WorldWideScience

Sample records for single-shaft brayton power

  1. Parametric Investigation of Brayton Cycle for High Temperature Gas-Cooled Reactor

    International Nuclear Information System (INIS)

    Chang Oh

    2004-01-01

    The Idaho National Engineering and Environmental Laboratory (INEEL) is investigating a Brayton cycle efficiency improvement on a high temperature gas-cooled reactor (HTGR) as part of Generation-IV nuclear engineering research initiative. In this project, we are investigating helium Brayton cycles for the secondary side of an indirect energy conversion system. Ultimately we will investigate the improvement of the Brayton cycle using other fluids, such as supercritical carbon dioxide. Prior to the cycle improvement study, we established a number of baseline cases for the helium indirect Brayton cycle. These cases look at both single-shaft and multiple-shaft turbomachinery. The baseline cases are based on a 250 MW thermal pebble bed HTGR. The results from this study are applicable to other reactor concepts such as a very high temperature gas-cooled reactor (VHTR), fast gas-cooled reactor (FGR), supercritical water reactor (SWR), and others. In this study, we are using the HYSYS computer code for optimization of the helium Brayton cycle. Besides the HYSYS process optimization, we performed parametric study to see the effect of important parameters on the cycle efficiency. For these parametric calculations, we use a cycle efficiency model that was developed based on the Visual Basic computer language. As a part of this study we are currently investigated single-shaft vs. multiple shaft arrangement for cycle efficiency and comparison, which will be published in the next paper. The ultimate goal of this study is to use supercritical carbon dioxide for the HTGR power conversion loop in order to improve the cycle efficiency to values great than that of the helium Brayton cycle. This paper includes preliminary calculations of the steady state overall Brayton cycle efficiency based on the pebble bed reactor reference design (helium used as the working fluid) and compares those results with an initial calculation of a CO2 Brayton cycle

  2. Brayton Power Conversion Unit Tested: Provides a Path to Future High-Power Electric Propulsion Missions

    Science.gov (United States)

    Mason, Lee S.

    2003-01-01

    Closed-Brayton-cycle conversion technology has been identified as an excellent candidate for nuclear electric propulsion (NEP) power conversion systems. Advantages include high efficiency, long life, and high power density for power levels from about 10 kWe to 1 MWe, and beyond. An additional benefit for Brayton is the potential for the alternator to deliver very high voltage as required by the electric thrusters, minimizing the mass and power losses associated with the power management and distribution (PMAD). To accelerate Brayton technology development for NEP, the NASA Glenn Research Center is developing a low-power NEP power systems testbed that utilizes an existing 2- kWe Brayton power conversion unit (PCU) from previous solar dynamic technology efforts. The PCU includes a turboalternator, a recuperator, and a gas cooler connected by gas ducts. The rotating assembly is supported by gas foil bearings and consists of a turbine, a compressor, a thrust rotor, and an alternator on a single shaft. The alternator produces alternating-current power that is rectified to 120-V direct-current power by the PMAD unit. The NEP power systems testbed will be utilized to conduct future investigations of operational control methods, high-voltage PMAD, electric thruster interactions, and advanced heat rejection techniques. The PCU was tested in Glenn s Vacuum Facility 6. The Brayton PCU was modified from its original solar dynamic configuration by the removal of the heat receiver and retrofitting of the electrical resistance gas heater to simulate the thermal input of a steady-state nuclear source. Then, the Brayton PCU was installed in the 3-m test port of Vacuum Facility 6, as shown. A series of tests were performed between June and August of 2002 that resulted in a total PCU operational time of about 24 hr. An initial test sequence on June 17 determined that the reconfigured unit was fully operational. Ensuing tests provided the operational data needed to characterize PCU

  3. Test Results from a Direct Drive Gas Reactor Simulator Coupled to a Brayton Power Conversion Unit

    Science.gov (United States)

    Hervol, David S.; Briggs, Maxwell H.; Owen, Albert K.; Bragg-Sitton, Shannon M.; Godfroy, Thomas J.

    2010-01-01

    Component level testing of power conversion units proposed for use in fission surface power systems has typically been done using relatively simple electric heaters for thermal input. These heaters do not adequately represent the geometry or response of proposed reactors. As testing of fission surface power systems transitions from the component level to the system level it becomes necessary to more accurately replicate these reactors using reactor simulators. The Direct Drive Gas-Brayton Power Conversion Unit test activity at the NASA Glenn Research Center integrates a reactor simulator with an existing Brayton test rig. The response of the reactor simulator to a change in Brayton shaft speed is shown as well as the response of the Brayton to an insertion of reactivity, corresponding to a drum reconfiguration. The lessons learned from these tests can be used to improve the design of future reactor simulators which can be used in system level fission surface power tests.

  4. Conceptual Design Study of a Closed Brayton Cycle Turbogenerator for Space Power Thermal-To-Electric Conversion System

    Science.gov (United States)

    Hansen, Jeff L.

    2000-01-01

    A conceptual design study was completed for a 360 kW Helium-Xenon closed Brayton cycle turbogenerator. The selected configuration is comprised of a single-shaft gas turbine engine coupled directly to a high-speed generator. The engine turbomachinery includes a 2.5:1 pressure ratio compression system with an inlet corrected flow of 0.44 kg/sec. The single centrifugal stage impeller discharges into a scroll via a vaned diffuser. The scroll routes the air into the cold side sector of the recuperator. The hot gas exits a nuclear reactor radiator at 1300 K and enters the turbine via a single-vaned scroll. The hot gases are expanded through the turbine and then diffused before entering the hot side sector of the recuperator. The single shaft design is supported by air bearings. The high efficiency shaft mounted permanent magnet generator produces an output of 370 kW at a speed of 60,000 rpm. The total weight of the turbogenerator is estimated to be only 123 kg (less than 5% of the total power plant) and has a volume of approximately 0.11 cubic meters. This turbogenerator is a key element in achieving the 40 to 45% overall power plant thermal efficiency.

  5. Conceptual design study of closed Brayton cycle gas turbines for fusion power generation

    International Nuclear Information System (INIS)

    Kuo, S.C.

    1976-01-01

    A conceptual design study is presented of closed Brayton cycle gas turbine power conversion systems suitable for integration with advanced-concept Tokamak fusion reactors (such as UWMAK-III) for efficient power generation without requiring cooling water supply for waste heat rejection. A baseline cycle configuration was selected and parametric performance analyses were made. Based on the results of the parametric analysis and trade-off and interface considerations, the reference design conditions for the baseline cycle were selected. Conceptual designs were made of the major helium gas turbine power system components including a 585-MWe single-shaft turbomachine, (three needed), regenerator, precooler, intercooler, and the piping system connecting them. Structural configuration and significant physical dimensions for major components are illustrated, and a brief discussion on major advantages, power control and crucial technologies for the helium gas turbine power system are presented

  6. Brayton rotating units for space reactor power systems

    Energy Technology Data Exchange (ETDEWEB)

    Gallo, Bruno M.; El-Genk, Mohamed S. [Institute for Space and Nuclear Power Studies and Chemical and Nuclear Engineering Dept., The Univ. of New Mexico, Albuquerque, NM 87131 (United States)

    2009-09-15

    Designs and analyses models of centrifugal-flow compressor and radial-inflow turbine of 40.8kW{sub e} Brayton Rotating Units (BRUs) are developed for 15 and 40 g/mole He-Xe working fluids. Also presented are the performance results of a space power system with segmented, gas cooled fission reactor heat source and three Closed Brayton Cycle loops, each with a separate BRU. The calculated performance parameters of the BRUs and the reactor power system are for shaft rotational speed of 30-55 krpm, reactor thermal power of 120-471kW{sub th}, and turbine inlet temperature of 900-1149 K. With 40 g/mole He-Xe, a power system peak thermal efficiency of 26% is achieved at rotation speed of 45 krpm, compressor and turbine inlet temperatures of 400 and 1149 K and 0.93 MPa at exit of the compressor. The corresponding system electric power is 122.4kW{sub e}, working fluid flow rate is 1.85 kg/s and the pressure ratio and polytropic efficiency are 1.5% and 86.3% for the compressor and 1.42% and 94.1% for the turbine. For the same nominal electrical power of 122.4kW{sub e}, decreasing the molecular weight of the working fluid (15 g/mole) decreases its flow rate to 1.03 kg/s and increases the system pressure to 1.2 MPa. (author)

  7. Closed Brayton cycle power conversion systems for nuclear reactors :

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Steven A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lipinski, Ronald J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Vernon, Milton E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sanchez, Travis [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2006-04-01

    This report describes the results of a Sandia National Laboratories internally funded research program to study the coupling of nuclear reactors to gas dynamic Brayton power conversion systems. The research focused on developing integrated dynamic system models, fabricating a 10-30 kWe closed loop Brayton cycle, and validating these models by operating the Brayton test-loop. The work tasks were performed in three major areas. First, the system equations and dynamic models for reactors and Closed Brayton Cycle (CBC) systems were developed and implemented in SIMULINKTM. Within this effort, both steady state and dynamic system models for all the components (turbines, compressors, reactors, ducting, alternators, heat exchangers, and space based radiators) were developed and assembled into complete systems for gas cooled reactors, liquid metal reactors, and electrically heated simulators. Various control modules that use proportional-integral-differential (PID) feedback loops for the reactor and the power-conversion shaft speed were also developed and implemented. The simulation code is called RPCSIM (Reactor Power and Control Simulator). In the second task an open cycle commercially available Capstone C30 micro-turbine power generator was modified to provide a small inexpensive closed Brayton cycle test loop called the Sandia Brayton test-Loop (SBL-30). The Capstone gas-turbine unit housing was modified to permit the attachment of an electrical heater and a water cooled chiller to form a closed loop. The Capstone turbine, compressor, and alternator were used without modification. The Capstone systems nominal operating point is 1150 K turbine inlet temperature at 96,000 rpm. The annular recuperator and portions of the Capstone control system (inverter) and starter system also were reused. The rotational speed of the turbo-machinery is controlled by adjusting the alternator load by using the electrical grid as the load bank. The SBL-30 test loop was operated at

  8. Thermodynamic analysis and preliminary design of closed Brayton cycle using nitrogen as working fluid and coupled to small modular Sodium-cooled fast reactor (SM-SFR)

    International Nuclear Information System (INIS)

    Olumayegun, Olumide; Wang, Meihong; Kelsall, Greg

    2017-01-01

    Highlights: • Nitrogen closed Brayton cycle for small modular sodium-cooled fast reactor studied. • Thermodynamic modelling and analysis of closed Brayton cycle performed. • Two-shaft configuration proposed and performance compared to single shaft. • Preliminary design of heat exchangers and turbomachinery carried out. - Abstract: Sodium-cooled fast reactor (SFR) is considered the most promising of the Generation IV reactors for their near-term demonstration of power generation. Small modular SFRs (SM-SFRs) have less investment risk, can be deployed more quickly, are easier to operate and are more flexible in comparison to large nuclear reactor. Currently, SFRs use the proven Rankine steam cycle as the power conversion system. However, a key challenge is to prevent dangerous sodium-water reaction that could happen in SFR coupled to steam cycle. Nitrogen gas is inert and does not react with sodium. Hence, intercooled closed Brayton cycle (CBC) using nitrogen as working fluid and with a single shaft configuration has been one common power conversion system option for possible near-term demonstration of SFR. In this work, a new two shaft nitrogen CBC with parallel turbines was proposed to further simplify the design of the turbomachinery and reduce turbomachinery size without compromising the cycle efficiency. Furthermore, thermodynamic performance analysis and preliminary design of components were carried out in comparison with a reference single shaft nitrogen cycle. Mathematical models in Matlab were developed for steady state thermodynamic analysis of the cycles and for preliminary design of the heat exchangers, turbines and compressors. Studies were performed to investigate the impact of the recuperator minimum terminal temperature difference (TTD) on the overall cycle efficiency and recuperator size. The effect of turbomachinery efficiencies on the overall cycle efficiency was examined. The results showed that the cycle efficiency of the proposed

  9. Universal Expression of Efficiency at Maximum Power: A Quantum-Mechanical Brayton Engine Working with a Single Particle Confined in a Power-Law Trap

    International Nuclear Information System (INIS)

    Ye Zhuo-Lin; Li Wei-Sheng; Lai Yi-Ming; He Ji-Zhou; Wang Jian-Hui

    2015-01-01

    We propose a quantum-mechanical Brayton engine model that works between two superposed states, employing a single particle confined in an arbitrary power-law trap as the working substance. Applying the superposition principle, we obtain the explicit expressions of the power and efficiency, and find that the efficiency at maximum power is bounded from above by the function: η_+ = θ/(θ + 1), with θ being a potential-dependent exponent. (paper)

  10. Brayton dynamic isotope power systems update

    International Nuclear Information System (INIS)

    Davis, K.A.; Pietsch, A.; Casagrande, R.D.

    1986-01-01

    Brayton dynamic power systems are uniquely suited for space applications. They are compact and highly efficient, offer inherent reliability due to only one moving part, and utilize a single phase and inert working fluid. Additional features include gas bearings, constant speed, and operation at essentially constant temperature. The design, utilizing an inert gas working fluid and gas bearing, is unaffected by zero gravity and can be easily started and restarted in space at low temperatures. This paper describes the salient features of the BIPS as a Dynamic Isotope Power System (DIPS), summarizes the development work to date, establishes the maturity of the design, provides an update on materials technology, and reviews systems integration considerations

  11. Study of reactor Brayton power systems for nuclear electric spacecraft

    Science.gov (United States)

    1979-01-01

    The feasibility of using Brayton power systems for nuclear electric spacecraft was investigated. The primary performance parameters of systems mass and radiator area were determined for systems from 100 to 1000 kW sub e. Mathematical models of all system components were used to determine masses and volumes. Two completely independent systems provide propulsion power so that no single-point failure can jeopardize a mission. The waste heat radiators utilize armored heat pipes to limit meteorite puncture. The armor thickness was statistically determined to achieve the required probability of survival. A 400 kW sub e reference system received primary attention as required by the contract. The components of this system were defined and a conceptual layout was developed with encouraging results. An arrangement with redundant Brayton power systems having a 1500 K (2240 F) turbine inlet temperature was shown to be compatible with the dimensions of the space shuttle orbiter payload bay.

  12. Power and efficiency optimization for combined Brayton and inverse Brayton cycles

    International Nuclear Information System (INIS)

    Zhang Wanli; Chen Lingen; Sun Fengrui

    2009-01-01

    A thermodynamic model for open combined Brayton and inverse Brayton cycles is established considering the pressure drops of the working fluid along the flow processes and the size constraints of the real power plant using finite time thermodynamics in this paper. There are 11 flow resistances encountered by the gas stream for the combined Brayton and inverse Brayton cycles. Four of these, the friction through the blades and vanes of the compressors and the turbines, are related to the isentropic efficiencies. The remaining flow resistances are always present because of the changes in flow cross-section at the compressor inlet of the top cycle, combustion inlet and outlet, turbine outlet of the top cycle, turbine outlet of the bottom cycle, heat exchanger inlet, and compressor inlet of the bottom cycle. These resistances control the air flow rate and the net power output. The relative pressure drops associated with the flow through various cross-sectional areas are derived as functions of the compressor inlet relative pressure drop of the top cycle. The analytical formulae about the relations between power output, thermal conversion efficiency, and the compressor pressure ratio of the top cycle are derived with the 11 pressure drop losses in the intake, compression, combustion, expansion, and flow process in the piping, the heat transfer loss to the ambient, the irreversible compression and expansion losses in the compressors and the turbines, and the irreversible combustion loss in the combustion chamber. The performance of the model cycle is optimized by adjusting the compressor inlet pressure of the bottom cycle, the air mass flow rate and the distribution of pressure losses along the flow path. It is shown that the power output has a maximum with respect to the compressor inlet pressure of the bottom cycle, the air mass flow rate or any of the overall pressure drops, and the maximized power output has an additional maximum with respect to the compressor pressure

  13. Program plan for the Brayton Isotope Power System. Phase I. Design, fabrication and test of the Brayton Isotope Power System

    International Nuclear Information System (INIS)

    1975-01-01

    Phase I of an overall program for the development of a 500 to 2000 W(e) (EOM), 7-y life, power system for space vehicles is discussed. The system uses a closed Brayton dynamic system to convert energy from an isotope heat source at a net efficiency greater than 25 percent. This first phase, a 35-month effort, is for the conceptual design of a 1300 W(e), 450 lb flight system and the design, fabrication, and test of a ground demonstration system. The flight system will use, for the baseline design, two of the multihundred-watt (MHW) heat sources being developed. The Ground Demonstration System will simulate, as closely as possible, the Brayton Isotope Power Flight System and will utilize components and technology being developed for the Mini-Brayton rotating unit, recuperator and heat source assembly, respectively. The Ground Demonstration System includes a performance test and a 1000-h endurance test

  14. Design and analysis of helium Brayton power cycles for HiPER reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sánchez, Consuelo, E-mail: csanchez@ind.uned.es [Dpto. Ingeniería Energética UNED, Madrid (Spain); Juárez, Rafael; Sanz, Javier [Dpto. Ingeniería Energética UNED, Madrid (Spain); Instituto de Fusión Nuclear/UPM, Madrid (Spain); Perlado, Manuel [Instituto de Fusión Nuclear/UPM, Madrid (Spain)

    2013-10-15

    Highlights: ► A helium Brayton cycle has been designed integrating the two energy sources of HiPER. ► The Brayton cycle has intercooling stages and a recovery process. ► The low temperature of HiPER heat sources results in low cycle efficiency (35.2%). ► Two inter-cooling stages and a reheating process increases efficiency to over 37%. ► Helium Brayton cycles are to be considered as candidates for HiPER power cycles. -- Abstract: Helium Brayton cycles have been studied as power cycles for both fission and fusion reactors obtaining high thermal efficiency. This paper studies several technological schemes of helium Brayton cycles applied for the HiPER reactor proposal. Since HiPER integrates technologies available at short term, its working conditions results in a very low maximum temperature of the energy sources, something that limits the thermal performance of the cycle. The aim of this work is to analyze the potential of the helium Brayton cycles as power cycles for HiPER. Several helium Brayton cycle configurations have been investigated with the purpose of raising the cycle thermal efficiency under the working conditions of HiPER. The effects of inter-cooling and reheating have specifically been studied. Sensitivity analyses of the key cycle parameters and component performances on the maximum thermal efficiency have also been carried out. The addition of several inter-cooling stages in a helium Brayton cycle has allowed obtaining a maximum thermal efficiency of over 36%, and the inclusion of a reheating process may also yield an added increase of nearly 1 percentage point to reach 37%. These results confirm that helium Brayton cycles are to be considered among the power cycle candidates for HiPER.

  15. Design and analysis of helium Brayton power cycles for HiPER reactor

    International Nuclear Information System (INIS)

    Sánchez, Consuelo; Juárez, Rafael; Sanz, Javier; Perlado, Manuel

    2013-01-01

    Highlights: ► A helium Brayton cycle has been designed integrating the two energy sources of HiPER. ► The Brayton cycle has intercooling stages and a recovery process. ► The low temperature of HiPER heat sources results in low cycle efficiency (35.2%). ► Two inter-cooling stages and a reheating process increases efficiency to over 37%. ► Helium Brayton cycles are to be considered as candidates for HiPER power cycles. -- Abstract: Helium Brayton cycles have been studied as power cycles for both fission and fusion reactors obtaining high thermal efficiency. This paper studies several technological schemes of helium Brayton cycles applied for the HiPER reactor proposal. Since HiPER integrates technologies available at short term, its working conditions results in a very low maximum temperature of the energy sources, something that limits the thermal performance of the cycle. The aim of this work is to analyze the potential of the helium Brayton cycles as power cycles for HiPER. Several helium Brayton cycle configurations have been investigated with the purpose of raising the cycle thermal efficiency under the working conditions of HiPER. The effects of inter-cooling and reheating have specifically been studied. Sensitivity analyses of the key cycle parameters and component performances on the maximum thermal efficiency have also been carried out. The addition of several inter-cooling stages in a helium Brayton cycle has allowed obtaining a maximum thermal efficiency of over 36%, and the inclusion of a reheating process may also yield an added increase of nearly 1 percentage point to reach 37%. These results confirm that helium Brayton cycles are to be considered among the power cycle candidates for HiPER

  16. Nuclear Bi-Brayton system for aircraft propulsion

    International Nuclear Information System (INIS)

    Pierce, B.L.

    1979-01-01

    Recent studies have shown the desirability of new system concept for nuclear aircraft propulsion utilizing the Bi-Brayton system concept, permits coupling of a gas cooled reactor to the power transmission and conversion system in a manner such as to fulfill the safety criteria while eliminating the need for a high temperature intermediate heat exchanger or shaft penetrations of the containment vessel. This system has been shown to minimize the component development required and to allow reduction in total propulsion system weight. This paper presents a description of the system concept and the results of the definition and evaluation studies to date. Parametric and reference system definition studies have been performed. The closed-cycle Bi-Brayton system and component configurations and weight estimates have been derived. Parametric evaluation and cycle variation studies have been performed and interpreted. 7 refs

  17. Research and Technology Activities Supporting Closed-Brayton-Cycle Power Conversion System Development

    Science.gov (United States)

    Barrett, Michael J.

    2004-01-01

    The elements of Brayton technology development emphasize power conversion system risk mitigation. Risk mitigation is achieved by demonstrating system integration feasibility, subsystem/component life capability (particularly in the context of material creep) and overall spacecraft mass reduction. Closed-Brayton-cycle (CBC) power conversion technology is viewed as relatively mature. At the 2-kWe power level, a CBC conversion system Technology Readiness Level (TRL) of six (6) was achieved during the Solar Dynamic Ground Test Demonstration (SD-GTD) in 1998. A TRL 5 was demonstrated for 10 kWe-class CBC components during the development of the Brayton Rotating Unit (BRU) from 1968 to 1976. Components currently in terrestrial (open cycle) Brayton machines represent TRL 4 for similar uses in 100 kWe-class CBC space systems. Because of the baseline component and subsystem technology maturity, much of the Brayton technology task is focused on issues related to systems integration. A brief description of ongoing technology activities is given.

  18. Enhancing power cycle efficiency for a supercritical Brayton cycle power system using tunable supercritical gas mixtures

    Science.gov (United States)

    Wright, Steven A.; Pickard, Paul S.; Vernon, Milton E.; Radel, Ross F.

    2017-08-29

    Various technologies pertaining to tuning composition of a fluid mixture in a supercritical Brayton cycle power generation system are described herein. Compounds, such as Alkanes, are selectively added or removed from an operating fluid of the supercritical Brayton cycle power generation system to cause the critical temperature of the fluid to move up or down, depending upon environmental conditions. As efficiency of the supercritical Brayton cycle power generation system is substantially optimized when heat is rejected near the critical temperature of the fluid, dynamically modifying the critical temperature of the fluid based upon sensed environmental conditions improves efficiency of such a system.

  19. Brayton-Cycle Power-Conversion Unit Tested With Ion Thruster

    Science.gov (United States)

    Hervol, David S.

    2005-01-01

    Nuclear electric propulsion has been identified as an enabling technology for future NASA space science missions, such as the Jupiter Icy Moons Orbiter (JIMO) now under study. An important element of the nuclear electric propulsion spacecraft is the power conversion system, which converts the reactor heat to electrical power for use by the ion propulsion system and other spacecraft loads. The electrical integration of the power converter and ion thruster represents a key technical challenge in making nuclear electric propulsion technology possible. This technical hurdle was addressed extensively on December 1, 2003, when a closed- Brayton-cycle power-conversion unit was tested with a gridded ion thruster at the NASA Glenn Research Center. The test demonstrated end-to-end power throughput and marked the first-ever coupling of a Brayton turbo alternator and a gridded ion thruster, both of which are candidates for use on JIMO-type missions. The testing was conducted at Glenn's Vacuum Facility 6, where the Brayton unit was installed in the 3-m-diameter vacuum test port and the ion thruster was installed in the 7.6-m-diameter main chamber.

  20. Rankine-Brayton engine powered solar thermal aircraft

    Science.gov (United States)

    Bennett, Charles L [Livermore, CA

    2009-12-29

    A solar thermal powered aircraft powered by heat energy from the sun. A Rankine-Brayton hybrid cycle heat engine is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller or other mechanism for enabling sustained free flight. The Rankine-Brayton engine has a thermal battery, preferably containing a lithium-hydride and lithium mixture, operably connected to it so that heat is supplied from the thermal battery to a working fluid. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

  1. Rankline-Brayton engine powered solar thermal aircraft

    Science.gov (United States)

    Bennett, Charles L [Livermore, CA

    2012-03-13

    A solar thermal powered aircraft powered by heat energy from the sun. A Rankine-Brayton hybrid cycle heat engine is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller or other mechanism for enabling sustained free flight. The Rankine-Brayton engine has a thermal battery, preferably containing a lithium-hydride and lithium mixture, operably connected to it so that heat is supplied from the thermal battery to a working fluid. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

  2. Performance estimates for the Space Station power system Brayton Cycle compressor and turbine

    Science.gov (United States)

    Cummings, Robert L.

    1989-01-01

    The methods which have been used by the NASA Lewis Research Center for predicting Brayton Cycle compressor and turbine performance for different gases and flow rates are described. These methods were developed by NASA Lewis during the early days of Brayton cycle component development and they can now be applied to the task of predicting the performance of the Closed Brayton Cycle (CBC) Space Station Freedom power system. Computer programs are given for performing these calculations and data from previous NASA Lewis Brayton Compressor and Turbine tests is used to make accurate estimates of the compressor and turbine performance for the CBC power system. Results of these calculations are also given. In general, calculations confirm that the CBC Brayton Cycle contractor has made realistic compressor and turbine performance estimates.

  3. Brayton cycle space power systems

    International Nuclear Information System (INIS)

    Pietsch, A.; Trimble, S.W.; Harper, A.D.

    1985-01-01

    The latest accomplishments in the design and development of the Brayton Isotope Power System (BIPS) for space applications are described, together with a reexamination of the design/cost tradeoffs with respect to current economic parameters and technology status. The results of tests performed on a ground test version of the flight configuration, the workhorse loop, were used to confirm the performance projections made for the flight system. The results of cost-model analysis indicate that the use of the highest attainable power conversion system efficiency will yield the most cost-effective systems. 13 references

  4. SP-100/Brayton power system concepts

    International Nuclear Information System (INIS)

    Owen, D.F.

    1989-01-01

    Use of closed Brayton cycle (CBC) power conversion technology has been investigated for use with SP-100 reactors for space power systems. The CBC power conversion technology is being developed by Rockwell International under the Dynamic Isotype Power System (DIPS) and Space Station Freedom solar dynamic power system programs to provide highly efficient power conversion with radioisotype and solar collector heat sources. Characteristics including mass, radiator area, thermal power, and operating temperatures for systems utilizing SP-100 reactor and CBC power conversion technology were determined for systems in the 10-to 100-kWe power range. Possible SP-100 reactor/CBC power system configurations are presented. Advantages of CBC power conversion technology with regard to reactor thermal power, operating temperature, and development status are discussed

  5. Experimental Results From a 2kW Brayton Power Conversion Unit

    Science.gov (United States)

    Hervol, David; Mason, Lee; Birchenough, Arthur

    2003-01-01

    This paper presents experimental test results from operation of a 2 kWe Brayton power conversion unit. The Brayton converter was developed for a solar dynamic power system flight experiment planned for the Mir Space Station in 1997. The flight experiment was cancelled, but the converter was tested at Glenn Research Center as part of the Solar Dynamic Ground Test Demonstration system which included a solar concentrator, heat receiver, and space radiator. In preparation for the current testing, the heat receiver was removed and replaced with an electrical resistance heater, simulating the thermal input of a steady-state nuclear source. The converter was operated over a full range of thermal input power levels and rotor speeds to generate an overall performance map. The converter unit will serve as the centerpiece of a Nuclear Electric Propulsion Testbed at Glenn. Future potential uses for the Testbed include high voltage electrical controller development, integrated electric thruster testing and advanced radiator demonstration testing to help guide high power Brayton technology development for Nuclear Electric Propulsion (NEP).

  6. Brayton Isotope Power System (BIPS) facility specification

    International Nuclear Information System (INIS)

    1976-01-01

    General requirements for the Brayton Isotope Power System (BIPS)/Ground Demonstration System (GDS) assembly and test facility are defined. The facility will include provisions for a complete test laboratory for GDS checkout, performance, and endurance testing, and a contamination-controlled area for assembly, fabrication, storage, and storage preparation of GDS components. Specifications, schedules, and drawings are included

  7. Brayton Isotope Power System (BIPS) facility specification

    Energy Technology Data Exchange (ETDEWEB)

    1976-05-31

    General requirements for the Brayton Isotope Power System (BIPS)/Ground Demonstration System (GDS) assembly and test facility are defined. The facility will include provisions for a complete test laboratory for GDS checkout, performance, and endurance testing, and a contamination-controlled area for assembly, fabrication, storage, and storage preparation of GDS components. Specifications, schedules, and drawings are included.

  8. Extension of the supercritical carbon dioxide brayton cycle to low reactor power operation: investigations using the coupled anl plant dynamics code-SAS4A/SASSYS-1 liquid metal reactor code system

    International Nuclear Information System (INIS)

    Moisseytsev, A.; Sienicki, J.J.

    2012-01-01

    Significant progress has been made on the development of a control strategy for the supercritical carbon dioxide (S-CO 2 ) Brayton cycle enabling removal of power from an autonomous load following Sodium-Cooled Fast Reactor (SFR) down to decay heat levels such that the S-CO 2 cycle can be used to cool the reactor until decay heat can be removed by the normal shutdown heat removal system or a passive decay heat removal system such as Direct Reactor Auxiliary Cooling System (DRACS) loops with DRACS in-vessel heat exchangers. This capability of the new control strategy eliminates the need for use of a separate shutdown heat removal system which might also use supercritical CO 2 . It has been found that this capability can be achieved by introducing a new control mechanism involving shaft speed control for the common shaft joining the turbine and two compressors following reduction of the load demand from the electrical grid to zero. Following disconnection of the generator from the electrical grid, heat is removed from the intermediate sodium circuit through the sodium-to-CO 2 heat exchanger, the turbine solely drives the two compressors, and heat is rejected from the cycle through the CO 2 -to-water cooler. To investigate the effectiveness of shaft speed control, calculations are carried out using the coupled Plant Dynamics Code-SAS4A/SASSYS-1 code for a linear load reduction transient for a 1000 MWt metallic-fueled SFR with autonomous load following. No deliberate motion of control rods or adjustment of sodium pump speeds is assumed to take place. It is assumed that the S-CO 2 turbomachinery shaft speed linearly decreases from 100 to 20% nominal following reduction of grid load to zero. The reactor power is calculated to autonomously decrease down to 3% nominal providing a lengthy window in time for the switchover to the normal shutdown heat removal system or for a passive decay heat removal system to become effective. However, the calculations reveal that the

  9. Performance analysis of Brayton cycle system for space power reactor

    International Nuclear Information System (INIS)

    Li Zhi; Yang Xiaoyong; Zhao Gang; Wang Jie; Zhang Zuoyi

    2017-01-01

    The closed Brayton cycle system now is the potential choice as the power conversion system for High Temperature Gas-cooled Reactors because of its high energy conversion efficiency and compact configuration. The helium is the best working fluid for the system for its chemical stability and small neutron absorption cross section. However, the Helium has small mole mass and big specific volume, which would lead to larger pipes and heat exchanger. What's more, the big compressor enthalpy rise of helium would also lead to an unacceptably large number of compressor's stage. For space use, it's more important to satisfy the limit of the system's volume and mass, instead of the requirement of the system's thermal capacity. So Noble-Gas binary mixture of helium and xenon is presented as the working fluid for space Brayton cycle. This paper makes a mathematical model for space Brayton cycle system by Fortran language, then analyzes the binary mixture of helium and xenon's properties and effects on power conversion units of the space power reactor, which would be helpful to understand and design the space power reactor. The results show that xenon would lead to a worse system's thermodynamic property, the cycle's efficiency and specific power decrease as xenon's mole fraction increasing. On the other hand, proper amount of xenon would decrease the enthalpy changes in turbomachines, which would be good for turbomachines' design. Another optimization method – the specific power optimization is also proposed to make a comparison. (author)

  10. Thermo-economic performance of HTGR Brayton power cycles

    International Nuclear Information System (INIS)

    Linares, J. L.; Herranz, L. E.; Moratilla, B. Y.; Fernandez-Perez, A.

    2008-01-01

    High temperature reached in High and Very High Temperature Reactors (VHTRs) results in thermal efficiencies substantially higher than those of actual nuclear power plants. A number of studies mainly driven by achieving optimum thermal performance have explored several layout. However, economic assessments of cycle power configurations for innovative systems, although necessarily uncertain at this time, may bring valuable information in relative terms concerning power cycle optimization. This paper investigates the thermal and economic performance direct Brayton cycles. Based on the available parameters and settings of different designs of HTGR power plants (GTHTR-300 and PBMR) and using the first and second laws of thermodynamics, the effects of compressor inter-cooling and of the compressor-turbine arrangement (i.e., single vs. multiple axes) on thermal efficiency have been estimated. The economic analysis has been based on the El-Sayed methodology and on the indirect derivation of the reactor capital investment. The results of the study suggest that a 1-axis inter-cooled power cycle has a similar thermal performance to the 3-axes one (around 50%) and, what's more, it is substantially less taxed. A sensitivity study allowed assessing the potential impact of optimizing several variables on cycle performance. Further than that, the cycle components costs have been estimated and compared. (authors)

  11. A comparison of radioisotope Brayton and Stirling system for lunar surface mobile power

    International Nuclear Information System (INIS)

    Harty, R.B.

    1991-01-01

    A study was performed by the Rocketdyne Division of Rockwell 2.5-kWe modular dynamic isotope power system (DIPS) using a Stirling power conversion system. The results of this study were compared with similar results performed under the DIPS program using a Brayton power conversion system. The study indicated that the Stirling power module has 20% lower mass and 40% lower radiator area than the Brayton module. However, the study also revealed that because the Stirling power module requires a complex heat pipe arrangment to transport heat from the isotope to the Stirling heater head and a pumped NaK heat rejection loop, the Stirling module is much more difficult to integrate with the isotope heat source and heat rejection system

  12. Nuclear reactor closed Brayton cycle power conversion system optimization trends for extra-terrestrial applications

    International Nuclear Information System (INIS)

    Ashe, T.L.; Baggenstoss, W.G.; Bons, R.

    1990-01-01

    Extra-terrestrial exploration and development missions of the next century will require reliable, low-mass power generation modules of 100 kW e and more. These modules will be required to support both fixed-base and manned rover/explorer power needs. Low insolation levels at and beyond Mars and long periods of darkness on the moon make solar conversion less desirable for surface missions. For these missions, a closed Brayton cycle energy conversion system coupled with a reactor heat source is a very attractive approach. The authors conducted parametric studies to assess optimized system design trends for nuclear-Brayton systems as a function of operating environment and user requirements. The inherent design flexibility of the closed Brayton cycle energy conversion system permits ready adaptation of the system to future design constraints. This paper describes a dramatic contrast between system designs requiring man-rated shielding. The paper also considers the ramification of using indigenous materials to provide reactor shielding for a fixed-base power source

  13. Digital computer study of nuclear reactor thermal transients during startup of 60-kWe Brayton power conversion system

    Science.gov (United States)

    Jefferies, K. S.; Tew, R. C.

    1974-01-01

    A digital computer study was made of reactor thermal transients during startup of the Brayton power conversion loop of a 60-kWe reactor Brayton power system. A startup procedure requiring the least Brayton system complication was tried first; this procedure caused violations of design limits on key reactor variables. Several modifications of this procedure were then found which caused no design limit violations. These modifications involved: (1) using a slower rate of increase in gas flow; (2) increasing the initial reactor power level to make the reactor respond faster; and (3) appropriate reactor control drum manipulation during the startup transient.

  14. Power conversion systems based on Brayton cycles for fusion reactors

    International Nuclear Information System (INIS)

    Linares, J.I.; Herranz, L.E.; Moratilla, B.Y.; Serrano, I.P.

    2011-01-01

    This paper investigates Brayton power cycles for fusion reactors. Two working fluids have been explored: helium in classical configurations and CO 2 in recompression layouts (Feher cycle). Typical recuperator arrangements in both cycles have been strongly constrained by low temperature of some of the energy thermal sources from the reactor. This limitation has been overcome in two ways: with a combined architecture and with dual cycles. Combined architecture couples the Brayton cycle with a Rankine one capable of taking advantage of the thermal energy content of the working fluid after exiting the turbine stage (iso-butane and steam fitted best the conditions of the He and CO 2 cycles, respectively). Dual cycles set a specific Rankine cycle to exploit the lowest quality thermal energy source, allowing usual recuperator arrangements in the Brayton cycle. The results of the analyses indicate that dual cycles could reach thermal efficiencies around 42.8% when using helium, whereas thermal performance might be even better (46.7%), if a combined CO 2 -H 2 O cycle was set.

  15. Closed Brayton Cycle Power Conversion Unit for Fission Surface Power Phase I Final Report

    Science.gov (United States)

    Fuller, Robert L.

    2010-01-01

    A Closed Brayton cycle power conversion system has been developed to support the NASA fission surface power program. The goal is to provide electricity from a small nuclear reactor heat source for surface power production for lunar and Mars environments. The selected media for a heat source is NaK 78 with water as a cooling source. The closed Brayton cycle power was selected to be 12 kWe output from the generator terminals. A heat source NaK temperature of 850 K plus or minus 25 K was selected. The cold source water was selected at 375 K plus or minus 25 K. A vacuum radiation environment of 200 K is specified for environmental operation. The major components of the system are the power converter, the power controller, and the top level data acquisition and control unit. The power converter with associated sensors resides in the vacuum radiation environment. The power controller and data acquisition system reside in an ambient laboratory environment. Signals and power are supplied across the pressure boundary electrically with hermetic connectors installed on the vacuum vessel. System level analyses were performed on working fluids, cycle design parameters, heater and cooling temperatures, and heat exchanger options that best meet the needs of the power converter specification. The goal is to provide a cost effective system that has high thermal-to-electric efficiency in a compact, lightweight package.

  16. Brayton Cycle Numerical Modeling using the RELAP5-3D code, version 4.3.4

    Energy Technology Data Exchange (ETDEWEB)

    Longhini, Eduardo P.; Lobo, Paulo D.C.; Guimarães, Lamartine N.F.; Filho, Francisco A.B.; Ribeiro, Guilherme B., E-mail: edu_longhini@yahoo.com.br [Instituto de Estudos Avançados (IEAv), São José dos Campos, SP (Brazil). Divisão de Energia Nuclear

    2017-07-01

    This work contributes to enable and develop technologies to mount fast micro reactors, to generate heat and electric energy, for the purpose to warm and to supply electrically spacecraft equipment and, also, the production of nuclear space propulsion effect. So, for this purpose, the Brayton Cycle demonstrates to be an optimum approach for space nuclear power. The Brayton thermal cycle gas has as characteristic to be a closed cycle, with two adiabatic processes and two isobaric processes. The components performing the cycle's processes are compressor, turbine, heat source, cold source and recuperator. Therefore, the working fluid's mass flow runs the thermal cycle that converts thermal energy into electrical energy, able to use in spaces and land devices. The objective is numerically to model the Brayton thermal cycle gas on nominal operation with one turbomachine composed for a radial-inflow compressor and turbine of a 40.8 kWe Brayton Rotating Unit (BRU). The Brayton cycle numerical modeling is being performed with the program RELAP5-3D, version 4.3.4. The nominal operation uses as working fluid a mixture 40 g/mole He-Xe with a flow rate of 1.85 kg/s, shaft rotational speed of 45 krpm, compressor and turbine inlet temperature of 400 K and 1149 K, respectively, and compressor exit pressure 0.931 MPa. Then, the aim is to get physical corresponding data to operate each cycle component and the general cycle on this nominal operation. (author)

  17. Brayton Cycle Numerical Modeling using the RELAP5-3D code, version 4.3.4

    International Nuclear Information System (INIS)

    Longhini, Eduardo P.; Lobo, Paulo D.C.; Guimarães, Lamartine N.F.; Filho, Francisco A.B.; Ribeiro, Guilherme B.

    2017-01-01

    This work contributes to enable and develop technologies to mount fast micro reactors, to generate heat and electric energy, for the purpose to warm and to supply electrically spacecraft equipment and, also, the production of nuclear space propulsion effect. So, for this purpose, the Brayton Cycle demonstrates to be an optimum approach for space nuclear power. The Brayton thermal cycle gas has as characteristic to be a closed cycle, with two adiabatic processes and two isobaric processes. The components performing the cycle's processes are compressor, turbine, heat source, cold source and recuperator. Therefore, the working fluid's mass flow runs the thermal cycle that converts thermal energy into electrical energy, able to use in spaces and land devices. The objective is numerically to model the Brayton thermal cycle gas on nominal operation with one turbomachine composed for a radial-inflow compressor and turbine of a 40.8 kWe Brayton Rotating Unit (BRU). The Brayton cycle numerical modeling is being performed with the program RELAP5-3D, version 4.3.4. The nominal operation uses as working fluid a mixture 40 g/mole He-Xe with a flow rate of 1.85 kg/s, shaft rotational speed of 45 krpm, compressor and turbine inlet temperature of 400 K and 1149 K, respectively, and compressor exit pressure 0.931 MPa. Then, the aim is to get physical corresponding data to operate each cycle component and the general cycle on this nominal operation. (author)

  18. Comparative energy analysis on a new regenerative Brayton cycle

    International Nuclear Information System (INIS)

    Goodarzi, M.

    2016-01-01

    Highlights: • New regenerative Brayton cycle has been introduced. • New cycle has higher thermal efficiency and lower exhausted heat per output power. • Regenerator may remain useful in the new cycle even at high pressure ratio. • New regenerative Brayton cycle is suggested for low pressure ratio operations. - Abstract: Gas turbines are frequently used for power generation. Brayton cycle is the basis for gas turbine operation and developing the alternative cycles. Regenerative Brayton cycle is a developed cycle for basic Brayton cycle with higher thermal efficiency at low to moderate pressure ratios. A new regenerative Brayton cycle has been introduced in the present study. Energy analysis has been conducted on ideal cycles to compare them from the first law of thermodynamics viewpoint. Comparative analyses showed that the new regenerative Brayton cycle has higher thermal efficiency than the original one at the same pressure ratio, and also lower heat absorption and exhausted heat per unite output power. Computed results show that new cycle improves thermal efficiency from 12% to 26% relative to the original regenerative Brayton cycle in the range of studied pressure ratios. Contrary to the original regenerative Brayton cycle, regenerator remains useful in the new regenerative Brayton cycle even at higher pressure ratio.

  19. Brayton-Cycle Baseload Power Tower CSP System

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Bruce [Wilson Solarpower Corporation, Boston, MA (United States)

    2013-12-31

    The primary objectives of Phase 2 of this Project were:1. Engineer, fabricate, and conduct preliminary testing on a low-pressure, air-heating solar receiver capable of powering a microturbine system to produce 300kWe while the sun is shining while simultaneously storing enough energy thermally to power the system for up to 13 hours thereafter. 2. Cycle-test a high-temperature super alloy, Haynes HR214, to determine its efficacy for the system’s high-temperature heat exchanger. 3. Engineer the thermal energy storage system. This Phase 2 followed Wilson’s Phase 1, which primarily was an engineering feasibility study to determine a practical and innovative approach to a full Brayton-cycle system configuration that could meet DOE’s targets. Below is a summary table of the DOE targets with Wilson’s Phase 1 Project results. The results showed that a Brayton system with an innovative (low pressure) solar receiver with ~13 hours of dry (i.e., not phase change materials or molten salts but rather firebrick, stone, or ceramics) has the potential to meet or exceed DOE targets. Such systems would consist of pre-engineered, standardized, factory-produced modules to minimize on-site costs while driving down costs through mass production. System sizes most carefully analyzed were in the range of 300 kWe to 2 MWe. Such systems would also use off-the-shelf towers, blowers, piping, microturbine packages, and heliostats. Per DOE’s instructions, LCOEs are based on the elevation and DNI levels of Daggett, CA, for a 100 MWe power plant following 2 GWe of factory production of the various system components.

  20. Preliminary design of S-CO{sub 2} Brayton cycle for APR-1400 with power generation and desalination process

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Seong Jun; Lee, Won Woong; Jeong, Yong Hoon; Lee, Jeong Ik [KAIST, Daejeon (Korea, Republic of); Yoon, Ho Joon [KUSTAR, Abu Dhabi (United Arab Emirates)

    2015-10-15

    This study was conducted to explore the capabilities of the S-CO{sub 2} Brayton cycle for a cogeneration system for APR-1400 application. Three concepts of the S-CO{sub 2} simple recuperated co-generation cycle were designed. A supercritical CO{sub 2} (S-CO{sub 2}) Brayton cycle is recently receiving significant attention as a promising power conversion system in wide range of energy applications due to its high efficiency and compact footprint. The main reason why the S-CO{sub 2} Brayton cycle has these advantages is that the compressor operates near the critical point of CO{sub 2} (30.98 .deg. C, 7.38MPa) to reduce the compression work significantly compared to the other Brayton cycles. In this study, the concept of replacing the entire steam cycle of APR-1400 with the S-CO{sub 2} Brayton cycle is evaluated. The power generation purpose S-CO{sub 2} Brayton cycles are redesigned to generate power and provide heat to the desalination system at the same time. The performance of these newly suggested cycles are evaluated in this paper. The target was to deliver 147MW heat to the desalination process. The thermal efficiencies of the three concepts are not significantly different, but the 3{sup rd} concept is relatively simpler than other cycles because only an additional heat exchanger is required. Although the 2{sup nd} concept is relatively complicated in comparison to other concepts, the temperatures at the inlet and outlet of the DHX are higher than that of the others. As shown in the results, the S-CO{sub 2} Brayton cycles are not easy to outperform the steam cycle with very simple layout and general design points under APR-1400 operating condition. However, this study shows that the S-CO{sub 2} Brayton cycles can be designed as a co-generation cycle while producing the target desalination heat with a simple configuration. In addition, it was also found that the S-CO{sub 2} Brayton cycle can achieve higher cycle thermal efficiency than the steam power cycle under

  1. Computational analysis of supercritical CO2 Brayton cycle power conversion system for fusion reactor

    International Nuclear Information System (INIS)

    Halimi, Burhanuddin; Suh, Kune Y.

    2012-01-01

    Highlights: ► Computational analysis of S-CO 2 Brayton cycle power conversion system. ► Validation of numerical model with literature data. ► Recompression S-CO 2 Brayton cycle thermal efficiency of 42.44%. ► Reheating concept to enhance the cycle thermal efficiency. ► Higher efficiency achieved by the proposed concept. - Abstract: The Optimized Supercritical Cycle Analysis (OSCA) code is being developed to analyze the design of a supercritical carbon dioxide (S-CO 2 ) driven Brayton cycle for a fusion reactor as part of the Modular Optimal Balance Integral System (MOBIS). This system is based on a recompression Brayton cycle. S-CO 2 is adopted as the working fluid for MOBIS because of its easy availability, high density and low chemical reactivity. The reheating concept is introduced to enhance the cycle thermal efficiency. The helium-cooled lithium lead model AB of DEMO fusion reactor is used as reference in this paper.

  2. A Comparison of Coolant Options for Brayton Power Conversion Heat Rejection Systems

    International Nuclear Information System (INIS)

    Siamidis, John; Mason, Lee

    2006-01-01

    This paper describes potential heat rejection design concepts for Brayton power conversion systems. Brayton conversion systems are currently under study by NASA for Nuclear Electric Propulsion (NEP) and surface power applications. The Brayton Heat Rejection Subsystem (HRS) must dissipate waste heat generated by the power conversion system due to inefficiencies in the thermal-to-electric conversion process. Sodium potassium (NaK) and H2O are two coolant working fluids that have been investigated in the design of a pumped loop and heat pipe space HRS. In general NaK systems are high temperature (300 to 1000 K) low pressure systems, and H2O systems are low temperature (300 to 600 K) high pressure systems. NaK is an alkali metal with health and safety hazards that require special handling procedures. On the other hand, H2O is a common fluid, with no health hazards and no special handling procedures. This paper compares NaK and H2O for the HRS pumped loop coolant working fluid. A detailed excel analytical model, HRS O pt, was developed to evaluate the various HRS design parameters. It is capable of analyzing NaK or H2O coolant, parallel or series flow configurations, and numerous combinations of other key parameters (heat pipe spacing, diameter and radial flux, radiator facesheet thickness, fluid duct system pressure drop, system rejected power, etc.) of the HRS. This paper compares NaK against water for the HRS coolant working fluid with respect to the relative mass, performance, design and implementation issues between the two fluids

  3. Preliminary Failure Modes, Effects and Criticality Analysis (FMECA) of the conceptual Brayton Isotope Power System (BIPS) Flight System

    International Nuclear Information System (INIS)

    Miller, L.G.

    1976-01-01

    A failure modes, effects and criticality analysis (FMECA) was made of the Brayton Isotope Power System Flight System (BIPS-FS) as presently conceived. The components analyzed include: Mini-BRU; Heat Source Assembly (HSA); Mini-Brayton Recuperator (MBR); Space Radiator; Ducts and Bellows, Insulation System; Controls; and Isotope Heat Source (IHS)

  4. Supercritical carbon dioxide Brayton power conversion cycle for battery optimized reactor integral system

    International Nuclear Information System (INIS)

    Kim, T. W.; Kim, N. H.; Suh, K. Y.

    2007-01-01

    Supercritical carbon dioxide (SCO 2 ) promises a high power conversion efficiency of the recompression Brayton cycle due to its excellent compressibility reducing the compression work at the bottom of the cycle and to a higher density than helium or steam decreasing the component size. The SCO 2 Brayton cycle efficiency as high as 45% furnishes small sized nuclear reactors with economical benefits on the plant construction and maintenance. A 23 MWth lead-cooled Battery Optimized Reactor Integral System (BORIS) is being developed as an ultra-long-life, versatile-purpose, fast-spectrum reactor. BORIS is coupled to the SCO 2 Brayton cycle needing less room relative to the Rankine steam cycle because of its smaller components. The SCO 2 Brayton cycle of BORIS consists of a 16 MW turbine, a 32 MW high temperature recuperator, a 14 MW low temperature recuperator, an 11 MW precooler and 2 and 2.8 MW compressors. Entering six heat exchangers between primary and secondary system at 19.9 MPa and 663 K, the SCO 2 leaves the heat exchangers at 19.9 MPa and 823 K. The promising secondary system efficiency of 45% was calculated by a theoretical method in which the main parameters include pressure, temperature, heater power, the turbine's, recuperators' and compressors' efficiencies, and the flow split ratio of SCO 2 going out from the low temperature recuperator. Development of Modular Optimized Brayton Integral System (MOBIS) is being devised as the SCO 2 Brayton cycle energy conversion cycle for BORIS. MOBIS consists of Loop Operating Brayton Optimization Study (LOBOS) for experimental Brayton cycle loop and Gas Advanced Turbine Operation Study (GATOS) for the SCO 2 turbine. Liquid-metal Energy Exchanger Integral System (LEXIS) serves to couple BORIS and MOBIS. LEXIS comprises Physical Aspect Thermal Operation System (PATOS) for SCO 2 thermal hydraulic characteristics, Shell-and-tube Overall Layout Optimization Study (SOLOS) for shell-and-tube heat exchanger, Printed

  5. Nonsynchronous vibrations observed in a supercritical power transmission shaft

    Science.gov (United States)

    Darlow, M. S.; Zorzi, E. S.

    1979-01-01

    A flexible shaft is prone to a number of vibration phenomena which occur at frequencies other than synchronous with rotational speed. Nonsynchronous vibrations from several sources were observed while running a test rig designed to simulate the operation of a supercritical power transmission shaft. The test rig was run first with very light external damping and then with a higher level of external damping, for comparison. As a result, the effect of external damping on the nonsynchronous vibrations of the test rig was observed. All of these nonsynchronous vibrations were of significant amplitude. Their presence in the vibrations spectra for a supercritical power transmission shaft at various speeds in the operating range indicates that very careful attention to all of the vibration spectra should be made in any supercritical power transmission shafting. This paper presents a review of the analysis performed and a comparison with experimental data. A thorough discussion of the observed nonsynchronous whirl is also provided.

  6. Experimental Investigations from the Operation of a 2 Kw Brayton Power Conversion Unit and a Xenon Ion Thruster

    Science.gov (United States)

    Mason, Lee; Birchenough, Arthur; Pinero, Luis

    2004-01-01

    A 2 kW Brayton Power Conversion Unit (PCU) and a xenon ion thruster were integrated with a Power Management and Distribution (PMAD) system as part of a Nuclear Electric Propulsion (NEP) Testbed at NASA's Glenn Research Center. Brayton converters and ion thrusters are potential candidates for use on future high power NEP missions such as the proposed Jupiter Icy Moons Orbiter (JIMO). The use of existing lower power test hardware provided a cost-effective means to investigate the critical electrical interface between the power conversion system and ion propulsion system. The testing successfully demonstrated compatible electrical operations between the converter and the thruster, including end-to-end electric power throughput, high efficiency AC to DC conversion, and thruster recycle fault protection. The details of this demonstration are reported herein.

  7. Loop containment (joint integrity) assessment Brayton Isotope Power System flight system

    International Nuclear Information System (INIS)

    1976-01-01

    The Brayton Isotope Power System (BIPS) contains a large number of joints. Since the failure of a joint would result in loss of the working fluid and consequential failure of the BIPS, the integrity of the joints is of paramount importance. The reliability of the ERDA BIPS loop containment (joint integrity) is evaluated. The conceptual flight system as presently configured is depicted. A brief description of the flight system is given

  8. Experimental Investigation from the Operation of a 2 kW Brayton Power Conversion Unit and a Xenon Ion Thruster

    Science.gov (United States)

    Hervol, David; Mason, Lee; Birchenough, Art; Pinero, Luis

    2004-01-01

    A 2kW Brayton Power Conversion Unit (PCU) and a xenon ion thruster were integrated with a Power Management and Distribution (PMAD) system as part of a Nuclear Electric Propulsion (NEP) Testbed at NASA's Glenn Research Center. Brayton Converters and ion thrusters are potential candidates for use on future high power NEP mission such as the proposed Jupiter Icy Moons Orbiter (JIMO). The use of a existing lower power test hardware provided a cost effective means to investigate the critical electrical interface between the power conversion system and the propulsion system. The testing successfully demonstrated compatible electrical operations between the converter and the thruster, including end-to-end electric power throughput, high efficiency AC to DC conversion, and thruster recycle fault protection. The details of this demonstration are reported herein.

  9. System design specification Brayton Isotope Power System (BIPS) Flight System (FS), and Ground Demonstration System (GDS)

    International Nuclear Information System (INIS)

    1976-01-01

    The system design specification for ground demonstration, development, and flight qualification of a Brayton Isotope Power System (BIPS) is presented. The requirements for both a BIPS conceptual Flight System (FS) and a Ground Demonstration System (GDS) are defined

  10. The maximum power condition of the brayton cycle with heat exchange processes

    International Nuclear Information System (INIS)

    Jung, Pyung Suk; Cha, Jin Girl; Ro, Sung Tack

    1985-01-01

    The ideal brayton cycle has been analyzed with the heat exchange processes between the working fluid and the heat source and the sink while their heat capacity rates are constant. The power of the cycle can be expressed in terms of a temperature of the cycle and the heat capacity rate of the working fluid. There exists an optimum power condition where the heat capacity rate of the working fluid has a value between those of the heat source and the heat sink, and the cycle efficiency is determined by the inlet temperatures of the heat source and the sink. (Author)

  11. Motor starting a Brayton cycle power conversion system using a static inverter

    Science.gov (United States)

    Curreri, J. S.; Edkin, R. A.; Kruchowy, R.

    1973-01-01

    The power conversion module of a 2- to 15-kWe Brayton engine was motor started using a three-phase, 400-hertz static inverter as the power source. Motor-static tests were conducted for initial gas loop pressures of 10, 14, and 17 N/sq cm (15, 20, and 25 psia) over a range of initial turbine inlet temperatures from 366 to 550 K (200 to 530 F). The data are presented to show the effects of temperature and pressure on the motor-start characteristics of the rotating unit. Electrical characteristics during motoring are also discussed.

  12. Preheating of fluid in a supercritical Brayton cycle power generation system at cold startup

    Science.gov (United States)

    Wright, Steven A.; Fuller, Robert L.

    2016-07-12

    Various technologies pertaining to causing fluid in a supercritical Brayton cycle power generation system to flow in a desired direction at cold startup of the system are described herein. A sensor is positioned at an inlet of a turbine, wherein the sensor is configured to output sensed temperatures of fluid at the inlet of the turbine. If the sensed temperature surpasses a predefined threshold, at least one operating parameter of the power generation system is altered.

  13. A four-year investigation of Brayton cycle systems for future french space power applications

    International Nuclear Information System (INIS)

    Tilliette, Z.P.; Proust, E.; Carre, F.

    1988-01-01

    Within the framework of a joint program initiated in 1983 by the two French Government Agencies C.N.E.S. (Centre National d'Etudes Spatiales) and C.E.A. (Commissariat a l'Energie Atomique), in order to study space nuclear power systems for future ARIANE 5 applications, extensive investigations have dealt with the Brayton cycle which has been selected as the energy conversion system. Several aspects can be mentioned in this field: the matching of the power system to the available radiator dimensions up to 200 kWe, the direct or indirect waste heat transfer to the radiator, the use of a recuperator, the recent work on moderate (25 kWe) power levels, the simulation studies related to various operating conditions and the general system optimization. A limited experimental program is starting on some crucial technology areas including a first contract to the industry concerning the turbogenerator. Particular attention is being paid to the significance of the adoption of a Brayton cycle for space applications involving a nuclear heat source which can be either a liquid metal-cooled or a gas-cooled reactor. As far as a gas-cooled reactor, direct cycle system is concerned, the relevance to the reactor technology and the concept for moderator thermal conditioning, is particularly addressed

  14. Assessing the potential of hybrid fossil–solar thermal plants for energy policy making: Brayton cycles

    International Nuclear Information System (INIS)

    Bernardos, Eva; López, Ignacio; Rodríguez, Javier; Abánades, Alberto

    2013-01-01

    This paper proposes a first study in-depth of solar–fossil hybridization from a general perspective. It develops a set of useful parameters for analyzing and comparing hybrid plants, it studies the case of hybridizing Brayton cycles with current solar technologies and shows a tentative extrapolation of the results to integrated combined cycle systems (ISCSS). In particular, three points have been analyzed: the technical requirements for solar technologies to be hybridized with Brayton cycles, the temperatures and pressures at which hybridization would produce maximum power per unit of fossil fuel, and their mapping to current solar technologies and Brayton cycles. Major conclusions are that a hybrid plant works in optimum conditions which are not equal to those of the solar or power blocks considered independently, and that hybridizing at the Brayton cycle of a combined cycle could be energetically advantageous. -- Highlights: •We model a generic solar–fossil hybrid Brayton cycle. •We calculate the operating conditions for maximum ratio power/fuel consumption. •Best hybrid plant conditions are not the same as solar or power blocks separately. •We study potential for hybridization with current solar technologies. •Hybridization at the Brayton in a combined cycle may achieve high power/fuel ratio

  15. Integration between direct steam generation in linear solar collectors and supercritical carbon dioxide Brayton power cycles

    OpenAIRE

    Coco Enríquez, Luis; Muñoz Antón, Javier; Martínez-Val Peñalosa, José María

    2015-01-01

    Direct Steam Generation in Parabolic Troughs or Linear Fresnel solar collectors is a technology under development since beginning of nineties (1990's) for replacing thermal oils and molten salts as heat transfer fluids in concentrated solar power plants, avoiding environmental impacts. In parallel to the direct steam generation technology development, supercritical Carbon Dioxide Brayton power cycles are maturing as an alternative to traditional Rankine cycles for increasing net plant efficie...

  16. Advanced Rankine and Brayton cycle power systems: Materials needs and opportunities

    Science.gov (United States)

    Grisaffe, S. J.; Guentert, D. C.

    1974-01-01

    Conceptual advanced potassium Rankine and closed Brayton power conversion cycles offer the potential for improved efficiency over steam systems through higher operating temperatures. However, for utility service of at least 100,000 hours, materials technology advances will be needed for such high temperature systems. Improved alloys and surface protection must be developed and demonstrated to resist coal combustion gases as well as potassium corrosion or helium surface degradation at high temperatures. Extensions in fabrication technology are necessary to produce large components of high temperature alloys. Long time property data must be obtained under environments of interest to assure high component reliability.

  17. Advanced Rankine and Brayton cycle power systems - Materials needs and opportunities

    Science.gov (United States)

    Grisaffe, S. J.; Guentert, D. C.

    1974-01-01

    Conceptual advanced potassium Rankine and closed Brayton power conversion cycles offer the potential for improved efficiency over steam systems through higher operating temperatures. However, for utility service of at least 100,000 hours, materials technology advances will be needed for such high temperature systems. Improved alloys and surface protection must be developed and demonstrated to resist coal combustion gases as well as potassium corrosion or helium surface degradation at high temperatures. Extensions in fabrication technology are necessary to produce large components of high temperature alloys. Long-time property data must be obtained under environments of interest to assure high component reliability.

  18. Mathematically modelling the power requirement for a vertical shaft mowing machine

    Directory of Open Access Journals (Sweden)

    Jorge Simón Pérez de Corcho Fuentes

    2008-09-01

    Full Text Available This work describes a mathematical model for determining the power demand for a vertical shaft mowing machine, particularly taking into account the influence of speed on cutting power, which is different from that of other models of mowers. The influence of the apparatus’ rotation and translation speeds was simulated in determining power demand. The results showed that no chan-ges in cutting power were produced by varying the knives’ angular speed (if translation speed was constant, while cutting power became increased if translation speed was increased. Variations in angular speed, however, influenced other parameters deter-mining total power demand. Determining this vertical shaft mower’s cutting pattern led to obtaining good crop stubble quality at the mower’s lower rotation speed, hence reducing total energy requirements.

  19. Supercritical Carbon Dioxide Brayton Cycle Energy Conversion System

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Jae Eun; Kim, S. O.; Seong, S. H.; Eoh, J. H.; Lee, T. H.; Choi, S. K.; Han, J. W.; Bae, S. W

    2007-12-15

    This report contains the description of the S-CO{sub 2} Brayton cycle coupled to KALIMER-600 as an alternative energy conversion system. For system development, a computer code was developed to calculate heat balance of 100% power operation condition. Based on the computer code, the S-CO{sub 2} Brayton cycle energy conversion system was constructed for the KALIMER-600. Using the developed turbomachinery models, the off-design characteristics and the sensitivities of the S-CO{sub 2} turbomachinery were investigated. For the development of PCHE models, a one-dimensional analysis computer code was developed to evaluate the performance of the PCHE. Possible control schemes for power control in the KALIMER-600 S-CO{sub 2} Brayton cycle were investigated by using the MARS code. Simple power reduction and recovery event was selected and analyzed for the transient calculation. For the evaluation of Na/CO{sub 2} boundary failure event, a computer was developed to simulate the complex thermodynamic behaviors coupled with the chemical reaction between liquid sodium and CO{sub 2} gas. The long term behavior of a Na/CO{sub 2} boundary failure event and its consequences which lead to a system pressure transient were evaluated.

  20. Supercritical Carbon Dioxide Brayton Cycle Energy Conversion System

    International Nuclear Information System (INIS)

    Cha, Jae Eun; Kim, S. O.; Seong, S. H.; Eoh, J. H.; Lee, T. H.; Choi, S. K.; Han, J. W.; Bae, S. W.

    2007-12-01

    This report contains the description of the S-CO 2 Brayton cycle coupled to KALIMER-600 as an alternative energy conversion system. For system development, a computer code was developed to calculate heat balance of 100% power operation condition. Based on the computer code, the S-CO 2 Brayton cycle energy conversion system was constructed for the KALIMER-600. Using the developed turbomachinery models, the off-design characteristics and the sensitivities of the S-CO 2 turbomachinery were investigated. For the development of PCHE models, a one-dimensional analysis computer code was developed to evaluate the performance of the PCHE. Possible control schemes for power control in the KALIMER-600 S-CO 2 Brayton cycle were investigated by using the MARS code. Simple power reduction and recovery event was selected and analyzed for the transient calculation. For the evaluation of Na/CO 2 boundary failure event, a computer was developed to simulate the complex thermodynamic behaviors coupled with the chemical reaction between liquid sodium and CO 2 gas. The long term behavior of a Na/CO 2 boundary failure event and its consequences which lead to a system pressure transient were evaluated

  1. Thermodynamic Optimization of Supercritical CO{sub 2} Brayton Cycles

    Energy Technology Data Exchange (ETDEWEB)

    Rhim, Dong-Ryul; Park, Sung-Ho; Kim, Su-Hyun; Yeom, Choong-Sub [Institute for Advanced Engineering, Yongin (Korea, Republic of)

    2015-05-15

    The supercritical CO{sub 2} Brayton cycle has been studied for nuclear applications, mainly for one of the alternative power conversion systems of the sodium cooled fast reactor, since 1960's. Although the supercritical CO{sub 2} Brayton cycle has not been expected to show higher efficiency at lower turbine inlet temperature over the conventional steam Rankine cycle, the higher density of supercritical CO{sub 2} like a liquid in the supercritical region could reduce turbo-machinery sizes, and the potential problem of sodium-water reaction with the sodium cooled fast reactor might be solved with the use of CO{sub 2} instead of water. The supercritical CO{sub 2} recompression Brayton cycle was proposed for the better thermodynamic efficiency than for the simple supercritical CO{sub 2} Brayton cycle. Thus this paper presents the efficiencies of the supercritical CO{sub 2} recompression Brayton cycle along with several decision variables for the thermodynamic optimization of the supercritical CO{sub 2} recompression Brayton cycle. The analytic results in this study show that the system efficiency reaches its maximum value at a compressor outlet pressure of 200 bars and a recycle fraction of 30 %, and the lower minimum temperature approach at the two heat exchangers shows higher system efficiency as expected.

  2. Condition monitoring of shaft of single-phase induction motor using optical sensor

    Science.gov (United States)

    Fulzele, Asmita G.; Arajpure, V. G.; Holay, P. P.; Patil, N. M.

    2012-05-01

    Transmission type of optical technique is developed to sense the condition of rotating shafts from a distance. A parallel laser beam is passed tangential over the surface of rotating shaft of a single phase induction motor and its flickering shadow is received on a photo sensor. Variations in sensor voltage output are observed on a digital storage oscilloscope. It is demonstrated that this signal carries information about shaft defects like miss alignment, play and impacts in bearings along with surface deformities. Mathematical model of signals corresponding to these shaft defects is developed. During the development and testing of the sensor, effects of reflections are investigated, sensing phenomenon is simulated, frequency response of the sensor is obtained and its performance is compared with conventional accelerometer.

  3. Numerical Comparison of NASA's Dual Brayton Power Generation System Performance Using CO2 or N2 as the Working Fluid

    Science.gov (United States)

    Ownens, Albert K.; Lavelle, Thomas M.; Hervol, David S.

    2010-01-01

    A Dual Brayton Power Conversion System (DBPCS) has been tested at the NASA Glenn Research Center using Nitrogen (N2) as the working fluid. This system uses two closed Brayton cycle systems that share a common heat source and working fluid but are otherwise independent. This system has been modeled using the Numerical Propulsion System Simulation (NPSS) environment. This paper presents the results of a numerical study that investigated system performance changes resulting when the working fluid is changed from gaseous (N2) to gaseous carbon dioxide (CO2).

  4. Thermodynamic analysis and optimization of a Closed Regenerative Brayton Cycle for nuclear space power systems

    International Nuclear Information System (INIS)

    Ribeiro, Guilherme B.; Braz Filho, Francisco A.; Guimarães, Lamartine N.F.

    2015-01-01

    Nuclear power systems turned to space electric propulsion differ strongly from usual ground-based power systems regarding the importance of overall size and mass. For propulsion power systems, size and mass are essential drivers that should be minimized during conception processes. Considering this aspect, this paper aims the development of a design-based model of a Closed Regenerative Brayton Cycle that applies the thermal conductance of the main components in order to predict the energy conversion performance, allowing its use as a preliminary tool for heat exchanger and radiator panel sizing. The centrifugal-flow turbine and compressor characterizations were achieved using algebraic equations from literature data. A binary mixture of Helium–Xenon with molecular weight of 40 g/mole is applied and the impact of the components sizing in the energy efficiency is evaluated in this paper, including the radiator panel area. Moreover, an optimization analysis based on the final mass of heat the exchangers is performed. - Highlights: • A design-based model of a Closed Brayton Cycle is proposed for nuclear space needs. • Turbomachinery efficiency presented a strong influence on the system efficiency. • Radiator area presented the highest potential to increase the system efficiency. • There is maximum system efficiency for each total mass of heat exchangers. • Size or efficiency optimization was performed by changing heat exchanger proportion.

  5. Combined Brayton-JT cycles with refrigerants for natural gas liquefaction

    Science.gov (United States)

    Chang, Ho-Myung; Park, Jae Hoon; Lee, Sanggyu; Choe, Kun Hyung

    2012-06-01

    Thermodynamic cycles for natural gas liquefaction with single-component refrigerants are investigated under a governmental project in Korea, aiming at new processes to meet the requirements on high efficiency, large capacity, and simple equipment. Based upon the optimization theory recently published by the present authors, it is proposed to replace the methane-JT cycle in conventional cascade process with a nitrogen-Brayton cycle. A variety of systems to combine nitrogen-Brayton, ethane-JT and propane-JT cycles are simulated with Aspen HYSYS and quantitatively compared in terms of thermodynamic efficiency, flow rate of refrigerants, and estimated size of heat exchangers. A specific Brayton-JT cycle is suggested with detailed thermodynamic data for further process development. The suggested cycle is expected to be more efficient and simpler than the existing cascade process, while still taking advantage of easy and robust operation with single-component refrigerants.

  6. Energy and exergy analysis of a closed Brayton cycle-based combined cycle for solar power tower plants

    International Nuclear Information System (INIS)

    Zare, V.; Hasanzadeh, M.

    2016-01-01

    Highlights: • A novel combined cycle is proposed for solar power tower plants. • The effects of solar subsystem and power cycle parameters are examined. • The proposed combined cycle yields exergy efficiencies of higher than 70%. • For the overall power plant exergy efficiencies of higher than 30% is achievable. - Abstract: Concentrating Solar Power (CSP) technology offers an interesting potential for future power generation and research on CSP systems of all types, particularly those with central receiver system (CRS) has been attracting a lot of attention recently. Today, these power plants cannot compete with the conventional power generation systems in terms of Levelized Cost of Electricity (LCOE) and if a competitive LCOE is to be reached, employing an efficient thermodynamic power cycle is deemed essential. In the present work, a novel combined cycle is proposed for power generation from solar power towers. The proposed system consists of a closed Brayton cycle, which uses helium as the working fluid, and two organic Rankine cycles which are employed to recover the waste heat of the Brayton cycle. The system is thermodynamically assessed from both the first and second law viewpoints. A parametric study is conducted to examine the effects of key operating parameters (including solar subsystem and power cycle parameters) on the overall power plant performance. The results indicate that exergy efficiencies of higher than 30% are achieved for the overall power plant. Also, according to the results, the power cycle proposed in this work has a better performance than the other investigated Rankine and supercritical CO_2 systems operating under similar conditions, for these types of solar power plants.

  7. Preliminary design study of an alternate heat source assembly for a Brayton isotope power system

    Science.gov (United States)

    Strumpf, H. J.

    1978-01-01

    Results are presented for a study of the preliminary design of an alternate heat source assembly (HSA) intended for use in the Brayton isotope power system (BIPS). The BIPS converts thermal energy emitted by a radioactive heat source into electrical energy by means of a closed Brayton cycle. A heat source heat exchanger configuration was selected and optimized. The design consists of a 10 turn helically wound Hastelloy X tube. Thermal analyses were performed for various operating conditions to ensure that post impact containment shell (PICS) temperatures remain within specified limits. These limits are essentially satisfied for all modes of operation except for the emergency cooling system for which the PICS temperatures are too high. Neon was found to be the best choice for a fill gas for auxiliary cooling system operation. Low cycle fatigue life, natural frequency, and dynamic loading requirements can be met with minor modifications to the existing HSA.

  8. A closed Brayton power conversion unit concept for nuclear electric propulsion for deep space missions

    International Nuclear Information System (INIS)

    Joyner, Claude Russell II; Fowler, Bruce; Matthews, John

    2003-01-01

    In space, whether in a stable satellite orbit around a planetary body or traveling as a deep space exploration craft, power is just as important as the propulsion. The need for power is especially important for in-space vehicles that use Electric Propulsion. Using nuclear power with electric propulsion has the potential to provide increased payload fractions and reduced mission times to the outer planets. One of the critical engineering and design aspects of nuclear electric propulsion at required mission optimized power levels is the mechanism that is used to convert the thermal energy of the reactor to electrical power. The use of closed Brayton cycles has been studied over the past 30 or years and shown to be the optimum approach for power requirements that range from ten to hundreds of kilowatts of power. It also has been found to be scalable to higher power levels. The Closed Brayton Cycle (CBC) engine power conversion unit (PCU) is the most flexible for a wide range of power conversion needs and uses state-of-the-art, demonstrated engineering approaches. It also is in use with many commercial power plants today. The long life requirements and need for uninterrupted operation for nuclear electric propulsion demands high reliability from a CBC engine. A CBC engine design for use with a Nuclear Electric Propulsion (NEP) system has been defined based on Pratt and Whitney's data from designing long-life turbo-machines such as the Space Shuttle turbopumps and military gas turbines and the use of proven integrated control/health management systems (EHMS). An integrated CBC and EHMS design that is focused on using low-risk and proven technologies will over come many of the life-related design issues. This paper will discuss the use of a CBC engine as the power conversion unit coupled to a gas-cooled nuclear reactor and the design trends relative to its use for powering electric thrusters in the 25 kWe to 100kWe power level

  9. Adaptive neuro-fuzzy inference system to improve the power quality of a split shaft microturbine power generation system

    Science.gov (United States)

    Oğuz, Yüksel; Üstün, Seydi Vakkas; Yabanova, İsmail; Yumurtaci, Mehmet; Güney, İrfan

    2012-01-01

    This article presents design of adaptive neuro-fuzzy inference system (ANFIS) for the turbine speed control for purpose of improving the power quality of the power production system of a split shaft microturbine. To improve the operation performance of the microturbine power generation system (MTPGS) and to obtain the electrical output magnitudes in desired quality and value (terminal voltage, operation frequency, power drawn by consumer and production power), a controller depended on adaptive neuro-fuzzy inference system was designed. The MTPGS consists of the microturbine speed controller, a split shaft microturbine, cylindrical pole synchronous generator, excitation circuit and voltage regulator. Modeling of dynamic behavior of synchronous generator driver with a turbine and split shaft turbine was realized by using the Matlab/Simulink and SimPowerSystems in it. It is observed from the simulation results that with the microturbine speed control made with ANFIS, when the MTPGS is operated under various loading situations, the terminal voltage and frequency values of the system can be settled in desired operation values in a very short time without significant oscillation and electrical production power in desired quality can be obtained.

  10. Optimization of the performance characteristics in an irreversible magnetic Brayton refrigeration cycle

    International Nuclear Information System (INIS)

    Wang Hao; Liu Sanqiu

    2008-01-01

    An irreversible cycle model of magnetic Brayton refrigerators is established, in which the thermal resistance and irreversibility in the two adiabatic processes are taken into account. Expressions for several important performance parameters, such as the coefficient of performance, cooling rate and power input are derived. Moreover, the optimal performance parameters are obtained at the maximum coefficient of performance. The optimization region (or criteria) for an irreversible magnetic Brayton refrigerator is obtained. The results obtained here have general significance and will be helpful to understand deeply the performance of a magnetic Brayton refrigeration cycle

  11. Performance evaluation and parametric choice criteria of a Brayton pumped thermal electricity storage system

    International Nuclear Information System (INIS)

    Guo, Juncheng; Cai, Ling; Chen, Jincan; Zhou, Yinghui

    2016-01-01

    A more realistic thermodynamic model of the pumped thermal electricity storage (PTES) system consisting of a Brayton cycle and a reverse Brayton cycle is proposed, where the internal and external irreversible losses are took into account and several important controlling parameters, e.g., the pressure ratio and heat flows of the two isobaric processes in the Brayton cycle, are introduced. Analytic expressions for the round trip efficiency and power output of the PTES system are derived. The general performance characteristics of the PTES system are revealed. The optimal relationship between the round trip efficiency and the power output is obtained. The influences of some important controlling parameters on the performance characteristics of the PTES system are discussed and the optimally operating regions of these parameters are determined. - Highlights: • A cycle model of the Brayton pumped thermal electricity storage system is proposed. • Internal and external irreversible losses are considered. • Maximum power output and efficiency of the system are calculated. • Optimum performance characteristics of the system are revealed. • Rational ranges of key controlling parameters are determined.

  12. Sensitivity study on nitrogen Brayton cycle coupled with a small ultra-long cycle fast reactor

    International Nuclear Information System (INIS)

    Seo, Seok Bin; Seo, Han; Bang, In Cheol

    2014-01-01

    The main characteristics of UCFR are constant neutron flux and power density. They move their positions every moment at constant speed along with axial position of fuel rod for 60 years. Simultaneously with the development of the reactors, a new power conversion system has been considered. To solve existing issues of vigorous sodium-water reaction in SFR with steam power cycle, many researchers suggested a closed Brayton cycle as an alternative technique for SFR power conversion system. Many inactive gases are selected as a working fluid in Brayton power cycle, mainly supercritical CO 2 (S-CO 2 ). However, S-CO 2 still has potential for reaction with sodium. CO 2 -sodium reaction produces solid product, which has possibility to have an auto ignition reaction around 600 .deg. C. Thus, instead of S-CO 2 , CEA in France has developed nitrogen power cycle for ASTRID (Advanced Sodium Technological Reactor for Industrial Demonstration). In addition to inactive characteristic of nitrogen with sodium, its thermal and physical similarity with air enables to easily adopt to existing air Brayton cycle technology. In this study, for an optimized power conversion system for UCFR, a nitrogen Brayton cycle was analyzed in thermodynamic aspect. Based on subchannel analysis data of UCFR-100, a parametric study for thermal performance of nitrogen Brayton cycle was achieved. The system maximum pressure significantly affects to the overall efficiency of cycle, while other parameters show little effects. Little differences of the overall efficiencies for all cases between three stages (BOC, MOC, EOC) indicate that the power cycle of UCFR-100 maintains its performance during the operation

  13. Potential application of Rankine and He-Brayton cycles to sodium fast reactors

    International Nuclear Information System (INIS)

    Perez-Pichel, G.D.; Linares, J.I.; Herranz, L.E.; Moratilla, B.Y.

    2011-01-01

    Highlights: → This paper has been focused on thermal efficiency of several Rankine and Brayton cycles for SFR. → A sub-critical Rankine configuration could reach a thermal efficiency higher than 43%. → It could be increased to almost 45% using super-critical configurations. → Brayton cycles thermal performance can be enhanced by adding a super-critical organic fluid Rankine cycle. → The moderate coolant temperature at the reactor makes Brayton configurations have poorer. - Abstract: Traditionally all the demos and/or prototypes of the sodium fast reactor (SFR) technology with power output, have used a steam sub-critical Rankine cycle. Sustainability requirement of Gen. IV reactors recommends exploring alternate power cycle configurations capable of reaching high thermal efficiency. By adopting the anticipated working parameters of next SFRs, this paper investigates the potential of some Rankine and He-Brayton layouts to reach thermal efficiencies as high as feasible, so that they could become alternates for SFR reactor balance of plant. The assessment has encompassed from sub-critical to super-critical Rankine cycles and combined cycles based on He-Brayton gas cycles of different complexity coupled to Organic Rankine Cycles. The sub-critical Rankine configuration reached at thermal efficiency higher than 43%, which has been shown to be a superior performance than any of the He-Brayton configurations analyzed. By adopting a super-critical Rankine arrangement, thermal efficiency would increase less than 1.5%. In short, according to the present study a sub-critical layout seems to be the most promising configuration for all those upcoming prototypes to be operated in the short term (10-15 years). The potential of super-critical CO 2 -Brayton cycles should be explored for future SFRs to be deployed in a longer run.

  14. Brayton Isotope Power System, Design Integrity Checklist (BIPS-DIC)

    Energy Technology Data Exchange (ETDEWEB)

    Miller, L.G.

    1976-06-10

    A preliminary Failure Modes, Effects and Criticality Analysis (FMECA) for the BIPS Flight System (FS) was published as AiResearch Report 76-311709 dated January 12, 1976. The FMECA presented a thorough review of the conceptual BIPS FS to identify areas of concern and activities necessary to avoid premature failures. In order to assure that the actions recommended by the FMECA are effected in both the FS and the Ground Demonstration System (GDS), a checklist (the BIPS-DIC) was prepared for the probability of occurrence of those failure modes that rated highest in criticality ranking. This checklist was circulated as an attachment to AiResearch Coordination Memo No. BIPS-GDS-A0106 dated January 23, 1976. The Brayton Isotope Power System-Design Integrity Checklist (BIPS-DIC) has been revised and is presented. Additional entries have been added that reference failure modes determined to rank highest in criticality ranking. The checklist will be updated periodically.

  15. Exergy analysis for combined regenerative Brayton and inverse Brayton cycles

    OpenAIRE

    Zelong Zhang, Lingen Chen, Fengrui Sun

    2012-01-01

    This paper presents the study of exergy analysis of combined regenerative Brayton and inverse Brayton cycles. The analytical formulae of exergy loss and exergy efficiency are derived. The largest exergy loss location is determined. By taking the maximum exergy efficiency as the objective, the choice of bottom cycle pressure ratio is optimized by detailed numerical examples, and the corresponding optimal exergy efficiency is obtained. The influences of various parameters on the exergy efficien...

  16. Shaft adjuster

    Science.gov (United States)

    Harry, Herbert H.

    1989-01-01

    Apparatus and method for the adjustment and alignment of shafts in high power devices. A plurality of adjacent rotatable angled cylinders are positioned between a base and the shaft to be aligned which when rotated introduce an axial offset. The apparatus is electrically conductive and constructed of a structurally rigid material. The angled cylinders allow the shaft such as the center conductor in a pulse line machine to be offset in any desired alignment position within the range of the apparatus.

  17. Exergy analysis for combined regenerative Brayton and inverse Brayton cycles

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zelong; Chen, Lingen; Sun, Fengrui [College of Naval Architecture and Power, Naval University of Engineering, Wuhan 430033 (China)

    2012-07-01

    This paper presents the study of exergy analysis of combined regenerative Brayton and inverse Brayton cycles. The analytical formulae of exergy loss and exergy efficiency are derived. The largest exergy loss location is determined. By taking the maximum exergy efficiency as the objective, the choice of bottom cycle pressure ratio is optimized by detailed numerical examples, and the corresponding optimal exergy efficiency is obtained. The influences of various parameters on the exergy efficiency and other performances are analyzed by numerical calculations.

  18. Enhanced arrangement for recuperators in supercritical CO2 Brayton power cycle for energy conversion in fusion reactors

    International Nuclear Information System (INIS)

    Serrano, I.P.; Linares, J.I.; Cantizano, A.; Moratilla, B.Y.

    2014-01-01

    Highlights: •We propose an enhanced power conversion system layout for a Model C fusion reactor. •Proposed layout is based on a modified recompression supercritical CO 2 Brayton cycle. •New arrangement in recuperators regards to classical cycle is used. •High efficiency is achieved, comparable with the best obtained in complex solutions. -- Abstract: A domestic research program called TECNO F US was launched in Spain in 2009 to support technological developments related to a dual coolant breeding blanket concept for fusion reactors. This concept of blanket uses Helium (300 °C/400 °C) to cool part of it and a liquid metal (480 °C/700 °C) to cool the rest; it also includes high temperature (700 °C/800 °C) and medium temperature (566 °C/700 °C) Helium cooling circuits for divertor. This paper proposes a new layout of the classical recompression supercritical CO 2 Brayton cycle which replaces one of the recuperators (the one with the highest temperature) by another which by-passes the low temperature blanket source. This arrangement allows reaching high turbine inlet temperatures (around 600 °C) with medium pressures (around 225 bar) and achieving high cycle efficiencies (close to 46.5%). So, the proposed cycle reveals as a promising design because it integrates all the available thermal sources in a compact layout achieving high efficiencies with the usual parameters prescribed in classical recompression supercritical CO 2 Brayton cycles

  19. RELAP/FRAP-T6 analysis of seized and sheared shaft accidents

    International Nuclear Information System (INIS)

    Bollinger, J.S.; Ito, T.; Peeler, G.B.

    1984-01-01

    Argonne National Laboratory (ANL) performed audit calculations of a Reactor Coolant Pump (RCP) seized/sheared shaft transient for the Westinghouse Seabrook Plant using RELAP5/MOD 1.5 (Cycle 32) and FRAP-T6. The objective was to determine the effect of time of loss of offsite power and other single component failures on the peak clad temperature. The RCP shaft seizure event was modeled in RELAP5 by using the pump model shaft stop option. In modeling the sheared shaft failure, the faulted pump was replaced with a branch component having no flow losses. In general, the RELAP5-predicted system response for the seized shaft transient was very comparable to the results presented in the Seabrook FSAR, although the Reactor Coolant System (RCS) pressure response was somewhat different. The RELAP5 sheared-shaft analysis results were very similar to those for the seized shaft

  20. Study of various Brayton cycle designs for small modular sodium-cooled fast reactor

    International Nuclear Information System (INIS)

    Ahn, Yoonhan; Lee, Jeong Ik

    2014-01-01

    Highlights: • Application of closed Brayton cycle for small and medium sized SFRs is reviewed. • S-CO 2 , helium and nitrogen cycle designs for small modular SFR applications are analyzed and compared in terms of cycle efficiency, component performance and physical size. • Several new layouts for each Brayton cycle are suggested to simplify the turbomachinery designs. • S-CO 2 cycle design shows the best efficiency and compact size compared to other Brayton cycles. - Abstract: Many previous sodium cooled fast reactors (SFRs) adopted steam Rankine cycle as the power conversion system. However, the concern of sodium water reaction has been one of the major design issues of a SFR system. As an alternative to the steam Rankine cycle, several closed Brayton cycles including supercritical CO 2 cycle, helium cycle and nitrogen cycle have been suggested recently. In this paper, these alternative gas Brayton cycles will be compared to each other in terms of cycle performance and physical size for small modular SFR application. Several new layouts are suggested for each fluid while considering the turbomachinery design and the total system volume

  1. Impact of closed Brayton cycle test results on gas cooled reactor operation and safety

    International Nuclear Information System (INIS)

    Wright, St.A.; Pickard, P.S.

    2007-01-01

    This report summarizes the measurements and model predictions for a series of tests supported by the U.S. Department of Energy that were performed using the recently constructed Sandia Brayton Loop (SBL-30). From the test results we have developed steady-state power operating curves, controls methodologies, and transient data for normal and off-normal behavior, such as loss of load events, and for decay heat removal conditions after shutdown. These tests and models show that because the turbomachinery operates off of the temperature difference (between the heat source and the heat sink), that the turbomachinery can continue to operate (off of sensible heat) for long periods of time without auxiliary power. For our test hardware, operations up to one hour have been observed. This effect can provide significant operations and safety benefits for nuclear reactors that are coupled to a Brayton cycles because the operating turbomachinery continues to provide cooling to the reactor. These capabilities mean that the decay-heat removal can be accommodated by properly managing the electrical power produced by the generator/alternator. In some conditions, it may even be possible to produce sufficient power to continue operating auxiliary systems including the waste heat circulatory system. In addition, the Brayton plant impacts the consequences of off-normal and accident events including loss of load and loss of on-site power. We have observed that for a loss of load or a loss of on-site power event, with a reactor scram, the transient consists initially of a turbomachinery speed increase to a new stable operating point. Because the turbomachinery is still spinning, the reactor is still being cooled provided the ultimate heat sink remains available. These highly desirable operational characteristics were observed in the Sandia Brayton loop. This type of behavior is also predicted by our models. Ultimately, these results provide the designers the opportunity to design gas

  2. Thermodynamic design of 10 kW Brayton cryocooler for HTS cable

    Science.gov (United States)

    Chang, Ho-Myung; Park, C. W.; Yang, H. S.; Sohn, Song Ho; Lim, Ji Hyun; Oh, S. R.; Hwang, Si Dole

    2012-06-01

    Thermodynamic design of Brayton cryocooler is presented as part of an ongoing governmental project in Korea, aiming at 1 km HTS power cable in the transmission grid. The refrigeration requirement is 10 kW for continuously sub-cooling liquid nitrogen from 72 K to 65 K. An ideal Brayton cycle for this application is first investigated to examine the fundamental features. Then a practical cycle for a Brayton cryocooler is designed, taking into account the performance of compressor, expander, and heat exchangers. Commercial software (Aspen HYSYS) is used for simulating the refrigeration cycle with real fluid properties of refrigerant. Helium is selected as a refrigerant, as it is superior to neon in thermodynamic efficiency. The operating pressure and flow rate of refrigerant are decided with a constraint to avoid the freezing of liquid nitrogen

  3. Concept definition study of small Brayton cycle engines for dispersed solar electric power systems

    Science.gov (United States)

    Six, L. D.; Ashe, T. L.; Dobler, F. X.; Elkins, R. T.

    1980-01-01

    Three first-generation Brayton cycle engine types were studied for solar application: a near-term open cycle (configuration A), a near-term closed cycle (configuration B), and a longer-term open cycle (configuration C). A parametric performance analysis was carried out to select engine designs for the three configurations. The interface requirements for the Brayton cycle engine/generator and solar receivers were determined. A technology assessment was then carried out to define production costs, durability, and growth potential for the selected engine types.

  4. Thermodynamic Modeling for Open Combined Regenerative Brayton and Inverse Brayton Cycles with Regeneration before the Inverse Cycle

    Directory of Open Access Journals (Sweden)

    Lingen Chen

    2012-01-01

    Full Text Available A thermodynamic model of an open combined regenerative Brayton and inverse Brayton cycles with regeneration before the inverse cycle is established in this paper by using thermodynamic optimization theory. The flow processes of the working fluid with the pressure drops and the size constraint of the real power plant are modeled. There are 13 flow resistances encountered by the working fluid stream for the cycle model. Four of these, the friction through the blades and vanes of the compressors and the turbines, are related to the isentropic efficiencies. The remaining nine flow resistances are always present because of the changes in flow cross-section at the compressor inlet of the top cycle, regenerator inlet and outlet, combustion chamber inlet and outlet, turbine outlet of the top cycle, turbine outlet of the bottom cycle, heat exchanger inlet, and compressor inlet of the bottom cycle. These resistances associated with the flow through various cross-sectional areas are derived as functions of the compressor inlet relative pressure drop of the top cycle, and control the air flow rate, the net power output and the thermal efficiency. The analytical formulae about the power output, efficiency and other coefficients are derived with 13 pressure drop losses. It is found that the combined cycle with regenerator can reach higher thermal efficiency but smaller power output than those of the base combined cycle at small compressor inlet relative pressure drop of the top cycle.

  5. Research on the Development of the Supercritical CO{sub 2} Dual Brayton Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Baik, Young-Jin; Na, Sun Ik; Cho, Junhyun; Shin, Hyung-Ki; Lee, Gilbong [Korea Institute of Energy Research (KIER), Daejeon (Korea, Republic of)

    2016-10-15

    Because of the growing interest in supercritical carbon dioxide power cycle technology owing to its potential enhancement in compactness and efficiency, supercritical carbon dioxide cycles have been studied in the fields of nuclear power, concentrated solar power (CSP), and fossil fuel power generation. This study introduces the current status of the research project on the supercritical carbon dioxide power cycle by Korea Institute of Energy Research (KIER). During the first phase of the project, the un-recuperated supercritical Brayton cycle test loop was built and tested. In phase two, researchers are designing and building a supercritical carbon dioxide dual Brayton cycle, which utilizes two turbines and two recuperators. Under the simulation condition considered in this study, it was confirmed that the design parameter has an optimal value for maximizing the net power in the supercritical carbon dioxide dual cycle.

  6. Determination of power and moment on shaft of special asynchronous electric drives

    Science.gov (United States)

    Karandey, V. Yu; Popov, B. K.; Popova, O. B.; Afanasyev, V. L.

    2018-03-01

    In the article, questions and tasks of determination of power and the moment on a shaft of special asynchronous electric drives are considered. Use of special asynchronous electric drives in mechanical engineering and other industries is relevant. The considered types of electric drives possess the improved mass-dimensional indicators in comparison with singleengine systems. Also these types of electric drives have constructive advantages; the improved characteristics allow one to realize the technological process. But creation and design of new electric drives demands adjustment of existing or development of new methods and approaches of calculation of parameters. Determination of power and the moment on a shaft of special asynchronous electric drives is the main objective during design of electric drives. This task has been solved based on a method of electromechanical transformation of energy.

  7. Exergoeconomic multi objective optimization and sensitivity analysis of a regenerative Brayton cycle

    International Nuclear Information System (INIS)

    Naserian, Mohammad Mahdi; Farahat, Said; Sarhaddi, Faramarz

    2016-01-01

    Highlights: • Finite time exergoeconomic multi objective optimization of a Brayton cycle. • Comparing the exergoeconomic and the ecological function optimization results. • Inserting the cost of fluid streams concept into finite-time thermodynamics. • Exergoeconomic sensitivity analysis of a regenerative Brayton cycle. • Suggesting the cycle performance curve drawing and utilization. - Abstract: In this study, the optimal performance of a regenerative Brayton cycle is sought through power maximization and then exergoeconomic optimization using finite-time thermodynamic concept and finite-size components. Optimizations are performed using genetic algorithm. In order to take into account the finite-time and finite-size concepts in current problem, a dimensionless mass-flow parameter is used deploying time variations. The decision variables for the optimum state (of multi objective exergoeconomic optimization) are compared to the maximum power state. One can see that the multi objective exergoeconomic optimization results in a better performance than that obtained with the maximum power state. The results demonstrate that system performance at optimum point of multi objective optimization yields 71% of the maximum power, but only with exergy destruction as 24% of the amount that is produced at the maximum power state and 67% lower total cost rate than that of the maximum power state. In order to assess the impact of the variation of the decision variables on the objective functions, sensitivity analysis is conducted. Finally, the cycle performance curve drawing according to exergoeconomic multi objective optimization results and its utilization, are suggested.

  8. Performance analysis of different working gases for concentrated solar gas engines: Stirling & Brayton

    International Nuclear Information System (INIS)

    Sharaf Eldean, Mohamed A.; Rafi, Khwaja M.; Soliman, A.M.

    2017-01-01

    Highlights: • Different working gases are used to power on Concentrated Solar Gas Engines. • Gases are used to increase the system efficiency. • Specific heat capacity is considered a vital role for the comparison. • Brayton engine resulted higher design limits. • CO 2 is favorable as a working gas more than C 2 H 2 . - Abstract: This article presents a performance study of using different working fluids (gases) to power on Concentrated Solar Gas Engine (CSGE-Stirling and/or Brayton). Different working gases such as Monatomic (five types), Diatomic (three types) and Polyatomic (four types) are used in this investigation. The survey purported to increase the solar gas engine efficiency hence; decreasing the price of the output power. The effect of using different working gases is noticed on the engine volume, dish area, total plant area, efficiency, compression and pressure ratios thence; the Total Plant Cost (TPC, $). The results reveal that the top cycle temperature effect is reflected on the cycle by increasing the total plant efficiency (2–10%) for Brayton operational case and 5–25% for Stirling operational case. Moreover; Brayton engine resulted higher design limits against the Stirling related to total plant area, m 2 and TPC, $ while generating 1–100 MW e as an economic case study plant. C 2 H 2 achieved remarkable results however, CO 2 is considered for both cycles operation putting in consideration the gas flammability and safety issues.

  9. Enhanced arrangement for recuperators in supercritical CO{sub 2} Brayton power cycle for energy conversion in fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Serrano, I.P.; Linares, J.I., E-mail: linares@dim.icai.upcomillas.es; Cantizano, A.; Moratilla, B.Y.

    2014-10-15

    Highlights: •We propose an enhanced power conversion system layout for a Model C fusion reactor. •Proposed layout is based on a modified recompression supercritical CO{sub 2} Brayton cycle. •New arrangement in recuperators regards to classical cycle is used. •High efficiency is achieved, comparable with the best obtained in complex solutions. -- Abstract: A domestic research program called TECNO{sub F}US was launched in Spain in 2009 to support technological developments related to a dual coolant breeding blanket concept for fusion reactors. This concept of blanket uses Helium (300 °C/400 °C) to cool part of it and a liquid metal (480 °C/700 °C) to cool the rest; it also includes high temperature (700 °C/800 °C) and medium temperature (566 °C/700 °C) Helium cooling circuits for divertor. This paper proposes a new layout of the classical recompression supercritical CO{sub 2} Brayton cycle which replaces one of the recuperators (the one with the highest temperature) by another which by-passes the low temperature blanket source. This arrangement allows reaching high turbine inlet temperatures (around 600 °C) with medium pressures (around 225 bar) and achieving high cycle efficiencies (close to 46.5%). So, the proposed cycle reveals as a promising design because it integrates all the available thermal sources in a compact layout achieving high efficiencies with the usual parameters prescribed in classical recompression supercritical CO{sub 2} Brayton cycles.

  10. Supercritical CO2 Brayton power cycles for DEMO fusion reactor based on Helium Cooled Lithium Lead blanket

    International Nuclear Information System (INIS)

    Linares, José Ignacio; Herranz, Luis Enrique; Fernández, Iván; Cantizano, Alexis; Moratilla, Beatriz Yolanda

    2015-01-01

    Fusion energy is one of the most promising solutions to the world energy supply. This paper presents an exploratory analysis of the suitability of supercritical CO 2 Brayton power cycles (S-CO 2 ) for low-temperature divertor fusion reactors cooled by helium (as defined by EFDA). Integration of three thermal sources (i.e., blanket, divertor and vacuum vessel) has been studied through proposing and analyzing a number of alternative layouts, achieving an improvement on power production higher than 5% over the baseline case, which entails to a gross efficiency (before self-consumptions) higher than 42%. In spite of this achievement, the assessment of power consumption for the circulating heat transfer fluids results in a penalty of 20% in the electricity production. Once the most suitable layout has been selected an optimization process has been conducted to adjust the key parameters to balance performance and size, achieving an electrical efficiency (electricity without taking into account auxiliary consumptions due to operation of the fusion reactor) higher than 33% and a reduction in overall size of heat exchangers of 1/3. Some relevant conclusions can be drawn from the present work: the potential of S-CO 2 cycles as suitable converters of thermal energy to power in fusion reactors; the significance of a suitable integration of thermal sources to maximize power output; the high penalty of pumping power; and the convenience of identifying the key components of the layout as a way to optimize the whole cycle performance. - Highlights: • Supercritical CO 2 Brayton cycles have been proposed for BoP of HCLL fusion reactor. • Low temperature sources have been successfully integrated with high temperature ones. • Optimization of thermal sources integration improves 5% the electricity production. • Assessment of pumping power with sources and sink loops results on 20% of gross power. • Matching of key parameters has conducted to 1/3 of reduction in heat

  11. Multi-objective thermodynamic optimization of combined Brayton and inverse Brayton cycles using genetic algorithms

    International Nuclear Information System (INIS)

    Besarati, S.M.; Atashkari, K.; Jamali, A.; Hajiloo, A.; Nariman-zadeh, N.

    2010-01-01

    This paper presents a simultaneous optimization study of two outputs performance of a previously proposed combined Brayton and inverse Brayton cycles. It has been carried out by varying the upper cycle pressure ratio, the expansion pressure of the bottom cycle and using variable, above atmospheric, bottom cycle inlet pressure. Multi-objective genetic algorithms are used for Pareto approach optimization of the cycle outputs. The two important conflicting thermodynamic objectives that have been considered in this work are net specific work (w s ) and thermal efficiency (η th ). It is shown that some interesting features among optimal objective functions and decision variables involved in the Baryton and inverse Brayton cycles can be discovered consequently.

  12. Garrett solar Brayton engine/generator status

    Science.gov (United States)

    Anson, B.

    1982-07-01

    The solar advanced gas turbine (SAGT-1) is being developed by the Garrett Turbine Engine Company, for use in a Brayton cycle power conversion module. The engine is derived from the advanced gas turbine (AGT101) now being developd by Garrett and Ford Motor Company for automotive use. The SAGT Program is presently funded for the design, fabrication and test of one engine at Garrett's Phoenix facility. The engine when mated with a solar receiver is called a power conversion module (PCU). The PCU is scheduled to be tested on JPL's test bed concentrator under a follow on phase of the program. Approximately 20 kw of electrical power will be generated.

  13. New exergy analysis of a regenerative closed Brayton cycle

    International Nuclear Information System (INIS)

    Naserian, Mohammad Mahdi; Farahat, Said; Sarhaddi, Faramarz

    2017-01-01

    Highlights: • The maximum power is studied relating to time and size constraints variations. • The influence of time and size constraints on exergy destruction are investigated. • The definitions of heat exergy, and second law efficiency are modified. - Abstract: In this study, the optimal performance of a regenerative closed Brayton cycle is sought through power maximization. Optimization is performed on the output power as the objective function using genetic algorithm. In order to take into account the time and the size constraints in current problem, the dimensionless mass-flow parameter is used. The influence of the unavoidable exergy destruction due to finite-time constraint is taken into account by developing the definition of heat exergy. Finally, the improved definitions are proposed for heat exergy, and the second law efficiency. Moreover, the new definitions will be compared with the conventional ones. For example, at a specified dimensionless mass-flow parameter, exergy overestimation in conventional definition, causes about 31% lower estimation of the second law efficiency. These results could be expected to be utilized in future solar thermal Brayton cycle assessment and optimization.

  14. Balancing of a power-transmission shaft with the application of axial torque

    Science.gov (United States)

    Zorzi, E. S.; Flemming, D.

    1980-01-01

    Evaluation of power transmission shafting for high-speed balancing has shown that when axial torque is applied, the imbalance response is altered. An increase in synchronous excitation always occurs if the axial torque level is altered from the value used during balancing; this was the case even when the shaft was balanced with torque applied. The twisting of the long slender shaft produces a change in the imbalance distribution sufficient to disrupt the balanced state. This paper presents a review of the analytic development of a weighted least squares approach to influence coefficient balancing and a review of experimental results. The analytic approach takes advantage of the fact that the past testing has shown that the influence coefficients are not significantly affected by the application of axial torque. The 3.60-m (12-ft) long aluminum shaft, 7.62 cm (3 in.) in diameter was run through the first flexural critical speed at torque levels ranging from zero-torque to 903.8 N-M (8000 lb-in.) in 112.9 N-M (1000 lb-in.) increments. Good comparison was achieved between predicted and experimental results.

  15. Thermal performance of Brayton power cycles. A study based on high-temperature gas-cooled reactors

    International Nuclear Information System (INIS)

    Herranz, Luis E.; Linares, Jose I.; Moratilla, Beatriz Y.

    2005-01-01

    Power cycles optimization has become an essential ingredient to achieve sustainability and improve economic competitiveness of forthcoming Generation IV designs. This paper investigates performance of several configurations of direct helium Brayton cycles. An optimum layout is proposed based on multiple intercooled compression stages and in-between turbines reheating: C(IC) 2 HTRTX. Under the hypotheses and approximations made, a 59% is estimated and it increases even further (67%) when the foreseen technological development is considered. A sensitive analysis identified key components and variables for cycle performance. Particular attention is paid to the effect of the extracted gas mass fraction for reheating. It is shown that the C(IC) 2 HTRTX cycle provides a feasible and simple way to operate the power plant the load-follow mode with a very little loss of efficiency. (author)

  16. Elastomer damper performance - A comparison with a squeeze film for a supercritical power transmission shaft

    Science.gov (United States)

    Zorzi, E. S.; Burgess, G.; Cunningham, R.

    1980-01-01

    This paper describes the design and testing of an elastomer damper on a super-critical power transmission shaft. The elastomers were designed to provide acceptable operation through the fourth bending mode and to control synchronous as well as nonsynchronous vibration throughout the operating range. The design of the elastomer was such that it could be incorporated into the system as a replacement for a squeeze-film damper without a reassembly, which could have altered the imbalance of the shaft. This provided a direct comparison of the elastomer and squeeze-film dampers without having to assess the effect of shaft imbalance changes.

  17. Cost and price estimate of Brayton and Stirling engines in selected production volumes

    Science.gov (United States)

    Fortgang, H. R.; Mayers, H. F.

    1980-01-01

    The methods used to determine the production costs and required selling price of Brayton and Stirling engines modified for use in solar power conversion units are presented. Each engine part, component and assembly was examined and evaluated to determine the costs of its material and the method of manufacture based on specific annual production volumes. Cost estimates are presented for both the Stirling and Brayton engines in annual production volumes of 1,000, 25,000, 100,000 and 400,000. At annual production volumes above 50,000 units, the costs of both engines are similar, although the Stirling engine costs are somewhat lower. It is concluded that modifications to both the Brayton and Stirling engine designs could reduce the estimated costs.

  18. High exergetic modified Brayton cycle with thermoelectric energy conversion

    International Nuclear Information System (INIS)

    Yazawa, Kazuaki; Fisher, Timothy S.; Groll, Eckhard A.; Shakouri, Ali

    2017-01-01

    Highlights: • Modified Brayton cycle with thermoelectric generators. • 1 kW power output scale hybrid gas turbine for residential applications. • Low profile TEGs are embedded in combustor/recuperator/heat-exchangers. • Analytical primary energy efficiency achieves more than 40%. - Abstract: A novel concept using thermoelectric direct power generators (TEGs) integrated into a 1 kW scale miniature Brayton cycle is investigated based on an analytical study. The work considers a residential scale application aiming to achieve 40% primary energy efficiency in contrast to the state-of-the-art miniature gas turbine alone, which can only achieve <16%. A topping cycle TEG for a hot gas temperature at 1600–1700 °C is embedded in the combustor scale of a kitchen stove. This TEG converts a fraction of the heat into electricity, while all the remaining thermal energy proceeds to the Brayton cycle. Turbine-inlet gas temperature regulates to 800–1100 °C by optimizing the air mixture. A second TEG is built in the recuperator; hence, the associated temperature is similar to that of a vehicle exhaust. A third TEG is used for waste heat recovery from flue gas, and then the downstream heat flow is used by a combined-heat-power system. By taking advantage of low-profile modules, the TEG embedded heat exchanges can be compact and low-cost at 0.2–0.3 $/W. The figure-of-merit of the thermoelectric materials considers ZT 1.0–1.8. Assuming that all advanced components are utilized, the primary energy efficiency predicts 42% with power output 720 W from the alternator and 325 W from the TEGs out of 0.456 g/s of a pipeline natural gas input.

  19. Supercritical CO2 Brayton power cycles for DEMO (demonstration power plant) fusion reactor based on dual coolant lithium lead blanket

    International Nuclear Information System (INIS)

    Linares, José Ignacio; Cantizano, Alexis; Moratilla, Beatriz Yolanda; Martín-Palacios, Víctor; Batet, Lluis

    2016-01-01

    This paper presents an exploratory analysis of the suitability of supercritical CO 2 Brayton power cycles as alternative energy conversion systems for a future fusion reactor based on a DCLL (dual coolant lithium-lead) blanket, as prescribed by EUROfusion. The main issue dealt is the optimization of the integration of the different thermal sources with the power cycle in order to achieve the highest electricity production. The analysis includes the assessment of the pumping consumption in the heating and cooling loops, taking into account additional considerations as control issues and integration of thermal energy storage systems. An exergy analysis has been performed in order to understand the behavior of each layout. Up to ten scenarios have been analyzed assessing different locations for thermal sources heat exchangers. Neglecting the worst four scenarios, it is observed less than 2% of variation among the other six ones. One of the best six scenarios clearly stands out over the others due to the location of the thermal sources in a unique island, being this scenario compatible with the control criteria. In this proposal 34.6% of electric efficiency (before the self-consumptions of the reactor but including pumping consumptions and generator efficiency) is achieved. - Highlights: • Supercritical CO 2 Brayton cycles have been proposed for BoP of DCLL fusion reactor. • Integration of different available thermal sources has been analyzed considering ten scenarios. • Neglecting the four worst scenarios the electricity production varies less than 2%. • Control and energy storage integration issues have been considered in the analysis. • Discarding the vacuum vessel and joining the other sources in an island is proposed.

  20. Optimizing an advanced hybrid of solar-assisted supercritical CO2 Brayton cycle: A vital transition for low-carbon power generation industry

    International Nuclear Information System (INIS)

    Milani, Dia; Luu, Minh Tri; McNaughton, Robbie; Abbas, Ali

    2017-01-01

    Highlights: • The layout of 14 demonstrative supercritical CO 2 closed Brayton cycles are analysed. • The key parameters of the “combined” cycle are sensitized and optimized. • The effect of thermal efficiency vs HX area on techno-economic nexus is highlighted. • The design of a matching solar heliostat field in direct configuration is revealed. • The water demand for hybrid vs water-only cooling scenarios are assessed. - Abstract: Current worldwide infrastructure of electrical power generation would mostly continue to rely on fossil-fuel but require a modest transition for the ultimate goal of decarbonizing power generation industry. By relying on those already established and carefully managed centrepiece power plants (PPs), we aim at filling the deficits of the current electrical networks with smaller, cleaner, and also more efficient PPs. In this context, we present a unique model for a small-scale decentralized solar-assisted supercritical CO 2 closed Brayton cycle (sCO 2 -CBC). Our model is based on the optimized values of three key performance indicators (KPIs); thermal efficiency, concentrated solar power (CSP) compatibility, and water demand for cooling. For a case-study of 10 MW e CSP-assisted sCO 2 -CBC power plant, our dynamic model shows a 52.7% thermal efficiency and 25.9% solar penetration and up to 80% of water saving in heat-rejection units. These KPIs show significant promise of the solar-assisted supercritical CO 2 power cycle for an imperative transformation in the power industry towards future sustainable electricity generation.

  1. Diagnosis of power generator sets by analyzing the crank shaft angular speed

    International Nuclear Information System (INIS)

    Desbazeille, M.

    2010-07-01

    This thesis deals with the diagnosis of a powerful 20-cylinder diesel engine which runs a generator set in a nuclear plant. The objective is to make a diagnosis by analyzing the crank shaft angular speed variations. Only combustion related faults are investigated. As the engine is very large, the first crank shaft natural modes are in the low frequencies. Torsional vibrations of the flexible crank shaft strongly complicate the analysis of the angular speed variations. Little attention has been paid to such large engines in the literature. First, a dynamical model with the assumption of a flexible crank shaft is established. The parameters of the model are optimized with the help of actual data. Then, an original automated diagnosis based on pattern recognition of the angular speed waveforms is proposed. Indeed, any faulty cylinder in combustion stroke will distort the angular speed waveform in a specific way which depends on its location with respect to nodes and anti-nodes of the modes. Reference patterns, representative of the engine conditions, are computed with the model constituting the main originality of this work. Promising results are obtained in operational phase. An experimental fuel leakage fault was correctly diagnosed, including detection and localization of the faulty cylinder and an indication of the severity of the fault. (author)

  2. Supercritical CO2 Brayton Cycle Energy Conversion System Coupled with SFR

    International Nuclear Information System (INIS)

    Cha, Jae Eun; Kim, S. O.; Seong, S. H.; Eoh, J. H.; Lee, T. H.; Choi, S. K.; Han, J. W.; Bae, S. W.

    2008-12-01

    This report contains the description of the S-CO 2 Brayton cycle coupled to KALIMER-600 as an alternative energy conversion system. For a system development, a computer code was developed to calculate heat balance of normal operation condition. Based on the computer code, the S-CO 2 Brayton cycle energy conversion system was constructed for the KALIMER-600. Computer codes were developed to analysis for the S-CO 2 turbomachinery. Based on the design codes, the design parameters were prepared to configure the KALIMER-600 S-CO 2 turbomachinery models. A one-dimensional analysis computer code was developed to evaluate the performance of the previous PCHE heat exchangers and a design data for the typical type PCHE was produced. In parallel with the PCHE-type heat exchanger design, an airfoil shape fin PCHE heat exchanger was newly designed. The new design concept was evaluated by three-dimensional CFD analyses. Possible control schemes for power control in the KALIMER-600 S-CO 2 Brayton cycle were investigated by using the MARS code. The MMS-LMR code was also developed to analyze the transient phenomena in a SFR with a supercritical CO 2 Brayton cycle to develop the control logic. Simple power reduction and recovery event was selected and analyzed for the transient calculation. For the evaluation of Na-CO 2 boundary failure event, a computer was developed to simulate the complex thermodynamic behaviors coupled with the chemical reaction between liquid sodium and CO 2 gas. The long term behavior of a Na-CO 2 boundary failure event and its consequences which lead to a system pressure transient were evaluated

  3. Optimization Study of Shaft Tubular Turbine in a Bidirectional Tidal Power Station

    Directory of Open Access Journals (Sweden)

    Xinfeng Ge

    2013-01-01

    Full Text Available The shaft tubular turbine is a form of tidal power station which can provide bidirectional power. Efficiency is an important turbine performance indicator. To study the influence of runner design parameters on efficiency, a complete 3D flow-channel model of a shaft tubular turbine was developed, which contains the turbine runner, guide vanes, and flow passage and was integrated with hybrid grids calculated by steady-state calculation methods. Three aspects of the core component (turbine runner were optimized by numerical simulation. All the results were then verified by experiments. It was shown that curved-edge blades are much better than straight-edge blades; the optimal blade twist angle is 7°, and the optimal distance between the runner and the blades is 0.75–1.25 times the diameter of the runner. Moreover, the numerical simulation results matched the experimental data very well, which also verified the correctness of the optimal results.

  4. New control strategy of stand-alone brushless doubly-fed induction generator for supplying unbalanced loads in ship shaft power generation system

    DEFF Research Database (Denmark)

    Liu, Yi; Xu, Wei; Xiong, Fei

    2017-01-01

    The ship shaft power generation system based on a stand-alone brushless doubly-fed induction generator (BDFIG) have demonstrated excellent saving-energy performance. This paper presents a new control scheme of the stand-alone BDFIG for supplying unbalanced loads in the ship shaft power generation...

  5. Analysis of a 115MW, 3 shaft, helium Brayton cycle

    International Nuclear Information System (INIS)

    Pradeepkumar, K.N.

    2002-01-01

    This research theme is originated from a development project that is going on in South Africa, for the design and construction of a closed cycle gas turbine plant using gas-cooled reactor as the heat source to generate 115 MW of electricity. South African Power utility company, Eskorn, promotes this developmental work through its subsidiary called PBMR (Pebble Bed Modular Reactor). Some of the attractive features of this plant are the inherent and passive safety features, modular geometry, small evacuation area, small infrastructure requirements for the installation and running of the plant, small construction time, quick starting and stopping and also low operational cost. This exercise is looking at the operational aspects of a closed cycle gas turbine, the finding of which will have a direct input towards the successful development and commissioning of the plant. A thorough understanding of the fluid dynamics in this three-shaft system and its transient performance analysis were the two main objectives of this research work. A computer programme called GTSI, developed by a previous Cranfield University research student, has been used in this as a base programme for the performance analysis. Some modifications were done on this programme to improve its control abilities. The areas covered in the performance analysis are Start-up, Shutdown and Load ramping. A detailed literature survey has been conducted to learn from the helium Turbo machinery experiences, though it is very limited. A critical analysis on the design philosophy of the PBMR is also carried out as part of this research work. The performance analysis has shown the advantage, disadvantage and impact of various power modulation methods suggested for the PBMR. It has tracked the effect of the operations of the various valves included in the PBMR design. The start-up using a hot gas injection has been analysed in detail and a successful start region has been mapped. A start-up procedure is also written

  6. Thermodynamic Analysis of an Irreversible Maisotsenko Reciprocating Brayton Cycle

    Directory of Open Access Journals (Sweden)

    Fuli Zhu

    2018-03-01

    Full Text Available An irreversible Maisotsenko reciprocating Brayton cycle (MRBC model is established using the finite time thermodynamic (FTT theory and taking the heat transfer loss (HTL, piston friction loss (PFL, and internal irreversible losses (IILs into consideration in this paper. A calculation flowchart of the power output (P and efficiency (η of the cycle is provided, and the effects of the mass flow rate (MFR of the injection of water to the cycle and some other design parameters on the performance of cycle are analyzed by detailed numerical examples. Furthermore, the superiority of irreversible MRBC is verified as the cycle and is compared with the traditional irreversible reciprocating Brayton cycle (RBC. The results can provide certain theoretical guiding significance for the optimal design of practical Maisotsenko reciprocating gas turbine plants.

  7. Performance of meta power rotor shaft torque meter

    DEFF Research Database (Denmark)

    Schmidt Paulsen, U.

    2002-01-01

    The present report describes the novel experimental facility in detecting shaft torque in the transmission system (main rotor shaft, exit stage of gearbox) of a wind turbine, the results and the perspectives in using this concept. The measurements arecompared with measurements, based on existing ...

  8. Steady-state temperature distribution within a Brayton rotating unit operating in a power conversion system using helium-xenon gas

    Science.gov (United States)

    Johnsen, R. L.; Namkoong, D.; Edkin, R. A.

    1971-01-01

    The Brayton rotating unit (BRU), consisting of a turbine, an alternator, and a compressor, was tested as part of a Brayton cycle power conversion system over a side range of steady state operating conditions. The working fluid in the system was a mixture of helium-xenon gases. Turbine inlet temperature was varied from 1200 to 1600 F, compressor inlet temperature from 60 to 120 F, compressor discharge pressure from 20 to 45 psia, rotative speed from 32 400 to 39 600 rpm, and alternator liquid-coolant flow rate from 0.01 to 0.27 pound per second. Test results indicated that the BRU internal temperatures were highly sensitive to alternator coolant flow below the design value of 0.12 pound per second but much less so at higher values. The armature winding temperature was not influenced significantly by turbine inlet temperature, but was sensitive, up to 20 F per kVA alternator output, to varying alternator output. When only the rotational speed was changed (+ or - 10% of rated value), the BRU internal temperatures varied directly with the speed.

  9. Buffer thermal energy storage for an air Brayton solar engine

    Science.gov (United States)

    Strumpf, H. J.; Barr, K. P.

    1981-01-01

    The application of latent-heat buffer thermal energy storage to a point-focusing solar receiver equipped with an air Brayton engine was studied. To demonstrate the effect of buffer thermal energy storage on engine operation, a computer program was written which models the recuperator, receiver, and thermal storage device as finite-element thermal masses. Actual operating or predicted performance data are used for all components, including the rotating equipment. Based on insolation input and a specified control scheme, the program predicts the Brayton engine operation, including flows, temperatures, and pressures for the various components, along with the engine output power. An economic parametric study indicates that the economic viability of buffer thermal energy storage is largely a function of the achievable engine life.

  10. Small particle bed reactors: Sensitivity to Brayton cycle parameters

    Science.gov (United States)

    Coiner, John R.; Short, Barry J.

    Relatively simple particle bed reactor (PBR) algorithms were developed for optimizing low power closed Brayton cycle (CBC) systems. These algorithms allow the system designer to understand the relationship among key system parameters as well as the sensitivity of the PBR size and mass (a major system component) to variations in these parameters. Thus, system optimization can be achieved.

  11. Cost estimating Brayton and Stirling engines

    Science.gov (United States)

    Fortgang, H. R.

    1980-01-01

    Brayton and Stirling engines were analyzed for cost and selling price for production quantities ranging from 1000 to 400,000 units per year. Parts and components were subjected to indepth scrutiny to determine optimum manufacturing processes coupled with make or buy decisions on materials and small parts. Tooling and capital equipment costs were estimated for each detail and/or assembly. For low annual production volumes, the Brayton engine appears to have a lower cost and selling price than the Stirling Engine. As annual production quantities increase, the Stirling becomes a lower cost engine than the Brayton. Both engines could benefit cost wise if changes were made in materials, design and manufacturing process as annual production quantities increase.

  12. Back work ratio of Brayton cycle; La relacion de trabajo de retroceso de un ciclo Brayton

    Energy Technology Data Exchange (ETDEWEB)

    Malaver de la Fuente, M. [Universidad Maritima del Caribe (Venezuela)]. E-mail: mmf_umc@hotmail.com

    2010-07-15

    This paper analyzes the existing relation between temperatures, back work ratio and net work of Brayton cycle, a cycle that describes gas turbine engines performance. The application of computational software helps to show the influence of back work ratio or coupling ratio, compressor and turbine inlet temperatures in an ideal thermodynamical cycle. The results lead to deduce that the maximum value reached in back work ratio will depend on the ranges of maximum and minimal temperatures of Brayton cycle. [Spanish] En este articulo se estudia la relacion que existe entre las temperaturas, la relacion de trabajo de retroceso y el trabajo neto en el ciclo Brayton, que es el ciclo ideal que describe el comportamiento de los motores de turbina de gas. La aplicacion de programas computarizados ayuda a mostrar la influencia de la relacion de trabajo de retroceso o relacion de acoplamiento, la temperatura de entrada al compresor y la temperatura de entrada a la turbina en este ciclo termodinamico ideal. Los resultados obtenidos permiten deducir que el valor maximo que alcanza la relacion de trabajo de retroceso dependera de los limites de temperatura maxima y minima impuestos en el ciclo Brayton.

  13. A review of test results on solar thermal power modules with dish-mounted Stirling and Brayton cycle engines

    Science.gov (United States)

    Jaffe, Leonard D.

    1988-01-01

    This paper presents results of development tests of various solar thermal parabolic dish modules and assemblies that used dish-mounted Brayton or Stirling cycle engines for production of electric power. These tests indicate that early modules achieve net efficiencies up to 29 percent in converting sunlight to electricity, as delivered to the grid. Various equipment deficiencies were observed and a number of malfunctions occurred. The performance measurements, as well as the malfunctions and other test experience, provided information that should be of value in developing systems with improved performance and reduced maintenance.

  14. A review of test results on solar thermal power modules with dish-mounted Stirling and Brayton cycle engines

    Science.gov (United States)

    Jaffe, Leonard D.

    1988-11-01

    This paper presents results of development tests of various solar thermal parabolic dish modules and assemblies that used dish-mounted Brayton or Stirling cycle engines for production of electric power. These tests indicate that early modules achieve net efficiencies up to 29 percent in converting sunlight to electricity, as delivered to the grid. Various equipment deficiencies were observed and a number of malfunctions occurred. The performance measurements, as well as the malfunctions and other test experience, provided information that should be of value in developing systems with improved performance and reduced maintenance.

  15. Supercritical CO2 Brayton cycle compression and control near the critical point

    International Nuclear Information System (INIS)

    Wright, S. A.; Fuller, R.; Noall, J.; Radel, R.; Vernon, M. E.; Pickard, P. S.

    2008-01-01

    This report describes the supercritical compression and control issues, the analysis, and the measured test results of a small-scale supercritical CO 2 (S-CO 2 ) compression test-loop. The test loop was developed by Sandia and is described in a companion paper in this conference. The results of these experiments will for the first time evaluate and experimentally demonstrate supercritical compression and the required compressor inlet control approaches on an appropriate scale in a series of test loops at Sandia National Laboratories. The Sandia effort is focused on the main compressor of a supercritical Brayton loop while a separate DOE Gen lV program focus is on studying similar behavior in re-compression Brayton cycles that have dual compressors. One of the main goals of this program is to develop and demonstrate the ability to design, operate, and control the supercritical compression process near the critical point due to highly non-linear behavior near this point. This Sandia supercritical test-loop uses a 50 kW radial compressor to pump supercritical CO 2 (S-CO 2 ) through an orifice and through a water-cooled gas-chiller. At the design point the compressor flow rate is 3.5 kg/s, the inlet pressure is 7, 690 kPa, the pressure ratio is 1.8, the inlet temperature is 305 K, and the shaft speed is 75, 000 rpm. The purpose of the loop is to study the compression and control issues near the critical point. To study compression we intend to compare the design code predictions for efficiency and change in enthalpy (or pressure ratio / head) of the radial compressor with the measured results from actual tests. In the tests the inlet flow, temperature, and pressure, will be varied around the critical point of CO 2 (Tc=304.2 K, and Pc=7.377 MPa). To study control, the test loop will use a variety of methods including inventory control, shaft speed control, and cooling water flow rate, and cooling water temperature control methods to set the compressor inlet temperature

  16. Design, manufacture and evaluation of a new flexible constant velocity mechanism for transmission of power between parallel shafts

    Energy Technology Data Exchange (ETDEWEB)

    Yaghoubi, Majid [University of Tehran, Tehran (Iran, Islamic Republic of); Sanaeifar, Alireza [Shiraz University, Shiraz (Iran, Islamic Republic of)

    2015-08-15

    This paper presents a new mechanism (coupling) for power transmission between parallel shafts in more ranges. The mechanism consists of one drive shaft and one driven shaft, 3 S-shape transmitter links and 8 connecting links. The advantage of this mechanism is that the velocity ratio between input and output shafts remains constant at all movements, and its capacity to offset misalignments is greater than that of other couplings. This research also includes a kinematic analysis and simulations using Visual NASTRAN, Autodesk inventor dynamic and COSMOS motion to prove that the mechanism exhibits a constant velocity. Finally, the mechanism was fabricated and evaluated; results showed that the mechanism can practically transmit a constant velocity ratio.

  17. Design, manufacture and evaluation of a new flexible constant velocity mechanism for transmission of power between parallel shafts

    International Nuclear Information System (INIS)

    Yaghoubi, Majid; Sanaeifar, Alireza

    2015-01-01

    This paper presents a new mechanism (coupling) for power transmission between parallel shafts in more ranges. The mechanism consists of one drive shaft and one driven shaft, 3 S-shape transmitter links and 8 connecting links. The advantage of this mechanism is that the velocity ratio between input and output shafts remains constant at all movements, and its capacity to offset misalignments is greater than that of other couplings. This research also includes a kinematic analysis and simulations using Visual NASTRAN, Autodesk inventor dynamic and COSMOS motion to prove that the mechanism exhibits a constant velocity. Finally, the mechanism was fabricated and evaluated; results showed that the mechanism can practically transmit a constant velocity ratio.

  18. Brayton Isotope Power System. Phase I. (Ground demonstration system) Configuration Control Document (CCD)

    International Nuclear Information System (INIS)

    1976-01-01

    The configuration control document (CCD) defines the BIPS-GDS configuration. The GDS configuration is similar to a conceptual flight system design, referred to as the BIPS-FS, which is discussed in App. I. The BIPS is being developed by ERDA as a 500 to 2000 W(e), 7-y life, space power system utilizing a closed Brayton cycle gas turbine engine to convert thermal energy (from an isotope heat source) to electrical energy at a net efficiency exceeding 25 percent. The CCD relates to Phase I of an ERDA Program to qualify a dynamic system for launch in the early 1980's. Phase I is a 35-month effort to provide an FS conceptual design and GDS design, fabrication, and test. The baseline is a 7-year life, 450-pound, 4800 W(t), 1300 W(e) system which will use two multihundred watt (MHW) isotope heat sources being developed

  19. Parametric Investigation and Thermoeconomic Optimization of a Combined Cycle for Recovering the Waste Heat from Nuclear Closed Brayton Cycle

    Directory of Open Access Journals (Sweden)

    Lihuang Luo

    2016-01-01

    Full Text Available A combined cycle that combines AWM cycle with a nuclear closed Brayton cycle is proposed to recover the waste heat rejected from the precooler of a nuclear closed Brayton cycle in this paper. The detailed thermodynamic and economic analyses are carried out for the combined cycle. The effects of several important parameters, such as the absorber pressure, the turbine inlet pressure, the turbine inlet temperature, the ammonia mass fraction, and the ambient temperature, are investigated. The combined cycle performance is also optimized based on a multiobjective function. Compared with the closed Brayton cycle, the optimized power output and overall efficiency of the combined cycle are higher by 2.41% and 2.43%, respectively. The optimized LEC of the combined cycle is 0.73% lower than that of the closed Brayton cycle.

  20. The feasibility study on supercritical methane Recuperated Brayton Cycle for waste heat recovery

    KAUST Repository

    Dyuisenakhmetov, Aibolat

    2017-05-01

    Recuperated Brayton Cycle (RBC) has attracted the attention of research scientists not only as a possible replacement for the steam cycle at nuclear power plants but also as an efficient bottoming cycle for waste heat recovery and for concentrated solar power. RBC’s compactness and the ease at which it can be integrated into existent power plants for waste heat recovery require few modifications. Methane, carbon dioxide and trifluoromethane are analyzed as possible working fluids. This work shows that it is possible to achieve higher efficiencies using methane under some operating conditions. However, as it turns out, the performance of Recuperated Brayton Cycle should be evaluated based on net output work. When the performance is assessed on the net output work criteria carbon dioxide still proves to be superior to other gases. This work also suggests that piston engines as compressors and expanders may be used instead of rotating turbines since reciprocating pistons have higher isentropic efficiencies.

  1. Comparison of Direct and Indirect Gas Reactor Brayton Systems for Nuclear Electric Space Propulsion

    International Nuclear Information System (INIS)

    M Postlehwait; P DiLorenzo; S Belanger; J Ashcroft

    2005-01-01

    Gas reactor systems are being considered as candidates for use in generating power for the Prometheus-1 spacecraft, along with other NASA missions as part of the Prometheus program. Gas reactors offer a benign coolant, which increases core and structural materials options. However, the gas coolant has inferior thermal transport properties, relative to other coolant candidates such as liquid metals. This leads to concerns for providing effective heat transfer and for minimizing pressure drop within the reactor core. In direct gas Brayton systems, i.e. those with one or more Brayton turbines in the reactor cooling loop, the ability to provide effective core cooling and low pressure drop is further constrained by the need for a low pressure, high molecular weight gas, typically a mixture of helium and xenon. Use of separate primary and secondary gas loops, one for the reactor and one or more for the Brayton system(s) separated by heat exchanger(s), allows for independent optimization of the pressure and gas composition of each loop. The reactor loop can use higher pressure pure helium, which provides improved heat transfer and heat transport properties, while the Brayton loop can utilize lower pressure He-Xe. However, this approach requires a separate primary gas circulator and also requires gas to gas heat exchangers. This paper focuses on the trade-offs between the direct gas reactor Brayton system and the indirect gas Brayton system. It discusses heat exchanger arrangement and materials options and projects heat exchanger mass based on heat transfer area and structural design needs. Analysis indicates that these heat exchangers add considerable mass, but result in reactor cooling and system resiliency improvements

  2. Preliminary Design of S-CO2 Brayton Cycle for KAIST Micro Modular Reactor

    International Nuclear Information System (INIS)

    Kim, Seong Gu; Kim, Min Gil; Bae, Seong Jun; Lee, Jeong Ik

    2013-01-01

    This paper suggests a complete modular reactor with an innovative concept of reactor cooling by using a supercritical carbon dioxide directly. Authors propose the supercritical CO 2 Brayton cycle (S-CO 2 cycle) as a power conversion system to achieve small volume of power conversion unit (PCU) and to contain the core and PCU in one vessel for the full modularization. This study suggests a conceptual design of small modular reactor including PCU which is named as KAIST Micro Modular Reactor (MMR). As a part of ongoing research of conceptual design of KAIST MMR, preliminary design of power generation cycle was performed in this study. Since the targets of MMR are full modularization of a reactor system with S-CO 2 coolant, authors selected a simple recuperated S-CO 2 Brayton cycle as a power conversion system for KAIST MMR. The size of components of the S-CO 2 cycle is much smaller than existing helium Brayton cycle and steam Rankine cycle, and whole power conversion system can be contained with core and safety system in one containment vessel. From the investigation of the power conversion cycle, recompressing recuperated cycle showed higher efficiency than the simple recuperated cycle. However the volume of heat exchanger for recompressing cycle is too large so more space will be occupied by heat exchanger in the recompressing cycle than the simple recuperated cycle. Thus, authors consider that the simple recuperated cycle is more suitable for MMR. More research for the KAIST MMR will be followed in the future and detailed information of reactor core and safety system will be developed down the road. More refined cycle layout and design of turbomachinery and heat exchanger will be performed in the future study

  3. Coupling a Supercritical Carbon Dioxide Brayton Cycle to a Helium-Cooled Reactor.

    Energy Technology Data Exchange (ETDEWEB)

    Middleton, Bobby [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Pasch, James Jay [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kruizenga, Alan Michael [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Walker, Matthew [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2016-01-01

    This report outlines the thermodynamics of a supercritical carbon dioxide (sCO2) recompression closed Brayton cycle (RCBC) coupled to a Helium-cooled nuclear reactor. The baseline reactor design for the study is the AREVA High Temperature Gas-Cooled Reactor (HTGR). Using the AREVA HTGR nominal operating parameters, an initial thermodynamic study was performed using Sandia's deterministic RCBC analysis program. Utilizing the output of the RCBC thermodynamic analysis, preliminary values of reactor power and of Helium flow rate through the reactor were calculated in Sandia's HelCO2 code. Some research regarding materials requirements was then conducted to determine aspects of corrosion related to both Helium and to sCO2 , as well as some mechanical considerations for pressures and temperatures that will be seen by the piping and other components. This analysis resulted in a list of materials-related research items that need to be conducted in the future. A short assessment of dry heat rejection advantages of sCO2> Brayton cycles was also included. This assessment lists some items that should be investigated in the future to better understand how sCO2 Brayton cycles and nuclear can maximally contribute to optimizing the water efficiency of carbon free power generation

  4. Miniature Gas-Turbine Power Generator

    Science.gov (United States)

    Wiberg, Dean; Vargo, Stephen; White, Victor; Shcheglov, Kirill

    2003-01-01

    A proposed microelectromechanical system (MEMS) containing a closed- Brayton-cycle turbine would serve as a prototype of electric-power generators for special applications in which high energy densities are required and in which, heretofore, batteries have been used. The system would have a volume of about 6 cm3 and would operate with a thermal efficiency >30 percent, generating up to 50 W of electrical power. The energy density of the proposed system would be about 10 times that of the best battery-based systems now available, and, as such, would be comparable to that of a fuel cell. The working gas for the turbine would be Xe containing small quantities of CO2, O2, and H2O as gaseous lubricants. The gas would be contained in an enclosed circulation system, within which the pressure would typically range between 5 and 50 atm (between 0.5 and 5 MPa). The heat for the Brayton cycle could be supplied by any of a number of sources, including a solar concentrator or a combustor burning a hydrocarbon or other fuel. The system would include novel heat-transfer and heat-management components. The turbine would be connected to an electric power generator/starter motor. The system would include a main rotor shaft with gas bearings; the bearing surfaces would be made of a ceramic material coated with nanocrystalline diamond. The shaft could withstand speed of 400,000 rpm or perhaps more, with bearing-wear rates less than 10(exp -)4 those of silicon bearings and 0.05 to 0.1 those of SiC bearings, and with a coefficient of friction about 0.1 that of Si or SiC bearings. The components of the system would be fabricated by a combination of (1) three-dimensional xray lithography and (2) highly precise injection molding of diamond-compatible metals and ceramic materials. The materials and fabrication techniques would be suitable for mass production. The disadvantages of the proposed system are that unlike a battery-based system, it could generate a perceptible amount of sound, and

  5. Laser shaft alignment measurement model

    Science.gov (United States)

    Mo, Chang-tao; Chen, Changzheng; Hou, Xiang-lin; Zhang, Guoyu

    2007-12-01

    Laser beam's track which is on photosensitive surface of the a receiver will be closed curve, when driving shaft and the driven shaft rotate with same angular velocity and rotation direction. The coordinate of arbitrary point which is on the curve is decided by the relative position of two shafts. Basing on the viewpoint, a mathematic model of laser alignment is set up. By using a data acquisition system and a data processing model of laser alignment meter with single laser beam and a detector, and basing on the installation parameter of computer, the state parameter between two shafts can be obtained by more complicated calculation and correction. The correcting data of the four under chassis of the adjusted apparatus moving on the level and the vertical plane can be calculated. This will instruct us to move the apparatus to align the shafts.

  6. FY-05 Second Quarter Report On Development of a Supercritical Carbon Dioxide Brayton Cycle: Improving PBR Efficiency and Testing Material Compatibility

    International Nuclear Information System (INIS)

    Chang Oh

    2005-01-01

    The objective of this research is to improve a helium Brayton cycle and to develop a supercritical carbon dioxide Brayton cycle for the Pebble Bed Reactor (PBR) that can also be applied to the Fast Gas-Cooled Reactor (FGR) and the Very-High-Temperature Gas-Cooled Reactor (VHTR). The proposed supercritical carbon dioxide Brayton cycle will be used to improve the PBR, FGR, and VHTR net plant efficiency. Another objective of this research is to test materials to be used in the power conversion side at supercritical carbon dioxide conditions. Generally, the optimized Brayton cycle and balance of plant (BOP) to be developed from this study can be applied to Generation-IV reactor concepts. Particularly, we are interested in VHTR because it has a good chance of being built in the near future

  7. Coupled vibration study of the blade of the flexible wind wheel with the low-speed shafting

    International Nuclear Information System (INIS)

    Su, L Y; Zhao, R Z; Liu, H; Meng, Z R

    2013-01-01

    Movement and deformation of flexible wind wheel has a profound effect on dynamics of the low-speed shafting in Megawatt wind turbine. The paper is based on the power production1.2 MW wind turbine, vibration characteristics of elastic wind wheel with the low-speed shafting were studied. In order to obtain the finite element model, the author created a physical model of this coupled system and used the minimum energy principle to simplify the model. While its single blade simplified as cantilever. Using modal superposition method for solving the coupled system model. Structural mechanics equations were used to solve the simple blade finite element model. Analyzing the natural frequency of the coupled system and the stress diagram, the results indicate that in the coupling system, low frequency vibration occurs in the low-speed shaft bearing, while the high-frequency vibration happens on wind turbine blades. In the low-frequency vibration process, blades vibration and low-speed shaft vibration there is a strong correlation. Contrast inherent frequency of the wind wheel with natural frequency of a single blade, the results show that the frequency of the wind wheel slightly less than it in the single blade

  8. Performance Optimization of a Solar-Driven Multi-Step Irreversible Brayton Cycle Based on a Multi-Objective Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Ahmadi Mohammad Hosein

    2016-01-01

    Full Text Available An applicable approach for a multi-step regenerative irreversible Brayton cycle on the basis of thermodynamics and optimization of thermal efficiency and normalized output power is presented in this work. In the present study, thermodynamic analysis and a NSGA II algorithm are coupled to determine the optimum values of thermal efficiency and normalized power output for a Brayton cycle system. Moreover, three well-known decision-making methods are employed to indicate definite answers from the outputs gained from the aforementioned approach. Finally, with the aim of error analysis, the values of the average and maximum error of the results are also calculated.

  9. Solar dynamic power module design

    Science.gov (United States)

    Secunde, Richard R.; Labus, Thomas L.; Lovely, Ronald G.

    1989-01-01

    Studies have shown that the use of solar dynamic (SD) power for the growth areas of the Space Station Freedom program will result in life cycle cost savings when compared to power supplied by photovoltaic sources. In the SD power module, a concentrator collects and focuses solar energy into a heat receiver which has integral thermal energy storage. A Power Conversion Unit (PCU) based on the closed Brayton cycle removes thermal energy from the receiver and converts that energy to electrical energy. Since the closed Brayton cycle is a single phase gas cycle, the conversion hardware (heat exchangers, turbine, compressor, etc.) can be designed for operation in low earth orbit, and tested with confidence in test facilities on earth before launch into space. The concentrator subassemblies will be aligned and the receiver/PCU/radiator combination completely assembled and charged with gas and cooling liquid on earth before launch to, and assembly on, orbit.

  10. Preliminary Failure Modes, Effects and Criticality Analysis (FMECA) of the Brayton Isotope Power System (BIPS) Ground Demonstration System. Report 76-311965

    International Nuclear Information System (INIS)

    Miller, L.G.

    1976-01-01

    A Failure Modes, Effects and Criticality Analysis (FMECA) has been made of the Brayton Isotope Power System Ground Demonstration System (BIPS-GDS). Details of the analysis are discussed. The BIPS Flight System was recently analyzed in an AIRPHX report. Since the results of the Flight System FMECA are directly applicable to the BIPS to be tested in the GDS mode, the contents of the earlier FMECA have not been repeated in this current analysis. The BIPS-FS FMECA has been reviewed and determined to be essentially current

  11. Modeling and sizing of the heat exchangers of a new supercritical CO2 Brayton power cycle for energy conversion for fusion reactors

    International Nuclear Information System (INIS)

    Serrano, I.P.; Cantizano, A.; Linares, J.I.; Moratilla, B.Y.

    2014-01-01

    Highlights: •We propose a procedure to model the heat exchangers of a S-CO2 Brayton power cycle. •Discretization in sub-heat exchangers is performed due to complex behavior of CO 2 . •Different correlations have been tested, verifying them with CFD when necessary. •Obtained sizes are agree with usual values of printed circuit heat exchangers. -- Abstract: TECNO F US is a research program financed by the Spanish Government to develop technologies related to a dual-coolant (He/Pb–Li) breeding blanket design concept including the auxiliary systems for a future power reactor (DEMO). One of the main issues of this program is the optimization of heat recovery from the reactor and its conversion into electrical power. This paper is focused on the methodology employed for the design and sizing of all the heat exchangers of the supercritical CO 2 Brayton power cycle (S-CO2) proposed by the authors. Due to the large pressure difference between the fluids, and also to their compactness, Printed Circuit Heat Exchangers (PCHE) are suggested in literature for these type of cycles. Because of the complex behavior of CO 2 , their design is performed by a numerical discretization into sub-heat exchangers, thus a higher precision is reached when the thermal properties of the fluids vary along the heat exchanger. Different empirical correlations for the pressure drop and the Nusselt number have been coupled and assessed. The design of the precooler (PC) and the low temperature recuperator (LTR) is also verified by simulations using CFD because of the near-critical behavior of CO 2 . The size of all of the heat exchangers of the cycle have been assessed

  12. Reactor coolant pump shaft seal stability during station blackout

    International Nuclear Information System (INIS)

    Rhodes, D.B.; Hill, R.C.; Wensel, R.G.

    1987-05-01

    Results are presented from an investigation into the behavior of Reactor Coolant Pump shaft seals during a potential station blackout (loss of all ac power) at a nuclear power plant. The investigation assumes loss of cooling to the seals and focuses on the effect of high temperature on polymer seals located in the shaft seal assemblies, and the identification of parameters having the most influence on overall hydraulic seal performance. Predicted seal failure thresholds are presented for a range of station blackout conditions and shaft seal geometries

  13. Reactor coolant pump shaft seal stability during station blackout

    Energy Technology Data Exchange (ETDEWEB)

    Rhodes, D B; Hill, R C; Wensel, R G

    1987-05-01

    Results are presented from an investigation into the behavior of Reactor Coolant Pump shaft seals during a potential station blackout (loss of all ac power) at a nuclear power plant. The investigation assumes loss of cooling to the seals and focuses on the effect of high temperature on polymer seals located in the shaft seal assemblies, and the identification of parameters having the most influence on overall hydraulic seal performance. Predicted seal failure thresholds are presented for a range of station blackout conditions and shaft seal geometries.

  14. Ultrasonic test of highly stressed gear shafts

    Energy Technology Data Exchange (ETDEWEB)

    Schreiner, T [Siemens AG, Power Generation, KWU, Muelheim (Germany); Heinrich, W [Siemens AG, Power Generation, KWU, Berlin (Germany); Achtzehn, J [Siemens AG, Power Generation, ICVW, Erlangen (Germany); Hensley, H [Siemens Power Generation (Germany)

    1999-12-31

    In the power plant industry, gears are used for increasingly higher turbine capacities. Efficiency enhancements, particularly for the combined gas and steam turbine process, lead to an increase in stresses, even for high-performance gears. Consequently, the requirements for non-destructive material testing are on the increase as well. At Siemens KWU, high-performance gears are used so far only for gas turbines with lower rating (65 MW) to adapt the gas turbine speed (5413 rpm) to the generator speed (3000 rpm/ 50 Hz or 3600 rpm/60 Hz). The gear train consists of a forged and case-hardened wheel shaft and pinion shaft made of material 17 CrNiMo 6, where the wheel shaft can be either a solid or a hollow shaft. Dimensions are typically 2.3 m length and 1 m diameter. As a rule, pinion shafts are solid. The gear design, calling for an additional torsion shaft turning inside the hollow wheel shaft, can absorb more torsional load surges and is more tolerant of deviations during gear train alignment. This design requires two additional forgings (torsion shaft and hub) and an additional bearing 2 refs.

  15. Ultrasonic test of highly stressed gear shafts

    Energy Technology Data Exchange (ETDEWEB)

    Schreiner, T. [Siemens AG, Power Generation, KWU, Muelheim (Germany); Heinrich, W. [Siemens AG, Power Generation, KWU, Berlin (Germany); Achtzehn, J. [Siemens AG, Power Generation, ICVW, Erlangen (Germany); Hensley, H. [Siemens Power Generation (Germany)

    1998-12-31

    In the power plant industry, gears are used for increasingly higher turbine capacities. Efficiency enhancements, particularly for the combined gas and steam turbine process, lead to an increase in stresses, even for high-performance gears. Consequently, the requirements for non-destructive material testing are on the increase as well. At Siemens KWU, high-performance gears are used so far only for gas turbines with lower rating (65 MW) to adapt the gas turbine speed (5413 rpm) to the generator speed (3000 rpm/ 50 Hz or 3600 rpm/60 Hz). The gear train consists of a forged and case-hardened wheel shaft and pinion shaft made of material 17 CrNiMo 6, where the wheel shaft can be either a solid or a hollow shaft. Dimensions are typically 2.3 m length and 1 m diameter. As a rule, pinion shafts are solid. The gear design, calling for an additional torsion shaft turning inside the hollow wheel shaft, can absorb more torsional load surges and is more tolerant of deviations during gear train alignment. This design requires two additional forgings (torsion shaft and hub) and an additional bearing 2 refs.

  16. Brayton Point coal conversion project (NEPCO)

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, W.F. Jr.

    1982-05-01

    The New England Power Company (NEPCO) recently converted Brayton Point Power Station Units 1, 2, and 3 from oil to coal. The coal conversion project is the largest coal conversion project in the nation to date. Stone and Webster Engineering Corporation (SWEC) was hired as the engineer/constructor for the project. Units 1 and 2 are 250-MW Combustion Engineering boilers, and Unit 3 is a 650-MW Babcock and Wilcox boiler. All three units were originally designed to burn pulverized coal but were converted to oil during the years of low oil prices. Studies performed by NEPCO and SWEC indicated that the areas discussed in the following paragraphs required upgrading before the units could efficiently burn coal and meet Federal and State environmental requirements. All units have been converted and are operating. This paper discusses design modifications required to burn coal, startup, and initial operating problems, and solutions.

  17. NERI Quarterly Progress Report -- April 1 - June 30, 2005 -- Development of a Supercritical Carbon Dioxide Brayton Cycle: Improving PBR Efficiency and Testing Material Compatibility

    International Nuclear Information System (INIS)

    Chang Oh

    2005-01-01

    The objective of this research is to improve a helium Brayton cycle and to develop a supercritical carbon dioxide Brayton cycle for the Pebble Bed Reactor (PBR) that can also be applied to the Fast Gas-Cooled Reactor (FGR) and the Very-High-Temperature Gas-Cooled Reactor (VHTR). The proposed supercritical carbon dioxide Brayton cycle will be used to improve the PBR, FGR, and VHTR net plant efficiency. Another objective of this research is to test materials to be used in the power conversion side at supercritical carbon dioxide conditions. Generally, the optimized Brayton cycle and balance of plant (BOP) to be developed from this study can be applied to Generation-IV reactor concepts. Particularly, we are interested in VHTR because it has a good chance of being built in the near future

  18. Evolution of the Power Conversion Unit Design of the GT-MHR

    International Nuclear Information System (INIS)

    Baxi, C.B.; Perez, E.; Shenoy, A.; Kostin, V.I.; Kodochigov, N.G.; Vasyaev, A.V.; Belov, S.E.; Golovko, V.F.

    2006-01-01

    General Atomics in the USA and Experimental Design Bureau of Machine Building (OKBM) in the Russian Federation are jointly developing a gas turbine modular helium reactor (GT-MHR). The 600 MW(t) reactor is cooled by helium at a pressure of 7 MPa. The power conversion unit (PCU) uses the reactor outlet temperature of 850 deg C in a direct Brayton cycle to achieve an efficiency of about 48%. The PCU consists of a gas turbine, a recuperator, a pre-cooler, a low-pressure compressor, an inter-cooler, and a high-pressure compressor. The turbo machine (TM), including the generator, is mounted on a single vertical shaft. The TM rotates at a speed of 4400 rpm. The asynchronous generator is connected to the turbine by a flexible coupling. The required grid frequency is achieved by a converter. All PCU components are enclosed in a single vessel. TM uses radial and axial electromagnetic bearings (EMB) for support. Catcher bearings (CB) are provided as redundant support for the TM rotor in case of EMBs failure. These design features were determined after a comprehensive study carried out over the last 10 years. This paper describes the evolution of the current PCU design and justification for the choices. (authors)

  19. Thermodynamic analyses and optimization of a recompression N2O Brayton power cycle

    International Nuclear Information System (INIS)

    Sarkar, Jahar

    2010-01-01

    Thermodynamic analyses and simultaneous optimizations of cycle pressure ratio and flow split fraction to get maximum efficiency of N 2 O recompression Brayton cycle have been performed to study the effects of various operating conditions and component performances. The energetic as well as exergetic performance comparison with its counterpart recompression CO 2 cycle is presented as well. Optimization shows that the optimum minimum cycle pressure is close to pseudo-critical pressure for supercritical cycle, whereas saturation pressure corresponding to minimum cycle temperature for condensation cycle. Results show that the maximum thermal efficiency increases with decrease in minimum cycle temperature and increase in both maximum cycle pressure and temperature. Influence of turbine performance on cycle efficiency is more compared to that of compressors, HTR (high temperature recuperator) and LTR (low temperature recuperator). Comparison shows that N 2 O gives better thermal efficiency (maximum deviation of 1.2%) as well as second law efficiency compared to CO 2 for studied operating conditions. Component wise irreversibility distribution shows the similar trends for both working fluids. Present study reveals that N 2 O is a potential option for the recompression power cycle.

  20. Thermodynamic design of hydrogen liquefaction systems with helium or neon Brayton refrigerator

    Science.gov (United States)

    Chang, Ho-Myung; Ryu, Ki Nam; Baik, Jong Hoon

    2018-04-01

    A thermodynamic study is carried out for the design of hydrogen liquefaction systems with helium (He) or neon (Ne) Brayton refrigerator. This effort is motivated by our immediate goal to develop a small-capacity (100 L/h) liquefier for domestic use in Korea. Eight different cycles are proposed and their thermodynamic performance is investigated in comparison with the existing liquefaction systems. The proposed cycles include the standard and modified versions of He Brayton refrigerators whose lowest temperature is below 20 K. The Brayton refrigerator is in direct thermal contact with the hydrogen flow at atmospheric pressure from ambient-temperature gas to cryogenic liquid. The Linde-Hampson system pre-cooled by a Ne Brayton refrigerator is also considered. Full cycle analysis is performed with the real properties of fluids to estimate the figure of merit (FOM) under an optimized operation condition. It is concluded that He Brayton refrigerators are feasible for this small-scale liquefaction, because a reasonably high efficiency can be achieved with simple and safe (low-pressure) operation. The complete cycles with He Brayton refrigerator are presented for the development of a prototype, including the ortho-to-para conversion.

  1. System safety program plan for the Isotope Brayton Ground Demonstration System (phase I)

    International Nuclear Information System (INIS)

    1976-01-01

    The safety engineering effort to be undertaken in achieving an acceptable level of safety in the Brayton Isotope Power System (BIPS) development program is discussed. The safety organizational relationships, the methods to be used, the tasks to be completed, and the documentation to be published are described. The plan will be updated periodically as the need arises

  2. Modeling and sizing of the heat exchangers of a new supercritical CO{sub 2} Brayton power cycle for energy conversion for fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Serrano, I.P.; Cantizano, A.; Linares, J.I., E-mail: linares@upcomillas.es; Moratilla, B.Y.

    2014-10-15

    Highlights: •We propose a procedure to model the heat exchangers of a S-CO2 Brayton power cycle. •Discretization in sub-heat exchangers is performed due to complex behavior of CO{sub 2}. •Different correlations have been tested, verifying them with CFD when necessary. •Obtained sizes are agree with usual values of printed circuit heat exchangers. -- Abstract: TECNO{sub F}US is a research program financed by the Spanish Government to develop technologies related to a dual-coolant (He/Pb–Li) breeding blanket design concept including the auxiliary systems for a future power reactor (DEMO). One of the main issues of this program is the optimization of heat recovery from the reactor and its conversion into electrical power. This paper is focused on the methodology employed for the design and sizing of all the heat exchangers of the supercritical CO{sub 2} Brayton power cycle (S-CO2) proposed by the authors. Due to the large pressure difference between the fluids, and also to their compactness, Printed Circuit Heat Exchangers (PCHE) are suggested in literature for these type of cycles. Because of the complex behavior of CO{sub 2}, their design is performed by a numerical discretization into sub-heat exchangers, thus a higher precision is reached when the thermal properties of the fluids vary along the heat exchanger. Different empirical correlations for the pressure drop and the Nusselt number have been coupled and assessed. The design of the precooler (PC) and the low temperature recuperator (LTR) is also verified by simulations using CFD because of the near-critical behavior of CO{sub 2}. The size of all of the heat exchangers of the cycle have been assessed.

  3. Corrosion of Structural Materials for Advanced Supercritical Carbon- Dioxide Brayton Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Sridharan, Kumar [Univ. of Wisconsin, Madison, WI (United States)

    2017-05-13

    The supercritical carbon-dioxide (referred to as SC-CO2 hereon) Brayton cycle is being considered for power conversion systems for a number of nuclear reactor concepts, including the sodium fast reactor (SFR), fluoride saltcooled high temperature reactor (FHR), and high temperature gas reactor (HTGR), and several types of small modular reactors (SMR). The SC-CO2 direct cycle gas fast reactor has also been recently proposed. The SC-CO2 Brayton cycle (discussed in Chapter 1) provides higher efficiencies compared to the Rankine steam cycle due to less compression work stemming from higher SC-CO2 densities, and allows for smaller components size, fewer components, and simpler cycle layout. For example, in the case of a SFR using a SC-CO2 Brayton cycle instead of a steam cycle would also eliminate the possibility of sodium-water interactions. The SC-CO2 cycle has a higher efficiency than the helium Brayton cycle, with the additional advantage of being able to operate at lower temperatures and higher pressures. In general, the SC-CO2 Brayton cycle is well-suited for any type of nuclear reactor (including SMR) with core outlet temperature above ~ 500°C in either direct or indirect versions. In all the above applications, materials corrosion in high temperature SC-CO2 is an important consideration, given their expected lifetimes of 20 years or longer. Our discussions with National Laboratories and private industry early on in this project indicated materials corrosion to be one of the significant gaps in the implementation of SC-CO2 Brayton cycle. Corrosion can lead to a loss of effective load-bearing wall thickness of a component and can potentially lead to the generation of oxide particulate debris which can lead to three-body wear in turbomachinery components. Another environmental degradation effect that is rather unique to CO2 environment is the possibility

  4. Ball-joint versus single monolateral external fixators for definitive treatment of tibial shaft fractures.

    Science.gov (United States)

    Beltsios, Michail; Mavrogenis, Andreas F; Savvidou, Olga D; Karamanis, Eirineos; Kokkalis, Zinon T; Papagelopoulos, Panayiotis J

    2014-07-01

    To compare modular monolateral external fixators with single monolateral external fixators for the treatment of open and complex tibial shaft fractures, to determine the optimal construct for fracture union. A total of 223 tibial shaft fractures in 212 patients were treated with a monolateral external fixator from 2005 to 2011; 112 fractures were treated with a modular external fixator with ball-joints (group A), and 111 fractures were treated with a single external fixator without ball-joints (group B). The mean follow-up was 2.9 years. We retrospectively evaluated the operative time for fracture reduction with the external fixator, pain and range of motion of the knee and ankle joints, time to union, rate of malunion, reoperations and revisions of the external fixators, and complications. The time for fracture reduction was statistically higher in group B; the rate of union was statistically higher in group B; the rate of nonunion was statistically higher in group A; the mean time to union was statistically higher in group A; the rate of reoperations was statistically higher in group A; and the rate of revision of the external fixator was statistically higher in group A. Pain, range of motion of the knee and ankle joints, rates of delayed union, malunion and complications were similar. Although modular external fixators are associated with faster intraoperative fracture reduction with the external fixator, single external fixators are associated with significantly better rates of union and reoperations; the rates of delayed union, malunion and complications are similar.

  5. Concept Design for a High Temperature Helium Brayton Cycle with Interstage Heating and Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Steven A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Vernon, Milton E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Pickard, Paul S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2013-12-01

    The primary metric for the viability of these next generation nuclear power plants will be the cost of generated electricity. One important component in achieving these objectives is the development of power conversion technologies that maximize the electrical power output of these advanced reactors for a given thermal power. More efficient power conversion systems can directly reduce the cost of nuclear generated electricity and therefore advanced power conversion cycle research is an important area of investigation for the Generation IV Program. Brayton cycles using inert or other gas working fluids, have the potential to take advantage of the higher outlet temperature range of Generation IV systems and allow substantial increases in nuclear power conversion efficiency, and potentially reductions in power conversion system capital costs compared to the steam Rankine cycle used in current light water reactors. For the Very High Temperature Reactor (VHTR), Helium Brayton cycles which can operate in the 900 to 950 C range have been the focus of power conversion research. Previous Generation IV studies examined several options for He Brayton cycles that could increase efficiency with acceptable capital cost implications. At these high outlet temperatures, Interstage Heating and Cooling (IHC) was shown to provide significant efficiency improvement (a few to 12%) but required increased system complexity and therefore had potential for increased costs. These scoping studies identified the potential for increased efficiency, but a more detailed analysis of the turbomachinery and heat exchanger sizes and costs was needed to determine whether this approach could be cost effective. The purpose of this study is to examine the turbomachinery and heat exchanger implications of interstage heating and cooling configurations. In general, this analysis illustrates that these engineering considerations introduce new constraints to the design of IHC systems that may require

  6. Electromagnetic shaft seal

    International Nuclear Information System (INIS)

    Takahashi, Kenji.

    1994-01-01

    As an electromagnetic shaft seal, there are disposed outwarding electromagnetic induction devices having generating power directing to an electroconductive fluid as an object of sealing, and inwarding electromagnetic induction device added coaxially. There are disposed elongate rectangular looped first coils having a predetermined inner diameter, second coils having the same shape and shifted by a predetermined pitch relative to the first coil and third coil having the same shape and shifted by a predetermined pitch relative to the second coil respectively each at a predetermined inner diameter of clearance to the outwarding electromagnetic induction devices and the inwarding electromagnetic induction device. If the inwarding electromagnetic induction device and the outwarding electromagnetic induction device are operated, they are stopped at a point that the generating power of the former is equal with the sum of the generating power of the latter and a differential pressure. When three-phase AC is charged to the first coil, the second coil and the third coil successively, a force is generated in the advancing direction of the magnetic field in the electroconductive fluid by the similar effect to that of a linear motor, and the seal is maintained at high reliability. Moreover, the limit for the rotational angle of the shaft is not caused. (N.H.)

  7. Use of High-Power Brayton Nuclear Electric Propulsion (NEP) for a 2033 Mars Round-Trip Mission

    International Nuclear Information System (INIS)

    McGuire, Melissa L.; Martini, Michael C.; Packard, Thomas W.; Weglian, John E.; Gilland, James H.

    2006-01-01

    The Revolutionary Aerospace Systems Concepts (RASC) team, led by the NASA Langley Research Center, is tasked with exploring revolutionary new approaches to enabling NASA to achieve its strategic goals and objectives in future missions. This paper provides the details from the 2004-2005 RASC study of a point-design that uses a high-power nuclear electric propulsion (NEP) based space transportation architecture to support a manned mission to Mars. The study assumes a high-temperature liquid-metal cooled fission reactor with a Brayton power conversion system to generate the electrical power required by magnetoplasmadynamic (MPD) thrusters. The architecture includes a cargo vehicle with an NEP system providing 5 MW of electrical power and a crewed vehicle with an NEP system with two reactors providing a combined total of 10 MW of electrical power. Both vehicles use a low-thrust, high-efficiency (5000 sec specific impulse) MPD system to conduct a spiral-out of the Earth gravity well, a low-thrust heliocentric trajectory, and a spiral-in at Mars with arrival late in 2033. The cargo vehicle carries two moon landers to Mars and arrives shortly before the crewed vehicle. The crewed vehicle and cargo vehicle rendezvous in Mars orbit and, over the course of the 60-day stay, the crew conducts nine-day excursions to Phobos and Deimos with the landers. The crewed vehicle then spirals out of Martian orbit and returns via a low-thrust trajectory to conduct an Earth flyby. The crew separates from the vehicle prior to Earth flyby and aerobrakes for a direct-entry landing

  8. Thermodynamics Properties of Binary Gas Mixtures for Brayton Space Nuclear Power System

    International Nuclear Information System (INIS)

    You Ersheng; Shi Lei; Zhang Zuoyi

    2014-01-01

    Space nuclear power system with closed Brayton cycle has the potential advantages of high cycle efficiency. It can be achieved to limit the specific mass of the system with a competitive design scheme, so as to strengthen the advantage of the nuclear energy applying in space propulsion and electric generating compared to solar or chemical propellant. Whereby, the thermodynamic properties of working fluids have a significant influence on the performance of the plant. Therefore, two binary mixtures helium-nitrogen and helium-carbon dioxide are introduced to analysis the variation in the transport and heat transfer capacity of working fluids. Based on the parameters of pure gases, the heat transfer coefficient, pressure losses and aerodynamic loading are calculated as a function of mole fraction at the temperature of 400 K and 1200 K, as well as the typical operating pressure of 2 MPa. Results indicated that the mixture of helium-carbon dioxide with a mole fraction of 0.4 is a more attractive choice for the high heat transfer coefficient, low aerodynamic loading and acceptable pressure losses in contrast to helium-nitrogen and other mixing ratios of helium-carbon dioxide. Its heat transfer coefficient is almost 20% more than that of pure helium and the normalized aerodynamic loading is less than 34% at 1200 K. However; the pressure losses are a little higher with ~3.5 times those of pure helium. (author)

  9. Shaft Boring Machine: A method of mechanized vertical shaft excavation

    International Nuclear Information System (INIS)

    Goodell, T.M.

    1991-01-01

    The Shaft Boring Machine (SBM) is a vertical application of proven rock boring technology. The machine applies a rotating cutter wheel with disk cutters for shaft excavation. The wheel is thrust against the rock by hydraulic cylinders and slews about the shaft bottom as it rotates. Cuttings are removed by a clam shell device similar to conventional shaft mucking and the muck is hoisted by buckets. The entire machine moves down (and up) the shaft through the use of a system of grippers thrust against the shaft wall. These grippers and their associated cylinders also provide the means to maintain verticality and stability of the machine. The machine applies the same principles as tunnel boring machines but in a vertical mode. Other shaft construction activities such as rock bolting, utility installation and shaft concrete lining can be accomplished concurrent with shaft boring. The method is comparable in cost to conventional sinking to a depth of about 460 meters (1500 feet) beyond which the SBM has a clear host advantage. The SBM has a greater advantage in productivity in that it can excavate significantly faster than drill and blast methods

  10. Direct shaft torque measurements in a transient turbine facility

    International Nuclear Information System (INIS)

    Beard, Paul F; Povey, Thomas

    2011-01-01

    This paper describes the development and implementation of a shaft torque measurement system for the Oxford Turbine Research Facility (formerly the Turbine Test Facility (TTF) at QinetiQ, Farnborough), or OTRF. As part of the recent EU TATEF II programme, the facility was upgraded to allow turbine efficiency measurements to be performed. A shaft torque measurement system was developed as part of this upgrade. The system is unique in that, to the authors' knowledge, it provided the first direct measurement of shaft torque in a transient turbine facility although the system has wider applicability to rotating test facilities in which power measurement is a requirement. The adopted approach removes the requirement to quantify bearing friction, which can be difficult to accurately calibrate under representative operating conditions. The OTRF is a short duration (approximately 0.4 s run time) isentropic light-piston facility capable of matching all of the non-dimensional parameters important for aerodynamic and heat studies, namely Mach number, Reynolds number, non-dimensional speed, stage pressure ratio and gas-to-wall temperature ratio. The single-stage MT1 turbine used for this study is a highly loaded unshrouded design, and as such is relevant to modern military, or future civil aero-engine design. Shaft torque was measured directly using a custom-built strain gauge-based torque measurement system in the rotating frame of reference. This paper describes the development of this measurement system. The system was calibrated, including the effects of temperature, to a traceable primary standard using a purpose-built facility. The bias and precision uncertainties of the measured torque were ±0.117% and ±0.183%, respectively. To accurately determine the shaft torque developed by a turbine in the OTRF, small corrections due to inertial torque (associated with changes in the rotational speed) and aerodynamic drag (windage) are required. The methods for performing these

  11. Correlation of operating parameters on turbine shaft vibrations

    Science.gov (United States)

    Dixit, Harsh Kumar; Rajora, Rajeev

    2016-05-01

    The new generation of condition monitoring and diagnostics system plays an important role in efficient functioning of power plants. In most of the rotating machine, defects can be detected by such a system much before dangerous situation occurs. It allows the efficient use of stationary on-line continuous monitoring system for condition monitoring and diagnostics as well. Condition monitoring of turbine shaft can not only reduce expenses of maintenance of turbo generator of power plants but also prevents likely shutdown of plant, thereby increases plant load factor. Turbo visionary parameters are essential part of health diagnosis system of turbo generator. Particularly steam pressure, steam temperature and lube oil temperature are important parameters to monitor because they are having much influence on turbine shaft vibration and also governing systems are available for change values of those parameters. This paper includes influence of turbo visionary parameters i.e., steam temperature, steam pressure, lube oil temperature, turbine speed and load on turbine shaft vibration at turbo generator at 195 MW unit-6,Kota Super Thermal Power Station by measuring vibration amplitude and analyze them in MATLAB.

  12. Dynamic analysis of cross shaft type universal joint with clearance

    International Nuclear Information System (INIS)

    Lu, Jian Wei; Wang, Gong Cheng; Chen, Hao; Vakakis, Alexander F.; Bergman, Lawrence A.

    2013-01-01

    Cross shaft type universal joint is widely used in ground vehicles to transfer torque between two intersecting axes, and its transmission feature can make a great contribution to NVH performance of the vehicle. We looked at the assembling clearance at cross shaft neck, and presented a dynamic model of cross shaft type universal joint with clearance at cross shaft neck. Two-state model is applied to describe the contact force between the cross shaft and driving joint fork based on Hertz theorem, and lumped mass method is applied to build up the dynamic model of the universal joint. Based on this model, numerical analysis is carried out to discuss the transmission feature of the universal joint with clearance at cross shaft neck, and the influence of clearance on the dynamic behavior of the system is evaluated with numerical results based on time history, power spectrum, and phase portrait. The method and conclusions presented are helpful to improvement of the transmission feature of cross shaft type universal joint.

  13. On the reversed Brayton cycle with high speed machinery

    Energy Technology Data Exchange (ETDEWEB)

    Backman, J.

    1996-12-31

    This work was carried out in the laboratory of Fluid Dynamics, at Lappeenranta University of Technology during the years 1991-1996. The research was a part of larger high speed technology development research. First, there was the idea of making high speed machinery applications with the Brayton cycle. There was a clear need to deepen the knowledge of the cycle itself and to make a new approach in the field of the research. Also, the removal of water from the humid air seemed very interesting. The goal of this work was to study methods of designing high speed machinery for the reversed Brayton cycle, from theoretical principles to practical applications. The reversed Brayton cycle can be employed as an air dryer, a heat pump or a refrigerating machine. In this research the use of humid air as a working fluid has an environmental advantage, as well. A new calculation method for the Brayton cycle is developed. In this method especially the expansion process in the turbine is important because of the condensation of the water vapour in the humid air. This physical phenomena can have significant effects on the level of performance of the application. Also, the influence of calculating the process with actual, achievable process equipment efficiencies is essential for the development of future machinery. The above theoretical calculations are confirmed with two different laboratory prototypes. (53 refs.)

  14. On the reversed Brayton cycle with high speed machinery

    Energy Technology Data Exchange (ETDEWEB)

    Backman, J

    1997-12-31

    This work was carried out in the laboratory of Fluid Dynamics, at Lappeenranta University of Technology during the years 1991-1996. The research was a part of larger high speed technology development research. First, there was the idea of making high speed machinery applications with the Brayton cycle. There was a clear need to deepen the knowledge of the cycle itself and to make a new approach in the field of the research. Also, the removal of water from the humid air seemed very interesting. The goal of this work was to study methods of designing high speed machinery for the reversed Brayton cycle, from theoretical principles to practical applications. The reversed Brayton cycle can be employed as an air dryer, a heat pump or a refrigerating machine. In this research the use of humid air as a working fluid has an environmental advantage, as well. A new calculation method for the Brayton cycle is developed. In this method especially the expansion process in the turbine is important because of the condensation of the water vapour in the humid air. This physical phenomena can have significant effects on the level of performance of the application. Also, the influence of calculating the process with actual, achievable process equipment efficiencies is essential for the development of future machinery. The above theoretical calculations are confirmed with two different laboratory prototypes. (53 refs.)

  15. Using combined system of shaft guides for buckets during shaft deepening

    Energy Technology Data Exchange (ETDEWEB)

    Durov, E.M.; Ivenskii, N.S.; Alekhin, P.I.

    1981-06-01

    This paper discusses a system of shaft guides used in the Krasnopol'evsk underground coal mine. The existing skip shaft 514 m deep is deepened to a depth of 700 m. Shaft design is adapted to a system of two pairs of skips, however, only one pair of skips is in operation and the other has been removed. The free space can be used to remove rock material from shaft bottom. It is noted that a system of buckets moving along elastic shaft guides made of rope or along rigid shaft guides can be used. Both solutions have numerous advantages. If rope guides are used time consuming installation of shaft guides is unnecessary in the zone close to the bottom. If rigid guides are used capacity of the bucket can be significantly increased. A system which combines advantages of both solutions is used: in the lower part of the shaft being deepened, buckets are guided by rope, and in the upper zone in which rigid shaft guides have been installed the bucket moves along rigid guides and rope guides simultaneously. Design of the element guiding the bucket is shown in two diagrams. It is noted that using the combined system of shaft guides increases capacity of the hoisting system by 1.5 times.

  16. Heat exchanger optimization of a closed Brayton cycle for nuclear space propulsion

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, Guilherme B.; Guimaraes, Lamartine N.F.; Braz Filho, Francisco A., E-mail: gbribeiro@ieav.cta.br, E-mail: guimarae@ieav.cta.br, E-mail: braz@ieav.cta.br [Instituto de Estudos Avancados (IEAV), Sao Jose dos Campos, SP (Brazil). Divisao de Energia Nuclear

    2015-07-01

    Nuclear power systems turned to space electric propulsion differs strongly from usual ground-based power systems regarding the importance of overall size and weight. For propulsion power systems, weight and efficiency are essential drivers that should be managed during conception phase. Considering that, this paper aims the development of a thermal model of a closed Brayton cycle that applies the thermal conductance of heat exchangers in order to predict the energy conversion performance. The centrifugal-flow turbine and compressor characterization were achieved using algebraic equations from literature data. The binary mixture of He-Xe with molecular weight of 40 g/mole is applied and the impact of heat exchanger optimization in thermodynamic irreversibilities is evaluated in this paper. (author)

  17. Heat exchanger optimization of a closed Brayton cycle for nuclear space propulsion

    International Nuclear Information System (INIS)

    Ribeiro, Guilherme B.; Guimaraes, Lamartine N.F.; Braz Filho, Francisco A.

    2015-01-01

    Nuclear power systems turned to space electric propulsion differs strongly from usual ground-based power systems regarding the importance of overall size and weight. For propulsion power systems, weight and efficiency are essential drivers that should be managed during conception phase. Considering that, this paper aims the development of a thermal model of a closed Brayton cycle that applies the thermal conductance of heat exchangers in order to predict the energy conversion performance. The centrifugal-flow turbine and compressor characterization were achieved using algebraic equations from literature data. The binary mixture of He-Xe with molecular weight of 40 g/mole is applied and the impact of heat exchanger optimization in thermodynamic irreversibilities is evaluated in this paper. (author)

  18. Mine-shaft conveyance monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Beus, M.J.; Ruff, T.M.; Iverson, S.; McCoy, W.G. [National Institute for Occupational Safety and Health, Spokane, WA (USA). Spokane Research Laboratory

    2000-10-01

    Monitoring conveyance position and wire rope load directly from the skip or cage top offers several significant safety and production advantages. The Spokane Research Laboratory (SRL) of the National Institute for Occupational Safety and Health (NIOSH) developed a shaft conveyance monitoring system (SCMS). This system consists of position and guide-displacement sensors, a maintenance-free battery power supply and a new sensor, which is mounted on the wire rope with a Crosby Clip, to measure hoist-rope tension. A radio data link transmits sensor output to the hoist room. A state-of-the-art automated hoisting test facility was also constructed to test the concept in a controlled laboratory setting. Field tests are now underway at the SRL hoisting research facility and in deep mine shafts in northern Idaho. 4 refs., 5 figs.

  19. Shaft/shaft-seal interface characteristics of a multiple disk centrifugal blood pump.

    Science.gov (United States)

    Manning, K B; Miller, G E

    1999-06-01

    A multiple disk centrifugal pump (MDCP) is under investigation as a potential left ventricular assist device. As is the case with most shaft driven pumps, leakage problems around the shaft/shaft seal interface are of major interest. If leakage were to occur during or after implantation, potential events such as blood loss, clotting, blood damage, and/or infections might result in adverse effects for the patient. Because these effects could be quite disastrous, potential shaft and shaft seal materials have been investigated to determine the most appropriate course to limit these effects. Teflon and nylon shaft seals were analyzed as potential candidates along with a stainless steel shaft and a Melonite coated shaft. The materials and shafts were evaluated under various time durations (15, 30, 45, and 60 min), motor speeds (800, 1,000, 1,200, and 1,400 rpm), and outer diameters (1/2 and 3/4 inches). The motor speed and geometrical configurations were typical for the MDCP under normal physiologic conditions. An air and water study was conducted to analyze the inner diameter wear, the inner temperature values, and the outer temperature values. Statistical comparisons were computed for the shaft seal materials, the shafts, and the outer diameters along with the inner and outer temperatures. The conclusions made from the results indicate that both the tested shaft seal materials and shaft materials are not ideal candidates to be used for the MDCP. Teflon experienced a significant amount of wear in air and water studies. Nylon did experience little wear, but heat generation was an evident problem. A water study on nylon was not conducted because of its molecular structure.

  20. Reactor/Brayton power systems for nuclear electric spacecraft

    Science.gov (United States)

    Layton, J. P.

    1980-01-01

    Studies are currently underway to assess the technological feasibility of a nuclear-reactor-powered spacecraft propelled by electric thrusters. This vehicle would be capable of performing detailed exploration of the outer planets of the solar system during the remainder of this century. The purpose of this study was to provide comparative information on a closed cycle gas turbine power conversion system. The results have shown that the performance is very competitive and that a 400 kWe space power system is dimensionally compatible with a single Space Shuttle launch. Performance parameters of system mass and radiator area were determined for systems from 100 to 1000 kWe. A 400 kWe reference system received primary attention. The components of this system were defined and a conceptual layout was developed with encouraging results. The preliminary mass determination for the complete power system was very close to the desired goal of 20 kg/kWe. Use of more advanced technology (higher turbine inlet temperature) will substantially improve system performance characteristics.

  1. The new 6 MW gas turbine for the power generation; Die neue 6 MW Gasturbine fuer die Stromerzeugung

    Energy Technology Data Exchange (ETDEWEB)

    Blaswich, Michael; Theis, Sascha [MAN Diesel and Turbo SE, Oberhausen (Germany)

    2012-07-01

    MAN Diesel and Turbo SE (Oberhausen, Federal Republic of Germany) had developed a new gas turbine in the 6 MW class. This device is the founding stone for a family of gas turbines which at first cover the power range from 6 to 8 MW for the propulsion of pumps, compressors and electric devices. The two-shaft industrial gas turbine consists of a gas generator with an axial compressor with eleven levels, six external single combustion chambers, one two-step high-pressure turbine and a two-step power turbine. Beside the two-shaft industrial gas turbine, there exists a single-shaft industrial gas turbine for the power generation. The single-shaft industrial gas turbine consists of three turbine stages, a gas turbine compressor and combustion chamber being identical in construction to the two-shaft industrial gas turbine. The gas turbine package contains the gas turbine module as well as a filter module. The gas turbine was successfully tested. Further tests and the commissioning of the first customer's plant are planned for this year.

  2. Counter flow induced draft cooling tower option for supercritical carbon dioxide Brayton cycle

    Energy Technology Data Exchange (ETDEWEB)

    Pidaparti, Sandeep R., E-mail: sandeep.pidaparti@gmail.com [Georgia Institute of Technology, George W. Woodruff School of Mechanical Engineering, Atlanta, GA 30332 (United States); Moisseytsev, Anton; Sienicki, James J. [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Ranjan, Devesh, E-mail: devesh.ranjan@me.gatech.edu [Georgia Institute of Technology, George W. Woodruff School of Mechanical Engineering, Atlanta, GA 30332 (United States)

    2015-12-15

    Highlights: • A code was developed to investigate the various aspects of using cooling tower for S-CO{sub 2} Brayton cycles. • Cooling tower option to reject heat is quantitatively compared to the direct water cooling and dry air cooling options. • Optimum water conditions resulting in minimal plant capital cost per unit power consumption are calculated. - Abstract: A simplified qualitative analysis was performed to investigate the possibility of using counter flow induced draft cooling tower option to reject heat from the supercritical carbon dioxide Brayton cycle for advanced fast reactor (AFR)-100 and advanced burner reactor (ABR)-1000 plants. A code was developed to estimate the tower dimensions, power and water consumption, and to perform economic analysis. The code developed was verified against a vendor provided quotation and is used to understand the effect of ambient air and water conditions on the design of cooling tower. The calculations indicated that there exists optimum water conditions for given ambient air conditions which will result in minimum power consumption, thereby increasing the cycle efficiency. A cost-based optimization technique is used to estimate the optimum water conditions which will improve the overall plant economics. A comparison of different cooling options for the S-CO{sub 2} cycle indicated that the cooling tower option is a much more practical and economical option compared to the dry air cooling or direct water cooling options.

  3. Potential impacts of Brayton and Stirling cycle engines

    Science.gov (United States)

    Heft, R. C.

    1980-01-01

    Two engine technologies (Brayton cycle and Stirling cycle) are examined for their potential economic impact and fuel utilization. An economic analysis of the expected response of buyers to the attributes of the alternative engines was performed. Hedonic coefficients for vehicle fuel efficiency, performance and size were estimated for domestic cars based upon historical data. The marketplace value of the fuel efficiency enhancement provided by Brayton or Stirling engines was estimated. Under the assumptions of 10 years for plant conversions and 1990 and 1995 as the introduction data for turbine and Stirling engines respectively, the comparative fuel savings and present value of the future savings in fuel costs were estimated.

  4. Development of a Supercritical Carbon Dioxide Brayton Cycle: Improving VHTR Efficiency and Testing Material Compatibility - Final Report

    International Nuclear Information System (INIS)

    Chang H. Oh

    2006-01-01

    Generation IV reactors will need to be intrinsically safe, having a proliferation-resistant fuel cycle and several advantages relative to existing light water reactor (LWR). They, however, must still overcome certain technical issues and the cost barrier before it can be built in the U.S. The establishment of a nuclear power cost goal of 3.3 cents/kWh is desirable in order to compete with fossil combined-cycle, gas turbine power generation. This goal requires approximately a 30 percent reduction in power cost for state-of-the-art nuclear plants. It has been demonstrated that this large cost differential can be overcome only by technology improvements that lead to a combination of better efficiency and more compatible reactor materials. The objectives of this research are (1) to develop a supercritical carbon dioxide Brayton cycle in the secondary power conversion side that can be applied to the Very-High-Temperature Gas-Cooled Reactor (VHTR), (2) to improve the plant net efficiency by using the carbon dioxide Brayton cycle, and (3) to test material compatibility at high temperatures and pressures. The reduced volumetric flow rate of carbon dioxide due to higher density compared to helium will reduce compression work, which eventually increase plant net efficiency

  5. Isotope Brayton ground demonstration testing and flight qualification. Volume 1. Technical program

    Energy Technology Data Exchange (ETDEWEB)

    1974-12-09

    A program is proposed for the ground demonstration, development, and flight qualification of a radioisotope nuclear heated dynamic power system for use on space missions beginning in the 1980's. This type of electrical power system is based upon and combines two aerospace technologies currently under intense development; namely, the MHW isotope heat source and the closed Brayton cycle gas turbine. This power system represents the next generation of reliable, efficient economic electrical power equipment for space, and will be capable of providing 0.5 to 2.0 kW of electric power to a wide variety of spacecraft for earth orbital and interplanetary missions. The immediate design will be based upon the requirements for the Air Force SURVSATCOM mission. The proposal is presented in three volumes plus an Executive Summary. This volume describes the tasks in the technical program.

  6. Application of exergetic sustainability index to a nano-scale irreversible Brayton cycle operating with ideal Bose and Fermi gasses

    Energy Technology Data Exchange (ETDEWEB)

    Açıkkalp, Emin, E-mail: eacikkalp@gmail.com [Department of Mechanical and Manufacturing Engineering, Engineering Faculty, Bilecik S.E. University, Bilecik (Turkey); Caner, Necmettin [Department of Chemistry, Faculty of Arts and Sciences, Eskisehir Osmangazi University, Eskisehir (Turkey)

    2015-09-25

    Highlights: • An irreversible Brayton cycle operating quantum gasses is considered. • Exergetic sustainability index is derived for nano-scale cycles. • Nano-scale effects are considered. • Calculation are conducted for irreversible cycles. • Numerical results are presented and discussed. - Abstract: In this study, a nano-scale irreversible Brayton cycle operating with quantum gasses including Bose and Fermi gasses is researched. Developments in the nano-technology cause searching the nano-scale machines including thermal systems to be unavoidable. Thermodynamic analysis of a nano-scale irreversible Brayton cycle operating with Bose and Fermi gasses was performed (especially using exergetic sustainability index). In addition, thermodynamic analysis involving classical evaluation parameters such as work output, exergy output, entropy generation, energy and exergy efficiencies were conducted. Results are submitted numerically and finally some useful recommendations were conducted. Some important results are: entropy generation and exergetic sustainability index are affected mostly for Bose gas and power output and exergy output are affected mostly for the Fermi gas by x. At the high temperature conditions, work output and entropy generation have high values comparing with other degeneracy conditions.

  7. The closed Brayton cycle: An energy conversion system for near-term military space missions

    Science.gov (United States)

    Davis, Keith A.

    The Particle Bed Reactor (PBR)-closed Brayton cycle (CBC) provides a 5 to 30 kWe class nuclear power system for surveillance and communication missions during the 1990s and will scale to 100 kWe and beyond for other space missions. The PBR-CBC is technically feasible and within the existing state of the art. The PBR-CBC system is flexible, scaleable, and offers development economy. The ability to operate over a wide power range promotes commonality between missions with similar but not identical power spectra. The PBR-CBC system mass is very competitive with rival nuclear dynamic and static power conversion and systems. The PBR-CBC provides growth potential for the future with even lower specific masses.

  8. Computational Analysis of Supercritical Carbon Dioxide Gas Turbine for Liquid Metal Cooled Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Wi S.; Suh, Kune Y. [Seoul National University, Seoul (Korea, Republic of)

    2008-10-15

    Energy demands at a remote site are increased as the world energy requirement diversifies so that they should generate power on their own site. A Small Modular Reactor (SMR) becomes a viable option for these sites. Generally, the economic feasibility of a high power reactor is greater than that for SMR. As a result the supercritical fluid driven Brayton cycle is being considered for a power conversion system to increase economic competitiveness of SMR. The Brayton cycle efficiency is much higher than that for the Rankine cycle. Moreover, the components of the Brayton cycle are smaller than Rankine cycle's due to high heat capacity when a supercritical fluid is adopted. A lead (Pb) cooled SMR, BORIS, and a supercritical fluid driven Brayton cycle, MOBIS, are being developed at the Seoul National University (SNU). Dostal et al. have compared some advanced power cycles and proposed the use of a supercritical carbon dioxide (SCO{sub 2}) driven Brayton cycle. According to their suggestion SCO{sub 2} is adopted as a working fluid for MOBIS. The turbo machineries are most important components for the Brayton cycle. The turbo machineries of Brayton cycle consists of a turbine to convert kinetic energy of the fluid into mechanical energy of the shaft, and a compressor to recompress and recover the driving force of the working fluid. Therefore, turbine performance is one of the pivotal factors in increasing the cycle efficiency. In MOBIS a supercritical gas turbine is designed in the Gas Advanced Turbine Operation (GATO) and analyzed in the Turbine Integrated Numerical Analysis (TINA). A three-dimensional (3D) numerical analysis is employed for more detailed design to account for the partial flow which the one-dimensional (1D) analysis cannot consider.

  9. Computational Analysis of Supercritical Carbon Dioxide Gas Turbine for Liquid Metal Cooled Reactor

    International Nuclear Information System (INIS)

    Jeong, Wi S.; Suh, Kune Y.

    2008-01-01

    Energy demands at a remote site are increased as the world energy requirement diversifies so that they should generate power on their own site. A Small Modular Reactor (SMR) becomes a viable option for these sites. Generally, the economic feasibility of a high power reactor is greater than that for SMR. As a result the supercritical fluid driven Brayton cycle is being considered for a power conversion system to increase economic competitiveness of SMR. The Brayton cycle efficiency is much higher than that for the Rankine cycle. Moreover, the components of the Brayton cycle are smaller than Rankine cycle's due to high heat capacity when a supercritical fluid is adopted. A lead (Pb) cooled SMR, BORIS, and a supercritical fluid driven Brayton cycle, MOBIS, are being developed at the Seoul National University (SNU). Dostal et al. have compared some advanced power cycles and proposed the use of a supercritical carbon dioxide (SCO 2 ) driven Brayton cycle. According to their suggestion SCO 2 is adopted as a working fluid for MOBIS. The turbo machineries are most important components for the Brayton cycle. The turbo machineries of Brayton cycle consists of a turbine to convert kinetic energy of the fluid into mechanical energy of the shaft, and a compressor to recompress and recover the driving force of the working fluid. Therefore, turbine performance is one of the pivotal factors in increasing the cycle efficiency. In MOBIS a supercritical gas turbine is designed in the Gas Advanced Turbine Operation (GATO) and analyzed in the Turbine Integrated Numerical Analysis (TINA). A three-dimensional (3D) numerical analysis is employed for more detailed design to account for the partial flow which the one-dimensional (1D) analysis cannot consider

  10. Study on Manufacturing Process of Hollow Main Shaft by Open Die Forging

    International Nuclear Information System (INIS)

    Kwon, Yong Chul; Kang, Jong Hun; Kim, Sang Sik

    2016-01-01

    The main shaft is one of the key components connecting the rotor hub and gear box of a wind power generator. Typically, main shafts are manufactured by open die forging method. However, the main shaft for large MW class wind generators is designed to be hollow in order to reduce the weight. Additionally, the main shafts are manufactured by a casting process. This study aims to develop a manufacturing process for hollow main shafts by the open die forging method. The design of a forging process for a solid main shaft and hollow shaft was prepared by an open die forging process design scheme. Finite element analyses were performed to obtain the flow stress by a hot compression test at different temperature and strain rates. The control parameters of each forging process, such as temperature and effective strain, were obtained and compared to predict the suitability of the hollow main shaft forging process. Finally, high productivity reflecting material utilization ratio, internal quality, shape, and dimension was verified by the prototypes manufactured by the proposed forging process for hollow main shafts

  11. Study on Manufacturing Process of Hollow Main Shaft by Open Die Forging

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Yong Chul [Gyeongnam Technopark, Changwon (Korea, Republic of); Kang, Jong Hun [Jungwon Univ., Goisan (Korea, Republic of); Kim, Sang Sik [Gyeongsang Natiional Univ., Jinju (Korea, Republic of)

    2016-02-15

    The main shaft is one of the key components connecting the rotor hub and gear box of a wind power generator. Typically, main shafts are manufactured by open die forging method. However, the main shaft for large MW class wind generators is designed to be hollow in order to reduce the weight. Additionally, the main shafts are manufactured by a casting process. This study aims to develop a manufacturing process for hollow main shafts by the open die forging method. The design of a forging process for a solid main shaft and hollow shaft was prepared by an open die forging process design scheme. Finite element analyses were performed to obtain the flow stress by a hot compression test at different temperature and strain rates. The control parameters of each forging process, such as temperature and effective strain, were obtained and compared to predict the suitability of the hollow main shaft forging process. Finally, high productivity reflecting material utilization ratio, internal quality, shape, and dimension was verified by the prototypes manufactured by the proposed forging process for hollow main shafts.

  12. Potential improvements of supercritical recompression CO2 Brayton cycle by mixing other gases for power conversion system of a SFR

    International Nuclear Information System (INIS)

    Jeong, Woo Seok; Lee, Jeong Ik; Jeong, Yong Hoon

    2011-01-01

    Highlights: → S-CO 2 cycle could be enhanced by shifting the critical point of working fluids using gas mixture. → In-house cycle code was developed to analyze supercritical Brayton cycles with gas mixture. → Gas mixture candidates were selected through a screening process: CO 2 mixing with N 2 , O 2 , He, and Ar. → CO 2 -He binary mixture shows the highest cycle efficiency increase. → Lowering the critical temperature and critical pressure of the coolant has a positive effect on the total cycle efficiency. - Abstract: A sodium-cooled fast reactor (SFR) is one of the strongest candidates for the next generation nuclear reactor. However, the conventional design of a SFR concept with an indirect Rankine cycle is subjected to a possible sodium-water reaction. To prevent any hazards from sodium-water reaction, a SFR with the Brayton cycle using Supercritical Carbon dioxide (S-CO 2 ) as the working fluid can be an alternative approach to improve the current SFR design. However, the S-CO 2 Brayton cycle is more sensitive to the critical point of working fluids than other Brayton cycles. This is because compressor work is significantly decreased slightly above the critical point due to high density of CO 2 near the boundary between the supercritical state and the subcritical state. For this reason, the minimum temperature and pressure of cycle are just above the CO 2 critical point. In other words, the critical point acts as a limitation of the lowest operating condition of the cycle. In general, lowering the rejection temperature of a thermodynamic cycle can increase the efficiency. Therefore, changing the critical point of CO 2 can result in an improvement of the total cycle efficiency with the same cycle layout. A small amount of other gases can be added in order to change the critical point of CO 2 . The direction and range of the critical point variation of CO 2 depends on the mixed component and its amount. Several gases that show chemical stability with

  13. Buffer thermal energy storage for a solar Brayton engine

    Science.gov (United States)

    Strumpf, H. J.; Barr, K. P.

    1981-01-01

    A study has been completed on the application of latent-heat buffer thermal energy storage to a point-focusing solar receiver equipped with an air Brayton engine. To aid in the study, a computer program was written for complete transient/stead-state Brayton cycle performance. The results indicated that thermal storage can afford a significant decrease in the number of engine shutdowns as compared to operating without thermal storage. However, the number of shutdowns does not continuously decrease as the storage material weight increases. In fact, there appears to be an optimum weight for minimizing the number of shutdowns.

  14. Cost Analysis of an Air Brayton Receiver for a Solar Thermal Electric Power System in Selected Annual Production Volumes

    Science.gov (United States)

    1981-01-01

    Pioneer Engineering and Manufacturing Company estimated the cost of manufacturing and Air Brayton Receiver for a Solar Thermal Electric Power System as designed by the AiResearch Division of the Garrett Corporation. Production costs were estimated at annual volumes of 100; 1,000; 5,000; 10,000; 50,000; 100,000 and 1,000,000 units. These costs included direct labor, direct material and manufacturing burden. A make or buy analysis was made of each part of each volume. At high volumes special fabrication concepts were used to reduce operation cycle times. All costs were estimated at an assumed 100% plant capacity. Economic feasibility determined the level of production at which special concepts were to be introduced. Estimated costs were based on the economics of the last half of 1980. Tooling and capital equipment costs were estimated for ach volume. Infrastructure and personnel requirements were also estimated.

  15. Systems Analyses of Advanced Brayton Cycles

    Energy Technology Data Exchange (ETDEWEB)

    A.D. Rao; D.J. Francuz; J.D. Maclay; J. Brouwer; A. Verma; M. Li; G.S. Samuelsen

    2008-09-30

    The main objective is to identify and assess advanced improvements to the Brayton Cycle (such as but not limited to firing temperature, pressure ratio, combustion techniques, intercooling, fuel or combustion air augmentation, enhanced blade cooling schemes) that will lead to significant performance improvements in coal based power systems. This assessment is conducted in the context of conceptual design studies (systems studies) that advance state-of-art Brayton cycles and result in coal based efficiencies equivalent to 65% + on natural gas basis (LHV), or approximately an 8% reduction in heat rate of an IGCC plant utilizing the H class steam cooled gas turbine. H class gas turbines are commercially offered by General Electric and Mitsubishi for natural gas based combined cycle applications with 60% efficiency (LHV) and it is expected that such machine will be offered for syngas applications within the next 10 years. The studies are being sufficiently detailed so that third parties will be able to validate portions or all of the studies. The designs and system studies are based on plants for near zero emissions (including CO{sub 2}). Also included in this program is the performance evaluation of other advanced technologies such as advanced compression concepts and the fuel cell based combined cycle. The objective of the fuel cell based combined cycle task is to identify the desired performance characteristics and design basis for a gas turbine that will be integrated with an SOFC in Integrated Gasification Fuel Cell (IGFC) applications. The goal is the conceptualization of near zero emission (including CO{sub 2} capture) integrated gasification power plants producing electricity as the principle product. The capability of such plants to coproduce H{sub 2} is qualitatively addressed. Since a total systems solution is critical to establishing a plant configuration worthy of a comprehensive market interest, a baseline IGCC plant scheme is developed and used to study

  16. A 4 K tactical cryocooler using reverse-Brayton machines

    Science.gov (United States)

    Zagarola, M.; Cragin, K.; McCormick, J.; Hill, R.

    2017-12-01

    Superconducting electronics and spectral-spatial holography have the potential to revolutionize digital communications, but must operate at cryogenic temperatures, near 4 K. Liquid helium is undesirable for military missions due to logistics and scarcity, and commercial low temperature cryocoolers are unable to meet size, weight, power, and environmental requirements for many missions. To address this need, Creare is developing a reverse turbo-Brayton cryocooler that provides refrigeration at 4.2 K and rejects heat at 77 K to an upper-stage cryocooler or through boil-off of liquid nitrogen. The cooling system is predicted to reduce size, weight, and input power by at least an order of magnitude as compared to the current state-of-the-art 4.2 K cryocooler. For systems utilizing nitrogen boil-off, the boil-off rate is reasonable. This paper reviews the design of the cryocooler, the key components, and component test results.

  17. Torsional Vibration of a Shafting System under Electrical Disturbances

    Directory of Open Access Journals (Sweden)

    Ling Xiang

    2012-01-01

    Full Text Available Torsional vibration responses of a nonlinear shafting system are studied by a modified Riccati torsional transfer matrix combining with the Newmark-β method. Firstly, the system is modeled as a chain consisting of an elastic spring with concentrated mass points, from which a multi-segment lumped mass model is established. Secondly, accumulated errors are eliminated from the eigenfrequencies and responses of the system's torsional vibration by this newly developed procedure. The incremental transfer matrix method, combining the modified Riccati torsional transfer matrix with Newmark-β method, is further applied to solve the dynamical equations for the torsional vibration of the nonlinear shafting system. Lastly, the shafting system of a turbine-generator is employed as an illustrating example, and simulation analysis has been performed on the transient responses of the shaft's torsional vibrations during typical power network disturbances, such as three-phase short circuit, two-phase short circuit and asynchronous juxtaposition. The results validate the present method and are instructive for the design of a turbo-generator shaft.

  18. ANALYTICAL EVALUATION OF CRACK PROPAGATION FOR BULB HYDRAULIC TURBINES SHAFTS

    Directory of Open Access Journals (Sweden)

    Mircea O. POPOVICU

    2011-05-01

    Full Text Available The Hydroelectric Power Plants uses the regenerating energy of rivers. The hydraulic Bulb turbines running with low heads are excellent alternative energy sources. The shafts of these units present themselves as massive pieces, with cylindrical shape, manufactured from low-alloyed steels. The paper analyses the fatigue cracks occurring at some turbines in the neighbourhood of the connection zone between the shaft and the turbine runner flange. To obtain the tension state in this zone ANSIS and AFGROW computing programs were used. The number of running hours until the piercing of the shaft wall is established as a useful result.

  19. Recent quality of ultra large rotor shafts

    International Nuclear Information System (INIS)

    Suzuki, Akira; Kinoshita, Shushi; Morita, Kikuo; Kikuchi, Hideo; Takada, Masayoshi

    1983-01-01

    Large size and high quality are required for rotor shafts accompanying recent trend of thermal and nuclear power generation toward large capacity. As for the low pressure rotor shafts for large capacity turbines, the disks and a shaft tend to be made into one body instead of conventional shrink fit construction, because of the experience of rotor accidents and the improvement of reliability. Therefore the ingots required become more and more large, and excellent production techniques are required for steel making, forging and heat treatment. Kobe Steel Ltd. have made about 20 large generator shafts from 420 t and 500 t ingots, and confirmed their stable high quality. Also a one-body low pressure rotor of 2600 mm diameter was made for trial, and its quality was examined. It was confirmed that the effect of forging and heat treatment was given sufficiently, and the production techniques for super-large one-body rotors were established. In steel making, vacuum degassing was applied twice to decrease hydrogen content, and VV restriction forging and pre-stage treatment were carried out. The properties of large rotors are reported. (Kako, I.)

  20. Influence of the shaft rotation on the stability of magnetic fluid shaft seal characteristics

    Science.gov (United States)

    Krakov, M. S.; Nikiforov, I. V.

    2008-12-01

    Distribution of the magnetic particles concentration in a magnetic fluid shaft seal is studied numerically for a rotating shaft. It is revealed that the shaft rotation causes not only an azimuthal flow of the magnetic fluid, but a meridional flow as well. This meridional flow prevents the growth of magnetic particle concentration in the gap of the magnetic fluid shaft seal. As a result, the burst pressure of the magnetic fluid shaft seal for the rotating shaft is stable and does not change with time. Figs 6, Refs 7.

  1. Pre-cementation of deep shaft

    Science.gov (United States)

    Heinz, W. F.

    1988-12-01

    Pre-cementation or pre-grouting of deep shafts in South Africa is an established technique to improve safety and reduce water ingress during shaft sinking. The recent completion of several pre-cementation projects for shafts deeper than 1000m has once again highlighted the effectiveness of pre-grouting of shafts utilizing deep slimline boreholes and incorporating wireline technique for drilling and conventional deep borehole grouting techniques for pre-cementation. Pre-cementation of deep shaft will: (i) Increase the safety of shaft sinking operation (ii) Minimize water and gas inflow during shaft sinking (iii) Minimize the time lost due to additional grouting operations during sinking of the shaft and hence minimize costly delays and standing time of shaft sinking crews and equipment. (iv) Provide detailed information of the geology of the proposed shaft site. Informations on anomalies, dykes, faults as well as reef (gold bearing conglomerates) intersections can be obtained from the evaluation of cores of the pre-cementation boreholes. (v) Provide improved rock strength for excavations in the immediate vicinity of the shaft area. The paper describes pre-cementation techniques recently applied successfully from surface and some conclusions drawn for further considerations.

  2. Effects of hysteresis and Brayton cycle constraints on magnetocaloric refrigerant performance

    Science.gov (United States)

    Brown, T. D.; Buffington, T.; Shamberger, P. J.

    2018-05-01

    Despite promising proofs of concept, system-level implementation of magnetic refrigeration has been critically limited by history-dependent refrigerant losses that interact with governing thermodynamic cycles to adversely impact refrigeration performance. Future development demands a more detailed understanding of how hysteresis limits performance, and of how different types of cycles can mitigate these limitations, but without the extreme cost of experimental realization. Here, the utility of Brayton cycles for magnetic refrigeration is investigated via direct simulation, using a combined thermodynamic-hysteresis modeling framework to compute the path-dependent magnetization and entropy of a model alloy for a variety of feasible Brayton cycles between 0-1.5 T and 0-5 T. By simultaneously varying the model alloy's hysteresis properties and applying extensions of the thermodynamic laws to non-equilibrium systems, heat transfers and efficiencies are quantified throughout the space of hystereses and Brayton cycles and then compared with a previous investigation using Ericsson cycles. It is found that (1) hysteresis losses remain a critical obstacle to magnetic refrigeration implementation, with efficiencies >80% in the model system requiring hysteresis refrigerant transformation temperatures at the relevant fields; (3) for a given hysteresis and field constraint, Brayton and Ericsson-type cycles generate similar efficiencies; for a given temperature span, Ericsson cycles lift more heat per cycle, with the difference decreasing with the refrigerant heat capacity outside the phase transformation region.

  3. Rotary shaft seal

    International Nuclear Information System (INIS)

    Langebrake, C.O.

    1984-01-01

    The invention is a novel rotary shaft seal assembly which provides positive-contact sealing when the shaft is not rotated and which operates with its sealing surfaces separated by a film of compressed ambient gas whose width is independent of the speed of shaft rotation. In a preferred embodiment, the assembly includes a disc affixed to the shaft for rotation therewith. Axially movable, non-rotatable plates respectively supported by sealing bellows are positioned on either side of the disc to be in sealing engagement therewith. Each plate carries piezoelectric transducer elements which are electrically energized at startup to produce films of compressed ambient gas between the confronting surfaces of the plates and the disc. Following shutdown of the shaft, the transducer elements are de-energized. A control circuit responds to incipient rubbing between the plate and either disc by altering the electrical input to the transducer elements to eliminate rubbing

  4. Design and fabrication of the Mini-Brayton Recuperator (MBR)

    Science.gov (United States)

    Killackey, J. J.; Graves, R.; Mosinskis, G.

    1978-01-01

    Development of a recuperator for a 2.0 kW closed Brayton space power system is described. The plate-fin heat exchanger is fabricated entirely from Hastelloy X and is designed for 10 years continuous operation at 1000 K (1300 F) with a Xenon-helium working fluid. Special design provisions assure uniform flow distribution, crucial for meeting 0.975 temperature effectiveness. Low-cycle fatigue, resulting from repeated startup and shutdown cycles, was identified as the most critical structural design problem. It is predicted that the unit has a minimum fatigue life of 220 cycles. This is in excess of the BIPS requirement of 100 cycles. Heat transfer performance and thermal cycle testing with air, using a prototype unit, verified that all design objectives can be met.

  5. Fabrication of the shafts of the liquid metal pumps for the Creys-Malville nuclear power station

    International Nuclear Information System (INIS)

    Pasqualini, G.; Lefebvre, B.; Archer, J.; Gravier, M.

    1982-01-01

    This report is a synthesis of the considerations with regard to the project work and the work executes in the field of metallurgy, which have made it possible to manufacture the shafts of primary and secondary pumps intended for the Creys-Malville nuclear power station. In the first part of this report attention is drawn to the most important items of this equipment with regard to the performance specifications. These specifications are the expression of the experiences made in France in the industrial manufacture of pumps for liquid metals for this type of application Rapsodie (1967) and Phenix (1974). In the second part of the report on hand, in particular the technical aspects of the welding operations with regard to the use of the chosen material (austenitic corrosion resisting steel Z 15 CNW 22-12, maual TIG welding, the type of steel of the filler metal being the same as the parent metal) will be discussed. Finally, a testified comment on the most important steps of the manufacture of these shafts in the works at Jeumont will be described. (orig.) [de

  6. Dry Air Cooler Modeling for Supercritical Carbon Dioxide Brayton Cycle Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Moisseytsev, A. [Argonne National Lab. (ANL), Argonne, IL (United States); Sienicki, J. J. [Argonne National Lab. (ANL), Argonne, IL (United States); Lv, Q. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-07-28

    Modeling for commercially available and cost effective dry air coolers such as those manufactured by Harsco Industries has been implemented in the Argonne National Laboratory Plant Dynamics Code for system level dynamic analysis of supercritical carbon dioxide (sCO2) Brayton cycles. The modeling can now be utilized to optimize and simulate sCO2 Brayton cycles with dry air cooling whereby heat is rejected directly to the atmospheric heat sink without the need for cooling towers that require makeup water for evaporative losses. It has sometimes been stated that a benefit of the sCO2 Brayton cycle is that it enables dry air cooling implying that the Rankine steam cycle does not. A preliminary and simple examination of a Rankine superheated steam cycle and an air-cooled condenser indicates that dry air cooling can be utilized with both cycles provided that the cycle conditions are selected appropriately

  7. Gas-cooled reactor power systems for space

    International Nuclear Information System (INIS)

    Walter, C.E.

    1987-01-01

    Efficiency and mass characteristics for four gas-cooled reactor power system configurations in the 2- to 20-MWe power range are modeled. The configurations use direct and indirect Brayton cycles with and without regeneration in the power conversion loop. The prismatic ceramic core of the reactor consists of several thousand pencil-shaped tubes made from a homogeneous mixture of moderator and fuel. The heat rejection system is found to be the major contributor to system mass, particularly at high power levels. A direct, regenerated Brayton cycle with helium working fluid permits high efficiency and low specific mass for a 10-MWe system

  8. Method of lining a vertical mine shaft with concrete

    Science.gov (United States)

    Eklund, James D.; Halter, Joseph M.; Rasmussen, Donald E.; Sullivan, Robert G.; Moffat, Robert B.

    1981-01-01

    The apparatus includes a cylindrical retainer form spaced inwardly of the wall of the shaft by the desired thickness of the liner to be poured and having overlapping edges which seal against concrete flow but permit the form to be contracted to a smaller circumference after the liner has hardened and is self-supporting. A curb ring extends downwardly and outwardly toward the shaft wall from the bottom of the retainer form to define the bottom surface of each poured liner section. An inflatable toroid forms a seal between the curb ring and the shaft wall. A form support gripper ring having gripper shoes laterally extendable under hydraulic power to engage the shaft wall supports the retainer form, curb ring and liner until the newly poured liner section becomes self-supporting. Adjusting hydraulic cylinders permit the curb ring and retainer form to be properly aligned relative to the form support gripper ring. After a liner section is self-supporting, an advancing system advances the retainer form, curb ring and form support gripper ring toward a shaft boring machine above which the liner is being formed. The advancing system also provides correct horizontal alignment of the form support gripper ring.

  9. Oil-Free Turbomachinery Technologies for Long-Life, Maintenance-Free Power Generation Applications

    Science.gov (United States)

    Dellacorte, Christopher

    2013-01-01

    Turbines have long been used to convert thermal energy to shaft work for power generation. Conventional turbines rely upon oil-lubricated rotor supports (bearings, seals, etc.) to achieve low wear, high efficiency and reliability. Emerging Oil-Free technologies such as gas foil bearings and magnetic bearings offer a path for reduced weight and complexity and truly maintenance free systems. Oil-Free gas turbines, using gaseous and liquid fuels are commercially available in power outputs to at least 250kWe and are gaining acceptance for remote power generation where maintenance is a challenge. Closed Brayton Cycle (CBC) turbines are an approach to power generation that is well suited for long life space missions. In these systems, a recirculating gas is heated by nuclear, solar or other heat energy source then fed into a high-speed turbine that drives an electrical generator. For closed cycle systems such as these, the working fluid also passes through the bearing compartments thus serving as a lubricant and bearing coolant. Compliant surface foil gas bearings are well suited for the rotor support systems of these advanced turbines. Foil bearings develop a thin hydrodynamic gas film that separates the rotating shaft from the bearing preventing wear. During start-up and shut down when speeds are low, rubbing occurs. Solid lubricants are used to reduce starting torque and minimize wear. Other emerging technologies such as magnetic bearings can also contribute to robust and reliable Oil-Free turbomachinery. In this presentation, Oil-Free technologies for advanced rotor support systems will be reviewed as will the integration and development processes recommended for implementation.

  10. Multi-objective thermodynamic optimization of an irreversible regenerative Brayton cycle using evolutionary algorithm and decision making

    OpenAIRE

    Rajesh Kumar; S.C. Kaushik; Raj Kumar; Ranjana Hans

    2016-01-01

    Brayton heat engine model is developed in MATLAB simulink environment and thermodynamic optimization based on finite time thermodynamic analysis along with multiple criteria is implemented. The proposed work investigates optimal values of various decision variables that simultaneously optimize power output, thermal efficiency and ecological function using evolutionary algorithm based on NSGA-II. Pareto optimal frontier between triple and dual objectives is obtained and best optimal value is s...

  11. Energy Conversion Advanced Heat Transport Loop and Power Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Oh, C. H.

    2006-08-01

    The Department of Energy and the Idaho National Laboratory are developing a Next Generation Nuclear Plant (NGNP) to serve as a demonstration of state-of-the-art nuclear technology. The purpose of the demonstration is two fold 1) efficient low cost energy generation and 2) hydrogen production. Although a next generation plant could be developed as a single-purpose facility, early designs are expected to be dual-purpose. While hydrogen production and advanced energy cycles are still in its early stages of development, research towards coupling a high temperature reactor, electrical generation and hydrogen production is under way. Many aspects of the NGNP must be researched and developed in order to make recommendations on the final design of the plant. Parameters such as working conditions, cycle components, working fluids, and power conversion unit configurations must be understood. Three configurations of the power conversion unit were demonstrated in this study. A three-shaft design with 3 turbines and 4 compressors, a combined cycle with a Brayton top cycle and a Rankine bottoming cycle, and a reheated cycle with 3 stages of reheat were investigated. An intermediate heat transport loop for transporting process heat to a High Temperature Steam Electrolysis (HTSE) hydrogen production plant was used. Helium, CO2, and an 80% nitrogen, 20% helium mixture (by weight) were studied to determine the best working fluid in terms cycle efficiency and development cost. In each of these configurations the relative component size were estimated for the different working fluids. The relative size of the turbomachinery was measured by comparing the power input/output of the component. For heat exchangers the volume was computed and compared. Parametric studies away from the baseline values of the three-shaft and combined cycles were performed to determine the effect of varying conditions in the cycle. This gives some insight into the sensitivity of these cycles to various

  12. Method for controlling start-up and steady state performance of a closed split flow recompression brayton cycle

    Science.gov (United States)

    Pasch, James Jay

    2017-02-07

    A method of resolving a balanced condition that generates control parameters for start-up and steady state operating points and various component and cycle performances for a closed split flow recompression cycle system. The method provides for improved control of a Brayton cycle thermal to electrical power conversion system. The method may also be used for system design, operational simulation and/or parameter prediction.

  13. Advances in defining a closed brayton conversion system for future ARIANE 5 space nuclear power applications

    International Nuclear Information System (INIS)

    Tilliette, Z.P.

    1986-06-01

    The present European ARIANE space program will expand into the large ARIANE 5 launch vehicle from 1995. It is assumed that important associated missions would require the generation of 200 kWe or more in space during several years at the very beginning of the next century. It is the reason why, in 1983, the French C.N.E.S. (Centre National d'Etudes Spatiales) and C.E.A. (Commissariat a l'Energie Atomique) have initiated preliminary studies of a space nuclear power system. The currently selected conversion system is a closed Brayton cycle. Reasons for this choice are given: high efficiency of a dynamic system; monophasic, inert working fluid; extensive turbomachinery experience, etc... A key aspect of the project is the adaptation to the heat rejection conditions, namely to the radiator geometry which depends upon the dimensions of the ARIANE 5 spacecraft. In addition to usual concepts already studied for space applications, another cycle arrangement is being investigated which could offer satisfactory compromises among many considerations, increase the efficiency of the system and make it more attractive as far as the specific mass (kg/kWe), the specific radiator area (m 2 /kWe) and various technological aspects are concerned. Comparative details are presented

  14. Solar dynamic power system definition study

    Science.gov (United States)

    Wallin, Wayne E.; Friefeld, Jerry M.

    1988-01-01

    The solar dynamic power system design and analysis study compared Brayton, alkali-metal Rankine, and free-piston Stirling cycles with silicon planar and GaAs concentrator photovoltaic power systems for application to missions beyond the Phase 2 Space Station level of technology for all power systems. Conceptual designs for Brayton and Stirling power systems were developed for 35 kWe and 7 kWe power levels. All power systems were designed for 7-year end-of-life conditions in low Earth orbit. LiF was selected for thermal energy storage for the solar dynamic systems. Results indicate that the Stirling cycle systems have the highest performance (lowest weight and area) followed by the Brayton cycle, with photovoltaic systems considerably lower in performance. For example, based on the performance assumptions used, the planar silicon power system weight was 55 to 75 percent higher than for the Stirling system. A technology program was developed to address areas wherein significant performance improvements could be realized relative to the current state-of-the-art as represented by Space Station. In addition, a preliminary evaluation of hardenability potential found that solar dynamic systems can be hardened beyond the hardness inherent in the conceptual designs of this study.

  15. Potential advantages of coupling supercritical CO2 Brayton cycle to water cooled small and medium size reactor

    International Nuclear Information System (INIS)

    Yoon, Ho Joon; Ahn, Yoonhan; Lee, Jeong Ik; Addad, Yacine

    2012-01-01

    Highlights: ► S-CO 2 cycle as candidate for SMS. ► MATLAB code used for S-CO 2 cycle analysis. ► Pressure ratio and split ratio comparison analyzed. - Abstract: The supercritical carbon dioxide (S-CO 2 ) Brayton cycle is being considered as a favorable candidate for the next generation nuclear reactors power conversion systems. Major benefits of the S-CO 2 Brayton cycle compared to other Brayton cycles are: (1) high thermal efficiency in relatively low turbine inlet temperature, (2) compactness of the turbomachineries and heat exchangers and (3) simpler cycle layout at an equivalent or superior thermal efficiency. However, these benefits can be still utilized even in the water-cooled reactor technologies under special circumstances. A small and medium size water-cooled nuclear reactor (SMR) has been gaining interest due to its wide range of application such as electricity generation, seawater desalination, district heating and propulsion. Another key advantage of a SMR is that it can be transported from one place to another mostly by maritime transport due to its small size, and sometimes even through a railway system. Therefore, the combination of a S-CO 2 Brayton cycle with a SMR can reinforce any advantages coming from its small size if the S-CO 2 Brayton cycle has much smaller size components, and simpler cycle layout compared to the currently considered steam Rankine cycle. In this paper, SMART (System-integrated Modular Advanced ReacTor), a 330 MW th integral reactor developed by KAERI (Korea Atomic Energy Institute) for multipurpose utilization, is considered as a potential candidate for applying the S-CO 2 Brayton cycle and advantages and disadvantages of the proposed system will be discussed in detail. In consideration of SMART condition, the turbine inlet pressure and size of heat exchangers are analyzed by using in-house code developed by KAIST–Khalifa University joint research team. According to the cycle evaluation, the maximum cycle efficiency

  16. Performance comparison of different thermodynamic cycles for an innovative central receiver solar power plant

    Science.gov (United States)

    Reyes-Belmonte, Miguel A.; Sebastián, Andrés; González-Aguilar, José; Romero, Manuel

    2017-06-01

    The potential of using different thermodynamic cycles coupled to a solar tower central receiver that uses a novel heat transfer fluid is analyzed. The new fluid, named as DPS, is a dense suspension of solid particles aerated through a tubular receiver used to convert concentrated solar energy into thermal power. This novel fluid allows reaching high temperatures at the solar receiver what opens a wide range of possibilities for power cycle selection. This work has been focused into the assessment of power plant performance using conventional, but optimized cycles but also novel thermodynamic concepts. Cases studied are ranging from subcritical steam Rankine cycle; open regenerative Brayton air configurations at medium and high temperature; combined cycle; closed regenerative Brayton helium scheme and closed recompression supercritical carbon dioxide Brayton cycle. Power cycle diagrams and working conditions for design point are compared amongst the studied cases for a common reference thermal power of 57 MWth reaching the central cavity receiver. It has been found that Brayton air cycle working at high temperature or using supercritical carbon dioxide are the most promising solutions in terms of efficiency conversion for the power block of future generation by means of concentrated solar power plants.

  17. Transient Model of a 10 MW Supercritical CO{sub 2} Brayton Cycle for Light Water Reactors by using MARS Code

    Energy Technology Data Exchange (ETDEWEB)

    Park, Joo-Hyun; Park, Hyun Sun; Kim, Moo Hwan [POSTECH, Pohang (Korea, Republic of); Bae, Sung Won; Cha, Jae-Eun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    In this study, recuperation cycle was chosen as a reference loop design and the MARS code was chosen as the transient cycle analysis code. Cycle design condition is focus on operation point of the light-water reactor. Development of a transient model was performed for 10MW-electron SCO{sub 2} coupled with light water reactors. In order to perform transient analysis, cycle transient model was developed and steady-state run was performed and presented in the paper. In this study, the transient model of SCO{sub 2} recuperation Brayton cycle was developed and implemented in MARS to study the steady-state simulation. We performed nodalization of the transient model using MARS code and obtained steady-state results. This study is shown that the supercritical CO{sub 2} Brayton cycle can be used as a power conversion system for light water reactors. Future work will include transient analysis such as partial road operation, power swing, start-up, and shutdown. Cycle control strategy will be considered for various control method.

  18. Lunar electric power systems utilizing the SP-100 reactor coupled to dynamic conversion systems. Final report

    International Nuclear Information System (INIS)

    Harty, R.B.; Durand, R.E.

    1993-03-01

    An integration study was performed by Rocketdyne under contract to NASA-LeRC. The study was concerned with coupling an SP-0100 reactor to either a Brayton or Stirling power conversion system. The application was for a surface power system to supply power requirements to a lunar base. A power level of 550 kWe was selected based on the NASA Space Exploration Initiative 90-day study. Reliability studies were initially performed to determine optimum power conversion redundancy. This study resulted in selecting three operating engines and one stand-by unit. Integration design studies indicated that either the Brayton or Stirling power conversion systems could be integrated with the PS-100 reactor. The Stirling system had an integration advantage because of smaller piping size and fewer components. The Stirling engine, however, is more complex and heavier than the Brayton rotating unit, which tends to off-set the Stirling integration advantage. From a performance consideration, the Brayton had a 9 percent mass advantage, and the Stirling had a 50 percent radiator advantage

  19. Evaluation and Optimization of a Supercritical Carbon Dioxide Power Conversion Cycle for Nuclear Applications

    International Nuclear Information System (INIS)

    Harvego, Edwin A.; McKellar, Michael G.

    2011-01-01

    There have been a number of studies involving the use of gases operating in the supercritical mode for power production and process heat applications. Supercritical carbon dioxide (CO2) is particularly attractive because it is capable of achieving relatively high power conversion cycle efficiencies in the temperature range between 550 C and 750 C. Therefore, it has the potential for use with any type of high-temperature nuclear reactor concept, assuming reactor core outlet temperatures of at least 550 C. The particular power cycle investigated in this paper is a supercritical CO2 Recompression Brayton Cycle. The CO2 Recompression Brayton Cycle can be used as either a direct or indirect power conversion cycle, depending on the reactor type and reactor outlet temperature. The advantage of this cycle when compared to the helium Brayton Cycle is the lower required operating temperature; 550 C versus 850 C. However, the supercritical CO2 Recompression Brayton Cycle requires an operating pressure in the range of 20 MPa, which is considerably higher than the required helium Brayton cycle operating pressure of 8 MPa. This paper presents results of analyses performed using the UniSim process analyses software to evaluate the performance of the supercritical CO2 Brayton Recompression Cycle for different reactor outlet temperatures. The UniSim model assumed a 600 MWt reactor power source, which provides heat to the power cycle at a maximum temperature of between 550 C and 750 C. The UniSim model used realistic component parameters and operating conditions to model the complete power conversion system. CO2 properties were evaluated, and the operating range for the cycle was adjusted to take advantage of the rapidly changing conditions near the critical point. The UniSim model was then optimized to maximize the power cycle thermal efficiency at the different maximum power cycle operating temperatures. The results of the analyses showed that power cycle thermal efficiencies in

  20. Multimegawatt nuclear systems for space power

    International Nuclear Information System (INIS)

    Dearien, J.A.; Whitbeck, J.F.

    1987-01-01

    The conceptual design and performance capability requirements of multi-MW nuclear powerplants for SDI systems are considered. The candidate powerplant configurations encompass Rankine, Brayton, and thermionic cycles; these respectively provide the lightest to heaviest system masses, since reactor and shield masses represent only 10-30 percent of total closed power system weight for the Rankine and Brayton systems. Many of the gas reactor concepts entertained may be operated in dual mode, thereby furnishing both long term low power and high power for short periods. Heat rejection is identified as the most important technology, since about 50 percent of the total closed mass is constituted by the heat rejection system. 9 references

  1. Task Order 20: Supercritical Carbon Dioxide Brayton Cycle Energy Conversion Study

    Energy Technology Data Exchange (ETDEWEB)

    Murray, Paul [AREVA Federal Services, LLC, Charlotte, NC (United States); Lindsay, Edward [AREVA Federal Services, LLC, Charlotte, NC (United States); McDowell, Michael [AREVA Federal Services, LLC, Charlotte, NC (United States); Huang, Megan [AREVA Federal Services, LLC, Charlotte, NC (United States)

    2015-04-23

    AREVA Inc. developed this study for the US Department of Energy (DOE) office of Nuclear Energy (NE) in accordance with Task Order 20 Statement of Work (SOW) covering research and development activities for the Supercritical Carbon Dioxide (sCO2) Brayton Cycle energy conversion. The study addresses the conversion of sCO2 heat energy to electrical output by use of a Brayton Cycle system and focuses on the potential of a net efficiency increase via cycle recuperation and recompression stages. The study also addresses issues and study needed to advance development and implementation of a 10 MWe sCO2 demonstration project.

  2. Extension of the Consolidation 3 shaft

    Energy Technology Data Exchange (ETDEWEB)

    Bohnenkamp, G [Gesteins- und Tiefbau G.m.b.H., Recklinghausen (Germany, F.R.)

    1978-02-01

    The conversion of a mine shaft into a central winning shaft is described, in particular planning principles, problems to be solved, preliminary work, timber drawing, extension work, shaft deepening, and the installation of shaft internals.

  3. Designing vertical mine shafts under conditions of increasing shaft depth with rock hoisting to the operating mining level

    Energy Technology Data Exchange (ETDEWEB)

    Durov, E.M.

    1983-05-01

    A system for shaft excavation in deep coal mines with mining depth exceeding 1,000 m is discussed. During mine sinking rocks are removed to the ground surface. When depth of a deep mine shaft is increased rocks are removed to the operating mining level, causing lower investment costs than the system with rock hoisting to the ground surface. The Yuzhgiproshakht design firm carries out investigations on the optimum methods for increasing shaft depth in coal mines. Coal mines with the following coal output are included in evaluations: 0.9, 1.2, 1.5, and 1.8 Mt/year. Mine shaft depth of 600, 800, 1000, 1200, 1400 and 1600 m is analyzed. Shaft depth is increased by 100, 200, 300 or 400 m. Shaft sinking rate ranges from 10 to 70 m/month. Effects of rock hoisting from the shaft bottom on the hoisting scheme in a mine shaft are analyzed. Position of hoisting bucket in relation to cages or skips moving in a shaft is investigated. Investigation results are given in 5 schemes. Analyses show that use of a shaft sinking system with rock hoisting to the ground surface during shaft excavation and with rock hoisting to the operating mining level during shaft depth increasing is economical when a shaft with skips is from 7 to 8 m in diameter or when a cage shaft is 6 m, 7 m or 8 m in diameter. Use of standardized shaft excavation systems is recommended. (In Russian)

  4. Circumferential shaft seal

    Science.gov (United States)

    Ludwig, L. P. (Inventor)

    1981-01-01

    A circumferential shaft seal comprising two sealing rings held to a rotating shaft by means of a surrounding elastomeric band is disclosed. The rings are segmented and are of a rigid sealing material such as carbon or a polyimide and graphite fiber composite.

  5. Effect of the shaft on the aerodynamic performance of urban vertical axis wind turbines

    NARCIS (Netherlands)

    Rezaeiha, A.; Kalkman, I.; Montazeri, H.; Blocken, B.J.E.

    2017-01-01

    The central shaft is an inseparable part of a vertical axis wind turbine (VAWT). For small turbines such as those typically used in urban environments, the shaft could operate in the subcritical regime, resulting in large drag and considerable aerodynamic power loss. The current study aims to (i)

  6. Extension of the supercritical carbon dioxide Brayton cycle for application to the Very High Temperature Reactor

    International Nuclear Information System (INIS)

    Moisseytsev, A.; Sienicki, J. J.

    2010-01-01

    An investigation has been carried out of the feasibility of applying the supercritical carbon dioxide (S-CO 2 ) Brayton cycle to the Very High Temperature Reactor (VHTR). Direct application of the standard S-CO 2 recompression cycle to the VHTR was found to be challenging because of the mismatch in the inherent temperature drops across the He and CO 2 sides of the reactor heat exchanger resulting in a relatively low cycle efficiency of 45 % compared to 48 % for a direct helium cycle. Two approaches consisting of either a cascaded cycle arrangement with three separate cascaded S-CO 2 cycles or, alternately, operation of a single S-CO 2 cycle with the minimum pressure below the critical pressure and the minimum temperature above the critical temperature have been identified and shown to successfully enable the S-CO 2 Brayton cycle to be adapted to the VHTR such that the benefits of the higher S-CO 2 cycle efficiency can be realized. For both approaches, S-CO 2 cycle efficiencies in excess of 49 % are calculated. (authors)

  7. Performance of a single nutating disk engine in the 2 to 500 kW power range

    International Nuclear Information System (INIS)

    Korakianitis, T.; Boruta, M.; Jerovsek, J.; Meitner, P.L.

    2009-01-01

    A new type of internal combustion engine with distinct advantages over conventional piston-engines and gas turbines in small power ranges is presented. The engine has analogies with piston engine operation, but like gas turbines it has dedicated spaces and devices for compression, burning and expansion. The engine operates on a modified limited-pressure thermodynamic cycle. The core of the engine is a nutating non-rotating disk, with the center of its hub mounted in the middle of a Z-shaped shaft. The two ends of the shaft rotate, while the disk nutates. The motion of the disk circumference prescribes a portion of a sphere. In the single-disk configuration a portion of the surface area of the disk is used for intake and compression, a portion is used to seal against a center casing, and the remaining portion is used for expansion and exhaust. The compressed air is admitted to an external accumulator, and then into an external combustion chamber before it is admitted to the power side of the disk. The external combustion chamber enables the engine to operate on a variable compression ratio cycle. Variations in cycle temperature ratio and compression ratio during normal operation enable the engine to effectively become a variable-cycle engine, allowing significant flexibility for optimizing efficiency or power output. The thermal efficiency is similar to that of medium sized diesel engines. For the same engine volume and weight this engine produces approximately twice the power of a two-stroke engine and four times the power of a four-stroke engine. The computed sea-level engine performance at design and off-design conditions in the 2 to 500 kW power range is presented.

  8. Operating conditions of an open and direct solar thermal Brayton cycle with optimised cavity receiver and recuperator

    International Nuclear Information System (INIS)

    Le Roux, W.G.; Bello-Ochende, T.; Meyer, J.P.

    2011-01-01

    The small-scale open and direct solar thermal Brayton cycle with recuperator has several advantages, including low cost, low operation and maintenance costs and it is highly recommended. The main disadvantages of this cycle are the pressure losses in the recuperator and receiver, turbomachine efficiencies and recuperator effectiveness, which limit the net power output of such a system. The irreversibilities of the solar thermal Brayton cycle are mainly due to heat transfer across a finite temperature difference and fluid friction. In this paper, thermodynamic optimisation is applied to concentrate on these disadvantages in order to optimise the receiver and recuperator and to maximise the net power output of the system at various steady-state conditions, limited to various constraints. The effects of wind, receiver inclination, rim angle, atmospheric temperature and pressure, recuperator height, solar irradiance and concentration ratio on the optimum geometries and performance were investigated. The dynamic trajectory optimisation method was applied. Operating points of a standard micro-turbine operating at its highest compressor efficiency and a parabolic dish concentrator diameter of 16 m were considered. The optimum geometries, minimum irreversibility rates and maximum receiver surface temperatures of the optimised systems are shown. For an environment with specific conditions and constraints, there exists an optimum receiver and recuperator geometry so that the system produces maximum net power output. -- Highlights: → Optimum geometries exist such that the system produces maximum net power output. → Optimum operating conditions are shown. → Minimum irreversibility rates and minimum entropy generation rates are shown. → Net power output was described in terms of total entropy generation rate. → Effects such as wind, recuperator height and irradiance were investigated.

  9. Analysis of thermal cycles and working fluids for power generation in space

    International Nuclear Information System (INIS)

    Tarlecki, Jason; Lior, Noam; Zhang Na

    2007-01-01

    Production of power in space for terrestrial use is of great interest in view of the rapidly rising power demand and its environmental impacts. Space also offers a very low temperature, making it a perfect heat sink for power plants, thus offering much higher efficiencies. This paper focuses on the evaluation and analysis of thermal Brayton, Ericsson and Rankine power cycles operating at space conditions on several appropriate working fluids. Under the examined conditions, the thermal efficiency of Brayton cycles reaches 63%, Ericsson 74%, and Rankine 85%. These efficiencies are significantly higher than those for the computed or real terrestrial cycles: by up to 45% for the Brayton, and 17% for the Ericsson; remarkably 44% for the Rankine cycle even when compared with the best terrestrial combined cycles. From the considered working fluids, the diatomic gases (N 2 and H 2 ) produce somewhat better efficiencies than the monatomic ones in the Brayton and Rankine cycles. The Rankine cycles require radiator areas that are larger by up to two orders of magnitude than those required for the Brayton and Ericsson cycles. The results of the analysis of the sensitivity of the cycle performance parameters to major parameters such as turbine inlet temperature and pressure ratio are presented, equations or examining the effects of fluid properties on the radiator area and pressure drop were developed, and the effects of the working fluid properties on cycle efficiency and on the power production per unit radiator area were explored to allow decisions on the optimal choice of working fluids

  10. Optimization of advanced high-temperature Brayton cycles with multiple reheat stages

    International Nuclear Information System (INIS)

    Haihua Zhao; Per F Peterson

    2005-01-01

    Full text of publication follows: This paper presents an overview and a few point designs for multiple-reheat Brayton cycle power conversion systems using high temperature molten salts (or liquid metals). All designs are derived from the General Atomics GT-MHR power conversion unit (PCU). The GT-MHR PCU is currently the only closed helium cycle system that has undergone detailed engineering design analysis, and that has turbomachinery which is sufficiently large to extrapolate to a >1000 MW(e) multiple reheat gas cycle power conversion system. Analysis shows that, with relatively small engineering modifications, multiple GT-MHR PCU's can be connected together to create a power conversion system in the >1000 MW(e) class. The resulting power conversion system is quite compact, and results in what is likely the minimum gas duct volume possible for a multiple-reheat system. To realize this, compact offset fin plate type liquid-to-gas heat exchangers (power densities from 10 to 120 MW/m 3 ) are needed. Both metal and non-metal heat exchangers are being investigated for high-temperature, gas-cooled reactors for temperatures to 1000 deg. C. Recent high temperature heat exchanger studies for nuclear hydrogen production has suggested that carbon-coated composite materials such as liquid silicon infiltrated chopped fiber carbon-carbon preformed material potentially could be used to fabricate plate fin heat exchangers with reasonable price. Different fluids such as helium, nitrogen and helium mixture, and supercritical CO 2 are compared for these multiple reheat Brayton cycles. Nitrogen and helium mixture cycle need about 40% more total PCU volume than helium cycle while keeping the same net cycle efficiency. Supercritical CO 2 needs very high pressure to optimize. Due to relatively detailed design for components such as heat exchangers, turbomachinery, and duct system, relatively accurate total pressure loss can be obtained, which results in more credible net efficiency

  11. Status of the CNES-CEA joint program on space nuclear Brayton systems

    International Nuclear Information System (INIS)

    Carre, F.; Proust, E.; Chaudourne, S.; Keirle, P.; Tilliette, Z.; Vrillon, B.

    1989-01-01

    A cooperative program between the French Centre National d'Etudes Spatiales (CNES) and the Commissariat a l'Energie Atomique (CEA) was initiated in 1983, to investigate the possible development of 20 to 200 kWe space nuclear power systems to be launched by the next version of the European launcher, Ariane V. After completion in 1986 of preliminary conceptual studies of a reference 200 kWe turbo-electric power system, an additional 3 year study phase was decided, with the double objective of assessing the potential advantage of nuclear power systems versus solar photovoltaic or dynamic systems in the 20 kWe power range, and comparing various reactor candidate technologies and system options for 20 kWe space nuclear power systems, likely to meet the projected energy needs of future European space missions. A comprehensive program including conceptual design studies, operating transient analyses and technology base assessment, is currently applied to a few reference concepts of 20 kWe nuclear Brayton and thermoelectric systems, in order to establish sound technical and economical bases for selecting the design options and the development strategy of a first space nuclear power system in Europe

  12. Thermoeconomic Analysis and Optimization of a New Combined Supercritical Carbon Dioxide Recompression Brayton/Kalina Cycle

    Directory of Open Access Journals (Sweden)

    S. Mohammad S. Mahmoudi

    2016-10-01

    Full Text Available A new combined supercritical CO2 recompression Brayton/Kalina cycle (SCRB/KC is proposed. In the proposed system, waste heat from a supercritical CO2 recompression Brayton cycle (SCRBC is recovered by a Kalina cycle (KC to generate additional electrical power. The performances of the two cycles are simulated and compared using mass, energy and exergy balances of the overall systems and their components. Using the SPECO (Specific Exergy Costing approach and employing selected cost balance equations for the components of each system, the total product unit costs of the cycles are obtained. Parametric studies are performed to investigate the effects on the SCRB/KC and SCRBC thermodynamic and thermoeconomic performances of key decision parameters. In addition, considering the exergy efficiency and total product unit cost as criteria, optimization is performed for the SCRBC and SCRB/KC using Engineering Equation Solver software. The results indicate that the maximum exergy efficiency of the SCRB/KC is higher than that of the SCRBC by up to 10%, and that the minimum total product unit cost of the SCRB/KC is lower than that of the SCRBC by up to 4.9%.

  13. Main-coolant-pump shaft-seal guidelines. Volume 2. Operational guidelines. Final report

    International Nuclear Information System (INIS)

    Fair, C.E.; Greer, A.O.

    1983-03-01

    This report presents a set of guidelines and criteria for improving main coolant pump shaft seal operational reliability. The noted guidelines are developed from EPRI sponsored nuclear power plant seal operating experience studies. Usage procedures/practices and operational environment influence on seal life and reliability from the most recent such survey are summarized. The shaft seal and its auxiliary supporting systems are discussed both from technical and operational related viewpoints

  14. Coiled Tube Gas Heaters For Nuclear Gas-Brayton Power Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, Per F.

    2018-03-31

    This project developed an alternative design for heat exchangers for application to heating supercritical carbon dioxide (S-CO2) or air for power conversion. We have identified an annular coiled tube bundle configuration–where hot sodium enters tubes from multiple vertical inlet manifold pipes, flows in a spiral pattern radially inward and downward, and then exits into an equal number of vertical outlet manifold pipes–as a potentially attractive option. The S-CO2 gas or air flows radially outward through the tube bundle. Coiled tube gas heaters (CTGHs) are expected to have excellent thermal shock, long-term thermal creep, in-service inspection, and reparability characteristics, compared to alternative options. CTGHs have significant commonality with modern nuclear steam generators. Extensive experience exists with the design, manufacture, operation, in-service inspection and maintenance of nuclear steam generators. The U.S. Nuclear Regulatory Commission also has extensive experience with regulatory guidance documented in NUREG 0800. CTGHs leverage this experience and manufacturing capability. The most important difference between steam generators and gas-Brayton cycles such as the S-CO2 cycle is that the heat exchangers must operate with counter flow with high effectiveness to minimize the pinch-point temperature difference between the hot liquid coolant and the heated gas. S-CO2-cycle gas heaters also operate at sufficiently elevated temperatures that time dependent creep is important and allowable stresses are relatively low. Designing heat exchangers to operate in this regime requires configurations that minimize stresses and stress concentrations. The cylindrical tubes and cylindrical manifold pipes used in CTGHs are particularly effective geometries. The first major goal of this research project was to develop and experimentally validate a detailed, 3-D multi-phase (gas-solid-liquid) heat transport model for

  15. Optimization of airfoil-type PCHE for the recuperator of small scale brayton cycle by cost-based objective function

    International Nuclear Information System (INIS)

    Kwon, Jin Gyu; Kim, Tae Ho; Park, Hyun Sun; Cha, Jae Eun; Kim, Moo Hwan

    2016-01-01

    Highlights: • Suggest the Nusselt number and Fanning friction factor correlation for airfoil-type PCHE. • Show that cost-based optimization is available to airfoil-type PCHE. • Suggest the recuperator design for SCIEL test loop at KAERI by cost-based objective function with correlations from numerical analysis. - Abstract: Supercritical carbon dioxide (SCO_2) Brayton cycle gives high efficiency of power cycle with small size. Printed circuit heat exchangers (PCHE) are proper selection for the Brayton cycle because their operability at high temperature and high pressure with small size. Airfoil fin PCHE was suggested by Kim et al. (2008b), it can provide high heat transfer-like zigzag channel PCHE with low pressure drop-like straight channel PCHE. Optimization of the airfoil fin PCHE was not performed like the zigzag channel PCHE. For optimization of the airfoil fin PCHE, the operating condition of the recuperator of SCO_2 Integral Experiment Loop (SCIEL) Brayton cycle test loop at Korea Atomic Energy Research Institute (KAERI) was used. We performed CFD analysis for various airfoil fin configurations using ANSYS CFX 15.0, and made correlations for predicting the Nusselt number and the Fanning friction factor. The recuperator was designed by the simple energy balance code with our correlations. Using the cost-based objective function with production cost and operation cost from size and pressure drop of the recuperator, we evaluated airfoil fin configuration by using total cost and suggested the optimization configuration of the airfoil fin PCHE.

  16. Optimization of airfoil-type PCHE for the recuperator of small scale brayton cycle by cost-based objective function

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Jin Gyu [Division of Advanced Nuclear Engineering, POSTECH, Pohang 790-784 (Korea, Republic of); Kim, Tae Ho [Department of Mechanical Engineering, POSTECH, Pohang 790-784 (Korea, Republic of); Park, Hyun Sun, E-mail: hejsunny@postech.ac.kr [Division of Advanced Nuclear Engineering, POSTECH, Pohang 790-784 (Korea, Republic of); Cha, Jae Eun [Korea Atomic Energy Research Institute, Daejeon 305-353 (Korea, Republic of); Kim, Moo Hwan [Division of Advanced Nuclear Engineering, POSTECH, Pohang 790-784 (Korea, Republic of); Korea Institute of Nuclear Safety, Daejeon 305-338 (Korea, Republic of)

    2016-03-15

    Highlights: • Suggest the Nusselt number and Fanning friction factor correlation for airfoil-type PCHE. • Show that cost-based optimization is available to airfoil-type PCHE. • Suggest the recuperator design for SCIEL test loop at KAERI by cost-based objective function with correlations from numerical analysis. - Abstract: Supercritical carbon dioxide (SCO{sub 2}) Brayton cycle gives high efficiency of power cycle with small size. Printed circuit heat exchangers (PCHE) are proper selection for the Brayton cycle because their operability at high temperature and high pressure with small size. Airfoil fin PCHE was suggested by Kim et al. (2008b), it can provide high heat transfer-like zigzag channel PCHE with low pressure drop-like straight channel PCHE. Optimization of the airfoil fin PCHE was not performed like the zigzag channel PCHE. For optimization of the airfoil fin PCHE, the operating condition of the recuperator of SCO{sub 2} Integral Experiment Loop (SCIEL) Brayton cycle test loop at Korea Atomic Energy Research Institute (KAERI) was used. We performed CFD analysis for various airfoil fin configurations using ANSYS CFX 15.0, and made correlations for predicting the Nusselt number and the Fanning friction factor. The recuperator was designed by the simple energy balance code with our correlations. Using the cost-based objective function with production cost and operation cost from size and pressure drop of the recuperator, we evaluated airfoil fin configuration by using total cost and suggested the optimization configuration of the airfoil fin PCHE.

  17. Operating reliability of the shaft seal system of ANDRITZ RCP

    International Nuclear Information System (INIS)

    Grancy, Werner; Zehentner, Martin

    2002-01-01

    The next generation of nuclear power stations will have to fulfil new expectations in terms of safety, operating behaviour and costs. This applies also and especially to reactor coolant pumps for the primary circuit of pressurized water reactor type nuclear power plants (RCP). For 4 decades, ANDRITZ AG has developed and built RCPs and has attached great importance to the design of the complete pump rotor and of its essential surrounding elements, such as e. g. the shaft seal. Many questions concerning design and configuration of the shaft seal system cannot be answered purely theoretically, or they can only be answered partly. Therefore, comprehensive development work and testing was necessary to increase the operating reliability of the seal. Apart from all relevant questions connected with design and functioning of the pump there is one question of top priority: the operating reliability of the shaft seal system. Therefore it is intended to describe the current status of design and development of ANDRITZ RCP for future Korean NPPs, to present the most important design features and to give an introduction concerning experiences for a 3-stage-hydrodynamic seal as well as for a 2-stage-hydrodynamic seal

  18. Development of a Performance Analysis Code for the Off-design conditions of a S-CO2 Brayton Cycle Energy Conversion System

    International Nuclear Information System (INIS)

    Yoo, Yong-Hwan; Cha, Jae-Eun; Lee, Tae-Ho; Eoh, Jae-Hyuk; Kim, Seong-O

    2008-01-01

    For the development of a supercritical carbon dioxide (S-CO2) Brayton cycle energy conversion system coupled to KALIMER-600, a thermal balance has been established on 100% power operating conditions including all the reactor system models such as a primary heat transport system (PHTS), an intermediate heat transport system (IHTS), and an energy conversion system. The S-CO2 Brayton cycle energy conversion system consists of a sodium-CO2 heat exchanger (Hx), turbine, high temperature recuperate (HTR), low temperature recuperate (LTR), precooler, compressor no.1, and compressor no.2. Two compressors were employed to avoid a sharp change of the physical properties near their critical point with a corresponding pressure. The component locations and their operating conditions are illustrated. Energy balance of the power conversion system in KALIMER-600 was designed with the full power condition of each component. Therefore, to predict the off-design conditions and to evaluate each component, an off-design performance analysis code should be accomplished. An off-design performance analysis could be classified into overall system control logic and local system control logic. The former means that mass flow rate and power are controlled by valves, and the latter implies that a bypass or inventory control is an admitted system balance. The ultimate goal of this study is development of the overall system control logic

  19. Validation of the CATHARE2 code against experimental data from Brayton-cycle plants

    International Nuclear Information System (INIS)

    Bentivoglio, Fabrice; Tauveron, Nicolas; Geffraye, Genevieve; Gentner, Herve

    2008-01-01

    In recent years the Commissariat a l'Energie Atomique (CEA) has commissioned a wide range of feasibility studies of future-advanced nuclear reactors, in particular gas-cooled reactors (GCR). The thermohydraulic behaviour of these systems is a key issue for, among other things, the design of the core, the assessment of thermal stresses, and the design of decay heat removal systems. These studies therefore require efficient and reliable simulation tools capable of modelling the whole reactor, including the core, the core vessel, piping, heat exchangers and turbo-machinery. CATHARE2 is a thermal-hydraulic 1D reference safety code developed and extensively validated for the French pressurized water reactors. It has been recently adapted to deal also with gas-cooled reactor applications. In order to validate CATHARE2 for these new applications, CEA has initiated an ambitious long-term experimental program. The foreseen experimental facilities range from small-scale loops for physical correlations, to component technology and system demonstration loops. In the short-term perspective, CATHARE2 is being validated against existing experimental data. And in particular from the German power plants Oberhausen I and II. These facilities have both been operated by the German utility Energie Versorgung Oberhausen (E.V.O.) and their power conversion systems resemble to the high-temperature reactor concepts: Oberhausen I is a 13.75-MWe Brayton-cycle air turbine plant, and Oberhausen II is a 50-MWe Brayton-cycle helium turbine plant. The paper presents these two plants, the adopted CATHARE2 modelling and a comparison between experimental data and code results for both steady state and transient cases

  20. An exploratory shaft facility in SALT: Draft shaft study plan

    International Nuclear Information System (INIS)

    1987-03-01

    This draft Shaft Study Plan describes a program of testing and monitoring in the Exploratory Shafts of a candidate high-level nuclear waste repository site in Deaf Smith County, Texas. The purpose of the programs to assist with site characterization in support of a determination of site suitability for development as a repository design and performance assessment evaluations. The program includes a variety of geological, geophysical, geomechanical, thermomechanical, and geohydrological testing and monitoring. The program is presented as a series of separate studies concerned with geological, geomechanical, and geohydrological site characterization, and with evaluating the mechanical and hydrological response of the site to construction of the shafts. The various studies, and associated test or monitoring methods are shown. The procedure used in developing the test program has been to initially identify the information necessary to satisfy (1) federal, state, and local requirements, and (2) repository program requirements. These information requirements have then been assessed to determine which requirements can be addressed wholly or in significant part by monitoring and testing from within the shafts. Test methods have been identified to address specific information requirements. 67 refs., 39 figs., 31 tabs

  1. Three-dimensional measurement of femoral neck anteversion and neck shaft angle.

    Science.gov (United States)

    Sangeux, Morgan; Pascoe, Jessica; Graham, H Kerr; Ramanauskas, Fiona; Cain, Tim

    2015-01-01

    We present a three-dimensional measurement technique for femoral neck anteversion and neck shaft angles which do not require alignment of the femoral and scanner axes. Two assessors performed the measurements on 11 patients (22 femurs). Repeatability between assessors was 2.7 degrees for femoral neck anteversion and 4.8 degrees for neck shaft angle. Measurements compared with an alternative single slice method were different by 2 degrees (3 degrees) in average. The method was repeatable and appropriate for clinical practice.

  2. Shaft siting decision

    International Nuclear Information System (INIS)

    1987-08-01

    This study identifies and establishes relative guidelines to be used for siting of repository shafts. Weights were determined for the significant factors that impact the selection of shaft locations for a nuclear waste repository in salt. The study identified a total of 45 factors. A panel of experienced mining people utilized the Kepner-Tregoe (K-T) Decision Analysis Process to perform a structured evaluation of each significant shaft siting factor. The evaluation determined that 22 of the factors were absolute constraints and that the other 23 factors were desirable characteristics. The group established the relative weights for each of the 23 desirable characteristics by using a paired comparison method. 8 refs., 2 figs., 5 tabs

  3. Overview of CNES-CEA joint programme on space nuclear Brayton systems

    International Nuclear Information System (INIS)

    Carre, F.; Proust, E.; Chaudourne, S.; Keirle, P.; Tilliette, Z.; Vrillon, B.

    1990-01-01

    In 1982, a cooperative programme on space nuclear power systems was initiated between the French Centre National d'Etudes Spatiales (CNES) and the Commissariat a l'Energie Atomique (CEA), to assess the feasibility, lead time, cost, competitiveness and development prospects for space nuclear power systems (SPS) in the 20 to 200 kWe range. The present three-year study phase is primarily oriented toward the assessment of various reactor candidate technologies and system design options for nuclear SPS in the 20 kWe class, which corresponds to the expected power needs of the first European space missions, anticipated to begin in 2005. This paper presents an overview of the present programme phase, with emphasis on design studies of three reference design concepts for 20 kWe turboelectric nuclear power systems selected so as to cover a wide range of reactor temperatures and corresponding technologies. The systems differ mainly in their nuclear reactors which are: the Liquid Metal Fast Breeder derivative or UO 2 /Na/Stainless steel -650 0 C; the High Temperature Gas-cooled derivative or UO 2 /direct cycle/super alloys - 850 0 C; and the UN/Li/MoRe alloy - 1120 0 C. All three systems use a Brayton cycle with recuperation for power conversion. (author)

  4. Main-coolant-pump shaft-seal guidelines. Volume 3. Specification guidelines. Final report

    International Nuclear Information System (INIS)

    Fair, C.E.; Greer, A.O.

    1983-03-01

    This report presents a set of guidelines and criteria to aid in the generation of procurement specifications for Main Coolant Pump Shaft Seals. The noted guidelines are developed from EPRI sponsored nuclear power plant seal operating experience studies, a review of pump and shaft seal literature and discussions with pump and seal designers. This report is preliminary in nature and could be expanded and finalized subsequent to completion of further design, test and evaluation efforts

  5. Development and Manufacturing Technology of Prototype Monoblock Low Pressure Rotor Shaft by 650ton Large Ingot

    Energy Technology Data Exchange (ETDEWEB)

    Song, Duk-Yong; Kim, Dong-Soo; Kim, Jungyeup; Lee, Jongwook; Ko, Seokhee [Doosan Heavy Industries and Construction, Changwon(Korea, Republic of)

    2016-10-15

    In order to establish the manufacturing technology for monoblock LP rotor shaft, DHI has produced the prototype monoblock LP rotor shaft with a maximum diameter of φ 2,800 mm using 650 ton ingot and investigated the mechanical properties and the internal quality of the ingot. As a result, the quality and mechanical properties required the large rotor shaft for nuclear power plant met a target. These results indicate that DHI can be contributed to increasing demands with high efficiency and capacity at the nuclear power plant. Additionally, some tests such as high cycle fatigue (HCF), low cycle fatigue (LCF), fracture toughness (K1C/J1C) and dynamic crack propagation velocity (da/dN) are in progress.

  6. Experience in sealing water bearing strata during deep shaft sinking

    Science.gov (United States)

    Kipko, E. Ja.; Polozov, Ju. A.; Lagunov, V. A.; Lushnikova, O. Ju.

    1984-12-01

    The paper deals with major concepts of grouting through holes drilled from the surface. The results of grouting through a single borehole at the location of two 1090 m deep shafts in Donbass are presented.

  7. Heat engine development for solar thermal power systems

    Science.gov (United States)

    Pham, H. Q.; Jaffe, L. D.

    The parabolic dish solar collector systems for converting sunlight to electrical power through a heat engine will, require a small heat engine of high performance long lifetime to be competitive with conventional power systems. The most promising engine candidates are Stirling, high temperature Brayton, and combined cycle. Engines available in the current market today do not meet these requirements. The development of Stirling and high temperature Brayton for automotive applications was studied which utilizes much of the technology developed in this automotive program for solar power engines. The technical status of the engine candidates is reviewed and the components that may additional development to meet solar thermal system requirements are identified.

  8. Design and Analysis of Drive Shaft using Kevlar/Epoxy and Glass/Epoxy as a Composite Material

    Science.gov (United States)

    Karthikeyan, P.; Gobinath, R.; Kumar, L. Ajith; Jenish, D. Xavier

    2017-05-01

    In automobile industry drive shaft is one of the most important components to transmit power form the engine to rear wheel through the differential gear. Generally steel drive shaft is used in automobile industry, nowadays they are more interested to replace steel drive shaft with that of composite drive shaft. The overall objective of this paper is to analyze the composite drive shaft using to find out the best replacement for conventional steel drive shaft. The uses of advanced composite materials such as Kevlar, Graphite, Carbon and Glass with proper resins ware resulted in remarkable achievements in automobile industry because of its greater specific strength and specific modulus, improved fatigue and corrosion resistances and reduction in energy requirements due to reduction in weight as compared to steel shaft. This paper is to presents, the modeling and analysis of drive shaft using Kevlar/Epoxy and Glass/Epoxy as a composite material and to find best replacement for conventional steel drive shafts with an Kevlar/epoxy or Glass/Epoxy resin composite drive shaft. Modeling is done using CATIA software and Analysis is carried out by using ANSYS 10.0 software for easy understanding. The composite drive shaft reduces the weight by 81.67 % for Kevlar/Epoxy and 72.66% for Glass/Epoxy when compared with conventional steel drive shaft.

  9. Heat generation and hemolysis at the shaft seal in centrifugal blood pumps.

    Science.gov (United States)

    Araki, K; Taenaka, Y; Wakisaka, Y; Masuzawa, T; Tatsumi, E; Nakatani, T; Baba, Y; Yagura, A; Eya, K; Toda, K

    1995-01-01

    The heat and hemolysis around a shaft seal were investigated. Materials were original pumps (Nikkiso HMS-15:N-original, and 3M Delphin:D-original), vane-removed pumps (Nvane(-), Dvane(-)), and a small chamber with a shaft coiled by nichrome wire (mock pump). The original pumps were driven at 500 mmHg and 5 L/min, and vane-removed pumps were driven at the same rotation number. An electrical powers of 0, 0.5, 2, and 10 W was supplied to the mock pumps. In vitro hemolytic testing showed that hemolytic indices were 0.027 g/100 L in N-original, 0.013 in Nvane(-), 0.061 in D-original, and 0.012 in Dvane(-). Measurement of heat with a thermally insulated water chamber showed total heat within the pump of 8.62 and 10.85 W, and heat at the shaft seal of 0.87 and 0.62 W in the Nikkiso and Delphin pumps, respectively. Hemolysis and heat generation of mock pumps remained low. The results indicate that the heat generated around the shaft seal was minimal. Hemolysis at the shaft-seal was considerable but not major. Local heat did not affect hemolysis. It was concluded that the shaft-seal affected hemolysis, not by local heat but friction itself.

  10. Calculation principles of humid air in a reversed Brayton cycle

    Energy Technology Data Exchange (ETDEWEB)

    Backman, J [Lappeenranta Univ. of Technology (Finland). Dept. of Energy Technology

    1998-12-31

    The article presents a calculation method for reversed Brayton cycle that uses humid air as working medium. The reversed Brayton cycle can be employed as an air dryer, a heat pump or a refrigerating machine. In this research the use of humid air as a working fluid has an environmental advantage, as well. In this method especially the expansion process in the turbine is important because of the condensation of the water vapour in the humid air. This physical phenomena can have significant effects on the level of performance of the application. The expansion process differs physically from the compression process, when the water vapour in the humid air begins to condensate. In the thermodynamic equilibrium of the flow, the water vapour pressure in humid air cannot exceed the pressure of saturated water vapour in corresponding temperature. Expansion calculation during operation around the saturation zone is based on a quasistatic expansion, in which the system after the turbine is in thermodynamical equilibrium. The state parameters are at every moment defined by the equation of state, and there is no supercooling in the vapour. Following simplifications are used in the calculations: The system is assumed to be adiabatic. This means that there is no heat transfer to the surroundings. This is a common practice, when the temperature differences are moderate as here; The power of the cooling is omitted. The cooling construction is very dependent on the machine and the distribution of the losses; The flow is assumed to be one-dimensional, steady-state and homogenous. The water vapour condensing in the turbine can cause errors, but the errors are mainly included in the efficiency calculation. (author) 11 refs.

  11. Calculation principles of humid air in a reversed Brayton cycle

    Energy Technology Data Exchange (ETDEWEB)

    Backman, J. [Lappeenranta Univ. of Technology (Finland). Dept. of Energy Technology

    1997-12-31

    The article presents a calculation method for reversed Brayton cycle that uses humid air as working medium. The reversed Brayton cycle can be employed as an air dryer, a heat pump or a refrigerating machine. In this research the use of humid air as a working fluid has an environmental advantage, as well. In this method especially the expansion process in the turbine is important because of the condensation of the water vapour in the humid air. This physical phenomena can have significant effects on the level of performance of the application. The expansion process differs physically from the compression process, when the water vapour in the humid air begins to condensate. In the thermodynamic equilibrium of the flow, the water vapour pressure in humid air cannot exceed the pressure of saturated water vapour in corresponding temperature. Expansion calculation during operation around the saturation zone is based on a quasistatic expansion, in which the system after the turbine is in thermodynamical equilibrium. The state parameters are at every moment defined by the equation of state, and there is no supercooling in the vapour. Following simplifications are used in the calculations: The system is assumed to be adiabatic. This means that there is no heat transfer to the surroundings. This is a common practice, when the temperature differences are moderate as here; The power of the cooling is omitted. The cooling construction is very dependent on the machine and the distribution of the losses; The flow is assumed to be one-dimensional, steady-state and homogenous. The water vapour condensing in the turbine can cause errors, but the errors are mainly included in the efficiency calculation. (author) 11 refs.

  12. Advanced Supercritical Carbon Dioxide Brayton Cycle Development

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Mark [Univ. of Wisconsin, Madison, WI (United States); Sienicki, James [Argonne National Lab. (ANL), Argonne, IL (United States); Moisseytsev, Anton [Argonne National Lab. (ANL), Argonne, IL (United States); Nellis, Gregory [Univ. of Wisconsin, Madison, WI (United States); Klein, Sanford [Univ. of Wisconsin, Madison, WI (United States)

    2015-10-21

    Fluids operating in the supercritical state have promising characteristics for future high efficiency power cycles. In order to develop power cycles using supercritical fluids, it is necessary to understand the flow characteristics of fluids under both supercritical and two-phase conditions. In this study, a Computational Fluid Dynamic (CFD) methodology was developed for supercritical fluids flowing through complex geometries. A real fluid property module was implemented to provide properties for different supercritical fluids. However, in each simulation case, there is only one species of fluid. As a result, the fluid property module provides properties for either supercritical CO2 (S-CO2) or supercritical water (SCW). The Homogeneous Equilibrium Model (HEM) was employed to model the two-phase flow. HEM assumes two phases have same velocity, pressure, and temperature, making it only applicable for the dilute dispersed two-phase flow situation. Three example geometries, including orifices, labyrinth seals, and valves, were used to validate this methodology with experimental data. For the first geometry, S-CO2 and SCW flowing through orifices were simulated and compared with experimental data. The maximum difference between the mass flow rate predictions and experimental measurements is less than 5%. This is a significant improvement as previous works can only guarantee 10% error. In this research, several efforts were made to help this improvement. First, an accurate real fluid module was used to provide properties. Second, the upstream condition was determined by pressure and density, which determines supercritical states more precise than using pressure and temperature. For the second geometry, the flow through labyrinth seals was studied. After a successful validation, parametric studies were performed to study geometric effects on the leakage rate. Based on these parametric studies, an optimum design strategy for the see

  13. Study of reverse Brayton cryocooler with Helium-Neon mixture for HTS cable

    Science.gov (United States)

    Dhillon, A. K.; Ghosh, P.

    2017-12-01

    As observed in the earlier studies, helium is more efficient than neon as a refrigerant in a reverse Brayton cryocooler (RBC) from the thermodynamic point of view. However, the lower molecular weight of helium leads to higher refrigerant inventory as compared to neon. Thus, helium is suitable to realize the high thermodynamic efficiency of RBC whereas neon is appropriate for the compactness of the RBC. A binary mixture of helium and neon can be used to achieve high thermodynamic efficiency in the compact reverse Brayton cycle (RBC) based cryocooler. In this paper, an attempt has been made to analyze the thermodynamic performance of the RBC with a binary mixture of helium and neon as the working fluid to provide 1 kW cooling load for high temperature superconductor (HTS) power cables working with a temperature range of 50 K to 70 K. The basic RBC is simulated using Aspen HYSYS V8.6®, a commercial process simulator. Sizing of each component based on the optimized process parameters for each refrigerant is performed based on a computer code developed using Engineering Equation Solver (EES-V9.1). The recommendation is provided for the optimum mixture composition of the refrigerant based on the trade-off factors like thermodynamic efficiency such as the exergy efficiency and equipment considerations. The outcome of this study may be useful for recommending a suitable refrigerant for the RBC operating at a temperature level of 50 K to 70 K.

  14. Forging Long Shafts On Disks

    Science.gov (United States)

    Tilghman, Chris; Askey, William; Hopkins, Steven

    1989-01-01

    Isothermal-forging apparatus produces long shafts integral with disks. Equipment based on modification of conventional isothermal-forging equipment, required stroke cut by more than half. Enables forging of shafts as long as 48 in. (122 cm) on typical modified conventional forging press, otherwise limited to making shafts no longer than 18 in. (46cm). Removable punch, in which forged material cools after plastic deformation, essential novel feature of forging apparatus. Technology used to improve such products as components of gas turbines and turbopumps and of other shaft/disk parts for powerplants, drive trains, or static structures.

  15. Experimental study on the performance of single screw expanders by gap adjustment

    International Nuclear Information System (INIS)

    Wang, Wei; Wu, Yu-ting; Ma, Chong-fang; Xia, Guo-dong; Wang, Jing-fu

    2013-01-01

    Improving thermodynamic efficiency of prime movers is the key issue for efficient utilization of low-temperature heat resources. Single screw expander may be a good candidate because of its many good characteristics. Precisions in manufacture and assembly are very important factors to the performance of single screw expanders. In this paper, the shaft efficiency, volumetric efficiency and gas consumption rate of the single screw expander prototypes were tested and discussed. We have manufactured three prototypes with different gaps to investigate their performance. The first prototype (A) has the largest gap, and the second one (B) has the smallest gap, the third prototype (C) has the medium gap configuration. Experimental result of the prototypes was obtained. From the experimental data of prototype A, the power output was about 5 kW, the gas consumption rate was above 105 kg/kWh and the volumetric efficiency was below 20%, the shaft efficiency was only 34%. From experimental data of prototype B, the mass flow rate was significantly decreased. The power output was only 1.4 kW and the volumetric efficiency was slightly lower than prototype A. The gas consumption rate was much more than that of prototype A. From the experimental data of prototype C, the power output was about 4.5 kW, but the mass flow rate was sharply decreased. The gas consumption rate was about 65 kg/kWh, the maximum volumetric efficiency was about 66%, and the shaft efficiency was about 60%. The experimental results indicated that prototype C of single screw expanders had the best overall performance, which may be further improved by optimizing its configuration. - Highlights: • The experiment for three single screw expander prototypes at different gaps was carried out. • Maximum shaft efficiency is about 60%. • Minimum gas consumption rate is about 65 kg/kWh. • Maximum volumetric efficiency is about 66%. • Leaked gas still has part of working capability

  16. Construction of blind shafts with the PVS 3500 planetary full shaft drilling machine

    International Nuclear Information System (INIS)

    Glogowski, P.; Kolditz, H.

    1992-01-01

    The PVS 3500 planetary full shaft drilling machine has proved as a prototype in the construction of two blind shafts. The drilling rate of 8 m/shift or 25.6 m 3 /MS is outstanding for the initial use of this drilling machine. Blind shafts were cut from the solid by a dry drilling method for the first time. It opens up the possibility of making available storage boreholes for larger quantities of radioactive waste with low activity and for toxic waste materials. (orig.)

  17. Shaft seal assembly and method

    Science.gov (United States)

    Keba, John E. (Inventor)

    2007-01-01

    A pressure-actuated shaft seal assembly and associated method for controlling the flow of fluid adjacent a rotatable shaft are provided. The seal assembly includes one or more seal members that can be adjusted between open and closed positions, for example, according to the rotational speed of the shaft. For example, the seal member can be configured to be adjusted according to a radial pressure differential in a fluid that varies with the rotational speed of the shaft. In addition, in the closed position, each seal member can contact a rotatable member connected to the shaft to form a seal with the rotatable member and prevent fluid from flowing through the assembly. Thus, the seal can be closed at low speeds of operation and opened at high speeds of operation, thereby reducing the heat and wear in the seal assembly while maintaining a sufficient seal during all speeds of operation.

  18. The SSC access shafts calculational study

    International Nuclear Information System (INIS)

    Baishev, I.S.; Mokhov, N.V.; Toohig, T.E.

    1991-06-01

    The SSC generic shaft requirements and access spacing are considered elsewhere. The shafts connecting the ground surface with the underground accelerator tunnel deliver to the surface some portion of the radiation created in the tunnel. The radiation safety problem of access shafts consists of two major questions: Does the dose equivalent at the ground surface exceed permissible limits? If it exceeds those limits, what additional shielding measures are required? A few works deal with this problem for high energy machines. This work is an attempt to answer these questions for the basic types of shafts specific to the SSC magnet delivery, utility and personnel shafts using full-scale Monte-Carlo calculations of the entire process from hadronic cascades in the lattice elements to particles scattered in the tunnel, niches, alcoves, shafts and surface bunkers and buildings. 9 refs., 16 figs., 1 tab

  19. The Case for Distributed Engine Control in Turbo-Shaft Engine Systems

    Science.gov (United States)

    Culley, Dennis E.; Paluszewski, Paul J.; Storey, William; Smith, Bert J.

    2009-01-01

    The turbo-shaft engine is an important propulsion system used to power vehicles on land, sea, and in the air. As the power plant for many high performance helicopters, the characteristics of the engine and control are critical to proper vehicle operation as well as being the main determinant to overall vehicle performance. When applied to vertical flight, important distinctions exist in the turbo-shaft engine control system due to the high degree of dynamic coupling between the engine and airframe and the affect on vehicle handling characteristics. In this study, the impact of engine control system architecture is explored relative to engine performance, weight, reliability, safety, and overall cost. Comparison of the impact of architecture on these metrics is investigated as the control system is modified from a legacy centralized structure to a more distributed configuration. A composite strawman system which is typical of turbo-shaft engines in the 1000 to 2000 hp class is described and used for comparison. The overall benefits of these changes to control system architecture are assessed. The availability of supporting technologies to achieve this evolution is also discussed.

  20. Improvement of supercritical CO2 Brayton cycle using binary gas mixture

    International Nuclear Information System (INIS)

    Jeong, Woo Seok

    2011-02-01

    A Sodium-cooled Fast Reactor (SFR) is one of the strongest candidates for the next generation nuclear reactor. However, the conventional design of a SFR concept with an indirect Rankine cycle is inevitably subjected to a sodium-water reaction. To prevent hazardous situation caused by sodium-water reaction, the SFR with Brayton cycle using Supercritical Carbon dioxide (S-CO 2 cycle) as a working fluid can be an alternative approach. The S-CO 2 Brayton cycle is more sensitive to the critical point of working fluids than other Brayton cycles. This is because compressor work significantly decreases at slightly above the critical point due to high density near the boundary between the supercritical state and the subcritical state. For this reason, the minimum temperature and pressure of cycle are just above the CO 2 critical point. The critical point acts as a limitation of the lowest operating condition of the cycle. In general, lowering the rejection temperature of a thermodynamic cycle increases the efficiency and thus, changing the critical point of CO 2 can result in an improvement of the total cycle efficiency with the same cycle layout. Modifying the critical point of the working fluid can be done by adding other gases to CO 2 . The direction and range of the CO 2 critical point variation depends on the mixed component and its amount. In particular, chemical reactivity of the gas mixture itself and the gas mixture with sodium at high temperatures are of interest. To modify the critical point of the working fluid, several gases were chosen as candidates by which chemical stability with sodium within the interested range of cycle operating condition was assured: CO 2 was mixed with N 2 , O 2 , He, Ar and Xe. To evaluate the effect of shifting the critical point and changes in the properties of the S-CO 2 Brayton cycle, a supercritical Brayton cycle analysis code connected with the REFPROP program from the NIST was developed. The developed code is for evaluating

  1. Adaptability of Brayton cycle conversion systems to fast, epithermal and thermal spectrum space nuclear reactors

    International Nuclear Information System (INIS)

    Tilliette, Z.P.

    1988-01-01

    The two French Government Agencies C.N.E.S. (Centre National d'Etudes Spatiales) and C.E.A. (Commissariat a l'Energie Atomique) are carrying out joint preliminary studies on space nuclear power systems for future ARIANE 5 launch vehicle applications. The Brayton cycle is the reference conversion system, whether the heat source is a liquid metal-cooled (NaK, Na or Li) reactor or a gas-cooled direct cycle concept. The search for an adequate utilization of this energy conversion means has prompted additional evaluations featuring the definition of satisfactory cycle conditions for these various kinds of reactor concepts. In addition to firstly studied fast and epithermal spectrum ones, thermal spectrum reactors can offer an opportunity of bringing out some distinctive features of the Brayton cycle, in particular for the temperature conditioning of the efficient metal hydrides (ZrH, Li/sub 7/H) moderators. One of the purposes of the paper is to confirm the potential of long lifetime ZrH moderated reactors associated with a gas cycle and to assess the thermodynamical consequences for both Nak(Na)-cooled or gas-cooled nuclear heat sources. This investigation is complemented by the definition of appropriate reactor arrangements which could be presented on a further occasion

  2. Magnetostrictive patch sensor system for battery-less real-time measurement of torsional vibrations of rotating shafts

    Science.gov (United States)

    Lee, Jun Kyu; Seung, Hong Min; Park, Chung Il; Lee, Joo Kyung; Lim, Do Hyeong; Kim, Yoon Young

    2018-02-01

    Real-time uninterrupted measurement for torsional vibrations of rotating shafts is crucial for permanent health monitoring. So far, strain gauge systems with telemetry units have been used for real-time monitoring. However, they have a critical disadvantage in that shaft operations must be stopped intermittently to replace telemetry unit batteries. To find an alternative method to carry out battery-less real-time measurement for torsional vibrations of rotating shafts, a magnetostrictive patch sensor system was proposed in the present study. Since the proposed sensor does not use any powered telemetry system, no battery is needed and thus there is no need to stop rotating shafts for battery replacement. The proposed sensor consists of magnetostrictive patches and small magnets tightly bonded onto a shaft. A solenoid coil is placed around the shaft to convert magnetostrictive patch deformation by shaft torsional vibration into electric voltage output. For sensor design and characterization, investigations were performed in a laboratory on relatively small-sized stationary solid shaft. A magnetostrictive patch sensor system was then designed and installed on a large rotating propulsion shaft of an LPG carrier ship in operation. Vibration signals were measured using the proposed sensor system and compared to those measured with a telemetry unit-equipped strain gauge system.

  3. Performance analysis of a large-scale helium Brayton cryo-refrigerator with static gas bearing turboexpander

    International Nuclear Information System (INIS)

    Zhang, Yu; Li, Qiang; Wu, Jihao; Li, Qing; Lu, Wenhai; Xiong, Lianyou; Liu, Liqiang; Xu, Xiangdong; Sun, Lijia; Sun, Yu; Xie, Xiujuan; Wang, Bingming; Qiu, Yinan; Zhang, Peng

    2015-01-01

    Highlights: • A 2 kW at 20.0 K helium Brayton cryo-refrigerator is built in China. • A series of tests have been systematically conducted to investigate the performance of the cryo-refrigerator. • Maximum heat conductance proportion (90.7%) appears in the heat exchangers of cold box rather than those of heat reservoirs. • A model of helium Brayton cryo-refrigerator/cycle is presented according to finite-time thermodynamics. - Abstract: Large-scale helium cryo-refrigerator is widely used in superconducting systems, nuclear fusion engineering, and scientific researches, etc., however, its energy efficiency is quite low. First, a 2 kW at 20.0 K helium Brayton cryo-refrigerator is built, and a series of tests have been systematically conducted to investigate the performance of the cryo-refrigerator. It is found that maximum heat conductance proportion (90.7%) appears in the heat exchangers of cold box rather than those of heat reservoirs, which is the main characteristic of the helium Brayton cryo-refrigerator/cycle different from the air Brayton refrigerator/cycle. Other three characteristics also lie in the configuration of refrigerant helium bypass, internal purifier and non-linearity of specific heat of helium. Second, a model of helium Brayton cryo-refrigerator/cycle is presented according to finite-time thermodynamics. The assumption named internal purification temperature depth (PTD) is introduced, and the heat capacity rate of whole cycle is divided into three different regions in accordance with the PTD: room temperature region, upper internal purification temperature region and lower one. Analytical expressions of cooling capacity and COP are obtained, and we found that the expressions are piecewise functions. Further, comparison between the model and the experimental results for cooling capacity of the helium cryo-refrigerator shows that error is less than 7.6%. The PTD not only helps to achieve the analytical formulae and indicates the working

  4. High Temperature Fusion Reactor Cooling Using Brayton Cycle Based Partial Energy Conversion

    Science.gov (United States)

    Juhasz, Albert J.; Sawicki, Jerzy T.

    2003-01-01

    For some future space power systems using high temperature nuclear heat sources most of the output energy will be used in other than electrical form, and only a fraction of the total thermal energy generated will need to be converted to electrical work. The paper describes the conceptual design of such a partial energy conversion system, consisting of a high temperature fusion reactor operating in series with a high temperature radiator and in parallel with dual closed cycle gas turbine (CCGT) power systems, also referred to as closed Brayton cycle (CBC) systems, which are supplied with a fraction of the reactor thermal energy for conversion to electric power. Most of the fusion reactor's output is in the form of charged plasma which is expanded through a magnetic nozzle of the interplanetary propulsion system. Reactor heat energy is ducted to the high temperature series radiator utilizing the electric power generated to drive a helium gas circulation fan. In addition to discussing the thermodynamic aspects of the system design the authors include a brief overview of the gas turbine and fan rotor-dynamics and proposed bearing support technology along with performance characteristics of the three phase AC electric power generator and fan drive motor.

  5. 30 CFR 56.19106 - Shaft sets.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Shaft sets. 56.19106 Section 56.19106 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND... Shaft sets. Shaft sets shall be kept in good repair and clean of hazardous material. ...

  6. Cascaded recompression closed brayton cycle system

    Energy Technology Data Exchange (ETDEWEB)

    Pasch, James J.

    2018-01-02

    The present disclosure is directed to a cascaded recompression closed Brayton cycle (CRCBC) system and method of operation thereof, where the CRCBC system includes a compressor for compressing the system fluid, a separator for generating fluid feed streams for each of the system's turbines, and separate segments of a heater that heat the fluid feed streams to different feed temperatures for the system's turbines. Fluid exiting each turbine is used to preheat the fluid to the turbine. In an embodiment, the amount of heat extracted is determined by operational costs.

  7. Cascaded recompression closed brayton cycle system

    Science.gov (United States)

    Pasch, James J.

    2018-01-02

    The present disclosure is directed to a cascaded recompression closed Brayton cycle (CRCBC) system and method of operation thereof, where the CRCBC system includes a compressor for compressing the system fluid, a separator for generating fluid feed streams for each of the system's turbines, and separate segments of a heater that heat the fluid feed streams to different feed temperatures for the system's turbines. Fluid exiting each turbine is used to preheat the fluid to the turbine. In an embodiment, the amount of heat extracted is determined by operational costs.

  8. Exergoeconomic performance optimization of an endoreversible intercooled regenerative Brayton combined heat and power plant coupled to variable-temperature heat reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Bo; Chen, Lingen; Sun, Fengrui [College of Naval Architecture and Power, Naval University of Engineering, Wuhan 430033 (China)

    2012-07-01

    An endoreversible intercooled regenerative Brayton combined heat and power (CHP) plant model coupled to variable-temperature heat reservoirs is established. The exergoeconomic performance of the CHP plant is investigated using finite time thermodynamics. The analytical formulae about dimensionless profit rate and exergy efficiency of the CHP plant with the heat resistance losses in the hot-, cold- and consumer-side heat exchangers, the intercooler and the regenerator are deduced. By taking the maximum profit rate as the objective, the heat conductance allocation among the five heat exchangers and the choice of intercooling pressure ratio are optimized by numerical examples, the characteristic of the optimal dimensionless profit rate versus corresponding exergy efficiency is investigated. When the optimization is performed further with respect to the total pressure ratio, a double-maximum profit rate is obtained. The effects of the design parameters on the double-maximum dimensionless profit rate and corresponding exergy efficiency, optimal total pressure ratio and optimal intercooling pressure ratio are analyzed in detail, and it is found that there exist an optimal consumer-side temperature and an optimal thermal capacitance rate matching between the working fluid and the heat reservoir, respectively, corresponding to a thrice-maximum dimensionless profit rate.

  9. Brayton cycle for internal combustion engine exhaust gas waste heat recovery

    Directory of Open Access Journals (Sweden)

    J Galindo

    2015-06-01

    Full Text Available An average passenger car engine effectively uses about one-third of the fuel combustion energy, while the two-thirds are wasted through exhaust gases and engine cooling. It is of great interest to automotive industry to recover some of this wasted energy, thus increasing the engine efficiency and lowering fuel consumption and contamination. Waste heat recovery for internal combustion engine exhaust gases using Brayton cycle machine was investigated. The principle problems of application of such a system in a passenger car were considered: compressor and expander machine selection, machine size for packaging under the hood, efficiency of the cycle, and improvement of engine efficiency. Important parameters of machines design have been determined and analyzed. An average 2-L turbocharged gasoline engine’s New European Driving Cycle points were taken as inlet points for waste heat recovery system. It is theoretically estimated that the recuperated power of 1515 W can be achieved along with 5.7% improvement in engine efficiency, at the point where engine power is 26550 W.

  10. Comparison of temperature curve and ablation zone between 915- and 2450-MHz cooled-shaft microwave antenna: Results in ex vivo porcine livers

    International Nuclear Information System (INIS)

    Sun Yuanyuan; Cheng Zhigang; Dong Lei; Zhang Guoming; Wang Yang; Liang Ping

    2012-01-01

    Objective: To compare temperature curve and ablation zone between 915- and 2450-MHz cooled-shaft microwave antenna in ex vivo porcine livers. Materials and methods: The 915- and 2450-MHz microwave ablation and thermal monitor system were used in this study. A total of 56 ablation zones and 280 temperature data were obtained in ex vivo porcine livers. The output powers were 50, 60, 70, and 80 W and the setting time was 600 s. The temperature curve of every temperature spot, the short- and long-axis diameters of the coagulation zones were recorded and measured. Results: At all four power output settings, the peak temperatures of every temperature spot had a tendency to increase accordingly as the MW output power was increased, and except for 5 mm away from the antenna, the peak temperatures for the 915 MHz cooled-shaft antenna were significantly higher than those for the 2450 MHz cooled-shaft antenna (p < 0.05). Meanwhile, the short- and long-axis diameters for the 915 MHz cooled-shaft antenna were significantly larger than those for the 2450 MHz cooled-shaft antenna (p < 0.05). Conclusion: The 915 MHz cooled-shaft antenna can yield a significantly larger ablation zone and achieve higher temperature in ablation zone than a 2450 MHz cooled-shaft antenna in ex vivo porcine livers.

  11. Shaft and tunnel sealing considerations

    International Nuclear Information System (INIS)

    Kelsall, P.C.; Shukla, D.K.

    1980-01-01

    Much of the emphasis of previous repository sealing research has been placed on plugging small diameter boreholes. It is increasingly evident that equal emphasis should now be given to shafts and tunnels which constitute more significant pathways between a repository and the biosphere. The paper discusses differences in requirements for sealing shafts and tunnels as compared with boreholes and the implications for seal design. Consideration is given to a design approach for shaft and tunnel seals based on a multiple component design concept, taking into account the requirements for retrievability of the waste. A work plan is developed for the future studies required to advance shaft and tunnel sealing technology to a level comparable with the existing technology for borehole sealing

  12. Evaluation and optimization of a supercritical carbon dioxide power conversion cycle for nuclear applications

    International Nuclear Information System (INIS)

    Harvego, Edwin A.; McKellar, Michael G.

    2011-01-01

    There have been a number of studies involving the use of gases operating in the supercritical mode for power production and process heat applications. Supercritical carbon dioxide (CO 2 ) is particularly attractive because it is capable of achieving relatively high power conversion cycle efficiencies in the temperature range between 550degC and 750degC. Therefore, it has the potential for use with any type of high-temperature nuclear reactor concept, assuming reactor core outlet temperatures of at least 550degC. The particular power cycle investigated in this paper is a supercritical CO 2 recompression Brayton Cycle. The CO 2 recompression Brayton Cycle can be used as either a direct or indirect power conversion cycle, depending on the reactor type and reactor outlet temperature. The advantage of this cycle when compared to the helium Brayton Cycle is the lower required operating temperature; 550degC versus 750degC. However, the supercritical CO 2 recompression Brayton Cycle requires a high end operating pressure in the range of 20 MPa, which is considerably higher than the required helium Brayton cycle high end operating pressure of 7 MPa. This paper presents results of analyses performed using the UniSim process analyses software to evaluate the performance of the supercritical CO 2 recompression Brayton cycle for different reactor coolant outlet temperatures and mass flow rates. The UniSim model assumed a 600 MWt reactor power source, which provides heat to the power cycle at a maximum temperature of between 550degC and 850degC. Sensitivity calculations were also performed to determine the affect of reactor coolant mass flow rates for a reference reactor coolant outlet temperature of 750degC. The UniSim model used realistic component parameters and operating conditions to model the complete power conversion system. CO 2 properties were evaluated, and the operating range for the cycle was adjusted to take advantage of the rapidly changing conditions near the

  13. 30 CFR 57.19106 - Shaft sets.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Shaft sets. 57.19106 Section 57.19106 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND....19106 Shaft sets. Shaft sets shall be kept in good repair and clean of hazardous material. ...

  14. Conceptual Design of S-CO{sub 2} Brayton Cycle Radial Turbomachinery for KAIST Micro Modular Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Seongkuk; Kim, Seong Gu; Lee, Jekyoung; Lee, Jeong Ik [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2014-05-15

    KAIST proposed a new SMR design, which utilizes S-CO{sub 2} as the working fluid. It was named as KAIST MMR. Compared with existing SMR concepts, KAIST MMR has advantages of achieving smaller volume of power conversion unit (PCU) and containing the core and PCU in one vessel for the complete modularization. Authors noticed that the compressor and turbine assumed performances of KAIST MMR were conservatively selected previously. Thus, this paper tries to address the best estimate values of each turbomachinery in 10MWe class KAIST MMR. The turbomachinery size of the S-CO{sub 2} cycle is smaller than helium Brayton cycle and steam Rankine cycle. The suggested SMR concept adopts passive cooling system by using air. This method can cool reactor without external electricity supply. Small size and more flexible installation in the inland area will be necessary characteristics for the future nuclear application in the water limited region. KAIST MMR meets all these requirements by utilizing S-CO{sub 2} as a working fluid. This paper presents the work for further increasing the system performance by estimating the component efficiency more realistically. The cycle layout adopted for the application is S-CO{sub 2} recuperated Brayton cycle. The best efficiency of compressor and turbine was evaluated to be 84.94% and 90.94%, respectively. By using KAIST in-house code, thermal efficiency and net output were increased to 35.81% and 12.45MWe, respectively, for the same core thermal power. More refined cycle layout and suitable turbomachinery design will be performed in the near future.

  15. High Specific Stiffness Shafts and Advanced Bearing Coatings for Gas Turbine Engines Final Report CRADA No. TC-1089-95

    Energy Technology Data Exchange (ETDEWEB)

    Barbee, Troy [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Chin, Herbert [United Technologies Corporation, East Hartford, CT (United States)

    2017-11-09

    At the time of the CRADA, the largest in-service gas-turbine aircraft engines strove for increased thrust and power density to meet the requirements for take-off thrust, given the increase in take-off gross weight (TOGW) associated with longer range transport requirements. The trend in modem turbo shaft engines was toward turbine shafts with higher and higher length-to-diameter ratios, which reduced the shaft critical speed. Using co nventional shaft materials, this lead to shafts that needed to operate near or above sensitive shaft bending critical speeds, therefore requiring multiple bearings and/ or multiple squeeze-film dampers to control the dynamic response. Using new materials and d esign concepts this project demonstrated the use of new shaft materials which could provide increased shaft speed range above existing maximum engine speeds without encountering a critic al speed event and high vector deflections. This increased main shaft speed also resulted in decreased bearing life associated with lower heat dissipation and higher centrifugal forces. Thus, a limited effort was devoted to feasibility of higher performance bearing coatings to mitigate the speed effects.

  16. Molten salt power towers operating at 600–650 °C: Salt selection and cost benefits

    Energy Technology Data Exchange (ETDEWEB)

    Turchi, Craig S. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Vidal, Judith [National Renewable Energy Lab. (NREL), Golden, CO (United States); Bauer, Matthew

    2018-04-01

    This analysis examines the potential benefit of adopting the supercritical carbon dioxide (sCO2) Brayton cycle at 600-650 degrees C compared to the current state-of-the-art power tower operating a steam-Rankine cycle with solar salt at approximately 574 degrees C. The analysis compares a molten-salt power tower configuration using direct storage of solar salt (60:40 wt% sodium nitrate: potassium nitrate) or single-component nitrate salts at 600 degrees C or alternative carbonate- or chloride-based salts at 650 degrees C.

  17. High pressure shaft seal

    International Nuclear Information System (INIS)

    Martinson, A.R.; Rogers, V.D.

    1980-01-01

    In relation to reactor primary coolant pumps, mechanical seal assembly for a pump shaft is disclosed which features a rotating seal ring mounting system which utilizes a rigid support ring loaded through narrow annular projections in combination with centering non-sealing O-rings which effectively isolate the rotating seal ring from temperature and pressure transients while securely positioning the ring to adjacent parts. A stationary seal ring mounting configuration allows the stationary seal ring freedom of motion to follow shaft axial movement up to 3/4 of an inch and shaft tilt about the pump axis without any change in the hydraulic or pressure loading on the stationary seal ring or its carrier. (author)

  18. CFD aided approach to design printed circuit heat exchangers for supercritical CO2 Brayton cycle application

    International Nuclear Information System (INIS)

    Kim, Seong Gu; Lee, Youho; Ahn, Yoonhan; Lee, Jeong Ik

    2016-01-01

    Highlights: • CFD analyses were performed to find performance of PCHE for supercritical CO 2 power cycle. • CFD results were obtained beyond the limits of existing correlations. • Designs of different PCHEs with different correlations were compared. • A new CFD-aided correlation covering a wider Reynolds number range was proposed. - Abstract: While most conventional PCHE designs for working fluid of supercritical CO 2 require an extension of valid Reynolds number limits of experimentally obtained correlations, Computational Fluid Dynamics (CFD) code ANSYS CFX was used to explore validity of existing correlations beyond their tested Reynolds number ranges. For heat transfer coefficient correlations, an appropriate piece-wising with Ishizuka’s and Hesselgreaves’s correlation is found to enable an extension of Reynolds numbers. For friction factors, no single existing correlation is found to capture different temperature and angular dependencies for a wide Reynolds number range. Based on the comparison of CFD results with the experimentally obtained correlations, a new CFD-aided correlation covering an extended range of Reynolds number 2000–58,000 for Nusselt number and friction factor is proposed to facilitate PCHE designs for the supercritical CO 2 Brayton cycle application.

  19. Balance-of-plant options for the Heat-Pipe Power System

    International Nuclear Information System (INIS)

    Berte, M.; Capell, B.

    1997-09-01

    The Heat-Pipe Power System (HPS) is a near-term, low-cost space fission power system with the potential for utilizing various option for balance-of-plant options. The following options have been studied: a low-power thermoelectric design (14-kWe output), a small Brayton cycle system (60--75 kWe), and a large Brayton cycle system (250 kWe). These systems were analyzed on a preliminary basis, including mass, volume, and structure calculations. These analyses have shown that the HPS system can provide power outputs from 10--250 kWe with specific powers of ∼ 14 W/kg for a 14-kWe model to ∼ 100 W/kg for a 250-kWe model. The system designs considered in this study utilize a common component base to permit easy expansion and development

  20. Hydromechanical transmission with three simple planetary assemblies, one sun gear being mounted on the output shaft and the other two on a common shaft connected to an input-driven hydraulic module

    Science.gov (United States)

    Orshansky, Jr., deceased, Elias; Weseloh, William E.

    1978-01-01

    A power transmission having three simple planetary assemblies, each having its own carrier and its own planet, sun, and ring gears. A speed-varying module is connected in driving relation to the input shaft and in driving relationship to the sun gears of the first two planetary assemblies, these two sun gears being connected together on a common shaft. The speed-varying means may comprise a pair of hydraulic units hydraulically interconnected so that one serves as a pump while the other serves as a motor and vice versa, one of the units having a variable stroke and being connected in driving relation to the input shaft, the other unit, which may have a fixed stroke, being connected in driving relation to the sun gears. The input shaft is also connected to drive the second ring gear and, furthermore is clutchable to the carrier of the third planetary assembly. A brake grounds the first carrier in the first range and in reverse and causes drive to be delivered to the output through the first ring gear in a hydrostatic mode. The carrier of the second planetary assembly drives the ring gear of the third planetary assembly, which is clutchable to the output shaft, and the sun gear of the third planetary assembly is mounted rigidly to the output shaft.

  1. Large shaft development test plan

    International Nuclear Information System (INIS)

    Krug, A.D.

    1984-03-01

    This test plan proposes the conduct of shaft liner tests as part of the large shaft development test proposed for the Hanford Site in support of the repository development program. The objectives of these tests are to develop techniques for measuring liner alignment (straightness), both construction assembly alignment and downhole cumulative alignment, and to assess the alignment information as a real time feedback to aid the installation procedure. The test plan is based upon installing a 16 foot ID shaft liner into a 20 foot diameter shaft to a depth of 1000 feet. This test plan is considered to be preliminary in that it was prepared as input for the decision to determine if development testing is required in this area. Should the decision be made to proceed with development testing, this test plan shall be updated and revised. 6 refs., 2 figs

  2. Torsion of a growing shaft

    Directory of Open Access Journals (Sweden)

    Alexander V. Manzhirov

    2017-12-01

    Full Text Available The torsion of a shaft by rigid disks is considered. The shaft has the form of circular cylinder. Two rigid disks are attached to its end faces. The process of continuous growth of such shaft under the influence of twisting torques applied to the disks is studied. Dual series equations which reflect the mathematical content of the problem at the different stages of the growing process are derived and solved. Results of the numerical analysis and singularities of the qualitative mechanical behaviour of the fundamental characteristics are discussed.

  3. Monitoring for shaft cracks on reactor recirculation pumps

    International Nuclear Information System (INIS)

    Kowal, M.G.; O'Brien, J.T. Jr.

    1989-01-01

    The article discusses the vibration characteristics associated with a boiling water reactor (BWR) recirculation pump. It also describes the application of diagnostic techniques and shaft crack theory to an on-line diagnostic monitoring system for reactor recirculation pumps employed at Philadelphia Electric Company's Peach Bottom Atomic Power Station. Specific emphasis is placed on the unique monitoring techniques associated with these variable speed vertical pumps

  4. Boundary integral method for torsion of composite shafts

    International Nuclear Information System (INIS)

    Chou, S.I.; Mohr, J.A.

    1987-01-01

    The Saint-Venant torsion problem for homogeneous shafts with simply or multiply-connected regions has received a great deal of attention in the past. However, because of the mathematical difficulties inherent in the problem, very few problems of torsion of shafts with composite cross sections have been solved analytically. Muskhelishvili (1963) studied the torsion problem for shafts with cross sections having several solid inclusions surrounded by an elastic material. The problem of a circular shaft reinforced by a non-concentric round inclusion, a rectangular shaft composed of two rectangular parts made of different materials were solved. In this paper, a boundary integral equation method, which can be used to solve problems more complex than those considered by Katsikadelis et. al., is developed. Square shaft with two dissimilar rectangular parts, square shaft with a square inclusion are solved and the results compared with those given in the reference cited above. Finally, a square shaft composed of two rectangular parts with circular inclusion is solved. (orig./GL)

  5. Optimum performance of the small scale open and direct solar thermal Brayton cycle at various environmental conditions and constraints

    Energy Technology Data Exchange (ETDEWEB)

    Le Roux, W.G.; Bello-Ochende, T.; Meyer, J.P. [Department of Mechanical and Aeronautical Engineering, University of Pretoria, (South Africa)

    2011-07-01

    The energy of the sun can be transformed into mechanical power through the use of concentrated solar power systems. The use of the Brayton cycle with recuperator has significant advantages but also raises issues such as pressure loss and low net power output which are mainly due to irreversibilities of heat transfer and fluid friction. The aim of this study is to optimize the system to generate maximum net power output. Thermodynamic and dynamic trajectory optimizations were performed on a dish concentrator and an off-the-shelf micro-turbine and the effects of wind, solar irradiance and other environmental conditions and constraints on the power output were analyzed. Results showed that the maximum power output is increased when wind decreases and irradiance increases; solar irradiance was found to have a more significant impact than wind. This study highlighted the factors which impact the power generation of concentrated solar power systems so that designers can take them into account.

  6. Unit for wind power plants and water power. Aggregat fuer Windkraftanlagen und Wasserkraft

    Energy Technology Data Exchange (ETDEWEB)

    Armonies, H.; Armonies, G.

    1983-01-13

    The invention concerns the manufacture and process of kinetic thermal units for wind power plants and water power. It is characterized by the fact that the supporting frame of the unit is made so that it carries the unit shaft bearing and also a fixed flange for a hollow body, pump part, unit shaft pushback device and thermal insulation. The unit shaft running in bearings is made so that it can rotate in the two bearings or a double bearing and can also slide between 2 flanges on the unit shaft in the longitudinal direction of the bearings. The end of the unit shaft projecting beyond the supporting frame is made so that the wind blades, rotors or water turbines can be connected to it by flanges. The rotor shaft can be pressed against a hollow body carrying a liquid by a friction disc. A heat resistant liquid pump is also situated on the supporting frame. It is driven by the unit shaft. (HWJ).

  7. Femoral shaft fractures

    International Nuclear Information System (INIS)

    Bender, C.E.; Campbell, D.C. II

    1985-01-01

    The femur is the longest, largest, and strongest bone in the body. Because of its length, width, and role as primary weight-bearing bone, it must tolerate the extremes of axial loading and angulatory stresses. Massive musculature envelopes the femur. This masculature provides abundant blood supply to the bone, which also allows great potential for healing. Thus, the most significant problem relating to femoral shaft fractures is not healing, but restoration of bone length and alignment so that the femoral shaft will tolerate the functional stresses demanded of it

  8. Vibration reduction and power generation with piezoceramic sheets mounted to a flexible shaft

    NARCIS (Netherlands)

    Sloetjes, P.J.; de Boer, Andries

    2008-01-01

    A flexible shaft with surface-mounted piezoceramic sheets and strain sensors is considered which suffers from resonance and self-excited vibration. Frequency domain models, time domain simulations, and control experiments are used to analyze active modal damping and active modal balancing methods.

  9. Shaft placement in a bedded salt repository

    International Nuclear Information System (INIS)

    Klasi, M.L.

    1982-10-01

    Preferred shaft pillar sizes and shaft locations were determined with respect to the induced thermal stresses in a generic bedded salt repository at a depth of 610 m with a gross thermal loading of 14.8 W/m 2 . The model assumes isotropic material properties, plane strain and linear elastic behavior. Various shaft locations were analyzed over a 25 year period. The thermal results show that for this time span, the stratigraphy is unimportant except for the region immediately adjacent to the repository. The thermomechanical results show that for the given repository depth of 610 m, a minimum central shaft pillar radius of 244 m is required to equal the material strength in the barrier pillar. An assumed constant stress and constant temperature distribution creep model of the central shaft region adjacent to the repository conservatively overestimates a creep closure of 310 mm in a 6.1 m diameter centrally-located shaft

  10. Connect-disconnect coupling for preadjusted rigid shafts

    Science.gov (United States)

    Bajkowski, F. W.; Holmberg, A.

    1969-01-01

    Coupling device enables a rigid shaft to be connected to or disconnected from a fixed base without disturbing the point of adjustment of the shaft in a socket or causing the shaft to rotate. The coupling consists of an externally threaded, internally slotted boss extending from the fixed base.

  11. Shaft MisalignmentDetectionusing Stator Current Monitoring

    OpenAIRE

    Alok Kumar Verma, Somnath Sarangi and M.H. Kolekar

    2013-01-01

    This paper inspects the misaligned of shaft by usingdiagnostic medium such as current and vibration.Misalignments in machines can cause decrease inefficiency and in the long-run it may cause failurebecause of unnecessary vibration, stress on motor,bearings and short-circuiting in stator and rotorwindings.In this study, authors investigate the onsetof instability on a shaft mounted on journal bearings.Shaft displacement and stator current samples duringmachine run up under misaligned condition...

  12. Design Considerations and Conceptual Designs for Surface Nuclear Power Systems for the Moon and Mars

    International Nuclear Information System (INIS)

    Blessing, David L.; Kirkland, Joel

    2006-01-01

    A set of design considerations is proposed for nuclear power systems to provide power on the Moon or Mars. Setting the initial requirements is extremely important since they govern the choices that determine the final design. In addition, the choice of reactor and its operating conditions depends on details of the energy conversion and heat rejection systems, which must be studied in tandem. Refractory materials are not suitable for the primary pressure boundary for the reactor due to their susceptibility to chemical attack from particles of regolith on the Moon and Mars or by the carbon dioxide atmosphere on Mars. High nickel superalloys would be acceptable in these environments, but their limited creep strength at elevated temperatures limits reactor outlet temperature to about 1150 K or less. This temperature restriction results in the mass of a gas cooled reactor coupled to a Brayton power conversion system being somewhat lighter than that of a liquid metal-cooled reactors coupled to a Brayton power conversion system. The mass of a liquid metal-cooled reactor coupled to an advanced Stirling power conversion system would be in between that of the gas and liquid metal cooled systems which use Brayton power conversion

  13. Viscoelastic Characterization of Long-Eared Owl Flight Feather Shaft and the Damping Ability Analysis

    Directory of Open Access Journals (Sweden)

    Jia-li Gao

    2014-01-01

    Full Text Available Flight feather shaft of long-eared owl is characterized by a three-parameter model for linear viscoelastic solids to reveal its damping ability. Uniaxial tensile tests of the long-eared owl, pigeon, and golden eagle flight feather shaft specimens were carried out based on Instron 3345 single column material testing system, respectively, and viscoelastic response of their stress and strain was described by the standard linear solid model. Parameter fitting result obtained from the tensile tests shows that there is no significant difference in instantaneous elastic modulus for the three birds’ feather shafts, but the owl shaft has the highest viscosity, implying more obvious viscoelastic performance. Dynamic mechanical property was characterized based on the tensile testing results. Loss factor (tanδ of the owl flight feather shaft was calculated to be 1.609 ± 0.238, far greater than those of the pigeon (0.896 ± 0.082 and golden eagle (1.087 ± 0.074. It is concluded that the long-eared owl flight feather has more outstanding damping ability compared to the pigeon and golden eagle flight feather shaft. Consequently, the long-eared owl flight feathers can dissipate the vibration energy more effectively during the flying process based on the principle of damping mechanism, for the purpose of vibration attenuation and structure radiated noise reduction.

  14. Update of 1972 status report on deep shaft studies

    International Nuclear Information System (INIS)

    1976-09-01

    The following aspects of shaft sinking are considered: the effects of geology, factors affecting shaft size, the conventional shaft sinking techniques and the newer mechanized methods, several representative or difficult shafts, and certain long-term problems and solutions

  15. Heat exchanger design for hot air ericsson-brayton piston engine

    Directory of Open Access Journals (Sweden)

    Ďurčanský P.

    2014-03-01

    Full Text Available One of the solutions without negative consequences for the increasing energy consumption in the world may be use of alternative energy sources in micro-cogeneration. Currently it is looking for different solutions and there are many possible ways. Cogeneration is known for long time and is widely used. But the installations are often large and the installed output is more suitable for cities or industry companies. When we will speak about decentralization, the small machines have to be used. The article deals with the principle of hot-air engines, their use in combined heat and electricity production from biomass and with heat exchangers as primary energy transforming element. In the article is hot air engine presented as a heat engine that allows the conversion of heat into mechanical energy while heat supply can be external. In the contribution are compared cycles of hot-air engine. Then are compared suitable heat exchangers for use with hot air Ericsson-Brayton engine. In the final part is proposal of heat exchanger for use in closed Ericsson-Brayton cycle.

  16. Heat exchanger design for hot air ericsson-brayton piston engine

    Science.gov (United States)

    Ďurčanský, P.; Lenhard, R.; Jandačka, J.

    2014-03-01

    One of the solutions without negative consequences for the increasing energy consumption in the world may be use of alternative energy sources in micro-cogeneration. Currently it is looking for different solutions and there are many possible ways. Cogeneration is known for long time and is widely used. But the installations are often large and the installed output is more suitable for cities or industry companies. When we will speak about decentralization, the small machines have to be used. The article deals with the principle of hot-air engines, their use in combined heat and electricity production from biomass and with heat exchangers as primary energy transforming element. In the article is hot air engine presented as a heat engine that allows the conversion of heat into mechanical energy while heat supply can be external. In the contribution are compared cycles of hot-air engine. Then are compared suitable heat exchangers for use with hot air Ericsson-Brayton engine. In the final part is proposal of heat exchanger for use in closed Ericsson-Brayton cycle.

  17. A New Turbo-shaft Engine Control Law during Variable Rotor Speed Transient Process

    Science.gov (United States)

    Hua, Wei; Miao, Lizhen; Zhang, Haibo; Huang, Jinquan

    2015-12-01

    A closed-loop control law employing compressor guided vanes is firstly investigated to solve unacceptable fuel flow dynamic change in single fuel control for turbo-shaft engine here, especially for rotorcraft in variable rotor speed process. Based on an Augmented Linear Quadratic Regulator (ALQR) algorithm, a dual-input, single-output robust control scheme is proposed for a turbo-shaft engine, involving not only the closed loop adjustment of fuel flow but also that of compressor guided vanes. Furthermore, compared to single fuel control, some digital simulation cases using this new scheme about variable rotor speed have been implemented on the basis of an integrated system of helicopter and engine model. The results depict that the command tracking performance to the free turbine rotor speed can be asymptotically realized. Moreover, the fuel flow transient process has been significantly improved, and the fuel consumption has been dramatically cut down by more than 2% while keeping the helicopter level fight unchanged.

  18. Stability analysis of internally damped rotating composite shafts using a finite element formulation

    Science.gov (United States)

    Ben Arab, Safa; Rodrigues, José Dias; Bouaziz, Slim; Haddar, Mohamed

    2018-04-01

    This paper deals with the stability analysis of internally damped rotating composite shafts. An Euler-Bernoulli shaft finite element formulation based on Equivalent Single Layer Theory (ESLT), including the hysteretic internal damping of composite material and transverse shear effects, is introduced and then used to evaluate the influence of various parameters: stacking sequences, fiber orientations and bearing properties on natural frequencies, critical speeds, and instability thresholds. The obtained results are compared with those available in the literature using different theories. The agreement in the obtained results show that the developed Euler-Bernoulli finite element based on ESLT including hysteretic internal damping and shear transverse effects can be effectively used for the stability analysis of internally damped rotating composite shafts. Furthermore, the results revealed that rotor stability is sensitive to the laminate parameters and to the properties of the bearings.

  19. Incidence and epidemiology of tibial shaft fractures.

    Science.gov (United States)

    Larsen, Peter; Elsoe, Rasmus; Hansen, Sandra Hope; Graven-Nielsen, Thomas; Laessoe, Uffe; Rasmussen, Sten

    2015-04-01

    The literature lacks recent population-based epidemiology studies of the incidence, trauma mechanism and fracture classification of tibial shaft fractures. The purpose of this study was to provide up-to-date information on the incidence of tibial shaft fractures in a large and complete population and report the distribution of fracture classification, trauma mechanism and patient baseline demographics. Retrospective reviews of clinical and radiological records. A total of 196 patients were treated for 198 tibial shaft fractures in the years 2009 and 2010. The mean age at time of fracture was 38.5 (21.2SD) years. The incidence of tibial shaft fracture was 16.9/100,000/year. Males have the highest incidence of 21.5/100,000/year and present with the highest frequency between the age of 10 and 20, whereas women have a frequency of 12.3/100,000/year and have the highest frequency between the age of 30 and 40. AO-type 42-A1 was the most common fracture type, representing 34% of all tibial shaft fractures. The majority of tibial shaft fractures occur during walking, indoor activity and sports. The distribution among genders shows that males present a higher frequency of fractures while participating in sports activities and walking. Women present the highest frequency of fractures while walking and during indoor activities. This study shows an incidence of 16.9/100,000/year for tibial shaft fractures. AO-type 42-A1 was the most common fracture type, representing 34% of all tibial shaft fractures. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Power and efficiency in a regenerative gas-turbine cycle with multiple reheating and intercooling stages

    Science.gov (United States)

    Calvo Hernández, A.; Roco, J. M. M.; Medina, A.

    1996-06-01

    Using an improved Brayton cycle as a model, a general analysis accounting for the efficiency and net power output of a gas-turbine power plant with multiple reheating and intercooling stages is presented. This analysis provides a general theoretical tool for the selection of the optimal operating conditions of the heat engine in terms of the compressor and turbine isentropic efficiencies and of the heat exchanger efficiency. Explicit results for the efficiency, net power output, optimized pressure ratios, maximum efficiency, maximum power, efficiency at maximum power, and power at maximum efficiency are given. Among others, the familiar results of the Brayton cycle (one compressor and one turbine) and of the corresponding Ericsson cycle (infinite compressors and infinite turbines) are obtained as particular cases.

  1. Geotechnical instrumentation for repository shafts

    International Nuclear Information System (INIS)

    Lentell, R.L.; Byrne, J.

    1993-01-01

    The US Congress passed the Nuclear Waste Policy Act in 1980, which required that three distinctly different geologic media be investigated as potential candidate sites for the permanent disposal of high-level nuclear waste. The three media that were selected for study were basalt (WA), salt (TX, LA, MS, UT), and tuff (NV). Preliminary Exploratory Shaft Facilities (ESF) designs were prepared for seven candidate salt sites, including bedded and domal salt environments. A bedded-salt site was selected in Deaf Smith County, TX for detailed site characterization studies and ESF Final Design. Although Congress terminated the Salt Repository Program in 1988, Final Design for the Deaf Smith ESF was completed, and much of the design rationale can be applied to subsequent deep repository shafts. This paper presents the rationale for the geotechnical instrumentation that was designed for construction and operational performance monitoring of the deep shafts of the in-situ test facility. The instrumentation design described herein can be used as a general framework in designing subsequent instrumentation programs for future high-level nuclear waste repository shafts

  2. Hair Shaft Abnormality in Children: a Narrative Review

    Directory of Open Access Journals (Sweden)

    Ghasem Rahmatpour Rokni

    2017-08-01

    Full Text Available Background Hair is an ectodermal structure, and its formation is regulated by master genes important in embryology. Hair shaft consists of three major regions: the medulla, cortex and cuticle. Hair shaft abnormality will divide structural hair abnormalities into two broad categories - those associated with increased hair fragility and those not associated with increased hair fragility. We conducted a review study to assess hair shaft abnormality in children. Materials and Methods We conducted a review of all papers published on hair shaft abnormalities. A literature search was performed using PubMed, Scopus and Google Scholar on papers publish from 1990 to 2016. The search terms were: hair shaft abnormality, Hair loss, Hair fragility. All abstracts and full text English-language articles were studied. Results While common developmental and structural features are shared in hair follicles and hair shafts. Anomalies of the hair shaft are separated into those with and those without increased hair fragility. Conclusion Although hair has no vital function, it may serve as an indicator for human health. Clinical and morphological hair abnormalities can be clues to specific complex disorders. Hair shaft abnormalities can be inherited or acquired, can reflect a local problem or a systemic disease.

  3. Design and analysis of Helium Brayton cycle for energy conversion system of RGTT200K

    International Nuclear Information System (INIS)

    Ignatius Djoko Irianto

    2016-01-01

    The helium Brayton cycle for the design of cogeneration energy conversion system for RGTT200K have been analyzed to obtain the higher thermal efficiency and energy utilization factor. The aim of this research is to analyze the potential of the helium Brayton cycle to be implemented in the design of cogeneration energy conversion system of RGTT200K. Three configuration models of cogeneration energy conversion systems have been investigated. In the first configuration model, an intermediate heat exchanger (IHX) is installed in series with the gas turbine, while in the second configuration model, IHX and gas turbines are installed in parallel. The third configuration model is similar to the first configuration, but with two compressors. Performance analysis of Brayton cycle used for cogeneration energy conversion system of RGTT200K has been done by simulating and calculating using CHEMCAD code. The simulation result shows that the three configuration models of cogeneration energy conversion system give the temperature of thermal energy in the secondary side of IHX more than 800 °C at the reactor coolant mass flow rate of 145 kg/s. Nevertheless, the performance parameters, which include thermal efficiency and energy utilization factor (EUF), are different for each configuration model. By comparing the performance parameter in the three configurations of helium Brayton cycle for cogeneration energy conversion systems RGTT200K, it is found that the energy conversion system with a first configuration has the highest thermal efficiency and energy utilization factor (EUF). Thermal efficiency and energy utilization factor for the first configuration of the reactor coolant mass flow rate of 145 kg/s are 35.82 % and 80.63 %. (author)

  4. Development of a 77K Reverse-Brayton Cryocooler with Multiple Coldheads, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — RTI will design and optimize an 80 W, 77K cryocooler based on the reverse turbo Brayton cycle (RTBC) with four identical coldheads for distributed cooling. Based on...

  5. Carbon-Carbon Composites as Recuperator Materials for Direct Gas Brayton Systems

    International Nuclear Information System (INIS)

    RA Wolf

    2006-01-01

    Of the numerous energy conversion options available for a space nuclear power plant (SNPP), one that shows promise in attaining reliable operation and high efficiency is the direct gas Brayton (GB) system. In order to increase efficiency, the GB system incorporates a recuperator that accounts for nearly half the weight of the energy conversion system (ECS). Therefore, development of a recuperator that is lighter and provides better performance than current heat exchangers could prove to be advantageous. The feasibility of a carbon-carbon (C/C) composite recuperator core has been assessed and a mass savings of 60% and volume penalty of 20% were projected. The excellent thermal properties, high-temperature capabilities, and low density of carbon-carbon materials make them attractive in the GB system, but development issues such as material compatibility with other structural materials in the system, such as refractory metals and superalloys, permeability, corrosion, joining, and fabrication must be addressed

  6. Carbon-Carbon Composites as Recuperator Material for Direct Gas Brayton Systems

    Energy Technology Data Exchange (ETDEWEB)

    RA Wolf

    2006-07-19

    Of the numerous energy conversion options available for a space nuclear power plant (SNPP), one that shows promise in attaining reliable operation and high efficiency is the direct gas Brayton (GB) system. In order to increase efficiency, the GB system incorporates a recuperator that accounts for nearly half the weight of the energy conversion system (ECS). Therefore, development of a recuperator that is lighter and provides better performance than current heat exchangers could prove to be advantageous. The feasibility of a carbon-carbon (C/C) composite recuperator core has been assessed and a mass savings of 60% and volume penalty of 20% were projected. The excellent thermal properties, high-temperature capabilities, and low density of carbon-carbon materials make them attractive in the GB system, but development issues such as material compatibility with other structural materials in the system, such as refractory metals and superalloys, permeability, corrosion, joining, and fabrication must be addressed.

  7. Reliability assessment of underground shaft closure

    International Nuclear Information System (INIS)

    Fossum, A.F.; Munson, D.E.

    1994-01-01

    The intent of the WIPP, being constructed in the bedded geologic salt deposits of Southeastern New Mexico, is to provide the technological basis for the safe disposal of radioactive Transuranic (TRU) wastes generated by the defense programs of the United States. In determining this technological basis, advanced reliability and structural analysis techniques are used to determine the probability of time-to-closure of a hypothetical underground shaft located in an argillaceous salt formation and filled with compacted crushed salt. Before being filled with crushed salt for sealing, the shaft provides access to an underground facility. Reliable closure of the shaft depends upon the sealing of the shaft through creep closure and recompaction of crushed backfill. Appropriate methods are demonstrated to calculate cumulative distribution functions of the closure based on laboratory determined random variable uncertainty in salt creep properties

  8. Parabolic dish collectors - A solar option

    Science.gov (United States)

    Truscello, V. C.

    1981-05-01

    A description is given of several parabolic-dish high temperature solar thermal systems currently undergoing performance trials. A single parabolic dish has the potential for generating 20 to 30 kW of electricity with fluid temperatures from 300 to 1650 C. Each dish is a complete power-producing unit, and may function either independently or as part of a group of linked modules. The two dish designs under consideration are of 11 and 12 meter diameters, yielding receiver operating temperatures of 925 and 815 C, respectively. The receiver designs described include (1) an organic working fluid (toluene) Rankine cycle engine; (2) a Brayton open cycle unit incorporating a hybrid combustion chamber and nozzle and a shaft-coupled permanent magnet alternator; and (3) a modified Stirling cycle device originally designed for automotive use. Also considered are thermal buffer energy storage and thermochemical transport and storage.

  9. Rotating Shaft Tilt Angle Measurement Using an Inclinometer

    Science.gov (United States)

    Luo, Jun; Wang, Zhiqian; Shen, Chengwu; Wen, Zhuoman; Liu, Shaojin; Cai, Sheng; Li, Jianrong

    2015-10-01

    This paper describes a novel measurement method to accurately measure the rotating shaft tilt angle of rotating machine for alignment or compensation using a dual-axis inclinometer. A model of the rotating shaft tilt angle measurement is established using a dual-axis inclinometer based on the designed mechanical structure, and the calculation equation between the rotating shaft tilt angle and the inclinometer axes outputs is derived under the condition that the inclinometer axes are perpendicular to the rotating shaft. The reversal measurement method is applied to decrease the effect of inclinometer drifts caused by temperature, to eliminate inclinometer and rotating shaft mechanical error and inclinometer systematic error to attain high measurement accuracy. The uncertainty estimation shows that the accuracy of rotating shaft tilt angle measurement depends mainly on the inclinometer uncertainty and its uncertainty is almost the same as the inclinometer uncertainty in the simulation. The experimental results indicate that measurement time is 4 seconds; the range of rotating shaft tilt angle is 0.002° and its standard deviation is 0.0006° using NS-5/P2 inclinometer, whose precision and resolution are ±0.01° and 0.0005°, respectively.

  10. Rotating Shaft Tilt Angle Measurement Using an Inclinometer

    Directory of Open Access Journals (Sweden)

    Luo Jun

    2015-10-01

    Full Text Available This paper describes a novel measurement method to accurately measure the rotating shaft tilt angle of rotating machine for alignment or compensation using a dual-axis inclinometer. A model of the rotating shaft tilt angle measurement is established using a dual-axis inclinometer based on the designed mechanical structure, and the calculation equation between the rotating shaft tilt angle and the inclinometer axes outputs is derived under the condition that the inclinometer axes are perpendicular to the rotating shaft. The reversal measurement method is applied to decrease the effect of inclinometer drifts caused by temperature, to eliminate inclinometer and rotating shaft mechanical error and inclinometer systematic error to attain high measurement accuracy. The uncertainty estimation shows that the accuracy of rotating shaft tilt angle measurement depends mainly on the inclinometer uncertainty and its uncertainty is almost the same as the inclinometer uncertainty in the simulation. The experimental results indicate that measurement time is 4 seconds; the range of rotating shaft tilt angle is 0.002° and its standard deviation is 0.0006° using NS-5/P2 inclinometer, whose precision and resolution are ±0.01° and 0.0005°, respectively.

  11. Preliminary Study of Printed Circuit Heat Exchanger (PCHE) for various power conversion systems for SMART

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Jinsu; Baik, Seungjoon; Lee, Jeong Ik [KAIST, Daejeon (Korea, Republic of)

    2016-10-15

    The steam-Rankine cycle was the most widely used power conversion system for a nuclear power plant. The size of the heat exchanger is important for the modulation. Such a challenge was conducted by Kang et al. They change the steam generator type for the SMART from helical type heat exchanger to Printed Circuit Heat Exchanger (PCHE). Recently, there has been a growing interest in the supercritical carbon dioxide (S-CO{sub 2}) Brayton cycle as the most promising power conversion system. The reason is high efficiency with simple layout and compact power plant due to small turbomachinery and compact heat exchanger technology. That is why the SCO{sub 2} Brayton cycle can enhance the existing advantages of Small Modular Reactor (SMR) like SMART, such as reduction in size, capital cost, and construction period. Thermal hydraulic and geometric parameters of a PCHE for the S-CO{sub 2} power cycle coupled to SMART. The results show that the water - CO{sub 2} printed circuit heat exchanger size is smaller than printed circuit steam generator for the superheated steam Rankine cycle. This results show the potential benefit of using the S-CO-2 Brayton power cycle to a water-cooled small modular reactor.

  12. FRACTURE SHAFT HUMERUS: INTERLOCKING

    Directory of Open Access Journals (Sweden)

    Deepak Kaladagi

    2014-12-01

    Full Text Available BACKGROUND: The incidence of humeral fracture has significantly increased during the present years due to the population growth and road traffic, domestic, industrial, automobile accidents & disasters like tsunami, earthquakes, head-on collisions, polytrauma etc. In order to achieve a stable fixation followed by early mobilization, numerous surgical implants have been devised. PURPOSE: The purpose of this study is to analyze the results of intramedullary fixation of proximal 2/3rd humeral shaft fractures using an unreamed interlocking intramedullary nail. INTRODUCTION: In 40 skeletally matured patients with fracture shaft of humerus admitted in our hospital, we used unreamed antegrade interlocking nails. MATERIAL: We carried out a prospective analysis of 40 patients randomly selected between 2001 to 2014 who were operated at JNMC Belgaum, MMC Mysore & Navodaya Medical College, Raichur. All cases were either RTAs, Domestic, Industrial, automobile accidents & also other modes of injury. METHOD: Routine investigations with pre-anaesthetic check-up & good quality X-rays of both sides of humerus was taken. Time of surgery ranged from 5-10 days from the time of admission. Only upper 1/3rd & middle 1/3rd humeral shaft fractures were included in the study. In all the cases antegrade locked unreamed humeral nails were inserted under C-arm. Patient was placed in supine position & the shoulder was kept elevated by placing a sandbag under the scapula. In all patients incision taken from tip of acromion to 3cm over deltoid longitudinally. Postoperatively sling applied with wrist & shoulder movements started after 24 hours. All the patients ranged between the age of 21-50 years. RESULTS: Total 40 patients were operated. Maximum fracture site were in the middle third- 76%, 14% upper 1/3rd. All 40 patients achieved union. The average time of union was 8-10 weeks. All patients regained full range of movements except in few cases, where there was shoulder

  13. Long-term brine migration through an engineered shaft seal system

    International Nuclear Information System (INIS)

    Fryar, D.G.; Beach, J.A.; Kelley, V.A.; Knowles, M.K.

    1997-01-01

    The shaft seal system for the Waste Isolation Pilot Plant (WIPP) must provide a barrier to the migration of fluids within the shafts to prevent the release of contaminants to the accessible environment. To investigate the performance of the shaft seal system, a set of fluid flow performance models was developed based upon the physical characteristics of the WIPP shaft seal system and the surrounding geologic media. This paper describes the results of a numerical model used to investigate the long-term potential for brine migration through the shaft seal system. Modeling results demonstrate that the WIPP shaft seal system will effectively limit brine migration within the repository shafts

  14. Development of the System Dynamics Code using Homogeneous Equilibrium Model for S-CO{sub 2} Brayton cycle Transient Analyses

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Seong Jun; Lee, Won Woong; Oh, Bongseong; Lee, Jeong Ik [KAIST, Daejeon (Korea, Republic of)

    2016-10-15

    The features of the S-CO{sub 2} Brayton cycle come from a small compressing work by designing the compressor inlet close the critical point of CO{sub 2}. This means the system condition can be operating under two-phase or sub-critical phase during transient situations such as changes of cooling system performance, load variations, etc. Since there is no operating MW scale S-CO{sub 2} Brayton cycle system in the world yet, using an analytical code is the only way to predict the system behavior and develop operating strategies of the S-CO{sub 2} Brayton cycles. Therefore, the development of a credible system code is an important part for the practical S-CO{sub 2} system research. The current status of the developed system analysis code for S-CO{sub 2} Brayton cycle transient analyses in KAIST and verification results are presented in this paper. To avoid errors related with convergences of the code during the phase changing flow calculation in GAMMA+ code, the authors have developed a system analysis code using Homogeneous Equilibrium Model (HEM) for the S-CO{sub 2} Brayton cycle transient analysis. The backbone of the in-house code is the GAMMA+1.0 code, but treating the quality of fluid by tracking system enthalpy gradient every time step. Thus, the code adopts pressure and enthalpy as the independent scalar variables to track the system enthalpy for updating the quality of the system every time step. The heat conduction solving method, heat transfer correlation and frictional losses on the pipe are referred from the GAMMA+ code.

  15. Procedure for determining the optimum rate of increasing shaft depth

    Energy Technology Data Exchange (ETDEWEB)

    Durov, E.M.

    1983-03-01

    Presented is an economic analysis of increasing shaft depth during mine modernization. Investigations carried out by the Yuzhgiproshakht Institute are analyzed. The investigations are aimed at determining the optimum shaft sinking rate (the rate which reduces investment to the minimum). The following factors are considered: coal output of a mine (0.9, 1.2, 1.5 and 1.8 Mt/year), depth at which the new mining level is situated (600, 800, 1200, 1400 and 1600 m), four schemes of increasing depth of 2 central shafts (rock hoisting to ground surface, rock hoisting to the existing level, rock haulage to the developed level, rock haulage to the level being developed using a large diameter borehole drilled from the new level to the shaft bottom and enlarged from shaft bottom to the new level), shaft sinking rate (10, 20, 30, 40, 50 and 60 m/month), range of increasing shaft depth (the difference between depth of the shaft before and after increasing its depth by 100, 200, 300 and 400 m). Comparative evaluations show that the optimum shaft sinking rate depends on the scheme for rock hoisting (one of 4 analyzed), range of increasing shaft depth and gas content in coal seams. The optimum shaft sinking rate ranges from 20 to 40 m/month in coal mines with low methane content and from 20 to 30 m/month in gassy coal mines. The planned coal output of a mine does not influence the optimum shaft sinking rate.

  16. Four Weeks in a Single-Leg Weight-Bearing Hip Spica Cast is Sufficient Treatment for Isolated Femoral Shaft Fractures in Children Aged 1 to 3 Years.

    Science.gov (United States)

    Jaafar, Sami; Sobh, Ali; Legakis, Julie E; Thomas, Ronald; Buhler, Kelsey; Jones, Eric T

    2016-01-01

    Hip spica casting regimens for the treatment of femoral shaft fractures in a pediatric population aged 1 to 3 years vary. Patient charts were reviewed to determine if there are any clinical differences between 3 and 4 weeks in an ambulatory single-leg hip spica (SLHS) cast versus 6 to 8 weeks in a standard double-leg, non-weight-bearing hip spica cast. The medical records of 109 patients with femoral shaft fractures treated with a hip spica casting from January 1, 2008 to December 31, 2011 were examined. After exclusions, 94 patients were eligible for inclusion in the study. Patient records were assessed, noting age, weight, type of cast, time in cast, and complications. All casts were applied by senior pediatric orthopaedic surgeons at a single institution. Two groups were evaluated: 59 patients in the SLHS group and 35 in the double-leg hip spica group. The 2 groups were demographically similar with an average age of 2 years, 70.2% of patients were male, 45.7% were black, and 35.1% were white. The average time to cast removal was 4.1 weeks for the single-leg group and 5.3 weeks for the double-leg group (Pshaft fractures in patients less than 4 years old can be treated in a weight-bearing SLHS casts for approximately 4 weeks with fewer alignment and skin complications. Level III-clinical retrospective comparative study.

  17. Exploratory Shaft Seismic Design Basis Working Group report

    International Nuclear Information System (INIS)

    Subramanian, C.V.; King, J.L.; Perkins, D.M.; Mudd, R.W.; Richardson, A.M.; Calovini, J.C.; Van Eeckhout, E.; Emerson, D.O.

    1990-08-01

    This report was prepared for the Yucca Mountain Project (YMP), which is managed by the US Department of Energy. The participants in the YMP are investigating the suitability of a site at Yucca Mountain, Nevada, for construction of a repository for high-level radioactive waste. An exploratory shaft facility (ESF) will be constructed to permit site characterization. The major components of the ESF are two shafts that will be used to provide access to the underground test areas for men, utilities, and ventilation. If a repository is constructed at the site, the exploratory shafts will be converted for use as intake ventilation shafts. In the context of both underground nuclear explosions (conducted at the nearby Nevada Test Site) and earthquakes, the report contains discussions of faulting potential at the site, control motions at depth, material properties of the different rock layers relevant to seismic design, the strain tensor for each of the waveforms along the shaft liners, and the method for combining the different strain components along the shaft liners. The report also describes analytic methods, assumptions used to ensure conservatism, and uncertainties in the data. The analyses show that none of the shafts' structures, systems, or components are important to public radiological safety; therefore, the shafts need only be designed to ensure worker safety, and the report recommends seismic design parameters appropriate for this purpose. 31 refs., 5 figs., 6 tabs

  18. Dynamic simulation of 10 kW Brayton cryocooler for HTS cable

    Science.gov (United States)

    Chang, Ho-Myung; Park, Chan Woo; Yang, Hyung Suk; Hwang, Si Dole

    2014-01-01

    Dynamic simulation of a Brayton cryocooler is presented as a partial effort of a Korean governmental project to develop 1˜3 km HTS cable systems at transmission level in Jeju Island. Thermodynamic design of a 10 kW Brayton cryocooler was completed, and a prototype construction is underway with a basis of steady-state operation. This study is the next step to investigate the transient behavior of cryocooler for two purposes. The first is to simulate and design the cool-down process after scheduled or unscheduled stoppage. The second is to predict the transient behavior following the variation of external conditions such as cryogenic load or outdoor temperature. The detailed specifications of key components, including plate-fin heat exchangers and cryogenic turbo-expanders are incorporated into a commercial software (Aspen HYSYS) to estimate the temporal change of temperature and flow rate over the cryocooler. An initial cool-down scenario and some examples on daily variation of cryocooler are presented and discussed, aiming at stable control schemes of a long cable system.

  19. Dynamic simulation of 10 kW Brayton cryocooler for HTS cable

    International Nuclear Information System (INIS)

    Chang, Ho-Myung; Park, Chan Woo; Yang, Hyung Suk; Hwang, Si Dole

    2014-01-01

    Dynamic simulation of a Brayton cryocooler is presented as a partial effort of a Korean governmental project to develop 1∼3 km HTS cable systems at transmission level in Jeju Island. Thermodynamic design of a 10 kW Brayton cryocooler was completed, and a prototype construction is underway with a basis of steady-state operation. This study is the next step to investigate the transient behavior of cryocooler for two purposes. The first is to simulate and design the cool-down process after scheduled or unscheduled stoppage. The second is to predict the transient behavior following the variation of external conditions such as cryogenic load or outdoor temperature. The detailed specifications of key components, including plate-fin heat exchangers and cryogenic turbo-expanders are incorporated into a commercial software (Aspen HYSYS) to estimate the temporal change of temperature and flow rate over the cryocooler. An initial cool-down scenario and some examples on daily variation of cryocooler are presented and discussed, aiming at stable control schemes of a long cable system

  20. Dynamic simulation of 10 kW Brayton cryocooler for HTS cable

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Ho-Myung; Park, Chan Woo [Hong Ik University, Department of Mechanical Engineering, Seoul, 121-791 (Korea, Republic of); Yang, Hyung Suk; Hwang, Si Dole [KEPCO Research Institute, Daejeon, 305-760 (Korea, Republic of)

    2014-01-29

    Dynamic simulation of a Brayton cryocooler is presented as a partial effort of a Korean governmental project to develop 1∼3 km HTS cable systems at transmission level in Jeju Island. Thermodynamic design of a 10 kW Brayton cryocooler was completed, and a prototype construction is underway with a basis of steady-state operation. This study is the next step to investigate the transient behavior of cryocooler for two purposes. The first is to simulate and design the cool-down process after scheduled or unscheduled stoppage. The second is to predict the transient behavior following the variation of external conditions such as cryogenic load or outdoor temperature. The detailed specifications of key components, including plate-fin heat exchangers and cryogenic turbo-expanders are incorporated into a commercial software (Aspen HYSYS) to estimate the temporal change of temperature and flow rate over the cryocooler. An initial cool-down scenario and some examples on daily variation of cryocooler are presented and discussed, aiming at stable control schemes of a long cable system.

  1. OPTIMIZATION OF PLY STACKING SEQUENCE OF COMPOSITE DRIVE SHAFT USING PARTICLE SWARM ALGORITHM

    Directory of Open Access Journals (Sweden)

    CHANNAKESHAVA K. R.

    2011-06-01

    Full Text Available In this paper an attempt has been made to optimize ply stacking sequence of single piece E-Glass/Epoxy and Boron /Epoxy composite drive shafts using Particle swarm algorithm (PSA. PSA is a population based evolutionary stochastic optimization technique which is a resent heuristic search method, where mechanics are inspired by swarming or collaborative behavior of biological population. PSA programme is developed to optimize the ply stacking sequence with an objective of weight minimization by considering design constraints as torque transmission capacity, fundamental natural frequency, lateral vibration and torsional buckling strength having number of laminates, ply thickness and stacking sequence as design variables. The weight savings of the E-Glass/epoxy and Boron /Epoxy shaft from PAS were 51% and 85 % of the steel shaft respectively. The optimum results of PSA obtained are compared with results of genetic algorithm (GA results and found that PSA yields better results than GA.

  2. Experimental Investigation of A Twin Shaft Micro Gas-Turbine System

    International Nuclear Information System (INIS)

    Sadig, Hussain; Sulaiman, Shaharin Anwar; Ibrahim, Idris

    2013-01-01

    Due to the fast depletion of fossil fuels and its negative impact on the environment, more attention has been concentrated to find new resources, policies and technologies, which meet the global needs with regard to fuel sustainability and emissions. In this paper, as a step to study the effect of burning low calorific value fuels on gas-turbine performance; a 50 kW slightly pressurized non-premixed tubular combustor along with turbocharger based twin shaft micro gas-turbine was designed and fabricated. A series of tests were conducted to characterize the system using LPG fuel. The tests include the analysis of the temperature profile, pressure and combustor efficiency as well as air fuel ratio and speed of the second turbine. The tests showed a stable operation with acceptable efficiency, air fuel ratio, and temperature gradient for the single and twin shaft turbines.

  3. Storage shaft definitive closure plug and method

    International Nuclear Information System (INIS)

    Dardaine, M.

    1992-01-01

    A definitive closure plug system for radioactive waste storage at any deepness, is presented. The inherent weight of the closure materials is used to set in the plug: these materials display an inclined sliding surface in such a way that when the closure material rests on a stable surface of the shaft storage materials, the relative sliding of the different materials tends to spread them towards the shaft internal wall so as to completely occlude the shaft

  4. Salt Repository Project shaft design guide: Revision 0

    International Nuclear Information System (INIS)

    1987-12-01

    The Salt Repository Project (SRP) Shaft Design Guide (SDG) and the accompanying SRP Input to Seismic Design define the basic approach for developing appropriate shaft designs for a high-level nuclear waste repository in salt at a proposed site in Deaf Smith County, Texas. The SDG is based on current mining industry standards and practices enhanced to meet the special needs of an underground nuclear waste repository. It provides a common approach for design of both the exploratory and repository shafts. The SDG defines shaft lining and material concepts and presents methods for calculating the loads and displacements that will be imposed on lining structures. It also presents the methodology and formulae for sizing lining components. The SDG directs the shaft designer to sources of geoscience and seismic design data for the Deaf Smith County, Texas repository site. In addition, the SDG describes methods for confirming shaft lining design by means of computer analysis, and it discusses performance monitoring needs that must be considered in the design. 113 refs., 18 figs., 14 tabs

  5. Supercritical Carbon Dioxide turbomachinery design for water-cooled Small Modular Reactor application

    International Nuclear Information System (INIS)

    Lee, Jekyoung; Lee, Jeong Ik; Yoon, Ho Joon; Cha, Jae Eun

    2014-01-01

    Highlights: • We described the concept of coupling the S-CO 2 Brayton cycle to the water-cooled SMRs. • We describe a turbomachinery design code called KAISD T MD that can use real gases too. • We suggest changes to the S-CO 2 cycle layout with multiple-independent shafts. • KAIST T MD was used to design the turbomachinery of suggested layout. - Abstract: The Supercritical Carbon Dioxide (S-CO 2 ) Brayton cycle has been gaining attention due to its compactness and high efficiency at moderate turbine inlet temperature. Previous S-CO 2 cycle research works in the field of nuclear engineering were focused on its application to the next generation reactor with higher turbine inlet temperature than the existing conventional water-cooled nuclear power plants. However, it was shown in authors’ previous paper that the advantages of the S-CO 2 Brayton cycle can be also further applied to the water-cooled Small Modular Reactor (SMR) with a success, since SMR requires minimal overall footprint while retaining high performance. One of the major issues in the S-CO 2 Brayton cycle is the selection and design of appropriate turbomachinery for the designed cycle. Because most of the nuclear industry uses incompressible working fluids or ideal gases in the turbomachinery, a more detailed examination of the design of the turbomachinery is required for a power system that uses S-CO 2 as working fluid. This is because the S-CO 2 Brayton cycle high efficiency is the result of the non-ideal variation of properties near the CO 2 critical point. Thus, the major focus of this paper is to suggest the design of the turbomachinery necessary for the S-CO 2 Brayton cycle coupled to water cooled SMRs. For this reason, a S-CO 2 Brayton cycle turbomachinery design methodology was suggested and the suggested design methodology was first tested with the existing experimental data to verify its capability. After then, it was applied to the proposed reference system to demonstrate its

  6. Supercritical Carbon Dioxide turbomachinery design for water-cooled Small Modular Reactor application

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jekyoung, E-mail: leejaeky85@kaist.ac.kr [Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, 373-1 Guseong-dong, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Lee, Jeong Ik, E-mail: jeongiklee@kaist.ac.kr [Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, 373-1 Guseong-dong, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Yoon, Ho Joon, E-mail: hojoon.yoon@kustar.ac.ae [Khalifa University of Science, Technology and Research (KUSTAR), P.O. Box 127788, Abu Dhabi (United Arab Emirates); Cha, Jae Eun, E-mail: jecha@kaeri.re.kr [Korea Atomic Energy Research Institute, 1045 Daedeok-daero, Yuseong-gu, Daejeon 305-353 (Korea, Republic of)

    2014-04-01

    Highlights: • We described the concept of coupling the S-CO{sub 2} Brayton cycle to the water-cooled SMRs. • We describe a turbomachinery design code called KAISD{sub T}MD that can use real gases too. • We suggest changes to the S-CO{sub 2} cycle layout with multiple-independent shafts. • KAIST{sub T}MD was used to design the turbomachinery of suggested layout. - Abstract: The Supercritical Carbon Dioxide (S-CO{sub 2}) Brayton cycle has been gaining attention due to its compactness and high efficiency at moderate turbine inlet temperature. Previous S-CO{sub 2} cycle research works in the field of nuclear engineering were focused on its application to the next generation reactor with higher turbine inlet temperature than the existing conventional water-cooled nuclear power plants. However, it was shown in authors’ previous paper that the advantages of the S-CO{sub 2} Brayton cycle can be also further applied to the water-cooled Small Modular Reactor (SMR) with a success, since SMR requires minimal overall footprint while retaining high performance. One of the major issues in the S-CO{sub 2} Brayton cycle is the selection and design of appropriate turbomachinery for the designed cycle. Because most of the nuclear industry uses incompressible working fluids or ideal gases in the turbomachinery, a more detailed examination of the design of the turbomachinery is required for a power system that uses S-CO{sub 2} as working fluid. This is because the S-CO{sub 2} Brayton cycle high efficiency is the result of the non-ideal variation of properties near the CO{sub 2} critical point. Thus, the major focus of this paper is to suggest the design of the turbomachinery necessary for the S-CO{sub 2} Brayton cycle coupled to water cooled SMRs. For this reason, a S-CO{sub 2} Brayton cycle turbomachinery design methodology was suggested and the suggested design methodology was first tested with the existing experimental data to verify its capability. After then, it was

  7. Gearbox Reliability Collaborative High-Speed Shaft Calibration

    Energy Technology Data Exchange (ETDEWEB)

    Keller, J.; McNiff, B.

    2014-09-01

    Instrumentation has been added to the high-speed shaft, pinion, and tapered roller bearing pair of the Gearbox Reliability Collaborative gearbox to measure loads and temperatures. The new shaft bending moment and torque instrumentation was calibrated and the purpose of this document is to describe this calibration process and results, such that the raw shaft bending and torque signals can be converted to the proper engineering units and coordinate system reference for comparison to design loads and simulation model predictions.

  8. Damping System for Torsional Resonances in Generator Shafts Using a Feedback Controlled Buffer Storage of Magnetic Energy at ASDEX Upgrade

    International Nuclear Information System (INIS)

    Kaesemann, C.-P.; Huart, M.; Mueller, P.; Sigalov, A.

    2006-01-01

    The electrical power and energy for ASDEX Upgrade (AUG) is provided by three separate pulsed networks based on flywheel generators. Major damages at couplings of the shaft of the synchronous generator EZ4 (220 MVA / 600 MWs) were discovered during a routine check. The damage can only be explained by torsional resonances in the generator shaft which are excited by active power transients from the converter loads. For generator protection, torque sensors were installed near the coupling between the flywheel and the rotor. They cause an early termination of plasma experiments if a predefined torque level is exceeded. These terminations limited the achievable plasma current flattop time of AUG significantly. Since a low natural damping of the torsional resonances was identified as a major cause of the phenomena observed, novel feedback controlled DC circuits were developed providing electromagnetic damping for the generator shafts in case of excitation. Each damping circuit consists of a DC choke, acting as a buffer storage of magnetic energy, fed by a thyristor converter. The current reference for the converter is derived from the torque sensor signals. This enables the choke current to alternate with the measured natural frequency of the shaft assembly. Thus, with proper phasing, torsional resonances in generator shaft systems weighing more than 100 tons can be damped with little additional power. Since April 2003, the damping circuits have been routinely operated during all plasma experiments. Despite the low damping power used, torsional resonances could be reduced to a value that avoids a trip signal from the torque sensors. This paper describes the results from analysing, designing and testing of the feedback controlled buffer storage of magnetic energy, representing an effective and low cost solution for damping torsional resonances in electric power systems. It will present the layout, analyse the results of measurements obtained during commissioning and

  9. Increasing shaft depth with rock hoisting to the surface. [USSR

    Energy Technology Data Exchange (ETDEWEB)

    Durov, E.M.

    1982-06-01

    Schemes of shaft construction with increasing shaft depth depend on: shaft depth, shaft diameter, types of hoisting systems, schemes of shaft reinforcement. Investigations carried out in underground coal mines in the USSR show that waste rock haulage to the surface by an independent hoisting system is most economical. Installation of this system depends on the existing hoisting scheme. When one of the operating cages or skips can be removed without a negative influence on mine operation the system of rock waste hoisting is used. The hoisting bucket used for rock removal from the shaft bottom moves in the shaft section from which one of the cages or skips has been removed. Examples of using this scheme in Donbass, Kuzbass and other coal basins are given. Economic aspects of waste material hoisting to the surface are analyzed. The system is economical when the remaining hoisting system can accept additional loads after removal of a cage or skip from the shaft. Investigations show that use of a bucket with a capacity from 2.5 to 3.0 m/sup 3/ for waste rock removal from the shaft being modernized and deepened is most economical.

  10. Ipsilateral humeral neck and shaft fractures

    Directory of Open Access Journals (Sweden)

    Zhu Bin

    2017-01-01

    Full Text Available Background/Aim. Fractures of the proximal humerus or shaft are common, however, ipsilateral neck and shaft humerus fracture is a rare phenomenon. This combination injury is challenging for orthopaedic surgeons because of its complex treatment options at present. The purpose of this study was to review a series of ipsilateral humeral neck and shaft fractures to study the fracture pattern, complications and treatment outcomes of each treatment options used. Methods. A total of six patients (four female and two male with the average age of 42.8 years (range: 36–49 years was collected and reviewed retrospectively. Two of them were treated with double plates and four with antegrade intramedullary nail. According to the Neer’s classification, all proximal fractures were two-part surgical neck fractures. All humeral shaft fractures were located at the middle of one third. Five fractures were simple transverse (A3, one fragmented wedge fracture (B3. One patient had associated radial nerve palsy. Results. All surgical neck fractures except one united uneventfully in the average time span of 8.7 weeks. Four humeral shaft fractures healed in near anatomic alignment. The remaining two patients had the nonunion with no radiological signs of fracture healing. The average University of California, Los Angeles End-Results (UCLA score was 23.1. On the contrary, the average American Shoulder and Elbow Surgeon's (ASES score was 73.3. The patients treated with antegrade intramedullary nails presented 70.5 points. The ASES scores were 79 in the double plates group. Conclusions. Ipsilateral humeral shaft and neck fracture is extremely rare. Both antegrade intramedullar nailing and double plates result in healing of fractures. However the risk of complication is lower in the double plating group.

  11. Solar thermal power plants simulation using the TRNSYS software

    Energy Technology Data Exchange (ETDEWEB)

    Popel, O.S.; Frid, S.E.; Shpilrain, E.E. [Institute for High Temperatures, Russian Academy of Sciences (IVTAN), Moscow (Russian Federation)

    1999-03-01

    The paper describes activity directed on the TRNSYS software application for mathematical simulation of solar thermal power plants. First stage of developments has been devoted to simulation and thermodynamic analysis of the Hybrid Solar-Fuel Thermal Power Plants (HSFTPP) with gas turbine installations. Three schemes of HSFTPP, namely: Gas Turbine Regenerative Cycle, Brayton Cycle with Steam Injection and Combined Brayton-Rankine Cycle,- have been assembled and tested under the TRNSYS. For this purpose 18 new models of the schemes components (gas and steam turbines, compressor, heat-exchangers, steam generator, solar receiver, condenser, controllers, etc) have been elaborated and incorporated into the TRNSYS library of 'standard' components. The authors do expect that this initiative and received results will stimulate experts involved in the mathematical simulation of solar thermal power plants to join the described activity to contribute to acceleration of development and expansion of 'Solar Thermal Power Plants' branch of the TRNSYS. The proposed approach could provide an appropriate basis for standardization of analysis, models and assumptions for well-founded comparison of different schemes of advanced solar power plants. (authors)

  12. Multi-objective thermodynamic optimization of an irreversible regenerative Brayton cycle using evolutionary algorithm and decision making

    Directory of Open Access Journals (Sweden)

    Rajesh Kumar

    2016-06-01

    Full Text Available Brayton heat engine model is developed in MATLAB simulink environment and thermodynamic optimization based on finite time thermodynamic analysis along with multiple criteria is implemented. The proposed work investigates optimal values of various decision variables that simultaneously optimize power output, thermal efficiency and ecological function using evolutionary algorithm based on NSGA-II. Pareto optimal frontier between triple and dual objectives is obtained and best optimal value is selected using Fuzzy, TOPSIS, LINMAP and Shannon’s entropy decision making methods. Triple objective evolutionary approach applied to the proposed model gives power output, thermal efficiency, ecological function as (53.89 kW, 0.1611, −142 kW which are 29.78%, 25.86% and 21.13% lower in comparison with reversible system. Furthermore, the present study reflects the effect of various heat capacitance rates and component efficiencies on triple objectives in graphical custom. Finally, with the aim of error investigation, average and maximum errors of obtained results are computed.

  13. Damping Torsional Torques in Turbine-Generator Shaft by Novel PSS Based on Genetic Algorithm and Fuzzy Logic

    Directory of Open Access Journals (Sweden)

    Abbas Shoulaie

    2010-07-01

    Full Text Available Torsional torques on turbine-generator shaft which are yields of disturbances in power systems, can reduce the useful lifetime of shaft. In this paper, these oscillations will be damped and controlled by novel Power System Stabilizers (PSSs. Complex PSS which is used in this paper will act on the excitation system in generator set and also on the controller of in High Voltage Direct Current (HVDC system. This PSS uses three terms (generator angle deviation, frequency oscillation and capacitor voltage deviation in HVDC system of the study system which includes two ties AC and DC. This is the reason that this PSS is named novel one against the conventional PSSs. In order to adjust the PSS parameters to damp the oscillations, genetic algorithm is used. To improve the application of this PSS, fuzzy logic control methods are also used which has notable effect on controlling the oscillations in study system. The simulation results show the effectiveness of designed PSS in controlling the torsional torques in turbine-generator shaft.

  14. Construction features of the Exploratory Shaft at Yucca Mountain

    International Nuclear Information System (INIS)

    Adair, G.W.; Fiore, J.N.

    1984-01-01

    The Exploratory Shaft (ES) at Yucca Mountain is planned to be constructed during 1985 and 1986 as part of the detailed site characterization for one of three sites which may be selected as candidates for location of a high-level radioactive waste repository. Conventional mining methods will be used for the shaft sinking phase of the ES project. The ES will be comprised of surface support facilities, a 1,480-foot-deep circular shaft lined with concrete to a finished inside diameter of 12 feet, lateral excavations and test installations extending up to 200 feet from the shaft, and long lateral borings extending up to 2,300 feet from the shaft. The estimated time for sinking the shaft to a total depth of about 1,480 feet and completing the lateral excavations and borings is about two years. The major underground development planned for the primary test level at a depth of 1,200 feet consists of the equivalent of 1,150 feet of 15- by 15-foot drift. The total volume of rock to be removed from the shaft proper and the lateral excavations totals about 1/2 million cubic feet. Construction equipment for the shaft and underground excavation phases consists of conventional mine hoisting equipment, shot hole and rock bolt drilling jumbos, mucking machines, and hauling machines. The desire to maintain relatively uniform and even walls in selected shaft and drift intervals will require that controlled blasting techniques be employed. Such techniques generally classified as ''smooth blasting'' are commonly used for excavation in the construction industry

  15. System design for shaft safety and productivity

    Energy Technology Data Exchange (ETDEWEB)

    Owen, D.; Parsons, R.; Ward, R.

    1988-03-01

    The aim of this paper is to describe the process of designing a system to improve safety and productivity in shafts. The objectives and constraints for the design were set out in official reports following a shaft accident at Markham Colliery in 1973. The problems to be solved were: to enable the shaftsmen to transfer the existing statutory code of signals efficiently from, or on top of, a conveyance anywhere in the shaft to the winding engineman and banksman at the surface: to detect the existence of slack rope or to detect that conditions have arisen that slack rope could be created and transmit this information to where action can be taken; and to allow conversations between winding engineman, banksman and shaftsman making allowances for the high level of acoustic noise in shafts. The approach adopted for slack rope monitoring was to monitor the tension in the cage suspension gear, thus measuring a first order effect. The three problems have a common element: information must be transferred through the shaft. This particular problem was solved with guided radio, using the winding rope as the transmission medium. The radio signal is coupled into the winding rope by means of fixed toroid encircling it at the cage and fixed magnetic antennas at the surface. The design of a digital transmission system for signalling and tension data is discussed. The 'top down' modular approach used in the design enabled full advantage to be taken of the opportunities for building a more reliable, safer and flexible system presented by technologies new to the shaft environment. The resultant system, the Safecom Shaft Signalling Communication and Winder Safety Monitoring System type S100, is in regular use at over 20 installations. 3 refs., 4 figs., 1 tab.

  16. Single-Phase Single-Stage Grid Tied Solar PV System with Active Power Filtering Using Power Balance Theory

    Science.gov (United States)

    Singh, Yashi; Hussain, Ikhlaq; Singh, Bhim; Mishra, Sukumar

    2018-03-01

    In this paper, power quality features such as harmonics mitigation, power factor correction with active power filtering are addressed in a single-stage, single-phase solar photovoltaic (PV) grid tied system. The Power Balance Theory (PBT) with perturb and observe based maximum power point tracking algorithm is proposed for the mitigation of power quality problems in a solar PV grid tied system. The solar PV array is interfaced to a single phase AC grid through a Voltage Source Converter (VSC), which provides active power flow from a solar PV array to the grid as well as to the load and it performs harmonics mitigation using PBT based control. The solar PV array power varies with sunlight and due to this, the solar PV grid tied VSC works only 8-10 h per day. At night, when PV power is zero, the VSC works as an active power filter for power quality improvement, and the load active power is delivered by the grid to the load connected at the point of common coupling. This increases the effective utilization of a VSC. The system is modelled and simulated using MATLAB and simulated responses of the system at nonlinear loads and varying environmental conditions are also validated experimentally on a prototype developed in the laboratory.

  17. Maintenance experience on reactor recirculation pumps at Tarapur Atomic Power Station

    International Nuclear Information System (INIS)

    Singh, A.K.

    1995-01-01

    Reactor recirculation pumps at Tarapur Atomic Power Station (TAPS) are vertical, single stage centrifugal pumps having mechanical shaft seals and are driven by vertical mounted 3.3 kV, 3 phase, 1500 h.p. electric motors. During these years of operation TAPS has gained enough experience and expertise on the maintenance of reactor recirculation pumps which are dealt in this article. Failure of mechanical shaft seals, damage on pump carbon bearings, motor winding insulation failures and motor shaft damage have been the main areas of concern on recirculation pump. A detailed procedure step by step with component sketches has helped in eliminating errors during shaft seal assembly and installation. Pressure breakdown devices in seal assembly were rebuilt. Additional coolant water injection for shaft seal cooling was provided. These measures have helped in extending the reactor recirculation pump seal life. Pump bearing problems were mainly due to failure of anti-rotation pins and dowel pins of bearing assembly. These pins were redesigned and strengthened. Motor stator winding insulation failures were detected. Stator winding replacement program has been taken up on regular basis to avoid winding insulation failure due to aging. 3 refs., 2 tabs., 7 figs

  18. An Advanced Light Weight Recuperator for Space Power Systems, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Nuclear Electric Propulsion (NEP) technology holds great promise for power and propulsion demands of NASA current and future deep space explorations. Closed Brayton...

  19. Exploratory Shaft Facility design basis study report

    International Nuclear Information System (INIS)

    Langstaff, A.L.

    1987-01-01

    The Design Basis Study is a scoping/sizing study that evaluated the items concerning the Exploratory Shaft Facility Design including design basis values for water and methane inflow; flexibility of the design to support potential changes in program direction; cost and schedule impacts that could result if the design were changed to comply with gassy mine regulations; and cost, schedule, advantages and disadvantages of a larger second shaft. Recommendations are proposed concerning water and methane inflow values, facility layout, second shaft size, ventilation, and gassy mine requirements. 75 refs., 3 figs., 7 tabs

  20. An Advanced Light Weight Recuperator for Space Power Systems, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Closed Brayton Cycle (CBC) space power system is one of the most efficient energy conversion technologies for nuclear and solar electric propulsion. The recuperator...

  1. Ipsilateral femoral neck and shaft fractures: An overlooked association

    International Nuclear Information System (INIS)

    Daffner, R.H.; Riemer, B.L.; Butterfield, S.L.

    1991-01-01

    A total of 304 patients with injuries to the femoral shaft and ipsilateral hip presented between 1984 and 1990. Some 253 of them suffered fractures of the femoral shaft and dislocated hips or fractures of the acetabulum, and 51 of these sustained fractures of the femoral shaft and neck or trochanteric region. All of the trochanteric injuries were demonstrated on the initial radiographs. However, in 11 of the patients with combined femoral shaft and neck fractures, the diagnosis was delayed by as much as 4 weeks. This delay related to the fact that these fractures tended not to separate in the initial evaluation period and that there was external rotation of the proximal femoral fragment due to the femoral shaft fracture. (orig./GDG)

  2. Ipsilateral femoral neck and shaft fractures: An overlooked association

    Energy Technology Data Exchange (ETDEWEB)

    Daffner, R.H. (Dept. of Diagnostic Radiology, Allegheny General Hospital, Pittsburgh, PA (USA) Medical Coll. of Pennsylvania, Pittsburgh, PA (USA)); Riemer, B.L.; Butterfield, S.L. (Dept. of Orthopedic Surgery, Allegheny General Hospital, Pittsburgh, PA (USA) Medical Coll. of Pennsylvania, Pittsburgh, PA (USA))

    1991-05-01

    A total of 304 patients with injuries to the femoral shaft and ipsilateral hip presented between 1984 and 1990. Some 253 of them suffered fractures of the femoral shaft and dislocated hips or fractures of the acetabulum, and 51 of these sustained fractures of the femoral shaft and neck or trochanteric region. All of the trochanteric injuries were demonstrated on the initial radiographs. However, in 11 of the patients with combined femoral shaft and neck fractures, the diagnosis was delayed by as much as 4 weeks. This delay related to the fact that these fractures tended not to separate in the initial evaluation period and that there was external rotation of the proximal femoral fragment due to the femoral shaft fracture. (orig./GDG).

  3. Results from Investigations of Torsional Vibration in Turbine Set Shaft Systems

    Science.gov (United States)

    Taradai, D. V.; Deomidova, Yu. A.; Zile, A. Z.; Tomashevskii, S. B.

    2018-01-01

    The article generalizes the results obtained from investigations of torsional vibration in the shaft system of the T-175/210-12.8 turbine set installed at the Omsk CHPP-5 combined heat and power plant. Three different experimental methods were used to determine the lowest natural frequencies of torsional vibration excited in the shaft system when the barring gear is switched into operation, when the generator is synchronized with the grid, and in response to unsteady disturbances caused by the grid and by the turbine control and steam admission system. It is pointed out that the experimental values of the lowest natural frequencies (to the fourth one inclusively) determined using three different methods were found to be almost completely identical with one another, even though the shaft system was stopped in the experiments carried out according to one method and the shaft system rotated at the nominal speed in those carried out according to two other methods. The need to further develop the experimental methods for determining the highest natural frequencies is substantiated. The values of decrements for the first, third, and fourth natural torsional vibration modes are obtained. A conclusion is drawn from a comparison between the calculated and experimental data on the shaft system's static twisting about the need to improve the mathematical models for calculating torsional vibration. The measurement procedure is described, and the specific features pertinent to the way in which torsional vibration manifests itself as a function of time and turbine set operating mode under the conditions of its long-term operation are considered. The fundamental measurement errors are analyzed, and their influence on the validity of measured parameters is evaluated. With an insignificant level of free and forced torsional vibrations set up under the normal conditions of turbine set and grid operation, it becomes possible to exclude this phenomenon from the list of main factors

  4. Spiral groove seal. [for hydraulic rotating shaft

    Science.gov (United States)

    Ludwig, L. P. (Inventor)

    1973-01-01

    Mating flat surfaces inhibit leakage of a fluid around a stationary shaft. A spiral groove pattern produces a pumping action toward the fluid when the shaft rotates which prevents leakage while a generated hydraulic lifting force separates the mating surfaces to minimize wear.

  5. Multi-megawatt power system trade study

    Science.gov (United States)

    Longhurst, Glen R.; Schnitzler, Bruce G.; Parks, Benjamin T.

    2002-01-01

    A concept study was undertaken to evaluate potential multi-megawatt power sources for nuclear electric propulsion. The nominal electric power requirement was set at 15 MWe with an assumed mission profile of 120 days at full power, 60 days in hot standby, and another 120 days of full power, repeated several times for 7 years of service. Two configurations examined were (1) a gas-cooled reactor based on the NERVA Derivative design, operating a closed cycle Brayton power conversion system; and (2) a molten metal-cooled reactor based on SP-100 technology, driving a boiling potassium Rankine power conversion system. This study considered the relative merits of these two systems, seeking to optimize the specific mass. Conclusions were that either concept appeared capable of reaching the specific mass goal of 3-5 kg/kWe estimated to be needed for this class of mission, though neither could be realized without substantial development in reactor fuels technology, thermal radiator mass and volume efficiency, and power conversion and distribution electronics and systems capable of operating at high temperatures. The gas-Brayton system showed a specific mass advantage (3.17 vs 6.43 kg/kWe for the baseline cases) under the set of assumptions used and eliminated the need to deal with two-phase working fluid flows in the microgravity environment of space. .

  6. Shaft siting decision report: Final report

    International Nuclear Information System (INIS)

    1985-11-01

    The purpose of this study is to identify and establish relative guidelines to be used for siting of repository shafts. Weights were determined for the significant factors which impact the selection of shaft locations for a nuclear waste repository in salt. The study identified a total of 45 factors. A panel of experienced mining people utilized the Kepner-Tregoe (K-T) Decision Analysis Process to perform a structured evaluation of each significant shaft siting factor. The evaluation determined that 22 of the factors were absolute constraints and that the other 23 factors were desirable characteristics. The group established the relative weights for each of the 23 desirable characteristics by using a paired comparison method. 49 refs., 2 figs., 5 tabs

  7. A coupled mechanical/hydrologic model for WIPP shaft seals

    International Nuclear Information System (INIS)

    Ehgartner, B.

    1991-06-01

    Effective sealing of the Waste Isolation Pilot Plant (WIPP) shafts will be required to isolate defense-generated transuranic wastes from the accessible environment. Shafts penetrate water-bearing hard rock formations before entering a massive creeping-salt formation (Salado) where the WIPP is located. Short and long-term seals are planned for the shafts. Short-term seals, a composite of concrete and bentonite, will primarily be located in the hard rock formations separating the water-bearing zones from the Salado Formation. These seals will limit water flow to the underlying long-term seals in the Salado. The long-term seals will consist of lengthly segments of initially unsaturated crushed salt. Creep closure of the shaft will consolidate unsaturated crushed salt, thereby reducing its permeability. However, water passing through the upper short-term seals and brine inherent to the salt host rock itself will eventually saturate the crushed salt and consolidation could be inhibited. Before saturating, portions of the crushed salt in the shafts are expected to consolidate to a permeability equivalent to the salt host rock, thereby effectively isolating the waste from the overlying water-bearing formations. A phenomenological model is developed for the coupled mechanical/hydrologic behavior of sealed WIPP shafts. The model couples creep closure of the shaft, crushed salt consolidation, and the associated reduction in permeability with Darcy's law for saturated fluid flow to predict the overall permeability of the shaft seal system with time. 17 refs., 6 figs., 1 tab

  8. Shaft Siting and Configuration for Flexible Operating Mode

    International Nuclear Information System (INIS)

    Robert Boutin

    2001-01-01

    The purpose of this document as stated in the ''Technical Work Plan for Subsurface Design Section FY 01 Work Activities'' (CRWMS M and O 2001a, pg. 14) is to review and evaluate the most current concepts for shaft siting and configuration. The locations of the shaft sites will be evaluated in reference to the overall subsurface ventilation layout shown in Figure 1. The scope will include discussions on pad size requirements, shaft construction components such as collars, shaft stations, sumps, ground support and linings, head frames, fan ducting and facility equipping. In addition to these, shaft excavation methodologies and integration with the overall subsurface construction schedule will be described. The Technical Work Plan (TWP), (CRWMS M and O 2001a), for this document has been prepared in accordance with AP-2.21Q, ''Quality Determinations and Planning for Scientific, Engineering and Regulatory Compliance Activities''. This document will be prepared in accordance with AP-3.10Q, ''Analysis and Models''. This document contributes to Site Recommendation (SR). The intended use of this document is to provide an analysis for shaft siting and configuration criteria for subsequent construction. This document identifies preliminary design concepts that should not be used for procurement, fabrication, or construction

  9. 3 kW Stirling engine for power and heat production

    DEFF Research Database (Denmark)

    Thorsen, Jan Eric; Bovin, Jonas Kabell; Carlsen, Henrik

    1996-01-01

    A new 3 kW Beta-type Stirling engine has been developed. The engine uses natural gas as fuel and is designed for use as a small combined heat and power plant for single family houses. The electrical power is supplied to the grid. The engine is made as a hermetic device, where the crank mechanism...... and the alternator are built into a pressurized crank casing. The engine produces 3 kW of shaft power corresponding to 2.4 kW of electric power. The heat input is 10 kW representing a shaft efficiency of 30% and an electric efficiency of 24%. Helium at 8 MPa mean pressure is used as the working gas. The crank...... for X-heads. A grease-lubricated needle and ball bearings are used in the kinematic crank mechanism. The burner includes an air preheater and a water jacket which makes it possible to utilize nearly all of the heat from the combustion gases. The performance of the engine has been tested as a function...

  10. Influence of parameters detuning on induction motor NFO shaft-sensorless scheme

    Directory of Open Access Journals (Sweden)

    KULIC, F.

    2010-11-01

    Full Text Available In this paper, the parameter sensitivity analysis of shaft-sensorless induction motor drive with natural field orientation (NFO scheme is performed. NFO scheme calculates rotor flux position using the rotor flux vector reference only, does not require significant processor power and therefore it is suitable for low cost shaft sensorless drives. This concept also eliminates the need for sensitive stator voltage vector integration and it is usable in low rotor speed range. However, low speeds are coupled with low stator voltage amplitudes, which inflate the NFO scheme sensitivity to an error in stator resistance parameter. Similar problems can also take place if mutual inductance parameter is detuned, but this time in whole speed range. This paper investigates the influence of each parameter error on the NFO control steady state characteristics and dynamic performance.

  11. Humeral Shaft Fracture: Intramedullary Nailing.

    Science.gov (United States)

    Konda, Sanjit R; Saleh, Hesham; Fisher, Nina; Egol, Kenneth A

    2017-08-01

    This video demonstrates the technique of intramedullary nailing for a humeral shaft fracture. The patient is a 30-year-old man who sustained a gunshot wound to his right arm. The patient was indicated for humeral nailing given the comminuted nature of the diaphysis and to allow for minimal skin incisions. Other relative indications include soft-tissue compromise about the arm precluding a large surgical exposure. This video presents a case of a comminuted humeral shaft fracture treated with an intramedullary nail. Anatomic reduction and stable fixation was obtained with this technique. This case demonstrates a soft-tissue sparing technique of humeral shaft fixation using a humeral intramedullary nail. The technique is easy to perform and has significant benefits in minimizing surgical exposure, decreasing operative time, and decreasing blood loss. In the correct clinical setting, humeral nailing provides an expeditious form of fixation that restores length, alignment, and rotation of the fracture humeral diaphysis.

  12. Large shaft development test plan

    International Nuclear Information System (INIS)

    Krug, A.D.

    1984-03-01

    This test plan proposes the conduct of a large shaft development test at the Hanford site in support of the repository development program. The purpose and objective of the test plan is to obtain the information necessary to establish feasibility and to predict the performance of the drilling system used to drill large diameter shafts. The test plan is based upon drilling a 20 ft diameter shaft to a depth of 1,000 feet. The test plan specifies series of tests to evaluate the performance of the downhole assembly, the performance of the rig, and the ability of the system to cope with geologic hazards. The quality of the hole produced will also be determined. This test plan is considered to be preliminary in that it was prepared as input for the decision to determine if development testing is required in this area. Should the decision be made to proceed with development testing, this test plan shall be updated and revised. 6 refs., 2 figs., 3 tabs

  13. Exploratory shaft liner corrosion estimate

    International Nuclear Information System (INIS)

    Duncan, D.R.

    1985-10-01

    An estimate of expected corrosion degradation during the 100-year design life of the Exploratory Shaft (ES) is presented. The basis for the estimate is a brief literature survey of corrosion data, in addition to data taken by the Basalt Waste Isolation Project. The scope of the study is expected corrosion environment of the ES, the corrosion modes of general corrosion, pitting and crevice corrosion, dissimilar metal corrosion, and environmentally assisted cracking. The expected internal and external environment of the shaft liner is described in detail and estimated effects of each corrosion mode are given. The maximum amount of general corrosion degradation was estimated to be 70 mils at the exterior and 48 mils at the interior, at the shaft bottom. Corrosion at welds or mechanical joints could be significant, dependent on design. After a final determination of corrosion allowance has been established by the project it will be added to the design criteria. 10 refs., 6 figs., 5 tabs

  14. A treatment of thermal efficiency improvement in the Brayton cycle

    International Nuclear Information System (INIS)

    Fujii, Terushige; Akagawa, Koji; Nakanishi, Shigeyasu; Inoue, Kiyoshi; Ishigai, Seikan.

    1982-01-01

    So far, as the working fluid for power-generating plants, mainly water and air (combustion gas) have been used. In this study, in regeneration and isothermal compression processes being considered as the means for the efficiency improvement in Brayton cycle, the investigation of equivalent graphical presentation method with T-S diagrams, the introduction of the new characteristic number expressing the possibility of thermal efficiency improvement by regeneration, and the investigation of the effect of the difference of working fluid on thermal efficiency were carried out. Next, as the cycle approximately realizing isothermal compression process with condensation process, the super-critical pressure cycle with liquid phase compression was rated, and four working fluids, NH 3 , SO 2 , CO 2 and H 2 O were examined as perfect gas and real gas. The advantage of CO 2 regeneration for the thermal efficiency improvement was clarified by using the dimensionless characteristic number. The graphical presentation of effective work, the thermal efficiency improvement by regeneration, the thermal efficiency improvement by making compression process isothermal, the effect on thermal efficiency due to various factors and working fluids, the characteristic number by regeneration, and the application to real working fluids are reported. (Kako, I.)

  15. Rotating Shaft Tilt Angle Measurement Using an Inclinometer

    OpenAIRE

    Luo Jun; Wang Zhiqian; Shen Chengwu; Wen Zhuoman; Liu Shaojin; Cai Sheng; Li Jianrong

    2015-01-01

    This paper describes a novel measurement method to accurately measure the rotating shaft tilt angle of rotating machine for alignment or compensation using a dual-axis inclinometer. A model of the rotating shaft tilt angle measurement is established using a dual-axis inclinometer based on the designed mechanical structure, and the calculation equation between the rotating shaft tilt angle and the inclinometer axes outputs is derived under the condition that the inclinometer axes are perpendic...

  16. 30 CFR 77.1911 - Ventilation of slopes and shafts.

    Science.gov (United States)

    2010-07-01

    ... SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Slope and Shaft Sinking § 77.1911 Ventilation of slopes and shafts. (a) All slopes and... connected to the slope or shaft opening with fireproof air ducts; (3) Designed to permit the reversal of the...

  17. Fault diagnostics for turbo-shaft engine sensors based on a simplified on-board model.

    Science.gov (United States)

    Lu, Feng; Huang, Jinquan; Xing, Yaodong

    2012-01-01

    Combining a simplified on-board turbo-shaft model with sensor fault diagnostic logic, a model-based sensor fault diagnosis method is proposed. The existing fault diagnosis method for turbo-shaft engine key sensors is mainly based on a double redundancies technique, and this can't be satisfied in some occasions as lack of judgment. The simplified on-board model provides the analytical third channel against which the dual channel measurements are compared, while the hardware redundancy will increase the structure complexity and weight. The simplified turbo-shaft model contains the gas generator model and the power turbine model with loads, this is built up via dynamic parameters method. Sensor fault detection, diagnosis (FDD) logic is designed, and two types of sensor failures, such as the step faults and the drift faults, are simulated. When the discrepancy among the triplex channels exceeds a tolerance level, the fault diagnosis logic determines the cause of the difference. Through this approach, the sensor fault diagnosis system achieves the objectives of anomaly detection, sensor fault diagnosis and redundancy recovery. Finally, experiments on this method are carried out on a turbo-shaft engine, and two types of faults under different channel combinations are presented. The experimental results show that the proposed method for sensor fault diagnostics is efficient.

  18. Fault Diagnostics for Turbo-Shaft Engine Sensors Based on a Simplified On-Board Model

    Directory of Open Access Journals (Sweden)

    Yaodong Xing

    2012-08-01

    Full Text Available Combining a simplified on-board turbo-shaft model with sensor fault diagnostic logic, a model-based sensor fault diagnosis method is proposed. The existing fault diagnosis method for turbo-shaft engine key sensors is mainly based on a double redundancies technique, and this can’t be satisfied in some occasions as lack of judgment. The simplified on-board model provides the analytical third channel against which the dual channel measurements are compared, while the hardware redundancy will increase the structure complexity and weight. The simplified turbo-shaft model contains the gas generator model and the power turbine model with loads, this is built up via dynamic parameters method. Sensor fault detection, diagnosis (FDD logic is designed, and two types of sensor failures, such as the step faults and the drift faults, are simulated. When the discrepancy among the triplex channels exceeds a tolerance level, the fault diagnosis logic determines the cause of the difference. Through this approach, the sensor fault diagnosis system achieves the objectives of anomaly detection, sensor fault diagnosis and redundancy recovery. Finally, experiments on this method are carried out on a turbo-shaft engine, and two types of faults under different channel combinations are presented. The experimental results show that the proposed method for sensor fault diagnostics is efficient.

  19. Modeling the small-scale dish-mounted solar thermal Brayton cycle

    Science.gov (United States)

    Le Roux, Willem G.; Meyer, Josua P.

    2016-05-01

    The small-scale dish-mounted solar thermal Brayton cycle (STBC) makes use of a sun-tracking dish reflector, solar receiver, recuperator and micro-turbine to generate power in the range of 1-20 kW. The modeling of such a system, using a turbocharger as micro-turbine, is required so that optimisation and further development of an experimental setup can be done. As a validation, an analytical model of the small-scale STBC in Matlab, where the net power output is determined from an exergy analysis, is compared with Flownex, an integrated systems CFD code. A 4.8 m diameter parabolic dish with open-cavity tubular receiver and plate-type counterflow recuperator is considered, based on previous work. A dish optical error of 10 mrad, a tracking error of 1° and a receiver aperture area of 0.25 m × 0.25 m are considered. Since the recuperator operates at a very high average temperature, the recuperator is modeled using an updated ɛ-NTU method which takes heat loss to the environment into consideration. Compressor and turbine maps from standard off-the-shelf Garrett turbochargers are used. The results show that for the calculation of the steady-state temperatures and pressures, there is good comparison between the Matlab and Flownex results (within 8%) except for the recuperator outlet temperature, which is due to the use of different ɛ-NTU methods. With the use of Matlab and Flownex, it is shown that the small-scale open STBC with an existing off-the-shelf turbocharger could generate a positive net power output with solar-to-mechanical efficiency of up to 12%, with much room for improvement.

  20. Spiral groove seal. [for rotating shaft

    Science.gov (United States)

    Ludwig, L. P.; Strom, T. N. (Inventor)

    1974-01-01

    Mating flat surfaces inhibit leakage of a fluid around a stationary shaft. A spiral groove produces a pumping action toward the fluid when the shaft rotates. This prevents leakage while a generated hydraulic lifting force separates the mating surfaces to minimize wear. Provision is made for placing these spiral grooves in communication with the fluid to accelerate the generation of the hydraulic lifting force.

  1. Documentation and verification of the SHAFT code

    International Nuclear Information System (INIS)

    St John, C.M.

    1991-12-01

    The SHAFT code incorporates equations to compute stresses in a shaft liner when the rock through which a shaft passes is subject to known three-dimensional states of stress or strain. The deformation modes considered are hoop deformation, axial deformation, and shear on a plane normal to the shaft axis. Interaction between the liner and the soil and rock is considered, and it is assumed that the liner is in place before loading is applied. This code is intended to be used interactively but creates a permanent record complete with necessary quality assurance information. The code has been carefully verified for the case of generalized plane strain, in which an arbitrary axial strain can be defined. It may also be used for plane stress analysis. Output is given in the form of stresses at selected sample points in the linear and the rock and a simple graphical representation of the distribution of stress through the liner. 12 figs., 13 tabs

  2. Incidence and epidemiology of tibial shaft fractures

    DEFF Research Database (Denmark)

    Larsen, Peter; Elsøe, Rasmus; Hansen, Sandra Hope

    2015-01-01

    Introduction: The literature lacks recent population-based epidemiology studies of the incidence, trauma mechanism and fracture classification of tibial shaft fractures. The purpose of this study was to provide up-to-date information on the incidence of tibial shaft fractures in a large....... The mean age at time of fracture was 38.5 (21.2SD) years. The incidence of tibial shaft fracture was 16.9/100,000/year. Males have the highest incidence of 21.5/100,000/year and present with the highest frequency between the age of 10 and 20, whereas women have a frequency of 12.3/100,000/year and have...... frequency of fractures while participating in sports activities and walking. Women present the highest frequency of fractures while walking and during indoor activities. Conclusion: This study shows an incidence of 16.9/100,000/year for tibial shaft fractures. AO-type 42-A1 was the most common fracture type...

  3. Residual torsional properties of composite shafts subjected to impact loadings

    International Nuclear Information System (INIS)

    Sevkat, Ercan; Tumer, Hikmet

    2013-01-01

    Highlights: • Impact loading reduces the torsional strength of composite shaft. • Impact energy level determines the severity of torsional strength reduction. • Hybrid composite shafts can be manufactured by mixing two types of filament. • Maximum torque capacity of shafts can be estimated using finite element method. - Abstract: This paper presents an experimental and numerical study to investigate residual torsional properties of composite shafts subjected to impact loadings. E-glass/epoxy, carbon/epoxy and E-glass–carbon/epoxy hybrid composite shafts were manufactured by filament winding method. Composite shafts were impacted at 5, 10, 20 and 40 J energy levels. Force–time and energy–time histories of impact tests were recorded. One composite shaft with no impact, and four composite shafts with impact damage, five in total, were tested under torsion. Torque-twisting angle relations for each test were obtained. Reduction at maximum torque and maximum twisting angle induced by impact loadings were calculated. While 5 J impact did not cause significant reduction at maximum torque and maximum twisting angle, remaining impact loadings caused 34–67% reduction at maximum torque, and 30–61% reduction at maximum twisting angle. Reductions increased with increasing energy levels and varied depending on the material of composite shafts. The 3-D finite element (FE) software, Abaqus, incorporated with an elastic orthotropic model, was then used to simulate the torsion tests. Good agreement between experimental and numerical results was achieved

  4. Eddy Current Sensing of Torque in Rotating Shafts

    Science.gov (United States)

    Varonis, Orestes J.; Ida, Nathan

    2013-12-01

    The noncontact torque sensing in machine shafts is addressed based on the stress induced in a press-fitted magnetoelastic sleeve on the shaft and eddy current sensing of the changes of electrical conductivity and magnetic permeability due to the presence of stress. The eddy current probe uses dual drive, dual sensing coils whose purpose is increased sensitivity to torque and decreased sensitivity to variations in distance between probe and shaft (liftoff). A mechanism of keeping the distance constant is also employed. Both the probe and the magnetoelastic sleeve are evaluated for performance using a standard eddy current instrument. An eddy current instrument is also used to drive the coils and analyze the torque data. The method and sensor described are general and adaptable to a variety of applications. The sensor is suitable for static and rotating shafts, is independent of shaft diameter and operational over a large range of torques. The torque sensor uses a differential eddy current measurement resulting in cancellation of common mode effects including temperature and vibrations.

  5. Assessment of shaft safety and management system of controlling engineering information

    Energy Technology Data Exchange (ETDEWEB)

    Liu Rui-xin; Xu Yan-chun [Yanzhou Mining Group Ltd., Zoucheng (China)

    2008-02-15

    Evaluating shaft safety and establishing a system for controlling engineering information is very important because more than 90 shafts in thick alluvial areas suddenly have shaft wall fracturing or breaking problems and there are more than a few hundred shafts of similar geologic conditions. Taking shaft control in the Yangzhou Coal Mining Group as an example, an assessment and management system and related software were established. This system includes basic information of the mine, measurement results and analysis, and functions of empirical and theoretical forecasting and finite element analysis, which are confirmed to be very effective for guiding shaft well control engineering in practice. 8 refs., 3 figs., 2 tabs.

  6. Outline and results of study on excavation response of rock mass around shaft in shaft excavation effects project

    International Nuclear Information System (INIS)

    Sugihara, Kozo; Matsui, Hiroya; Sato, Toshinori

    1993-01-01

    A shaft, with a diameter of 6 m and a depth of 150 m, has been newly excavated in sedimentary rock and excavation response of rock mass around the shaft has been measured and analyzed. Excavation response has been evaluated based on the results of measurement of rock mass movement, such as displacement and strain, and change of rock property, such as deformability and permeability. This study indicates that rock property has been changed with in about 1 m from the shaft wall, and rock mass movement and property change has been influenced by rock facies, fracture and re-distributed stress. The relation between property change and these factors is remained to be evaluated in future study. (author)

  7. Parametric study of laminated composite material shaft of high speed rotor-bearing system

    Science.gov (United States)

    Gonsalves, Thimothy Harold; Kumar, G. C. Mohan; Ramesh, M. R.

    2018-04-01

    In this paper some of the important parameters that influence the effectiveness of composite material shaft of high speed rotor-bearing system on rotor dynamics are analyzed. The type of composite material composition, the number of layers along with their stacking sequences are evaluated as they play an important role in deciding the best configuration suitable for the high-speed application. In this work the lateral modal frequencies for five types of composite materials shaft of a high-speed power turbine rotor-bearing system and stresses due to operating torque are evaluated. The results are useful for the selection of right combination of material, number of layers and their stacking sequences. The numerical analysis is carried out using the ANSYS Rotor dynamic analysis features.

  8. DC Control Effort Minimized for Magnetic-Bearing-Supported Shaft

    Science.gov (United States)

    Brown, Gerald V.

    2001-01-01

    A magnetic-bearing-supported shaft may have a number of concentricity and alignment problems. One of these involves the relationship of the position sensors, the centerline of the backup bearings, and the magnetic center of the magnetic bearings. For magnetic bearings with permanent magnet biasing, the average control current for a given control axis that is not bearing the shaft weight will be minimized if the shaft is centered, on average over a revolution, at the magnetic center of the bearings. That position may not yield zero sensor output or center the shaft in the backup bearing clearance. The desired shaft position that gives zero average current can be achieved if a simple additional term is added to the control law. Suppose that the instantaneous control currents from each bearing are available from measurements and can be input into the control computer. If each control current is integrated with a very small rate of accumulation and the result is added to the control output, the shaft will gradually move to a position where the control current averages to zero over many revolutions. This will occur regardless of any offsets of the position sensor inputs. At that position, the average control effort is minimized in comparison to other possible locations of the shaft. Nonlinearities of the magnetic bearing are minimized at that location as well.

  9. Common-mode Voltage Reduction in a Motor Drive System with a Power Factor Correction

    DEFF Research Database (Denmark)

    Adabi, J.; Boora, A.A.; Zare, F.

    2012-01-01

    Common-mode voltage generated by a power converter in combination with parasitic capacitive couplings is a potential source of shaft voltage in an AC motor drive system. In this study, a three-phase motor drive system supplied with a single-phase AC-DC diode rectifier is investigated in order...... to reduce shaft voltage in a three-phase AC motor drive system. In this topology, the AC-DC diode rectifier influences the common-mode voltage generated by the inverter because the placement of the neutral point is changing in different rectifier circuit states. A pulse width modulation technique...

  10. A review of drilled shaft sealing for the Basalt Waste Isolation Project

    International Nuclear Information System (INIS)

    1981-01-01

    Questions have been raised concerning the ability of the drillers of the exploratory shaft for the Basalt Waste Isolation program to develop an effective seal against water inflow down the annular space between the shaft casing and shaft wall into the mined chambers. We understand the need for shaft integrity and the concern of those responsible for the shaft planning. The purpose of this report is to give documentation to allay the fears of those who may have questions remaining in their minds concerning the prospects for a dry shaft. Included in this report are discussions of five projects where shaft sealing was effective in drilled shafts and one project where the material which is recommended for the exploratory shaft was used effectively in a conventional shaft. Also discussed is the recommended multitier approach toward shaft sealing which will, if adopted, use all of the current state of the art techniques to assure the watertightness of the shaft. It should be pointed out that none of the projects described here used all of the safeguards which are recommended in this program. If any of the materials and procedures recommended here are omitted, then of course the possibility increases for water migration through the casing-borehole annulus. It is our considered opinion that if the program recommended is adopted there will be no water inflow into the shaft, but if we are wrong or if, through human error, the program is not executed correctly, that we have devices and procedures available to us which will facilitate remedial work to perfect seal in the shaft. 4 refs., 3 figs., 1 tab

  11. Optimum heat power cycles for specified boundary conditions

    International Nuclear Information System (INIS)

    Ibrahim, O.M.; Klein, S.A.; Mitchell, J.W.

    1991-01-01

    In this paper optimization of the power output of Carnot and closed Brayton cycles is considered for both finite and infinite thermal capacitance rates of the external fluid streams. The method of Lagrange multipliers is used to solve for working fluid temperatures that yield maximum power. Analytical expressions for the maximum power and the cycle efficiency at maximum power are obtained. A comparison of the maximum power from the two cycles for the same boundary conditions, i.e., the same heat source/sink inlet temperatures, thermal capacitance rates, and heat exchanger conductances, shows that the Brayton cycle can produce more power than the Carnot cycle. This comparison illustrates that cycles exist that can produce more power than the Carnot cycle. The optimum heat power cycle, which will provide the upper limit of power obtained from any thermodynamic cycle for specified boundary conditions and heat exchanger conductances is considered. The optimum heat power cycle is identified by optimizing the sum of the power output from a sequence of Carnot cycles. The shape of the optimum heat power cycle, the power output, and corresponding efficiency are presented. The efficiency at maximum power of all cycles investigated in this study is found to be equal to (or well approximated by) η = 1 - sq. root T L.in /φT H.in where φ is a factor relating the entropy changes during heat rejection and heat addition

  12. Torsional Moment Measurement on Bucket Wheel Shaft of Giant Machine

    Directory of Open Access Journals (Sweden)

    Jiří FRIES

    2011-06-01

    Full Text Available Bucket wheel loading at the present time (torsional moment on wheel shaft, peripheral cutting force is determined from electromotor incoming power or reaction force measured on gearbox hinge. Both methods together are weighted by steel construction absorption of driving units and by inertial forces of motor rotating parts. In the article is described direct method of the torsional moment measurement, which eliminates mentioned unfavourable impacts except absorption of steel construction of bucket wheel itself.

  13. Application of a hydrophilic Fe-Co magnetic fluid to the oil seal of a rotary shaft

    International Nuclear Information System (INIS)

    Lee, J. H.; Ryu, B. O.; Song, W. S.; Hong, G. P.; Zoo, Y. S.

    2003-01-01

    Existing oil seals of rotary shafts are made of rubber or ceramic goods (rubber retainer or mechanical seal). Thus if they are used for a long time, lubricant's leakage is induced from the gap between the shaft and bearings because of stiffening and abrading on the quality of seals due to the friction between rotating shaft and oil seal. Therefore the oil seals is restricted to durability limits and caused to require a quick change of the seal parts and to require significant man - powers for the complicated fabrication of seals. This study is established from the idea for working out these problems. This seal is composed of magnetic fluid to stop up oil in seals. As magnetic fluid between shaft and oil seal stops up oil in seals during rotating shaft, there is a friction but isn't an abrasion between shaft and oil seal so that there is no problem of the durability limits. In this study, with Fe- Co magnetic fluid is produced by hydrophilic ethylene glycol medium, Fe- Co(30 % : Co) powder, ring structure's Nd- permanent magnet of magnetic field strength 3300 Gauss and pole-piece(thickness : 1 mm, mild steel plate). With this arrangement the performance is such that the maximum resisting pressure of the oil seal apparatus was measured to be 25 kg/ cm 2 at the shaft speed 1800 rpm. It is believed that this magnetic fluid of Fe-Co powder used at the oil seal apparatus is the highest value among magnetic fluids in use until now. In an innovation this can give the advantages of lower noise, longer durability, and airtight of sealing as the contact of shaft (solid) to be friction and magnetic fluid(liquid) to seal. For that reason, this magnetic fluid of Fe-Co powder not only has enough specificity about the oil seal of rotary shaft but also shows enough quality as resisting pressure seal apparatus. Applications of this seal include all kinds of pump like high damping seal. This seal apparatus is economical and has an excellent sealing efficiency which can not be

  14. Construction features of the exploratory shaft at Yucca Mountain

    International Nuclear Information System (INIS)

    Adair, G.W.; Fiore, J.N.

    1984-01-01

    The Exploratory Shaft (ES) at Yucca Mountain is planned to be constructed during 1985 and 1986 as part of the detailed site characterization for one of three sites which may be selected as candidates for location of a high-level radioactive waste repository. Conventional mining methods will be used for the shaft sinking phase of the ES project. The ES will be comprised of surface support facilities, a 1480-ft-deep circular shaft lined with concrete to a finished inside diameter of 12 ft, lateral excavations and test installations extending up to 200 ft from the shaft, and long lateral borings extending up to 2300 ft from the shaft. The estimated time for sinking the shaft to a total depth of about 1480 ft and completing the lateral excavations and borings is about two years. The major underground development planned for the primary test level at a depth of 1200 ft consists of the equivalent of 1150 ft of 15- by 15-ft drift. The total volume of rock to be removed from the shaft proper and the lateral excavations totals about 1/2 million cubic feet. Construction equipment for the shaft and underground excavation phases consists of conventional mine hoisting equipment, shot hole and rock bolt drilling jumbos, mucking machines, and hauling machines. The desire to maintain relatively uniform and even walls in selected shaft and drift intervals will require that controlled blasting techniques be employed. Certain lateral boring operations associated with tests to be conducted in the underground development may pose some unusual problems or require specialized equipment. One of the operations is boring and lining a 30-in.-diam by 600-ft-long horizontal hole with a boring machine being developed under the direction of Sandia National Laboratories. Another special operation is coring long lateral holes (500 to 2000 ft) with minimum use of liquid circulating fluids. 8 figures

  15. DECOVALEX II project. Nirex RCF Shaft Excavation Task 1C - Coupled hydro-mechanical effects of shaft sinking within Sector 7

    International Nuclear Information System (INIS)

    Hakami, H.

    1999-12-01

    Within the framework for an international co-operation in the field of geohydrological and mechanical processes associated with radioactive waste disposal deep in rock masses (DECOVALEX II), the present work involved a number of numerical investigations in order to gain an understanding of the consequences a shaft sinking at Sellafield, England, may bring about. Research groups from five countries approached the modelling of the shaft sinking in the rock mass in question with different numerical methods. Both continuum as well as discontinuum representations of the rock mass were made. Itasca chose the code FLAC 3D , a three dimensional finite difference based computer code to carry out the numerical analyses necessary. As a first approach, an equivalent material model was chosen where discontinuities at all levels assumed to have smeared out in a rock matrix, to produce a theoretical material that would behave elasto-plastically under loading. By selecting the Mohr-Coulomb failure criterion, numerical analyses were carried out that depicted the perturbations in stress and deformational field, the shaft sinking would produce. The sinking of the shaft disturbs the flow regime of the rock mass. By presuming a number of assumptions, the approximate discharge into selected sections of the shaft were computed. Also, by numerically 'monitoring' the pore pressure drawdowns in two boreholes in close vicinity of the shaft the effect of the shaft sinking on the flow was evaluated. Having evaluated the outcome of the first series of the numerical analyses, improvements were made in the model set-up, by introducing three major flow zones with enhanced porosity and permeability in a grid that was otherwise a low conductive medium with very low porosity. A new set of flow analyses were carried out that typified the effect of the added flow zones on the general characteristics of flow in the rock mass in question. Also, by introducing a new failure criterion emerged from both

  16. DECOVALEX II project. Nirex RCF Shaft Excavation Task 1C - Coupled hydro-mechanical effects of shaft sinking within Sector 7

    Energy Technology Data Exchange (ETDEWEB)

    Hakami, H. [Itasca Geomekanik AB, Stockholm (Sweden)

    1999-12-01

    Within the framework for an international co-operation in the field of geohydrological and mechanical processes associated with radioactive waste disposal deep in rock masses (DECOVALEX II), the present work involved a number of numerical investigations in order to gain an understanding of the consequences a shaft sinking at Sellafield, England, may bring about. Research groups from five countries approached the modelling of the shaft sinking in the rock mass in question with different numerical methods. Both continuum as well as discontinuum representations of the rock mass were made. Itasca chose the code FLAC{sup 3D}, a three dimensional finite difference based computer code to carry out the numerical analyses necessary. As a first approach, an equivalent material model was chosen where discontinuities at all levels assumed to have smeared out in a rock matrix, to produce a theoretical material that would behave elasto-plastically under loading. By selecting the Mohr-Coulomb failure criterion, numerical analyses were carried out that depicted the perturbations in stress and deformational field, the shaft sinking would produce. The sinking of the shaft disturbs the flow regime of the rock mass. By presuming a number of assumptions, the approximate discharge into selected sections of the shaft were computed. Also, by numerically 'monitoring' the pore pressure drawdowns in two boreholes in close vicinity of the shaft the effect of the shaft sinking on the flow was evaluated. Having evaluated the outcome of the first series of the numerical analyses, improvements were made in the model set-up, by introducing three major flow zones with enhanced porosity and permeability in a grid that was otherwise a low conductive medium with very low porosity. A new set of flow analyses were carried out that typified the effect of the added flow zones on the general characteristics of flow in the rock mass in question. Also, by introducing a new failure criterion emerged

  17. POWER CYCLE AND STRESS ANALYSES FOR HIGH TEMPERATURE GAS-COOLED REACTOR

    International Nuclear Information System (INIS)

    Oh, Chang H; Davis, Cliff; Hawkes, Brian D; Sherman, Steven R

    2007-01-01

    The Department of Energy and the Idaho National Laboratory are developing a Next Generation Nuclear Plant (NGNP) to serve as a demonstration of state-of-the-art nuclear technology. The purpose of the demonstration is two fold (1) efficient low cost energy generation and (2) hydrogen production. Although a next generation plant could be developed as a single-purpose facility, early designs are expected to be dual-purpose. While hydrogen production and advanced energy cycles are still in its early stages of development, research towards coupling a high temperature reactor, electrical generation and hydrogen production is under way. Many aspects of the NGNP must be researched and developed in order to make recommendations on the final design of the plant. Parameters such as working conditions, cycle components, working fluids, and power conversion unit configurations must be understood. Three configurations of the power conversion unit were demonstrated in this study. A three-shaft design with three turbines and four compressors, a combined cycle with a Brayton top cycle and a Rankine bottoming cycle, and a reheated cycle with three stages of reheat were investigated. An intermediate heat transport loop for transporting process heat to a High Temperature Steam Electrolysis (HTSE) hydrogen production plant was used. Helium, CO2, and a 80% nitrogen, 20% helium mixture (by weight) were studied to determine the best working fluid in terms cycle efficiency and development cost. In each of these configurations the relative component size were estimated for the different working fluids. The relative size of the turbomachinery was measured by comparing the power input/output of the component. For heat exchangers the volume was computed and compared. Parametric studies away from the baseline values of the three-shaft and combined cycles were performed to determine the effect of varying conditions in the cycle. This gives some insight into the sensitivity of these cycles to

  18. Design and Delivery of HMT Half-Shaft Prototype

    Science.gov (United States)

    2012-11-01

    spindle welded to the outer joint output is ease of Design  and Delivery of HMT Half‐ Shaft  Prototype    24    assembly. Flange 1 contains threaded... spindle , and splined shafts . Also, the spindle of the production design is splined to match the splines of the hub internals. 2.2. Analysis The...inner-joint (Figure 33). Design  and Delivery of HMT Half‐ Shaft  Prototype    27      Figure 33: FBD of Flange/ Spindle Applying Newton’s Laws to the

  19. Impact of Shaft Stiffness on Inertial Response of Fixed Speed Wind Turbines

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    Future power' system faces several challenges, one of them is the high penetration level of intermittent wind power generation, providing small or even no inertial response and being not contributing to the frequency stability. The effect of shaft stiffness on inertial response of fixed speed wind turbines is presented. Four different drive-train models based on the multi-body system are developed. The small-signal analysis demonstrates no significant differences between models in terms of electro-mechanical eigen-values for increasing shaft stiffness. The natural resonance frequency of drive-train torsion modes shows slightly different values between damped and undamped models, but no significant differences are found in the number-mass models. Time-domain simulations show the changes in the active power contribution of a wind farm based on a fixed speed wind turbine during the system frequency disturbance. The changes in the kinetic energy during the dynamic process are calculated and their contribution to the inertia constant is small and effective. The largest contribution of the kinetic energy is provided at the beginning of the system frequency disturbance to reduce the rate of the frequency change, it is positive for the frequency stability.

  20. High efficiency heat transport and power conversion system for cascade

    International Nuclear Information System (INIS)

    Maya, I.; Bourque, R.F.; Creedon, R.L.; Schultz, K.R.

    1985-02-01

    The Cascade ICF reactor features a flowing blanket of solid BeO and LiAlO 2 granules with very high temperature capability (up to approx. 2300 K). The authors present here the design of a high temperature granule transport and heat exchange system, and two options for high efficiency power conversion. The centrifugal-throw transport system uses the peripheral speed imparted to the granules by the rotating chamber to effect granule transport and requires no additional equipment. The heat exchanger design is a vacuum heat transfer concept utilizing gravity-induced flow of the granules over ceramic heat exchange surfaces. A reference Brayton power cycle is presented which achieves 55% net efficiency with 1300 K peak helium temperature. A modified Field steam cycle (a hybrid Rankine/Brayton cycle) is presented as an alternate which achieves 56% net efficiency

  1. Proceedings of the conference on shaft drilling technology

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    This book contains the following topics, Market analysis, World-wide operations, Innovative drilling and boring, Raise boring, Shaft lining and fittings, Entry considerations for the Yucca Mountain exploratory shaft facility for potential Radioactive Waste Disposal, Drilling rigs in the coal industry

  2. Cephalomedullary fixation for femoral neck/intertrochanteric and ipsilateral shaft fractures: surgical tips and pitfalls

    Directory of Open Access Journals (Sweden)

    Bali Kamal

    2013-02-01

    Full Text Available 【Abstract】Objective: Surgical management op-tions for femoral shaft fracture and ipsilateral proximal fe-mur fracture vary from single-implant to double-implant fixation. Cephalomedullary fixation in such fractures has rela-tive advantages over other techniques especially because of less soft tissue dissection and immediate postoperative weight bearing with accelerated rehabilitation. However, the surgery is technically demanding and there is a paucity of literature describing the surgical techniques for this fixation. The aim of the study was to describe the surgical technique of cephalomedullary fixation for femoral shaft fracture and ipsilateral proximal femur fracture. Methods: Sixteen cases (10 males and 6 females with a mean age of 41.8 years of ipsilateral proximal femur and shaft fractures were treated by single-stage cephalomedullary fixa-tion at tertiary level trauma center in northern India. The fractures were classified according to AO classification. An intraoperative record of duration of surgery as well as tech-nical challenges unique to each fracture pattern was kept for all the patients. Results: The most common proximal femoral pattern was AO B2.1 observed in 9 of our patients. The AO B2.3 fractures were seen in 4 patients while the AO A1.2 fractures in 3 patients. Four of the AO B2.1 and 2 of the AO B2.3 frac-tures required open reduction with Watson-Jones approach. The mean operative time was around 78 minutes, which tended to decrease as the surgical experience increased. There was only one case of malreduction, which required revision surgery. Conclusion: Combination of ipsilateral femoral shaft fracture and neck/intertrochanteric fracture is a difficult frac-ture pattern for trauma surgeons. Cephalomedullary nail is an excellent implant for such fractures but it requires careful insertion to avoid complications. Surgery is technically de-manding with a definite learning curve. Nevertheless, a ma-jority of these

  3. A Conceptual Study of Using an Isothermal Compressor on a Supercritical CO_2 Brayton Cycle for SMART Application

    International Nuclear Information System (INIS)

    Heo, Jin Young; Lee, Jeong Ik; Ahn, Yoonhan

    2016-01-01

    To maximize the benefits of modularization, the supercritical CO_2 (S-CO_2) power cycle can replace the conventional steam Rankine cycle to increase the cycle efficiency and reduce its system size. Previous works have been conducted to evaluate potential advantages of applying the S-CO_2 cycle to SMRs, specifically to SMART (System-integrated Modular Advanced Reactor) which is an integral SMR developed by KAERI (Korea Atomic Energy Institute). One of the optimized S-CO_2 cycle layouts is the recompressing Brayton cycle. This paper attempts to improve the cycle layout by replacing the conventional compressor with an isothermal compressor, of which its potential in the S-CO_2 power cycle is conceptually being evaluated. The SMR applications, for which SMART reactor has been represented, can take advantage of the currently developing S-CO_2 cycle greatly by the reduction of size. By introducing the isothermal compressor, the cycle layout considered in has been further improved by increasing the cycle net efficiency by around 0.5%

  4. Health monitoring system for transmission shafts based on adaptive parameter identification

    Science.gov (United States)

    Souflas, I.; Pezouvanis, A.; Ebrahimi, K. M.

    2018-05-01

    A health monitoring system for a transmission shaft is proposed. The solution is based on the real-time identification of the physical characteristics of the transmission shaft i.e. stiffness and damping coefficients, by using a physical oriented model and linear recursive identification. The efficacy of the suggested condition monitoring system is demonstrated on a prototype transient engine testing facility equipped with a transmission shaft capable of varying its physical properties. Simulation studies reveal that coupling shaft faults can be detected and isolated using the proposed condition monitoring system. Besides, the performance of various recursive identification algorithms is addressed. The results of this work recommend that the health status of engine dynamometer shafts can be monitored using a simple lumped-parameter shaft model and a linear recursive identification algorithm which makes the concept practically viable.

  5. Real-time monitoring of wind turbine generator shaft alignment using laser measurement.

    OpenAIRE

    Mankowski, O.; Wang, Q.

    2013-01-01

    Shaft Misalignment is one of the most common sources of trouble of wind turbine drive train when rigid couplings connect the shafts. Ideal alignment of the shaft is difficult to be obtained and the couplings attached to the shaft may present angular or parallel misalignment defined also as lateral and axially misalignment. Despite misalignment is often observed in the practice, there are relatively few studies on wind turbine shaft misalignment in the literature and their results are sometime...

  6. WIPP air-intake shaft disturbed-rock zone study

    International Nuclear Information System (INIS)

    Dale, T.; Hurtado, L.D.

    1996-01-01

    The disturbed-rock zone surrounding the air-intake shaft at the Waste Isolation Pilot Plant (WIPP) site was investigated to determine the extent and the permeability of the disturbed-rock zone as a function of radial distance from the 6.1 m diameter shaft, at different elevations within the Salado. Gas- and brine-permeability tests were performed in the bedded halite of the Salado formation at two levels within the air-intake shaft. The gas- and brine-permeability test results demonstrated that the radial distance to an undisturbed formation permeability of 1 x 10 -21 m 2 was less than 3.0 m

  7. Conceptual design of shaft seals for a nuclear waste disposal vault

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-04-01

    The concept of a disposal vault in the Canadian Shield for the effective isolation of nuclear fuel wastes is being assessed as part of the Canadian Nuclear Fuel Waste Management Program. The vault would be accessed from the surface by a number of shafts, which would likely penetrate the vault environment and intersect significant rock fractures and thereby form preferential pathways for the migration of radionuclides from the disposal area to the biosphere. Golder Associates were retained to conduct a conceptual design study of sealing and backfilling the shafts. The first volume of this report reviews current shaft sinking and lining technologies, and recommends the preferred construction methods for the shafts. Factors that could affect the design of a shaft seal system are reviewed, and a conceptual shaft seal is proposed. The second volume addresses the performance assessment of a shaft seal system. While there are no specific performance criteria against which to compare the anticipated containment characteristics of the shaft seal system proposed, the methodology developed for the performance assessment of the reference design should enable the design to be modified to meet performance criteria as they are developed. The report estimates that it will cost $133.7 million in 1986 Canadian dollars to seal three reference shafts, including $18 million for labour and equipment, $103.4 million for backfill and sealing materials, $9.5 million for project indirect costs, and $2.8 million project management. (author). 53 refs., 36 tabs., 43 figs.

  8. Conceptual design of shaft seals for a nuclear waste disposal vault

    International Nuclear Information System (INIS)

    1993-04-01

    The concept of a disposal vault in the Canadian Shield for the effective isolation of nuclear fuel wastes is being assessed as part of the Canadian Nuclear Fuel Waste Management Program. The vault would be accessed from the surface by a number of shafts, which would likely penetrate the vault environment and intersect significant rock fractures and thereby form preferential pathways for the migration of radionuclides from the disposal area to the biosphere. Golder Associates were retained to conduct a conceptual design study of sealing and backfilling the shafts. The first volume of this report reviews current shaft sinking and lining technologies, and recommends the preferred construction methods for the shafts. Factors that could affect the design of a shaft seal system are reviewed, and a conceptual shaft seal is proposed. The second volume addresses the performance assessment of a shaft seal system. While there are no specific performance criteria against which to compare the anticipated containment characteristics of the shaft seal system proposed, the methodology developed for the performance assessment of the reference design should enable the design to be modified to meet performance criteria as they are developed. The report estimates that it will cost $133.7 million in 1986 Canadian dollars to seal three reference shafts, including $18 million for labour and equipment, $103.4 million for backfill and sealing materials, $9.5 million for project indirect costs, and $2.8 million project management. (author). 53 refs., 36 tabs., 43 figs

  9. Grinding Method and Error Analysis of Eccentric Shaft Parts

    Science.gov (United States)

    Wang, Zhiming; Han, Qiushi; Li, Qiguang; Peng, Baoying; Li, Weihua

    2017-12-01

    RV reducer and various mechanical transmission parts are widely used in eccentric shaft parts, The demand of precision grinding technology for eccentric shaft parts now, In this paper, the model of X-C linkage relation of eccentric shaft grinding is studied; By inversion method, the contour curve of the wheel envelope is deduced, and the distance from the center of eccentric circle is constant. The simulation software of eccentric shaft grinding is developed, the correctness of the model is proved, the influence of the X-axis feed error, the C-axis feed error and the wheel radius error on the grinding process is analyzed, and the corresponding error calculation model is proposed. The simulation analysis is carried out to provide the basis for the contour error compensation.

  10. TNX/HLW Long Shaft Pumps 1995-2000

    International Nuclear Information System (INIS)

    VanPelt, B.

    2002-01-01

    Problems with long shaft pumps are becoming clearer due to increased use, better instrumentation, more analysis, and increased testing activity. The problems are with reliability and not with hydraulic performance. The root cause of reliability problems is usually excessive vibration caused by design. The outlook for satisfactory pumps is improved as understanding of problems increases. Promising developments are emerging such as the tilt pad bearing. Alternative configurations, such as gas filled columns and submerged motor pumps, will require development. Continued development, in general, should be expected due to changing technology and industry changes. This report describes thirteen distinct pump programs starting with leakage of original mixer pumps in the 1980s and ending with the testing of tilt pad bearings now in progress. Eight of the programs occurred from 1996 to 2000. All involve long shaft pumps; all involve testing at TNX; and all involve a problem of some kind. The co mmon technical issue among the activities is vibration and shaft (or rotor) instability due to journal bearings. In every case, excessive shaft vibration is a reasonable and probable explanation for some or all of the problems

  11. New endoscope shaft for endoscopic transsphenoidal pituitary surgery.

    NARCIS (Netherlands)

    Lindert, E.J. van; Grotenhuis, J.A.

    2005-01-01

    OBJECTIVE: To describe a new endoscope shaft developed for suction-aspiration during endoscopic transsphenoidal pituitary surgery. METHODS: A custom-made shaft for a Wolf endoscope (Richard Wolf GmbH, Knittlingen, Germany) was developed with a height of 10 mm and a width of 5 mm, allowing an

  12. Improved circumferential shaft seal

    Science.gov (United States)

    Ludwig, L. P.; Strom, T. N.

    1974-01-01

    Comparative tests of modified and unmodified carbon ring seals showed that addition of helical grooves to conventional segmented carbon ring seals reduced leakage significantly. Modified seal was insensitive to shaft runout and to flooding by lubricant.

  13. Research on RCP400-TB50 type reactor coolant pump shaft seal failure analysis and monitoring method

    International Nuclear Information System (INIS)

    Yuan Chaolian; Shen Yuxian; Wang Chuan; Du Pengcheng

    2014-01-01

    Mechanical seal is widely applied in mechanical devices of nuclear power plant. 3-stages mechanical seal applied in reactor coolant pump (abbreviate to RCP) is a kind of product with top technology and manufacture difficulty. As the only running machine in primary loop of nuclear power plant, RCP is designed with high security, reliability and perform ability. So performance of its key component, 3-stages mechanical seal, could directly decide whether units can operate safely and reliably. In this paper mechanical seal used in RCP400-TB50 type RCP which in designed and manufactured by Andritz AG is selected as a typical example of dynamic pressure type mechanical seal applied in second generation NPP. Its structure and working principle is expounded. Engineering fluid mechanics theory is used to establish the mathematical model using for analyzing status of mechanical seal and deducing the theoretical formula. Its correctness is verified by compare with the test data. So that research result can be used as the theoretical basis for analysis of RCP400-TB50 RCP shaft seal's working condition. According to the shaft seal operation characteristic we can establish a suitable RCP shaft seal monitoring method and interlock protection setting for NPP operation. (authors)

  14. FIXTURING DEVICE FOR DRILLING A STRAIGHT SHAFT

    Directory of Open Access Journals (Sweden)

    SUSAC, Florin

    2017-05-01

    Full Text Available The paper presents a fixturing device used for machining by drilling a straight shaft. The shaft was manufactured on EMCO CONCEPT TURN 55 CNC. The blank used was a bar with circular cross-section. The orientation and fixing scheme of the part and the orientation elements for fixturing device are presented as they were drawn in Autodesk Inventor and AutoCAD software.

  15. Coupling with concentric contact around motor shaft for line start synchronous motor

    Science.gov (United States)

    Melfi, Michael J.; Burdeshaw, Galen E.

    2017-10-03

    A method comprises providing a line-start synchronous motor. The motor has a stator, a rotor core disposed within the stator, and a motor shaft. In accordance with a step of the method, a coupling for coupling a load to the motor is provided. The coupling has a motor shaft attachment portion configured to provide substantially concentric contact around the shaft at the end of the motor shaft. The coupling has a load attachment portion configured to operatively connect to a load. In accordance with a step of the method, a load is coupled to the motor with the coupling, and driven from start to at least near synchronous speed during steady state operation of the motor with a load coupled thereto. The motor shaft attachment portion may comprise a bushing assembly with matching and opposed tapered surfaces that cooperate to secure the motor shaft attachment portion around the motor shaft.

  16. Waste and dust utilisation in shaft furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Senk, D.; Babich, A.; Gudenau, H.W. [Rhein Westfal TH Aachen, Aachen (Germany)

    2005-07-01

    Wastes and dusts from steel industry, non-ferrous metallurgy and other branches can be utilised e.g. in agglomeration processes (sintering, pelletising or briquetting) and by injection into shaft furnaces. This paper deals with the second way. Combustion and reduction behaviour of iron- and carbon-rich metallurgical dusts and sludges containing lead, zinc and alkali as well as other wastes with and without pulverised coal (PC) has been studied when injecting into shaft furnaces. Following shaft furnaces have been examined: blast furnace, cupola furnace, OxiCup furnace and imperial-smelting furnace. Investigations have been done at laboratory and industrial scale. Some dusts and wastes under certain conditions can be not only reused but can also improve combustion efficiency at the tuyeres as well as furnace performance and productivity.

  17. Deep shaft high rate aerobic digestion: laboratory and pilot plant performance

    Energy Technology Data Exchange (ETDEWEB)

    Tran, F; Gannon, D

    1981-01-01

    The Deep Shaft is essentially an air-lift reactor, sunk deep in the ground (100-160 m); the resulting high hydrostatic pressure together with very efficient mixing in the shaft provide extremely high O transfer efficiencies (O.T.E.) of less than or equal to 90% vs. 4-20% in other aerators. This high O.T.E. suggests real potential for Deep-Shaft technology in the aerobic digestion of sludges and animal wastes: with conventional aerobic digesters an O.T.E. over 8% is extremely difficult to achieve. Laboratory and pilot plant Deep-Shaft aerobic digester studies carried out at Eco-Research's Pointe Claire, Quebec laboratories, and at the Paris, Ontario pilot Deep-Shaft digester are described.

  18. Magnetic Actuation Connector Between Extension Shaft and Armature for Bottom Mounted Control Rod Drive Mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Huh, Hyung; Cho, Yeong Garp; Kim, Jong In [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    The electromagnet and armature inside the guide tube interact and produce magnetism, thus making the armature, connecting extension shaft and control rod move up and down to control the power of reactor. During the overhaul, the control absorber rod (CAR), extension shaft, and armature of BMCRDM are lifted together for closing a seal valve. But total length of CAR assembly is so long that it cannot be lifted due to exposure above the water level of pool which is strictly controlled. In addition to this, it is difficult to calibrate a position indicator and lifting force of electromagnet without armature assembly as a seal valve is closed. For this reason, it is necessary to install a disconnecting system between armature and extension shaft. Therefore, KAERI has developed magnetic actuation connector using plunger between armature and extension shaft for the bottom mounted control rod drive mechanism in research reactor. The results of a FEM and the experiments in this work lead to the following conclusions: The FEM result for the design of the magnetic actuation connector is compared with the measured lifting force of prototype production. As a result, it is shown that the lifting force of the prototype connector has a good agreement with the result of the FEM. A newly developed technique of prototype magnetic actuation connector which is designed by FEM analysis result is proposed.

  19. Magnetic Actuation Connector Between Extension Shaft and Armature for Bottom Mounted Control Rod Drive Mechanism

    International Nuclear Information System (INIS)

    Huh, Hyung; Cho, Yeong Garp; Kim, Jong In

    2013-01-01

    The electromagnet and armature inside the guide tube interact and produce magnetism, thus making the armature, connecting extension shaft and control rod move up and down to control the power of reactor. During the overhaul, the control absorber rod (CAR), extension shaft, and armature of BMCRDM are lifted together for closing a seal valve. But total length of CAR assembly is so long that it cannot be lifted due to exposure above the water level of pool which is strictly controlled. In addition to this, it is difficult to calibrate a position indicator and lifting force of electromagnet without armature assembly as a seal valve is closed. For this reason, it is necessary to install a disconnecting system between armature and extension shaft. Therefore, KAERI has developed magnetic actuation connector using plunger between armature and extension shaft for the bottom mounted control rod drive mechanism in research reactor. The results of a FEM and the experiments in this work lead to the following conclusions: The FEM result for the design of the magnetic actuation connector is compared with the measured lifting force of prototype production. As a result, it is shown that the lifting force of the prototype connector has a good agreement with the result of the FEM. A newly developed technique of prototype magnetic actuation connector which is designed by FEM analysis result is proposed

  20. State space model extraction of thermohydraulic systems – Part II: A linear graph approach applied to a Brayton cycle-based power conversion unit

    International Nuclear Information System (INIS)

    Uren, Kenneth Richard; Schoor, George van

    2013-01-01

    This second paper in a two part series presents the application of a developed state space model extraction methodology applied to a Brayton cycle-based PCU (power conversion unit) of a PBMR (pebble bed modular reactor). The goal is to investigate if the state space extraction methodology can cope with larger and more complex thermohydraulic systems. In Part I the state space model extraction methodology for the purpose of control was described in detail and a state space representation was extracted for a U-tube system to illustrate the concept. In this paper a 25th order nonlinear state space representation in terms of the different energy domains is extracted. This state space representation is solved and the responses of a number of important states are compared with results obtained from a PBMR PCU Flownex ® model. Flownex ® is a validated thermo fluid simulation software package. The results show that the state space model closely resembles the dynamics of the PBMR PCU. This kind of model may be used for nonlinear MIMO (multi-input, multi-output) type of control strategies. However, there is still a need for linear state space models since many control system design and analysis techniques require a linear state space model. This issue is also addressed in this paper by showing how a linear state space model can be derived from the extracted nonlinear state space model. The linearised state space model is also validated by comparing the state space model to an existing linear Simulink ® model of the PBMR PCU system. - Highlights: • State space model extraction of a pebble bed modular reactor PCU (power conversion unit). • A 25th order nonlinear time varying state space model is obtained. • Linearisation of a nonlinear state space model for use in power output control. • Non-minimum phase characteristic that is challenging in terms of control. • Models derived are useful for MIMO control strategies

  1. Gear-shaft linkage, especially for nuclear reactor coolant pumps

    International Nuclear Information System (INIS)

    Delaunois, T.; Lefevre, R.

    1990-01-01

    The pump comprises: - inlet and outlet channels for the pumped fluid - a rotating shaft - a gear wheel mounted on the shaft by an axial locking nut which can support the axial hydraulic force - a thermal barrier above the gear wheel. A hydrostatic bearing fitted to the exterior surround of the gear wheel, the gear shaft linkage is made by at least a centering and locating device having a cylindrical span and an axial stop and another independent device which can take up the torque [fr

  2. Classical Measurement Methods and Laser Scanning Usage in Shaft Hoist Assembly Inventory

    Science.gov (United States)

    Jaśkowski, Wojciech; Lipecki, Tomasz; Matwij, Wojciech; Jabłoński, Mateusz

    2018-03-01

    The shaft hoist assembly is the base of underground mining plant. Its efficiency and correct operation is subject to restrictive legal regulations and is controlled on a daily visual assessment by shaft crew and energomechanics. In addition, in the regular interval, the shaft hoist assembly is subject to a thorough inventory, which includes the determination of the geometrical relationships between the hoisting machine, the headframe and the shaft with its housing. Inventory measurements for shaft and headframe are used for years of conventional geodetic methods including mechanical or laser plumbing and tachymetric surveys. Additional precision levelling is also used for measuring shafts of hoisting machines and rope pulleys. Continuous modernization of measuring technology makes it possible to implement the further methods to the above mentioned purposes. The comparison of the accuracy and the economics of performing measurements based on many years of experience with comprehensive inventory of shaft hoist assembly using various research techniques was made and detailed in the article.

  3. Classical Measurement Methods and Laser Scanning Usage in Shaft Hoist Assembly Inventory

    Directory of Open Access Journals (Sweden)

    Jaśkowski Wojciech

    2018-01-01

    Full Text Available The shaft hoist assembly is the base of underground mining plant. Its efficiency and correct operation is subject to restrictive legal regulations and is controlled on a daily visual assessment by shaft crew and energomechanics. In addition, in the regular interval, the shaft hoist assembly is subject to a thorough inventory, which includes the determination of the geometrical relationships between the hoisting machine, the headframe and the shaft with its housing. Inventory measurements for shaft and headframe are used for years of conventional geodetic methods including mechanical or laser plumbing and tachymetric surveys. Additional precision levelling is also used for measuring shafts of hoisting machines and rope pulleys. Continuous modernization of measuring technology makes it possible to implement the further methods to the above mentioned purposes. The comparison of the accuracy and the economics of performing measurements based on many years of experience with comprehensive inventory of shaft hoist assembly using various research techniques was made and detailed in the article.

  4. Effect of centrifugal force on natural frequency of lateral vibration of rotating shafts

    Science.gov (United States)

    Behzad, M.; Bastami, A. R.

    2004-07-01

    This paper investigates the effect of shaft rotation on its natural frequency. Apart from gyroscopic effect, the axial force originated from centrifugal force and the Poisson effect results in change of shaft natural frequency. D'Alembert principle for shaft in cylindrical co-ordinate system, along with the stress-strain relation, gives the non-homogenous linear differential equation, which can be used to calculate axial stress in the shaft. Numerical results of this study show that axial stress produced by shaft rotation has a major effect on the natural frequency of long high-speed shafts, while shaft diameter has no influence on the results. In addition, change in lateral natural frequency due to gyroscopic effect is compared with the results of this study.

  5. Potential Improvements of Supercritical Recompression CO2 Brayton Cycle Coupled with KALIMER-600 by Modifying Critical Point of CO2

    International Nuclear Information System (INIS)

    Jeong, Woo Seok; Lee, Jeong Ik; Jeong, Yong Hoon; No, Hee Cheon

    2010-01-01

    Most of the existing designs of a Sodium cooled Fast Reactor (SFR) have a Rankine cycle as an electric power generation cycle. This has the risk of a sodium water reaction. To prevent any hazards from a sodium water reaction, an indirect Brayton cycle using Supercritical Carbon dioxide (S-CO 2 ) as the working fluids for a SFR is an alternative approach to improve the current SFR design. The supercritical Brayton cycle is defined as a cycle with operating conditions above the critical point and the main compressor inlet condition located slightly above the critical point of working fluid. This is because the main advantage of the cycle comes from significantly decreased compressor work just above the critical point due to high density near boundary between supercritical state and subcritical state. For this reason, the minimum temperature and pressure of cycle are just above the CO 2 critical point. In other words, the critical point acts as a limitation of the lowest operating condition of the cycle. In general, lowering the minimum temperature of a thermodynamic cycle can increase the efficiency and the minimum temperature can be decreased by shifting the critical point of CO 2 as mixed with other gases. In this paper, potential enhancement of S-CO 2 cycle coupled with KALIMER-600, which has been developed at KAERI, was investigated using a developed cycle code with a gas mixture property program

  6. Applications of power beaming from space-based nuclear power stations

    International Nuclear Information System (INIS)

    Powell, J.R.; Botts, T.E.; Hertzberg, A.

    1981-01-01

    Power beaming from space-based reactor systems is examined using an advanced compact, lightweight Rotating Bed Reactor (RBR). Closed Brayton power conversion efficiencies in the range of 30 to 40% can be achieved with turbines, with reactor exit temperatures on the order of 2000 0 K and a liquid drop radiator to reject heat at temperatures of approx. 500 0 K. Higher RBR coolant temperatures (up to approx. 3000 0 K) are possible, but gains in power conversion efficiency are minimal, due to lower expander efficiency (e.g., a MHD generator). Two power beaming applications are examined - laser beaming to airplanes and microwave beaming to fixed ground receivers. Use of the RBR greatly reduces system weight and cost, as compared to solar power sources. Payback times are a few years at present prices for power and airplane fuel

  7. Brayton isotope power system, phase I. Final report

    International Nuclear Information System (INIS)

    1978-01-01

    The Phase I program resulted in the development and ground demonstration of a dynamic power conversion system. The two key contractual objectives of 25% conversion efficiency and 1000 h of endurance testing were successfully met. As a result of the Phase I effort, the BIPS is a viable candidate for further development into a flight system capable of sustained operation in space. It represents the only known dynamic space power system to demonstrate the performance and endurance coupled with the simplicity necessary for reliable operation. This final report follows thirty-five monthly reports. For expediency, it makes liberal use of referenced documents which have been submitted to DOE during the course of the program

  8. Exploratory shaft conceptual design report: Permian Basin

    International Nuclear Information System (INIS)

    1983-07-01

    This conceptual design report summarizes the conceptualized design for an exploratory shaft facility at a representative site in the Permian Basin locatd in the western part of Texas. Conceptualized designs for other possible locations (Paradox Basin in Utah and Gulf Interior Region salt domes in Louisiana and Mississippi) are summarized in separate reports. The purpose of the exploratory shaft facility is to provide access to the reference repository horizon to permit in situ testing of the salt. The in situ testing is necessary to verify repository salt design parameters, evaluate isotropy and homogeneity of the salt, and provide a demonstration of the constructability and confirmation of the design to gain access to the repository. The fundamental purpose of this conceptual design report is to assure the feasibility of the exploratory shaft project and to develop a reliable cost estimate and realistic schedule. Because a site has not been selected and site-specific subsurface data are not available, it has been necessary to make certain assumptions in order to develop a conceptual design for an exploratory shaft facility in salt. As more definitive information becomes available to support the design process, adjustments in the projected schedule and estimated costs will be required

  9. Exploratory shaft conceptual design report: Paradox Basin

    International Nuclear Information System (INIS)

    1983-07-01

    This conceptual design report summarizes the conceptualized design for an exploratory shaft facility at a representative site in the Paradox Basin located in the southeastern part of Utah. Conceptualized designs for other possible locations (Permian Basin in Texas and Gulf Interior Region salt domes in Louisiana and Mississippi) are summarized in separate reports. The purpose of the exploratory shaft facility is to provide access to the reference repository horizon to permit in situ testing of the salt. The in-situ testing is necessary to verify repository salt design parameters, evaluate isotropy and homogeneity of the salt, and provide a demonstration of the constructability and confirmation of the design to gain access to the repository. The fundamental purpose of this conceptual design report is to assure the feasibility of the exploratory shaft project and to develop a reliable cost estimate and realistic schedule. Because a site has not been selected and site-specific subsurface data are not available, it has been necessary to make certain assumptions in order to develop a conceptual design for an exploratory shaft facility in salt. As more definitive information becomes available to support the design process, adjustments in the projected schedule and estimated costs will be required

  10. 10 CFR 60.134 - Design of seals for shafts and boreholes.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Design of seals for shafts and boreholes. 60.134 Section....134 Design of seals for shafts and boreholes. (a) General design criterion. Seals for shafts and... closure. (b) Selection of materials and placement methods. Materials and placement methods for seals shall...

  11. Proposed design procedure for transmission shafting under fatigue loading

    Science.gov (United States)

    Loewenthal, S. H.

    1978-01-01

    The B106 American National Standards Committee is currently preparing a new standard for the design of transmission shafting. A design procedure, proposed for use in the new standard, for computing the diameter of rotating solid steel shafts under combined cyclic bending and steady torsion is presented. The formula is based on an elliptical variation of endurance strength with torque exhibited by combined stress fatigue data. Fatigue factors are cited to correct specimen bending endurance strength data for use in the shaft formula. A design example illustrates how the method is to be applied.

  12. Device for selectively securing an object to a shaft

    International Nuclear Information System (INIS)

    Calizano, F.; Chauvel, M.

    1984-01-01

    A magnetic tape reel is secured to a reel drive motor shaft by a device including a hub secured to the shaft, a plurality of shoes, and actuating means for thrusting the shoes against the reel and for releasing them from contact with the reel. The securing device includes a cam mounted on the shaft in combination with a locking device including the cam periphery. The locking device thrusts the shoes against the object and is operated by rotation of the motor. The cam is immobilized in rotation while the shoes are locked

  13. Air intake shaft performance tests (Shaft 5): In situ data report (May 1988--July 1995). Waste Isolation Pilot Plant (WIPP) Thermal/Structural Interactions Program

    International Nuclear Information System (INIS)

    Munson, D.E.; Baird, G.T.; Jones, R.L.

    1995-07-01

    Data are presented from the Air Intake Shaft Test, an in situ test fielded at the Waste Isolation Pilot Plant (WIPP). The construction of this shaft, well after the initial three access shafts, presented an unusual opportunity to obtain valuable detailed data on the mechanical response of a shaft for application to seal design. These data include selected fielding information, test configuration, instrumentation activities, and comprehensive results from a large number of gages. Construction of the test began in December 1987; gage data in this report cover the period from May 1988 through July 1995, with the bulk of the data obtained after obtaining access in November, 1989 and from the heavily instrumented period after remote gage installation between May, 1990, and October, 1991

  14. Air intake shaft performance tests (Shaft 5): In situ data report (May 1988--July 1995). Waste Isolation Pilot Plant (WIPP) Thermal/Structural Interactions Program

    Energy Technology Data Exchange (ETDEWEB)

    Munson, D.E. [Sandia National Labs., Albuquerque, NM (United States). Repository Isolation Systems Dept.; Hoag, D.L.; Ball, J.R. [RE/SPEC Inc., Albuquerque, NM (United States); Baird, G.T.; Jones, R.L. [Tech Reps, Inc., Albuquerque, NM (United States)

    1995-07-01

    Data are presented from the Air Intake Shaft Test, an in situ test fielded at the Waste Isolation Pilot Plant (WIPP). The construction of this shaft, well after the initial three access shafts, presented an unusual opportunity to obtain valuable detailed data on the mechanical response of a shaft for application to seal design. These data include selected fielding information, test configuration, instrumentation activities, and comprehensive results from a large number of gages. Construction of the test began in December 1987; gage data in this report cover the period from May 1988 through July 1995, with the bulk of the data obtained after obtaining access in November, 1989 and from the heavily instrumented period after remote gage installation between May, 1990, and October, 1991.

  15. Determination of the critical bending speeds of a multy-rotor shaft from the vibration signal analysis

    Science.gov (United States)

    Crâştiu, I.; Nyaguly, E.; Deac, S.; Gozman-Pop, C.; Bârgău, A.; Bereteu, L.

    2018-01-01

    The purpose of this paper is the development and validation of an impulse excitation technique to determine flexural critical speeds of a single rotor shaft and multy-rotor shaft. The experimental measurement of the vibroacoustic response is carried out by using a condenser microphone as a transducer. By the means of Modal Analysis using Finite Element Method (FEM), the natural frequencies and shape modes of one rotor and three rotor specimens are determined. The vibration responses of the specimens, in simple supported conditions, are carried out using algorithms based on Fast Fourier Transform (FFT). To validate the results of the modal parameters estimated using Finite Element Analysis (FEA) these are compared with experimental ones.

  16. Comparison of Prime Movers Suitable for USMC Expeditionary Power Sources

    Energy Technology Data Exchange (ETDEWEB)

    Theiss, T J; Conklin, J. C.; Thomas, John F.; Armstrong, T. R.

    2000-04-18

    This report documents the results of the ORNL investigation into prime movers that would be desirable for the construction of a power system suitable for the United States Marine Corps (USMC) expeditionary forces under Operational Maneuvers From The Sea (OMFTS) doctrine. Discrete power levels of {approx}1, 5, 15, and 30 kW are considered. The only requirement is that the prime mover consumes diesel fuel. A brief description is given for the prime movers to describe their basic scientific foundations and relative advantages and disadvantages. A list of key attributes developed by ORNL has been weighted by the USMC to indicate the level of importance. A total of 14 different prime movers were scored by ORNL personnel in four size ranges (1,5, 15, & 30 kW) for their relative strength in each attribute area. The resulting weighted analysis was used to indicate which prime movers are likely to be suitable for USMC needs. No single engine or prime mover emerged as the clear-cut favorite but several engines scored as well or better than the diesel engine. At the higher load levels (15 & 30 kW), the results indicate that the open Brayton (gas turbine) is a relatively mature technology and likely a suitable choice to meet USMC needs. At the lower power levels, the situation is more difficult and the market alone is not likely to provide an optimum solution in the time frame desired (2010). Several prime movers should be considered for future developments and may be satisfactory; specifically, the Atkinson cycle, the open Brayton cycle (gas turbine), the 2-stroke diesel. The rotary diesel and the solid oxide fuel cell should be backup candidates. Of all these prime movers, the Atkinson cycle may well be the most suitable for this application but is an immature technology. Additional demonstrations of this engine will be conducted at ORNL. If this analysis is positive, then the performance of a generator set using this engine, the open Brayton and the 2-stroke diesel should

  17. Parameter optimization method for longitudinal vibration absorber of ship shaft system

    Directory of Open Access Journals (Sweden)

    LIU Jinlin

    2017-05-01

    Full Text Available The longitudinal vibration of the ship shaft system is the one of the most important factors of hull stern vibration, and it can be effectively minimized by installing a longitudinal vibration absorber. In this way, the vibration and noise of ships can be brought under control. However, the parameters of longitudinal vibration absorbers have a great influence on the vibration characteristics of the shaft system. As such, a certain shafting testing platform was studied as the object on which a finite model was built, and the relationship between longitudinal stiffness and longitudinal vibration in the shaft system was analyzed in a straight alignment state. Furthermore, a longitudinal damping model of the shaft system was built in which the parameters of the vibration absorber were non-dimensionalized, the weight of the vibration absorber was set as a constant, and an optimizing algorithm was used to calculate the optimized stiffness and damping coefficient of the vibration absorber. Finally, the longitudinal vibration frequency response of the shafting testing platform before and after optimizing the parameters of the longitudinal vibration absorber were compared, and the results indicated that the longitudinal vibration of the shafting testing platform was decreased effectively, which suggests that it could provide a theoretical foundation for the parameter optimization of longitudinal vibration absorbers.

  18. Liquid metal versus gas cooled reactor concepts for a turbo electric powered space vehicle

    International Nuclear Information System (INIS)

    Carre, F.; Proust, E.; Schwartz, J.P.

    1985-01-01

    Recent CNES/CEA prospective studies of an orbit transfer vehicule to be launched by ARIANE V, emphasize the advantage of the Brayton cycle over the thermionics and thermoelectricity, in minimizing the total mass of 100 to 300 kWsub(e) power systems under the constraint specific to ARIANE of a radiator area limited to 95 m 2 . The review of candidate reactor concepts for this application, finally recommends both liquid metal and gas cooled reactors, for their satisfactory adaptation to a reference Brayton cycle and for the available experience from the terrestrial operation of comparable systems

  19. Performance analysis for an irreversible variable temperature heat reservoir closed intercooled regenerated Brayton cycle

    International Nuclear Information System (INIS)

    Wang Wenhua; Chen Lingen; Sun Fengrui; Wu Chih

    2003-01-01

    In this paper, the theory of finite time thermodynamics is used in the performance analysis of an irreversible closed intercooled regenerated Brayton cycle coupled to variable temperature heat reservoirs. The analytical formulae for dimensionless power and efficiency, as functions of the total pressure ratio, the intercooling pressure ratio, the component (regenerator, intercooler, hot and cold side heat exchangers) effectivenesses, the compressor and turbine efficiencies and the thermal capacity rates of the working fluid and the heat reservoirs, the pressure recovery coefficients, the heat reservoir inlet temperature ratio, and the cooling fluid in the intercooler and the cold side heat reservoir inlet temperature ratio, are derived. The intercooling pressure ratio is optimized for optimal power and optimal efficiency, respectively. The effects of component (regenerator, intercooler and hot and cold side heat exchangers) effectivenesses, the compressor and turbine efficiencies, the pressure recovery coefficients, the heat reservoir inlet temperature ratio and the cooling fluid in the intercooler and the cold side heat reservoir inlet temperature ratio on optimal power and its corresponding intercooling pressure ratio, as well as optimal efficiency and its corresponding intercooling pressure ratio are analyzed by detailed numerical examples. When the heat transfers between the working fluid and the heat reservoirs are executed ideally, the pressure drop losses are small enough to be neglected and the thermal capacity rates of the heat reservoirs are infinite, the results of this paper replicate those obtained in recent literature

  20. Assessment of ceramic composites for MMW space nuclear power systems

    International Nuclear Information System (INIS)

    Besmann, T.M.

    1987-01-01

    Proposed multimegawatt nuclear power systems which operate at high temperatures, high levels of stress, and in hostile environments, including corrosive working fluids, have created interest in the use of ceramic composites as structural materials. This report assesses the applicability of several ceramic composites in both Brayton and Rankine cycle power systems. This assessment considers an equilibrium thermodynamic analysis and also a nonequilibrium assessment. (FI)

  1. Power unit with GT-MHR reactor plant for electricity production and district heating

    International Nuclear Information System (INIS)

    Kiryushin, A.L.; Kodochigov, N.G.; Kuzavkov, N.G.; Golovko, V.F.

    2000-01-01

    Modular helium reactor with the gas turbine (GT-MHR) is a perspective power reactor plant for the next century. The project reactor is based on experience of operation more than 50 gas-cooled reactors on carbon dioxide and helium, and also on subsequent achievements in the field of realization direct gas turbine Brayton cycle. To the beginning of 90 years, achievements in technology of gas turbines, highly effective recuperators and magnetic bearings made it possible to start development of the reactor plant project combining a safe modular gas cooled reactor and a power conversion system, realizing the highly effective Brayton cycle. The conceptual project of the commercial GT-MHR reactor plant fulfilled in 1997 by joint efforts of international firms, combines a safe modular reactor with an annular active core of prismatic fuel blocks and a power conversion system with direct gas turbine cycle. The efficiency of GT-MHR gas turbine cycle at level of about 48% makes it competitive in the electricity production market in comparison with any fossil or nuclear power stations

  2. Thulium heat sources for space power applications

    International Nuclear Information System (INIS)

    Alderman, C.J.

    1992-05-01

    Reliable power supplies for use in transportation and remote systems will be an important part of space exploration terrestrial activities. A potential power source is available in the rare earth metal, thulium. Fuel sources can be produced by activating Tm-169 targets in the space station reactor. The resulting Tm-170 heat sources can be used in thermoelectric generators to power instrumentation and telecommunications located at remote sites such as weather stations. As the heat source in a dynamic Sterling or Brayton cycle system, the heat source can provide a lightweight power source for rovers or other terrestrial transportation systems

  3. Phase change energy storage for solar dynamic power systems

    Science.gov (United States)

    Chiaramonte, F. P.; Taylor, J. D.

    1992-01-01

    This paper presents the results of a transient computer simulation that was developed to study phase change energy storage techniques for Space Station Freedom (SSF) solar dynamic (SD) power systems. Such SD systems may be used in future growth SSF configurations. Two solar dynamic options are considered in this paper: Brayton and Rankine. Model elements consist of a single node receiver and concentrator, and takes into account overall heat engine efficiency and power distribution characteristics. The simulation not only computes the energy stored in the receiver phase change material (PCM), but also the amount of the PCM required for various combinations of load demands and power system mission constraints. For a solar dynamic power system in low earth orbit, the amount of stored PCM energy is calculated by balancing the solar energy input and the energy consumed by the loads corrected by an overall system efficiency. The model assumes an average 75 kW SD power system load profile which is connected to user loads via dedicated power distribution channels. The model then calculates the stored energy in the receiver and subsequently estimates the quantity of PCM necessary to meet peaking and contingency requirements. The model can also be used to conduct trade studies on the performance of SD power systems using different storage materials.

  4. Experiences with the operation of a shaft-helix in connection with a special steel ring lining in the shafts Gorleben 1 and 2

    International Nuclear Information System (INIS)

    Tonscheidt, H.W.; Kahl, J.

    1991-01-01

    When sinking the Gorleben 1 shaft good reasons prevented the method of drilling and blasting to create the excavation. Considering the special conditions and after a successful test, the application of a modified helix was given preference to an impact-ripper, tested on an other freeze shaft project. A report is given on the experiences gained with respect to the following criteria: Assembly, dismantling and transport of the machine in the shaft - conveyance of electric energy - dust problems when cutting the concrete plug and the means engaged to overcome those problems - performance in the different types of rock formation - cutting the circular shape of the excavation with sufficient accuracy - matters of safety in connection with cutting, loading and lining the excavation - consumption and costs of cutters - total costs. A final assessment of the excavation system is made with respect to its possible application with for shaft-sinking projects. (orig.) [de

  5. Analysis and optimization of dynamic model of eccentric shaft grinder

    Science.gov (United States)

    Gao, Yangjie; Han, Qiushi; Li, Qiguang; Peng, Baoying

    2018-04-01

    Eccentric shaft servo grinder is the core equipment in the process chain of machining eccentric shaft. The establishment of the movement model and the determination of the kinematic relation of the-axis in the grinding process directly affect the quality of the grinding process, and there are many error factors in grinding, and it is very important to analyze the influence of these factors on the work piece quality. The three-dimensional model of eccentric shaft grinder is drawn by Pro/E three-dimensional drawing software, the model is imported into ANSYS Workbench Finite element analysis software, and the finite element analysis is carried out, and then the variation and parameters of each component of the bed are obtained by the modal analysis result. The natural frequencies and formations of the first six steps of the eccentric shaft grinder are obtained by modal analysis, and the weak links of the parts of the grinder are found out, and a reference improvement method is proposed for the design of the eccentric shaft grinder in the future.

  6. Optimization of a regenerative Brayton cycle by maximization of a newly defined second law efficiency

    NARCIS (Netherlands)

    Haseli, Y.

    2013-01-01

    The idea is to find out whether 2nd law efficiency optimization may be a suitable trade-off between maximum work output and maximum 1st law efficiency designs for a regenerative gas turbine engine operating on the basis of an open Brayton cycle. The primary emphasis is placed on analyzing the ideal

  7. Development and validation of models for simulation of supercritical carbon dioxide Brayton cycles and application to self-propelling heat removal systems in boiling water reactors

    International Nuclear Information System (INIS)

    Venker, Jeanne

    2015-01-01

    The objective of the current work was to develop a model that is able to describe the transient behavior of supercritical carbon dioxide (sCO 2 ) Brayton cycles, to be applied to self-propelling residual heat removal systems in boiling water reactors. The developed model has been implemented into the thermohydraulic system code ATHLET. By means of this improved ATHLET version, novel residual heat removal systems, which are based on closed sCO 2 Brayton cycles, can be assessed as a retrofit measure for present light water reactors. Transient simulations are hereby of great importance. The heat removal system has to be modeled explicitly to account for the interaction between the system and the behavior of the plant during different accident conditions. As a first step, transport and thermodynamic fluid properties of supercritical carbon dioxide have been implemented in ATHLET to allow for the simulation of the new working fluid. Additionally, a heat transfer correlation has been selected to represent the specific heat transfer of supercritical carbon dioxide. For the calculation of pressure losses due to wall friction, an approach for turbulent single phase flow has been adopted that is already implemented in ATHLET. In a second step, a component model for radial compressors has been implemented in the system code. Furthermore, the available model for axial turbines has been adapted to simulate the transient behavior of radial turbines. All extensions have been validated against experimental data. In order to simulate the interaction between the self-propelling heat removal system and a generic boiling water reactor, the components of the sCO 2 Brayton cycle have been dimensioned with first principles. An available input deck of a generic BWR has then been extended by the residual heat removal system. The modeled application has shown that the extended version of ATHLET is suitable to simulate sCO 2 Brayton cycles and to evaluate the introduced heat removal system

  8. Fractures of the shafts of the tibia and fibula

    International Nuclear Information System (INIS)

    Bender, C.E.; Campbell, D.C.

    1985-01-01

    Fractures of the shafts of the tibia and fibula are the most common long bone fractures. This chapter discusses tibial and fibular shaft fractures. Treatment of tibial and fibular fractures is similar and, therefore, reference is primarily made to the tibia. Diagnostic techniques are also evaluated

  9. Controlled blasting and its implications for the NNWSI project exploratory shaft

    International Nuclear Information System (INIS)

    Van Eeckhout, E.M.

    1987-09-01

    This report reviews controlled blasting techniques for shaft sinking. Presplitting and smooth blasting are the techniques of principal interest. Smooth blasting is preferred for the Nevada Nuclear Waste Storage Investigations exploratory shaft. Shaft damage can be monitored visually or by peak velocity measurements and refractive techniques. Damage into the rock should be limited to 3 ft. 40 refs., 22 figs., 7 tabs

  10. Design capability of CANDU heat transport pump shafts against cracking

    International Nuclear Information System (INIS)

    Kumar, A.N.; Sheikh, Z.B.; Padgett, A.

    1993-01-01

    During 1986 three different Light Water Reactors (LWR's) in the U.S. reported either a cracked or fractured shaft on one or more of their reactor coolant (RC) pumps. The RC pumps for all these stations were supplied by Byron Jackson (BJ) Pump Company. A majority of CANDU heat transport (HT) pumps (equivalent of RC pumps) are supplied by BJ Pump Company and are similar in design to RC pumps. Hence the failure of these RC pumps in the U.S. utilities caused concern regarding the relevance of these failures to the BJ supplied CANDU HT pumps (HTP). This paper presents the results of AECL assessment to establish the capability of the HT pump shaft against cracking. Two methods were used for assessment: (a) detailed comparative design review of the HTP and RCP shafts; (b) semi-empirical analysis of the HTP shafts. The results of the AECL assessment showed significant differences in detailed design, materials, assembly and fits of various components and the control of operating parameters between the HT and RC pumps. It was concluded that because of these differences the failures similar to RC pump shafts are not likely to appear in HT pump shafts. This conclusion is further reinforced by about 140,000 hours of operating history of the longest running HT pump of comparable size to RC Pumps, without failures

  11. Shaft Crack Identification Based on Vibration and AE Signals

    Directory of Open Access Journals (Sweden)

    Wenxiu Lu

    2011-01-01

    Full Text Available The shaft crack is one of the main serious malfunctions that often occur in rotating machinery. However, it is difficult to locate the crack and determine the depth of the crack. In this paper, the acoustic emission (AE signal and vibration response are used to diagnose the crack. The wavelet transform is applied to AE signal to decompose into a series of time-domain signals, each of which covers a specific octave frequency band. Then an improved union method based on threshold and cross-correlation method is applied to detect the location of the shaft crack. The finite element method is used to build the model of the cracked rotor, and the crack depth is identified by comparing the vibration response of experiment and simulation. The experimental results show that the AE signal is effective and convenient to locate the shaft crack, and the vibration signal is feasible to determine the depth of shaft crack.

  12. Effect of boot shaft stiffness on stability joint energy and muscular co-contraction during walking on uneven surface.

    Science.gov (United States)

    Böhm, Harald; Hösl, Matthias

    2010-09-17

    Increased boot shaft stiffness may have a noticeable impact on the range of motion of the ankle joint. Therefore, the ability of the ankle joint to generate power for propulsion might be impaired. This might result in compensatory changes at the knee and hip joint. Besides, adaptability of the subtalar joint to uneven surface might be reduced, which could in turn affect stability. The aim of the study was therefore to investigate the influence of boot shaft stiffness on biomechanical gait parameters. Fifteen healthy young adults walked over coarse gravel wearing two different hiking boots that differed by 50% in passive shaft stiffness. Leg kinematics, kinetics and electromyography were measured. Gait velocity and indicators for stability were not different when walking with the hard and soft boot shaft over the gravel surface. However, the hard boot shaft decreased the ankle range of motion as well as the eccentric energy absorbed at the ankle joint. As a consequence, compensatory changes at the knee joint were observed. Co-contraction was increased, and greater eccentric energy was absorbed. Therefore, the efficiency of gait with hard boots might be decreased and joint loading at the knee might be increased, which might cause early fatigue of knee muscles during walking or hiking. The results of this study suggest that stiffness and blocking of joint motion at the ankle should not be equated with safety. A trade-off between lateral stiffness and free natural motion of the ankle joint complex might be preferable.

  13. Design of steel lined pressure tunnels and shafts - Annual report; Dimensionnement des galeries et puits blindes - Rapport annuel

    Energy Technology Data Exchange (ETDEWEB)

    Hachem, F.; Schleiss, A.

    2009-07-01

    Modern power plants are expected to operate at variable speed in a wide range of output power with improved efficiency, flexibility and safety. Therefore, the pumped-storage power generation has gained in importance since it allows storing and generating electricity to supply high peak demands by moving water back and forth between reservoirs at different elevations. A project consortium, called HydroNet (Modern Methodologies for Design, Manufacturing and Operation of Pumped-Storage Power Plant) has been created aiming to converge towards a consistent standardized methodology for design, manufacturing, operation, monitoring and control of pumped-storage power plants in order to give new impulsions in the hydropower technology and maintain the strong position of Switzerland in peak hydropower production as well as in the exportation of high-valued technology. One of the civil engineering field involved in this consortium is the design and control of pressurized shafts and tunnels with a special focus on safety. Since 1980s, no significant fundamental research has been performed aiming to integrate design with interaction between water, steel lining and rock mass. The results of these investigations stand for a crucial target in Switzerland since the collapse of the shallow buried pressure shaft of Cleuson-Dixence hydropower plant in December 2000. (authors)

  14. Comparison between reverse Brayton and Kapitza based LNG boil-off gas reliquefaction system using exergy analysis

    Science.gov (United States)

    Kochunni, Sarun Kumar; Chowdhury, Kanchan

    2017-02-01

    LNG boil-off gas (BOG) reliquefaction systems in LNG carrier ships uses refrigeration devices which are based on reverse Brayton, Claude, Kapitza (modified Claude) or Cascade cycles. Some of these refrigeration devices use nitrogen as the refrigerants and hence nitrogen storage vessels or nitrogen generators needs to be installed in LNG carrier ships which consume space and add weight to the carrier. In the present work, a new configuration based on Kapitza liquefaction cycle which uses BOG itself as working fluid is proposed and has been compared with Reverse Brayton Cycle (RBC) on sizes of heat exchangers and compressor operating parameters. Exergy analysis is done after simulating at steady state with Aspen Hysys 8.6® and the comparison between RBC and Kapitza may help designers to choose reliquefaction system with appropriate process parameters and sizes of equipment. With comparable exergetic efficiency as that of an RBC, a Kaptiza system needs only BOG compressor without any need of nitrogen gas.

  15. A comparison of energy conversion systems for meeting the power requirements of manned rover for Mars missions

    International Nuclear Information System (INIS)

    El-Genk, M.S.; Morley, N.; Cataldo, R.; Bloomfield, H.

    1990-01-01

    Minimizing system mass for interplanetary missions is of utmost importance in order to keep launch cost within reasonable bounds. For a manned Mars rover, powered by a nuclear reactor power system, the choice of the energy conversion system can play a significant role in lowering the overall system mass. Not only is the mass of the conversion unit affected by the choice, but also the masses of the reactor core, waste heat rejection system, and the radiation shield which are strongly influenced by the system conversion efficiency and operating condition. Several types of conversion systems are of interest for a nuclear reactor Mars manned application. These conversion systems include: free piston Stirling engines, He/XE closed Brayton cycle (CBC), CO 2 open Brayton, and SiGe/GaP thermoelectric. Optimization studies are conducted to determine the impact of the conversion system on the overall mass of the nuclear power system as well as the mobility power requirement of the Rover vehicle

  16. Application of hydraulically assembled shaft coupling hubs to large agitators

    International Nuclear Information System (INIS)

    Murray, W.E.; Anderson, T.D.; Bethmann, H.K.

    1991-01-01

    This paper describes the basis for and implementation of hydraulically assembled shaft coupling hubs for large tank-mounted agitators. This modification to the original design was intended to minimize maintenance personnel exposure to ionizing radiation and also provide for disassembly capability without damage to shafts or hubs. In addition to realizing these objectives, test confirmed that the modified couplings reduced agitator shaft end runouts approximately 65%, thereby reducing bearing loads and increasing service life, a significant enhancement for a nuclear facility. 5 refs

  17. Mission environments for the Isotope Brayton Flight System (preliminary)

    International Nuclear Information System (INIS)

    1975-01-01

    The mission environments for the Isotope Brayton Flight Systems (IBFS) are summarized. These are based on (1) those environments established for the MHW-RTG system in the LES 8/9 and Mariner J/S and (2) engineering projections of those likely to exit for the IBFS. The pre-launch environments address transportation, storage, handling and assembly (to spacecraft) and checkout, field transportation, and launch site operations. Launch environments address the Titan IIIC and Shuttle launch vehicles. Operational mission environments address normal space temperature and meteoroide environments. Special environments that may be applicable to DOD missions are not included. Accident environments address explosion and fire for the Titan IIIC and the Shuttle, reentry, earth impact and post impact

  18. Natural Ventilation of Buildings through Light Shafts. Design-Based Solution Proposals

    Science.gov (United States)

    Ángel Padilla-Marcos, Miguel; Meiss, Alberto; Feijó-Muñoz, Jesús

    2017-10-01

    This work analyses how the built environment affects the quality of the air to be introduced into buildings from light shafts. Several factors such as urban environment and building design intervene in the ability of the light shaft to produce its air change process. Urban areas continuously pollute the air in cities which affects the human health and the environment sustainability. Poor air quality outside buildings supposes a big energy waste to promote an acceptable air quality inside buildings. That requires a large flow rate to maintain the indoor air quality which is translated to an energy efficiency term. The main objective focuses on the impact of standardized architecture design in the quality of the indoor air dependent on the air change in the light shaft. The air change capacity of the outdoor space is numbered analysed using the concept of air change efficiency (ACE). ACE is determined by the built environment, the wind conditions and the design of the building containing light shafts. This concept is comparatively evaluated inside a control domain virtually defined to obtain the mean age of the air for a known air volume. The longer the light shaft in the wind direction is, the better the ACE is compared with other options. Light shafts up to 12 metres high are the most suitable in order to obtain acceptable efficiency results. Other studied cases verify that assumption. Different simplified tools for the technicians to evaluate the design of buildings containing light shafts are proposed. Some strategies of architectural design of buildings with light shafts to be used for ventilation are presented.

  19. Thermal calculations pertaining to experiments in the Yucca Mountain Exploratory Shaft

    International Nuclear Information System (INIS)

    Montan, D.N.

    1986-03-01

    A series of thermal calculations have been presented that appear to satisfy the needs for design of the Yucca Mountain Exploratory Shaft Tests. The accuracy of the modeling and calculational techniques employed probably exceeds the accuracy of the thermal properties used. The rather close agreement between simple analytical methods (the PLUS Family) and much more complex methods (TRUMP) suggest that the PLUS Family might be appropriate during final design to model, in a single calculation, the entire test array and sequence. Before doing further calculations it is recommended that all available thermal property information be critically evaluated to determine ''best'' values to be used for conductivity and saturation. Another possibility is to design one or more of the test sequences to approximately duplicate the early phase of Heater Test 1. In that experiment an unplanned power outage for about two days that occurred a week into the experiment gave extremely useful data from which to determine the conductivity and diffusivity. In any case we urge that adequate, properly calibrated instrumentation with data output available on a quasi-real time basis be installed. This would allow us to take advantage of significant power changes (planned or not) and also help ''steer'' the tests to desired temperatures. Finally, it should be kept in mind that the calculations presented here are strictly thermal. No hydrothermal effects due to liquid and vapor pressures have been considered

  20. The effect of texture on the shaft surface on the sealing performance of radial lip seals

    Science.gov (United States)

    Guo, Fei; Jia, XiaoHong; Gao, Zhi; Wang, YuMing

    2014-07-01

    On the basis of elastohydrodynamic model, the present study numerically analyzes the effect of various microdimple texture shapes, namely, circular, square, oriented isosceles triangular, on the pumping rate and the friction torque of radial lip seals, and determines the microdimple texture shape that can produce positive pumping rate. The area ratio, depth and shape dimension of a single texture are the most important geometric parameters which influence the tribological performance. According to the selected texture shape, parameter analysis is conducted to determine the optimal combination for the above three parameters. Simultaneously, the simulated performances of radial lip seal with texture on the shaft surface are compared with those of the conventional lip seal without any texture on the shaft surface.

  1. 46 CFR 171.100 - Shaft tunnels and stern tubes.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Shaft tunnels and stern tubes. 171.100 Section 171.100... PERTAINING TO VESSELS CARRYING PASSENGERS Additional Subdivision Requirements § 171.100 Shaft tunnels and... passengers on an international voyage. (b) The watertight seal in the bulkhead between the stern tube space...

  2. Percutaneous Kirschner wire (K-wire) fixation for humerus shaft ...

    African Journals Online (AJOL)

    Background: Fractures of the humeral shaft are uncommon, representing less than 10 percent of all fractures in children. Humeral shaft fractures in children can be treated by immobilisation alone. A small number of fractures are unable to be reduced adequately or maintained in adequate alignment, and these should be ...

  3. Superconducting Meissner effect bearings for cryogenic turbomachines, phase 2

    Science.gov (United States)

    Valenzuela, Javier A.; Martin, Jerry L.

    1994-02-01

    This is the final report of a Phase 2 SBIR project to develop Meissner effect bearings for miniature cryogenic turbomachines. The bearing system was designed for use in miniature cryogenic turboexpanders in reverse-Brayton-cycle cryocoolers. The cryocoolers are designed to cool sensors on satellites. Existing gas bearings for this application run in a relatively warm state. The heat loss from the bearings into the shaft and into the cold process gas imposes a penalty on the cycle efficiency. By using cold Meissner effect bearings, this heat loss could be minimized, and the input power per unit of cooling for these cryocoolers could be reduced. Two bearing concepts were explored in this project. The first used an all-magnetic passive radial suspension to position the shaft over a range of temperatures from room temperature to 77 K. This bearing concept was proven to be feasible, but impractical for the miniature high-speed turbine application since it lacked the required shaft positioning accuracy. A second bearing concept was then developed. In this concept, the Meissner effect bearings are combined with self-acting gas bearings. The Meissner effect bearing provides the additional stiffness and damping required to stabilize the shaft at low temperature, while the gas bearing provides the necessary accuracy to allow very small turbine tip clearances (5mm) and high speeds (greater than 500,000 rpm).

  4. Technology for Bayton-cycle powerplants using solar and nuclear energy

    Science.gov (United States)

    English, R. E.

    1986-01-01

    Brayton cycle gas turbines have the potential to use either solar heat or nuclear reactors for generating from tens of kilowatts to tens of megawatts of power in space, all this from a single technology for the power generating system. Their development for solar energy dynamic power generation for the space station could be the first step in an evolution of such powerplants for a very wide range of applications. At the low power level of only 10 kWe, a power generating system has already demonstrated overall efficiency of 0.29 and operated 38 000 hr. Tests of improved components show that these components would raise that efficiency to 0.32, a value twice that demonstrated by any alternate concept. Because of this high efficiency, solar Brayton cycle power generators offer the potential to increase power per unit of solar collector area to levels exceeding four times that from photovoltaic powerplants using present technology for silicon solar cells. The technologies for solar mirrors and heat receivers are reviewed and assessed. This Brayton technology for solar powerplants is equally suitable for use with the nuclear reactors. The available long time creep data on the tantalum alloy ASTAR-811C show that such Brayton cycles can evolve to cycle peak temperatures of 1500 K (2240 F). And this same technology can be extended to generate 10 to 100 MW in space by exploiting existing technology for terrestrial gas turbines in the fields of both aircraft propulsion and stationary power generation.

  5. Assessment of generic solar thermal systems for large power applications: analysis of electric power generating costs for systems larger than 10 MWe

    Energy Technology Data Exchange (ETDEWEB)

    Apley, W.J.; Bird, S.P.; Brown, D.R.; Drost, M.K.; Fort, J.A.; Garrett-Price, B.A.; Patton, W.P.; Williams, T.A.

    1980-11-01

    Seven generic types of collectors, together with associated subsystems for electric power generation, were considered. The collectors can be classified into three categories: (1) two-axis tracking (with compound-curvature reflecting surfaces); (2) one-axis tracking (with single-curvature reflecting surfaces); and (3) nontracking (with low-concentration reflecting surfaces). All seven collectors were analyzed in conceptual system configurations with Rankine-cycle engines. In addition, two of the collectors were analyzed with Brayton-cycle engines, and one was analyzed with a Stirling-cycle engine. With these engine options, and the consideration of both thermal and electrical storage for the Brayton-cycle central receiver, 11 systems were formulated for analysis. Conceptual designs developed for the 11 systems were based on common assumptions of available technology in the 1990 to 2000 time frame. No attempt was made to perform a detailed optimization of each conceptual design. Rather, designs best suited for a comparative evaluation of the concepts were formulated. Costs were estimated on the basis of identical assumptions, ground rules, methodologies, and unit costs of materials and labor applied uniformly to all of the concepts. The computer code SOLSTEP was used to analyze the thermodynamic performance characteristics and energy costs of the 11 concepts. Year-long simulations were performed using meteorological and insolation data for Barstow, California. Results for each concept include levelized energy costs and capacity factors for various combinations of storage capacity and collector field size.

  6. The effects of intercooling and regeneration on the thermo-ecological performance analysis of an irreversible-closed Brayton heat engine with variable-temperature thermal reservoirs

    International Nuclear Information System (INIS)

    Sogut, Oguz Salim; Ust, Yasin; Sahin, Bahri

    2006-01-01

    A thermo-ecological performance analysis of an irreversible intercooled and regenerated closed Brayton heat engine exchanging heat with variable-temperature thermal reservoirs is presented. The effects of intercooling and regeneration are given special emphasis and investigated in detail. A comparative performance analysis considering the objective functions of an ecological coefficient of performance, an ecological function proposed by Angulo-Brown and power output is also carried out. The results indicate that the optimal total isentropic temperature ratio and intercooling isentropic temperature ratio at the maximum ecological coefficient of performance conditions (ECOP max ) are always less than those of at the maximum ecological function ( E-dot max ) and the maximum power output conditions ( W-dot max ) leading to a design that requires less investment cost. It is also concluded that a design at ECOP max conditions has the advantage of higher thermal efficiency and a lesser entropy generation rate, but at the cost of a slight power loss

  7. New Technical Solution for Vertical Shaft Equipping Using Steel Headframe of Multifunction Purpose

    Science.gov (United States)

    Kassikhina, Elena; Pershin, Vladimir; Glazkov, Yurij

    2017-11-01

    The article reviews a novel approach to the design of steel angle headframe for vertical shafts of coal and ore mines on the basis of rational design solutions. Practice of construction of coal and ore mines provides application of various designs for steel angle headframes which are divided into separate large assembly blocks and constructive elements during assembling operations. Design of these blocks and elements, their weight and dimensions effect the chose of the method of assembling on which economic and technological indicators, as well as duration of down-time, depend on during performance of construction operations in shaft. The technical solution on equipment provision for mine vertical shaft using headframe of multifunctional purpose will allow changing the management construction of vertical shaft. The constructive design of the headgear allows application of the effective method of assembly and thus to provide improvement of the technical and economic indexes, and high calendar time rate of the shaft construction due to reduction of duration of works on equipment provision for the shaft and to refurbishment of the shaft in order to carry out horizontal mining.

  8. A field trail for sealing abandoned mine shafts and adits with lightweight concrete

    International Nuclear Information System (INIS)

    Skinner, E.H.; Beckett, L.A.

    1994-01-01

    An abandoned mine shaft near Omar, in Logan County, WV, was permanently sealed through a cooperative agreement between the West Virginia Department of Commerce, Labor, and Environmental Resources, Division of Environmental Protection, and the US Bureau of Mines (USBM), Abandoned Mine Lands (AML) Program. An engineered shaft seal design was developed and demonstrated that featured lightweight concrete as a key material component at a wet density of about 45 lb/ft 3 . A reinforced concrete cap designed for 5 psi live load was placed over the shaft seal. Applicable new concrete technologies relating to a 100-yr design life were utilized to assure future integrity of the shaft seal. Waterproofing methods were included in the shaft seal design to provide protection from ambient moisture and corrosive mine waters and to increase the long-term durability of the shaft seal. All construction methods used in the field trial are fully adaptable for the mine-reclamation contractor. The USBM research objectives were to develop a broad generic design that will be widely applicable to other adit-sealing and shaft-sealing problems throughout the mining industry

  9. Determining basic parameters of shafts with cage hoisting systems in mines with steep seams

    Energy Technology Data Exchange (ETDEWEB)

    Durov, E.M.

    1982-05-01

    This paper analyzes problems associated with increasing depth of mine shafts in operating coal mines. Schemes of shaft excavation in mines with steep coal seams are analyzed. Removal of mine rock and the ground surface by existing mine shafts is most economical in most cases. Yuzhgiproshakht has investigated a number of hoisting schemes during mine shaft excavation in order to select the optimum shaft diameter which permits shaft reconstruction and deepening to be optimized. The following conditions are analyzed: coal output of a coal mine ranges from 0.9 megatons (Mt) to 1.8 Mt/year, mining depth ranges from 600 m to 1600 m (with intermediary depth of 800, 1000, 1200 and 1400 m also considered). Separate hoisting of coal and rock waste is used. Shaft sinking rate ranges from 10 to 50 m/month. The following hoisting schemes are analyzed: two independent systems which consist of a cage with counterweight, three systems of a cage with counterweight, double cage system and a cage with counterweight. Hoisting schemes are shown in 9 diagrams. Investigations show that a 7 to 8 m diameter of mine shafts is most economic. In mine shafts 7 m in diameter equipped with two cages with counterweights one of the cages is removed to form a free space for the hoisting bucket. In the 8 m shaft equipped with a double cage system and a cage with counterweight the cage with counterweight is removed to form a free place for the hoisting bucket used during shaft excavation.

  10. Development and Simulation of a Type of Four-Shaft ECVT for a Hybrid Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Yong Zhang

    2016-02-01

    Full Text Available In hybrid electric vehicles with power-split configurations, the engine can be decoupled from the wheel and operated with improved fuel economy, while the entire efficiency of the powertrain is affected by the circular electric power flow. Two planetary gear (2-PG sets with adding brakes/clutches, namely a type of four shaft elelctric continuously variable transmission (ECVT can provide multi-mode operation for the powertrain and extend the efficient area. First, a conventional 2-PG AT (Automatic Transmission architecture is investigated. By analyzing and comparing the connection and operating modes based on the kinematic relationship and lever analogy, a feasible four-shaft ECVT architecture with two brakes and two simplified versions are picked. To make a trade-off between fuel economy and configuration complexity, an instantaneous optimal control strategy based on the equivalent consumption minimization strategy (ECMS concept is then developed and employed as the unified optimization method in the simulations of three different configurations. Finally, the simulation results show that the simplified versions are suboptimal sets and the fuel economy is sacrificed by the limits of different modes. From the viewpoint of concept design, a multi-mode power-split configuration is more suitable for hybrid electric vehicles. This research applied a systematic methodology from concept design to energy management optimization, which can provide the guidelines for researchers to select a suitable multi-mode power-split hybrid powertrain.

  11. ESF [Exploratory Shaft Facility] impact evaluation report: Volume 1, Final report

    International Nuclear Information System (INIS)

    1985-08-01

    This report assesses the impacts of integrating an Exploratory Shaft Facility (ESF) with a high-level nuclear waste repository in salt. A general repository subsurface design is described which complies with the Mine Safety and Health Administration regulations for gassy metal and non-metal mines. This design is combined with the ESF into a site-specific subsurface layout with associated shafts and surface facilities for each of seven sites. An evaluation to identify integration impacts is described for two specific ESF configurations (Cases 1 and 2) for each of the seven sites. These configurations are an ESF which uses two of the full size repository shafts, and an ESF with one 10-ft and one 22-ft diameter shaft. An evaluation of an ESF configuration (Case 3) with two 12-ft diameter shafts at three of the seven sites is also described. These sites are Deaf Smith, Davis Canyon, and Richton Dome. A fourth evaluation (Case 4) for the Deaf Smith site only, addresses a ''fast track'' subsurface development plan to allow waste emplacement by 1998. A fifth evaluation (Case 5), provides site-specific ES locations, for the three sites included in Case 3, which are supportive of a shaft siting study prepared by ONWI

  12. Waste Handling Shaft concrete liner degradation conclusions and recommendations

    International Nuclear Information System (INIS)

    1992-10-01

    The primary function of the Waste Handling Shaft (WHS) at the Waste Isolation Pilot Plant (WIPP) is to permit the transfer of radioactive waste from the surface waste handling building to the underground storage area. It also serves as an intake shaft for small volumes of air during normal storage operations and as an emergency escape route. Part of the construction was the placement of a concrete liner and steel reinforced key in 1984. During a routine shaft inspection in May 1990, some degradation of the WHS concrete liner was observed between the depths of 800 and 900 feet below the ground surface. Detailed investigations of the liner had been carried out by Sandia National Laboratories and by Westinghouse Electric Corporation Waste Isolation Division (WID) through Lankard Materials Laboratory. Observations, reports, and data support the conclusion that the concrete degradation, resulting from attack by chemically aggressive brine, is a localized phenomena. It is the opinion of the WID that the degradation is not considered an immediate or near term concern; this is supported by technical experts. WID recommendations have been made which, when implemented, will ensure an extended liner life. Based on the current assessment of available data and the proposed shaft liner monitoring program described in this report, it is reasonable to assume that the operational life of the concrete shaft liner can safely support the 25-year life of the WIPP. Analysis of data indicates that degradation of the shaft's concrete liner is attributed to chemically aggressive brine seeping through construction joints and shrinkage cracks from behind the liner in and around the 834-foot depth. Chemical and mechanical components of concrete degradation have been identified. Chemical attack is comprised of several stages of concrete alteration. The other component, mechanical degradation, results from the expansive forces of crystals forming in the concrete pore space

  13. Simulation of IST Turbomachinery Power-Neutral Tests with the ANL Plant Dynamics Code

    Energy Technology Data Exchange (ETDEWEB)

    Moisseytsev, A. [Argonne National Lab. (ANL), Argonne, IL (United States); Sienicki, J. J. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-12-13

    The validation of the Plant Dynamics Code (PDC) developed at Argonne National Laboratory (ANL) for the steady-state and transient analysis of supercritical carbon dioxide (sCO2) systems has been continued with new test data from the Naval Nuclear Laboratory (operated by Bechtel Marine Propulsion Corporation) Integrated System Test (IST). Although data from three runs were provided to ANL, only two of the data sets were analyzed and described in this report. The common feature of these tests is the power-neutral operation of the turbine-compressor shaft, where no external power through the alternator was provided during the tests. Instead, the shaft speed was allowed to change dictated by the power balance between the turbine, the compressor, and the power losses in the shaft. The new test data turned out to be important for code validation for several reasons. First, the power-neutral operation of the shaft allows validation of the shaft dynamics equations in asynchronous mode, when the shaft is disconnected from the grid. Second, the shaft speed control with the compressor recirculation (CR) valve not only allows for testing the code control logic itself, but it also serves as a good test for validation of both the compressor surge control and the turbine bypass control actions, since the effect of the CR action on the loop conditions is similar for both of these controls. Third, the varying compressor-inlet temperature change test allows validation of the transient response of the precooler, a shell-and-tube heat exchanger. The first transient simulation of the compressor-inlet temperature variation Test 64661 showed a much slower calculated response of the precooler in the calculations than the test data. Further investigation revealed an error in calculating the heat exchanger tube mass for the PDC dynamic equations that resulted in a slower change in the tube wall temperature than measured. The transient calculations for both tests were done in two steps. The

  14. Residual stress analysis of drive shafts after induction hardening

    Energy Technology Data Exchange (ETDEWEB)

    Lemos, Guilherme Vieira Braga; Rocha, Alexandre da Silva; Nunes, Rafael Menezes, E-mail: lemos_gl@yahoo.com.br [Universidade Federal do Rio Grande do Sul (UFRS), Porto Algre, RS (Brazil); Hirsch, Thomas Karl [Stiftung Institut für Werkstofftechnik (IWT), Bremen (Germany)

    2014-08-15

    Typically, for automotive shafts, shape distortion manifests itself in most cases after the induction hardening by an effect known as bending. The distortion results in a boost of costs, especially due to machining parts in the hardened state to fabricate its final tolerances. In the present study, residual stress measurements were carried out on automotive drive shafts made of DIN 38B3 steel. The samples were selected in consequence of their different distortion properties by an industrial manufacturing line. One tested shaft was straightened, because of the considerable dimensional variation and the other one not. Firstly, the residual stress measurements were carried out by using a portable diffractometer, in order to avoid cutting the shafts and evaluate the original state of the stresses, and afterwards a more detailed analysis was realized by a conventional stationary diffractometer. The obtained results presented an overview of the surface residual stress profiles after induction hardening and displayed the influence of the straightening process on the redistribution of residual stresses. They also indicated that the effects of the straightening in the residual stresses cannot be neglected. (author)

  15. Interaction between clay-based shaft seal components and crystalline host rock

    International Nuclear Information System (INIS)

    Priyanto, D.; Dixon, D.; Man, A.

    2010-01-01

    Document available in extended abstract form only. The Government of Canada has accepted the Nuclear Waste Management Organization's (NWMO) recommendation of Adaptive Phased Management (APM) as the long-term management approach for Canada's used nuclear fuel. APM ultimately involves the isolation and containment of used nuclear fuel deep in a Deep Geological Repository (DGR). On completion of waste emplacement operation and during repository closure, shaft seals, comprising clay-based shaft seal components, will be installed at strategic locations, such as where significant fracture zones (FZs) are located. The primary function of a shaft seal is to limit and prevent short-circuiting of the groundwater flow regime via the shaft. Currently, at Atomic Energy of Canada Limited's Underground Research Laboratory (URL) a full-scale shaft seal is being constructed at the intersection of a low dipping thrust fault called FZ 2 as part of the overall URL decommissioning activities. Both crystalline rock and sedimentary rock are considered potentially suitable host rocks formations for a DGR. This paper presents the results of numerical simulation of a shaft seal installed in moderately to sparsely fractured crystalline rock (MFR). The shape and thickness of the shaft seal modelled for a DGR in this exercise are similar to the shaft seal at the URL, but in the modelling exercise it is given a larger diameter (i.e. 7.30 m) equal to the assumed diameter of a production shaft of a repository. The seal consists of a blended bentonite-sand (BS) component that is constrained between two massive concrete seals. Dense backfill (DBF) materials are installed above and below the concrete seals (CS). The concrete seals are keyed into the access shaft to better anchor the concrete units in place and in order to restrain the swelling of the bentonite-sand component of the seal as it hydrates. The reference geosphere in the proposed work is MFR similar to the rock conditions

  16. A Comparison of Fission Power System Options for Lunar and Mars Surface Applications

    International Nuclear Information System (INIS)

    Mason, Lee S.

    2006-01-01

    This paper presents a comparison of reactor and power conversion design options for 50 kWe class lunar and Mars surface power applications with scaling from 25 to 200 kWe. Design concepts and integration approaches are provided for three reactor-converter combinations: gas-cooled Brayton, liquid-metal Stirling, and liquid-metal thermoelectric. The study examines the mass and performance of low temperature, stainless steel based reactors and higher temperature refractory reactors. The preferred system implementation approach uses crew-assisted assembly and in-situ radiation shielding via installation of the reactor in an excavated hole. As an alternative, self-deployable system concepts that use earth-delivered, on-board radiation shielding are evaluated. The analyses indicate that among the 50 kWe stainless steel reactor options, the liquid-metal Stirling system provides the lowest mass at about 5300 kg followed by the gas-cooled Brayton at 5700 kg and the liquid-metal thermoelectric at 8400 kg. The use of a higher temperature, refractory reactor favors the gas-cooled Brayton option with a system mass of about 4200 kg as compared to the Stirling and thermoelectric options at 4700 kg and 5600 kg, respectively. The self-deployed concepts with on-board shielding result in a factor of two system mass increase as compared to the in-situ shielded concepts

  17. A Conceptual Study of Using an Isothermal Compressor on a Supercritical CO{sub 2} Brayton Cycle for SMART Application

    Energy Technology Data Exchange (ETDEWEB)

    Heo, Jin Young; Lee, Jeong Ik [KAIST, Daejeon (Korea, Republic of); Ahn, Yoonhan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    To maximize the benefits of modularization, the supercritical CO{sub 2} (S-CO{sub 2}) power cycle can replace the conventional steam Rankine cycle to increase the cycle efficiency and reduce its system size. Previous works have been conducted to evaluate potential advantages of applying the S-CO{sub 2} cycle to SMRs, specifically to SMART (System-integrated Modular Advanced Reactor) which is an integral SMR developed by KAERI (Korea Atomic Energy Institute). One of the optimized S-CO{sub 2} cycle layouts is the recompressing Brayton cycle. This paper attempts to improve the cycle layout by replacing the conventional compressor with an isothermal compressor, of which its potential in the S-CO{sub 2} power cycle is conceptually being evaluated. The SMR applications, for which SMART reactor has been represented, can take advantage of the currently developing S-CO{sub 2} cycle greatly by the reduction of size. By introducing the isothermal compressor, the cycle layout considered in has been further improved by increasing the cycle net efficiency by around 0.5%.

  18. Advisibility of excavating an additional central shaft to reduce duration of mine construction. [USSR

    Energy Technology Data Exchange (ETDEWEB)

    Durov, E.M.

    1981-09-01

    This paper evaluates methods of reducing duration and cost of underground black coal mine construction. A proposed scheme of coal deposit opening by a system of three mine shafts is critically analyzed. In comparison to the conventional scheme, the proposed one has one additional mine shaft in the central mine zone. The shaft, equipped with a cage hoisting system, permits the rate of mine drivage in the center of the mine to be increased. The cage hoisting system in the additional shaft is activated before the main skip shaft has been equipped and is in operation. Duration of mine construction is reduced by 6 to 10 months. Exacavation of the additional shaft costs from 2.5 to 3.5 million rubles. A further system of mine construction is also analyzed. The main shaft in the mine center is temporarily equipped with a cage hoisting system. The cage system is used for hoisting rocks removed from mine headings and main workings constructed at the bottom of the main shaft. The main shaft is equipped with skips and hoisting tower at a later stage when construction of main roadways and structures at its bottom has been completed. The proposed system permits mine construction to be reduced by 4 to 5 months without a major increase in investment.

  19. Failure analysis of axle shaft of a fork lift

    Directory of Open Access Journals (Sweden)

    Souvik Das

    2015-04-01

    Full Text Available An axle shaft of fork lift failed at operation within 296 h of service. The shaft transmits torque from discrepancy to wheel through planetary gear arrangement. A section of fractured axle shaft made of induction-hardened steel was analyzed to determine the root cause of the failure. Optical microscopies as well as field emission gun scanning electron microscopy (FEG-SEM along with energy dispersive spectroscopy (EDS were carried out to characterize the microstructure. Hardness profile throughout the cross-section was evaluated by micro-hardness measurements. Chemical analysis indicated that the shaft was made of 42CrMo4 steel grade as per specification. Microstructural analysis and micro-hardness profile revealed that the shaft was improperly heat treated resulting in a brittle case, where crack was found to initiate from the case in a brittle mode in contrast to ductile mode within the core. This behaviour was related to differences in microstructure, which was observed to be martensitic within the case with a micro-hardness equivalent to 735 HV, and a mixture of non-homogeneous structure of pearlite and ferrite within the core with a hardness of 210 HV. The analysis suggests that the fracture initiated from the martensitic case as brittle mode due to improper heat treatment process (high hardness. Moreover the inclusions along the hot working direction i.e. in the longitudinal axis made the component more susceptible to failure.

  20. Power conditioning for space nuclear reactor systems

    Science.gov (United States)

    Berman, Baruch

    1987-01-01

    This paper addresses the power conditioning subsystem for both Stirling and Brayton conversion of space nuclear reactor systems. Included are the requirements summary, trade results related to subsystem implementation, subsystem description, voltage level versus weight, efficiency and operational integrity, components selection, and shielding considerations. The discussion is supported by pertinent circuit and block diagrams. Summary conclusions and recommendations derived from the above studies are included.

  1. Nuclear-Powered GPS Spacecraft Design Study

    Energy Technology Data Exchange (ETDEWEB)

    Raab, Bernard

    1977-05-01

    This is the final report of a study to investigate the potential benefits of a nuclear (radioisotope) - powered satellite for advanced phases of the Global Positioning System (GPS) program. The critical parameters were: power to user; mean mission duration; orbital predictability; thermal control of on-board frequency standards; and vulnerability. The reference design approach is described, and input data are given for two power systems that are under development: an organic Rankine system and a Brayton cycle system. Reference design details are provided and structural design and analysis are discussed, as well as thermal design and analysis. A higher altitude version is also considered.

  2. Innovative phased array ultrasonic inspection solution for large rotor shafts

    Energy Technology Data Exchange (ETDEWEB)

    Maes, G.; Devos, D.; Tremblay, P., E-mail: gmaes@zetec.com [Zetec, Ville de Quebec, Quebec (Canada)

    2016-05-15

    The increasing needs of energy production led to new rotor shaft designs with larger dimensions. A new generation of nuclear power plants is already being deployed worldwide with such heavy components. Their implementation requires new inspection tools in order to guarantee the public safety and to ensure the quality of these critical parts. Due to the long sound path, conventional ultrasonic (UT) techniques cannot provide adequate detectability of the reference reflectors required by the existing codes. Also, some standards require multiple angle beams to be applied in addition to the straight beam inspection, and this leads to long inspection times. This paper will address the implementation and validation of phased array (PA) UT techniques, using a semi-flexible 2D array probe, for the inspection of large mono-block rotor shaft forgings. It will show how the beam focusing and steering capabilities of phased array UT probes can be used to overcome the issues occurring with conventional UT probes. Results of acoustic beam simulation, as well as detectability measurements and data acquisitions on representative test specimens will be presented and compared with conventional UT performance. Various aspects of the hardware and software specification will be addressed, as well as the potential reduction of the total inspection time. (author)

  3. Study on collapse mechanism of junction between greatly deeper shaft and horizontal drifts (Contract research)

    International Nuclear Information System (INIS)

    Kurosaki, Yukio; Yamachi, Hiroshi; Katsunuma, Yoshio; Nakata, Masao; Kuwahara, Hideki; Yamada, Fumitaka; Matsushita, Kiyoshi; Sato, Toshinori

    2008-03-01

    The Mizunami underground research laboratory is planned to consist of greatly deeper shaft and horizontal drifts. A junction space between a greatly deeper shaft and horizontal drifts forms which would take a complicated mechanical behavior during a junction excavation. However, a quantitative design method of supporting measures for a deep junction has not yet been established. This is because a conventional shaft design has been conducted based on past experience. Detail records have not been left either in what kind of collapses and deformed phenomena occurring in shaft constructions in a past. In order to examine a collapse mechanism of greatly deeper shaft junction, we have conducted literature surveys and interview studies concerned with deep shaft construction works in a past, and investigated what collapses or difficulties had been occurred in deep shaft junctions. Considering the results of investigations with reviews of intellectuals, a collapse mechanism of a super deep shaft junction depends on both a construction procedure of shaft junction and a geological condition at great depth. During a construction of a shaft junction, stress state of rock masses near junction wall would take a complicated stress path. Especially, it should be necessary to take a most careful consideration on that tangential stress acted around a shaft wall may reduce during horizontal drift excavation. On the other hand, where greatly deeper junction intersects faults and/or fractures with a large angle, a collapse called 'Take-nuke' may occur or extraordinary earth pressure acts on a concrete wall. This is the most typical difficulties during shaft construction. In order to recognize a mechanism of these phenomena and to find out a cause of collapse generation, numerical studies that can simulate a practical rock mass behavior around a shaft junction should be carry out. We demonstrate the finite difference method is most adequate for these simulations with intellectual review

  4. Entropy, exergy, and cost analyses of solar driven cogeneration systems using supercritical CO_2 Brayton cycles and MEE-TVC desalination system

    International Nuclear Information System (INIS)

    Kouta, Amine; Al-Sulaiman, Fahad; Atif, Maimoon; Marshad, Saud Bin

    2016-01-01

    Highlights: • The entropy, exergy, and cost analyses for two solar cogeneration configurations are conducted. • The recompression cogeneration cycle achieves lower LCOE as compared to the regeneration cogeneration cycle. • The solar tower is the largest contributor to entropy generation in both configurations reaching almost 80%. • The specific entropy generation in the MEE-TVC decreases with decreasing the fraction. - Abstract: In this study, performance and cost analyses are conducted for a solar power tower integrated with supercritical CO_2 (sCO_2) Brayton cycles for power production and a multiple effect evaporation with a thermal vapor compression (MEE-TVC) desalination system for water production. The study is performed for two configurations based on two different supercritical cycles: the regeneration and recompression sCO_2 Brayton cycles. A two-tank molten salt storage is utilized to ensure a uniform operation throughout the day. From the entropy analysis, it was shown that the solar tower is the largest contributor to entropy generation in both configurations, reaching almost 80% from the total entropy generation, followed by the MEE-TVC desalination system, and the sCO_2 power cycle. The entropy generation in the two-tank thermal storage is negligible, around 0.3% from the total generation. In the MEE-TVC system the highest contributing component is the steam jet ejector, which is varying between 50% and 60% for different number of effects. The specific entropy generation in the MEE-TVC decreases as the fraction of the input heat to the desalination system decreases; while the specific entropy generation of the sCO_2 cycle remains constant. The cost analysis performed for different regions in Saudi Arabia and the findings reveal that the regions characterized by the highest average solar irradiation throughout the year have the lowest LCOE and LCOW values. The region achieving the lowest cost is Yanbu, followed by Khabt Al-Ghusn in the second

  5. HTR-Based Power Plants’ Performance Analysis Applied on Conventional Combined Cycles

    Directory of Open Access Journals (Sweden)

    José Carbia Carril

    2015-01-01

    Full Text Available In high temperature reactors including gas cooled fast reactors and gas turbine modular helium reactors (GT-MHR specifically designed to operate as power plant heat sources, efficiency enhancement at effective cost under safe conditions can be achieved. Mentioned improvements concern the implementation of two cycle structures: (a, a stand alone Brayton operating with helium and a stand alone Rankine cycle (RC with regeneration, operating with carbon dioxide at ultrasupercritical pressure as working fluid (WF, where condensation is carried out at quasicritical conditions, and (b, a combined cycle (CC, in which the topping closed Brayton cycle (CBC operates with helium as WF, while the bottoming RC is operated with one of the following WFs: carbon dioxide, xenon, ethane, ammonia, or water. In both cases, an intermediate heat exchanger (IHE is proposed to provide thermal energy to the closed Brayton or to the Rankine cycles. The results of the case study show that the thermal efficiency, through the use of a CC, is slightly improved (from 45.79% for BC and from 50.17% for RC to 53.63 for the proposed CC with He-H2O operating under safety standards.

  6. Numerically Analysed Thermal Condition of Hearth Rollers with the Water-Cooled Shaft

    Directory of Open Access Journals (Sweden)

    A. V. Ivanov

    2016-01-01

    Full Text Available Continuous furnaces with roller hearth have wide application in the steel industry. Typically, furnaces with roller hearth belong to the class of medium-temperature heat treatment furnaces, but can be used to heat the billets for rolling. In this case, the furnaces belong to the class of high temperature heating furnaces, and their efficiency depends significantly on the reliability of the roller hearth furnace. In the high temperature heating furnaces are used three types of watercooled shaft rollers, namely rollers without insulation, rollers with insulating screens placed between the barrel and the shaft, and rollers with bulk insulation. The definition of the operating conditions of rollers with water-cooled shaft greatly facilitates the choice of their design parameters when designing. In this regard, at the design stage of the furnace with roller hearth, it is important to have information about the temperature distribution in the body of the rollers at various operating conditions. The article presents the research results of the temperature field of the hearth rollers of metallurgical heating furnaces. Modeling of stationary heat exchange between the oven atmosphere and a surface of rollers, and between the cooling water and shaft was executed by finite elements method. Temperature fields in the water-cooled shaft rollers of various designs are explored. The water-cooled shaft rollers without isolation, rollers with screen and rollers with bulk insulation, placed between the barrel and the water-cooled shaft were investigated. Determined the change of the thermo-physic parameters of the coolant, the temperature change of water when flowing in a pipe and shaft, as well as the desired pressure to supply water with a specified flow rate. Heat transfer coefficients between the cooling water and the shaft were determined directly during the solution based on the specified boundary conditions. Found that the greatest heat losses occur in the

  7. Analysis of optimum wire rope configuration for equal unidirectional torsional stiffness for flexible steering shaft

    Directory of Open Access Journals (Sweden)

    Hussain Najaf

    2016-01-01

    Full Text Available The design and modeling of Low Stiffness Resilience Shaft (LSRS for the Semi-Active Steering (SAS system using wire ropes is discussed in this paper, along with the static structural torsion test simulation of the wire ropes in order to determine the best possible configuration which serves the purpose of an LSRS. The importance of this study arises due to the unidirectional torsional properties of a wire rope. For an effective operational LSRS, the wire ropes need to have similar angular deflection in both the clockwise and anti-clockwise direction. LSRS, an integral component of the SAS is a flexible shaft that can replace the conventional rigid shaft of the steering system and allows active control to be performed. 3D solid models of the simple strand and the 4 strand wire ropes used in finite element analysis were generated in CAD software SolidWorksTM. The single strand and the different configuration of wire ropes required to function the LSRS effectively were then analyzed using Finite element simulation in ANSYSTM. A single wire rope could not be used because its construction has inconsistency in the torsional stiffness in clockwise and anti-clockwise direction. The single-strand right-direction lay wire rope is found to have 16.05% angular deflection percentage difference in the clockwise and anticlockwise directions which indicates that using a single strand wire rope for the LSRS will cause the vehicle to have a variable response in the clockwise and anti clockwise direction upon turning the steering wheel. Due to this inconsistency, two variations namely Variation 1 and Variation 2 with arrangement of 4 strand wire rope were devised so that the angular deflection percentage difference would be negligible. Simulation results indicated that Variation 1 of the two variations with an angular deflection percentage difference of 0.34% in the clockwise and anti-clockwise direction respectively is best suited for the use in LSRS as it has

  8. Shaft extension design at the Underground Research Laboratory, Pinawa, Manitoba

    International Nuclear Information System (INIS)

    Kuzyk, G.W.; Ball, A.E.

    1991-01-01

    AECL Research has constructed an underground laboratory for the research and development required for the Canadian Nuclear Fuel Waste Management Program. The experimental program in the laboratory will contribute to the assessment of the feasibility and safety of nuclear fuel waste disposal deep in stable plutonic rock. In 1988, AECL extended the shaft of the Underground Research Laboratory (URL) from the existing 255 m depth to a depth of 443 m in cooperation with the United States Department of Energy. The project, which involved carrying out research activities while excavation and construction work was in progress, required careful planning. To accommodate the research programs, full-face blasting with a burn cut was used to advance the shaft. Existing facilities at the URL had to be modified to accommodate an expanded underground facility at a new depth. This paper discusses the design criteria, shaft-sinking methods and approaches used to accommodate the research work during this shaft extension project. (11 refs., 11 figs.)

  9. Research and industrialization of near-net rolling technology used in shaft parts

    Science.gov (United States)

    Hu, Zhenghuan; Wang, Baoyu; Zheng, Zhenhua

    2018-03-01

    Shaft part rolling is an efficient and green nearnet shaping technology offering many advantages, including high production efficiency, high material utilization rate, high product quality, and excellent production environment. In this paper, the features of shaft part rolling are introduced along with the working principles of two main shaft part rolling technologies, namely, cross wedge rolling (CWR) and skew rolling (SR). In relation to this technology, some R&D achievements gained by the University of Science and Technology Beijing are summarized. Finally, the latest developments in shaft part rolling are presented, including SR steel balls, precise forming of camshaft blank by CWR, SR phosphorous copper balls at room temperature, and CWR hollow axle sleeve. Although the shaft part rolling technology has been widely used in China, it only accounts for about 15% of applicable parts at present. Nevertheless, this technology has broad application prospects.

  10. Fatigue criterion for the design of rotating shafts under combined stress

    Science.gov (United States)

    Loewenthal, S. H.

    1977-01-01

    A revised approach to the design of transmission shafting which considers the flexure fatigue characteristics of the shaft material under combined cyclic bending and static torsion stress is presented. A fatigue failure relation, corroborated by published combined stress test data, is presented which shows an elliptical variation of reversed bending endurance strength with static torsional stress. From this elliptical failure relations, a design formula for computing the diameter of rotating solid shafts under the most common condition of loading is developed.

  11. Research on dynamic balancing simulation of rotary shaft based on ADAMS

    Science.gov (United States)

    Zheng, Weiqiang; Rui, Chengjie; Yang, Jie; Liu, Pingyi

    2018-02-01

    Due to the design and processing technology of rotary shaft, the mass center of it does not coincide with the rotating axis of the rotary shaft and there is an unbalanced mass. The unbalanced mass can have some disadvantages, such as the centrifugal force, the vibration and so on. Those disadvantages could reduce the accuracy and service life of the equipment.In this paper, the dynamic balance of the rotary shaft is analysed by the theory analysis combined with the dynamic simulation software. This method ensures that the rotary shaft meets the dynamic balancing requirements during the design stage. It effectively supports the structural design of the rotary shift, and provides a way of thinking and method for the design and development of the same type of products.

  12. METHOD OF ACHIEVING ACCURACY OF THERMO-MECHANICAL TREATMENT OF LOW-RIGIDITY SHAFTS

    Directory of Open Access Journals (Sweden)

    Antoni Świć

    2016-03-01

    Full Text Available The paper presents a method combining the processes of straightening and thermal treatment. Technological processes with axial strain were considered, for the case of heated material and without its heating. The essence of the process in the case of heated material consisted in the fact that if under tension all longitudinal forces in the first approximation are uniform - the same strains are generated. The presented technological approach, aimed at reducing the curvature of axial-symmetrical parts, is acceptable as the process of rough, preliminary machining, in the case of shafts with the ratio L/D≤100 (L – shaft length, d – shaft diameter and without a tendency of strengthening. To improve the accuracy and stability of geometric form of low-rigidity parts, a method was developed that combines the processes of straightening and heat treatment. The method consists in that axial strain – tension, is applied to the shaft during heating, and during cooling the product is fixed in a fixture, the cooling rate of the shaft being several-fold greater than that of the fixture. A device is presented for the realisation of the method of controlling the process of plastic deformation of low-rigidity shafts. In the case of the presented device and the adopted calculation scheme, a method was developed that permits the determination of the length of shaft section and of the time of its cooling.

  13. Development and validation of models for simulation of supercritical carbon dioxide Brayton cycles and application to self-propelling heat removal systems in boiling water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Venker, Jeanne

    2015-03-31

    The objective of the current work was to develop a model that is able to describe the transient behavior of supercritical carbon dioxide (sCO{sub 2}) Brayton cycles, to be applied to self-propelling residual heat removal systems in boiling water reactors. The developed model has been implemented into the thermohydraulic system code ATHLET. By means of this improved ATHLET version, novel residual heat removal systems, which are based on closed sCO{sub 2} Brayton cycles, can be assessed as a retrofit measure for present light water reactors. Transient simulations are hereby of great importance. The heat removal system has to be modeled explicitly to account for the interaction between the system and the behavior of the plant during different accident conditions. As a first step, transport and thermodynamic fluid properties of supercritical carbon dioxide have been implemented in ATHLET to allow for the simulation of the new working fluid. Additionally, a heat transfer correlation has been selected to represent the specific heat transfer of supercritical carbon dioxide. For the calculation of pressure losses due to wall friction, an approach for turbulent single phase flow has been adopted that is already implemented in ATHLET. In a second step, a component model for radial compressors has been implemented in the system code. Furthermore, the available model for axial turbines has been adapted to simulate the transient behavior of radial turbines. All extensions have been validated against experimental data. In order to simulate the interaction between the self-propelling heat removal system and a generic boiling water reactor, the components of the sCO{sub 2} Brayton cycle have been dimensioned with first principles. An available input deck of a generic BWR has then been extended by the residual heat removal system. The modeled application has shown that the extended version of ATHLET is suitable to simulate sCO{sub 2} Brayton cycles and to evaluate the introduced

  14. The efficiency of an open-cavity tubular solar receiver for a small-scale solar thermal Brayton cycle

    International Nuclear Information System (INIS)

    Le Roux, W.G.; Bello-Ochende, T.; Meyer, J.P.

    2014-01-01

    Highlights: • Results show efficiencies of a low-cost stainless steel tubular cavity receiver. • Optimum ratio of 0.0035 is found for receiver aperture area to concentrator area. • Smaller receiver tube and higher mass flow rate increase receiver efficiency. • Larger tube and smaller mass flow rate increase second law efficiency. • Large-tube receiver performs better in the small-scale solar thermal Brayton cycle. - Abstract: The first law and second law efficiencies are determined for a stainless steel closed-tube open rectangular cavity solar receiver. It is to be used in a small-scale solar thermal Brayton cycle using a micro-turbine with low compressor pressure ratios. There are many different variables at play to model the air temperature increase of the air running through such a receiver. These variables include concentrator shape, concentrator diameter, concentrator rim angle, concentrator reflectivity, concentrator optical error, solar tracking error, receiver aperture area, receiver material, effect of wind, receiver tube diameter, inlet temperature and mass flow rate through the receiver. All these variables are considered in this paper. The Brayton cycle requires very high receiver surface temperatures in order to be successful. These high temperatures, however, have many disadvantages in terms of heat loss from the receiver, especially radiation heat loss. With the help of ray-tracing software, SolTrace, and receiver modelling techniques, an optimum receiver-to-concentrator-area ratio of A′ ≈ 0.0035 was found for a concentrator with 45° rim angle, 10 mrad optical error and 1° tracking error. A method to determine the temperature profile and net heat transfer rate along the length of the receiver tube is presented. Receiver efficiencies are shown in terms of mass flow rate, receiver tube diameter, pressure drop, maximum receiver surface temperature and inlet temperature of the working fluid. For a 4.8 m diameter parabolic dish, the

  15. Performance Enhancement of One and Two-Shaft Industrial Turboshaft Engines Topped With Wave Rotors

    Science.gov (United States)

    Fatsis, Antonios

    2018-05-01

    Wave rotors are rotating equipment designed to exchange energy between high and low enthalpy fluids by means of unsteady pressure waves. In turbomachinery, they can be used as topping devices to gas turbines aiming to improve performance. The integration of a wave rotor into a ground power unit is far more attractive than into an aeronautical application, since it is not accompanied by any inconvenience concerning the over-weight and extra dimensioning. Two are the most common types of ground industrial gas turbines: The one-shaft and the two-shaft engines. Cycle analysis for both types of gas turbine engines topped with a four-port wave rotor is calculated and their performance is compared to the performance of the baseline engine accordingly. It is concluded that important benefits are obtained in terms of specific work and specific fuel consumption, especially compared to baseline engines with low compressor pressure ratio and low turbine inlet temperature.

  16. Development Of Design Equations For A Square-tube Subbase Supporting A Shaft-mounted Speed Reducer

    OpenAIRE

    Brown III, William E.

    2002-01-01

    Shaft mounted speed reducers are used in material handling applications, such as conveyor systems for transporting ore out of mine shafts. A subbase joins the reducer with an electric motor, and serves to limit the misalignment between the motor shaft and the reducer input shaft. The entire assembly is supported at two points: the axis of rotation of the reducer output shaft, which is fixed, and a clevis-pin joint under the motor, which prevents rotation of the assembly about the reducer ou...

  17. Mechanical coupling for a rotor shaft assembly of dissimilar materials

    Science.gov (United States)

    Shi, Jun [Glastonbury, CT; Bombara, David [New Hartford, CT; Green, Kevin E [Broad Brook, CT; Bird, Connic [Rocky Hill, CT; Holowczak, John [South Windsor, CT

    2009-05-05

    A mechanical coupling for coupling a ceramic disc member to a metallic shaft includes a first wedge clamp and a second wedge clamp. A fastener engages a threaded end of a tie-bolt to sandwich the ceramic disc between the wedge clamps. An axial spring is positioned between the fastener and the second wedge clamp to apply an axial preload along the longitudinal axis. Another coupling utilizes a rotor shaft end of a metallic rotor shaft as one wedge clamp. Still another coupling includes a solid ceramic rotor disc with a multiple of tie-bolts radially displaced from the longitudinal axis to exert the preload on the solid ceramic rotor disc.

  18. Design of inclined loaded drilled shafts in high-plasticity clay environment.

    Science.gov (United States)

    2011-05-01

    Drilled shaft foundations are principally used to support many structures such as bridge piers, towers, : buildings, transmission towers, and roadway cable barriers. This research focuses on the use of drilled shafts : in the cable median barrier sys...

  19. Shaft Excavation in Frozen Ground at Point 5

    CERN Document Server

    Osborne, J

    2000-01-01

    Construction work on the 112 MCHF civil engineering contract started at Point 5 in August 1998. The new surface buildings and underground structures are necessary to accommodate the CMS detector for the LHC Project. The principal underground works consist of two new shafts, two parallel caverns separated by a supporting pillar, and a number of small connection tunnels and service galleries. The two shafts are to be sunk through approximately 50 m of water-bearing moraine to the underlying molasse rock. From a number of possible construction methods, ground freezing of the moraine was considered to be most appropriate. The ground freezing is used to control the groundwater and to support temporarily the moraine during excavation and lining of the shafts. The aim of this paper is to present the ground-freezing technique and to discuss the advantages and disadvantages of the system in the light of its first few months of running on the Point 5 site.

  20. Fracture Failure Analysis of Fuel Pump Transmission Shaft of Dual-Fuel Engine

    Directory of Open Access Journals (Sweden)

    Chen Pei-hong

    2017-01-01

    Full Text Available NTS6ZLCz-129 dual-fuel turbocharged and intercooled engine durability test at 1000h, fuel pump shaft fractured. Fracture analysis, chemical analysis, microstructure examination and finite element stress analysis were carried out on the fractured shaft. The analysis result showed that the shaft fracture cause is forging fold. By improving the forging process, the forging fold was solved, and the durability test can be carried out smoothly.

  1. 33 Shafts Category of Transuranic Waste Stored Below Ground within Area G

    Energy Technology Data Exchange (ETDEWEB)

    Hargis, Kenneth Marshall [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Monk, Thomas H [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-05-22

    This report compiles information to support the evaluation of alternatives and analysis of regulatory paths forward for the 33 shafts. The historical information includes a form completed by waste generators for each waste package (Reference 6) that included a waste description, estimates of Pu-239 and uranium-235 (U-235) based on an accounting technique, and calculations of mixed fission products (MFP) based on radiation measurements. A 1979 letter and questionnaire (Reference 7) provides information on waste packaging of hot cell waste and the configuration of disposal shafts as storage in the 33 Shafts was initiated. Tables of data by waste package were developed during a review of historical documents that was performed in 2005 (Reference 8). Radiological data was coupled with material-type data to estimate the initial isotopic content of each waste package and an Oak Ridge National Laboratory computer code was used to calculate 2009 decay levels. Other sources of information include a waste disposal logbook for the 33 shafts (Reference 9), reports that summarize remote-handled waste generated at the CMR facility (Reference 10) and placement of waste in the 33 shafts (Reference 11), a report on decommissioning of the LAMPRE reactor (Reference 12), interviews with an employee and manager involved in placing waste in the 33 shafts (References 13 and 14), an interview with a long-time LANL employee involved in waste operations (Reference 15), a 2002 plan for disposition of remote-handled TRU waste (Reference 16), and photographs obtained during field surveys of several shafts in 2007. The WIPP Central Characterization Project (CCP) completed an Acceptable Knowledge (AK) summary report for 16 canisters of remote-handled waste from the CMR Facility that contains information relevant to the 33 Shafts on hot-cell operations and timeline (Reference 17).

  2. TECHNICAL AND ECONOMIC EVALUATION OF OPTIMAL VOLTAGE LEVEL FOR THE POWER SUPPLY OF DEEP MINE OPERATING HORIZONS

    OpenAIRE

    Shkrabets, F. P.; Ostapchuk, O. V.; Kozhevnikov, A. V.; Akulov, A. V.

    2015-01-01

    The most perspective option for possible deep mine power supply is the one with the deep input of 35 kV voltage by installing of underground 35kV/6 kV substation. This option is caused by the expected level of electrical loads, provided by mine development, the power consumers’ deep layout (considering the distance from the source to the shaft on the surface and from the shaft to the underground substation chamber) and primary and the most responsible power consumers (blind shaft lifting devi...

  3. ESF [Exploratory Shaft Facility] impact evaluation report: Volume 2: Final report

    International Nuclear Information System (INIS)

    1985-08-01

    This report assesses the impacts of integrating an Exploratory Shaft Facility (ESF) with a high-level nuclear waste repository in salt. An evaluation to identify integration impacts is described for two specific ESF configurations (Cases 1 and 2) for each of the seven sites. These configurations are an ESF which uses two of the full size repository shafts, and an ESF with one 10-ft and one 22-ft diameter shaft. An evaluation of an ESF configuration (Case 3) with two 12-ft diameter shafts at three of the seven sites is also described. These sites are Deaf Smith, Davis Canyon, and Richton Dome. A fourth evaluation (Case 4) for the Deaf Smith site only, addresses a ''fast track'' subsurface development plan to allow waste emplacement by 1998. A fifth evaluation (Case 5), provides site-specific ES locations, for the three sites included in Case 3, which are supportive of a shaft siting study prepared by ONWI. The report presents development schedules depicting construction activities and time frames commencing with receipt of the repository Construction Authorization and proceeding to initiation of emplacement operations. These schedules are site specific and are presented for each of the five cases

  4. Low frequency torsional vibration gaps in the shaft with locally resonant structures

    International Nuclear Information System (INIS)

    Yu Dianlong; Liu Yaozong; Wang Gang; Cai Li; Qiu Jing

    2006-01-01

    The propagation of torsional wave in the shaft with periodically attached local resonators is studied with the transfer matrix theory and the finite element method. The analytical dispersion relation and the complex band structure of such a structure is presented for the first time, which indicates the existence of low frequency gaps. The effect of shaft material on the vibration attenuation in band gap is investigated. The frequency response function of the shaft with finite periodic locally resonant oscillators is simulated with finite element method, which shows large vibration attenuation in the frequency range of the gap as expected. The low frequency torsional gap in shafts provides a new idea for vibration control

  5. Modelling of electrical power systems for power flow analysis

    Energy Technology Data Exchange (ETDEWEB)

    Cogo, Joao Roberto [Escola Federal de Engenharia de Itajuba, MG (Brazil)

    1994-12-31

    The industry systems in Brazil are responsible for a consumption of over 50% (fifty per cent) of the total electrical power generated: therefore, they are import loads in power flow studies, and their modeling should be as much the best. Usually, in power flow studies, the industry systems are modeled by taking the influence of the power (active and reactive) and of the current on the voltage into account. Since the inducting motors, within the industry systems, represent at least 50% (fifty per cent) of the power consumption, and a large part of them is oversize, it is proposed to represent the industry systems as a function of the characteristic of power on shaft versus voltage into account. Since the induction motors, within the industry systems, represent at least 50% (fifty per cent) of the power consumption, and a large part of them is oversized, it is proposed to represent the industry systems as a function of the characteristics of power on shaft versus voltage for the analysis of power systems, aiming a load flow study. Thereafter, a model of an equivalent motor which has a basis the typical performance curve of an induction motor is present. This model is obtained from empirical parameters, surveyed from a population of over 1000 motors. (author) 3 refs., 1 fig., 4 tabs.

  6. Finite time exergy analysis and multi-objective ecological optimization of a regenerative Brayton cycle considering the impact of flow rate variations

    International Nuclear Information System (INIS)

    Naserian, Mohammad Mahdi; Farahat, Said; Sarhaddi, Faramarz

    2015-01-01

    Highlights: • Defining a dimensionless parameter includes the finite-time and size concepts. • Inserting the concept of exergy of fluid streams into finite-time thermodynamics. • Defining, drawing and modifying of maximum ecological function curve. • Suggesting the appropriate performance zone, according to maximum ecological curve. - Abstract: In this study, the optimal performance of a regenerative Brayton cycle is sought through power and then ecological function maximization using finite-time thermodynamic concept and finite-size components. Multi-objective optimization is used for maximizing the ecological function. Optimizations are performed using genetic algorithm. In order to take into account the finite-time and finite-size concepts in current problem, a dimensionless mass-flow parameter is introduced deploying time variations. The variations of output power, total exergy destruction of the system, and decision variables for the optimum state (maximum ecological function state) are compared to the maximum power state using the dimensionless parameter. The modified ecological function in optimum state is obtained and plotted relating to the dimensionless mass-flow parameter. One can see that the modified ecological function study results in a better performance than that obtained with the maximum power state. Finally, the appropriate performance zone of the heat engine will be obtained

  7. Estimates of power requirements for a Manned Mars Rover powered by a nuclear reactor

    Science.gov (United States)

    Morley, Nicholas J.; El-Genk, Mohamed S.; Cataldo, Robert; Bloomfield, Harvey

    1991-01-01

    This paper assesses the power requirement for a Manned Mars Rover vehicle. Auxiliary power needs are fulfilled using a hybrid solar photovoltaic/regenerative fuel cell system, while the primary power needs are meet using an SP-100 type reactor. The primary electric power needs, which include 30-kW(e) net user power, depend on the reactor thermal power and the efficiency of the power conversion system. Results show that an SP-100 type reactor coupled to a Free Piston Stirling Engine yields the lowest total vehicle mass and lowest specific mass for the power system. The second lowest mass was for a SP-100 reactor coupled to a Closed Brayton Cycle using He/Xe as the working fluid. The specific mass of the nuclear reactor power system, including a man-rated radiation shield, ranged from 150-kg/kW(e) to 190-kg/KW(e) and the total mass of the Rover vehicle varied depend upon the cruising speed.

  8. Long-term functional outcome following intramedullary nailing of femoral shaft fractures

    NARCIS (Netherlands)

    el Moumni, Mostafa; Voogd, Emma Heather; ten Duis, Henk Jan; Wendt, Klaus Wilhelm

    Background: The management of femoral shaft fractures using intramedullary nailing is a popular method. The purpose of this study was to evaluate the long-term functional outcome after antegrade or retrograde intramedullary nailing of traumatic femoral shaft fractures. We further determined

  9. Gearbox Reliability Collaborative Investigation of Gearbox Motion and High-Speed-Shaft Loads

    Energy Technology Data Exchange (ETDEWEB)

    Keller, Jon [National Renewable Energy Lab. (NREL), Golden, CO (United States); Guo, Yi [National Renewable Energy Lab. (NREL), Golden, CO (United States); Sethuraman, Latha [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-03-18

    This paper extends a model-to-test validation effort to examine the effect of different constant rotor torque and moment conditions and intentional generator misalignment on the gearbox motion and high-speed-shaft loads. Fully validating gearbox motion and high-speed-shaft loads across a range of test conditions is a critical precursor to examining the bearing loads, as the gearbox motion and high-speed-shaft loads are the drivers of these bearing loads.

  10. FINITE ELEMENT ANALYSIS OF CENTRELESS-LUNETTE TURNING OF HEAVY SHAFT

    Directory of Open Access Journals (Sweden)

    Yu. V. Vasilevich

    2017-01-01

    Full Text Available Dynamics of huge renovated lathe is simulated. Turning scheme concerns to heavy rotor shaft finishing. Lofty parts and milling head may create dynamic problems. Static, modal and harmonic frequency response function simulations were provided. Bearing system consists of bed, support, tool, lunettes, tailstock. Headstock didn’t take part in shaft holding. Static and dynamic rigidities founded 3–4 times less for support than for shaft. Tool rigidity lessens from 186.5 to 11.9 N/µm for speeding from slow to near resonance turning. Twelve lathe eigenmodes were evaluated. Two eigenmodes are most dangerous. It is “shaft swinging on lunettes” (M1, 26.7 Hz and “support pecking” (M3, 54.4 Hz. Bed has excessive flexibility due to through holes and lack of inner ribbing. Polymer concrete filling is moderately effective. Changing two-lunette (2L scheme to three-lunette (3L increases rigidity of shaft at 2.09 times at statics but gives limited action in dynamics. Resonant peaks on frequency response function are lowered only at 1.32 times for M1, M3. Effect of dynamic damping is revealed under condition of proximity middle lunette to lofty support. Support serves as tuned mass damper. Measures of machine tool reinforcement are simulated. Shaft swinging according to M1 may hardly be blocked by passive means. It would be better to bypass it. “Support pecking” resonance (M3 succumbs to only full set of measures. Small effect of partial reinforcement is predicted. Three frequency intervals are recommended for turn-milling at huge lathe: pre-resonant (<20 Hz, inter-resonant (35–45 Hz and post-resonant (>65 Hz. The last one is more suited. Next design step is to create triangle inner ribbing system or caissons inside of bed.

  11. Selection of power plant elements for future reactor space electric power systems

    International Nuclear Information System (INIS)

    Buden, D.; Bennett, G.A.; Copper, K.

    1979-09-01

    Various types of reactor designs, electric power conversion equipment, and reject-heat systems to be used in nuclear reactor power plants for future space missions were studied. The designs included gas-cooled, liquid-cooled, and heat-pipe reactors. For the power converters, passive types such as thermoelectric and thermionic converters and dynamic types such as Brayton, potassium Rankine, and Stirling cycles were considered. For the radiators, heat pipes for transfer and radiating surface, pumped fluid for heat transfer with fins as the radiating surface, and pumped fluid for heat transfer with heat pipes as the radiating surface were considered. After careful consideration of weights, sizes, reliabilities, safety, and development cost and time, a heat-pipe reactor design, thermoelectric converters, and a heat-pipe radiator for an experimental program were selected

  12. Simulation on spread of fire smoke in the elevator shaft for a high-rise building

    Directory of Open Access Journals (Sweden)

    Yunchun Xia

    2014-01-01

    Full Text Available Spread of fire smoke in the elevator shaft of a high-rise building is influenced by many driving facts. We simulate smoke spreading in the elevator shaft, stair room, and pre-chamber with and without different supplied pressurized air. The simulation shows that smoke moves very fast in the elevator shaft. When a 12 floor high-rise building is in fire, smoke can fill up the elevator shaft in less than 1.5 min after a fire started, temperature in the elevator shaft can be higher than 187°C in 5 min, and the concentration of CO can also reach a high level. The elevator shaft has a very low visibility in less than about 100 s.

  13. Magnetic shaft seals prevent hazardous leakage from wastewater agitators

    International Nuclear Information System (INIS)

    Traino, F.A.

    1985-01-01

    The US Department of Energy's laboratory in Miamisburg, OH, operated by Monsanto Research Corporation, processes approximately 45,000 gallons per week of low-level radioactive wastewater to meet Federal Environmental Protection Agency quality standards. Preventing the spread of radioactive contamination throughout the operating area demands effective sealing of all process piping, valves, pumps, and agitators. Rotating shafts of pumps and agitators installed a the start of operations in 1947 were sealed by stuffing glands with graphite impregnated asbestos packing. These pumps proved to be unsatisfactory. In the mid-1970's, new process pumps with mechanical seals and some with magnetic drives were installed. Later, in January 1979, new agitator shaft drives with double tandem, spring-loaded mechanical seals were installed, maintenance of these pumps was costly. The agitator drive shafts were redesigned to accommodate magnetic seals of the type successfully used in blowers and vacuum/pressure pumps in other plant locations. One inherent advantage of the magnetic seal is that it operates with a face loading as much as 50% less than a conventional spring-loaded mechanical seal. The lower loading by a predetermined uniform magnetic force contributes to long face life. Other advantages include compactness, ease of assembly with only a few parts, and insensitivity to vibration. The magnetic shaft seals installed on the agitator shafts in February 1983 are still in service without any leakage or need for maintenance. Based on current operating data and a projected five-year meantime between failures, the estimated cost benefit of the magnetic seals over spring-loaded mechanical seals over spring-loaded mechanical seals will be $640 vs $2400 respectively per seal, with 60% less downtime for maintenance

  14. CFD analysis of the service shaft during the recovery work of the damaged cleaning tank in the Paks NPP

    International Nuclear Information System (INIS)

    Legradi, Gabor; Aszodi Attila

    2005-01-01

    The recovery work of the cleaning tank that has suffered a serious incident in 10-11 th of April, 2003 is under planning in the 2 nd unit of the Packs Nuclear Power Plant. During this work, the service shaft will be operated in a low-coolant-level operational mode. Since the operators of the damaged fuel removing equipment will work standing on a platform just above the surface of the coolant of decreased level, protecting them against unnecessary personal doses is a very important task. From this viewpoint, the coolant of the service shaft plays double role. First, the few meters high layer of coolant between the working platform and the damaged fuel is an important part of the biological shielding for the workers. O the other hand, due to the considerable amount od radioactive contamination dispersed into the coolant, it is also a source of radiation. Therefore the vertical distribution of the contamination in the service shaft is a very important question during different operational modes of the cooling and purification systems (Authors)

  15. Operation of Two-Shaft Gas Turbine in the Range of Open Anti-Surge Valve

    Directory of Open Access Journals (Sweden)

    Dzida Marek

    2017-12-01

    Full Text Available This paper presents experimental tests of full-scale two-shaft gas turbine in the range of open anti-surge valve (ASV. The tests were carried out in a laboratory gas- turbine test stand belonging to Department of Automation and Power Engineering , Faculty of Ocean Engineering and Ship Technology , Gdańsk University of Technology. The tests covered the start-up and low load operation of the turbine set in the range of open anti-surge valve.

  16. Continuous hydrino thermal power system

    Energy Technology Data Exchange (ETDEWEB)

    Mills, Randell L.; Zhao, Guibing; Good, William [BlackLight Power, Inc., 493 Old Trenton Road, Cranbury, NJ 08512 (United States)

    2011-03-15

    The specifics of a continuous hydrino reaction system design are presented. Heat from the hydrino reactions within individual cells provide both reactor power and the heat for regeneration of the reactants. These processes occur continuously and the power from each cell is constant. The conversion of thermal power to electrical power requires the use of a heat engine exploiting a cycle such as a Rankine, Brayton, Stirling, or steam-engine cycle. Due to the temperatures, economy goal, and efficiency, the Rankine cycle is the most practical and can produce electricity at 30-40% efficiency with a component capital cost of about $300 per kW electric. Conservatively, assuming a conversion efficiency of 25% the total cost with the addition of the boiler and chemical components is estimated at $1064 per kW electric. (author)

  17. Continuous hydrino thermal power system

    International Nuclear Information System (INIS)

    Mills, Randell L.; Zhao, Guibing; Good, William

    2011-01-01

    The specifics of a continuous hydrino reaction system design are presented. Heat from the hydrino reactions within individual cells provide both reactor power and the heat for regeneration of the reactants. These processes occur continuously and the power from each cell is constant. The conversion of thermal power to electrical power requires the use of a heat engine exploiting a cycle such as a Rankine, Brayton, Stirling, or steam-engine cycle. Due to the temperatures, economy goal, and efficiency, the Rankine cycle is the most practical and can produce electricity at 30-40% efficiency with a component capital cost of about $300 per kW electric. Conservatively, assuming a conversion efficiency of 25% the total cost with the addition of the boiler and chemical components is estimated at $1064 per kW electric.

  18. Analysis of main dynamic parameters of split power transmission

    Directory of Open Access Journals (Sweden)

    A. Janulevičius

    2008-06-01

    Full Text Available The review carried out had shown one basic approach of split power transmission to the organization of drive which is applied to stepless transmissions of tractors and parallel hybrid cars. In the split power transmission the power split device uses a planetary gear. Tractor engine power in the split power transmission is transmitted to the drive shaft via a mechanical and hydraulic path. The theoretical analysis of main parameters of the split power transmission of the tractor is presented. The angular velocity of sun and coronary gears of the differential set is estimated by solution of the system of equations in which one equation is made for planetary differential gear, and another – for hydrostatic drive. The analysis of the transmission gear-ratio dependencies on the ratio of hydraulic machines capacities is carried out. Dependence of the variation of angular velocity of the coronary and the sun gears on the ground speed of the tractor is presented. Dependence of sum shaft torque and its constituents, carried by mechanical and hydraulic lines, on sum shaft angular velocity and ground speed of tractor and engine speed is also presented.

  19. Mining a coal seam with caving in a protective pillar of a mine shaft. [Poland

    Energy Technology Data Exchange (ETDEWEB)

    Szymura, G; Dilling, R; Kowalski, A

    1984-01-01

    Mining the 620 seam is evaluated (from 1.5 to 1.7 m thick at a depth of 468 m in the protective pillar of the upcast mine shaft used for ventilation, manriding and transport of materials in the Pstrowski mine in Upper Silesia). The shaft is 496 m deep, has a diameter of 3.5 m and its liners are made of bricks. Ground subsidence caused by underground mining influenced: the head frame above the shaft, residential buildings, a church, railway tracks and a river bed. A system of shortwall mining with caving was used. Deformation of shaft liners was reduced by advanced cutting of a coal block 30x30 m around the shaft. A system of timber cribbings and yielding elements was used. Design of support systems used around the shaft is shown in 3 schemes. Shaft deformation was within permissible limits. The maximum ground subsidence (0.95 m) occurred in the river area. Ground subsidence in the area of the church ranged from 0.75 to 0.81 m and in the head frame area 0.84 m. Accuracy of ground subsidence and shaft deformation forecasting was high. 4 references.

  20. An evaluation of thermodynamic solar plants with cylindrical parabolic collectors and air turbine engines with open Joule–Brayton cycle

    International Nuclear Information System (INIS)

    Ferraro, Vittorio; Marinelli, Valerio

    2012-01-01

    A performance analysis of innovative solar plants operating with cylindrical parabolic collectors and atmospheric air as heat transfer fluid in an open Joule–Brayton cycle, with and without intercooling and regeneration, is presented. The analysis was made for two operating modes of the plants: with variable air flow rate and constant inlet temperature to the turbine and with constant flow rate and variable inlet temperature to the turbine. The obtained results show a good performance of this type of solar plant, in spite of its simplicity; it seems able to compete well with other more complex plants operating with different heat transfer fluids. -- Highlights: ► Innovative CPS solar plants, operating with air in open Joule–Brayton cycle, are proposed. ► They are attractive for their simplicity and present interesting values of global efficiency. ► They seem able to compete well with other more complex solar plants.

  1. ARC: A compact, high-field, disassemblable fusion nuclear science facility and demonstration power plant

    Science.gov (United States)

    Sorbom, Brandon; Ball, Justin; Palmer, Timothy; Mangiarotti, Franco; Sierchio, Jennifer; Bonoli, Paul; Kasten, Cale; Sutherland, Derek; Barnard, Harold; Haakonsen, Christian; Goh, Jon; Sung, Choongki; Whyte, Dennis

    2014-10-01

    The Affordable, Robust, Compact (ARC) reactor conceptual design aims to reduce the size, cost, and complexity of a combined Fusion Nuclear Science Facility (FNSF) and demonstration fusion pilot power plant. ARC is a 270 MWe tokamak reactor with a major radius of 3.3 m, a minor radius of 1.1 m, and an on-axis magnetic field of 9.2 T. ARC has Rare Earth Barium Copper Oxide (REBCO) superconducting toroidal field coils with joints to allow disassembly, allowing for removal and replacement of the vacuum vessel as a single component. Inboard-launched current drive of 25 MW LHRF power and 13.6 MW ICRF power is used to provide a robust, steady state core plasma far from disruptive limits. ARC uses an all-liquid blanket, consisting of low pressure, slowly flowing Fluorine Lithium Beryllium (FLiBe) molten salt. The liquid blanket acts as a working fluid, coolant, and tritium breeder, and minimizes the solid material that can become activated. The large temperature range over which FLiBe is liquid permits blanket operation at 800-900 K with single phase fluid cooling and allows use of a high-efficiency Brayton cycle for electricity production in the secondary coolant loop.

  2. Assembly and Alignment of Ship Power Plants in Modern Shipbuilding

    OpenAIRE

    A. O. Mikhailov; K. N. Morozov

    2013-01-01

    Fine alignment of main ship power plants mechanisms and shaft lines provides long-term and failure-free performance of propulsion system while fast and high-quality installation of mechanisms and shaft lines decreases common labor intensity. For checking shaft line allowed stress and setting its alignment it is required to perform calculations considering various stages of life cycle. In 2012 JSC SSTC developed special software complex “Shaftline” for calculation of align...

  3. Analysis and countermeasures for the corrosion on the shaft of seawater pump

    International Nuclear Information System (INIS)

    Lu Hongtao; Chen Haiming

    2010-01-01

    The corrosion resistance of the shaft material-3Cr13 was studied through immersion test and electrochemistry test. The results indicated that 3Cr13 and the chromium plating on the shaft had poor resistance against local corrosion in seawater. And the free corrosion potential of 3Cr13 in seawater was lower than other components of the pump, this could accelerate the corrosion rate of the shaft due to galvanic corrosion. A comprehensive analysis showed that the root cause of the corrosion on the No.4 shaft was that 3Cr13 had poor resistance against local corrosion in seawater. Because of the exist of fit-up gap, galvanic corrosion effect and corrosive wear caused by sand, crevice corrosion, galvanic corrosion and wear occurred. All of these accelerated the corrosion rate of the shaft and finally caused its failure. It is suggested that the sealant should be improved and the current material 3Cr13 should be replaced by a kind of materials with better corrosion resistance. (authors)

  4. Comparative thermodynamic performance of some Rankine/Brayton cycle configurations for a low-temperature energy application

    Science.gov (United States)

    Lansing, F. L.

    1977-01-01

    Various configurations combining solar-Rankine and fuel-Brayton cycles were analyzed in order to find the arrangement which has the highest thermal efficiency and the smallest fuel share. A numerical example is given to evaluate both the thermodynamic performance and the economic feasibility of each configuration. The solar-assisted regenerative Rankine cycle was found to be leading the candidates from both points of energy utilization and fuel conservation.

  5. The Strength Calculation of the Pump Shaft with a Worn Impeller

    Directory of Open Access Journals (Sweden)

    Nikolay P. Ovchinnikov

    2017-12-01

    Full Text Available Introduction: This paper presents the study of the impeller wear influence on stress-strain state of a centrifugal pump shaft. In agro-industrial sector, centrifugal pumps are used for watering various agricultural crops. During pumping water, a centrifugal pump impeller is usually a subject to influence of various irreversible physical-and-mechanical and physical-and-chemical processes that can result in a certain reduction in its mass. Materials and Methods: We used a comprehensive approach including the analysis of a sufficient number domestic and foreign publications on the research topic and parametric studies conducted on a laboratory-pumping unit. We had modern vibration-based diagnostic equipment, the mathematical models of loading a pump shaft and a finite-element modeling in APM Win Machine software (Beam module. Results: The comparison of the maximum equivalent dynamic stresses obtained according to the proposed method with existing methods for carrying out the checking strength calculation of a centrifugal pump shaft showed that account of the impeller wear significantly changes picture of stress-strain state shaft. Discussion and Conclusions: The amendments proposed by the author in checking strength calculation of a centrifugal pump shaft will allow estimating its stress-strain state in certain production situations.

  6. Torsional Vibrations of a Conic Shaft with Opposite Tapers Carrying Arbitrary Concentrated Elements

    Directory of Open Access Journals (Sweden)

    Jia-Jang Wu

    2013-01-01

    Full Text Available The purpose of this paper is to present the exact solution for free torsional vibrations of a linearly tapered circular shaft carrying a number of concentrated elements. First of all, the equation of motion for free torsional vibration of a conic shaft is transformed into a Bessel equation, and, based on which, the exact displacement function in terms of Bessel functions is obtained. Next, the equations for compatibility of deformations and equilibrium of torsional moments at each attaching point (including the shaft ends between the concentrated elements and the conic shaft with positive and negative tapers are derived. From the last equations, a characteristic equation of the form is obtained. Then, the natural frequencies of the torsional shaft are determined from the determinant equation , and, corresponding to each natural frequency, the column vector for the integration constants, , is obtained from the equation . Substitution of the last integration constants into the associated displacement functions gives the corresponding mode shape of the entire conic shaft. To confirm the reliability of the presented theory, all numerical results obtained from the exact method are compared with those obtained from the conventional finite element method (FEM and good agreement is achieved.

  7. Study of the conditions affecting the critical speed of a rotating pump shaft

    International Nuclear Information System (INIS)

    Fardeau, P.; Huet, J.L.; Axisa, F.

    1983-01-01

    Knowing the parameters conditioning the critical speed of a pump shaft is important, both for safety and design purposes, since the shafts are often to operate beyond the first critical speed. These aims led CEA, associated with NOVATOME and FRAMATOME (with the cooperation of JEUMONT-SCHNEIDER) to carry out a test program on critical speeds of a full scale nuclear pump shaft. Fluid-structure interaction plays an important part in the setting of critical speed. Due to the coupling between the rotative fluid flow and the transverse vibrations of the shaft, inertial and stiffness forces are created, which are non conservative and proportional to the added mass of the fluid. The hydrostatic bearing effect and the influence of the water carried along by the pump wheel were also investigated, but proved unimportant in the case of the shaft studied. Experimental results are compared with calculations of critical speed. (orig.)

  8. Coaxial twin-shaft magnetic fluid seals applied in vacuum wafer-handling robot

    Science.gov (United States)

    Cong, Ming; Wen, Haiying; Du, Yu; Dai, Penglei

    2012-07-01

    Compared with traditional mechanical seals, magnetic fluid seals have unique characters of high airtightness, minimal friction torque requirements, pollution-free and long life-span, widely used in vacuum robots. With the rapid development of Integrate Circuit (IC), there is a stringent requirement for sealing wafer-handling robots when working in a vacuum environment. The parameters of magnetic fluid seals structure is very important in the vacuum robot design. This paper gives a magnetic fluid seal device for the robot. Firstly, the seal differential pressure formulas of magnetic fluid seal are deduced according to the theory of ferrohydrodynamics, which indicate that the magnetic field gradient in the sealing gap determines the seal capacity of magnetic fluid seal. Secondly, the magnetic analysis model of twin-shaft magnetic fluid seals structure is established. By analyzing the magnetic field distribution of dual magnetic fluid seal, the optimal value ranges of important parameters, including parameters of the permanent magnetic ring, the magnetic pole tooth, the outer shaft, the outer shaft sleeve and the axial relative position of two permanent magnetic rings, which affect the seal differential pressure, are obtained. A wafer-handling robot equipped with coaxial twin-shaft magnetic fluid rotary seals and bellows seal is devised and an optimized twin-shaft magnetic fluid seals experimental platform is built. Test result shows that when the speed of the two rotational shafts ranges from 0-500 r/min, the maximum burst pressure is about 0.24 MPa. Magnetic fluid rotary seals can provide satisfactory performance in the application of wafer-handling robot. The proposed coaxial twin-shaft magnetic fluid rotary seal provides the instruction to design high-speed vacuum robot.

  9. Design considerations for sealing the shafts of a nuclear fuel waste disposal vault

    International Nuclear Information System (INIS)

    Mortazavi, M.H.S.; Chan, H.T.; Radhakrishna, H.S.

    1985-05-01

    The shafts in an underground disposal system, which constitute potential pathways between the disposal vault and the biosphere, should be effectively sealed if the system is to perform as a hydrodynamic and geochemical barrier for the safe containment of nuclear fuel waste. In the design of the shaft backfill, consideration should be given to ensure that the backfill and the backfill/rock interface remain intact. Design-related problems, including critical pathways for the transport or radionuclides, configuration of shaft backfill and its functional requirements, the state of stress in a backfilled shaft with particular emphasis on the arching and load transfer phenomenon are discussed in this report

  10. Shaft Seal Compensates for Cold Flow

    Science.gov (United States)

    Myers, W. N.; Hein, L. A.

    1985-01-01

    Seal components easy to install. Ring seal for rotating or reciprocating shafts spring-loaded to compensate for slow yielding (cold flow) of sealing material. New seal relatively easy to install because components preassembled, then installed in one piece.

  11. Non-symmetric approach to single-screw expander and compressor modeling

    Science.gov (United States)

    Ziviani, Davide; Groll, Eckhard A.; Braun, James E.; Horton, W. Travis; De Paepe, M.; van den Broek, M.

    2017-08-01

    Single-screw type volumetric machines are employed both as compressors in refrigeration systems and, more recently, as expanders in organic Rankine cycle (ORC) applications. The single-screw machine is characterized by having a central grooved rotor and two mating toothed starwheels that isolate the working chambers. One of the main features of such machine is related to the simultaneous occurrence of the compression or expansion processes on both sides of the main rotor which results in a more balanced loading on the main shaft bearings with respect to twin-screw machines. However, the meshing between starwheels and main rotor is a critical aspect as it heavily affects the volumetric performance of the machine. To allow flow interactions between the two sides of the rotor, a non-symmetric modelling approach has been established to obtain a more comprehensive model of the single-screw machine. The resulting mechanistic model includes in-chamber governing equations, leakage flow models, heat transfer mechanisms, viscous and mechanical losses. Forces and moments balances are used to estimate the loads on the main shaft bearings as well as on the starwheel bearings. An 11 kWe single-screw expander (SSE) adapted from an air compressor operating with R245fa as working fluid is used to validate the model. A total of 60 steady-steady points at four different rotational speeds have been collected to characterize the performance of the machine. The maximum electrical power output and overall isentropic efficiency measured were 7.31 kW and 51.91%, respectively.

  12. Analysis of the Dynamic Behavior of a Rotating Composite Hollow Shaft

    Directory of Open Access Journals (Sweden)

    Aldemir Ap Cavalini Jr

    Full Text Available Abstract In the present paper, a simplified homogenized beam theory is used in the context of a numerical investigation regarding the dynamic behavior of a rotating composite hollow shaft. For this aim, a horizontal flexible composite shaft and a rigid disc form the considered simple supported rotating system. The mathematical model of the rotor is derived from the Lagrange’s equation and the Rayleigh-Ritz method, which is obtained from the strain and kinetic energies of the disc and shaft, and the mass unbalance. In this case, a convergence procedure is carried out in terms of the vibration modes to obtain a representative model for the rotor system. Therefore, the proposed analysis is performed in both frequency and time domains, in which the frequency response functions, the unbalance responses, the Campbell diagram, and the orbits are numerically determined. Additionally, the instability threshold of the rotor system is obtained. This study illustrates the convenience of the composite hollow shafts for rotor dynamics applications.

  13. Construction of full-scale shaft seals in crystalline rock

    International Nuclear Information System (INIS)

    Martino, J.B.; Dixon, D.A.; Onagi, D.; Kim, C-S; Holowick, B.

    2011-01-01

    The Underground Research Laboratory (URL) was constructed to investigate concepts related to geological disposal of used nuclear fuel. This involved investigating the rock mass by undertaking in situ experiments using a multi disciplinary technical approach. The decision was made in 2003 to close the URL. Part of the closure process involved installing seals in the access and ventilation shafts at locations where they intersected an ancient thrust fault (Fracture Zone 2 -- FZ2). FZ2 is an active hydraulic pathway in the Lac du Bonnet batholith and this feature is the dominating structural and hydrogeological feature at the URL site. Above FZ2 the groundwater has a low salinity and is dominated by surface-related processes. With increasing depth in the batholith, surface-related effects decrease and the salinity of the groundwater increases to 90 g/L total dissolved solids. The decision to install the seals was made as part of the due diligence for the site closure to ensure that the saline groundwater located at depth down strike and below the thrust fault would not enter the closed underground openings and mix with less saline shallow groundwater. The construction of each seal involved the installation of a heavily reinforced low alkalinity concrete component keyed into the surrounding rock. The concrete supported and restrained a central clay-sand component, which was capped by an unreinforced concrete component. The clay-sand component spans the exposure of the thrust fault in each shaft. This paper describes the construction of the main shaft seal and the ventilation shaft seal. The construction of the shaft seals at the URL was part of the Nuclear Legacy Liabilities Program (NLLP) being funded by Natural Resources Canada (NRCan). (author)

  14. Construction of full-scale shaft seals in crystalline rock

    Energy Technology Data Exchange (ETDEWEB)

    Martino, J.B.; Dixon, D.A.; Onagi, D.; Kim, C-S; Holowick, B. [Atomic Energy of Canada Limited, Pinawa, MB (Canada)

    2011-07-01

    The Underground Research Laboratory (URL) was constructed to investigate concepts related to geological disposal of used nuclear fuel. This involved investigating the rock mass by undertaking in situ experiments using a multi disciplinary technical approach. The decision was made in 2003 to close the URL. Part of the closure process involved installing seals in the access and ventilation shafts at locations where they intersected an ancient thrust fault (Fracture Zone 2 -- FZ2). FZ2 is an active hydraulic pathway in the Lac du Bonnet batholith and this feature is the dominating structural and hydrogeological feature at the URL site. Above FZ2 the groundwater has a low salinity and is dominated by surface-related processes. With increasing depth in the batholith, surface-related effects decrease and the salinity of the groundwater increases to 90 g/L total dissolved solids. The decision to install the seals was made as part of the due diligence for the site closure to ensure that the saline groundwater located at depth down strike and below the thrust fault would not enter the closed underground openings and mix with less saline shallow groundwater. The construction of each seal involved the installation of a heavily reinforced low alkalinity concrete component keyed into the surrounding rock. The concrete supported and restrained a central clay-sand component, which was capped by an unreinforced concrete component. The clay-sand component spans the exposure of the thrust fault in each shaft. This paper describes the construction of the main shaft seal and the ventilation shaft seal. The construction of the shaft seals at the URL was part of the Nuclear Legacy Liabilities Program (NLLP) being funded by Natural Resources Canada (NRCan). (author)

  15. A comparison of locked versus nonlocked Enders rods for length unstable pediatric femoral shaft fractures.

    Science.gov (United States)

    Ellis, Henry Bone; Ho, Christine A; Podeszwa, David A; Wilson, Philip L

    2011-12-01

    Stainless steel flexible Enders rods have been used for intramedullary fixation of pediatric femur fractures with good success. Despite intraoperative anatomic alignment, length unstable femur fractures can present postoperatively with fracture shortening. The purpose of this study was to review all length unstable pediatric femoral shaft fractures in which Enders rods were used and compare those that were locked to those that were not locked. A retrospective clinical and radiographic review of all patients at a single institution undergoing flexible intramedullary fixation for length unstable femoral shaft fractures from 2001 to 2008. A length unstable fracture was defined as either a comminuted fracture or a spiral fracture longer than twice the diameter of the femoral shaft. A total of 107 length unstable femoral shaft fractures fixed with Enders rods were identified, of which 37 cases (35%) had both Enders rods "locked" through the eyelet in the distal femur with a 2.7 mm fully threaded cortical screw. Patient demographics, clinical course, complications, fracture characteristics, and radiographic outcomes were compared for the locked and nonlocked groups. There were no statistical differences between the groups in demographic data, operative variables, fracture pattern, fracture location, time to union, femoral alignment, or major complications. Shortening of the femur and nail migration measured at 1 to 6 weeks postoperatively was significantly greater for the nonlocked cases. The medial and lateral locked Enders rods moved 1.3 and 1.9 mm, respectively, and the unlocked Enders each moved 12.1 mm (P < 0.05). At final follow-up there were significantly more (P < 0.05) clinical complaints in nonlocked group, including limp, clinical shortening, and painful palpable rods. Locking Enders rods for length unstable pediatric fractures is an excellent option to prevent shortening and resulted in no additional complications, added surgical time, or increased blood loss

  16. The power of a single trajectory

    Science.gov (United States)

    Schnellbächer, Nikolas D.; Schwarz, Ulrich S.

    2018-03-01

    Random walks are often evaluated in terms of their mean squared displacements, either for a large number of trajectories or for one very long trajectory. An alternative evaluation is based on the power spectral density, but here it is less clear which information can be extracted from a single trajectory. For continuous-time Brownian motion, Krapf et al now have mathematically proven that the one property that can be reliably extracted from a single trajectory is the frequency dependence of the ensemble-averaged power spectral density (Krapf et al 2018 New J. Phys. 20 023029). Their mathematical analysis also identifies the appropriate frequency window for this procedure and shows that the diffusion coefficient can be extracted by averaging over a small number of trajectories. The authors have verified their analytical results both by computer simulations and experiments.

  17. 915 MHz microwave ablation with implanted internal cooled-shaft antenna: Initial experimental study in in vivo porcine livers

    International Nuclear Information System (INIS)

    Cheng Zhigang; Xiao Qiujin; Wang Yang; Sun Yuanyuan; Lu Tong; Liang Ping

    2011-01-01

    Purpose: To explore a preferred power output for further clinical application based on the ablated lesions induced by the four power outputs of 915 MHz microwave in experimental study of in vivo porcine livers. Materials and methods: A KY2000-915 microwave ablation system with an implanted 915 MHz internal cooled-shaft antenna was used in this study. A total of 24 ablations were performed in eight in vivo porcine livers. The energy was applied for 10 min at microwave output powers of 50 W, 60 W, 70 W, and 80 W. Long-axis and short-axis diameters of the coagulation zone were measured on all gross specimens. Results: The shapes of the 915 MHz microwave ablation lesions were elliptical commonly. As the power increased, the long-axis and short-axis diameters of the coagulation zone had a tendency to rise. But the long-axis diameter of the ablated lesion at 50 W was not significantly smaller than that of the ablated lesion at 60 W (P > 0.05) and there were no statistical differences in short-axis diameters of the ablated lesion among the three power outputs of 60 W, 70 W and 80 W (P > 0.05). After 10 min irradiation of 60 W, the long-axis and short-axis diameters of the coagulation zone were 5.02 ± 0.60 cm and 3.65 ± 0.46 cm, respectively. Conclusions: For decreasing the undesired damages of liver tissues along the shaft and the number of antenna in further clinically percutaneous microwave ablation treatment, the power of 60 W may be a preferred setting among the four power outputs used in present study.

  18. Reliability and mass analysis of dynamic power conversion systems with parallel or standby redundancy

    Science.gov (United States)

    Juhasz, Albert J.; Bloomfield, Harvey S.

    1987-01-01

    A combinatorial reliability approach was used to identify potential dynamic power conversion systems for space mission applications. A reliability and mass analysis was also performed, specifically for a 100-kWe nuclear Brayton power conversion system with parallel redundancy. Although this study was done for a reactor outlet temperature of 1100 K, preliminary system mass estimates are also included for reactor outlet temperatures ranging up to 1500 K.

  19. Reliability and mass analysis of dynamic power conversion systems with parallel of standby redundancy

    Science.gov (United States)

    Juhasz, A. J.; Bloomfield, H. S.

    1985-01-01

    A combinatorial reliability approach is used to identify potential dynamic power conversion systems for space mission applications. A reliability and mass analysis is also performed, specifically for a 100 kWe nuclear Brayton power conversion system with parallel redundancy. Although this study is done for a reactor outlet temperature of 1100K, preliminary system mass estimates are also included for reactor outlet temperatures ranging up to 1500 K.

  20. Comparison of tibial shaft ski fractures in children and adults.

    Science.gov (United States)

    Hamada, Tomo; Matsumoto, Kazu; Ishimaru, Daichi; Sumi, Hiroshi; Shimizu, Katsuji

    2014-09-01

    To examine whether child and adult skiers have different risk factors or mechanisms of injury for tibial shaft fractures. Descriptive epidemiological study. Prospectively analyzed the epidemiologic factors, injury types, and injury mechanisms at Sumi Memorial Hospital. This study analyzed information obtained from 276 patients with tibial fractures sustained during skiing between 2004 and 2012. We focused on 174 ski-related tibial shaft fractures with respect to the following factors: age, gender, laterality of fracture, skill level, mechanism of fracture (fall vs collision), scene of injury (steepness of slope), snow condition, and weather. Fracture pattern was graded according to Arbeitsgemeinschaft für Osteosynthesefragen (AO) classification and mechanical direction [external (ER) or internal rotation (IR)]. Tibial shaft fractures were the most common in both children (89.3%) and adults (47.4%). There were no significant differences in gender, side of fracture, mechanism of fracture, snow condition, or weather between children and adults. Skill levels were significantly lower in children than in adults (P differences in some of these parameters, suggesting that child and adult skiers have different risk factors or mechanisms of injury for tibial shaft fractures.