters will be tested

  18. Versatile Electric Propulsion Aircraft Testbed, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — An all-electric aircraft testbed is proposed to provide a dedicated development environment for the rigorous study and advancement of electrically powered aircraft....

  19. Simulation of Electric Propulsion Thrusters (Preprint)

    Science.gov (United States)

    2011-02-07

    pp. 764-773. [17] Boyd, I.D., “Monte Carlo Simulation of Nonequilibrium Flow in Low Power Hydrogen Arcjets ,” Physics of Fluids, Vol. 9, 1997, pp...significantly higher specific impulse than resisto-jets. Arcjets developed for space propulsion typically operate at power levels of 1 to 10 kW using...mechanism for the N2-H2 system. Models developed for high power arcjets (100 kW) by Auweter-Kurtz et al. [16] add magnetic effects to the momentum and

  20. Concept designs for NASA's Solar Electric Propulsion Technology Demonstration Mission

    Science.gov (United States)

    Mcguire, Melissa L.; Hack, Kurt J.; Manzella, David H.; Herman, Daniel A.

    2014-01-01

    Multiple Solar Electric Propulsion Technology Demonstration Mission were developed to assess vehicle performance and estimated mission cost. Concepts ranged from a 10,000 kilogram spacecraft capable of delivering 4000 kilogram of payload to one of the Earth Moon Lagrange points in support of future human-crewed outposts to a 180 kilogram spacecraft capable of performing an asteroid rendezvous mission after launched to a geostationary transfer orbit as a secondary payload. Low-cost and maximum Delta-V capability variants of a spacecraft concept based on utilizing a secondary payload adapter as the primary bus structure were developed as were concepts designed to be co-manifested with another spacecraft on a single launch vehicle. Each of the Solar Electric Propulsion Technology Demonstration Mission concepts developed included an estimated spacecraft cost. These data suggest estimated spacecraft costs of $200 million - $300 million if 30 kilowatt-class solar arrays and the corresponding electric propulsion system currently under development are used as the basis for sizing the mission concept regardless of launch vehicle costs. The most affordable mission concept developed based on subscale variants of the advanced solar arrays and electric propulsion technology currently under development by the NASA Space Technology Mission Directorate has an estimated cost of $50M and could provide a Delta-V capability comparable to much larger spacecraft concepts.

  1. Recent Electric Propulsion Development Activities for NASA Science Missions

    Science.gov (United States)

    Pencil, Eric J.

    2009-01-01

    (The primary source of electric propulsion development throughout NASA is managed by the In-Space Propulsion Technology Project at the NASA Glenn Research Center for the Science Mission Directorate. The objective of the Electric Propulsion project area is to develop near-term electric propulsion technology to enhance or enable science missions while minimizing risk and cost to the end user. Major hardware tasks include developing NASA s Evolutionary Xenon Thruster (NEXT), developing a long-life High Voltage Hall Accelerator (HIVHAC), developing an advanced feed system, and developing cross-platform components. The objective of the NEXT task is to advance next generation ion propulsion technology readiness. The baseline NEXT system consists of a high-performance, 7-kW ion thruster; a high-efficiency, 7-kW power processor unit (PPU); a highly flexible advanced xenon propellant management system (PMS); a lightweight engine gimbal; and key elements of a digital control interface unit (DCIU) including software algorithms. This design approach was selected to provide future NASA science missions with the greatest value in mission performance benefit at a low total development cost. The objective of the HIVHAC task is to advance the Hall thruster technology readiness for science mission applications. The task seeks to increase specific impulse, throttle-ability and lifetime to make Hall propulsion systems applicable to deep space science missions. The primary application focus for the resulting Hall propulsion system would be cost-capped missions, such as competitively selected, Discovery-class missions. The objective of the advanced xenon feed system task is to demonstrate novel manufacturing techniques that will significantly reduce mass, volume, and footprint size of xenon feed systems over conventional feed systems. This task has focused on the development of a flow control module, which consists of a three-channel flow system based on a piezo-electrically actuated

  2. Hybrid energy sources for electric and fuel cell vehicle propulsion

    OpenAIRE

    Schofield, N; Yap, H T; Bingham, Chris

    2005-01-01

    Given the energy (and hence range) and performance limitations of electro-chemical batteries, hybrid systems combining energy and power dense storage technologies have been proposed for electric vehicle propulsion. The paper will discuss the application of electro-chemical batteries, supercapacitors and fuel cells in single and hybrid source configurations for electric vehicle drive-train applications. Simulation models of energy sources are presented and used to investigate the design optimi...

  3. Combining Solar Electric Propulsion and Chemical Propulsion for Crewed Missions to Mars

    Science.gov (United States)

    Percy, Tom; McGuire, Melissa; Polsgrove, Tara

    2015-01-01

    This paper documents the results of an investigation of human Mars mission architectures that leverage near-term technology investments and infrastructures resulting from the planned Asteroid Redirect Robotic Mission (ARRM), including high-power Solar Electric Propulsion (SEP) and a human presence in Lunar Distant Retrograde Orbit (LDRO). The architectures investigated use a combination of SEP and chemical propulsion elements. Through this combination of propulsion technologies, these architectures take advantage of the high efficiency SEP propulsion system to deliver cargo, while maintaining the faster trip times afforded by chemical propulsion for crew transport. Evolved configurations of the Asteroid Redirect Vehicle (ARV) are considered for cargo delivery. Sensitivities to SEP system design parameters, including power level and propellant quantity, are presented. For the crew delivery, liquid oxygen and methane stages were designed using engines common to future human Mars landers. Impacts of various Earth departure orbits, Mars loiter orbits, and Earth return strategies are presented. The use of the Space Launch System for delivery of the various architecture elements was also investigated and launch vehicle manifesting, launch scheduling and mission timelines are also discussed. The study results show that viable Mars architecture can be constructed using LDRO and SEP in order to take advantage of investments made in the ARRM mission.

  4. Simplest AB-Thermonuclear Space Propulsion and Electric Generator

    OpenAIRE

    Bolonkin, Alexander

    2007-01-01

    The author applies, develops and researches mini-sized Micro- AB Thermonuclear Reactors for space propulsion and space power systems. These small engines directly convert the high speed charged particles produced in the thermonuclear reactor into vehicle thrust or vehicle electricity with maximum efficiency. The simplest AB-thermonuclear propulsion offered allows spaceships to reach speeds of 20,000 50,000 km/s (1/6 of light speed) for fuel ratio 0.1 and produces a huge amount of useful elect...

  5. RF emission-based health monitoring for hybrid and/or all electric aircraft distributed propulsion systems, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Future aircraft propulsion is destined to be electric. All electric aircraft propulsion systems promise significant improvements in energy efficiency,...

  6. An advanced electric propulsion diagnostic (AEPD) platform for in-situ characterization of electric propulsion thrusters and ion beam sources

    Science.gov (United States)

    Bundesmann, Carsten; Eichhorn, Christoph; Scholze, Frank; Spemann, Daniel; Neumann, Horst; Pagano, Damiano; Scaranzin, Simone; Scortecci, Fabrizio; Leiter, Hans J.; Gauter, Sven; Wiese, Ruben; Kersten, Holger; Holste, Kristof; Köhler, Peter; Klar, Peter J.; Mazouffre, Stéphane; Blott, Richard; Bulit, Alexandra; Dannenmayer, Käthe

    2016-10-01

    Experimental characterization is an essential task in development, qualification and optimization process of electric propulsion thrusters or ion beam sources for material processing, because it can verify that the thruster or ion beam source fulfills the requested mission or application requirements, and it can provide parameters for thruster and plasma modeling. Moreover, there is a need for standardizing electric propulsion thruster diagnostics in order to make characterization results of different thrusters and also from measurements performed in different vacuum facilities reliable and comparable. Therefore, we have developed an advanced electric propulsion diagnostic (AEPD) platform, which allows a comprehensive in-situ characterization of electric propulsion thrusters (or ion beam sources) and could serve as a standard on-ground tool in the future. The AEPD platform uses a five-axis positioning system and provides the option to use diagnostic tools for beam characterization (Faraday probe, retarding potential analyzer, ExB probe, active thermal probe), for optical inspection (telemicroscope, triangular laser head), and for thermal characterization (pyrometer, thermocamera). Here we describe the capabilities of the diagnostic platform and provide first experimental results of the characterization of a gridded ion thruster RIT- μX.

  7. Potential advantages of solar electric propulsion for outer planet orbiters.

    Science.gov (United States)

    Sauer, C. G.; Atkins, K. L.

    1972-01-01

    Past studies of solar electric propulsion for outer planet orbiters have generally emphasized the advantages of flight time reduction and payload increases. However, several subtle advantages exist, which may become important in an environment of increasingly difficult requirements as ways to extend current technology are sought. These advantages accrue primarily because of the inherent capability, unique to electric propulsion, to efficiently shape a trajectory while enroute. Stressed in this paper are: the ability to meet orbital constraints due to assumed radiation belts, science flexibility in a dual launch program, increased numbers of observational passes, and the lengthening of launch periods. These are examined for years representative of relatively easy and difficult ballistic missions. The results indicate that an early investment in solar electric technology will provide a strong performance foundation for a long range outer planet exploration program which evolves from current spacecraft technology.

  8. Electromagnetic Emission from Electric Propulsions under Ground Conditions

    Science.gov (United States)

    Baranov, S. V.; Vazhenin, N. A.; Plokhikh, A. P.; Popov, G. A.

    2017-12-01

    Analysis and methodological generalization of available methods used for determining characteristics of intrinsic emission from electric propulsions (EP) in a radio-frequency range that can be the interference for the "Earth-spacecraft (SC)" channel of the space communication system are the subjects of this paper. Intrinsic emission from the electric propulsion in a radio-frequency range is examined in detail by the example of a measuring complex developed in RIAME MAI and the measurement results are presented. The electric field intensity distribution in a radio-frequency range for the vertical and horizontal polarizations of the received emission is considered as the main characteristics. Measurements performed for the EP intrinsic emission by using the developed complex and measurements performed in metal vacuum chambers are compared and comparative results are presented in the paper.

  9. Nuclear Electric Propulsion for the Exploration of the Outer Planets

    Science.gov (United States)

    Noca, M.; Polk, J. E.; Lenard, R.

    2001-01-01

    New power and propulsion technology efforts such as the DS-1 ion propulsion system demonstration and renewed interest in space nuclear power sources call for a reassessment of the mission benefits of Nuclear Electric Propulsion (NEP). In this study, a large emphasis has been placed in defining the NEP vehicle configuration and corresponding subsystem elements in order to produce an estimate of the vehicle's payload delivery capability which is as credible as possible. Both a 100 kWe and a 1 MWe system are defined. Various Outer Planet missions are evaluated using NEP, such as a Pluto Orbiter, a Europa Lander and Sample Return, attain/Saturn Sample Return and a Neptune Orbiter. Additional information is contained in the original extended abstract.

  10. The Design and Construction of a Battery Electric Vehicle Propulsion System - High Performance Electric Kart Application

    Science.gov (United States)

    Burridge, Mark; Alahakoon, Sanath

    2017-07-01

    This paper presents an electric propulsion system designed specifically to meet the performance specification for a competition racing kart application. The paper presents the procedure for the engineering design, construction and testing of the electric powertrain of the vehicle. High performance electric Go-Kart is not an established technology within Australia. It is expected that this work will provide design guidelines for a high performance electric propulsion system with the capability of forming the basis of a competitive electric kart racing formula for Australian conditions.

  11. Analysis of Electric Propulsion System for Exploration of Saturn

    Directory of Open Access Journals (Sweden)

    Carlos Renato Huaura Solórzano

    2009-01-01

    Full Text Available Exploration of the outer planets has experienced new interest with the launch of the Cassini and the New Horizons Missions. At the present time, new technologies are under study for the better use of electric propulsion system in deep space missions. In the present paper, the method of the transporting trajectory is used to study this problem. This approximated method for the flight optimization with power-limited low thrust is based on the linearization of the motion of a spacecraft near a keplerian orbit that is close to the transfer trajectory. With the goal of maximizing the mass to be delivered in Saturn, several transfers were studied using nuclear, radioisotopic and solar electric propulsion systems.

  12. Robotic planetary mission benefits from nuclear electric propulsion

    International Nuclear Information System (INIS)

    Kelley, J.H.; Yen, C.L.

    1992-01-01

    Several interesting planetary missions are either enabled or significantly enhanced by nuclear electric propulsion (NEP) in the 50 to 100 kW power range. These missions include a Pluto Orbiter/Probe with an 11-year flight time and several years of operational life in orbit versus a ballistic very fast (13 km/s) flyby which would take longer to get to Pluto and would have a very short time to observe the planet. (A ballistic orbiter would take about 40 years to get to Pluto.) Other missions include a Neptune Orbiter/Probe, a Jupiter Grand Tour orbiting each of the major moons in order, a Uranus Orbiter/Probe, a Multiple Mainbelt Asteroid Rendezvous orbiting six selected asteroids, and a Comet Nucleus Sample Return. This paper discusses potential missions and compares the nuclear electric propulsion option to the conventional ballistic approach on a parametric basis

  13. Scoping calculations of power sources for nuclear electric propulsion

    Energy Technology Data Exchange (ETDEWEB)

    Difilippo, F.C. [Oak Ridge National Lab., TN (United States)

    1994-05-01

    This technical memorandum describes models and calculational procedures to fully characterize the nuclear island of power sources for nuclear electric propulsion. Two computer codes were written: one for the gas-cooled NERVA derivative reactor and the other for liquid metal-cooled fuel pin reactors. These codes are going to be interfaced by NASA with the balance of plant in order to making scoping calculations for mission analysis.

  14. EVA Metro Sedan electric-propulsion system: test and evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Reimers, E.

    1979-09-01

    The procedure and results of the performance evaluation of the EVA Metro Sedan (car No. 1) variable speed dc chopper motor drive and its three speed automatic transmission are presented. The propulsion system for a battery powered vehicle manufactured by Electric Vehicle Associates, Valley View, Ohio, was removed from the vehicle, mounted on the programmable electric dynamometer test facility and evaluated with the aid of a hp 3052A Data Acquisition System. Performance data for the automatic transmission, the solid state dc motor speed controller, and the dc motor in the continuous and pulsating dc power mode, as derived on the dynamometer test facility, as well as the entire propulsion system are given. This concept and the system's components were evaluated in terms of commercial applicability, maintainability, and energy utility to establish a design base for the further development of this system or similar propulsion drives. The propulsion system of the EVA Metro Sedan is powered by sixteen 6-volt traction batteries, Type EV 106 (Exide Battery Mfg. Co.). A thyristor controlled cable form Pulsomatic Mark 10 controller, actuated by a foot throttle, controls the voltage applied to a dc series field motor, rated at 10 hp at 3800 rpm (Baldor Electric Co.). Gear speed reduction to the wheel is accomplished by the original equipment three speed automatic transmission with torque converter (Renault 12 Sedan). The brake consists of a power-assisted, hydraulic braking system with front wheel disk and rear drum. An ability to recuperate electric energy with subsequent storage in the battery power supply is not provided.

  15. Scoping calculations of power sources for nuclear electric propulsion

    International Nuclear Information System (INIS)

    Difilippo, F.C.

    1994-05-01

    This technical memorandum describes models and calculational procedures to fully characterize the nuclear island of power sources for nuclear electric propulsion. Two computer codes were written: one for the gas-cooled NERVA derivative reactor and the other for liquid metal-cooled fuel pin reactors. These codes are going to be interfaced by NASA with the balance of plant in order to making scoping calculations for mission analysis

  16. Catalog of components for electric and hybrid vehicle propulsion systems

    Science.gov (United States)

    Eissler, H. C.

    1981-01-01

    This catalog of commercially available electric and hybrid vehicle propulsion system components is intended for designers and builders of these vehicles and contains 50 categories of components. These categories include those components used between the battery terminals and the output axle hub, as well as some auxiliary equipment. An index of the components and a listing of the suppliers and their addresses and phone numbers are included.

  17. Electric Propulsion System Modeling for the Proposed Prometheus 1 Mission

    Science.gov (United States)

    Fiehler, Douglas; Dougherty, Ryan; Manzella, David

    2005-01-01

    The proposed Prometheus 1 spacecraft would utilize nuclear electric propulsion to propel the spacecraft to its ultimate destination where it would perform its primary mission. As part of the Prometheus 1 Phase A studies, system models were developed for each of the spacecraft subsystems that were integrated into one overarching system model. The Electric Propulsion System (EPS) model was developed using data from the Prometheus 1 electric propulsion technology development efforts. This EPS model was then used to provide both performance and mass information to the Prometheus 1 system model for total system trades. Development of the EPS model is described, detailing both the performance calculations as well as its evolution over the course of Phase A through three technical baselines. Model outputs are also presented, detailing the performance of the model and its direct relationship to the Prometheus 1 technology development efforts. These EP system model outputs are also analyzed chronologically showing the response of the model development to the four technical baselines during Prometheus 1 Phase A.

  18. Results of Low-Cost Electric Propulsion System Research for Small Satellite Application

    OpenAIRE

    Lawrence, T.J.; Sellers, J.J.; Ward, J.W.; Paul, M.

    1996-01-01

    The paper summarises on-going research into lowcost electric propulsion system options for small satellite stationkeeping missions. An overview of system cost drivers, electric propulsion system trade-offs, and initial water resistojet experimental results is given. The propulsion system for the forthcoming UoSAT-12 minisatellite system is described. Future water resistojet research work is summarised.

  19. Nuclear electric propulsion for planetary science missions: NASA technology program planning

    Science.gov (United States)

    Doherty, Michael P.

    1993-01-01

    This paper presents the status of technology program planning to develop those Nuclear Electric Propulsion technologies needed to meet the advanced propulsion system requirements for planetary science missions in the next century. The technology program planning is based upon technologies with significant development heritage: ion electric propulsion and the SP-100 space nuclear power technologies. Detailed plans are presented for the required ion electric propulsion technology development and demonstration. Closer coordination between space nuclear power and space electric propulsion technology programs is a necessity as technology plans are being further refined in light of NEP concept definition and possible early NEP flight activities.

  20. Long Life 600W Hall Thruster System for Radioisotope Electric Propulsion, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Radioisotope Electric Propulsion (REP) offers the prospect for a variety of new science missions by enabling use of Hall Effect propulsion in the outer solar system,...

  1. Design of an Electric Propulsion System for SCEPTOR

    Science.gov (United States)

    Dubois, Arthur; van der Geest, Martin; Bevirt, JoeBen; Clarke, Sean; Christie, Robert J.; Borer, Nicholas K.

    2016-01-01

    The rise of electric propulsion systems has pushed aircraft designers towards new and potentially transformative concepts. As part of this effort, NASA is leading the SCEPTOR program which aims at designing a fully electric distributed propulsion general aviation aircraft. This article highlights critical aspects of the design of SCEPTOR's propulsion system conceived at Joby Aviation in partnership with NASA, including motor electromagnetic design and optimization as well as cooling system integration. The motor is designed with a finite element based multi-objective optimization approach. This provides insight into important design tradeoffs such as mass versus efficiency, and enables a detailed quantitative comparison between different motor topologies. Secondly, a complete design and Computational Fluid Dynamics analysis of the air breathing cooling system is presented. The cooling system is fully integrated into the nacelle, contains little to no moving parts and only incurs a small drag penalty. Several concepts are considered and compared over a range of operating conditions. The study presents trade-offs between various parameters such as cooling efficiency, drag, mechanical simplicity and robustness.

  2. Propulsion Electric Grid Simulator (PEGS) for Future Turboelectric Distributed Propulsion Aircraft

    Science.gov (United States)

    Choi, Benjamin B.; Morrison, Carlos; Dever, Timothy; Brown, Gerald V.

    2014-01-01

    NASA Glenn Research Center, in collaboration with the aerospace industry and academia, has begun the development of technology for a future hybrid-wing body electric airplane with a turboelectric distributed propulsion (TeDP) system. It is essential to design a subscale system to emulate the TeDP power grid, which would enable rapid analysis and demonstration of the proof-of-concept of the TeDP electrical system. This paper describes how small electrical machines with their controllers can emulate all the components in a TeDP power train. The whole system model in Matlab/Simulink was first developed and tested in simulation, and the simulation results showed that system dynamic characteristics could be implemented by using the closed-loop control of the electric motor drive systems. Then we designed a subscale experimental system to emulate the entire power system from the turbine engine to the propulsive fans. Firstly, we built a system to emulate a gas turbine engine driving a generator, consisting of two permanent magnet (PM) motors with brushless motor drives, coupled by a shaft. We programmed the first motor and its drive to mimic the speed-torque characteristic of the gas turbine engine, while the second motor and drive act as a generator and produce a torque load on the first motor. Secondly, we built another system of two PM motors and drives to emulate a motor driving a propulsive fan. We programmed the first motor and drive to emulate a wound-rotor synchronous motor. The propulsive fan was emulated by implementing fan maps and flight conditions into the fourth motor and drive, which produce a torque load on the driving motor. The stator of each PM motor is designed to travel axially to change the coupling between rotor and stator. This feature allows the PM motor to more closely emulate a wound-rotor synchronous machine. These techniques can convert the plain motor system into a unique TeDP power grid emulator that enables real-time simulation performance

  3. A comparison of potential electric propulsion systems for orbit transfer

    Science.gov (United States)

    Jones, R. M.

    1982-01-01

    Electric propulsion concepts are compared on the basis of trip time for the low earth orbit (LEO) to geosynchronous earth orbit (GEO) mission. Resistojet, arcjet, magnetoplasmadynamic (MPD), pulsed inductive, and ion engine thruster concepts are included. The optimum (minimum trip time) value of specific impulse is found to be dependent upon the specific mission and system being considered. As expected, the devices which can deliver good efficiency at low specific impulses promise the fastest trip times. The solution for trip time and propellant mass for the constant power, continuous low acceleration orbit transfer problem (one way and round trip) is presented in nomograph form. The influences of mission Delta V, thruster efficiency, specific impulse, power, power and propulsion system mass, and payload mass are clearly illustrated.

  4. Evaluation of the use of on-board spacecraft energy storage for electric propulsion missions

    Science.gov (United States)

    Poeschel, R. L.; Palmer, F. M.

    1983-01-01

    On-board spacecraft energy storage represents an under utilized resource for some types of missions that also benefit from using relatively high specific impulse capability of electric propulsion. This resource can provide an appreciable fraction of the power required for operating the electric propulsion subsystem in some missions. The most probable mission requirement for utilization of this energy is that of geostationary satellites which have secondary batteries for operating at high power levels during eclipse. The study summarized in this report selected four examples of missions that could benefit from use of electric propulsion and on-board energy storage. Engineering analyses were performed to evaluate the mass saved and economic benefit expected when electric propulsion and on-board batteries perform some propulsion maneuvers that would conventionally be provided by chemical propulsion. For a given payload mass in geosynchronous orbit, use of electric propulsion in this manner typically provides a 10% reduction in spacecraft mass.

  5. Active Removal of Large Debris: Electrical Propulsion Capabilities

    Science.gov (United States)

    Billot Soccodato, Carole; Lorand, Anthony; Perrin, Veronique; Couzin, Patrice; FontdecabaBaig, Jordi

    2013-08-01

    The risk for current operational spacecraft or future market induced by large space debris, dead satellites or rocket bodies, in Low Earth Orbit has been identified several years ago. Many potential solutions and architectures are traded with a main objective of reducing cost per debris. Based on cost consideration, specially driven by launch cost, solutions constructed on multi debris capture capacities seem to be much affordable The recent technologic evolutions in electric propulsion and solar power generation can be used to combine high potential vehicles for debris removal. The present paper reports the first results of a study funded by CNES that addresses full electric solutions for large debris removal. Some analysis are currently in progress as the study will end in August. It compares the efficiency of in-orbit Active Removal of typical debris using electric propulsion The electric engine performances used in this analysis are demonstrated through a 2012/2013 PPS 5000 on-ground tests campaign. The traded missions are based on a launch in LEO, the possible vehicle architectures with capture means or contact less, the selection of deorbiting or reorbiting strategy. For contact less strategy, the ion-beam shepherd effect towards the debris problematic will be addressed. Vehicle architecture and performance of the overall system will be stated, showing the adequacy and the limits of each solution.

  6. Enabling Electric Propulsion for Flight - Hybrid Electric Aircraft Research at AFRC

    Science.gov (United States)

    Clarke, Sean; Lin, Yohan; Kloesel, Kurt; Ginn, Starr

    2014-01-01

    Advances in electric machine efficiency and energy storage capability are enabling a new alternative to traditional propulsion systems for aircraft. This has already begun with several small concept and demonstration vehicles, and NASA projects this technology will be essential to meet energy and emissions goals for commercial aviation in the next 30 years. In order to raise the Technology Readiness Level of electric propulsion systems, practical integration and performance challenges will need to be identified and studied in the near-term so that larger, more advanced electric propulsion system testbeds can be designed and built. Researchers at NASA Armstrong Flight Research Center are building up a suite of test articles for the development, integration, and validation of these systems in a real world environment.

  7. Joint Radioisotope Electric Propulsion Studies - Neptune System Explorer

    Science.gov (United States)

    Khan, M. Omair; Amini, Rashied; Ervin, Joan; Lang, Jared; Landau, Damon; Oleson, Steven; Spilker, Thomas; Strange, Nathan

    2011-01-01

    The Neptune System Explorer (NSE) mission concept study assessed opportunities to conduct Cassini-like science at Neptune with a radioisotope electric propulsion (REP) based spacecraft. REP is based on powering an electric propulsion (EP) engine with a radioisotope power source (RPS). The NSE study was commissioned under the Joint Radioisotope Electric Propulsion Studies (JREPS) project, which sought to determine the technical feasibility of flagship class REP applications. Within JREPS, special emphasis was given toward identifying tall technology tent poles, as well as recommending any new RPS technology developments that would be required for complicated REP missions. Based on the goals of JREPS, multiple RPS (e.g. thermoelectric and Stirling based RPS) and EP (e.g. Hall and ion engines) technology combinations were traded during the NSE study to determine the most favorable REP design architecture. Among the findings from the study was the need for >400We RPS systems, which was driven by EP operating powers and the requirement for a long-lived mission in the deep solar system. Additionally multiple development and implementation risks were identified for the NSE concept, as well as REP missions in general. Among the strengths of the NSE mission would be the benefits associated with RPS and EP use, such as long-term power (approx. 2-3kW) at Neptune and flexible trajectory options for achieving orbit or tours of the Neptune system. Although there are still multiple issues to mitigate, the NSE concept demonstrated distinct advantages associated with using REP for deep space flagship-class missions.

  8. Systems analysis of Mars solar electric propulsion vehicles

    Science.gov (United States)

    Hickman, J. M.; Curtis, H. B.; Kenny, B. H.; Sefcik, R. J.

    1990-01-01

    Mission performance, mass, initial power, and cost are determined for solar electric propulsion vehicles across a range of payload masses, reference powers, and mission trajectories. Thick radiation shielding is added to arrays using indium phosphide or III-V multijunction solar cells to reduce the damage incurred through the radiation belts. Special assessments of power management and distribution systems, atmospheric drag, and energy storage are made. It is determined that atmospheric drag is of no great concern and that the energy storage used in countering drag is unnecessary. A scheme to package the arrays, masts, and ion thrusters into a single fairing is presented.

  9. The ac propulsion system for an electric vehicle, phase 1

    Science.gov (United States)

    Geppert, S.

    1981-01-01

    A functional prototype of an electric vehicle ac propulsion system was built consisting of a 18.65 kW rated ac induction traction motor, pulse width modulated (PWM) transistorized inverter, two speed mechanically shifted automatic transmission, and an overall drive/vehicle controller. Design developmental steps, and test results of individual components and the complex system on an instrumented test frame are described. Computer models were developed for the inverter, motor and a representative vehicle. A preliminary reliability model and failure modes effects analysis are given.

  10. Distributed Electric Propulsion Aircraft Comprehensive Analysis and Design Tool, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The solicitation seeks innovative approaches in designing and analyzing Distributed Electric Propulsion (DEP) aircraft to support ARMD's Strategic Thrust #3...

  11. Carbon Nanotube Based Electric Propulsion Thruster with Low Power Consumption, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Field emission electric propulsion (FEEP) thrusters have gained considerable attention for spacecrafts disturbance compensation because of excellent characteristics....

  12. Carbon Nanotube Based Electric Propulsion Thruster with Low Power Consumption, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR project is to develop field emission electric propulsion (FEEP) thruster using carbon nanotubes (CNT) integrated anode. FEEP thrusters have gained...

  13. A Software Toolkit to Accelerate Emission Predictions for Turboelectric/Hybrid Electric Aircraft Propulsion, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Electric propulsion represents an attractive path for reducing overall emissions. For larger commercial aircrafts operating in the mega-watt range, power...

  14. Hybrid Electric Propulsion System for a 4 Passenger VTOL Aircraft, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The advancement of hybrid-electric propulsion systems for rotorcraft enables vertical takeoff and landing (VTOL) vehicles to take advantage of aerodynamic...

  15. Study of advanced electric propulsion system concept using a flywheel for electric vehicles

    Science.gov (United States)

    Younger, F. C.; Lackner, H.

    1979-01-01

    Advanced electric propulsion system concepts with flywheels for electric vehicles are evaluated and it is predicted that advanced systems can provide considerable performance improvement over existing electric propulsion systems with little or no cost penalty. Using components specifically designed for an integrated electric propulsion system avoids the compromises that frequently lead to a loss of efficiency and to inefficient utilization of space and weight. A propulsion system using a flywheel power energy storage device can provide excellent acceleration under adverse conditions of battery degradation due either to very low temperatures or high degrees of discharge. Both electrical and mechanical means of transfer of energy to and from the flywheel appear attractive; however, development work is required to establish the safe limits of speed and energy storage for advanced flywheel designs and to achieve the optimum efficiency of energy transfer. Brushless traction motor designs using either electronic commutation schemes or dc-to-ac inverters appear to provide a practical approach to a mass producible motor, with excellent efficiency and light weight. No comparisons were made with advanced system concepts which do not incorporate a flywheel.

  16. Systems Analysis Developed for All-Electric Aircraft Propulsion

    Science.gov (United States)

    Kohout, Lisa L.

    2004-01-01

    There is a growing interest in the use of fuel cells as a power source for all-electric aircraft propulsion as a means to substantially reduce or eliminate environmentally harmful emissions. Among the technologies under consideration for these concepts are advanced proton exchange membrane (PEM) and solid oxide fuel cells (SOFCs), alternative fuels and fuel processing, and fuel storage. A multidisciplinary effort is underway at the NASA Glenn Research Center to develop and evaluate concepts for revolutionary, nontraditional fuel cell power and propulsion systems for aircraft applications. As part of this effort, system studies are being conducted to identify concepts with high payoff potential and associated technology areas for further development. To support this effort, a suite of component models was developed to estimate the mass, volume, and performance for a given system architecture. These models include a hydrogen-air PEM fuel cell; an SOFC; balance-of-plant components (compressor, humidifier, separator, and heat exchangers); compressed gas, cryogenic, and liquid fuel storage tanks; and gas turbine/generator models for hybrid system applications. First-order feasibility studies were completed for an all-electric personal air vehicle utilizing a fuel-cell-powered propulsion system. A representative aircraft with an internal combustion engine was chosen as a baseline to provide key parameters to the study, including engine power and subsystem mass, fuel storage volume and mass, and aircraft range. The engine, fuel tank, and associated ancillaries were then replaced with a fuel cell subsystem. Various configurations were considered including a PEM fuel cell with liquid hydrogen storage, a direct methanol PEM fuel cell, and a direct internal reforming SOFC/turbine hybrid system using liquid methane fuel. Each configuration was compared with the baseline case on a mass and range basis.

  17. Electric Propulsion Upper-Stage for Launch Vehicle Capability Enhancement

    Science.gov (United States)

    Kemp, Gregory E.; Dankanich, John W.; Woodcock, Gordon R.; Wingo, Dennis R.

    2007-01-01

    The NASA In-Space Propulsion Technology Project Office initiated a preliminary study to evaluate the performance benefits of a solar electric propulsion (SEP) upper-stage with existing and near-term small launch vehicles. The analysis included circular and elliptical Low Earth Orbit (LEO) to Geosynchronous Earth Orbit (GEO) transfers, and LEO to Low Lunar Orbit (LLO) applications. SEP subsystem options included state-of-the-art and near-term solar arrays and electric thrusters. In-depth evaluations of the Aerojet BPT-4000 Hall thruster and NEXT gridded ion engine were conducted to compare performance, cost and revenue potential. Preliminary results indicate that Hall thruster technology is favored for low-cost, low power SEP stages, while gridded-ion engines are favored for higher power SEP systems unfettered by transfer time constraints. A low-cost point design is presented that details one possible stage configuration and outlines system limitations, in particular fairing volume constraints. The results demonstrate mission enhancements to large and medium class launch vehicles, and mission enabling performance when SEP system upper stages are mounted to low-cost launchers such as the Minotaur and Falcon 1. Study results indicate the potential use of SEP upper stages to double GEO payload mass capability and to possibly enable launch on demand capability for GEO assets. Transition from government to commercial applications, with associated cost/benefit analysis, has also been assessed. The sensitivity of system performance to specific impulse, array power, thruster size, and component costs are also discussed.

  18. Radioisotope Electric Propulsion Centaur Orbiter Spacecraft Design Overview

    Science.gov (United States)

    Oleson, Steve; McGuire, Melissa; Sarver-Verhey, Tim; Juergens, Jeff; Parkey, Tom; Dankanich, John; Fiehler, Doug; Gyekenyesi, John; Hemminger, Joseph; Gilland, Jim; hide

    2009-01-01

    Radioisotope electric propulsion (REP) has been shown in past studies to enable missions to outerplanetary bodies including the orbiting of Centaur asteroids. Key to the feasibility for REP missions are long life, low power electric propulsion (EP) devices, low mass radioisotope power systems (RPS) and light spacecraft (S/C) components. In order to determine what are the key parameters for EP devices to perform these REP missions a design study was completed to design an REP S/C to orbit a Centaur in a New Frontiers cost cap. The design shows that an orbiter using several long lived (approximately 200 kg Xenon throughput), low power (approximately 700 W) Hall thrusters teamed with six (150 W each) Advanced Stirling Radioisotope Generators (ASRG) can deliver 60 kg of science instruments to a Centaur in 10 yr within the New Frontiers cost cap. Optimal specific impulses for the Hall thrusters were found to be around 2000 sec with thruster efficiencies over 40%. Not only can the REP S/C enable orbiting a Centaur (when compared to an all chemical mission only capable of flybys) but the additional power from the REP system can be reused to enhance science and simplify communications.

  19. Feasibility of the recent Russian nuclear electric propulsion concept: 2010

    International Nuclear Information System (INIS)

    Zakirov, Vadim; Pavshook, Vladimir

    2011-01-01

    Highlights: → The paper focuses on feasibility of the Russian nuclear electric propulsion (NEP) concept. → The Russian NEP concept is based on the past experience and is, therefore, technically feasible. → The big concern is that the program will be cancelled due to non-technical issues. - Abstract: The paper introduces recent Russian nuclear electric propulsion (NEP) concept for space exploration. The concept advantages are listed along with future missions. The current development status for the two main enabling technologies is presented and the feasibility analysis of the up-to-date experience is performed. The main features of NEP concept are discussed. Revision of these features and available technologies demonstrates that the NEP concept is a logical continuation of the previous efforts by the former Soviet Union. Because no breakthrough technologies are needed for NEP development while the existing technologies only need to be adapted to the megawatt (MW) class NEP the development is considered technically feasible, low risk program likely to succeed unless cancelled by the listed non-technical reasons. Successful NEP space vehicle development is going to bring practical space exploration of solar system to the new level as well as require supplementary payload program, supporting monitoring and communication radar networks. Nuclear safety during future NEP missions can be ensured by adherence to the United Nations guidelines in the same way it was done during the Soviet Topaz Nuclear Power System (NPS) missions.

  20. Electric Propulsion Cables For Milli-Newton Thrusters

    Science.gov (United States)

    Jakob, Manfred; Bertrand, Arnaud; El-Idrissi, Mohamed; Schaper, Wolfgang, , Dr.

    2011-10-01

    AXON' Kabel GmbH, is developing and manufacturing cables and connectors up to complete interconnect systems for all types of applications needed in Space. As a request from ESA, AXON has developed a new generation of cables suitable for current and future applications to feed electric propulsion thruster systems in spacecraft with electric power. Under this project the main objectives were to find and select materials for the composition to produce a cable withstanding quite strongrequirements for operating temperature, radiation resistance, high voltage application and in variants to various current ratings (A); the cable construction will also include ESD immunisation. The paper will summarise the specification achieved and will give an overview on the test results with the prototype cables.

  1. Electric propulsion reliability: Statistical analysis of on-orbit anomalies and comparative analysis of electric versus chemical propulsion failure rates

    Science.gov (United States)

    Saleh, Joseph Homer; Geng, Fan; Ku, Michelle; Walker, Mitchell L. R.

    2017-10-01

    With a few hundred spacecraft launched to date with electric propulsion (EP), it is possible to conduct an epidemiological study of EP's on orbit reliability. The first objective of the present work was to undertake such a study and analyze EP's track record of on orbit anomalies and failures by different covariates. The second objective was to provide a comparative analysis of EP's failure rates with those of chemical propulsion. Satellite operators, manufacturers, and insurers will make reliability- and risk-informed decisions regarding the adoption and promotion of EP on board spacecraft. This work provides evidence-based support for such decisions. After a thorough data collection, 162 EP-equipped satellites launched between January 1997 and December 2015 were included in our dataset for analysis. Several statistical analyses were conducted, at the aggregate level and then with the data stratified by severity of the anomaly, by orbit type, and by EP technology. Mean Time To Anomaly (MTTA) and the distribution of the time to (minor/major) anomaly were investigated, as well as anomaly rates. The important findings in this work include the following: (1) Post-2005, EP's reliability has outperformed that of chemical propulsion; (2) Hall thrusters have robustly outperformed chemical propulsion, and they maintain a small but shrinking reliability advantage over gridded ion engines. Other results were also provided, for example the differentials in MTTA of minor and major anomalies for gridded ion engines and Hall thrusters. It was shown that: (3) Hall thrusters exhibit minor anomalies very early on orbit, which might be indicative of infant anomalies, and thus would benefit from better ground testing and acceptance procedures; (4) Strong evidence exists that EP anomalies (onset and likelihood) and orbit type are dependent, a dependence likely mediated by either the space environment or differences in thrusters duty cycles; (5) Gridded ion thrusters exhibit both

  2. Mars Mission Concepts: SAR and Solar Electric Propulsion

    Science.gov (United States)

    Elsperman, M.; Klaus, K.; Smith, D. B.; Clifford, S. M.; Lawrence, S. J.

    2012-12-01

    Introduction: The time has come to leverage technology advances (including advances in autonomous operation and propulsion technology) to reduce the cost and increase the flight rate of planetary missions, while actively developing a scientific and engineering workforce to achieve national space objectives. Mission Science at Mars: A SAR imaging radar offers an ability to conduct high resolution investigations of the shallow (system would enable the generation of false color images, resulting in useful science results, and the stereo data could be reduced into high-resolution Digital Elevation Models uniquely useful for exploration planning and science purposes. Since the SAR and the notional high-resolution stereo imaging system would be huge data volume producers - to maximize the science return we are currently considering the usage of laser communications systems; this notional spacecraft represents one pathway to evaluate the utility of laser communications in planetary exploration while providing useful science return.. Mission Concept: Using a common space craft for multiple missions reduces costs. Solar electric propulsion (SEP) provides the flexibility required for multiple mission objectives. SEP provides the greatest payload advantage albeit at the sacrifice of mission time. Our concept involves using a SEP enabled space craft (Boeing 702SP) with a highly capable SAR imager that also conducts autonomous rendezvous and docking experiments accomplished from Mars orbit. Our concept of operations is to launch on May 5, 2018 using a launch vehicle with 2000kg launch capacity with a C3 of 7.4. After reaching Mars it takes 145 days to spiral down to a 250 km orbit above the surface of Mars when Mars SAR operations begin. Summary/Conclusions: A robust and compelling Mars mission can be designed to meet the 2018 Mars launch window opportunity. Using advanced in-space power and propulsion technologies like High Power Solar Electric Propulsion provides enormous

  3. Modular Pulsed Plasma Electric Propulsion System for Cubesats

    Science.gov (United States)

    Perez, Andres Dono; Gazulla, Oriol Tintore; Teel, George Lewis; Mai, Nghia; Lukas, Joseph; Haque, Sumadra; Uribe, Eddie; Keidar, Michael; Agasid, Elwood

    2014-01-01

    Current capabilities of CubeSats must be improved in order to perform more ambitious missions. Electric propulsion systems will play a key role due to their large specific impulse. Compared to other propulsion alternatives, their simplicity allows an easier miniaturization and manufacturing of autonomous modules into the nano and pico-satellite platform. Pulsed Plasma Thrusters (PPTs) appear as one of the most promising technologies for the near term. The utilization of solid and non-volatile propellants, their low power requirements and their proven reliability in the large scale make them great candidates for rapid implementation. The main challenges are the integration and miniaturization of all the electronic circuitry into a printed circuit board (PCB) that can satisfy the strict requirements that CubeSats present. NASA Ames and the George Washington University have demonstrated functionality and control of three discrete Micro-Cathode Arc Thrusters (CAT) using a bench top configuration that was compatible with the ARC PhoneSat Bus. This demonstration was successfully conducted in a vaccum chamber at the ARC Environmental Test Laboratory. A new effort will integrate a low power Plasma Processing Unit and two plasma thrusters onto a single printed circuit board that will utilize less than 13 U of Bus volume. The target design will be optimized for the accommodation into the PhoneSatEDISON Demonstration of SmallSatellite Networks (EDSN) bus as it uses the same software interface application, which was demonstrated in the previous task. This paper describes the design, integration and architecture of the proposed propulsion subsystem for a planned Technology Demonstration Mission. In addition, a general review of the Pulsed Plasma technology available for CubeSats is presented in order to assess the necessary challenges to overcome further development.

  4. Magnesium Diboride Superconducting Coils for Electric Propulsion Systems for Large Aircraft, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — For electric propulsion systems for large aircraft it is desirable to have very light weight electric motors. Cryogenic motors offer much lighter weight than...

  5. Comet rendezvous mission design using Solar Electric Propulsion

    Science.gov (United States)

    Sackett, L. L.; Hastrup, R. C.; Yen, C.-W. L.; Wood, L. J.

    1979-01-01

    A dual comet (Halley Flyby/Tempel 2 Rendezvous) mission, which is planned to be the first to use the Solar Electric Propulsion System (SEPS), is to be launched in 1985. The purpose of this paper is to describe how the mission design attempts to maximize science return while working within spacecraft and other constraints. Science requirements and desires are outlined and specific instruments are considered. Emphasis is on the strategy for operations in the vicinity of Tempel 2, for which a representative profile is described. The mission is planned to extend about one year past initial rendezvous. Because of the large uncertainty in the comet environment the Tempel 2 operations strategy must be highly adaptive.

  6. Systems integration processes for space nuclear electric propulsion systems

    International Nuclear Information System (INIS)

    Olsen, C.S.; Rice, J.W.; Stanley, M.L.

    1991-01-01

    The various components and subsystems that comprise a nuclear electric propulsion system should be developed and integrated so that each functions ideally and so that each is properly integrated with the other components and subsystems in the optimum way. This paper discusses how processes similar to those used in the development and intergration of the subsystems that comprise the Multimegawatt Space Nuclear Power System concepts can be and are being efficiently and effectively utilized for these purposes. The processes discussed include the development of functional and operational requirements at the system and subsystem level; the assessment of individual nuclear power supply and thruster concepts and their associated technologies; the conduct of systems integration efforts including the evaluation of the mission benefits for each system; the identification and resolution of concepts development, technology development, and systems integration feasibility issues; subsystem, system, and technology development and integration; and ground and flight subsystem and integrated system testing

  7. Electric Propulsion Electronics And Thrusters As A Satellite Subsystem

    Science.gov (United States)

    Gollor, Matthais

    2011-10-01

    The integration of electrical thrusters with an electronic into a subsystem and with this establishing an integrated design providing full function and performance is critical task. It starts with the proper specification of the electrical interfaces between thrusters and electronics, including a proper definition of the thrusters as an electric load. Furthermore the use of high voltage needs specific knowledge in design and is increasing the subsystem complexity due to obsolesce of suitable disconnect-able harness and of redundancy switching means. EMC is rising to a couple of questions, i.e. about possible interference of magnetic field emission with the satellites attitude control system or about the thruster plasma affecting RF transmission of communication links. End-to-end testing of the propulsion subsystem is limited as it is not possible to run the thruster together with the spacecraft in a vacuum facility. Therefore testing of the subsystem has to be "sliced": typically, the thruster is first characterized with the aid of lab power supplies and is later tested coupled with the "space" electronics. Finally system checkout on satellite level is performed with the using simulators.

  8. Systems Analysis Initiated for All-Electric Aircraft Propulsion

    Science.gov (United States)

    Kohout, Lisa L.

    2003-01-01

    A multidisciplinary effort is underway at the NASA Glenn Research Center to develop concepts for revolutionary, nontraditional fuel cell power and propulsion systems for aircraft applications. There is a growing interest in the use of fuel cells as a power source for electric propulsion as well as an auxiliary power unit to substantially reduce or eliminate environmentally harmful emissions. A systems analysis effort was initiated to assess potential concepts in an effort to identify those configurations with the highest payoff potential. Among the technologies under consideration are advanced proton exchange membrane (PEM) and solid oxide fuel cells, alternative fuels and fuel processing, and fuel storage. Prior to this effort, the majority of fuel cell analysis done at Glenn was done for space applications. Because of this, a new suite of models was developed. These models include the hydrogen-air PEM fuel cell; internal reforming solid oxide fuel cell; balance-of-plant components (compressor, humidifier, separator, and heat exchangers); compressed gas, cryogenic, and liquid fuel storage tanks; and gas turbine/generator models for hybrid system applications. Initial mass, volume, and performance estimates of a variety of PEM systems operating on hydrogen and reformate have been completed for a baseline general aviation aircraft. Solid oxide/turbine hybrid systems are being analyzed. In conjunction with the analysis efforts, a joint effort has been initiated with Glenn s Computer Services Division to integrate fuel cell stack and component models with the visualization environment that supports the GRUVE lab, Glenn s virtual reality facility. The objective of this work is to provide an environment to assist engineers in the integration of fuel cell propulsion systems into aircraft and provide a better understanding of the interaction between system components and the resulting effect on the overall design and performance of the aircraft. Initially, three

  9. SELECTION OF METHOD FOR REGULATION OF TRACTOR PROPULSION ASYNCHRONOUS ELECTRIC MOTOR AND CONSTRUCTION OF MECHANICAL CHARACTERISTICS

    Directory of Open Access Journals (Sweden)

    Ch. I. Zhdanovich

    2015-01-01

    Full Text Available Nowadays the work is in progress to develop wheeled and caterpillar tractors with electromechanical transmission. Range of changes in transmission gear ratio while using propulsion electric motor depends on mechanical characteristics of a tractor propulsion electric motor which is equipped with electromechanical transmission. In case when the range is rather high then it is possible to minimize number of gearings in the tractor gearing box or exclude its usage at all. Type of the applied propulsion electric motor and regulation method specify type of mechanical characteristics (characteristics family of the propulsion electric motor.The paper considers a propulsion asynchronous electric motor with frequency control. While using frequency control it is possible to regulate electric motor revolutions by mutual changes in voltage and voltage frequency. There are various laws of mutual changes in voltage and frequency (regulation laws. Selection of a regulation law influences on type of mechanical characteristics of a propulsion electric motor. Application of any law can be admissible only for some specific range of voltage frequency otherwise it is possible to exceed some parameters (for example, admissible voltage in the winding of electric motor stator. It is necessary to ensure the required moment within wide range for a tractor propulsion electric motor. In this case losses in the electric motor must be minimal. Losses in the rotor of the propulsion asynchronous electric motor are directly proportional to its sliding and its best propulsion and mechanical properties of a mobile machine will be ensured in the case when sliding is preserved at a constant value. According to these reasons selection of regulation laws has been carried out for operation of the propulsion asynchronous electric motor with nominal sliding and mechanical characteristics at nominal sliding is conventionally called a nominal characteristics.The paper analyzes the possible

  10. Development of a DC propulsion system for an electric vehicle

    Science.gov (United States)

    Kelledes, W. L.

    1984-01-01

    The suitability of the Eaton automatically shifted mechanical transaxle concept for use in a near-term dc powered electric vehicle is evaluated. A prototype dc propulsion system for a passenger electric vehicle was designed, fabricated, tested, installed in a modified Mercury Lynx vehicle and track tested at the contractor's site. The system consisted of a two-axis, three-speed, automatically-shifted mechanical transaxle, 15.2 Kw rated, separately excited traction motor, and a transistorized motor controller with a single chopper providing limited armature current below motor base speed and full range field control above base speed at up to twice rated motor current. The controller utilized a microprocessor to perform motor and vehicle speed monitoring and shift sequencing by means of solenoids applying hydraulic pressure to the transaxle clutches. Bench dynamometer and track testing was performed. Track testing showed best system efficiency for steady-state cruising speeds of 65-80 Km/Hz (40-50 mph). Test results include acceleration, steady speed and SAE J227A/D cycle energy consumption, braking tests and coast down to characterize the vehicle road load.

  11. Solar Electric Propulsion (SEP) Tug Power System Considerations

    Science.gov (United States)

    Kerslake, Thomas W.; Bury, Kristen M.; Hojinicki, Jeffrey S.; Sajdak, Adam M.; Scheiddegger, Robert J.

    2011-01-01

    Solar electric propulsion (SEP) technology is truly at the "intersection of commercial and military space" as well as the intersection of NASA robotic and human space missions. Building on the use of SEP for geosynchronous spacecraft station keeping, there are numerous potential commercial and military mission applications for SEP stages operating in Earth orbit. At NASA, there is a resurgence of interest in robotic SEP missions for Earth orbit raising applications, 1-AU class heliocentric missions to near Earth objects (NEOs) and SEP spacecraft technology demonstrations. Beyond these nearer term robotic missions, potential future human space flight missions to NEOs with high-power SEP stages are being considered. To enhance or enable this broad class of commercial, military and NASA missions, advancements in the power level and performance of SEP technologies are needed. This presentation will focus on design considerations for the solar photovoltaic array (PVA) and electric power system (EPS) vital to the design and operation of an SEP stage. The engineering and programmatic pros and cons of various PVA and EPS technologies and architectures will be discussed in the context of operating voltage and power levels. The impacts of PVA and EPS design options on the remaining SEP stage subsystem designs, as well as spacecraft operations, will also be discussed.

  12. Extra-Zodiacal-Cloud Astronomy via Solar Electric Propulsion

    Science.gov (United States)

    Benson, Scott W.; Falck, Robert D.; Oleson, Steven R.; Greenhouse, Matthew A.; Kruk, Jeffrey W.; Gardner, Jonathan P.; Thronson, Harley A.; Vaughn, Frank J.; Fixsen, Dale J.

    2011-01-01

    Solar electric propulsion (SEP) is often considered as primary propulsion for robotic planetary missions, providing the opportunity to deliver more payload mass to difficult, high-delta-velocity destinations. However, SEP application to astrophysics has not been well studied. This research identifies and assesses a new application of SEP as primary propulsion for low-cost high-performance robotic astrophysics missions. The performance of an optical/infrared space observatory in Earth orbit or at the Sun-Earth L2 point (SEL2) is limited by background emission from the Zodiacal dust cloud that has a disk morphology along the ecliptic plane. By delivering an observatory to a inclined heliocentric orbit, most of this background emission can be avoided, resulting in a very substantial increase in science performance. This advantage enabled by SEP allows a small-aperture telescope to rival the performance of much larger telescopes located at SEL2. In this paper, we describe a novel mission architecture in which SEP technology is used to enable unprecedented telescope sensitivity performance per unit collecting area. This extra-zodiacal mission architecture will enable a new class of high-performance, short-development time, Explorer missions whose sensitivity and survey speed can rival flagship-class SEL2 facilities, thus providing new programmatic flexibility for NASA's astronomy mission portfolio. A mission concept study was conducted to evaluate this application of SEP. Trajectory analyses determined that a 700 kg-class science payload could be delivered in just over 2 years to a 2 AU mission orbit inclined 15 to the ecliptic using a 13 kW-class NASA's Evolutionary Xenon Thruster (NEXT) SEP system. A mission architecture trade resulted in a SEP stage architecture, in which the science spacecraft separates from the stage after delivery to the mission orbit. The SEP stage and science spacecraft concepts were defined in collaborative engineering environment studies. The

  13. Electrical Prototype Power Processor for the 30-cm Mercury electric propulsion engine

    Science.gov (United States)

    Biess, J. J.; Frye, R. J.

    1978-01-01

    An Electrical Prototpye Power Processor has been designed to the latest electrical and performance requirements for a flight-type 30-cm ion engine and includes all the necessary power, command, telemetry and control interfaces for a typical electric propulsion subsystem. The power processor was configured into seven separate mechanical modules that would allow subassembly fabrication, test and integration into a complete power processor unit assembly. The conceptual mechanical packaging of the electrical prototype power processor unit demonstrated the relative location of power, high voltage and control electronic components to minimize electrical interactions and to provide adequate thermal control in a vacuum environment. Thermal control was accomplished with a heat pipe simulator attached to the base of the modules.

  14. Electric Motors for Non-Cryogenic Hybrid Electric and Turboelectric Propulsion

    Science.gov (United States)

    Duffy, Kirsten P.

    2015-01-01

    NASA Glenn Research Center is investigating hybrid electric and turboelectric propulsion concepts for future aircraft to reduce fuel burn, emissions, and noise. Systems studies show that the weight and efficiency of the electric system components need to be improved for this concept to be feasible. However, advances in motor component materials such as soft magnetic materials, hard magnetic materials, conductors, thermal insulation, and structural materials are expected in the coming years, and should improve motor performance. This study investigates several motor types for a one megawatt application, and projects the motor performance benefits of new component materials that might be available in the coming decades.

  15. Electric Motor Considerations for Non-Cryogenic Hybrid Electric and Turboelectric Propulsion

    Science.gov (United States)

    Duffy, Kirsten P.

    2015-01-01

    NASA Glenn Research Center is investigating hybrid electric and turboelectric propulsion concepts for future aircraft to reduce fuel burn, emissions, and noise. Systems studies show that the weight and efficiency of the electric system components need to be improved for this concept to be feasible. However, advances in motor component materials such as soft magnetic materials, hard magnetic materials, conductors, thermal insulation, and structural materials are expected in the coming years, and should improve motor performance. This study investigates several motor types for a one megawatt application, and projects the motor performance benefits of new component materials that might be available in the coming decades.

  16. AC propulsion system for an electric vehicle, phase 2

    Science.gov (United States)

    Slicker, J. M.

    1983-01-01

    A second-generation prototype ac propulsion system for a passenger electric vehicle was designed, fabricated, tested, installed in a modified Mercury Lynx vehicle and track tested at the Contractor's site. The system consisted of a Phase 2, 18.7 kw rated ac induction traction motor, a 192-volt, battery powered, pulse-width-modulated, transistorized inverter packaged for under rear seat installation, a 2-axis, 2-speed, automatically-shifted mechanical transaxle and a microprocessor-based powertrain/vehicle controller. A diagnostics computer to assist tuning and fault finding was fabricated. Dc-to-mechanical-system efficiency varied from 78% to 82% as axle speed/torque ranged from 159 rpm/788 nm to 65 rpm/328 nm. Track test efficiency results suggest that the ac system will be equal or superior to dc systems when driving urban cycles. Additional short-term work is being performed under a third contract phase (AC-3) to raise transaxle efficiency to predicted levels, and to improve starting and shifting characteristics. However, the long-term challenge to the system's viability remains inverter cost. A final report on the Phase 2 system, describing Phase 3 modifications, will be issued at the conclusion of AC-3.

  17. Propulsion system research and development for electric and hybrid vehicles

    Science.gov (United States)

    Schwartz, H. J.

    1980-01-01

    An approach to propulsion subsystem technology is presented. Various tests of component reliability are described to aid in the production of better quality vehicles. component characterization work is described to provide engineering data to manufacturers on component performance and on important component propulsion system interactions.

  18. Magnesium Diboride Superconducting Stator Coils for Electric Propulsion Systems, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Many are pursuing the development of electric propulsion systems for large aircraft due to the potential of being cleaner, quieter, lighter, and more versatile than...

  19. Self-Healing Field-Emission Neutralizers for Electric Propulsion Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Electric propulsion (EP) thrusters have the potential to enhance or enable Discovery-class missions. However, a significant challenge in scaling micro (< 100 W)...

  20. Wide Output Range Power Processing Unit for Electric Propulsion, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Hall thrusters can be operated over a wide range of specific impulse while maintaining high efficiency. However S/C power system constraints on electric propulsion...

  1. Investigative Research, FMECA and PHM Modeling of Hybrid-Electric Distributed Propulsion System Architectures, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Hybrid-Electric distributed propulsion (HEDP) is becoming widely accepted and new tools will be required for future development with validation and demonstrations...

  2. 150 kW Class Solar Electric Propulsion Spacecraft Power Architecture Model

    Science.gov (United States)

    Csank, Jeffrey T.; Aulisio, Michael V.; Loop, Benjamin

    2017-01-01

    The National Aeronautics and Space Administration (NASA) Solar Electric Propulsion Technology Demonstration Mission in conjunction with PC Krause and Associates has created a Simulink-based power architecture model for a 50 kilo-Watt (kW) solar electric propulsion system. NASA has extended this model to investigate 150 kW solar electric propulsion systems. Increasing the power system capability from 50 kW to 150 kW better aligns with the anticipated power requirements for Mars and other deep space explorations. The high-power solar electric propulsion capability has been identified as a critical part of NASAs future beyond-low-Earth-orbit for human-crewed exploration missions. This paper presents multiple 150 kW architectures, simulation results, and a discussion of their merits.

  3. Solar Electric Propulsion System Integration Technology (SEPSIT). Volume 2: Encke rendezvous mission and space vehicle functional description

    Science.gov (United States)

    Gardner, J. A.

    1972-01-01

    A solar electric propulsion system integration technology study is discussed. Detailed analyses in support of the solar electric propulsion module were performed. The thrust subsystem functional description is presented. The space vehicle and the space mission to which the propulsion system is applied are analyzed.

  4. Battery System Modeling for a Military Electric Propulsion Vehicle with a Fault Simulation

    OpenAIRE

    Ham, Hyeongjin; Han, Kyuhong; Lee, Hyeongcheol

    2013-01-01

    This paper describes the development process and results of a battery system model with a fault simulation for electric propulsion vehicles. The developed battery system model can be used to verify control and fault diagnosis strategies of the supervisory controller in an electric propulsion vehicle. To develop this battery system model, three sub-models, including a battery model, a relay assembly model, and a battery management system (BMS) model, are connected together like in the target r...

  5. Impact of propulsion system R and D on electric vehicle performance and cost

    Science.gov (United States)

    Schwartz, H. J.; Gordan, A. L.

    1980-01-01

    The efficiency, weight, and manufacturing cost of the propulsion subsystem (motor, motor controller, transmission, and differential, but excluding the battery) are major factors in the purchase price and cost of ownership of a traffic-compatible electric vehicle. The relative impact of each was studied, and the conclusions reached are that propulsion system technology advances can result in a major reduction of the sticker price of an electric vehicle and a smaller, but significant, reduction in overall cost of ownership.

  6. Analysis of Roll Steering for Solar Electric Propulsion Missions

    Science.gov (United States)

    Pederson, Dylan, M.; Hojnicki, Jeffrey, S.

    2012-01-01

    Nothing is more vital to a spacecraft than power. Solar Electric Propulsion (SEP) uses that power to provide a safe, reliable, and, most importantly, fuel efficient means to propel a spacecraft to its destination. The power performance of an SEP vehicle s solar arrays and electrical power system (EPS) is largely influenced by the environment in which the spacecraft is operating. One of the most important factors that determines solar array power performance is how directly the arrays are pointed to the sun. To get the most power from the solar arrays, the obvious solution is to point them directly at the sun at all times. Doing so is not a problem in deep space, as the environment and pointing conditions that a spacecraft faces are fairly constant and are easy to accommodate, if necessary. However, large and sometimes rapid variations in environmental and pointing conditions are experienced by Earth orbiting spacecraft. SEP spacecraft also have the additional constraint of needing to keep the thrust vector aligned with the velocity vector. Thus, it is important to analyze solar array power performance for any vehicle that spends an extended amount of time orbiting the Earth, and to determine how much off-pointing can be tolerated to produce the required power for a given spacecraft. This paper documents the benefits and drawbacks of perfectly pointing the solar arrays of an SEP spacecraft spiraling from Earth orbit, and how this might be accomplished. Benefits and drawbacks are defined in terms of vehicle mass, power, volume, complexity, and cost. This paper will also look at the application of various solar array pointing methods to future missions. One such pointing method of interest is called roll steering . Roll steering involves rolling the entire vehicle twice each orbit. Roll steering, combined with solar array gimbal tracking, is used to point the solar arrays perfectly towards the sun at all points in the orbit, while keeping the vehicle thrusters aligned

  7. Research, development, and demonstration of lead-acid batteries for electric vehicle propulsion. Annual report, 1980

    Energy Technology Data Exchange (ETDEWEB)

    1981-03-01

    The progress and status of Eltra's Electric Vehicle Battery Program during FY-80 are presented under five divisional headings: Research on Components and Processes; Development of Cells and Modules for Electric Vehicle Propulsion; Sub-Systems; Pilot Line Production of Electric Vehicle Battery Prototypes; and Program Management.

  8. Electric propulsion. [pulsed plasma thruster and electron bombardment ion engine for MSAT attitude control and stationkeeping

    Science.gov (United States)

    1982-01-01

    An alternative propulsion subsystem for MSAT is presented which has a potential of reducing the satellite weight by more than 15%. The characteristics of pulsed plasma and ion engines are described and used to estimate of the mass of the propellant and thrusters for attitude control and stationkeeping functions for MSAT. Preliminary estimates indicate that the electric propulsion systems could also replace the large momentum wheels necessary to counteract the solar pressure; however, the fine pointing wheels would be retained. Estimates also show that either electric propulsion system can save approximately 18% to 20% of the initial 4,000 kg mass. The issues that require further experimentation are mentioned.

  9. Power Systems Evaluated for Solar Electric Propulsion Vehicles

    Science.gov (United States)

    Kerslake, Thomas W.; Gefert, Leon P.

    2000-01-01

    Solar electric propulsion (SEP) mission architectures are applicable to a wide range NASA missions including the robotic exploration of the outer planets in the next decade and the human exploration of Mars within the next 2 decades. SEP enables architectures that are very mass efficient with reasonable power levels (1-MW class) aerobrake and cryogenic upper-stage transportation technologies are utilized. In this architecture, the efficient SEP stage transfers the payload from low Earth orbit (LEO) High Energy Elliptical Parking Orbit (HEEPO) within a period of 6 to 12 months. highthrust, cryogenic upper stage and payload then separate from the SEP vehicle for injection to the planetary target, allowing for fast heliocentric trip times. This mission architecture offers a potential reduction in mass to LEO in comparison to alternative all-chemical nuclear propulsion schemes. Mass reductions may allow launch vehicle downsizing enable missions that would have been grounded because of cost constraints. The preceding figure illustrates a conceptual SEP stage design for a human Mars mission. Researchers at the NASA Glenn Research Center at Lewis Field designed conceptual SEP vehicle, conceived the mission architecture to use this vehicle, and analyzed the vehicle s performance. This SEP stage has a dry mass of 35 metric tons (MT), 40 MT of xenon propellant, and a photovoltaic array that spans 110 m, providing power to a cluster of eight 100-kW Hall thrusters. The stage can transfer an 80-MT payload and upper stage to the desired HEEPO. Preliminary packaging studies show this space-station-class SEP vehicle meets the proposed "Magnum" launch vehicle and volume requirements with considerable margin. An SEP vehicle for outer planetary missions, such as the Europa Mapper Mission, would be dramatically smaller than human Mars mission SEP stage. In this mission architecture, the SEP power system with the payload to provide spacecraft power throughout the mission. Several

  10. Radioisotope electric propulsion of sciencecraft to the outer Solar System and near-interstellar space

    International Nuclear Information System (INIS)

    Noble, R.J.

    1999-01-01

    Radioisotopes have been used successfully for more than 25 years to supply the heat for thermoelectric generators on various deep-space probes. Radioisotope electric propulsion (REP) systems have been proposed as low-thrust ion propulsion units based on radioisotope electric generators and ion thrusters. The perceived liability of radioisotope electric generators for ion propulsion is their high mass. Conventional radioisotope thermoelectric generators have a specific mass of about 200 kg/kW of electric power. Many development efforts have been undertaken with the aim of reducing the specific mass of radioisotope electric systems. Recent performance estimates suggest that specific masses of 50 kg/kW may be achievable with thermophotovoltaic and alkali metal thermal-to-electric conversion generators. Powerplants constructed from these near-term radioisotope electric generators and long-life ion thrusters will likely have specific masses in the range of 100 to 200 kg/kW of thrust power if development continues over the next decade. In earlier studies, it was concluded that flight times within the Solar System are indeed insensitive to reductions in the powerplant specific mass, and that a timely scientific program of robotic planetary rendezvous and near-interstellar space missions is enabled by primary electric propulsion once the powerplant specific mass is in the range of 100 to 200 kg/kW. Flight times can be substantially reduced by using hybrid propulsion schemes that combine chemical propulsion, gravity assist, and electric propulsion. Hybrid schemes are further explored in this article to illustrate how the performance of REP is enhanced for Pluto rendezvous, heliopause orbiter, and gravitational lens missions

  11. High Temperature Radiators for Electric Propulsion Systems, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The VASIMR propulsion system uses a high temperature Loop Heat Pipe (LHP) radiator to reject heat from the helicon section. The current baseline radiator uses...

  12. High Temperature Radiators for Electric Propulsion Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The VASIMR propulsion system uses a high temperature Loop Heat Pipe (LHP) radiator to reject heat from the helicon section. The current baseline radiator uses...

  13. UAV Mission Optimization through Hybrid-Electric Propulsion

    Science.gov (United States)

    Blackwelder, Philip Scott

    Hybrid-electric powertrain leverages the superior range of petrol based systems with the quiet and emission free benefits of electric propulsion. The major caveat to hybrid-electric powertrain in an airplane is that it is inherently heavier than conventional petroleum powertrain due mostly to the low energy density of battery technology. The first goal of this research is to develop mission planning code to match powertrain components for a small-scale unmanned aerial vehicle (UAV) to complete a standard surveillance mission within a set of user input parameters. The second goal is to promote low acoustic profile loitering through mid-flight engine starting. The two means by which midmission engine starting will be addressed is through reverse thrust from the propeller and a servo actuated gear to couple and decouple the engine and motor. The mission planning code calculates the power required to complete a mission and assists the user in sourcing powertrain components including the propeller, motor, battery, motor controller, engine and fuel. Reverse thrust engine starting involves characterizing an off the shelf variable pitch propeller and using its torque coefficient to calculate the advance ratio required to provide sufficient torque and speed to start an engine. Geared engine starting works like the starter in a conventional automobile. A servo actuated gear will couple the motor to the engine to start it and decouple once the engine has started. Reverse thrust engine starting was unsuccessful due to limitations of available off the shelf variable pitch propellers. However, reverse thrust engine starting could be realized through a custom larger diameter propeller. Geared engine starting was a success, though the system was unable to run fully as intended. Due to counter-clockwise crank rotation of the engine and the right-hand threads on the crankshaft, cranking the engine resulted in the nut securing the engine starter gear to back off as the engine cranked

  14. Overview of the Development of the Advanced Electric Propulsion System (AEPS)

    Science.gov (United States)

    Herman, Daniel; Tofil, Todd; Santiago, Walter; Kamhawi, Hani; Polk, James; Snyder, John Steven; Hofer, Richard; Picha, Frank; Schmidt, George

    2017-01-01

    NASA is committed to the demonstration and application of high-power solar electric propulsion to meet its future mission needs. It is continuing to develop the 14 kW Advanced Electric Propulsion System (AEPS) under a project that recently completed an Early Integrated System Test (EIST) and System Preliminary Design Review (PDR). In addition, NASA is pursuing external partnerships in order to demonstrate Solar Electric Propulsion (SEP) technology and the advantages of high-power electric propulsion-based spacecraft. The recent announcement of a Power and Propulsion Element (PPE) as the first major piece of an evolvable human architecture to Mars has replaced the Asteroid Redirect Robotic Mission (ARRM) as the most likely first application of the AEPS Hall thruster system. This high-power SEP capability, or an extensible derivative of it, has been recognized as a critical part of a new, affordable human exploration architecture for missions beyond-low-Earth-orbit. This paper presents the status of AEPS development activities, and describes how AEPS hardware will be integrated into the PPE ion propulsion system.

  15. Round-Trip Solar Electric Propulsion Missions for Mars Sample Return

    Science.gov (United States)

    Bailey, Zachary J.; Sturm, Erick J.; Kowalkowski, Theresa D.; Lock, Robert E.; Woolley, Ryan C.; Nicholas, Austin K.

    2014-01-01

    Mars Sample Return (MSR) missions could benefit from the high specific impulse of Solar Electric Propulsion (SEP) to achieve lower launch masses than with chemical propulsion. SEP presents formulation challenges due to the coupled nature of launch vehicle performance, propulsion system, power system, and mission timeline. This paper describes a SEP orbiter-sizing tool, which models spacecraft mass & timeline in conjunction with low thrust round-trip Earth-Mars trajectories, and presents selected concept designs. A variety of system designs are possible for SEP MSR orbiters, with large dry mass allocations, similar round-trip durations to chemical orbiters, and reduced design variability between opportunities.

  16. Design and Development of a 200-kW Turbo-Electric Distributed Propulsion Testbed

    Science.gov (United States)

    Papathakis, Kurt V.

    2017-01-01

    There a few NASA funded electric and hybrid electric projects from different NASA Centers, including the NASA Armstrong Flight Research Center (AFRC) (Edwards, California). Each project identifies a specific technology gap that is currently inhibiting the growth and proliferation of relevant technologies in commercial aviation. This paper describes the design and development of a turbo-electric distributed propulsion (TeDP) hardware-in-the-loop (HIL) simulation bench, which is a test bed for discovering turbo-electric control, distributed electric control, power management control, and integration competencies while providing risk mitigation for future turbo-electric flying demonstrators.

  17. Battery System Modeling for a Military Electric Propulsion Vehicle with a Fault Simulation

    Directory of Open Access Journals (Sweden)

    Hyeongcheol Lee

    2013-10-01

    Full Text Available This paper describes the development process and results of a battery system model with a fault simulation for electric propulsion vehicles. The developed battery system model can be used to verify control and fault diagnosis strategies of the supervisory controller in an electric propulsion vehicle. To develop this battery system model, three sub-models, including a battery model, a relay assembly model, and a battery management system (BMS model, are connected together like in the target real battery system. Comparison results between the real battery system hardware and the battery system model show a similar tendency and values. Furthermore, the fault injection test of the model shows that the proposed battery system model can simulate a failure situation consistent with a real system. It is possible for the model to emulate the battery characteristics and fault situation if it is used in the development process of a BMS or for supervisory control strategies for electric propulsion systems.

  18. Dual shear plate power processor packaging design. [for Solar Electric Propulsion spacecraft

    Science.gov (United States)

    Franzon, A. O.; Fredrickson, C. D.; Ross, R. G.

    1975-01-01

    The use of solar electric propulsion (SEP) for spacecraft primary propulsion imposes an extreme range of operational and environmental design requirements associated with the diversity of missions for which solar electric primary propulsion is advantageous. One SEP element which is particularly sensitive to these environmental extremes is the power processor unit (PPU) which powers and controls the electric ion thruster. An improved power processor thermal-mechanical packaging approach, referred to as dual shear plate packaging, has been designed to accommodate these different requirements with minimum change to the power processor design. Details of this packaging design are presented together with test results obtained from thermal-vacuum and structural-vibration tests conducted with prototype hardware.

  19. Architecture, Voltage, and Components for a Turboelectric Distributed Propulsion Electric Grid (AVC-TeDP)

    Science.gov (United States)

    Gemin, Paul; Kupiszewski, Tom; Radun, Arthur; Pan, Yan; Lai, Rixin; Zhang, Di; Wang, Ruxi; Wu, Xinhui; Jiang, Yan; Galioto, Steve; hide

    2015-01-01

    The purpose of this effort was to advance the selection, characterization, and modeling of a propulsion electric grid for a Turboelectric Distributed Propulsion (TeDP) system for transport aircraft. The TeDP aircraft would constitute a miniature electric grid with 50 MW or more of total power, two or more generators, redundant transmission lines, and multiple electric motors driving propulsion fans. The study proposed power system architectures, investigated electromechanical and solid state circuit breakers, estimated the impact of the system voltage on system mass, and recommended DC bus voltage range. The study assumed an all cryogenic power system. Detailed assumptions within the study include hybrid circuit breakers, a two cryogen system, and supercritical cyrogens. A dynamic model was developed to investigate control and parameter selection.

  20. MW-Class Electric Propulsion System Designs for Mars Cargo Transport

    Science.gov (United States)

    Gilland, James H.; LaPointe, Michael R.; Oleson, Steven; Mercer, Carolyn; Pencil, Eric; Maosn, Lee

    2011-01-01

    Multi-kilowatt electric propulsion systems are well developed and have been used on commercial and military satellites in Earth orbit for several years. Ion and Hall thrusters have also propelled robotic spacecraft to encounters with asteroids, the Moon, and minor planetary bodies within the solar system. High power electric propulsion systems are currently being considered to support piloted missions to near earth asteroids, as cargo transport for sustained lunar or Mars exploration, and for very high-power piloted missions to Mars and the outer planets. Using NASA Mars Design Architecture 5.0 as a reference, a preliminary parametric analysis was performed to determine the suitability of a nuclear powered, MW-class electric propulsion system for Mars cargo transport. For this initial analysis, high power 100-kW Hall thrusters and 250-kW VASIMR engines were separately evaluated to determine optimum vehicle architecture and estimated performance. The DRA 5.0 cargo mission closed for both propulsion options, delivering a 100 t payload to Mars orbit and reducing the number of heavy lift launch vehicles from five in the baseline DRA 5.0 architecture to two using electric propulsion. Under an imposed single engine-out mission success criteria, the VASIMR system took longer to reach Mars than did the Hall system, arising from the need to operate the VASIMR thrusters in pairs during the spiral out from low Earth orbit.

  1. Power feature required for PEFC powered electric propulsion ship

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Isao [NKK Corp., Yokohama (Japan); Oka, Masaru [Mitsubishi Heavy Industries, Ltd., Nagasaki (Japan)

    1996-12-31

    This report covers part of a joint study on a PEFC system for ship propulsion, summarized in a presentation to this Seminar, entitled {open_quote}Study on a Polymer Electrolyte Fuel Cell (PEFC) Propulsion System for Surface Ships{close_quotes}, and which envisages application to a 1,500 DWT cargo vessel. The aspect treated here concerns an analysis of the load-following performance required and estimated of a PEFC system to power the envisaged ship. The analysis proved that difficulty should be expected of the fuel supply circuit in following with adequate rapidity the sharp changes of load on fuel cell under certain conditions. Further integrated experiments and simulation exercises are currently in progress to further analyze the response characteristics of the fuel supply circuit-particularly of the methanol reformer and gas reservoir-to determine the best measure to be adopted for overcoming the expected difficulty.

  2. A segmented ion engine design for solar electric propulsion systems

    Science.gov (United States)

    Brophy, John R.

    1992-01-01

    A new ion engine design, called a segmented ion engine, is described which is capable of reducing the required ion source life time for small body rendezvous missions from 18,000 h to about 8,000 h. The use of SAND ion optics for the engine accelerator system makes it possible to substantially reduce the cost of demonstrating the required engine endurance. It is concluded that a flight test of a 5-kW xenon ion propulsion system on the ELITE spacecraft would enormously reduce the cost and risk of using ion propulsion on a planetary vehicle by addressing systems level issues associated with flying a spacecraft radically different from conventional planetary vehicles.

  3. A NASA Approach to Safety Considerations for Electric Propulsion Aircraft Testbeds

    Science.gov (United States)

    Papathakis, Kurt V.; Sessions, Alaric M.; Burkhardt, Phillip A.; Ehmann, David W.

    2017-01-01

    Electric, hybrid-electric, and turbo-electric distributed propulsion technologies and concepts are beginning to gain traction in the aircraft design community, as they can provide improvements in operating costs, noise, fuel consumption, and emissions compared to conventional internal combustion or Brayton-cycle powered vehicles. NASA is building multiple demonstrators and testbeds to buy down airworthiness and flight safety risks for these new technologies, including X-57 Maxwell, HEIST, Airvolt, and NEAT.

  4. High Voltage Hybrid Electric Propulsion - Multilayered Functional Insulation System (MFIS) NASA-GRC

    Science.gov (United States)

    Lizcano, M.

    2017-01-01

    High power transmission cables pose a key challenge in future Hybrid Electric Propulsion Aircraft. The challenge arises in developing safe transmission lines that can withstand the unique environment found in aircraft while providing megawatts of power. High voltage AC, variable frequency cables do not currently exist and present particular electrical insulation challenges since electrical arcing and high heating are more prevalent at higher voltages and frequencies. Identifying and developing materials that maintain their dielectric properties at high voltage and frequencies is crucial.

  5. Democritos: preparing demonstrators for high power nuclear electric space propulsion

    OpenAIRE

    Masson, Frederic; Ruault, Jean-Marc; Worms, Jean-Claude; Detsis, Emmanouil; Beaurain, André; Lassoudiere, Francois; Gaia, Enrico; Tosi, Maria -Christina; Jansen, Frank; Bauer, Waldemar; Semenkin, Alexander; Tinsley, Tim; Hodgson, Zara

    2015-01-01

    The Democritos project aims at preparing demonstrators for a megawatt class nuclearelectric space propulsion. It is funded by Horizon 2020, the R&T program of the European Community. It is a new European and Russian project, including as partners: Nuclear National Laboratory (U.K.), DLR (Germany), The Keldysh Research Center (Russia), Thales Alenia Space Italia (Italy), Snecma (France), ESF (France) and CNES (France). IEAV (Brazil) will join as an observer. Democritos is the follo...

  6. Solar Electric and Chemical Propulsion Technology Applications to a Titan Orbiter/Lander Mission

    Science.gov (United States)

    Cupples, Michael

    2007-01-01

    Several advanced propulsion technology options were assessed for a conceptual Titan Orbiter/Lander mission. For convenience of presentation, the mission was broken into two phases: interplanetary and Titan capture. The interplanetary phase of the mission was evaluated for an advanced Solar Electric Propulsion System (SEPS), while the Titan capture phase was evaluated for state-of-art chemical propulsion (NTO/Hydrazine), three advanced chemical propulsion options (LOX/Hydrazine, Fluorine/Hydrazine, high Isp mono-propellant), and advanced tank technologies. Hence, this study was referred to as a SEPS/Chemical based option. The SEPS/Chemical study results were briefly compared to a 2002 NASA study that included two general propulsion options for the same conceptual mission: an all propulsive based mission and a SEPS/Aerocapture based mission. The SEP/Chemical study assumed identical science payload as the 2002 NASA study science payload. The SEPS/Chemical study results indicated that the Titan mission was feasible for a medium launch vehicle, an interplanetary transfer time of approximately 8 years, an advanced SEPS (30 kW), and current chemical engine technology (yet with advanced tanks) for the Titan capture. The 2002 NASA study showed the feasibility of the mission based on a somewhat smaller medium launch vehicle, an interplanetary transfer time of approximately 5.9 years, an advanced SEPS (24 kW), and advanced Aerocapture based propulsion technology for the Titan capture. Further comparisons and study results were presented for the advanced chemical and advanced tank technologies.

  7. Design and Development of a 200-kW Turbo-Electric Distributed Propulsion Testbed

    Science.gov (United States)

    Papathakis, Kurt V.; Kloesel, Kurt J.; Lin, Yohan; Clarke, Sean; Ediger, Jacob J.; Ginn, Starr

    2016-01-01

    The National Aeronautics and Space Administration (NASA) Armstrong Flight Research Center (AFRC) (Edwards, California) is developing a Hybrid-Electric Integrated Systems Testbed (HEIST) Testbed as part of the HEIST Project, to study power management and transition complexities, modular architectures, and flight control laws for turbo-electric distributed propulsion technologies using representative hardware and piloted simulations. Capabilities are being developed to assess the flight readiness of hybrid electric and distributed electric vehicle architectures. Additionally, NASA will leverage experience gained and assets developed from HEIST to assist in flight-test proposal development, flight-test vehicle design, and evaluation of hybrid electric and distributed electric concept vehicles for flight safety. The HEIST test equipment will include three trailers supporting a distributed electric propulsion wing, a battery system and turbogenerator, dynamometers, and supporting power and communication infrastructure, all connected to the AFRC Core simulation. Plans call for 18 high performance electric motors that will be powered by batteries and the turbogenerator, and commanded by a piloted simulation. Flight control algorithms will be developed on the turbo-electric distributed propulsion system.

  8. Overview: Solar Electric Propulsion Concept Designs for SEP Technology Demonstration Mission

    Science.gov (United States)

    Mcguire, Melissa L.; Hack, Kurt J.; Manzella, David; Herman, Daniel

    2014-01-01

    JPC presentation of the Concept designs for NASA Solar Electric Propulsion Technology Demonstration mission paper. Multiple Solar Electric Propulsion Technology Demonstration Missions were developed to assess vehicle performance and estimated mission cost. Concepts ranged from a 10,000 kg spacecraft capable of delivering 4000 kg of payload to one of the Earth Moon Lagrange points in support of future human-crewed outposts to a 180 kg spacecraft capable of performing an asteroid rendezvous mission after launched to a geostationary transfer orbit as a secondary payload.

  9. Aircraft Electric/Hybrid-Electric Power and Propulsion Workshop Perspective of the V/STOL Aircraft Systems Tech Committee

    Science.gov (United States)

    Hange, Craig E.

    2016-01-01

    This presentation will be given at the AIAA Electric Hybrid-Electric Power Propulsion Workshop on July 29, 2016. The workshop is being held so the AIAA can determine how it can support the introduction of electric aircraft into the aerospace industry. This presentation will address the needs of the community within the industry that advocates the use of powered-lift as important new technologies for future aircraft and air transportation systems. As the current chairman of the VSTOL Aircraft Systems Technical Committee, I will be presenting generalized descriptions of the past research in developing powered-lift and generalized observations on how electric and hybrid-electric propulsion may provide advances in the powered-lift field.

  10. Modular Electric Propulsion Test Bed Aircraft, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — An all electric aircraft test bed is proposed to provide a dedicated development environment for the rigorous study and advancement of electrically powered aircraft....

  11. Human exploration of near earth asteroids: Mission analysis for chemical and electric propulsion

    Science.gov (United States)

    Herman, Jonathan F. C.; Zimmer, Aline K.; Reijneveld, Johannes P. J.; Dunlop, Kathryn L.; Takahashi, Yu; Tardivel, Simon; Scheeres, Daniel J.

    2014-11-01

    This paper presents a mission analysis comparison of human missions to asteroids using two distinct architectures. The objective is to determine if either architecture can reduce launch mass with respect to the other, while not sacrificing other performance metrics such as mission duration. One architecture relies on chemical propulsion, the traditional workhorse of space exploration. The second combines chemical and electric propulsion into a hybrid architecture that attempts to utilize the strengths of each, namely the short flight times of chemical propulsion and the propellant efficiency of electric propulsion. The architectures are thoroughly detailed, and accessibility of the known asteroid population is determined for both. The most accessible asteroids are discussed in detail. Aspects such as mission abort scenarios and vehicle reusability are also discussed. Ultimately, it is determined that launch mass can be greatly reduced with the hybrid architecture, without a notable increase in mission duration. This demonstrates that significant performance improvements can be introduced to the next step of human space exploration with realistic electric propulsion system capabilities. This leads to immediate cost savings for human exploration and simultaneously opens a path of technology development that leads to technologies enabling access to even further destinations in the future.

  12. Overview of the Development and Mission Application of the Advanced Electric Propulsion System (AEPS)

    Science.gov (United States)

    Herman, Daniel A.; Tofil, Todd A.; Santiago, Walter; Kamhawi, Hani; Polk, James E.; Snyder, John S.; Hofer, Richard R.; Picha, Frank Q.; Jackson, Jerry; Allen, May

    2018-01-01

    NASA remains committed to the development and demonstration of a high-power solar electric propulsion capability for the Agency. NASA is continuing to develop the 14 kW Advanced Electric Propulsion System (AEPS), which has recently completed an Early Integrated System Test and System Preliminary Design Review. NASA continues to pursue Solar Electric Propulsion (SEP) Technology Demonstration Mission partners and mature high-power SEP mission concepts. The recent announcement of the development of a Power and Propulsion Element (PPE) as the first element of an evolvable human architecture to Mars has replaced the Asteroid Redirect Robotic Mission (ARRM) as the most probable first application of the AEPS Hall thruster system. This high-power SEP capability, or an extensible derivative of it, has been identified as a critical part of an affordable, beyond-low-Earth-orbit, manned exploration architecture. This paper presents the status of the combined NASA and Aerojet Rocketdyne AEPS development activities and updated mission concept for implementation of the AEPS hardware as part of the ion propulsion system for a PPE.

  13. Reconfiguration of NASA GRC's Vacuum Facility 6 for Testing of Advanced Electric Propulsion System (AEPS) Hardware

    Science.gov (United States)

    Peterson, Peter Y.; Kamhawi, Hani; Huang, Wensheng; Yim, John T.; Haag, Thomas W.; Mackey, Jonathan A.; McVetta, Michael S.; Sorrelle, Luke T.; Tomsik, Thomas M.; Gilligan, Ryan P.; hide

    2018-01-01

    The NASA Hall Effect Rocket with Magnetic Shielding (HERMeS) 12.5 kW Hall thruster has been the subject of extensive technology maturation in preparation for development into a flight propulsion system. The HERMeS thruster is being developed and tested at NASA GRC and NASA JPL through support of the Space Technology Mission Directorate (STMD) and is intended to be used as the electric propulsion system on the Power and Propulsion Element (PPE) of the recently announced Deep Space Gateway (DSG). The Advanced Electric Propulsion System (AEPS) contract was awarded to Aerojet-Rocketdyne to develop the HERMeS system into a flight system for use by NASA. To address the hardware test needs of the AEPS project, NASA GRC launched an effort to reconfigure Vacuum Facility 6 (VF-6) for high-power electric propulsion testing including upgrades and reconfigurations necessary to conduct performance, plasma plume, and system level integration testing. Results of the verification and validation testing with HERMeS Technology Demonstration Unit (TDU)-1 and TDU-3 Hall thrusters are also included.

  14. A Combined Solar Electric and Storable Chemical Propulsion Vehicle for Piloted Mars Missions

    Science.gov (United States)

    Mercer, Carolyn R.; Oleson, Steven R.; Drake, Bret G.

    2014-01-01

    The Mars Design Reference Architecture (DRA) 5.0 explored a piloted Mars mission in the 2030 timeframe, focusing on architecture and technology choices. The DRA 5.0 focused on nuclear thermal and cryogenic chemical propulsion system options for the mission. Follow-on work explored both nuclear and solar electric options. One enticing option that was found in a NASA Collaborative Modeling for Parametric Assessment of Space Systems (COMPASS) design study used a combination of a 1-MW-class solar electric propulsion (SEP) system combined with storable chemical systems derived from the planned Orion crew vehicle. It was found that by using each propulsion system at the appropriate phase of the mission, the entire SEP stage and habitat could be placed into orbit with just two planned Space Launch System (SLS) heavy lift launch vehicles assuming the crew would meet up at the Earth-Moon (E-M) L2 point on a separate heavy-lift launch. These appropriate phases use high-thrust chemical propulsion only in gravity wells when the vehicle is piloted and solar electric propulsion for every other phase. Thus the SEP system performs the spiral of the unmanned vehicle from low Earth orbit (LEO) to E-M L2 where the vehicle meets up with the multi-purpose crew vehicle. From here SEP is used to place the vehicle on a trajectory to Mars. With SEP providing a large portion of the required capture and departure changes in velocity (delta V) at Mars, the delta V provided by the chemical propulsion is reduced by a factor of five from what would be needed with chemical propulsion alone at Mars. This trajectory also allows the SEP and habitat vehicle to arrive in the highly elliptic 1-sol parking orbit compatible with envisioned Mars landing concepts. This paper explores mission options using between SEP and chemical propulsion, the design of the SEP system including the solar array and electric propulsion systems, and packaging in the SLS shroud. Design trades of stay time, power level

  15. Mission roles for the solar electric propulsion stage with the space transportation system

    Science.gov (United States)

    1974-01-01

    A briefing outline is presented of the mission roles for the solar electric propulsion stage (SEPS). Topics outlined include operational considerations and mission characteristics, trade studies and technology assessments influencing SEPS configuration definition, program support requirements, and development and operations cost estimates.

  16. Control Strategy for Power Distribution in Dual Motor Propulsion System for Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Pedro Daniel Urbina Coronado

    2015-01-01

    Full Text Available Electric Vehicles with more than one electric motor can offer advantages in saving energy from the batteries. In order to do that, the control strategy plays an important role in distributing the required torque between the electric motors. A dual motor propulsion system with a differential transmission is simulated in this work. A rule based control strategy for this propulsion system is proposed and analyzed. Two parameters related to the output speed of the transmission and the required torque are used to switch the two modes of operation in which the propulsion system can work under acceleration. The effect of these parameters is presented over the driving cycles of NEDC, UDDS, and NYCC, which are followed using a PID controller. The produced energy losses are calculated as well as an indicator of drivability, which is related to the difference between the desired speed and the actual speed obtained. The results show that less energy losses are present when the vehicle is maintained with one electric motor most of the time, switching only when the extended speed granted by the second motor is required. The propulsion system with the proposed control strategy represents a feasible alternative in the spectrum of sustainable transportation architectures with extending range capabilities.

  17. Hall-Effect Thruster Modifications for Dual-Mode Electric Propulsion Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The integrated NASA/DoD electric propulsion objectives are for a specific mass less than 3 kg/kW while demonstrating a throttlable thrust-to-power ratio of 100:1 at...

  18. A methodology for fostering commercialization of electric and hybrid vehicle propulsion systems

    Science.gov (United States)

    Thollot, P. A.; Musial, N. T.

    1980-01-01

    The rationale behind, and a proposed approach for, application of government assistance to accelerate the process of moving a new electric vehicle propulsion system product from technological readiness to profitable marketplace acceptance and utilization are described. Emphasis is on strategy, applicable incentives, and an implementation process.

  19. Research, development and demonstration of nickel-zinc batteries for electric vehicle propulsion. Annual report, 1979

    Energy Technology Data Exchange (ETDEWEB)

    1980-06-01

    Activities in a program to develop a Ni/Zn battery for electric vehicle propulsion are reported. Aspects discussed include battery design and development, nickel cathode study, and basic electrochemistry. A number of engineering drawings are supplied. 61 figures, 11 tables. (RWR)

  20. A High Power Solar Electric Propulsion - Chemical Mission for Human Exploration of Mars

    Science.gov (United States)

    Burke, Laura M.; Martini, Michael C.; Oleson, Steven R.

    2014-01-01

    Recently Solar Electric Propulsion (SEP) as a main propulsion system has been investigated as an option to support manned space missions to near-Earth destinations for the NASA Gateway spacecraft. High efficiency SEP systems are able to reduce the amount of propellant long duration chemical missions require, ultimately reducing the required mass delivered to Low Earth Orbit (LEO) by a launch vehicle. However, for long duration interplanetary Mars missions, using SEP as the sole propulsion source alone may not be feasible due to the long trip times to reach and insert into the destination orbit. By combining an SEP propulsion system with a chemical propulsion system the mission is able to utilize the high-efficiency SEP for sustained vehicle acceleration and deceleration in heliocentric space and the chemical system for orbit insertion maneuvers and trans-earth injection, eliminating the need for long duration spirals. By capturing chemically instead of with low-thrust SEP, Mars stay time increases by nearly 200 days. Additionally, the size the of chemical propulsion system can be significantly reduced from that of a standard Mars mission because the SEP system greatly decreases the Mars arrival and departure hyperbolic excess velocities (V(sub infinity)).

  1. Blazing the trailway: Nuclear electric propulsion and its technology program plans

    Science.gov (United States)

    Doherty, Michael P.

    1992-01-01

    An overview is given of the plans for a program in nuclear electric propulsion (NEP) technology for space applications being considered by NASA, DOE, and DOD. Possible missions using NEP are examined, and NEP technology plans are addressed regarding concept development, systems engineering, nuclear fuels, power conversion, thermal management, power management and distribution, electric thrusters, facilities, and issues related to safety and environment. The programmatic characteristics are considered.

  2. Blazing the trailway - Nuclear electric propulsion and its technology program plans

    Science.gov (United States)

    Doherty, Michael P.

    1991-01-01

    An overview is given of the plans for a program in nuclear electric propulsion (NEP) technology for outer space applications being considered by NASA, DOE, and DOD. Possible missions using NEP are examined, and NEP technology plans are addressed regarding concept development, systems engineering, nuclear fuels, power conversion, thermal management, power management and distribution, electric thrusters, facilities, and issues related to safety and environment. The programmatic characteristics are considered.

  3. A laboratory facility for electric vehicle propulsion system testing

    Science.gov (United States)

    Sargent, N. B.

    1980-01-01

    The road load simulator facility located at the NASA Lewis Research Center enables a propulsion system or any of its components to be evaluated under a realistic vehicle inertia and road loads. The load is applied to the system under test according to the road load equation: F(net)=K1F1+K2F2V+K3 sq V+K4(dv/dt)+K5 sin theta. The coefficient of each term in the equation can be varied over a wide range with vehicle inertial representative of vehicles up to 7500 pounds simulated by means of flywheels. The required torque is applied by the flywheels, a hydroviscous absorber and clutch, and a drive motor integrated by a closed loop control system to produce a smooth, continuous load up to 150 horsepower.

  4. Laser ablation with applied magnetic field for electric propulsion

    Science.gov (United States)

    Batishcheva, Alla; Batishchev, Oleg; Cambier, Jean-Luc

    2012-10-01

    Using ultrafast lasers with tera-watt-level power allows efficient ablation and ionization of solid-density materials [1], creating dense and hot (˜100eV) plasma. We propose ablating small droplets in the magnetic nozzle configurations similar to mini-helicon plasma source [2]. Such approach may improve the momentum coupling compared to ablation of solid surfaces and facilitate plasma detachment. Results of 2D modeling of solid wire ablation in the applied magnetic field are presented and discussed. [4pt] [1] O. Batishchev et al, Ultrafast Laser Ablation for Space Propulsion, AIAA technical paper 2008-5294, -16p, 44th JPC, Hartford, 2008.[0pt] [2] O. Batishchev and J.L. Cambier, Experimental Study of the Mini-Helicon Thruster, Air Force Research Laboratory Report, AFRL-RZ-ED-TR-2009-0020, 2009.

  5. Xenon Acquisition Strategies for High-Power Electric Propulsion NASA Missions

    Science.gov (United States)

    Herman, Daniel A.; Unfried, Kenneth G.

    2015-01-01

    Solar electric propulsion (SEP) has been used for station-keeping of geostationary communications satellites since the 1980s. Solar electric propulsion has also benefitted from success on NASA Science Missions such as Deep Space One and Dawn. The xenon propellant loads for these applications have been in the 100s of kilograms range. Recent studies performed for NASA's Human Exploration and Operations Mission Directorate (HEOMD) have demonstrated that SEP is critically enabling for both near-term and future exploration architectures. The high payoff for both human and science exploration missions and technology investment from NASA's Space Technology Mission Directorate (STMD) are providing the necessary convergence and impetus for a 30-kilowatt-class SEP mission. Multiple 30-50- kilowatt Solar Electric Propulsion Technology Demonstration Mission (SEP TDM) concepts have been developed based on the maturing electric propulsion and solar array technologies by STMD with recent efforts focusing on an Asteroid Redirect Robotic Mission (ARRM). Xenon is the optimal propellant for the existing state-of-the-art electric propulsion systems considering efficiency, storability, and contamination potential. NASA mission concepts developed and those proposed by contracted efforts for the 30-kilowatt-class demonstration have a range of xenon propellant loads from 100s of kilograms up to 10,000 kilograms. This paper examines the status of the xenon industry worldwide, including historical xenon supply and pricing. The paper will provide updated information on the xenon market relative to previous papers that discussed xenon production relative to NASA mission needs. The paper will discuss the various approaches for acquiring on the order of 10 metric tons of xenon propellant to support potential near-term NASA missions. Finally, the paper will discuss acquisitions strategies for larger NASA missions requiring 100s of metric tons of xenon will be discussed.

  6. Superconducting Electric Boost Pump for Nuclear Thermal Propulsion, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Design, fabrication, assembly and test of the Florida Turbine Technologies, Inc. (FTT) concept for a submersible, superconducting electric boost pump during Phase II...

  7. Modular Electric Propulsion Test Bed Aircraft, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — A hybrid electric aircraft simulation system and test bed is proposed to provide a dedicated development environment for the rigorous study and advancement of hybrid...

  8. Leading Edge Asynchronous Propeller (LEAPTech) Distributed Electric Propulsion (DEP) Concept

    Data.gov (United States)

    National Aeronautics and Space Administration — The "Semi-Tandem Electric Distributed Wing Zip Aviation Advanced Concept Project" was renamed to LEAPTech DEP to better align with the content of the work. This...

  9. Results of electric-vehicle propulsion system performance on three lead-acid battery systems

    Science.gov (United States)

    Ewashinka, J. G.

    1984-01-01

    Three types of state of the art 6 V lead acid batteries were tested. The cycle life of lead acid batteries as a function of the electric vehicle propulsion system design was determined. Cycle life, degradation rate and failure modes with different battery types (baseline versus state of the art tubular and thin plate batteries) were compared. The effects of testing strings of three versus six series connected batteries on overall performance were investigated. All three types do not seem to have an economically feasible battery system for the propulsion systems. The tubular plate batteries on the load leveled profile attained 235 cycles with no signs of degradation and minimal capacity loss.

  10. COMPASS Final Report: Saturn Moons Orbiter Using Radioisotope Electric Propulsion (REP): Flagship Class Mission

    Science.gov (United States)

    Oleson, Steven R.; McGuire, Melissa L.

    2011-01-01

    The COllaborative Modeling and Parametric Assessment of Space Systems (COMPASS) team was approached by the NASA Glenn Research Center (GRC) In-Space Project to perform a design session to develop Radioisotope Electric Propulsion (REP) Spacecraft Conceptual Designs (with cost, risk, and reliability) for missions of three different classes: New Frontier s Class Centaur Orbiter (with Trojan flyby), Flagship, and Discovery. The designs will allow trading of current and future propulsion systems. The results will directly support technology development decisions. The results of the Flagship mission design are reported in this document

  11. Advanced electric propulsion system concept for electric vehicles. Addendum 1: Voltage considerations

    Science.gov (United States)

    Raynard, A. E.; Forbes, F. E.

    1980-01-01

    The two electric vehicle propulsion systems that best met cost and performance goals were examined to assess the effect of battery pack voltage on system performance and cost. A voltage range of 54 to 540 V was considered for a typical battery pack capacity of 24 k W-hr. The highest battery specific energy (W-hr/kg) and the lowest cost ($/kW-hr) were obtained at the minimum voltage level. The flywheel system traction motor is a dc, mechanically commutated with shunt field control, and due to the flywheel the traction motor and the battery are not subject to extreme peaks of power demand. The basic system uses a permanent-magnet motor with electronic commutation supplied by an ac power control unit. In both systems battery cost were the major factor in system voltage selection, and a battery pack with the minimum voltage of 54 V produced the lowest life-cycle cost. The minimum life-cycle cost for the basic system with lead-acid batteries was $0.057/km and for the flywheel system was $0.037/km.

  12. An electric vehicle propulsion system's impact on battery performance: An overview

    Science.gov (United States)

    Bozek, J. M.; Smithrick, J. J.; Cataldo, R. C.; Ewashinka, J. G.

    1980-01-01

    The performance of two types of batteries, lead-acid and nickel-zinc, was measured as a function of the charging and discharging demands anticipated from electric vehicle propulsion systems. The benefits of rapid high current charging were mixed: although it allowed quick charges, the energy efficiency was reduced. For low power (overnight) charging the current wave shapes delivered by the charger to the battery tended to have no effect on the battery cycle life. The use of chopper speed controllers with series traction motors resulted in a significant reduction in the energy available from a battery whenever the motor operates at part load. The demand placed on a battery by an electric vehicle propulsion system containing electrical regenerative braking confirmed significant improvment in short term performance of the battery.

  13. Research, development, and demonstration of nickel-iron batteries for electric vehicle propulsion. Annual report, 1980

    Energy Technology Data Exchange (ETDEWEB)

    1981-03-01

    The objective of the Eagle-Picher nickel-iron battery program is to develop a nickel-iron battery for use in the propulsion of electric and electric-hybrid vehicles. To date, the program has concentrated on the characterization, fabrication and testing of the required electrodes, the fabrication and testing of full-scale cells, and finally, the fabrication and testing of full-scale (270 AH) six (6) volt modules. Electrodes of the final configuration have now exceeded 1880 cycles and are showing minimal capacity decline. Full-scale cells have presently exceeded 600 cycles and are tracking the individual electrode tests almost identically. Six volt module tests have exceeded 500 cycles, with a specific energy of 48 Wh/kg. Results to date indicate the nickel-iron battery is beginning to demonstrate the performance required for electric vehicle propulsion.

  14. Exploring Propulsion System Requirements for More and All-Electric Helicopters

    Science.gov (United States)

    Snyder, Christopher A.

    2015-01-01

    Helicopters offer unique capabilities that are important for certain missions. More and all-electric propulsion systems for helicopters offer the potential for improved efficiency, reliability, vehicle and mission capabilities as well as reduced harmful emissions. To achieve these propulsion system-based benefits, the relevant requirements must be understood and developed for the various component, sub-component and ancillary systems of the overall propulsion system. Three representative helicopters were used to explore propulsion and overall vehicle and mission requirements. These vehicles varied from light utility (one to three occupants) to highly capable (three crew members plus ten passengers and cargo). Assuming 15 and 30 year technology availability, analytical models for electric system components were developed to understand component and ancillary requirements. Overall propulsion system characteristics were developed and used for vehicle sizing and mission analyses to understand the tradeoffs of component performance and weight, with increase in vehicle size and mission capability. Study results indicate that only the light utility vehicle retained significant payload for an arbitrary 100 nautical mile range assuming 15 year technology. Thirty year technology assumptions for battery energy storage are sufficient to enable some range and payload capabilities, but further improvements in energy density are required to maintain or exceed payload and range capabilities versus present systems. Hydrocarbon-fueled range extenders can be prudently used to recover range and payload deficiencies resulting from battery energy density limitations. Thermal loads for electric systems are low heat quality, but seem manageable. To realize the benefits from more and all-electric systems, technology goals must be achieved, as well as identify vehicles, missions and systems that are best suited to take advantage of their unique characteristics.

  15. A Crewed Mission to Apophis Using a Hybrid Bimodal Nuclear Thermal Electric Propulsion (BNTEP) System

    Science.gov (United States)

    Mccurdy, David R.; Borowski, Stanley K.; Burke, Laura M.; Packard, Thomas W.

    2014-01-01

    A BNTEP system is a dual propellant, hybrid propulsion concept that utilizes Bimodal Nuclear Thermal Rocket (BNTR) propulsion during high thrust operations, providing 10's of kilo-Newtons of thrust per engine at a high specific impulse (Isp) of 900 s, and an Electric Propulsion (EP) system during low thrust operations at even higher Isp of around 3000 s. Electrical power for the EP system is provided by the BNTR engines in combination with a Brayton Power Conversion (BPC) closed loop system, which can provide electrical power on the order of 100's of kWe. High thrust BNTR operation uses liquid hydrogen (LH2) as reactor coolant propellant expelled out a nozzle, while low thrust EP uses high pressure xenon expelled by an electric grid. By utilizing an optimized combination of low and high thrust propulsion, significant mass savings over a conventional NTR vehicle can be realized. Low thrust mission events, such as midcourse corrections (MCC), tank settling burns, some reaction control system (RCS) burns, and even a small portion at the end of the departure burn can be performed with EP. Crewed and robotic deep space missions to a near Earth asteroid (NEA) are best suited for this hybrid propulsion approach. For these mission scenarios, the Earth return V is typically small enough that EP alone is sufficient. A crewed mission to the NEA Apophis in the year 2028 with an expendable BNTEP transfer vehicle is presented. Assembly operations, launch element masses, and other key characteristics of the vehicle are described. A comparison with a conventional NTR vehicle performing the same mission is also provided. Finally, reusability of the BNTEP transfer vehicle is explored.

  16. Hybrids of Solar Sail, Solar Electric, and Solar Thermal Propulsion for Solar-System Exploration

    Science.gov (United States)

    Wilcox, Brian H.

    2012-01-01

    Solar sails have long been known to be an attractive method of propulsion in the inner solar system if the areal density of the overall spacecraft (S/C) could be reduced to approx.10 g/sq m. It has also long been recognized that the figure (precise shape) of useful solar sails needs to be reasonably good, so that the reflected light goes mostly in the desired direction. If one could make large reflective surfaces with reasonable figure at an areal density of approx.10 g/sq m, then several other attractive options emerge. One is to use such sails as solar concentrators for solar-electric propulsion. Current flight solar arrays have a specific output of approx. 100W/kg at 1 Astronomical Unit (AU) from the sun, and near-term advances promise to significantly increase this figure. A S/C with an areal density of 10 g/sq m could accelerate up to 29 km/s per year as a solar sail at 1 AU. Using the same sail as a concentrator at 30 AU, the same spacecraft could have up to approx. 45 W of electric power per kg of total S/C mass available for electric propulsion (EP). With an EP system that is 50% power-efficient, exhausting 10% of the initial S/C mass per year as propellant, the exhaust velocity is approx. 119 km/s and the acceleration is approx. 12 km/s per year. This hybrid thus opens attractive options for missions to the outer solar system, including sample-return missions. If solar-thermal propulsion were perfected, it would offer an attractive intermediate between solar sailing in the inner solar system and solar electric propulsion for the outer solar system. In the example above, both the solar sail and solar electric systems don't have a specific impulse that is near-optimal for the mission. Solar thermal propulsion, with an exhaust velocity of the order of 10 km/s, is better matched to many solar system exploration missions. This paper derives the basic relationships between these three propulsion options and gives examples of missions that might be enabled by

  17. Summary and recommendations on nuclear electric propulsion technology for the space exploration initiative

    Science.gov (United States)

    Doherty, Michael P.; Holcomb, Robert S.

    1993-01-01

    A project in Nuclear Electric Propulsion (NEP) technology is being established to develop the NEP technologies needed for advanced propulsion systems. A paced approach has been suggested which calls for progressive development of NEP component and subsystem level technologies. This approach will lead to major facility testing to achieve TRL-5 for megawatt NEP for SEI mission applications. This approach is designed to validate NEP power and propulsion technologies from kilowatt class to megawatt class ratings. Such a paced approach would have the benefit of achieving the development, testing, and flight of NEP systems in an evolutionary manner. This approach may also have the additional benefit of synergistic application with SEI extraterrestrial surface nuclear power applications.

  18. Combining Solar Electric and Chemical Propulsion for Crewed Missions to Mars

    Science.gov (United States)

    Percy, Tom; McGuire, Melissa; Polsgrove, Tara

    2015-01-01

    This paper documents the results of an investigation of human Mars mission architectures that leverage near-term technology investments and infrastructures resulting from the planned Asteroid Redirect Mission, including high-power Solar Electric Propulsion (SEP) and a human presence in Lunar Distant Retrograde Orbit (LDRO). The architectures investigated use a combination of SEP and chemical propulsion elements. Through this combination of propulsion technologies, these architectures take advantage of the high efficiency SEP propulsion system to deliver cargo, while maintaining the faster trip times afforded by chemical propulsion for crew transport. Evolved configurations of the Asteroid Redirect Vehicle (ARV) are considered for cargo delivery. Sensitivities to SEP system design parameters, including power level and propellant quantity, are presented. For the crew delivery, liquid oxygen and methane stages were designed using engines common to future human Mars landers. Impacts of various Earth departure orbits, Mars loiter orbits, and Earth return strategies are presented. The use of the Space Launch System for delivery of the various architecture elements was also investigated and launch vehicle manifesting, launch scheduling and mission timelines are also discussed. The study results show that viable Mars architecture can be constructed using LDRO and SEP in order to take advantage of investments made in the ARM mission.

  19. Multilayered Functional Insulation System (MFIS) for AC Power Transmission in High Voltage Hybrid Electrical Propulsion

    Science.gov (United States)

    Lizcano, Maricela

    2017-01-01

    High voltage hybrid electric propulsion systems are now pushing new technology development efforts for air transportation. A key challenge in hybrid electric aircraft is safe high voltage distribution and transmission of megawatts of power (>20 MW). For the past two years, a multidisciplinary materials research team at NASA Glenn Research Center has investigated the feasibility of distributing high voltage power on future hybrid electric aircraft. This presentation describes the team's approach to addressing this challenge, significant technical findings, and next steps in GRC's materials research effort for MW power distribution on aircraft.

  20. Cooling of Electric Motors Used for Propulsion on SCEPTOR

    Science.gov (United States)

    Christie, Robert; Dubois, Authur; Derlaga, Joseph

    2016-01-01

    Benefits of Electric Power: Reduced energy consumption, Lower emissions, Less noise. Traction motors: Permanent magnet, Synchronous, High torque at low rotational speeds, High power density, (High concentration of heat). Annular inlet: Very compatible with PM motors, (Provides cooling where needed, No need for complicated ducting, Leads to a larger motor diameter which is beneficial for motor torque) Effect of prop wash on heat transfer coefficients: Assumed propeller induced turbulence would increase heat transfer coefficients, Holmes, Obara Yip reported 'propeller slipstream showed little if any apparent effect of the slip stream', Derlaga @ LaRC also found little change in heat transfer in the wake of the propeller.

  1. Integrated Studies of Electric Propulsion Engines during Flights in the Earth's Ionosphere

    Science.gov (United States)

    Marov, M. Ya.; Filatyev, A. S.

    2018-03-01

    Fifty years ago, on October 1, 1966, the first Yantar satellite laboratory with a gas plasma-ion electric propulsion was launched into orbit as part of the Yantar Soviet space program. In 1966-1971, the program launched a total of four laboratories with thrusters operating on argon, nitrogen, and air with jet velocities of 40, 120, and 140 km/s, respectively. These space experiments were the first to demonstrate the long-term stable operation of these thrusters, which exceed chemical rocket engines in specific impulse by an order of magnitude and provide effective jet charge compensation, under the conditions of a real flight at altitudes of 100-400 km. In this article, we have analyzed the potential modern applications of the scientific results obtained by the Yantar space program for the development of air-breathing electric propulsion that ensure the longterm operation of spacecraft in very low orbits.

  2. Comparison of road load simulator test results with track tests on electric vehicle propulsion system

    Science.gov (United States)

    Dustin, M. O.

    1983-01-01

    A special-purpose dynamometer, the road load simulator (RLS), is being used at NASA's Lewis Research Center to test and evaluate electric vehicle propulsion systems developed under DOE's Electric and Hybrid Vehicle Program. To improve correlation between system tests on the RLS and track tests, similar tests were conducted on the same propulsion system on the RLS and on a test track. These tests are compared in this report. Battery current to maintain a constant vehicle speed with a fixed throttle was used for the comparison. Scatter in the data was greater in the track test results. This is attributable to variations in tire rolling resistance and wind effects in the track data. It also appeared that the RLS road load, determined by coastdown tests on the track, was lower than that of the vehicle on the track. These differences may be due to differences in tire temperature.

  3. Preliminary results of steady state characterization of near term electric vehicle breadboard propulsion system

    Science.gov (United States)

    Sargent, N. B.

    1980-01-01

    The steady state test results on a breadboard version of the General Electric Near Term Electric Vehicle (ETV-1) are discussed. The breadboard was built using exact duplicate vehicle propulsion system components with few exceptions. Full instrumentation was provided to measure individual component efficiencies. Tests were conducted on a 50 hp dynamometer in a road load simulator facility. Characterization of the propulsion system over the lower half of the speed-torque operating range has shown the system efficiency to be composed of a predominant motor loss plus a speed dependent transaxle loss. At the lower speeds with normal road loads the armature chopper loss is also a significant factor. At the conditions corresponding to a cycle for which the vehicle system was specifically designed, the efficiencies are near optimum.

  4. High-Lift Propeller System Configuration Selection for NASA's SCEPTOR Distributed Electric Propulsion Flight Demonstrator

    Science.gov (United States)

    Patterson, Michael D.; Derlaga, Joseph M.; Borer, Nicholas K.

    2016-01-01

    Although the primary function of propellers is typically to produce thrust, aircraft equipped with distributed electric propulsion (DEP) may utilize propellers whose main purpose is to act as a form of high-lift device. These \\high-lift propellers" can be placed upstream of wing such that, when the higher-velocity ow in the propellers' slipstreams interacts with the wing, the lift is increased. This technique is a main design feature of a new NASA advanced design project called Scalable Convergent Electric Propulsion Technology Operations Research (SCEPTOR). The goal of the SCEPTOR project is design, build, and y a DEP aircraft to demonstrate that such an aircraft can be much more ecient than conventional designs. This paper provides details into the high-lift propeller system con guration selection for the SCEPTOR ight demonstrator. The methods used in the high-lift propeller system conceptual design and the tradeo s considered in selecting the number of propellers are discussed.

  5. Benefits of Power and Propulsion Technology for a Piloted Electric Vehicle to an Asteroid

    Science.gov (United States)

    Mercer, Carolyn R.; Oleson, Steven R.; Pencil, Eric J.; Piszczor, Michael F.; Mason, Lee S.; Bury, Kristen M.; Manzella, David H.; Kerslake, Thomas W.; Hojinicki, Jeffrey S.; Brophy, John P.

    2012-01-01

    NASA s goal for human spaceflight is to expand permanent human presence beyond low Earth orbit (LEO). NASA is identifying potential missions and technologies needed to achieve this goal. Mission options include crewed destinations to LEO and the International Space Station; high Earth orbit and geosynchronous orbit; cis-lunar space, lunar orbit, and the surface of the Moon; near-Earth objects; and the moons of Mars, Mars orbit, and the surface of Mars. NASA generated a series of design reference missions to drive out required functions and capabilities for these destinations, focusing first on a piloted mission to a near-Earth asteroid. One conclusion from this exercise was that a solar electric propulsion stage could reduce mission cost by reducing the required number of heavy lift launches and could increase mission reliability by providing a robust architecture for the long-duration crewed mission. Similarly, solar electric vehicles were identified as critical for missions to Mars, including orbiting Mars, landing on its surface, and visiting its moons. This paper describes the parameterized assessment of power and propulsion technologies for a piloted solar electric vehicle to a near-Earth asteroid. The objective of the assessment was to determine technology drivers to advance the state of the art of electric propulsion systems for human exploration. Sensitivity analyses on the performance characteristics of the propulsion and power systems were done to determine potential system-level impacts of improved technology. Starting with a "reasonable vehicle configuration" bounded by an assumed launch date, we introduced technology improvements to determine the system-level benefits (if any) that those technologies might provide. The results of this assessment are discussed and recommendations for future work are described.

  6. Nuclear electric propulsion: A better, safer, cheaper transportation system for human exploration of Mars

    International Nuclear Information System (INIS)

    Clark, J.S.; George, J.A.; Gefert, L.P.; Doherty, M.P.; Sefcik, R.J.

    1994-03-01

    NASA has completed a preliminary mission and systems study of nuclear electric propulsion (NEP) systems for 'split-sprint' human exploration and related robotic cargo missions to Mars. This paper describes the study, the mission architecture selected, the NEP system and technology development needs, proposed development schedules, and estimated development costs. Since current administration policy makers have delayed funding for key technology development activities that could make Mars exploration missions a reality in the near future, NASA will have time to evaluate various alternate mission options, and it appears prudent to ensure that Mars mission plans focus on astronaut and mission safety, while reducing costs to acceptable levels. The split-sprint nuclear electric propulsion system offers trip times comparable to nuclear thermal propulsion (NTP) systems, while providing mission abort opportunities that are not possible with 'reference' mission architectures. Thus, NEP systems offer short transit times for the astronauts, reducing the exposure of the crew to intergalactic cosmic radiation. The high specific impulse of the NEP system, which leads to very low propellant requirements, results in significantly lower 'initial mass in low earth orbit' (IMLEO). Launch vehicle packaging studies show that the NEP system can be launched, assembled, and deployed, with about one less 240-metric-ton heavy lift launch vehicle (HLLV) per mission opportunity - a very Technology development cost of the nuclear reactor for an NEP system would be shared with the proposed nuclear surface power systems, since nuclear systems will be required to provide substantial electrical power on the surface of Mars. The NEP development project plan proposed includes evolutionary technology development for nuclear electric propulsion systems that expands upon SP-100 (Space Power - 100 kw(e)) technology that has been developed for lunar and Mars surface nuclear power

  7. Nuclear electric propulsion: A better, safer, cheaper transportation system for human exploration of Mars

    Science.gov (United States)

    Clark, John S.; George, Jeffrey A.; Gefert, Leon P.; Doherty, Michael P.; Sefcik, Robert J.

    1994-01-01

    NASA has completed a preliminary mission and systems study of nuclear electric propulsion (NEP) systems for 'split-sprint' human exploration and related robotic cargo missions to Mars. This paper describes the study, the mission architecture selected, the NEP system and technology development needs, proposed development schedules, and estimated development costs. Since current administration policy makers have delayed funding for key technology development activities that could make Mars exploration missions a reality in the near future, NASA will have time to evaluate various alternate mission options, and it appears prudent to ensure that Mars mission plans focus on astronaut and mission safety, while reducing costs to acceptable levels. The split-sprint nuclear electric propulsion system offers trip times comparable to nuclear thermal propulsion (NTP) systems, while providing mission abort opportunities that are not possible with 'reference' mission architectures. Thus, NEP systems offer short transit times for the astronauts, reducing the exposure of the crew to intergalactic cosmic radiation. The high specific impulse of the NEP system, which leads to very low propellant requirements, results in significantly lower 'initial mass in low earth orbit' (IMLEO). Launch vehicle packaging studies show that the NEP system can be launched, assembled, and deployed, with about one less 240-metric-ton heavy lift launch vehicle (HLLV) per mission opportunity - a very Technology development cost of the nuclear reactor for an NEP system would be shared with the proposed nuclear surface power systems, since nuclear systems will be required to provide substantial electrical power on the surface of Mars. The NEP development project plan proposed includes evolutionary technology development for nuclear electric propulsion systems that expands upon SP-100 (Space Power - 100 kw(e)) technology that has been developed for lunar and Mars surface nuclear power, and small NEP systems

  8. Nuclear electric propulsion mission engineering study development program and costs estimates, Phase 2 review

    Science.gov (United States)

    1972-01-01

    The results are presented of the second six-month performance period of the Nuclear Electric Propulsion Mission Engineering Study. A brief overview of the program, identifying the study objectives and approach, and a discussion of the program status and schedule are presented. The program results are reviewed and key conclusions to date are summarized. Planned effort for the remainder of the program is reviewed.

  9. Potential Operating Orbits for Fission Electric Propulsion Systems Driven by the SAFE-400

    Science.gov (United States)

    Houts, Mike; Kos, Larry; Poston, David; Rodgers, Stephen L. (Technical Monitor)

    2002-01-01

    Safety must be ensured during all phases of space fission system design, development, fabrication, launch, operation, and shutdown. One potential space fission system application is fission electric propulsion (FEP), in which fission energy is converted into electricity and used to power high efficiency (Isp greater than 3000s) electric thrusters. For these types of systems it is important to determine which operational scenarios ensure safety while allowing maximum mission performance and flexibility. Space fission systems are essentially nonradioactive at launch, prior to extended operation at high power. Once high power operation begins, system radiological inventory steadily increases as fission products build up. For a given fission product isotope, the maximum radiological inventory is typically achieved once the system has operated for a length of time equivalent to several half-lives. After that time, the isotope decays at the same rate it is produced, and no further inventory builds in. For an FEP mission beginning in Earth orbit, altitude and orbital lifetime increase as the propulsion system operates. Two simultaneous effects of fission propulsion system operation are thus (1) increasing fission product inventory and (2) increasing orbital lifetime. Phrased differently, as fission products build up, more time is required for the fission products to naturally convert back into non-radioactive isotopes. Simultaneously, as fission products build up, orbital lifetime increases, providing more time for the fission products to naturally convert back into non-radioactive isotopes. Operational constraints required to ensure safety can thus be quantified.

  10. Stirling engine electric hybrid vehicle propulsion system conceptual design study. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Dochat, G; Artiles, A; Killough, J; Ray, A; Chen, H S

    1978-08-01

    Results of a six-month study to characterize a series Stirling engine electric hybrid vehicle propulsion system are presented. The Stirling engine was selected as the heat conversion element to exploit the high efficiency (> .36), low pollution, multi-fuel and quiet operation of this machine. A free-piston Stirling engine driving a linear alternator in a hermatically sealed enclosure was chosen to gain the reliability, long life, and maintenance free characteristics of a sealed unit. The study performs trade off evaluations, selection of engine, battery, motor and inverter size, optimization of components, and develops a conceptual design and characterization of the total propulsion system. The conclusion of the study is that a Stirling engine electric hybrid propulsion system can be used successfully to augment the battery storage of a passenger vehicle and will result in significant savings of petroleum energy over present passenger vehicles. The performance and range augmentation of the hybrid design results in significant improvements over an all electric vehicle. The hybrid will be capable of performing 99% of the passenger vehicle annual trip distribution requirements with extremely low fuel usage. (TFD)

  11. Plasma Spectroscopy CubeSat: A Demonstration of On-Orbit Electric Propulsion System Diagnostics

    Science.gov (United States)

    Hudson, J.; Lemmer, K.

    New sensing assets are needed to characterize and assess electric propulsion systems in the space environment. Recent research has shown that visible and near-infrared spectral measurements of electric propulsion plasma plume emissions can be used to determine electron temperature, density, and propellant type. From these measurements, analysts can assess thruster health and diagnose causes of anomalous behavior. Propellant signature detection can also be used to identify thruster type. Spectral measurements taken by ground-based instruments are limited by transmission losses through the atmosphere and by the viewing angles and availability of telescopes. A new CubeSat-based optical emission spectroscopy (OES) system is proposed to perform electric propulsion system diagnostics from a low-cost, space-based platform. The Plasma-Spectroscopy (P-Spec) CubeSat is currently in development for a first flight test. P-Spec’s OES payload will collect inter-satellite spectral measurements of the plasma plume from a hollow cathode with xenon propellant over a range of distances up to 1 km. An overview of the spacecraft design and mission plan are presented, and the use of OES spectral measurements for thruster health diagnostics and Space Situational Awareness applications are discussed.

  12. Hybrid-Electric Rotorcraft Tool Development, Propulsion System Trade Space Exploration, and Demonstrator Conceptual Design, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Hybrid-electric propulsion is becoming widely accepted as a potential disruptive technology for aircraft that can provide significant reduction in fuel consumption...

  13. Technological requirements of nuclear electric propulsion systems for fast Earth-Mars transfers

    Science.gov (United States)

    Bérend, N.; Epenoy, R.; Cliquet, E.; Laurent-Varin, J.; Avril, S.

    2013-03-01

    Recent advances in electric propulsion technologies such as magnetoplasma rockets gave a new momentum to the study of nuclear electric propulsion concepts for Mars missions. Some recent works have been focused on very short Earth-to-Mars transfers of about 40 days with high-power, variable specific impulse propulsion systems [1]. While the interest of nuclear electric propulsion appears clearly with regard to the payload mass ratio (due to a high level of specific impulse), its interest with regard to the transfer time is more complex to define, as it depends on many design parameters. In this paper, a general analysis of the capability of nuclear electric propulsion systems considering both criteria (the payload mass ratio and the transfer time) is performed, and the technological requirements for fast Earth-Mars transfers are studied. This analysis has been performed in two steps. First, complete trajectory optimizations have been performed by CNES-DCT in order to obtain the propulsion requirements of the mission for different technological hypotheses regarding the engine technology (specific impulse levels and the throttling capability) and different mission requirements. The methodology used for designing fuel-optimal heliocentric trajectories, based on the Pontryagin's Maximum Principle will be presented. Trajectories have been computed for various power levels combined with either variable or fixed Isp. The second step consisted in evaluating a simpler method that could easily link the main mission requirements (the transfer time and the payload fraction) to the main technological requirements (the specific mass of the power generation system and the structure mass ratio of the whole vehicle, excluding the power generation system). Indeed, for power-limited systems, propulsion requirements can be characterized through the "trajectory characteristic" parameter, defined as the integral over time of the squared thrust acceleration. Technological requirements for

  14. Air-Breathing Ramjet Electric Propulsion for Controlling Low-Orbit Spacecraft Motion to Compensate for Aerodynamic Drag

    Science.gov (United States)

    Erofeev, A. I.; Nikiforov, A. P.; Popov, G. A.; Suvorov, M. O.; Syrin, S. A.; Khartov, S. A.

    2017-12-01

    Problems on designing the air-breathing ramjet electric propulsion thruster for controlling loworbit spacecraft motion are examined in the paper. Information for choosing orbits' altitudes for reasonable application of an air-breathing ramjet electric propulsion thruster and propellant exhaust velocity is presented. Estimates of the probable increase of gas concentration in the area of air-breathing ramjet ionization are presented. The test results of the thruster are also given.

  15. Pin-Type Gas Cooled Reactor for Nuclear Electric Propulsion

    Science.gov (United States)

    Wright, Steven A.; Lipinski, Ronald J.

    2003-01-01

    This paper describes a point design for a pin-type Gas-Cooled Reactor concept that uses a fuel pin design similar to the SP100 fuel pin. The Gas-Cooled Reactor is designed to operate at 100 kWe for 7 years plus have a reduced power mode of 20% power for a duration of 5 years. The power system uses a gas-cooled, UN-fueled, pin-type reactor to heat He/Xe gas that flows directly into a recuperated Brayton system to produce electricity. Heat is rejected to space via a thermal radiator that unfolds in space. The reactor contains approximately 154 kg of 93.15 % enriched UN in 313 fuel pins. The fuel is clad with rhenium-lined Nb-1Zr. The pressures vessel and ducting are cooled by the 900 K He/Xe gas inlet flow or by thermal radiation. This permits all pressure boundaries to be made of superalloy metals rather than refractory metals, which greatly reduces the cost and development schedule required by the project. The reactor contains sufficient rhenium (a neutron poison) to make the reactor subcritical under water immersion accidents without the use of internal shutdown rods. The mass of the reactor and reflectors is about 750 kg.

  16. Thrust Stand for Vertically Oriented Electric Propulsion Performance Evaluation

    Science.gov (United States)

    Moeller, Trevor; Polzin, Kurt A.

    2010-01-01

    A variation of a hanging pendulum thrust stand capable of measuring the performance of an electric thruster operating in the vertical orientation is presented. The vertical orientation of the thruster dictates that the thruster must be horizontally offset from the pendulum pivot arm, necessitating the use of a counterweight system to provide a neutrally-stable system. Motion of the pendulum arm is transferred through a balance mechanism to a secondary arm on which deflection is measured. A non-contact light-based transducer is used to measure displacement of the secondary beam. The members experience very little friction, rotating on twisting torsional pivots with oscillatory motion attenuated by a passive, eddy current damper. Displacement is calibrated using an in situ thrust calibration system. Thermal management and self-leveling systems are incorporated to mitigate thermal and mechanical drifts. Gravitational restoring force and torsional spring constants associated with flexure pivots provide restoring moments. An analysis of the design indicates that the thrust measurement range spans roughly four decades, with the stand capable of measuring thrust up to 12 N for a 200 kg thruster and up to approximately 800 mN for a 10 kg thruster. Data obtained from calibration tests performed using a 26.8 lbm simulated thruster indicated a resolution of 1 mN on 100 mN-level thrusts, while those tests conducted on 200 lbm thruster yielded a resolution of roughly 2.5 micro at thrust levels of 0.5 N and greater.

  17. High Power MPD Nuclear Electric Propulsion (NEP) for Artificial Gravity HOPE Missions to Callisto

    Science.gov (United States)

    McGuire, Melissa L.; Borowski, Stanley K.; Mason, Lee M.; Gilland, James

    2003-01-01

    This documents the results of a one-year multi-center NASA study on the prospect of sending humans to Jupiter's moon, Callisto, using an all Nuclear Electric Propulsion (NEP) space transportation system architecture with magnetoplasmadynamic (MPD) thrusters. The fission reactor system utilizes high temperature uranium dioxide (UO2) in tungsten (W) metal matrix cermet fuel and electricity is generated using advanced dynamic Brayton power conversion technology. The mission timeframe assumes on-going human Moon and Mars missions and existing space infrastructure to support launch of cargo and crewed spacecraft to Jupiter in 2041 and 2045, respectively.

  18. High power MPD Nuclear Electric Propulsion (NEP) for artificial gravity HOPE missions to Callisto

    International Nuclear Information System (INIS)

    McGuire, Melissa L.; Borowski, Stanley K.; Mason, Lee M.; Gilland, James

    2003-01-01

    The following paper documents the results of a one-year multi-center NASA study on the prospect of sending humans to Jupiter's moon, Callisto, using an all Nuclear Electric Propulsion (NEP) space transportation system architecture with magnetoplasmadynamic (MPD) thrusters. The fission reactor system utilizes high temperature uranium dioxide (UO2) in tungsten (W) metal matrix 'cermet' fuel and electricity is generated using advanced dynamic Brayton power conversion technology. The mission timeframe assumes on-going human Moon and Mars missions and existing space infrastructure to support launch of cargo and crewed spacecraft to Jupiter in 2041 and 2045, respectively

  19. Janus particle microshuttle: 1D directional self-propulsion modulated by AC electrical field

    Directory of Open Access Journals (Sweden)

    Jiliang Chen

    2014-03-01

    Full Text Available A catalytic Janus particle is capable of gaining energy from the surrounding fuel solution to drive itself to move continuously, which has an important impact in different fields, especially the field of micro-systems. However, the randomness of self-propulsion at the microscale restricts its use in practice. Achieving a directed self-propelled movement would greatly promote the application of the Janus particle. We proved experimentally that an AC electric field was an effective way to suppress Brownian motion and control the direction of self-propelled movement. The self-propulsion and dielectrophoretic response of a 2μm Janus particle were observed and the related basic data were collected. Interdigital electrodes, 20 μm in width, were energized in pulsed style to modulate the self-propulsion, which resulted in a shuttle-style motion in which a single Janus particle moved to and fro inside the strip electrode. The change of direction depends on its unique position: the catalyst side is always pointed outward and the orientation angle relative to the electrode is about 60°. Numerical simulation also proved that this position is reasonable. The present study could be beneficial with regard to self-propulsion and AC electrokinetics of the Janus particle.

  20. High-Lift Propeller Noise Prediction for a Distributed Electric Propulsion Flight Demonstrator

    Science.gov (United States)

    Nark, Douglas M.; Buning, Pieter G.; Jones, William T.; Derlaga, Joseph M.

    2017-01-01

    Over the past several years, the use of electric propulsion technologies within aircraft design has received increased attention. The characteristics of electric propulsion systems open up new areas of the aircraft design space, such as the use of distributed electric propulsion (DEP). In this approach, electric motors are placed in many different locations to achieve increased efficiency through integration of the propulsion system with the airframe. Under a project called Scalable Convergent Electric Propulsion Technology Operations Research (SCEPTOR), NASA is designing a flight demonstrator aircraft that employs many "high-lift propellers" distributed upstream of the wing leading edge and two cruise propellers (one at each wingtip). As the high-lift propellers are operational at low flight speeds (take-off/approach flight conditions), the impact of the DEP configuration on the aircraft noise signature is also an important design consideration. This paper describes efforts toward the development of a mulit-fidelity aerodynamic and acoustic methodology for DEP high-lift propeller aeroacoustic modeling. Specifically, the PAS, OVERFLOW 2, and FUN3D codes are used to predict the aerodynamic performance of a baseline high-lift propeller blade set. Blade surface pressure results from the aerodynamic predictions are then used with PSU-WOPWOP and the F1A module of the NASA second generation Aircraft NOise Prediction Program to predict the isolated high-lift propeller noise source. Comparisons of predictions indicate that general trends related to angle of attack effects at the blade passage frequency are captured well with the various codes. Results for higher harmonics of the blade passage frequency appear consistent for the CFD based methods. Conversely, evidence of the need for a study of the effects of increased azimuthal grid resolution on the PAS based results is indicated and will be pursued in future work. Overall, the results indicate that the computational

  1. Architecture, Voltage, and Components for a Turboelectric Distributed Propulsion Electric Grid

    Science.gov (United States)

    Armstrong, Michael J.; Blackwelder, Mark; Bollman, Andrew; Ross, Christine; Campbell, Angela; Jones, Catherine; Norman, Patrick

    2015-01-01

    The development of a wholly superconducting turboelectric distributed propulsion system presents unique opportunities for the aerospace industry. However, this transition from normally conducting systems to superconducting systems significantly increases the equipment complexity necessary to manage the electrical power systems. Due to the low technology readiness level (TRL) nature of all components and systems, current Turboelectric Distributed Propulsion (TeDP) technology developments are driven by an ambiguous set of system-level electrical integration standards for an airborne microgrid system (Figure 1). While multiple decades' worth of advancements are still required for concept realization, current system-level studies are necessary to focus the technology development, target specific technological shortcomings, and enable accurate prediction of concept feasibility and viability. An understanding of the performance sensitivity to operating voltages and an early definition of advantageous voltage regulation standards for unconventional airborne microgrids will allow for more accurate targeting of technology development. Propulsive power-rated microgrid systems necessitate the introduction of new aircraft distribution system voltage standards. All protection, distribution, control, power conversion, generation, and cryocooling equipment are affected by voltage regulation standards. Information on the desired operating voltage and voltage regulation is required to determine nominal and maximum currents for sizing distribution and fault isolation equipment, developing machine topologies and machine controls, and the physical attributes of all component shielding and insulation. Voltage impacts many components and system performance.

  2. Solar Electric Propulsion Vehicle Demonstration to Support Future Space Exploration Missions

    Science.gov (United States)

    Smith, Bryan K.; Nazario, Margaret L.; Cunningham, Cameron C.

    2012-01-01

    Human and robotic exploration beyond Low Earth Orbit (LEO) will require enabling capabilities that are efficient, affordable, and reliable. Solar Electric Propulsion (SEP) is highly advantageous because of its favorable in-space mass transfer efficiency compared to traditional chemical propulsion systems. The NASA studies have demonstrated that this advantage becomes highly significant as missions progress beyond Earth orbit. Recent studies of human exploration missions and architectures evaluated the capabilities needed to perform a variety of human exploration missions including missions to Near Earth Objects (NEOs). The studies demonstrated that SEP stages have potential to be the most cost effective solution to perform beyond LEO transfers of high mass cargoes for human missions. Recognizing that these missions require power levels more than 10X greater than current electric propulsion systems, NASA embarked upon a progressive pathway to identify critical technologies needed and a plan for an incremental demonstration mission. The NASA studies identified a 30kW class demonstration mission that can serve as a meaningful demonstration of the technologies, operational challenges, and provide the appropriate scaling and modularity required. This paper describes the planning options for a representative demonstration 30kW class SEP mission.

  3. New energy-efficient method of electrical propulsion in air by using charged microdroplets

    Science.gov (United States)

    Lukyanchikov, Gennadii S.; Khaziev, Timur R.

    2010-12-01

    A novel type of thrust system is proposed that operates in air and consists of an emitter of charged droplets and a multigrid electrode system in which the stream of these droplets flows in a constant longitudinal electric field, thereby initiating an air flow. The reactive force caused by the air flow and the efficiency with which the electric current energy is converted into the energy of this flow are estimated. It is shown that if a battery of hydrogen fuel elements is used as a power supply, this method of electrical propulsion makes it possible to reduce energy expenditure more than fourfold as compared to existing propeller vehicles. A feasible scheme is presented for a vehicle using such an engine.

  4. Study and review of permanent magnets for electric vehicle propulsion motors

    Science.gov (United States)

    Strnat, K. J.

    1983-01-01

    A study of permanent magnets (PM) was performed in support of the DOE/NASA electric and hybrid vehicle program. PM requirements for electric propulsion motors are analyzed, design principles and relevant properties of magnets are discussed. Available PM types are reviewed. For the needed high-grade magnets, design data, commercial varieties and sources are tabulated, based on a survey of vendors. Economic factors such as raw material availability, production capability and cost are analyzed, especially for cobalt and the rare earths. Extruded Mn-Al-C magnets from Japan were experimentally characterized. Dynamic magnetic data for the range -50 deg to +150 deg C and some mechanical properties are reported. The state of development of the important PM material families is reviewed. Feasible improvements or new developments of magnets for electric vehicle motors are identified.

  5. Control Algorithms of Propulsion Unit with Induction Motors for Electric Vehicle

    Directory of Open Access Journals (Sweden)

    PALACKY, P.

    2014-05-01

    Full Text Available The article deals with the research of algorithms for controlling electronic differential and differential lock of an electrically driven vehicle. The simulation part addresses the development of algorithms suitable for the implementation into a real system of a road vehicle. The algorithms are then implemented into a vehicle, a propulsion unit of which is consists of two separate electric drives with induction motors fed by voltage inverters with own control units using advanced signal processors. Communication among control units is provided by means of SPI interface. A method of vector control is used for the control of induction motors. The developed algorithms are experimentally verified for correct function in a laboratory using a roll test stand and while driving an electrically driven vehicle on the road.

  6. Space nuclear power system and the design of the nuclear electric propulsion OTV

    International Nuclear Information System (INIS)

    Buden, D.; Garrison, P.W.

    1984-01-01

    Payload increases of three to five times that of the Shuttle/Centaur can be achieved using nuclear electric propulsion. Various nuclear power plant options being pursued by the SP-100 Program are described. These concepts can grow from 100 kW/sub e/ to 1MW/sub e/ output. Spacecraft design aspects are addressed, including thermal interactions, plume interactions, and radiation fluences. A baseline configuration is described accounting for these issues. Safety aspects of starting the OTV transfer from an altitude of 300 km indicate no significant additional risk to the biosphere

  7. Planetary mission requirements, technology and design considerations for a solar electric propulsion stage

    Science.gov (United States)

    Cork, M. J.; Hastrup, R. C.; Menard, W. A.; Olson, R. N.

    1979-01-01

    High energy planetary missions such as comet rendezvous, Saturn orbiter and asteroid rendezvous require development of a Solar Electric Propulsion Stage (SEPS) for augmentation of the Shuttle-IUS. Performance and functional requirements placed on the SEPS are presented. These requirements will be used in evolution of the SEPS design, which must be highly interactive with both the spacecraft and the mission design. Previous design studies have identified critical SEPS technology areas and some specific design solutions which are also presented in the paper.

  8. Halley comet rendezvous with a SEPS vehicle. [Solar Electric Propulsion System

    Science.gov (United States)

    Burrows, R. R.

    1978-01-01

    An analysis of the performance of a Solar Electric Propulsion System (SEPS) vehicle rendezvousing with Halley's comet just prior to its Frebruary 1986 perihelion is described. A calculus of variations mathematical formulation is used to maximize Halley arrival mass while giving effect to the influence of solar array size, launch date, arrival date, and insertion hyperbolic excess velocity. Numerical sensitivity relief, thrust system modeling, trajectory characteristics and ion engine operating conditions are discussed and illustrated. Results indicate a rendezvous is feasible with a minimal advance in solar cell and ion engine technology.

  9. Solar Electric Propulsion (SEP) Systems for SMD Mission Needs. Technology Infusion Study.

    Science.gov (United States)

    Anderson, David

    2014-01-01

    Two presentations for SBAG and OPAG meetings: 1) Solar Electric Propulsion Systems for SMD Missions, and 2) Technology Infusion Study - Draft Findings Recommendation Small Bodies Assessment Group (SBAG) meeting is January 9th in Washington D.C., and the Outer Planets Assessment Group (OPAG) meeting is January 23-14 in Tucson, AZ. NASA sponsors these assessment groups, through the NRC, for the science community to assess and provide advice. These talks are to provide a status of 2 NASA activities, and to seek feedback from the respective science communities.

  10. Advances in series resonant inverter technology and its effect on spacecraft employing electric propulsion

    Science.gov (United States)

    Robson, R. R.

    1982-01-01

    The efficiency of transistorized Series Resonant Inverters (SRIs), which is higher than that of silicon-controlled rectifier alternatives, reduces spacecraft radiator requirements by 40% and may eliminate the need for heat pipes on 30-cm ion thruster systems. Recently developed 10- and 25-kW inverters have potential applications in gas thrusters, and represent the first spaceborne SRI designs for such power levels. Attention is given to the design and control system approaches employed in these inverter designs to improve efficiency and reduce weight, along with the impact of such improved parameters on electric propulsion systems.

  11. The QED engine spectrum - Fusion-electric propulsion for air-breathing to interstellar flight

    Science.gov (United States)

    Bussard, Robert W.; Jameson, Lorin W.

    1993-01-01

    A new inertial-electrostatic-fusion direct electric power source can be used to drive a relativistic e-beam to heat propellant. The resulting system is shown to yield specific impulse and thrust/mass ratio 2-3 orders of magnitude larger than from other advanced propulsion concepts. This QED system can be applied to aerospace vehicles from air-breathing to near-interstellar flight. Examples are given for Earth/Mars flight missions, that show transit times of 40 d with 20 percent payload in single-stage vehicles.

  12. Electric Propulsion System for Constellation Deployment and Orbit Control of Minisats

    Science.gov (United States)

    Bianco, P.; de Rocco, L.; Lovera, M.

    1999-09-01

    The late technology developments and the demand for low-cost space missions have raised the interest in small satellites and in their potential use as parts of satellite formations as well as building units of satellite constellations. Formation flying of small satellites can be used to bring in-orbit spares for failed payloads on larger satellites as well as to replace large satellites at all by flying the mission on more small satellites, each carrying a single payload. Small satellites can be used in constellations for scientific missions (e.g. remote sensing) as well as for commercial purposes (e.g. data relay). Yet, "small satellite" doesn't necessarily mean "cheap satellite": cost reduction must be enforced into the space mission design since the very beginning of it, at system level. This usually implies seeking for trade-offs on most expensive system items for a small sat. Among these, we surely have the launch and the onboard propulsion system for orbital manoeuvres and station keeping: the stricter the requirements, the higher the costs. And, when dealing with satellite constellations or formations, orbital requirements can be quite challenging. The system designer is faced with the dilemma on whether to buy a relatively expensive dedicated launch or to have a highly cost-impactive autonomous onboard propulsion system that should perform orbit transfers as well. The present paper, which is an up-to-date version of the one presented at IAF-99, introduces a system based on FEEP (Field Emission Electric Propulsion) technology, featuring low thrust plug-on propulsion units. Thanks to the self-contained concept of FEEP thrusters and to the plug-on feature of the whole system, a very low cost-impactive onboard propulsion system can be implemented in order to serve for both orbital manoeuvres (constellation / formation deployment, orbit rising) and orbit maintenance (drag compensation, station keeping relative to other satellites). Most convenient strategies to

  13. Stability, Transient Response, Control, and Safety of a High-Power Electric Grid for Turboelectric Propulsion of Aircraft

    Science.gov (United States)

    Armstrong, Michael; Ross, Christine; Phillips, Danny; Blackwelder, Mark

    2013-01-01

    This document contains the deliverables for the NASA Research and Technology for Aerospace Propulsion Systems (RTAPS) regarding the stability, transient response, control, and safety study for a high power cryogenic turboelectric distributed propulsion (TeDP) system. The objective of this research effort is to enumerate, characterize, and evaluate the critical issues facing the development of the N3-X concept aircraft. This includes the proposal of electrical grid architecture concepts and an evaluation of any needs for energy storage.

  14. Basic Research in Electric Propulsion. Part I: Pulsed Plasma Thruster Propellant Efficiency and Contamination. Part II: Arcjet Remote Plume Measurement and Hydrogen Density

    National Research Council Canada - National Science Library

    Pobst, J

    2002-01-01

    .... Arcjet technology is also under investigation with Electric Propulsion Space Experiment Optical Signature experiments underway and Multiphoton Laser Induced Fluorescence Measurements of Ground State...

  15. Analysis of Electric Propulsion Performance on Submersible with Motor DC, Supply Power 10260AH at Voltage 115VDC

    Directory of Open Access Journals (Sweden)

    Indra Ranu Kusuma

    2017-03-01

    Full Text Available Electric propulsion is the ship system using propulsion motor to replace performance of main engine. The application of diesel engine as propulsion system have some problems and weaknesses such as diesel engine unability to operate when submersible vessel is operating under sea. To overcome that problems in submersible vessel, alternative solution of ship propulsion is required. DC Motor can be used as this alternative solution. Submersible vessel use electric propulsion system with DC Motor because DC Motor has advantages of easy rotation setting and does not cause noise when submersible vessel is diving. This bachelor thesis will study the application of DC Motor as an electric propulsion system on submersible vessel with length 59,57 m in series and parallel circuit by simulation using MATLAB software. The simulation data obtained are rotation and torque of DC Motor. From these simulation, it can be concluded that parallel circuit rotation is greater than series circuit rotation. It caused the greater speed and lower power in parallel circuit. 

  16. The New NASA-STD-4005 and NASA-HDBK-4006, Essentials for Direct-Drive Solar Electric Propulsion

    Science.gov (United States)

    Ferguson, Dale C.

    2007-01-01

    High voltage solar arrays are necessary for direct-drive solar electric propulsion, which has many advantages, including simplicity and high efficiency. Even when direct-drive is not used, the use of high voltage solar arrays leads to power transmission and conversion efficiencies in electric propulsion Power Management and Distribution. Nevertheless, high voltage solar arrays may lead to temporary power disruptions, through the so-called primary electrostatic discharges, and may permanently damage arrays, through the so-called permanent sustained discharges between array strings. Design guidance is needed to prevent these solar array discharges, and to prevent high power drains through coupling between the electric propulsion devices and the high voltage solar arrays. While most electric propulsion systems may operate outside of Low Earth Orbit, the plasmas produced by their thrusters may interact with the high voltage solar arrays in many ways similarly to Low Earth Orbit plasmas. A brief description of previous experiences with high voltage electric propulsion systems will be given in this paper. There are two new official NASA documents available free through the NASA Standards website to help in designing and testing high voltage solar arrays for electric propulsion. They are NASA-STD-4005, the Low Earth Orbit Spacecraft Charging Design Standard, and NASA-HDBK-4006, the Low Earth Orbit Spacecraft Charging Design Handbook. Taken together, they can both educate the high voltage array designer in the engineering and science of spacecraft charging in the presence of dense plasmas and provide techniques for designing and testing high voltage solar arrays to prevent electrical discharges and power drains.

  17. Xenon Acquisition Strategies for High-Power Electric Propulsion NASA Missions

    Science.gov (United States)

    Herman, Daniel A.; Unfried, Kenneth G.

    2015-01-01

    The benefits of high-power solar electric propulsion (SEP) for both NASA's human and science exploration missions combined with the technology investment from the Space Technology Mission Directorate have enabled the development of a 50kW-class SEP mission. NASA mission concepts developed, including the Asteroid Redirect Robotic Mission, and those proposed by contracted efforts for the 30kW-class demonstration have a range of xenon propellant loads from 100's of kg up to 10,000 kg. A xenon propellant load of 10 metric tons represents greater than 10% of the global annual production rate of xenon. A single procurement of this size with short-term delivery can disrupt the xenon market, driving up pricing, making the propellant costs for the mission prohibitive. This paper examines the status of the xenon industry worldwide, including historical xenon supply and pricing. The paper discusses approaches for acquiring on the order of 10 MT of xenon propellant considering realistic programmatic constraints to support potential near-term NASA missions. Finally, the paper will discuss acquisitions strategies for mission campaigns utilizing multiple high-power solar electric propulsion vehicles requiring 100's of metric tons of xenon over an extended period of time where a longer term acquisition approach could be implemented.

  18. Effect of reactor coolant radioactivity upon configuration feasibility for a nuclear electric propulsion vehicle

    Science.gov (United States)

    Soffer, L.; Wright, G. N.

    1973-01-01

    A preliminary shielding analysis was carried out for a conceptual nuclear electric propulsion vehicle designed to transport payloads from low earth orbit to synchronous orbit. The vehicle employed a thermionic nuclear reactor operating at 1575 kilowatts and generated 120 kilowatts of electricity for a round-trip mission time of 2000 hours. Propulsion was via axially directed ion engines employing 3300 pounds of mercury as a propellant. The vehicle configuration permitted a reactor shadow shield geometry using LiH and the mercury propellant for shielding. However, much of the radioactive NaK reactor coolant was unshielded and in close proximity to the power conditioning electronics. An estimate of the radioactivity of the NaK coolant was made and its unshielded dose rate to the power conditioning equipment calculated. It was found that the activated NaK contributed about three-fourths of the gamma dose constraint. The NaK dose was considered a sufficiently high fraction of the allowable gamma dose to necessitate modifications in configuration.

  19. Fuel Cell Propulsion Systems for an All-electric Personal Air Vehicle

    Science.gov (United States)

    Kohout, Lisa L.; Schmitz, Paul C.

    2003-01-01

    There is a growing interest in the use of fuel cells as a power source for all-electric aircraft propulsion as a means to substantially reduce or eliminate environmentally harmful emissions. Among the technologies under consideration for these concepts are advanced proton exchange membrane and solid oxide fuel cells, alternative fuels and fuel processing, and fuel storage. This paper summarizes the results of a first-order feasibility study for an all-electric personal air vehicle utilizing a fuel cell-powered propulsion system. A representative aircraft with an internal combustion engine was chosen as a baseline to provide key parameters to the study, including engine power and subsystem mass, fuel storage volume and mass, and aircraft range. The engine, fuel tank, and associated ancillaries were then replaced with a fuel cell subsystem. Various configurations were considered including: a proton exchange membrane (PEM) fuel cell with liquid hydrogen storage; a direct methanol PEM fuel cell; and a direct internal reforming solid oxide fuel cell (SOFC)/turbine hybrid system using liquid methane fuel. Each configuration was compared to the baseline case on a mass and range basis.

  20. Control Demonstration of Multiple Doubly-Fed Induction Motors for Hybrid Electric Propulsion

    Science.gov (United States)

    Sadey, David J.; Bodson, Marc; Csank, Jeffrey T.; Hunker, Keith R.; Theman, Casey J.; Taylor, Linda M.

    2017-01-01

    The Convergent Aeronautics Solutions (CAS) High Voltage-Hybrid Electric Propulsion (HVHEP) task was formulated to support the move into future hybrid-electric aircraft. The goal of this project is to develop a new AC power architecture to support the needs of higher efficiency and lower emissions. This proposed architecture will adopt the use of the doubly-fed induction machine (DFIM) for propulsor drive motor application.The Convergent Aeronautics Solutions (CAS) High Voltage-Hybrid Electric Propulsion (HVHEP) task was formulated to support the move into future hybrid-electric aircraft. The goal of this project is to develop a new AC power architecture to support the needs of higher efficiency and lower emissions. This proposed architecture will adopt the use of the doubly-fed induction machine (DFIM) for propulsor drive motor application. DFIMs are attractive for several reasons, including but not limited to the ability to self-start, ability to operate sub- and super-synchronously, and requiring only fractionally rated power converters on a per-unit basis depending on the required range of operation. The focus of this paper is based specifically on the presentation and analysis of a novel strategy which allows for independent operation of each of the aforementioned doubly-fed induction motors. This strategy includes synchronization, soft-start, and closed loop speed control of each motor as a means of controlling output thrust; be it concurrently or differentially. The demonstration of this strategy has recently been proven out on a low power test bed using fractional horsepower machines. Simulation and hardware test results are presented in the paper.

  1. Steady-state and dynamic evaluation of the electric propulsion system test bed vehicle on a road load simulator

    Science.gov (United States)

    Dustin, M. O.

    1983-01-01

    The propulsion system of the Lewis Research Center's electric propulsion system test bed vehicle was tested on the road load simulator under the DOE Electric and Hybrid Vehicle Program. This propulsion system, consisting of a series-wound dc motor controlled by an infinitely variable SCR chopper and an 84-V battery pack, is typical of those used in electric vehicles made in 1976. Steady-state tests were conducted over a wide range of differential output torques and vehicle speeds. Efficiencies of all of the components were determined. Effects of temperature and voltage variations on the motor and the effect of voltage changes on the controller were examined. Energy consumption and energy efficiency for the system were determined over the B and C driving schedules of the SAE J227a test procedure.

  2. INFORMATION-ENERGY METHODOLOGY OF THE AIRCRAFT WITH ELECTRIC PROPULSION ENERGY COMPLEX DESIGN

    Directory of Open Access Journals (Sweden)

    Boris Vladimirovich Zhmurov

    2017-01-01

    Full Text Available Research in the field of aircraft development shows that from the point of view of sustainability and energy effi- ciency the most acceptable approach is the transition to all-electric aircraft (AEC. Electrification is aimed primarily on the aircraft most energy-intensive elements efficiency enhancing. Primarily these are power plant and air conditioning system. The actual problem discussed in this article is the development of methodology for the design of aircraft power complex with electric propulsion. The electric power plant literally extends the concept of aircraft power complex. The article con- siders two-level energy-informational design technology of the aircraft power complex. On the energetic level, the energy flows are optimized, and on the information level, the control laws that ensure restrictions compliance and loss minimiza- tion for a given level of entire system reliability are synthesized. From the point of view of sustainability and energy effi- ciency, the most acceptable is the transition to AEC. The proposed information-energy technique provides an opportunity to develop electric and hybrid aircraft with optimal weight and size and energy characteristics due to: electricity consump- tion timeline optimization through the redistribution of electric end users switch on moments, which provides a more uni- form power mode, allowing the same set of electric users to reduce generator rated power, and as a result reduce the flight weight; manage a distributed system of electricity generation that provides the ability to use diverse energy sources; faul tsafety management based on rapid changes in the power network topology; energy recovery control; the sources, convert- ers and users (input circuit and power network real-time diagnostic operations.

  3. LEO to GEO (and Beyond) Transfers Using High Power Solar Electric Propulsion (HP-SEP)

    Science.gov (United States)

    Loghry, Christopher S.; Oleson, Steven R.; Woytach, Jeffrey M.; Martini, Michael C.; Smith, David A.; Fittje, James E.; Gyekenyesi, John Z.; Colozza, Anthony J.; Fincannon, James; Bogner, Aimee; hide

    2017-01-01

    Rideshare, or Multi-Payload launch configurations, are becoming more and more commonplace but access to space is only one part of the overall mission needs. The ability for payloads to achieve their target orbits or destinations can still be difficult and potentially not feasible with on-board propulsion limitations. The High Power Solar Electric Propulsion (HP-SEP) Orbital Maneuvering Vehicle (OMV) provides transfer capabilities for both large and small payload in excess of what is possible with chemical propulsion. Leveraging existing secondary payload adapter technology like the ESPA provides a platform to support Multi-Payload launch and missions. When coupled with HP-SEP, meaning greater than 30 kW system power, very large delta-V maneuvers can be accomplished. The HP-SEP OMV concept is designed to perform a Low Earth Orbit to Geosynchronous Orbit (LEO-GEO) transfer of up to six payloads each with 300kg mass. The OMV has enough capability to perform this 6 kms maneuver and have residual capacity to extend an additional transfer from GEO to Lunar orbit. This high deltaV capability is achieved using state of the art 12.5kW Hall Effect Thrusters (HET) coupled with high power roll up solar arrays. The HP-SEP OMV also provides a demonstration platform for other SEP technologies such as advanced Power Processing Units (PPU), Xenon Feed Systems (XFS), and other HET technologies. The HP-SEP OMV platform can be leveraged for other missions as well such as interplanetary science missions and applications for resilient space architectures.

  4. Integrated Vehicle and Trajectory Design of Small Spacecraft with Electric Propulsion for Earth and Interplanetary Missions

    Science.gov (United States)

    Spangelo, Sara; Dalle, Derek; Longmier, Benjamin

    2015-01-01

    This paper investigates the feasibility of Earth-transfer and interplanetary mission architectures for miniaturized spacecraft using emerging small solar electric propulsion technologies. Emerging small SEP thrusters offer significant advantages relative to existing technologies and will enable U-class systems to perform trajectory maneuvers with significant Delta V requirements. The approach in this paper is unique because it integrates trajectory design with vehicle sizing and accounts for the system and operational constraints of small U-class missions. The modeling framework includes integrated propulsion, orbit, energy, and external environment dynamics and systems-level power, energy, mass, and volume constraints. The trajectory simulation environment models orbit boosts in Earth orbit and flyby and capture trajectories to interplanetary destinations. A family of small spacecraft mission architectures are studied, including altitude and inclination transfers in Earth orbit and trajectories that escape Earth orbit and travel to interplanetary destinations such as Mercury, Venus, and Mars. Results are presented visually to show the trade-offs between competing performance objectives such as maximizing available mass and volume for payloads and minimizing transfer time. The results demonstrate the feasibility of using small spacecraft to perform significant Earth and interplanetary orbit transfers in less than one year with reasonable U-class mass, power, volume, and mission durations.

  5. A Battery Management and Control System using a Universal Reconfigurable Architecture for Extended Health of Batteries in Hybrid and/or All-Electric Propulsion Systems, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA seeks intelligent monitoring for hybrid and/or all electric propulsion systems, as well as methods to significantly extend the life of electric aircraft...

  6. A Battery Management and Control System using a Universal Reconfigurable Architecture for Extended Health of Batteries in Hybrid and/or All-Electric Propulsion Systems, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA seeks intelligent monitoring for hybrid and/or all electric propulsion systems, as well as methods to significantly extend the life of electric aircraft...

  7. Modeling, Simulation, and Control of a Solar Electric Propulsion Vehicle in Near-Earth Vicinity Including Solar Array Degradation

    Science.gov (United States)

    Witzberger, Kevin (Inventor); Hojnicki, Jeffery (Inventor); Manzella, David (Inventor)

    2016-01-01

    Modeling and control software that integrates the complexities of solar array models, a space environment, and an electric propulsion system into a rigid body vehicle simulation and control model is provided. A rigid body vehicle simulation of a solar electric propulsion (SEP) vehicle may be created using at least one solar array model, at least one model of a space environment, and at least one model of a SEP propulsion system. Power availability and thrust profiles may be determined based on the rigid body vehicle simulation as the SEP vehicle transitions from a low Earth orbit (LEO) to a higher orbit or trajectory. The power availability and thrust profiles may be displayed such that a user can use the displayed power availability and thrust profiles to determine design parameters for an SEP vehicle mission.

  8. Solar Cell and Array Technology Development for NASA Solar Electric Propulsion Missions

    Science.gov (United States)

    Piszczor, Michael; McNatt, Jeremiah; Mercer, Carolyn; Kerslake, Tom; Pappa, Richard

    2012-01-01

    NASA is currently developing advanced solar cell and solar array technologies to support future exploration activities. These advanced photovoltaic technology development efforts are needed to enable very large (multi-hundred kilowatt) power systems that must be compatible with solar electric propulsion (SEP) missions. The technology being developed must address a wide variety of requirements and cover the necessary advances in solar cell, blanket integration, and large solar array structures that are needed for this class of missions. Th is paper will summarize NASA's plans for high power SEP missions, initi al mission studies and power system requirements, plans for advanced photovoltaic technology development, and the status of specific cell and array technology development and testing that have already been conducted.

  9. Solar electric propulsion combined with earth gravity assist - A new potential for planetary exploration

    Science.gov (United States)

    Atkins, K. L.; Sauer, C. G.; Flandro, G. A.

    1976-01-01

    The need to shorten mission time (travel time to target planet) in missions to the outer planets prompts a search for alternatives to one-way minimum-energy transfers while continuing to minimize on-power thrusts. Gravity assists via swing-bys of inner planets are examined, with emphasis on a projected Venus-earth gravity assist (VEGA) and a combined solar electric propulsion and earth gravity assist (SEEGA). Gravity assists are also examined as essential for missions with sample returns back to earth. Possible use of such techniques in the Shuttle Interim Upper Stage (IUS) program is considered. Various SEEGA and VEGA trajectories are discussed and charted, and time lost in the launch orbit to earth re-encounter time is weighed against time gained by faster speed toward the mission destination.

  10. Mission and system optimization of nuclear electric propulsion vehicles for lunar and Mars missions

    Science.gov (United States)

    Gilland, James H.

    1991-01-01

    The detailed mission and system optimization of low thrust electric propulsion missions is a complex, iterative process involving interaction between orbital mechanics and system performance. Through the use of appropriate approximations, initial system optimization and analysis can be performed for a range of missions. The intent of these calculations is to provide system and mission designers with simple methods to assess system design without requiring access or detailed knowledge of numerical calculus of variations optimizations codes and methods. Approximations for the mission/system optimization of Earth orbital transfer and Mars mission have been derived. Analyses include the variation of thruster efficiency with specific impulse. Optimum specific impulse, payload fraction, and power/payload ratios are calculated. The accuracy of these methods is tested and found to be reasonable for initial scoping studies. Results of optimization for Space Exploration Initiative lunar cargo and Mars missions are presented for a range of power system and thruster options.

  11. A large high vacuum, high pumping speed space simulation chamber for electric propulsion

    Science.gov (United States)

    Grisnik, Stanley P.; Parkes, James E.

    1994-01-01

    Testing high power electric propulsion devices poses unique requirements on space simulation facilities. Very high pumping speeds are required to maintain high vacuum levels while handling large volumes of exhaust products. These pumping speeds are significantly higher than those available in most existing vacuum facilities. There is also a requirement for relatively large vacuum chamber dimensions to minimize facility wall/thruster plume interactions and to accommodate far field plume diagnostic measurements. A 4.57 m (15 ft) diameter by 19.2 m (63 ft) long vacuum chamber at NASA Lewis Research Center is described. The chamber utilizes oil diffusion pumps in combination with cryopanels to achieve high vacuum pumping speeds at high vacuum levels. The facility is computer controlled for all phases of operation from start-up, through testing, to shutdown. The computer control system increases the utilization of the facility and reduces the manpower requirements needed for facility operations.

  12. Standard Practices for Usage of Inductive Magnetic Field Probes with Application to Electric Propulsion Testing

    Science.gov (United States)

    Polzin, Kurt A.; Hill, Carrie S.; Turchi, Peter J.; Burton, Rodney L.; Messer, Sarah; Lovberg, Ralph H.; Hallock, Ashley K.

    2013-01-01

    Inductive magnetic field probes (also known as B-dot probes and sometimes as B-probes or magnetic probes) are often employed to perform field measurements in electric propulsion applications where there are time-varying fields. Magnetic field probes provide the means to measure these magnetic fields and can even be used to measure the plasma current density indirectly through the application of Ampere's law. Measurements of this type can yield either global information related to a thruster and its performance or detailed, local data related to the specific physical processes occurring in the plasma. Results of the development of a standard for B-dot probe measurements are presented, condensing the available literature on the subject into an accessible set of rules, guidelines, and techniques to standardize the performance and presentation of future measurements.

  13. Annoyance to Noise Produced by a Distributed Electric Propulsion High-Lift System

    Science.gov (United States)

    Rizzi, Stephen A.; Palumbo, Daniel L.; Rathsam, Jonathan; Christian, Andrew; Rafaelof, Menachem

    2017-01-01

    A psychoacoustic test was performed using simulated sounds from a distributed electric propulsion aircraft concept to help understand factors associated with human annoyance. A design space spanning the number of high-lift leading edge propellers and their relative operating speeds, inclusive of time varying effects associated with motor controller error and atmospheric turbulence, was considered. It was found that the mean annoyance response varies in a statistically significant manner with the number of propellers and with the inclusion of time varying effects, but does not differ significantly with the relative RPM between propellers. An annoyance model was developed, inclusive of confidence intervals, using the noise metrics of loudness, roughness, and tonality as predictors.

  14. Human Exploration of Near-Earth Asteroids via Solar Electric Propulsion

    Science.gov (United States)

    Landau, Damon; Strange, N.; Adler, M.; Sherwood, B.; Polk, J.; Brophy, J.

    2010-10-01

    This poster will present an architecture for human missions to near-Earth asteroids in the mid 2020s using Solar Electric Propulsion (SEP). This concept relies on taking existing, flight-proven technologies from unmanned spaceflight and scaling them up to higher power levels for human spaceflight. When applied to human spaceflight, the robustness of SEP trajectories and the lack of time critical events significantly enhances mission safety for astronauts. This is accomplished by using SEP boost stages to pre-position a Deep Space Vehicle (DSV), supplies, and chemical boost stages in High Earth Orbit (HEO). Pre-placing these elements in HEO for later crew rendezvous avoids having the crew onboard the DSV during the 1-2 year long, low-thrust parts of the trajectory, while still taking advantage of the high fuel efficiency of solar electric propulsion systems. Once these assets are pre-placed in HEO, a lunar flyby is used to drop the perigee of the DSV to the altitude of International Space Station (ISS) orbit. Astronauts are then launched from the ISS to rendezvous with the DSV in an Orion Crew Module (CM) using a chemical boost stage. Once the crew establishes that the DSV is ready for departure from HEO the DSV performs an Earth escape burn with a chemical boost stage. After Earth departure, the crew uses the SEP stage as part of the DSV to rendezvous with a NEO and orbit it for 1-2 months. Following rendezvous, the DSV returns to Earth using the SEP stage and the astronauts depart in the Orion CM for a direct entry. After the crew returns, the unmanned DSV uses the SEP stage to return to HEO over the course of a year where it is refurbished for reuse on a subsequent mission.

  15. COMPASS Final Report: Radioisotope Electric Propulsion (REP) Centaur Orbiter New Frontiers Mission

    Science.gov (United States)

    Oleson, Steven R.; McGuire, Melissa L.

    2011-01-01

    Radioisotope Electric Propulsion (REP) has been shown in past studies to enable missions to outer planetary bodies including the orbiting of Centaur asteroids. Key to the feasibility for REP missions are long life, low power electric propulsion (EP) devices, low mass Radioisotope Power System (RPS) and light spacecraft (S/C) components. In order to determine the key parameters for EP devices to perform these REP missions a design study was completed to design an REP S/C to orbit a Centaur in a New Frontiers (NF) cost cap. The design shows that an orbiter using several long lived (approx.200 kg xenon (Xe) throughput), low power (approx.700 W) Hall thrusters teamed with six (150 W each) Advanced Stirling Radioisotope Generators (ASRG) can deliver 60 kg of science instruments to a Centaur in 10 yr within the NF cost cap. Optimal specific impulses (Isp) for the Hall thrusters were found to be around 2000 s with thruster efficiencies over 40 percent. Not only can the REP S/C enable orbiting a Centaur (when compared to an all chemical mission only capable of flybys) but the additional power from the REP system can be used to enhance science and simplify communications. The mission design detailed in this report is a Radioisotope Power System (RPS) powered EP science orbiter to the Centaur Thereus with arrival 10 yr after launch, ending in a 1 yr science mapping mission. Along the trajectory, approximately 1.5 yr into the mission, the REP S/C does a flyby of the Trojan asteroid Tlepolemus. The total (Delta)V of the trajectory is 8.9 km/s. The REP S/C is delivered to orbit on an Atlas 551 class launch vehicle with a Star 48 B solid rocket stage

  16. A comparative study of various electric propulsion systems and their impact on a nominal ship design

    Science.gov (United States)

    Davis, James C.

    1987-06-01

    Computer programs which model synchronous, permanent magnet, and induction machines incorporate an optimization algorithm which converges on lowest weight, volume, and inefficiency. Machine designs for high and low rmps are performed, with a varying number of pole-pairs. The machine designs are analyzed to find the optimum combination of generator and motor for inclusion in a naval ship propulsion system. The three ships used for the study are: a baseline mechanical transmission ship, a ship retaining the same sub-division as the baseline but with the electric machinery, and an electric transmission ship with subdivision and machinery box arrangement chosen to benefit from the inherent arrangeability of electric transmission. The two generator/motor combinations used in the final ship analysis, both employ a 3600 rpm, six-pole synchronous generator, which turns at the shaft speed of the prime mover. One combination uses a 180 rpm, direct-drive, 16-pole synchronous motor, and the other an 1800 rpm, geared, 8-pole synchronous motor. Power converters are used in both combinations to control motor speed. The geared combination in the rearranged ship demonstrated the best endurance speed efficiency, reducing the endurance fuel load by 18 percent, while maintaining the maximum and sustained speed of the baseline ship. The savings in ship volume translated to an additional twenty Tomahawk missile cells in the rearranged ship. When the fuel load was held at the tonnage of the baseline ship, endurance range increased as much as 25 percent.

  17. A One-year, Short-Stay Crewed Mars Mission Using Bimodal Nuclear Thermal Electric Propulsion (BNTEP) - A Preliminary Assessment

    Science.gov (United States)

    Burke, Laura A.; Borowski, Stanley K.; McCurdy, David R.; Packard, Thomas W.

    2013-01-01

    A crewed mission to Mars poses a signi cant challenge in dealing with the physiolog- ical issues that arise with the crew being exposed to a near zero-gravity environment as well as signi cant solar and galactic radiation for such a long duration. While long sur- face stay missions exceeding 500 days are the ultimate goal for human Mars exploration, short round trip, short surface stay missions could be an important intermediate step that would allow NASA to demonstrate technology as well as study the physiological e ects on the crew. However, for a 1-year round trip mission, the outbound and inbound hy- perbolic velocity at Earth and Mars can be very large resulting in a signi cant propellant requirement for a high thrust system like Nuclear Thermal Propulsion (NTP). Similarly, a low thrust Nuclear Electric Propulsion (NEP) system requires high electrical power lev- els (10 megawatts electric (MWe) or more), plus advanced power conversion technology to achieve the lower speci c mass values needed for such a mission. A Bimodal Nuclear Thermal Electric Propulsion (BNTEP) system is examined here that uses three high thrust Bimodal Nuclear Thermal Rocket (BNTR) engines allowing short departure and capture maneuvers. The engines also generate electrical power that drives a low thrust Electric Propulsion (EP) system used for ecient interplanetary transit. This combined system can help reduce the total launch mass, system and operational requirements that would otherwise be required for equivalent NEP or Solar Electric Propulsion (SEP) mission. The BNTEP system is a hybrid propulsion concept where the BNTR reactors operate in two separate modes. During high-thrust mode operation, each BNTR provides 10's of kilo- Newtons of thrust at reasonably high speci c impulse (Isp) of 900 seconds for impulsive trans-planetary injection and orbital insertion maneuvers. When in power generation / EP mode, the BNTR reactors are coupled to a Brayton power conversion system allowing each

  18. Lithium/iron sulfide batteries for electric-vehicle propulsion and other applications

    Science.gov (United States)

    1982-02-01

    This report covers the research, development, and management activities of the programs involving high-performance lithium aluminum/iron sulfide batteries at Argonne National Laboratory (ANL) and at contractors' laboratories during the period October 1980 through September 1981. These batteries, which are being developed for electric-vehicle propulsion and stationary energy-storage applications, consist of vertically oriented prismatic cells with one or more inner positive electrodes of FeS or FeS2 facing negative electrodes of lithium-aluminum, and molten LiCl-KCl electrolyte. Most of the cell and battery design, development, and fabrication for the program to develop a full-scale electric-vehicle battery was subcontracted to two industrial films Eagle-Picher Industries, Inc. and Gould Inc. The present program stresses the development and testing of high-reliability cells and the fabrication and testing of small (up to 10 cells) modules. A major technical change in the present contractor-developed cells is the use by Gould of MgO powder separators.

  19. Computation of optimal Mars trajectories via combined chemical/electrical propulsion, Part 3: Compromise solutions

    Science.gov (United States)

    Miele, A.; Wang, T.; Williams, P. N.

    2005-12-01

    The success of the solar-electric ion engine powering the DS1 spacecraft has paved the way toward the use of low-thrust electrical engines in future planetary/interplanetary missions. Vis-à-vis a chemical engine, an electrical engine has a higher specific impulse, implying a possible decrease in propellant mass; however, the low-thrust aspect discourages the use of an electrical engine in the near-planet phases of a trip, since this might result in an increase in flight time. Therefore, a fundamental design problem is to find the best combination of chemical propulsion and electrical propulsion for a given mission, for example, a mission from Earth to Mars. With this in mind, this paper is the third of a series dealing with the optimization of Earth Mars missions via the use of hybrid engines, namely the combination of high-thrust chemical engines for planetary flight and low-thrust electrical engines for interplanetary flight. We look at the deep-space interplanetary portion of the trajectory under rather idealized conditions. The two major performance indexes, the propellant mass and the flight time, are in conflict with one another for the following reason: any attempt at reducing the former causes an increase in the latter and vice versa. Therefore, it is natural to consider a compromise performance index involving the scaled values of the propellant mass and flight time weighted respectively by the compromise factor C and its complement 1-C. We use the compromise factor as the parameter of the one-parameter family of compromise trajectories. Analyses carried out with the sequential gradient-restoration algorithm for optimal control problems lead to results which can be highlighted as follows. Thrust profile. Generally speaking, the thrust profile of the compromise trajectory includes three subarcs: the first subarc is characterized by maximum thrust in conjunction with positive (upward) thrust direction; the second subarc is characterized by zero thrust

  20. Prospects for Nuclear Electric Propulsion Using Closed-Cycle Magnetohydrodynamic Energy Conversion

    Science.gov (United States)

    Litchford, R. J.; Bitteker, L. J.; Jones, J. E.

    2001-01-01

    Nuclear electric propulsion (NEP) has long been recognized as a major enabling technology for scientific and human exploration of the solar system, and it may conceivably form the basis of a cost-effective space transportation system suitable for space commerce. The chief technical obstacles to realizing this vision are the development of efficient, high-power (megawatt-class) electric thrusters and the development of low specific mass (less than 1 kg/kWe) power plants. Furthermore, comprehensive system analyses of multimegawatt class NEP systems are needed in order to critically assess mission capability and cost attributes. This Technical Publication addresses some of these concerns through a systematic examination of multimegawatt space power installations in which a gas-cooled nuclear reactor is used to drive a magnetohydrodynamic (MHD) generator in a closed-loop Brayton cycle. The primary motivation for considering MHD energy conversion is the ability to transfer energy out of a gas that is simply too hot for contact with any solid material. This has several intrinsic advantages including the ability to achieve high thermal efficiency and power density and the ability to reject heat at elevated temperatures. These attributes lead to a reduction in system specific mass below that obtainable with turbine-based systems, which have definite solid temperature limits for reliable operation. Here, the results of a thermodynamic cycle analysis are placed in context with a preliminary system analysis in order to converge on a design space that optimizes performance while remaining clearly within established bounds of engineering feasibility. MHD technology issues are discussed including the conceptual design of a nonequilibrium disk generator and opportunities for exploiting neutron-induced ionization mechanisms as a means of increasing electrical conductivity and enhancing performance and reliability. The results are then used to make a cursory examination of piloted

  1. Human Missions to Mars Orbit, Phobos, and Mars Surface Using 100-kWe-Class Solar Electric Propulsion

    Science.gov (United States)

    Price, Humphrey W.; Woolley, Ryan C.; Strange, Nathan J.; Baker, John D.

    2014-01-01

    Solar electric propulsion (SEP) tugs in the 100-kWe range, may be utilized to preposition cargo in the Mars system to enable more affordable human missions to Phobos and to the surface of Mars. The SEP tug, a high heritage follow-on to the 50-kWe SEP spacecraft proposed for the Asteroid Redirect Robotic Mission (ARRM), would have the same structure, tankage, electric propulsion components, and avionics as the ARRM version, But with double the number of solar arrays, Hall thrusters, and power processor units (PPUs) and would be accommodated within the same launch envelope defined for ARRM. As a feasibility study, a 950-day human mission to Phobos using a conjunction class trajectory, such as the 2033 opportunity, was developed using two 100-kWe SEP vehicles to preposition a habitat at Phobos and propulsion stages in high Mars orbit (HMO). An architecture concept for a crewed Mars surface lander mission was also developed as a reference to build on the Phobos mission architecture, adding a lander element that could be delivered using chemical propulsion and aerocapture.

  2. A Modular Electric Propulsion System with On-Demand Power Scaling, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The Electromagnetic Plasmoid Thruster (EMPT) program demonstrated a next generation propulsion system based on the purely electromagnetic generation and Lorentz...

  3. Experimental investigation into the fault response of superconducting hybrid electric propulsion electrical power system to a DC rail to rail fault

    Science.gov (United States)

    Nolan, S.; Jones, C. E.; Munro, R.; Norman, P.; Galloway, S.; Venturumilli, S.; Sheng, J.; Yuan, W.

    2017-12-01

    Hybrid electric propulsion aircraft are proposed to improve overall aircraft efficiency, enabling future rising demands for air travel to be met. The development of appropriate electrical power systems to provide thrust for the aircraft is a significant challenge due to the much higher required power generation capacity levels and complexity of the aero-electrical power systems (AEPS). The efficiency and weight of the AEPS is critical to ensure that the benefits of hybrid propulsion are not mitigated by the electrical power train. Hence it is proposed that for larger aircraft (~200 passengers) superconducting power systems are used to meet target power densities. Central to the design of the hybrid propulsion AEPS is a robust and reliable electrical protection and fault management system. It is known from previous studies that the choice of protection system may have a significant impact on the overall efficiency of the AEPS. Hence an informed design process which considers the key trades between choice of cable and protection requirements is needed. To date the fault response of a voltage source converter interfaced DC link rail to rail fault in a superconducting power system has only been investigated using simulation models validated by theoretical values from the literature. This paper will present the experimentally obtained fault response for a variety of different types of superconducting tape for a rail to rail DC fault. The paper will then use these as a platform to identify key trades between protection requirements and cable design, providing guidelines to enable future informed decisions to optimise hybrid propulsion electrical power system and protection design.

  4. Improved transistor-controlled and commutated brushless DC motors for electric vehicle propulsion

    Science.gov (United States)

    Demerdash, N. A.; Miller, R. H.; Nehl, T. W.; Nyamusa, T. A.

    1983-01-01

    The development, design, construction, and testing processes of two electronically (transistor) controlled and commutated permanent magnet brushless dc machine systems, for propulsion of electric vehicles are detailed. One machine system was designed and constructed using samarium cobalt for permanent magnets, which supply the rotor (field) excitation. Meanwhile, the other machine system was designed and constructed with strontium ferrite permanent magnets as the source of rotor (field) excitation. These machine systems were designed for continuous rated power output of 15 hp (11.2 kw), and a peak one minute rated power output of 35 hp (26.1 kw). Both power ratings are for a rated voltage of 115 volts dc, assuming a voltage drop in the source (battery) of about 5 volts. That is, an internal source voltage of 120 volts dc. Machine-power conditioner system computer-aided simulations were used extensively in the design process. These simulations relied heavily on the magnetic field analysis in these machines using the method of finite elements, as well as methods of modeling of the machine power conditioner system dynamic interaction. These simulation processes are detailed. Testing revealed that typical machine system efficiencies at 15 hp (11.2 kw) were about 88% and 84% for the samarium cobalt and strontium ferrite based machine systems, respectively. Both systems met the peak one minute rating of 35 hp.

  5. Development of A Low Cost PPU For Feep Electric Propulsion Using Cots Components

    Directory of Open Access Journals (Sweden)

    Seifert Bernhard

    2017-01-01

    Full Text Available In the frame of the development of an electric-propulsion thruster for Micro- and Nanosatellites, FOTEC has put forward the in-house development of a low cost PPU, capable of driving the thruster with up to 10 kV emitter and -10 kV extractor voltage. After 5 generations of development, the PPU currently used in a thruster testing and qualification campaign has achieved 85% total efficiency including high voltage multiplier stages and protection circuitry. The PPU includes the functionality of the step-up conversion for emitter and extractor, propellant heating and neutralizer-operation within a volume of 90 × 94 × 78 mm, at a weight of less than 230 g and a total cost in production of less than € 1,000. This low cost approach using COTS components is targeting constellations and mega-constellations and is certainly the other extreme compared to the conventional design approach for spacecraft PPUs. In the light of the ongoing discussions of a change in the philosophy of designing spacecraft, going from fail-safe components to a “mass production” strategy which aims for fail-safety by redundancy. This paper also gives a starting point for the discussion on how a possible trade-off between cost and reliability can be achieved.

  6. On parallel hybrid-electric propulsion system for unmanned aerial vehicles

    Science.gov (United States)

    Hung, J. Y.; Gonzalez, L. F.

    2012-05-01

    This paper presents a review of existing and current developments and the analysis of Hybrid-Electric Propulsion Systems (HEPS) for small fixed-wing Unmanned Aerial Vehicles (UAVs). Efficient energy utilisation on an UAV is essential to its functioning, often to achieve the operational goals of range, endurance and other specific mission requirements. Due to the limitations of the space available and the mass budget on the UAV, it is often a delicate balance between the onboard energy available (i.e. fuel) and achieving the operational goals. One technology with potential in this area is with the use of HEPS. In this paper, information on the state-of-art technology in this field of research is provided. A description and simulation of a parallel HEPS for a small fixed-wing UAV by incorporating an Ideal Operating Line (IOL) control strategy is described. Simulation models of the components in a HEPS were designed in the MATLAB Simulink environment. An IOL analysis of an UAV piston engine was used to determine the most efficient points of operation for this engine. The results show that an UAV equipped with this HEPS configuration is capable of achieving a fuel saving of 6.5%, compared to the engine-only configuration.

  7. Brayton Power Conversion System Study to Advance Technology Readiness for Nuclear Electric Propulsion

    Science.gov (United States)

    Allen, Bog; Delventhal, Rex; Frye, Patrick

    2004-01-01

    Recently, there has been significant interest within the aerospace community to develop space based nuclear power conversion technologies especially for exploring the outer planets of our solar system where the solar energy density is very low. To investigate these technologies NASA awarded several contracts under Project Prometheus, the Nuclear Systems Program. The studies described in this paper were performed under one of those contracts, which was to investigate the use of a nuclear power conversion system based on the closed Brayton cycle (CBC).The investigation performed included BPCS (Brayton Power Conversion System) trade studies to minimize system weight and radiator area and advance the state of the art of BPCS technology. The primary requirements for studies were a power level of 100 kWe (to the PPU), a low overall power system mass and a lifetime of 15 years (10 years full power). For the radiation environment, the system was to be capable of operation in the generic space environment and withstand the extreme environments surrounding Jupiter. The studies defined a BPCS design traceable to NEP (Nuclear Electric Propulsion) requirements and suitable for future missions with a sound technology plan for technology readiness level (TRL) advancement identified. The studies assumed a turbine inlet temperature approx. 100 C above the current the state of the art capabilities with materials issues and related development tasks identified. Analyses and evaluations of six different HRS (heat rejection system) designs and three primary power management and distribution (PMAD) configurations will be discussed in the paper.

  8. Electrical Pressurization Concept for the Orion MPCV European Service Module Propulsion System

    Science.gov (United States)

    Meiss, Jan-Hendrik; Weber, Jorg; Ierardo, Nicola; Quinn, Frank D.; Paisley, Jonathan

    2015-01-01

    The paper presents the design of the pressurization system of the European Service Module (ESM) of the Orion Multi-Purpose Crew Vehicle (MPCV). Being part of the propulsion subsystem, an electrical pressurization concept is implemented to condition propellants according to the engine needs via a bang-bang regulation system. Separate pressurization for the oxidizer and the fuel tank permits mixture ratio adjustments and prevents vapor mixing of the two hypergolic propellants during nominal operation. In case of loss of pressurization capability of a single side, the system can be converted into a common pressurization system. The regulation concept is based on evaluation of a set of tank pressure sensors and according activation of regulation valves, based on a single-failure tolerant weighting of three pressure signals. While regulation is performed on ESM level, commanding of regulation parameters as well as failure detection, isolation and recovery is performed from within the Crew Module, developed by Lockheed Martin Space System Company. The overall design and development maturity presented is post Preliminary Design Review (PDR) and reflects the current status of the MPCV ESM pressurization system.

  9. An overview of the Nuclear Electric Propulsion Space Test Program (NEPSTP) satellite

    International Nuclear Information System (INIS)

    Voss, S.S.; Reynolds, E.L.

    1994-01-01

    Early in 1992 the idea of purchasing a Russian designed and fabricated space reactor power system and integrating it with a US designed satellite went from fiction to reality with the purchase of the first two Topaz II reactors by the Strategic Defense Initiative Organization (now the Ballistic Missile Defense Organization (BMDO)). The New Mexico Alliance was formed to establish a ground test facility in which to perform nonnuclear systems testing of the Topaz II, and to evaluate the Topaz II system for flight testing with respect to safety, performance, and operability. In conjunction, SDIO requested that the Applied Physics Laboratory in Laurel, MD propose a mission and design a satellite in which the Topaz II could be used as the power source. The outcome of these two activities was the design of the Nuclear Electric Propulsion Space Test Program (NEPSTP) satellite which combines a modified Russian Topaz II power system with a US designed satellite to achieve a specified mission. Due to funding reduction within the SDIO, the Topaz II flight program was postponed indefinitely at the end of Fiscal year 1993. The purpose of this paper is to present an overview of the NEPSTP mission and the satellite design at the time the flight program ended

  10. Brayton Power Conversion System Parametric Design Modelling for Nuclear Electric Propulsion

    Science.gov (United States)

    Ashe, Thomas L.; Otting, William D.

    1993-01-01

    The parametrically based closed Brayton cycle (CBC) computer design model was developed for inclusion into the NASA LeRC overall Nuclear Electric Propulsion (NEP) end-to-end systems model. The code is intended to provide greater depth to the NEP system modeling which is required to more accurately predict the impact of specific technology on system performance. The CBC model is parametrically based to allow for conducting detailed optimization studies and to provide for easy integration into an overall optimizer driver routine. The power conversion model includes the modeling of the turbines, alternators, compressors, ducting, and heat exchangers (hot-side heat exchanger and recuperator). The code predicts performance to significant detail. The system characteristics determined include estimates of mass, efficiency, and the characteristic dimensions of the major power conversion system components. These characteristics are parametrically modeled as a function of input parameters such as the aerodynamic configuration (axial or radial), turbine inlet temperature, cycle temperature ratio, power level, lifetime, materials, and redundancy.

  11. Brayton power conversion system parametric design modelling for nuclear electric propulsion. Final report

    International Nuclear Information System (INIS)

    Ashe, T.L.; Otting, W.D.

    1993-11-01

    The parametrically based closed Brayton cycle (CBC) computer design model was developed for inclusion into the NASA LeRC overall Nuclear Electric Propulsion (NEP) end-to-end systems model. The code is intended to provide greater depth to the NEP system modeling which is required to more accurately predict the impact of specific technology on system performance. The CBC model is parametrically based to allow for conducting detailed optimization studies and to provide for easy integration into an overall optimizer driver routine. The power conversion model includes the modeling of the turbines, alternators, compressors, ducting, and heat exchangers (hot-side heat exchanger and recuperator). The code predicts performance to significant detail. The system characteristics determined include estimates of mass, efficiency, and the characteristic dimensions of the major power conversion system components. These characteristics are parametrically modeled as a function of input parameters such as the aerodynamic configuration (axial or radial), turbine inlet temperature, cycle temperature ratio, power level, lifetime, materials, and redundancy

  12. Perceived Annoyance to Noise Produced by a Distributed Electric Propulsion High Lift System

    Science.gov (United States)

    Palumbo, Dan; Rathsam, Jonathan; Christian, Andrew; Rafaelof, Menachem

    2016-01-01

    Results of a psychoacoustic test performed to understand the relative annoyance to noise produced by several configurations of a distributed electric propulsion high lift system are given. It is found that the number of propellers in the system is a major factor in annoyance perception. This is an intuitive result as annoyance increases, in general, with frequency, and, the blade passage frequency of the propellers increases with the number of propellers. Additionally, the data indicate that having some variation in the blade passage frequency from propeller-to-propeller is beneficial as it reduces the high tonality generated when all the propellers are spinning in synchrony at the same speed. The propellers can be set to spin at different speeds, but it was found that allowing the motor controllers to drift within 1% of nominal settings produced the best results (lowest overall annoyance). The methodology employed has been demonstrated to be effective in providing timely feedback to designers in the early stages of design development.

  13. Electric-field–induced assembly and propulsion of chiral colloidal clusters

    Science.gov (United States)

    Ma, Fuduo; Wang, Sijia; Wu, David T.; Wu, Ning

    2015-01-01

    Chiral molecules with opposite handedness exhibit distinct physical, chemical, or biological properties. They pose challenges as well as opportunities in understanding the phase behavior of soft matter, designing enantioselective catalysts, and manufacturing single-handed pharmaceuticals. Microscopic particles, arranged in a chiral configuration, could also exhibit unusual optical, electric, or magnetic responses. Here we report a simple method to assemble achiral building blocks, i.e., the asymmetric colloidal dimers, into a family of chiral clusters. Under alternating current electric fields, two to four lying dimers associate closely with a central standing dimer and form both right- and left-handed clusters on a conducting substrate. The cluster configuration is primarily determined by the induced dipolar interactions between constituent dimers. Our theoretical model reveals that in-plane dipolar repulsion between petals in the cluster favors the achiral configuration, whereas out-of-plane attraction between the central dimer and surrounding petals favors a chiral arrangement. It is the competition between these two interactions that dictates the final configuration. The theoretical chirality phase diagram is found to be in excellent agreement with experimental observations. We further demonstrate that the broken symmetry in chiral clusters induces an unbalanced electrohydrodynamic flow surrounding them. As a result, they rotate in opposite directions according to their handedness. Both the assembly and propulsion mechanisms revealed here can be potentially applied to other types of asymmetric particles. Such kinds of chiral colloids will be useful for fabricating metamaterials, making model systems for both chiral molecules and active matter, or building propellers for microscale transport. PMID:25941383

  14. Mission roles for the Solar Electric Propulsion Stage (SEPS) with the space transportation system. Volume 1: Executive summary

    Science.gov (United States)

    Hammock, D. M.

    1975-01-01

    A study was conducted to determine the characteristics of solar electric propulsion stage (SEPS) for the space transportation system. Emphasis is placed on the rationale leading to the concepts for the development and operations program which enhances the cost effectiveness of the SEPS operating with the space transportation system. The approach in describing design concepts and configurations is concerned with the decision controlling factors and selection criteria. The mission roles for the SEPS in accomplishing proposed space activities are defined.

  15. Hybrid-Electric Aircraft TOGW Development Tool with Empirically-Based Airframe and Physics-Based Hybrid Propulsion System Component Analysis, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Hybrid-Electric distributed propulsion (HEDP) is becoming widely accepted and new tools will be required for future development. This Phase I SBIR proposal creates a...

  16. Comprehensive Technical Report, General Electric Direct-Air-Cycle Aircraft Nuclear Propulsion Program, Program Summary and References

    Energy Technology Data Exchange (ETDEWEB)

    Thornton, G.; Rothstein, A.J.

    1962-06-28

    This is one of twenty-one volumes sumarizing the Aircraft Nuclear Propulsion Program of the General Electric Company. This volume discusses the background to the General Electric program, and summarizes the various direct-air-cycle nuclear test assemblies and power plants that were developed. Because of the requirements of high performance, low weight, and small size, vast improvements in existing technology were required to meet the flight objectives. The technological progress achieved during the program is also summarized. The last appendix contains a compilation of the abstracts, tables of contents, and reference lists of the other twenty volumes.

  17. Research, development and demonstration of nickel-zinc batteries for electric vehicle propulsion. Annual report for 1978

    Energy Technology Data Exchange (ETDEWEB)

    1979-10-01

    This is the first annual report describing progress in the 33-month cooperative program between Argonne National Laboratory and Gould Inc.'s Nickel-Zinc/Electric Vehicle Project. The purpose of the program is to demonstrate the technical and economic feasibility of the nickel-zinc battery for electric vehicle propulsion. The successful completion of the program will qualify the nickel-zinc battery for use in the Department of Energy's demonstration program under the auspices of Public Law 94-413.

  18. Performance and life evaluation of nickel/iron battery technology for dual shaft electric propulsion vehicle

    Science.gov (United States)

    Deluca, W.

    1990-05-01

    As part of a cost-shared contract between the U.S. Department of Energy (Office of Transportation Systems) and Eaton Corp. to develop an advanced dual shaft electric propulsion (DSEP) vehicle, several nickel/iron (Ni/Fe) batteries were designed and procured from Eagle-Picher Industries (EPI) for evaluation and vehicle use. In March 1986, two individual 5-cell Ni/Fe modules and a 140-cell (28-module) battery pack were delivered to Argonne for evaluation. Performance characterization tests were conducted on the two modules and life testing performed on the battery pack. Module performance testing was completed in early 1987 after about 215 cycles of operation. Each module still retained approximately 90 percent of its initial 180-Ah capacity at the end of testing (approximately 163 Ah/970 Wh). Life evaluation of the 168-V, 28-kWh battery pack was conducted with driving profile discharges. A 1377-s power profile that represented the battery load in a DSEP vehicle undergoing a Federal Urban Driving Schedule (FUDS) was used. Testing was temporarily suspended in October 1987 after the battery pack had accumulated 502 cycles (209 cycles in 1986). After a three-month trickle charge (approximately 3 A), testing was resumed (January 1988) with driving profile discharges. In March 1988, battery performance was being limited by three modules. After 545 cycles, the three modules were removed from the pack. Battery performance, however, continued to decline and another four modules were removed in September 1988 (645 cycles). Several remaining modules started to exhibit a high self-discharge loss and a capacity of only 119 Ah (15.1 kWh) could be achieved. The life evaluation was halted in October 1988 after 661 cycles had been accumulated. This report outlines the test activities and presents the performance results of the individual modules and the battery pack involved in this technology evaluation.

  19. Maneuvering Environment for Tiltwing Aircraft with Distributed Electric Propulsion, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The tiltwing class of aircraft consists of vehicles with the ability to rotate the wing and propulsion system as a unit a full 90 degrees from the standard fixed...

  20. Flight times to the heliopause using a combination of solar and radioisotope electric propulsion

    Energy Technology Data Exchange (ETDEWEB)

    Ohndorf, Andreas [DLR Deutsches Zentrum fuer Luft- und Raumfahrt e.V., Wessling (Germany); Dachwald, Bernd [FH Univ. of Applied Sciences, Aachen (Germany); Seboldt, Wolfgang [DLR Deutsches Zentrum fuer Luft- und Raumfahrt e.V., Koeln (Germany); Loeb, Horst W.; Schartner, Karl-Heinz [Giessen Univ. (Germany)

    2011-07-01

    We investigate the interplanetary flight of a low-thrust space probe to the heliopause, located at a distance of about 200 AU from the Sun. Our goal was to reach this distance within the 25 years postulated by ESA for such a mission (which is less ambitious than the 15-year goal set by NASA). Contrary to solar sail concepts and combinations of ballistic and electrically propelled flight legs, we have investigated whether the set flight time limit could also be kept with a combination of solar-electric propulsion and a second, RTG-powered upper stage. The used ion engine type was the RIT-22 for the first stage and the RIT-10 for the second stage. Trajectory optimization was carried out with the low-thrust optimization program InTrance, which implements the method of Evolutionary Neurocontrol, using Artificial Neural Networks for spacecraft steering and Evolutionary Algorithms to optimize the Neural Networks' parameter set. Based on a parameter space study, in which the number of thrust units, the unit's specific impulse, and the relative size of the solar power generator were varied, we have chosen one configuration as reference. The transfer time of this reference configuration was 29.6 years and the fastest one, which is technically more challenging, still required 28.3 years. As all flight times of this parameter study were longer than 25 years, we further shortened the transfer time by applying a launcher-provided hyperbolic excess energy up to 49 km{sup 2}/s{sup 2}. The resulting minimal flight time for the reference configuration was then 27.8 years. The following, more precise optimization to a launch with the European Ariane 5 ECA rocket reduced the transfer time to 27.5 years. This is the fastest mission design of our study that is flexible enough to allow a launch every year. The inclusion of a fly-by at Jupiter finally resulted in a flight time of 23.8 years, which is below the set transfer-time limit. However, compared to the 27.5-year transfer

  1. The control of a parallel hybrid-electric propulsion system for a small unmanned aerial vehicle using a CMAC neural network.

    Science.gov (United States)

    Harmon, Frederick G; Frank, Andrew A; Joshi, Sanjay S

    2005-01-01

    A Simulink model, a propulsion energy optimization algorithm, and a CMAC controller were developed for a small parallel hybrid-electric unmanned aerial vehicle (UAV). The hybrid-electric UAV is intended for military, homeland security, and disaster-monitoring missions involving intelligence, surveillance, and reconnaissance (ISR). The Simulink model is a forward-facing simulation program used to test different control strategies. The flexible energy optimization algorithm for the propulsion system allows relative importance to be assigned between the use of gasoline, electricity, and recharging. A cerebellar model arithmetic computer (CMAC) neural network approximates the energy optimization results and is used to control the parallel hybrid-electric propulsion system. The hybrid-electric UAV with the CMAC controller uses 67.3% less energy than a two-stroke gasoline-powered UAV during a 1-h ISR mission and 37.8% less energy during a longer 3-h ISR mission.

  2. The Jet Propulsion Laboratory Electric and Hybrid Vehicle System Research and Development Project, 1977-1984: A Review

    Science.gov (United States)

    Kurtz, D.; Roan, V.

    1985-01-01

    The JPL Electric and Hybrid Vehicle System Research and Development Project was established in the spring of 1977. Originally administered by the Energy Research and Development Administration (ERDA) and later by the Electric and Hybrid Vehicle Division of the U.S. Department of Energy (DOE), the overall Program objective was to decrease this nation's dependence on foreign petroleum sources by developing the technologies and incentives necessary to bring electric and hybrid vehicles successfully into the marketplace. The ERDA/DOE Program structure was divided into two major elements: (1) technology research and system development and (2) field demonstration and market development. The Jet Propulsion Laboratory (JPL) has been one of several field centers supporting the former Program element. In that capacity, the specific historical areas of responsibility have been: (1) Vehicle system developments (2) System integration and test (3) Supporting subsystem development (4) System assessments (5) Simulation tool development.

  3. Optimizing the e-beam profile of a single carbon nanotube field emission device for electric propulsion systems

    Directory of Open Access Journals (Sweden)

    Juliano Fujioka Mologni

    2010-04-01

    Full Text Available Preliminary studies on field emission (FE arrays comprised of carbon nanotubes (CNT as an electron source for electric propulsion system show remarkably promising results. Design parameters for a carbon nanotube (CNT field-emission device operating on triode configuration were numerically simulated and optimized in order to enhance the e-beam focusing quality. An additional focus gate (FG was integrated to the device to control the profile of the emitted e-beam. An axisymmetric finite element model was developed to calculate the electric field distribution on the vacuum region and a modified Fowler-Nordheim (FN equation was used to evaluate the current density emission and the effective emitter area. Afterward, a FE simulation was employed in order to calculate the trajectory of the emitted electrons and define the electron-optical properties of the e-beam. The integration of the FG was fully investigated via computational intelligence techniques. The best performance device according to our simulations presents a collimated e-beam profile that suits well for field emission displays, magnetic field detection and electron microscopy. The automated computational design tool presented in this study strongly benefits the robust design of integrated electron-optical systems for vacuum field emission applications, including electrodynamic tethering and electric propulsion systems.

  4. 300-kW Solar Electric Propulsion System Configuration for Human Exploration of Near-Earth Asteroids

    Science.gov (United States)

    Brophy, John R.; Gershman, Robert; Strange, Nathan; Landau, Damon; Merrill, Raymond Gabriel; Kerslake, Thomas

    2011-01-01

    The use of Solar Electric Propulsion (SEP) can provide significant benefits for the human exploration of near-Earth asteroids. These benefits include substantial cost savings - represented by a significant reduction in the mass required to be lifted to low Earth orbit - and increased mission flexibility. To achieve these benefits, system power levels of 100's of kW are necessary along with the capability to store and process tens of thousands of kilograms of xenon propellant. The paper presents a conceptual design of a 300-kW SEP vehicle, with the capability to store nearly 40,000 kg of xenon, to support human missions to near-Earth asteroids.

  5. Measurements of energy distribution and thrust for microwave plasma coupling of electrical energy to hydrogen for propulsion

    Science.gov (United States)

    Morin, T.; Chapman, R.; Filpus, J.; Hawley, M.; Kerber, R.; Asmussen, J.; Nakanishi, S.

    1982-01-01

    A microwave plasma system for transfer of electrical energy to hydrogen flowing through the system has potential application for coupling energy to a flowing gas in the electrothermal propulsion concept. Experimental systems have been designed and built for determination of the energy inputs and outputs and thrust for the microwave coupling of energy to hydrogen. Results for experiments with pressure in the range 100 microns-6 torr, hydrogen flow rate up to 1000 micronmoles/s, and total absorbed power to 700 w are presented.

  6. Note: An advanced in situ diagnostic system for characterization of electric propulsion thrusters and ion beam sources.

    Science.gov (United States)

    Bundesmann, C; Tartz, M; Scholze, F; Leiter, H J; Scortecci, F; Gnizdor, R Y; Neumann, H

    2010-04-01

    We present an advanced diagnostic system for in situ characterization of electric propulsion thrusters and ion beam sources. The system uses a high-precision five-axis positioning system with a modular setup and the following diagnostic tools: a telemicroscopy head for optical imaging, a triangular laser head for surface profile scanning, a pyrometer for temperature scanning, a Faraday probe for current density mapping, and an energy-selective mass spectrometer for beam characterization (energy and mass distribution, composition). The capabilities of our diagnostic system are demonstrated with a Hall effect thruster SPT-100D EM1.

  7. Characterization of the near-term electric vehicle (ETV-1) breadboard propulsion system over the SAE J227a driving schedule D

    Science.gov (United States)

    Sargent, N. B.; Dustin, M. O.

    1981-01-01

    The electric test vehicle one (ETV-1) was built from the ground up with present state of the art technology. Two vehicles were built and are presently being evaluated by NASA's Jet Propulsion Laboratory (JPL). A duplicate set of propulsion system components was built, mounted on a breadboard, and delivered to NASA's Lewis Research Center for testing on the road load simulator (RLS). Driving cycle tests completed on the system are described.

  8. In-Space Propulsion (346620) Technology Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Technologies include, but are not limited to, electric and advanced chemical propulsion, propellantless propulsion such as aerocapture and solar sails, sample return...

  9. Note: Possibilities of detecting the trace-level erosion products from an electric propulsion hollow cathode plasma source by the method of time-of-flight mass spectrometry

    Science.gov (United States)

    Ning, Zhong-Xi; Zhang, Hai-Guang; Zhu, Xi-Ming; Jiang, Bin-Hao; Zhou, Zhong-Yue; Yu, Da-Ren; An, Bing-Jian; Wang, Yan-Fei

    2018-02-01

    A hollow cathode produces electrons which neutralize ions from electric propulsion thrusters. After hundreds to thousands of hours of operation in space, the cathode materials can be significantly eroded due to ion bombardment. As a result, the electric propulsion system performance will be obviously changed or even fail. In this work, the erosion products from a LaB6 hollow cathode (widely used presently in electric propulsion systems) are studied by using a specific detection system, which consists of a molecular beam sampler and a time-of-flight mass spectrometer. This system measures trace-level-concentration (10-6-10-3) products. Boron (B), tantalum (Ta), and tungsten (W)—originating from the emitter, keeper, and orifice of the hollow cathode—are measured. It is found that the erosion rate is significantly influenced by the gas flow rate to the cathode.

  10. Augmentation of Solar Thermal Propulsion Systems Via Phase Change Thermal Energy Storage and Thermal Electric Conversion

    Science.gov (United States)

    2012-04-01

    system can be devised with a less than 50% propulsion mass fraction (including propel- lant) and a 1.5 km/s velocity increment (ΔV ) capability...Geosynchronous Transfer Or- bit (GTO) to Geosynchronous Earth Orbit (GEO), insertion into lunar orbit, LaGrange point insertion, highly eccentric ...container so that the phase transition process dom - inates. Current experimental scales are limited in size due to the low power delivery of the Fresnel

  11. Additive Manufacturing of Aerospace Propulsion Components

    Science.gov (United States)

    Misra, Ajay K.; Grady, Joseph E.; Carter, Robert

    2015-01-01

    The presentation will provide an overview of ongoing activities on additive manufacturing of aerospace propulsion components, which included rocket propulsion and gas turbine engines. Future opportunities on additive manufacturing of hybrid electric propulsion components will be discussed.

  12. Electric Drive Dynamic Thermal System Model for Advanced Vehicle Propulsion Technologies: Cooperative Research and Development Final Report, CRADA Number CRD-09-360

    Energy Technology Data Exchange (ETDEWEB)

    Bennion, K. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2013-10-01

    Electric drive systems, which include electric machines and power electronics, are a key enabling technology for advanced vehicle propulsion systems that reduce the dependence of the U.S. transportation sector on petroleum. However, to penetrate the market, these electric drive technologies must enable vehicle solutions that are economically viable. The push to make critical electric drivesystems smaller, lighter, and more cost-effective brings respective challenges associated with heat removal and system efficiency. In addition, the wide application of electric drive systems to alternative propulsion technologies ranging from integrated starter generators, to hybrid electric vehicles, to full electric vehicles presents challenges in terms of sizing critical components andthermal management systems over a range of in-use operating conditions. This effort focused on developing a modular modeling methodology to enable multi-scale and multi-physics simulation capabilities leading to generic electric drive system models applicable to alternative vehicle propulsion configurations. The primary benefit for the National Renewable Energy Laboratory (NREL) is the abilityto define operating losses with the respective impact on component sizing, temperature, and thermal management at the component, subsystem, and system level. However, the flexible nature of the model also allows other uses related to evaluating the impacts of alternative component designs or control schemes depending on the interests of other parties.

  13. Characterization of solar cells for space applications. Volume 11: Electrical characteristics of 2 ohm-cm, 228 micron wraparound solar cells as a function of intensity, temperature, and irradiation. [for solar electric propulsion

    Science.gov (United States)

    Anspaugh, B. E.; Beckert, D. M.; Downing, R. G.; Weiss, R. S.

    1980-01-01

    Parametric characterization data on Spectrolab 2 by 4 cm, 2 ohm/cm, 228 micron thick wraparound cell, a candidate for the Solar Electric Propulsion Mission, are presented. These data consist of the electrical characteristics of the solar cell under a wide range of temperature and illumination intensity combinations of the type encountered in space applications.

  14. Operations analysis (study 2.1). Program SEPSIM (solar electric propulsion stage simulation). [in FORTRAN: space tug

    Science.gov (United States)

    Lang, T. J.

    1974-01-01

    Program SEPSIM is a FORTRAN program which performs deployment, servicing, and retrieval missions to synchronous equatorial orbit using a space tug with a continuous low thrust upper stage known as a solar electric propulsion stage (SEPS). The SEPS ferries payloads back and forth between an intermediate orbit and synchronous orbit, and performs the necessary servicing maneuvers in synchronous orbit. The tug carries payloads between the orbiter and the intermediate orbit, deploys fully fueled SEPS vehicles, and retrieves exhausted SEPS vehicles when, and if, required. The program is presently contained in subroutine form in the Logistical On-orbit VEhicle Servicing (LOVES) Program, but can also be run independently with the addition of a simple driver program.

  15. Research, development, and demonstration of nickel-iron batteries for electric vehicle propulsion. Annual report, 1978

    Energy Technology Data Exchange (ETDEWEB)

    1979-10-01

    The objective of this program is to develop a nickel-iron battery suitable for use in electric vehicles. Ultimately, it is expected that a number of these batteries will be demonstrated under the Electric and Hybrid Vehicle Act of 1976. The report presents the technical approach and a summary of the progress that was achieved under the contract. Work began 1 May 1978. The report covers the period through September 1978. (TFD)

  16. Thruster array design approaches for a solar electric propulsion Encke Flyby mission

    Science.gov (United States)

    Ross, R. G., Jr.

    1973-01-01

    Design approaches are described and evaluated for a mercury electron-bombardment ion thruster array. Such an array might be used on a solar electric interplanetary spacecraft that obtains electrical energy from large solar panels. Thruster array designs are described and evaluated as they would apply to an Encke Flyby mission. Besides several well known approaches, a new concept utilizing individual two-axis gimbal actuators on each thruster is described and shown to have many structural and thermal advantages.

  17. Station-keeping of a high-altitude balloon with electric propulsion and wireless power transmission: A concept study

    Science.gov (United States)

    van Wynsberghe, Erinn; Turak, Ayse

    2016-11-01

    A stable, ultra long-duration high-altitude balloon (HAB) platform which can maintain stationary position would represent a new paradigm for telecommunications and high-altitude observation and transmission services, with greatly reduced cost and complexity compared to existing technologies including satellites, telecom towers, and unmanned aerial vehicles (UAVs). This contribution proposes a lightweight superpressure balloon platform for deployment to an altitude of 25 km. Electrohydrodynamic (EHD) thrusters are presented to maintain position by overcoming stratospheric winds. Critical to maintaining position is a continual supply of electrical power to operate the on-board propulsion system. One viable solution is to deliver power wirelessly to a high-altitude craft from a ground-based transmitter. Microwave energy, not heavily attenuated by the atmosphere, can be provided remotely from a ground-based generator (magnetron, klystron, etc.) and steered electrically with an antenna array (phased array) at a designated frequency (such as 2.45 or 5.8 GHz). A rectifying antenna ("rectenna") on the bottom of the balloon converts waves into direct current for on-board use. Preliminary mission architecture, energy requirements, and safety concerns for a proposed system are presented along with recommended future work.

  18. High-performance batteries for electric-vehicle propulsion and stationary energy storage. Progress report, October 1977--September 1978

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, P.A.; Barney, D.L.; Steunenberg, R.K.

    1978-11-01

    The research, development, and management activities of the programs at Argonne National Laboratory (ANL) and at industrial subcontractors' laboratories on high-temperature batteries during the period October 1977--September 1978 are reported. These batteries are being developed for electric-vehicle propulsion and for stationary-energy-storage applications. The present cells, which operate at 400 to 500/sup 0/C, are of a vertically oriented, prismatic design with one or more inner positive electrodes of FeS or FeS/sub 2/, facing electrodes of lithium--aluminum alloy, and molten LiCl--KCl electrolyte. During this fiscal year, cell and battery development work continued at ANL, Eagle--Picher Industries, Inc., the Energy Systems Group of Rockwell International, and Gould Inc. Related work was also in progress at the Carborundum Co., General Motors Research Laboratories, and various other organizations. A major event was the initiation of a subcontract with Eagle--Picher Industries to develop, design, and fabricate a 40-kWh battery (Mark IA) for testing in an electric van. Conceptual design studies on a 100-MWh stationary-energy-storage module were conducted as a joint effort between ANL and Rockwell International. A significant technical advance was the development of multiplate cells, which are capable of higher performance than bicells. 89 figures, 57 tables.

  19. An Integrated Approach to Modeling Solar Electric Propulsion Vehicles During Long Duration, Near-Earth Orbit Transfers

    Science.gov (United States)

    Smith, David A.; Hojnicki, Jeffrey S.; Sjauw, Waldy K.

    2014-01-01

    Recent NASA interest in utilizing solar electronic propulsion (SEP) technology to transfer payloads, e.g. from low-Earth orbit (LEO) to higher energy geostationary-Earth orbit (GEO) or to Earth escape, has necessitated the development of high fidelity SEP vehicle models and simulations. These models and simulations need to be capable of capturing vehicle dynamics and sub-system interactions experienced during the transfer trajectories which are typically accomplished with continuous-burn (potentially interrupted by solar eclipse), long duration "spiral out" maneuvers taking several months or more to complete. This paper presents details of an integrated simulation approach achieved by combining a high fidelity vehicle simulation code with a detailed solar array model. The combined simulation tool gives researchers the functionality to study the integrated effects of various vehicle sub-systems (e.g. vehicle guidance, navigation and control (GN&C), electric propulsion system (EP)) with time varying power production. Results from a simulation model of a vehicle with a 50 kW class SEP system using the integrated tool are presented and compared to the results from another simulation model employing a 50 kW end-of-life (EOL) fixed power level assumption. These models simulate a vehicle under three degree of freedom dynamics (i.e. translational dynamics only) and include the effects of a targeting guidance algorithm (providing a "near optimal" transfer) during a LEO to near Earth escape (C (sub 3) = -2.0 km (sup 2) / sec (sup -2) spiral trajectory. The presented results include the impact of the fully integrated, time-varying solar array model (e.g. cumulative array degradation from traversing the Van Allen belts, impact of solar eclipses on the vehicle and the related temperature responses in the solar arrays due to operating in the Earth's thermal environment, high fidelity array power module, etc.); these are used to assess the impact on vehicle performance (i

  20. Radio Frequency Trap for Containment of Plasmas in Antimatter Propulsion Systems Using Rotating Wall Electric Fields

    Science.gov (United States)

    Sims, William Herbert, III (Inventor); Martin, James Joseph (Inventor); Lewis, Raymond A. (Inventor)

    2003-01-01

    A containment apparatus for containing a cloud of charged particles comprises a cylindrical vacuum chamber having a longitudinal axis. Within the vacuum chamber is a containment region. A magnetic field is aligned with the longitudinal axis of the vacuum chamber. The magnetic field is time invariant and uniform in strength over the containment region. An electric field is also aligned with the longitudinal axis of the vacuum chamber and the magnetic field. The electric field is time invariant, and forms a potential well over the containment region. One or more means are disposed around the cloud of particles for inducing a rotating electric field internal to the vacuum chamber. The rotating electric field imparts energy to the charged particles within the containment region and compress the cloud of particles. The means disposed around the outer surface of the vacuum chamber for inducing a rotating electric field are four or more segments forming a segmented ring, the segments conforming to the outer surface of the vacuum chamber. Each of the segments is energized by a separate alternating voltage. The sum of the voltages imposed on each segment establishes the rotating field. When four segments form a ring, the rotating field is obtained by a signal generator applying a sinusoidal signal phase delayed by 90,180 and 270 degrees in sequence to the four segments.

  1. The effect of technology advancements on the comparative advantages of electric versus chemical propulsion for a large cargo orbit transfer vehicle

    Science.gov (United States)

    Rehder, J. J.; Wurster, K. E.

    1978-01-01

    Techniques for sizing electrically or chemically propelled orbit transfer vehicles and analyzing fleet requirements are used in a comparative analysis of the two concepts for various levels of traffic to geosynchronous orbit. The vehicle masses, fuel requirements, and fleet sizes are determined and translated into launch vehicle payload requirements. Technology projections beyond normal growth are made and their effect on the comparative advantages of the concepts is determined. A preliminary cost analysis indicates that although electric propulsion greatly reduces launch vehicle requirements substantial improvements in the cost and reusability of power systems must occur to make an electrically propelled vehicle competitive.

  2. Propulsion Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Propulsion Lab simulates field test conditions in a controlled environment, using standardized or customized test procedures. The Propulsion Lab's 11 cells can...

  3. The QED engine - Fusion-electric propulsion for Cis-Oort/Quasi-Interstellar (QIS) flight

    Science.gov (United States)

    Bussard, Robert W.; Jameson, Lorin W.; Froning, H. D., Jr.

    1993-01-01

    A summary is presented of QED fusion-direct-electric engine systems, their features, and performance ranges. The principles and characteristics of inertial-electrostatic-fusion (IEF) power source systems are then reviewed, and their application to the diluted-fusion-product (DFP) engine concept for QIS missions is discussed. Particular attention is given to vehicle performance over a range of very high specific impulses and to specifications of a typical candidate DFP/IEF engine and a single-stage vehicle for rapid flight to 550 AU.

  4. Research, development, and demonstration of lead-acid batteries for electric vehicle propulsion. Annual report for 1980

    Energy Technology Data Exchange (ETDEWEB)

    1981-03-01

    Work performed during Oct. 1, 1979 to Sept. 30, 1980 for the development of lead-acid batteries for electric vehicle propulsion is described. During this report period many of the results frpm Globe Battery's design, materials and process development programs became evident in the achievement of the ISOA (Improved State of Art) specific energy, specific power, and energy efficiency goals while testing in progress also indicates that the cycle life goal can be met. These programs led to the establishment of a working pilot assembly line which produced the first twelve volt ISOA modules. Five of these modules were delivered to the National Battery Test Laboratory during the year for capacity, power and life testing, and assembly is in progress of three full battery systems for installation in vehicles. In the battery subsystem area, design of the acid circulation system for a ninety-six volt ISOA battery pack was completed and assembly of the first such system was initiated. Charger development has been slowed by problems encountered with reliability of some circuits but a prototype unit is being prepared which will meet the charging requirements of our ninety-six volt pack. This charger will be available during the 1981 fiscal year.

  5. High-performance batteries for stationary energy storage and electric-vehicle propulsion. Progress report, April--June 1977

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-10-01

    Research, development, and management activities of the program on lithium--aluminum/metal sulfide batteries during April--June 1977 are described. These batteries are being developed for electric-vehicle propulsion and stationary energy storage. The present cells, which operate at 400--450/sup 0/C, are of a vertically oriented, prismatic design with a central positive electrode of FeS or FeS/sub 2/, two facing negative electrodes of lithium--aluminum alloy, and an electrolyte of molten LiCl--KCl. Testing and evaluation of industrially fabricated cells is continuing. Li--Al/FeS and Li--Al/FeS/sub 2/ cells from Eagle--Picher Industries and from Gould Inc. were tested. These tests provided information on the effects of design modifications and alternative materials for cells. Improved electrode and cell designs are being developed and tested, and the more promising designs are incorporated into the industrially fabricated cells. Among the concepts receiving major attention are carbon-bonded positive electrodes, scaled-up designs of stationary energy storage cells, additives to extend electrode lifetime, alternative electrode separators, and pellet-grid electrodes. Materials development efforts included the development of a lightweight electrical feedthrough; studies of various current-collector designs; investigation of powder separators; wettability and corrosion tests of materials for cell components; and postoperative examinations of cells. Cell chemistry studies were concerned with discharge mechanisms of FeS electrodes and with other transition-metal sulfides as positive electrode materials. Voltammetric studies were conducted to investigate the reversibility of the FeS/sub 2/ electrode. The use of calcium and magnesium alloys for the negative electrode in advanced battery systems were investigated. 8 figures, 12 tables.

  6. Research, development and demonstration of nickel-zinc batteries for electric vehicle propulsion. Annual report, 1979. [70 W/lb

    Energy Technology Data Exchange (ETDEWEB)

    1980-06-01

    This second annual report under Contract No. 31-109-39-4200 covers the period July 1, 1978 through August 31, 1979. The program demonstrates the feasibility of the nickel-zinc battery for electric vehicle propulsion. The program is divided into seven distinct but highly interactive tasks collectively aimed at the development and commercialization of nickel-zinc technology. These basic technical tasks are separator development, electrode development, product design and analysis, cell/module battery testing, process development, pilot manufacturing, and thermal management. A Quality Assurance Program has also been established. Significant progress has been made in the understanding of separator failure mechanisms, and a generic category of materials has been specified for the 300+ deep discharge (100% DOD) applications. Shape change has been reduced significantly. A methodology has been generated with the resulting hierarchy: cycle life cost, volumetric energy density, peak power at 80% DOD, gravimetric energy density, and sustained power. Generation I design full-sized 400-Ah cells have yielded in excess of 70 W/lb at 80% DOD. Extensive testing of cells, modules, and batteries is done in a minicomputer-based testing facility. The best life attained with electric vehicle-size cell components is 315 cycles at 100% DOD (1.0V cutoff voltage), while four-cell (approx. 6V) module performance has been limited to about 145 deep discharge cycles. The scale-up of processes for production of components and cells has progressed to facilitate component production rates of thousands per month. Progress in the area of thermal management has been significant, with the development of a model that accurately represents heat generation and rejection rates during battery operation. For the balance of the program, cycle life of > 500 has to be demonstrated in modules and full-sized batteries. 40 figures, 19 tables. (RWR)

  7. Space transfer concepts and analysis for exploration missions. Implementation plan and element description document (draft final). Volume 5: Nuclear electric propulsion vehicle

    Science.gov (United States)

    1991-01-01

    The nuclear electric propulsion (NEP) concept design developed in support of the Space Transfer Concepts and Analysis for Exploration Missions (STCAEM) study is presented. The evolution of the NEP concept is described along with the requirements, guidelines, and assumptions for the design. Operating modes and options are defined and a systems description of the vehicle is presented. Artificial gravity configuration options and space and ground support systems are discussed. Finally, an implementation plan is presented which addresses technology needs, schedules, facilities and costs.

  8. Basic Research in Electric Propulsion. Part I: Pulsed Plasma Thruster Propellant Efficiency and Contamination. Part II: Arcjet Remote Plume Measurement and Hydrogen Density

    Science.gov (United States)

    2002-02-01

    equipment, ground observatories, and other space platforms. Low power arcjet technology provided definitive work on atomic species plume concentrations...in low power hydrogen arcjet plumes. This work applied a flame diagnostic, Multiphoton Laser Induced Fluorescence, to the excited-state plasma... Low power arcjet technology has been the primary focus of the Air Force Office of Scientific Research’s electric propulsion research program for

  9. Alternative propulsion for automobiles

    CERN Document Server

    Stan, Cornel

    2017-01-01

    The book presents – based on the most recent research and development results worldwide - the perspectives of new propulsion concepts such as electric cars with batteries and fuel cells, and furthermore plug in hybrids with conventional and alternative fuels. The propulsion concepts are evaluated based on specific power, torque characteristic, acceleration behaviour, specific fuel consumption and pollutant emissions. The alternative fuels are discussed in terms of availability, production, technical complexity of the storage on board, costs, safety and infrastructure. The book presents summarized data about vehicles with electric and hybrid propulsion. The propulsion of future cars will be marked by diversity – from compact electric city cars and range extender vehicles for suburban and rural areas up to hybrid or plug in SUV´s, Pick up´s and luxury class automobiles.

  10. Research, development, and demonstration of lead-acid batteries for electric vehicle propulsion. Annual report, 1979

    Energy Technology Data Exchange (ETDEWEB)

    1980-06-01

    The initial phase of work comprises three factorial experiments to evaluate a variety of component combinations. Goals to be met by these batteries include the following: capacity at 3 h discharge, 20 to 30 kWh; specific energy, 40 Wh/kg; specific power, 1000 W/kg for 15 s; cycle life, 800 cycles to 80% depth; price, $50/kWh. The status of the factorial experiments is reviewed. The second phase of work, design of an advanced battery, has the following goals: 30 to 40 kWh; 60 Wh/kg; 150 W/kg for 15 s; 1000 cycles to 80% depth; $40/kWh. It is not yet possible to say whether these goals can be met. Numerous approaches are under study to increase the utilization of battery chemicals. A battery design with no live electrical connection above the battery is being developed. 52 figures, 52 tables. (RWR)

  11. Research, development and demonstration of nickel-zinc batteries for electric vehicle propulsion. Annual report, 1978

    Energy Technology Data Exchange (ETDEWEB)

    1979-10-01

    This is the first annual report of progress achieved under ANL Contract 31-109-38-4248. It covers the report period from 15 March 1978 to 15 August 1978. The nickel electrode development program is directed at the optimization of the electrical performance, specifically, in terms of increased cycle life. The work concentrated upon both the development of pilot plant facilities to produce nickel hydroxide and upon optimizing the manufacturing processes to produce nickel hydroxide which has high electrochemical utilization. The primary goal of the zinc electrode studies is to increase the cycle life of this electrode. This effort is primarily concentrating on the effect of additives upon shape change and cycle performance and on the mechanistic processes involved in the shape change. The separator effort has as its major goal the development of a low-cost separator which exhibits stability in the electrolyte, has uniform pores which are of a sufficiently small size to impede the growth of zinc dendrites, and exhibits low electrical resistance and good flexibility. The process itself is now optimized for pilot plant manufacture; hundreds of formulations have been produced and subsequently screened in both the laboratory and in actual cells. Promising formulations are presently being subjected to additional characterization tests and life cycles. The goal of the sealed cell studies is to determine the feasibility of sealed-cell operation. Large numbers of 20-Ah cells have been subjected to accelerated testing. These cells incorporated separator variations, active material additives, and internal design variations. Cycle lives up to 150 deep cycles were achieved. Cell failure modes are analyzed. 51 figures, 20 tables.

  12. A refuelable zinc/air battery for fleet electric vehicle propulsion

    Science.gov (United States)

    Cooper, John F.; Fleming, Dennis; Hargrove, Douglas; Koopman, Ronald; Peterman, Keith

    1995-04-01

    We report the development and on-vehicle testing of an engineering prototype zinc/air battery. The battery is refueled by periodic exchange of spent electrolyte for zinc particles entrained in fresh electrolyte. The technology is intended to provide a capability for nearly continuous vehicle operation, using the fleet's home base for 10 minute refuelings and zinc recycling instead of commercial infrastructure. In the battery, the zinc fuel particles are stored in hoppers, from which they are gravity fed into individual cells and completely consumed during discharge. A six-celled (7V) engineering prototype battery was combined with a 6 V lead/acid battery to form a parallel hybrid unit, which was tested in series with the 216 V battery of an electric shuttle bus over a 75 mile circuit. The battery has an energy density of 140 Wh/kg and a mass density of 1.5 kg/L. Cost, energy efficiency, and alternative hybrid configurations are discussed.

  13. A Cryogenic High-Power-Density Bearingless Motor for Future Electric Propulsion

    Science.gov (United States)

    Choi, Benjamin; Siebert, Mark

    2008-01-01

    The NASA Glenn Research Center (GRC) is developing a high-power-density switched-reluctance cryogenic motor for all-electric and pollution-free flight. However, cryogenic operation at higher rotational speeds markedly shortens the life of mechanical rolling element bearings. Thus, to demonstrate the practical feasibility of using this motor for future flights, a non-contact rotor-bearing system is a crucial technology to circumvent poor bearing life that ordinarily accompanies cryogenic operation. In this paper, a bearingless motor control technology for a 12-8 (12 poles in the stator and 8 poles in the rotor) switched-reluctance motor operating in liquid nitrogen (boiling point, 77 K (-196 C or -321 F)) was presented. We pushed previous disciplinary limits of electromagnetic controller technique by extending the state-of-the-art bearingless motor operating at liquid nitrogen for high-specific-power applications. The motor was levitated even in its nonlinear region of magnetic saturation, which is believed to be a world first for the motor type. Also we used only motoring coils to generate motoring torque and levitation force, which is an important feature for developing a high specific power motor.

  14. Single Stator Dual PM Rotor Synchronous Machine with two-frequency single-inverter control, for the propulsion of hybrid electric vehicles

    Directory of Open Access Journals (Sweden)

    Topor Marcel

    2017-01-01

    Full Text Available This paper introduces a novel brushless, single winding and single stator, dual PM rotor axial-air-gap machine capable to deliver independently torque at the two rotors by adequate dual vector control. The proposed topologies, the circuit model, controlled dynamics simulation and preliminary 3D FEM torque production on a case study constitute the core of the paper. The proposed dual mechanical port system should be instrumental in parallel (with planetary gears or series hybrid electric vehicles (HEV aiming at a more compact and efficient electric propulsion system solution.

  15. Continued Development of Environmentally COnscious "ECO" Transport Aircraft Concepts as Hybrid Electric Distributed Propulsion Research Platforms, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — ESAero's vast TeDP and HEDP-specific experience, Helden Aerospace's distributed propulsion airframe integration effects (2) Advance the TMS design with a new TMS...

  16. Electric Propulsion Study

    Science.gov (United States)

    1990-08-01

    art definite theoretical arguments that can call it into question. The symmetry diat dictates conservation of angular momentum is the. isotopy of...momentum from the isotopy of space, and conservation of parity from space inversion. The experiment involving beta decay of Co-60 in magnetic fields

  17. Solar Electric Propulsion

    Data.gov (United States)

    National Aeronautics and Space Administration — Mission planning for infusion in the ARRM mission with key technology developments including: - Design, develop, and test a high-power, 12.5 kW Hall Effect thruster....

  18. Distributed Propulsion Vehicles

    Science.gov (United States)

    Kim, Hyun Dae

    2010-01-01

    Since the introduction of large jet-powered transport aircraft, the majority of these vehicles have been designed by placing thrust-generating engines either under the wings or on the fuselage to minimize aerodynamic interactions on the vehicle operation. However, advances in computational and experimental tools along with new technologies in materials, structures, and aircraft controls, etc. are enabling a high degree of integration of the airframe and propulsion system in aircraft design. The National Aeronautics and Space Administration (NASA) has been investigating a number of revolutionary distributed propulsion vehicle concepts to increase aircraft performance. The concept of distributed propulsion is to fully integrate a propulsion system within an airframe such that the aircraft takes full synergistic benefits of coupling of airframe aerodynamics and the propulsion thrust stream by distributing thrust using many propulsors on the airframe. Some of the concepts are based on the use of distributed jet flaps, distributed small multiple engines, gas-driven multi-fans, mechanically driven multifans, cross-flow fans, and electric fans driven by turboelectric generators. This paper describes some early concepts of the distributed propulsion vehicles and the current turboelectric distributed propulsion (TeDP) vehicle concepts being studied under the NASA s Subsonic Fixed Wing (SFW) Project to drastically reduce aircraft-related fuel burn, emissions, and noise by the year 2030 to 2035.

  19. Cryogenic Propulsion

    Data.gov (United States)

    National Aeronautics and Space Administration — Cryogenic propellants can enhance NASA missions. This project will establish that modern cryogenic storage technologies will allow the use of cryogenic propulsion...

  20. The Nuclear Cryogenic Propulsion Stage

    Science.gov (United States)

    Houts, Michael G.; Kim, Tony; Emrich, William J.; Hickman, Robert R.; Broadway, Jeramie W.; Gerrish, Harold P.; Doughty, Glen; Belvin, Anthony; Borowski, Stanley K.; Scott, John

    2014-01-01

    The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation Nuclear Cryogenic Propulsion Stage (NCPS) based on NTP could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. The role of the NCPS in the development of advanced nuclear propulsion systems could be analogous to the role of the DC-3 in the development of advanced aviation. Progress made under the NCPS project could help enable both advanced NTP and advanced Nuclear Electric Propulsion (NEP). Nuclear propulsion can be affordable and viable compared to other propulsion systems and must overcome a biased public fear due to hyper-environmentalism and a false perception of radiation and explosion risk.

  1. Propulsion for CubeSats

    Science.gov (United States)

    Lemmer, Kristina

    2017-05-01

    At present, very few CubeSats have flown in space featuring propulsion systems. Of those that have, the literature is scattered, published in a variety of formats (conference proceedings, contractor websites, technical notes, and journal articles), and often not available for public release. This paper seeks to collect the relevant publically releasable information in one location. To date, only two missions have featured propulsion systems as part of the technology demonstration. The IMPACT mission from the Aerospace Corporation launched several electrospray thrusters from Massachusetts Institute of Technology, and BricSAT-P from the United States Naval Academy had four micro-Cathode Arc Thrusters from George Washington University. Other than these two missions, propulsion on CubeSats has been used only for attitude control and reaction wheel desaturation via cold gas propulsion systems. As the desired capability of CubeSats increases, and more complex missions are planned, propulsion is required to accomplish the science and engineering objectives. This survey includes propulsion systems that have been designed specifically for the CubeSat platform and systems that fit within CubeSat constraints but were developed for other platforms. Throughout the survey, discussion of flight heritage and results of the mission are included where publicly released information and data have been made available. Major categories of propulsion systems that are in this survey are solar sails, cold gas propulsion, electric propulsion, and chemical propulsion systems. Only systems that have been tested in a laboratory or with some flight history are included.

  2. A Robust Fuzzy Sliding Mode Controller Synthesis Applied on Boost DC-DC Converter Power Supply for Electric Vehicle Propulsion System

    Directory of Open Access Journals (Sweden)

    Boumediène Allaoua

    2013-01-01

    Full Text Available The development of electric vehicles power electronics system control comprising of DC-AC inverters and DC-DC converters takes a great interest of researchers in the modern industry. A DC-AC inverter supplies the high power electric vehicle motors torques of the propulsion system and utility loads, whereas a DC-DC converter supplies conventional low-power, low-voltage loads. However, the need for high power bidirectional DC-DC converters in future electric vehicles has led to the development of many new topologies of DC-DC converters. Nonlinear control of power converters is an active area of research in the fields of power electronics. This paper focuses on a fuzzy sliding mode strategy (FSMS as a control strategy for boost DC-DC converter power supply for electric vehicle. The proposed fuzzy controller specifies changes in the control signal based on the surface and the surface change knowledge to satisfy the sliding mode stability and attraction conditions. The performances of the proposed fuzzy sliding controller are compared to those obtained by a classical sliding mode controller. The satisfactory simulation results show the efficiency of the proposed control law which reduces the chattering phenomenon. Moreover, the obtained results prove the robustness of the proposed control law against variation of the load resistance and the input voltage of the studied converter.

  3. Research, development, and demonstration of nickel-zinc batteries for electric vehicle propulsion. Annual report for 1980

    Energy Technology Data Exchange (ETDEWEB)

    1981-03-01

    Progress in the development of nickel-zinc batteries for electric vehicles is reported. Information is presented on nickel electrode preparation and testing; zinc electrode preparation with additives and test results; separator development and the evaluation of polymer-blend separator films; sealed Ni-Zn cells; and the optimization of electric vehicle-type Ni-Zn cells. (LCL)

  4. Nanosatellite Propulsion Development Program

    Science.gov (United States)

    Gagosian, J. S.; Rhee, M. S.; Zakrzwski, C. M.

    1999-01-01

    Earth-orbiting nanosatellite constellations are a unique and exciting means toward fulfilling part of the mission of the Goddard Space Flight Center (GSFC). These constellations, which may consist of several hundred 10-kg spacecraft, present unique challenges in the area of propulsion. Many mission concepts require significant delta-v and attitude control capability to reside in the nanosatellites. In response to requirements from mission feasibility studies, such as the Magnetospheric Constellation study, the GSFC has initiated industry and government partnerships to develop enabling propulsion technologies. The largest challenge has been to meet the power constraints of nanosatellites. These power issues, combined with the high thrust required by many of the missions studied, have led the GSFC to concentrate its efforts on chemical propulsion technology. Electric propulsion technologies capable of performing efficiently at very low power are also of interest to the GSFC as potential candidates for nanosatellite formation flying missions. This paper provides the status of specific industrial or government partnerships undertaken by the GSFC to develop nano/micro propulsion components. Three specific technologies are described in detail: 1) Nanosatellite Solid Rocket Motor Prototype 2) Ultra-Low-Power Cold Gas Thruster for Spin-Axis Precession 3) Micro-Machined Solid-Propellant Gas Generators.

  5. Propulsion Systems

    Science.gov (United States)

    2011-03-31

    glycerin, liquid metals, and various ionic liquids ( molten salts ). It is possible to operate these devices in a bipolar mode where the ion accelerator... uranium . In solar propulsion, energy from the sun is collected and used to produce thrust. Some designs use solar energy directly to heat a...Start Validation Testing,” paper no. AIAA-2001-3261 presented at the 37th AIAA/ASME/SAE/ASEE Joint Propulsion Conference. Salt Lake City, UT, July 8-11

  6. Superconducting Aero Propulsion Motor, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Superconducting electric propulsion systems will yield improvements in total ownership costs due to the simplicity of electric drive when compared with gas turbine...

  7. Brief review on pulse laser propulsion

    Science.gov (United States)

    Yu, Haichao; Li, Hanyang; Wang, Yan; Cui, Lugui; Liu, Shuangqiang; Yang, Jun

    2018-03-01

    Pulse laser propulsion (PLP) is an advanced propulsion concept can be used across a variety of fields with a wide range of applications. PLP reflects superior payload as well as decreased launch costs in comparison with other conventional methods of producing thrust, such as chemical propulsion or electric propulsion. Numerous researchers have attempted to exploit the potential applications of PLP. This paper first reviews concepts relevant to PLP, including the propulsion modes, breakdown regimes, and propulsion efficiency; the propulsion targets for different materials with the pulse laser are then discussed in detail, including the propulsion of solid and liquid microspheres. PLP applications such as the driven microsatellite, target surface particle removal, and orbital debris removal are also discussed. Although the PLP has been applied to a variety of fields, further research is yet warranted to establish its application in the aerospace field.

  8. Neural Network Control of a Parallel Hybrid-Electric Propulsion System for a Small Unmanned Aerial Vehicle

    National Research Council Canada - National Science Library

    Harmon, Frederick

    2004-01-01

    ... results, and simulation results are provided. The two-point conceptual design includes an internal combustion engine sized for cruise and an electric motor and lithium-ion battery pack sized for endurance speed...

  9. A Cost-effective and Emission-aware Power Management System for Ships with Integrated Full Electric Propulsion

    DEFF Research Database (Denmark)

    Kanellos, Fotis D.; Anvari-Moghaddam, Amjad; Guerrero, Josep M.

    2017-01-01

    The extensive exploitation of electric power in ships enables the development of more efficient and environmentally friendlier ships, as it allows for a more flexible ship power system operation and configuration. In this paper, an optimal power management method for ship electric power systems c....... The proposed fuzzy-based particle swarm optimization (FPSO) algorithm aims at minimizing the operation cost, limiting the greenhouse gas (GHG) emissions and satisfying the technical and operational constraints of the ship....

  10. A compactly integrated cooling system of a combination dual 1.5-MW HTS motors for electric propulsion

    Energy Technology Data Exchange (ETDEWEB)

    Le, T. D.; Kim, J. H.; Hyeon, C. J.; Kim, H. M.; Kim, D. K. [Jeju National University, Jeju (Korea, Republic of); Kim, Y. S. [Shin Ansan University, Ansan (Korea, Republic of); Lee, J.; Park, Y. G.; Jeon, H. [Yonsei University, Seoul (Korea, Republic of); Quach, H. L. [Electronic and Telecommunication Engineering, Can Tho University of Technology, Can Tho (Viet Nam)

    2016-12-15

    The high temperature superconducting (HTS) contra-rotating propulsion (CRP) systems comprise two coaxial propellers sited on behind the other and rotate in opposite directions. They have the hydrodynamic advantage of recovering the slipstream rotational energy which would otherwise be lost to a conventional single-screw system. However, the cooling systems used for HTS CRP system need a high cooling power enough to maintain a low temperature of 2G HTS material operating at liquid neon (LNe) temperature (24.5 - 27 K). In this paper, a single thermo-syphon cooling approach using a Gifford-McMahon (G-M) cryo-cooler is presented. First, an optimal thermal design of a 1.5 MW HTS motor was conducted varying to different types of commercial 2G HTS tapes. Then, a mono-cryogenic cooling system for an integration of two 1.5 MW HTS motors will be designed and analyzed. Finally, the 3D finite element analysis (FEA) simulation of thermal characteristics was also performed.

  11. NASA's Nuclear Thermal Propulsion Project

    Science.gov (United States)

    Houts, Michael G.; Mitchell, Doyce P.; Kim, Tony; Emrich, William J.; Hickman, Robert R.; Gerrish, Harold P.; Doughty, Glen; Belvin, Anthony; Clement, Steven; Borowski, Stanley K.; hide

    2015-01-01

    The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation NTP system could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. The role of a first generation NTP in the development of advanced nuclear propulsion systems could be analogous to the role of the DC- 3 in the development of advanced aviation. Progress made under the NTP project could also help enable high performance fission power systems and Nuclear Electric Propulsion (NEP).

  12. Research, development, and demonstration of nickel-zinc batteries for electric vehicle propulsion. Annual report for 1980

    Energy Technology Data Exchange (ETDEWEB)

    1981-03-01

    Progress in developing nickel-zinc batteries for propelling electric vehicles is reported. Information is included on component design, battery fabrication, and module performance testing. Although full scale hardware performance has fallen short of the contract cycle life goals, significant progress has been made to warrant further development. (LCL)

  13. Electric Propulsion System for the Shell Eco-marathon PureChoice Vehicle: Controlling the lights and alternative storage devices such as batteries and supercapacitors

    OpenAIRE

    Grudic, Elvedin

    2008-01-01

    This report is divided into six main chapters. It starts off with an introductory chapter explaining the different propulsion strategies that have been considered during the last semester, and the final propulsion system that has been decided upon. The final propulsion strategy has several demands when it comes to components that have to be implemented and what type of components they should be. The main purpose for me in this project was therefore to meet these demands. Main demands for me ...

  14. The NASA low thrust propulsion program

    Science.gov (United States)

    Stone, James R.; Bennett, Gary L.

    1989-01-01

    The NASA OAST Propulsion, Power, and Energy Division supports a low-thrust propulsion program aimed at providing high-performance options for a broad range of near-term and far-term missions and vehicles. Low-thrust propulsion has a major impact on the mission performance of essentially all spacecraft and vehicles. On-orbit lifetimes, payloads, and trip time are significantly impacted by low-thrust propulsion performance and integration features for earth-to-orbit (ETO) vehicles, earth-orbit and planetary spacecraft, and large platforms in earth orbit. Major emphases are on low-thrust chemical propulsion, both storables and hydrogen/oxygen; low-power (auxiliary) electric arcjets and resistojets; and high-power (primary) electric propulsion, including ion, magnetoplasmadynamic (MPD), and electrodeless concepts. The major recent accomplishments of the program are presented and their impacts discussed.

  15. Development of an Android OS Based Controller of a Double Motor Propulsion System for Connected Electric Vehicles and Communication Delays Analysis

    Directory of Open Access Journals (Sweden)

    Pedro Daniel Urbina Coronado

    2015-01-01

    Full Text Available Developments of technologies that facilitate vehicle connectivity represent a market demand. In particular, mobile device (MD technology provides advanced user interface, customization, and upgradability characteristics that can facilitate connectivity and possibly aid in the goal of autonomous driving. This work explores the use of a MD in the control system of a conceptual electric vehicle (EV. While the use of MD for real-time control and monitoring has been reported, proper consideration has not been given to delays in data flow and their effects on system performance. The motor of a novel propulsion system for an EV was conditioned to be controlled in a wireless local area network by an ecosystem that includes a MD and an electronic board. An intended accelerator signal is predefined and sent to the motor and rotational speed values produced in the motor are sent back to the MD. Sample periods in which the communication really occurs are registered. Delays in the sample periods and produced errors in the accelerator and rotational speed signals are presented and analyzed. Maximum delays found in communications were of 0.2 s, while the maximum error produced in the accelerator signal was of 3.54%. Delays are also simulated, with a response that is similar to the behavior observed in the experiments.

  16. Testing of the permanent magnet material Mn-Al-C for potential use in propulsion motors for electric vehicles

    Science.gov (United States)

    Abdelnour, Z.; Mildrun, H.; Strant, K.

    1981-01-01

    The development of Mn-Al-C permanent magnets is reviewed. The general properties of the material are discussed and put into perspective relative to alnicos and ferrites. The traction motor designer's demands of a permanent magnet for potential use in electric vehicle drives are reviewed. Tests determined magnetic design data and mechanical strength properties. Easy axis hysteresis and demagnetization curves, recoil loops and other minor loop fields were measured over a temperature range from -50 to 150 C. Hysteresis loops were also measured for three orthogonal directions (the one easy and two hard axes of magnetization). Extruded rods of three different diameters were tested. The nonuniformity of properties over the cross section of the 31 mm diameter rod was studied. Mechanical compressive and bending strength at room temperature was determined on individual samples from the 31 mm rod.

  17. Research, development, and demonstration of lead-acid batteries for electric-vehicle propulsion. Annual report, 1980

    Energy Technology Data Exchange (ETDEWEB)

    1981-03-01

    The first development effort in improving lead-acid batteries fore electric vehicles was the improvement of electric vehicle batteries using flat pasted positive plates and the second was for a tubular long life positive plate. The investigation of 32 component variables based on a flat pasted positive plate configuration is described. The experiment tested 96 - six volt batteries for characterization at 0, 25, and 40/sup 0/C and for cycle life capability at the 3 hour discharge rate with a one cycle, to 80% DOD, per day regime. Four positive paste formulations were selected. Two commercially available microporous separators were used in conjunction with a layer of 0.076 mm thick glass mat. Two concentrations of battery grade sulfuric acid were included in the test to determine if an increase in concentration would improve the battery capacity sufficient to offset the added weight of the more concentrated solution. Two construction variations, 23 plate elements with outside negative plates and 23 plate elements with outside positive plates, were included. The second development effort was an experiment designed to study the relationship of 32 component variables based on a tubular positive plate configuration. 96-six volt batteries were tested at various discharge rates at 0, 25, and 40/sup 0/C along with cycle life testing at 80% DOD of the 3 hour rate. 75 batteries remain on cycle life testing with 17 batteries having in excess of 365 life cycles. Preliminary conclusions indicate: the tubular positive plate is far more capable of withstanding deep cycles than is the flat pasted plate; as presently designed 40 Whr/kg can not be achieved, since 37.7 Whr/kg was the best tubular data obtained; electrolyte circulation is impaired due to the tight element fit in the container; and a redesign is required to reduce the battery weight which will improve the Whr/kg value. This redesign is complete and new molds have been ordered.

  18. Propulsion materials

    Energy Technology Data Exchange (ETDEWEB)

    Wall, Edward J. [U.S. Dept. of Energy, Washington, D.C. (United States); Sullivan, Rogelio A. [U.S. Dept. of Energy, Washington, D.C. (United States); Gibbs, Jerry L. [U.S. Dept. of Energy, Washington, D.C. (United States)

    2008-01-01

    The Department of Energy’s (DOE’s) Office of Vehicle Technologies (OVT) is pleased to introduce the FY 2007 Annual Progress Report for the Propulsion Materials Research and Development Program. Together with DOE national laboratories and in partnership with private industry and universities across the United States, the program continues to engage in research and development (R&D) that provides enabling materials technology for fuel-efficient and environmentally friendly commercial and passenger vehicles.

  19. Propulsion reactors

    International Nuclear Information System (INIS)

    Anon.

    1999-01-01

    A nuclear reactor equips the recently constructed French aircraft- carrier Charles-De-Gaulle, in a few months the second nuclear submarine (SNLE) of new generation will be operational. In last october the government launched the program Barracuda which consists of 6 submarines (SNA) whose series head will be operational in 2010. The main asset of nuclear propulsion is to allow an almost unlimited autonomy: soft water, air are produced inside the submarine and the maximum time spent underwater is only limited by human capacity to cope with confinement. CEA has 3 missions concerning country defence. First the designing, the fabrication and the maintenance of weapons, secondly the supplying of fissile materials and thirdly the nuclear propulsion. A new generation of propulsion reactors is being studied and a ground installation involving a test reactor equivalent to that on board is being built. This test reactor (RES) will simulate any type of on-board reactors by adjusting temperature, pressure, flowrate and even equipment such as steam generator. This reactor will validate the technological choices for the Barracuda program. (A.C.)

  20. Advanced Propulsion Power Distribution System for Next Generation Electric/Hybrid Vehicle. Phase 1; Preliminary System Studies

    Science.gov (United States)

    Bose, Bimal K.; Kim, Min-Huei

    1995-01-01

    The report essentially summarizes the work performed in order to satisfy the above project objective. In the beginning, different energy storage devices, such as battery, flywheel and ultra capacitor are reviewed and compared, establishing the superiority of the battery. Then, the possible power sources, such as IC engine, diesel engine, gas turbine and fuel cell are reviewed and compared, and the superiority of IC engine has been established. Different types of machines for drive motor/engine generator, such as induction machine, PM synchronous machine and switched reluctance machine are compared, and the induction machine is established as the superior candidate. Similar discussion was made for power converters and devices. The Insulated Gate Bipolar Transistor (IGBT) appears to be the most superior device although Mercury Cadmium Telluride (MCT) shows future promise. Different types of candidate distribution systems with the possible combinations of power and energy sources have been discussed and the most viable system consisting of battery, IC engine and induction machine has been identified. Then, HFAC system has been compared with the DC system establishing the superiority of the former. The detailed component sizing calculations of HFAC and DC systems reinforce the superiority of the former. A preliminary control strategy has been developed for the candidate HFAC system. Finally, modeling and simulation study have been made to validate the system performance. The study in the report demonstrates the superiority of HFAC distribution system for next generation electric/hybrid vehicle.

  1. Cryogenic and Non-Cryogenic Hybrid Electric Distributed Propulsion with Integration of Airframe and Thermal Systems to Analyze Technology Influence, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — A design iteration of ESAero's ECO-150 split wing turboelectric distributed propulsion (TeDP) concept is proposed to incorporate recent lessons learned in...

  2. The Study about Application of Transportation System of the Superconductive Electromagnetism Propulsion in the Harbor

    OpenAIRE

    涌井, 和也; 荻原, 宏康

    1999-01-01

    Electromagnetic propulsion is promising technique for a linear motor car, a ship and a space ship, in future. W. A Rice developed an electromagnetic pump for the liquid metal transfer. There are two electromagnetic propulsions : a superconductive electricity propulsion and a superconductive electromagnetic propulsion. A superconductive electricity propulsion ship uses a screw driven by a superconducting motor. This technique has merits of excellent navigation-ability, and the free degree of t...

  3. Propulsion Research at the Propulsion Research Center of the NASA Marshall Space Flight Center

    Science.gov (United States)

    Blevins, John; Rodgers, Stephen

    2003-01-01

    The Propulsion Research Center of the NASA Marshall Space Flight Center is engaged in research activities aimed at providing the bases for fundamental advancement of a range of space propulsion technologies. There are four broad research themes. Advanced chemical propulsion studies focus on the detailed chemistry and transport processes for high-pressure combustion, and on the understanding and control of combustion stability. New high-energy propellant research ranges from theoretical prediction of new propellant properties through experimental characterization propellant performance, material interactions, aging properties, and ignition behavior. Another research area involves advanced nuclear electric propulsion with new robust and lightweight materials and with designs for advanced fuels. Nuclear electric propulsion systems are characterized using simulated nuclear systems, where the non-nuclear power source has the form and power input of a nuclear reactor. This permits detailed testing of nuclear propulsion systems in a non-nuclear environment. In-space propulsion research is focused primarily on high power plasma thruster work. New methods for achieving higher thrust in these devices are being studied theoretically and experimentally. Solar thermal propulsion research is also underway for in-space applications. The fourth of these research areas is advanced energetics. Specific research here includes the containment of ion clouds for extended periods. This is aimed at proving the concept of antimatter trapping and storage for use ultimately in propulsion applications. Another activity in this involves research into lightweight magnetic technology for space propulsion applications.

  4. Z-Pinch Fusion Propulsion

    Science.gov (United States)

    Miernik, Janie

    2011-01-01

    Fusion-based nuclear propulsion has the potential to enable fast interplanetary transportation. Shorter trips are better for humans in the harmful radiation environment of deep space. Nuclear propulsion and power plants can enable high Ispand payload mass fractions because they require less fuel mass. Fusion energy research has characterized the Z-Pinch dense plasma focus method. (1) Lightning is form of pinched plasma electrical discharge phenomena. (2) Wire array Z-Pinch experiments are commonly studied and nuclear power plant configurations have been proposed. (3) Used in the field of Nuclear Weapons Effects (NWE) testing in the defense industry, nuclear weapon x-rays are simulated through Z-Pinch phenomena.

  5. Chemistry and propulsion; Chimie et propulsions

    Energy Technology Data Exchange (ETDEWEB)

    Potier, P. [Maison de la Chimie, 75 - Paris (France); Davenas, A. [societe Nationale des Poudres et des Explosifs - SNPE (France); Berman, M. [Air Force Office of Scientific Research, Arlington, VA (United States)] [and others

    2002-07-01

    During the colloquium on chemistry and propulsion, held in march 2002, ten papers have been presented. The proceedings are brought in this document: ramjet, scram-jet and Pulse Detonation Engine; researches and applications on energetic materials and propulsion; advances in poly-nitrogen chemistry; evolution of space propulsion; environmental and technological stakes of aeronautic propulsion; ramjet engines and pulse detonation engines, automobiles thermal engines for 2015, high temperature fuel cells for the propulsion domain, the hydrogen and the fuel cells in the future transports. (A.L.B.)

  6. Non-Contact Magnetic Transmission For Hybrid/Electric Rotorcraft, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Electric propulsion has the potential to revolutionize aircraft design and architecture. A distributed electric propulsion system for a VTOL aircraft can exploit...

  7. 46 CFR 111.33-11 - Propulsion systems.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Propulsion systems. 111.33-11 Section 111.33-11 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Power Semiconductor Rectifier Systems § 111.33-11 Propulsion systems. Each power semiconductor...

  8. NASA Propulsion Engineering Research Center, volume 2

    Science.gov (United States)

    1993-01-01

    On 8-9 Sep. 1993, the Propulsion Engineering Research Center (PERC) at The Pennsylvania State University held its Fifth Annual Symposium. PERC was initiated in 1988 by a grant from the NASA Office of Aeronautics and Space Technology as a part of the University Space Engineering Research Center (USERC) program; the purpose of the USERC program is to replenish and enhance the capabilities of our Nation's engineering community to meet its future space technology needs. The Centers are designed to advance the state-of-the-art in key space-related engineering disciplines and to promote and support engineering education for the next generation of engineers for the national space program and related commercial space endeavors. Research on the following areas was initiated: liquid, solid, and hybrid chemical propulsion, nuclear propulsion, electrical propulsion, and advanced propulsion concepts.

  9. Status of Propulsion Technology Development Under the NASA In-Space Propulsion Technology Program

    Science.gov (United States)

    Anderson, David; Kamhawi, Hani; Patterson, Mike; Pencil, Eric; Pinero, Luis; Falck, Robert; Dankanich, John

    2014-01-01

    Since 2001, the In-Space Propulsion Technology (ISPT) program has been developing and delivering in-space propulsion technologies for NASA's Science Mission Directorate (SMD). These in-space propulsion technologies are applicable, and potentially enabling for future NASA Discovery, New Frontiers, Flagship and sample return missions currently under consideration. The ISPT program is currently developing technology in three areas that include Propulsion System Technologies, Entry Vehicle Technologies, and Systems/Mission Analysis. ISPT's propulsion technologies include: 1) the 0.6-7 kW NASA's Evolutionary Xenon Thruster (NEXT) gridded ion propulsion system; 2) a 0.3-3.9kW Halleffect electric propulsion (HEP) system for low cost and sample return missions; 3) the Xenon Flow Control Module (XFCM); 4) ultra-lightweight propellant tank technologies (ULTT); and 5) propulsion technologies for a Mars Ascent Vehicle (MAV). The NEXT Long Duration Test (LDT) recently exceeded 50,000 hours of operation and 900 kg throughput, corresponding to 34.8 MN-s of total impulse delivered. The HEP system is composed of the High Voltage Hall Accelerator (HIVHAC) thruster, a power processing unit (PPU), and the XFCM. NEXT and the HIVHAC are throttle-able electric propulsion systems for planetary science missions. The XFCM and ULTT are two component technologies which being developed with nearer-term flight infusion in mind. Several of the ISPT technologies are related to sample return missions needs: MAV propulsion and electric propulsion. And finally, one focus of the Systems/Mission Analysis area is developing tools that aid the application or operation of these technologies on wide variety of mission concepts. This paper provides a brief overview of the ISPT program, describing the development status and technology infusion readiness.

  10. A novel nuclear-powered propulsion system for ship

    International Nuclear Information System (INIS)

    Liu Tao; Han Weishi

    2003-01-01

    A novel nuclear-powered propulsion system for ship is presented in this paper. In this system, a minitype liquid sodium-cooled reactor is used as power; alkali-metal thermal-to-electric conversion (AMTEC) cells are utilized to transform the heat energy to electric energy and superconducting magneto-hydrodynamic (MHD) work as propulsion. This nuclear-powered propulsion system has great advantages in low noise, high speed, long survivability and simple manipulation. It has great significance for the development of propulsion system. (author)

  11. Lightweight, Damage-Tolerant Radiator for In-Space Power and Propulsion

    Data.gov (United States)

    National Aeronautics and Space Administration — Nuclear-electric propulsion promises numerous advantages over other in-space propulsion technologies. However, one serious limitation is the mass of the radiator...

  12. Simulation Propulsion System and Trajectory Optimization

    Science.gov (United States)

    Hendricks, Eric S.; Falck, Robert D.; Gray, Justin S.

    2017-01-01

    A number of new aircraft concepts have recently been proposed which tightly couple the propulsion system design and operation with the overall vehicle design and performance characteristics. These concepts include propulsion technology such as boundary layer ingestion, hybrid electric propulsion systems, distributed propulsion systems and variable cycle engines. Initial studies examining these concepts have typically used a traditional decoupled approach to aircraft design where the aerodynamics and propulsion designs are done a-priori and tabular data is used to provide inexpensive look ups to the trajectory ana-ysis. However the cost of generating the tabular data begins to grow exponentially when newer aircraft concepts require consideration of additional operational parameters such as multiple throttle settings, angle-of-attack effects on the propulsion system, or propulsion throttle setting effects on aerodynamics. This paper proposes a new modeling approach that eliminated the need to generate tabular data, instead allowing an expensive propulsion or aerodynamic analysis to be directly integrated into the trajectory analysis model and the entire design problem optimized in a fully coupled manner. The new method is demonstrated by implementing a canonical optimal control problem, the F-4 minimum time-to-climb trajectory optimization using three relatively new analysis tools: Open M-DAO, PyCycle and Pointer. Pycycle and Pointer both provide analytic derivatives and Open MDAO enables the two tools to be combined into a coupled model that can be run in an efficient parallel manner that helps to cost the increased cost of the more expensive propulsion analysis. Results generated with this model serve as a validation of the tightly coupled design method and guide future studies to examine aircraft concepts with more complex operational dependencies for the aerodynamic and propulsion models.

  13. Nuclear Thermal Propulsion for Advanced Space Exploration

    Science.gov (United States)

    Houts, M. G.; Borowski, S. K.; George, J. A.; Kim, T.; Emrich, W. J.; Hickman, R. R.; Broadway, J. W.; Gerrish, H. P.; Adams, R. B.

    2012-01-01

    The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation Nuclear Cryogenic Propulsion Stage (NCPS) based on NTP could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. The role of the NCPS in the development of advanced nuclear propulsion systems could be analogous to the role of the DC-3 in the development of advanced aviation. Progress made under the NCPS project could help enable both advanced NTP and advanced Nuclear Electric Propulsion (NEP).

  14. Nuclear Cryogenic Propulsion Stage for Mars Exploration

    Science.gov (United States)

    Houts, M. G.; Borowski, S. K.; George, J. A.; Kim, T.; Emrich, W. J.; Hickman, R. R.; Broadway, J. W.; Gerrish, H. P.; Adams, R. B.

    2012-01-01

    The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation Nuclear Cryogenic Propulsion Stage (NCPS) based on NTP could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. The role of the NCPS in the development of advanced nuclear propulsion systems could be analogous to the role of the DC-3 in the development of advanced aviation. Progress made under the NCPS project could help enable both advanced NTP and advanced Nuclear Electric Propulsion (NEP).

  15. High-performance batteries for electric-vehicle propulsion and stationary energy storage. Progress report, October 1978-September 1979. [40 kWh, Li-Al and Li-Si anodes

    Energy Technology Data Exchange (ETDEWEB)

    Barney, D. L.; Steunenberg, R. K.; Chilenskas, A. A.; Gay, E. C.; Battles, J. E.; Hornstra, F.; Miller, W. E.; Vissers, D. R.; Roche, M. F.; Shimotake, H.; Hudson, R.; Askew, B. A.; Sudar, S.

    1980-03-01

    The research, development, and management activities of the programs at Argonne National Laboratory (ANL) and at contractors' laboratories on high-temperature batteries during the period October 1978 to September 1979 are reported. These batteries are being developed for electric-vehicle propulsion and for stationary energy-storage applications. The present cells, which operate at 400 to 500/sup 0/C, are of a vertically oriented, prismatic design with one or more inner positive electrodes of FeS or FeS/sub 2/, facing negative electrodes of lithium-aluminum or lithium-silicon alloy, and molten LiCl-KC1 electrolyte. During this reporting period, cell and battery development work has continued at ANL and contractors' laboratories. A 40 kWh electric-vehicle battery (designated Mark IA) was fabricated and delivered to ANL for testing. During the initial heat-up, one of the two modules failed due to a short circuit. A failure analysis was conducted, and the Mark IA program completed. Development work on the next electric-vehicle battery (Mark II) was initiated at Eagle-Picher Industries, Inc. and Gould, Inc. Work on stationary energy-storage batteries during this period has consisted primarily of conceptual design studies. 107 figures, 67 tables.

  16. A Microwave Thruster for Spacecraft Propulsion

    Energy Technology Data Exchange (ETDEWEB)

    Chiravalle, Vincent P [Los Alamos National Laboratory

    2012-07-23

    This presentation describes how a microwave thruster can be used for spacecraft propulsion. A microwave thruster is part of a larger class of electric propulsion devices that have higher specific impulse and lower thrust than conventional chemical rocket engines. Examples of electric propulsion devices are given in this presentation and it is shown how these devices have been used to accomplish two recent space missions. The microwave thruster is then described and it is explained how the thrust and specific impulse of the thruster can be measured. Calculations of the gas temperature and plasma properties in the microwave thruster are discussed. In addition a potential mission for the microwave thruster involving the orbit raising of a space station is explored.

  17. Accelerated Testing of High Temperature Permanent Magnets for Spacecraft Propulsion, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — High temperature permanent magnet materials play an important role in NASA's space missions in electric propulsion, energy generation and storage and other...

  18. Heavy Plasma NAPALM Propulsion Simulation Code

    NARCIS (Netherlands)

    Lörincz, I.; Rugescu, R.D.; Kohlenberg, J.; Prathaban, M.

    2010-01-01

    The NAPALM project addresses a new and revolutionary space propulsion system, able to deliver a very high specific impulse through a new working fluid and accelerator principle for the electric plasma thruster. The new motor will impressively exceed, by between ten and sixty percent, the vacuum

  19. Development of a lead acid battery suitable for electric vehicle propulsion. Final report. [96 V, 20 kWh, 50 Wh/kg

    Energy Technology Data Exchange (ETDEWEB)

    Schlotter, W J

    1977-08-26

    This report contains two detailed designs, and the design rationale, for an improved state-of-the-art electric vehicle battery incorporating expanded metal grids. The nominal 96-volt and 20-kWh battery incorporating this improved design is expected to cost about 25% less when manufactured in a mature plant. This report also contains detailed estimates for the capital cost and operating cost of a pilot plant to produce electric vehicle battery plates incorporating expanded metal grids. It is expected that the first electric vehicle batteries incorporating expanded metal grids can be available fifteen months after approval of this program. An additional program to improve lead acid batteries for electric vehicles further is also described. The advanced batteries resulting from this program are expected to incorporate either expanded metal grids and/or composite lead/plastic grids. In addition, these batteries are expected to contain low-density active materials. It is anticipated that those additional developments will result in an advanced battery capable of delivering 45 to 50 watt-hours/kg. As a result of the design and cost study, a ''First Buy'' improved state-of-the art vehicle battery proposed is included as part of this report. Eltra proposes to manufacture and deliver the required 2500 vehicle batteries within the time limits set forth by the Electric and Hybrid Vehicle Research, Development, and Demonstration Act of 1976. 20 figures, 13 tables.

  20. Analysis of UAS hybrid propulsion systems

    Science.gov (United States)

    Rupe, Ryan M.

    Hybrid propulsion technology has been growing over last several years. With the steadily increasing cost of fuel and demand for unmanned aircraft systems to meet an ever expanding variety of responsibilities, research must be conducted into the development of alternative propulsion systems to reduce operating costs and optimize for strategic missions. One of the primary roles of unmanned aircraft systems is to provide aerial surveillance without detection. While electric propulsion systems provide a great option for lower acoustic signatures due to the lack of combustion and exhaust noise, they typically have low flight endurance due to battery limitations. Gas burning propulsion systems are ideal for long range/endurance missions due to the high energy density of hydrocarbon fuel, but can be much easier to detect. Research is conducted into the feasibility of gas/electric hybrid propulsion systems and the tradeoffs involved for reconnaissance mission scenarios. An analysis program is developed to optimize each component of the system and examine their effects on the overall performance of the aircraft. Each subsystem is parameterized and simulated within the program and tradeoffs between payload weight, range, and endurance are tested and evaluated to fulfill mission requirements.

  1. Cold Gas Micro Propulsion

    NARCIS (Netherlands)

    Louwerse, M.C.

    2009-01-01

    This thesis describes the development of a micro propulsion system. The trend of miniaturization of satellites requires small sized propulsion systems. For particular missions it is important to maintain an accurate distance between multiple satellites. Satellites drift apart due to differences in

  2. High-performance batteries for off-peak energy storage and electric-vehicle propulsion. Progress report, January--June 1975. [Li--Al/KCl--LiCl/Fe sulfide, 42 kWh

    Energy Technology Data Exchange (ETDEWEB)

    1976-03-01

    This report describes the research and management efforts, for the period January--June 1975, of Argonne National Laboratory's program on high-performance lithium/metal sulfide batteries. The batteries are being developed for two applications, off-peak energy storage in electric utility networks and electric-vehicle propulsion. The battery design for the two applications differ, particularly in cell configuration and electrode design, because of the differing performance requirements. The present cells are vertically oriented, prismatic cells with two negative electrodes of a solid lithium--aluminium alloy, a central positive electrode of iron sulfide (FeS/sub 2/ or FeS), and an electrolyte of LiCl--KCl eutectic (mp, 352/sup 0/C). The operating temperature of the cells is about 400--450/sup 0/C. Recent effort in the development of engineering-scale cells was focused on designing and fabricating vertically oriented, prismatic cells and on improving the lifetime capabilities of cells. Work on electrode development was directed toward the evaluation of the factors that influence the performance of the negative electrode and the development of new designs of vertical, prismatic iron sulfide electrodes. Materials studies included work on improving feedthroughs and separators, corrosion tests of candidate materials of construction, and postoperative examinations of cells. Cell chemistry studies included continuing investigations of cell reactions and the identification of advanced cell systems. Battery development work included the design of a battery for an electric automobile and the development of battery components. The transfer of Li--Al/FeS/sub x/ battery technology to industry is being implemented through contracts with industrial firms for the manufacture of components, electrodes, and cells.

  3. Ford ETX-II - a second generation advanced AC propulsion system

    Energy Technology Data Exchange (ETDEWEB)

    Bates, B.; Stokes, G.P.; Ciccarelli, M.F.

    1989-02-01

    Improvements in the range and performance, and reductions in the cost, will help accelerate market acceptance of electric vehicles. Advancing the technology of the electric propulsion system is the key to improving these important electric vehicle characteristics. The Ford Motor Company is well along on a research and development program, supported by the US Department of Energy's Electric and Hybrid Vehicles Program, to develop a second generation advanced electric vehicle propulsion system suitable for use in a small commercial van.

  4. Advanced Propulsion Physics Lab: Eagleworks Investigations

    Science.gov (United States)

    Scogin, Tyler

    2014-01-01

    Eagleworks Laboratory is an advanced propulsions physics laboratory with two primary investigations currently underway. The first is a Quantum Vacuum Plasma Thruster (QVPT or Q-thrusters), an advanced electric propulsion technology in the development and demonstration phase. The second investigation is in Warp Field Interferometry (WFI). This is an investigation of Dr. Harold "Sonny" White's theoretical physics models for warp field equations using optical experiments in the Electro Optical laboratory (EOL) at Johnson Space Center. These investigations are pursuing technology necessary to enable human exploration of the solar system and beyond.

  5. The Ion Propulsion System for the Asteroid Redirect Robotic Mission

    Science.gov (United States)

    Herman, Daniel A.; Santiago, Walter; Kamhawi, Hani; Polk, James E.; Snyder, John Steven; Hofer, Richard; Sekerak, Michael

    2016-01-01

    The Asteroid Redirect Robotic Mission is a Solar Electric Propulsion Technology Demonstration Mission (ARRM) whose main objectives are to develop and demonstrate a high-power solar electric propulsion capability for the Agency and return an asteroidal mass for rendezvous and characterization in a companion human-crewed mission. This high-power solar electric propulsion capability, or an extensible derivative of it, has been identified as a critical part of NASA's future beyond-low-Earth-orbit, human-crewed exploration plans. This presentation presents the conceptual design of the ARRM ion propulsion system, the status of the NASA in-house thruster and power processing development activities, the status of the planned technology maturation for the mission through flight hardware delivery, and the status of the mission formulation and spacecraft acquisition.

  6. Advanced Propulsion Research Interest in Materials for Propulsion

    Science.gov (United States)

    Cole, John

    2003-01-01

    This viewgraph presentation provides an overview of material science and technology in the area of propulsion energetics. The authors note that conventional propulsion systems are near peak performance and further refinements in manufacturing, engineering design and materials will only provide incremental increases in performance. Energetic propulsion technologies could potential solve the problems of energy storage density and energy-to-thrust conversion efficiency. Topics considered include: the limits of thermal propulsion systems, the need for energetic propulsion research, emerging energetic propulsion technologies, materials research needed for advanced propulsion, and potential research opportunities.

  7. Nuclear Cryogenic Propulsion Stage

    Science.gov (United States)

    Houts, Michael G.; Borowski, S. K.; George, J. A.; Kim, T.; Emrich, W. J.; Hickman, R. R.; Broadway, J. W.; Gerrish, H. P.; Adams, R. B.

    2012-01-01

    The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation Nuclear Cryogenic Propulsion Stage (NCPS) based on NTP could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. The role of the NCPS in the development of advanced nuclear propulsion systems could be analogous to the role of the DC-3 in the development of advanced aviation. Progress made under the NCPS project could help enable both advanced NTP and advanced NEP.

  8. An Overview of Cube-Satellite Propulsion Technologies and Trends

    Directory of Open Access Journals (Sweden)

    Akshay Reddy Tummala

    2017-12-01

    Full Text Available CubeSats provide a cost effective means to perform scientific and technological studies in space. Due to their affordability, CubeSat technologies have been diversely studied and developed by educational institutions, companies and space organizations all over the world. The CubeSat technology that is surveyed in this paper is the propulsion system. A propulsion system is the primary mobility device of a spacecraft and helps with orbit modifications and attitude control. This paper provides an overview of micro-propulsion technologies that have been developed or are currently being developed for CubeSats. Some of the micro-propulsion technologies listed have also flown as secondary propulsion systems on larger spacecraft. Operating principles and key design considerations for each class of propulsion system are outlined. Finally, the performance factors of micro-propulsion systems have been summarized in terms of: first, a comparison of thrust and specific impulse for all propulsion systems; second, a comparison of power and specific impulse, as also thrust-to-power ratio and specific impulse for electric propulsion systems.

  9. Design and cost study for development of lead--acid batteries suitable for electric vehicle propulsion. Final report. [Goals of 60 Wh/kg and 1000 cycles

    Energy Technology Data Exchange (ETDEWEB)

    Weinlein, C E

    1977-01-01

    A design for an improved state-of-the-art (ISOA) battery is proposed in this report. It is believed that this ISOA design is the most efficient design achievable within the constraints of the ISOA battery development program. These constraints include realistic time and financial limitations, and compatibility with existing high-speed production equipment. The ISOA battery is in fact an improved, state-of-the-art lead--acid battery suitable for use in an electric vehicle. A durable, light-weight polypropylene container and cover complete with single-point watering and venting features are incorporated in the ISOA design. A number of materials and process parameters with profound affect on battery performance will be chosen only after extensive evaluation and cell testing. Development of an advanced lead--acid electric vehicle battery will involve the evaluation and application of effective forward concepts in the design of the battery. Many weight-saving designs will be incorporated. Significant improvements in active material efficiencies and integrity are required. The goals of 60 Wh/kg and 1000 life cycles are ambitious but achievable. The cycle life goal appears to be the most formidable. Investigations of charging equipment and parameters will be undertaken. The impact of manufacturing plants on the environment and natural resources is discussed. 3 figures, 23 tables. (RWR)

  10. Ship propulsion reactors technology

    International Nuclear Information System (INIS)

    Fribourg, Ch.

    2002-01-01

    This paper takes the state of the art on ship propulsion reactors technology. The french research programs with the corresponding technological stakes, the reactors specifications and advantages are detailed. (A.L.B.)

  11. Research Study Towards a MEFFV Electric Armament System

    National Research Council Canada - National Science Library

    Pappas, J

    2004-01-01

    .... One vehicle variant seeks to exploit synergies between electric mobility and electric armament systems by employing a hybrid electric mobility propulsion system and an electric gun for an all Electric MEFFV...

  12. Nuclear Pulse Propulsion

    OpenAIRE

    Atanas, Dilov; Hasan, Osman; Nickolai, Larsen; Tom, Edwards

    2015-01-01

    This project aims to provide the reader with a comprehensive insight into the potential of nuclear fuels to accelerate spacecraft propulsion, shorten journey times and broaden our exploration of space. The current methods of space propulsion offer little in the way of efficiency in terms of cost, time and henceforth investment and research. The dwindling resources of the planet plus the exponential rise of overpopulation will ultimately push us towards exploration of worlds further afield ...

  13. Electricity

    Indian Academy of Sciences (India)

    AC power generation, its transmission and distribution. The well known observations made by Oersted that an electric current produces a magnetic field led a number of researchers to investigate whether the converse was true i.e. whether electric current can be produced from a magnetic field. Michael Faraday of England ...

  14. Hybrid Propulsion Systems for Remotely Piloted Aircraft Systems

    Directory of Open Access Journals (Sweden)

    Mithun Abdul Sathar Eqbal

    2018-03-01

    Full Text Available The development of more efficient propulsion systems for aerospace vehicles is essential to achieve key objectives. These objectives are to increase efficiency while reducing the amount of carbon-based emissions. Hybrid electric propulsion (HEP is an ideal means to maintain the energy density of hydrocarbon-based fuels and utilize energy-efficient electric machines. A system that integrates different propulsion systems into a single system, with one being electric, is termed an HEP system. HEP systems have been studied previously and introduced into Land, Water, and Aerial Vehicles. This work presents research into the use of HEP systems in Remotely Piloted Aircraft Systems (RPAS. The systems discussed in this paper are Internal Combustion Engine (ICE–Electric Hybrid systems, ICE–Photovoltaic (PV Hybrid systems, and Fuel-Cell Hybrid systems. The improved performance characteristics in terms of fuel consumption and endurance are discussed.

  15. Mars Hybrid Propulsion System Trajectory Analysis. Part II; Cargo Missions

    Science.gov (United States)

    Chai, Patrick R.; Merrill, Raymond G.; Qu, Min

    2015-01-01

    NASA's Human Spaceflight Architecture Team is developing a reusable hybrid transportation architecture in which both chemical and electric propulsion systems are used to send crew and cargo to Mars destinations such as Phobos, Deimos, the surface of Mars, and other orbits around Mars. By combining chemical and electrical propulsion into a single spaceship and applying each where it is more effective, the hybrid architecture enables a series of Mars trajectories that are more fuel-efficient than an all chemical architecture without significant increases in flight times. This paper shows the feasibility of the hybrid transportation architecture to pre-deploy cargo to Mars and Phobos in support of the Evolvable Mars Campaign crew missions. The analysis shows that the hybrid propulsion stage is able to deliver all of the current manifested payload to Phobos and Mars through the first three crew missions. The conjunction class trajectory also allows the hybrid propulsion stage to return to Earth in a timely fashion so it can be reused for additional cargo deployment. The 1,100 days total trip time allows the hybrid propulsion stage to deliver cargo to Mars every other Earth-Mars transit opportunity. For the first two Mars surface mission in the Evolvable Mars Campaign, the short trip time allows the hybrid propulsion stage to be reused for three round-trip journeys to Mars, which matches the hybrid propulsion stage's designed lifetime for three round-trip crew missions to the Martian sphere of influence.

  16. Performance evaluation of propulsion systems as LEO deorbiting devices

    Directory of Open Access Journals (Sweden)

    Alexandru IONEL

    2017-09-01

    Full Text Available This paper evaluates the possibility of deorbiting a launch vehicle upper-stage at end-of-mission from low Earth orbit, by using an additional propulsion system as a means of achieving deorbiting and complying with the “25 years” mitigation regulation. The deorbiting performances of chemical and electrical propulsion are analyzed through a MATLAB code which integrates orbital perturbations such as gravitational acceleration, atmospheric drag and rocket engine/motor thrust. Additionally, the research is placed within a body of similar papers concerned with deorbiting by means of propulsion, by performing a state of the art study.

  17. Philosophy for nuclear thermal propulsion

    International Nuclear Information System (INIS)

    Buden, D.; Madsen, W.; Redd, L.

    1993-01-01

    The philosophy used for development of nuclear thermal propulsion will determine the cost, schedule and risk associated with the activities. As important is the impression of the decision makers. If the development cost is higher than the product value, it is doubtful that funding will ever be available. On the other hand, if the development supports the economic welfare of the country with a high rate of return, the probability of funding greatly increases. The philosophy is divided into: realism, design, operations and qualification. ''Realism'' addresses such items as political acceptability, potential customers, robustness-flexibility, public acceptance, decisions as needed, concurrent engineering, and the possible role of the CIS. ''Design'' addresses ''minimum requirement,'' built in safety and reliability redundancy, emphasize on eliminating risk at lowest levels, and the possible inclusion of electric generation. ''Operations'' addresses sately, environment, operations, design margins and degradation modes. ''Qualification'' addresses testing needs and test facilities

  18. Products from NASA's In-Space Propulsion Program Applicable to Low-Cost Planetary Missions

    Science.gov (United States)

    Anderson, David; Pencil, Eric J.; Glabb, Louis J.; Falck, Robert D.; Dankanich, John

    2013-01-01

    NASAs In-Space Propulsion Technology (ISPT) program has been developing technologies for lowering the cost of planetary science missions. The technology areas include electric propulsion technologies, spacecraft bus technologies, entry vehicle technologies, and design tools for systems analysis and mission trajectories. The electric propulsion technologies include critical components of both gridded and non-gridded ion propulsion systems. The spacecraft bus technologies under development include an ultra-lightweight tank (ULTT) and advanced xenon feed system (AXFS). The entry vehicle technologies include the development of a multi-mission entry vehicle, mission design tools and aerocapture. The design tools under development include system analysis tools and mission trajectory design tools.

  19. Propulsion controlled aircraft computer

    Science.gov (United States)

    Cogan, Bruce R. (Inventor)

    2010-01-01

    A low-cost, easily retrofit Propulsion Controlled Aircraft (PCA) system for use on a wide range of commercial and military aircraft consists of an propulsion controlled aircraft computer that reads in aircraft data including aircraft state, pilot commands and other related data, calculates aircraft throttle position for a given maneuver commanded by the pilot, and then displays both current and calculated throttle position on a cockpit display to show the pilot where to move throttles to achieve the commanded maneuver, or is automatically sent digitally to command the engines directly.

  20. Airbreathing Propulsion An Introduction

    CERN Document Server

    Bose, Tarit

    2012-01-01

    Airbreathing Propulsion covers the physics of combustion, fluid and thermo-dynamics, and structural mechanics of airbreathing engines, including piston, turboprop, turbojet, turbofan, and ramjet engines. End-of-chapter exercises allow the reader to practice the fundamental concepts behind airbreathing propulsion, and the included PAGIC computer code will help the reader to examine the relationships between the performance parameters of different engines. Large amounts of data on many different piston, turbojet, and turboprop engines have been compiled for this book and are included as an appendix. This textbook is ideal for senior undergraduate and graduate students studying aeronautical engineering, aerospace engineering, and mechanical engineering.

  1. Space transportation propulsion USSR launcher technology, 1990

    Science.gov (United States)

    1991-01-01

    Space transportation propulsion U.S.S.R. launcher technology is discussed. The following subject areas are covered: Energia background (launch vehicle summary, Soviet launcher family) and Energia propulsion characteristics (booster propulsion, core propulsion, and growth capability).

  2. Nuclear thermal propulsion program overview

    Science.gov (United States)

    Bennett, Gary L.

    1991-01-01

    Nuclear thermal propulsion program is described. The following subject areas are covered: lunar and Mars missions; national space policy; international cooperation in space exploration; propulsion technology; nuclear rocket program; and budgeting.

  3. Electricity

    Indian Academy of Sciences (India)

    which removes the heat produced In the core and the colis. I represents an Isolator which is a kind of. 'switch' used to isolate the station from the grid. Note the huge Insulators (marked I) that are used. The steel structures marked S support the conductors through insulators (courtesy: Kirloskar Electric Company, Bangalore).

  4. The Potential for Ambient Plasma Wave Propulsion

    Science.gov (United States)

    Gilland, James H.; Williams, George J.

    2016-01-01

    A truly robust space exploration program will need to make use of in-situ resources as much as possible to make the endeavor affordable. Most space propulsion concepts are saddled with one fundamental burden; the propellant needed to produce momentum. The most advanced propulsion systems currently in use utilize electric and/or magnetic fields to accelerate ionized propellant. However, significant planetary exploration missions in the coming decades, such as the now canceled Jupiter Icy Moons Orbiter, are restricted by propellant mass and propulsion system lifetimes, using even the most optimistic projections of performance. These electric propulsion vehicles are inherently limited in flexibility at their final destination, due to propulsion system wear, propellant requirements, and the relatively low acceleration of the vehicle. A few concepts are able to utilize the environment around them to produce thrust: Solar or magnetic sails and, with certain restrictions, electrodynamic tethers. These concepts focus primarily on using the solar wind or ambient magnetic fields to generate thrust. Technically immature, quasi-propellantless alternatives lack either the sensitivity or the power to provide significant maneuvering. An additional resource to be considered is the ambient plasma and magnetic fields in solar and planetary magnetospheres. These environments, such as those around the Sun or Jupiter, have been shown to host a variety of plasma waves. Plasma wave propulsion takes advantage of an observed astrophysical and terrestrial phenomenon: Alfven waves. These are waves that propagate in the plasma and magnetic fields around and between planets and stars. The generation of Alfven waves in ambient magnetic and plasma fields to generate thrust is proposed as a truly propellantless propulsion system which may enable an entirely new matrix of exploration missions. Alfven waves are well known, transverse electromagnetic waves that propagate in magnetized plasmas at

  5. Advanced propulsion system for hybrid vehicles

    Science.gov (United States)

    Norrup, L. V.; Lintz, A. T.

    1980-01-01

    A number of hybrid propulsion systems were evaluated for application in several different vehicle sizes. A conceptual design was prepared for the most promising configuration. Various system configurations were parametrically evaluated and compared, design tradeoffs performed, and a conceptual design produced. Fifteen vehicle/propulsion systems concepts were parametrically evaluated to select two systems and one vehicle for detailed design tradeoff studies. A single hybrid propulsion system concept and vehicle (five passenger family sedan)were selected for optimization based on the results of the tradeoff studies. The final propulsion system consists of a 65 kW spark-ignition heat engine, a mechanical continuously variable traction transmission, a 20 kW permanent magnet axial-gap traction motor, a variable frequency inverter, a 386 kg lead-acid improved state-of-the-art battery, and a transaxle. The system was configured with a parallel power path between the heat engine and battery. It has two automatic operational modes: electric mode and heat engine mode. Power is always shared between the heat engine and battery during acceleration periods. In both modes, regenerative braking energy is absorbed by the battery.

  6. FY2015 Propulsion Materials Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2016-12-30

    The Propulsion Materials Program actively supports the energy security and reduction of greenhouse emissions goals of VTO by investigating and identifying the materials properties that are most essential for continued development of cost-effective, highly efficient, and environmentally friendly next-generation heavy and light-duty powertrains. The technical approaches available to enhance propulsion systems focus on improvements in both vehicle efficiency and fuel substitution, both of which must overcome the performance limitations of the materials currently in use. Propulsion Materials Program activities work with national laboratories, industry experts, and VTO powertrain systems (e.g., Advanced Combustion Engines [ACE], Advanced Power Electronics and Electrical Machines [APEEM], and fuels) teams to develop strategies that overcome materials limitations in future powertrain performance. The technical maturity of the portfolio of funded projects ranges from basic science to subsystem prototype validation. Projects within a Propulsion Materials Program activity address materials concerns that directly impact critical technology barriers within each of the above programs, including barriers that impact fuel efficiency, thermal management, emissions reduction, improved reliability, and reduced manufacturing costs. The program engages only the barriers that result from material property limitations and represent fundamental, high-risk materials issues.

  7. Laser propulsion: a review

    CSIR Research Space (South Africa)

    Michaelis, MM

    2006-07-01

    Full Text Available -of-magnitude reduction in launch costs. American, German and Japanese experimental ‘lightcraft’ are described as well as the Orion programme to de-orbit space debris. Marx’s seminal paper on laser-driven, relativistic space propulsion and the ensuing controversy was also...

  8. Turboprop Propulsion Mechanic.

    Science.gov (United States)

    Chanute AFB Technical Training Center, IL.

    This instructional package consists of a plan of instruction, glossary, and student handouts and exercises for use in training Air Force personnel to become turboprop propulsion mechanics. Addressed in the individual lessons of the course are the following: common hand tools, hardware, measuring devices, and safety wiring; aircraft and engine…

  9. Fundamentals of Electrical Propulsion Plant Design,

    Science.gov (United States)

    1982-04-06

    reactive triangle in the nominal mode: AU". r = mriiA,=ru r; AU’. =1. R, We assume that characteristic triangle abc constructed for the nominal mode is...point where the OMD volt-ampere characteristic and curve ABC intersect. 284 From the construction, we find that: nA,p 187 rpm, I. P = 12.7 X I06 mcs...P P(0) std- 2 PO) -r-( 9 -- - - - (7.4) but consequently, P 2I f si (d d 0 Adding equalities (7.2) and (7.3), we get = P ( -- costo dio. (7.6) 0

  10. Electric Propulsion for an Interplanetary Astrophysics Mission

    Science.gov (United States)

    1995-01-01

    constellation. of 4 microsatellites. The MR508 arcjet is too powerful for this mission; a "scaled down" 290 W version, giving the same thrust as the SPT-70...439W of power , would perform best, closely followed by the SPT-70, at 660 W. Because of the low power and high Isp, XIPS would take about 2.2 times...device which achieves high Isp at low power with long electrode life. Since its first flight in 1971, over 50 units of the SPT-70 thruster have been flown

  11. Reservoir Cathode for Electric Space Propulsion Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose a reservoir cathode to improve performance in both ion and Hall-effect thrusters. We propose to adapt our existing reservoir cathode technology to this...

  12. Operationally Responsive Spacecraft Using Electric Propulsion

    Science.gov (United States)

    2012-09-13

    orbit at or below an altitude of 700 km. The space shuttle and the International Space Station experience these constantly and must counter these...programs or significant changes in operations concepts. New threats in the international N 8-3 environment may demand change as rapid...Along-track Cross- trad : R.>iial Orientati:m Errors . Azimuth Nadir Angle OtherEnors T a:get altitude Sp>:eeraft clock f 1.0 1.0 1.0 0.0010

  13. NEP heat pipe radiators. [Nuclear Electric Propulsion

    Science.gov (United States)

    Ernst, D. M.

    1979-01-01

    This paper covers improvements of heat pipe radiators for the thermionic NEP design. Liquid metal heat pipes are suitable as spacecraft radiator elements because of high thermal conductance, low mass and reliability, but the NEP thermionic system design was too large and difficult to fabricate. The current integral collector-radiator design consisting of several layers of thermionic converters, the annular-tangential collector heat pipe, the radiator heat pipe, and the transition zone designed to minimize the temperature difference between the collector heat pipe and radiator heat pipe are described. Finally, the design of micrometeoroid armor protection and the fabrication of the stainless steel annular heat pipe with a tangential arm are discussed, and it is concluded that the heat rejection system for the thermionic NEP system is well advanced, but the collector-radiator heat pipe transition and the 8 to 10 m radiator heat pipe with two bends require evaluation.

  14. Nuclear propulsion technology development - A joint NASA/Department of Energy project

    Science.gov (United States)

    Clark, John S.

    1992-01-01

    NASA-Lewis has undertaken the conceptual development of spacecraft nuclear propulsion systems with DOE support, in order to establish the bases for Space Exploration Initiative lunar and Mars missions. This conceptual evolution project encompasses nuclear thermal propulsion (NTP) and nuclear electric propulsion (NEP) systems. A technology base exists for NTP in the NERVA program files; more fundamental development efforts are entailed in the case of NEP, but this option is noted to offer greater advantages in the long term.

  15. Surface electromyography activity of trunk muscles during wheelchair propulsion.

    Science.gov (United States)

    Yang, Yu-Sheng; Koontz, Alicia M; Triolo, Ronald J; Mercer, Jennifer L; Boninger, Michael L

    2006-12-01

    Trunk instability due to paralysis can have adverse effects on posture and function in a wheelchair. The purpose of this study was to record trunk muscle recruitment patterns using surface electromyography from unimpaired individuals during wheelchair propulsion under various propulsion speed conditions to be able to design trunk muscle stimulation patterns for actual wheelchair users with spinal cord injury. Fourteen unimpaired subjects propelled a test wheelchair on a dynamometer system at two steady state speeds of 0.9 m/s and 1.8 m/s and acceleration from rest to their maximum speed. Lower back/abdominal surface electromyography and upper body movements were recorded for each trial. Based on the hand movement during propulsion, the propulsive cycle was further divided into five stages to describe the activation patterns. Both abdominal and back muscle groups revealed significantly higher activation at early push and pre-push stages when compared to the other three stages of the propulsion phase. With increasing propulsive speed, trunk muscles showed increased activation (Pactivity was significantly higher than abdominal muscle activity across the three speed conditions (PAbdominal and back muscle groups cocontracted at late recovery phase and early push phase to provide sufficient trunk stability to meet the demands of propulsion. This study provides an indication of the amount and duration of stimulation needed for a future application of electrical stimulation of the trunk musculature for persons with spinal cord injury.

  16. Hydrodynamics of Peristaltic Propulsion

    Science.gov (United States)

    Athanassiadis, Athanasios; Hart, Douglas

    2014-11-01

    A curious class of animals called salps live in marine environments and self-propel by ejecting vortex rings much like jellyfish and squid. However, unlike other jetting creatures that siphon and eject water from one side of their body, salps produce vortex rings by pumping water through siphons on opposite ends of their hollow cylindrical bodies. In the simplest cases, it seems like some species of salp can successfully move by contracting just two siphons connected by an elastic body. When thought of as a chain of timed contractions, salp propulsion is reminiscent of peristaltic pumping applied to marine locomotion. Inspired by salps, we investigate the hydrodynamics of peristaltic propulsion, focusing on the scaling relationships that determine flow rate, thrust production, and energy usage in a model system. We discuss possible actuation methods for a model peristaltic vehicle, considering both the material and geometrical requirements for such a system.

  17. Why Density Dependent Propulsion?

    Science.gov (United States)

    Robertson, Glen A.

    2011-01-01

    In 2004 Khoury and Weltman produced a density dependent cosmology theory they call the Chameleon, as at its nature, it is hidden within known physics. The Chameleon theory has implications to dark matter/energy with universe acceleration properties, which implies a new force mechanism with ties to the far and local density environment. In this paper, the Chameleon Density Model is discussed in terms of propulsion toward new propellant-less engineering methods.

  18. NASA Breakthrough Propulsion Physics Program

    Science.gov (United States)

    Millis, Marc G.

    1998-01-01

    In 1996, NASA established the Breakthrough Propulsion Physics program to seek the ultimate breakthroughs in space transportation: propulsion that requires no propellant mass, propulsion that attains the maximum transit speeds physically possible, and breakthrough methods of energy production to power such devices. Topics of interest include experiments and theories regarding the coupling of gravity and electromagnetism, vacuum fluctuation energy, warp drives and worm-holes, and superluminal quantum effects. Because these propulsion goals are presumably far from fruition, a special emphasis is to identify affordable, near-term, and credible research that could make measurable progress toward these propulsion goals. The methods of the program and the results of the 1997 workshop are presented. This Breakthrough Propulsion Physics program, managed by Lewis Research Center, is one part of a comprehensive, long range Advanced Space Transportation Plan managed by Marshall Space Flight Center.

  19. Steady State Thermal Analyses of SCEPTOR X-57 Wingtip Propulsion

    Science.gov (United States)

    Schnulo, Sydney L.; Chin, Jeffrey C.; Smith, Andrew D.; Dubois, Arthur

    2017-01-01

    Electric aircraft concepts enable advanced propulsion airframe integration approaches that promise increased efficiency as well as reduced emissions and noise. NASA's fully electric Maxwell X-57, developed under the SCEPTOR program, features distributed propulsion across a high aspect ratio wing. There are 14 propulsors in all: 12 high lift motor that are only active during take off and climb, and 2 larger motors positioned on the wingtips that operate over the entire mission. The power electronics involved in the wingtip propulsion are temperature sensitive and therefore require thermal management. This work focuses on the high and low fidelity heat transfer analysis methods performed to ensure that the wingtip motor inverters do not reach their temperature limits. It also explores different geometry configurations involved in the X-57 development and any thermal concerns. All analyses presented are performed at steady state under stressful operating conditions, therefore predicting temperatures which are considered the worst-case scenario to remain conservative.

  20. NASA Fixed Wing Project Propulsion Research and Technology Development Activities to Reduce Thrust Specific Energy Consumption

    Science.gov (United States)

    Hathaway, Michael D.; DelRasario, Ruben; Madavan, Nateri K.

    2013-01-01

    This paper presents an overview of the propulsion research and technology portfolio of NASA Fundamental Aeronautics Program Fixed Wing Project. The research is aimed at significantly reducing the thrust specific fuel/energy consumption of notional advanced fixed wing aircraft (by 60 % relative to a baseline Boeing 737-800 aircraft with CFM56-7B engines) in the 2030-2035 time frame. The research investments described herein are aimed at improving propulsive efficiency through higher bypass ratio fans, improving thermal efficiency through compact high overall pressure ratio gas generators, and exploring the potential benefits of boundary layer ingestion propulsion and hybrid gas-electric propulsion concepts.

  1. Electrolysis Propulsion for Spacecraft Applications

    Science.gov (United States)

    deGroot, Wim A.; Arrington, Lynn A.; McElroy, James F.; Mitlitsky, Fred; Weisberg, Andrew H.; Carter, Preston H., II; Myers, Blake; Reed, Brian D.

    1997-01-01

    Electrolysis propulsion has been recognized over the last several decades as a viable option to meet many satellite and spacecraft propulsion requirements. This technology, however, was never used for in-space missions. In the same time frame, water based fuel cells have flown in a number of missions. These systems have many components similar to electrolysis propulsion systems. Recent advances in component technology include: lightweight tankage, water vapor feed electrolysis, fuel cell technology, and thrust chamber materials for propulsion. Taken together, these developments make propulsion and/or power using electrolysis/fuel cell technology very attractive as separate or integrated systems. A water electrolysis propulsion testbed was constructed and tested in a joint NASA/Hamilton Standard/Lawrence Livermore National Laboratories program to demonstrate these technology developments for propulsion. The results from these testbed experiments using a I-N thruster are presented. A concept to integrate a propulsion system and a fuel cell system into a unitized spacecraft propulsion and power system is outlined.

  2. Oscillating foil propulsion

    OpenAIRE

    Hauge, Jacob

    2013-01-01

    Unsteady foil theory is discussed and applied on several cases of an oscillating foil. The oscillating foil is meant as a propulsion system for a platform supply vessel.Four case studies of foil oscillation have been performed. A thrust coefficient of 0.1 was achieved at an efficiency of 0.75. A thrust coefficient of minimum 0.184 is necessary to overcome the calm water resistance of the foil.Issues connected to coupled vessel-foil models are discussed.

  3. Nuclear rocket propulsion

    International Nuclear Information System (INIS)

    Clark, J.S.; Miller, T.J.

    1991-01-01

    NASA has initiated planning for a technology development project for nuclear rocket propulsion systems for Space Exploration Initiative (SEI) human and robotic missions to the Moon and to Mars. An Interagency project is underway that includes the Department of Energy National Laboratories for nuclear technology development. This paper summarizes the activities of the project planning team in FY 1990 and FY 1991, discusses the progress to date, and reviews the project plan. Critical technology issues have been identified and include: nuclear fuel temperature, life, and reliability; nuclear system ground test; safety; autonomous system operation and health monitoring; minimum mass and high specific impulse

  4. Nuclear propulsion systems engineering

    International Nuclear Information System (INIS)

    Madsen, W.W.; Neuman, J.E.: Van Haaften, D.H.

    1992-01-01

    The Nuclear Energy for Rocket Vehicle Application (NERVA) program of the 1960's and early 1970's was dramatically successful, with no major failures during the entire testing program. This success was due in large part to the successful development of a systems engineering process. Systems engineering, properly implemented, involves all aspects of the system design and operation, and leads to optimization of theentire system: cost, schedule, performance, safety, reliability, function, requirements, etc. The process must be incorporated from the very first and continued to project completion. This paper will discuss major aspects of the NERVA systems engineering effort, and consider the implications for current nuclear propulsion efforts

  5. Hybrid Direct Drive PPU for Deep Space CubeSat Propulsion System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Busek proposes to develop an innovative, hybrid direct-drive (HDD) Power Processing Unit (PPU) for CubeSat electric propulsion (EP) systems. The technological...

  6. Superconducting Materials Applied to EP Systems: Applications of Superconductivity to Hall Thrusters Propulsion

    National Research Council Canada - National Science Library

    Bruno, Claudio

    2001-01-01

    This report results from a contract tasking University of Rome as follows: The contractor will investigate the use of superconducting materials for use in high power hall effect type electric propulsion motors...

  7. Direct Energy Conversion for Nuclear Propulsion at Low Specific Mass Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Low specific mass (< 3  kg/kW) in-space electric power and propulsion can drastically alter the paradigm for exploration of the Solar System, changing human...

  8. Effect of Ambipolar Potential on the Propulsive Performance of the GDM Plasma Thruster, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The Gasdynamic Mirror (GDM) thruster is an electric propulsion device, without electrodes, that will magnetically confine a plasma with such density and temperature...

  9. Legal Implications of Nuclear Propulsion for Space Objects

    Science.gov (United States)

    Pop, V.

    2002-01-01

    This paper is intended to examine nuclear propulsion concepts such as "Project Orion", "Project Daedalus", NERVA, VASIMIR, from the legal point of view. The UN Principles Relevant to the Use of Nuclear Power Sources in Outer Space apply to nuclear power sources in outer space devoted to the generation of electric power on board space objects for non-propulsive purposes, and do not regulate the use of nuclear energy as a means of propulsion. However, nuclear propulsion by means of detonating atomic bombs (ORION) is, in principle, banned under the 1963 Treaty Banning Nuclear Weapon Tests in the Atmosphere, in Outer Space, and Under Water. The legality of use of nuclear propulsion will be analysed from different approaches - historical (i.e. the lawfulness of these projects at the time of their proposal, at the present time, and in the future - in the light of the mutability and evolution of international law), spatial (i.e. the legal regime governing peaceful nuclear explosions in different spatial zones - Earth atmosphere, Earth orbit, Solar System, and interstellar space), and technical (i.e, the legal regime applicable to different nuclear propulsion techniques, and to the various negative effects - e.g. damage to other space systems as an effect of the electromagnetic pulse, etc). The paper will analyse the positive law, and will also come with suggestions "de lege ferenda".

  10. Sensitivity Analysis of Hybrid Propulsion Transportation System for Human Mars Expeditions

    Science.gov (United States)

    Chai, Patrick R.; Joyce, Ryan T.; Kessler, Paul D.; Merrill, Raymond G.; Qu, Min

    2017-01-01

    The National Aeronautics and Space Administration continues to develop and refine various transportation options to successfully field a human Mars campaign. One of these transportation options is the Hybrid Transportation System which utilizes both solar electric propulsion and chemical propulsion. The Hybrid propulsion system utilizes chemical propulsion to perform high thrust maneuvers, where the delta-V is most optimal when ap- plied to save time and to leverage the Oberth effect. It then utilizes solar electric propulsion to augment the chemical burns throughout the interplanetary trajectory. This eliminates the need for the development of two separate vehicles for crew and cargo missions. Previous studies considered single point designs of the architecture, with fixed payload mass and propulsion system performance parameters. As the architecture matures, it is inevitable that the payload mass and the performance of the propulsion system will change. It is desirable to understand how these changes will impact the in-space transportation system's mass and power requirements. This study presents an in-depth sensitivity analysis of the Hybrid crew transportation system to payload mass growth and solar electric propulsion performance. This analysis is used to identify the breakpoints of the current architecture and to inform future architecture and campaign design decisions.

  11. Hybrid and Electric Advanced Vehicle Systems Simulation

    Science.gov (United States)

    Beach, R. F.; Hammond, R. A.; Mcgehee, R. K.

    1985-01-01

    Predefined components connected to represent wide variety of propulsion systems. Hybrid and Electric Advanced Vehicle System (HEAVY) computer program is flexible tool for evaluating performance and cost of electric and hybrid vehicle propulsion systems. Allows designer to quickly, conveniently, and economically predict performance of proposed drive train.

  12. The Status of Spacecraft Bus and Platform Technology Development under the NASA In-Space Propulsion Technology Program

    Science.gov (United States)

    Anderson, David; Pencil, Eric J.; Glaab, Louis; Falck, Robert D.; Dankanich, John

    2013-01-01

    NASA's In-Space Propulsion Technology (ISPT) program has been developing technologies for lowering the cost of planetary science missions. The technology areas include electric propulsion technologies, spacecraft bus technologies, entry vehicle technologies, and design tools for systems analysis and mission trajectories. The electric propulsion technologies include critical components of both gridded and non-gridded ion propulsion systems. The spacecraft bus technologies under development include an ultra-lightweight tank (ULTT) and advanced xenon feed system (AXFS). The entry vehicle technologies include the development of a multi-mission entry vehicle, mission design tools and aerocapture. The design tools under development include system analysis tools and mission trajectory design tools.

  13. Experimental approach of plasma supersonic expansion physics and of Hall effect propulsion systems

    International Nuclear Information System (INIS)

    Mazouffre, Stephane

    2009-01-01

    This report for accreditation to supervise research (HDR) proposes a synthesis of scientific and research works performed by the author during about ten years. Thus, a first part addresses studies on plasma rarefied supersonic flows: expansion through a sonic hole and through a Laval nozzle. The next part addresses the study of plasma propulsion for spacecraft, and more particularly electric propulsion based on the Hall effect: phenomena of ionic and atomic transport, characteristics of the electric field, energy deposition on walls, basic scale laws, related works, hybrid Hall-RF propulsion systems. The third part presents perspectives and projects related to propulsion by Hall effect (research topics, planned researches, a European project on high power, hybrid Hall-RF propulsion) and to ions-ions plasma (the PEGASES concept, the NExET test installation, RF source of negative ions and magnetic trap)

  14. Monofilament Vaporization Propulsion (MVP) System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Monofilament Vaporization Propulsion (MVP) is a new propulsion technology targeted at secondary payload applications. It does not compromise on performance while...

  15. Monofilament Vaporization Propulsion (MVP) System, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Monofilament Vaporization Propulsion (MVP) is an innovative new propulsion technology targeted at secondary payload applications. The approach with MVP, rather than...

  16. Magnetohydrodynamic Augmented Propulsion Experiment

    Science.gov (United States)

    Litchford, Ron J.; Cole, John; Lineberry, John; Chapman, Jim; Schmidt, Harold; Cook, Stephen (Technical Monitor)

    2002-01-01

    A fundamental obstacle to routine space access is the specific energy limitations associated with chemical fuels. In the case of vertical take-off, the high thrust needed for vertical liftoff and acceleration to orbit translates into power levels in the 10 GW range. Furthermore, useful payload mass fractions are possible only if the exhaust particle energy (i.e., exhaust velocity) is much greater than that available with traditional chemical propulsion. The electronic binding energy released by the best chemical reactions (e.g., LOX/LH2 for example, is less than 2 eV per product molecule (approx. 1.8 eV per H2O molecule), which translates into particle velocities less than 5 km/s. Useful payload fractions, however, will require exhaust velocities exceeding 15 km/s (i.e., particle energies greater than 20 eV). As an added challenge, the envisioned hypothetical RLV (reusable launch vehicle) should accomplish these amazing performance feats while providing relatively low acceleration levels to orbit (2-3g maximum). From such fundamental considerations, it is painfully obvious that planned and current RLV solutions based on chemical fuels alone represent only a temporary solution and can only result in minor gains, at best. What is truly needed is a revolutionary approach that will dramatically reduce the amount of fuel and size of the launch vehicle. This implies the need for new compact high-power energy sources as well as advanced accelerator technologies for increasing engine exhaust velocity. Electromagnetic acceleration techniques are of immense interest since they can be used to circumvent the thermal limits associated with conventional propulsion systems. This paper describes the Magnetohydrodynamic Augmented Propulsion Experiment (MAPX) being undertaken at NASA Marshall Space Flight Center (MSFC). In this experiment, a 1-MW arc heater is being used as a feeder for a 1-MW magnetohydrodynamic (MHD) accelerator. The purpose of the experiment is to demonstrate

  17. VIII international electric vehicle symposium

    Energy Technology Data Exchange (ETDEWEB)

    1986-01-01

    The proceedings from the symposium are presented. Major topics discussed include: battery technology, powertrains; hybrid vehicles, marketing and economics, propulsion, and electric vehicle design and performance. Each paper has been separately indexed for inclusion in the Energy Data Base.

  18. Electric Aircraft Systems Technology Development

    Data.gov (United States)

    National Aeronautics and Space Administration — This project looks at multiple manned/unmanned full-scale/sub-scale flying research prototypes that will lead to the integration of electric propulsion technology on...

  19. Magnetohydrodynamic underwater vehicular propulsion systems

    International Nuclear Information System (INIS)

    Swallom, D.W.; Sadovnik, I.; Gibbs, J.S.; Gurol, H.; Nguyen, L.

    1990-01-01

    The development of magnetohydrodynamic propulsion systems for underwater vehicles is discussed. According to the authors, it is a high risk endeavor that offers the possibility of a number of significant advantages over conventional propeller propulsion systems. These advantages may include the potential for greater stealth characteristics, increased maneuverability, enhanced survivability, elimination of cavitation limits, and addition of a significant emergency propulsion system. The possibility of increased stealth is by far the most important advantage. A conceptual design study has been completed with numerical results that shows that these advantages may be obtained with a magnetohydrodynamic propulsion system in an annular configuration externally surrounding a generic study submarine that is neutrally buoyant and can operate with the existing submarine propulsion system power plant. The classical submarine mission requirements make the use of these characteristics of the magnetohydrodynamic propulsion system particularly appropriate for submarine missions. The magnetohydrodynamic annular propulsion system for a generic attack class submarine has been designed to take advantage of the magnetohydrodynamic thruster characteristics

  20. Advanced In-Space Propulsion (AISP): Micro Electrospray Propulsion (MEP)

    Data.gov (United States)

    National Aeronautics and Space Administration — Propulsion technology is often critical for space missions. High-value missions could be done with very small spacecraft, even CubeSats, but these nanosatellites...

  1. Analysis of Engine Propeller Matching of DC Motor as a Main Propulsion

    Directory of Open Access Journals (Sweden)

    Eddy Setyo Koenhardono

    2017-12-01

    Full Text Available The development of ship always searches through the most benefits system for reducing costs of propulsion system without increase pollution. Diesel propulsion system or also known as conventional propulsion system is efficient but requires high operating costs and increase high level of marine pollution. Electrical propulsion system is using electric motors as the prime mover of the propeller. There are 2 types of electric motors that will be used for research of electric propulsion system, there are; DC motors and three-phases induction motor. As the use of DC motor as a prime mover for this electrical propulsion system, this study determines the characteristic between voltage terminal with torque and also field current with torque. It results that torque produced by the DC motor is in the same magnitude with the speed (RPM. The higher the speed have shaped the value of the torque. The input and terminal voltages adjusts all variables and results. In this study, different field voltage creates different pattern of motor envelope. Its manner to propeller curve occurs total different results. With field voltage of 50 V, the ranges of motor envelope immoveable in the point of 150% of present speed and 160%. While field voltage of 60 V serves larger ranges of motor envelope which possible to reach further than 50 V curve.

  2. Revolutionary Aeropropulsion Concept for Sustainable Aviation: Turboelectric Distributed Propulsion

    Science.gov (United States)

    Kim, Hyun Dae; Felder, James L.; Tong, Michael. T.; Armstrong, Michael

    2013-01-01

    In response to growing aviation demands and concerns about the environment and energy usage, a team at NASA proposed and examined a revolutionary aeropropulsion concept, a turboelectric distributed propulsion system, which employs multiple electric motor-driven propulsors that are distributed on a large transport vehicle. The power to drive these electric propulsors is generated by separately located gas-turbine-driven electric generators on the airframe. This arrangement enables the use of many small-distributed propulsors, allowing a very high effective bypass ratio, while retaining the superior efficiency of large core engines, which are physically separated but connected to the propulsors through electric power lines. Because of the physical separation of propulsors from power generating devices, a new class of vehicles with unprecedented performance employing such revolutionary propulsion system is possible in vehicle design. One such vehicle currently being investigated by NASA is called the "N3-X" that uses a hybrid-wing-body for an airframe and superconducting generators, motors, and transmission lines for its propulsion system. On the N3-X these new degrees of design freedom are used (1) to place two large turboshaft engines driving generators in freestream conditions to minimize total pressure losses and (2) to embed a broad continuous array of 14 motor-driven fans on the upper surface of the aircraft near the trailing edge of the hybrid-wing-body airframe to maximize propulsive efficiency by ingesting thick airframe boundary layer flow. Through a system analysis in engine cycle and weight estimation, it was determined that the N3-X would be able to achieve a reduction of 70% or 72% (depending on the cooling system) in energy usage relative to the reference aircraft, a Boeing 777-200LR. Since the high-power electric system is used in its propulsion system, a study of the electric power distribution system was performed to identify critical dynamic and

  3. The Economics of Advanced In-Space Propulsion

    Science.gov (United States)

    Bangalore, Manju; Dankanich, John

    2016-01-01

    The cost of access to space is the single biggest driver is commercial space sector. NASA continues to invest in both launch technology and in-space propulsion. Low-cost launch systems combined with advanced in-space propulsion offer the greatest potential market capture. Launch market capture is critical to national security and has a significant impact on domestic space sector revenue. NASA typically focuses on pushing the limits on performance. However, the commercial market is driven by maximum net revenue (profits). In order to maximum the infusion of NASA investments, the impact on net revenue must be known. As demonstrated by Boeing's dual launch, the Falcon 9 combined with all Electric Propulsion (EP) can dramatically shift the launch market from foreign to domestic providers.

  4. Overview of NASA Iodine Hall Thruster Propulsion System Development

    Science.gov (United States)

    Smith, Timothy D.; Kamhawi, Hani; Hickman, Tyler; Haag, Thomas; Dankanich, John; Polzin, Kurt; Byrne, Lawrence; Szabo, James

    2016-01-01

    NASA is continuing to invest in advancing Hall thruster technologies for implementation in commercial and government missions. The most recent focus has been on increasing the power level for large-scale exploration applications. However, there has also been a similar push to examine applications of electric propulsion for small spacecraft in the range of 300 kg or less. There have been several recent iodine Hall propulsion system development activities performed by the team of the NASA Glenn Research Center, the NASA Marshall Space Flight Center, and Busek Co. Inc. In particular, the work focused on qualification of the Busek 200-W BHT-200-I and development of the 600-W BHT-600-I systems. This paper discusses the current status of iodine Hall propulsion system developments along with supporting technology development efforts.

  5. Semi-Tandem Electric Distributed Wing Zip Aviation Advanced Concept

    Data.gov (United States)

    National Aeronautics and Space Administration — This project aims to develop a unique distributed electric propulsion approach that provides breakthrough capability improvements across conventional take-off and...

  6. Power And Propulsion Systems For Mobile Robotic Applications

    Science.gov (United States)

    Layuan, Li; Haiming, Zou

    1987-02-01

    Choosing the best power and propulsion systems for mobile robotic land vehicle applications requires consideration of technologies. The electric power requirements for onboard electronic and auxiliary equipment include 110/220 volt 60 Hz ac power as well as low voltage dc power. Weight and power are saved by either direct dc power distribution, or high frequency (20 kHz) ac power distribution. Vehicle control functions are performed electronically but steering, braking and traction power may be distributed electrically, mechanically or by fluid (hydraulic) means. Electric drive is practical, even for small vehicles, provided that advanced electric motors are used. Such electric motors have demonstrated power densities of 3.1 kilowatts per kilogram with devices in the 15 kilowatt range. Electric motors have a lower torque, but higher power density as compared to hydraulic or mechanical transmission systems. Power density being comparable, electric drives were selected to best meet the other requirements for robotic vehicles. Two robotic vehicle propulsion system designs are described to illustrate the implementation of electric drive over a vehicle size range of 250-7500 kilograms.

  7. Development of Cubesat Propulsion Systems

    Data.gov (United States)

    National Aeronautics and Space Administration — The overall objective of this IRAD will be to develop a propulsion system that can be cheaply and reliably used for NASA GSFC cubesat missions. Reliability will be...

  8. Rotational propulsion enabled by inertia.

    Science.gov (United States)

    Nadal, François; Pak, On Shun; Zhu, LaiLai; Brandt, Luca; Lauga, Eric

    2014-07-01

    The fluid mechanics of small-scale locomotion has recently attracted considerable attention, due to its importance in cell motility and the design of artificial micro-swimmers for biomedical applications. Most studies on the topic consider the ideal limit of zero Reynolds number. In this paper, we investigate a simple propulsion mechanism --an up-down asymmetric dumbbell rotating about its axis of symmetry-- unable to propel in the absence of inertia in a Newtonian fluid. Inertial forces lead to continuous propulsion for all finite values of the Reynolds number. We study computationally its propulsive characteristics as well as analytically in the small-Reynolds-number limit. We also derive the optimal dumbbell geometry. The direction of propulsion enabled by inertia is opposite to that induced by viscoelasticity.

  9. Propulsion Systems Laboratory, Bldg. 125

    Data.gov (United States)

    Federal Laboratory Consortium — The Propulsion Systems Laboratory (PSL) is NASAs only ground test facility capable of providing true altitude and flight speed simulation for testing full scale gas...

  10. Nuclear radiation problems, unmanned thermionic reactor ion propulsion spacecraft

    Science.gov (United States)

    Mondt, J. F.; Sawyer, C. D.; Nakashima, A.

    1972-01-01

    A nuclear thermionic reactor as the electric power source for an electric propulsion spacecraft introduces a nuclear radiation environment that affects the spacecraft configuration, the use and location of electrical insulators and the science experiments. The spacecraft is conceptually configured to minimize the nuclear shield weight by: (1) a large length to diameter spacecraft; (2) eliminating piping penetrations through the shield; and (3) using the mercury propellant as gamma shield. Since the alumina material is damaged by the high nuclear radiation environment in the reactor it is desirable to locate the alumina insulator outside the reflector or develop a more radiation resistant insulator.

  11. Mars mission performance enhancement with hybrid nuclear propulsion

    Energy Technology Data Exchange (ETDEWEB)

    Dagle, J. E. [Pacific Northwest Lab., Richland, WA (United States); Noffsinger, K. E. [Pacific Northwest Lab., Richland, WA (United States); Segna, D. R. [USDOE Richland Operations Office, WA (United States)

    1992-01-01

    Nuclear electric propulsion (NEP), compared with chemical and nuclear thermal propulsion (NTP), can effectively deliver the same mass to Mars using much less propellant, consequently requiring less mass delivered to Earth orbit. The lower thrust of NEP requires a spiral trajectory near planetary bodies, which significantly increases the travel time. Although the total travel time is long, the portion of the flight time spent during interplanetary transfer is shorter, because the vehicle is thrusting for much longer periods of time. This has led to the supposition that NEP, although very attractive for cargo missions, is not suitable for piloted missions to Mars. However, with the application of a hybrid application of a hybrid approach to propulsion, the benefits of NEP can be utilized while drastically reducing the overall travel time required. Development of a dual-mode system, which utilizes high-thrust NTP to propel the spacecraft from the planetary gravitational influence and low-thrust NEP to accelerate in interplanetary space, eliminates the spiral trajectory and results in a much faster transit time than could be obtained by either NEP or NTP alone. This results in a mission profile with a lower initial mass in low Earth orbit. In addition, the propulsion system would have the capability to provide electrical power for mission applications.

  12. Microwave Thermal Propulsion

    Science.gov (United States)

    Parkin, Kevin L. G.; Lambot, Thomas

    2017-01-01

    We have conducted research in microwave thermal propulsion as part of the space exploration access technologies (SEAT) research program, a cooperative agreement (NNX09AF52A) between NASA and Carnegie Mellon University. The SEAT program commenced on the 19th of February 2009 and concluded on the 30th of September 2015. The DARPA/NASA Millimeter-wave Thermal Launch System (MTLS) project subsumed the SEAT program from May 2012 to March 2014 and one of us (Parkin) served as its principal investigator and chief engineer. The MTLS project had no final report of its own, so we have included the MTLS work in this report and incorporate its conclusions here. In the six years from 2009 until 2015 there has been significant progress in millimeter-wave thermal rocketry (a subset of microwave thermal rocketry), most of which has been made under the auspices of the SEAT and MTLS programs. This final report is intended for multiple audiences. For researchers, we present techniques that we have developed to simplify and quantify the performance of thermal rockets and their constituent technologies. For program managers, we detail the facilities that we have built and the outcomes of experiments that were conducted using them. We also include incomplete and unfruitful lines of research. For decision-makers, we introduce the millimeter-wave thermal rocket in historical context. Considering the economic significance of space launch, we present a brief but significant cost-benefit analysis, for the first time showing that there is a compelling economic case for replacing conventional rockets with millimeter-wave thermal rockets.

  13. Green Propulsion Technologies for Advanced Air Transports

    Science.gov (United States)

    Del Rosario, Ruben

    2015-01-01

    Air transportation is critical to U.S. and Global economic vitality. However, energy and climate issues challenge aviations ability to be sustainable in the long term. Aviation must dramatically reduce fuel use and related emissions. Energy costs to U.S. airlines nearly tripled between 1995 and 2011, and continue to be the highest percentage of operating costs. The NASA Advanced Air Transports Technology Project addresses the comprehensive challenge of enabling revolutionary energy efficiency improvements in subsonic transport aircraft combined with dramatic reductions in harmful emissions and perceived noise to facilitate sustained growth of the air transportation system. Advanced technologies and the development of unconventional aircraft systems offer the potential to achieve these improvements. The presentation will highlight the NASA vision of revolutionary systems and propulsion technologies needed to achieve these challenging goals. Specifically, the primary focus is on the N+3 generation; that is, vehicles that are three generations beyond the current state of the art, requiring mature technology solutions in the 2025-30 timeframe, which are envisioned as being powered by Hybrid Electric Propulsion Systems.

  14. Research Opportunities in Space Propulsion

    Science.gov (United States)

    Rodgers, Stephen L.

    2007-01-01

    Rocket propulsion determines the primary characteristics of any space vehicle; how fast and far it can go, its lifetime, and its capabilities. It is the primary factor in safety and reliability and the biggest cost driver. The extremes of heat and pressure produced by propulsion systems push the limits of materials used for manufacturing. Space travel is very unforgiving with little room for errors, and so many things can go wrong with these very complex systems. So we have to plan for failure and that makes it costly. But what is more exciting than the roar of a rocket blasting into space? By its nature the propulsion world is conservative. The stakes are so high at every launch, in terms of payload value or in human life, that to introduce new components to a working, qualified system is extremely difficult and costly. Every launch counts and no risks are tolerated, which leads to the space world's version of Catch-22:"You can't fly till you flown." The last big 'game changer' in propulsion was the use of liquid hydrogen as a fuel. No new breakthrough, low cost access to space system will be developed without new efficient propulsion systems. Because there is no large commercial market driving investment in propulsion, what propulsion research is done is sponsored by government funding agencies. A further difficulty in propulsion technology development is that there are so few new systems flying. There is little opportunity to evolve propulsion technologies and to update existing systems with results coming out of research as there is in, for example, the auto industry. The biggest hurdle to space exploration is getting off the ground. The launch phase will consume most of the energy required for any foreseeable space exploration mission. The fundamental physical energy requirements of escaping earth's gravity make it difficult. It takes 60,000 kJ to put a kilogram into an escape orbit. The vast majority (-97%) of the energy produced by a launch vehicle is used

  15. Overview of European and other non-US/USSR/Japan launch vehicle and propulsion technology programs

    Science.gov (United States)

    Rice, Eric E.

    1991-01-01

    The following subject areas are covered: majority of propulsion technology development work is directly related to the ESA's Ariane 5 program and heavily involves SEP (Societe Europeenne de Propulsion) in all areas; Hermes; advanced work on magnetic bearings for turbomachinery; electric propulsion using Cs and Xe propellants done by SEP in France, MBB ERNO in West Germany, and by Culham Lab in UK; successfully tested fired H/O composite nozzle exit cone on 3rd stage of Ariane; turbine blades made of composites to allow increase in gas temperature and improvement in efficiency; combined cycle (turboramjet-rocket) engine analysis work done by Hyperspace; and ESA advanced program studies.

  16. Mars sample return mission architectures utilizing low thrust propulsion

    Science.gov (United States)

    Derz, Uwe; Seboldt, Wolfgang

    2012-08-01

    The Mars sample return mission is a flagship mission within ESA's Aurora program and envisioned to take place in the timeframe of 2020-2025. Previous studies developed a mission architecture consisting of two elements, an orbiter and a lander, each utilizing chemical propulsion and a heavy launcher like Ariane 5 ECA. The lander transports an ascent vehicle to the surface of Mars. The orbiter performs a separate impulsive transfer to Mars, conducts a rendezvous in Mars orbit with the sample container, delivered by the ascent vehicle, and returns the samples back to Earth in a small Earth entry capsule. Because the launch of the heavy orbiter by Ariane 5 ECA makes an Earth swing by mandatory for the trans-Mars injection, its total mission time amounts to about 1460 days. The present study takes a fresh look at the subject and conducts a more general mission and system analysis of the space transportation elements including electric propulsion for the transfer. Therefore, detailed spacecraft models for orbiters, landers and ascent vehicles are developed. Based on that, trajectory calculations and optimizations of interplanetary transfers, Mars entries, descents and landings as well as Mars ascents are carried out. The results of the system analysis identified electric propulsion for the orbiter as most beneficial in terms of launch mass, leading to a reduction of launch vehicle requirements and enabling a launch by a Soyuz-Fregat into GTO. Such a sample return mission could be conducted within 1150-1250 days. Concerning the lander, a separate launch in combination with electric propulsion leads to a significant reduction of launch vehicle requirements, but also requires a large number of engines and correspondingly a large power system. Therefore, a lander performing a separate chemical transfer could possibly be more advantageous. Alternatively, a second possible mission architecture has been developed, requiring only one heavy launch vehicle (e.g., Proton). In that

  17. IEC Thrusters for Space Probe Applications and Propulsion

    Science.gov (United States)

    Miley, George H.; Momota, Hiromu; Wu, Linchun; Reilly, Michael P.; Teofilo, Vince L.; Burton, Rodney; Dell, Richard; Dell, Dick; Hargus, William A.

    2009-03-01

    Earlier conceptual design studies (Bussard, 1990; Miley et al., 1998; Burton et al., 2003) have described Inertial Electrostatic Confinement (IEC) fusion propulsion to provide a high-power density fusion propulsion system capable of aggressive deep space missions. However, this requires large multi-GW thrusters and a long term development program. As a first step towards this goal, a progression of near-term IEC thrusters, stating with a 1-10 kWe electrically-driven IEC jet thruster for satellites are considered here. The initial electrically-powered unit uses a novel multi-jet plasma thruster based on spherical IEC technology with electrical input power from a solar panel. In this spherical configuration, Xe ions are generated and accelerated towards the center of double concentric spherical grids. An electrostatic potential well structure is created in the central region, providing ion trapping. Several enlarged grid opening extract intense quasi-neutral plasma jets. A variable specific impulse in the range of 1000-4000 seconds is achieved by adjusting the grid potential. This design provides high maneuverability for satellite and small space probe operations. The multiple jets, combined with gimbaled auxiliary equipment, provide precision changes in thrust direction. The IEC electrical efficiency can match or exceed efficiencies of conventional Hall Current Thrusters (HCTs) while offering advantages such as reduced grid erosion (long life time), reduced propellant leakage losses (reduced fuel storage), and a very high power-to-weight ratio. The unit is ideally suited for probing missions. The primary propulsive jet enables delicate maneuvering close to an object. Then simply opening a second jet offset 180 degrees from the propulsion one provides a "plasma analytic probe" for interrogation of the object.

  18. IEC Thrusters for Space Probe Applications and Propulsion

    International Nuclear Information System (INIS)

    Miley, George H.; Momota, Hiromu; Wu Linchun; Reilly, Michael P.; Teofilo, Vince L.; Burton, Rodney; Dell, Richard; Dell, Dick; Hargus, William A.

    2009-01-01

    Earlier conceptual design studies (Bussard, 1990; Miley et al., 1998; Burton et al., 2003) have described Inertial Electrostatic Confinement (IEC) fusion propulsion to provide a high-power density fusion propulsion system capable of aggressive deep space missions. However, this requires large multi-GW thrusters and a long term development program. As a first step towards this goal, a progression of near-term IEC thrusters, stating with a 1-10 kWe electrically-driven IEC jet thruster for satellites are considered here. The initial electrically-powered unit uses a novel multi-jet plasma thruster based on spherical IEC technology with electrical input power from a solar panel. In this spherical configuration, Xe ions are generated and accelerated towards the center of double concentric spherical grids. An electrostatic potential well structure is created in the central region, providing ion trapping. Several enlarged grid opening extract intense quasi-neutral plasma jets. A variable specific impulse in the range of 1000-4000 seconds is achieved by adjusting the grid potential. This design provides high maneuverability for satellite and small space probe operations. The multiple jets, combined with gimbaled auxiliary equipment, provide precision changes in thrust direction. The IEC electrical efficiency can match or exceed efficiencies of conventional Hall Current Thrusters (HCTs) while offering advantages such as reduced grid erosion (long life time), reduced propellant leakage losses (reduced fuel storage), and a very high power-to-weight ratio. The unit is ideally suited for probing missions. The primary propulsive jet enables delicate maneuvering close to an object. Then simply opening a second jet offset 180 degrees from the propulsion one provides a 'plasma analytic probe' for interrogation of the object.

  19. Mini and Micro Propulsion for Medical Swimmers

    Directory of Open Access Journals (Sweden)

    JianFeng

    2014-02-01

    Full Text Available Mini and micro robots, which can swim in an underwater environment, have drawn widespread research interests because of their potential applicability to the medical or biological fields, including delivery and transportation of bio-materials and drugs, bio-sensing, and bio-surgery. This paper reviews the recent ideas and developments of these types of self-propelling devices, ranging from the millimeter scale down to the micro and even the nano scale. Specifically, this review article makes an emphasis on various propulsion principles, including methods of utilizing smart actuators, external magnetic/electric/acoustic fields, bacteria, chemical reactions, etc. In addition, we compare the propelling speed range, directional control schemes, and advantages of the above principles.

  20. Revisiting Nuclear Thermal Propulsion for Human Mars Exploration

    Science.gov (United States)

    Percy, Thomas K.; Rodriguez, Mitchell

    2017-01-01

    Nuclear Thermal Propulsion (NTP) has long been considered as a viable in-space transportation alternative for delivering crew and cargo to the Martian system. While technology development work in nuclear propulsion has continued over the year, general interest in NTP propulsion applications has historically been tied directly to the ebb and flow of interest in sending humans to explore Mars. As far back as the 1960’s, plans for NTP-based human Mars exploration have been proposed and periodically revisited having most recently been considered as part of NASA Design Reference Architecture (DRA) 5.0. NASA has been investigating human Mars exploration strategies tied to its current Journey to Mars for the past few years however, NTP has only recently been added into the set of alternatives under consideration for in-space propulsion under the Mars Study Capability (MSC) team, formerly the Evolvable Mars Campaign (EMC) team. The original charter of the EMC was to find viable human Mars exploration approaches that relied heavily on technology investment work already underway, specifically related to the development of large Solar Electric Propulsion (SEP) systems. The EMC team baselined several departures from traditional Mars exploration ground rules to enable these types of architectures. These ground rule changes included lower energy conjunction class trajectories with corresponding longer flight times, aggregation of mission elements in cis-Lunar space rather than Low Earth Orbit (LEO) and, in some cases, the pre-deployment of Earth return propulsion systems to Mars. As the MSC team continues to refine the in-space transportation trades, an NTP-based architecture that takes advantage of some of these ground rule departures is being introduced.

  1. Propulsion on a superhydrophobic ratchet.

    Science.gov (United States)

    Dupeux, Guillaume; Bourrianne, Philippe; Magdelaine, Quentin; Clanet, Christophe; Quéré, David

    2014-06-13

    Liquids in the Leidenfrost state were shown by Linke to self-propel if placed on ratchets. The vapour flow below the liquid rectified by the asymmetric teeth entrains levitating drops by viscosity. This effect is observed above the Leidenfrost temperature of the substrate, typically 200°C for water. Here we show that coating ratchets with super-hydrophobic microtextures extends quick self-propulsion down to a substrate temperature of 100°C, which exploits the persistence of Leidenfrost state with such coatings. Surprisingly, propulsion is even observed below 100°C, implying that levitation is not necessary to induce the motion. Finally, we model the drop velocity in this novel "cold regime" of self-propulsion.

  2. Breakthrough Propulsion Physics Research Program

    Science.gov (United States)

    Millis, Marc G.

    1996-01-01

    In 1996, a team of government, university and industry researchers proposed a program to seek the ultimate breakthroughs in space transportation: propulsion that requires no propellant mass, propulsion that can approach and, if possible, circumvent light speed, and breakthrough methods of energy production to power such devices. This Breakthrough Propulsion Physics program, managed by Lewis Research Center, is one part of a comprehensive, long range Advanced Space Transportation Plan managed by Marshall Space Flight Center. Because the breakthrough goals are beyond existing science, a main emphasis of this program is to establish metrics and ground rules to produce near-term credible progress toward these incredible possibilities. An introduction to the emerging scientific possibilities from which such solutions can be sought is also presented.

  3. Main Propulsion Test Article (MPTA)

    Science.gov (United States)

    Snoddy, Cynthia

    2010-01-01

    Scope: The Main Propulsion Test Article integrated the main propulsion subsystem with the clustered Space Shuttle Main Engines, the External Tank and associated GSE. The test program consisted of cryogenic tanking tests and short- and long duration static firings including gimbaling and throttling. The test program was conducted on the S1-C test stand (Position B-2) at the National Space Technology Laboratories (NSTL)/Stennis Space Center. 3 tanking tests and 20 hot fire tests conducted between December 21 1 1977 and December 17, 1980 Configuration: The main propulsion test article consisted of the three space shuttle main engines, flightweight external tank, flightweight aft fuselage, interface section and a boilerplate mid/fwd fuselage truss structure.

  4. Magnetic levitation and MHD propulsion

    International Nuclear Information System (INIS)

    Tixador, P.

    1994-01-01

    Magnetic levitation and MHD propulsion are now attracting attention in several countries. Different superconducting MagLev and MHD systems will be described concentrating on, above all, the electromagnetic aspect. Some programmes occurring throughout the world will be described. Magnetic levitated trains could be the new high speed transportation system for the 21st century. Intensive studies involving MagLev trains using superconductivity have been carried our in Japan since 1970. The construction of a 43 km long track is to be the next step. In 1991 a six year programme was launched in the United States to evaluate the performances of MagLev systems for transportation. The MHD (MagnetoHydroDynamic) offers some interesting advantages (efficiency, stealth characteristics, ..) for naval propulsion and increasing attention is being paid towards it nowadays. Japan is also up at the top with the tests of Yamato I, a 260 ton MHD propulsed ship. (orig.)

  5. Nuclear thermal propulsion workshop overview

    International Nuclear Information System (INIS)

    Clark, J.S.

    1991-01-01

    NASA is planning an Exploration Technology Program as part of the Space Exploration Initiative to return U.S. astronauts to the moon, conduct intensive robotic exploration of the moon and Mars, and to conduct a piloted mission to Mars by 2019. Nuclear Propulsion is one of the key technology thrust for the human mission to Mars. The workshop addresses NTP (Nuclear Thermal Rocket) technologies with purpose to: assess the state-of-the-art of nuclear propulsion concepts; assess the potential benefits of the concepts for the mission to Mars; identify critical, enabling technologies; lay-out (first order) technology development plans including facility requirements; and estimate the cost of developing these technologies to flight-ready status. The output from the workshop will serve as a data base for nuclear propulsion project planning

  6. LASL nuclear rocket propulsion program

    Energy Technology Data Exchange (ETDEWEB)

    Schreiber, R.E.

    1956-04-01

    The immediate objective of the LASL nuclear propulsion (Rover) program is the development of a heat exchanger reactor system utilizing uranium-graphite fuel elements and ammonia propellant. This program is regarded as the first step in the development of nuclear propulsion systems for missiles. The major tasks of the program include the investigation of materials at high temperatures, development of fuel elements, investigation of basic reactor characteristics, investigation of engine control problems, detailed engine design and ground testing. The organization and scheduling of the initial development program have been worked out in some detail. Only rather general ideas exist concerning the projection of this work beyond 1958.

  7. Antimatter Propulsion Developed by NASA

    Science.gov (United States)

    1999-01-01

    This Quick Time movie shows possible forms of an antimatter propulsion system being developed by NASA. Antimatter annihilation offers the highest possible physical energy density of any known reaction substance. It is about 10 billion times more powerful than that of chemical energy such as hydrogen and oxygen combustion. Antimatter would be the perfect rocket fuel, but the problem is that the basic component of antimatter, antiprotons, doesn't exist in nature and has to manufactured. The process of antimatter development is ongoing and making some strides, but production of this as a propulsion system is far into the future.

  8. Space Shuttle Main Propulsion System

    Science.gov (United States)

    Wood, C. C.

    1976-01-01

    The Space Shuttle Main Propulsion System provides the impulse to transfer the reusable Orbiter of the Space Shuttle Transportation system and its payload from earth to earth orbit. Both cryogenic and solid rocket propulsion systems are utilized. The selected systems are characterized by (1) reusability wherever possible to reduce program cost, (2) design pressures, and other important design parameters, for the liquid propellant engine significantly higher than past programs for increased performance, and (3) advanced materials and manufacturing processes to withstand the extreme environments. The approaches for solution of these varied problems are emphasized.

  9. Development of technology for creating intelligent control systems for power plants and propulsion systems for marine robotic systems

    Science.gov (United States)

    Iakovleva, E. V.; Momot, B. A.

    2017-10-01

    The object of this study is to develop a power plant and an electric propulsion control system for autonomous remotely controlled vessels. The tasks of the study are as follows: to assess remotely controlled vessels usage reasonability, to define the requirements for this type of vessel navigation. In addition, the paper presents the analysis of technical diagnostics systems. The developed electric propulsion control systems for vessels should provide improved reliability and efficiency of the propulsion complex to ensure the profitability of remotely controlled vessels.

  10. The SMPR for the naval propulsion

    International Nuclear Information System (INIS)

    Gauducheau, B.

    2002-01-01

    The first controlled application of the fissile energy was the american nuclear reactor for the ship propulsion. Since the sixties, the France begun researches to secure the independence of its nuclear propulsion program. The historical aspects, the french program management and the perspectives of the ship nuclear propulsion, are discussed in this paper. (A.L.B.)

  11. Vehicle with inclinable caterpillar propulsion units

    International Nuclear Information System (INIS)

    Clar, G.

    1991-01-01

    This vehicle usable in hostile environment such nuclear industry has four propulsion units with a caterpillar track and two integrated motors: one for advancing the caterpillar track and the other for inclining the propulsion unit when overcoming obstacles. Each propulsion unit is easily replaceable because there are no mechanical parts in the body of the vehicle [fr

  12. FY2014 Propulsion Materials R&D Annual Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-05-01

    The Propulsion Materials Program actively supports the energy security and reduction of greenhouse emissions goals of VTO by investigating and identifying the materials properties that are most essential for continued development of cost-effective, highly efficient, and environmentally friendly next-generation heavy and light-duty powertrains. The technical approaches available to enhance propulsion systems focus on improvements in both vehicle efficiency and fuel substitution, both of which must overcome the performance limitations of the materials currently in use. Propulsion Materials Program activities work with national laboratories, industry experts, and VTO powertrain systems (e.g., Advanced Combustion Engines [ACE], Advanced Power Electronics and Electrical Machines [APEEM], and fuels) teams to develop strategies that overcome materials limitations in future powertrain performance. The technical maturity of the portfolio of funded projects ranges from basic science to subsystem prototype validation. Projects within a Propulsion Materials Program activity address materials concerns that directly impact critical technology barriers within each of the above programs, including barriers that impact fuel efficiency, thermal management, emissions reduction, improved reliability, and reduced manufacturing costs. The program engages only the barriers that result from material property limitations and represent fundamental, high-risk materials issues.

  13. Promising Electric Aircraft Drive Systems

    Science.gov (United States)

    Dudley, Michael R.

    2010-01-01

    An overview of electric aircraft propulsion technology performance thresholds for key power system components is presented. A weight comparison of electric drive systems with equivalent total delivered energy is made to help identify component performance requirements, and promising research and development opportunities.

  14. Accounting for electric vehicles in air quality conformity \\0x2012 final report.

    Science.gov (United States)

    2014-12-01

    Electric vehicles (EVs) obtain at least a part of the energy required for their propulsion from electricity. The : market for EVs, including hybrid, plug-in hybrid, and battery electric vehicles continues to grow, as many : new and affordable models ...

  15. 0-6763 : accounting for electric vehicles in air quality conformity.

    Science.gov (United States)

    2014-08-01

    Electric vehicles (EVs) are broadly defined as : vehicles that obtain at least a part of the energy : required for their propulsion from electricity. This : research focused on the three main types of EVs: : Hybrid electric vehicles. : Plug-i...

  16. The NASA In-Space Propulsion Technology Project's Current Products and Future Directions

    Science.gov (United States)

    Anderson, David J.; Dankanich, John; Munk, Michelle M.; Pencil, Eric; Liou, Larry

    2010-01-01

    Since its inception in 2001, the objective of the In-Space Propulsion Technology (ISPT) project has been developing and delivering in-space propulsion technologies that enable or enhance NASA robotic science missions. These in-space propulsion technologies are applicable, and potentially enabling for future NASA flagship and sample return missions currently under consideration, as well as having broad applicability to future Discovery and New Frontiers mission solicitations. This paper provides status of the technology development, applicability, and availability of in-space propulsion technologies that recently completed, or will be completing within the next year, their technology development and are ready for infusion into missions. The paper also describes the ISPT project s future focus on propulsion for sample return missions. The ISPT technologies completing their development are: 1) the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance for lower cost; 2) NASA s Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system; and 3) aerocapture technologies which include thermal protection system (TPS) materials and structures, guidance, navigation, and control (GN&C) models of blunt-body rigid aeroshells; and atmospheric and aerothermal effect models. The future technology development areas for ISPT are: 1) Planetary Ascent Vehicles (PAV); 2) multi-mission technologies for Earth Entry Vehicles (MMEEV) needed for sample return missions from many different destinations; 3) propulsion for Earth Return Vehicles (ERV) and transfer stages, and electric propulsion for sample return and low cost missions; 4) advanced propulsion technologies for sample return; and 5) Systems/Mission Analysis focused on sample return propulsion.

  17. Comparative analysis of aluminum-air battery propulsion systems for passenger vehicles

    Science.gov (United States)

    Salisbury, J. D.; Behrin, E.; Kong, M. K.; Whisler, D. J.

    1980-02-01

    Three electric propulsion systems using an aluminum air battery were analyzed and compared to the internal combustion engine (ICE) vehicle. The engine and fuel systems of a representative five passenger highway vehicle were replaced conceptually by each of the three electric propulsion systems. The electrical vehicles were constrained by the computer simulation to be equivalent to the ICE vehicle in range and acceleration performance. The vehicle masses and aluminum consumption rates were then calculated for the electric vehicles and these data were used as figures of merit. The Al-air vehicles analyzed were (1) an Al-air battery only electric vehicle; (2) an Al-air battery combined with a nickel zinc secondary battery for power leveling and regenerative braking; and (3) an Al-air battery combined with a flywheel for power leveling and regenerative braking. All three electric systems compared favorably with the ICE vehicle.

  18. Atmospheric Breathing Electric Thruster for Planetary Exploration

    Data.gov (United States)

    National Aeronautics and Space Administration — This study will investigate the development of an atmosphere-breathing electric propulsion solar-powered vehicle to explore planets such as Mars. The vehicle would...

  19. Electric and hybrid vehicle system R/D

    Science.gov (United States)

    Schwartz, H. J.

    1980-01-01

    The work being done to characterize the level of current propulsion technology through component testing is described. Important interactions between the battery and the propulsion system will be discussed. Component development work, involving traction motors, motor controllers and transmissions are described and current results are presented. Studies of advanced electric and hybrid propulsion system studies are summarized and the status of propulsion system development work supported by the project is described. A strategy for fostering joint industry/government projects for commercialization of propulsion components and systems is described briefly.

  20. Mars Hybrid Propulsion System Trajectory Analysis. Part I; Crew Missions

    Science.gov (United States)

    Chai, Patrick R.; Merrill, Raymond G.; Qu, Min

    2015-01-01

    NASAs Human spaceflight Architecture team is developing a reusable hybrid transportation architecture in which both chemical and electric propulsion systems are used to send crew and cargo to Mars destinations such as Phobos, Deimos, the surface of Mars, and other orbits around Mars. By combining chemical and electrical propulsion into a single space- ship and applying each where it is more effective, the hybrid architecture enables a series of Mars trajectories that are more fuel-efficient than an all chemical architecture without significant increases in flight times. This paper provides the analysis of the interplanetary segments of the three Evolvable Mars Campaign crew missions to Mars using the hybrid transportation architecture. The trajectory analysis provides departure and arrival dates and propellant needs for the three crew missions that are used by the campaign analysis team for campaign build-up and logistics aggregation analysis. Sensitivity analyses were performed to investigate the impact of mass growth, departure window, and propulsion system performance on the hybrid transportation architecture. The results and system analysis from this paper contribute to analyses of the other human spaceflight architecture team tasks and feed into the definition of the Evolvable Mars Campaign.

  1. Nuclear thermal propulsion technology: Results of an interagency panel in FY 1991

    International Nuclear Information System (INIS)

    Clark, J.S.; Mcdaniel, P.; Howe, S.; Helms, I.; Stanley, M.

    1993-04-01

    NASA LeRC was selected to lead nuclear propulsion technology development for NASA. Also participating in the project are NASA MSFC and JPL. The U.S. Department of Energy will develop nuclear technology and will conduct nuclear component, subsystem, and system testing at appropriate DOE test facilities. NASA program management is the responsibility of NASA/RP. The project includes both nuclear electric propulsion (NEP) and nuclear thermal propulsion (NTP) technology development. This report summarizes the efforts of an interagency panel that evaluated NTP technology in 1991. Other panels were also at work in 1991 on other aspects of nuclear propulsion, and the six panels worked closely together. The charters for the other panels and some of their results are also discussed. Important collaborative efforts with other panels are highlighted. The interagency (NASA/DOE/DOD) NTP Technology Panel worked in 1991 to evaluate nuclear thermal propulsion concepts on a consistent basis. Additionally, the panel worked to continue technology development project planning for a joint project in nuclear propulsion for the Space Exploration Initiative (SEI). Five meetings of the panel were held in 1991 to continue the planning for technology development of nuclear thermal propulsion systems. The state-of-the-art of the NTP technologies was reviewed in some detail. The major technologies identified were as follows: fuels, coatings, and other reactor technologies; materials; instrumentation, controls, health monitoring and management, and associated technologies; nozzles; and feed system technology, including turbopump assemblies

  2. Magnetic levitation and MHD propulsion

    Science.gov (United States)

    Tixador, P.

    1994-04-01

    Magnetic levitation and MHD propulsion are now attracting attention in several countries. Different superconducting MagLev and MHD systems will be described concentrating on, above all, the electromagnetic aspect. Some programmes occurring throughout the world will be described. Magnetic levitated trains could be the new high speed transportation system for the 21st century. Intensive studies involving MagLev trains using superconductivity have been carried out in Japan since 1970. The construction of a 43 km long track is to be the next step. In 1991 a six year programme was launched in the United States to evaluate the performances of MagLev systems for transportation. The MHD (MagnetoHydroDynamic) offers some interesting advantages (efficiency, stealth characteristics, ...) for naval propulsion and increasing attention is being paid towards it nowadays. Japan is also up at the top with the tests of Yamato I, a 260 ton MHD propulsed ship. Depuis quelques années nous assistons à un redémarrage de programmes concernant la lévitation et la propulsion supraconductrices. Différents systèmes supraconducteurs de lévitation et de propulsion seront décrits en examinant plus particulièrement l'aspect électromagnétique. Quelques programmes à travers le monde seront abordés. Les trains à sustentation magnétique pourraient constituer un nouveau mode de transport terrestre à vitesse élevée (500 km/h) pour le 21^e siècle. Les japonais n'ont cessé de s'intéresser à ce système avec bobine supraconductrice. Ils envisagent un stade préindustriel avec la construction d'une ligne de 43 km. En 1991 un programme américain pour une durée de six ans a été lancé pour évaluer les performances des systèmes à lévitation pour le transport aux Etats Unis. La MHD (Magnéto- Hydro-Dynamique) présente des avantages intéressants pour la propulsion navale et un regain d'intérêt apparaît à l'heure actuelle. Le japon se situe là encore à la pointe des d

  3. NASA Puffin Electric Tailsitter VTOL Concept

    Science.gov (United States)

    Moore, Mark D.

    2010-01-01

    Electric propulsion offers dramatic new vehicle mission capabilities, not possible with turbine or reciprocating engines; including high reliability and efficiency, low engine weight and maintenance, low cooling drag and volume required, very low noise and vibration, and zero emissions. The only penalizing characteristic of electric propulsion is the current energy storage technology level, which is set to triple over the next 5-10 years through huge new investments in this field. Most importantly, electric propulsion offers incredible new degrees of freedom in aircraft system integration to achieve unprecedented levels of aerodynamic, propulsive, control, and structural synergistic coupling. A unique characteristic of electric propulsion is that the technology is nearly scale-free, permitting small motors to be parallelized for fail-safe redundancy, or distributed across the airframe for tightly coupled interdisciplinary functionality without significant impacts in motor-controller efficiency or specific weight. Maximizing the potential benefit of electric propulsion is dependent on applying this technology to synergistic mission concepts. The vehicle missions with the most benefit include those which constrain environmental impact (or limit noise, exhaust, or emission signatures) are short range, or where large differences exist in the propulsion system sizing between takeoff and cruise conditions. Electric propulsion offers the following unique capabilities that other propulsion systems can t provide for short range Vertical Takeoff and Landing (VTOL) aircraft; elimination of engine noise and emissions, drastic reduction in engine cooling and radiated heat, drastic reduction in vehicle vibration levels, drastic improvement in reliability and operating costs, variable speed output at full power, for improved cruise efficiency at low tip-speed, elimination of high/hot sizing penalty, and reduction of engine-out penalties.

  4. A Cubesat Asteroid Mission: Propulsion Trade-offs

    Science.gov (United States)

    Landis, Geoffrey A.; Oleson, Steven R.; McGuire, Melissa L.; Bur, Michael J.; Burke, Laura M.; Fittje, James E.; Kohout, Lisa L.; Fincannon, James; Packard, Thomas W.; Martini, Michael C.

    2014-01-01

    A conceptual design was performed for a 6-U cubesat for a technology demonstration to be launched on the NASA Space Launch System (SLS) test launch EM-1, to be launched into a free-return translunar trajectory. The mission purpose was to demonstrate use of electric propulsion systems on a small satellite platform. The candidate objective chosen was a mission to visit a Near-Earth asteroid. Both asteroid fly-by and asteroid rendezvous missions were analyzed. Propulsion systems analyzed included cold-gas thruster systems, Hall and ion thrusters, incorporating either Xenon or Iodine propellant, and an electrospray thruster. The mission takes advantage of the ability of the SLS launch to place it into an initial trajectory of C3=0.

  5. OTV propulsion tecnology programmatic overview

    Science.gov (United States)

    Cooper, L. P.

    1984-04-01

    An advanced orbit transfer vehicles (OTV) which will be an integral part of the national space transportation system to carry men and cargo between low Earth orbit and geosynchronous orbit will perform planetary transfers and deliver large acceleration limited space structures to high Earth orbits is reviewed. The establishment of an advanced propulsion technology base for an OTV for the mid 1990's is outlined. The program supports technology for three unique engine concepts. Work is conducted to generic technologies which benefit all three concepts and specific technology which benefits only one of the concepts. Concept and technology definitions to identify propulsion innovations, and subcomponent research to explore and validate their potential benefits are included.

  6. NASA's laser-propulsion project

    Science.gov (United States)

    Jones, L. W.; Keefer, D. R.

    1982-01-01

    Design concepts, study results, and research directions toward development of CW laser heating of remotely flying spacecraft fuels to provide high impulse thrust are presented. The incident laser radiation would be absorbed by hydrogen through a medium of a laser-supported plasma. The laser energy could be furnished from an orbiting solar-powered laser platform and used to drive the engines of an orbital transfer vehicle (OTV) at costs less than with a chemical propulsion system. The OTV propulsion chamber would be reduced in size comparable to the volume addition of the incident laser energy absorber. The temperatures in the hydrogen-fueled system could reach 5000-15,000 K, and studies have been done to examine the feasibility of ion-electron recombination. Kinetic performance, temperature field, and power necessary to sustain a laser thrust augmented system modeling results are discussed, along with near-term 30 kW CO2 laser system tests.

  7. Laser Diagnostics for Spacecraft Propulsion

    Science.gov (United States)

    MacDonald-Tenenbaum, Natalia

    2015-09-01

    Over the past several decades, a variety of laser diagnostic techniques have been developed and applied to diagnose spacecraft propulsion devices. Laser diagnostics are inherently non-intrusive, and provide the opportunity to probe properties such as temperature, concentration or number density of plume species, and plume velocities in the harsh environments of combustion and plasma discharges. This presentation provides an overview of laser diagnostic capabilities for spacecraft propulsion devices such as small monopropellant thrusters, arcjets, ion engines and Hall thrusters. Particular emphasis is placed on recent developments for time-resolved ion velocity measurements in Hall thruster plumes. Results are presented for one such diagnostic method, a time-synchronized CW-laser induced fluorescence (LIF) technique based on a sample hold scheme. This method is capable of correlating measured fluorescence excitation lineshapes with high frequency current fluctuations in the plasma discharge of a Hall thruster and is tolerant of natural drifting in the current oscillation frequency.

  8. Nuclear Thermal Propulsion Development Risks

    Science.gov (United States)

    Kim, Tony

    2015-01-01

    There are clear advantages of development of a Nuclear Thermal Propulsion (NTP) for a crewed mission to Mars. NTP for in-space propulsion enables more ambitious space missions by providing high thrust at high specific impulse ((is) approximately 900 sec) that is 2 times the best theoretical performance possible for chemical rockets. Missions can be optimized for maximum payload capability to take more payload with reduced total mass to orbit; saving cost on reduction of the number of launch vehicles needed. Or missions can be optimized to minimize trip time significantly to reduce the deep space radiation exposure to the crew. NTR propulsion technology is a game changer for space exploration to Mars and beyond. However, 'NUCLEAR' is a word that is feared and vilified by some groups and the hostility towards development of any nuclear systems can meet great opposition by the public as well as from national leaders and people in authority. The public often associates the 'nuclear' word with weapons of mass destruction. The development NTP is at risk due to unwarranted public fears and clear honest communication of nuclear safety will be critical to the success of the development of the NTP technology. Reducing cost to NTP development is critical to its acceptance and funding. In the past, highly inflated cost estimates of a full-scale development nuclear engine due to Category I nuclear security requirements and costly regulatory requirements have put the NTP technology as a low priority. Innovative approaches utilizing low enriched uranium (LEU). Even though NTP can be a small source of radiation to the crew, NTP can facilitate significant reduction of crew exposure to solar and cosmic radiation by reducing trip times by 3-4 months. Current Human Mars Mission (HMM) trajectories with conventional propulsion systems and fuel-efficient transfer orbits exceed astronaut radiation exposure limits. Utilizing extra propellant from one additional SLS launch and available

  9. Antimatter propulsion, status and prospects

    Science.gov (United States)

    Howe, Steven D.; Hynes, Michael V.

    1986-01-01

    The use of advanced propulsion techniques must be considered if the currently envisioned launch date of the manned Mars mission were delayed until 2020 or later. Within the next thirty years, technological advances may allow such methods as beaming power to the ship, inertial-confinement fusion, or mass-conversion of antiprotons to become feasible. A propulsion system with an ISP of around 5000 s would allow the currently envisioned mission module to fly to Mars in 3 months and would require about one million pounds to be assembled in Earth orbit. Of the possible methods to achieve this, the antiproton mass-conversion reaction offers the highest potential, the greatest problems, and the most fascination. Increasing the production rates of antiprotons is a high priority task at facilities around the world. The application of antiprotons to propulsion requires the coupling of the energy released in the mass-conversion reaction to thrust-producing mechanisms. Recent proposals entail using the antiprotons to produce inertial confinement fusion or to produce negative muons which can catalyze fusion. By increasing the energy released per antiproton, the effective cost, (dollars/joule) can be reduced. These proposals and other areas of research can be investigated now. These short term results will be important in assessing the long range feasibility of an antiproton powered engine.

  10. Switched reluctance drives for electric vehicle applications

    OpenAIRE

    Andrada Gascón, Pedro; Torrent Burgués, Marcel; Blanqué Molina, Balduino; Perat Benavides, Josep Ignasi

    2003-01-01

    Electric vehicles are the only alternative for a clean, efficient and environmentally friendly urban transport system. With the increasing interest in electric drives for electric vehicle propulsion. This paper first tries to explain why the switched reluctance drive is a strong candidate for electric vehicle applications. It then gives switched reluctance drive design guidelines for battery or fuel cell operated electric vehicles. Finally, it presents the design and simulation of a switched ...

  11. Hybrid-Electric and All-Electric Rotorcraft Analysis and Tool Development Project

    Data.gov (United States)

    National Aeronautics and Space Administration — During this Phase I effort ESAero will draw upon its knowledge of hybrid-electric propulsion system design and analysis for fixed wing aircraft to investigate the...

  12. Powered Flight The Engineering of Aerospace Propulsion

    CERN Document Server

    Greatrix, David R

    2012-01-01

    Whilst most contemporary books in the aerospace propulsion field are dedicated primarily to gas turbine engines, there is often little or no coverage of other propulsion systems and devices such as propeller and helicopter rotors or detailed attention to rocket engines. By taking a wider viewpoint, Powered Flight - The Engineering of Aerospace Propulsion aims to provide a broader context, allowing observations and comparisons to be made across systems that are overlooked by focusing on a single aspect alone. The physics and history of aerospace propulsion are built on step-by-step, coupled with the development of an appreciation for the mathematics involved in the science and engineering of propulsion. Combining the author’s experience as a researcher, an industry professional and a lecturer in graduate and undergraduate aerospace engineering, Powered Flight - The Engineering of Aerospace Propulsion covers its subject matter both theoretically and with an awareness of the practicalities of the industry. To ...

  13. In-Space Propulsion (ISP) Solar Sail Propulsion Technology Development

    Science.gov (United States)

    Montgomery, Edward E., IV

    2004-01-01

    An overview of the rationale and content for Solar Sail Propulsion (SSP), the on-going project to advance solar technology from technology readiness level 3 to 6 will be provided. A descriptive summary of the major and minor component efforts underway will include identification of the technology providers and a listing of anticipated products Recent important results from major system ground demonstrators will be provided. Finally, a current status of all activities will provided along with the most recent roadmap for the SSP technology development program.

  14. Compact Hybrid Automotive Propulsion System

    Science.gov (United States)

    Lupo, G.

    1986-01-01

    Power train proposed for experimental vehicle powered by internal combustion engine and electric motor. Intended for front-wheel drive automobile, power train mass produced using existing technology. System includes internal-combustion engine, electric motor, continuously variable transmission, torque converter, differential, and control and adjustment systems for electric motor and transmission. Continuously variable transmission integrated into hydraulic system that also handles power steering and power brakes. Batteries for electric motor mounted elsewhere in vehicle.

  15. Propulsion of liposomes using bacterial motors

    International Nuclear Information System (INIS)

    Zhang Zhenhai; Li Kejie; Li Zhifei; Yu Wei; Xie Zhihong; Shi Zhiguo

    2013-01-01

    Here we describe the utilization of flagellated bacteria as actuators to propel spherical liposomes by attaching bacteria to the liposome surface. Bacteria were stably attached to liposomes using a cross-linking antibody. The effect of the number of attached bacteria on propulsion speed was experimentally determined. The effects of bacterial propulsion on the bacteria–antibody–liposome complex were stochastic. We demonstrated that liposomal mobility increased when bacteria were attached, and the propulsion speed correlated with the number of bacteria. (paper)

  16. Nuclear gas core propulsion research program

    Science.gov (United States)

    Diaz, Nils J.; Dugan, Edward T.; Anghaie, Samim

    1993-01-01

    Viewgraphs on the nuclear gas core propulsion research program are presented. The objectives of this research are to develop models and experiments, systems, and fuel elements for advanced nuclear thermal propulsion rockets. The fuel elements under investigation are suitable for gas/vapor and multiphase fuel reactors. Topics covered include advanced nuclear propulsion studies, nuclear vapor thermal rocket (NVTR) studies, and ultrahigh temperature nuclear fuels and materials studies.

  17. A Conceptual Tree of Laser Propulsion

    International Nuclear Information System (INIS)

    Pakhomov, Andrew V.; Sinko, John E.

    2008-01-01

    An original attempt to develop a conceptual tree for laser propulsion is offered. The tree provides a systematic view for practically all possible laser propulsion concepts and all inter-conceptual links, based on propellant phases and phase transfers. It also helps to see which fields of laser propulsion have been already thoroughly explored, where the next effort must be applied, and which paths should be taken with proper care or avoided entirely

  18. Electrospray Propulsion Engineering Toolkit (ESPET), Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — To accelerate the development of scaled-up Electrospray Propulsion emitter array systems with practical thrust levels, Spectral Sciences, Inc. (SSI), in...

  19. Aeroelastic Wing Shaping Using Distributed Propulsion

    Science.gov (United States)

    Nguyen, Nhan T. (Inventor); Reynolds, Kevin Wayne (Inventor); Ting, Eric B. (Inventor)

    2017-01-01

    An aircraft has wings configured to twist during flight. Inboard and outboard propulsion devices, such as turbofans or other propulsors, are connected to each wing, and are spaced along the wing span. A flight controller independently controls thrust of the inboard and outboard propulsion devices to significantly change flight dynamics, including changing thrust of outboard propulsion devices to twist the wing, and to differentially apply thrust on each wing to change yaw and other aspects of the aircraft during various stages of a flight mission. One or more generators can be positioned upon the wing to provide power for propulsion devices on the same wing, and on an opposite wing.

  20. Propulsion Design with Freeform Fabrication, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Propulsion Design with Freeform Fabrication (PDFF) will develop and implement a novel design methodology that leverages the rapidly evolving Solid Freeform...

  1. The SMPR for the naval propulsion; Les RPMP pour la propulsion navale

    Energy Technology Data Exchange (ETDEWEB)

    Gauducheau, B. [Technicatome, Centre d' Etudes Nucleaires de Saclay, 91 - Gif sur Yvette (France)

    2002-07-01

    The first controlled application of the fissile energy was the american nuclear reactor for the ship propulsion. Since the sixties, the France begun researches to secure the independence of its nuclear propulsion program. The historical aspects, the french program management and the perspectives of the ship nuclear propulsion, are discussed in this paper. (A.L.B.)

  2. Comparison of Propulsion Options for Human Exploration of Mars

    Science.gov (United States)

    Drake, Bret G.; McGuire, Melissa L.; McCarty, Steven L.

    2018-01-01

    NASA continues to advance plans to extend human presence beyond low-Earth orbit leading to human exploration of Mars. The plans being laid out follow an incremental path, beginning with initial flight tests followed by deployment of a Deep Space Gateway (DSG) in cislunar space. This Gateway, will serve as the initial transportation node for departing and returning Mars spacecraft. Human exploration of Mars represents the next leap for humankind because it will require leaving Earth on a long mission with very limited return, rescue, or resupply capabilities. Although Mars missions are long, approaches and technologies are desired which can reduce the time that the crew is away from Earth. This paper builds off past analyses of NASA's exploration strategy by providing more detail on the performance of alternative in-space transportation options with an emphasis on reducing total mission duration. Key options discussed include advanced chemical, nuclear thermal, nuclear electric, solar electric, as well as an emerging hybrid propulsion system which utilizes a combination of both solar electric and chemical propulsion.

  3. Propulsion at low Reynolds number

    Energy Technology Data Exchange (ETDEWEB)

    Najafi, Ali [Institute for Advanced Studies in Basic Sciences, Zanjan 45195-159 (Iran, Islamic Republic of); Faculty of Science, Zanjan University, Zanjan 313 (Iran, Islamic Republic of); Golestanian, Ramin [Institute for Advanced Studies in Basic Sciences, Zanjan 45195-159 (Iran, Islamic Republic of)

    2005-04-13

    We study the propulsion of two model swimmers at low Reynolds number. Inspired by Purcell's model, we propose a very simple one-dimensional swimmer consisting of three spheres that are connected by two arms whose lengths can change between two values. The proposed swimmer can swim with a special type of motion, which breaks the time-reversal symmetry. We also show that an ellipsoidal membrane with tangential travelling wave on it can also propel itself in the direction preferred by the travelling wave. This system resembles the realistic biological animals like Paramecium.

  4. Propulsion at low Reynolds number

    International Nuclear Information System (INIS)

    Najafi, Ali; Golestanian, Ramin

    2005-01-01

    We study the propulsion of two model swimmers at low Reynolds number. Inspired by Purcell's model, we propose a very simple one-dimensional swimmer consisting of three spheres that are connected by two arms whose lengths can change between two values. The proposed swimmer can swim with a special type of motion, which breaks the time-reversal symmetry. We also show that an ellipsoidal membrane with tangential travelling wave on it can also propel itself in the direction preferred by the travelling wave. This system resembles the realistic biological animals like Paramecium

  5. Full fuel-cycle comparison of forklift propulsion systems

    International Nuclear Information System (INIS)

    Gaines, L.L.; Elgowainy, A.; Wang, M.Q.

    2008-01-01

    Hydrogen has received considerable attention as an alternative to fossil fuels. The U.S. Department of Energy (DOE) investigates the technical and economic feasibility of promising new technologies, such as hydrogen fuel cells. A recent report for DOE identified three near-term markets for fuel cells: (1) Emergency power for state and local emergency response agencies, (2) Forklifts in warehousing and distribution centers, and (3) Airport ground support equipment markets. This report examines forklift propulsion systems and addresses the potential energy and environmental implications of substituting fuel-cell propulsion for existing technologies based on batteries and fossil fuels. Industry data and the Argonne Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model are used to estimate full fuel-cycle emissions and use of primary energy sources, back to the primary feedstocks for fuel production. Also considered are other environmental concerns at work locations. The benefits derived from using fuel-cell propulsion are determined by the sources of electricity and hydrogen. In particular, fuel-cell forklifts using hydrogen made from the reforming of natural gas had lower impacts than those using hydrogen from electrolysis

  6. Full fuel-cycle comparison of forklift propulsion systems.

    Energy Technology Data Exchange (ETDEWEB)

    Gaines, L. L.; Elgowainy, A.; Wang, M. Q.; Energy Systems

    2008-11-05

    Hydrogen has received considerable attention as an alternative to fossil fuels. The U.S. Department of Energy (DOE) investigates the technical and economic feasibility of promising new technologies, such as hydrogen fuel cells. A recent report for DOE identified three near-term markets for fuel cells: (1) Emergency power for state and local emergency response agencies, (2) Forklifts in warehousing and distribution centers, and (3) Airport ground support equipment markets. This report examines forklift propulsion systems and addresses the potential energy and environmental implications of substituting fuel-cell propulsion for existing technologies based on batteries and fossil fuels. Industry data and the Argonne Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model are used to estimate full fuel-cycle emissions and use of primary energy sources, back to the primary feedstocks for fuel production. Also considered are other environmental concerns at work locations. The benefits derived from using fuel-cell propulsion are determined by the sources of electricity and hydrogen. In particular, fuel-cell forklifts using hydrogen made from the reforming of natural gas had lower impacts than those using hydrogen from electrolysis.

  7. Propulsion options for the HI SPOT long endurance drone airship. Final report, November 1978-August 1979

    Energy Technology Data Exchange (ETDEWEB)

    Marcy, W.L.; Hookway, R.O.

    1979-09-15

    Airbreathing, monofueled, stored-energy, and solar-rechargeable propulsion systems have been studied for the HI SPOT Long Endurance Drone Airship, providing constant-level electrical power as well as variable aerodynamic thrust to maintain position in winds varying from 15 to 100 knots at high altitude. A hydrogen fueled airbreathing engine is optimum for mission lengths up to 30 days or more.

  8. Fuel Cells: A Real Option for Unmanned Aerial Vehicles Propulsion

    Science.gov (United States)

    2014-01-01

    The possibility of implementing fuel cell technology in Unmanned Aerial Vehicle (UAV) propulsion systems is considered. Potential advantages of the Proton Exchange Membrane or Polymer Electrolyte Membrane (PEMFC) and Direct Methanol Fuel Cells (DMFC), their fuels (hydrogen and methanol), and their storage systems are revised from technical and environmental standpoints. Some operating commercial applications are described. Main constraints for these kinds of fuel cells are analyzed in order to elucidate the viability of future developments. Since the low power density is the main problem of fuel cells, hybridization with electric batteries, necessary in most cases, is also explored. PMID:24600326

  9. Fuel cells: a real option for Unmanned Aerial Vehicles propulsion.

    Science.gov (United States)

    González-Espasandín, Óscar; Leo, Teresa J; Navarro-Arévalo, Emilio

    2014-01-01

    The possibility of implementing fuel cell technology in Unmanned Aerial Vehicle (UAV) propulsion systems is considered. Potential advantages of the Proton Exchange Membrane or Polymer Electrolyte Membrane (PEMFC) and Direct Methanol Fuel Cells (DMFC), their fuels (hydrogen and methanol), and their storage systems are revised from technical and environmental standpoints. Some operating commercial applications are described. Main constraints for these kinds of fuel cells are analyzed in order to elucidate the viability of future developments. Since the low power density is the main problem of fuel cells, hybridization with electric batteries, necessary in most cases, is also explored.

  10. Fuel Cells: A Real Option for Unmanned Aerial Vehicles Propulsion

    Directory of Open Access Journals (Sweden)

    Óscar González-Espasandín

    2014-01-01

    Full Text Available The possibility of implementing fuel cell technology in Unmanned Aerial Vehicle (UAV propulsion systems is considered. Potential advantages of the Proton Exchange Membrane or Polymer Electrolyte Membrane (PEMFC and Direct Methanol Fuel Cells (DMFC, their fuels (hydrogen and methanol, and their storage systems are revised from technical and environmental standpoints. Some operating commercial applications are described. Main constraints for these kinds of fuel cells are analyzed in order to elucidate the viability of future developments. Since the low power density is the main problem of fuel cells, hybridization with electric batteries, necessary in most cases, is also explored.

  11. Design and Optimization of Future Hybrid and Electric Propulsion Systems: An Advanced Tool Integrated in a Complete Workflow to Study Electric Devices Développement et optimisation des futurs systèmes de propulsion hybride et électrique : un outil avancé et intégré dans une chaîne complète dédiée à l’étude des composants électriques

    Directory of Open Access Journals (Sweden)

    Le Berr F.

    2012-08-01

    Full Text Available Electrification to reduce greenhouse effect gases in transport sector is now well-known as a relevant and future solution studied intensively by the whole actors of the domain. To reach this objective, a tool for design and characterization of electric machines has been developed at IFP Energies nouvelles. This tool, called EMTool, is based on physical equations and is integrated to a complete workflow of simulation tools, as Finite Element Models or System Simulation. This tool offers the possibility to study several types of electric machine topologies: permanent magnet synchronous machine with radial or axial flux, induction machines, etc. This paper presents the main principles of design and the main equations integrated in the EMTool, the methods to evaluate electric machine performances and the validations performed on existing machine. Finally, the position of the EMTool in the simulation tool workflow and application examples are presented, notably by coupling the EMTool with advanced optimization algorithms or finite element models. Le recours à l’électrification pour réduire les émissions de gaz à effet de serre dans le domaine du transport est désormais reconnu comme une solution pertinente et d’avenir, très étudiée par l’ensemble des acteurs du domaine. Dans cet objectif, un outil d’aide au dimensionnement et à la caractérisation de machines électriques a été développé à IFP Energies nouvelles. Cet outil, appelé EMTool, est basé sur les équations physiques du domaine et est intégré à un ensemble d’outils de simulation dédiés à l’étude des groupes motopropulseurs électrifiés, comme les outils de modélisation par éléments finis ou les outils de simulation système. Il permet d’étudier plusieurs types de topologies de machines électriques : machines synchrones à aimants permanents à flux radial ou axial, machines asynchrones, etc. Ce papier présente les grands principes de

  12. Civilian application of propulsion reactor in Indonesia

    International Nuclear Information System (INIS)

    Djokolelono, M.; Arbie, B.; Lasman, A.N.

    2000-01-01

    It has been learned that to cope with energy requirement in the remote islands and less developed regions of Indonesia, small or very small nuclear reactors producing electricity and/or process heat could be appropriately applied. The barge mounted propulsion power reactors are the attractive examples so far envisioned, and technology information of which is being exposed to the world these last years. The solutions for least maintenance and no on-site refueling, no radioactive discharge, and no radioactive waste to remain in the user country are among the attractions for further deliberations. It has been understood, however, that there are many uncertainties to overcome, especially for the developing countries to introduce this novel application. International acceptance is the most crucial, availability of first-of-the-kind engineering, prototype or reference plant that would prove licensibility in the vendor's country is the second, and economic competitiveness due to very small size is the third among issues to enlighten. The relevant regulations concerning marine nuclear safety, marine transportation, and proliferation of information, as well as international forums to justify the feasibility of related transfer of technology, are the items that the IAEA could help to provide to smoothen any possible international transaction. Indonesia supports this AGM as one of the appropriate IAEA efforts in this line, and expects from it positive international consensus and possible studies/R and D work that this country could participate in. (author)

  13. RSMASS-D nuclear thermal propulsion and bimodal system mass models

    Science.gov (United States)

    King, Donald B.; Marshall, Albert C.

    1997-01-01

    Two relatively simple models have been developed to estimate reactor, radiation shield, and balance of system masses for a particle bed reactor (PBR) nuclear thermal propulsion concept and a cermet-core power and propulsion (bimodal) concept. The approach was based on the methodology developed for the RSMASS-D models. The RSMASS-D approach for the reactor and shield sub-systems uses a combination of simple equations derived from reactor physics and other fundamental considerations along with tabulations of data from more detailed neutron and gamma transport theory computations. Relatively simple models are used to estimate the masses of other subsystem components of the nuclear propulsion and bimodal systems. Other subsystem components include instrumentation and control (I&C), boom, safety systems, radiator, thermoelectrics, heat pipes, and nozzle. The user of these models can vary basic design parameters within an allowed range to achieve a parameter choice which yields a minimum mass for the operational conditions of interest. Estimated system masses are presented for a range of reactor power levels for propulsion for the PBR propulsion concept and for both electrical power and propulsion for the cermet-core bimodal concept. The estimated reactor system masses agree with mass predictions from detailed calculations with xx percent for both models.

  14. Turboelectric Distributed Propulsion in a Hybrid Wing Body Aircraft

    Science.gov (United States)

    Felder, James L.; Brown, Gerald V.; DaeKim, Hyun; Chu, Julio

    2011-01-01

    The performance of the N3-X, a 300 passenger hybrid wing body (HWB) aircraft with turboelectric distributed propulsion (TeDP), has been analyzed to see if it can meet the 70% fuel burn reduction goal of the NASA Subsonic Fixed Wing project for N+3 generation aircraft. The TeDP system utilizes superconducting electric generators, motors and transmission lines to allow the power producing and thrust producing portions of the system to be widely separated. It also allows a small number of large turboshaft engines to drive any number of propulsors. On the N3-X these new degrees of freedom were used to (1) place two large turboshaft engines driving generators in freestream conditions to maximize thermal efficiency and (2) to embed a broad continuous array of 15 motor driven propulsors on the upper surface of the aircraft near the trailing edge. That location maximizes the amount of the boundary layer ingested and thus maximizes propulsive efficiency. The Boeing B777-200LR flying 7500 nm (13890 km) with a cruise speed of Mach 0.84 and an 118100 lb payload was selected as the reference aircraft and mission for this study. In order to distinguish between improvements due to technology and aircraft configuration changes from those due to the propulsion configuration changes, an intermediate configuration was included in this study. In this configuration a pylon mounted, ultra high bypass (UHB) geared turbofan engine with identical propulsion technology was integrated into the same hybrid wing body airframe. That aircraft achieved a 52% reduction in mission fuel burn relative to the reference aircraft. The N3-X was able to achieve a reduction of 70% and 72% (depending on the cooling system) relative to the reference aircraft. The additional 18% - 20% reduction in the mission fuel burn can therefore be attributed to the additional degrees of freedom in the propulsion system configuration afforded by the TeDP system that eliminates nacelle and pylon drag, maximizes boundary

  15. Feasibility of MHD submarine propulsion

    Energy Technology Data Exchange (ETDEWEB)

    Doss, E.D. (ed.) (Argonne National Lab., IL (United States)); Sikes, W.C. (ed.) (Newport News Shipbuilding and Dry Dock Co., VA (United States))

    1992-09-01

    This report describes the work performed during Phase 1 and Phase 2 of the collaborative research program established between Argonne National Laboratory (ANL) and Newport News Shipbuilding and Dry Dock Company (NNS). Phase I of the program focused on the development of computer models for Magnetohydrodynamic (MHD) propulsion. Phase 2 focused on the experimental validation of the thruster performance models and the identification, through testing, of any phenomena which may impact the attractiveness of this propulsion system for shipboard applications. The report discusses in detail the work performed in Phase 2 of the program. In Phase 2, a two Tesla test facility was designed, built, and operated. The facility test loop, its components, and their design are presented. The test matrix and its rationale are discussed. Representative experimental results of the test program are presented, and are compared to computer model predictions. In general, the results of the tests and their comparison with the predictions indicate that thephenomena affecting the performance of MHD seawater thrusters are well understood and can be accurately predicted with the developed thruster computer models.

  16. METHODOLOGY OF THE HYBRID PROPULSION SYSTEM (DMP & DEP FOR TRIMARAN TYPE FAST PATROL BOAT

    Directory of Open Access Journals (Sweden)

    Aulia Widyandari

    2012-04-01

    Full Text Available There are lot of research done to develop a patrol boat, from the modification of hull model until propulsion system equipment. For example the model ship type AMV (Advanced Marine Vehicle was developed starting from the Catamaran, Trimaran and  Pentamaran model. Everything is aimed at obtaining the ship design that has the speed and stability. In addition to achieving high-speed vessel must be equipped with propulsion (Main Power is great, that means the main engine dimensions, auxiliary equipments and fuel tanks is too large. Many Limitations of space on the ship's engine room trimaran vessel is the main obstacle in designing propulsion system. Beside that Patrol boat should have many missions speed, so propulsion system should be designed at that conditions.   Hybrid propulsion is a combination of Diesel Mechanical Propulsion (DMP with Diesel Electric Propulsion (DEP. DMP system is connected directly to the propeller shaft (or through a reduction-gear. DMP has provide more efficiency rate of 95%. While DEP is only able to provide efficiency by 85% - 89% is slightly lower than DMP, but the DEP offers many advantages such as simplicity and suitability in the rotational speed settings, control systems, engine power production Redundancy, Flexibility in the design of equipments layout in engine rooms, noise, vibration and fuel consumption efficiency which affects the lower pollution.   Design of Hybrid Propulsion system can be satisfied and achieved the Power requirements and optimally at all speed condition of patrol boat. Therefore the author made using modeling Maxsurf-11.12 software and carried out various optimization of the choice of main engine, propeller and system conditions for fast patrol boat cruise. 

  17. Fluorine-Hydrazine Propulsion Technology update

    Science.gov (United States)

    Bond, D. L.; Appel, M. A.; Kruger, G. W.

    1980-01-01

    The current status of the fluorine hydrazine propulsion system development is discussed. Progress on the components, rocket engine, and system design is presented. A detailed look at a fluorine hydrazine system as a potential propulsion option for the Galileo Project (Jupiter orbiter) is delineated and the results of safety and technical reviews which were accomplished to verify the feasibility of this option are summarized.

  18. 46 CFR 109.555 - Propulsion boilers.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Propulsion boilers. 109.555 Section 109.555 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS OPERATIONS Miscellaneous § 109.555 Propulsion boilers. The master or person in charge and the engineer in charge shall...

  19. 46 CFR 130.120 - Propulsion control.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Propulsion control. 130.120 Section 130.120 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS VESSEL CONTROL, AND MISCELLANEOUS EQUIPMENT AND SYSTEMS Vessel Control § 130.120 Propulsion control. (a) Each vessel must have— (1...

  20. Propulsive force in front crawl swimming

    NARCIS (Netherlands)

    Berger, M.A.M.; de Groot, G.; Hollander, A.P.

    1999-01-01

    To evaluate the propulsive forces in front crawl arm swimming, derived from a three-dimensional kinematic analysis, these values were compared with mean drag forces. The propulsive forces during front crawl swimming using the arms only were calculated using three-dimensional kinematic analysis

  1. Mini-magnetospheric plasma propulsion (M2P2): High speed propulsion sailing the solar wind

    International Nuclear Information System (INIS)

    Winglee, Robert; Slough, John; Ziemba, Tim; Goodson, Anthony

    2000-01-01

    Mini-Magnetospheric Plasma Propulsion (M2P2) seeks the creation of a magnetic wall or bubble (i.e. a magnetosphere) that will intercept the supersonic solar wind which is moving at 300-800 km/s. In so doing, a force of about 1 N will be exerted on the spacecraft by the spacecraft while only requiring a few mN of force to sustain the mini-magnetosphere. Equivalently, the incident solar wind power is about 1 MW while about 1 kW electrical power is required to sustain the system, with about 0.25-0.5 kg being expended per day. This nominal configuration utilizing only solar electric cells for power, the M2P2 will produce a magnetic barrier approximately 15-20 km in radius, which would accelerate a 70-140 kg payload to speeds of about 50-80 km/s. At this speed, missions to the heliopause and beyond can be achieved in under 10 yrs. Design characteristics for a prototype are also described

  2. Electric drives for light e-scooters

    OpenAIRE

    Andrada Gascón, Pedro; Blanqué Molina, Balduino; Martínez Piera, Eusebio; Torrent Burgués, Marcel; Perat Benavides, Josep Ignasi; Sánchez López, José Antonio

    2013-01-01

    In the next years is expected an important rise in sales of electrical scooters in the entire world but especially in China. In order to address this challenge the electric scooter industry has to be more competitive in the transportation market and therefore important improvements, in terms of energy density and costs, have to be done in the electric storage system and in the electric propulsion system. In this paper, an analytical and experimental comparison of two different drives for elec...

  3. Distributed Turboelectric Propulsion for Hybrid Wing Body Aircraft

    Science.gov (United States)

    Kim, Hyun Dae; Brown, Gerald V.; Felder, James L.

    2008-01-01

    Meeting future goals for aircraft and air traffic system performance will require new airframes with more highly integrated propulsion. Previous studies have evaluated hybrid wing body (HWB) configurations with various numbers of engines and with increasing degrees of propulsion-airframe integration. A recently published configuration with 12 small engines partially embedded in a HWB aircraft, reviewed herein, serves as the airframe baseline for the new concept aircraft that is the subject of this paper. To achieve high cruise efficiency, a high lift-to-drag ratio HWB was adopted as the baseline airframe along with boundary layer ingestion inlets and distributed thrust nozzles to fill in the wakes generated by the vehicle. The distributed powered-lift propulsion concept for the baseline vehicle used a simple, high-lift-capable internally blown flap or jet flap system with a number of small high bypass ratio turbofan engines in the airframe. In that concept, the engine flow path from the inlet to the nozzle is direct and does not involve complicated internal ducts through the airframe to redistribute the engine flow. In addition, partially embedded engines, distributed along the upper surface of the HWB airframe, provide noise reduction through airframe shielding and promote jet flow mixing with the ambient airflow. To improve performance and to reduce noise and environmental impact even further, a drastic change in the propulsion system is proposed in this paper. The new concept adopts the previous baseline cruise-efficient short take-off and landing (CESTOL) airframe but employs a number of superconducting motors to drive the distributed fans rather than using many small conventional engines. The power to drive these electric fans is generated by two remotely located gas-turbine-driven superconducting generators. This arrangement allows many small partially embedded fans while retaining the superior efficiency of large core engines, which are physically separated

  4. Mission Capability Gains from Multi-Mode Propulsion Thrust Variations on a Variety Spacecraft Orbital Maneuvers

    Science.gov (United States)

    2011-03-01

    a 30 cm derated ion thruster, a xenon Hall thruster (SPT-100), and a hydrazine arcjet thruster. Repositioning a spacecraft in a sun synchronous low ...4000, which has a high thrust/high power mode and a low thrust/ low power mode. The maximum thrust on this system was around 0.3 N and has had...Small Satellite LEO Maneuvers with Low - Power Electric Propulsion,” 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, AIAA 2008-4516.     99

  5. Completely modular Thermionic Reactor Ion Propulsion System (TRIPS)

    Science.gov (United States)

    Peelgren, M. L.; Kikin, G. M.; Sawyer, C. D.

    1972-01-01

    The nuclear reactor powered ion propulsion system described is an advanced completely modularized system which lends itself to development of prototype and/or flight type components without the need for complete system tests until late in the development program. This modularity is achieved in all of the subsystems and components of the electric propulsion system including (1) the thermionic fuel elements, (2) the heat rejection subsystem (heat pipes), (3) the power conditioning modules, and (4) the ion thrusters. Both flashlight and external fuel type in-core thermionic reactors are considered as the power source. The thermionic fuel elements would be useful over a range of reactor power levels. Electrical heated acceptance testing in their flight configuration is possible for the external fuel case. Nuclear heated testing by sampling methods could be used for acceptance testing of flashlight fuel elements. The use of heat pipes for cooling the collectors and as a means of heat transport to the radiator allows early prototype or flight configuration testing of a small module of the heat rejection subsystem as opposed to full scale liquid metal pumps and radiators in a large vacuum chamber. The power conditioner (p/c) is arranged in modules with passive cooling.

  6. Cycle Trades for Nuclear Thermal Rocket Propulsion Systems

    Science.gov (United States)

    White, C.; Guidos, M.; Greene, W.

    2003-01-01

    Nuclear fission has been used as a reliable source for utility power in the United States for decades. Even in the 1940's, long before the United States had a viable space program, the theoretical benefits of nuclear power as applied to space travel were being explored. These benefits include long-life operation and high performance, particularly in the form of vehicle power density, enabling longer-lasting space missions. The configurations for nuclear rocket systems and chemical rocket systems are similar except that a nuclear rocket utilizes a fission reactor as its heat source. This thermal energy can be utilized directly to heat propellants that are then accelerated through a nozzle to generate thrust or it can be used as part of an electricity generation system. The former approach is Nuclear Thermal Propulsion (NTP) and the latter is Nuclear Electric Propulsion (NEP), which is then used to power thruster technologies such as ion thrusters. This paper will explore a number of indirect-NTP engine cycle configurations using assumed performance constraints and requirements, discuss the advantages and disadvantages of each cycle configuration, and present preliminary performance and size results. This paper is intended to lay the groundwork for future efforts in the development of a practical NTP system or a combined NTP/NEP hybrid system.

  7. Possibility of the Space Propulsion System Utilizing the ZPF Field

    Science.gov (United States)

    Musha, Takaaki

    2009-03-01

    According to the gravity theory proposed by H. E. Puthoff, gravity is a form of long-range van der Waals force associated with the Zitterbewegung of elementary particles in response to zero-point fluctuations (ZPF) of the vacuum and the inertia mass is arisen from the interaction with the vacuum electromagnetic zero-point field. From the standpoint of the ZPF field theory, the author studied the possibility of the space propulsion system, which is based on interactions between the zero-point field of the quantum vacuum and high potential electric field. By the theoretical analysis, it is considered that impulsive high potential electric field can produce a sufficient momentum for the spacecraft, which would permit interstellar travel instead of conventional chemical rockets.

  8. 49 CFR 238.425 - Electrical system.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Electrical system. 238.425 Section 238.425... Equipment § 238.425 Electrical system. (a) Circuit protection. (1) The main propulsion power line shall be.... (b) Main battery system. (1) The main batteries shall be isolated from the cab and passenger seating...

  9. A Review of Laser Ablation Propulsion

    International Nuclear Information System (INIS)

    Phipps, Claude; Bohn, Willy; Lippert, Thomas; Sasoh, Akihiro; Schall, Wolfgang; Sinko, John

    2010-01-01

    Laser Ablation Propulsion is a broad field with a wide range of applications. We review the 30-year history of laser ablation propulsion from the transition from earlier pure photon propulsion concepts of Oberth and Saenger through Kantrowitz's original laser ablation propulsion idea to the development of air-breathing 'Lightcraft' and advanced spacecraft propulsion engines. The polymers POM and GAP have played an important role in experiments and liquid ablation fuels show great promise. Some applications use a laser system which is distant from the propelled object, for example, on another spacecraft, the Earth or a planet. Others use a laser that is part of the spacecraft propulsion system on the spacecraft. Propulsion is produced when an intense laser beam strikes a condensed matter surface and produces a vapor or plasma jet. The advantages of this idea are that exhaust velocity of the propulsion engine covers a broader range than is available from chemistry, that it can be varied to meet the instantaneous demands of the particular mission, and that practical realizations give lower mass and greater simplicity for a payload delivery system. We review the underlying theory, buttressed by extensive experimental data. The primary problem in laser space propulsion theory has been the absence of a way to predict thrust and specific impulse over the transition from the vapor to the plasma regimes. We briefly discuss a method for combining two new vapor regime treatments with plasma regime theory, giving a smooth transition from one regime to the other. We conclude with a section on future directions.

  10. Design and Development of a Methane Cryogenic Propulsion Stage for Human Mars Exploration

    Science.gov (United States)

    Percy, Thomas K.; Polsgrove, Tara; Turpin, Jason; Alexander, Leslie

    2016-01-01

    NASA is currently working on the Evolvabe Mars Campaign (EMC) study to outline transportation and mission options for human exploration of Mars. One of the key aspects of the EMC is leveraging current and planned near-term technology investments to build an affordable and evolvable approach to Mars exploration. This leveraging of investments includes the use of high-power Solar Electric Propulsion (SEP) systems, evolved from those currently under development in support of the Asteroid Redirect Mission (ARM), to deliver payloads to Mars. The EMC is considering several transportation options that combine solar electric and chemical propulsion technologies to deliver crew and cargo to Mars. In one primary architecture option, the SEP propulsion system is used to pre-deploy mission elements to Mars while a high-thrust chemical propulsion system is used to send crew on faster ballistic transfers between Earth and Mars. This high-thrust chemical system uses liquid oxygen - liquid methane main propulsion and reaction control systems integrated into the Methane Cryogenic Propulsion Stage (MCPS). Over the past year, there have been several studies completed to provide critical design and development information related to the MCPS. This paper is intended to provide a summary of these efforts. A summary of the current point of departure design for the MCPS is provided as well as an overview of the mission architecture and concept of operations that the MCPS is intended to support. To leverage the capabilities of solar electric propulsion to the greatest extent possible, the EMC architecture pre-deploys to Mars orbit the stages required for returning crew from Mars. While this changes the risk posture of the architecture, it can provide some mass savings by using higher-efficiency systems for interplanetary transfer. However, this does introduce significantly longer flight times to Mars which, in turn, increases the overall lifetime of the stages to as long as 2500 days. This

  11. Magnetic resonant wireless power transfer for propulsion of implantable micro-robot

    Science.gov (United States)

    Kim, D.; Kim, M.; Yoo, J.; Park, H.-H.; Ahn, S.

    2015-05-01

    Recently, various types of mobile micro-robots have been proposed for medical and industrial applications. Especially in medical applications, a motor system for propulsion cannot easily be used in a micro-robot due to their small size. Therefore, micro-robots are usually actuated by controlling the magnitude and direction of an external magnetic field. However, for micro-robots, these methods in general are only applicable for moving and drilling operations, but not for the undertaking of various missions. In this paper, we propose a new micro-robot concept, which uses wireless power transfer to deliver the propulsion force and electric power simultaneously. The mechanism of Lorentz force generation and the coil design methodologies are explained, and validation of the proposed propulsion system for a micro-robot is discussed thorough a simulation and with actual measurements with up-scaled test vehicles.

  12. Green Electric Monopropellant (GEM) Fueled Pulsed Plasma Thruster, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Digital Solid State Propulsion is proposing the development of a new liquid Pulsed Plasma Thruster (PPT) using its revolutionary HAN-based Green Electric...

  13. Is effective force application in handrim wheelchair propulsion also efficient?

    NARCIS (Netherlands)

    Bregman, D.J.J.; van Drongelen, S.V.; Veeger, H.E.J.

    2009-01-01

    Background: Efficiency in manual wheelchair propulsion is low, as is the fraction of the propulsion force that is attributed to the moment of propulsion of the wheelchair. In this study we tested the hypothesis that a tangential propulsion force direction leads to an increase in physiological cost,

  14. Sizing Analysis for Aircraft Utilizing Hybrid-Electric Propulsion Systems

    Science.gov (United States)

    2011-03-18

    academic experience. To the hybrid design team and machine shop guys, it was a lot of fun building and testing such a revolutionary concept. I...in current batteries. Yuneec aviation has designed a light sport aircraft using this method and the aircraft can only maintain flight 16 safely...current, no load, current, and torque constant of the motor. o m Q i iQ K

  15. Pluto/Kuiper Missions with Advanced Electric Propulsion and Power

    Science.gov (United States)

    Oleson, S. R.; Patterson, M. J.; Schrieber, J.; Gefert, L. P.

    2001-01-01

    In response to a request by NASA Code SD Deep Space Exploration Technology Program, NASA Glenn Research center performed a study to identify advanced technology options to perform a Pluto/Kuiper mission without depending on a 2004 Jupiter Gravity Assist, but still arriving before 2020. A concept using a direct trajectory with small, sub-kilowatt ion thrusters and Stirling radioisotope power system was shown to allow the same or smaller launch vehicle class (EELV) as the chemical 2004 baseline and allow launch in any year and arrival in the 2014 to 2020 timeframe. With the nearly constant power available from the radioisotope power source such small ion propelled spacecraft could explore many of the outer planetary targets. Such studies are already underway. Additional information is contained in the original extended abstract.

  16. Gas Foil Bearings for Space Propulsion Nuclear Electric Power Generation

    Science.gov (United States)

    Howard, Samuel A.; DellaCorte, Christopher

    2006-01-01

    The choice of power conversion technology is critical in directing the design of a space vehicle for the future NASA mission to Mars. One candidate design consists of a foil bearing supported turbo alternator driven by a helium-xenon gas mixture heated by a nuclear reactor. The system is a closed-loop, meaning there is a constant volume of process fluid that is sealed from the environment. Therefore, foil bearings are proposed due to their ability to use the process gas as a lubricant. As such, the rotor dynamics of a foil bearing supported rotor is an important factor in the eventual design. The current work describes a rotor dynamic analysis to assess the viability of such a system. A brief technology background, assumptions, analyses, and conclusions are discussed in this report. The results indicate that a foil bearing supported turbo alternator is possible, although more work will be needed to gain knowledge about foil bearing behavior in helium-xenon gas.

  17. Reservoir Cathode for Electric Space Propulsion, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose a hollow reservoir cathode to improve performance in ion and Hall thrusters. We will adapt our existing reservoir cathode technology to this purpose....

  18. Coherent Structures in Plasmas Relevant to Electric Propulsion

    Science.gov (United States)

    2016-06-24

    Cappelli. "Excited state population dynamics of a xenon ac discharge." Plasma Sources Science and Technology 24, no. 5 (2015): 055013. 10. Frias, Winston...field and pressure gradients, which in turn, can induce large-scale gradient-driven instabilities forming plasma strictures such as spokes. The dynamics ...response is crucially sensitive to the dynamics along the magnetic field direction due to high velocity of electron thermal motion. On the contrary

  19. PHOBOS Exploration using Two Small Solar Electric Propulsion (SEP) Spacecraft

    Science.gov (United States)

    Lang, J. J.; Baker, J. D.; McElrath, T. P.; Piacentine, J. S.; Snyder, J. S.

    2012-01-01

    Phobos Surveyor Mission concept provides an innovative low cost, highly reliable approach to exploring the inner solar system 1/16/2013 3 Dual manifest launch. Use only flight proven, well characterize commercial off-the-shelf components. Flexible mission architecture allows for a slew of unique measurements.

  20. Hybrid Modeling Capability for Aircraft Electrical Propulsion Systems, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — PC Krause and Associates is partnering with Purdue University, EleQuant, and GridQuant to create a hybrid modeling capability. The combination of PCKA's extensive...